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SUMMARY
The hepatitis B virus nucleocapsid, or core particle, forms the major internal 

structural component of the infectious viral Dane particle. Core particles play essential 

roles in the morphogenesis of the virion and in reverse transcription of pregenomic RNA, 

one of the initial steps in genome replication. The 183 amino acid core protein is the sole 

component of the core particle. In a disulphide-bonded dimeric form, the core protein 

accumulates to reach a critical threshold concentration leading to the co-operative core 

particle assembly process. The core protein consists of two domains: the N-terminal 140 

amino acids and the C-terminal 43 amino acids. The latter region can be removed without 

affecting particle assembly. This region also contains a high proportion of basic residues 

and is tethered in the particle interior, where it interacts with the viral genome. The core 

protein is also an important immunological target during HBV infection. It contains B- 

and T-cell epitopes throughout its length and the core-specific helper T-cell response is 

thought to be an important factor in resolution of infection.

During HBV infection subpopulations of viral variants arise with mutations in their 

nucleotide sequences. Variants with deletions in genomic regions are also detected, with 

deletions within the core gene being the most common. Determination of the functional 

ability of these variants was important as they are proposed to represent immune escape 

variants in patients and, as such, may be responsible for the chronic hepatitis observed.

To allow detection of core deletion proteins with the immunodominant B-cell 

epitope (amino acids 74-89) removed, a ten amino acid epitope tag was inserted at the C- 

terminus of all proteins. The tag sequence did not affect particle assembly by full-length 

protein and allowed detection of bacterially-expressed core deletion proteins A84-109, 

A 81-121, A60-117 and A79-125 (numbers indicate the residues deleted). Although, after 

sucrose gradient centrifugation, core deletion proteins were present in regions of the 

gradient where particles were expected, no particulate structures were detectable by 

electron microscopy. It was concluded that these deletion proteins were incapable of 

stable particle assembly and, instead, only formed large non-specific aggregates. Similar 

results were obtained when samples used for electron microscopy were tested in an 

agarose gel assay for core particles. The inability of the four core deletion proteins to 

assemble into core particles was not due to a failure of the proteins to dimerise, which is 

the first step of the particle assembly pathway.

The deleted region of the A81-121 gene was replaced by an identical-sized region 

from the HBV surface gene and the resulting Acore-surface hybrid protein purified by 

density gradient centrifugation. This protein was also unable to form stable particles, 

indicating that the central region of the core protein is important for the formation of core 
particles.



Step-wise replacement of the original core gene sequence to the A81-121 core gene 

deletion, from both the 5' and 3’ ends of the deleted sequence, was carried out. This gave 

two sets of genes encoding three ’fill-in’ proteins (5’FIO, 20, 30 and 3’FIO, 20, 30) with 

decreasing deletions (31 amino acids to 11 amino acids). However, all proteins were 

unable to form stable particles when purified as before.

Results published during this project showed that central deletions of the core 

protein disrupted a motif consisting of a heptad repeat of hydrophobic residues. These 

results showed that even small disturbances of, or within, this motif prevented core 

particle assembly.

As viral variants with core gene deletions are found co-existing with wild-type virus 

the possibility that both forms of protein could co-assemble to form novel mixed particles 

was examined. Density gradient purification of extracts from cells co-expressing full- 

length protein and the A84-109 or A81-121 proteins showed that both proteins were 

present in the same fractions, with a gradient profile similar to that of particles formed 

from full-length protein. These profiles were also different to those obtained for A84-109 

and A81-121 proteins expressed in isolation. Therefore it seemed that mixed particles 

were able to assemble. In experiments where full-length and 5’F30 proteins were co

expressed similar results were not obtained, suggesting that mixed particles were unable 

to form, despite the smaller size of the deletion.

In mammalian cells, core protein shows a cell-cycle dependent cellular localisation. 

The protein is present in the nucleus during the G, and G 0 phases of the cell cycle and in 

the cytoplasm during S phase. Although the mechanism and function of this cell cycle- 

dependent localisation are unknown, a decision was made to investigate whether or not 

the core deletion proteins were subject to the same regulation. Using aphidicolin to arrest 

cells at the G,/S boundary, the location of the core deletion proteins in transfected HepG2 

cells was examined by immunofluorescence. All four core deletion proteins displayed a 

localisation which was both nuclear and cytoplasmic within the same cell. This altered 

pattern was probably due to the presence of the deletion upstream to the nuclear 

localisation signal in the C-terminus of the core protein. The significance of this result is 

unknown at present, but may be relevant to the disease state observed in these patients.

Sequencing of full-length core genes from viral DNA extracted from the serum of a 

chronic active hepatitis patient with core gene deletions (supplied by Dr. N. Naoumov) 

was carried out to examine whether or not the full-length viral subpopulation was 

responsible for the nature of the infection. The ten clones isolated showed a number of 

mutations throughout the pre-core and core regions, but these did not cluster in 

immunologically important epitopes.

The results from this project have shown that HBV variants with core gene 

deletions are not functionally viable by themselves. However, the interactions between 

core deletion proteins and full-length protein require further study, as does the



significance of the altered core deletion protein localisation. Results from these studies 

may explain the disease severity observed in the affected patients. Alternatively, further 

studies on the functional differences displayed by full-length core protein variants will 

yield more information on the mechanism of chronic hepatitis development. Studies on 

the structures of the core particle and the core protein published recently should also allow 

a more rational and directed approach to identifying regions of the core protein required 

for core particle assembly.
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CHAPTER 1 INTRODUCTION

1A THE HEPADNA V I R I D A E

1A1 Hepatitis B Virus

1) D iscovery an d  characterisation

The characterisation of the hepatitis B virus (HBV) followed the detection of the 

’Australia antigen' (AuAg) in serum from an Australian aborigine and in patients with 

acute leukaemia (Blumberg et al., 1965). Detection of the antigen in cases of viral and 

post-transfusion hepatitis led to the proposal that it was associated with the causative 

agent (Blumberg et al., 1967; Prince, 1968; Bayer et al., 1968; Giles et a l., 1969; Gocke 

and Kavey, 1969). This antigen was subsequently shown to be present in the serum of 

acute and chronic hepatitis B patients, as single or aggregated 20nm diameter particles 

(either spheres or long filaments). Electron microscopic studies (Dane et al., 1970; 

Jokelainen et al., 1970) using sera from AuAg-positive hepatitis patients, showed that 

these 20nm diameter spheres and filaments aggregated with larger 42nm diameter particles 

when incubated with antiserum. The 42nm particle, known as the Dane particle, was 

proposed to be the hepatitis B virion and was shown to have a greater density than the 

smaller particles, probably due to the presence of the viral DNA. The particle possessed a 

7nm thick outer envelope which surrounded a 28nm icosahedral inner core (see Figure 

1A 1). Virions and the smaller particles aggregated due to the presence of a common 

protein (or proteins) in their outer layers and the 20nm particles were proposed to 

represent non-infectious particles composed of surplus virion envelope proteins.

In 1973, Kaplan et al. discovered an endogenous DNA polymerase activity associated 

with 28nm core particles of the virion, which was either released from virions 

spontaneously or by NP40 treatment. This provided further evidence that the Dane 

particle was the HBV virion and that the inner core particles probably represented viral 

nucleocapsids. Conclusive evidence was provided by Robinson and Greenman (1974), 

who showed that this polymerase activity could be immunoprecipitated by antisera 

specific for the viral surface protein (anti-HBs) but not by antisera specific for the core 

protein (anti-HBc) before NP40 treatment of purified virions and by anti-HBc but not 

anti-HBs antisera after NP40 treatment. The structure of the viral DNA was initially 

determined by electron microscopic studies to be exclusively circular double-stranded 

DNA, smaller in size than any other double-stranded DNA virus and probably with a very 

limited coding capacity (Robinson et al., 1974). Using both molecular biological and 

electron microscopic studies the nature of the viral DNA was further elucidated and was 

shown to contain a single-stranded region, which was converted to a fully double

stranded region by the endogenous polymerase reaction (Summers et al., 1975; Hruska et

1



Chapter 1 Introduction

Nucleocapsid

DNA
Lipid biiayer

1-------  PreS2
(PreS2/S = M )

DNA polymerase —  
(Reverse transcriptase) HBsAg

( =  S)

DNA terminal 
protein ~  PreS1 

(PreS1/PreS2/S = L)

Figure 1A1: Structural organisation of the HBV virion

The infectious virion consists of an outer membrane containing the three surface gene 

products: SHBs (HBsAg), MHBs (PreS2+HBsAg) and LHBs (PreS1+preS2+HBsAg). 

The internal nucleocapsid, or core particle, consists entirely of core protein dimers and 

encloses the partially double-stranded circular DNA genome and the polymerase, 

covalently linked to the minus-strand DNA via its terminal protein domain. (Taken from 

Nassal and Schaller, 1993)

al., 1977). By convention, the full length strand, being complementary to the viral 

transcripts, is termed the minus-strand and the shorter strand is termed the plus-strand. 

This single-stranded region was observed in >99% of genomes examined and, although 

variable in size, had a favoured minimum length of 650-700 nucleotides (Delius et al., 

1983). In contrast to its 3' end, the 5' end of the plus-strand was fixed in position with 

respect to a unique Eco RI site in the genome and a nick present in the minus-strand. The 

partial duplex nature of the genome was maintained by a cohesive region of approximately 

210-310bp at the 5' termini of both DNA strands (Sattler and Robinson, 1979; Siddiqui et 

al., 1979). In addition to differing in length, the two DNA strands differed in the nature 

of their 5' termini. The minus-strand was shown to have a protein bound to its 5 ' 

terminus, explaining the extraction of viral DNA to the organic phase upon phenol 

extraction (Gerlich and Robinson, 1980). After treatment of the protein:DNA complex 

with 0 .1M NaOH or by heating with SDS to 90°C this attachment remained, suggesting a 

covalent linkage. Both strands of the DNA were unable to be phosphorylated by 

polynucleotide kinase, the minus-strand because of the attached protein. However, no 

protein was detected at the 5' terminus of the plus-strand. This puzzle was solved when it 

was shown that a small capped oligoribonucleotide approximately 17 nucleotides long
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was attached to this terminus (Will et al., 1987). These two different attachments were 

later shown to result from the viral replication mechanism (See section 1B2).

2) Genomic Organisation

The cloning of Dane particle-extracted HBV DNA allowed complete determination of 

the nucleotide sequence (Galibert et al., 1979; Pasek et al., 1979; Ono et al., 1983; see 

Figure 1A2). Although the plus-strand was predicted to contain several small open 

reading frames (ORFs), no protein products have ever been detected. The minus-strand 

was shown to have four major ORFs, one of which covered approximately 80% of the 

genome. The other ORFs had multiple in-frame start codons and were presumed to code 

for more than one protein.

ORF S was identified as coding for the surface proteins of the virus, present in the 

virion envelope. This was achieved by comparison of both the molecular weight and 

partial amino acid sequence of the surface protein with the predicted translated nucleotide 

sequence of the ORF. The gene had three in-frame start codons and a single stop codon, 

with the sequences upstream of the small surface gene named pre-S 1 and pre-S2.

The core, or C, ORF was identified by the similarity in molecular weights of the core 

protein and the calculated molecular weight of the ORF C product. When this genomic 

region was expressed in E.coli and injected into rabbits, the sera reacted in 

immunodiffusion assays with human HBcAg isolated from human liver (Pasek et al., 

1979; Burrell et al., 1979).

The largest open reading frame, ORF P, gave a protein of predicted molecular weight 

of approximately 90kDa. This was within the correct molecular weight range expected for 

a DNA polymerase or reverse transcriptase, thus putatively identifying this gene as coding 

for the viral polymerase.

The smallest open reading frame was designated ORF X, with a predicted size of 

17kDa. No viral protein of this size has yet been identified in infected cells. This may be 

due to different sized proteins being produced from this ORF (Kwee et al., 1992). The 

precise role of ORF X and its possible related products in the viral lifecycle is still 

unclear, but a number of functions have been suggested (see sections 1B3.3 and 1B4.2).

All four ORFs overlap to some extent: the surface gene is contained entirely within the 

region of the polymerase gene, although is in a different reading frame. The regulatory 

elements for transcription are also present within coding sequences, allowing further 

genomic compactness.

Two repeats of an 11 bp sequence, termed DR1 (nucleotides 1590-1600) and DR2, 

(nucleotides 1824-1834) were identified at the ends of the viral genome. These direct 

repeats have significance for both the viral replicative mechanism and in specific 

integration of viral DNA into chromosomal DNA in hepatocellular carcinoma (Dejean et 
al., 1984).
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Figure 1A2: Genomic organisation of HBV

The outer lines represent the different classes of transcripts and the bold inner circles the 

DNA genome, as found in the virion. The oligoribonucleotide primer found at the 5' end of 

the plus-strand DNA is shown as a wavy line and the polymerase/terminal protein at the 

minus-strand terminus as a triangle. Encapsidation signal (e) sequences are represented 

by a hatched rectangle. The four major ORFs (C, S, X and P) are indicated in the centre. 

The numbering system shown in this diagram differs from that used in the rest of this 

thesis, which follows the system of Ono et al., (1983) where position 1 is identified as 

the first T nucleotide in the unique Eco Rl site, at the 5' end of the pre-S2 region 

(nucleotide 1322 in the above diagram). (Taken from Nassal and Schaller, 1993)

1A2 W oodchuck Hepatitis Virus

The woodchuck hepatitis virus was the second hepadnavirus discovered shortly after 

the isolation of HBV. The existence of this virus was suggested by the high incidence of 

severe chronic hepatitis and primary hepatocellular carcinoma in a colony of woodchucks
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in Penrose Research Facility at Philadelphia Zoo (Summers et al., 1978). The serum of 

these animals contained large amounts of excess viral envelope proteins in the form of 

approximately 25nm diameter spheres or filamentous particles, similar to those described 

in humans. These particles displayed weak serological cross-reactivity with the analogous 

HBsAg particles, whilst core particles isolated from livers in the two species showed 

higher levels of cross-reactivity (Werner et al., 1979). Many double-layered 55nm 

particles were also detected which contained DNA and a DNA polymerase activity 

analogous to that of the human virion. These particles were presumed to be woodchuck 

hepatitis B virus (WHV) virions. The viral genome showed significant cross

hybridisation to the HBV genome. Sequencing of full-length cloned genomes showed that 

the number and sizes of the open reading frames, along with their location relative to the 

nick in the minus-strand, were also similar to the HBV genome structure. Comparison of 

HBV and W HV nucleotide sequences showed 62-70% homology. The least homologous 

region was that surrounding the unique Eco RI site, corresponding to sequences common 

to the pre-S region and the polymerase gene (Galibert et al., 1982). A region 

corresponding to the 3' end of the X gene also showed a lower homology. Viral genomes 

were predominantly found in the liver, although smaller quantities of viral DNA and RNA 

were detected in peripheral blood leukocytes, spleen and kidney (Summers et al., 1978; 

Korba et al., 1986).

1A3 Ground Squirrel Hepatitis Virus

A vims similar to HBV was isolated from seemingly healthy Beechey ground squirrels 

(Marion et al., 1980). The virus showed marked hepatotropism and a narrow host range, 

with rats, mice, guinea pigs and hamsters showing no detectable antigenemia after 

parenteral administration of the virus (Ganem et al., 1982a). Despite high serum titres of 

viral surface proteins and 47nm virions, no pathology was observed in infected ground 

squirrels (Marion et al., 1980; Ganem et al., 1982a). Using hybridisation studies, 

physical mapping and complete genome sequencing, the genome showed extensive 

homology to both HBV (55% nucleotide homology) and WHV (82% nucleotide 

homology). The number and arrangement of the ORFs was also very similar to both HBV 

and WHV (Siddiqui eta l., 1981; Ganem et al., 1982b; Seeger et al., 1984). The surface 

and core proteins were shown to be cross-reactive with and biochemically related to 

analogous HBV and WHV proteins (Cote and Gerin, 1983; Feitelson et al., 1982).

Similar hepadnaviruses have also been isolated from Arctic ground squirrels (Testut et 

al., 1996) and gibbons (Norder et al., 1996), although these are less well characterised.

1A4 Avian Hepadnaviruses

HBV-like viruses have been discovered in Pekin Ducks, in some instances only one 

day after birth, suggesting viral infection and multiplication in embryonic eggs (Mason et
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al., 1980). Virions of the same size and appearance as HBV were detected in sera from 

these birds, which preferentially localised to the liver.

Determination of the nucleotide sequence of the viral DNA by Mandart et a l  (1984) 

showed the genome to be 3021 nucleotides in length, which is comparable in size to 

HBV. However, compared with HBV, a lower homology was shown (<40% for the 

largest part of the sequence). Also, the genome of duck hepatitis B virus (DHBV) has a 

different organisation, lacking a homologue of the mammalian hepadnaviral X gene. 

Instead only a larger, novel core gene was present with C-terminal basic amino acid 

repeats which are similar to those found in the mammalian hepadnaviral core proteins. 

The surface gene homologue was found to be approximately fifty amino acids shorter 

than the HBV protein, due to the deletion of a region corresponding to amino acids 105- 

155. The 40nm virion particle co-migrated on CsCl gradients with a DNA polymerase 

activity (Mason et a l ,  1980), suggesting that DHBV also possessed an endogenous DNA 

polymerase. Amino acid sequence comparisons showed the predicted polymerase protein 

was related to the equivalent protein in HBV and WHV (Mandart et a l ,  1984).

Another recently characterised avian hepadnavirus, heron HBV (HHBV), was isolated 

from grey herons in Germany. HHBV showed similar virion morphology, genome size 

and core and surface protein sizes when compared to DHBV (Sprengel et a l ,  1988). 

Sequencing of the genome showed a high homology to DHBV (78.5%) and a similar 

organisation, with the mammalian hepadnaviral X gene missing and a larger core gene 

present instead. The differing genomic organisation and lower sequence homology for 

avian hepadnaviruses, compared to the mammalian viruses, suggests that these viruses 

form a distinct group, but still with specific host ranges, as HHBV was found to be non- 

infectious to Pekin Ducks (Sprengel et a l ,  1988).

IB VIRAL LIFECYCLE 
1B1 Hepatocyte Binding

To initiate infection, a virus must attach to a host cell receptor via proteins present on 

the virion surface (see Figure 1B1). The exact identity of these proteins and the 

mechanism of virus attachment and subsequent penetration into human hepatocytes in the 

lifecycle of HBV are unknown. The large, middle and small surface proteins (LH Bs, 

MHBs and SHBs, respectively (see Figure 1 A l and Section 1B4.4)) are all present in the 

virion but it is unclear as to which particular region/s of these proteins are important for 

hepatocyte binding. However, candidate host cell proteins which bind to all three virion 

surface proteins have been identified.

The pre-Sl region of LHBs has been reported to bind to hepatocyte plasma 

membranes through specific interactions involving residues between amino acids 21-47
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Figure 1B1: Basic life-cycle of HBV

(1) Attachment to and (2) penetration of the host cell. (3) Uncoating and transport of the 
viral genome to the nucleus. (4) Conversion into covalently-closed circular (ccc) DNA as 

the template for transcription. (5) RNA synthesis and transport to the cytoplasm. (6) 

Translation of the gene products. (7) Nucleocapsid assembly and encapsidation of 

pgRNA. (8) Reverse transcription of pgRNA and DNA synthesis. (9) Export from the cell 

as enveloped virions. Alternatively, the nucleic acid can be reimported to the nucleus for 
amplification of cccDNA (10). (Taken from Nassal and Schaller, 1993)

7



Chapter 1 Introduction

(Neurath et al., 1986; Pontisso et al., 1989a; Petit et al., 1991). Interacting host cell 

membrane proteins have been detected which may have a role in the initial stages of viral 

infection. A region of the IgA a-1 chain, with limited amino acid similarity to pre-Sl 

amino acids 21-47, competed with pre-Sl residues for liver plasma membrane binding, 

suggesting the presence of a common receptor (Pontisso et al., 1992). The use of anti- 

idiotypic antibodies to pre-Sl residues identified several liver cell membrane proteins 

which may function as HBV receptors (Petit et al., 1992). The liver membrane 

asialoglycoprotein receptor was also shown to bind virions, with binding completely 

inhibited by anti-pre-Sl, but not anti-pre-S2 monoclonal antibodies (Treichel et al., 

1994).

Pre-S2 residues do not mediate binding to hepatocyte membranes by themselves, but 

binding was possible in the presence of polymerised human serum albumin (pHSA), 

which also binds liver cell membranes (Pontisso et al., 1989b). However conflicting 

reports occur as to the relevance of pre-S2:pHSA-mediated hepatocyte binding: pre-S2 

residues corresponding to the pHSA binding site are inaccessible to monoclonal 

antibodies when present in virions (Petit et al., 1987) and the occurrence of 

gluteraldehyde-linked pHSA, the most efficient polymerised form for binding (Yu et al., 

1985), in vivo  seems unlikely. In contrast to these findings which cast doubt on the 

relevance of pre-S2-mediated hepatocyte binding, pre-S2 residues were shown to be 

capable of generating neutralising and protecting antibodies (Neurath et al., 1986; Itoh et 

al., 1983).

Although early reports suggested SHBs was unable to bind to hepatocytes, or that 

these interactions were irrelevant, recent experiments by the group of Yap have shown 

this may not be the case. SHBs particles (see Section 1B4.4) bound to intact human 

hepatocytes (Leenders et al., 1990) through specific interactions with endonexin II 

(annexin V), a 34kDa member of Ca2+-dependent phospholipid binding proteins (Hertogs 

et al., 1993). The production of anti-idiotypic anti-HBs antibodies in rabbits immunised 

with human liver endonexin II gave evidence for the ligand:receptor nature of this 

interaction (Hertogs et al., 1994).

In order to reconcile these seemingly conflicting results, it is not unreasonable to 

suggest that more than one surface/pre-S protein region is required for efficient organ- 

and species-specific vims attachment. This process may involve a number of steps, each 

utilising a different surface protein region (Leenders et al., 1990). SHBs protein may be a 

more likely candidate for hepatocyte binding, with pre-S regions providing species- 

specific interactions due to their low cross-species homology. Alternatively, vims 

attachment and entry into cells may occur by a non-specific process, despite the 

observation of these specific interactions between surface proteins and hepatocyte 

membrane proteins. If this was the case, though, the efficiency would have to be very 

high to allow successful propagation of a small inoculum of virus. Also, another
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explanation would be required to explain the organ- and species-specificity of the 

hepadnaviruses.

The entry of enveloped viruses into cells often requires proteolysis of the envelope 

proteins to expose a fusion domain. This domain enables the fusion of viral membranes 

with either host cell membranes or endosome membranes if virions are endocytosed. In 

studies with staphylococcal V8 protease-treated virions, Lu et al. (1996) showed that at 

acid pH, virus particles were able to infect normally non-susceptible HepG2 cells. The V8 

protease treatment exposed a putative consensus fusion domain between amino acids 182- 

188 of pre-Sl protein: FLGXLLV. The pre-Sl residues required for attachment, as 

described before, did not seem to be necessary for these experiments; V8 protease 

treatment removes essentially all pre-S residues from the virion. Surface residues were 

also the only requirement for entry of SHBs particles into primary human hepatocytes via 

endonexin II attachments (de Bruin et al., 1995). After incubation with gold-conjugated 

SHBs particles at 4°C, cells warmed to 37°C showed invagination of plasma membrane 

coated pit regions at SHBs binding sites and formation of endocytotic vesicles. With the 

different mechanisms for viral entry inferred by both sets of results, fusion peptide- 

mediated and receptor-mediated endocytosis respectively, the problem remains unsolved.

Less still is known about the processes that occur following virion entry into host 

cells. The precise mechanism allowing delivery of the viral genome to the nucleus remains 

undetermined, although clues have come from an in vitro model derived from WHV 

(Kann et al., 1997). In this model the polymerase:DNA complex was efficiently 

transported into the nucleus after release from core particles. These possibly disassemble 

before reaching the nuclear membrane (Bock et al., 1996), as core particles themselves do 

not cross intact nuclear membranes (Guidotti et al., 1994a). In addition, phosphorylation 

of core protein C-terminal serine residues by encapsidated protein kinase C (Kann et al., 

1993) may act to destabilise the core particle and allow virion genome release (Kann and 

Gerlich, 1994).

1B2 Viral Replication

The unusual structure of the HBV genome is a consequence of the mode of replication 

employed by the virus. HBV utilises a reverse transcription step to synthesise minus- 

strand DNA, in contrast to almost all other DNA viruses (Summers and M ason, 1982). 

HBV replication occurs in four main stages, which are listed and described below:

1) formation of covalently-closed circular DNA (cccDNA)

2) production of pregenomic RNA (pgRNA)

3) minus-strand DNA synthesis, by reverse transcription

4) plus-strand DNA synthesis

Stages 1 and 2 occur in the host cell nucleus, whereas stages 3 and 4 occur after the
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Figure 1B2: Model for HBV replication

(1) Encapsidation and initiation of minus-strand DNA synthesis. The dotted line 

represents pgRNA; boxes 1 and 2 represent DR1 and DR2, respectively. The 

polymerase (oval shape) binds the 5' e stem loop and facilitates pgRNA encapsidation. 

Four nucleotides of minus-strand DNA are synthesised (solid line) from the bulge region.

(2) Minus-strand template switch. The polymerase-tetranucleotide complex switches to 

complementary sequences in the 3' copy of DR1 and minus-strand DNA synthesis 

continues. (3 and 4) Synthesis of minus-strand DNA. As minus-strand DNA (solid line) is 

synthesised, pgRNA is degraded by the RNase H activity of the polymerase. (5) 

Completion of minus-strand DNA synthesis and generation of plus-strand RNA primer. 

The final RNase H cleavage generates the plus-strand primer, which is derived from the 

first 18 nucleotides of the pgRNA (from cap structure to 3' of DR1). (6) Translocation of 

the plus-strand primer. The primer anneals to complementary DNA sequences in DR2, 

which is juxtaposed to DR1 upon completion of minus-strand synthesis. (7) Initiation 

and elongation of plus-strand DNA synthesis. Approximately 50 nucleotides of plus- 

strand DNA is synthesised. The minus-strand DNA terminal redundancy is labelled Y. 

(8) Intra-strand template switch and elongation of plus-strand DNA. Plus-strand DNA 

synthesis switches templates from the 5' to 3' end of minus-strand DNA, facilitated b y 

the terminal redundancy V. Plus-strand DNA elongation continues. (9) Elongation and 

completion of plus-strand DNA synthesis results in a relaxed circular DNA. (10 and 11) 

In situ priming of plus-strand DNA synthesis. A fraction of plus-strands may not initiate 

at DR2, but at DR1 instead, due to plus-strand primer not being translocated. Elongation 
results in duplex, linear DNA. (Taken from Loeb et al., 1997)
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production of pgRNA, which is complexed to the viral polymerase and is encapsidated 

into an assembling core particle (see Section 1B5). A summary diagram of HBV 

replication is shown in Figure 1B2.

1) Form ation o f cccDNA

Several modifications to both strands of the virion DNA are required before it can be 

used as a transcriptional template: the protein must be dissociated from the 5' end of the 

minus-strand; eight terminally redundant nucleotides removed from the 5' end of the 

minus-strand and the 5' and 3' ends ligated; the 17-mer oligoribonucleotide must be 

removed from the 5' end of the plus-strand and plus-strand synthesis completed. The 

resulting circular supercoiled molecule is termed cccDNA. Host cell enzymes are thought 

to be responsible for all these stages, but this has only been demonstrated experimentally 

for the last stage mentioned (Kock and Schlicht, 1993). Amplification of cccDNA occurs 

through an intracellular pathway and this form of DNA accumulates in the nucleus (Miller 

and Robinson, 1984; Tuttleman et al., 1986).

2) Production o f pregenom ic RNA

The 3.5kb pregenomic RNA (pgRNA) represents one of the major polyadenylated 

transcripts found in infected hepatocytes (Cattaneo et al., 1984). It is transcribed from one 

region of the core promoter by host cell RNA polymerase II and, in addition to its role in 

viral replication, also acts as the template for translation of core and polymerase proteins. 

The 5' end of this transcript was mapped to the pre-core region nucleotide 1818, five 

nucleotides downstream of the pre-core ATG; this explains why this transcript does not 

code for e antigen. The transcript terminates at the common site for all hepadnaviral 

mRNAs, approximately twenty nucleotides downstream of the conserved hexanucleotide 

UAUAAA. This transcription termination signal is read-through at the first pass, leaving 

the pgRNA with a terminal redundancy of approximately 120 nucleotides (Will et al., 

1987). An 85 nucleotide sequence at the 5' end of pgRNA was identified as being 

necessary for efficient encapsidation of pgRNA into core particles, following interaction 

of the RNA with the viral polymerase (Junker-Niepmann et al., 1990; see Section 1B5). 

This cis-acting encapsidation signal was termed £ and contained several inverted repeat 

sequences suggesting a high degree of secondary structure. These repeat sequences were 

similar in all hepadnaviruses. The secondary structure of £ was determined by RNase and 

nuclease probing and shown to be a bipartite stem-loop structure, with lower and upper 

stems interrupted by a six nucleotide bulge. The upper stem contained a single unpaired U 

and a six nucleotide loop (Knaus and Nassal, 1993; Pollack and Ganem, 1993; see Figure 

1D2). Due to the terminal redundancy, two copies of £ and the DR1 repeat are present in 

pgRNA.
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3) M inus-strand DNA synthesis by reverse transcription

Recently the e encapsidation signal has also been shown to be involved in the initial 

stages of minus-strand DNA synthesis. From the results of primer extension analysis it 

was previously believed that minus-strand DNA synthesis initiated at the 3' copy of DR1 

(DR1*) and proceeded in a continuous manner, without the need of a template switch 

(Will et al., 1987). However, experiments with DHBV polymerase expressed in a yeast 

TY1 retrotransposon system (Tavis and Ganem, 1993) showed that the minus-strand 

origin mapped within the stem-loop of e. This origin had been previously described as a 

cryptic site which was used when DR1* was deleted from pgRNA (Condreay et al.,

1992). As the 3' copy of e and the 5' copy of DR1 were functionally silenced in pgRNA 

(Seeger and M aragos, 1990), the hypothesised mechanism for minus strand synthesis 

involved a template switch by nascent minus-strand DNA from the 5' copy of e to DR1*. 

This mechanism has now been demonstrated for both DHBV (Wang and Seeger, 1993; 

Tavis et a l ,  1994) and HBV (Rieger and Nassal, 1996). The replication origin was more 

precisely mapped to the six nucleotide bulge of e and particularly to the four distal 

nucleotides UUCA (Nassal and Rieger, 1996).

Evidence from studies on DHBV replication indicated that reverse transcription was 

initiated via a mechanism unique to hepadnaviruses: the reaction was primed by a protein 

molecule which remains covalently bound to the 5' end of minus-strand DNA throughout 

the viral lifecycle (Molnar-Kimber et a l,  1983). The initiation step involved the formation 

of a phosphodiester bond between the Tyr-96 residue in the terminal protein domain of 

the polymerase and, in the case of DHBV, a dGTP nucleotide (Bartenschlager and 

Schaller, 1988; Zoulim and Seeger, 1994; Weber et a l ,  1994). This nucleotide was 

specified by the 3' terminal nucleotide in the bulge of the £ sequence. The use of HBV 

polymerase expressed in insect cells has confirmed a similar mechanism for this stage of 

HBV replication. HBV polymerase was expressed in the presence of RNA containing £ 

and DR1 sequences to examine HBV minus-strand DNA initiation. The minus-strand 

DNA synthesised initiated with a dTTP nucleotide (Lanford et a l ,  1995), complementary 

to the 3' terminal nucleotide in the bulge of the HBV £ sequence. However, minus-strand 

transfer to the DR1 sequence was found to be more efficient than for DHBV. Another 

difference from DHBV replication was that Tyr-63 was the site of the DNA:polymerase 

linkage (Lanford et a l ,  1997).

After the addition of four nucleotides complementary to the bulge sequence, primer 

elongation halts, possibly because the polymerase encounters the structurally rigid lower 

stem of £. The polymerase-primer complex then translocates to a complementary 

tetranucleotide sequence in DR1* and minus-strand synthesis is completed in a 

continuous manner as initially hypothesised (Will et a l ,  1987). The sequence 

complementarity only partially explains the specificity of the translocation reaction, as the 

tetranucleotide sequence occurs eighteen times in a unit-length genome and sequences
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complementary by only two nucleotides are capable of translocating efficiently (Nassal 

and Rieger, 1996). In addition, when multiple complementary tetranucleotide sequences 

were introduced around DR1*, the original sequence was still used preferentially (Loeb 

and Tian, 1995). The conformation of the pgRNA may place the 5' e and DR1* 

sequences in close spatial proximity, presumably by adopting a circularised shape, 

bringing the ends of the pregenome together. This conformation may be stabilised by 

RNA:protein interactions, which could possibly involve additional polymerase binding 

sites (Seifer and Standring, 1995) or cellular proteins such as the 65kDa nuclear protein 

which binds pyrimidine-rich regions present at both ends of pgRNA in the terminally 

redundant sequences (Perri and Ganem, 1996). Kidd and Kidd-Ljunggren (1996) carried 

out computer-based modelling studies of the folding of the pgRNA template and predicted 

that the 3' end of pgRNA contained an RNA superstructure with DR1* exposed on a 

loop. This superstructure is not present at the 5' end of pgRNA and so may direct correct 

positioning of the translocating polymerase-primer complex. As the tetranucleotide 

translocation site for this complex in DR1* is located eight nucleotides downstream of the 

5' end of the pgRNA, this results in a terminal redundancy of eight nucleotides in the 

completed minus-strand DNA.

Digestion of the pgRNA occurs simultaneously with reverse transcription and is also 

catalysed by the viral polymerase. Mutational analysis of the polymerase protein showed 

that RNase H activity mapped to the C-terminal region, between amino acids 680-832 

(Radziwill et al., 1990).

4) P lus-strand synthesis

The 5' end of plus-strand DNA was found to contain a covalently-linked seventeen 

nucleotide long oligoribonucleotide with sequence identical to both DR1 and nucleotides 

5' of DR1 (Will et al., 1987; Seeger et al., 1986). This oligoribonucleotide was capped in 

the DHBV genome (Lien et al., 1986) and was proposed to be the undigested 5' end of 

the pgRNA. This would have been translocated to the DR2 sequence in the newly- 

synthesised minus-strand DNA, which is where the 5' end of plus-strand DNA was 

mapped. Again, the translocation mechanism is unknown, but the spatial conformation of 

the minus-strand is probably critical for correct positioning of the translocated 

oligoribonucleotide.

Oligoribonucleotide-primed plus-strand synthesis proceeds up to the 3' end of the 

minus-strand template after which an intra-molecular template switch must take place. 

This switch is facilitated by the eight nucleotide redundancy in the 5' and 3' ends of 

minus-strand DNA, but the exact mechanism remains to be determined. Recent studies on 

DHBV replication have suggested that factors other than the terminal redundancy are 

required for this template switch (Loeb et al., 1997).
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Plus-strand synthesis halts before completion resulting in the circular partially double

stranded genome observed in virions. The reasons for this are unclear, but possibilities 

include spatial constraints within the nucleocapsid or an insufficient pool of available 

dNTPs after the mature virion is released into the extracellular medium.

1B3 HBV G ene E xpression

The subject of HBV gene expression results in the production of a large amount of 

literature, some of which can be difficult to integrate and may be contradictory. This 

section gives only a basic summary of the main points; further, more detailed information 

is available in recent reviews by both Schaller and Fischer (1991) and Yen (1993). The 

positions and lengths of the transcripts are represented in Figure 1A2, where the pgRNA 

is labelled 'C'.

1B3.1 T ranscrip ts

Viral messages are transcribed from the episomal cccDNA template (see Section 

1 B2( 1)) by the host cell transcriptional apparatus. Four classes of transcripts have been 

detected: 3.5kb, 2.4kb, 2.1 kb and 0.9kb. The transcripts are initiated from four viral 

promoters: the core promoter, the surface promoters Spl and SpII and the X promoter. 

All transcripts terminate downstream of the single polyadenylation site, UAUAAA, which 

is located after the core gene AUG start codon.

The core promoter gives rise to three different 3.5kb transcripts (Yaginuma et al., 

1987; Honigwachs et al., 1989). Two of these are the long pre-core mRNAs, initiated 20- 

30 nucleotides upstream of the pre-core ATG at 1783/4 and 1790± 1 and which encode e 

antigen. The third is a shorter, more abundant core mRNA, or pgRNA. This is initiated at 

1819± 1 and can be reverse transcribed or used as message for core and polymerase 

proteins. This promoter contains binding sites for the liver-enriched factors HNF3 and 

HNF4 (Johnson et al., 1995; Guo et al., 1993; Raney et al., 1997). However, a recent 

report by Yu and Mertz (1996) has shown that synthesis of pgRNA and pre-core mRNAs 

was actually under the control of two discrete promoters which, although partially 

overlapping, were genetically separable. The activities of the two promoters were also 

shown to be differentially regulated, which may explain the differing relative abundance 

of the pgRNA and pre-core transcripts in infected liver cells.

As these RNAs are all of supergenomic length, the polyadenylation signal must be 

ignored when first encountered by the RNA polymerase. Efficient recognition of the 

downstream polyadenylation signal, in the case of ground squirrel hepatitis virus (GSHV) 

at least, requires three sequences located in the 397 nucleotides upstream of the AAUAAA 

sequence (Russnak and Ganem, 1990). The inefficient usage of the signal on the first 

pass is a result of pgRNA containing only one of these regions between its 5' end and the
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polyadenylation signal.

The Spl promoter directs the synthesis of a single 2.4kb transcript (the pre-Sl 

transcript) which is initiated at nucleotide 2807 and encodes LHBs (Will et al., 1987). 

This is the only HBV promoter to contain an upstream TATA box, which explains the 

lack of heterogeneity of the 5' end of LHBs-encoding transcripts. The Spl promoter 

shows a strong preference for differentiated hepatocytes and contains binding sites for 

HNF1 and HNF3 (Chang et al., 1989; Raney et al., 1995).

The SpII promoter directs the synthesis of a number of mRNAs with start sites on 

either side of the pre-S2 ATG (Cattaneo et al., 1983, 1984; Standring et al., 1984; 

Yaginuma et al., 1987). Those mRNAs which initiate 5' to this ATG encode M HBs, 

while those initiating 3' to this ATG encode SHBs. Thus the SpII promoter is responsible 

for the production of both MHBs and SHBs proteins.

The X promoter directs the synthesis of viral mRNAs which encode the X protein. 

These transcripts have heterogeneous 5' termini and are approximately 0.7-0.9kb in 

length (Treinin and Laub, 1987). However, these transcripts have not been detected in 

HBV-infected liver cells, although the X protein has been detected in liver biopsies 

(Haruna et al., 1991; Wang et al., 1991a) and sera (Feitelson and Clayton, 1990) from 

HBV-infected patients.

The 3.5kb pgRNA transcript undergoes splicing to produce two separate mRNAs, 

approximately 2.2kb in size, which have been detected in infected liver cells and in 

HepG2 cells transfected with genomic constructs (Wu et al., 1991a). The 2.2kb mRNAs 

are either singly or doubly spliced: singly spliced transcripts have 1224 nucleotides 

removed and are predicted to encode a core protein lacking its terminal cysteine, an N- 

terminally truncated polymerase and smaller surface proteins. Doubly spliced transcripts 

contain a 282 nucleotide in-frame deletion from the middle of the core gene and a 1016 

nucleotide deletion from the terminal codon of the core gene. These splicing events would 

remove the C-terminal cysteine of the core protein and the N-terminus of SHBs, also 

producing a truncated polymerase. A 2.7kb spliced RNA has also been detected in 

transfected HepG2 cells with the same splice acceptor site as the 2.2kb RNA, but a splice 

donor site 500bp downstream of the 2.2kb donor site (Suzuki et al., 1990). The relevance 

of these splicing events is unclear as they seem to play no major role in the viral lifecycle, 

as determined by mutational inactivation of the donor and acceptor sites (Suzuki et al.,

1990). However as they seem to be more prominent in patients who have progressed 

from acute to chronic hepatitis, as compared to patients who recover from acute hepatitis, 

a role has been postulated for them in the cause of chronic HBV infection (Rosmorduc et 
al., 1995).
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1B3.2 T ranscriptional regulation by c /s-acting  elem ents

1) Enhancers
In addition to the four promoters and the polyadenylation site, the HBV genome also 

contains two enhancer elements, I and II, which regulate promoter activities. Enhancer I 

(nucleotides 1074 and 1234) is located in the upstream region of the X promoter, and can 

function in an orientation-independent manner (Shaul et al., 1985). Enhancer I sequences 

were capable of increasing the rate of transcription from the core and X promoters, but 

had little effect on the SpII promoter (Zhang et al., 1992; Raney et al., 1989). The 

mechanism of action of enhancer I is likely to contribute to the hepatotropism of HBV as 

it showed higher levels of activity in differentiated hepatocyte cell lines (Antonucci and 

Rutter, 1989; Honigwachs et al., 1989; Zhang et al., 1992). Both footprinting and gel 

retardation analyses have shown the presence of multiple binding sites in enhancer I for 

the liver-enriched factors HBLF, HNF3 and HNF4 (Trujillo et al., 1991; Chen et al.,

1994).

Enhancer II (nucleotides 1636-1741) is positioned upstream of the core promoter 

between DR1 and DR2 and can function in an orientation- and position-independent 

manner, with increased activity in differentiated liver cells (Yee, 1989). Enhancer II was 

capable of upregulating transcription from both the Spl and SpII promoters (Yuh and 

Ting, 1990). The functional ability of enhancer II is strictly dependent on a bipartite 

structure consisting of a 23bp box a  (1646-1668) and a 12bp box (3 (1704-1715) (Yuh 

and Ting, 1990; Yuh et al., 1992). Liver cell-specific proteins have been shown to bind to 

enhancer II, again explaining the high activity of enhancer II in hepatocytes, compared 

with other cell types (Yuh and Ting 1993).

The glucocorticoid response element, located approximately 730bp upstream to 

enhancer I, has been shown to bind purified glucocorticoid receptor and to augment the 

activity of enhancer I in the presence of dexamethasone (Tur-Kaspa et al., 1988). This 

may explain the increased expression of surface and core proteins observed in patients on 

corticosteroid treatment (Scullard et al., 1981; Wu et al., 1982; Ohtsu et al., 1991).

2) Negative regulation o f  transcription

In addition to the action of the enhancer elements, viral transcription is also negatively 

regulated by cA-acting elements. In transient transfection assays, 2.4kb surface gene 

transcripts were difficult to detect, in contrast to the abundant 2.1 kb surface mRNAs 

(Bulla and Siddiqui, 1989). This was due to differences in the levels of transcription from 

the Spl promoter and the SpII promoter. Deletion analysis of the surface gene regulatory 

region showed that the decreased Spl activity was due to a negative regulatory element 

which contained the downstream SpII region.

A second negative regulatory element is located directly upstream of enhancer II (Lo 

and Ting, 1994). This represses both the stimulatory effects of enhancer II and the

16



Chapter 1 Introduction

stimulatory effect which sequences overlapping with enhancer II have on the core 

promoter (Yuh et al., 1992).

1B3.3 T ranscriptional regulation by the X protein

The X protein transactivates a large number of viral and cellular promoters (reviewed 

by Rossner, 1992), including all four HBV promoter elements (Colgrove et al., 1989; 

Siddiqui et al., 1989; Raney et al., 1990; Unger and Shaul, 1990). Using nuclear run-on 

transcription assays, increased gene expression was shown to be due to an increased rate 

of transcription (Colgrove et al., 1989). As these experiments also utilised recircularised 

HBV genomes to express the X protein at in vivo  levels, it seems likely that the role of 

this protein during the viral life cycle is to increase the levels of viral mRNAs required for 

viral replication. The precise mechanism for this transcriptional transactivation is 

unknown at present, but it appears that the X protein effects this by performing a dual 

role, depending on its subcellular location. The X protein has been reported to 

transactivate gene expression in two ways: (i) by directly interacting with components of 

the transcription machinery at the promoter (Haviv et al., 1996; Cheong et al., 1995; 

Qadri et al., 1995, 1996; Maguire et al., 1991; Unger and Shaul, 1990; Seto et al., 1990) 

or (ii) by acting indirectly on transcription factors, modifying their activity through 

cellular signalling pathways (Benn et al., 1996; Su and Schneider, 1996; Benn and 

Schneider, 1994; Natoli et al., 1994; Kekule et al, 1993; Cross et al., 1993; Lucito and 

Schneider, 1992). Experiments carried out by Doria et al. (1995) showed that the X 

protein could both stimulate signal transduction pathways (when located in the cytoplasm) 

and transactivate transcription elements, such as the HBV enhancer I (when located in the 

nucleus). Therefore the activation of gene expression by the X protein may be regulated 

by proteins which affect its subcellular localisation.

1B4 Viral Proteins

The four classes of HBV mRNAs act as the templates for the translation of seven viral 

proteins, the structures and functions of which are described below. Probably only one of 

these proteins, the HBe protein or e antigen, is not found in the virion; instead it is 

detected mainly in the serum of patients. The question as to whether the X protein is 

located within the virion or is synthesised only after viral entry and transcription have 

occurred remains to be resolved. Analysis of the kinetics of the X gene transcripts 

showed that they were degraded more rapidly than other viral mRNAs (Wu et al., 

1991b). Analysis of the X protein expressed in HepG2 cells from a recombinant vaccinia 

virus showed that the protein had a half-life of 3hr (Schek et al., 1991). The X protein 

may not, therefore, remain in the cell long enough to be encapsidated, a hypothesis 

disputed by Wu et al. (1990), who claimed to detect the X protein in virions.
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1B4.1 The e antigen

The 3.5kb pre-core mRNAs serve as the templates for e antigen production, as they 

are the only viral RNAs to include the pre-core ATG. The e antigen is translated as a 

25kDa precursor protein, p25e (Jean-Jean et al., 1989a; Yang et al., 1992). The p25e 

protein includes all of the core protein residues plus an additional twenty-nine N-terminal 

amino acids which are largely hydrophobic. The nineteen N-terminal residues constituted 

a signal peptide sequence, which directed p25e to the membranes of the endoplasmic 

reticulum (ER) (Ou et al., 1986). Co-translational signal peptide cleavage of the 

transmembrane protein occurred at pre-core residue A la-19, producing p22e in the ER 

lumen (Standring et al., 1988; Bruss and Gerlich, 1988). As p22e passes through the 

cellular secretory pathway it is further cleaved to remove part or all of the 37 C-terminal 

amino acids, producing p l6e , the 16kDa secreted e antigen detectable in the serum 

(Magnius and Espmark, 1972; Takahashi et al., 1983). As p22e was present in both the 

ER and the Golgi apparatus, yet p l6e  was found only in the Golgi, this C-terminal 

processing most likely occurred in the Golgi compartment. This was confirmed by 

suppression of the processing by brefeldin A, an inhibitor of protein transport between 

the ER and the Golgi (Wang et al., 1991b). Aspartyl proteases were found to be 

responsible for the processing, as it was inhibited by pepstatin, a competitive inhibitor of 

these enzymes (Jean-Jean et al., 1989a). Although the core protein contains an aspartyl 

protease-like motif, mutagenesis studies of this motif showed that the core protein was 

not responsible for the C-terminal processing of e antigen (Jean-Jean et al., 1989b; Nassal 

et al., 1989). These same experiments also showed that p22e could not process itself, 

therefore cellular enzymes are thought to be responsible. Although e antigen contains the 

core protein sequences necessary for particle assembly (see Section 1E 1), the protein is 

found only as a monomer and is antigenically different from the core protein. These 

biophysical and antigenic differences are due to the ten pre-core amino acids remaining 

after signal peptide cleavage. These include a cysteine residue and a hydrophobic triad 

motif (WLW). The cysteine residue forms a disulphide bond with Cys-61 o f the core 

protein (Nassal and Rieger, 1993) which, along with the hydrophobic triad motif, forces 

e antigen into a conformation incompatible with aggregation (Wasenauer et al., 1992). 

This results in the synthesis of the secretory form of e antigen. Although viewed primarily 

as a secreted protein, e antigen and its precursors are also found in cellular compartments, 

presumably by evading certain translocation or processing stages. These include the 

nucleus (Ou et al., 1989; Yang et al., 1992), cytoplasm (Garcia et al., 1988; Yang et al.,

1992) and the plasma membrane (Schlicht and Schaller, 1989) Despite understanding in 

detail the synthesis and biochemical properties of e antigen, ascribing a function to the 

protein has proved to be more difficult; as its amino acid similarity to core protein is high 

and it is of secretory nature, it has been proposed to act as an immune-modulatory protein 

(Milich et al., 1990; Hsu et al., 1992). However, its expression on the cell surface could
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play an opposing role by allowing antibody-mediated elimination of infected cells.

Recent results from the groups of Wands and Chisari have shown that p22e may 

regulate HBV replication. Transient or stable overexpression of p22e reduced the levels of 

HBV replicative intermediates produced (Scaglioni et al., 1997). Furthermore, expression 

of physiological levels of p22e in trans, from genomic constructs in transfected 

hepatocytes, could also reduce the levels of replicative intermediates. In transgenic 

studies, mice expressing pre-core protein were crossed with HBV genomic transgenic 

mice, which showed hepatic viral replication. Viral replication in the resulting progeny 

was inhibited in a dominant negative manner (Guidotti et al., 1996). This was not the case 

in progeny resulting from the cross of surface or X transgenic mice with the HBV 

genomic transgenic mice. These results correlated with similar observations made in 

earlier transfection assays using either a genome with an authentic pre-core gene or a pre

core-minus genome, with a nonsense mutation at codon 28 (Lamberts et al., 1993). These 

genomes showed low and high replication levels, respectively. It is probable that the pre

core protein interacts with core protein to form heterodimers which interfere with core 

particle assembly and pgRNA encapsidation, therefore affecting the subsequent 

replication steps.

1B4.2 The X protein

Although the transactivational properties of the X protein have been described 

previously (Section 1B3.3), other functions have also been attributed to this protein. 

However, for most of these it has not been possible to determine the relevance of such 

properties to the lifecycle of the virus. The other activities of the X protein include a novel 

serine/threonine kinase activity (Wu et al., 1990), a Kunitz-type serine protease inhibitor 

activity (Takada et al., 1994; Koike and Takada, 1995) and an AMP kinase activity 

(Dopheide and Azad, 1996). The X protein has also been shown to interact with a number 

of cellular proteins in vitro, including a probable DNA repair protein (Lee et al., 1995) 

and a novel subunit of the proteasome complex (Huang et al., 1996). However the 

importance of these interactions in the role of the X protein during HBV infection also 

remains unsolved.

The X protein may be a major determinant of the pathogenicity of HBV infection 

leading to the development of HCC, as X-transgenic mice develop carcinomas specifically 

in liver tissue (Kim et al., 1991; Koike et al., 1994a). The interaction of the X protein 

with p53, resulting in alterations in p53 function, probably contributes to its role in HCC 

development (Feitelson et al., 1993; Wang et al., 1994; Truant et al., 1995; Ueda et al., 

1995). The expression of X protein in transfection assays induced quiescent mouse 

fibroblasts to enter the cell cycle (Koike et al., 1994b) and expression of X protein in 

Chang cells, from a replication-defective adenovirus vector, deregulated the normal cell 

cycle checkpoint controls (Benn and Schneider, 1995). Both of these activities probably
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contribute to the uncontrolled cellular proliferation involved in HCC.

1B4.3 P olym erase/R everse T ranscrip tase

The viral polymerase is encoded by the 3.5kb pgRNA, but not the pre-core RNAs (Ou 

et al., 1990; see Section 1B3.1). The P gene was putatively identified as encoding the 

viral polymerase/reverse transcriptase (pol/RTase) due to the size and the amino acid 

homology of the predicted product to the reverse transcriptases of RSV and Mo-MuLV 

(Toh et al., 1983). This included conservation of the reverse transcriptase YMDD motif. 

This gene was later shown to encode the reverse transcriptase and all other activities 

required for viral replication; Laub and Bavand, 1988; Bavand et al., 1989). Mutational 

analysis of the P gene showed that it encodes a protein with three functional domains 

(Radziwill et al., 1990). These domains are termed terminal protein, pol/RTase and 

RNase H, from the N to the C terminus, respectively. There is a non-essential spacer 

region between the terminal protein and pol/RTase domains. This analysis also showed 

that the pol/RTase domain appeared to be divided by poorly conserved residues into two 

subdomains, possibly identifying the C-terminal subdomain as containing the reverse 

transcriptase activity, due to the presence of the YMDD motif.

The initiation of polymerase gene translation at the polymerase AUG appears to occur 

by a mechanism involving leaky ribosomal scanning (Lin and Lo, 1992; Fouillot et al.,

1993). However pre-core mRNA with the common pre-core mutation producing a stop 

codon at residue 28 (see Section 1D1) also has the ability to encode polymerase and core 

proteins (Fouillot and Rossignol, 1996). This occurs by translational reinitiation after 

aborted translation of the pre-core region. The importance of this phenomenon is unclear 

at present.

In addition to having a role in the major viral genome replication steps, the polymerase 

protein also plays an essential structural role during the pregenome encapsidation process 

(see Section 1B5).

1B4.4 Surface proteins

1) Sm all surface protein  (SHBs)
The SHBs protein plays an important role in HBV infection and virion formation: it is 

the main component of the 20nm subviral particles found in serum (Bayer et a l., 1968); 

the host of a possible virion attachment site to hepatocytes; and a structural component of 

the virion envelope. Translation of the S gene produces a 226 amino acid protein with a 

molecular weight of 24kDa, which can be N-glycosylated at Asn-146 to produce the gp27 

glycoprotein. This modification is common to all three surface proteins (Peterson et al.,

1982). Infected liver cells (Gerber et al., 1974) and cells stably transfected with the S 

gene (Patzer et al., 1986) accumulate 20nm spheres and filaments (characteristic of 

SHBs) within the ER but not on the cell surface. SHBs probably inserts into the ER
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membrane and particles bud into the ER lumen. Structural modelling studies have added 

to this by predicting a transmembrane conformation for SHBs, with a-helices spanning 

the membrane four times and both the N and C termini of the protein exposed on the 

virion surface (Stirk et a l ,  1992; Berting et al., 1995). This transmembrane orientation is 

due to the targeting action of two hydrophobic signal sequences located between amino 

acids 4-28 and 84-136 (with residues 80-98 being highly conserved), termed signals I 

and II respectively (Eble et a l ,  1987; Bruss and Ganem, 1991a). However, in contrast to 

conventional signal sequences, signals I and II are not cleaved in the ER. Signal I directs 

the translocation of the N-terminus of SHBs across the ER membrane and is therefore 

also important during M HBs synthesis (Eble et al., 1986, 1990). Signal II directs the 

translocation of the C-terminus of SHBs, resulting in a surface protein with two 

transmembrane spans. Whether or not the C-terminal amino acids after residue 160 form 

another two transmembrane spans, which would be in accordance with the modelling 

studies, is unclear.

After adopting this orientation, SHBs proteins first dimerise and then oligomerise 

before budding to form subviral particles (Simon et al., 1988); this last stage occurs in a 

post-ER, pre-Golgi compartment (Huovila et al., 1992) before particles are secreted via 

the cellular pathway.

The transmembrane topology of SHBs produces two major hydrophilic loops, 

consisting of amino acids 28-77 and 101-159. The first loop is exposed to the cellular 

cytoplasm during synthesis and lies along the inner surface of the envelope of the virion. 

Mutational analysis of the cysteine residues in this region showed that Cys-48, Cys-65 

and Cys-69 were all essential for secretion of SHBs particles, as was His-60 (Mangold 

and Streeck, 1993). The second hydrophilic loop, as the site of SHBs glycosylation, is 

located in the ER lumen and is therefore exposed on the external surface of the virion. 

This region contains eight highly conserved cysteine residues which participate in 

disulphide bonds. These bonds dictate the complex structure of SHBs and are important 

for its antigenicity (Ashton-Rickardt and Murray, 1989a; Bruce and Murray, 1995). The 

immunodominant B-cell epitope, the a determinant, is located within the conformational 

structure of this region, as are the d/y and w/r subtype determinants; lysine or arginine at 

residue 122 (le Bouvier, 1971; Peterson et al., 1984; Okamoto et al., 1987a) and lysine or 

arginine at residue 160 (Bancroft et al., 1972; Okamoto et al., 1987a), respectively. 

However, other residues may also affect the reactivity of this region to subtype-specific 

antibodies (Ashton-Rickardt and Murray, 1989b; Okamoto et al., 1989). Progress 

towards elucidating the conformation of this region has come from observing the 

protective efficacy of peptide vaccines covering amino acids 117-137, which had been 

cyclised by a disulphide bond between Cys-124 and Cys-137 (Dreesman et al., 1982) and 

the use of phage display libraries (Chen et al., 1996). The model for SHBs produced 

using the latter technique proposes disulphide bonds between cysteines 107-138, 137-
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149, 139-147 and 121-124. However, earlier work showed that although cysteine 

residues at 124, 147, and 149 were essential for maintenance of the conformation of this 

region, mutation of Cys-138 had little or no effect (Ashton-Rickardt and Murray, 1989a; 

Bruce and Murray, 1995). These results do not nullify the proposed model, as Cys-138 is 

not an essential residue: it is claimed that the structure of SHBs would not alter drastically 

if cysteine residues 107, 137, 138 and 149 did not form intra-chain disulphide bonds, or 

if they formed disulphide bonds with other monomers within the particle. All cysteine 

residues in this region have been shown to contribute to the efficiency of SHBs particle 

secretion (Mangold and Streeck, 1993).

2) M iddle surface protein  (MHBs)

The MHBs protein incorporates the entire SHBs amino acid sequence plus an 

additional 55 N-terminal amino acids, termed the pre-S2 region (Stibbe and Gerlich,

1983). The pre-S2 domain contains an additional site for N-linked glycosylation at Asn-4 

which, in combination with the common site at Asn-146, gives rise to the two MHBs 

glycoproteins, gp33 and gp36. MHBs is a component of both HBV virions and surface 

antigen particles (Stibbe and Gerlich, 1982; Heermann et al., 1984; M achida et al., 1983). 

The pre-S2 amino acids are thought to be exposed on the virion surface, as antibodies 

raised in chimpanzees to residues 14-32 were able to bind virions and protect the 

immunised animals from 106 infectious doses of HBV (Itoh et al., 1986). However, 

whether it is MHBs or LHBs that is responsible for these effects in vivo  is unclear, as 

both proteins contain the pre-S2 region. It has been proposed that during M protein 

production, 20nm particles are formed in the ER lumen before being transported to a post- 

ER/pre-Golgi compartment and fully glycosylated. It may be that some M HBs can evade 

this second glycosylation stage by being directed to the plasma membrane and secreted 

instead (Sheu and Lo, 1994).

3) Large surface protein  (LHBs)

The largest protein encoded by the S gene, translated from the 2.4kb mRNA, is

LHBs. This protein includes S, pre-S2 and the N-terminal pre-S 1 amino acids; the latter 

region is encoded for by a highly variable region of the HBV genome. The pre-S 1 domain 

is 108-119 amino acids long, depending on the viral subtype, and translation initiating at 

the pre-Sl start codon produces a 39kDa protein. LHBs can be present in both 20nm 

spheres and filaments (more commonly in the latter), but is more prevalent in virions, 

which contain up to twenty times more LHBs than subviral particles (Heermann et al.,

1984). LHBs is also N-glycosylated to produce gp42. The pre-Sl amino acids are 

exposed on the surface of the virion, as antibodies raised against whole virions are 

capable of binding to pre-S 1 residues. The pre-S 1 region probably masks the S region in 

LHBs, as digestion of 20nm particles with trypsin increases their reactivity with anti-
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SHBs antibodies.
As LHBs was finally present on the virion surface, it was presumed that its 

biosynthesis followed the same pathway as the S and M proteins, with the N-terminus co- 

translationally translocated into the ER lumen. However, results from in vitro and cellular 

assays showed that the N-terminal regions of virtually all LHBs proteins (possibly up to 

the signal II sequence), were initially located in the cytoplasm (Ostapchuk et al., 1994; 

Bruss et al., 1994). A post-translational translocation event then occurs to reorientate pre- 

S1 residues externally. The mechanism for retention of the pre-Sl residues in the 

cytoplasm is unclear, but does not seem to be due to membrane anchorage mediated by 

the myristylated N-terminal glycine (Persing et al., 1987; Prange and Streeck, 1995). 

Signal I residues in the S region may be unable to direct the translocation of the 163-174 

amino acid pre-S residues, which have no signal of their own (Ostapchuk et al., 1994). 

The C-terminal pre-Sl region (amino acids 70-107), however, has been shown to 

interfere with co-translational translocation of LHBs protein, possibly by interacting with 

cytoplasmic cellular proteins and inhibiting the translocation process (Prange and Streeck,

1995). These residues may, therefore, be important for regulating the later translocation 

event. The LHBs topology switch is likely to involve a reorganisation of lipid 

membranes, but insufficient studies have concentrated on these to allow determination of 

the mechanism. The initial cytoplasmic orientation of LHBs may also explain why it is not 

glycosylated in the pre-S2 region. It is possible that both SHBs and the S region of LHBs 

have a similar dual topology in the second hydrophilic loop, thus explaining the partial 

glycosylation observed at Asn-146. However reports examining this possibility are in 

conflict at present (Prange and Streeck, 1995; Wunderlich and Bruss, 1996).

1B4.5 Core protein

As this protein is the subject of this thesis (see Section IE) its role in the viral lifecycle 

will be described only briefly here.

The 21kDa core protein is the sole component of the viral nucleocapsid, or core 

particle, as was shown by the production of 27nm diameter particles when the core gene 

was expressed in E.coli (Cohen and Richmond, 1982). The icosahedral core particle is 

composed of 90 or 120 core protein dimers (Crowther et al., 1994) and assembles to 

encapsidate the polymerase/pgRNA complex (see Section 1B5). Reverse transcription of 

the pgRNA and the subsequent replication stages occur within core particles, which are 

present in the cytoplasm before entering the virion assembly pathway.

1B5 Pregenom e Encapsidation and Virion A ssem bly

As well as being the initiation site for reverse transcription of pgRNA, the 5' e signal 

is an essential element for the encapsidation of pgRNA (Junker-Niepmann et al., 1990). 

The virion assembly process is initiated by the specific interaction of £ with the viral
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polymerase (Bartenschlager et al., 1990; Roychoudhury et al., 1991; Bartenschlager and 

Schaller, 1992). This interaction may then be further stabilised by interactions with core 

protein molecules until particle assembly occurs. The pgRNA is then packaged within the 

lumen of the core particle with the polymerase-e complex intact. Mutational analysis of the 

nucleotide sequence of £ showed that the only regions not important for polymerase 

binding were the four distal bulge nucleotides (although the bulge structure itself was 

required for this interaction) and the lower region of the stem. This suggested a model in 

which the polymerase covers almost the entire upper portion of £ (Pollack and Ganem, 

1993; Fallows and Goff, 1995; Rieger and Nassal, 1995). A more complex scenario has 

arisen for the DHBV encapsidation process, which has been studied in more detail. It 

appears that the polymerase-£ interaction is insufficient for the encapsidation and priming 

of DNA synthesis and other factors, such as Hsp90 and p23 are required (Pollack and 

Ganem, 1994; Tavis and Ganem, 1996; Hu and Seeger, 1996; Hu et al., 1997). It 

remains to be seen whether similar additional factors are required for HBV.

Although pre-core mRNAs also contain e signals, pgRNA is selectively encapsidated 

because the stem-loop structure of £ on pre-core mRNA is disrupted by the 80S 

translating ribosomes (Nassal et al., 1990). Although pgRNA also acts as a translational 

template, its translation is carried out by 40S scanning ribosomes. These are probably 

blocked by the polymerase-£ interaction and core protein molecules stabilising this latter 

interaction. Therefore the concentrations of both polymerase and core proteins are able to 

regulate initiation of encapsidation.

Following encapsidation of the polymerase-pgRNA complex, the core particle is 

enveloped by a lipid bilayer containing the HBV surface proteins. As all three surface 

proteins are present in virions they must localise simultaneously in the same membrane 

region. With the exception of Ueda et al. (1991), most investigators conclude that, 

although present in virions, MHBs is dispensable for virion assembly (Bruss and Ganem, 

1991b; Fernholz et al., 1993). The amount of LHBs present, and hence the SHBs:LHBs 

ratio, determines the type of particle produced (Heermann et al., 1984). The 20nm 

spherical surface proteins contained low levels of LHBs, whereas both filaments and 

virions contained higher levels. The amounts of LHBs protein in virions were up to 

twenty-fold higher than LHBs levels in the 20nm surface particles. However, 

overexpression of LHBs resulted in the inhibition of surface particle secretion (Persing et 

al., 1986; Chisari et al., 1986). It was proposed that this LHBs-mediated retention of 

surface proteins allowed all three proteins to aggregate in the ER membrane before the 

envelopment of core particles. However, this model was disproved when virion release 

was also shown to be inhibited by LHBs overexpression (Bruss and Ganem, 1991b). 

Pre-Sl residues, therefore, are important for virion production. In particular the C- 

terminal 16 amino acids (104-119) are necessary, as N-terminal deletions which removed 
them prevented virion release (Bruss and Thomssen, 1994).
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Due to the dual topology of LHBs, cytoplasmic pre-Sl residues may be involved in 

proteiniprotein interactions required for recognition of core particles prior to envelopment. 

The use of a phage display library suggested that sequences which bound to core particles 

mimicked pre-Sl residues 19-24 and may therefore be important for coreisurface 

interactions (Dyson and Murray, 1995). However these residues are included in the N- 

terminal pre-Sl region which is dispensable for virion formation. Binding assays between 

core particles and synthetic peptides based on the amino acid sequences of pre-S 1, pre-S2 

and the cytosolic loop of S showed that the thirteen C-terminal pre-Sl residues were 

capable of efficient binding (Poisson et a l., 1997). This was more consistent with the 

results from the LHBs deletion experiments.

Virion assembly also appears to be regulated by viral DNA replication events 

occurring in the core particle interior (Gerelsaikhan et a l., 1996). A presently undefined 

signal essential for virion maturation appears to be displayed on the exterior of the core 

particle some time after the initiation of reverse transcription of the pregenome. This may 

be a conformational change induced in the particle structure, possibly due to the 

replacement of the structurally flexible pgRNA with a more rigid double-stranded DNA. 

Alternatively core protein phosphorylation by protein kinase C, which is also 

encapsidated (Kann et al., 1993), may result in a conformational change. As the core 

protein kinase C target sequence within core protein is located within the C-terminal 

nucleic acid binding region (Kann and Gerlich, 1994), dissociation of the pgRNA during 

reverse transcription would allow protein kinase C access to this sequence. This would be 

followed by phosphorylation of the core protein and the induction of a conformational 

change.

Following the interaction of the core particle and surface proteins, virions are 

generated by budding of the core particles into the ER lumen, along with the surface 

protein-containing membrane. The resulting virions are then exported from the cell via the 

constitutive secretory pathway.

IC IMMUNOPATHOGENESIS OF HBV INFECTION
Upon infection with HBV most adults develop a self-limiting acute hepatitis and are 

able to eliminate infected hepatocytes. However, approximately 5% of infected adults are 

unable to clear the virus and develop a chronic infection with or without hepatic 

inflammation: chronic active hepatitis (CAH) and chronic persistent hepatitis (CPH), 

respectively (Chu et al., 1985). Studies using various transgenic mouse lineages have 

shown that the pathologies observed are not due to a direct viral cytopathic effect (Farza et 

al., 1988; Araki et al., 1989; Guidotti et al., 1995), but rather are caused by the 

subsequent immune response directed against viral proteins (Moriyama et al., 1990). The 

outcome of infection seems to depend primarily on the strength of the response mounted
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by the host immune system against the virus. The humoral response against virion surface 

proteins neutralises viral infectivity, whilst the cellular response against these and other 

viral antigens destroys infected hepatocytes. Individuals who develop chronic infections 

are thought to be especially deficient in this latter response.

1C1 H um oral R esponse
Antibodies to all viral proteins can be detected in HBV-infected individuals. However, 

with the exception of anti-HBs antibodies, the roles played by the other antibodies 

produced during the course of virus infection are not fully understood. Anti-polymerase 

antibodies are induced in both acute and chronic hepatitis but seem to serve only as a 

marker of advanced liver disease and ongoing viral replication (Yuki et al., 1990; Weimer 

et al., 1990). Titres of anti-HBx antibodies were found to be higher and occurred more 

frequently in the sera of patients with chronic hepatitis infections compared to acute cases 

or asymptomatic carriers (Stemler et al., 1990).

Although e antigen serves as a standard serological marker for HBV replication and 

seroconversion to anti-HBe antibody is usually predictive of a remission in liver disease 

(Hoofnagle et al., 1981), the role played by anti-HBe antibodies in these processes is 

unclear. Antibodies to both e antigen and core proteins are produced in high titres in 

patients with acute and chronic infection in spite of them having no obvious virus- 

neutralising properties. The ability of core particles to act as both a T helper cell (Tty- 

independent and a Th cell-dependent antigen (Milich and McLachlan, 1986) and the high 

cross reactivity of core and e proteins at the T cell level (Milich et al., 1987a; 1988) 

probably explains the high antibody levels observed.

Early antibody binding studies on both liver-derived and bacterially-expressed core 

particles showed that a single immunodominant epitope was present, which was 

recognised by both monoclonal antibodies and human sera (Waters et al., 1986; Ferns 

and Tedder, 1986). However, further studies have mapped numerous antibody binding 

epitopes in the core protein (see Figure 1C1). This is possibly a reflection of the 

differences in the immunogens used to raise antibodies and the binding assay formats. 

The use of core particles or core protein, in the form of fusion proteins, suggested that the 

dominant epitope was located in the centre of the protein, around amino acid 74 (Bichko 

et al., 1993; Salfeld et al., 1989; Schodel et al., 1992). This epitope was shown to be 

exposed on the surface of the particle and conformational. The conformational nature of 

core antigenicity had been previously demonstrated by protease studies on core particles 

(Mackay et al., 1981). Limited proteolysis of particles under dissociating conditions 

resulted in decreased core antigenicity, with a concomitant increase in e antigenicity. This 

suggested that the particulate core antigen was being disrupted to produce e antigenicity. 

Salfeld et al. (1989) proposed that two epitopes existed on e antigen: H B el, a 

predominantly linear epitope from amino acids 76-89, which could also be detected on the
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Figure 1C1: B-cell epitopes in core protein

The positions of mapped B-cell epitopes in the core protein sequence are shown along 

with the relevant reference. Bracketed positions indicate that the epitope was recognised 
less frequently or was a minor epitope. The shaded box in the HBe2 epitope indicates 

that this region is important for antigenicity, but intra-molecular participation from the 

extended sequence shown is also required. Epitopes in the lower region of the figure 
were identified by antibodies binding synthetic peptides.
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core particle surface, and HBe2, which required most of the polypeptide and was 

probably conformational in nature. HBel overlaps with the conformational core protein 

epitope around amino acids 74-89. Results from Colluci et al. (1988) and Sallberg et al. 

(1991a) have confirmed the presence of linear epitopes within the conformational core 

protein epitope.
Other epitopes have been identified using synthetic peptides (Tordjeman et al., 1993; 

Sallberg et al., 1994), but as these may lack any conformation they may not be significant 

in vivo.
Antibodies directed against the surface proteins, and in particular the a determinant, 

have been shown to provide protection against virus challenge in chimpanzees (Iwarson et 

al., 1985; Itoh et al., 1986). As these antibodies are detectable in patients who have 

cleared the virus and are undetectable in chronic HBV infections, they are thought to play 

an essential role in virus neutralisation (Pontisso et al., 1989a). The production of anti- 

HBs antibodies is dependent on Th cells (Roberts et al., 1975) and is also linked to the 

activation of Th cells by core protein epitopes, which can elicit production of both anti- 

HBe and anti-HBs antibodies (Milich et al., 1987b).

1C2 HLA Class II-restricted T Cell Response

In acute hepatitis cases, strong human leukocyte antigen (HLA) class II-restricted 

CD4+ Th responses to core protein and e antigen are detectable in peripheral blood 

mononuclear cells (PBMCs). A number of Th epitopes have been identified in core 

protein, some of which are unrelated to HLA-type (Ferrari et al., 1990, 1991; Jung et al., 

1991, 1995; Diepolder et al., 1996; see Figure 1C2). In contrast, the surface protein- 

specific Th response is much weaker, and although this response has been detected in the 

early incubation phase of acute infections (Vento et al., 1987) the basis for the weaker 

response in the symptomatic phase is unclear. The possible depressing effect of the 

abundance of surface particles on surface-specific Th cells may provide a partial 

explanation. The lack of surface-specific Th cell stimulation for the production of anti- 

HBs antibodies is compensated for by core protein epitopes, as described above.

As yet, no substantial studies have been made on the class II-restricted T cell response 

to the polymerase and X proteins.

During chronic infection, the class II-restricted T cell response to all viral antigens is 

significantly lower compared to that in an acute hepatitis infection (Ferrari et al., 1990; 

Jung et al., 1991; Wakita et al., 1992; Lohr et al., 1995). This probably contributes to the 

antibody profiles observed during chronic infection: both sources of Th-stimulation of 

anti-HBs antibody production (surface protein epitope- and core protein epitope-specific 

Th cells) are reduced. However, core particles are still capable of eliciting anti-HBe 

antibody production independent of Th cells.

Analyses of hepatic infiltrates during chronic infections have shown the presence of
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Figure 1C2: T cell epitopes of core protein
The positions of epitopes for cytotoxic T lymphocytes (CTL) and helper T lymphocytes 

(Th) in core protein are shown above. For CTL epitopes, the HLA type of the patient is 

indicated. Th epitopes which are indicated by an asterisk (*) were identified irrespective 

of the patient's HLA type.

CD4" T cells specific for both core and surface proteins, in contrast to peripheral blood 

(Ferrari et al., 1987a, 1987b; Barnaba et al., 1989, 1994; Lohr et al., 1995). It may be 

that these cells are enriched in this compartment during chronic infections.

Core-specific Th cells are thought to play a key immunoregulatory role during 

infections, whereas surface-specific Th cells may be suppressed by the high antigen load. 

High core-specific Th cell activity is observed in the following incidences; (i) during acute 

hepatitis; (ii) in patients with chronic HBV infection compared to the asymptomatic carrier 

state (Wakita et al., 1992; Maruyama et al., 1993a); (iii) during acute exacerbations of 

chronic infections (Tsai et al., 1992; Maruyama et al., 1993b); (iv) during seroconversion
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to anti-HBe and anti-HBs (Jung e ta l ,  1995); (v) in spontaneous remission from chronic 

infection (Rehermann e t a l ,  1996); and (vi) with transaminase normalisation, anti-HBe 

seroconversion and viral DNA clearance in chronic patients who respond to interferon 

therapy (Lohr et al., 1995). The association between the class II-restricted DRB 1*1302 

allele and protection against persistent HBV infection in the Gambia also provides 

evidence for the importance of the Th response in the outcome of HBV infection (Thursz 

e t a l ,  1995).
Studies in a murine system have shown that a combination of the MHC restricting 

element, the core/e epitope recognised and the structure of the antigen can, along with 

other factors, determine whether the Th cell response is dominated by Thl or Th2 

subsets, which may also be a factor in determining the outcome of infection (Milich et a l ,  

1995a, 1997).

In summary, it is likely that the lack of a sufficient core-specific Th response is a key 

factor in the failure to eliminate virus and in the development of chronic hepatitis. The low 

levels of activity observed are probably responsible for the ongoing necroinflammatory 

disease.

1C3 HLA Class I-restricted T Cell Response

Studies on the cytotoxic T lymphocyte (CTL) response in acute hepatitis have shown 

that this is polyclonal and is directed against multiple epitopes in all viral proteins (Jin et 

a l,  1988; Nayersina et a l ,  1993; Barnaba et a l ,  1989; Ferrari e ta l ,  1992; Rehermann et 

a l ,  1995; Missale et a l ,  1993; Penna et a l ,  1991; Bertoletti et a l ,  1991, 1993; see 

Figure 1C2). The abundance of surface proteins produced during infection and the 

observation that exogenous surface protein can also enter the class I processing pathway 

(after initial endosomal processing) and induce CTL and Th cells as effectively as 

endogenously synthesised protein (Jin et a l ,  1988; Penna et a l ,  1992), may also 

contribute to the strength of the CTL response against surface proteins. However, uptake 

and presentation of exogenous surface protein also occurred in B cells and resulted in 

anti-HBs antibody-producing B cells being destroyed, leading to the decreased anti-HBs 

antibody levels which accompany the development of chronic hepatitis (Barnaba et a l ,

1990). The core protein has only one HLA-A2 epitope, whereas surface and polymerase 

proteins have four and five, respectively. Therefore, the immune response to core protein 

does not seem to predominate in the CD8+ CTL activity, as it does for the CD4+ Th cells.

Studies of the acute liver disease induced in surface protein transgenic mice upon 

transfer of surface protein-specific CTL have revealed the important events in disease 

pathogenesis (Ando et a l ,  1993). The first step is the triggering of target hepatocytes to 

undergo apoptosis. This occurs almost immediately as a direct consequence of CTL-target 

cell interaction. Within a few hours this is followed by a focal inflammatory response 

where the cytopathic effects of the CTL response are amplified in an antigen-nonspecific
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manner by lymphocytes which have been recruited by CTL. Thus the liver disease 

observed is transient and relatively mild, where no more than 5% of hepatocytes are 

destroyed and with hepatic damage being mediated mainly by CTL-activated effector cells 

and antigen-nonspecific lymphokines.

A further series of experiments using transgenic models have shown that selected 

soluble lymphokines produced by antigen-specific CTL are themselves able to non- 

cytolytically downregulate HBV gene expression at the post-transcriptional level (Guidotti 

et al., 1994b; Tsui et al., 1995). Although the precise molecular pathways responsible 

remain unsolved, it appears that both interferon-y (IFNy) and tumour necrosis factor-a are 

principally responsible, although interleukin-2, IFN a and IFNp are also involved (Gilles 

et al., 1992; Guilhot et al., 1993; Guidotti et al., 1994c). Therefore, in addition to the 

direct cytolytic action of antigen-specific CTL on infected hepatocytes, CTL-derived 

signals can activate the infected cells to an antiviral state, thus providing an additional 

means of combating HBV infection.

In contrast to the vigorous CTL response detectable in the peripheral blood of patients 

with acute hepatitis who successfully clear the virus, a weak or undetectable CTL 

response is associated with chronic disease and viral persistence (Montano et al., 1983; 

Nouri-Aria et al., 1988; Ferrari e ta l.,  1990; Jung et al., 1991, 1995; Lohr e ta l.,  1993; 

Rehermann et al., 1995). It is likely that this is linked to the low CD4+ Th cell activity 

observed in these cases as described previously (see Section 1C2). The resultant inability 

to mount a vigorous CTL response is widely acknowledged as the primary reason for the 

failure to rapidly eliminate virus and instead allow the development of a chronic infection.

The basis for the variable CTL response is poorly understood, except perhaps in the 

case of infants born to e antigen-positive mothers. In these cases, where infection is 

thought to occur at or around the time of birth (Beasley and Hwang, 1983), 

approximately 95% of neonates develop chronic infections instead of clearing the virus. 

The probable explanation for this is that e antigen, being a secreted, non-particulate 

protein, is able to cross the placenta and is present in the fetal circulation (Hsu et al.,

1992). Consequently, thymic deletion of both e- and core-specific T cells occurs due to 

the cross-reactivity of both proteins at the T cell level (Milich eta l., 1990). This results in 

a depletion of the cells responsible for directing viral clearance. Thus, if infection of the 

fetus (Alexander and Eddleston, 1986) or of the neonate (Beasley and Hwang, 1983; Li et 

al., 1986) occurs while it is tolerant to core/e protein at the T cell level, chronic infection 

will develop. Additional studies of incomplete tolerance in e antigen transgenic mice have 

shown that Th2 cells can evade tolerance induction more successfully than their Thl 

counterparts (Milich et al., 1995b). This is also likely to contribute to the abnormal T cell 

responses observed in chronically infected patients.

Suppression of cellular responses to interferons may also contribute to the inefficiency 

of the CTL response. Expression of the viral polymerase inhibited the response to IF N a
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and y, by preventing the activation of interferon-inducible genes (Foster et al., 1991 (see 

also erratum, 1995), 1993). This phenomenon was observed both in vitro and in chronic 

patients who failed to respond to IF N a therapy. Core protein is also able to inhibit 

expression of IFN(3 by acting in trans on the regulatory region of the gene (Twu et a l ,  

1988; Whitten et al., 1991). Hepatocytes from patients with e antigen-positive chronic 

hepatitis showed no increased interferon-induced membrane expression of HLA class I 

molecules compared to anti-HBe chronic cases and uninfected controls (Montano et al., 

1982; Ikeda et al., 1986). In addition, levels of 2'5'-oligoadenylate synthetase were not 

increased in patients with CAH, in contrast to those with CPH or acute hepatitis (Poitrine 

et al., 1985).
Whilst this section has primarily considered the host response to HBV infection and its 

possible defects which allow viral persistence, it is likely that variation within the 

infecting viral population is another important factor.

ID GENETIC VARIATION
With a mutation rate calculated to be comparable to the slowest evolving retroviral 

genes (Girones and Miller, 1989), a large number of HBV variants have been detected 

during HBV infection. However, both the replication competence of a particular variant 

and the resultant immune response determine to what extent it is selected for and whether 

or not it predominates in the viral population. Apart from the previous mention of surface 

gene variation in relation to subtype definition (Section 1B4.4), only pre-core and core 

gene variation will be discussed in this section as recent reviews have been published on 

both surface and X gene variation (Wallace and Carman, 1997; Carman, 1995a).

1D1 Pre-core Variants

Since the description of the original pre-core mutant, G1896A (substitution of a G 

nucleotide with an A at position 1896), in which the pre-core codon 28 was converted 

from a tryptophan to a stop codon, many other pre-core variants have been described and 

are summarised in Figure 1D1 (Carman et al., 1989; Fiordalisi et al., 1990; Okamoto et 

al., 1990; Raimondo et al., 1990; Tong et al., 1990; Blum et al., 1991; Santantonio et a l ,  

1991; Carman et al., 1992; Gunther et al., 1992; Laskus et al., 1994). Although not all 

variation leads to the formation of a stop codon, production of e antigen is precluded by 

many of the variations. Other variants have been reported which do not affect e antigen 

synthesis but these are not shown in this Figure 1D1 (Akarca et al., 1994; Laskus et al., 

1994). The reason for the 200-fold higher prevalence of G1896A compared to other 

variations is unknown and it is simply termed a mutational 'hotspot' (Yuan et al., 1995).
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Figure 1D1: Variations observed within the pre-core region

The nucleotide sequence of the pre-core region is shown, along with reported mutations 

that abolish the production of e antigen, and some additional commonly observed 

variants. The key at the bottom of the figure depicts the type of mutation; all others 

shown are nucleotide substitutions. The start codons for both e antigen (pre-core start 

codon) and core protein are boxed. References identifying these mutations are cited in 

the main text.

Examination of the secondary structure of the £ RNA sequence (see Figure 1D2) 

shows that the G1896A and G1899A mutations replace the non-Watson-Crick U:G bond 

with a U-A bond. This may stabilise the £ signal (Lok et al., 1994), especially as G1899A 

rarely occurs without G1896A. The secondary structure of the £ sequence may also 

explain the occurrence of other pre-core variations. For example, C1856T, which was 

always detected in association with the conservative variation T1858C, was found to be 

mutually exclusive with G1896A, possibly as the new combination of base pairs would 

lead to an unstable encapsidation signal (Carman et al., 1992; Lok et al., 1994). The 

C1856T variation does not seem to affect either the amount of e antigen produced, or the 

efficiency of its secretion from cells (Boner et al., 1995). C1856T can, however, be 

detected in combination with T1856C and G 1898A, as the variation at the two positions 

maintains the overall number of base pairs in the lower stem of £. The positions of other 

naturally occurring pre-core variants have been mapped and it is interesting to note that no 

variation occurs in the loop or right-hand side of the upper stem of £; these sequences are 

indispensable for encapsidation. Also, there is no variation in the UUCA sequence in the 

bulge, which is required for the initiation of minus-strand DNA synthesis (Laskus et al.,

1994). Another line of evidence for the importance of the structure of £ in permitting
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Figure 1D2: Secondary structure of the e encapsidation signal

The pregenomic RNA encapsidation signal possesses a stem-loop structure formed b y 

sequences in the pre-core region. This structure includes the six nucleotide bulge 

required for initiation of minus-strand DNA synthesis. The positions of some important 

variant nucleotides are marked and the start codon for the core gene is boxed.

variation at only certain positions is the observation that G1896A is very rarely found in 

viruses of genotype A (Li et al., 1993), which have the sequence CCC at positions 1856- 

1858. The G1896A mutation would destroy the C-G base pair which, as shown in 

transfection experiments, decreases the RNA packaging efficiency.

The G1899A mutation is also commonly described, usually in association with 

G1896A; the combination has been linked with severe disease (Carman et al., 1989; 

Ulrich et al., 1990; Hasegawa et al., 1994). However, they have no effect on the levels of 

viral RNA or replicative intermediates produced after transfection of genomic constructs
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containing both mutations (Hasegawa et a l , 1994). Virion assembly and secretion were 

also similar to wild-type (Ulrich et al., 1990), demonstrating that neither the variants nor 

the absence of e antigen affects any of these processes. Similarly, the G1896A variation 

alone did not affect the replication efficiency of transfected genomes (Hasegawa et a l ,  
1994; Tong et a l ,  1992).

Many studies have been carried out in order to determine whether or not a link exists 

between selection of G1896A and the severity of the disease. During and after 

seroconversion to anti-HBe, pre-core stop mutants were detected both in patients who 

become asymptomatic and also in patients who continued to have ongoing liver disease 

(Lai et a l ,  1994; Tur-Kaspa et a l ,  1992; Okamoto et a l ,  1990; Tong et a l ,  1990). These 

same studies also showed that a high proportion of pre-core stop mutants after 

seroconversion was, in general, associated with a higher viremia and a more active 

hepatitis whilst mixed populations of G1896A strains and e antigen-producing strains 

seemed to be associated with a less severe form of hepatitis (Carman et a l ,  1989; 

Naoumov et a l ,  1992; Lai et a l ,  1994). Predominance of pre-core stop mutants after 

seroconversion to anti-HBe was also associated with a course of hepatitis characterised by 

flare-ups of liver cell necrosis interspersed with asymptomatic periods (Brunetto et a l ,

1991). That selection of a pre-core mutant virus does not necessarily lead to a quiescent 

state indicates that other factors contribute to disease progression. One possibility is 

variation within the core gene, although variation in other genes may be as important.

The most likely mechanism of selection for pre-core stop mutants is the pressure 

imposed by the immune system. The lack of a virus protein which is normally secreted 

and accessible to the immune system may result in less scope for sensitisation of immune 

effector cells and recognition of hepatocytes containing either e or core proteins.

1D2 C ore Variation

As the core protein is thought to be a major target of the antiviral immune response, a 

number of groups have examined the variation occurring in the core gene during chronic 

infection, to determine whether or not a causal link exists. These studies attempted to 

identify whether amino acid changes were more prevalent in certain regions and whether 

these regions were functionally relevant.

1) Do core mutations cluster?
Unlike the pre-core region, only the extreme 5' end of the core gene contains elements 

which are functionally essential at the RNA level. Therefore, for the majority of the 

nucleotide sequence only missense mutations, affecting the amino acid sequence, are 

important. The high ratio of non-synonymous to synonymous mutations also implies that 

mutation at the amino acid level is of consequence.
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There have been six major studies to date that have examined mutation clustering in the 

core gene (Ehata et al., 1992, 1993; Chuang et al., 1993; Boner et al., 1995; C a rm a n ^  

al., 1995b; Akarca and Lok, 1995a). The results of all studies showed that the core gene 

mutations affecting the core protein did cluster in specific regions, but the locations and 

sizes of these regions were disputed.

Ehata et al. (1992) showed that, of 39 core gene mutations leading to amino acid 

substitutions in virus isolates from 20 chronic carriers with fluctuating ALT levels, 21 

(54%) clustered in the region encoding amino acids 84-101. In addition, 15 of these 

patients, suffering from CAH, all had at least one mutation in this region, whereas the 5 

remaining patients had no mutations in this region and had only CPH. Upon closer 

examination of the 84-101 region, 14 of the 15 patients all had mutations leading to amino 

acid substitutions within the smaller region encoding amino acids 87-97. A second 

mutation clustering region was identified in the region encoding amino acids 130-156, 

with 14 of the 39 mutations (36%) located here and, in addition, sporadic mutations were 

identified at amino acids 27, 49 and 60.

In a second paper the same group identified 29 or 34 missense mutations in the core 

genes from patients infected with adr or adw  subtype viruses respectively (Ehata et al.,

1993). These patients all had either acute exacerbations of chronic hepatitis or fulminant 

hepatitis, the most severe form of the disease. For the adr subtype viruses, mutations 

clustered mainly between amino acids 84-99 (12/29; 41%), 130-156 (6/29; 21%) or 20- 

35 (5/29; 17%) with sporadic mutations at amino acids 5, 13, 60, 74 and 105. Mutation 

in the adr subtype viruses, however, clustered between amino acids 48-60 (9/34; 26%) or 

105-113 (5/34; 15%), with 7/8 patients having an additional substitution at amino acid 77. 

Sporadic mutations were observed at ten other positions.

A third paper by this group detected 62 missense mutations in the core genes from 17 

CAH cases (Chuang et al., 1993). Similar clustering regions to those described 

previously were examined and found to contain 19/62 (31%), 14/62 (23%) and 10/62 

(16%) mutations in the regions encoding amino acids 84-101, 48-60 and 147-155, 

respectively. However, the positions of the mutational clusters did not seem to show the 

same subtype dependency as mentioned previously, as the same clusters were found in 

both adr and adw patients.

A much larger study of core gene mutations in chronically infected patients was carried 

out by Akarca and Lok (1995a), who identified regions encoding core protein amino acids 

59-66, 87-100, 125-135 and 147-155 as mutational clustering regions and regions 

encoding amino acids 14-25, 101-124, 136-146 and 156-183 as completely devoid of 

mutations. The relative absence of mutations leading to amino acid substitutions in the C- 

terminus of the core protein is probably due to the overlap of core and polymerase genes 

in this region: mutations here could possibly have a deleterious effect on the polymerase 

protein. Also, clusters of arginine residues in the C-terminus of the core protein are
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required for its nucleic acid binding properties (see Section 1E1). It was therefore of 

interest that, in this region, only Arg-151 was mutated, and in some cases an arginine 

residue was restored at position 153. All cysteine residues, important for core particle 

assembly, were also conserved. Of additional interest was the fact that the mutation 

clustering regions overlapped with known epitopes in the protein. This linkage of 

increased mutations and Th and B-cell epitope regions was also identified in a smaller 

study of serial samples from Chinese chronic carriers (Boner et al., 1995). Another 

region which did not correspond to any known epitopes, but showed higher variability 

than expected was identified between amino acids 21-40. Carman et al. (1995b) have also 

shown that mutations occur predominantly in both Th and B-cell epitopes. Both these 

papers also reported a low incidence of cysteine mutations or mutations in the C-terminal 

region with only two cases of mutated arginine residues.

2) Functional relevance o f  core mutations

An increase in core gene mutations leading to amino acid substitutions was found in 

patients with CAH when compared to asymptomatic carriers (Ehata et al., 1992; Chuang 

et al., 1993); in patients with fulminant hepatitis or with severe exacerbations, when 

compared to acute hepatitis cases (Ehata et al., 1993); and when CAH cases were 

compared to those with only CPH (Ehata et al., 1992; Akarca and Lok, 1995a). These 

associations suggest a role for core gene variation in determining the severity of an 

infection.

Selection of the pre-core stop mutant G1896A was also associated with increased core 

mutation (Akarca and Lok, 1995a; Boner et al., 1995; Carman et al., 1995b). This may 

be linked to seroconversion to anti-HBe antibody, as greater numbers of mutations have 

been reported in some patients who are anti-HBe positive, compared to those who are e 

antigen positive (Carman et al., 1995b; Akarca and Lok, 1995a). It has also been 

observed that mutations do not develop at a constant rate, but are more frequent around 

the time of seroconversion (Akarca and Lok, 1995a) or occur at the same time as, or after, 

the selection of the pre-core stop codon (Boner et al., 1995; Carman et al., 1995b).

The relevance of core gene mutations which lead to amino acid substitutions may be 

connected to the importance of the core protein as an immune target. Despite the 

importance of CTL in clearing the virus, relatively few studies have examined any 

possible associations between core gene mutations and CTL epitopes and very few 

patients have been HLA-typed in any of these studies. Much attention has been focused 

on the well-defined HLA-A2 core epitope between amino acids 18-27. Carman et al. 

(1995b) showed that some patients with ongoing active disease after seroconversion had 

mutations within this epitope (at Ser-21 and Val-27). However, mutations in the epitope 

were also found in a patient who went into remission after seroconversion; not all patients 

with active disease after seroconversion had mutations in this region; and not all patients
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studied were HLA-A2 positive. Ehata et al. (1992) identified a potential HLA-A2 epitope 

between amino acids 84-91, positioned in the mutation clustering region, although none 

of the patients were actually HLA-typed and this epitope has never been recognised 

before. Work by Bertoletti et al. (1994a, b) showed that mutations observed in the epitope 

between core protein residues 18-27 in two HLA-A2 positive chronic patients could 

inhibit the core-specific CTL response. Peptides containing the observed mutations at Ser- 

21 (S21N, S21A or S21V) or double mutations at Ser-21 and Val-27 (V27A or V27I) 

acted as T cell receptor antagonists for >80% of the CTL clones, when presented to CTL 

by the same target cell. Val-27 mutations also reduced the HLA binding affinity of the 

peptide. The CTL inhibition was observed at physiological levels of peptide and was not 

due to competition with wild-type peptides for HLA binding or to anergy induction. As 

infected cells harbouring these viral variants would presumably escape cell-mediated 

elimination, the variant would be allowed to propagate. However this scenario is 

restricted in providing an explanation for the relevance of viral variation in the 

development of chronic disease. The CTL response against this epitope in the two patients 

studied was vigorous, in contrast to the weak CTL response normally observed in chronic 

cases. It was also focused on one epitope, in contrast to the multispecific nature of the 

CTL response against HBV.

Other studies have examined core protein epitopes recognised by B- or Th cells, the 

latter being recognised seemingly irrespective of HLA class II-restriction (Lerrari et al.,

1991). Akarca and Lok (1995a) claimed that the mutation cluster regions observed 

overlapped with both Th and B- cell epitopes. However, no functional analysis of the 

effects of these mutations has been attempted. The clusters of mutations observed by 

Carman et al. (1995b) also correlated with the positions of Th and B- cell epitopes, but 

again, these mutations were not analysed functionally. As the relevance of anti-HBe 

antibody in chronic infection is not fully understood, the importance of mutations 

observed within B-cell epitopes is hard to determine, but mutations with Th epitopes 

could weaken, or even eliminate, the CD4+ T cell response against core protein, with 

chronic hepatitis ensuing.

Another problem is relating viral variation to the ongoing disease observed in some 

patients. If variation within an epitope leads to non-recognition by the immune system, 

why do such patients have continuing disease? In addition, is the variation observed a 

result of immune pressure or does it evoke the immune response? The observation of 

mutation in the clustering region suggested by Ehata et al. (1992), after the ALT level had 

risen, supports the former possibility. However, the existence of a minor viral population 

having the same mutation before the ALT increase is also possible. It may also be the case 

that variation creates new targets for the immune system, thus evoking an ongoing, cyclic 

response.
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IE CORE PROTEIN

1E1 C haracterisation of the core protein

The discovery that expression of the core gene alone was sufficient to produce 

nucleocapsids, or core particles, antigenically (Pasek et al., 1979; Burrell et al., 1979) 

and morphologically (Cohen and Richmond, 1982) identical to the virion-derived 

nucleocapsid, initiated the search for the mechanism of core particle assembly and the 

amino acid sequence requirements. The ability of the core protein to self-assemble into 

core particles has now been demonstrated in mammalian cells (Roossinck and Siddiqui, 

1987), insect cells (Lanford and Notvall, 1990), yeast (Miyanohara et al., 1986), 

Xenopus oocytes (Zhou and Standring, 1991) and in vitro via association with a cytosolic 

chaperonin (Lingappa et al., 1994).

The predicted core protein amino acid sequence, derived from cloned HBV DNA, 

gave a 183 amino acid (185 for subtype adw  (Ono et al., 1983)) protein with a highly 

basic C-terminus (see Figure 1E1). In this region (amino acids 150-183), 16 out of the 34 

residues are arginines, arranged in four clusters of three or four arginines, including three 

repeats of the motif SPR4. The obvious prediction for the function of this region was 

nucleic acid binding. In addition, the repeated SPXX sequence is known to be a DNA- 

binding m otif (Suzuki, 1989).

The C-terminal limit for core particle assembly was investigated by a number of 

groups using C-terminally truncated core proteins in a variety of systems (Birnbaum and 

Nassal, 1990; Hatton et al., 1992;Nassal, 1992a;Beames and Lanford, 1993), as earlier 

experiments had indicated that the arginine-rich region was dispensable (Gallina et al., 

1989). All showed that residues C-terminal to P ro-144 were not required but truncation 

N-terminal to L eu-140 abolished particle production. Later studies showed that truncation 

C-terminal to Leu-140 allowed assembly (Zlotnick et al., 1996).

To test the predicted nucleic acid binding function of the C-terminal arginine-rich 

region, packaging of nucleic acids into particles formed from C-terminally truncated 

proteins was also assayed. Truncation after Arg-164 allowed the same amount of RNA 

packaging as full-length protein, showing the C-terminal nineteen amino acids to be 

dispensable (Birnbaum and Nassal, 1990; Nassal, 1992a). A different set of truncations 

were made by Hatton et al. (1992) in an adw  subtype core protein which sequentially 

removed groups of arginine residues. Truncation after residues 172, 162 or 157 all 

decreased RNA packaging by only two-fold, whereas truncation after Val-149 (A149) 

resulted in a twenty-fold decrease, suggesting that the first group of three arginine 

residues (150-152) was important. This was confirmed when the addition of four arginine 

residues to the A149 truncation restored packaging levels to only two-fold less than for 

full-length protein. Examination of DNA-binding and subsequent DNA synthesis showed
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1 MDIDPYKEFG ATVELLSFLP SDFFPSVRDL LDTASALYRE ALESPEHCSP

51 HHTALRQAIL CWGELMTLAT WVGNNLQDPA SRDLWNYVN TNMGLKIRQL
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145

151 RRDRGRSPRR RTPSPRRRRS QSPRRRRSQS RESQC
Nucleic acid 

binding:
RNA - strand +strand 

DNA DNA

NLS: (Eckhardt et al., 1991)
156 172 183

(Yeh eta!., 1990)
163 178

Figure 1E1: Functionally important regions of the core protein

The amino acid sequence of the core protein (subtype adw) is shown: other subtypes 

are missing the D and R residues at positions 153 and 154. The asterisk denotes the 

position of the maximal C-terminal truncations which still allow core particle assembly. 

Cysteine residues are shown in bold and residues comprising the hydrophobic heptad 

repeat element are boxed. Groups of arginine residues involved in nucleic acid binding 

are underlined and labelled, while the nuclear localisation signals (NLS) mapped by two 

groups are also indicated.

different requirements in the core protein: core proteins truncated beyond residue 157 did 

not bind DNA in South-western blots but the A162 truncation showed a high affinity for 

DNA, thus identifying residues 157-162 as the essential region for DNA binding. 

Interestingly this contains another group of arginine residues in an SPRR motif. As the 

A 162 and A172 truncations showed decreased DNA binding compared to full-length 

protein, the remaining two groups of arginines must also contribute. A model was 

proposed whereby the groups of arginines at 150-152, 159-161 and 166-169 were 

required for binding RNA, minus-strand DNA and plus-strand DNA, respectively, with 

the final group being redundant. This model was supported in experiments where strand- 

specific probes were used to demonstrate that the A164 truncation showed a defect in 

plus-strand DNA synthesis, possibly at the oligoribonucleotide primer translocation stage 

(Nassal, 1992a). In this genomic context, amino acid sequences beyond residue 164 were 

also non-essential for the formation of enveloped virions. This has been recently 

supported by results showing that only the initiation of minus-strand DNA synthesis is 

necessary for envelopment to occur (Gerelsaikhan et a l., 1996).
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The nucleic acid-binding properties of core protein fulfil two functions: the 

protein:nucleic acid interactions act to stabilise the particle structure and to condense the 

DNA into its most compact form. The latter function has been proposed due to the 

similarities between the core protein C-terminal amino acid sequence and cellular 

protamines, found in sperm.

How is this stable interaction eliminated to allow disassembly of the core particle 

during natural infection? As a virus-associated kinase (now known to be protein kinase C 

(Kann et al., 1993)) had been discovered with specificity for serine residues (Gerlich et 

al., 1982; Roossinck and Siddiqui, 1987), modification of the protein:nucleic acid 

interaction by phosphorylation of C-terminal serines seemed the most likely mechanism. 

Use of a phosphorylation state-dependent antibody against an epitope between amino 

acids 165-175 showed that Ser-168 and/or Ser-170 were phosphorylated in vivo  

(Machida et a l ,  1991). In addition, core protein synthesised in Xenopus  oocytes showed 

no detectable DNA binding, in contrast to bacterially-expressed protein, the only 

difference being phosphorylation of the C-terminal region of the former protein (Hatton et 

al., 1992). In in vitro binding experiments, phosphorylated core protein showed a 

decreased affinity for DNA (Machida et al., 1991).

1E2 A ssem bly o f core particles

Much of the information regarding the mechanism of core particle assembly has come 

from studies in Xenopus oocytes by the group of Standring. A population of 'free' core 

protein is the direct precursor of core particles, which self-assemble once a critical 

threshold level of 'free' core protein is reached (Zhou et al., 1992). Later work showed 

that the 'free' core protein population consisted mainly of disulphide-linked core protein 

dimers, but not of higher order structures (Zhou and Standring, 1992a). Particle assembly 

is a co-operative process which initiates once the concentration of core protein reaches an 

estimated 0.8pM and proceeds without the detection of any intermediates (Seifer et al.,

1993). Once formed, the particles showed an increased protease resistance compared to 

core protein dimers. As the C-terminal 44 amino acids are thought to be the major 

protease target it suggests that this region is located inside the particle, (Zhou et al., 1992; 

Seifer and Standring, 1994).

In the Xenopus system, removal of the nucleus did not affect particle production, 

which is in keeping with the observation that the majority of free core protein is also 

located in the cytoplasmic compartment (Zhou and Standring, 1991). However opinions 

differ with regard to this subject (see Section 1E4).

Due to their conservation among all mammalian hepadnaviruses, the function of the 

four cysteine residues in the core protein was examined in site-directed mutagenesis 

experiments. Replacement of all cysteine residues with serine or alanine had no detectable 

effect on dimer formation, particle assembly or envelopment (Nassal, 1992b; Nassal et
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al., 1992; Zhou and Standring, 1992b). In addition, such particles were antigenically 

identical to wild-type particles (Nassal et al., 1992). However, dimers and particles 

formed from the Cys-minus core protein did show a decreased stability (Zhou and 

Standring, 1992b). Therefore, these residues probably act to lock dimers and particles 

into their conformations and positions during particle assembly. Detailed analyses of 

disulphide bonding patterns and free thiol groups have shown that Cys-61 participates in 

a disulphide bond to the corresponding residue in another core protein subunit, whereas 

Cys-107 does not, due to its buried position in the folded core protein (Zheng et al., 

1992; Nassal et al., 1992). Cys-48 partially forms a disulphide bond, but also exists as a 

free sulphydryl group. Cys-183 does participate in disulphide bond with other Cys-183 

residues, but it is not clear as to whether these bonds form between core protein dimers 

(Nassal et al., 1992; Zheng et al., 1992) or between core protein monomers in one dimer 

(Seifer and Standring, 1994). In the virion, the free Cys-48 may be important for binding 

to one of the cysteine residues in SHBs, acting to link the core particle to the envelope 

layer. Lack of this residue in particular may have accounted for the slightly decreased 

envelopment of Cys-minus core particles observed by Nassal (1992b).

Although experiments in HepG2 cells using a modified yeast two-hybrid system have 

shown that core proteins from WHV and HBV (which differ at 46 residues) can hetero- 

oligomerise, subsequent co-expression of full-length and C-terminally truncated HBV 

core proteins in Xenopus  oocytes showed that dimer assembly was not a non-specific 

process (Chang et al., 1994). In these co-expression experiments, homodimers formed 

preferentially, even although the smaller protein was missing only 26 residues. As core 

protein monomers were undetected, dimerisation must occur rapidly after synthesis, with 

the core protein most likely associating with the nearest monomer. This is probably 

produced from the same polysome, thus giving rise to the observed cA-preferential nature 

of dimerisation.

Relatively little attention has been paid to the sequence requirements for particle 

assembly in the N-terminal and central regions of the protein. Analysis of particle 

assembly using twelve mutants of the larger and less homologous DHBV core protein 

showed that three to four amino acid insertions in the N-terminus and deletions of C- 

terminal amino acids were still assembly-competent. However N-terminal or central 

deletions, or a four amino acid central insertion eliminated particle assembly (Yang et al.,

1994). Similar studies with two to four amino acid linker insertion mutants throughout the 

core gene showed regions which were essential for assembly (Beames and Lanford,

1995). Core proteins with insertions after positions 36, 44, 66 and 89 all formed particles 

when expressed in insect cells, as did a K96R point mutant. However, when expressed in 

Huh7 cells, core protein with an insertion after position 69 also formed particles. When 

supplied in trans to transfected core-defective genomes, only core proteins with an 

insertion after residue 44 and the K96R mutant were able to encapsidate HBV RNA and
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show DNA synthesis in the endogenous polymerase assay, albeit at lower levels than 

wild-type core protein. These results showed that even though large insertions can be 

tolerated around residue 78 (See Section 1E5), much smaller insertions in both termini 

and in the central region of the protein can disrupt particle assembly, or other stages in the 
viral life cycle.

The central region of WHV core protein contains a hydrophobic heptad repeat element: 

L I01, L I 08, V I 15 and F I 22. These residues are conserved among the mammalian and 

avian hepadnaviruses (Yu et al., 1996). Mutagenesis experiments showed that changing 

the regular spacing of these residues abolished particle assembly, as did the introduction 

of a proline residue by mutagenesis of any amino acid in this region. This indicated that 

the secondary structure of this region was important, and probably a-helical, with the 

hydrophobic residues on the outer surface of the helix. This would provide a hydrophobic 

surface accessible to the equivalent region in another monomer, allowing the two proteins 

to interact in a manner analogous to leucine zipper-containing proteins. Although four 

residues are conserved in the mammalian protein (five for the larger DHBV protein), 

mutation of any one of these residues did not affect particle assembly. The conservation 

of four residues may be due to the increased stability this would give to the protein:protein 

interaction. Unfortunately the previous insertion mutants generated by Beames and 

Lanford did not cover this region, so correlations could not be made. Interestingly, 

Akarca and Lok (1995a) concluded that the region between amino acids 101-124 was 

devoid of mutations. In other studies, mutation of the heptad repeat residues was rare and 

tended to be conservative: L 1011 (Ehata et al., 1992) and L108I (Carman et al., 1995b) 

have been observed. Mutations producing proline residues in this region are also very 

rare.

1E3 Three-dim ensional structural analyses of core particles

Until recently, very little information was available concerning both the tertiary 

structure of the core protein and the orientation of the protein, as a dimer, in the core 

particle. Most of this information had come from direct biochemical studies on core 

particles along with indirect information obtained though the use of core particles as 

carriers of foreign epitopes (see Section 1E5).

Surface-exposed regions of core protein that bound to monoclonal antibodies were 

mapped by Pushko et al. (1994) and are shown in Figure 1E2. Some antibodies 

recognised only core particles in solution, but not denatured protein or synthetic core 

peptides (in a competition ELISA). This confirmed the existence of conformational core 

epitopes. These antibodies did, however, recognise immobilised peptide corresponding to 

amino acids 74-90, which may be a linear component of a larger discontinuous epitope, 

as was previously suggested (Sallberg et al., 1991a). This region is therefore likely to be 

exposed at the surface of the particle. The region between amino acids 125-133 was also

43



Chapter 1 Introduction
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surface-exposed regions - Pushko et al. (1994) 

surface-exposed regions - Seifer and Standring (1994) 

surface-inaccessible regions - Pushko et al. (1994)

Figure 1E2: Surface-exposed regions of the core protein in core particles 

The amino acid sequence of the core protein is shown above. Lines above sequences 

indicate that these regions were identified as being exposed on the particle surface b y 

the workers indicated. Hatched lines below sequences indicate that these regions were 

not exposed at the surface.

surface-exposed, but the adjacent region from 134-144 had only low-level accessibility. 

Two proline residues at positions 134 and 135 possibly mediate this turn in the 

polypeptide backbone. Residues 9-20 were also surface-inaccessible and this N-terminal 

region may be important for assembly (Khudyakov et al., 1991).

Protease studies of core particles by Seifer and Standring (1994) showed that the C- 

terminal region between amino acids 145-153 was the only accessible target (see Figure 

1E2). This sequence was proposed to act as a hinge between the C-terminal domain and 

the N-terminal region essential for assembly. The basic C-terminal region was sensitive to 

proteolysis when in the form of dimers, but not when in particles, suggesting that it was 

tethered inside the core particle. This retention was shown to be mediated by the inter

dimer disulphide bond formed by Cys-185, as increased surface exposure of the C- 

terminal domain was observed when this residue was deleted or the protein truncated after 

amino acid 172. The latter truncated protein was also capable of packaging RNA (Hatton
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et al., 1992), suggesting that a dynamic equilibrium exists between the interior and 

exterior localisation of the C-terminal region. Despite the seemingly conflicting results 

from these two studies, the polypeptide chain may loop around between amino acids 134 

and 144 and reappear on the core particle surface again, before once again burying itself 

after residue 153. As proteases with targets between residues 134 and 144 were not used 
it was not possible to test this theory.

These biochemical studies have been dwarfed by the results generated by the use of 

electron cryomicroscopy and image reconstruction in the study of the core particle 

structure. Early electron microscopic studies of liver-derived core particles had shown that 

particles were of 28nm external diameter and 21nm internal diameter, with a 3.5nm thick 

shell (Onodera et al., 1982). The particle was predicted to be icosahedral in shape with 

approximately 180 component subunits and aT=3 morphology. Electron cryomicroscopic 

studies on bacterially-expressed core particles by Crowther et al. (1994) showed two 

distinct sizes of particles with diameters of 30 and 34nm, with the larger particles forming 

85% of the population. The two different particle sizes were also observed in particles 

assembled from core protein C-terminally truncated after amino acid 144 (A 144 

truncation). Protein spikes were also visible projecting from the surface of the shells, 

giving overall diameters of 32 and 36nm for small and large particles, respectively. 

Particles formed from the expression of full-length protein were either empty or had 

internal contents, presumably RNA molecules. The A144 truncation particles appeared 

empty and contained <1% RNA by weight, compared to approximately 10% for the full- 

length protein particles.

Image reconstructions showed that the small particles consisted of 180 subunits, 

arranged with T=3 quasiequivalence and the large particles contained 240 subunits with 

T=4 quasiequivalence. In both types of particle, the subunits were dimer clustered and 

thought to have an inverted T  shape, with the 'handle' forming the spiked projections on 

the particle surface and the 'head' forming the shell of the particle. The mechanism of 

selection of the T=3 or T=4 morphology was not due to protein:nucleic acid interactions, 

as the A144 truncation protein also formed both types of particle. The C-terminal domain 

of full-length protein did seem to contact packaged RNA, as the RNA was ordered in an 

icosahedral orientation by this interaction. This allowed it to be detected and mapped. In 

empty particles no internal structure was observed, due to the absence of RNA and the 

disordered nature of the C-terminal protein domain. In both sizes of particles the shell was 

penetrated by 1.3 and 2nm holes (110 in the T=4 particles and 80 in the T=3), 

presumably allowing the influx of nucleotides for reverse transcription and DNA 

replication and the efflux of digested RNA. The two sizes were also present in the liver, 

as detected by electron microscopy (Cohen and Richmond, 1982). Although T=4 particles 

were more prevalent in bacterially expressed samples (Crowther et al., 1994), only 

recently has it been demonstrated that the same is true for liver-derived particles, with an
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even higher prevalence of the larger particles (Kenney et a l ,  1995). These liver-derived 

particles also contained more RNA, probably due to the increased efficiency of the 

encapsidation process in infected cells.

Further studies provided evidence for the importance of the C-terminus of the core 

protein and possibly the disulphide bonds in determining the particle morphology 

(Zlotnick et al., 1996). Progressive truncation of the region between amino acids 149 and 

140 decreased the proportion of T=4 particles produced from >90% to only 15% and, in 

addition, m oreT=3 particles were formed when a Cys61Ala mutation was created in the 

A149 truncation. The relevance of these results to the in vivo situation is not immediately 

clear.

The most recent structural studies have increased the core particle image resolution 

from the original limit of approximately 30A to 9 A (Conway et al., 1997) or 7 .4A 

(Bottcher et al., 1997; see Figure 1E3). The information made available by these studies, 

not only as regarding the overall structure of the core particle, but even concerning the 

exact conformation of the polypeptide backbone in the assembled particle, is invaluable. 

Prior to these electron cryomicroscopy studies, the only model had been theoretical 

(Argos and Fuller, 1988), based on the homology of WHV core protein with the Mengo 

virus vp3 capsid protein, which has an eight-stranded anti-parallel (3-barrel conformation, 

common to capsid proteins. The resulting model showed a protein with nine (3-sheets, 

comprising 48% of the polypeptide backbone, which concurred with the accessibility of 

the H Bel epitope and the inaccessibility of the HBe2 epitope; the requirement of the N- 

terminal 140 amino acids for particle assembly; and the internal orientation of the 

phosphorylation sites within core protein. However, later studies on bacterially expressed 

particles using several biophysical methods showed that, in contrast to the Argos and 

Fuller model, core protein had a high (43-60%) a-helical content, whether in the form of 

dimers or particles (Wingfield et al., 1995). The (3-sheet content of the protein was very 

low (5-35%), suggesting that core protein may not adopt the canonical eight-stranded 

anti-parallel (3-barrel conformation which all, but one, icosahedral viral capsids exhibit.

The new structural information did show that the HBV core protein conformation is 

structurally different to the standard isocahedral capsid protein: a new four-helix bundle 

viral capsid fold existed in the core particle, with neighbouring polypeptide chains 

contributing an a-helix pair to each bundle (Bottcher et al., 1997; Conway et al., 1997; 

see Figure 1E4). Core protein itself also contains four helices: helices 2 and 3 project out 

from the shell, while the other two contribute to the shell structure. In the model of 

Bottcher et al., helix 2 was predicted to run from residue 50-78, halted by a conserved 

proline at position 79, with residues 78-82 constituting the exposed tip of the spike (see 

Figure 1E5). However, Conway et al. placed these residues at the base of helix 2. 

According to Bottcher et a l ,  helix 3 then runs from residue 82-110, with a kink 

approximately halfway down corresponding to the conserved Gly-94 residue. The
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Figure 1E3: Surface representation of the T=4 core particle
The 31 oA diameter particle is viewed down a 2-fold axis of symmetry (Scale bar = 50A). 

The structure was determined at 9A resolution by electron cryomicroscopy. (This image 

was kindly provided by Dr. J. Conway, NIH, Bethesda)





Figure 1E4: Stereo pair of density maps with 'wire' model of the core protein dimer 

The core protein dimer is viewed tangentially to the particle surface. Subunits are shown 

in red and blue. Scale bar represents 10A. (This image was kindly provided by Dr. J. 

Conway, NIH, Bethesda)
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149

128

110,

112

Figure 1E5: Polypeptide fold of the core protein

The four a-helices of core protein are shown as cylinders and the putative N and C 

termini are marked. In the text, helices are numbered 1 to 4, from the N- to the C-terminus. 

An approximate numbering scheme for amino acids is also indicated. (Reproduced from 

Bottcher et a/. (1997) by kind permission of Dr. R. Crowther)

C-terminal helix runs from 112-128 and is also terminated by a proline residue at position 

129. The proposed exposure of the region between 125-133 also concurs with the model 

as this region lies at the end of the C-terminal helix, protruding on the surface of the 

particle. The models also show Cys-48 and Cys-61 to be present on the outer surface of 

helix 2, making them available for the disulphide bonding necessary for dimerisation. 

Cys-107 was shown to be buried within the protein. As these models were determined 

using C-terminally truncated proteins, no position was determined for Cys-183. 

However, as the C-terminus appears to have no defined structure, this residue is likely to 

be available for the formation of intra-dimer or inter-dimer disulphide bonds. The 

previously described hydrophobic heptad repeat element would be partitioned between 

helix 3 and the C-terminal helix with an intervening short looped region. It may be, 

therefore, that this element does not consist of a single continuous helix, as was originally 

thought, but contributes to two separate helices. Hopefully the increase in resolution that 

should come from further electron cryomicroscopic studies, possibly even to atomic level, 

will help in answering these questions.
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1E4 Subcellu lar Localisation of Core Protein

Immunohistochemical and immunofluorescence studies of liver biopsy samples from 

patients suffering from chronic hepatitis B have shown that core protein can be detected in 

the nucleus, cytoplasm or both (Gudat and Bianchi, 1977; Gowans et al., 1985; Ulrich et 

al., 1985; Chu and Liaw, 1987; Hsu et al., 1987; Chu et al., 1995). Similar results have 

been obtained for cell lines such as NIH 3T3 (Eckhardt et al., 1991; Yeh et al., 1993), 

Vero-C3 (Yeh et al., 1993), COS 7 (Yeh et al., 1990) and in HBV genome (Farza et al.,

1988) or core gene (Guidotti et al., 1994a) transgenic mice.

Studies using both COS 7 (Yeh et al., 1990) and NIH 3T3 (Eckhardt et al., 1991) 

cells have identified nuclear localisation signals (NLSs) in the C-terminal region of the 

core protein (see Figure 1E1). The clusters of arginine residues in this region resemble the 

stretches of consecutive basic amino acids observed to function as NLSs in other proteins 

such as the influenza virus NS1 protein (Greenspan et al., 1988), adenovirus E la  protein 

(Lyons et al., 1987), yeast histone 2B (Moreland et al., 1987) and nucleoplasmin 

(Dingwall et al., 1988).

Deletion analysis of the C-terminal arginine-rich clusters demonstrated the importance 

of residues 145-156 for nuclear localisation, as removal of the region C-terminal to 

residue 144 caused this protein to accumulate in the cytoplasm (Eckhardt et al., 1991), 

The possibility that this localisation was mediated by arginine residues between 150-154 

and the particular importance of the second residue in this cluster, as has been shown for 

the corresponding residue in the NLS of SV40 large T antigen (Kalderon et al., 1984), 

were examined by mutagenesis of this Arg-151 residue to a threonine. In the context of 

the full-length protein, cellular localisation was not affected by this mutation. However, 

when between 12-39 C-terminal residues were deleted, Thr-151 core protein localised to 

the cytoplasm, whereas the Arg-151 protein was located in the nucleus. These results also 

suggested the presence of a second NLS in the C-terminal 12 residues of the core protein 

(172-183), which also included an arginine cluster (amino acids 172-175). As yet it is not 

known whether these signals can function independently, although the presence of two 

NLSs in the same protein has been reported previously (Greenspan et al., 1988).

Yeh et a l  (1990) identified a C-terminal core protein NLS by examining the cellular 

localisation of human a-globin:HBV core fusion proteins in transfected COS 7 cells. The 

location of the NLS was finely mapped by demonstrating that core protein residues from 

Pro-163 to Ser-178 were necessary and sufficient to translocate the a-globin protein to the 

nucleus. This region contains two repeats of the sequence PRRRRSQS and is completely 

conserved in both WHV and GSHV.
Most studies agree that core protein detected in both the nucleus and the cytoplasm is 

in the form of core particles, as confirmed by electron microscopic examination (Yamada 

and Nakahane, 1977; Michalak and Nowoslawski, 1982; Sakamoto et al., 1983; Guidotti 

et al., 1994a). However, the results of Chu and Liaw (1992), obtained by the use of
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monoclonal antibodies specific for either the c or e antigenic determinants on core protein 

or particles, suggested that whereas particles may predominate in the nucleus, non

particulate core protein was more prevalent in the cytoplasm. This was contradicted by 

Bock et al. (1996). who could not detect particles within the nuclei or at the nuclear 

membrane.

The function of the core protein NLS in the viral lifecycle is unclear as yet, although 

several possibilities exist: 1) transport of the uncoated core particle to the nucleus after 

viral entry, to deliver the genome; 2) directing newly synthesised core protein dimers or 

particles to the nucleus in order to allow pgRNA encapsidation into core particles; 3) 

directing newly assembled, genome-containing core particles to the nucleus to allow 

intracellular genomic amplification. As the NLS overlaps with the core protein nucleic 

acid binding region, it may not be accessible on the particle surface and therefore not 

detected by the cytoplasmic NLS-recognising proteins. The same problem exists if the 

NLS is involved in the third possibility listed above. It may be that some core protein C- 

terminal tails are not tethered in the particle interior and are surface-accessible, either 

because they are not required for nucleic acid binding or due to the lack of a disulphide 

bond between Cys-183 residues in the reducing environment of the cell. Immunoelectron 

microscopic examination of infected hepatocytes (Yamada and Nakahane, 1977) and an 

HBV-producing cell line (Bock et al., 1996) showed core protein localised around the 

nuclear membrane and especially near nuclear pores, suggesting that the transfer of 

contents between core particles and the nucleus does occur.

An additional focus on the investigation of core protein localisation has attempted to 

relate this to the disease severity. Several studies have concluded that purely nuclear 

localisation of core protein, as detected mainly by immunostaining or 

immunofluorescence of liver biopsy samples, is more prevalent in CPH and occurs rarely 

in cases of CAH (Hsu et al., 1987; Kojima et al., 1987; Yoo et al., 1987; Chu and Liaw, 

1987, 1992; Chu et al., 1995). Conversely, the localisation of core protein to the 

cytoplasm or plasma membrane was increased in CAH cases from these studies. In situ 

hybridisation in infected hepatocytes demonstrated that intracellular levels of cytoplasmic 

HBV replicative DNA correlated with the level of cytoplasmic core protein, but not with 

the presence or absence of nuclear core protein (Gowans et al., 1985). This suggests that 

cytoplasmic core protein is indicative of active replication In addition it was thought that 

the shift in localisation of core protein, especially if it led to increased plasma membrane 

expression, could lead to an increased immune attack on these cells. Both of these 

scenarios could explain the more aggressive disease connected with the cytoplasmic

location of the protein.
However, more recent experiments in both transfected cell lines and liver biopsy 

samples have shown that, rather than the shift in localisation being responsible for the 

worsened disease state, this subcellular shift may be a secondary effect, caused by the
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regeneration of surviving hepatocytes after immune-mediated killing of infected cells.

Yeh et al. (1993) showed that the nuclear localisation of core protein was subject to 

regulation by the cell cycle in both NIH 3T3 and Vero-C3 cells. Cells were synchronised 

in either the G0 phase (by using serum-free medium) or at the G,/S phase boundary (by 

using the DNA polymerase inhibitor, aphidicolin) and core protein localisation determined 

at various time points after cells were allowed to re-enter the cycle. The results from both 

subcellular fractionation and immunofluorescence experiments showed an increase in the 

amount of core protein in the nucleus during the G| phase. Nuclear core protein decreased 

during S phase to undetectable levels, with a concomitant increase in the cytoplasmic 

levels. Levels of nuclear core increased again during G2 phase. Double immunostaining 

for proliferating cell nuclear antigen (PCNA) and core protein in biopsy samples showed 

the same pattern (Chu et al., 1995). Approximately 50% of hepatocytes containing 

cytoplasmic core protein also stained positive for PCNA, a reliable marker for 

proliferating cells, whereas this antigen was rarely detected in cells with nuclear core 

protein. Although both sets of results are consistent with disease severity being linked to 

altered core protein localisation, a mechanism for the cell cycle dependency is still 

unknown. Yeh et al. (1993) observed that cytoplasmic but not nuclear core protein was 

phosphorylated. The C-terminus contains three S/TPXK/R recognition motifs for p34cdc2 

kinase, which is activated during the G] to S transition of the cell cycle. As this kinase can 

phosphorylate core protein in vitro (unpublished observations quoted by Yeh et al., 

1993), this may be relevant.

1E5 Structural Flexibility o f Core Particle Assembly
The ability of the core particle to be correctly self-assembled when expressed in a 

variety of systems, coupled with the presence of CTL, Th and B-cell epitopes on the 

protein and particle, make it suitable as a carrier for various foreign epitopes. Many 

chimeric core proteins, containing foreign epitopes, have been assayed for antigenicity. 

These studies are detailed in a recent review by Pumpens et al. (1995). These studies 

indicate a tremendous 'structural flexibility' of the core protein, shown by the range of 

alterations that can be made without abrogating particle assembly.

Foreign sequences from a variety of sources have been inserted at three major regions 

of the protein: the N-terminus (including the pre-core region), the C-terminus of full- 

length or truncated core protein and centrally in the region around amino acid 78.

N-terminal insertions of 50 (human chorionic gonadotrophin), 41 and 27 (HBV pre- 

S l)  amino acids have been made after pre-core residues Leu-24, Trp-26 and the core start 

codon, respectively (Beesley et al., 1990; Schodel et al., 1992).
Internal insertions have been made in the central region containing the main B-cell 

epitope, as this was predicted to be exposed (Argos and Fuller, 1988). Insertions of up to 

27 amino acids of the SIV envelope protein were possible in full-length core protein,
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between Ser-81 and Arg-82 (Yon et al., 1992) and of up to 39 amino acids from HBV 

SHBs in a C-terminally truncated protein, replacing core residues 79-81, although 

replacement of residues 76-82 has also been successful (Schodel et al., 1992).

Insertion of up to 53 amino acids of HBV pre-S2 sequence was possible between Pro- 

144 and Glu-145, at the C-terminus (Borisova et al., 1989), with smaller insertions 

between Arg-179/Glu-180 (del Val et al., 1991) and after the C-terminal cysteine residue 

(Yon et al., 1992). However perhaps the most impressive successful chimeric proteins 

were produced when multiple copies of the 180 amino acid long HCV core protein were 

added to the C-terminus of core protein truncated at residue 149 (Yoshikawa et al., 1993). 

Fusion of linker sequences plus either three or four copies of the HCV core sequence, to 

produce insertions of 559 and 741 amino acids respectively, maintained the ability to 

correctly assemble into core particles. Such large C-terminal insertions are possible due to 

the probable location of the foreign sequences in the interior of the particle. They may 

even be exposed on the particle surface as they are detectable by ELISA (Yoshikawa et 

al., 1993). The same mechanism may apply to the N-terminal insertion of foreign 

sequences. However, the proven ability of core protein to tolerate deletions of 

approximately 25% of its length, or to accommodate internal insertions of approximately 

20% of its size without protein folding or particle assembly being affected is quite 

remarkable. The structural flexibility of this protein may have a bearing on the relevance 

of naturally-occurring HBV variants with deletions of core gene regions.

1E6 HBV Deletion Variants
In addition to variation in the amino acid sequence of the HBV proteins resulting from 

nucleotide substitutions caused by the pol/RTase infidelity, variation on a larger scale, in 

the form of insertion and deletion of sequences, has also been reported. This section will 

describe some of the deletion variants reported, along with any significance that has been 

attributed to them, and then focus on core gene deletion variants.

I) Deletion variants o f  the polymerase, surface and X  genes

Although naturally occurring HBV isolates with amino acid variation in the 

polymerase gene have been reported, as yet no studies have shown deletions in genomic 

regions containing only polymerase sequences. Studies of either core (Okamoto et al., 

1987b), X (Feitelson et al., 1995) or surface (Yamamoto et al., 1994; Xu and Yen, 1996) 

genes have all reported deletions which would affect the N- or C-termini or internal 

regions of the polymerase protein, respectively. These deletions will be discussed under 

the headings of the specific gene being studied at the time of their discovery. In vitro 

mutational analysis of the polymerase gene did show that the spacer region, from amino 

acids 178-336, could be largely deleted (A201-292) with little effect on function 

(Radziwill et al., 1990).
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Many of the reported deletions in the surface gene occur in the pre-S regions, which 

overlap with the polymerase spacer region and so would probably not affect the function 

of the polymerase protein (Santantonio et al., 1992; Yamamoto et a l ,  1994). However 

the viability of these mutants has not been formally evaluated. This is especially important 

for deletions in the pre-S 1 region, as the corresponding region in the LHBs protein is 

implicated in binding to hepatocyte plasma membrane receptors. This also applies to large 

variations in the surface gene sequence, such as the mutations leading to the insertion of 

three or eight amino acids between Thr-123 and Cys-124 (Yamamoto et al., 1994; Hou et 

al., 1995), as this protein is also important for hepatocyte binding.

Functional analysis has been performed on an in-frame deletion of 129bp in the 3 ' 

pre-S 1 region, which removed the CCAAT element from the SpII promoter (Xu and Yen,

1996). When Huh-7 cells were transfected with a corresponding genomic construct, only 

very small amounts of 2.1 kb surface transcripts were produced, with resulting low levels 

of M and SHBs proteins. As this deletion also included the negative regulatory region for 

the Spl promoter, increased levels of 2.4kb pre-S 1 transcripts and LHBs protein were 

observed. As LHBs is incompetent for secretion, its overexpression caused the 

accumulation of 20nm particles within dilated perinuclear vesicles, giving the transfected 

cells the appearance of ground-glass cells which are commonly observed in HBV carriers 

(Hadziyannis et al., 1973). Virion production from the transfected cells was also greater 

than that observed for a wild-type control, suggesting that not only does this type of 

deletion have a pathological relevance, but may also confer the viral variant with a growth 

advantage.
Analysis of large variations in the X gene is complicated by the fact that the precise 

role of this protein in infection is unknown, making determination of their functional 

relevance difficult. This gene also overlaps with important transcriptional regulatory 

elements, such as enhancer II, core upstream regulatory sequence and negative regulatory 

element, core promoter and DR 1/2. In renal dialysis patients, X gene deletions resulted in 

removal of the pre-core start codon, DR2, core gene regulatory elements and also either 

removed sequences at the 3' end of the polymerase gene or produced possible X-core 

fusion proteins (Feitelson et al., 1995). Analysis of the same region, but concentrating on 

the relevance of variation to the enhancer ll/core promoter, showed that major viral 

populations had deletions, insertions and/or substitutions (Gunther et al., 1996a). All but 

two variations created an HNF1 site or potential HNF3 site. All variations decreased 

steady-state pre-core mRNA levels and increased pgRNA levels, with a consequent 

decrease in e antigen production and increased intracellular core and polymerase proteins, 

replicative intermediates and virion production.
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2) Core gene deletions

Many groups have now reported the detection of deletions within the core gene, which 

are detailed in Figure 1E6. In general, the deletions cluster in the central region of the 

gene, around nucleotide 2200, but some groups have reported deletions which localise to 

the 5' end of the gene, either exclusively (Valliammai et al., 1995; Zoulim et al., 1996) or 

as one of two deletions in the gene (Fiordalisi et al., 1994; Akarca and Lok, 1995b; 

Gunther et al., 1996b; Marinos et al., 1996; Zoulim et al., 1996). Some deletions 

extended far enough in the 3' direction to remove the polymerase ATG codon and 

presumably do not allow production of a functional polymerase protein (Okamoto et al., 

1987b; Akarca and Lok, 1995b; Marinos et al., 1996; Gunther et al., 1996b). In contrast 

to these cases with mixtures of polymerase defective and non-defective genomes, Uchida 

et al. (1994) reported a single polymerase defective deletion, which presumably 

represented a non-viable virus. However viral DNA containing no evidence of core gene 

deletions was also isolated from this patient, thus providing the requisite polymerase, in a 

manner analogous to the /rans-complementation demonstrated in vitro (Okamoto et al., 

1993). This scenario is common to all but two reported cases of core gene deletions: full- 

length virus can also be detected, either by PCR or sequencing of cloned PCR products. 

The only exceptions to this are of a 33 nucleotide deletion observed in clones sequenced 

from a patient with no anti-HBc antibodies (Valliammai et al., 1995) and an unspecified 

deletion present in all six genomic clones analysed from an immunosuppressed renal 

transplant patient (Gunther et al., 1995). The former deletion removed nucleotides 2021- 

2053, corresponding to core protein amino acids 41-51. Either the HBV viruses from 

these two cases were able to produce functionally normal, but structurally altered, core 

particles, or the number of clones analysed was too small to detect what may be a 

minority viral population with full-length core genes.
Despite the large number of deletion mutants described, their mechanism of generation 

has not been elucidated. Mapping of a 2.2kb HBV RNA isolated from HCC cases 

showed two deletions: an in-frame deletion in the core gene spanning nucleotides 2068- 

2349 inclusively (core amino acids 56-150) and a 1016 nucleotide deletion from the 3 ' 

end of the core gene (nucleotide 2454) into the 5' end of the surface gene (Chen et al.,

1989). Analysis of the boundaries of these deletions showed sequences which were 

conserved in all subtypes subsequently examined and the deleted sequences showed the 

consensus 5’ GC/T and 3' AG boundary sequences for introns, suggesting that these 

deletions were the products of RNA splicing. However, as the termini of all other 

deletions reported cover a large region of the core gene (nucleotides 1950-2334), with 

differing sequences at the boundaries, it is unlikely that RNA splicing is the usual 

mechanism responsible for their generation.
The contribution of core gene deletion variants to the disease states observed in
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Figure 1E6: Summary diagram of core gene deletions (continued with figure legend on 

following page)
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Figure 1E6: Summary diagram of reported core gene deletions (continued)
All reported cases of core gene deletions are summarised diagrammatically, along with 

the positions of the deletion/s. Numbers in brackets indicate the amino acids deleted. 

Deletions marked with an asterisk (* )  resulted in a frame-shift of the core gene. Asterisks 

at additional positions in the gene show nucleotide deletions resulting in frame-shifts. 

Cases marked with a cross (x) show the presence of a novel stop codon either in 

addition to the deletion, or resulting from the frame-shift. The position of the polymerase 

start codon is also shown.
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patients is also unknown at present. The presence of deletions has been demonstrated in 

cases of CAH, but not in ASCs (Wakita et al., 1991; Takanayagi et al., 1993; Uchida et 

al., 1994); in e antigen positive CAH cases, but not those with CPH or anti-HBe positive 

CAH (Ackrill et al., 1993); in e antigen positive patients with severe liver damage but no 

evidence of anti-HBe antibody (Zoulim et al., 1996); and in patients with a similar anti- 

HBc negative serology, but for whom no clinical details were given (Fiordalisi et al., 

1994; Valliammai et al., 1995). These results all point towards a role for core deletion 

variants in severe chronic hepatitis. However, other similar studies have not supported 

this hypothesis, finding deletions in e antigen positive patients with either CAH, CPH or 

non-specific reactive hepatitis (Akarca and Lok, 1995b) and in symptom-free carriers 

(Okamoto eta l., 1987b).

Two studies of chronic HBV-infected immunosuppressed renal transplant patients 

have shown that if deletions persist or increase, cirrhosis or death from end-stage liver 

disease occurs, whereas if the deletions disappear, no further liver deterioration is 

observed (Gunther et al., 1995, 1996b). In patients with an absence of deletions, only a 

few cirrhosis cases occurred and no mortalities.

As the general positions of the deleted regions correspond well to the locations of core 

protein epitopes, the deletion variants have been proposed to represent viral escape from 

the immune response. Even though the core-specific CD4+ Th cell response is thought to 

be the most important determining factor in whether or not chronic or acute disease 

develops, epitopes related to all branches of the host immune response are affected by the 

overall range of deletions observed. In the absence of HLA-typing studies of patients with 

deletions, the relevance of the CTL epitopes cannot be determined. However as certain Th 

epitopes are HLA type-independent, disruption of these epitopes may contribute to the 

chronic disease. Additionally, although B-cell epitopes were also affected by the 

deletions, the significance of this is difficult to determine without further studies on the 

role of the anti-HBe or anti-HBe responses.

1E7 Aim s of the work presented in this thesis
The main aim of the work presented in this thesis was to determine whether or not 

core genes with naturally-occurring central deletions were competent lor core particle 

assembly. This would allow an assessment of their relevance in HBV infection. If core 

particle-like structures were able to form when these core genes were expressed, their 

ability to react with monoclonal and polyclonal antibodies would be assayed. This would 

determine whether or not this class of variant virus could iepresent escape fiom the host 

immune response.
As very little information was available on the three-dimensional structure of the HBV 

core particle when these studies were initiated, we also planned to provide samples of 

purified wild-type core particles to collaborating groups in oider to assist this work. The
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three-dimensional structures of any core particle-like structures formed from core deletion 

proteins would also be examined.

The core gene deletions examined in this thesis were all isolated by the group of Dr. 

N. Naoumov (Kings College, London). Expression of the core protein with amino acids 

84-109 deleted had been initiated by this group using a recombinant baculovirus and both 

this and a similar virus expressing full-length core protein were kindly given to us in 

order that we could initiate our studies.
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2A Materials 

2A1 Plasmids

Plasmid p R l-1 1 was a kind gift from Prof. K. Murray (University of Edinburgh). 

This pBR322-based plasmid contained a fusion of (3-gal actosidase coding sequence and 

a fragment of the HBV genome containing the core gene (Stahl eta l., 1982). The fusion 

protein expressed was under the control of the lacUV5 prom oter and the cloning 

strategy resulted in the protein expressed containing 10 N-terminal amino acids of [3- 

galactosidase with the core start codon deleted and the aspartate residue at position 2 

mutated to a histidine (Figure 2A1). For the purposes of this project, the HBV fragment 

was excised from the plasmid with an Eco RI/Bam  HI digest and replaced by PCR- 

amplified core gene sequence.

Core gene sequence:
M D I D P Y K E . . . .  

ATGGACATTGACCCTTATAAAGAA. . .

pR1 -11:
Eco RI site

M T M I T D S L E F H I D P Y K  E . . . .  
GC TATGAC CATGATTACGGATTCACTGGAATTCCACATTGACCC TTATAAAGAA. . .

lac DNA original core gene sequence

Figure 2A1: Core protein expression from plasmid pR1 -11
Plasmid pR1 -11 was used for expression of full-length and deletion core proteins in 

E.coli as described in the text. The core protein produced from this plasmid is a fusion 
protein with 10 N-terminal [3-galactosidase residues, including the start codon. The 

original core protein methionine is missing and the aspartate residue at position 2 of 

core is mutated to a histidine.

Plasmids pET3a and pET9a were obtained commercially from Novagen (see 

Figure 2A2). Core gene sequences amplified by PCR with primer pair cp3 and Bamtag 

were cloned using the NdeMBamWl sites, placing them under the control of the
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Bam HI
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4 6 4 0  bp

pB R 322 ori

Figure 2A2: Map of plasmid pET3a

Plasmids pET3a and pET9a were used for the expression of full-length core genes and 

core gene deletions in E.coli. Core genes were amplified by PCR using primer pair 

cp3/Bamtag or cp3/cd2 (see Section 2A3) for cloning into pET3a or pET9a, 

respectively. Genes were cloned between the Nde I and Bam HI sites and were 

expressed under the control of the T7 promoter. Plasmid pET9a is identical to the 

plasmid shown, but encoded resistance to kanamycin instead of ampicillin.

bacteriophage T7 transcription and translation signals. Plasmid pET3a also encoded 

ampicillin resistance and pET9a encoded kanamycin resistance.

Plasm id pRK5 was obtained from Prof. H. Will (Heinrich Pette Institut, 

H am burg). This pUC118-based plasmid contains a CMV IE prom oter and SV40 

polyadenylation site to allow expression of cloned genes in mammalian cells, as well as 

the gene for ampicillin resistance. This plasmid is shown in Figure 2A3.

Plasmid pTZ18R was purchased commercially from Pharmacia. This plasm id 

contains a gene conferring ampicillin resistance and also the pUC18 multiple cloning 

site, which was located in the middle of the lac Z ' gene, allowing blue/white colour 

selection of recombinant plasmids on LB agar plates supplemented with IPTG and X- 

gal. This plasmid is shown in Figure 2A4.
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Figure 2A3: Map of plasmid pRK5

Plasmid pRK5 was used to express full-length core genes and core gene deletions in 

mammalian cells. Full-length core genes and core gene deletions were amplified by 

PCR using primer pair cpk/Hintag (Section 2A3) and cloned into Eco RIIH in  d lll- 

digested pRK5.

2A2 Enzymes

Restriction enzym es were obtained from Boehringer M annheim , with the 

exception of N d e l , which was obtained from New England Biolabs. RNase and 

lysozyme were purchased from Sigma. DNase I, calf intestinal phosphatase, T4 DNA 

ligase and proteinase K were all purchased from Boehringer M annheim. E. coli DNA 

polymerase I Klenow fragment and T4 polynucleotide kinase were purchased from New 

England Biolabs. PCR was carried out using Thermus aquaticus DNA polym erase 

obtained from Gibco. DNA polymerase I/DNase I was also obtained from Gibco.

2A3 Synthetic oligonucleotides
Oligonucleotides were synthesised on site using a Cruachem PS250 automated 

synthesiser by Dr. J. McLauchlan, Miss S. Fitzpatrick, Mr. J. McGeehan or Mr. R. Reid. 

Oligonucleotides used during this project are listed in Table 2A5.
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Figure 2A4: Map of plasmid pTZ18R

Core genes were amplified by PCR amplification of HBV DNA, extracted from human 

serum, using primer pair C1/C2 (see Section 2A3). Amplified core genes were made 

blunt-ended and cloned into Sma l-digested pTZ18R. The lac Z  gene allowed 

identification of recombinant plasmids by blue/white colour selection.

2A4 Bacteria (E. coli strains)
The E.coli strain D H 5a(O 80dlacZAMJ5 recAl endAl gyrA 96 thi-1 hsdR17(rk~ 

m k-) supE44 re lA l deoR A(lacZYA-argF)U  169) was used for m aintenance and 

propagation of plasmid DNA and for expression of core protein from plasmid pR 1-11.
Strain BL21(DE3)pLysS (F" ompT hsdSB(rB' m o d e r n  ga l X ( DE3) pLysS(Cm r) 

(Studier et al., 1990) was used for expression of proteins using pET vectors: the 
integrated lysogenic X bacteriophage DE3 has an IPTG inducible lacUV5 prom oter 

from which T7 RNA polymerase is expressed and the plasmid pLysS encodes T7 

lysozyme and also a gene conferring chloramphenicol resistance.

2A5 Bacterial culture media
The D H 5a strain was grown in L-broth (lOg NaCl, lOg BactoTryptone, 5g yeast 

extract in 11 water) and the BL21(DE3)pLysS strain in 2YT broth (5g NaCl, 16g 

BactoTryptone, lOg yeast extract in 11 water). Agar plates were made with 1% (w/v) 

agar in L-broth.
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W here necessary, media and LBagar plates were supplemented with antibiotics: 

lOOmg/ml am picillin for bacteria harbouring plasmids pR 1-11, pET3a and pRK5, 

30m g/m l kanam ycin for strains harbouring the pET9a plasm id and 25m g/m l 

chloram phenicol for strains harbouring the pLysS plasmid. For blue/w hite colour 

selection, bacteria transformed with plasmid pTZ18R were plated onto LB agar plates to 

which lOmg/ml X-gal (Section 2A9) and 50mM IPTG had been added.

2A6 Cell culture media

All cell culture media were obtained from Gibco.

S/21 cells, derived from the pupal ovarian tissue of the fall army worm  

(Spodoptera frugiperda), were grown in T C I00 Medium supplemented with 5% bovine 

calf serum  (A pplied Protein Products), 100 units/m l penicillin and 100gg/ml 

streptomycin (Gibco).

COS 7 cells (Gluzman, 1981) and HepG2 cells (Knowles et al., 1980) were grown 

in Dulbecco's modified Eagles Medium (DMEM) supplemented with 10% bovine calf 

serum, 2mM glutamine (Gibco) and antibiotics as before.

2A7 Antibodies

The anti-core mouse monoclonal antibodies ocHBcBFl-5 were a kind gift from Dr. 

B. Ferns (University College Hospital, London) and were used at a recom m ended 

dilution of 1:10.

Anti-core mouse monoclonal antibody 42B12 was a kind gift from Prof. W .H. 

Gerlich (Justus-Liebig Universitat, Giessen). The antibody was thought to recognise an 

epitope between residues 115-135, and was used at a dilution of 1:750.

The anti-pp65 mouse monoclonal antibody 9220 was purchased commercially 

from Capricorn Products Inc. and was used at a 1:1000 dilution on Western blots and at 

a 1 GOO dilution for immunofluorescence assays.

Anti-core rabbit polyclonal antisera were purchased com mercially from Zym ed 

Laboratories Inc., Dako Corporation and Life Sciences. These were used at dilutions of 

1:2, 1:1000 or 1:200, respectively on Western blots. The Zymed polyclonal antiserum 

was used undiluted in immunofluorescence assays.

Goat anti-mouse IgG whole molecule peroxidase conjugate, goat anti-rabbit IgG 

whole molecule peroxidase conjugate, goat anti-mouse IgG whole m olecule FITC 

conjugate and anti-rabbit IgG whole molecule FITC conjugated immunoglobulin were 

all supplied by Sigma.
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Sense primers

Primer Position Sequence (5'>3‘)

cd1

cp3

1905-1932 (core 

gene)

1901-1922

ggaattccAC ATT G ACCCGTAT AAAG AATTTGG A 

GC

ggaattccatATGG AC ATT G ACCCGTAT AAAG

s1

s4

cd4

2112-2140 (core)/458- 

479 (surface)

458-479 (surface) 

2264-2289

GGGTGGGAAGTAATTGGAAGACCCAGCAGG

TATGTTGCCCGTTTGTCCTC
GGTATGTTGCCCGTTTGTCCTC
TTT/CGGAGTGTGGATTCGCACTCCTCC

5f1 OA 

5f20A 

5f30A

2145-2170/2264-2286

2179-2200/2264-2286

2205-2230/2264-2286

CCCTTGATCATCAGTCGATACAGTTA/TTTGG

AGTGTGGATTCGCACTCC

CCCGGATTTTTAGTCCGTTGAT/TTTGGAGTG

TGGATTCGCACTCC

C C A A AGT G T AAAG G ACG G A AT G A A A A/TTT G G 

AGTGTGGATTCGCACTCC

3f 10 

3f20 

3f30

2234-2258

2204-2233

2174-2206

AG AG AG ACT GT ACTT G AAT ATTTGGTCT CTTT 

CGG

T G GTTT CAT AT AT CTT G CCTT ACTTTTGG A AG 

AGAGACTG

AACATGGGTTTAAAGATCAGGCAACTATTGTG

G

cpk

C1

1901-1914

1737-1754

ggaattcATGGACATTGACCC

GAGTTGGGGGAGGAGATT

Table 2A5: Oligonucleotide primer positions and sequences (continued on following 

page). Numbering is according to Ono et al. (1983).
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Antisense primers

Primer Position (core gene) Sequence (3'>5‘)

cd2 2441-2458 GCCCTT AG AGTT AC AAT Cgccctagggc

Bamtag 2439-2455 GAGCCCTTAGAGTTACActcgcgttctgcggggcgc

agtggccgccgatccctagggc

Thrtag 2267-2284 GGAGTGTGGATTCGCACTctcgcgttctgcggggc

gcagtggccgccgatccctagggc

s2 557-580

(surface)/2264-2291

(core)

GGGAGAACAACGACATGTTTTGGA-
AAACCTCACACCTAAGCGTGAGGAGGGC

s3 557-580 (surface) GGGAGAACAACGACATGTTTTGGA
cd3 2112-2140 CCCACCCACCATTAAACCTTCTGGGTCGT

5f10 2145-2170 CCCTTGATCATCAGTCGATACAGTTA

5f20 2179-2200 CCCGGATTTTTAGTCCGTTGAT

5f30 2205-2230 CCAAAGTGTAAAGGACGGAATGAAAA

3f10A 210-238/332-356 CCCACCCATTATTAAACGTTCTAGGTCGT-

TCTCTCTGACATGAACTTATAAACC

3f20A 210-238/302-331 CCC ACCC ATT ATT AAACGTT CT AGGTCGT - 

ACC AAAGTAT AT AG AACGG AATG AAAACC

3f30A 210-238/272-293 CCCACCCATTATTAAACGTTCTAGGTCGT- 

TTTGTACCC AAATTT CT AGTCCG

Hintag 2439-2455 GAGCCCTTAGAGTTACActcgcgttctgcggggcgc

agtggccgccgatcttcgaagggg

C2 2475-2495 TTCC ACCCTTTG AAAT G ACCC

Primer sequences for amplification of surface gene regions are shown in bold 

Restriction enzyme sites and non-coding sequences are shown in lower case 

pp65 epitope tag sequences are shown in bold lower case

Table 2A5: Oligonucleotide primer positions and sequences (continued). Numbering is 

according to Ono et al. (1983).
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2A8 Radiochemicals

All radiochemicals were purchased from Amersham at the following specific activities: 

a 32P-dATP 3000Ci/mmol (10pCi/pl)

a 32P-dTTP 3000Ci/mmol (lOpCi/pl)

35S-L-Methionine ~800Ci/mmol (15pCi/pl)

a 35S-dATP lOOOCi/mmol (lOpCi/pl)

2A9 Solutions

6xagarose gel loading buffer:

Blocking buffer (Western blots): 

Coomassie stain:

40xdNTPs 

Denaturation buffer: 

50xDenhardt's solution:

2xHBS:

Hybridisation buffer:

5xkinase buffer:

5xligase buffer:

Lysozyme extraction buffer:

Miniprep solution I:

Miniprep solution II:

Miniprep solution III: 

Neutralisation buffer: 
Oligonucleotide elution buffer:

Oligonucleotide sample buffer: 

PBS(A):

PBS:

lxTE, 40% sucrose, 1 mg/ml bromophenol 

blue

3% gelatin in TBS

0.2% Coomassie brilliant blue, 50% methanol, 

5% acetic acid in water 

lOmM of each of dATP, dCTP, dGTP, dTTP 

0.6M NaCl, 0.2M NaOH 

1% polyvinylpyrrolidine, 1% ficoll, 1% BSA 

280mM NaCl, 50mM HEPES, 1.5mM 
Na2HP0 4 , pH to 7.05 with NaOH 

5xSSC, lOxDenhardt's solution, 0.5% SDS, 

20pg/pl denatured salmon sperm DNA 
350mM Tris.HCl, 50 mM MgCl2, 25mM DTT, 

5mM ATP, pH7.6
250mM Tris.HCl, 50mM MgCl2, 5mM ATP, 

5mM DTT, 25% PEG 8000, pH7.6 

50mM Tris.HCl, lOOmM NaCl, 0.2mM EDTA, 
ImM lysozyme, 1.5mM MgCl2, 0 .5m M  

PMSF, pH8.0

25mM Tris.HCl, 50mM glucose, lOmM EDTA,

0.2N NaOH, 1% SDS

3M potassium acetate, 11.5% acetic acid

1M Tris.HCl, 0.6M NaCl, pH8.0
0.5M ammonium acetate, lOmM M gCl2 , 0.1%

SDS, ImM EDTA

90% deionised formamide in lxTBE

170mM NaCl, 3.4mM KC1, lOmM Na2H P 0 4,

1.8mM KH2P 0 4, pH 7.2

PBS(A) plus CaCl2.2H20  and MgCl2.6H20  at

lg/1
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Pre-hybridisation buffer:

Protein gel destain: 

lOxSDE:

SDS PAGE buffers:

(i) 3xSDS PAGE sample buffer:

(ii) 3xSDS PAGE sample buffer: 

(non-reducing)

(iii) RGB (resolving gel buffer):

(iv) SGB (stacking gel buffer):

(v) Tank buffer:

Serum extraction buffer:

Sonication buffer:

20xSSC:

50xTAE

lOxTBE:

TBS:

TE:

TE/RNase:

TN buffer:

TNE I:

TNE II:

Towbin blotting buffer:

TTBS:

Versene:

X-gal

5xSSC, 5xDenhardt's solution, 0.1% SDS,

20ptg/pil denatured salmon sperm DNA 

50% methanol, 5% acetic acid in water 

250mM sodium acetate, 25mM EDTA

10% SGB, 2% SDS, 5% p-ME, 10% 

glycerol, 1 mg/ml bromophenol blue 

10% SGB, 2% SDS, 10% glycerol, lmg/ml 

bromophenol blue 

1.5M Tris.HCl, pH8.8 

0.5M Tris.HCl, 0.4% SDS, pH6.9 

40mM Tris, 185mM glycine, 0.1% SDS 

lxSDE, lmg/ml proteinase K, 0.45% SDS, 

lOpg/ml tRNA

50mM Tris.HCl, 1% Triton X-100, pH8.0 

3M NaCl, 0.3M trisodium citrate 

2M Tris, 50mM EDTA, pH to 8.0 with acetic 

acid

liM Tris, 1M boric acid, 20mM EDTA 

20mM Tris.HCl, 500mM NaCl, pH7.5 

lOmM Tris.HCl, ImM EDTA, pH8.0 

lxTE, 20fig/ml RNase 

50mM Tris.HCl, lOOmM NaCl, pH8.0 

lOmM Tris.HCl, 50mM NaCl, 0 . ImM EDTA, 

pH7.4

50mM Tris.HCl, lOOmM NaCl, 0.2mM EDTA, 
0.1% Triton X-100, 1.5mM MgCl2 , 0.5mM 

PMSF, pH8.0
25mM Tris.HCl, 192mM glycine, 20% methanol, 

pH8.3
TBS plus 0.05% Tween-20

0.6mM EDTA in PBS(A), 0.002% phenol red

20mg/ml X-gal in dimethylformamide

2A10 Chemicals and reagents
All chemicals and reagents were purchased from BDH Chemicals UK or fiom Sigma 

Chemical Co. unless otherwise stated in this section or in the Methods section.

Aldrich: 4-Chloro-l-naphthol

Beecham Research: Ampicillin
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Bio-Rad:

Boehringer Mannheim 

Camlab:

DuPont:

Gibco:

Melford Laboratories: 

Pharmacia:

Prolabo:

TEMED, ammonium persulphate, Coomassie brilliant 

blue, gelatin 

Tris, agarose

Phenol:chloroform (25:24:1 with isoamyl alcohol)

En3Hance

IPTG, tRNA

CsCl

ATP

Boric acid, butanol, chloroform, ethanol, glycerol, 

hydrochloric acid, isopropanol, methanol
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2B Methods

2B1 Nucleic acid manipulation and cloning procedures 

2B1.1 Large scale plasmid DNA preparations

(i) Continuous CsCl:EtBr gradients

An aliquot of E .co li harbouring the plasmid was spread on an agar plate 

containing the appropriate antibiotics (see Section 2A5) and incubated overnight at 

37°C. Colonies were inoculated into 300ml L-broth containing the appropriate 

antibiotics and incubated overnight at 37°C with shaking.

Plasmid DNA was prepared by a modification of the alkaline lysis method of 

Birnboim and Doly (1979) and supercoiled plasmid DNA was purified on CsCl 

gradients. Bacterial cultures were centrifuged at 6k rpm for 15min at 4°C (Sorvall GS3 

rotor) and the pellets resuspended thoroughly in 5ml miniprep solution I. Fresh 

miniprep solution II was prepared and 10ml was added to the resuspended cell pellet, 

which was then mixed by several inversions and incubated on ice for 5min. Ice-cold 

miniprep solution III (7.5ml) was added and the mixture shaken vigorously to mix, 

followed by a lOmin incubation on ice. Cell debris was then pelleted by centrifugation 

at 3k rpm for 15min at 4°C (Sorvall SS34 rotor). The supernatant was carefully 

removed and mixed with an equal volume of phenol:chloroform solution before being 

centrifuged again at 3k rpm (Sorvall RT6000B benchtop centrifuge) for lOmin at 4°C 

and the aqueous phase retained. DNA was precipitated by the addition of 0.6vol 

isopropanol and collected by centrifugation at 3k rpm (Sorvall RT6000B) for 20min at 

4°C. The pellet was air dried, resuspended in CsCl solution (10ml water plus lOg CsCl) 

and 0.4ml lOmg/ml EtBr solution added. ProteimEtBr complexes were removed by 

centrifugation at 3k rpm (Sorvall RT6000B) for 15min at 18°C and the supernatant 

transferred to a Beckman Quick-Seal centrifuge tube. Tubes were balanced with CsCl 

solution and heat sealed using metal former caps. Supercoiled plasmid DNA was 

purified by centrifugation at 45k rpm (Sorvall T1270 angled rotor) for 64hr at 18°C. 

The plasmid DNA band was removed using a syringe, taking care to avoid 

contamination from the upper chromosomal DNA band. The EtBr was removed from 

the plasmid solution by 2-3 extractions with TE-saturated butanol and diluted by the 

addition of 3vol of water. DNA was precipitated by the addition of 3.5vol of ethanol 

and incubation at -20°C. The DNA was pelleted by centrifugation at 3k rpm (Sorvall 

RT6000B) for lOmin at 4°C, resuspended in 2ml water and reprecipitated by the 

addition of 0.5vol 7.5M ammonium acetate and 2vol ethanol. After centrifugation at 3k 

rpm (Sorvall RT6000B) for 30min at 4°C the DNA pellet was air dried and resuspended 

on 200pl TE.
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(ii) Plasmid purification using Qiagen columns

Qiagen columns were occasionally used to purify smaller quantities of plasmid 

DNA for use in sequencing reactions. Bacterial lysates are applied, under defined salt 

conditions, to the column resin and the DNA is selectively bound and purified from 

RNA, proteins and other cellular contaminants.

Sm aller 50ml cultures were grown as above and the cells pelleted by 

centrifugation at 6k rpm for 15min at 4°C (Sorvall GSA rotor). The cell pellet was 

resuspended thoroughly in 4ml of buffer PI, 4ml of buffer P2 was added and mixed by 

inversion 5-6 times. After a 3min incubation at room temperature 4ml of buffer P3 was 

added, the solution mixed immediately by several inversions and incubated on ice for 

15min. After centrifugation at 16k rpm (Sorvall SS34 rotor) for 30min at 4°C, the 

supernatant was removed and added to a Qiagen 100 column, equilibrated with 4ml 

equilibration buffer QBT. After the supernatant had dripped through, the resin was 

washed twice with 10ml wash buffer QC before elution of the DNA by the addition of 

6ml elution buffer QF. Plasmid DNA was precipitated by the addition of 0.7vol 

isopropanol and centrifugation at 10k rpm (Sorvall SM24 rotor) for 30min at 4°C. The 

pellet was washed with 70% ethanol, air dried and resuspended in 1 OOjul TE.

Plasmid concentrations were determined by measuring the absorbance at 260nm, 

assuming 1 A26o=50|ig/ml.

2B1.2 Miniprep plasmid DNA preparation

Single colonies of transformed bacteria were inoculated into 3ml of L-broth 

containing the appropriate antibiotics and incubated overnight at 37°C with shaking. 

Aliquots (1.5ml) of the cultures were centrifuged at 13k rpm for 30sec in a microfuge 

and the pellet resuspended in lOOpl of miniprep solution I. A 250pl aliquot of fresh 

miniprep solution II was added and mixed by several inversions before addition of 

1 50 j l l 1 of ice-cold miniprep solution III, which was mixed by vortexing. A lOOpl aliquot 

of phenol:chloroform was then added to the mixture, which was vortexed once more 

before centrifugation for lOmin in a microfuge. Plasmid DNA was precipitated from the 

aqueous phase by the addition of 400pl ethanol and pelleted by centrifugation for 20min 

in a microfuge. The pellet was washed with 70% ethanol and air-dried before 

resuspension in 30pl TE/RNase and incubation at 37°C lor 30min.

2B1.3 Restriction enzyme digestion of DNA
Restriction enzyme digestion of DNA was carried out at 37°C (or the temperature 

specified by the supplier) in 20|il volumes using 1 unit of enzyme per 0.5pg DNA per 

hour in the buffer supplied with the enzyme. The buffer system used most often was the 

Boehringer Mannheim A, B, M, L, H system and less frequently the New England

71



Chapter 2 Materials and Methods

Biolabs NEBuffer 1, 2, 3, 4 system. Typically 0.5pg DNA was digested to identify 

recombinant plasmids and l-5pg for isolation of specific restriction fragments.

2B1.4 Electrophoretic separation and purification of DNA fragments
(i) Non-denaturing agarose gels

DNA fragments produced by restriction enzyme digestion or PCR were resolved 

by non-denaturing agarose gel electrophoresis. Horizontal slab gels approximately 

0.5cm thick were used and samples loaded following the addition of agarose gel loading 

buffer. For separation of fragments over 200bp, 1% agarose gels in lxTBE were made 

up to a final concentration of lpg/ml EtBr before casting and run at 7V/cm in lxTBE 

buffer, containing EtBr. For separation of small PCR products, 2% agarose gels were 

used. Gibco lOObp ladder or lkb ladder standard size markers were used where 

appropriate. Following electrophoresis, DNA was visualised under short-wave UV light 

(long-wave for preparative gels). Photography was carried out using The Imager 

(Appligene).

(ii) Purification of DNA from agarose gels

Agarose blocks containing appropriate DNA fragments were excised from gels 

under long-wave UV transillumination and the DNA recovered using a commercial kit, 

Geneclean II (Bio 101 Inc., La Jolla, CA). The kit contains a silica matrix which binds 

DNA in the presence of high concentrations of sodium iodide. Agarose blocks were 

mixed with 4.5 volumes of Nal solution and 0.5 volumes TBE modifier and incubated 

at 55°C until the gel slice had melted. The silica matrix was then added (5pl for up to 

5gg DNA) and the mixture vortexed and incubated on ice for 5min, with further 

occasional mixing. Following a 30sec centrifugation, the silica matrix was washed 3 

times in 500ml ’NEW ’ wash and the DNA eluted into an appropriate volume of water by 

mixing the washed pellet with the water and incubating at 55°C for 5min. The matrix 

was again pelleted and the supernatant containing the DNA removed for subsequent 

use. The Geneclean II kit was also used in situations where electrophoresis was not 

required, particularly for separating DNA from nucleotides and PCR primers. In these 

cases, 3 volumes Nal were used and the TBE modifier omitted.

(iii) Non-denaturing polyacrylamide gels
Vertical non-denaturing polyacrylamide (Protogel (acrylamide:bisacrylamide 

37.5:1), National Diagnostics) gels, containing lxTBE, were used to purify synthetic 

oligonucleotides. Polymerisation was instigated by adding lOOpl TEMED and 100 pi 

25% APS. Prior to loading, oligonucleotides were boiled with sample buffer for 2min. 

Electrophoresis was carried out using 15% polyacrylamide gels (0.3cm thick x 25cm 

long) in lxTBE running buffer at 200V for 3-5hr.
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(iv) Denaturing polyacrylamide gels

Vertical denaturing polyacrylamide gels, containing 8M urea and lxT B E  

(Sequagel 6 (5.7% acrylamide:0.3% bisacrylamide) National Diagnostics) were used to 

resolve the products of DNA sequencing reactions. Polymerisation was instigated by 

adding 600pl 10% APS. Sequencing gels were 0.4mm thick x 39cm long. The samples 

were heated to 72°C for 2min prior to loading. Electrophoresis was in lxTBE running 

buffer at 70W for 1.5-5hr.

2B1.5 End repair and DNA ligation

Modifications to the ends of purified DNA fragments were carried out prior to 

ligation, as detailed below, and the modified DNA purified by extraction with 

phenol:chloroform, followed by extraction by chloroform and an ethanol precipitation. 

The DNA pellets were washed with 70% ethanol and resuspended in water for use in 

ligation reactions.

(i) Removal of 3' overhangs

It was necessary to remove adenosine nucleotides added to the 3' termini of DNA 

fragments amplified by PCR using Taq DNA polymerase (Clark, 1988), to enable 

efficient ligation. DNA fragments were made blunt-ended in Klenow buffer by 

incubation with 3 units of Klenow fragment. The reaction was carried out for 40min at 

37°C.

(ii) Phosphate removal from 5' ends

Removal of the 5' phosphates from vector fragments with blunt ends was done by 

incubation with 1 unit of calf intestinal phosphatase in the appropriate buffer for 30min 

at 37°C. A further 1 unit of enzyme was added and the incubation repeated before 

purification of the vector fragment.

(iii) Phosphate addition to 5' ends
It was necessary to add phosphate to the 5' ends of blunt-ended PCR products to 

facilitate blunt-end ligation reactions with a plasmid vector. The reactions were carried 

out in 30pl of lxkinase buffer with 5 units T4 polynucleotide kinase for 45mins at 37°C.

(iv) Ligation reactions
Purified vector and insert fragments prepared by restriction enzyme digestion and 

with ends suitably repaired, were ligated in a L3 or 2:1 ratio for sticky- or blunt-ended 

ligations, respectively. Reactions were carried out in a lOgl volume ol lxligase buffer 

with 1 or 3 units of T4 DNA ligase for sticky- or blunt-ended ligations respectively.
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Reactions were carried out at 16°C for 4-15hr. Ligated DNA was stored at -20°C prior 
to transformation of competent E.coli.

2B1.6 Preparation and transform ation of com petent E.coli cells for plasm id  
growth and maintenance

Plasmids were grown and maintained in E.coli strain DH5a. A 0.5ml aliquot of 

overnight culture grown in L-broth from a single colony was inoculated into 50ml L- 

broth and grown for 2.5-3hr at 37°C in a shaking incubator, until the OD630 was 

approximately 0.3. The culture was cooled on ice and the cells pelleted by 

centrifugation at 3k rpm for 15min at 4°C. The cell pellet was resuspended in 15ml cold 
50mM CaCl2- After a lhr incubation on ice, the cells were pelleted as before and 

resuspended in 2.5ml cold 50mM CaCl2. For storage, 500pl aliquots of resuspended 

cells were added to an equal volume of 30% glycerol, flash frozen and stored at -70°C. 

For more immediate use resuspended cells were stored at 4°C overnight to enhance their 

competency.

For transformation of E. coli, lOOng plasmid DNA (or half of a ligation reaction) 

was added to a lOOpl aliquot of competent DH5a bacteria, which had been thawed on 

ice if frozen. The mixture was incubated on ice for 20-45min prior to heat shock in a 

42°C water bath for lmin, followed by a 2min incubation on ice. A pre-warmed 1ml 

aliquot of 2YT broth was added to the cells which were then shaken for lh r  at 37°C 

before plating onto LB agar plates containing the appropriate antibiotics. The plates 

were incubated overnight at 37°C.

2B1.7 Preparation and transform ation of com petent E.coli cells for protein  

expression
E .coli strain BL21(DE3)pLysS was transformed with plasmids from the pET 

expression system immediately before use. Bacteria were streaked onto LBagar plates 

containing chloramphenicol and fresh colonies inoculated into 10ml 2YT containing 
chloramphenicol and grown in a shaking incubator for 2-3hr at 37°C, until the OD630 

reached approximately 0.3. The cells were pelleted by centrifugation at 3k rpm for 5min 
at 4°C, resuspended in 0.5ml cold 0. ImM MgCl2 and repelleted by centrifugation under 

the same conditions for 2min. The pellet was resuspended in 0.5ml cold 0.1M CaCl2 

and incubated on ice for 2hr prior to use. Approximately 0.5|ig ot the relevant plasmid 

was used to transform a 100gl aliquot of the competent cells as described in Section 

2B1.6.

2B1.8 Purification of synthetic oligonucleotides
Synthetic oligonucleotides were produced by the phosphoramidite method using 

200pl synthesis columns. To remove the oligonucleotide from the column, 5ml
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disposable syringes were attached to both ends of the column with one containing 1.5ml 

ammonium hydroxide (0.88 specific gravity (Fisher Scientific)). The solution was 

pushed through the column in 200pl aliquots with a 20min incubation between each 

fresh addition. After incubation with the final aliquot, the 1.5ml solution was pushed 

backwards and forwards through the column 4-5 times to mix the aliquot thoroughly. 

The oligonucleotide solution was incubated in a tightly sealed tube for 5hr at 55°C to 

remove protecting groups. Following lyophilisation, the oligonucleotide was dissolved 

in 200pl water and boiled in an equal amount of oligonucleotide sample buffer prior to 

electrophoresis on a 15% non-denaturing polyacrylamide gel (Section 2B1.4(iii)). 

Oligonucleotides were purified by passive elution from gel slices excised from the gel 

following visualisation of the DNA by long wave UV transillumination: bands were 

visible as dark shadows against a fluorescing TLC plate. Gel slices were diced, added to 

lml oligonucleotide elution buffer and the DNA eluted overnight at 37°C in a shaking 

incubator. The liquid phase, containing the DNA, was separated from the gel fragments 

and any residual acrylamide removed by centrifugation for 5min (microfuge). The DNA 

solution was extracted with phenokchloroform, followed by chloroform extraction and 

DNA purified by ethanol precipitation followed by centrifugation for lOmin 

(microfuge). The pellet was lyophilised and resuspended in TE. The DNA concentration 

was determined by measuring the absorbance at 260nm, assuming that for short 

oligonucleotides 1 A 26o=2 0 pg/ml.

2B1.9 Extraction of HBV DNA from serum
All manipulations involving serum samples were carried out in a Microflow class 

2 biological safety cabinet.
Viral DNA was extracted from a 25pl aliquot of serum by overnight incubation at 

37°C in serum extraction buffer. The mixture was then phenokchloroform extracted, 

followed by an extraction with chloroform, and the DNA precipitated by the addition of 

0.1 vol 3M sodium acetate and 2.5vol ethanol. Following incubation at -70°C for at least 

30min, the DNA was pelleted by centrifugation for 15min (microfuge) and washed 

twice with 70% ethanol before lyophilisation and resuspension in 15pl water. Extracted 

viral DNA was stored at -20°C and 5pl used in subsequent PCR reactions.

2B1.10 Preparation of baculovirus DNA
Baculovirus DNA was extracted from infected 5/21 cells (see Section 2B2.2 for 

infection of 5/21 cells) for subsequent analysis by Southern blotting.

Infected 5/21 cells in 35mm plates were scraped into 0.5ml PBS and pelleted by 

centrifugation at 6k rpm (microfuge) for 2min. The pellet was resuspended in 250pl TE 

and 250pl buffer containing 50mM Tris.HCl, 5% p-ME, 0.4% SDS, lOmM EDTA, 

lOmg/ml proteinase K and lOmg/ml RNase and incubated at 37°C overnight. The mix
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was extracted twice with phenokchloroform and DNA precipitated from the aqueous 

phase by the addition of 0.1 vol 3M sodium acetate, 2vol ethanol and incubation at 

-70°C. The DNA was pelleted by centrifugation for lOmin at room temperature 

(microfuge), washed with 70% ethanol and air dried before the addition of lOOpl TE. 

DNA was allowed to resuspend slowly by incubation for lhr at 37°C and overnight 

incubation at 4°C and was stored at 4°C.

2B1.11 Polymerase chain reaction (PCR) amplification of DNA

PCR amplification was carried out to amplify core gene sequences from extracted 

DNA for sequence analysis or, using primers including restriction enzyme sites, to 

amplify core gene sequences for subsequent cloning steps. PCR reactions were set up in 

a Microflow class 2 biological safety cabinet, to avoid contamination, and carried out 

using a Biometra TRIO-Thermoblock machine.

Reactions were carried out in 50pl volumes containing lx  reaction buffer 

(supplied with the enzyme), 250pM dNTPs, 25pmol of each primer, 1.5mM MgCl2, 1.2 

units Taq DNA polymerase and template DNA (purified DNA fragments or extracted 

viral DNA). The mixtures were overlaid with mineral oil to prevent evaporation during 

cycling. Cycling conditions were typically: 5 cycles at 95°C for 4min (denaturing), 55°C 

for lmin (annealing), 72°C for lmin (elongation), followed by 35 cycles at 90°C for 

lmin, 55°C for lmin 15sec, 72°C for lmin 30sec. A final elongation step was then 

performed at 72°C for 5min. Cycling conditions were varied in attempts to allow 

efficient priming to occur or to minimise non-specific priming events, by lowering the 

annealing temperature to 42°C or raising it to 60°C, respectively. PCR products were 

purified (Section 2 B 1.4(i)) before restriction enzyme digestion, end repair or use in 

further PCR reactions.
Core deletion protein A81-121 was modified by exact replacement of deleted core 

gene sequence with surface gene sequence, to create the Acore-surface hybrid gene 

(Section 3C4) and also by gradually replacing the deleted core gene sequence from 

either the 5' or 3' end of the deletion, creating a series of 'fill-in' core genes (Section 

3E3). Details of the PCR-based protocols used are shown in Figure 2B 1.1 la  and Figure 

2B 1.11b, respectively and Table 2B 1.11c shows all proteins produced using this 

method.

2B1.12 Dideoxy sequencing of DNA
Plasm id D NA  or DNA amplified by PCR was sequenced  by the 

dideoxy nucleotide chain termination method based on that of Sanger et al. (1977). 

Sequencing was carried out using the Amersham Sequenase version 2.0 kit, which 

utilises a modified bacteriophage T7 DNA polymerase.
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Figure 2B1.11a: Construction of the Acore-surface hybrid gene by PCR

Primers used are detailed in Table 2A5 and are indicated by arrows (i— ). A 123bp 

fragment of the HBV surface gene (nucleotides 458-580) was amplified twice by PCR 

(r1 and r2) using two separate pairs of primers (s4/s2 and s1/s3) to give products p1 

and p2. From the core gene with nucleotides 2141-2263 deleted (Acore) two fragments 

adjacent to the deleted region were amplified separately (r3 and r4) using primer pairs 

cd4/Bamtag and cd1/cd3, resulting in products p3 and p4, respectively. Primers s2 and 

s1 include sequences complementary to core gene sequence adjacent to the 3'Coooo1) 

and 5'Cxxxx1) limits, respectively, of the deleted region. Products p2 and p4 were 

annealed and amplified (r5) with primers cd1 and s3 to give product p5 and products
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p1 and p3 were amplified similarly (r6) with primers s4 and Bamtag to give product p6. 

Finally, products p5 and p6 were annealed and amplified (r7) with primers cd1 and 

Bamtag to give final product p7, which has the deleted core sequence 2141-2263 
exactly replaced with foreign sequence.

Purified plasmid DNA (2-5pg) was denatured at room temperature for lOmin in a 

20pl reaction volume containing NaOH at a final concentration of 0.4M. The denatured 

DNA was precipitated by addition of 6gl 3M sodium acetate, 14gl water and 120pl 

ethanol and incubated in a dry-ice:ethanol bath for lOmin. Denatured DNA was then 

pelleted by centrifugation for lOmin (microfuge), washed with 70% ethanol, air-dried 

and dissolved in 7pl water.

The appropriate primer (2-5pmol in lpl volume) was added to the DNA with 2pl 

lOxreaction buffer (supplied with the kit) and annealing carried out for 20min at 37°C. 

Annealed DNA was added to 3pi labelling mix (7.5pM each of dGTP, dCTP and dTTP) 

containing 5mCi a 35S-dATP. The four chain termination mixes were aliquotted in 2.5pi 

volumes into four wells of a round bottomed 96-well microtitre plate (Costar). The 

chain termination mix for each nucleotide contained the appropriate dideoxynucleotide 

at a concentration of 8pM, 80pM of the three remaining deoxynucleotides and 50mM 

NaCl. Sequenase T7 DNA polymerase was diluted 1:8 in enzyme dilution buffer 

(supplied with the kit) and 2pl (approximately 3units) added to the labelling mix, 

followed by incubation for 2min at 20°C. For the chain termination reactions, 3.5pl 

aliquots of the labelling reaction were transferred to each termination mix and the 

reactions incubated for 15min before being stopped by the addition of 4pl of stop 

solution, supplied with the kit.
For sequencing PCR products, the initial alkaline denaturation step was omitted 

and the primer annealed to the template using the following protocol: 95°C for 2min 

(followed by a brief centrifugation (microfuge)), 70°C for 3min, 95°C for 45sec and 

37°C for lOmin. Labelling and termination reactions were carried out as above.
Prior to electrophoresis, the reaction mixes were denatured at 72 C for 2min using 

a Biometra UNO-Thermoblock. Electrophoresis was carried out on a denaturing 

polyacrylamide gel (Section 2B1.4(iv)) and gels vacuum dried and exposed to Kodak 

X-OMAT film. Sequences were analysed using the Wisconsin Genetics Computer 

Group Package, Version 8.
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Figure 2B1.11b: Construction of the A81-121 5'fill-in genes
Primers used are detailed in Table 2A5 and are indicated by arrows (« -) .  Fragments of 

the 5' region of a full-length core gene were amplified by PCR (r1) using primer pair 

cp3 and 5f10, 5f20 or 5f30. The products of these reactions (p1) consisted of the 

original core gene sequence 5' to the region deleted in A81-121 with increasing sizes of 

additional core gene sequence, deleted in the A81-121 gene. Sequences 3 to the 

deleted region were amplified by PCR (r2) using primer pair Bamtag and 5f10A, 5f20A
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or 5f30A. Primers 5f10A, 5f20A and 5f30A included sequences complementary to the 

3' terminii of the corresponding product from r1 (oooo, xxxx and * * * * ) .  Corresponding 5 ' 

and 3' fragments were annealed and amplified by PCR (r3) using primer pair 

cp3/Bamtag to give the final products (p3). These products consist of the A81-121 

deletion filled in, from the 5' terminus of the deleted region, with increasing sized 
fragments of original core gene sequence.

2B1.13 Southern blotting (transfer of DNA to nylon) and DNA-DNA hybridisation

Restriction enzyme digestions of miniprep DNA and baculovirus DNA were 

probed with core gene fragments to determine the presence and size of the cloned core 

genes.

(i) Transfer of DNA to nylon

Restriction enzyme digestion reactions were electrophoresed on an agarose gel in 

lxTBE. The gel was incubated in denaturation buffer for 45min, followed by 

neutralisation buffer for 45min, both with shaking at room temperature. The DNA was 

transferred overnight onto Hybond-N membranes (pre-soaked in water before use) by 

placing the gel on a wick of Whatman 3MM paper (soaked in 20xSSC and descending 

into a 20xSSC reservoir), then adding sequentially to the top of the gel, Hybond-N 

membrane, three pre-soaked sheets of Whatman 3MM paper and a stack of absorbent 

paper towels. Care was taken to eliminate air bubbles between layers and a light weight 

was added to the top of the stack to aid buffer transfer. After transfer, the filter was air 

dried and DNA cross-linked to the filter by exposing the filter, DNA side down, to 

short-wave UV light for 4min.

(ii) DNA-DNA hybridisation
Hybond-N membranes were pre-hybridised for 4hr at 65°C in pre-hybridisation 

buffer, followed by overnight incubation at 65°C in hybridisation buffer containing 

probe DNA (see below). The filter was washed once in 2xSSC, 0.1% SDS for 15min 

and twice in O.lxSSC, 0.1% SDS for lOmin, at room temperature. The filter was air 

dried and exposed to Kodak X-OMAT film at -70°C.

(iii) Probe preparation
PCR amplified DNA fragment probes were prepared by nick translation. Purified

core gene PCR product was added to a reaction mix containing 20gM dGTP and dCTP, 

25pCi oc32P-dATP, 25pCi a 32P-dTTP and 2units of DNA pol I/DNase I in buffer 
containing 50mM Tris.HCl pH7.8, 5mM MgCl2, lOmM (3-ME, lOpg/ml BSA and
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incubated at 16°C for lhr. The reaction was stopped by the addition of lOpl of lOOmM 

EDTA, 50% sucrose. Bromophenol blue was added to colour the mix which was then 

loaded on a Sephadex G-50 (Pharmacia) column that had been equilibrated with TE. 

Fractions (approximately 0.25ml) were collected from the column and those containing 

the highest counts in the initial peak were pooled and stored as probe. Before use, the 

probe was denatured by boiling for 5min, followed by flash cooling on ice.

Protein Residues deleted Predicted molecular weight (kDa)

Full-length _ 24.3

A84-109 84-109 20.9

A81-121 81-121 18.8

A79-125 79-125 18.2

A60-117 60-117 16.7

T-128 129-183 16.9

Acore-surface hybrid 81-121 replaced 23.6

5'F10 91-121 20.2

5'F20 101-121 21.5

5'F30 111-121 22.9

3'F10 81-111 20.2

3'F20 81-101 21.6

3'F30 81-91 22.7

Table 2B1.11c: Summary table of core deletion proteins and core deletion protein 

modifications
The names of all core deletion proteins are shown, along with a description of the 

deletion or other modification in the protein. The predicted molecular weights of all 
proteins are also shown. All molecular weights were calculated without the inclusion of 

the pp65 epitope tag (predicted molecular weight=1,3kDa).
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2B2 Cell culture

2B2.1 Growth of cells

Mammalian-derived cells were passaged in sterile, disposable 175cm2 plastic 

flasks (Nunclon) in the appropriate media (Section 2A6) and were grown at 37°C in a 

humidified incubator under 5% C 0 2. Confluent monolayers were harvested by washing 

the monolayer with 20ml versene, followed by washing in 25ml trypsin:versene (1:4) 

(supplied by the Institute of Virology Media Services) and resuspending the cells in 
10ml medium.

S f2 \ cells were grown at 28°C in the absence of CCk and trypsinisation was 

unnecessary, as cells could be removed from flasks by tapping.

For continual passage, all cells were split in a 1:10 ratio every 3-4 days.

2B2.2 Infection of 5/21 cells with recombinant baculovirus and plaque assays

For preparation of viral DNA, and 35S-methionine labelling experiments, S f2 \ 

cells were seeded in 35mm plates at lxlO6 cells per plate and infected at a moi of 10. 

For the production of high titre viral stocks, 2 x l07 cells were seeded in 175cm2 flasks 

and infected at a moi of 0.1. For protein purification experiments, cells were grown in 

roller flasks and infected at a moi of 10 when the cell density was l-2 x l0 6 cells/ml.

Medium was removed from cell monolayers and the virus suspension added and 

allowed to adsorb to the cells for lhr at room temperature. The virus suspension was 

then removed from the monolayer, an appropriate volume of T C I00 Medium added and 

the cells incubated as normal. For infection of 5/21 cells in roller flasks, virus was 

added to the cell suspension and incubation continued as normal.

Plaque assays to determine titres of virus stocks were carried out on 5/21 cells 

seeded in 35mm diameter plates, as above. Seaplaque low gelling temperature agarose 

(3% in water (Flowgen)) was melted, cooled and added to an equal volume of pre

warmed T C I00 Medium. After infection of the cells with a range of dilutions of virus 

suspension, and removal of the medium, 2ml of the agarose mix was added to the plates 

and allowed to set. T C I00 Medium (2ml) was added and the plates incubated for 5 

days. Plaques were visualised by adding 1ml 0.4% neutral red solution (Institute of 

Virology Media Services) diluted 1:50 with TC100, to the plates, followed by 

incubation in the dark for 2hrs. The stain was removed and the plates inverted and 

allowed to dry before plaques were counted.

2B2.3 35S-methionine labelling of infected 5/21 cells
5/21 cells were seeded in 35mm diameter plates, as above, and infected at a moi 

of 10 with recombinant baculovirus. At the required time post-infection, medium was 

removed and replaced with 1ml TCI00-methionine (Gibco) and the cells incubated for

82



Chapter 2 Materials and M ethods

30min at 28°C. A further 1ml of TCIOO-methionine containing 30pCi 35S-methionine 

was added to the plate and the incubation continued for up to 18hr. Cells were scraped 

into the medium, pelleted by centrifugation at 6k rpm (microfuge) for 3min at room 

temperature and the cell pellet washed once with cold PBS. The pellet was resuspended 

in 0.5ml TE, mixed with SDS PAGE sample buffer and heat denatured by boiling for 

lOmin. Duplicate infections were carried out without radiolabelling and the extracts 

analysed by Western blotting. Cellular extracts were stored at -70°C.

2B2.4 Calcium phosphate-mediated transfection

Cells were seeded on 13mm glass coverslips in 35mm (HepG2 cells) or 60mm 

(COS 7 cells) diameter plates at 2 x l0 5 cells per plate for HepG2 cells and lx lO 6 cells 

per plate for COS 7 cells, in 2ml of the appropriate medium and incubated overnight at 

37°C prior to transfection. Plasmid DNA (5pg) was made up to a volume of 125pl in a 
solution of 250mM CaCl2 and to this 125pl of 2xHBS was added dropwise, before 

vortexing for 5sec. The solution was incubated for at least 20min at room temperature 

before addition to the cells. After mixing by gently swirling the plates, the cells were 

incubated for 16-20hr at 37°C. The medium was removed and replaced by a 2ml aliquot 

of fresh medium and the incubation continued for a further 24hr.

HepG2 cells were blocked at the G,/S boundary of the cell cycle prior to 

transfection and immunofluorescence assays. Approximately 8hr before transfection, 

cells were incubated in fresh medium containing 2pg/ml aphidicolin. Cells were then 

maintained in aphidicolin-containing medium until assayed by immunofluorescence.

Transfected COS7 cells were assayed for expression of core proteins by Western 

blot analysis (Section 2B3.4). Cells were scraped into the medium and pelleted by 

centrifugation at 6k rpm for 3min (microfuge) at room temperature. The pellet was 

washed once with cold PBS, resuspended in 0.5ml PBS and mixed with SDS PAGE 

sample buffer, before heat denaturation for 5min in a boiling water bath.

2B2.5 Immunofluorescence
Transfected cell monolayers were washed twice with PBS for 5min and fixed at 

room temperature for lOmin with cold methanol. Cells were washed three times for 

5min with PBS and permeabilised for 15min at room temperature with 0.5% Triton X- 

100 in PBS. The cells were again washed three times for 5min at room temperature in 

PBS and then washed briefly in PBS containing 0.05% Tween 20. Aliquots (20pl) of the 

relevant primary antibody diluted in PBS were then added to each coverslip for 60min. 

The anti-pp65 mouse monoclonal antibody was used at a 1:300 dilution and the Zymed 

anti-core rabbit polyclonal antiserum was used undiluted. The cells were washed three 

times for 5min at room temperature with PBS containing 0.05% Tween 20 and then 

incubated with secondary antibody (20pl) diluted in PBS. The goat anti-mouse FITC
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was used at a 1:100 dilution and the goat anti-rabbit FITC conjugate was used at a 1:60 

dilution. Incubations with secondary antibodies were carried out for 30min, after which 

the cells were washed three times for 5min at room temperature in PBS containing 

0.05% Tween 20. The cells were air dried and mounted on glass slides with 10ml 

Citifluor, a glycerol/PBS solution (UKC Chemical Laboratories). Cells were examined 

using a Nikon Microphot-SA fluorescence microscope and photographed using Kodak 
ASA400 black and white film.

2B3 Detection and purification of core particles

2B3.1 Core protein expression and purification using recombinant baculovirus

The procedure for core protein expression and purification was based on that of 

Takehara et al. (1988). High titre stocks of recombinant baculoviruses were produced 

by continual rounds of low multiplicity infection of 5/21 cells, until the titre was at least
o

1x10 pfu/ml, as determined by plaque assay. Typically, 5/21 cells were grown in 

300ml volumes in roller bottles until the cell density had reached l -2 x l0 6 cells/ml, 

when cells were infected with the relevant virus at a moi of 10 and the incubation 

continued for a further 4 days. Cells were collected by centrifugation at 3k rpm (Sorvall 

RT6000B centrifuge), the pellet resuspended in 3ml TNE I buffer and disrupted by 

sonication for 15sec with a Branson 450 soni-probe. Soluble protein was removed after 

centrifugation at 10k rpm (Sorvall SS34 rotor) for lOmin at 4°C to remove cell debris, 

and stored at 4°C until required.

Attempts were made to purify core particles using two approaches, isopycnic 

CsCl centrifugation and sucrose density gradient centrifugation, as described below:

(i) Isopycnic CsCl centrifugation
Centrifugation was performed according to the method of Takehara et al. (1988). 

Soluble extract from infected 5/21 cells was centrifuged through a 30% sucrose cushion 

(30% sucrose in TNE I) at 24k rpm (Sorvall TST41 rotor) for 14hr at 4°C. The resulting 

pellet was resuspended in 200pl TNE I and layered onto CsCl solution (1.25g/ml in 

TNE I buffer). The gradient was centrifuged at 35k rpm (Sorvall TST41 rotor) for 35hr 

at 18°C and 1ml fractions removed from the top of the gradient. Any pelleted material 

was resuspended in 1ml TNE I and all fractions analysed on Coomassie stained 

polyacrylamide gels (Section 2B3.3)

(ii) Sucrose density gradient centrifugation
The protocol for purification of core particles using sucrose gradients was adapted 

from that supplied by the group of Prof. K. Murray (University of Edinburgh). Linear 

10-50% sucrose gradients (10ml volume) were prepared in TNE I buffer, soluble
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extracts from infected 5/21 cells layered onto the gradient and centrifuged at 35k rpm 

(Sorvall TST41 rotor) for 5hr at 4°C. Fractions were removed from the top of the 
gradient and analysed by Western blotting.

2B3.2 Core protein expression and purification from E.coli

Core proteins were expressed in E.coli using two plasmid systems, p R l - 1 1 and 
pET plasmids, as described below:

(i) Core protein purification using plasmid pR 1-11

Plasmid pR 1-11 was kindly supplied by the group of Prof. K. Murray (University 

of Edinburgh). A single fresh bacterial colony transformed with the relevant pR 1-11 

plasmid was inoculated into 10ml L-broth containing ampicillin and grown up overnight 

at 37°C with shaking. An aliquot (6ml) of this culture was added to 300ml pre-warmed 

(37°C) L-broth containing ampicillin and the constitutive protein expression carried out 

at 37°C with shaking for 4hr. Bacteria were harvested by centrifugation at 6k rpm 

(Sorvall GS3 rotor) for 15min at 4°C and the cell pellet resuspended in 10ml sonication 

buffer prior to sonication in 20sec bursts with a soni-probe. Cell debris was removed by 

centrifugation at 10k rpm (Sorvall SS34 rotor) for lOmin at 4°C. Ammonium sulphate 

was added to the supernatant to 30% volume and the mixture stirred on ice for lhr. 

Precipitated proteins were pelleted by centrifugation at 10k rpm (Sorvall SS34 rotor) for 

lOmin at 4°C and the pellet resuspended in 3ml TN buffer before overnight dialysis 

against TN buffer at 4°C. Precipitated protein was removed by centrifugation at 10k 

rpm (Sorvall SS34 rotor) for lOmin at 4°C and the supernatant layered on 10-50% 

sucrose gradients.
Modifications to this protocol included omission of the overnight dialysis step, 

with the resuspended ammonium sulphate pellet layered onto the gradient, or 

precipitation of nucleic acids by the addition of PEI, prior to ammonium sulphate 

precipitation of protein. The cellular extract was made up to 0.5M NaCl to disrupt any 

protein:DNA interactions and nucleic acid precipitated by the addition of PEI to 0.2%. 

After incubation for 5min on ice, precipitated nucleic acid was removed by 

centrifugation at 15k rpm (Sorvall SS34 rotor) for 15min at 4°C. Protein was then 

precipitated from the supernatant, as above.

(ii) Core protein purification using pET plasmids
A single fresh E.coli colony (strain BL21(DE3)pLysS), transformed with either 

pET3a or pET9a plasmids containing core gene sequences, was inoculated into 10ml 

2YT broth containing appropriate antibiotics and grown shaking overnight at 37°C. A 

sample (200gl) was added to 50ml pre-warmed (37°C) 2YT broth with antibiotics and 
the culture grown at 37°C with shaking until the OD630 reached 0.5. Protein expression

85



Chapter 2 Materials and Methods

was induced by adding IPTG to 300pM and incubating for a further 4hr. The bacteria 

were harvested by centrifugation at 3k rpm (Sorvall RT6000B centrifuge) for 20min at 

4°C and the pellet stored frozen overnight at -20°C. After thawing, 3ml of TNE II, 8pl 

of lOmg/ml DNase I and 30pl of lOmg/ml RNase were added and the mixture incubated 

on ice for 30min to allow cell lysis. Complete lysis of the cells was ensured by 

sonication in 20sec bursts with a soni-probe. Cell debris was pelleted by centrifugation 

either at 13k rpm (microfuge) or at 35k rpm (Beckman TLA 100.3 rotor) for 20min at 

4°C and soluble protein removed. Aliquots of protein removed before sonication, as 

total protein samples, were stored at 4°C, as was soluble protein prior to purification on 

sucrose gradients.

Centrifugation and fraction analysis were as described in Section 2B3.1(ii).

2B3.3 SDS polyacrylamide gel electrophoresis (SDS PAGE) of proteins

Proteins were resolved by electrophoresis through SDS polyacrylamide minigels 

(Laemmli, 1970) using the Bio-Rad Miniprotean II apparatus. Gel mixes were made up 

as follows:

Solution_____________ 12% resolving gel 17.5% resolving gel Stacking gel

30% acrylamide 8ml 11.7ml 1.3ml

(2.7% cross-linker)

RGB 5ml 5ml

SGB - - 2.5ml

10% SDS 0.2ml 0.2ml

water 6.7ml 3ml 6.2ml

A lOpl aliquot of TEMED and lOOpl of 10% APS were added to each resolving gel mix 

and lOpl TEMED and 50pl 10% APS to stacking gel mix.

Resolving gel mixes were poured into glass plate sandwiches in the gel-former 

apparatus, overlaid with 80% isopropanol and allowed to set. The isopropanol was 

washed away with water, the stacking gel mixture overlaid and a comb inserted. Protein 

samples were mixed with SDS PAGE sample buffer and boiled for lOmin prior to 

loading. Gels were run at 200V until the bromophenol blue dye reached the bottom. The 

gels were stained with Coomassie blue for 15min and destained in protein gel destain. 

Gels with radiolabelled protein samples were fixed in protein gel destain for 15min, 

incubated in En'Hance for 30min, washed with water for lOmin and vacuum dried prior 

to exposure to Kodak X-OMAT S film.
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2B3.4 Western blot analysis of proteins

(i) Electroblotting to nitrocellulose

Proteins resolved on SDS PAGE minigels were transferred to nitrocellulose by the 

method of Towbin et al. (1979) in a Bio-Rad mini transblot cell. A blotting sandwich 

was set up with the gel in contact with the nitrocellulose (Schleicher and Schuell Inc.) 

and both were sandwiched between Whatman 3MM paper. This was in turn sandwiched 

between sponges provided by Bio-Rad. All materials were equilibrated in blotting 

buffer for at least 20min prior to assembly of the blotting sandwich. Blotting was 

carried out at 250mA for 3hr.

(ii) Immunodetection

Nitrocellulose membranes were blocked by incubation at 37°C with gentle 

shaking for a minimum of 60min in blocking buffer, with one change of buffer. 

Membranes were then washed twice in TTBS for 5min at room temperature before 

incubation with the primary antibody, diluted appropriately in 1% gelatin in TTBS, at 

room temperature with shaking. Incubation with primary antibody was for a minimum 

of 4hr. Membranes were washed twice for lOmin in TTBS and anti-mouse IgG whole 

molecule or anti-rabbit IgG whole molecule peroxidase conjugate, diluted in 1% gelatin 

in TTBS, added. After a 2hr incubation at room temperature, again with shaking, 

membranes were washed four times for 15min in TTBS and proteins detected using the 

Amersham enhanced chemiluminescence (ECL) system. The two reagents were mixed 

in equal volumes and a total of 3ml poured onto the membrane, which was then agitated 

for lmin. The membranes were wrapped in cling film and exposed to Kodak X-OMAT 

film for 5-45sec.
On blots from the initial experiments, a colour development reaction was used as 

to detect proteins on the membrane. The substrate for the peroxidase conjugate was 

prepared by mixing 20ml cold methanol, containing 60mg 4-chloro-l-naphthol, with 

100ml TBS, containing 60pl of 30% hydrogen peroxide. After incubation with 

secondary antibody, blots were washed twice for 5min in TTBS and twice for 5min in 

TBS, both at room temperature and the freshly prepared substrate added immediately.

Blots were stripped before being probed with different primary antibody by 

incubation at 55°C for 45min in 60mM Tris, 0.7% fTME, 2% SDS, with one change of 

solution after 20min. Membranes were then washed four times for 5min in TTBS at 

room temperature with shaking, before being blocked as befoie and incubated with the 

second primary antibody.
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2B3.5 Detection of core particles by electron microscopy

Core protein containing fractions from sucrose gradients were pooled and dialysed 

overnight against the appropriate buffer at 4°C to remove the sucrose, followed by 

concentration by centrifugation at 6k rpm (Sorvall SS34 rotor) in Centricon 50 

centrifugation units (Amicon) at 4°C.

Samples were examined by negative stain electron microscopy, performed by Mr. 

J. Aitken or Dr. F. Rixon. The concentrated sample was mixed with an equal volume of 

either 1% (w/v) phosphotungstic acid, pH 7.0, or sodium silicotungstate, before being 

placed onto a 200 mesh copper grid coated with parlodion and allowed to stand for 2- 

3min at room temperature. Excess liquid was removed using Whatman filter paper and 

the sample examined at a magnification of 40 000 on a Jeol 1200EX2 electron 

microscope, operating at 80kV.

2B3.6 Agarose gel assay for core particles

Core particles can be detected on agarose gels by Coomassie staining of the 

protein and detection of the encapsidated nucleic acid under UV transillumination, in 

the presence of EtBr (Birnbaum and Nassal, 1990). Concentrated core protein 

containing samples were mixed with agarose gel loading buffer and loaded onto a 1% 

agarose gel in TAE, containing 0.5mg/ml EtBr. Electrophoresis was carried out at 70V 

and the nucleic acid visualised under UV transillumination. The gel was then stained 

with Coomassie blue and destained for protein visualisation. Gels were photographed 

using The Imager (Appligene).



CHAPTER 3 RESULTS

3A E xpression and purification o f fu ll-length core protein and core  

deletion protein A84-109 using recom binant baculoviruses 

3A1 Introduction

The purpose of this project was to characterise possible functions of naturally 

occurring core proteins from which central regions were deleted. The initial aim was to 

determine whether or not these core deletion proteins retained the ability to spontaneously 

assemble into core particles, or more properly, core particle-like structures. The method 

chosen and initiated by the group of Dr. N. Naoumov (Kings College, London) was 

expression of these proteins in A/21 cells using recombinant baculoviruses. The 

baculovirus Autographica califomica multiple nuclear polyhedrosis virus (AcMNPV) has 

been widely used as an expression vector (see review by Bishop, 1992) and has been 

used previously by the group of Bishop to produce and analyse wild-type core particles 

(Takehara et al., 1988 and Hilditch et al., 1990). Before the work presented in this thesis 

was started, the group at Kings College had constructed two recombinant baculoviruses: 

one containing the full-length core gene and the other containing the gene for the core 

deletion protein A84-109. These viruses were constructed using the Invitrogen transfer 

vector pVL 1393, placing the cloned genes under the control of the polyhedrin promoter. 

Initial experiments by this group had shown expression of the full-length core protein on 

Coomassie stained polyacrylamide gels, but were unable to detect the core deletion protein 

using this method.
This section describes the experiments carried out to authenticate these recombinant 

baculoviruses and to detect expression of both proteins. Initial attempts at purification of 

core particles or core particle-like structures from infected A/21 cells are also described 

and finally, details of problems encountered using this particular system for the 

expression and purification of core particles.

3A2 A uthentication of recom binant baculoviruses by Southern blotting

Before any further expression experiments were carried out it was necessary to 

characterise the recombinant baculoviruses to ensure that the material received from the 

group at Kings College had not been damaged or degraded in any way. It was decided to 

extract viral DNA from infected A/21 cells and confirm the presence of the core genes by 

Southern blotting (Figure 3A2). The transfer vector pVL1393, containing either the core 

gene or the core deletion gene, used to construct these viruses had also been supplied and 

were included as size controls for the genes digested from the baculovirus DNA. The blot
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Figure 3A2: Southern blot of recombinant baculovirus DNA

DNA was extracted from S/21 cells infected, at a moi of 10, with recombinant baculovirus 

containing the full-length core gene (C), core gene with nucleotides 2152-2229 deleted 

(A), AcPAK6 baculovirus (P) or mock-infected cells (M). Xba I/Pst I digests of 
baculovirus transfer vector pVL1393 mini-prep DNA containing the full-length core gene 

(pC) or core gene with nucleotides 2150-2227 deleted (pA) were used as controls. 

Nucleic acid was transferred to nylon membrane by Southern blotting, and the 

membrane probed with a 32P-labelled core gene PCR product, amplified using primer pair 

C1/C2.
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showed single bands, indicating fragments which had hybridised to the labelled core 

gene probe, in the lanes containing digested baculovirus DNA. The sizes of these bands 

were equal to those of their corresponding controls, indicating that the construction of the 

recombinant viruses was correct. No fragments hybridised in the lanes containing 

digested DNA from cells infected with AcPAK6 virus, which contains the gene for (3- 

galactosidase under the control of the polyhedrin promoter, or from mock infected cells, 

indicating that the hybridisation observed was specific for the core gene. The recombinant 

viruses were further characterised by fully sequencing the inserts in their transfer vectors 

(results not shown), which confirmed the size and position of the deletion in the core gene 

as identical to that published (Ackrill et al, 1993).

3A3 D etection o f expression  of fu ll-length and A84-109 core proteins b y  

3:,S -m eth ion ine labelling

As stated previously, initial results from the Kings college group showed that 

expression of the full-length core protein by the recombinant baculovirus could be 

detected on a Coomassie stained gel, but the core deletion protein was not visible by this 

method. This may have been due to the fact that its predicted size would result in co

migration with other Coomassie stained bands or that expression levels for this protein 

were not as high, when compared to those of the full-length protein. The possibility of the 

core deletion protein being toxic to the cells was only briefly considered, as expression 

from the late polyhedrin promoter occurs in insect cells after the production of mature, 

infectious virus particles. This prevents synthesis of cytotoxic proteins from adversely 

affecting virus replication and spread to other cells. It was decided to investigate 

expression of both proteins by radiolabelling virus-infected cell proteins with 35S- 

methionine. High titre stocks of recombinant viruses containing full-length core and core 

deletion genes and AcPAK6 virus had been produced with titres of 2 x l0 8, lx lO 8 and 

2 x l0 8 pfu/ml respectively, on A/21 cells. These stocks were used to synchronously infect 

cells at a high moi and at 24hr and 48hr pi cells were incubated in labelling medium for an 

18hr period, before total cellular extracts were prepared.

As was seen from the gel (Figure 3A3), at 24hr pi proteins of the approximate 

predicted size were being synthesised (see Table 2B1.1 lc), but the core deletion protein 

was present at lower levels compared to the full-length protein. This may have reflected 

the differences in efficiency of expression for different proteins, as can occur with any 

expression system. By 48hr pi the full-length core protein represented one of the major 

proteins present in the cells, confirming the initial results from Coomassie stained gels. 

The core deletion protein seemed to be present at moderate levels, however this was 

difficult to determine precisely, due to the presence of several co-migrating proteins which 

had also been labelled. For both time-points examined the levels of (3-galactosidase
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Figure 3A3: 35S-methionine labelling of infected S/21 cells

S/21 cells in 35mm dishes were infected, at a moi of 10, with recombinant baculoviruses 

expressing full-length core protein (C), core protein with amino acids 84-109 deleted (A),  

AcPAK6 baculovirus (P) or mock-infected (M). Cells were labelled with 35S-methionine for 

18h at 24h and 48h pi. Cellular extracts were separated on a 12% polyacrylamide gel, 
which was dried down and exposed to film. The sizes of the radiolabelled molecular 

weight markers used are shown (kDa).
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protein produced by the AcPAK6 virus were higher than the levels of core proteins 

produced by the two other viruses. This was probably because the expression of (3- 

galactosidase by this virus has been thoroughly optimised for commercial purposes. 

Although it was not possible to obtain the original wild-type AcMNPY DNA from which 

the recombinant viruses were constructed, detection of novel proteins of the correct 

molecular weight in cells infected by these viruses was good evidence that these were the 

core proteins, and not cellular or other viral proteins.

3A4 D etection o f expression  of fu ll-length  and A84-109 core proteins by  

W estern blotting

In order to confirm that the proteins of the correct predicted molecular weights 

detected in the previous section were full-length and core deletion proteins it was decided 

to use Western blotting and detection with antibodies raised to core protein. A number of 

monoclonal antibodies raised against either core protein or e antigen which had been given 

as gifts from other groups were available, however the precise backgrounds as to which 

protein these antibodies had been raised against, or which epitopes they identified, was 

unknown. In an initial Western blot experiment (results not shown), using cellular 

extracts from infected S/21 cells at different times pi, one of these monoclonal antibodies 

reacted with a protein of 21 kDa present in the extract from cells infected by the full-length 

core gene-containing baculovirus, and not in extracts from cells infected by baculovirus 

containing the core deletion gene or AcPAK6 or in mock-infected cells. This confirmed 

the identity of the labelled band from Section 3A3 as core protein, and showed that the 

protein was synthesised at least up to 120hr pi. However, none of the extracts from cells 

infected with core deletion-containing baculovirus showed any reactive bands. As core 

protein has one immunodominant B-cell epitope which has been mapped between amino 

acids 74-89 (Salfeld et a l ,  1989), the likely cause of non-reactivity in these extracts was 

that this epitope was partially within the deletion. In view of this result it was decided that 

a variety of different monoclonal and, more importantly, a polyclonal antibody raised 

against core protein should be assayed for the ability to detect the core deletion protein on 

Western blots. At 48hr pi, extracts were prepared from cells infected with core and core 

deletion baculoviruses and Western blotted (Figure 3A4). The membranes were cut into 

strips, with each strip containing a lane each of extract from cells infected with full-length 

core and core deletion baculovirus. Antibodies aHBe 141/152 and 87-141-03 were used 

at an experimental dilution of 1:1000 and all other antibodies used at the recommended 

dilution, as indicated. All of the monoclonal antibodies raised against core protein also 

detected the core deletion protein, which was unexpected, although mAb BFaHBc2 and 

BFaH Bcl were less effective. It may have been that these antibodies, despite the 

immunodominancy of the 74-89 epitope, had been raised against other epitopes of the 

protein, which were unaffected by the A84-109 deletion. Monoclonal antibodies
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Figure 3A4: Western blots of St21 infected cell extracts

S/21 cells were infected, at a moi of 10, with recombinant baculoviruses expressing full- 

length core protein (CoreWT) or core protein with amino acids 84-109 deleted (A84-109). 

Cellular extracts were separated on 12% polyacrylamide gels and transferred to 

nitrocellulose membranes by Western blotting. After blocking, the membranes were 

incubated with the primary antibodies listed below and specific binding detected with 

HRP-conjugated secondary antibody. Full-length core protein is on the left and Gore 

deletion protein A84-109 on the right of each nitrocellulose strip.

Antibodies used:
1 mAb BFaHBc2 - 1:10 5 mAb BFaHBcl - 1:10

2 mAb BFaHBc3- 1:10 6 mAb 42B12 - 1:750

3 Zymed pAb - undiluted 7 mAb aHBe 141/152 - 1:1000

4 mAb BFaHBc4 - 1:10 8 mAb aHBe 87-141-03 - 1:1000
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BFaHBc3 and BFaH Bcl also showed reactivity with proteins of approximately 34kDa 

and 50kDa, respectively. The core deletion protein seemed to be detected less efficiently 

than the full-length protein by all monoclonal antibodies used, but this may have simply 

been a consequence of the lower levels of expression of this protein already observed in 

the infected cells. The monoclonal antibody 42B 12 was chosen for further use, due to the 

fact it was capable of detecting both proteins and the epitope it recognised had been 

identified as being approximately amino acids 115-135 (W.H.Gerlich - personal 

communication). In addition, we had been kindly supplied with a reasonable quantity to 

use with this project.

As hypothesised, the Zymed polyclonal antibody detected both the full-length 

protein and the core deletion protein. This was probably due to detection of a number of 

different epitopes throughout the protein, so increasing the chance of core deletion protein 

detection. A number of other commercial polyclonal antibodies were also tested in this 

manner and were shown to have the ability to detect both proteins (results not shown). 

The polyclonal antibody used, however, reacted with many other proteins on the blot. It 

may have been of value to repeat the experiment with an increased period of blocking the 

membrane to try and reduce the non-specific nature of this binding, but as the other bands 

were larger in size than the core proteins and did not interfere with their detection, this 

was not thought to be essential.

Only one of the antibodies raised against e antigen (aHBe 141/152) detected both 

the proteins. As core protein and e antigen are known to have epitopes in common, 

antibodies raised against one have been known to react with the other, as the result here 

has shown. The 87-141-03 antibody, again raised against e antigen, did not react with 

either protein. It may be that the experimental dilution used for this antibody was too 

high, compromising its detection ability. As all monoclonal antibodies gave a fainter band 

for the core deletion protein, nothing can be stated conclusively about the ability of this 

antibody to detect this protein, at the dilution used.

3A5 Purification of core particles using recom binant baculoviruses

The production of hepatitis B virus core particles has been achieved previously by 

expression of the core gene in recombinant baculoviruses, under the control of the 

polyhedrin promoter (Takehara et al., 1988 and Hilditch et al., 1990). The method of 

Takehara et al. consisted of infection of S/21 cells with recombinant baculovirus, 

containing the full-length core gene, at a high moi for 4 days. Cellular extracts were 

prepared by sonication and clarified by centrifugation before being subjected to 

centrifugation through a 30% sucrose solution. After the resulting pellet was 

resuspended, core particles were purified to homogeneity by CsCl isopycnic 

centrifugation. The method of Hilditch et al. consisted of the same CsCl centrifugation 

step followed by a shallow glycerol gradient to remove two contaminating proteins. It
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Figure 3A5a: Purification of core protein expressed by recombinant baculovirus 

S/21 cells in roller flasks were infected, at a moi of 10, with recombinant baculovirus 

expressing full-length core gene. Infected cells were collected by centrifugation 4 days pi 

and extracts subjected to sucrose gradient centrifugation on a 10-70% gradient. Fractions 

were collected from the top (fraction 1) to the bottom (fraction 13) of the gradient and any 

pelleted material was resuspended (P).Core protein was detected by Western blot 

analysis using mAb 42B12. Molecular weights of the markers (M) used are shown.
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Figure 3A5b: Purification of core deletion protein expressed by recombinant baculovirus 

S/21 cells in roller flasks were infected, at a moi of 10, with recombinant baculovirus 

expressing full-length core gene. Infected cells were collected by centrifugation 4 days pi 

and extracts subjected to sucrose gradient centrifugation on a 10-70% gradient. Fractions 

were collected from the top (fraction 1) to the bottom of the gradient (fraction 13) and any 

pelleted material was resuspended (P). Fractions were electrophoresed through 12% 

polyacrylamide gels alongside extracts from cells infected with recombinant 

baculoviruses expressing full-length core protein (C) or core deletion protein A84-109 

(A). Proteins were detected by Western blot analysis using a Zymed polyclonal 

antibody. Molecular weights of the markers (M) used are shown.
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was decided to follow the former method initially, using S f l \  cells grown in roller flasks. 

Cells were infected at a moi of 10 with recombinant baculovirus containing the full-length 

core gene and collected by centrifugation 4 days pi. However, after CsCl centrifugation, 

no visible band of core particles was observed, as was recorded in the original paper. 

Analysis of the fractions resulting from this step on Coomassie stained gels showed no 

evidence for core protein at any point in the gradient (results not shown). Gradient 

conditions, such as the initial density of CsCl and the rotor used for centrifugation, were 

altered but no core particle purification was achieved. After these attempts, contact was 

made with the group of Prof. K. Murray (University of Edinburgh). This group purified 

core particles from a bacterial expression system, using 30% ammonium sulphate 

precipitation of bacterial extracts, followed by centrifugation of the resuspended pellet 

through an 8-45% sucrose gradient. However, when this method was applied to infected 

S f l \  cell extracts prepared as before, core protein was found to precipitate out of solution 

during an overnight dialysis step used to remove ammonium sulphate from the 

resuspended pellet. The method was consequently altered to remove the ammonium 

sulphate precipitation step and instead the infected Sj2 \ extract was centrifuged through 

the sucrose gradient. Upon analysis of the fractions from this gradient on Coomassie 

stained gels, the only position in the gradient where core protein was observed was in the 

pellet which formed at the bottom of the centrifugation tube. Only when the concentration 

of sucrose was increased and the extracts centrifuged through a 10-70% gradient, was 

core protein actually detected in the lower gradient fractions (fractions 9-13, Figure 

3A5a). However, when the protein-containing fractions were dialysed against TNE1 

buffer and concentrated approximately five-fold for examination by electron microscopy, 

no 28nm particles were detected. The only particulate objects present were approximately 

four times as large, and few in number. When an identical purification procedure was 

carried out on extracts of cells infected by recombinant virus containing the core deletion 

gene, no protein was detected in any of the gradient fractions (Figure 3A5b). These 

results are very inconclusive as, although core particles appeared to have been purified 

using the sucrose gradient, particles of the correct size were not observed by electron 

microscopy. The observation of the larger particulate structures does correlate with the 

fact that a higher concentration of sucrose was required (70% compared to 45% used by 

the group at the University of Edinburgh) in the purification. From these results, no valid 

conclusions could be drawn regarding the purification of the core deletion protein. 

Although protein was detected in the extract loaded onto the gradient, none was detected 

in the fractions after centrifugation had taken place. This may have been because the 

protein would have been diluted in the larger fraction volume and, consequently, the 

smaller absolute amount of protein loaded onto the gel may have fallen below the 

sensitivity limit for the antibody used. The larger particulate structures observed from the 

full-length core protein purification seemed to suggest that the spontaneous assembly of
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core particles had been incorrect or that at some stage during the procedure, perhaps by 

the sonication stage, the core particles had been damaged or aggregated together. It was 

decided that in view of these results and the difficulties that still existed in setting up a 

satisfactory purification procedure for wild-type core particles from infected S f l \  cell 

extracts, that changing to a bacterial expression system may aid in solving these 

problems.

3A 6 D iscussion

The results in this section have shown the expression and detection of both full- 

length core protein and core deletion protein A84-109 from S f l \  cells infected by 

recombinant baculoviruses. Detection of both proteins was initially by 3sS-methionine 

labelling of infected cell proteins but was further enabled by a variety of monoclonal and 

polyclonal antibodies, raised against either core protein or e antigen, which were used on 

Western blots of infected cell extracts. Attempts at purification of wild-type core particles 

by either CsCl or sucrose gradient centrifugation were unsuccessful for undetermined 

reasons.

Takehara et al. (1988) showed that recombinant baculovirus-expressed core protein 

constituted 40% of the Coomassie-stained cellular proteins, corresponding to a yield of 

5mg/l cell culture. Hilditch et al. (1990) achieved a yield of 35mg/l of cell culture. 

Although no quantitation was performed, visual comparisons of i:,S-methionine labelled 

infected cell extracts showed that these expression levels were much higher than the levels 

achieved by the recombinant baculoviruses used in this section. This may be due, in part, 

to the different transfer vectors used to produce the recombinant viruses and also due to a 

decreased efficiency of core particle expression or recovery from larger volume cultures. 

Growth and infection of 5/21 cells in multiple smaller cell culture flasks, as opposed to 

roller flasks, may have increased the efficiency of infection as the virus suspension would 

be in closer contact with the cell monolayer. Consequently, the levels of core protein 

produced would be higher.

Particles of approximately 30nm were also observed by Takehara et al. (1988) and 

Hilditch eta l. (1990) in electron microscopic examination of peak core protein-containing 

gradient fractions. Although it appeared that core particles had been purified in the results 

presented here (Figure 3A5a), upon examination of peak core protein-containing fractions 

the only particulate structures observed were too large to represent wild-type core 

particles. It seems unlikely that these structures arose from aggregation of incorrectly 

folded core protein as 5/21 cells possess a normal eukaryotic translational pathway, 

allowing correct folding and disulphide bond assembly in proteins. Insect cells have also 

been used to produce other complex structures, such as polyoma and parvovirus capsids 

(Montross e t a l , 1991 and Brown e t a l , 1991), as well as the previous mentions of core 

particle production by the group of Bishop. Electron microscopic examination of sections

99

L



Chapter 3 Results

of infected S/21 cells would have shown whether particles of the expected size and 

morphology were initially assembled. These may then have been damaged or become 

insoluble during the subsequent purification steps. Similar examination of S f l \  cells 

infected with the recombinant virus expressing the core deletion protein A84-109 would 

also have revealed whether particles were formed by this protein. These particles may 

have been less stable than wild-type particles and not remained intact during purification. 

This may explain the presence of the A84-109 protein in infected cell extracts, but not in 

the sucrose gradient (Figure 3A5b).

Expression of protein in E.coli has many advantages over the baculovirus system. 

Bacterial plasmids are simpler to produce and manipulate, in contrast to the production of 

recombinant baculovirus genomes. The production of high titre virus stocks is not 

required and both cell growth and the induction of protein expression are simpler for 

bacterial systems. Although the prokaryotic expression pathway differs from that of 

eukaryotes, the previous expression and characterisation of core particles expressed in 

bacteria have shown that this system is able to reproduce the core particle assembly 

process.
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3B E xpression  and purification o f fu ll-length  core protein and core  

deletion proteins in a bacterial system  

3B1 Introduction

In view of the problems encountered with purifying wild-type core particles from 

infected insect cells in our hands, it was decided to change to a bacterial expression 

system. Since it was first used by Cohen and Richmond (1982) and Stahl et al.{ 1982) to 

produce core particles from cloned HBV DNA that were morphologically and 

immunologically identical to those isolated from patients serum, E.coli has been 

successfully used by a large number of groups for the production of wild-type core 

particles. We had received a gift of plasmid pR 1-11 from the group of Prof. K. M urray, 

which was the original plasmid used to produce core particles. Details of this plasmid are 

described in Section 2A1. The group of Dr. N. Naoumov had sent a further three core 

genes containing in-frame central deletions, A81-121, A79-125 and A60-117, and it was 

decided initially to attempt to purify these using this system, along with a full-length core 

protein control. In order to achieve this, both full-length and core deletion genes were 

amplified by PCR using primer pair cdl/cd2, which contained Eco RI and Bam  HI sites 

respectively and would allow reconstruction of the correct 5' coding sequences in p R l-1 1 

after removal of the excised Eco RI/Bam HI fragment. Throughout this section the full- 

length core protein with the additional sequence from pR 1-11 is simply referred to as 

'full-length protein' to distinguish it from the core deletion proteins, and particles 

produced from this protein are referred to as 'wild-type' core particles.

3B2 E xpression  o f fu ll-length  core protein and core deletion  p ro te in s  

using p R l-1 1  and detection by W estern blotting

The initial experiments carried out with pR 1-11 were to determine whether the core 

proteins produced could be detected on Western blots, which would be necessary for 

monitoring of any purification procedure. Proteins were expressed routinely at 37°C for 

4hr before cellular extracts were prepared by sonication and samples of soluble protein 

prepared by centrifugation of these extracts. Western blots of samples were performed 

using both anti-core mAb 42B12 and a number of commercial anti-core polyclonal 

antibodies (see Figures 3B2a and 3B2b).

On Western blots with anti-core mAb 42B12, although the full-length protein was 

expressed and detected, neither of the two core deletion proteins examined could be 

detected. This may confirm the approximate epitope position for this antibody (residues 

115-135) as both of the deletions encroach upon this region. As the sizes of these 

deletions were larger than that of the core deletion protein expressed in baculovirus it was 

decided that use of a polyclonal antibody would maximise the probability of their
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Figure 3B2a: Expression of full-length core protein and deletion variants 

Full-length core protein (WT) and two core deletion proteins (A81-121 and A79-125) 

were expressed using plasmid pFM-11. Expression was carried out for 4 hrs at 37°C. 

Aliquots of total cellular extracts (ex) and soluble protein (s) were subjected to 

electrophoresis through 12% polyacrylamide gels and analysed by Western blotting. 

The blot was incubated with anti-core mAb 42B12. An aliquot of purified HBcAg (c) was 

included as a control and molecular weights of the markers used (M) are shown.

detection. Three anti-core polyclonal antibodies were obtained and all tested on three core 

deletion proteins (Figure 3B2b). All three antibodies were able to detect the full-length 

core protein expressed in this system. This appeared as a number of bands slightly 

differing in size from 14-22kDa. The lower molecular weight bands probably represent 

degradation products of the full-length protein. Proteins of approximately 44 and 64kDa 

were also observed. These are the correct sizes for higher order multimers of full-length 

core protein (see Section 3D3). Analysis of the extracts from cells expressing core 

deletion proteins A81-121 and A79-125 (predicted molecular weights of 18.8 and 

18.2kDa, respectively) did show a protein of approximately the correct molecular weight. 

This protein was detected by all three polyclonal antibodies used. However, it was also 

present, albeit at lower levels, in the extracts from cells expressing full-length core 

protein. It is therefore possible that this protein was non-specifically detected by the 

polyclonal antibodies. Another protein of lower molecular weight (approximately 14kDa) 

was also detectable by all three antibodies. However, both the Life Sciences and Zymed
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Figure 3B2b: Western blots of expressed core protein deletion variants (continued with 

figure legend on the following page)
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Figure 3B2b: Western blots of expressed core protein deletion variants (continued) 

Full-length core protein (wt) and deletion variants A81-121, A79-125 and A60-117 were 

expressed using plasmid pR1 -11. Soluble protein produced from cellular extracts was 

analysed by Western blot using (A) Dako anti-core polyclonal antibody (B) Life 

Sciences anti-core polyclonal antibody and (C) Zymed anti-core polyclonal antibody. 

Aliquots of purified HBcAg (c) and baculovirus-expressed deletion protein A84-109 were 

included as controls and the molecular weights of markers used are shown.
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Figure 3B2c: Purification of wild-type core particles

Full-length core protein was expressed using plasmid pR1 -11 and, after an ammonium 

sulphate precipitation step, was purified using a 10-50% sucrose gradient. Fractions 

were collected from the top (1) to the bottom (13) of the gradient. Any pelleted material 

was resuspended and collected (P) and an aliquot of soluble cellular extract (s) was also 

analysed. Panel A shows a Coomassie stained 12% polyacrylamide gel of the fractions 

and panel B shows specific detection of core protein-containing fractions on Western 

blots, using mAb 42B12. Molecular weights of the markers (M) used are shown and the 

position of the core protein is indicated by an arrow («—).
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Figure 3B2d: Electron micrograph of pR1-11 core particles

Core particles were purified from extracts of pR1-11 -transformed E. coli using a 10-50% 

sucrose gradient. Fractions 11 and 12, containing the highest levels of core protein as 

identified by Western blot analysis, were pooled and concentrated approximately five 

fold using an Amicon 50 microconcentrator. An aliquot of the concentrated sample was 

negatively stained and examined by electron microscopy. Scale bar represents 50nm.

antibodies (Figure 3B2b, Panels B and C, respectively) also detected this protein in the 

extract from cells expressing full-length core protein. This protein showed greater 

reactivity in the extract from cells expressing core deletion protein A60-117 when the 

Dako polyclonal antibody was used (Panel A, Figure 2B2b). This protein may represent 

the core deletion protein, but as the concentration of acrylamide used was too low, 

complete resolution of these proteins may not have occurred. If these proteins are due to 

non-specific reactivity with the polyclonal antibodies used they could conceal detection of 

the core deletion proteins. Increasing the time taken for blocking the membrane gave no 

reduction in the number of proteins detected by these antibodies. It may have been that the 

detection method used on the blots was not sufficiently sensitive for detection of the core 

deletion proteins and a more sensitive method would have given better results.

Despite these difficulties in detecting the core deletion proteins, it was decided that 

for the p R l- l l plasmid containing the PCR amplified core gene, instead of the larger 

original HBV DNA fragment, validation of its ability to produce wild-type core particles 

would be worthwhile. Protein was expressed as before and clarified cellular extract was 

made up to 30% ammonium sulphate. After a centrifugation step, the precipitate was 

resuspended in TN buffer and centrifuged through a 10-50% sucrose gradient. The 

fractions removed from this gradient were analysed on Coomassie stained gels and by 

Western blot, using anti-core mAb 42B12 (see Figure 3B2c). A protein of approximately
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23kDa was very faintly detectable on the Coomassie stained gel, in the lower region of the 

gradient (fractions 10-12). From the Western blot of the same fractions this band was 

conclusively identified as core protein and was found to be spread over a larger region of 

the gradient than was evident from the Coomassie stained gel. Core protein was present in 

fractions 6 to 13 and also in the pelleted material. The protein seemed to peak in fractions 

11 and 12, corresponding to the core protein-containing fractions visible in the Coomassie 

stained gel. In order to determine whether the protein at this position in the gradient was 

in the form of core particles, these two peak fractions were pooled, dialysed and 

concentrated approximately five-fold before examination by negative staining electron 

microscopy (see Figure 3B2d). The particles shown here were approximately 30nm 

diameter, which was in agreement with the observed 28nm diameter of core particles and 

all the particles observed appeared to be uniform in size.

3B3 D iscussion

After the problems encountered with purification of core particles using recombinant 

baculoviruses, expression of core protein and recovery of core particles using plasmid 

pR 1-11 in a bacterial expression system has been successful. The purification protocol, 

comprising ammonium sulphate precipitation of bacterial extracts, followed by sucrose 

gradient centrifugation of the resuspended pellet, yielded particles of a similar diameter 

and morphology to core particles of HBV. The nature of the bands identified by Western 

blot above the region of the sucrose gradient where core particles were observed was only 

investigated at a later stage (see Section 3D2). Core protein was also observed in an 

equivalent region when particles were purified from Xenopus lysates (Zhou and 

Standring, 1991; Seifer et al., 1993), but no comment was made on the possible nature of 

these proteins. However, a direct comparison between the results presented here and 

those of Zhou and Standring (1991) and Seifer et al. (1993) may not be relevant, as the 

overall gradient profiles for core protein differed from those presented here. Zhou and 

Standring showed a population of free core protein in the uppermost four fractions of the 

gradient, distinct from the core particle-containing fractions (fractions 7 to 11). The same 

gradient profile was shown by Seifer et al. (1993). Core protein was not detected in the 

uppermost fractions of the gradient in the results shown in this section, but was only 

present from fraction 6 down to the bottom of the gradient.

The problem of detection of core deletion proteins remained when they were 

expressed in this bacterial system. As full-length core protein was not evident as a major 

novel band on a Coomassie stained gel showing bacterial extract (see Figure 3B2c, panel 

A), it was necessary to use Western blotting to detect proteins expressed from pR 1-11. 

Polyclonal antibodies were used in order to increase the probability of detection for these 

proteins on Western blots of cellular extracts, but this did not seem to be successful as 

numerous proteins were detected by all three antibodies. Proteins larger in size than the
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predicted molecular weights of the core deletion proteins were probably detected due to a 

non-specific reactivity with the polyclonal antibodies used.

A more fundamental problem with the methods used in this section, observed by 

Dr. H. Marsden (Institute of Virology), was that the type of polyacrylamide gel used to 

analyse these proteins should have been altered. The core deletion proteins had predicted 

molecular weights in the range of 16-21kDa (see Table 2B 1.11 c). On 12% 

polyacrylamide gels, this meant that these proteins migrated almost at the dye front and 

were not resolved to any great extent, which made their analysis difficult. It was 

suggested that an increase in the acrylamide concentration would resolve this problem, 

therefore in the following sections all gels used were 17% polyacrylamide gels. Due to the 

number of additional proteins detected by all three polyclonal antibodies on Western blots, 

it was also decided to change to a different means of protein detection. Other methods of 

detection, such as immunoprecipitation of the proteins from cellular extracts, would 

probably suffer from the same problems as encountered previously: lack of binding by 

antibodies due to the size of the deletions or consequent changes in epitope conformations 

or non-specific binding by polyclonal antibodies to cellular proteins. Although a number 

of different monoclonal antibodies were available for testing which had detected the A84- 

109 core deletion protein (Section 3A4), these were not guaranteed to recognise the 

additional deletion proteins and, even if this was the case, any alterations we had planned 

to make to these proteins may have impaired this recognition. Preliminary results obtained 

by epitope-tagging core proteins (Section 3C) had shown that this might be a more useful 

means of detection for a wide range of core deletion proteins. It was also decided to use 

the more sensitive Amersham ECL system for detection of proteins on Western blots, to 

aid in detecting any proteins expressed at low levels.
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3C E xpression  and purification of ep itope-tagged  core protein and core  

deletion  proteins  

3C1 Introduction

The use of small, discrete peptide sequences that are known to be epitopes 

recognised by specific monoclonal antibodies, has been invaluable in the analysis of a 

variety of biological processes. These epitope tags have been used to determine 

subcellular locations for proteins, such as the human ubiquitin-activating enzyme El 

(Handley-Gearhart et al., 1994) and in the purification of biologically active proteins by 

immunoaffinity chromatography, as was achieved for human interleukin-5 receptor alpha 

chain (Brown et al., 1995). It was decided that the use of an epitope tag attached to the 

core deletion proteins would greatly assist with the detection of these proteins and any 

modified proteins derived from them. The pp65 epitope tag was chosen as this sequence 

was short enough to be incorporated into an oligonucleotide primer for use in PCR 

amplification of these proteins and could be detected by a commercially available 

monoclonal antibody, mAb 9220. The ten amino acid pp65 epitope tag was derived from 

the HCMV UL83 gene product, the late nuclear protein pp65 (McLauchlan et al., 1994). 

It was decided to fuse the pp65 epitope tag to the C-terminus of the core proteins by 

amplification of the genes using primer pair cdl/Bamtag. The resulting C-terminus of the 

proteins is shown in Figure 3C1. Addition of foreign sequences at this position has been 

previously shown to have no effect on core particle assembly (see Section 1E5). The core 

genes with C-terminal pp65 epitope tags were inserted into pR 1-11 for subsequent 

expression studies.

Core protein sequence:

1 5 1  RRGRSPRRRT PSPRRRRSQS PRRRRSQSRE SQC*

1 5 1  RRGRSPRRRT PSPRRRRSQS PRRRRSQSRE SOCERKTPRV TGG*

Figure 3C1: The C-terminal end of core protein showing pp65 epitope tag sequence 

The upper sequence shows the original core protein C-terminus and the lower sequence 

shows the addition of the ten amino acid pp65 tag sequence (underlined).

109



Chapter 3 Results

3C2 E xpression  and purification o f pp65 ep itope-tagged  fu ll-length  core  
protein

As stated previously, addition of foreign sequences to the C-terminus of full-length 

core protein has no effect on the production of core particles. However, it was decided to 

purify the particles produced by the tagged full-length core protein to verify this and, 

more importantly, to ensure that detection was specific to the epitope tag sequences, with 

minimal non-specific binding. Full-length tagged core protein was expressed from pR l- 

11 and the resuspended ammonium sulphate pellet was centrifuged through a 10-50% 

sucrose gradient. Gradient fractions were analysed on Coomassie stained gels and 

Western blots, using both anti-core mAb 42B12 and anti-pp65 mAb 9220 (see Figure 

3C2a). Controls for detection of the epitope tag were kindly supplied by Dr. J. 

McLauchlan: epitope-tagged CAT protein (20kDa) and tagged VP22 (40kDa), a tegument 

protein of HSV.

The results from the Coomassie gels of these fractions (Figure 3C2a, Panel C) 

showed that large amounts of protein were detected in the lower region of the gradient 

(fractions 14-17) and in the pelleted material. This protein corresponded well in size to 

that of the core protein expressed from pR 1-11 with the additional tag sequences 

(predicted molecular weight 25kDa). The expression levels for this protein were greater 

than those of the similar protein expressed and purified in Section 3B2. This may be due, 

in some way, to the presence of the epitope tag, or may simply be due to a more efficient 

extraction procedure for this particular experiment. The protein-containing fractions in the 

lower region of the gradient were also relatively free of other contaminating proteins, with 

only two additional major staining bands of approximately 28 and 29kDa molecular 

weight present. Western blots of these fractions confirmed that the pp65 epitope tag was 

specifically detected by mAb 9220 (Figure 3C2a, Panel A). This detection was not due to 

cross-reaction with any core protein epitopes, as no reactivity was observed for the lanes 

containing an aliquot of untagged core particles, which were included as an additional 

molecular weight marker (the band observed in the final lane was thought to be due to 

overspill of sample from the adjacent lane after size comparison with the band present on 

the Panel B blot). The VP22tag control was also detected effectively by the 9220 mAb, 

but this was not the case for the CATtag control, the reasons for which were unclear. A 

major reactive tagged core protein band was detectable, with a mass of approximately 

25kDa, which corresponded well with the band from the Coomassie gels. The peak 

fractions for this protein were 13-17, which also concurred with the Coomassie gels. As 

was observed for purification of untagged core particles (Section 3B2), this protein was 

also detectable towards the top of the gradient, from fraction 5. The nature of this protein 

was only investigated at a later stage (see Section 3D2). Several other higher molecular 

weight proteins were also detected by mAb 9220, including proteins of 28 and 29kDa. 

These particular proteins may be identical to those observed on the Coomassie stained
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Figure 3C2a: Purification of pp65 epitope-tagged core particles

Full-length core protein with a C-terminal pp65 epitope tag was expressed using 

plasmid pR1 -11 and purified on a 10-50% sucrose gradient, after an ammonium sulphate 

precipitation step. Fractions were collected from the top (1) to the bottom (17) of the 

gradient. Any pelleted material was resuspended (P) and analysed, along with aliquots 

of soluble cellular extract (ex), supernatant (sn) and pellet (p) from the ammonium 

sulphate precipitation step. Fractions were electrophoresed through 17.5% 

polyacrylamide gels which were Coomassie stained (Panel C) or Western blotted and 

incubated with anti-pp65 mAb 9220 (Panel A). This blot was stripped and reincubated 

with anti-HBc mAb 42B12 (Panel B). The position of the epitope-tagged core protein is 

indicated by an arrow (-*). Molecular weights of the markers used (M) are shown.

112



Chapter 3 Results

Figure 3C 2b: Electron micrograph of pp65 epitope-tagged core particles 

Core particles were purified from extracts of bacteria transformed with plasmid pR1 -11 

containing full-length core gene with a C-terminal pp65 epitope tag, using a 10-50% 

sucrose gradient. Fractions 14-16, containing the highest levels of core protein as 

identified by Western blot analysis, were pooled and concentrated using an Amicon 50 

microconcentrator. An aliquot of the concentrated sample was negatively stained and 

examined by electron microscopy. Scale bar represents 50nm.

gels. Their reactivity with mAb 9220 suggests that, despite their larger size, they are 

related to the full-length core protein. These bands may, therefore, represent proteins 

produced by read-through of the stop codon encoded by the core gene. Proteins of 

approximately 44-50kDa were also detected and these may represent dimers of the core 

protein and other proteins with a slightly higher molecular weight, also detected by mAb 

9220 (see Section 3D3). The blot incubated with anti-core mAb 42B12 (Figure 3C2a, 

Panel B) again showed that there was no antibody cross-reactivity with epitope tag 

sequences. This antibody was not as sensitive, at the dilution used, as the 9220 mAb, as 

protein towards the top of the gradient was less obvious. Fractions 14-16 were pooled, 

dialysed and concentrated as before for examination by negative staining electron 

microscopy (see Figure 3C2b). Large numbers of apparently normal particles were 

observed, confirming that the epitope tag made no obvious difference to particle 

assembly.
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3C3 E xpression  and purification o f pp65 ep itope-tagged  core d e le tio n  
p rotein s

All four core deletion genes had been amplified by PCR to include the C-terminal 

epitope tag and inserted into pR 1-11. Proteins were expressed as normal and samples of 

the ammonium sulphate precipitate were analysed by Western blot with anti-pp65 mAb 

9220 (Figure 3C3a), where all four proteins were shown to be expressed and detected. 

Although all proteins were expressed for the same time and using equal culture volumes, 

differences in expression levels, as judged by the intensity of the bands on the blot, were 

observed. The number of other bands present on the blot was also variable for each 

protein. Bands of a lower molecular weight, observed for full-length core protein and 

core deletion A81-121, may have been due to degradation of the expressed protein. As 

was observed in a later section (see Section 3D3) a band of approximately double the size 

of the expressed protein represented protein dimers, however other bands were present of 

both smaller and larger molecular weights. Although the sample containing the core 

deletion A60-117 did not run well, subsequent gels for the purification of this protein 

showed that its size was the predicted 16kDa.

Purification of these expressed proteins on 10-50% sucrose gradients was 

undertaken, using the standard protocol (see Figure 3C3b). These results show that the 

four proteins differed in their movement through the gradients. Core deletion protein A84- 

109 (Figure 3C3b, Panel i) was only very faintly detectable in fractions 6-8 of the 

gradient, with none of this protein observed in fractions toward the bottom of the gradient 

in the region where core particles were detected. The lower level of expression of this 

protein, compared to the full-length protein and dilution of the protein in the larger volume 

of the gradient fractions probably both contributed to the poor levels of detection. When 

these fractions were pooled, concentrated approximately ten-fold and examined by 

electron microscopy, no particle-like structures were observed. Core deletion protein A81- 

121 (Figure 3C3b, Panel ii) was present in fractions 3-12, and also faintly in the pelleted 

material. It was likely that the protein present in the pellet represented high molecular 

weight aggregates formed during the extraction process. Again this protein is present in 

fractions nearer the top of the gradient than was observed for core particles. The intensity 

of the bands decreased in fractions 8 and 9 and then increased again in fraction 10. 

Fractions were pooled into two sets of fractions 5-7 and 10-12, in case the second peak of 

protein represented a distinct population, and concentrated for electron microscopy. For 

both sets of fractions, no evidence of particle-like structures was found. Core deletion 

protein A79-125 (Figure 3C3b, Panel iii) was only faintly detectable in fractions 6-9, 

which was, again, above the region where particles were detected. The lower levels of 

expression of this protein, when compared to the full-length protein, would have 

contributed to the difficulty in its detection. Electron microscopic examination of these 

concentrated fractions showed no particle-like structures. Core protein with the largest

114



Chapter 3 Results

&  Nv

^  &  &  $  M &

WT
A 84-109  
A81-121  

\  A79-125  
A60-117

Figure 3C3a: Expression of pp65 epitope-tagged core deletion proteins 

Core protein deletions with a C-terminal pp65 epitope tag were expressed using 

plasmid pR 1 -11 and precipitated with ammonium sulphate. An aliquot of the 

resuspended pellet was electrophoresed through a 17.5% polyacrylamide gel along with 

full-length tagged core protein (WTtag) and Western blotted. The blot was incubated 

with anti-pp65 mAb 9220. Molecular weights of the markers used (M) are shown.
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i A84-109tag

A81-121tag

wt ex*ex  p M 1 1 0  m 19 p

ex* - cellular extract of A79-125tag

iii A79-125tag

wt ex  p 1 M 10 M 19 P wt c

Figure 3C 3b: Purification of pp65 epitope-tagged core deletion proteins (continued with 

figure legend on the following page)
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iv A60-117tag
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Figure 3C 3b: Purification of pp65 epitope-tagged core deletion proteins (continued)

Core deletion proteins with C-terminal pp65 epitope tags were expressed using plasmid 

pR 1 -11 and purified on 10-50% sucrose gradients, after an ammonium sulphate 

precipitation step. Fractions were collected as before and analysed on Western blots 

using anti-pp65 mAb 9220. Lanes labelled 'c' in panels i and iii show extracts from 

untransformed bacteria. Molecular weights of the markers used are shown and the 

position of the protein in each blot is indicated by an arrow (**).
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deletion, A60-117 (Figure 3C3b, Panel iv), was present in the lower region of the 

gradient, in fractions 15-19 and in the pelleted material. This corresponded well to the 

position of the core particles, but when pooled, concentrated fractions were examined by 

electron microscopy, despite thorough efforts, no particle-like structures were observed.

These results have shown that all four core deletion proteins were incapable of 

assembling into a core particle-like structure that was visible by electron microscopic 

examination. It may have been that any particulate structures formed were unstable, 

explaining their absence in samples for examination. However, precautionary measures 

were taken to prevent this: samples were kept on ice at all times and concentrated and 

examined with minimum intervening periods and samples were not frozen at any stage 

after purification. The rationale for this last precaution came from studies with C- 

terminally truncated core protein, lacking the final 32 residues (Seifer and Standring, 

1993). Mutant particles formed from this protein were originally thought to display 

'particulate' HBe epitopes, but the results from this paper showed that this was probably 

due to the instability of these particles. These results also showed that one or two 

freeze/thaw cycles increased the level of HBe antigenicity, again by disrupting the 

particles. Sonication of bacterial cell suspensions could also have disrupted any core 

particle-like structures that had assembled. The possible effects of these procedures were 

analysed in a later section (see Section 3G).

3C4 E xpression and purification o f pp65 ep itope-tagged  A core-surface  

hybrid protein
From the results in the previous section it was concluded that core proteins with 

central deletions were unable to assemble into core particle-like structures. This raised the 

question of whether this was due to deletion of specific amino acid sequences required to 

direct folding of the protein into the correct conformation, and thus correct assembly of 

the particles, or purely due to the size of the deletion being too large, with the actual 

sequence deleted being irrelevant. In order to address this question it was decided to 

produce a modified core deletion protein, where the deleted region had been replaced by 

foreign sequence of exactly the same size. Core deletion A81-121 was chosen and the 

deleted region was replaced by a 123bp fragment of the HBV surface gene, using a PCR- 

based method (see Figure 2 B 1.11 a), with the product being a Acore-surface hybrid gene. 

The amino acid sequence of this protein is shown in Figure 3C4a. However, when this 

was expressed and purified on a sucrose gradient, it became apparent that there were 

problems with this experiment (Figure 3C4b, Panel A). Although protein of the correct 

size was produced it was expressed at very low levels and was only detectable after 

concentration of proteins by ammonium sulphate precipitation. Upon Western blot 

analysis of fractions from the sucrose gradient purification of this hybrid protein, no
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1 5 1  RRGRSPRRRT PSPRRRRSQ S PRRRRSQSRE SQC*

Figure 3C4a: Amino acid sequence of the Acore-surface hybrid protein

The sequence of the region of surface protein inserted into the A81-121 deletion is

underlined. Above it is shown the sequence present in full-length wild-type core protein.

protein could be detected at any position on the gradient. The failure to detect protein in 

the gradient fractions may have been due to the low level of protein present, which may 

have been below the sensitivity of the monoclonal antibody used. Another possibility, 

which seemed more likely, was that during this particular purification procedure the 

protein had become insoluble. Examination of protein which had precipitated during the 

overnight dialysis step showed this to be the case, as the Acore-surface hybrid protein 

was present in this material. In order to attempt to overcome this problem, the purification 

procedure was modified in two ways. The first modification was to attempt to remove 

nucleic acids from the bacterial extract so they would not interfere with subsequent steps. 

This was achieved by the use of PEI, a positively charged polymer. PEI precipitation of 

nucleic acids is commonly used as the first step of a protein purification protocol. The PEI 

interacts with nucleic acids to form an insoluble complex which can then be removed by 

centrifugation. The bacterial extract was first made up to 0.5M NaCl before precipitation 

of nucleic acid by the addition of PEI. After removal of the PEEnucleic acid complex, 

ammonium sulphate precipitation of proteins in the supernatant was carried out as before. 

The second modification was to load the resuspended pellet from the ammonium sulphate 

precipitation step onto the sucrose gradient, without the intervening dialysis step. When 

extracts from all stages of this protocol and fractions from the sucrose gradient were 

analysed, the protein was only detected in the crude bacterial extract (the apparent band in 

lane 10 was caused by forceps, used to handle membranes). The protein appeared to have 

been removed from solution during the nucleic acid precipitation step, possibly due to the 

increased salt concentration required (0.5M, compared to 0.1M in TN buffer).
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Figure 3C 4b: Purification of epitope-tagged Acore-surface hybrid protein 

The Acore-surface hybrid protein with a C-terminal pp65 epitope tag was expressed 

using plasmid pR1-11 and purified on a 10-50% sucrose gradient, after an ammonium 

sulphate precipitation step (Panel A) or with an initial additional precipitation of nucleic 

acid using PEI (Panel B). Fractions were collected from the top (1) to the bottom (19) of 

the gradient and analysed by Western blotting using anti-pp65 mAb 9220. Any pelleted 

material was resuspended (P) and analysed, along with aliquots of soluble cellular 

extract (ex) and pellet (p) from the ammonium sulphate precipitation step. Panel A 

shows the original purification method, where the lane labelled ‘dp’ contains material 

which precipitated during dialysis of the ammonium sulphate pellet and the lane labelled 

‘c’ contains cellular extract from untransformed E.coli. Panel B shows a modification of the 

original method, as described above, where the lane labelled ‘pi’ contains an aliquot of 

the supernatant after the PEI precipitation and ‘sn’ contains an aliquot of the supernatant 

after the ammonium sulphate precipitation step. The position of the epitope-tagged 

protein is indicated by an arrow (<*). Molecular weights of the markers used (M) are 
shown. An aliquot of epitope-tagged full-length core protein (wt) was included as a control
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3C5 Discussion

The results from this section have shown the successful use of the pp65 epitope tag 

for detection of the full-length core protein, four core deletion proteins and a Acore- 

surface hybrid protein. Full-length core protein formed large numbers of core particles 

when expressed showing that the presence of the epitope tag did not alter its ability to 

assemble into morphologically normal core particles. The core deletion proteins were 

expressed and purified, however none of them were able to assemble into any form of 

core particle-like structure. This was determined by a number of criteria, the simplest of 

which was the gradient profiles of these proteins. From the results with the full-length 

protein, a marked increase in protein content was observed in fractions 13-17. Electron 

microscopic examination of these fractions, when pooled, showed that core particles were 

present in this lower region of the gradient. This increase in protein content was not 

observed for core deletion proteins A84-109, A79-125 or A60-117, where all positive 

fractions on Western blots had approximately the same, albeit very faint, intensity. Core 

deletion protein A81-121 did show two distinct peaks of protein-containing fractions (3-9 

and 10-12). However, no particles were detected in either region when they were examine 

separately by electron microscopy.

Examination of the relative positions of the core deletion proteins A84-109 and A79- 

125 in the gradient also led to the conclusion that they were unable to form particles. 

These proteins were present in the upper region of the gradient (fractions 6-8 and 6-9, 

respectively), above the fractions where core particles were detected. However, Western 

blots of fractions from the purification of full-length core protein (Figure 3C2a) showed 

that epitope-tagged core protein could also be detected in this upper region of the gradient, 

from fraction 5 down. Although this raised the possibility that protein in this region was 

in the form of particles, a more thorough investigation of core protein-containing fractions 

in this region by electron microscopy (see Section 3D2) failed to show evidence for this. 

In addition, purification of a C-terminally truncated core protein which was known to be 

unable to assemble into core particles showed that this protein was present in this upper 

gradient region (see Figure 3D2a). In contrast to the A84-109 and A79-125 proteins, core 

deletion proteins A81-121 and A60-117 were present in the lower region of the gradients 

(fractions 10-12 and 15-19, respectively). However, electron microscopic examination 

could not detect any particles. It may have been that any particulate structures formed 

were unstable, despite the precautions taken, and were unable to be detected. Aggregation 

of the particles could also have taken place, either during the purification or concentration 

stages, so hampering their detection by electron microscopy, despite thorough efforts. 

Despite these possibilities, it appeared that all four core proteins with central deletions 

were unable to assemble into core particles.
The construction of the Acore-surface hybrid protein was designed with a view to 

determining the importance of the deleted core protein sequence in directing particle
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assembly. However successful expression and purification of this protein was not 

achieved. The HBV surface protein region used to construct this protein may have 

affected its stability. Other modifications to the purification protocol for this protein could 

have been attempted, such as using DNase and RNase to remove nucleic acids instead of 

PEI or the use of larger volume bacterial cultures to provide increased amounts of protein. 

However, upon advice from other group leaders, it was decided to once more alter the 

expression system used. It was thought that achieving higher levels of protein expression 

would allow the ammonium sulphate precipitation step to be omitted, so removing its 

associated insolubility problems.
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3D Expression and purification of epitope-tagged core proteins in the pET  
sy stem  

3D1 Introduction

The pET vectors were initially constructed by Studier and colleagues as pBR322 

derivatives containing a bacteriophage T7 promoter (Studier et a l , 1990). Genes are 

cloned under the control of the strong T7 transcription and translation signals before the 

recombinant plasmid is transferred to the E.coli strain BL21(DE3)pLysS. Upon addition 

of IPTG to this strain, T7 RNA polymerase is induced and transcribes the cloned gene in 

the recombinant pET vector. These host cells also contain a plasmid encoding T7 

lysozyme, which cleaves a specific bond in the peptidoglycan layer of the bacterial cell 

wall, and allows rapid and efficient lysis of cells by either freeze/thaw or mild detergent 

treatment. It was thought that the higher levels of expression recorded using this system 

would eliminate the requirement for an ammonium sulphate precipitation step, and the cell 

lysis method would allow higher levels of protein recovery. All core gene derivatives, 

along with full-length core gene, were amplified by PCR using primer pair cp3/Bamtag 

(see Section 2A3), which include Nde I and Bam HI sites respectively. In contrast to 

plasmid pRl -11, the 5' terminus of the products of these reactions contained the authentic 

core protein start codon, with the 3' terminus including the pp65 epitope tag.

3D2 pET expression  and purification of ep itope-tagged  core d e le tio n  

p rotein s
Initial expression experiments showed that the IPTG concentration used to induce 

expression had very little effect on the levels of soluble protein recovered, therefore 

cultures were induced with a final concentration of 300pM. Production of core deletion 

proteins A81-121, A79-125 and A60-117 was found to be more efficient when induced 

expression was carried out at 26°C, instead of 30°C or 37°C. Timecourse experiments 

showed that expression periods of 3hr for A81-121 and A79-125 or 2.5hr for A60-117 

gave greater protein recovery. All other proteins were also induced at 26°C, after the 

temperature of induction was shown to have no effect on protein production, and 

expressed for a 4 hour period. The four tagged core deletion proteins, along with full- 

length core protein were shown to be expressed efficiently and detectable in Western blots 

of clarified cellular extracts (Figure 3D2a), although A79-125 consistently gave lower 

levels of expression. Additional bands were detected on these blots, the major one of 

which was approximately double the predicted size of the expressed protein. This was 

further investigated at a later stage (see Section 3D3).
After expression and overnight storage at -20°C, the cell pellet was resuspended in 

TNE II, to which was added DNase and RNase to remove the nucleic acids present. The
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Figure 3D2a: Expression of pp65 epitope-tagged core deletions using the pET system 

Core deletions with a C-terminal pp65 epitope tag were expressed in E.coli 

BL21 (DE3)pLysS for 4 hours at 26°C, after induction with 300pM IPTG. Cellular extracts 

were prepared and aliquots electrophoresed through a 17.5% polyacrylamide gel 

alongside full-length tagged core protein (WTtag). The gel was Western blotted and 

incubated with anti-pp65 mAb 9220. Molecular weights of the markers used (M) are 

shown.

cellular extract was then clarified by centrifugation and soluble protein centrifuged 

through 10-50% sucrose gradients, after which, fractions were analysed by Western blot 

(see Figures 3D2b and 3D2d).

The full-length tagged protein was detectable from fraction 7 down to the bottom of 

the gradient, again with a marked increase in protein content occurring in fractions in the 

lower region of the gradient (fractions 14-19). When the peak fractions (14-17) were 

pooled, concentrated and examined by electron microscopy, large numbers of 

morphologically normal, 28nm diameter core particles were observed (Figure 3D2c). 

Core protein had been detected in gradient fractions above this region using both the p R l- 

11 vector (see Figures 3B2c and 3C2a) and in this section, with the pET3a vector. It was 

therefore decided to examine the fractions in this region to determine the state of this 

population of core protein. Fractions 9-12 were pooled, concentrated and examined by 

electron microscopy. However, no core particles could be detected.
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Figure 3D2b: Purification of pp65 epitope-tagged core particles expressed in the pET 

system
Full length core gene with a C-terminal pp65 epitope tag was expressed in E.coli 

BL21 (DE3)pLysS for 4 hours at 26°C, after induction with 300pM IPTG. Total cellular 

extract (ex) was prepared and after centrifugation at 35k rpm for 20 min, soluble protein 

(s) was centrifuged through a 10-50% sucrose gradient. Fractions were removed from 

the top (1) to the bottom (19) of the gradient and any pelleted material was resuspended 

(P). Fractions were electrophoresed through 17.5% polyacrylamide gels along with an 

aliquot of tagged full-length core protein (c) expressed using plasmid pR1 -11 (Section 

3C2). These gels were then Coomassie stained (Panel A) or Western blotted with anti- 

pp65 mAb 9220 (Panel B). Molecular weights of the markers used (M) are shown and 

the position of the tagged core protein is indicated by an arrow («—).
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Figure 3D2c: Electron micrograph of pp65 epitope-tagged core particles expressed using 

the pET system

Core particles were purified from extracts of bacteria transformed with a pET3a plasmid 

containing full-length core gene with a C-terminal pp65 epitope tag, using a 10-50% 

sucrose gradient. Fractions 14-17, containing the highest levels of core protein as 

identified by Western blot analysis, were pooled and concentrated using an Amicon 50 

microconcentrator. An aliquot of the concentrated sample was negatively stained and 

examined by electron microscopy. Scale bar represents 50nm.
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Figure 3D2d: Purification of pp65 epitope-tagged core deletion proteins expressed in the 

pET system (continued with figure legend on the following page)
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Figure 3D2d: Purification of pp65 epitope-tagged core deletion proteins expressed in the 
pET system

Core deletion proteins with a C-terminal epitope tag were expressed in E.coli 

BL21 (DE3)pLysS at 26°C after induction with 300pM IPTG. Cellular extracts were 

prepared (ex) and after centrifugation at 35k rpm for 20 min, soluble protein (s) was 

centrifuged through a 10-50% sucrose gradient. Fractions were removed from the top (1) 

to the bottom (19) of the gradient and any pelleted material was resuspended (P). 

Fractions were electrophoresed through 17.5% polyacrylamide gels along with an aliquot 

of tagged full-length core protein (c). After Western blotting of the gels, membranes were 

incubated with anti-pp65 mAb 9220. Molecular weights of the markers used (M) are 

shown and the position of each core deletion protein is indicated by an arrow («— ).

Core deletion protein A84-109 was detected only in the central region of the gradient 

(fractions 8-13), with all fractions having approximately equal intensities (see Figure 

3D2d, Panel i). Concentration of these pooled fractions, approximately 20-fold, and 

examination by electron microscopy failed to detect core particle-like structures. A faintly 

reacting lower molecular weight protein (approximately 17kDa) was present in fractions 

9-13. This may represent a protease degradation product of the core deletion protein, as it 

was present in the same fractions. An N-terminal region of the protein must have been 

removed in order to still allow detection of the C-terminal epitope tag by mAb 9220. 

Purification of A81-121 showed that protein was again present in fractions 8-13, in the 

central region of the gradient (see Figure 3D2d, Panel ii). However, in addition this 

protein was also faintly detectable in decreasing intensity towards the bottom of the 

gradient (fractions 14-19). When the peak fractions (fractions 8-13) were examined by 

electron microscopy after 20-fold concentration, no core particle-like structures were
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observed. Core deletion protein A79-125 was detected to the same low intensity from 

fraction 8 down to the bottom of the gradient (see Figure 3D2d, Panel iii). As there were 

no fractions containing obviously higher levels of protein, fractions 9-11 and 12-14 were 

chosen for separate further examination as core particle-like structures formed from this 

protein would be expected to present in this region of the gradient, due to their smaller 

molecular mass. Upon examination, no such structures were observed. Smaller proteins 

of approximately 14kDa and 17kDa were also detectable in fractions 4-5 and 6-8, 

respectively. As no A79-125 deletion protein was present in fractions 4-6, the smaller 

proteins are unlikely to be core protein-related. Core deletion A60-117 was detected, 

again, in fraction 8 down to the bottom of the gradient, but at higher levels than A79-125 

(see Figure 3D2d, Panel iv). A smaller protein of approximately 13kDa was also present 

in these fractions. This may have been due to proteolytic degradation of the N-terminus of 

the core deletion protein. The same fractions were chosen for electron microscopic 

examination as for the previous protein, with the same results.

The conclusion drawn from these expression studies was that all four core deletion 

proteins have again been shown to lack the ability to assemble spontaneously into any 

core particle-like structures. Although the A81-121, A79-125 and A60-117 deletion 

proteins were detected in the lower regions of the sucrose gradients (corresponding to 

fractions where core particles were detected), a marked increase in protein content was not 

observed in any of these fractions, contrasting with the result for the full-length protein.

Due to the continuing difficulties in determining the state of the protein present in 

gradient fractions above those where core particles were present and the state of the non- 

particulate protein from the core deletion purifications, it was decided that an additional 

control was necessary. It was shown by Birnbaum and Nassal (1990) that if core protein 

was C-terminally truncated beyond the leucine residue at position 140, this protein lost the 

ability to self-assemble into core particles. It was decided to reproduce this truncated core 

protein and purify it on the sucrose gradient. This result should define fractions where 

core particles would definitely not be present, thus excluding them from further analyses. 

It was decided to create the C-terminally truncated core protein by a single round of PCR 

using primer pair cp3/Thrtag. When expressed this would produce core protein truncated 

at Thr-128, with the additional ten amino acid epitope tag sequence. The extra truncation 

was intended to compensate for the ten amino acid epitope tag sequence, as it was not 

known whether this could function as an equivalent to missing core protein sequence and 

so, in fact, allow core particle assembly. The results for the purification of this core T128 

protein are shown in Figure 3D2e. Protein of approximately the predicted size (16kDa) 

was produced and, as expected, was detected only in the upper region of the gradient, 

mainly in fractions 1-4. Flowever, detectable amounts of protein were also present, down 

to fraction 10. Protein in these fractions must also have been in a non-particulate form.
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Figure 3D2e: Purification of C-terminally truncated core protein, T128 

CoreT128 protein with a C-terminal pp65 epitope tag was expressed in E.coli 

BL21 (DE3)pLysS as before. A cellular extract was prepared (ex) and after 

centrifugation at 35k rpm for 20 min, soluble protein (s) was centrifuged through a 10- 

50% sucrose gradient. Fractions were removed from the top (1) to the bottom (19) of the 

gradient and any pelleted material was resuspended (P). Fractions were 

electrophoresed through a 17.5% polyacrylamide gel along with an aliquot of tagged full- 

length core protein (c). After Western blotting of the gel, the blot was incubated with anti- 

pp65 mAb 9220. Molecular weights of the markers used (M) are shown and the position 

of the tagged coreT128 protein is indicated by an arrow (*—■).

3D3 D im erisation o f core deletion proteins

Studies of core particle assembly in Xenopus oocytes showed that dimerisation of 

core protein monomers, via disulphide bonds, was the initial step in the core particle 

assembly pathway (Zhou and Standring, 1992). As the core deletion proteins in this study 

did not appear to assemble into core particle-like structures, it was decided to determine at 

which stage the assembly pathway arrested: were the core proteins able to dimerise, but 

these dimers unable to assemble into particles, or did dimerisation not occur? In order to 

address this question, core deletion proteins were analysed on Western blots under non

reducing conditions for evidence of bands of approximately double the size of the 

monomeric protein (see Figure 3D3).
The results showed that, under non-reducing conditions, proteins of approximately 

the correct size for dimers of all four core deletion proteins were specifically detected by 

mAb 9220. Full-length core protein was included as a control for this experiment and 

under non-reducing conditions a major-staining band of approximately 48kDa was
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Figure 3D3: Dimerisation of core deletion proteins

Core deletion proteins with a C-terminal pp65 epitope tag were expressed using E.coli 

BL21 (DE3)pLysS as before. Cellular extracts were prepared and mixed with non

reducing or reducing SDS PAGE sample buffer. Samples were heat-denatured at 100°C 

for 5 min, before being electrophoresed through a 17.5% polyacrylamide gel. After 

Western blotting of the gel, the blot was incubated with anti-pp65 mAb 9220. Tagged 

full-length core protein was also run (WTtag) as a control and the molecular weights of 

the markers used (M) are shown.

visible. This corresponded well to the predicted size of core protein dimer. This band 

decreased in intensity upon reduction, with a concomitant increase in the amounts of core 

protein monomer detected. In addition to the protein dimer, prominent lower molecular 

weight bands were observed under non-reducing conditions in all bacterial extracts 

expressing the core deletion proteins, with the exception of A79-125. These lower 

molecular weight proteins corresponded to the sizes of the respective protein monomers. 

It was not known if all the disulphide-linked dimers had remained intact, thus explaining 

the presence of the protein monomers. This may have been affected by the method of 

sample preparation, prior to electrophoresis: Gallina et al. (1989) heated samples for non

reducing electrophoresis at 60°C for 30min, whereas Zhou and Standring (1992) used 

60°C for 5min, followed by 100°C for 5min. However, no reasons were given for these 

modifications and it seems unlikely that these differences in temperature could influence 

the stability of covalent bonds. The monomeric proteins may represent core proteins or 

core deletion proteins which had been denatured during the extraction process. This
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denatured protein may have been present in a conformation where all four cysteine 

residues were buried and thus was unable to form disulphide bonds.

Under reducing conditions, the majority of the core protein and core deletion protein 

dimers were resolved into monomers. However, for all proteins, dimeric forms were still 

detectable. The use of an increased amount of (3-ME in the sample buffer used for SDS 

PAGE gels may have eliminated protein dimers completely. Kann and Gerlich (1994) also 

detected faint full-length core protein dimers on Coomassie-stained gels when core 

particles treated with 5% (3-ME were examined. Also visible under non-reducing 

conditions, in the results presented in this section, were bands of higher molecular weight 

than the core protein or core deletion protein dimers. These were particularly evident for 

the full-length and A84-109 core proteins and it may have been that these bands 

corresponded to higher order oligomers of core protein, formed by disulphide bonds 

between protein dimers.

3D4 D eterm ination o f the sensitivity o f anti-pp65 mAb

Studies of the formation of core particles in the Xenopus system have shown that 

this process is highly co-operative and also dependent upon the concentration of 

accumulated core protein dimers ( Seifer et al., 1993). Core protein was required to 

accumulate to an estimated concentration of 0.7-0.8pM  (14-16pg/ml) before particle 

assembly would initiate. As results from the purification of the core deletion A79-125 

showed only small amounts of protein detectable in the gradient fractions, it was decided 

to quantify the detection sensitivity of the anti-pp65 mAb 9220, to ensure that the smaller 

quantity produced for this protein was not a limiting factor in its assembly into particles. 

The concentration of protein in a sample of purified epitope-tagged wild-type core 

particles was determined by Bradford assay to be lpg/pl. This sample was serially diluted 

two-fold and aliquots separated by SDS PAGE and Western blotted, using the standard 

1:1000 dilution of mAb 9220 (see Figure 3D4). Under these conditions the antibody was 

capable of detecting a minimum concentration of 3.9pg/ml of tagged protein. Although 

this was lower than the minimal value required for particle assembly, the protein from the 

purification of A79-125 was distributed over twelve 0.65ml fractions. Therefore the 

original concentration of protein in the bacterial extract was greater than that required.

3D5 D iscussion
The results from this section have shown that all four core deletion proteins studied 

were unable to self-assemble into stable core particle-like structures. The same 

probabilities existed for these results as those discussed in Section 3C5.

Core deletion protein A84-109 was detected only in the central region of the 

gradient, above the fractions where core particles were observed when full-length protein 

was purified. However, it was possible that this deletion protein was capable of
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Figure 3D4: Detection sensitivity of mAb 9220 on a Western blot 

Decreasing concentrations of pp65 epitope tagged core particles were electrophoresed 

on a 17.5% polyacrylamide gel, which was then Western blotted. After blocking, the blot 

was incubated with a 1:1000 dilution of anti-pp65 mAb 9220.

assembling into particles but that the particles were extremely unstable and rapidly 

dissociated into dimers, before the purification step. A similar possibility existed for core 

deletion proteins A81-121, A79-125 and A60-117, which were detected in the lower 

region of the gradient, where wild-type core particles were observed. Core particle-like 

structures could have been formed from these proteins, but were unstable and therefore 

undetectable during electron microscopic examination. This possibility was catered for to 

some extent by rapid and careful examination of samples after purification, with no 

freezing steps in the intervening periods, which may have decreased the stability of 

particle-like structures. However, the gradient profiles for these deletion proteins also 

differed from that of the full-length protein. For all four deletion proteins, none of the 

fractions in the lower region showed as substantial an increase in protein content as was 

observed for the full-length protein. This showed that 'banding' of particles at a specific 

sucrose density was not occurring and that no distinct particulate population of protein 

was present. Instead, only a protein population with densities which increased in a 

gradual manner was observed.
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A broad gradient profile, similar to that obtained from purification of the core 

deletion proteins A81-121, A79-125 and A60-117, was also observed by another group 

who were investigating the properties of core protein insertion mutants (Beames and 

Lanford, 1995). Insertions of two to four amino acids were made throughout the first 140 

residues of the protein and these proteins were expressed in insect cells using recombinant 

baculoviruses. Expressed proteins were then purified on 5ml 10-50% sucrose gradients to 

assay for core particle formation. Under the conditions used, full-length core protein (in 

the form of core particles) was detected in two 500pl fractions in the centre of the 

gradient. Full-length proteins with two or three amino acid insertions after Ala-36 or Ser- 

44, respectively, were detected in fractions from the top of the gradient down to the 

central fractions. Insertion of three, two or four amino acids after residues Thr-67, Ala-69 

and Val-89, respectively, produced proteins which were detected in fractions below those 

to which full-length core protein migrated. The proteins with insertions after Thr-67 and 

Ala-69 were unable to assemble into core particles. These results were verified by 

expression of these two core protein insertion mutants in Huh7 cells transfected with 

core-defective HBV genomes. This experiment assayed for rrarzs'-complementation of 

HBV replication and, again, showed that no core particles were produced by these two 

proteins. This group concluded that the broader distributions of core proteins observed in 

the gradients suggested the formation of large aggregates of core protein insertion mutants 

or the formation of unstable core particles by these insertion mutants.

Two separate investigations were carried out in order to attempt to further interpret 

the results of the purification of the core deletion proteins. Electron microscopic 

examination of fractions 9-12 from the purification of the full-length core protein was 

performed in order to determine whether particles were present in this region of the 

gradient, in addition to the lower region (fractions 14-17). The results showed that core 

protein in these fractions was in a non-particulate state. The second investigation involved 

purification of the C-terminally truncated core protein, T128. After purification, this 

protein was present in fractions at the top of the gradient, but also in fractions as low as 

fraction 10. These results implied that for the core deletion proteins, protein which was 

observed in fractions from the top of the gradient down to fraction 12 were unlikely to 

represent core particle structures. Zhou and Standring (1992b) demonstrated that free core 

protein (fractions 1-4 of the fourteen fractions from a 10-60% sucrose gradient) existed as 

dimers. Therefore, the equivalent fractions on the 10-50% sucrose gradients used in the 

work presented in this thesis (fractions 1-7) are also likely to contain protein dimers. 

Unfortunately the information derived from all these results does not conclusively clarify 

the nature of proteins found to be present below fraction 12. Therefore, the conclusion of 

Beames and Lanford (1995) who stated that protein present in this region represented 

large protein aggregates, appears to be the only alternative explanation. In order to answer 

this question more satisfactorily, it would be useful to analyse the core deletion proteins
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on 3-25%  sucrose sizing gradients, similar to those used by Zhou and Standring (1992a). 

Comparison with the migration of proteins of known molecular weight, such as carbonic 

anhydrase (29kDa) and BSA (66kDa), on these gradients would have allowed 

determination of the molecular weights of the core deletion protein species. This could 

then be used to determine whether these proteins were present as dimers or higher order 

structures.

The correlation between the results obtained from expression of core deletion 

proteins using plasmid pR 1-11 (Section 3C3) and the results presented in this section is 

variable. Core deletion protein A84-109 was present in fractions 6-8 for p R l-1 1 and 8-13 

for pET purifications. Deletion protein A81-121 did show some degree of overlap with 

the two results (fractions 3-12 for pR 1-11 and 8-19 for pET). A79-125 was present in 

fractions 6-9 for pR 1-11 and 8-19 for pET purifications. Although core deletion A60-117 

was detected in fractions 15-19 for both purifications, this protein was also present in 

fractions 8-14 when expressed using the pET system and purified. These differences 

between results from the two systems are difficult to explain. The promoters used to 

express protein from each plasmid were different: p R l-1 1 utilises the lacUV5 promoter, 

whereas the stronger T7 polymerase promoter is used in pET vectors. Expression from 

plasmid pR 1-11 resulted in the production of a core:(3-galactosidase protein, with ten N- 

terminal (3-galactosidase residues replacing the two authentic N-terminal core protein 

residues. In contrast, the core protein produced from the pET3a plasmid initiates with its 

authentic methionine residue. Another factor which differed between the two sets of 

results was the strain of E.coli used for protein expression: BL21(DE3)pLysS was used 

for the pET3a plasmid compared to DH5a for pR 1 -11. The protein purification protocol 

for pR 1-11 also included 'variable' steps, such as the efficiency of sonication and 

ammonium sulphate precipitation whereas results from the pET system were consistently 

reproducible. All these factors could possibly have contributed to the differences in results 

observed with the two plasmids used.
In an investigation of protein dimerisation, full-length core protein and all four core 

deletion proteins were shown to be able to form disulphide-linked dimers, under non

reducing conditions. The position of the deletions with respect to the four cysteine 

residues present in core protein also provides confirmatory information on the importance 

of individual residues for disulphide bond formation. As all four deletions removed Cys- 

107, this residue cannot be the only residue to participate in the formation of 

intermolecular disulphide bonds (see Section 1E2). The removal of Cys-61 by deletion 

A60-117 also shows that one of the two remaining eligible cysteine residues must be 

involved. At this stage the question as to which type of disulphide bond the Cys-183 

residue in full-length core protein participates in becomes pertinent: is it involved in a 

disulphide bond within a core protein dimer or a bond between dimers? If the latter 

situation is true, why should dimers be the predominant species detected under non
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reducing conditions? It would seem more likely that the existence of both intra-dimer 

(involving Cys-61 and possibly Cys-48) and inter-dimer (involving Cys-183) disulphide 

bonds would enable the core particle to retain its conformation under non-reducing 

conditions. This would make it unlikely to enter a resolving polyacrylamide gel, as was 

observed by Gallina et al. (1989) and Kann and Gerlich (1994). However, the model 

resulting from the analysis of core protein expressed in Xenopus oocytes shows that Cys- 

183 participates in a disulphide bond within the dimer (Seifer and Standring, 1994). This 

allowed core particles to be broken down into dimer subunits under non-reducing 

conditions. Other investigators have observed a partial effect with bacterially-expressed 

core protein: dimers can enter resolving polyacrylamide gels under non-reducing 

conditions, but intact particles are still observed at the interface of the stacking gel and the 

resolving gel (Nassal et al., 1992; Zheng et al., 1992). In these cases, the dimeric protein 

which entered the resolving gel may simply represent the population of free core protein 

dimers present within the cells. In view of these possibilities, core deletion protein A60- 

117 could be held together by intra-dimer disulphide bonds involving Cys-48 and/or Cys- 

183. However, examination of this protein under non-denaturing conditions does not 

show convincing evidence for the existence of a higher molecular weight species that 

would result from the presence of Cys-183 inter-dimer disulphide bonds.

The fact that all four core deletion proteins were capable of forming dimers indicates 

that their inability to assemble particles may be due to the failure of subsequent stages in 

the particle assembly process to occur normally. Although dimers did form, this may 

require only the region of the polypeptide chain surrounding amino acids 48-61 to be 

surface exposed. The remainder of the protein may have been in a conformation that 

would not allow the further interactions required for particle assembly.

The inability of the core deletion proteins to assemble into particles was not thought 

to be due to the concentration of protein being below that estimated to be necessary for 

core particle assembly (Seifer et al., 1993). The anti-pp65 mAb, under standard 

conditions of use, was able to detect protein at concentrations below this minimum.
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3E M odifications of the core deletion protein A 81-121  

3E1 Introduction

From the results in the previous section, it was concluded that core deletion proteins 

were unable to assemble into any type of core particle-like structure. It was decided to 

investigate further what were the determining factors in this inability to form core 

particles. As was discussed in Section 3C4, the initial question was which core protein 

sequences are essential for directing particle assembly, either through correctly folding the 

protein, or through participating in protein:protein interactions, and whether these are 

missing in core deletions. This question was to be investigated in two ways: firstly, by 

replacing the deleted core protein sequence A81-121 with foreign sequence of exactly the 

same length (as described in Section 3C4) and secondly, by sequentially replacing core 

sequence, that had been deleted in the A81-121 protein, in blocks of ten amino acids from 

either the 5' or 3' termini of the deletion. The latter approach would hopefully allow 

determination of the minimum deletion, in this central region of the protein, that would 

still allow particle assembly and would also identify core protein sequences that played an 

important role in directing particle assembly. The first experimental approach is described 

in Section 3E2 and the second approach in Section 3E3.

3E2 pET expression and purification o f pp65 epitope-tagged A core-surface  

hybrid protein

The Acore-surface hybrid gene constructed in Section 3C4 was amplified by a 

single round of PCR using primer pair cp3/Bamtag and cloned into the pET3a vector. In 

contrast to the pR 1-11 purification, this protein was efficiently expressed from the pET 

vector and was more stable under the conditions used for purification. The results of the 

sucrose gradient centrifugation are shown in Figure 3E2. The protein expressed was 

equal in size to full-length core protein and was detected from fraction 7 down to the 

bottom of the gradient. Although fractions 14-17 did seem to have an increased amount of 

protein present, this increase was far less than was observed for the purification of wild- 

type core particles. In addition, upon repetition of this experiment, this observation was 

not consistent: although the Acore-surface hybrid protein was present in the same 

fractions, the same apparent increase in protein content in fractions 14-17 was not 

evident. Examination of these pooled fractions, again, gave no evidence for the assembly 

of particles from this protein. Although on the blots, some bands of lower molecular 

weight were observed in the lanes containing cellular extract and soluble protein, these 

represented a minority proportion of the protein detected, and were not thought to 

contribute to the lack of particle detection, for example, due to protein degradation. The 

conclusion drawn from this experiment was that this Acore-surface hybrid protein was
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Figure 3E2: Purification of Acore-surface hybrid protein expressed in the pET system 

Acore-surface hybrid protein with a C-terminal epitope tag was expressed in E.coli 

BL21(DE3)pLysS for 4 hr at 26°C after induction with 300|liM IPTG. A cellular extract 

was prepared (ex) and after centrifugation at 35k rpm for 20 min, soluble protein (s) was 

centrifuged through a 10-50% sucrose gradient. Fractions were removed from the top (1) 

to the bottom (19) of the gradient and any pelleted material resuspended (P). Fractions 

were electrophoresed through a 17.5% polyacrylamide gel along with an aliquot of 

tagged full-length core protein (c) and tagged core deletion protein A81-121 (A). After 

Western blotting of the gels, membranes were incubated with anti-pp65 mAb 9220. 

Molecular weights of the markers used (M) are shown and the position of the tagged 

Acore-surface hybrid protein is indicated by an arrow («—).

138



Chapter 3 Results

unable to assemble into core particles. This result indicated that, for the naturally- 

occurring core deletions, the physical size of the deletion was not the sole reason for the 

inability to form particles. Rather, specific core sequences, as yet undetermined, must 

play an important role in the particle assembly pathway.

3E3 Expression and purification of A81-121 fill-in  proteins

The results from previous sections had shown that deletions in the central region of 

the core protein disabled the ability of the protein to correctly form core particles, and that 

this was due to the removal of specific protein sequence essential to this process. It was 

decided to attempt to determine the location and the identity of these sequences, by 

gradually replacing increasing amounts of original sequence in the A81-121 core deletion, 

from either end of the deleted region. This was achieved using a PCR-based method to 

construct these 'fill-in' proteins and is detailed in Figure 2B1.1 lb. This method generated 

three core deletion genes, 5'F10, 5'F20 and 5'F30, with 31, 21 and 11 amino acids, N- 

terminal to amino acid 121, deleted respectively and with the pp65 epitope tag sequence at 

the C-terminus (see Table 2 B 1.1 lc). An analogous method was used to construct the 3 ' 

fill-in proteins.

After expression, proteins were detected by anti-pp65 mAb 9220 (Figure 3E3a). All 

proteins expressed corresponded well to their predicted sizes. Proteins were then 

expressed and purified on 10-50% sucrose gradients. These results are shown in Figure 

3E3b.

The results from purifications of both the 5'F10 and 5'F20 proteins showed 

gradient profiles for these proteins that were similar to that observed for the full-length 

core protein (see Figure 3D2b). Both showed protein predominantly in the lower region 

of the gradient: 5'F10 protein was detectable from fraction 8 with increased levels in 

fractions 14-19 and 5'F20 was also present from fraction 8, but peaked in fractions 15- 

lb. However, the next protein in this series, 5'F30, did not conform to this profile, as 

protein was predominantly detectable in the central region of the gradient, in fractions 6-9. 

The peak fractions for all three proteins were pooled and concentrated before examination 

by electron microscopy. However, despite thorough efforts, no particles were detected 

for any of these samples.
The 3' fill-in proteins were also constructed and proteins of the correct size were 

produced and detected by mAb 9220 (Figure 3E3c). All three proteins were expressed 

and purified on 10-50% sucrose gradients, as before, and the results shown in Figure 

3E3d.
Comparison of the results from this 3' fill-in series was treated with caution, as the 

3'F20 protein was found to be expressed poorly initially and, after further timecourse 

experiments this was found to be due to poor stability. Consequently, expression took
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Figure 3E3a: Expression of A81-121 5' fill-in proteins

A81-121 5' fill-in proteins with a C-terminal pp65 epitope tag were expressed in Ecoli 

BL21(DE3)pLysS for 4 hours at 26°C after induction with 300pM IPTG. Cellular extracts 

were prepared and aliquots electrophoresed through a 17.5% polyacrylamide gel 

alongside tagged full-length core protein (WTtag), tagged A81-121 core deletion protein 

(A81-121tag) and tagged Acore-surface hybrid protein (CSCtag). After Western blotting 

of the gel, the blot was incubated with anti-pp65 mAb 9220. Molecular weights of the 

markers used (M) are shown.

place for only 2hr, which may also have accounted for the lower levels of protein 

produced. 3'F10 protein was detected from fraction 4, but was present predominantly in 

fractions 9 - 14. As it was probable that any core particle-like structure formed from these 

deletion proteins would have a smaller size in comparison to wild-type core particles, it 

was decided to examine these pooled fractions by electron microscopy. However, again 

despite thorough efforts, it was not possible to detect any particulate structures. The 

gradient profile for the 3'F30 protein, although protein was present in the lower region of 

the gradient (fractions 8 on), showed none of the 'banding' effect in any region, as was 

observed for the wild-type particle purification. Rather, the protein content of each 

fraction was approximately equal. Analysis of two sets of pooled, concentrated fractions 

(10-13 and 14-17) by electron microscopy showed that no particles were present.

The conclusion from the results in this section was that core proteins with deletions 

of only 11 amino acids at two separate positions in this central region, are still incapable 

of assembling into stable core particles.
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Figure 3E3b: Purification of A81-121 5' fill-in proteins (continued with figure legend on the 

following page)
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Figure 3E3b: Purification of A81-121 5' fill-in proteins (continued)

A81-121 5' fill-in proteins with C-terminal pp65 epitope tags were expressed in E.coli 

BL21 (DE3)pLysS at 26°C after induction with 300|iM IPTG. Cellular extracts were 

prepared (ex) and after centrifugation at 35k rpm for 20min, soluble protein (s) was 

centrifuged through a 10-50% sucrose gradient. Fractions were collected from the top (1) 

to the bottom (13) of the gradient and any pelleted material was resuspended (P). 

Fractions were electrophoresed through 17.5% polyacrylamide gels along with aliquots 

of tagged full-length core protein (c) and tagged core deletion protein A81-121 (A). After 

Western blotting of the gels, membranes were incubated with anti-pp65 mAb 9220. 

Molecular weights of the markers used (M) are shown and the position of the tagged 

proteins is indicated by an arrow (*—).
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Figure 3E3c: Expression of A81-121 3' fill-in proteins

A81-121 3' fill-in proteins with a C-terminal pp65 epitope tag were expressed in Ecoli 

BL21(DE3)pLysS for 4 hours at 26°C after induction with 300|iM IPTG. Cellular extracts 

were prepared and aliquots electrophoresed through a 17.5% polyacrylamide gel 

alongside tagged full-length core protein (WTtag) and tagged A81-121 core deletion 

protein (A81-121tag). After Western blotting of the gel, the blot was incubated with anti- 

pp65 mAb 9220. Molecular weights of the markers used (M) are shown.
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Figure 3E3d: Purification of A81-121 3 'fill-in proteins (continued with figure legend on the 

following page)
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Figure 3E3d: Purification of A81-121 3' fill-in proteins (continued)

A81-121 3' fill-in proteins with C-terminal pp65 epitope tags were expressed in E.coli 

BL21 (DE3)pLysS at 26°C after induction with 300|iM IPTG. Cellular extracts were 

prepared (ex) and after centrifugation at 35k rpm for 20min, soluble protein (s) was 

centrifuged through a 10-50% sucrose gradient. Fractions were collected from the top (1) 

to the bottom (19) of the gradient and any pelleted material was resuspended (P). 

Fractions were electrophoresed through 17.5% polyacrylamide gels along with aliquots 

of tagged full-length core protein (c) and tagged core deletion protein A81-121 (A). After 

Western blotting of the gels, membranes were incubated with anti-pp65 mAb 9220. 

Molecular weights of the markers used (M) are shown and the position of the tagged 

proteins is indicated by an arrow (4— ).

3E4 D iscussion
The results from this section have shown that the central region of the core protein, 

amino acids 81-121, is very important for correct assembly of core particles. Neither 

alteration of the amino acid sequence in this region of the protein nor deletion of smaller 

sections of this region allowed the resulting proteins to assemble into particles, as was 

determined by sucrose gradient analysis.
The rationale behind these experiments came from the observations of the 'structural 

flexibility' of the core protein (see Section 1E5). Certain fusion protein derivatives of core 

protein described in Section 1E5 (Schodel et al., 1992) involve the removal of central core 

protein residues (amino acids 76-82) and replacement of these regions with foreign amino 

acid sequences. These core protein derivatives were able to assemble into core particles
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and suggest that not all core protein residues are required for particle assembly. However, 

from the results presented here, replacement of the larger region from amino acid 81-121 

did not allow particles to form. This region, or residues within it, is therefore important 

for particle formation. It was possible, however, that the region of the surface protein, 

used to replace the deleted core protein residues, contained amino acid sequences which 

would have inhibited core particle assembly. At the time of construction of the Acore- 

surface gene, the only detailed structural information available on core protein was the 

structure predicted by Argos and Fuller (1988). This predicted that the region between 

amino acids 81-121 included two (3-sheet structures (amino acids 89-95 and 99-115). 

However, the more recent biophysical analysis and high resolution structural data 

obtained for the core protein by electron cryomicroscopy (see Section 1E3) have shown 

that the previous predicted structure of core protein was incorrect. Instead, the region 

between amino acids 81-121 includes sections from two a-helices (helix 3: residues 82- 

110 and helix 4: residues 112-128). As the region from the surface protein inserted into 

the core protein deletion included six proline residues (see Figure 3C4a), these would 

have disrupted the a-helical nature of this region. Therefore, it is possible that the 

presence of these residues was responsible for the inability of this protein to assemble into 

core particles. In order to overcome this problem, another Acore hybrid protein could be 

constructed. This could either be the Acore-surface hybrid protein used in this section, but 

where the proline residues had been mutated to alternative residues, or a Acore hybrid 

protein where the region chosen to replace amino acids 81-121 possessed a similar 

hydropathy profile to amino acids 81-121 of core protein.

The results from the purifications of the 5' and 3' fill-in proteins, which contained 

deletions of decreasing size, showed that none of the proteins with a deletion in the central 

region were competent for particle assembly. The smallest deletions, in the 5'F30 and 

3'F30 proteins, were still sufficiently large to prevent particle assembly. The fact that both 

of these small deletions, which removed core protein regions with dissimilar amino acid 

sequences, were capable of preventing core particle assembly suggests that the size of the 

deletion was the critical factor. Therefore, further reducing the sizes of these deletions 

may have allowed particles to form.
Although the results from this section have identified the core protein region 

between amino acids 81-121 as important for core particle assembly, the N- and C- 

terminal limits of this functionally important region have not been precisely delineated. It 

may have been that small deletions, equal in size to the 5' and 3'30 deletions, made on 

either side of residues 81-121 would have actually allowed particle assembly to occur. 

One possible way to further define this region would be to construct a range of core 

protein deletion mutants, with overlapping deletions of a fixed size covering the entire 

core gene. Subsequent assaying of these proteins for particle assembly would allow 

identification of regions of the protein which were non-essential for this process. This
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type of experiment has been performed for the larger core protein from DHBV (Yang et 

al., 1994). In view of the results presented in this thesis, it was of interest that, although 

deletions were tolerated in the C-terminal region of the DHBV core protein, protein with 

N-terminal or central deletions did not assemble of core particles when expressed in 

E.coli..
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3F Studies o f co-assem bly between fu ll-length  and core deletion p ro te in s  
into core particles 

3F1 Introduction

As discussed in Section 1E6, in all but two reported cases of detection of core gene 

deletions from patients with chronic hepatitis investigators have, in addition, always been 

able to detect full-length core gene in these samples. However, because these results were 

all derived from the study of serum samples, the relationship between these two 

populations in the cellular context is still unclear. For example, it is not known whether 

both full-length core gene and core deletions can arise and co-exist in the same infected 

cell, or whether core deletions can represent the sole population in an infected cell. From 

the results in previous sections, where such core deletions have been shown to be 

incapable of forming stable core particles, it is unlikely that they would be able to sustain 

the viral infection themselves. Lacking the ability to produce functional core particles, 

which play important roles in the viral lifecycle, the virus could spread no further than its 

present host cell. However, if the alternative scenario in fact exists, where both virus with 

full-length core gene and that with core gene deletions occur in the same cell, then the 

possibility exists of novel core particles being assembled, containing both types of 

protein.

3F2 C o-expression o f fu ll-length and core deletion proteins

In order to investigate the possibility of co-assembly, it was decided to attempt to 

produce both proteins in the same bacterial cell and analyse the particles produced, to 

determine whether they contained both types of core protein. This necessitated 

modification of the existing bacterial expression system to introduce means of ensuring 

that cells were actually expressing both types of protein and means of specifically 

detecting each protein expressed. The full-length core gene was amplified by PCR using 

primer pair cp3/cd2 to give full-length core protein lacking the C-terminal pp65 epitope 

tag sequences. This gene was then cloned into the pET9a vector, which is identical to 

pET3a but with a kanamycin resistance gene instead of one conferring ampicillin 

resistance. pET3a plasmids containing the epitope tagged core deletion gene were as used 

previously. For the initial experiment the pET9a and pET3a (containing the gene encoding 

the A84-109 core deletion protein) recombinant plasmids were co-transformed into E.coli 
B L21 (DE3)pLysS and co-transformants selected for in the presence of ampicillin and 

kanamycin. After growth of single colonies and induction of protein expression, total 

cellular extracts and soluble protein extracts were made and analysed by Western blot. 

Anti-core mAb 42B 12 was used to detect core protein lacking the pp65 epitope tag and 

anti-pp65 mAb 9220 was used for the detection of the epitope-tagged core deletion 

proteins. The results of the co-expression of full-length core protein and the A84-109 core
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Figure 3F2a: Co-expression of full-length core protein and pp65 epitope-tagged core 

deletion protein A84-109

Full-length core protein and core protein deletion A84-109 were co-expressed in E.coli 

BL21 (DE3)pLysS at 26°C for 4 hr after induction with 300pM IPTG. Cellular extracts 

(ex) and soluble protein samples (s) were prepared from six clones and electrophoresed 

through 17.5% polyacrylamide gels. After Western blotting, the blots were incubated 

with anti-core mAb 42B12 (Panel A) or anti-pp65 mAb 9220 (Panel B). An aliquot of 

tagged Acore-surface hybrid protein (c) was included as a control. Molecular weights of 

the markers used (M) are shown and the position of each protein is indicated by an 

arrow («—).
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Figure 3F2b: Electron micrograph of core particles expressed using the pET system 

Core particles were purified from extracts of bacteria transformed with a pET9a plasmid 

containing full-length core gene, using a 10-50% sucrose gradient. Fractions containing 

the highest levels of core protein as identified by Western blot analysis, were pooled 

and concentrated using an Amicon 50 microconcentrator. An aliquot of the concentrated 

sample was negatively stained and examined by electron microscopy. Scale bar 

represents 50nm.

deletion protein are shown in Figure 3F2a. A protein of the correct predicted size for the 

core deletion protein A84-109 was specifically detected on the blot using mAb 9220. 

However the blot on which mAb 42B12 was used showed two major bands for all 

samples of approximately 23kDa and 27kDa. The smaller of these bands was the correct 

size for the full-length core protein, but the identity of the larger band was undetermined. 

This protein may have been translated due to read-through of the core gene stop codon. 

Cellular extracts from clones l, 2, 3 and 5 also contained a protein of approximately 

29kDa, which reacted with the anti-core mAb 42B12. In order to determine whether the 

presence of these extra proteins would affect core particle assembly, E.coli 

BL2 l(DE3)pLysS cells were transformed with the pET9a plasmid containing the 

untagged full-length core gene. Following sucrose gradient centrifugation of induced 

cellular extracts and Western blot analysis, fractions with the greatest amounts of core 

protein were pooled, concentrated and examined by electron microscopy. The results 

showed that the full-length core protein which had been expressed was able to assemble 

into morphologically normal core particles (see Figure 3F2b). The results from the

150



Chapter 3 Results

experiments in this section showed that expression of both proteins in the same cell was 
possible.

3F3 Purification o f co-expressed full-length and A 84-109 core proteins

Proteins were expressed from bacteria which had been co-transformed with 

plasmids containing the full-length core and tagged core deletion protein A84-109, as 

described in the previous section. Cellular extracts were prepared and, after clarification, 

soluble protein was centrifuged through a 10-50% sucrose gradient. The results are 

shown in Figure 3F3. Full-length protein expressed from the pET9a plasmid was detected 

strongly in fractions 13-17, which corresponded well to the position of core particles 

from previous experiments (see Figure 3D2b). The tagged A84-109 protein was present 

in two peaks in the gradient: one in fractions 7-11 and the other in fractions 13-17. The 

co-existence of the A84-109 protein in fractions containing core particles suggested that 

both the full-length core protein and the core deletion protein were present within the same 

particles. Further evidence for this came from a comparison with the results obtained from 

the purification of the A84-109 protein alone (Figure 3D2d). These results showed that 

the A84-109 protein was detected in fractions 8-13. However, in the results shown here, 

the A84-109 protein was also present in the lower region of the gradient, in fractions 13- 

17. This position corresponded very well to that of the core particles produced in the same 

cells. In addition, the fact that the A84-109 protein was not distributed equally throughout 

fractions 7-17, but gave a distinct peak in fraction 13-17 suggested that it was associated 

with the core particles in these fractions.

3F4 Purification of co-expressed full-length and A 81-121 core proteins

It was decided to perform the same type of co-expression experiment for the core 

deletion protein A81-121 and full-length core protein, to determine if a similar result 

would be obtained. This protein was co-expressed with the full-length protein and the 

particles produced were purified (see Figure 3F4). The full-length protein was present in 

fractions 13-17, as before, and the A81-121 deletion protein was detected in two peaks: 

fractions 9-11 and fractions 14-17. Again the location of the A81-121 protein differed 

from the results obtained when this protein was expressed by itself and purified (Figure 

3D2d). These results showed that the A81-121 deletion protein migrated to fractions 8-19, 

with more protein present in fractions 8-14. These results differ markedly to the results 

presented in this section, where the A81-121 protein was detected in two distinct peaks. 

The position of the second peak corresponded well with the position of the core particles 

produced, which again led to the possibility that these two proteins had associated and 

formed novel 'mixed' core particles.
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Figure 3F3: Purification of co-expressed coreWT and A84-109tag

Full-length core protein and pp65 epitope-tagged core deletion protein A84-109 were co

expressed in E.coli BL21 (DE3)pLysS at 26°C for 4 hours after induction with 300jiM 

IPTG. Cellular extracts were prepared (ex) and after centrifugation at 35k rpm for 20 min, 

soluble protein (s) was centrifuged through a 10-50% sucrose gradient. Fractions were 

collected from the top (1) to the bottom (19) of the gradient and any pelleted material was 

resuspended (P). Fractions were electrophoresed through 17.5% polyacrylamide gels 

along with tagged full-length core protein (c). After Western blotting of the gels, 

membranes were incubated with either anti-core mAb 42B12 (panel i) or anti-pp65 mAb 

9220 (panel ii). Molecular weights of the markers used (M) are shown and the position of 

the relevant protein is indicated by an arrow (<*—).
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Figure 3F4: Purification of co-expressed coreWT and A81-121tag

Full-length core protein and pp65 epitope-tagged core deletion protein A81-121 were co

expressed in E.coli BL21 (DE3)pLysS at 26°C for 3 hours after induction with 300pM 

IPTG. Cellular extracts were prepared (ex) and after centrifugation at 35k rpm for 20 min, 

soluble protein (s) was centrifuged through a 10-50% sucrose gradient. Fractions were 

collected from the top (1) to the bottom (19) of the gradient and any pelleted material was 

resuspended (P). Fractions were electrophoresed through 17.5% polyacrylamide gels 

along with tagged full-length core protein (c). After Western blotting of the gels, 

membranes were incubated with either anti-core mAb 42B12 (panel A) or anti-pp65 mAb 

9220 (panel B). Molecular weights of the markers used (M) are shown and the position 

of the relevant protein is indicated by an arrow («— ).
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3F5 Purification of co-expressed full-length and 5'F30 core proteins

From the results of the previous two experiments it seemed possible that full-length 

core protein and core deletion proteins could co-assemble to form core particles. It was 

decided to see whether a more conclusive result could be obtained by using proteins with 

smaller deletions. The 5'F30 and 3'F30 fill-in proteins from Section 3E3 were 

consequently used in these co-expression experiments. When co-expression of full-length 

and 3'F30 proteins was attempted it was found that, although full-length protein was 

produced effectively, detection of the 3'F30 protein was not possible. The reasons for 

this were unknown and unable to be investigated further, due to time restraints. This 

problem did not occur for the 5'F30 protein and the particles produced from cells co

expressing this protein and full-length core protein were able to be purified (see Figure 

3F5). As was observed in the previous experiments, the full-length protein banded in 

fractions 13-17, in the form of particles. The 5'F30 protein, however, was detected only 

in the lower region of the gradient, in fractions 15-19 and also in the pelleted material at 

the bottom of the centrifuge tube. Another lower molecular weight protein of 

approximately 17kDa, was detected in fractions 6-8. The location of the 5'F30 protein in 

this co-expression experiment differed from the results obtained when this protein was 

expressed by itself (Figure 3E3b). When expressed in isolation and purified on a sucrose 

gradient, the 5'F30 protein was present in fractions 6-9. These fractions correspond only 

with the fractions in which the 17kDa protein was detected in the co-expression 

experiment. Therefore this 17kDa protein may represent a degradation product of the 

5'F30 protein. The shift in location that was observed for the 5'F30 protein, upon co

expression with the full-length protein, to a region further down the gradient appeared to 

suggest that these two proteins had associated to form particles. However, upon closer 

examination of the results it was concluded that this was not the case. The fractions 

containing full-length core protein (fractions 13-17) did not correlate exactly with those 

containing the 5’F30 protein (fractions 15-19). This is not the expected result if the two 

proteins are covalently linked to form a particulate structure.

3F6 D iscussion
The results in this section have shown the possibility that core protein and certain 

core deletion proteins could co-assemble to form novel core particles. Upon co

expression with full-length protein, core deletion proteins A84-109 and A81-121 migrated 

to different regions of the sucrose gradient, compared to when either deletion protein was 

expressed alone and purified. These new regions coiresponded well to the Factions 

where purified core particles were observed. In this lower gradient region these proteins 

were also observed to be present in relatively few fractions, in a manner analogous to 

purified core particles. However, the results from the purification of co-expressed full- 

length core and 5'F30 proteins did not follow this same pattern. It was concluded that
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Figure 3F5: Purification of co-expressed coreWT and 5'F30tag

Full-length core protein and pp65 epitope-tagged A81-121 5'F30 were co-expressed in 

E.coli BL21 (DE3)pLysS at 26°C for 4 hours after induction with 300pM IPTG. Cellular 

extracts were prepared (ex) and after centrifugation at 35k rpm for 20 min, soluble protein 

(s) was centrifuged through a 10-50% sucrose gradient. Fractions were collected from 

the top (1) to the bottom (19) of the gradient and any pelleted material was resuspended 

(P). Fractions were electrophoresed through 17.5% polyacrylamide gels along with 

tagged full-length core protein (c). After Western blotting of the gels, membranes were 

incubated with either anti-core mAb 42B12 (panel i) or anti-pp65 mAb 9220 (panel ii). 

Molecular weights of the markers used (M) are shown and the position of the relevant 

protein is indicated by an arrow (i— ).

155



Chapter 3 Results

these two proteins did not co-assemble into particles. This conclusion provided no 

obvious explanation for the shift in migration of the 5'F30 protein on sucrose gradients 

after being co-expressed with the full-length protein. It may have been that the presence of 

the two proteins in the same cell could have contributed to an increased aggregation of the 

5'F30 protein, with these larger aggregates migrating further down the gradient. The 

assembly of core particles was not interfered with presumably because this process is co

operative, so leaving less time for other proteins to interfere with the rapid particle 
assembly.

The results from the co-expression of full-length core protein and core deletion 

proteins A84-109 and A81-121 only suggest that core deletion proteins co-assemble with 

the full-length protein to form novel core particles. It is possible that the core deletion 

protein was only associated with wild-type core particles in a non-integrated, peripheral 

manner. The core particles present could have been formed from full-length core protein 

alone, and the deletion protein associated with them only by non-covalent interactions. In 

order to provide more evidence for the occurrence of co-assembly, it would be necessary 

to demonstrate that both proteins were still present in samples of 'mixed' particles which 

had been previously incubated in buffers of increasing salt concentrations and then 

repurified on sucrose gradients. These increasingly stringent conditions should disrupt 

any non-covalent interactions, while leaving the disulphide-linked particle intact. A more 

direct detection method, such as immune-electron microscopy, would also have been 

useful. With this method, anti-core mAb 42B12 could be conjugated to a large diameter 

gold particle and anti-pp65 mAb 9220 conjugated with a gold particle of smaller diameter. 

Preparations of particles re-purified after being exposed to the above conditions would be 

incubated with both antibody-conjugates and examined by electron microscopy. The 

direct visualisation of both conjugated antibodies binding to the same particles would 

prove the presence of both proteins in the particle.
The formation of hybrid or mixed core particles has been demonstrated recently by 

Scaglioni et al. (1997). Mammalian cells were transiently co-transfected with a plasmid 

expressing-length core protein and one expressing an epitope-tagged p22 pre-core 

protein. When immunoprecipitation experiments were carried out on these transfected 

cells, both proteins were found to co-immunoprecipitate, with the conclusion that hybrid 

core particles had formed. In addition, purification of core particles from these transfected 

cells on sucrose gradients showed that both proteins were present in the same fractions, 

as detected by Western blot analysis. In similar immunoprecipitation experiments, an 

18kDacore protein containing ten C-terminal pre-core residues and truncated at P ro -144 

was also shown to be able to co-assemble with full-length core protein into mixed core 

particles.
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3G M odifications o f the core particle purification protocol 

3G1 Introduction

Throughout the course of these studies, the purification protocol for the core 

deletion proteins had been altered a number of times to take various factors into account. 

When these results were compared it was discovered that the method of preparation of 

cellular extracts and soluble proteins, prior to sucrose gradient centrifugation, could 

significantly affect the conclusion drawn from the experiment. In order to illustrate this 

the results obtained for each modification of the purification of core deletion protein A84- 

109 are shown in Figure 3G. For all these modifications the results obtained for 

purification of the full-length protein were identical to those presented in Section 3D.

3G2 M odification of the purification protocol for core deletion  p rotein  

A 84 -1 0 9

The initial extract preparation method consisted of overnight freezing of the induced 

E.coli BL21(DE3)pLysS cell pellet. After thawing of the pellet on ice, addition of TNE II 

buffer and DNase/RNase treatment, the extract was sonicated to disrupt any remaining 

cellular material. The extract was then clarified of cellular debris by a 4°C centrifugation 

step at 13k rpm for 20 minutes, prior to sucrose gradient purification. The results are 

shown in Figure 3G, Panel A.

The first modification to this protocol was to increase the centrifugation speed 

during the clarification step to 35k rpm. This was intended to ensure that only protein 

which was truly soluble was loaded onto the sucrose gradients, which would hopefully 

eliminate some of the bands detected in the lower region of the gradient. From the results 

which had accumulated at this stage in the study, it was already suspected that these bands 

represented aggregates of expressed protein, rather than particles. The results are shown 

in Figure 3G, Panel B.
Due to the extremely efficient lysis of the E.coli BL21(DE3)pLysS cells after the 

freezing stage, it was thought that the sonication step was no longer required and may, in 

fact, have caused damage to any particle-like structures which had formed. This was of 

obvious concern, especially if these particles were less stable than the wild-type particles. 

These results are shown in Figure 3G, Panel C.

The final modification was designed to cater for the possibility that, despite sucrose 

gradient fractions not being frozen at any stage, the freezing step required for lysis of the 

BL21(DE3)pLysS cells was responsible for disrupting any particles that had actually 

assembled inside these cells. This modification involved overnight storage of the induced 

cell pellet at 4°C, rather than -20°C, followed by lysis of the cells using lysozyme 

extraction buffer (see Figure 3G, Panel D). Although protein was detected in the gradient 

factions, this extraction protocol was not as efficient as the previous method. It was
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Figure 3G : Modifications to the core particle purification method (continued with figure 
legend on the following page)
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Figure 3G : Modifications to the core particle purification method (continued)

Core deletion protein A84-109 with a C-terminal pp65 epitope tag was expressed in 

E.coli BL21 (DE3)pLysS at 26°C for 4 hr after induction with 300|iM IPTG. Cellular 

extracts (ex) and soluble protein samples (s) were prepared as described in the text 

and according to the summary table below. Clarified extracts were centrifuged through 

10-50% sucrose gradients. Fractions were collected as normal and analysed b y  

Western blotting using anti-pp65 mAb 9220. Lanes marked 'c' contain tagged full-length 

core protein. Molecular weights of the markers used (M) are shown and the position of 

the tagged protein is indicated by an arrow («—).

Panel

Extract preparation
Extract clarification 

(rpm)

FfT 4°C s L 13k 35k

A X X X
B X X X
C X X
D X X X

F/T - overnight freezing at -20°C, followed by thawing on ice 

4°C - overnight storage at 4°C 

S - disruption by sonication 

L - extraction with lysozyme

159



Chapter 3 Results

thought that this may have caused problems in the detection of proteins that had been 

expressed at comparatively lower levels.

3G 3 D iscu ssion

The results from this section have shown that the method employed for the 

preparation of cellular extracts and soluble protein extracts could greatly influence the 

results obtained from the subsequent sucrose gradient purification step. The final 

extraction method, using lysozyme extraction buffer (Panel D), was thought to be least 

likely to disrupt any potentially unstable particle-like structures formed. However, the 

decreased amounts of protein extracted using this protocol reduced the sensitivity of the 

protein detection. For this reason, the modification involving freeze/thaw of the bacterial 

cell pellet, followed by clarification at 35k rpm (Panel C), was chosen for routine use and 

yielded all the results shown in previous sections. Despite the freeze/thaw step involved in 

this protocol, which may have disrupted unstable particles, protein purified using this 

modification was detected in exactly the same fractions of the gradient as protein purified 

following lysozyme extraction. In addition, increased amounts of protein could be 

extracted from bacterial cells using this protocol, when compared with using the lysozyme 

extraction method. This aided detection of the proteins in the subsequent purification 

steps.
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3H A garose gel assay for core particle form ation  

3H1 Introduction

During the last stage of the experimental work presented in this thesis we were 

made aware ot an additional method for the detection of core particles. This was described 

by Birnbaum and Nassal (1990) and involved electrophoresis of core particle samples 

through a 1% agarose gel. The particles were able to enter the gel, which was then first 

stained with ethidium bromide, to detect the RNA known to be incorporated into core 

particles. After destaining, the gel was stained with Coomassie blue to detect the position 

of the protein. It was decided to use this assay on the samples for which concentrated 

material remained after electron microscopic examination.

3H 2 R esults

The results for the selection of samples assayed are shown in Figure 3H. These 

results showed that wild-type core particles could be detected by this method. The 

position of the band after ethidium bromide staining of the gel (Panel A, lanes 1-4) 

corresponded exactly with the position of the band after Coomassie staining(Panel B, 

lanes 1-4). This indicated that core particles had formed and were capable of 

encapsidating nucleic acid. Investigation of the samples of concentrated fractions resulting 

from the purification of the core deletion proteins (Sections 3D and 3E), however, did not 

give equivalent results. Both nucleic acid and protein bands were observed at the same 

positions after ethidium bromide and Coomassie staining for core deletion protein A84- 

109 fractions 8-10 (lane 5) and also to a lesser extent for core deletion proteins A79-125 

fractions 9-12 (lane 9) and A60-117 fractions 9-12 (lane 1 1). However the earlier results 

for these samples, from examination by electron microscopy, showed that no particulate 

structures were detected. Furthermore, these assay results were not consistent when 

equivalent samples from duplicate purification experiments were tested, as can be seen 

from a comparison of the samples in lanes 6-8 with those in lanes 21-24.

The concentrated fractions from the purification of the 5' fill-in proteins did give 

results similar to those observed for the full-length protein, with bands visible at the same 

position after both staining procedures (lanes 13, 15 and 17). This suggested that 

particulate structures had formed and were able to encapsidate nucleic acid. H owever, 

again, these results did not concur with those obtained from the electron microscopic 

examination of these samples, where no particles were detected (Section 3E).

3H 3 D iscu ssion
The results obtained from this type of assay gave further evidence to the conclusion 

that the core deletion proteins examined in this study were unable to assemble into stable 

core particle-like structures. No bands were visible at the same positions when the gel
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A Ethidium bromide B Coomassie blue

1 2  3 4  5 6 7 8 9  1011 12 1 2  3 4  5 6 7 8 9  1011 12

13 1 4 1 5 1 6 1 7  18 19 20 21 22 23 24 13 1 4 1 5 1 6 1 7  18 19 20 21 22 23 24

Figure 3H: Agarose gel assay for core particle detection

Peak fractions from a number of sucrose gradient purifications were pooled and 

concentrated using a Centricon-50 microconcentrator. Samples were loaded onto a 1 % 

TAE agarose gel, according to the legend shown below, and electrophoresed. Panel A 

shows the gel after staining with ethidium bromide and panel B shows the same gel after 

destaining and subsequent staining with Coomassie blue.

Lane Sample Lane Sample

1 Wild-type core - lOpg 13 5'F10 fractions 12-14

2 Wild-type core - 3pg 14 5'F10 fractions 15-17

3 Wild-type core - 1pg 15 5'F20 fractions 12-14

4 Wild-type core (pET9a) - 1pg 16 5'F20 fractions 15-17

5 A84-109 fractions 8-10 17 5'F30 fractions 12-14

6 A84-109 fractions 15-17 18 5'F30 fractions 15-17

7 A81-121 fractions 8-11 19 Wild-type core fractions 9-12

8 A81-121 fractions 16-19 20 Wild-type core fractions 14-17

9 A79-125 fractions 9-12 21 A84-109 fractions 9-12

10 A79-125 fractions 15-18 22 A84-109 fractions 13-16

11 A60-117 fractions 9-12 23 A81-121 fractions 9-12

12 A60-117 fractions 16-19 24 A81-121 fractions 13-16
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was stained with ethidium bromide and subsequently with Coomassie blue. Again the 

possibility existed that any particles formed were either damaged during the purification 

process, or were so unstable as to be undetectable using the methods described in this 

thesis. The results for the 5' fill-in proteins did appear to show convincing evidence for 

the assembly of particles that possessed the ability to encapsidate nucleic acid. However, 

these putative particles were not observed by electron microscopy. For all non-particulate 

samples, large amounts of protein were detectable after Coomassie staining as a smear. 

This was of a different size to the band of core particles and agreed with the previous 

conclusion that large aggregates, rather than particles, were formed when these deletion 

proteins were expressed.

The ability of core particles to encapsidate RNA could have been exploited further 

as an assay for particle assembly by the core deletion proteins. Bacterial cells could have 

been grown in the presence of a 32P-UTP and protein expression induced. Following the 

preparation of cellular extracts, unprotected nucleic acids would be digested with DNase 

and RNase treatment of the extract. The clarified extract would be centrifuged through a 

sucrose gradient and fractions analysed by Western blot. Encapsidated RNA could be 

detected by exposure of a dried SDS PAGE gel of the gradient fractions to X-ray film or 

by scintillation counting of the gradient fractions. If RNA had been encapsidated within 

particulate structures formed from core deletion proteins, the peak gradient fractions 

containing core deletion protein should correspond with the peak a 32P-UTP-RNA- 

containing fractions.

It may be possible that RNA could be present within an aggregate of proteins due to 

interactions with the basic C-terminal region of the proteins. This may result in the RNA 

being protected from the nuclease treatment of cellular extracts. This would explain the 

correlation in the position of the bands for the 5'F10, 5'F20 and 5'F30 core deletion 

proteins after both staining procedures. However, if this was the case, similar results 

would be expected for other deletion proteins.
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3J Investigation  of the cellular localisation o f core deletion proteins  

3J1 Introduction

Core protein has been shown by a number of groups to localise to the nucleus, 

cytoplasm or both, in cells either infected with HBV or in cells transfected with the core 

gene alone (see Section 1E4). The signal directing nuclear localisation of core protein was 

contained in the C-terminal arginine-rich region of the protein and may be comprised of 

two distinct regions. This localisation has also been shown to be cell cycle stage- 

dependent (Yeh et al., 1993). Core protein localised to the nucleus in the Gq/G, phase of 

the cell cycle, with the amount localising increasing during G, phase. When cells were in 

S phase, however, the protein was undetectable in the nucleus and instead accumulated in 

the cytoplasm.

It was decided to examine the subcellular localisation of the core deletion proteins 

using immunofluorescence assays. The location of the protein can be determined at a 

specific stage in the cell cycle by the use of aphidicolin, which arrests cells at the Gj/S 

boundary (Pedrali-Noy et al., 1980). The epitope-tagged core gene deletions, along with 

a full-length tagged core gene, were amplified by PCR using primer pair cpk/Hintag. 

These primers included Eco RI and Hind III sites respectively, and primer Hintag also 

included the sequences for the pp65 epitope tag. The PCR products were digested and 

cloned into the vector pRK5 (see Section 2A1) such that the core genes were under the 

control of the CMV IE promoter. After transfection of aphidicolin-treated HepG2 cells 

with these plasmids, cells were fixed and labelled with either a Zymed anti-core 

polyclonal antibody or the anti-pp65 mAb 9220. Labelling was detected using FITC- 

conjugated second antibodies.

3J2 E xpression  o f core deletion proteins in m am m alian cells

An initial experiment was carried out to determine the correct expression of protein 

from this vector and detection by anti-pp65 mAb 9220. Plasmids were transfected into 

COS 7 cells and total cellular extracts prepared. These extracts were then analysed by 

Western blot using the anti-pp65 mAb 9220. The results are shown in Figure 3J2. No 

bands are visible in the lanes containing extracts from cells transfected with vector alone 

or untagged core protein (kindly provided by Ed Dornan - Institute of Virology). The core 

deletion proteins were all specifically detected, but were shown to be expressed at 

different levels, with the A79-125 protein expressed at the lowest level. An additional 

protein of approximately 44kDa was detected in the extract from cells transfected with the 

plasmid expressing epitope tagged full-length core protein. This may represent the dimeric 

form of this protein, as was examined in Section 3D3. Additional proteins of lower 

molecular weight were also detected in extracts from cells transfected with the plasmids
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46 —

3 0  —  

21  —

CoreWT 
A84- 109  
A81-121  
A79- 125  
A 6 0 - 1 1714  —

Figure 3J2: Expression of epitope-tagged core deletion proteins in transfected COS 7 
cells

COS 7 cells in 60mm dishes were transfected with 5pg of pRK5 plasmid expressing 

tagged full-length core protein (CoreWTtag), tagged core deletion proteins (Atag), 

untagged full-length core protein (CoreWT) or vector only (pRK), as a control. After a 

24hr incubation following replacement of the transfection medium, cells were scraped and 

pelleted by centrifugation. The cell pellet was washed twice with PBS, finally 

resuspended in SDS PAGE sample buffer and heat-denatured at 100°C for 5 min. 

Samples were electrophoresed through a 17.5% polyacrylamide gel and Western 

blotted. The blot was incubated with anti-pp65 mAb 9220. Molecular weights of the 

markers used (M) are shown.

expressing epitope tagged full-length core protein and core deletion protein A84-109, but 

these may have only been due to protein degradation during preparation of the extracts.

3J3 Im m un oflu orescen ce assays

Although the core protein has been shown to localise to the nucleus under the 

conditions used here, the results obtained in this section were found to differ (see Figure 

3J3). The full-length core protein did not localise exclusively to the nucleus, but was 

present in both nuclear and cytoplasmic regions of the cells, when examined with the anti- 

pp65 mAb 9220 (Panel A). The same localisation pattern was detected when the 

polyclonal antibody was used (Panel G). Upon closer examination of the amino acid 

sequence of this particular protein it was observed that a Gly>Cys mutation was present 

in the C-terminal region of the protein, at amino acid 153. As the nuclear localisation
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A) B)

C) D)

E) F)

Figure 3J3: Immunofluorescent labelling of cell-cycle arrested HepG2 cells transfected 

with pp65 epitope-tagged core genes (continued on following pages)
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j )

K) L)

Figure 3J3: Immunofluorescent labelling of cell-cycle arrested HepG2 cells transfected 

with pp65 epitope-tagged core genes (continued with legend on the following page)

167



Chapter 3 Results

M )

F i g u r e  3 J 3 : I m m u n o f l u o r e s c e n t  l a b e l l i n g  o f  c e l l - c y c l e  a r r e s t e d  H e p G 2  c e l l s  t r a n s f e c t e d  

w i t h  p p 6 5  e p i t o p e - t a g g e d  c o r e  g e n e s

H e p G 2  c e l l s  a r r e s t e d  a t  t h e  G / S  b o u n d a r y  in t h e  p r e s e n c e  o f  a p h i d i c o l i n  w e r e  

t r a n s f e c t e d  w i t h  p l a s m i d  p R K 5  c o n t a i n i n g  e i t h e r  f u l l - l e n g t h  c o r e  g e n e  w i t h  a  C - t e r m i n a l  

e p i t o p e  t a g ,  e p i t o p e - t a g g e d  c o r e  d e l e t i o n  g e n e s  o r  n o  i n s e r t .  F o l l o w i n g  t r a n s f e c t i o n ,  c e l l s  

w e r e  i n c u b a t e d  w i t h  e i t h e r  a  1 : 3 0 0  d i l u t i o n  o f  a n t i - p p 6 5  m A b  9 2 2 0  o r  u n d i l u t e d  Z y m e d  

p o l y c l o n a l  a n t i b o d y .  A f t e r  w a s h i n g ,  c e l l s  w e r e  i n c u b a t e d  w i t h  e i t h e r  a  1 : 1 0 0  d i l u t i o n  o f  

F I T C - c o n j u g a t e d  g o a t  a n t i - m o u s e  a n t i b o d y ,  o r  a  1 : 6 0  d i l u t i o n  o f  g o a t  a n t i - r a b b i t  F I T C -  

c o n j u g a t e d  a n t i b o d y  t o  e n a b l e  d e t e c t i o n  o f  t h e  p p 6 5  s e q u e n c e  a n d  c o r e  p r o t e i n ,  

r e s p e c t i v e l y .

A) Full-length core protein - mAb 9220 G) Full-length core protein - Zymed pAb

B) A84-109 - mAb 9220 H) A84-109 - Zymed pAb

C) A81-121 - mAb 9220 I) A81-121 - Zymed pAb

D) A79-125 - mAb 9220 J) A79-125 - Zymed pAb

E) A60-117 - mAb 9220 K) A60-117 - Zymed pAb

F) pRK5 - mAb 9220 L) pRK5 - Zymed pAb
M) Untagged full-length core protein 

- Zymed pAb
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signal ot the core protein is located within this C-terminal region of the protein, the 

Gly 153Cys mutation may have affected the localisation of this protein.

The core deletion proteins were all detected effectively using mAb 9220 (Panels B-

E), but none were detected with the anti-core polyclonal antibody (Panels H-K). The 

localisation of all four core deletion proteins was found to be similar, with protein present 

in both the cytoplasm and the nucleus of the cells, in a manner similar to that observed for 

the epitope-tagged full-length protein used in these experiments. The C-terminal amino 

acid sequences of these proteins were examined for mutations, but none were detected. It 

was concluded that the core deletion proteins did not display the same subcellular 

localisations as wild-type core protein. Rather, the proteins showed a distribution that was 

both nuclear and cytoplasmic, even when cells were arrested at the G,/S boundary by 

incubation with aphidicolin. Cells transfected with plasmid alone showed minimal 

fluorescence with either antibody (Panels F and L). Panel M shows the nuclear 

fluorescence observed when untagged full-length core protein with no C-terminal amino 

acid mutations was expressed (this plasmid construct was kindly supplied by Ed Dornan - 

Institute of Virology). The core protein was detected using the Zymed polyclonal 

antibody.

3J4 D iscu ssion

The results from this section have shown that the core deletion proteins showed a 

subcellular distribution that was altered from that of full-length wild-type core protein. At 

the G,/S boundary of the cell cycle, all the deletion proteins were located in the cytoplasm 

in addition to the nucleus. This altered distribution may have been due to the presence of 

the C-terminal epitope tag sequences, which could interfere with the normal function of 

the core protein nuclear localisation signal. The more likely possibility was this signal was 

affected by the deletion of the upstream core protein residues, or by the new amino acid 

sequence formed as a result of the deletion. From the results of previous sections, where 

the core deletion proteins were shown to be incapable of forming as core particles, it may 

have been expected that they would not display other properties which characterise the 

full-length protein.
The epitope-tagged full-length core protein studied here, again in contrast to 

published reports, did not localise exclusively to the nucleus, but displayed a distribution 

throughout the nucleus and cytoplasm of the cell, similar to that observed for the core 

deletion proteins. This was thought to be due to a Gly 153Cys mutation in the C-terminal 

region o f the protein. A previous mutation (Argl51Thr) in this region was shown to 

inactivate the core protein nuclear localisation signal (Eckhardt et a l ,  1991).

The implications of core protein C-terminal mutations and the related alterations in 

subcellular localisation of the proteins are unclear at present. Recent results from our 

laboratory have suggested a correlation between core protein localisation in the cytoplasm
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and ongoing disease (Dornan et al., 1996). Sequential serum samples from e antigen 

positive patients, who subsequently seroconverted to anti-HBe antibody, and patients 

who were continually anti-HBe positive were analysed. The core gene was amplified by 

PCR (using an antisense primer which did not include the nucleotide sequences encoding 

the pp65 epitope tag) and cloned into pRK5. Following transfection of HepG2 cells the 

location ot the core protein was analysed in a manner identical to that used in this section, 

using the Zymed polyclonal antibody. Patients who seroconverted to anti-HBe antibody 

and went into clinical remission showed no change in the localisation of the core protein 

between sequential serum samples: all samples showed strong nuclear fluorescence for 

core protein. However, patients with ongoing disease after seroconversion to anti-HBe 

antibody showed increased cytoplasmic core protein in samples taken after 

seroconversion. Increased cytoplasmic core protein expression was also detected in later 

sequential samples from patients who were continually anti-HBe positive, but remained 

viremic and had episodic reactivations of hepatitis.

As the localisation of the core deletion proteins is both nuclear and cytoplasmic (for 

the particular samples tested), the disease observed in the patient from which these 

variants were isolated may be caused by a similar mechanism to that observed in the 

patients described above. Work is ongoing to attempt to further determine the possible 

details of such a mechanism.
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3K Sequence analysis of co-existing fu ll-length  core genes 

3K1 Introduction

For all but two cases where the existence of core gene deletions has been described, 

investigators have also been able to detect full-length core gene in the same samples. The 

relative proportions of the two populations has not been well-documented, but greater 

attention has been focused on the core deletion genes. The rationale behind this was that 

as the regions deleted in these genes corresponded approximately to antigenic regions of 

the protein, it was hypothesised that these deletion variants may have represented a form 

of immune escape from one or more arms of the immune response. By allowing the virus 

to persist in this way, these deletion variants may have contributed to the chronic nature of 

the disease which affected these patients. However this attention may have been wrongly 

focused, and it may have been that the co-existing virus was in fact responsible for the 

disease state, in a manner similar to chronic patients without core gene deletions.

With this hypothesis in view it was decided to isolate and sequence full-length core 

genes, including the pre-core region, from the serum of patients with core gene deletions. 

This was made possible by the very kind gift of an aliquot of serum from Dr. N . 

Naoumov, from the Kings College group in London. This serum came from an e antigen- 

positive Chinese patient with CAH, from whom the core gene deletions A81-121, A79- 

125 and A60-1 17 had been isolated. After extraction of DNA from the serum, the pre

core/core region was amplified by PCR using primer pair C1/C2. When the products of 

this reaction were analysed by agarose gel electrophoresis, a broad band at approximately 

600bp could be detected, representing core gene deletions, with only a fainter smear 

visible at approximately 730bp, corresponding to full-length core gene. However, when 

both bands were excised, gene-cleaned and cloned into the PCR-cloning vector pT7-Blue, 

no full-length genes could be isolated from recombinant plasmids. It was then decided to 

gene-clean total PCR products and make them blunt-ended using Klenow polymerase. 

The products could then be cloned into Sma I-digested plasmid pTZ18R, full-length 

genes being identified by Eco RI/Hin d ill digests of recombinant plasmid mini-prep DNA 

which were subsequently sequenced.

3K 2 R esu lts
A total of 84 pre-core/core genes were analysed following cloning of the PCR 

products as described above. Restriction enzyme digest fragments that were smaller in 

size than approximately 800bp, as determined by agarose gel electrophoresis, were 

excluded from further study. The full-length genes of the remaining 33 clones were then 

completely sequenced. Upon closer sequence analysis, it was found that only 10 of the 33 

'full-length' genes actually represented complete genes. The remaining genes all had small
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Chapter 3 Results

deletions from 29-38bp between nucleotides 385 and 431 (inclusive) of the core gene. 

Among these clones, the predominant deletion was a 37bp deletion of nucleotides 387- 

423, inclusive. Mutations observed in the amino acid sequences derived from the full- 
length genes are shown in Table 3K.

From these results, the sequences can be separated into two groups: sequences with 

a pre-core stop mutation and those without. However there was no significant difference 

in the number of mutations between these two groups (x2 test; P<0.1). In addition several 

mutations were common to both groups: S26A, L60V, V85I, P130T, T147A, S155P and 

Q 182Stop. Frequent mutations were observed which were specific to either group, such 

as R158G and P5T, in addition to sporadic mutations at other positions. The observed 

mutations do not appear to cluster in any of the regions suggested by other groups (see 

Section 1D2), with the exception perhaps of the region between amino acids 130 and 156 

suggested by Ehata et al. (1992, 1993). Of the 46 mutations observed, 12 (26%) are 

located in this region, but as no functional or immunological significance it has been 

assigned to this portion of the protein the relevance of this is unclear. These results also 

contrast with those of Akarca and Lok (1995) who observed an absence of mutations in 

the C-terminus of the protein which overlapped with the polymerase reading frame.

It was of interest that no mutations occurred within the region between amino acids 

86-129, as this contains the hydrophobic heptad repeat motif required for correct particle 

assembly. Cysteine residues were also unaltered, with the exception of Cys-183, which 

was missing in clones 4, 5, 8, 16 and 43 due to the creation of a stop codon at residue 

182. However, as these residues are not essential for particle assembly their absence is 

not significant.

3K 3 D iscu ssion

The results presented in this section have attempted to analyse mutations occurring 

in full-length core genes from a patient with co-existing core gene deletions. However the 

low number of full-length clones isolated has made this type of analysis less effective than 

was possible; the remaining 23 clones all having small regions deleted. This does show 

that, at this time-point, viruses with core gene deletions are present at greater levels than 

those with full-length core genes (10 full-length:73 deletions). Further longitudinal 

analysis of this particular patient by the group at Kings College has shown that after 

seroconversion, viruses with core gene deletions were lost from the serum, in common 

with other patients having deletions (Patient WT; Marinos et a l ,  1996).

As the significance of mutations in the core gene remains undetermined, it is 

difficult to comment on the absence of any mutational clustering in the sequences from 

this section. It may be that examination of a greater number of clones would shed light on 

this and maybe reveal signilicant regions.
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In conclusion, the presence of full-length core genes containing no mutations which 

would be likely to disrupt the functional role played by the protein, provides the means 

for the propagation of viral genomes with core gene deletions. Further analysis of the 

relevance of core mutations, particularly in relation to the immune response, is required 

before their significance is determined.
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CHAPTER 4 DISCUSSION

Hepatitis B viruses with deletions in the core gene can represent a large population 

of viral variants observed during chronic infections. As the significance of many HBV 

variants remains unclear, the work presented in this thesis has attempted to identify and 

characterise any possible functional roles for core gene deletions in the life cycle o f the 

virus or in the pathology of the disease.

4A Do core deletion proteins form  core particles?

An important initial question regarding the relevance of core gene deletions was 

whether or not the resulting proteins could assemble into core particle structures. That 

core protein can tolerate substantial deletions o f various regions as well as insertions of 

large heterologous sequences and still form core particles shows its tremendous structural 

flexibility. It was therefore hypothesised that proteins with central deletions would also 

retain this ability, especially those with smaller deletions.

The results from Sections 3C, 3D and 3H have shown that, under the conditions 

used, no core particle-like structures could be detected when core proteins containing 

naturally-occurring deletions were expressed and purified. Despite the fact that Western 

blot analysis of sucrose gradient fractions showed the presence of these proteins in 

fractions where particles would have been expected, none were visible by electron 

microscopic examination. Two possibilities exist: (i) that no particles, only large 

aggregates of protein, were formed or (ii) that particulate structures did actually form but, 

despite all precautions taken, they were insufficiently stable to allow detection by electron 

microscopic examination. The latter possibility seems likely for the A81-121 5'fill-in 

proteins, where particles with encapsidated nucleic acid were also suggested by the 

agarose gel assay (see Section 3H), but not visible by electron microscopy.

Other experimental strategies could have been pursued to address this possibility 

had time allowed. A cross-linking agent such as glutaraldehyde, added to the protein 

solution immediately after the sucrose gradient fractionation stage, may have stabilised 

any particulate structures. Another possibility was to immunoprecipitate proteins from the 

bacterial extract, but problems may have arisen as m ajor core protein epitopes were 

deleted (see Section 3B). It may have been possible to use the anti-pp65 mAb 9220 for 

these experiments, but unfortunately this antibody/epitope tag combination does not work 

well in such experiments (John McLauchlan, MRC Virology Unit - personal 

communication).
The most obvious reason for the failure of particle formation is that the missing 

regions completely disrupt the tertiary structure of the protein, making it impossible for 

the protein dimers to form particles. The observation that the core deletion proteins retain
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the ability to dimerise (see Section 3D3) does not guarantee that these dimers are in the 

correct conformation for the subsequent core particle assembly: the formation of 

disulphide bonds may only require cysteine residues to be in close proximity and exposed 

at the surface of the folded protein.

It is also now obvious that the central region of core protein does not form a 

separate, external, globular domain, which could have been removed with minimal 

disturbance to the remainder of the polypeptide chain. Even the smallest regions, which 

were deleted in the A81-121 5'F30 and 3'F30 proteins, do not seem to form separate 

domains. These particular regions must therefore be located within the main domain of 

the protein. This has now been shown experimentally by the structural studies of core 

particles published during the production of this thesis (Conway et al., 1997; Bottcher et 

al., 1997; see Section 1E5). These studies showed that four a-helices were formed by the 

polypeptide backbone of the core protein. Comparison of the polypeptide chain 

conformation obtained from these results with the locations of the natural core protein 

deletions studied in this thesis showed that the deletions removed at least the entire third 

helix (A84-109) and, in the case of A60-117, large sections of helices 2 and 4 were 

removed as well. As helices 2 and 3 form part of the novel four-helix bundle found in the 

core particle, central deletions destroy this structurally important region of the protein.

These structural studies also provide a possible explanation for the inability of the 

Acore-surface hybrid protein to form stable particles (see Section 3E2). Examination of 

the surface protein sequence used to replace core residues 81-121 showed that this region 

contained seven proline residues. It was previously thought that this region of the protein 

contained mainly (3-sheets (Argos and Fuller, 1988) and so would not be disrupted by the 

presence of these residues. However, their presence would certainly disrupt the third and 

fourth a-helices now known to be present in this region of the protein. These two helices 

are also affected by the two smallest deletions created, A81-121 5'F30 and 3'F30, with 

the N-terminal third of helix 3 and the N-terminal half of helix 4 removed, respectively. 

Disruption of these regions of secondary structure may be the primary factor in 

prohibiting particle assembly. The deletion reported by Valliammai et al. (1995) removed 

amino acids 41-51 which contain only a region of unstructured polypeptide and the N- 

terminal residue of helix 2 (according to the structure from Bottcher et al. (1997)). As the 

hydrophobic heptad repeat (see below) is also undisturbed by this deletion, this particular 

deletion protein may well be assembly-competent.

It may be of interest to create deletions which reduce the length of helices 2 and 3 

equally, by removing residues 75-85 for example and determine whether this would 

allow particle assembly. Deletion of this region should only reduce the length of the spike 

on the external surface of the particle and therefore may have an increased probability of 

assembling altered core particles. A logical mutagenesis approach such as this, based 

upon knowledge of the structure of the core protein, may have a greater chance of
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defining the residues required for particle assembly, rather than the more random manner 

in which the deletions were created in this thesis.

The identification of the hydrophobic heptad repeat motif in core protein (Yu et al., 

1996), published toward the end of the work in this thesis, provided an additional 

explanation for the inability of core deletion proteins to form particles. This important 

motif for particle assembly was disrupted by all four natural deletions, with at least two 

m otif residues missing or, in the case of A79-125, all four residues. When viewed in the 

light of the importance of this motif, such gross alterations as the observed deletions 

could only be expected to prohibit particle assembly. The two smallest created deletions, 

A 81-121 5'F30 and 3'F30, removed one or none of the motif residues, respectively, and 

would therefore not have interfered significantly with the function of this motif. The more 

general disruption to the tertiary structure of the core protein described above would 

however, still explain the absence of core particle assembly when these proteins were 

expressed (see Section 3E3).

If further work was to be carried out to address the ability of core deletion proteins 

to form particles, a change of experimental strategy would probably allow more definitive 

results to be generated. Although core particles can be assembled by expression of the 

core gene in heterologous systems, comparisons of the efficiency of this process and the 

equivalent process occurring during the infectious cycle have not been carried out. It is 

possible that the latter system operates at a higher level of efficiency due to the presence 

of additional interactions. For example, interactions between the core protein and the full- 

length pgRNA may catalyse the assembly of the core particle during the encapsidation 

process and perhaps act to stabilise its final structure. Although Birnbaum and Nassal 

(1990) showed that core particles assembled in E.coli could encapsidate RNA, the major 

RNA species present within the particles was only approximately 0.9kb, in contrast to the 

3.5kb pgRNA. The core protein may also interact with the polymerase protein, bound to 

the e sequence. This interaction may initiate the core particle assembly process. As these 

potential interactions are not all necessarily present in the bacterial systems commonly 

used, opting for an experimental system which closely mimics events occurring during 

infection would help increase the authenticity of the results obtained. Amplification of 

viral DNA from serum using the PCR method developed by Gunther et al. (1995) would 

allow the isolation of entire HBV genomes containing core gene deletions. Individual 

variant genomes could then be cloned and transfected into hepatocyte cell lines, in the 

absence of any other viral genomes, to allow viral DNA replication and virion production 

to occur. The advantage of this type of system is that all the cellular and viral components 

required in the lifecycle, subsequent to viral entry and uncoating, are present. If 

functionally normal core particles were produced from genomes containing in-frame core 

gene deletions, any resulting extracellular virions could be purified from the culture 

medium and the nucleic acid analysed to confirm the presence of the deletion. H owever,
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if transfection of these genomes failed to produce virions, intracellular contents could be 

examined for the presence of core particles, thus identifying whether core particle 

assembly or core particle envelopment was the end-point in virion assembly for these 
variants.

4B A re core deletion proteins incorporated into m ixed particles?

As viruses with core gene deletions co-exist with wild-type virus in the majority of 

reported cases, the core deletion proteins may co-assemble with the full-length core 

protein to form altered core particles. This assumes that both types of virus are present in 

the same hepatocyte, which has never formally been proven. However, the results 

discussed above coupled with the detection of these variants in the serum strongly 

suggest this is realistic.

As core particles can be composed of 90 or 120 dimer subunits, a certain degree of 

flexibility is probably permitted in the overall particle structure. For example, the presence 

of a small number of 'altered' subunits may be permitted, with the wild-type core protein 

dimers acting as a scaffold, maintaining the structure of the particle. As the N- and C- 

terminal regions of the protein form the shell of the particle, perhaps only these would be 

required in altered subunits, removing only the spike from the particle surface. Thus, it 

may be possible to include a significant proportion of altered subunits whilst still 

maintaining the structural integrity of the particle.

From the results of Section 3F, it appears that this scenario may exist for the two 

naturally-occurring core deletion proteins studied, A84-109 and A 81-121. However for 

a definitive conclusion to be reached, a more direct experimental approach should be 

employed, such as the immunoelectron microscopy discussed in the results section. 

Comparison with the results of the 5'F30 protein co-expression experiment also stresses 

the need for confirmation of the previous results, as this deletion is included in the A81- 

121 region yet does not appear to assemble into mixed particles. The extra polypeptide 

sequence in this protein compared to the A81-121 protein may alter the conformation so 

that it cannot fit into the subunit packing arrangement of the particle.

If the results for the naturally-occurring deletions are correct, the core particle 

would appear to be capable of tolerating a substantial proportion of altered subunits in its 

structure. In these cases, the original helix 2 may fold back on itself, forming a shorter 

spike but still supplying a sufficient length of polypeptide chain to form the domain 

interacting with the particle shell. In an analogous manner, it may again be of interest to 

determine whether or not a core deletion protein with only the upper region of the spike 

removed would form mixed particles. It is also unknown if mixed particles can 

encapsidate nucleic acid and be enveloped correctly.

If such mixed particles do assemble, encapsidate viral pgRNA and are enveloped 

during infection, what would their relevance be? As discussed previously, core gene
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deletion variants have been proposed to represent a viral subpopulation capable of 

escaping detection and elimination by the immune system. However, no mechanism has 

been proposed in any great detail to explain this hypothesis. Had core deletion proteins 

been able to assemble into particulate structures by themselves, these would have escaped 

recognition, or at best been poorly recognised, by B-cells. This would have reduced or 

eliminated the anti-core humoral response. The efficient initiation of a Th cell response 

would also have been affected in this scenario, as Th epitopes were either removed or 

disrupted by the deletions. In addition, a consequent decrease in the production of anti

core protein and anti-surface protein antibodies would result. As the anti-core Th 

response is held to be the primary factor in determining the outcome of infection, the 

deletions could cause a higher incidence of chronic disease.

However, from the results mentioned previously, the only possibility appears to be 

the formation of mixed core particles. The relevance of these in the course of virus 

infection is more difficult to determine. In this scenario, full-length core protein remains 

present and accessible to all branches of the immune system, making 'immune escape' 

highly unlikely. This does not necessarily mean that the viral deletion variants are 

incapable of influencing the outcome of infection. It may be that the relative strength of 

the immune response is important, in contrast to the generation of an all-or-nothing 

response. In the former case, mixed particles would contain fewer epitopes for antibody 

and Th recognition, thus reducing these responses and their consequent effects.

4C Do core deletion proteins show altered subcellu lar localisations?

From the results of the immunofluorescence assays on transfected HepG2 cells in 

Section 3E4, it appears that core deletion proteins do not share the same subcellular 

distribution as the wild-type protein. Whereas full-length wild-type protein is reported to 

localise to the nucleus in the G, phase of the cell cycle, all four core deletion proteins 

were detected in both the cytoplasmic and nuclear compartments in this phase. This 

apparent lack of cell-cycle regulation of core deletion proteins was not caused by 

disruption of the NLS regions, as no mutations were present in the C-terminus of the core 

deletion proteins. However, other explanations exist: the presence of the epitope tag 

sequences or the absence of the deleted residues could both affect the NLS function.

Full-length epitope-tagged core protein, used as a control, also showed both nuclear 

and cytoplasmic distribution under cell-cycle arrest conditions. This suggested that the 

epitope tag sequences may have prevented cell cycle regulation of the location o f the 

protein, possibly by occluding NLS regions or phosphorylation sites. However, the 

particular full-length protein used in these experiments contained a Gly>Cys mutation at 

amino acid 153. Similar C-terminal point mutations within the NLS have been shown to 

be responsible for significantly altering the localisation pattern of the core protein (Ed 

Dornan, Division of Virology, University of Glasgow - unpublished results): core protein
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with a G in—>Lys mutation at amino acid 169 localised preferentially in the cytoplasm. 

After this single mutation was corrected by site-directed mutagenesis, the protein localised 

to the nucleus when expressed under identical conditions. Therefore, it seems probable 

that the unexpected core protein distribution observed in the results obtained for the full- 

length protein was due to the G lyl53Cys point mutation. In support of this conclusion, 

other full-length core proteins have been examined under identical conditions and have all 

been shown to localise to the cell nucleus (Ed Dornan - personal communication). The 

failure of the core deletion proteins to display the expected subcellular distribution is 

therefore likely to be due to the presence of the deletions.

A similar alteration in localisation caused by the deletion of residues separate from 

the NLS has previously been shown for the murine type IV c-ahl gene product (Van Etten 

et a i ,  1989). Removal of 53 amino acids in the N-terminal region of the protein, 

upstream from the NLS sequence, changed the localisation of the protein. The nuclear 

protein now located to the cytoplasm, with an apparent increased concentration at the cell 

membrane. In a separate experiment, insertion of a four amino acid linker at 

approximately the same position also resulted in this altered localisation. Deletion of the 

core protein residues upstream to the NLS could alter the tertiary structure of the protein 

so as to prevent protein kinases from phosphorylating target residues or inhibiting the 

interaction of the NLS with its nuclear targeting protein. As the precise role of the nuclear 

localisation of core protein and its regulation by the cell cycle are unclear, it is difficult to 

comment on the meaning of these results. Since the deletion proteins do not form particles 

they can play little, if any, role in genome delivery to the nucleus during infection, except 

perhaps in the form of mixed core particles.

4D Are core gene deletion variants an im portant factor in ch ron ic  

h ep atitis?
Large amounts of information have been generated from studies of the core protein 

and core particles over recent years. Studies in the contexts of such fields as 

immunology, structural biology and molecular biology, have allowed a more informed 

assessment of the relative importance of HBV core gene deletion variants to be made.

1) Do core gene deletion variants represent im m une escape?

A hypothesis exists which proposes that deletion of core gene regions which 

encode epitope sequences would prevent or decrease recognition of the protein by the 

immune system. The possibility that the chronic disease observed in patients is a 

consequence of the presence of these variants has been proposed by a number of groups 

(Wakita et al., 1991; Takayanagi et al., 1993; Ackrill et al., 1993; Liordalisi et al., 1994; 

Akarca and Lok, 1995b; Valliammai et al., 1995; Zoulim et al., 1996). However, other 

more thorough studies have cast significant doubt on this hypothesis.
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Gunther et al. (1995) detected core gene deletions in viral genomes cloned from a 

group of renal transplant patients. However, all patients from which deletion variants 

were isolated had been kept under continuous immunosuppressive treatment. Results 

from this study and a similar subsequent study (Gunther et al., 1996b) suggested that 

core gene deletions may be characteristic of this subgroup of HBV-infected patients. 

However, the continuous immunosuppressive therapy received by these patients makes 

immune-mediated selection an unlikely explanation for the emergence of core gene 

deletion variants. This possibility cannot be ruled out entirely, as some immune functions 

may have been retained by these patients.

A longitudinal analysis of changes in core gene deletion variants was carried out by 

Marinos et al. (1996) to determine the effects of both an enhanced immune response, in 

patients undergoing IFN a treatment, and seroconversion to anti-HBe antibody. The study 

showed that viruses containing core gene deletions were preferentially eliminated after 

either IFNa-induced or spontaneous seroconversion to anti-HBe. This failure to persist 

under enhanced immune pressure contrasts with the results obtained for viruses with full- 

length core genes and makes it unlikely that these deletion variants remain undetected by 

the immune system.

Another possibility does exist where core gene deletion variants need not 

completely evade the immune response, but could instead inhibit core-specific T cell 

responses in a manner analogous to that described by Bertoletti et al. (1994a, b). Rather 

than involving a wild-type T cell epitope and a variant epitope containing point mutations, 

the novel peptides formed as a result of juxtaposition of sequences external to the deletion 

may also act as inhibitors of the T-cell responses evoked by the wild-type peptide. 

Alternatively, competition for HLA-binding could occur between novel and wild-type 

peptides, or the novel peptides could render T cells anergic. However, examination of the 

novel sequences formed by the deletions shows they display no homology to T cell 

epitopes identified in core protein. Nevertheless, until tested experimentally, using a 

system similar to that of Bertoletti et al., this scenario cannot be discounted.

2) Are core gene deletion variants responsib le for increased d is e a s e  

sev er ity ?
As discussed previously (Section 1E6) in the majority of studies where viruses 

containing core gene deletions have been detected, patients have suffered from 

CAH/severe liver damage as opposed to being diagnosed as CPH or ASC cases. This 

correlation does suggest a role, as yet undefined, for this type of variant in augmenting 

disease severity.
An alternative explanation for this link is that, rather than representing immune 

escape, core deletion proteins may be directly cytopathic to the hepatocytes in which they 

are expressed. Core protein has previously been associated with such an effect when
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expressed in a HepG2 clone produced by transfection with cloned circular HBV DNA 

(Roingeard et al., 1990). This clone did not produce extracellular virions, despite 

expressing high levels of surface proteins and e antigen. This clone also displayed a high 

level of cell death, in contrast to an identical HBV-producer clone. The reason for this 

cytopathic effect was found to be an accumulation of core protein within the cells.

A similar scenario may exist for core deletion proteins: accumulation of the protein 

may occur, producing a cytopathic effect. Alternatively, the core deletion proteins could 

interfere with particle assembly from full-length protein, leading to an accumulation of 

protein due to its inability to be enveloped and secreted from the cell. Gunther et al. 

(1996b) showed that viruses with core gene deletions could persist and even increase 

with time, presumably leading to increased production and accumulation of core deletion 

proteins with the concomitant cytopathicity. However, such proteins cannot be highly 

cytotoxic as they are able to be transiently expressed in bacterial and mammalian cells 

with no visual evidence of cell death or growth inhibition. In addition, Gunther et al. 

observed only a limited increase in serum markers indicative of hepatocyte destruction, 

again suggesting only a weak cytopathic effect.

From these observations the likelihood of a link between the presence of core 

deletion proteins and disease severity is possible. However, it is unlikely to fully explain 

the increased severity observed in these patients. In addition, other studies of disease state 

in patients with core gene deletions have found no correlation (Okamoto et al., 1987b; 

Akarca and Lok, 1995b).

3) Do core gene deletion variants represent defective interfering particles?

Defective interfering particles (DIPs) are replication-defective viral deletion mutants 

and are associated with most RNA viruses and some DNA viruses (Holland, 1990). DIPs 

can interfere with the growth of homologous wild-type virus by a number of possible 

mechanisms and it has been suggested that they may play a role in several viral infections 

(Holland, 1990). The presence of DIPs may affect viral replication due to the 

modification of viral proteins in the DI genome (dePolo et al., 1987); by alteration of the 

host immune response (Chattopadhyay et al., 1989; Morgan and Dimmock, 1992); or by 

alteration of the expression of viral genes due to novel regulatory proteins being encoded 

by the DI genome (Sai'b et a l,  1993). It is possible that hepadnaviral deletion variants can 

act as DIPs, affecting the wild-type virus with which they co-exist. Experiments 

involving co-transfection of full-length DHBV genomes and defective genomes into 

Huh7 cells have shown that the presence of the defective genome can suppress the 

production of wild-type virions (Horwich et al., 1990). Defective genomes encoding 

either C-terminally truncated polymerase and surface proteins or C-terminally truncated 

polymerase, surface and core proteins were able to reduce the production of virions from 

transfected cells, after co-transfection. This reduction was approximately thirty-fold for
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the latter defective genome and was thought to be due to disruption of the virion assembly 

process by the truncated proteins. It is important that similar experiments are performed 

tor the naturally-occurring HBV deletion variants in order to assess the likelihood that 
they produce DIPs.

The possible effects that core deletion proteins have on the immune responses 

occurring during HBV infection also need to be examined. Core protein can inhibit the 

production of IFNp (see Section 1C3) and has also recently been implicated in the 

decreased expression of the type I interferon-inducible MxA protein observed in Huh7 

cells stably transfected with a defective 2.2kb viral genome (Rosmorduc et al., 1996). 

Core deletion proteins may have increased inhibitory effects on the expression of these 

important immune system proteins or may reduce the responsiveness of infected cells to 

the host immune response. These alterations may be an important factor in determining 

the outcome of HBV infection.

4) Do core gene deletions have effects on other viral genes?

The possibility exists that the deletions originally attributed to the core gene actually 

primarily affect other viral genes. This seems a likely explanation, especially as the 

deletions cluster around the region encoding the core protein hydrophobic heptad repeat 

motif, which is essential to the function of the core protein. However, the central 

clustering of the deletions avoids the polymerase gene. Were the core gene deletions to 

extend much farther in the 3' direction, 5' regions of the polymerase gene would also be 

removed. Instead, studies of two different patient groups have proposed a different 

explanation for the observed clustering. This involves the J- and C2-AUG codons 

(nucleotides 2163-2165 and 2177-2179, respectively), located 5' to the authentic 

polymerase AUG codon as described by Fouillot et al. (1993).

Deletions clustering in the central region of the core gene remove sequences 

encoding both of these AUG codons, but do not affect the authentic polymerase start 

codon. Deletion analysis of this region showed that removing the J and C2 codons 

allowed increased polymerase translation from the downstream ORF. Therefore, in 

viruses with core gene deletions which remove this region, increased polymerase 

expression probably occurs. Due to the requirement for polymerase in the encapsidation 

process, its predicted increased expression in these viruses may explain the high viremia, 

the preferential encapsidation and accumulation of this type of viral variant in renal 

transplant patients (Gunther et a l ,  1995, 1996b). This enhanced expression also provides 

a possible explanation for a selection process for these variants that is independent of 

immune system involvement.
However, Marinos et al. (1996) found that patients with core gene deletions had 

only low levels of viremia, in contrast to the results from the renal transplant patients. 

This was despite the fact that all the core gene deletions had also removed the J- and C2-
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AUG codons. In this case the core deletion proteins were proposed to interfere with core 

particle assembly by full-length core protein dimers. This may have occurred by the 

deletion proteins preventing dimerisation of the full-length protein or preventing full- 

length protein dimers from multimerising. Due to the ds-preferential nature of core 

protein dimerisation, full-length core proteinxore deletion protein dimers are unlikely to 

form, and results from this thesis suggest that the latter possibility may also be unable to 

explain the prevention of particle assembly. Direct interactions between the polymerase 

and core deletion proteins, leading to the inhibition of polymerase function, may instead 

explain the reduced DNA levels. Such interactions may also interfere with the 

encapsidation process, causing further reductions.

Increased presentation of polymerase-specific T cell epitopes may be an additional 

consequence of higher polymerase expression caused by core gene deletions. As this 

protein contains several CTL epitopes, increased levels of CTL activity will occur with a 

resulting increase in hepatocyte lysis and liver damage. This secondary effect o f the 

deletions may alone explain the more severe form of disease suffered by these patients, 

and also the preferential elimination of cells harbouring these variants.

5) Is the co -ex isting  w ild-type virus population  responsib le for the  

d isease state?

Perhaps the most unsatisfactory answer to the question concerning the relevance of 

core gene deletion viruses is that they have no significant role to play in causing the 

disease state observed. This is so unsatisfactory because it consigns this class of variant 

to the same group as all other core gene variants: it is possible to isolate and describe 

them, but their significance remains unknown, as does any possible mechanism linking 

them to chronic hepatitis.

Sequencing of the limited number of full-length genomes revealed no promising 

clues to explain the disease state. It is clear that more detailed studies of this 

subpopulation are required. Such studies should include HLA-typing, in order to refine 

the analysis of mutations; studies of mutations in relevant epitopes for immunological 

differences; assessment of core particle assembly by individual variants; an assessment of 

the stability of particles formed; and quantification of the efficiency of pgRNA 

encapsidation and envelopment by these same variants.

4E M echanism  of generation of core gene deletions

Despite the many reported observations of deletions in the HBV core gene, no 

mechanism for their generation has been discovered. At least two mechanisms are 

possible: splicing of pgRNA and, by analogy to the generation of deletions in a retroviral 

vector-based system (Pathak and Temin, 1990; Pulsinelli and Temin, 1991), a 

mechanism involving errors in plus-strand viral DNA synthesis.
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Splicing of the pgRNA has been discussed previously in Sections 1B3.1 and 

1E6 (2). The intron boundaries contain the consensus 5' GT/C and 3' AG donor and 

acceptor sites. However, examination of the boundaries of the other observed core gene 

deletions shows that neither site is consistently present at these positions. Therefore, 

splicing can only explain the generation of HBV core gene deletion variants if non

consensus donor and acceptor sites can be recognised by the splicing machinery. As 

introns with highly conserved, but non-consensus sequences at both splice sites are 

present in genes from a variety of species (Tarn and Steitz, 1997), splicing of pgRNA 

may be the mechanism whereby deletions in the core gene are generated. However, if this 

is the case, deletions might be expected to occur throughout the genome, which has not 

been observed (Ackrill et al., 1993).

The mechanism of HBV DNA replication may provide an alternative explanation for 

the generation of the core gene deletion variants observed. As reverse transcriptase is an 

error-prone enzyme, base-pair substitutions, insertions and deletions can all occur during 

a single round of replication (Roberts et al., 1989; Pathak and Temin; 1990). Detailed 

characterisation of deletions and other mutations which occurred in a spleen necrosis 

virus-based vector allowed the elucidation of the mechanisms whereby these mutations 

were generated (Pulsinelli and Temin, 1991). Two classes of deletion mutant were 

generated by a mechanism which may be applicable to the generation of HBV core gene 

deletion variants. The first class of retroviral-based vector deletions arose due to a 

misalignment of the 3' terminus of the plus-strand strong stop DNA as it was being 

extended by the reverse transcriptase (see Figure 4A, steps 9 and 10). Sequences at the 3 ' 

terminus of this strand hybridised to sequences which were homologous to those being 

copied, but which were located further downstream in the minus-strand DNA. As 

extension of the plus-strand DNA continued at this new site, a stretch of intervening 

minus-strand nucleotide sequence was deleted. In some cases the homology between the 

sequence being copied and the misalignment site was only two nucleotides. The second 

class of retroviral vector deletions arose due to late termination of the strong stop plus- 

strand DNA (see Figure 4A, step 7). This resulted in the inclusion of additional 

nucleotide sequence at the 3' terminus of the plus-strand DNA. This sequence was 

complementary to the tRNA molecule used as a primer for minus-strand DNA synthesis. 

Following transfer of the plus-strand DNA to the 3' terminus of the minus-strand DNA, 

the tRNA sequences at its 3' terminus could not hybridise to nucleotides adjacent to the 

primer binding site (PBS). Instead, these tRNA sequences hybridised to nucleotides 

further 3' than the PBS, with the deletion of intervening minus-strand DNA sequences.

The deletions described using this experimental system are of interest for two 

reasons: (i) they are generated during a replication cycle which is similar to that of HBV 

and (ii) the deletions are positioned in a region which is the genomic homologue of the 

core gene: 3' to the binding site for the primer of plus-strand DNA synthesis.
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Figure 4A: Summary diagram of retroviral reverse transcription and DNA replication 

(1) Retroviral plus-strand RNA (dashed line) is the template for the synthesis of minus- 

strand strong stop DNA (hatched rectangle). (2) This process occurs by reverse 

transcription and utilises a tRNA primer. (3) Removal of the bound RNA from the minus-

186



Chapter 4 Discussion

strand strong stop DNA by RNase H. (4) Minus-strand strong stop DNA transfer. (5) 

Minus-strand DNA synthesis by reverse transcriptase. (6) Nicking of RNA at the 

polypurine tract (ppt) and removal of 3' sequence by RNase H. (7) Minus-strand DNA 

synthesis continues and plus-strand strong stop DNA (clear rectangle) synthesis is 

initiated using the RNA primer. (8) Removal of RNA by RNase H. (9) Plus-strand strong 

stop DNA transfer. (10) Completion of minus-strand and plus-strand DNA synthesis. 
(Adapted from Pulsinelli and Temin, 1991)

However, the mechanism of generation of the second class of retroviral-based vector 

deletion mutants may not be relevant to the generation of the HBV core gene deletions. 

This is due to the differences that exist between the strategies for DNA replication 

employed by HBV and the retroviruses. In the second class of retroviral-based vector 

deletion mutants, the plus-strand strong stop DNA contained tRNA sequences at its 3 ' 

terminus. As a result, the DNA sequences 3' to the PBS sequence were missing in the 

final double-stranded retroviral DNA and the additional tRNA sequences included in their 

place. However, in HBV DNA replication, the inclusion of extra nucleotides at the 3 ' 

terminus of the primer for plus-strand DNA would be impossible. This is because the 

primer for synthesis of HBV minus-strand DNA is a protein molecule (pol/RTase), rather 

than a nucleic acid. As a result, extra nucleotides complementary to this primer cannot be 

added to the primer for plus-strand DNA synthesis. Also, no additional nucleotides are 

inserted in place of the deleted regions in the HBV core gene deletions. The locations of 

the deletions in this second class of retroviral-based vector deletion mutants also makes 

their mechanism of generation less relevant to the HBV core gene deletions. The retroviral 

deletions were immediately adjacent to the PBS sequence. This removed the E sequence, 

a positional and functional homologue of the e sequence of HBV. As £ sequences are 

present in all HBV core gene deletions, a different mechanism must exist for their 

generation.
The mechanism of generation of the first class of retroviral-based vector deletions 

may be similar to that used to generate HBV core gene deletions: while the 3' terminus of 

the plus-strand DNA primer is being extended, it could misalign with downstream 

sequences similar to those being copied. This would delete the intervening regions of the 

core gene and leave the e sequences intact. However, a closer examination of the 

sequences surrounding the 5' and 3' limits of the core gene deletions shows that this 

mechanism cannot explain the observed deletions. Even the two nucleotide homology 

between the 3’ end of the plus-strand strong stop DNA and the location of the 

misalignment observed for a retroviral-based vector deletion was not present for the 

equivalent sequences in the HBV core gene deletions. Unless the site of misalignment of
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the HBV plus-strand DNA primer is entirely random, with no requirement for nucleotide 

homology, a novel mechanism must exist for the generation of the HBV core gene 
deletions.

As chronic carriers of HBV represent a significant proportion of the population it is 

important that both the viral and host factor/s which determine the outcome of HBV 

infection are more fully investigated. Despite the number of reports of patients with core 

gene deletion variants, no investigations to date have examined possible functions they 

may have, or the effects they may have on the co-existing wild-type viral population. The 

results presented in this thesis have shown that the core deletion proteins encoded by 

these variants cannot functionally substitute for the wild-type protein. Therefore, further 

studies should concentrate on the effects of the interactions between the two types of core 

protein and any consequences these may have on the respective viral populations. The 

possibility that the deletions affect other genes, in particular the polymerase gene, also 

deserves further investigation.

188



REFERENCES

Ackrill, A.M., Naoumov, N.V., Eddleston, A.L.W.F. and W illiams, R. (1993) Specific 

Deletions in the Hepatitis B Virus Core Open Reading Frame in Patients W ith Chronic

Active Hepatitis B. J. Med. Virol., 41, 165-169.

A karca , U.S., Greene, S. and Fok, A.S.F. (1994) Detection of Precore Hepatitis B 

Virus M utants in Asymptomatic HBsAg-positive Family M embers. Hepatology, 19, 
1366-1370.

Akarca, U.S. and Lok, A.S.F. (1995a) Naturally O ccurring H epatitis B Virus Core 

Gene Mutations. Hepatology, 22, 50-60.

Akarca, U.S. and Lok, A.S.F. (1995b) N aturally occurring core-gene-defective

hepatitis B viruses. J. Gen. Virol., 76, 1821-1826.

A lexander, G.J.M. and Eddleston, A.L.W.F. (1986) Does maternal antibody to core 

antigen prevent recognition of transplacental transm ission of hepatitis-B -v irus 

infection? Lancet, i, 296-297.

Ando, K., Moriyama, T., Guidotti, L., Wirth, S., Schreiber, R.D., Schlicht, H.J., Huang, 

S. and Chisari, F.V. (1993) Mechanisms of Class I Restricted Im m unopathology. A 

Transgenic Mouse Model of Fulminant Hepatitis. J. Exp. Med., 178, 1541-1554.

Antonucci, T.K. and Rutter, W.J. (1989) Hepatitis B Virus (HBV) Prom oters Are 

Regulated by the HBV Enhancer in a Tissue-Specific Manner. J. Virol., 63, 579-583.

Araki, K., M iyazaki, J-I., Hino, O., Tom ita, N., Chisaka, O., M atsubara, K. and 

Y am am ura, K-I. (1989) Expression and replication of hepatitis B virus genom e in 

transgenic mice. Proc. Natl. Acad. Sci. USA, 86, 207-211.

A rgos, P. and Fuller, S.D. (1988) A model for the hepatitis B virus core protein: 

prediction of antigenic sites and relationship to RNA virus capsid proteins. EM BO J., 

7, 819-824.

Ashton-Rickardt, P.G. and Murray, K. (1989a) M utants of the H epatitis B Virus 

Surface A ntigen That D efine Som e A ntigenically  E ssential R esidues in the 

Immunodominant a Region. J. Med. Virol., 29, 196-203.



References

Ashton-Rickardt, P.G. and M urray, K. (1989b) M utants T hat C hange the 

Immunological Subtype of Hepatitis B Virus Surface Antigen and Distinguish Between 

Antigenic and Immunogenic Determination. J. Med. Virol., 29, 204-214.

B an croft, W .H., Mundon, F.K. and Russell, P.K. (1972) Detection of A dditional 

Antigenic Determinants of Hepatitis B Antigen. J. Immunol., 109, 842-848.

Barnaba, V., Franco, A., Alberti, A., Balsano, C., Benvenuto, R. and Balsano, F. 

(1989) Recognition of hepatitis B virus envelope proteins by liver-infiltrating T 

lymphocytes in chronic hepatitis B virus infection. J. Immunol., 143, 2650-2655.

Barnaba, V., Franco, A., Alberti, A., Benvenuto, R. and Balsano, F. (1990) Selective 

killing of hepatitis B envelope antigen-specific B cells by class I-restricted, exogenous 

antigen-specific T lymphocytes. Nature, 345, 258-260.

Barnaba, V., Franco, A., Paroli, M., Benvenuto, R., de Petrillo, G., Burgio, V.L., 

Santilio, I., Balsano, C., Bonavita, M.S., Cappelli, G., Colizzi, V., Cutrona, G. and 

Ferrarini, M. (1994) Selective Expansion of Cytotoxic T Lym phocytes with a C D 4+ 

CD'^6+ Surface Phenotype and a Type 1 Profile of Cytokine Secretion in the Liver of 

Patients Chronically Infected with Hepatitis B Virus. J. Immunol., 152, 3074-3087.

Bartenschlager, R. and Schaller, H. (1988) The am ino-term inal dom ain o f the 

hepadnaviral P-gene encodes the terminal protein (genome-linked protein) believed to 

prim e reverse transcription. EMBO J., 7, 4185-4192.

Bartenschlager, R. and Schaller, H. (1992) Hepadnaviral assembly is initiated by 

polym erase binding to the encapsidation signal in the viral RNA genome. EM BO J., 

11, 3413-3420.

Bartenschlager, R., Junker-N iepm ann, M. and Schaller, H. (1990) The P Gene 

Product Of Hepatitis B Virus Is Required as a Structural Component for Genomic RNA 

Encapsidation. J. Virol., 64, 5324-5332.

B avand , M., Feitelson, M. and Laub, O. (1989) The Hepatitis B V irus-Associated 

Reverse Transcriptase Is Encoded by the Viral pol Gene. J. Virol., 63, 1019-1021.



References

B ayer, M .E., Blum berg, B.S. and W erner, B. (1968) Particles associated with 

A ustralia Antigen in the Sera of Patients with Leukaem ia, Down's Syndrom e and 

Hepatitis. Nature, 218, 1057-1059.

Beames, B. and Lanford, R.E. (1993) Carboxy-Terminal Truncations of the HBV Core 

Protein Affect Capsid Formation and the Apparent Size of Encapsidated HBV RNA. 
Virology, 194, 597-607.

Beam es, B. and Lanford, R.E. (1995) Insertions within the Hepatitis B Virus Capsid 

Protein Influence Capsid Formation and RNA Encapsidation. J. Virol., 69, 6833-6838.

Beasley, R.P. and Hwang, L-Y. (1983) Postnatal Infectivity of Hepatitis B Surface 

Antigen-Carrier Mothers. J. Infect. Dis., 147, 185-190.

Beesley, K.M., Francis, M.J., Clarke, B.E., Beesley, J.E., D opping-Hepenstal, P.J.C., 

C lare, J.J., Brown, F. and Romanos, M.A. (1990) Expression in yeast of am ino- 

terminal peptide fusions to hepatitis B core antigen and their immunological properties. 

Bio/Technology, 8, 644-649.

Benn, J. and Schneider, R.J. (1994) Hepatitis B virus HBx protein activates Ras-GTP 

com plex formation and establishes a Ras, Raf, M AP kinase signaling cascade. Proc. 

Natl. Acad. Sci. USA, 91, 10350-10354.

Benn, J. and Schneider, R.J. (1995) Hepatitis B virus HBx protein deregulates cell 

cycle checkpoint controls. Proc. Natl. Acad. Sci. USA, 92, 11215-11219.

Benn, J., Su , F., Doria, M. and Schneider, R.J. (1996) Hepatitis B Virus HBx Protein 

Induces Transcription Factor AP-1 by Activation of Extracellular Signal-Regulated and 

c-Jun N-Terminal Mitogen-Activated Protein Kinases. J.Virol., 70, 4978-4985.

Berting, A., Hahnen, J., Kroger, M. and Gerlich, W.H. (1995) Com puter-A ided 

Studies on the Spatial Structure of the Small Hepatitis B Surface Protein. Intervirology, 

38, 8-15.

Bertoletti, A., Ferrari, C., Fiaccadori, F., Penna, A., M orgolskee, R., Schlicht, H.J., 

Fow ler, P., G uilhot, S. and Chisari, F.V. (1991) HLA class I-restricted human 

cytotoxic T cells recognize endogenously synthesized hepatitis B virus nucleocapsid 

antigen. Proc. Natl. Acad. Sci. USA, 88, 10445-10449.



References

Bertoletti, A., Chisari, F.V., Penna, A., Guilhot, S., Galati, L., Missale, G., Fowler, P., 

Schlicht, H-J., Vitiello, A., Chesnut, R.C., Fiaccadori, F. and Ferrari, C. (1993) 

D efinition of a M inimal Cytotoxic T-Cell Epitope w ithin the H epatitis B V irus 

Nucleocapsid Protein. J. Virol., 67, 2376-2380.

Bertoletti, A., Sette, A., Chisari, F.V., Penna, A., Levrero, M., De Carli, M., Fiaccadori, 

F. and Ferrari, C. (1994a) Natural variants of cytotoxic epitopes are T-cell receptor 

antagonists for antiviral cytotoxic T cells. Nature, 369, 407-410.

Bertoletti, A., Constanzo, A., Chisari, F.V., Levrero, M., Artini, M., Sette, A., Penna, 

A., G iuberti, T., Fiaccadori, F. and Ferrari, C. (1994b) Cytotoxic T Lym phocyte 

Response to a W ild Type Hepatitis B Virus Epitope in Patients Chronically Infected by 

Variant Viruses Carrying Substitutions within the Epitope. J. Exp. Med., 80, 933-943.

B ichko, V., Schodel, F., Nassal, M., Gren, E., Berzinsh, I., Borisova, G., M iska, S., 

Peterson, D.L., Gren, E., Pushko, P. and W ill, H. (1993) Epitopes recognized by 

antibodies to denatured core protein of hepatitis B virus. Mol. Immunol., 30, 221-231.

Birnbaum , F. and Nassal, M. (1990) H epatitis B Virus N ucleocapsid Assem bly: 

Primary Structure Requirements in the Core Protein. J. Virol., 64, 3319-3330.

B ir n b o im , H.C. and D oly, J. (1979) A rapid alkaline extraction procedure for 

screening recombinant plasmid DNA. Nucleic Acids Res., 7, 1513-1523.

Bishop, D.H.L. (1992) Baculovirus expression vectors. Semin, in Virol., 3, 253-264.

Blum , H.E., Liang, T.J., Galun, E. and Wands, J.R. (1991) Persistence of Hepatitis B 

Viral DNA After Serological Recovery from Hepatitis B Virus Infection. Hepatology, 

14, 56-63.

B lum berg, B.S., Alter, H.J. and Visnich, S. (1965) A 'New' Antigen in Leukem ia 

Sera. J. Amer. Med. Assoc., 191, 541-546.

Blum berg, B.S., Gerstley, B.J.S., Hungerford, D.A., London, W.T. and Sutnick, A.I. 

(1967) A Serum Antigen (Australia Antigen) in Down's Syndrom e, Leukem ia and 

Hepatitis. Ann. Intern. Med., 66, 924-931.



References

B ock , C-T., Schwinn, S., Schroder, C.H., V elhagen, I. and Zentgraf, H. (1996) 

Localization ot H epatitis B Virus Core Protein and Viral DNA at the N uclear 
Membrane. Virus Genes, 12, 53-63.

B oner, W ., Schlicht, H-J., Hanreider, K., Holmes, E.C. and Carm an, W .F. (1995) 

Further Characterization of 2 Types of Precore Variant Hepatitis B Virus Isolates from 

Hong Kong. J. Infect. Dis., 171, 1461-1467.

B orisova, G.P., Berzino, I., Pushko, P.M., Pumpen, P., Gren, E.J., Tsibinogin, V.V., 

Loseva, V., Ose, V., Ulrich, R., Siakkou, H. and Rosenthal, H.A. (1989) Recombinant 

core particles of the hepatitis B virus exposing foreign antigenic determinants on their 

surface. FEBS Letters, 259, 121-124.

Bottcher, B., Wynne, S.A. and Crowther, R.A. (1997) Determination of the fold of the 

core protein of hepatitis B virus by electron cryomicroscopy. Nature, 386, 88-91.

Brown, C.S., van Lent, J.W .M ., Vlak, J.M. and Spaan, W .J.M . (1991) Assembly of 

Empty Capsids by Using Baculovirus Recombinants Expressing Human Parvovirus B19 

Structural Proteins. J. Virol., 65, 2702-2706.

Brown, P.M., Tagari, P., Rowan, K.R., Yu, V.L., O'Niell, G.P., Vader, D., M iddaugh,

C.R., Sanyal, G., Ford-Hutchinson, A.W. and Nicholson, D.W. (1995) Epitope-labeled 

Soluble Human Interleukin-5 (IL-5) Receptors: A ffinity cross-link labeling, IL-5 

binding, and biological activity. J. Biol. Chem., 270, 29236-29243.

Bruce, S.A. and Murray, K. (1995) Mutations of Some Critical Amino Acid Residues 

in the Hepatitis B Virus Surface Antigen. J. Med. Virol., 46, 157-161.

Brunetto, M.R., Giarin, M.M., Oliveri, F., Chiaberge, E. Baldi, M., Alfarano, A., Serra,

A., Saraccco, G., Verme, G., Will, H. and Bonino, F. (1991) W ild-type and e antigen- 

minus hepatitis B viruses and course of chronic hepatitis. Proc. Natl. Acad. Sci. USA, 

88,4186-4190.

Bruss, V. and Gerlich, W.H. (1988) Formation of Transm em braneous Hepatitis B e- 

Antigen by Cotranslational in Vitro Processing of the Viral Precore Protein. Virology, 

163, 268-275.

Bruss, V. and Ganem, D. (1991a) Mutational Analysis of Hepatitis B Surface Antigen 

Particle Assembly and Secretion. J. Virol., 65, 3813-3820.



References

B russ, V. and Ganem, D. (1991b) The role of the envelope proteins in hepatitis B 

virus assembly. Proc. Natl. Acad. Sci. USA, 88, 1059-1063.

Bruss, V. and Thomssen, R. (1994) Mapping a Region of the Large Envelope Protein 

Required tor Hepatitis B Virion Maturation. J. Virol., 68, 1643-1650.

B ru ss , V., Lu, X., Thom ssen, R. and G erlich, W .H. (1994) Post-translational 

alterations in transmembrane topology of the hepatitis B virus large envelope protein. 

EM BO J., 13, 2273-2279.

Bulla, G.A. and Siddiqui, A. (1989) Negative Regulation of the Hepatitis B Virus Pre- 

S 1 Promoter by Internal DNA Sequences. Virology, 170, 252-260.

Burrell, C.J., Mackay, P., Greenaway, P.J., Hofschneider, P.H. and M urray, K. (1979) 

Expression in Escherichia coli of hepatitis B virus DNA sequences cloned in plasm id 

pBR322. Nature, 279, 43-47.

Carman, W .F., Jacyna, M .R., Hadziyannis, S., K arayiannis, P., M cG arvey, M .J., 

M akris, A. and Thomas, H.C. (1989) Mutation preventing formation of hepatitis B e 

antigen in patients with chronic hepatitis B infection. Lancet, ii, 588-591.

Carman, W .F., Ferrao, M., Lok, A.S.F., Ma, O.C.K., Lai, C.L. and Thom as, H.C.

(1992) Precore Sequence Variation in Chinese Isolates of Hepatitis B Virus. J. Inf. 

Dis., 165, 127-133.

Carm an, W.F. (1995a) Variation in the Core and X G enes of H epatitis B Virus. 

Intervirology, 38, 75-88.

Carm an, W.F., Thursz, M., Hadziyannis, S., M cIntyre, G., Colman, K., Gioustoz, A., 

Fattovich, G., Alberti, A. and Thomas, H.C. (1995b) Hepatitis B e antigen negative 

chronic active hepatitis: hepatitis B virus core mutations occur predominantly in known 

antigenic determinants. J. Viral Hepatitis, 2, 77-84.

Cattaneo, R., W ill, H., Hernandez, N. and Schaller, H. (1983) Signals regulating 

hepatitis B surface antigen transcription. Nature, 305, 336-338.

Cattaneo, R., Will, H. and Schaller, H. (1984) Hepatitis B virus transcription in the 

infected liver. EMBO J., 3, 2191-2196.



References

C hang, H-K., Wang, B-Y., Yuh, C-H., Wei, C-L. and Ting, L-P. (1989) A Liver- 

Specific Nuclear Factor Interacts with the Promoter Region of the Large Surface Protein 

of Human Hepatitis B Virus. Mol. Cell. Biol., 9, 5189-5197.

C han g, C., Zhou, S., Ganem, D. and Standring, D.N. (1994) Phenotypic M ixing 

between Different Hepadnavirus Nucleocapsid Proteins Reveals C Protein Dimerization 

To Be cis Preferential. J. Virol., 68, 5225-5231.

C hattopadhyay, S.K., Morse III, H.C., Makino, M., Ruscetti, S.K. and Hartley, J.W. 

(1989) Defective virus is associated with induction of murine retrovirus-induced 

immunodeficiency syndrome. Proc. Natl. Acad. Sci. USA, 86, 3862-3866.

Chen, P-J., Chen, C-R., Sung, J-L. and Chen, D-S. (1989) Identification of a Doubly 

Spliced Viral Transcript Joining the Separated Domains for Putative Protease and 

Reverse Transcriptase of Hepatitis B Virus. J. Virol., 63, 4165-4171.

Chen, M., Hieng, S., Qian, X., Costa, R., and Ou, J-H. (1994) Regulation of Hepatitis 

B Virus ENI Enhancer Activity by Hepatocyte-Enriched Transcription Factor HNF3. 

Virology, 205, 127-132.

Chen, Y-C. J., Delbrook, K., Dealwis, C., Mimms, L., M ushahwar, I.K. and M andecki, 

W. (1996) Discontinuous epitopes of the hepatitis B surface antigen derived from  a 

filamentous phage peptide library. Proc. Natl. Acad. Sci. USA, 93, 1997-2001.

C heong , J., Yi, M., Lin, Y. and Murakami, S. (1995) Human RPB5, a subunit shared 

by eukaryotic nuclear RNA polymerases, binds human hepatitis B virus X protein and 

may play a role in X transactivation. EMBO J., 14, 143-150.

Chisari, F.V., Filippi, P., McLachlan, A., Milich, D.R., Riggs, M., Lee, S., Palm iter, 

R.D., Pinkert, C.A. and Brinster, R.L. (1986) Expression of Hepatitis B Virus Large 

Envelope Polypeptide Inhibits Hepatitis B Surface Antigen Secretion in Transgenic 

Mice. J. Virol., 60, 880-887.

Chu, C-M. and Liaw, Y-F. (1987) Intrahepatic Distribution of Hepatitis B Surface and 

Core Antigens in Chronic Hepatitis B Virus Infection. Gastroenterology, 92, 220-225.



References

C h u , C-M . and Liaw, Y-F. (1992) Im m unohistological study of intrahepatic 

expression of hepatitis B core and E antigens in chronic type B hepatitis. J. Clin. 
Pathol., 45, 791-795.

Chu, C-M ., Karayiannis, P., Fowler, M.J.F., M onjardino, J., Liaw, Y-F. and Thomas, 

H.C. (1985) Natural History of Chronic Hepatitis B Virus infection in Taiwan: Studies 

of Hepatitis B Virus DNA in Serum. Hepatology, 5, 431-434.

Chu, C-M., Yeh, C-T., Sheen, I-S. and Liaw, Y-F. (1995) Subcellular Localization of 

Hepatitis B Core Antigen in Relation to Hepatocyte Regeneration in Chronic Hepatitis

B. Gastoenterology, 109, 1926-1932.

Chuang, W -L., Omata, M., Ehata, T., Yokosuka, O., Ito, Y., Imazeki, F., Lu, S-N., 

Chang, W-Y. and Ohto, M. (1993) Precore Mutations and Core Clustering M utations 

in Chronic Hepatitis B Virus Infection. Gastroenterology, 104, 263-271.

Clark, J.M. (1988) Novel non-templated nucleotide addition reactions catalysed by 

procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res., 16, 9677-9686.

C ohen , B.J. and Richmond, J.E. (1982) Electron m icroscopy o f hepatitis B core 

antigen synthesized in E.coli. Nature, 296, 677-678.

Colgrove, R., Simon, G. and Ganem, D. (1989) T ranscriptional A ctivation of 

Homologous and Heterologous Genes by the Hepatitis B Virus X Gene Product in Cells 

Permissive for Viral Replication. J. Virol., 63, 4019-4026.

Colucci, G., Beazer, Y., Cantaluppi, C. and Tackney, C. (1988) Identification of a 

m ajor hepatitis B core antigen (HBcAg) determinant by using synthetic peptides and 

monoclonal antibodies. J. Immunol., 141, 4376-4380.

Condreay, L.D. Wu, T-T., Aldrich, C.E., Delaney, M.A., Summers, J., Seeger, C. and 

M ason, W.S. (1992) Replication of DHBV Genomes with M utations at the Sites of 

Initiation of Minus- and Plus-Strand DNA Synthesis. Virology, 188, 208-216.

Conway, J.F., Cheng, N., Zlotnick, A., W ingfield, P.T., Stahl, S.J. and Steven, A.C. 

(1997) Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron 

microscopy. Nature, 386, 91-94.



References

Cote, P.J. and Gerin, J.L. (1983) N onoverlapping Antigenic Sites of W oodchuck 

H epatitis Virus Surface Antigen and Their Cross-Reactivity with Ground Squirrel 

Hepatitis Virus and Hepatitis B Virus Surface Antigens. J. Virol., 47, 15-23.

C ross, J.C., W en, P. and Rutter, W.J. (1993) Transactivation by hepatitis B virus X 

protein is prom iscuous and dependent on m itogen-activated cellular serine/threonine 

kinases. Proc. Natl. Acad. Sci. USA, 90, 8078-8082.

Crowther, R.A., Kiselev, N.A., Bottcher, B., Berriman, J.A., Borisova, G.P., Ose, V. 

and Pum pens, P. (1994) Three-Dim ensional Structure of Hepatitis B Virus Core 

Particles Determined by Electron Cryomicroscopy. Cell, 77, 943-950.

Dane, D.S., Cameron, C.H. and Briggs, M. (1970) Virus-Like Particles in the Serum 

of Patients with Australia-Antigen-Associated Hepatitis. Lancet, i, 695-698.

de Bruin, W .C.C., H ertogs, K., Leenders, W .P.J., Depla, E. and Yap, S.H. (1995) 

H epatitis B virus: specific binding and internalisation of small HBsAg by human 

hepatocytes. J. Gen. Virol., 76, 1047-1050.

Dejean, A., Sonigo, P., W ain-Hobson, S. and Tiollais, P. (1984) Specific hepatitis B 

virus integration through a viral 11-base pair direct repeat. Proc. Natl. Acad. Sci. USA, 

81, 5350-5354.

Delius, H., Gough, N.M ., Cameron, C.H. and M urray, K. (1983) Structure of the 

Hepatitis B Virus Genome. J. Virol., 47, 337-343.

del V al, M ., Schlicht, H-J., V olkm er, H., M esserk, M ., R eddehase, M .J. and 

K oszinowski, V.H. (1991) Protection against Lethal Cytom egalovirus Infection by a 

Recom binant Vaccine Containing a Single Nonameric T-Cell Epitope. J. V irol., 65, 

3641-3646.

dePolo, N.J., Giachetti, C. and Holland, J.J. (1987) Continuing Coevolution of Virus 

and Defective Interfering Particles and of Viral Genome Sequences during U ndiluted 

Passages: Virus M utants Exhibiting Nearly Complete Resistance to Formerly D ominant 

Defective Particles. J. Virol., 61, 454-464.

Diepolder, H.M., Jung, M-C., W ierenga, E., Hiffman, R.M ., Zachoval, R., Gerlach, 

T.J., Scholz, S., Heavner, G., Riethmiiller, G. and Pape, G.R. (1996) Anergic TH1



References

Clones Specific for Hepatitis B Virus (HBV) Core Peptides Are Inhibitory to Other 

HBV Core-Specific CD4+ Cells In Vitro. J. Virol., 70, 7540-7548.

Dingwall, C., Robbins, J., Dilworth, S.M., Roberts, D. and Richardson, W.D. (1988) 

The Nucleoplasmin Nuclear Location Sequence Is Larger and More Complex than That 

of SV-40 Large T Antigen. J. Cell Biol., 107, 841-849.

Dopheide, T.A.A. and Azad, A.A. (1996) The hepatitis B virus X protein is a potent 

AM P kinase. J. Gen. Virol., 77, 173-176.

Doria, M., Klein, N., Lucito, R. and Schneider, R.J. (1995) The hepatitis B virus HBx 

protein is a dual specificity cytoplasm ic activator of Ras and nuclear activator of 

transcription factors. EMBO J., 14, 4747-4757.

D ornan, E., Boner, W., W akeling, M., Hadziyannis, S., Fattovich, G. and Carm an, 

W .F. (1996) Shift in cellular distribution by confocal m icroscopy of an in vitro 

expressed HBcAg from sequential patient samples. A bstract A 195, IXth Triennial 

International Symposium on Viral Hepatitis and Liver Disease.

Dreesman, G.R., Sanchez, Y., Ionescu-M atiu, I., Sparrow, J.T., Six, H.R., Peterson,

D.L., Hollinger, F.B. and Melnick, J.L. (1982) Antibody to hepatitis B surface antigen 

after a single inoculation of uncoupled synthetic HBsAg peptides. Nature, 295, 158- 

160.

D yson, M.R. and M urray, K. (1995) Selection of peptide inhibitors of interactions 

involved in complex protein assemblies: Association of the core and surface antigens of 

hepatitis B virus. Proc. Natl. Acad. Sci. USA, 92, 2194-2198.

E ble, D.E., Lingappa, V.R. and Ganem, D. (1986) Hepatitis B Surface Antigen: an 

Unusual Secreted Protein Initially Synthesized as a Transmembrane Polypeptide. Mol. 

Cell. Biol., 6, 1454-1463.

Eble, D.E., MacRae, D.R., Lingappa, V.R. and Ganem, D. (1987) M ultiple Topogenic 

Sequences Determine the Transmembrane Orientation of Hepatitis B Surface Antigen. 

Mol. Cell. Biol., 7, 3591-3601.

Eble, D.E., Lingappa, V.R. and Ganem, D. (1990) The N-Terminal (pre-S2) Domain 

of a H epatitis B Virus Surface Glycoprotein Is Translocated across M em branes by 

Downstream Signal Sequences. J. Virol., 64, 1414-1419.



References

Eckhardt, S.G., M ilich, D.R. and M cLachlan, A. (1991) H epatitis B Virus Core 

Antigen Has Two N uclear Localization Sequences in the A rginine-Rich Carboxyl 
Terminus. J. Virol., 65, 575-582.

Ehata, T., Omata, M., Yokosuka, O., Hosoda, K. and Ohto, M. (1992) Variations in 

Codons 84-101 in the Core Nucleotide Sequence Correlate with Hepatocellular Injury in 

Chronic Hepatitis. J. Clin. Invest., 89, 332-338.

Ehata, T., Omata, M., Chuang, W-L, Yokosuka, O., Ito, Y., Hosoda, K. and Ohto, M. 

(1993) M utations in Core Nucleotide Sequence of Hepatitis B Virus Correlate with 

Fulminant and Severe Hepatitis. J. Clin. Invest., 91, 1206-1213.

Fallows, D.A. and Goff, S.P. (1995) Mutations in the e Sequences of Human Hepatitis 

B Virus Affect both RNA Encapsidation and Reverse Transcription. J. Virol., 69, 3067- 

3073.

Farza, H., Hadchouel, M., Scotto, J., Tiollais, P., Babin, C. and Pourcel, C. (1988) 

Replication and Gene Expression of Hepatitis B Virus in a Transgenic M ouse That 

Contains the Complete Viral Genome. J. Virol., 62, 4144-4152.

Feitelson, M.A., Marion, P.L. and Robinson, W.S. (1982) Core Particles of Hepatitis 

B Virus and Ground Squirrel Hepatitis Virus I. Relationship Between Hepatitis B Core 

A ntigen and Ground Squirrel H epatitis Core A ntigen-A ssociated Polypeptides by 

Sodium  Dodecyl Sulfate-Polyacrylam ide Gel E lectrophoresis and Tryptic Peptide 

M apping. J. Virol., 43, 687-696.

Feitelson, M.A. and Clayton, M.M. (1990) X Antigen Polypeptides in the Sera of 

Hepatitis B Virus-Infected Patients. Virology, 177, 367-371.

Feitelson, M.A., Zhu, M., Duan, L-X. and London, W.T. (1993) Hepatitis B x antigen 

and p53 are associated in vitro  and in liver tissues from  patients with prim ary 

hepatocellular carcinoma. Oncogene, 8, 1 109-11 17.

Feitelson, M .A., Duan, L-X., Guo, J., Horiike, N., M cIntyre, G., B lum berg, B .S., 

Thom as, H.C. and Carman, W. (1995) Precore and X region mutants in hepatitis B 

virus infections among renal dialysis patients. J. Viral Hepatitis, 2, 19-31.



References

Fernholz, D„ Galle, P.R., Stemler, M„ Brunetto, M „ Bonino, F. and W ill, H. (1993) 

Infectious H epatitis B Virus Variant Defective in Pre-S2 Protein Expression in a 

Chronic Carrier. Virology, 194, 137-148.

Ferns, R.B. and Tedder, R.S. (1986) Human and M onoclonal Antibodies to Hepatitis 

B Core Antigen Recognise a Single Immunodominant Epitope. J. Med. Virol., 19, 193- 
203.

Ferrari, C., M ondelli, M., Penna, A., Fiaccadori, F. and Chisari, F.V. (1987a) 

Functional characterization of cloned intrahepatic, hepatitis B virus nucleoprotein- 

specific helper T cell lines. J. Immunol., 139, 539-544.

Ferrari, C., Penna, A., Giuberti, T., Tong, M.J., Ribera, E., Fiaccadori, F. and Chisari, 

F.V. (1987b) Intrahepatic, nucleocapsid antigen-specific T cells in chronic active 

hepatitis B. J. Immunol., 139, 2050-2058.

Ferrari, C., Penna, A., Bertoletti, A., Valli, A., Antoni, A.D., Giuberti, T., Cavalli, A., 

Petit, M-A. and Fiaccadori, F. (1990) Cellular immune response to hepatitis B virus- 

encoded antigens in acute and chronic hepatitis B virus infection. J. Im m unol., 145, 

3442-3449.

Ferrari, C., Bertoletti, A., Penna, A., Cavalli, A., M issale, G., Pilli, M., Giuberti, T., 

Chisari, F.V. and Fiaccadori, F. (1991) Identification of Im m unodom inant T Cell 

Epitopes of the Hepatitis B Virus Nucleocapsid Antigen. J. Clin. Invest., 88, 214-222.

Ferrari, C., Cavalli, A., Penna, A., Valli, A., Bertoletti, A., Pedretti, G., Pilli, M ., 

Vitali, P., Neri, T.M ., Giuberti, T. and Fiaccadori, F. (1992) Fine Specificity of the 

Human T-Cell Response to the Hepatitis B Virus preSl Antigen. Gastoenterology, 103, 

255-263.

F iordalisi, G., Cariani, E., Mantero, G., Zanetti, A., Tanzi, E., Chiaramante, M. and 

Primi, D. (1990) High Genomic Variability in the Pre-C Region of Hepatitis B Virus 

in Anti-HBe, HBV DNA-Positive Chronic Hepatitis. J. Med. Vir., 31, 297-300.

Fiordalisi, G., Primi, D., Tanzi, E., Magni, E., Incarbone, C., Zanetti, A.R. and Cariani,

E. (1994) Hepatitis B Virus C Gene Heterogeneity in a Familial Cluster of Anti-HBe 

Negative Chronic Carriers. J. Med. Virol., 42, 109-114.



References

Foster, G.R., Ackrill, A.M., Goldin, R.D., Kerr, I.M., Thom as, H.C. and Stark, G.R. 

(1991) Expression of the terminal protein region of hepatitis B virus inhibits cellular 

responses to interferons a  and (3 and double-stranded RNA. Proc. Natl. Acad. Sci. 

USA, 88, 2888-2892. Erratum  (1995) Proc. Natl. Acad. Sci. USA, 92, 3632.

Foster, G.R., Goldin, R.D., Hay, A., M cGarvey, M.J., Stark, G.R. and Thomas, H.C. 

(1993) Expression of the Terminal Protein of Hepatitis B Virus Is A ssociated with 

Failure to Respond to Interferon Therapy. Hepatology, 17, 757-762.

Fouillot, N. and Rossignol, J-M. (1996) Translational stop codons in the precore 

sequence of hepatitis B virus pre-C RNA allow translation reinitiation at downstream 

AUGs. J. Gen. Virol., 77, 1123-1127.

Fouillot, N., Tlouzeau, S., Rossignol, J-M. and Jean-Jean, O. (1993) Translation of the 

H epatitis B V irus P Gene by Ribosomal Scanning as an A lternative to Internal 

Initiation. J. Virol., 67,4886-4895.

G alibert, F., Mandart, E., Fitoussi, F., Tiollais, P. and Charnay, P. (1979) Nucleotide 

sequence of the hepatitis B virus genome (subtype ayw) cloned in E.coli. Nature, 281, 

646-650.

G alibert, F., Chen, T.N. and Mandart, E. (1982) N ucleotide sequence of a cloned 

W oodchuck Hepatitis Virus Genome: Comparison with the Hepatitis B Virus Sequence. 

J. Virol., 41, 51-65.

Gallina, A., Bonelli, F., Zentilin, L., Rindi, G., M uttini, M. and M ilanesi, G. (1989) A 

Recom binant Hepatitis B Core Antigen Polypeptide with the Protam ine-Like Domain 

Deleted Self-Assembles into Capsid Particles but Fails to Bind Nucleic Acids. J. Virol., 

63, 4645-4652.

Ganem, D., Weiser, B., Barchuk, A., Broen, R.J. and Varmus, H.E. (1982a) Biological 

Characterization of Acute Infection with Ground Squirrel Hepatitis Virus. J. Virol., 44, 

366-373.

G an em . D., G reenbaum , L. and Varmus, H.E. (1982b) V irion DNA of G round 

Squirrel Hepatitis Virus: Structural Analysis and M olecular Cloning. J. Virol., 44, 374-

383.



References

Garcia, P.D., Ou, J-H., Rutter, W.J. and Walter, P. (1988) Targeting of the Hepatitis B 

Virus Precore Protein to the Endoplasmic Reticulum M embrane: After Signal Peptide 

Cleavage Translocation Can Be Aborted and the Product Released into the Cytoplasm. 
J- Cell Biol., 106, 1093-1104.

Gerber, M.A., Hadziyannis, S., Vissoulis, C., Schaffner, F., Paronetto, F. and Popper, 

H. (1974) Electron M icroscopy and Im m unoelectronm icroscopy o f Cytoplasm ic 

Hepatitis B Antigen in Hepatocytes. Am. J. Path., 75, 489-502.

Gerelsaikhan, T., Tavis, J.E. and Bruss, V. (1996) Hepatitis B V irus N ucleocapsid 

Envelopm ent Does Not Occur without Genomic DNA Synthesis. J. Virol., 70, 4269- 
4274.

G erlich , W .H. and Robinson, W.S. (1980) H epatitis B Virus Contains Protein 

Attached to the 5' Terminus of Its Complete DNA Strand. Cell, 21, 801-809.

G erlich , W .H., G oldm ann, U., M uller, R., Stibbe, W. and W olff, W. (1982) 

Specificity and Localization of the Hepatitis B V irus-Associated Protein Kinase. J. 

Virol., 42, 761-766.

Giles, J.P., M cCollum, R.W., Berndtson, L.W. and Krugman, S. (1969) Relation of 

Australia/SH  Antigen to the W illowbrook MS-2 Strain. New. Engl. Jnl. M ed., 281, 

119-122.

G ille s , P.N., Fey, G. and Chisari, F.V. (1992) Tum or N ecrosis Factor A lpha 

Negatively Regulates Hepatitis B Virus Gene Expression in Transgenic Mice. J. Virol., 

66, 3955-3960.

Girones, R. and M iller, R.H. (1989) Mutation Rate of the Hepadnavirus Genom e. 

Virology, 170, 595-597.

G luzm an, Y. (1981) SV40-Transform ed Simian Cells Support the Replication of 

Early SV40 Mutants. Cell, 23, 175-182.

G ocke, D.J. and Kavey, N.B. (1969) Hepatitis Antigen: Correlation with Disease and 

Infectivity of Blood-Donors. Lancet, i, 1055-1059.



References

G ow ans, E.J., Burrell, C.J., Jilbert, A.R. and M armion, B.P. (1985) Cytoplasmic (but 

not Nuclear) Hepatitis B Virus (HBV) Core Antigen Reflects HBV DNA Synthesis at 

the Level of the Infected Hepatocyte. Intervirology, 24, 220-225.

Greenspan, D „ Kenobi, O.W ., Palese, P. and Krystal, M. (1988) Two N uclear 

Location Signals in the Influenza Virus NS1 Nonstructural Protein. J. Virol., 62, 3020- 
3026.

Gudat, F. and Bianchi, L. (1977) Evidence for phasic sequences in nuclear HBcAg 

form ation and cell membrane-directed flow of core particles in chronic hepatitis B. 

Gastroenterology, 73, 1194-1197.

G u id otti, L.G., M artinez, V., Loh, Y-T., Rogler, C.E. and Chisari, F.V. (1994a) 

H epatitis B Virus N ucleocapsid Particles Do Not Cross the H epatocyte N uclear 

M embrane in Transgenic Mice. J. Virol., 68, 5469-5475.

G uidotti, L.G., Ando, K., Hobbs, M.V., Ishikawa, T., Runkel, L., Schreiber, R.D. and 

C hisari, F.V. (1994b) Cytotoxic T lym phocytes inhibit hepatitis B virus gene 

expression by a noncytolytic mechanism in transgenic mice. Proc. Natl. Acad. Sci. 

USA, 91, 3764-3768.

G uidotti, L.G., Guilot, S. and Chisari, F.V. (1994c) Interleukin-2 and A lpha/Beta 

Interferon D ow n-Regulate H epatitis B Virus Gene Expression In Vivo by Tum or 

Necrosis Factor-Dependent and -Independent Pathways. J. Virol., 68, 1265-1270.

Guidotti, L.G., Matzke, B., Schaller, H. and Chisari, F.V. (1995) High-Level Hepatitis 

B Virus Replication in Transgenic Mice. J. Virol., 69, 6158-6169.

G u id otti, L.G., M atzke, B., Pasquinelli, C., Shoenberger, J.M ., Rogler, C.E. and 

Chisari, F.V. (1996) The Hepatitis B Virus (HBV) Precore Protein Inhibits HBV 

Replication in Transgenic Mice. J. Virol., 70, 7056-7061.

G uilhot, S., Guidotti, L.G. and Chisari, F.V. (1993) Interleukin-2 D ow nregulates 

H epatitis B Virus Gene Expression in Transgenic M ice by a Posttranscrip tional 

M echanism. J. Virol., 67, 7444-7449.

Gunther, S., M eisel, H., Reip, A., M iska, S., Kruger, D.H. and W ill, H. (1992) 

Frequent and Rapid Em ergence of M utated Pre-C Sequences in HBV from e-A ntigen



References

Positive Carriers Who Seroconvert to Anti-HBe during Interferon Treatment. Virology, 
187, 271-279.

Gunther, S., Li, B-C., Miska, S., Kruger, D.H., M eisel, H. and W ill, H. (1995) A 

Novel Method for Efficient Amplification of Whole Hepatitis B Virus Genomes Permits 

Rapid Functional Analysis and Reveals Deletion M utants in Im m unosuppressed 

Patients. J. Virol., 69, 5437-5444.

Gunther, S., Piwon, N., Iwanska, A., Schilling, R., Meisel, H. and W ill, H. (1996a) 

Type, Prevalence, and Significance of Core Prom oter/Enhancer II M utations in 

Hepatitis B Viruses from Immunosuppressed Patients with Severe Liver Disease. J. 

Virol., 70, 8318-8331.

Gunther, S., Baginski, S., Kissel, H., Reinke, P., Kruger, D.H., Will, H. and M eisel, H. 

(1996b) Accum ulation and Persistence of Hepatitis B V irus Core Gene D eletion 

M utants in Renal Transplant Patients Are Associated W ith End-Stage Liver D isease. 

Hepatology, 24, 751-758.

Guo, W., Chen, M., Yen, T.S.B. and Ou, J-H. (1993) Hepatocyte-Specific Expression 

of the H epatitis B Virus Core Prom oter D epends on Both Positive and N egative 

Regulation. Mol. Cell. Biol., 13, 443-448.

H adziyann is, S., Gerber, M.A., Vissoulis, C. and Popper, H. (1973) Cytoplasm ic 

Hepatitis B Antigen in Ground-Glass' Hepatocytes of Carriers. Arch. Pathol., 96, 327- 

330.

H andley-G earhart, P.M., Stephen, A.G., Trausch-Azar, A.S., Cienchanover, A. and 

Schwartz A.L. (1994) Human Ubiquitin-activating Enzyme E l: Indication of potential 

nuclear and cytoplasmic subpopulations using epitope-tagged cDNA constructs. J. Biol. 

Chem., 269, 33171-33178.

Haruna, Y., Hayashi, N., Katayama, K., Yuki, N., Kasahara, A., Sasaki, Y., Fusamoto, 

H. and Kamada, T. (1991) Expression of X Protein and Hepatitis B Virus Replication 

in Chronic Hepatitis. Hepatology, 13, 417-421.

Hasegawa, K., Huang, J., Regers, S.A., Blum, H.E. and Liang, T.J. (1994) Enhanced 

Replication of a Hepatitis B Virus M utant Associated with an Epidemic of Fulm inant 

Hepatitis. J. Virol., 68, 1651-1659.



References

Hatton, T., Zhou, S. and Standring, D.N. (1992) RNA- and DNA-Binding Activities 

in Hepatitis B Virus Capsid Protein: a Model for Their Roles in Viral Replication. J. 
Virol., 66, 5232-5241.

Haviv, I., Vaizel, D. and Shaul, Y. (1996) pX, the HBV-encoded coactivator, interacts 

with components of the transcription machinery and stimulates transcription in a TAF- 

independent manner. EMBO J., 15, 3413-3420.

Heermann, K.H., Goldmann, U., Schwartz, W., Seyffarth, T., Baum garten, H. and 

Gerlich, W.H. (1984) Large Surface Proteins of Hepatitis B Virus Containing the Pre-s 

Sequence. J. Virol., 52, 396-402.

Hertogs, K., Leenders, W .P.J., Depla, E., de Bruin, W .C.C., M eheus, L., Raymackers, 

J., M oshage, H. and Yap, S.H. (1993) Endonexin II, Present on Human Liver Plasma 

M embranes, Is a Specific Binding Protein of Small Hepatitis B Virus (HBV) Envelope 

Protein. Virology, 197, 549-557.

Hertogs, K., Depla, E., Crabbe, T., de Bruin, W., Leenders, W., M oshage, H. and Yap, 

S.H. (1994) Spontaneous Developm ent of A nti-H epatitis B Virus Envelope (Anti- 

Idiotypic) Antibodies in Animals Immunized with Human Liver Endonexin II or with 
the F(ab ')2 Fragm ent of Anti-Human Liver Endonexin II Imm unoglobulin G: Evidence 

for a Receptor-Ligand-Like Relationship between Small H epatitis B Surface Antigen 

and Endonexin IL J. Virol., 68, 1516-1521.

Hilditch, C.M., Rogers, L.J. and Bishop, D.H.L. (1990) Physicochem ical analysis of 

the hepatitis B virus core antigen produced by a baculovirus expression vector. J. Gen. 

Virol., 71, 2755-2759.

Holland, J.J. (1990) Defective Viral Genomes. In Fields, B.N. and Knipe, D.M. (ed.), 

Virology, Second Edition (Raven Press, New York), 151-165.

Honigwachs, J., Faktor, O., Dikstein, R., Shaul, Y. and Laub, O. (1989) Liver-Specific 

Expression of Hepatitis B Virus Is Determined by the Combined Action of the Core 

Gene Promoter and the Enhancer. J. Virol., 63, 919-924.

Hoofnagle, J.H., Dusheiko, G.M., Seeff, L.B., Jones, E.A., W aggoner, J.G. and Bales, 

Z.B. (1981) Seroconversion from Hepatitis B e Antigen to Antibody in Chronic Type 

B Hepatitis. Ann. Int. Med., 94, 744-748.



References

Horwich, A.L., Furtak, K., Pugh, J. and Sum m ers, J. (1990) Synthesis o f 

Hepadnavirus Particles That Contain Replication-D efective Duck H epatitis B V irus 

Genomes in Cultured HuH7 Cells. J. Virol., 64, 642-650.

Hou, J., Karayiannis, P., W aters, J., Luo, K., Liang, C. and Thomas, H.C. (1995) A 

Unique Insertion in the S  Gene of Surface Antigen-Negative Hepatitis B Virus Chinese 

Carriers. Hepatology, 21, 273-278.

Hruska, J.F., Clayton, D.A., Rubenstein, J.L.R. and Robinson, W.S. (1977) Structure 

of H epatitis B Dane Particle DNA Before and A fter the Dane Particle Polym erase 

Reaction. J. Virol., 21, 666-672.

Hsu, H-C., Su, I-J., Lai, M-Y., Chen, D-S., Chang, M-H., Chuang, S-M. and Sung, J-L. 

(1987) Biologic and prognostic significance of hepatocyte hepatitis B core antigen 

expressions in the natural course of chronic hepatitis B virus infection. J. Hepatol., 5, 

45-50.

Hsu, H-Y., Chang, M-H., Hsieh, K-H., Lee, C-Y., Lin, H-H., Hwang, L-H., Chen, P-J. 

and Chen, D-S. (1992) Cellular Immune Response to HBcAg in M other-to-Infant 

Transmission of Hepatitis B Virus. Hepatology, 15, 770-776.

Hu, J. and Seeger, C. (1996) Hsp90 is required for the activity of a hepatitis B virus 

reverse transcriptase. Proc. Natl. Acad. Sci. USA, 93, 1060-1064.

H u , J., Toft, D.O. and Seeger, C. (1997) H epadnavirus assem bly and reverse 

transcription require a multi-component chaperone complex which is incorporated into 

nucleocapsids. EMBO J., 16, 59-68.

Huang, J., Kwong, J., Sun, E.C-Y. and Liang, T.J. (1996) Proteasom e Complex as a 

Potential Cellular Target of Hepatitis B Virus X Protein. J. Virol., 70, 5582-5591.

Huovila, A-P.J., Eder, A.M. and Fuller, S.D. (1992) H epatitis B Surface Antigen 

Assembles in a Post-ER, Pre-Golgi Compartment. J. Cell Biol., 118, 1305-1320.

Ikeda, T., Pignatelli, M., Lever, A.M.L. and Thomas, H.C. (1986) Relationship of 

HLA protein display to activation of 2-5A synthetase in HBe antigen or anti-HBe 

positive chronic HBV infection. Gut, 27, 1498-1501.



References

Itoh, Y., Takai, E., Ohnuma, H., Kitajima, K., Tsuda, F., M achida, A., M ishiro, S., 

Nakamura, T., M iyakawa, Y. and Mayumi, M. (1986) A synthetic peptide vaccine 

involving the product of the pre-S(2) region of hepatitis B virus DNA: Protective 

efficacy in chimpanzees. Proc. Natl. Acad. Sci. USA, 83, 9174-9178.

Iwarson, I., Tabor, E., Thomas, H.C., Goodall, A., W aters, J., Snoy, P., Shih, J.W -K. 

and Gerety, R.J. (1985) Neutralization of Hepatitis B Virus Infectivity by a M urine 

M onoclonal Antibody: An Experimental Study in the Chimpanzee. J. Med. Virol., 16, 
89-96.

Jean-Jean, O., Levrero, M., Will, H., Perricaudet, M. and Rossignol, J-M. (1989a) 

Expression M echanism of the Hepatitis B Virus (HBV) C Gene and B iosynthesis of 

HBe Antigen. Virology, 170, 99-106.

Jean-Jean, O., Salhi, S., Carlier, D., Elie, C., de Recondo, A-M. and Rossignol, J-M. 

(1989b) Biosynthesis of Hepatitis B Virus e Antigen: D irected M utagenesis of the 

Putative Aspartyl Protease Site. J. Virol., 63, 5497-5500.

Jin, Y., Shih, W-K. and Berkower, I. (1988) Human T cell response to the surface 

antigen of hepatitis B virus (HBsAg). J. Exp. Med., 168, 293-306.

Johnson, J.L ., Raney, A.K. and M cLachlan, A. (1995) C haracterization o f a 

Functional H epatocyte N uclear Factor 3 B inding Site in the H epatitis B V irus 

Nucleocapsid Promoter. Virology, 208, 147-158.

Jok ela inen , P.T., Krohn, K., Prince, A.M. and Finlayson, N.D.C. (1970) Electron 

M icroscopic Observations on Virus-Like Particles A ssociated with SH Antigen. J. 

Virol., 6, 685-689.

Jung, M -C., Spengler, U., Schraut, W., Hoffmann, R., Zachoval., R., Eisenburg, J., 

Eichenlaub, D., Riethmtiller, G., Paumgartner, G., Ziegler-Heitbrock, H.W.L., W ill, H. 

and Pape, G.R. (1991) Hepatitis B virus antigen-specific T-cell activation in patients 

with acute and chronic hepatitis B. J. Hepatol., 13, 310-317.

Jung, M-C., Diepolder, H.M., Spengler, U., W ierenga, E.A., Zachoval, R., Hoffmann, 

R.M ., Eichenlaub, D., Frosner, G., Will, H. and Pape, G.R. (1995) A ctivation o f a 

H eterogeneous Hepatitis B (HB) Core and e Antigen Specific CD4+ T-Cell Population 

during Seroconversion to Anti-HBe and Anti-HBs in Hepatitis B Virus Infection. J. 

Virol., 69, 3358-3368.



References

Junker-Niepmann, M., Bartenschlager, R. and Schaller, H. (1990) A short cis-acting 

sequence is required for hepatitis B virus pregenome encapsidation and sufficient for 

packaging of foreign RNA. EMBO J., 9, 3389-3396.

Kalderon, D., Richardson, W.D., Markham, A.F. and Smith, A.E. (1984) Sequence 

requirements for nuclear location of simian virus 40 large-T antigen. Nature, 311, 33- 
38.

Kann, M. and Gerlich, W.H. (1994) Effect of Core Protein Phosphorylation by Protein 

Kinase C on Encapsidation of RNA within Core Particles o f Hepatitis B Virus. J. 

Virol., 68, 7993-8000.

Kann, M., Bischof, A. and Gerlich, W.G. (1997) In V itro Model for the N uclear 

Transport of the Hepadanvirus Genome. J. Virol., 71, 1310-1316.

Kann, M., Thomssen, R., Kochel, H.G. and Gerlich, W.H. (1993) Characterization of 

the endogenous protein kinase activity of the hepatitis B virus. Arch. Virol. (Suppl.), 8, 

53-62.

Kaplan, P.M., Greenman, R.L., Gerin, J.L., Purcell, R.H. and Robinson, W.S. (1973) 

DNA Polymerase Associated with Human Hepatitis B Antigen. J. Virol., 12, 995-1005.

Kekule, A.S., Lauer, U., Weiss, L., Luber, B. and Hofschneider, P.H. (1993) Hepatitis 

B virus transactivator HBx uses a tum our promoter signalling pathway. Nature, 361, 

742-745.

Kenney, J.M., von Bonsdorff, C-H., Nassal, M. and Fuller, S.D. (1995) Evolutionary 

conservation in the hepatitis B virus core structure: com parison of human and duck 

cores. Structure, 3, 1009-1019.

K hudyakov, Y.E., Kalinina, T.I., Neplyueva, V.S., Gazina, E.V., Kadoshnikov, Y.P., 

Bogdanova, S.L. and Smirnov, V.D. (1991) The effect of the structure of the terminal 

regions of the hepatitis B virus gene C polypeptide on the formation of core antigen 

(HBcAg) particles. Biomed. Sci., 2, 257-265.

Kidd, A.H. and Kidd-Ljunggren, K. (1996) A revised secondary structure model for 

the 3'-end of hepatitis B virus pregenomic RNA. Nucleic Acids Res., 24, 3295-3301.



References

Kim, C-M., Koike, K., Saito, I., M ujamura, T. and Jay, G. (1991) H Bx gene of 

hepatitis B virus induces liver cancer in transgenic mice. Nature, 351, 317-320.

K naus, T. and Nassal, M. (1993) The encapsidation signal on the hepatitis B virus 

RNA pregenome forms a stem-loop structure that is critical for its function. Nucleic 
Acids Res., 21, 3967-3975.

Knowles, B.B., Howe, C.C. and Aden, D.P. (1980) Human Hepatocellular Carcinoma 

Cell Lines Secrete the M ajor Plasm a Proteins and H epatitis B Surface A ntigen. 

Science, 209, 497-499.

K ock, J. and Schlicht, H-J. (1993) Analysis of the Earliest Steps o f Hepadnavirus 

Replication: Genome Repair after Infectious Entry into Hepatocytes Does Not Depend 

on Viral Polymerase Activity. J. Virol., 67, 4867-4874.

Koike, K., M oriya, K., lino, S., Yotsuyanagi, H., Endo, Y., M iyam ura, T. and 

Kurokawa, K. (1994a) High-level Expression of Hepatitis B Virus HBx Gene and 

Hepatocarcinogenesis in Transgenic Mice. Hepatology, 19, 810-819.

Koike, K., Moriya, K., Yotsuyanagi, H., lino, S. and Kurokawa, K. (1994b) Induction 

of Cell Cycle Progression by Hepatitis B Virus HBx Gene Expression in Q uiescent 

M ouse Fibroblasts. J. Clin. Invest., 94, 44-49.

Koike, K. and Takada, S. (1995) Biochemistry and Functions of Hepatitis B Virus X 

Protein. Intervirology, 38, 89-99.

Kojima, T., Bloemen, J. and Desmet, V.J. (1987) Im m une electron m icroscopic 

determ ination of hepatitis B core antigen (HBcAg) in liver cell plasm a m em branes. 

Liver, 7, 191-200.

K orb a , B., W ells, F., Tennant, B., Yoakum, G., Purcell, R. and G erin, J. (1986) 

H epadnavirus Infection of Peripheral Blood Lym phocytes In Vivo: W oodchuck and 

Chimpanzee Models of Viral Hepatitis. J. Virol., 58, 1-8.

Kwee, L., Lucito, R., Aufiero, B. and Schneider, R.J. (1992) A lternate Translation 

Initiation on H epatitis B Virus X mRNA Produces M ultiple Polypeptides That 

Differentially Transactivate Class II and III Promoters. J. Virol., 66, 4382-4389.



References

Laemmli, U.K. (1970) Cleavage of Structural Proteins during the Assembly of the 

Head of Bacteriophage T4. Nature, 227, 680-685.

Lai, M .E., Solinas, A., M azzoleni, A.P., Deplano, A., Farci, P., Lisci, V., Porru, A., 

Tocco, A. and Balestrieri, A. (1994) The role of pre-core hepatitis B virus mutants on 

the long-term outcome of chronic hepatitis B virus hepatitis. A longitudinal study. J. 

Hepatol., 20, 773-781.

Lamberts, C., Nassal, M., Velhagen, I., Zentgraf, H. and Schroder, C.H. (1993) 

Precore-M ediated Inhibition of Hepatitis B Virus Progeny DNA Synthesis. J. Virol., 

67, 3756-3762.

Lanford, R.E. and Notvall, L. (1990) Expression of H epatitis B Virus Core and 

Precore Antigens in Insect Cells and Characterization of a Core-A ssociated Kinase 

Activity. Virology, 176, 222-233.

Lanford, R.E., Notvall, L. and Beames, B. (1995) Nucleotide Priming and Reverse 

Transcription Activity of Hepatitis B Virus Polymerase Expressed in Insect Cells. J. 

Virol., 69, 4431-4439.

Lanford, R.E., Notvall, L., Lee, H. and Beames, B. (1997) Transcom plem entation of 

N ucleotide Priming and Reverse Transcription between Independently Expressed TP 

and RT Domains of the Hepatitis B Virus Reverse Transcriptase. J. Virol., 71, 2996- 

3004.

Laskus, T., Rakela, J. and Persing, D.H. (1994) The Stem-Loop Structure of the cis- 

Encapsidation Signal Is Highly Conserved in Naturally Occurring H epatitis B Virus 

Variants. Virology, 200, 809-812.

L a u b , O. and Bavand, M.R. (1988) Two Proteins w ith Reverse Transcriptase 

Activities Associated with Hepatitis B Virus-Like Particles. J. Virol., 62, 626-628.

le Bouvier, G.L. (1971) The Heterogeneity of Australia Antigen. J. Infect. Dis., 123, 

671-675.

Lee T-H., Elledge, S.J. and Butel, J.S. (1995) Hepatitis B Virus X Protein Interacts 

with a Probable Cellular DNA Repair Protein. J. Virol., 69, 1107-1114.



References

Leenders, W.P.J., Glansbeek, H.L., de Bruin, W.C.C. and Yap, S-H. (1990) Binding 

of the M ajor and Large HBsAg to Human Hepatocytes and Liver Plasm a M embranes: 

Putative External and Internal Receptors for Infection and Secretion of H epatitis B 

Virus. Hepatology, 12, 141-147.

Li, L., Sheng, M-H., Tong, S-P., Chen, H-Z. and Wen, Y-M. (1986) Transplacental 

transmission of hepatitis B virus. Lancet, ii, 872.

Li, J-S., Tong, S-P., W en, Y-M., Vitvitski, L., Zhang, Q. and Trepo, C. (1993) 

Hepatitis B Virus Genotype A Rarely Circulates as an HBe-M inus M utant. Possible 

Contribution of a Single Nucleotide in the Precore Region. J. Virol., 67, 5402-5410.

L ie n , J-M ., A ldrich, C.E. and M ason, W .S. (1986) E vidence that a C apped 

O ligoribonucleotide Is the Primer for Duck H epatitis B V irus P lus-Strand D N A  

Synthesis. J. Virol., 57, 229-236.

L in , C-G. and Lo, S.J. (1992) Evidence for Involvem ent of a Ribosom al Leaky 

Scanning M echanism in the Translation of the Hepatitis B Virus P ol Gene from the 

Viral Pregenome RNA. Virology, 188, 342-352.

L ingappa, J.R., M artin, R.L., Wang, M.L., Ganem, D., W elch, W.J. and Lingappa, 

V.R. (1994) A Eukaryotic Cytosolic Chaperonin Is Associated with a High M olecular 

W eight Interm ediate in the Assem bly of H epatitis B Virus Capsid, a M ultim eric 

Particle. J. Cell Biol., 125, 99-111.

Lo, W-Y. and Ting, L-P. (1994) Repression of Enhancer II Activity by a Negative 

Regulatory Element in the Hepatitis B Virus Genome. J. Virol., 68, 1758-1764.

L o eb , D.D. and Tian, R. (1995) Transfer of the M inus Strand of DNA during 

Hepadnavirus Replication is not Invariable but Prefers a Specific Location. J. V irol., 

69, 6886-6891.

L oeb , D.D., Gulya, K.G. and Tian, R. (1997) Sequence Identity of the Term inal 

Redundancies on the M inus-Strand DNA Template Is Necessary but Not Sufficient for 

the Tem plate Switch during Hepadnavirus Plus-Strand DNA Synthesis. J. Virol., 71, 

152-160.

Lohr, H.F., Gerken, G., Schlicht, H-J., zum Biischenfelde, K-H.M. and Fleischer, B.

(1993) Low Frequency of Cytotoxic Liver-Infiltrating T Lym phocytes Specific for



References

Endogenous Processed Surface and Core Proteins in Chronic Hepatitis B. J. Infect. 
Dis., 168, 1133-1139.

L ohr, H.F., Weber, W., Schlaak, J., Goergen, B., zum Biischenfelde, K-H.M. and 

Gerken, G. (1995) Proliferative Response of CD4+ T Cells and Hepatitis B Virus 

Clearance in Chronic Hepatitis With or Without Hepatitis B e-Minus Hepatitis B Virus 

Variants. Hepatology, 22, 61-68.

Lok, A.S.F., Akarca, U. and Greene, S. (1994) Mutations in the pre-core region of 

hepatitis B virus serve to enhance the stability of the secondary structure of the pre

genome encapsidation signal. Proc. Natl. Acad. Sci. USA, 91, 4077-4081.

Lu, X., Block, T.M. and Gerlich, W.H. (1996) Protease-Induced Infectivity of 

Hepatitis B Virus for a Human Hepatoblastoma Cell Line. J. Virol., 70, 2277-2285.

L u c ito , R. and Schneider R.J. (1992) Hepatitis B Virus X Protein Activates 

Transcription Factor NF-kB without a Requirement for Protein Kinase C. J. Virol., 66, 

983-991.

L yon s, R.H., Ferguson, B.Q. and Rosenberg, M. (1987) Pentapeptide Nuclear 

Localization Signal in Adenovirus El a. Mol. Cell. Biol., 7, 2451-2456.

M achida, A., Kishimoto, S., Ohnuma, H., Baba, K., Oda, K., Nakamura, T., Miyakawa, 

Y. and Mayumi, M. (1983) A Hepatitis B Surface Antigen Polypeptide (P31) With the 

Receptor for Polymerised Human as Well as Chimpanzee Albumins. Gastoenterology, 

85, 268-274.

M achida, A., Ohnuma, H., Takai, E., Tsuda, F., Tanaka, T., Naito, M., Munekata, E., 

Miyakawa, Y. and Mayumi, M. (1989) Antigenic sites on the arginine-rich carboxyl- 

terminal domain of the capsid protein of hepatitis B virus distinct from hepatitis B core 

or e antigen. Mol. Immunol., 26, 413-421.

M achida, A., Ohnuma, H., Tsuda, F., Yoshikawa, A., Itoshi, Y., Tanaka, T., Kishimoto, 

S., Akahane, Y., Miyakawa, Y. and Mayumi, M. (1991) Phosphorylation in the 

Carboxyl-Terminal Domain of the Capsid Protein of Hepatitis B Virus: Evaluation with 

a Monoclonal Antibody. J. Virol., 65, 6024-6030.

M ackay, P., Lees, J. and Murray, K. (1981) The Conversion of Hepatitis B Core 

Antigen Synthesized in E.coli Into e Antigen. J. Med. Virol., 8, 237-243.



References

M agnius, L.O. and Espmark, J.A. (1972) New specificities in Australia antigen 

positive sera distinct from the le Bouvier determinants. J. Immunol., 109, 1017-1021.

M aguire, H.F., Hoeffler, J.P. and Siddiqui, A. (1991) HBV X Protein Alters the DNA 

Binding Specificity of CREB and ATF-2 by Protein-Protein Interactions. Science, 252, 
842-844.

M andart, E., Kay, A. and Galibert, F. (1984) Nucleotide Sequence of a Cloned Duck 

Hepatitis B Virus Genome: Comparison with Woodchuck and Human Hepatitis B Virus 

Sequences. J. Virol., 49, 782-792.

M an gold , C.M.T. and Streeck, R.E. (1993) Mutational Analysis of the Cysteine 

Residues in the Hepatitis B Virus Small Envelope Protein. J. Virol., 67, 4588-4597.

M a rin o s , G., Torre, F., Gunther, S., Thomas, M.G., Will, H., Williams, R. and 

Naoumov, N.V. (1996) Hepatitis B Virus Variants With Core Gene Deletions in the 

Evolution of Chronic Hepatitis B Infection. Gastroenterology, 111, 183-192.

M arion, P.L., Oshiro, L.S., Regnery, D.C., Scullard, G.H. and Robinson, W.S. (1980) 

A virus in Beechey ground sqirrels that is related to hepatitis B virus of humans. Proc. 

Natl. Acad. Sci. USA, 77, 2941-2945.

M aruyam a, T., McLachlan, A., lino, S., Koike, K., Kurokawa, K. and Milich, D.R. 

(1993a) The Serology of Chronic Hepatitis B Infection Revisited. J. Clin. Invest., 91, 

2586-2595.

M aruyam a, T., lino, S., Koike, K., Yasuda, K. and Milich, D.R. (1993b) Serology of 

Acute Exacerbation in Chronic Hepatitis B Virus Infection. Gastroenterology, 105, 

1141-1151.

M ason, W.S., Seal, G. and Summers, J. (1980) Virus of Pekin Ducks with Structural 

and Biological Relatedness to Human Hepatitis B Virus. J. Virol., 36, 829-836.

M cL auch lan ,  J., Liefkins, K. and Stow, N.D. (1994) The herpes simplex virus type 1 

UL37 gene product is a component of virus particles. J. Gen. Virol., 75, 2047-2052.

M ichalak , T. and Nowoslawski, A. (1982) Crystalline Aggregates of Hepatitis B Core 

Particles in Cytoplasm of Hepatocytes. Intervirology, 17, 247-252.



References

M ilich, D.R. and McLachlan, A. (1986) The Nucleocapsid of Hepatitis B Virus Is 

Both a T-Cel 1-Independent and a T-Cell-Dependent Antigen. Science, 234, 1398-1401.

M ilich , D.R., McLachlan, A., Moriarty, A. and Thornton, G.B. (1987a) Immune 

response to hepatitis B virus core antigen (HBcAg): Localization of T cell recognition 

sites within HBcAg/HBeAg. J. Immunol., 139, 1223-1231.

M ilich , D.R., McLachlan, A., Thornton, G.B. and Hughes, J.L. (1987b) Antibody 

production to the nucleocapsid and envelope of the hepatitis B virus primed by a single 

synthetic T cell site. Nature, 329, 547-549.

M ilich, D.R., McLachlan, A., Stahl, S., Wingfield, P., Thornton, G.B., Hughes, J.L. and 

Jones, J.E. (1988) Comparative immunogenicity of hepatitis B virus core and e 

antigens. J. Immunol., 141, 3617-3624.

M ilich , D.R., Jones, J.E., Hughes, J.L., Price, J., Raney, A.K. and McLachlan, A. 

(1990) Is a function of the secreted hepatitis B e antigen to induce immunologic 

tolerance in u tero l Proc. Natl. Acad. Sci. USA, 87, 6599-6603.

M ilich , D.R., Peterson, D.L., Schodel, F., Jones, J.E. and Hughes, J.L. (1995a) 

Preferential Recognition of Hepatitis B Nucleocapsid Antigens by Thl or Th2 Cells Is 

Epitope and Major Histocompatibility Complex Dependent. J. Virol., 69, 2776-2785.

M ilich , D.R., Schodel, F., Peterson, D.L., Jones, J.E. and Hughes, J.L. (1995b) 

Characterization of self-reactive T cells that evade tolerance in hepatitis B e antigen 

transgenic mice. Eur. J. Immunol., 25, 1663-1672.

M ilich , D.R., Schodel, F., Hughes, J.L., Jones, J.E. and Peterson, D.L. (1997) The 

Hepatitis B Virus Core and e Antigens Elicit Different Th Cell Subsets: Antigen 

Structure Can Affect Th Cell Phenotype. J. Virol., 71, 2192-2201.

Miller, R.H. and Robinson, W.S. (1984) Hepatitis B Virus DNA Forms in Nuclear and 

Cytoplasmic Fractions of Infected Human Liver. Virology, 137, 390-399.

M issale, G., Redeker, A., Person, J., Fowler, P., Guilhot, S., Schlicht, H-J, Ferrari, C. 

and Chisari, F.V. (1993) HLA-A31- and HLA-Aw68-restricted Cytotoxic T Cell 

Responses to a Single Hepatitis B Virus Nucleocapsid Epitope during Acute Viral 

Hepatitis. J. Exp. Med., 177, 751-762.



References

M iyanohara, A., Imamura, T., Araki, M., Sugawara, K., Ohtomo, N. and Matsubara, 

K. (1986) Expression of Hepatitis B Virus Core Antigen Gene in Saccharomyces 

cerevisiae: Synthesis of Two Polypeptides Translated from Different Initiation Codons. 
J. Virol., 59, 176-180.

M olnar-Kimber, K.L., Summers, J., Taylor, J.M. and Mason, W.S. (1983) Protein 

Covalently Bound to Minus-Strand DNA Intermediates of Duck Hepatitis B Virus. J. 

Virol., 45, 165-172.

M ontano, L., Miescher, G.C., Goodall, A.H., Wiedmann, K.H., Janossy, G. and 

Thomas, H.C. (1982) Hepatitis B Virus and HLA Antigen Display in the Liver During 

Chronic Hepatitis B Virus Infection. Hepatology, 2, 557-561.

M ontano, L., Aranguibel, F., Boffill, M., Goodall, A.H., Janossy, G. and Thomas, H.C. 

(1983) An Analysis of the Composition of the Inflammatory Infiltrate in Autoimmune 

and Hepatitis B Virus-Induced Chronic Liver Disease. Hepatology, 3, 292-296.

M ontross, L., Watkins, S., Moreland, R.B., Mamon, H., Caspar, D.L.D. and Garcea, 

R.L. (1991) Nuclear Assembly of Polyomavirus Capsids in Insect Cells Expressing the 

Major Capsid Protein VP1. J. Virol., 65,4991-1998.

M oreland, R.B., Lagevin, G.L., Singer, R.H., Garcea, R.L. and Hereford, L.M. (1987) 

Amino Acid Sequences That Determine the Nuclear Localization of Yeast Histone 2B. 

Mol. Cell. Biol., 7, 4048-4057.

M organ , D.J. and Dimmock, N.J. (1992) Defective Interfering Influenza Virus 

Inhibits Immunopathological Effects of Infectious Virus in the Mouse. J. Virol., 66, 

1188-1192.

M oriyama, T., Guilhot, S., Klopchin, K., Moss, B., Pinkert, C.A., Palmiter, R.D., 

Brinster, R.L., Kanagawa, O. and Chisari, F.V. (1990) Im m unobiology and  

Pathogenesis of Hepatocellular Injury in Hepatitis B Virus Transgenic Mice. Science, 

268, 361-364.

N aoum ov, N.V., Schneider, R., Grotzinger, T., Jung, M.C., Miska, S., Pape, G.R. and 

Will, H. (1992) Precore Mutant Hepatitis B Virus Infection and L iver Disease. 

Gastroenterology, 102, 538-543.



References

Nassal, M. (1992a) The Arginine-Rich Domain of the Hepatitis B Virus Core Protein 

Is Required for Pregenome Encapsidation and Productive Viral Positive-Strand DNA 

Synthesis but Not for Virus Assembly. J. Virol., 66, 4107-4116.

N assal, M. (1992b) Conserved Cysteines of the Hepatitis B Virus Core Protein Are 

Not Required for Assembly of Replication-Competent Core Particles Nor for Their 

Envelopment. Virology, 190, 499-505.

Nassal, M. and Rieger, A. (1993) An Intramolecular Disulfide Bridge between Cys-7 

and Cys61 Determines the Structure of the Secretory Core Gene Product (e Antigen) of 

Hepatitis B Virus. J. Virol., 67, 4307-4315.

N assal, M. and Rieger, A. (1996) A Bulged Region of the Hepatitis B Virus RNA 

Encapsidation Signal Contains the Replication Origin for Discontinuous First-Strand 

DNA Synthesis. J. Virol., 70, 2764-2773.

Nassal, M. and Schaller, H. (1993) Hepatitis B virus replication. Trends in Microbiol., 

1,221-228.

Nassal, M., Galle, P.R. and Schaller, H. (1989) Proteaselike Sequence in Hepatitis B 

Virus Core Antigen Is Not Required for e Antigen Generation and May Not Be Part of 

an Aspartic Acid-Type Protease. J. Virol., 63, 2598-2604.

Nassal, M., Junker-Niepmann, M. and Schaller, H. (1990) Translational Inactivation 

of RNA Function: Discrimination against a Subset of Genomic Transcripts during HBV 

Nucleocapsid Assembly. Cell, 63, 1357-1363.

Nassal, M., Rieger, A. and Steinau, O. (1992) Topological Analysis of the Hepatitis B 

Virus Core Particle by Cysteine-Cysteine Cross-Linking. J. Mol. Biol., 225, 1013- 

1025.

N atoli, G., Avantaggiati, M.L., Chirillo, P., Costanzo, A., Artini, M., Balsano, C. and 

Levrero, M. (1994) Induction of the DNA -Binding Activity of c-Jun/c-Fos 

Heterodimers by the Hepatitis B Virus Transactivator pX. Mol. Cell. Biol., 14, 989- 

998.

N ayersina, R., Fowler, P., Guilhot, S., Missale, G., Cerny, A., Schlicht, H-J., Vitiello, 

A., Chesnut, R., Person, J.L., Redeker, A.G. and Chisari, F.V. (1993) HLA A2



References

Restricted Cytotoxic T Lymphocyte Responses to Multiple Hepatitis B Surface Antigen 

Epitopes during Hepatitis B Virus Infection. J. Immunol., 150, 4659-4671.

Neurath, A.R., Kent, S.B.H., Strick, N. and Parker, K. (1986) Identification and 

Chemical Synthesis of a Host Cell Receptor Binding Site on Hepatitis B Virus. Cell, 
46, 429-436.

N order, H., Ebert, J.W., Fields, H.A., Mushahwar, I.K. and Magnius L.O. (1996) 

Complete Sequencing of a Gibbon Hepatitis B Virus Genome Reveals a Unique 

Genotype Distantly Related to the Chimpanzee Hepatitis B Virus. Virology, 218, 214- 
223.

N ouri-A ria, K.T., Magrin, S., Alexander, G.J.M., Anderson, M.G., Williams, R. and 

Eddleston, A.L.W.F. (1988) Abnormal T-cell activation in chronic hepatitis B viral 

infection: a consequence of monocyte dysfunction? Imunology, 64, 733-738.

O htsu, T., Sai, T., Oka, M., Sugai, Y. and Tobinai, K. (1991) Activation of Hepatitis 

B Virus Infection by Chemotherapy Containing Glucocorticoid in Hepatitis B Virus 

Carriers with Hematologic Malignancies. Jpn. J. Clin. Oncol., 21, 360-365.

Okamoto, H., Imai, M., Tsuda, F., Tanaka, T., Miyakawa, Y. and Mayumi, M. (1987a) 

Point Mutation in the S Gene of Hepatitis B Virus for a d/y or w/r Subtypic Change in 

Two Blood Donors Carrying a Surface Antigen of Compound Subtype adyr or adwr. J. 

Virol., 61, 3030-3034.

Okamoto, H., Tsuda, F. and Mayumi, M. (1987b) Defective Mutants of Hepatitis B 

Virus in the Circulation of Symptom-Free Carriers. Jpn. J. Exp. Med., 57, 217-221.

Okamoto, H., Omi, S., Wang, Y., Itoh, Y., Tsuda, F., Tanaka, T., Akahame, Y., 

Miyakawa, Y. and Mayumi, M. (1989) The loss of subtypic determinants in alleles, d/y  

or w/r, on hepatitis B surface antigen. Mol. Immunol., 26, 197-205.

Okamoto, H., Yotsumoto, S., Akahane, Y., Yamanaka, T., Miyazaki, Y., Sugai, Y., 

Tsuda, F., Tanaka, T., Miyakawa, Y. and Mayumi, M. (1990) Hepatitis B Viruses with 

P recore  Region Defects Prevail in Persistently  Infected  Hosts along w ith 

Seroconversion to the Antibody against e Antigen. J. Virol., 64, 12998-1303.

Okamoto, H., Wang, Y., Tanaka, T., Machida, A., Miyakawa, Y. and Mayumi, M.

(1993) Trans-complementation among naturally occurring deletion mutants of hepatitis



References

B virus and integrated viral DNA for the production of viral particles with mutant 

genomes in hepatoma cell lines. J. Gen. Virol., 74, 407-414.

Ono, Y., Onda, H., Sasada, R., Igarashi, K., Sugino, Y. and Nishioka, K. (1983) The 

complete nucleotide sequences of the cloned hepatitis B virus DNA; subtype adr and 

adw. Nucleic Acids Res., 11, 1747-1757.

O nodera, S., Ohori, H., Yamaki, M. and Ishida, N. (1982) Electron Microscopy of 

Human Hepatitis B Virus Cores by Negative Staining-Carbon Film Technique. J. Med. 

Virol., 10, 147-155.

O s ta p c h u k , P., Hearing, P. and Ganem, D. (1994) A dramatic shift in the 

transmembrane topology of a viral envelope glycoprotein accompanies hepatitis B viral 

morphogenesis. EMBO J., 13, 1048-1057.

O u, J-H., Laub, O. and Rutter, W.J. (1986) Hepatitis B virus gene function: The 

precore region targets the core antigen to cellular membranes and causes the secretion 

of th e e  antigen. Proc. Natl. Acad. Sci. USA, 83, 1578-1582.

Ou, J-H., Yeh, C-T. and Yen, T.S.B. (1989) Transport of Hepatitis B Virus Precore 

Protein into the Nucleus after Cleavage of Its Signal Peptide. J. Virol., 63, 5238-5243.

Ou, J-H., Bao, H., Shih, C. and Tahara, S.M. (1990) Preferred Translation of Human 

Hepatitis B Virus Polymerase from Core Protein- but Not from Precore Protein-Specific 

Transcript. J. Virol., 64, 4578-4581.

Pasek, M., Goto, T., Gilbert, W., Zink, B., Schaller, H., MacKay, P., Leadbetter, G. and 

Murray, K. (1979) Hepatitis B virus genes and their expression in E. coli. Nature, 282, 

575-579.

Pathak, V.K. and Temin, H.M. (1990) Broad spectrum of in vivo forward mutations, 

hypermutations and mutational hotspots in a retroviral shuttle vector after a single 

replication cycle: Deletions and deletions with insertions. Proc. Natl. Acad. Sci. USA, 

87, 6024-6028.

Patzer, E.J., Nakamura, G.R., Simonsen, C.C., Levinson, A.D. and Brands, R. (1986) 

Intracellular Assembly and Packaging of Hepatitis B Surface Antigen Particles Occur in 

the Endoplasmic Reticulum. J. Virol., 58, 884-892.



References

Pedrali-Noy, G., Spadari, S., Miller-Faures, A., Miller, A.O.A., Kruppa, J. and Koch, 

G. (1980) Synchronization of HeLa cell cultures by inhibition of DNA polymerase a  

with aphidicolin. Nucleic Acids Res., 8, 377-387.

Penna, A., Chisari, F.V., Bertoletti, A., Missale, G., Fowler, P., Giuberti, T., 

Fiaccadori, F. and Ferrari, C. (1991) Cytotoxic T Lymphocytes Recognize an HLA- 

A2-restricted Epitope within the Hepatitis B Virus Nucleocapsid Antigen. J. Exp. Med., 

174, 1565-1570.

Penna, A., Fowler, P., Bertoletti, A., Guilhot, S., Moss, B., Margolskee, R.F., Cavalli, 

A., Valli, A., Fiaccadori, F., Chisari, F.V. and Ferrari, C. (1992) Hepatitis B Virus 

(HBV)-Specific Cytotoxic T-Cell (CTL) Response in Humans: Characterization of 

HLA Class II-Restricted CTLs That Recognize Endogenously Synthesized HBV 

Envelope Antigens. J. Virol., 66, 1193-1198.

Perri, S. and Ganem, D. (1996) A Host Factor That Binds near the Termini of 

Hepatitis B Virus Pregenomic RNA. J. Virol., 70, 6803-6809.

Persing, D.H., Varmus, H.E. and Ganem, D. (1986) Inhibition of Secretion of 

Hepatitis B Surface Antigen by a Related Presurface Polypeptide. Science, 234, 1388- 

1391.

Persing, D.H., Varmus, H.E. and Ganem, D. (1987) The preSl Protein of Hepatitis B 

Virus Is Acylated at Its Amino Terminus with Myristic Acid. J. Virol., 61, 1672-1677.

Peterson, D.L., Nath, N. and Gavilanes, F. (1982) Structure of the Hepatitis B Surface 

Antigen: Correlation of subtype with amino acid sequence and location of the 

carbohydrate moiety. J. Biol. Chem., 257, 10414-10420.

Peterson, D.L., Paul, D.A., Lam, J., Tribby, I.I.E. and Achord, D.T. (1984) Antigenic 

structure of hepatitis B surface antigen: Identification of the 'd '  subtype determinant by 

chemical modification and use of monoclonal antibidies. J. Immunol., 132, 920-927.

Petit, M-A., Capel, F., Riottot, M.M., Daugnet, C. and Pillot, J. (1987) Antigenic 

Mapping of the Surface Proteins of Infectious Hepatitis B Virus Particles. J. Gen. 

Virol., 68, 2759-2767.



References

Petit, M-A., Dubanchet, S., Capel, F., Voet, P., Daugnet, C. and Hauser, P. (1991) 

HepG2 Cell Binding Activities of Different Hepatitis B Virus Isolates: Inhibitory Effect 

of Anti-HBs and Anti-preS 1 (21 -47). Virology, 180, 483-491.

Petit, M-A., Capel, F., Dubanchet, S. and Mabit, H. (1992) Pre-Si Specific Binding 

Proteins as Potential Receptors for Hepatitis B Virus in Human Hepatocytes. Virology, 
187,211-222.

Poisson, F., Severac, A., Hourioux, C., Goudeau, A. and Roingeard, P. (1997) Both 

Pre-Si and S Domains of Hepatitis B Virus Envelope Proteins Interact with the Core 

Particle. Virology, 228, 115-120.

Poitrine, A., Chousterman, S., Chousterman, M., Naveau, S., Thang, M.N. and Chaput, 

J-C. (1985) Lack of In Vivo Activation of the Interferon System in HBsAg-Positive 

Chronic Active Hepatitis. Hepatology, 5, 171-174.

Pollack, J.R. and Ganem, D. (1993) An RNA Stem-Loop Structure Directs Hepatitis B 

Virus Genomic RNA Encapsidation. J. Virol., 67, 3254-3263.

Pollack, J.R. and Ganem, D. (1994) Site-Specific RNA Binding by a Hepatitis B Virus 

Reverse Transcriptase Initiates Two Distinct Reactions: RNA Packaging and D NA  

Synthesis. J. Virol., 68, 5579-5587.

Pontisso, P., Ruvoletto, M.G., Gerlich, W.H., Heermann, K-H., Bardini, R. and Alberti, 

A. (1989a) Identification of an Attachment Site for Human Liver Plasma Membranes 

on Hepatitis B Virus Particles. Virology, 173, 522-530.

Pontisso, P., Petit, M-A., Bankowski, M.J. and Peebles, M.E. (1989b) Human Liver 

Plasma Membranes Contain Receptors for the Hepatitis B Virus Pre-Si Region and, via 

Polymerised Human Serum Albumin, for the Pre-S2 Region. J. Virol., 63, 1981-1988.

Pontisso, P., Ruvoletto, M.G., Tiribelli, C., Gerlich, W.H., Ruol, A. and Alberti, A.

(1992) The preSl domain of hepatitis B virus and IgA cross-react in their binding to 

the hepatocyte surface. J. Gen. Virol., 73, 2041-2045.

Prange, R. and Streeck, R.E. (1995) Novel transmembrane topology of the hepatitis B 

virus envelope proteins. EMBO J., 14, 247-256.



References

Prince, A.M. (1968) An antigen detected in the blood during the incubation period of 

serum hepatitis. Proc. Natl. Acad. Sci. USA, 60, 814-821.

P u lsin e lli, G.A. and Temin, H.M. (1991) Characterization of Large Deletions 

Occurring during a Single Round of Retrovirus Vector Replication: Novel Deletion 

Mechanism Involving Errors in Strand Transfer. J. Virol., 65, 4786-4797.

Pum pens, P., Borisova, G.P., Crowther, R.A. and Grens, E. (1995) Hepatitis B Virus 

Core Particles as Epitope Carriers. Intervirology, 38, 63-74.

Pushko, P., Sallberg, M., Borisova, G., Ruden, U., Bichko, V., Wahren, B., Pumpens, 

P. and Magnius, L. (1994) Identification of Hepatitis B Virus Core Protein Regions 

Exposed or Internalized at the Surface of HBcAg Particles by Scanning with 

Monoclonal Antibodies. Virology, 202, 912-920.

Qadri, I., Maguire, H.F. and Siddiqui, A. (1995) Hepatitis B virus transactivator 

protein X interacts with the TATA-binding protein. Proc. Natl. Acad. Sci. USA, 92, 

1003-1007.

Qadri, I., Conaway, J.W., Conaway, R.C., Schaack, J. and Siddiqui, A. (1996) 

Hepatitis B virus transactivator protein, HBx, associates with the components of TFIIH 

and stimulates the DNA helicase activity of TFIIH. Proc. Natl. Acad. Sci. USA, 93, 

10578-10583.

Radziwill, G., Tucker, W. and Schaller, H. (1990) Mutational Analysis of the 

Hepatitis B Virus P Gene Product: Domain Structure and RNase H Activity. J. Virol., 

64, 613-620.

Raimondo, G., Scheider, R., Stemler, M., Smedile, V., Rodino, G. and Will, H. (1990) 

A New Hepatitis B Virus Variant in a Chronic Carrier with Multiple Episodes of Viral 

Reactivation and Acute Hepatitis. Virology, 179, 64-68.

Raney, A.K., Milich, D.R. and McLachlan, A. (1989) Characterization of Hepatitis B 

Virus M ajor Surface Antigen Gene Transcrip tional R egulatory  E lem ents  in 

Differentiated Hepatoma Cell Lines. J. Virol., 63, 3919-3925.

Raney, A.K., Milich, D.R., Easton, A.J. and McLachlan, A. (1990) Differentiation- 

Specific Transcriptional Regulation of the Hepatitis B Virus Large Surface Antigen 

Gene in Human Hepatoma Cell Lines. J. Virol., 64, 2360-2368.



References

Raney, A.K., Zhang, P. and McLachlan, A. (1995) Regulation of Transcription from 

the Hepatitis B Virus Large Surface Antigen Promoter by Hepatocyte Nuclear Factor 3. 
J. Virol., 69, 3265-3272.

Raney, A.K., Johnson, J.L., Palmer, C.A. and McLachlan, A. (1997) Members of the 

Nuclear Receptor Superfamily Regulate Transcription from the Hepatitis B Virus 

Nucleocapsid Promoter. J. Virol., 71, 1058-1071.

Rehermann, R., Fowler, P., Sidney, J., Person, J., Redeker, A., Brown, M., Moss, B., 

Sette, A. and Chisari, F.V. (1995) The Cytotoxic T Lymphocyte Response to Multiple 

Hepatitis B Virus Polymerase Epitopes During and After Acute Viral Hepatitis. J. Exp. 

Med., 181, 1047-1058.

Rehermann, R., Lau, D., Hoofnagle, J.H. and Chisari, F.V. (1996) Cytotoxic T 

Lymphocyte Responsiveness after Resolution of Chronic Hepatitis B Virus Infection. J. 

Clin. Invest., 97, 1655-1665.

Rieger, A. and Nassal, M. (1995) Distinct requirements for primary sequence in the 5'- 

and 3'-part of a bulge in the hepatitis B virus RNA encapsidation signal revealed by a 

combined in vivo selection/ in vitro amplification system. Nucleic Acids. Res., 23, 

3909-3915.

Rieger, A. and Nassal, M. (1996) Specific Hepatitis B Virus Minus-Strand DNA 

Synthesis Requires Only the 5' Encapsidation Signal and the 3'-Proximal Direct Repeat 

DR1*. J. Virol., 70, 585-589.

Roberts, I.M., Bernard, C.C., Vyas, G.N. and Mackay, I.R. (1975) T-cell dependence 

of immune response to hepatitis B antigen in mice. Nature, 254, 606-607.

Roberts, J.D., Preston, B.D., Johnston, L.A., Soni, A., Loeb, L.A. and Kunkel, T.A. 

(1989) Fidelity of Two Retroviral Reverse Transcriptases during DNA-Dependent 

DNA Synthesis In Vitro. Mol. and Cell. Biol., 9, 469-476.

Robinson, W.S. and Greenman, R.L. (1974) DNA Polymerase in the Core of the 

Human Hepatitis B Virus Candidate. J. Virol., 13, 1231-1236.

Robinson, W.S., Clayton, D.A. and Greenman, R.L. (1974) DNA of a Human 

Hepatitis B Virus Candidate. J. Virol., 14, 384-391.



References

Roingeard, P., Romet-Lemonne, J-L., Leturcq, D., Goudeau, A. and Essex, M. (1990) 

Hepatitis B Virus Core Antigen (HBc Ag) Accumulation in an HBV Nonproducer 

Clone of HepG2-Transfected Cells Is Associated with Cytopathic Effect. Virology, 
1 7 9 ,113-120.

Roossinck, M.J. and Siddiqui, A. (1987) In Vivo Phosphorylation and Protein 

Analysis of Hepatitis B Virus Core Antigen. J. Virol., 61, 955-961.

Rosmorduc, O., Petit, M-A., Pol, S., Capel, F., Bortolotti, F., Berthelot, P., Brechot, C. 

and Kremsdorf, D. (1995) In Vivo and In Vitro Expression of Defective Hepatitis B 

Virus Particles Generated by Spliced Hepatitis B Virus RNA. Hepatology, 22, 10-19.

R osm orduc, O., Sirma, H., Soussan, P., Lebon, P., Horrisberger, M., Brechot, C. and 

Kremsdorf, D. (1996) Expression of the interferon-induced antiviral protein M xA is 

inhibited in vitro by the hepatitis B virus (HBV) capsid protein. Abstract A221, IXth 

Triennial International Symposium on Viral Hepatitis and Liver Disease.

R o ss n e r , M.T. (1992) Hepatitis B Virus X-Gene Product: A Prom iscuous 

Transcriptional Transactivator. J. Med. Virol., 36, 101-117.

Roychoudhury, S., Faruqi, A.F. and Shih, C. (1991) Pregenomic RNA Encapsidation 

Analysis of Eleven Missense and Nonsense Polymerase Mutants of the Human 

Hepatitis B Virus. J. Virol., 65, 3617-3624.

R u ssn a k , R. and Ganem, D. (1990) Sequences 5' to the polyadenylation signal 

mediate differential poly(A) site use in hepatitis B viruses. Genes and Dev., 4, 764-776.

Saib, A., Peries, J. and de The, H. (1993) A defective human foamy provirus generated 

by pregenome splicing. EMBO J., 12, 4439-4444.

Sakam oto, Y., Yamada, G., Mizuno, M., Nishihara, T., Kinoyama, S., Kobayashi, T., 

Takahashi, T. and Nagashima, H. (1983) Full and Empty Particles of Hepatitis B Virus 

in Hepatocytes from Patients with HBsAg-Postive Chronic Active Hepatitis. Lab. 

Invest., 48, 678-682.

Salfeld, J., Pfaff, E., Noah, M. and Schaller, H. (1989) Antigenic Determinants and 

Functional Domains in Core Antigen and e Antigen from Hepatitis B Virus. J. Virol., 

63, 798-808.



References

Sallberg, M., Ruden, U., Magnius, L.O., Harthus, H.P., Noah, M. and Wahren, B. 

(1991a) Characterisation of a Linear Binding Site for a Monoclonal Antibody to 

Hepatitis B Core Antigen. J. Med. Virol., 33, 248-252.

Sallberg, M., Ruden, U., Wahren, B., Noah, M. and Magnius, L.O. (1991b) Human 

and murine B-cells recognize the HBeAg/Beta (or HBe2) epitope as a linear 

determinant. Mol. Immunol., 28, 719-726.

Sallberg, M., Ruden, U., Wahren, B. and Magnius, L.O. (1994) Immune Recognition 

of Linear Antigenic Regions Within the Hepatitis B pre-C and Core Translation 

Products Using Synthetic Peptides. J. Med. Virol., 42, 7-15.

Sanger, F., Nicklen, S. and Coulson, A.R. (1977) DNA sequencing with chain- 

terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74, 5463-5467.

Santantonio, T., Jung, M-C., Miska, S., Pastore, G., Pape, G.R. and Will, H. (1991) 

Prevalence and Type of Pre-C HBV Mutants in Anti-HBe Positive Carriers with 

Chronic Liver Disease in a Highly Endemic Area. Virology, 183, 840-844.

S an tanton io , T., Jung, M-C., Schneider, R., Fernholz, D., Milella, M., Monno, L., 

Pastore, G., Pape, G.R. and Will, H. (1992) Hepatitis B Virus Genomes that Cannot 

Synthesize Pre-S2 Proteins Occur Frequently and as Dominant Virus Populations in 

Chronic Carriers in Italy. Virology, 188, 948-952.

Sattler, F. and Robinson, W.S. (1979) Hepatitis B Viral DNA Molecules Have 

Cohesive Ends. J. Virol., 32, 226-233.

Scaglioni, P.P., Melegari, M. and Wands, J.R. (1997) Posttranscriptional Regulation of 

Hepatitis B Virus Replication by the Precore Protein. J. Virol., 71, 345-353.

Schaller, H. and Fischer, M. (1991) Transcriptional Control of Hepadnavirus Gene 

Expression. Curr. Top. Microbiol. Immunol., 168, 21-39.

Schek, N., Bartenschlager, R., Kuhn, C. and Schaller, H. (1991) Phosphorylation and 

rapid turnover of hepatitis B virus X-protein expressed in HepG2 cells from a 

recombinant vaccinia virus. Oncogene, 6, 1735-1744.



References

Schlicht, H-J. and Schaller, H. (1989) The Secretory Core Protein of Human Hepatitis 

B Virus Is Expressed on the Cell Surface. J. Virol., 63, 5399-5404.

Schodel, F., Moriarty, A.M., Peterson, D.L., Zheng, J., Hughes, J.L., Will, H., Leturcq, 

D.J., McGee, J.S. and Milich, D.R. (1992) The Position of Heterologous Epitopes 

Inserted in Hepatitis B Virus Core Particles Determines Their Immunogenicity. J. 

Virol., 66, 106-114.

Scullard, G.H., Smith, C.I., Merigan, T.C., Robinson, W.S. and Gregory, P.B. (1981) 

Effects of Immunosuppressive Therapy on Viral Markers in Chronic Active Hepatitis B. 

Gastroenterology, 61, 987-991.

Seeger, C. and Maragos, J. (1990) Identification and Characterization of the 

Woodchuck Hepatitis Virus Origin of DNA Replication. J. Virol., 64, 16-23.

Seeger, C. and Maragos, J. (1991) Identification of a Signal Necessary for initiation of 

Reverse Transcription of the Hepadnavirus Genome. J. Virol., 65, 5190-5195.

Seeger, C., Ganem, D. and Varmus, H.E. (1984) Nucleotide Sequence of an Infectious 

Molecularly Cloned Genome of Ground Squirrel Hepatitis Virus. J. Virol., 51, 367- 

375.

Seeger, C., Ganem, D. and Varmus, H.E. (1986) Biochemical and Genetic Evidence 

for the Hepatitis B Virus Replication Strategy. Science, 232, 477-484.

Seifer, M and Standring, D.N. (1993) Stability Governs the Apparent Expression of 

'Particulate' Hepatitis B e Antigen by Mutant Hepatitis B Virus Core Particles. 

Virology, 196, 70-78.

Seifer, M. and Standring, D.N. (1994) A Protease-Sensitive Hinge Linking the Two 

Domains of the Hepatitis B Virus Core Protein Is Exposed on the Viral Capsid Surface. 

J. Virol., 68, 5548-5555.

Seifer, M. and Standring, D.N. (1995) Ribonucleoprotein Complex Formation by the 

Human Hepatitis B Virus Polymerase. Intervirology, 38, 295-303.

Seifer, M., Zhou, S. and Standring, D.N. (1993) A Micromolar Pool of Antigenically 

Distinct Precursors Is Required To Initiate Cooperative Assembly of Hepatitis B Virus 

Capsids in Xenopus Oocytes. J. Virol., 67, 249-257.



References

Seto, E., Mitchell, P. and Yen, T.S.B. (1990) Transactivation by the hepatitis B virus 

X protein depends on AP-2 and other transcription factors. Nature, 344, 72-74.

S h a u l ,  Y., Rutter, W.J. and Laub, O. (1985) A human hepatitis B viral enhancer 

element. EMBO J., 4, 427-430.

Sheu, S.Y. and Lo, S.J. (1994) Biogenesis of the hepatitis B viral middle (M) surface 

protein in a human hepatoma cell line: demonstration of an alternative secretion 

pathway. J. Gen. Virol., 75, 3031-3039.

Siddiqui, A., Sattler, F. and Robinson, W.S. (1979) Restriction endonuclease cleavage 
map and location of unique features of the DNA of hepatitis B virus, subtype adw2. 

Proc. Natl. Acad. Sci. USA, 76, 4664-4668.

S id d iq u i ,  A., Marion, P.L. and Robinson, W.S. (1981) Ground Squirrel Hepatitis 

Virus DNA: Molecular Cloning and Comparison with Hepatitis B Virus DNA. J. 

Virol., 38, 393-397.

S id d iq u i, A., Gaynor, R., Srinivasan, A., Mapoles, J., Farr, R.W. (1989) trans-  

Activation of Viral Enhancers Including Long Terminal Repeat of the H um an 

Immunodeficiency Virus by the Hepatitis B Virus X protein. Virology, 169, 479-484.

Sim on, K., Lingappa, V.R. and Ganem, D. (1988) Secreted Hepatitis B Surface 

Antigen Polypeptides Are Derived from a Transmembrane Precursor. J. Cell Biol., 107, 

2163-2168.

S prengel, R., Kaleta, E.F. and Will, H. (1988) Isolation and Characterisation o f  a 

Hepatitis B Virus Endemic in Herons. J. Virol., 62, 3832-3839.

S tahl, S., MacKay, P., Magazin, M., Bruce, S.A. and Murray, K. (1982) Hepatitis B 

virus core antigen: Synthesis in Escherichia coli and application in diagnosis. Proc. 

Natl. Acad. Sci. USA, 79, 1606-1610.

S tan d r in g ,  D.N., Rutter, W.J., Varmus, H.E. and Ganem, D. (1984) Transcription of 

the Hepatitis B Surface Antigen Gene in Cultured Murine Cells Initiates Within the 

Presurface Region. J. Virol., 50, 563-571.



References

Standring, D.N., Ou, J-H., Masiarz, F.R. and Rutter, W.J. (1988) A signal peptide 

encoded within the precore region of hepatitis B virus directs the secretion of a 

heterogeneous population of e antigens in Xenopus  oocytes. Proc. Natl. Acad. Sci. 
USA, 85, 8405-8409.

Stemler, M., Weimer, T., Tu, Z-X., Wan, D-F., Levrero, M., Jung, C., Pape, G.R. and 

Will, H. (1990) Mapping of B-Cell Epitopes of the Human Hepatitis B Virus X 

Protein. J. Virol., 64, 2802-2809.

S tibbe, W. and Gerlich, W.H. (1982) Variable Protein Composition of Hepatitis B 

Surface Antigen from Different Donors. Virology, 123, 436-442.

Stibbe, W. and Gerlich, W.H. (1983) Structural Relationships Between Minor and 

Major Proteins of Hepatitis B Surface Antigen. J. Virol., 46, 626-628.

Stirk, H.J., Thornton, J.M. and Howard, C.R. (1992) A Topological Model for 

Hepatitis B Surface Antigen. Intervirology, 33, 148-158.

S tudier, F.W., Rosenberg, A.H., Dunn, J.J. and Dubendorff, J.W. (1990) Use of T7 

RNA Polymerase to Direct Expression of Cloned Genes. Meth. Enzymol., 185, 60-89.

S u , F. and Schneider, R.J. (1996) Hepatitis B Virus HBx Protein Activates 

Transcription Factor NF-kB by Acting on Multiple Cytoplasmic Inhibitors of rel- 

Related Proteins. J. Virol., 70, 4558-4566.

Sum mers, J., O ’Connell, A. and Millman, I. (1975) Genome of hepatitis B virus: 

Restriction enzyme cleavage and structure of DNA extracted from Dane particles. Proc. 

Natl. Acad. Sci. USA, 72, 4597-4601.

Sum mers, J., Smolec, J.M. and Snyder, R. (1978) A virus similar to human hepatitis B 

virus associated with hepatitis and hepatoma in woodchucks. Proc. Natl. Acad. Sci. 

USA, 75, 4533-4537.

Summers, J. and Mason, W.S. (1982) Replication of the Genome of a Hepatitis B- 

Like Virus by Reverse Transcription of an RNA Intermediate. Cell, 29, 403-415.

Suzuki, M. (1989) SPXX, a Frequent Sequence Motif in Gene Regulatory Proteins. J. 

Mol. Biol., 207, 61-84.



References

S u zu k i ,  T., Kajino, K., Masui, N., Saito, I. and Miyamura, T. (1990) Alternative 

Splicing of Hepatitis B Virus RNAs in HepG2 Cells Transfected with the Viral DNA. 
Virology, 179, 881-885.

T akada, S., Kido, H., Fukutomi, A., Mori, T. and Koike, K. (1994) Interaction of 
hepatitis B virus X protein with a serine protease, tryptase TL2, as an inhibitor. 

Oncogene, 9, 341-348.

T a k a h a sh i, K., Machida, A., Funatsu, G., Nomura, M., Usuda, S., Aoyagi, S., 

Tachibana, K., Miyamoto, H., Imai, M., Nakamura, T., Miyakawa, Y. and Mayumi, M. 

(1983) Immunochemical structure of hepatitis B virus e antigen in the serum. J. 
Immunol., 130, 2903-2907.

Takayanagi, M., Kakumu, S., Ishikawa, T., Higashi, Y., Yoshioka, K. and Wakita, T.

(1993) Comparison of Envelope and Precore/Core Variants of Hepatitis B Vims (HBV) 

during Chronic HBV Infection. Virology, 196, 138-145.

Takehara, K., Ireland, D. and Bishop, D.H.L. (1988) Co-expression of the Hepatitis B 

Surface and Core Antigens Using Baculovirus Multiple Expression Vectors. J. Gen. 

Virol., 69, 2763-2777.

T arn , W-Y. and Steitz, J.A. (1997) Pre-mRNA splicing: the discovery of a new 

spliceosome doubles the challenge. Trends in Biochem. Sci., 22, 132-137.

T a v is , J.E. and Ganem, D. (1993) Expression of functional hepatitis B virus 

polymerase in yeast reveals it to be the sole viral component required for correct 

initiation of reverse transcription. Proc. Natl. Acad. Sci. USA, 90, 4107-4111.

Tavis, J.E. and Ganem, D. (1996) Evidence for Activiation of the Hepatitis B Virus 

Polymerase by Binding to Its RNA Template. J. Virol., 70, 5741-5750.

T avis, J.E., Perri, S. and Ganem, D. (1994) Hepadnavirus Reverse Transcription 

Initiates within the Stem-Loop of the RNA Packaging Signal and Employs a Novel 

Strand Transfer. J. Virol., 68, 3536-3543.

Testut, P., Renard, C-A., Terradillos, O., Vitviski-Trepo, L., Tekaia, F., Degott, C., 

Blake, J., Boyer, B. and Buendida, M.A. (1996) A New Hepadnavirus Endemic in 

Arctic Ground Squirrels in Alaska. J. Virol., 70, 4210-4219.



References

Ih u rsz , M.R., Kwiattzowski, D., Allsopp, C.E.M., Greenwood, B.M., Thomas, H.C. 

and Hill, A.V.S. (1995) Association between an MHC Class II allele and clearance of 

hepatitis B virus in the Gambia. New Engl. Jnl. Med., 332, 1065-1069.

Toh, H., Hajashida, H. and Miyata, T. (1983) Sequence homology between retroviral 

reverse transcriptase and putative polymerases of hepatitis B virus and cauliflower 
mosaic virus. Nature, 305, 827-829.

Tong, S., Li, J., Vitvitski, L. and Trepo, C. (1990) Active Hepatitis B Virus 

Replication in the Presence of Anti-HBe Is Associated with Viral Variants Containing 

an Inactive Pre-C Region. Virology, 176, 596-603.

Tong, S-P., Li, J-S., Vitvitski, L. and Trepo, C. (1992) Replication Capacities of 

Natural and Artificial Precore Stop Codon Mutants of Hepatitis B Virus: Relevance of 

Pregenome Encapsidation Signal. Virology, 191, 237-245.

Tordjeman, M., Fontan, G., Rabillon, V., Martin, J., Trepo, C., Hoffenbach, A., 

M abrouk, K., Sabatier, J.M., van Rietschoten, J. and Somme, G. (1993) 

Characterization of Minor and Major Antigenic Regions Within the Hepatitis B Virus 

Nucleocapsid. J. Med. Virol., 41, 221-229.

Towbin, H., Staehhelin, T. and Gordon, J. (1979) Electrophoretic transfer of proteins 

from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. 

Proc. Natl. Acad, Sci. USA, 76, 4350-4354.

Treichel, U., zum Biischenfelde, K-H.M., Stockert, R.J., Poralla, T. and Gerken, G.

(1994) The asialoglycoprotein receptor mediates hepatic binding and uptake of natural 

hepatitis B virus particles derived from viraemic carriers. J. Gen. Virol., 75, 3021-3029.

Treinin, M. and Laub, O. (1987) Identification of a Promoter Element Located 

Upstream from the Hepatitis B Virus X Gene. Mol. Cell. Biol., 7, 545-548.

Truant, R., Antunovic, J., Greenblatt, J., Prives, C. and Cromlish, J.A. (1995) Direct 

Interaction of the Hepatitis B Virus HBx Protein with p53 Leads to Inhibition by HBx 

o fp53  R e s p o n s e  Element-Directed Transactivation. J. Virol., 69, 1851-1859.

Trujillo, M.A., Letovsky, J., Maguire, H.F., Lopez-Cabrera, M. and Siddiqui, A. 

Functional analysis of a liver-specific enhancer of the hepatitis B virus. Proc. Natl. 

Acad. Sci. USA, 88, 3797-3801.



References

Tsai, S.L., Chen, P.J., Lai, M.Y., Yang, P.M., Sung, J.L., Huang, J.H., Hwang, L.H., 

Chang, T.H. and Chen, D.S. (1992) Acute Exacerbations of Chronic Type B Hepatitis 

Are Accompanied by Increased T Cell Responses to Hepatitis B Core And e Antigens. 
J. Clin. Invest., 89, 87-96.

Tsai, S.L., Chen, M.H., Yeh, C.T., Chu, C.M., Lin, A.N., Chiou, F.H., Chang, T.H. and 

Liaw, Y.F. (1996) Purification and Characterization of a Naturally Processed Hepatitis 

B Virus Peptide Recognized by CD8+ Cytotoxic T Lymphocytes. J. Clin. Invest., 97, 
577-584.

Tsui, L.V., Guidotti, L.G., Ishikawa, T. and Chisari, F.V. (1995) Posttranscriptional 

clearance of hepatitis B virus RNA by cytotoxic T lymphocyte-activated hepatocytes. 

Proc. Natl. Acad. Sci. USA, 92, 12398-12402.

Tur-Kaspa, R., Shaul, Y., Moore, D.D., Burk, R.D., Okret, S., Poellinger, L. and 

Shafritz, D.A. (1988) The Glucocorticoid Receptor Recognizes a Specific Nucleotide 

Sequence in Hepatitis B Virus DNA Causing Increased Activity of the HBV Enhancer. 

Virology, 167, 630-633.

Tur-Kaspa, R., Klein, A. and Aharonsen, S. (1992) Hepatitis B Virus Precore Mutants 

Are Identical in Carriers from Various Ethnic Origins and Are Associated with a Range 

of Liver Disease Severity. Hepatology, 16, 1338-1342.

Tuttleman, J.S., Pourcel, C. and Summers, J. (1986) Formation of the Pool of Closed 

Circular Viral DNA in Hepadnavirus-Infected Cells. Cell, 47, 451-460.

T w u , J-S., Lee, C-H., Lin, P-M. and Schloemer, R.H. (1988) Hepatitis B virus 

suppresses expression of human (3-interferon. Proc. Natl. Acad. Sci. USA, 85, 252-256.

Uchida, T., Aye, T.T., Shikata, T., Yano, M., Yatsuhashi, H., Koga, M. and Mima, S.

(1994) Evolution of the Hepatitis B Virus Gene During Chronic Infection in Seven 

Patients. J. Med. Virol., 43, 148-154.

Ueda, K., Tsurimoto, T. and Matsubara, K. (1991) Three Envelope Proteins of 

Hepatitis B Virus: Large S, Middle S, and Major S Proteins Needed for the Formation 

of Dane Particles. J. Virol., 65, 3521-3529.



References

Ueda, H., Ullrich, S.J., Gangemi, J.D., Kappel, C.A., Ngo, L., Feitelson, M.A. and Jay,

G. (1995) Functional inactivation but not structural mutation of p53 causes liver 

cancer. Nature Genetics, 9, 41-47.

Ulrich, T.R., Anders, K., Layfield, L., Cheng, L. and Lewin, K.J. (1985) Chronic 

Active Hepatitis of Hepatitis B and Non-A, Non-B Etiology. Arch. Path. Lab. Med., 
109, 403-407.

Ulrich, P.P., Bhat, R.A., Kelly, I., Brunetto, M.R., Bonino, F. and Vyas, G.N. (1990) 

A Precore-Defective Mutant of Hepatitis B Virus Associated With e Antigen-Negative 

Chronic Liver Disease. J. Med. Virol., 32, 109-118.

Unger, T. and Shaul, Y. (1990) The X protein of hepatitis B virus acts as a 

transcription factor when targetted to its responsive element. EMBO J., 9, 1889-1895.

Valliammai, T., Echevarria, J.M., Leon, P., Tusets, C. and Harrison, T. (1995) 

Amplification and Sequence Analysis of the Precore and Core Region of the HBV 

Genome From Sera of Spanish Patients With HBV2-Like Infections. J. Med. Virol., 46, 

375-379.

Van Etten, R.A., Jackson, P. and Baltimore, D. (1989) The Mouse Type IV c-abl 

Gene Product Is a Nuclear Protein, and Activation of Transforming Ability Is 

Associated with Cytoplasmic Localization. Cell, 58, 669-678.

Vento, S., Rondanelli, E.G., Ranieri, S., O ’Brien, C.J., Williams, R. and Eddleston, 

A.L.W.F. (1987) Prospective study of cellular immunity to hepatitis B virus antigens 

from the early incubation phase of acute hepatitis B. Lancet, ii, 119-122.

W akita, T., Kakumu, S., Shibata, M., Yoshioka, K., Ito, Y., Shinagawa, T., Ishikawa, 

T.. Takanayagi, M. and Morishima, T. (1991) Detection of Pre-C and Core Region 

Mutants of Hepatitis B Virus in Chronic Hepatitis B Virus Carriers. J. Clin. Invest., 88, 

1793-1801.

W akita, T., Kakumu, S., Yoshioka, K., Ishikawa, T., Ito, Y. and Shinagawa, T. (1992) 

Cellular Immune Responses of Peripheral Blood Mononuclear Cells to HBV Antigens 

during Chronic and Acute HBV Infection. Digestion, 52, 26-33.

W allace, L.A. and Carman, W.F. (1997) Surface Gene Variation of HBV: Scientific 

and Medical Relevance. Viral Hep. Reviews, 3, 5-16.



References

W ang, G-H. and Seeger, C. (1993) Novel Mechanism for Reverse Transcription in 

Hepatitis B Viruses. J. Virol., 67, 6507-6512.

W ang, W., London, W.T., Lega, L. and Feitelson, M.A. (1991a) HBxAg in the Liver 

from Carrier Patients with Chronic Hepatitis and Cirrhosis. Hepatology, 14, 29-37.

W ang, J., Lee, A.S. and Ou, J-H. (1991b) Proteolytic Conversion of Hepatitis B Virus 

e Antigen Precursor to End Product Occurs in a Postendoplasm ic Reticulum  

Compartment. J. Virol., 65, 5080-5083.

W ang, X.W., Forrester, K., Yeh, H., Feitelson, M.A., Gu, J-R. and Harris, C.C. (1994) 

Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional 

activity, and association with transcription factor ERCC3. Proc. Natl. Acad. Sci. USA, 

91, 2230-2234.

W asenauer, G., Kock, J. and Schlicht, H-J. (1992) A Cysteine and a Hydrophobic 

Sequence in the Noncleaved Portion of the Pre-C Leader Peptide Determine the 

Biophysical Properties of the Secretory Core Protein (HBe Protein) of Human Hepatitis 

B Virus. J. Virol., 66, 5338-5346.

W aters, J.A., Jowett, T.P. and Thomas, H.C. (1986) Identification of a Dominant 

Immunogenic Epitope of the Nucleocapsid (HBc) of the Hepatitis B Virus. J. Med. 

Virol., 19, 79-86.

W eber, M., Bronsema, V., Bartos, H., Bosserhoff, A., Bartenschlager, R. and Schaller,

H. (1994) Hepadnavirus P Protein Utilizes a Tyrosine Residue in the TP Domain To 

Prime Reverse Transcription. J. Virol., 68, 2994-2999.

W eim er, T., Schodel, F., Jung, M-C., Pape, G.R., Alberti, A., Fattovich, G., Beljaars, 

van Eerd, P.C.M.A. and Will, H. (1990) Antibodies to the RNase H Domain of 

Hepatitis B Virus P Protein Are Associated with Ongoing Viral Replication. J. Virol., 

64, 5665-5668.

W erner, B.G., Smolec, J.M., Snyder, R. and Summers, J. (1979) Serological 

Relationship of Woodchuck Hepatitis Virus to Human Hepatitis B Virus. J. Virol., 32,

314-322.



References

W hitten, T.M., Quets, A.T. and Schloemer, R.H. (1991) Identification of the Hepatitis 

B Virus Factor That Inhibits Expression of the Beta Interferon Gene. J. Virol., 65, 
4699-4704.

Will, H., Reiser, W., Weimer, T., Pfaff, E., Biischer, M., Sprengel, R., Cattaneo, R. and 

Schaller, H. (1987) Replication Strategy of Human Hepatitis B Virus. J. Virol., 61, 
904-911.

W ingfield, P.T., Stahl, S.J., Williams, R.W. and Steven, A.C. (1995) Hepatitis Core 

Antigen Produced In Escherichia coli: Subunit Composition, Conformational Analysis, 

and In Vitro Capsid Assembly. Biochemistry, 34, 4919-1932.

Wu, P.C., Lai, C.L., Lam, K.C. and Ho, J. (1982) Prednisolone in HBsAg-Positive 

Chronic Active Hepatitis: Histologic Evaluation in a Controlled Prospective Study. 

Hepatology, 2, 777-783.

Wu, J.Y., Zhou, Z-Y., Judd, A., Cartwright, C.A. and Robinson, W.S. (1990) The 

Hepatitis B Virus-Encoded Transcriptional Activator hbx Appears to Be a Novel

Protein Serine/Threonine Kinase. Cell, 63, 687-695.

W u, H-L., Chen, P-J., Tu, S-J., Lin, M-H., Lai, M-Y. and Chen, D-S. (1991a) 

Characterization and Genetic Analysis of Alternatively Spliced Transcripts of Hepatitis 

B Virus in Infected Human Liver and Transfected HepG2 Cells. J. Virol., 65, 1680- 

1686.

W u, H-L., Chen, P-J., Lin, M-H. and Chen, D-S. (1991b) Temporal Aspects of Major 

Viral Transcript Expression in Hep G2 Cells Transfected with Cloned Hepatitis B Virus 

DNA: With Emphasis on the X Transcript. Virology, 185, 644-651.

W u n d erlich , G. and Bruss, V. (1996) Characterization of early hepatitis B virus 

surface protein oligomers. Arch. Virol., 141, 1191-1205.

X u, Z. and Yen, T.S.B. Intracellular Retention of Surface Protein by a Hepatitis B 

Virus Mutant That Releases Virion Particles. J. Virol., 70, 133-140.

Y aginum a, K., Shirakata, Y., Kobayashi, M. and Koike, K. (1987) Hepatitis B virus 

(HBV) particles are produced in a cell culture system by transient expression of 

transfected HBV DNA. Proc. Natl. Acad. Sci. USA, 84, 2678-82.



References

Y am ada, G. and Nakahane, P.K. (1977) Hepatitis B Core and Surface Antigens in 

Liver Tissue. Light and Electron Microscopic Localization by the Peroxidase-Labelled 

Antibody Method. Lab. Invest., 36, 649-659.

Yamamoto, K., Horikita, M., Tsuda, F., Itoh, K., Akahane, Y., Yotsumoto, S., 

Okamoto, H., Miyakawa, Y. and Mayumi, M. (1994) Naturally Occurring Escape 

Mutants of Hepatitis B Virus with Various Mutations in the S Gene in Carriers 

Seropositive for Antibody to Hepatitis B Surface Antigen. J. Virol., 68, 2671-2676.

Y ang, S.Q., Walter, M. and Standring, D.N. (1992) Hepatitis B Virus p25 Precore 

Protein Accumulates in Xenopus Oocytes as an Untranslocated Phosphoprotein with an 

Uncleaved Signal Peptide. J. Virol., 66, 37-45.

Yang, W., Guo, J., Ying, Z., Hua, S., Dong, W. and Chen, H. (1994) Capsid Assembly 

and Involved Functional Analysis of Twelve Core Protein Mutants of Duck Hepatitis B 

Virus. J. Virol., 68, 338-345.

Yee, J-K. (1989) A Liver-Specific Enhancer in the Core Promoter Region of Human 

Hepatitis B Virus. Science, 246, 658-661.

Yeh, C-T., Liaw, Y-F. and Ou, J-H. (1990) The Arginine-Rich Domain of Hepatitis B 

Virus Precore and Core Proteins Contains a Signal for Nuclear Transport. J. Virol., 64, 

6141-6147.

Yeh, C-T., Wong, S.W., Fung, Y-K. and Ou, J-H. (1993) Cell cycle regulation of 

nuclear localization of hepatitis B virus core protein. Proc. Natl. Acad. Sci. USA, 90, 

6459-6463.

Yen, T.S.B. (1993) Regulation of hepatitis B virus gene expression. Seminars in 

Virology, 4, 33-42.

Y on , J., Rud, E., Corcoran, T., Kent, K., Rowlands, D. and Clarke, B. (1992) 

Stimulation of specific immune responses to simian immunodeficiency virus using 

chimeric hepatitis B core antigen particles. J. Gen. Virol., 73, 2569-2575.

Yoo, J.Y., Howard, R., Waggoner, J.G. and Hoofnagle, J.H. (1987) Peroxidase-Anti- 

Peroxidase Detection of Hepatitis B Surface and Core Antigen in Liver Biopsy 

Specimens From Patients With Chronic Type B Hepatitis. J. Med. Virol., 23, 273-281.



References

Yoshikawa, A., Tanaka, T., Hoshi, Y., Kato, N., Tachibana, K., Iizuka, H., Machida, 

A., Okamoto, H., Yamasaki, M., Miyakawa, Y. and Mayumi, M. (1993) Chimeric 

Hepatitis B Virus Core Particles with Parts or Copies of the Hepatitis C Virus Core 
Protein. J. Virol., 67, 6064-6070.

Yu, M.W., Finlayson, J.S. and Shih, J.W-K. (1985) Interaction Between Various 

Polymerised Human Albumins and Hepatitis B Surface Antigen. J. Virol., 55, 736-743.

Yu, X. and Mertz, J.E. (1996) Promoters for Synthesis of the Pre-C and Pregenomic 

mRNAs of Human Hepatitis B Virus Are Genetically Distinct and Differentially 

Regulated. J. Virol., 70, 8719-8726.

Yu, M., Miller, R.H., Emerson, S. and Purcell, R.H. (1996) A Hydrophobic Heptad 

Repeat of the Core Protein of Woodchuck Hepatitis Virus Is Required for Capsid 

Assembly. J. Virol., 70, 7085-7091.

Yuan, T.T.T., Faruqi, A., Shih, J.W.K. and Shih, C. (1995) The Mechanism of Natural 

Occurrence of Two Closely Linked HBV Precore Predominant Mutations. Virology, 

211, 144-156.

Yuh, C-H. and Ting, L-P. (1990) The Genome of Hepatitis B Virus Contains a Second 

Enhancer: Cooperation of Two Elements within This Enhancer Is Required for Its 

Function. J. Virol., 64, 4281-4287.

Yuh, C-H. and Ting, L-P. (1993) Differentiated Liver Cell Specificity of the Second 

Enhancer of Hepatitis B Virus. J. Virol., 67, 142-149.

Yuh, C-H., Chang, Y-L. and Ting, L-P. (1992) Transcriptional Regulation of Precore 

and Pregenomic RNAs of Hepatitis B Virus. J. Virol., 66, 4073-4084.

Yuki, N., Hayashi, N., Kasahara, K., Ueda, K., Fusamoto, H. and Kamada, T. (1990) 

Detection of Antibodies against the Polymerase Gene Product in Hepatitis B Virus 

Infection. Hepatology, 12, 193-198.

Zhang, P., Raney, A.K. and McLachlan, A. (1992) Characterization of the Hepatitis B 

Virus X- and Nucleocapsid Gene Transcriptional Regulatory Elements. Virology, 191, 

31-41.



References

Zheng, J., Schodel, F. and Peterson, D.L. (1992) The Structure of Hepadnaviral Core 

Antigens. Identification of free thiols and determination of the disulphide bonding 
pattern. J. Biol. Chem., 267, 9422-9429.

Z h o u ,  S. and Standring, D.N. (1991) Production of H epatitis  B Virus 

Nucleocapsidlike Core Particles in Xenopus Oocytes: Assembly Occurs Mainly in the 

Cytoplasm and Does Not Require the Nucleus. J. Virol., 65, 5457-5464.

Zhou, S. and Standring, D.N. (1992a) Hepatitis B virus capsid particles are assembled 

from core-protein dimer precursors. Proc. Natl. Acad. Sci. USA, 89, 10046-10050.

Zhou, S. and Standring, D.N. (1992b) Cys Residues of the Hepatitis B Virus Capsid 

Protein Are Not Essential for the Assembly of Viral Core Particles but Can Influence 

Their Stability. J. Virol., 66, 5393-5398.

Zhou, S., Yang, S.Q. and Standring, D.N. (1992) Characterization of Hepatitis B Virus 

Capsid Particle Assembly in Xenopus Oocytes. J. Virol., 66, 3086-3092.

Z lo tn ick , A., Cheng, N., Conway, J.F., Booy, F.P., Steven, A.C., Stahl, S.J. and 

Wingfield, P.T. (1996) Dimorphism of Hepatitis B Virus Capsids Is Strongly 

Influenced by the C-Terminus of the Capsid Protein. Biochemistry, 35, 7412-7421.

Z oulim , F. and Seeger, C. (1994) Reverse Transcription in Hepatitis B Viruses is 

Primed by a Tyrosine Residue of the Polymerase. J. Virol., 68, 6-13.

Zoulim, F., Zhang, X., Pichoud, C. and Trepo, C. (1996) Heterogeneity of hepatitis B 

virus (HBV) core gene in a patient with HBV-associated cirrhosis and serum negativity 

foranti-HBc. J. Hepatol., 24, 155-160.


	ProQuest_coversheet
	13815342

