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Abstract

One of the current concerns for particle physisists is to find out the origin
of particle masses in the context of gauge field theories. Certain studies on the
close connection that exists between mass generation and spontaneous symme-
try breaking have led to an important breakthrough (the Higgs mechanism) but
our understanding of the underlying phenomena still needs to be improved. Ap-
parently the origin of particle mass lies outside the foundations of the standard
model itself and therefore a satisfactory explanation has to be found beyond this
framework.

The development of lattice gauge theories in the last thirty years has permit-
ted exploration of new situations that one could not consider before. It has been
shown that at strong gauge coupling a spontaneous breakdown of chiral symme-
try arises dynamically. This suggests that the process of fermion mass generation
could in fact begin with an interaction between fermion and gauge fields.

This thesis consists of a review of the different elements which compose
this search and a presentation of a research performed on a viable alternative
model for fermion mass generation.

In the first part the basics of lattice gauge theory will be introduced. The sec-
ond part outlines the elements of fermion mass generation process and reviews
the results obtained so far. The research which is then presented in the third
part is concerned with a lattice gauge theory which displays a so-called shielded
gauge mechanism of dynamical fermion mass generation. This mechanism which
assumes some scalar field in addition to the fermion and gauge fields might be
retained in the continuum limit, as the lattice spacing shrinks to zero (it displays
a second order phase transition). This raises the hope to elaborate a realistic
theory with dynamically generated fermion mass in the continuum.

The main purpose of the work presented here was to study the model,
for a compact U(1) symmetry, on a three dimensional lattice and to draw its
phase diagram. A method inspired by Lee and Yang has been used. It consisted
of analysing the distribution of the zeros of the canonical partition function and
their response to a change in the hopping parameter and/or the coupling constant.
The partition function is expressed as a polynomial in the fermion mass and a
Hybrid monte-Carlo scheme is used to generate thermalised configurations at
various value of 8 and k. The coefficients of the corresponding polynomial are
extracted via a Lanczos algorithm and the zeros are then found by a standard
root-finding routine. The theorem of Lee and Yang allows us to locate the phase
transitions. In order to perform a finite size scaling analysis of the zeros several
simulations were made on 43, 63, 8% and 102 lattices. This led to the determination
of critical exponents which give the order of the phase transitions as well as their
related universality class.
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Introduction



Chapter 1

Lattice Gauge Theories

1.1 Introduction, The need for a new regular-
ization scheme

One of the principal tasks of modern quantum field theory is to establish new
non-perturbative approaches. This need to go beyond perturbation theory came
from the remaining uneasiness of renormalization procedures and particularly the
fact that the confinement of quarks and chiral symmetry breakings couldn’t be
entirely described with perturbative techniques.

The regularization scheme on a lattice has been proposed by Kenneth Wilson
in 1974 [6] and will be outlined as follow: Starting from the path integral for-
malism we temporary discretize both space and time on a lattice of points. The
ultraviolet divergences are thus removed while the discretization of the symmetry
groups and the limited number of degree of freedom allows an effective utilization
of numerical simulations. These methods of investigation are also encouraged by
the fact that the Euclidean version of the path integral formalism discloses a re-
markable correspondence between lattice gauge theory and the statistical physics
of magnets and fluids. Thus the results obtained on the lattice can be taken over

by powerful methods which were elaborated for the studies of statistical systems.

1.2 Construction

1.2.1 Functional integrals in the Euclidean space

The most suitable way to handle complex systems that occur in a gauge field

theory is to express them in a path integral formalism. The generating functional
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for vacuum diagrams, also called the partition function, is defined by the relation
Z :/Dd)e’s = /D?/)ef'dtfdax[‘ (1.1)

where the integration is taken over all the possible field configurations.

In order to discretize the theory on a lattice we first transfer expression(1.1)
to an Euclidean space time where measures are all real. To do so we perform an
analytical continuation of the time variable: t, — 1z4 - This is known as a Wick
rotation. It has the further advantage to "damp” the integrand for those widely
oscillating paths which would render numerical simulations quite unreliable. Fi-
nally this operation brings the formal connection with statistical mechanics: in
its Euclidean version the probability weight (e=5%) is formally equivalent to the

Boltzmann factor.

1.2.2 The regularization procedure

The ultraviolet divergences caused by large momenta do not take place when
both space and time are discretized on a lattice. The lattices which are em-
ployed are usually hyper-cubical. They can be mathematically defined through
the relation

L=aZ*={2| z,/a€ Z} (1.2)

a corresponds to the spacing between two neighbouring sites of the lattice and
is referred to as the lattice constant. Since it is the shortest non-zero distance,
a momenta cut-off appears automatically, just as a natural consequence of the
spectral decomposition of the fields: Writing £ = na where n is an integer, the
expression of the Fourier transform of ¢(na) is

wna) = [ S5, (k) e (13)

_z 21

a

Because of its periodicity in momentum space the theory remains entirely de-
scribed if we restrain the momenta to be in the range B = [-Z,Z] - called the
Brillouin zone. This is how the problem of ultraviolet divergences is directly re-
moved, there is no contribution from the short wavelengths in the perturbation

series.



1.2.3 Fields and gauge transformation on the lattice

The particles are restrained to lie on the sites of the lattice. It means mathe-
matically that the matter fields are defined for z, € Z only. As a consequence of
this, all the usual operations that one may perform on 1 are discretized.

The derivative operations for example can be defined as

operverdy(z) = L¥(e + ai) - (a)]
(14)
gpeckwerdy(z) = L[i(e) — P(z — ajy)]

fi is the unit vector in the direction indicated by u (= 1,2,3,4). Consequently

the hermitean lattice Laplacean in 4 space-time dimension is

AR OE Sl6(a +oi) + bz —op) ~ 20()] (L)

The gauge transformations of the matter fields, being local, are naturally defined

on the lattice sites too. They take the usual form:

¥(z) = ¥'(z) = A7 (2)9(x) (1.6)

Then gauge fields are introduced in order to ensure the invariance of the action
(its kinetic part) under equation(1.6). It is particularly interesting to note here
how the basic distinction between gauge fields and matter fields is displayed on
a lattice theory: Whereas matter fields are exclusively defined on the lattice
(defined as an ensemble of point), the gauge fields are in fact associated to the
links between these points. This is a direct consequence of their intrinsic role of
parallel transporter.

Let define these quantities more precisely. Consider a point z of the lattice
and z 4+ ap the nearest neighbouring point that one can find in the p direction.
With the corresponding link ! we will associate a link variable U(l) which is defined

as being an element of a given gauge group G.
Ul)=U(z +ap,z)=Uyy €G (1.7)

U; is defined to be unitary and therefore expressible as the exponential of an
imaginary matrix
Uz +ag,z) = exp(zagTbAZ(z) (1.8)

9



where g is the coupling constant, T, the generator of the gauge group (hence an
Hermitean traceless matrix) and A% is the gauge field. Under the local gauge
transformation that equation(1.6) introduced for the matter fields, these link

variables will transform as
U'(y,2) = A (9)U(y, z)A(z) (1.9)

which is the usual transformation law for parallel transporters. Hence let’s imag-
ine a particle which follows a straight curve from z to dz. Whenever the parallel
transporter will deviate infinitesimally from the Unit matrix it will automatically
generate a gauge field. This field embodies the dynamics, so to speak, which in
fact balance the deviation. The generation of the gauge field by U appears quite
clearly if we consider the series expansion of equation(1.8) when it tends to the

continuum: as the lattice spacing a tends to zero we get
U(x 4+ ap,z)=1-aA,(z) (1.10)

where A,(z) is the Lie algebra valued vector: A,(z) = —ngbAfL(m).

In order to make the action invariant under the local gauge transformation

we can define the covariant derivative as

Diy(z) = ;U (z, p)y(e + ap) - ()]
(1.11)

Diy(z) = LU (z, p)$(z) — (z — ap)]
Applying equations (1.6) and (1.9) to this quantity one notes that D, transforms
covariantly in the sense

D y'(z) = AN (z)Dup(x) (1.12)

The invariance of the action is then assured by mean of the gauge fields. If we

consider equation (1.10) within, say, the backward covariant derivative :

Dib(a) = 3((1-ady(2))h(z) — ¥z~ ap))
= (07 - Au(2)) ¥(=)
The principle is the same as for the continuum gauge theory. Since Observables
have to be gauge invariant functions of the basic variables it seems worthwhile to

point out that such quantities can be constructed from expressions of the form

> ¥(z)U(z,y)¥(y). There is a second type of "elementary” gauge invariant
<zy>
quantity that will be introduced in the next paragraph.
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1.2.4 Action of a theory on the lattice

On the lattice there are several different ways of expressing the Action for a
given theory, the basic requirements on S being just that it is gauge invariant, that
it recovers the initial theory as we approach the continuum limit and usually that
it is local. The main examples will be provided as we will introduce the action
of the gauge-fermion-scalar model which is investigated in the third part of this
thesis.

As a first illustration of the discussion above we introduce the Wilson Action
which describes a pure gauge theory.

It is obtained by tracing U; around each plaquettes i.e. around each smallest
closed loops that we can find on the lattice. They consist on four links and the

corresponding parallel transporter is therefore
Up=Ui(z,z+ a?)Ui(z + ad,z + af + ad)Ui(z + afi + av, & + ap)Ui(z + afr, z) (1.13)
The action is then defined in terms of these plaquette variables Uy

Se = Sp(Up) (1.14)

where
1
Sp(Up) = ~Bi57 7

Several types of action can be constructed but this particular formulation is

(TrU +TrU™ 1) -1} (1.15)

the most simple. It also has the advantage to be real and positive.

The most important matter is the evolution of such expressions as we return
to the continuum limit. This leads to the second part of this section which
concerns the formal analogies that has been identified between gauge theories
on the lattice and statistical mechanics. It allows one to use the experience
accumulated in statistical physics in order to investigate how the main quantities
behave as the lattice spacing tends to zero. This feature really played an essential

role in the success of the whole regularization procedure.

1.3 Toward the continuum limit

Finding the path from a given lattice gauge theory to its continuum limit is a

difficult task whose success is not assured. When the lattice spacing a is smoothly
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brought to zero, in addition to find a suitable renormalization procedure as the
ultraviolet divergences reappear, one has to monitor the evolution of the lattice
measurables which were all defined with respect to a. All these quantities must
remain finite and independent of the lattice spacing as this last tends to zero.

In practice, the search for a continuum limit requires the tuning of certain
parameters (in the following we will be particularly concerned with the tuning of
the coupling constant). It turns out that this tuning is analogous to the tuning
performed within statistical models in the approach to a critical temperature.
Some powerful methods designed for this purpose in statistical mechanics will
then be applied on the lattice [8].

In order to illustrate how a correspondence with statistical mechanics could
arise let consider how interactions take place on the lattice. They are acting
via the link variables: To each gauge-link variable is associated an elementary
interaction which extends over a distance of order a. By all means they have to
be correlated in order to cover distances involved in real processes. For example

we know that the typical range of strong interactions is about one fermi.

[ ] ® [ ) [ ] [ ] [ ] ® ® [ J ®
[ ] [ ] [ ] o—r @—— 00— O ® o [ ]
[ ] ® o— @ [ [ ] [ ] [ ] [ J [ ]
[ ) [ ] [ ] [ ® [ ) ® ® [ ] [ J
-————
a
1 fermi

When the lattice spacing is narrowed one fermi will correspond to a greater
number of sites. Hence the alignment of the elementary interactions, their coop-
eration, must be observed over a larger number of sites.

Ultimately in the continuum limit this correlation length has to be infinite.
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As will be shown in the next section, statistical physics introduces some quan-
tities which are very relevant for the study of these phenomenon. The correlation
functions for instance corresponds exactly to the quantities that we need to mon-
itor in the problem above. Moreover the theory of critical phenomena explains
how there exists certain situations where the correlation length becomes precisely

infinite and therefore allows the shrinkage of the lattice spacing to zero.

1.4 Related elements of statistical physics

The partition function

The partition function Z is initially introduced within the key equation
of statistical mechanics as a normalization factor . Considering a system in
equilibrium and which can be in N possible states. The probability for this

system to have an energy F, is given by the equation

p= %e_%” (1.16)

N
where £ is the Boltzmann constant, T the temperature and Z = ) e~ .
n=1
In fact Z contains all the information required about the thermodynamics

quantities.
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Mathematically we have

Free energy: F=-(f)nz
Internal energy: U=-TY&) k) = —(%)(#) (1.17)

Specific heat: C= (%2)(5%2;)1112

Consequently if the partition function is known all the thermodynamical proper-

ties of the system can be found.
Phase transitions

The quantities above can display, at a given temperature T, singularities
which are manifested in experiments by phase transitions in the system. The
order of a transition depends on which derivative the Free energy shows the sin-
gularity: a first order phase transition will be observed if there is a discontinuity
in the first derivative of F' (i.e. U) and similarly a second order phase transition
will be observed whenever there is a discontinuity in C.

This last kind of phase transition is a crucial matter for our search for a con-
tinuum limit. It is associated, by definition, to the divergence of the correlation
length which was mentioned in section(1.3).

An other characteristic of a second order phase transition is related to the fact
that it makes the separation between two different states of symmetry within the
system [7]. In fact the symmetry is reduced as we pass below the critical tem-
perature T.. Because of this reduction of symmetry, an additional parameter is
needed to describe the thermodynamics in this phase. This parameter known as
the order parameter is an extensive variable generally accessible to measurement
(for example in a ferromagnetic it is the magnetization vector) and it is generally

its own correlation length which diverges in the vicinity of Tt.
The Correlation function

Let’s consider the spin S; of an electron in a given system: interactions
favour the alignment of spins and a nearby spin §; will tend to assume the
same orientation as S;. However thermal agitation counteracts this tendency

and exerts a decorrelating effect (For future reference, models which study the

14



collective behavior of electrons spin on a lattice are referred to as Ising models):
The correlation function < 5;5; >. is a measure of the influence that §; actually

exerts over S;. It is defined by the relation
< 88 >e=< 8- 8> — < 8 >< 8 > (1.18)

In the present case if < 5;5; >, is small it then induces that thermal agitations
get the upper hand over the correlating influence of S;.

The range of the influence exerted by S; over its neighbourhood is measured
by the correlation length which is intrinsically related to the correlation function.
It has been showed that < §;5; > decreases exponentionally with the distance

li — j|. Expressed in lattice units, the correlation length £ is then given by

<SiSj>=e i = e (1.19)
An other important feature established by statistical theory is how the correla-
tion length depends on the temperature. For example we have in the case of the
one-dimensional Ising model: ¢ = mir:f_r—’- where J is a coupling constant.

The situation is more complex in the case of Gauge interactions. However
the point remains that one can find a critical temperature T, at which the cor-
relation length diverges. As a result of this the correlation function will become
scale invariant i.e. its mathematical expression will not contain any characteristic

length anymore.
Critical phenomena

Considering the system of the previous paragraph, one can observe that
the correlation between electrons spins gives rise to some clusters inside which
the electrons are either all spin-up or all spin-down. These clusters have variable
size and they may be embedded into each others. For example one could find a
small island of ‘spin-ups’ lying inside a bigger region of ‘spin-downs’. The range
of possible size is closely connected to the correlation length whose order gives
somehow the average size of these clusters.

As the temperature is lowered toward T,, £ grows and consequently the sizes
of the clusters can get much more diverse. At T = T. the correlation length
becomes infinite. Thus the fluctuations extend over regions of all possible dimen-

sions: there is no scale of length anymore. In geometrical terms, one says that

15



the system displays a fractal structure.

Hence having started with short-range interactions (between nearest neigh-
bours) at a second order phase transition we find correlations of infinite range.
Moreover this large-scale cooperative phenomenon gives rise to a second remark-
able feature. Indeed some important properties of the system do not depend on
the details of the interactions anymore. We find some universal quantities whose
measurement give the same value in several different theories provided that they
share, for example, the same dimensionality or interaction symmetries.

Consider for example the specific heat C introduced in equation(1.14). It
has been established from experimental observations that in the vicinity of the

critical point it displays the singular behavior
C~(T=T.) (1.20)

a is a critical exponent and it has the same value for all the theories sharing the
same "universality class”. These emerging similarities between different theories
can then lead us to fruitful comparisons. We can even work out a convenient
lattice regulator to perform our tuning by working on an other, simpler, theory

provided it belongs to the same universality class as our theory of interest.
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Part 11

(Generating the mass of the
fermions
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Chapter 2

General principles related to the
fermion mass generation

2.1 Introduction to the problem

We mentioned earlier that the Standard Model was a significant breakthrough
of quantum field theory. It not only presents a united description of electromag-
netic, weak and strong interactions: its predictions are in outstanding agreement
with every data obtained experimentally.

However some areas of this successful, perturbatively renormalizable, theory
remain poorly understood and so far its improvement unavoidably requires the
introduction of some arbitrary, free parameters which by all means deride the ini-
tial elegance of the theory. It is now generally admitted that a deeper coherence
has to be found beyond the model itself.

One of the major concerns is to find a correct explanation of the origin of
the fermions mass. The mass of their particles, determined by experiments, are
not predicted by the standard model: it can only accommodate them with its
description of fundamental interactions. The main point here is the fact that
if we introduced artificially some bare mass terms in the Lagrangian, then they
would break its invariance under gauge transformations (the one which charac-
terizes electro-weak interactions). Hence the origin of particle masses raised a
thorny problem ! : How can one develop a realistic theory of massive particles

interacting with each other without losing these so compelling gauge schemes?

'This difficulty is nonetheless not so surprising since the main weakness of the standard
model is that it cannot describe gravitational interactions.
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An answer has been found in a spontaneous breakdown of the electro-weak
symmetry. This important phenomenon - which is observed in many natural pro-
cesses - rests on the following observation: The Hamiltonian (or the commutation
relations) which characterizes a theory could possess an exact symmetry but the
physical states which are actually observed might not provide a net representa-
tion of this symmetry. More specifically a symmetry of the Hamiltonian might

not be a symmetry of the vacuum.

2.2 Role of chiral symmetries

The relation between fermion masses and the unified description of inter-
actions in the standard model has not been understood yet. Nonetheless an
interesting feature has been pointed out: If the particles had no mass at all then
a larger group of symmetries would be observed.

Chiral symmetries belong to this group and the formal relationship which ex-
ists between their breakdown and the generation of fermion masses is naturally
an interesting feature to study. It turns out however that the particular interven-
tion of chiral symmetries is not so fortunate: these symmetries are closely related
to the gauge symmetry that rules electro-weak interactions. Hence they would
rather prevent one from finding a straightforward solution. We cannot intend for
example to express the theory in a representation which displays a chiral sym-
metry and then simply beget its breaking by a suitable "mass term”: It would
plainly destroy the whole gauge theory and the renormalizability of the Standard
Model.

The notion of chiral symmetry is in fact directly connected with the dif-
ference which exists between two representations of the Lorentz group: the two
spinors which cover spin-1 particles. A chiral transformation interchanges the
so-called right handed and left handed spinors from these two representations.
Somehow its effect will then mix with the parity violation displayed by weak
interactions.

Let’s make to appear explicitely these two spinors, introduced in section(1.2)

in the Lagrangian density which describes N free Dirac fermions. We have
L= ng’yl“aud)k - m;/;ki/)k, k=1,2,..,N (21)
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We first note that L is invariant under U(N) transformations:

bj = ¥ = [exp(rwaT)] k¥ (2.2)

where the T% = 24 operators introduce our particular Lie algebra: we have
trA®AP = 28,5. Now we use the particular Majorana representation - where
all the y* matrices are imaginary . The fermion fields can then be explicitly de-

composed into two spinors: the right handed ¢p; = %zﬁk and the left handed

YLk = %ﬁ@bk such that
1-+° ,w
z/)Ic = ( 2 k ) (23)
g
These two spinors field are respectively assigned to the representations (%, 0) and
(0, 3) of the Lorentz group.

The Lagrangian (2.1) now becomes

L = Py 0,k + Wpiy 0, bRe — MPLrrRE — MPREVLE (2.4)

Hence the kinetic terms leave L invariant under a larger Up(N) *x Ur(NV) chiral
group. The gauge interactions, by construction, don’t affect this symmetry nei-
ther but we see clearly that the mass terms mix the two groups. Reciprocally
the breaking of a chiral symmetry implies the appearance of new terms in the

Lagrangian that can be interpreted as particle masses.

2.3 Phenomenon of spontaneous symmetry break-
ing

First illustration

We first note that in fact in the process the symmetry is not so much
‘broken’ as ‘secret’ or ‘hidden’. This occur in many phenomenon of nature. We
can find an inspiration of this technique for example in the collective behaviour
that occur in a ferromagnetic material (when there is no magnetic field). Its

Hamiltonian is rotationally invariant. However if we bring it below the Curie
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temperature T, the ground state of the system develops a non-zero magnetization
M and therefore loses its invariance under rotations. The direction of Ms has
been selected ”spontaneously” by the system as it cooled and this is why the

symmetry is said to be spontaneously broken.

10~ %m. 10~°

N \ \m\x
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0 T 10~9m T 10~ %m

Figure 3.1: On the microscopic level: we see elementary magnetic moments which arise
from the spin of the electrons®. Although they tend to align with each other thermal

fluctuations refrain them to do so unless the temperature fall below t. 3.

We will now consider this phenomenon in the context of quantum field the-
ory. Thus the state of lowest energy (the ground state) is the vacuum state and
the rotational symmetry of the ferromagnet is generally replaced by an internal
symmetry of the field. The spectra of small oscillations around the vacuum state
can also be connected to particle masses.

The first method is to postulate the existence of a field having a non-zero

value in the vacuum. In terms of a field operator ¢(z) we write
Pe(z) =< 0]¢(2)|0 ># 0 (25)

We note that this field has to be scalar since the vacuum is rotationally invariant.

2see section(1.4)

3This process is in fact more complex and requires advanced elements of statistical mechanics
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Case of a global symmetry

As a formal example we consider the Lagrangian of a complex scalar field

theory,
L = (0up)(0%¢") = Ve, ¢7) (2.6)

with a potential of the form

V(p,#*) = noe™ + Mep*)? (2.7)
This Lagrangian is then invariant under a global U(1) gauge transformation.

o(z) — p(z) = e o(z) (2.8)

P (@)~ 9" (a) = T (2) (2.9)

If both u? and A are positive then the potential has only one (trivial) absolute

minimum at ¢, = 0 which corresponds to the conventional vacuum. However if

we take u? < 0 this minimum occurs at a non-zero value of ¢ (A must remain
positive to ensure that the potential is bounded from below). We have

2
R 2.10

Hence there is a circle of minima for this potential and the true vacuum state

of the system has to be one of these states. Once ¢. has been manifested, the

U(1) symmetry does not hold anymore in the sense that a rotation of the vacuum

state would lead to a different state. . is not invariant under U(1). Let’s denote

the particular phase of the vacuum é and rewrite the theory as expanding about

this state. We reexpress ¢, in the form ¢, = ﬁvew, where v = \/=£. We can

then introduce a field redefinition:

olx) = =(p(a) + )£ (211)
This leads to rewrite the Lagrangian
1 1. (p+ At 1
£ = 5100 + T 0,67 1 p22 - g - 2 - Lt (212)

This Lagrangian clearly describes two real fields, p and £, one massless and the
other massive with a real positive mass —Av?. The massless state is a Nambu-
Goldstone boson; its occurrence is a characteristic of a the spontaneous break-

down of a continuous symmetry and is stated by the Nambu-Goldstone theorem.
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Although this Lagrangian describes the same theory as in eq (2.6) it is not
U(1) symmetric. We see why some prefer to describe the symmetry as ‘secret’
or ‘hidden’: Someone which is not aware of the previous field redefinition would
probably assume that the Lagrangian is just not invariant under phase changes.
However the particular coeflicients of the non-invariant terms are such that we

can recast the Lagrangian in a symmetric form.

—— ——— g
e ———

—

Figure 3.2: The potential energy density V(y) increases quadratically in the
radial plane (¢, = 0). Thus the displacement associated with £ induces a quantum
excitation which correspond to a massive particle. On the other hand p goes in

the ”valley” where V is constant and the goldstone boson is therefore massless.
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Chapter 3

Mechanisms of mass generation

3.1 Review of the Higgs mechanism

3.1.1 Description

The Higgs mechanism implements the previous technique to the more diffi-
cult, but richer, case of local symmetry transformations. As a result it provided
a suitable description of particle masses for the standard model.

When we consider a complex scalar field invariant under a local gauge transfor-
mation we must implement the Lagrangian of eq(2.6) by introducing a covariant
derivative D, = 8, — 1gA,(z). We must also introduce a kinetic term (we take
(—1F,, F*]) for the vector field A,(z).

Once again if p? is negative the vacuum state lies away from the origin and
this leads to the reparameterisation introduced in equation(2.11). However in
this case the covariant derivative of the field ¢ will also introduce a mass term
for the vector field [1g?v?A#A,]. Another term arises which can be interpreted if

we perform the field redefinition:
1
Bu(e) = Au(e) + 2-0,E(3) (3.1)

where £(z) is a boson field as introduced in eq(2.11). We don’t carry out explicitly
these calculations here. We just mention that the Lagrangian then describes
explicitly a massive vector field B, and a massive scalar field p with respective

masses
mp = gv
(3.2)
mp = /=22
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From the three spin components of the vector field, two are supplied by the
original gauge field A, and the third, the longitudinal component, is supplied by
the would-be Goldstone boson £. These features are the main hallmarks of the
Higgs mechanism.

We can get another insight of how it worked if we consider the procedure
from the following angle: Since under a local gauge transformation the field ¢
transforms as ¢ — @e9*®) it is possible to transform away the Goldstone boson
£(z) in equation(2.11) by choosing e(z) = %%l. However it brings the vector field
to transform as A,(z) — Au(z) + 3#%? which is in fact the field redefinition of
equation(4.1).

Hence equations (2.11) and (3.1) can be regarded as a local gauge rotation
of the theory. Since it transformed away the Goldstone bosons, this last is not
a physical field. Another point to mention is that important quantities such as
the Noether current (relating to the usual conservation of charges) are conserved.
Thus despite its "spontaneous breakdown” the symmetry remains with many

respects exact.

3.1.2 Limits of the theory

The Higgs mechanism provides a comfortable, perturbatively renormalizable,
way to introduce particle masses in gauge field theories. However if it describes
the fermion mass generation phenomenologically it does not truly predict these
masses: They simply appear as arbitrary, free parameters which depend on our
field redefinition.

Some other features are also disappointing. For example the scale of the
fermion masses, set by the scale of the electro-weak symmetry breaking, is much
larger than the scale which has been actually measured: Only the top quark does
have an "heavy” mass which seems consistent with the results of the theory. The
model doesn’t explain either why there are three different generations of fermions.
Finally one has to remember that the Higgs field has been postulated but its ex-
istence has ncver been confirmed by experiments. The fact for example that its
renormalized square mass would be contrived to be negative leads to view the
Higgs mechanism as an artificial feature of the standard model [10].

We will now see non-perturbative methods which have been developed re-

cently. In particular the fermion-gauge models which display at strong gauge
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coupling a spontaneous chiral symmetry breaking of dynamical origin suggest

the existence of interesting alternatives to the Higgs mechanism.

3.2 The dynamical mass generation alternative

In quantum mechanics terms, a spontaneous symmetry breakdown is exhib-
ited by the non-zero vacuum expectation value for some field operator that we
called the order parameter P (in reference to the phase transition that is man-
ifested in statistical physics). In the Higgs mechanism this last corresponds to
the vacuum expectation value of the elementary Higgs boson field.

It is important to note that P does not need in fact to be linear in the el-
ementary fields. The Goldstone theorem holds as well if the order parameter
arises as a composite state of those fields. The problem in this case is that usual
approximations fail completely - precisely because of the non-linearity of P in the

field quantities. One must therefore uses non-perturbative approaches.

Nambu and Jona-Lasinio were the first to propose the idea of dynamical
symmetry breaking: they defined a model where the order parameter was gener-
ated by the interactions between nucleons and pions [11]. The model is defined

by a 4-fermion interaction Lagrangian in d=1+3

L= Do+ 3 ([Frurd) - (Frsr)’ (33)

where 7 are isospin matrices. They showed that if the coupling g% is above a
certain value then a mass is generated dynamically: The order parameter results
from the interactions between the elementary fields. In their particular model,
the exact chiral SU(2); x SU(2)r symmetry is then broken to SU(2)y and this
produces a massless triplet of pseudo-scalars, as bound states, that one could
identify as idealized pions.

Since then, numerous investigations of various strongly coupled gauge theo-
ries have been carried out on the lattice. They revealed that dynamical mass
generation is a general property of these theories. It does not only occur in QCD
but also in QED at strong coupling. Therefore Dynamical Symmetry Breaking
is seriously considered as a mean to construct new mechanisms of fermion mass
generation. They are particularly appealing since they would avoid the introduc-

tion of a fundamental scalar field. The Higgs boson, should it exist, would be
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interpreted as a composite state, formed by some strong coupling beyond the
standard model itself. The following chapters concern the study of one of these

new models.
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Chapter 4

Fermion-gauge-scalar model on
the lattice

4.1 Introduction

Dynamical chiral symmetry breaking turns out to be a general property of
strongly coupled gauge-fermion theories studied on the lattice. The experience
accumulated since twenty years has then permitted to study some interesting
mechanisms of dynamical mass generation. Hence the main issue now is rather
to define a realistic continuum model from lattice gauge theories.

The model which will be presented in this section exhibits the hallmarks of
dynamical symmetry breaking: The chiral symmetry is spontaneously broken
once interactions between fermion and gauge fields have generated a bound state
whose vacuum expectation value is non-zero. Massive physical fermion states
are then observed in the spectrum as well as the massive Goldstone boson. The
main interest of this model comes from the fact the mechanism on which it rests
could work as well in the continuum limit. It assumes a scalar field ! which leads
to restore the chiral symmetry - at certain values of the gauge coupling and of
its propagator? - in such a way that the transition between the two phases (the
one where the chiral symmetry is broken and the one where it is restored) is of
second order. If the model is non-perturbatively renormalizable in this region

then it could truly describe realistic massive fermions in the continuum and be

1This does not however look like the Higgs mechanism. Here the scalar field is confined by
the gauge field.

2The propagator of the scalar field is monitored through the hopping parameter x which
will be introduced in the action of the theory in section(4.3.1).
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an alternative to the Higgs mechanism.

4.2 The shielded gauge mechanism

This mechanism of dynamical mass generation rests on the interaction between
a confining gauge field U, which belongs to some representation of a compact
gauge group G, and a fundamental fermion field x. It gives rise to a fermion
condensate i.e a fermion bound-state whose vacuum expectation value < ¥x >
becomes non zero at strong gauge coupling[17]. In the corresponding region of the
phase diagram a spontaneous breaking of the chiral symmetry is then observed.
This particular mechanism makes use of a fundamental scaler field ¢ whose role
is twofold:

First it gives rise to some composite physical fermion states, of the form
F = ¢tx, which are G-neutral. Therefore they don’t undergo the confinement
induced by the gauge charge and can exist asymptotically ( this feature is at
the origin of the name of the mechanism). In the chirally broken phase, the
fermion mass mp is observed to be non-zero and we then have a dynamical mass
generation. Goldstone bosons are also present: they are composed of x and ¥.

The second role of the scalar field is to lead to restore the Chiral symmetry,
as k increase, in such a way that this occurs smoothly in the scaling region of a
second order phase transition. The mass of the fermions then scales progressively

to zero.

4.3 Abelian case with a compact U(1) gauge
symmetry

In the work presented in the second part of this thesis, the shielded gauge
mechanism has been applied to the compact U(1) gauge group. It is thus con-
cerned with the study of Abelian models - such as compact QED in the limit case
where scalar fields are damped.

One can thus identify the fermion condensate with an electron-positron pair
while the coupling constant refers to the electric charge and the Wilson action

(introduced in equation(1.11)) is related to the electromagnetic field. A great
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interest is devoted to this model[19] since it displays important properties. After
having introduced the action of the theory we will discuss its different subsystems

as well as the results obtained so far in previous works.

4.3.1 Action of the yUy model

The model is defined on an Euclidean hyper-cubical lattice. The link variables
are elements of the compact gauge group U(1) and we can express them in terms

of the Abelian gauge fields 4, through the relation:
Uy = exp(reA,(z)) (4.1)

Here A,(z) is a real number corresponding to the continuum vector potential
(Au(z) = aA(z),) and e is the bare (electromagnetic) gauge coupling.

The sum over plaquettes of these link gauge variables leads to the Wilson action
introduced in section(1.2.4). The gauge group being compact U(1), it takes the

form

Su=p8>[1 —'ReUp] (4.2)

B =L And U, represents the plaquettes product.

Since we are concerned with chiral symmetries we want this gauged fermionic
part of the action to conserve at least some traces of them on the lattice. It will be
then discretized by means of the staggered fermion scheme. The fermion doubling
problem is overcome by performing a Kawamoto-Smit transformation: Starting

from the naive fermion action
§ = 3 SBErbE + 1) - B —pl +m DB (43)
U T

We operate a spin diagonalization, using a local change of variables of the form:
P(z) = T(z)x(2).
T(z) is required to be unitary and such that T!(z)y,T(z + p) = n.(z)I.

We choose T(z) = 47'737...v5* and then the action becomes

=3 Y @K@ xale + 1) - Tal@xalz - p)} + m Y Ta(@)xalz)  (44)

ey TNe3 T,
Where the phase factor is 7, = (—1)%+%2++%-1 (1 = 1). Since we got rid of

the y,s, S can run in principle over any number of possible values of the spinor

30



indices @ = 1,2, ...,k. For instance we take the minimal choice, k¥ = 1, ( we will
then omit this trivial index) and the coupling to the gauge fields leads naturally

to a first expression
1 4 ;
Sx = 2 ZY(‘”) Z Nuz(Uz,uXo+n = Ug—ppXo-u) + @Mo ZYa:Xz (4.5)
T p=1 T

Although the degeneracy is only partially removed, this ‘discrete’ action keeps
trace of residual chiral symmetries and we expect to get back in the continuum
limit the global chiral symmetry U(N¢)+«U(Ny) (where Ny is the number of fermion
species found in this limit).

x has a unitary charge. The bare fermion mass mg has been introduced for rea-

sons that will be explained in chapter 6 and the realistic situation is meant in

the limit mg = 0.

The scalar part of the action does not require special techniques of dis-
cretization and we just introduce the following bilinear expression in the scalar

fields which is gauge invariant:

4
S¢ =—K Z Z[¢2Ur,u¢r+u + ¢L+uUrf.u¢z] (4'6)

z p=1

The hopping parameter  is related to the bare mass of the scalar fields and plays

its most important role in the renormalization procedure.

We can now gather all the different parts of the action:

S=5y+5,+58,

Su = Y[l - Re{Up}]
P
(4.7)
4
Sy = %27(37) Zl Nuz(Uz,u Xo4u — Ul—u,u Xz~u) + @m0 3 XXz
T u= T

4
S¢ = —"i§ > [‘1’; U,y Grtp + ¢:Tc+u U;r,u ¢

n=1
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4.3.2 Properties of the model

The strongly coupled 4D compact U(1) lattice gauge theory with fermion and
scalar fields exhibits some interesting non-perturbative properties[19]. We first
point out that the model includes some other known theories. For example at
B = 0 we recover the chiral phase transition seen in the Nambu-Jona-Lasinio
model and at k = 0 we reach the standard QED theory. Another noticeable fact
is that one can construct for the pure gauge theory a non-asymptotic free and
non-trivial continuum limit.

However our main interest lies in the more realistic case where both scalar
and fermion fields are included. A critical point has been observed at 8 = 0.64[14].
When this point is approached from the phase where the chiral symmetry is
spontaneously broken the mass amp of the fermion scales. As expected from the
shielded gauge mechanism this fermion, composed of the fundamental fermion
and scalar fields is unconfined. The nature of the continuum limit taken at this
point is not known yet but it might be possible to obtain a non-perturbatively
renormalizable theory. Nonetheless the requirement of renormalizability is very
stringent for four dimensional systems. The work presented in this thesis will then
consider complementary studies of this model on a three dimensional lattice. The

aim is to give further precisions about how the mechanism works.
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Part 111

Study of the YUy model in three
dimensions
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The mechanism of dynamical symmetry breaking which has been intro-
duced relies on four-fermion theories which, at strong coupling, don’t depend on
the dimensions of the lattice [12]. Four dimensional models have been intensively
studied and as mentioned earlier the xUvy model gave promising results with
respect to the continuum limit. However the non-perturbative treatment meets
some difficulties in 4 dimensions due to ultra-violet divergences. The Nambu
Jona-Lasinio model which first introduced dynamical symmetry breaking had al-
ready to face the same problem: the cut-off cannot be removed from the scattering
amplitudes. However its dependence on them turns out to be only logarithmic
and the model could then be employed as a low-energy effective theory for the
strong interactions.

The problems caused by ultraviolet divergences leads us to study the model
in lower dimensions to test the basic ideas. The studies of 2D models which are
exactly solvable gave very useful results. For example the Gross-Neveu model,
O(2N) symmetric and with a scalar-scalar 4 fermion interaction, displayed both
dynamical mass generation ( breaking down a discrete ¥ — 5% chiral symmetry)
and asymptotic freedom - the two keys for QCD. Nonetheless it is impossible
in this framework to break continuous rigid symmetries since the existence of
Nambu-Goldstone bosons is precluded by Coleman’s theorem (all local operators
which are non-singlet under a continuous symmetry group must have a zero ex-
pectation value).

3D models are then the natural place to try to build a first complete mecha-

nism whish generate massive fermions in the continuum [15].
We have to assume an infinitely strong coupling (3 = 0) to begin with. In this
regime our mechanism remains unchanged but it is interesting to note that it then
act on a model which is in the same universality class as the 3D Gross-Neveu
model - which is non-perturbatively renormalizable [16][13]. We don’t know pre-
cisely what happens when the coupling gets finite (but still very large since in
addition to the shielded gauge mechanism’s requirements the 4-fermion theory is
not renormalizable in the weak coupling expansion for 3D models). The critical
behaviour of the physical quantities has also to be studied.

The purpose of the following simulations is to establish the phase diagram
of the model. This work is based on the analysis of the Lee-Yang zeros of the

partition function which is described below.
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Chapter 5
Method

The model which has been introduced in the previous chapter is now investi-
gated with tools of statistical physics. Starting from the action defined in section
(4.3.1) we define the partition function of the system and can then explore its
thermodynamical properties. The main objective is to determine the phase dia-
gram of the system at strong and intermediate gauge coupling. This provides the
indispensable information on the behaviour of the mass generation mechanism.
We find out where the continuum limit is approachable and can also determine
various features such as the universality class of the critical line which joins the
pure QED theory.

We will explain below the method which has been used and which rests on the
Lee-Yang approach. A theorem has been established which shows how the study
of the equations of state and phase transitions can be completed just by looking
at the distribution of the zeros of the partition function. Although the partition
function can be expressed as a polynomial in the fermion mass the determination
of these roots is technically non trivial. The numerical procedure which has been

designed for this purpose will be described in the second part of this chapter.

5.1 Lee-Yang zeros of the partition function

5.1.1 The Lee-Yang approach

The theorems of Lee and Yang [20] show that phase transitions are manifested
in experiment by the occurrence of singularities in thermodynamic functions.
Prior to discuss these two theorems we first have to note that such singu-

larities can only occur because we tend to the idealized thermodynamic limit -
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where the volume is expanded to infinity while the number of particles remains
the same. Hence as we approach the limit of infinite volume the partition function
can develop singularities (due to the fact that the limit function of a sequence of
analytic functions is not necessary analytic).

Yang and Lee then stated in the form of two theorems[20] how phase tran-
sitions are controlled by the distribution of the zeros of the partition function.
They presented their theory in the context of a monoatomic gas. The atoms
are assumed to have a finite impenetrable core and their interactions to have a
finite range, such that the resulting potential is nowhere minus infinity. Their
conclusions can nevertheless be widely generalized to a wide range of systems.

The gas is kept in a finite volume V and thus contains a limited number of
atoms M(V). Hence the Grand partition function is a polynomial of finite degree

M(V) in the fugacity y.
M(V) On
Gv =3 v (5.1)
N=0 ’
From this expression one can obtain the equation of state which can be written

in the parametric form:

2o lim
V—co

kT

1
—ﬁlog Gy (5.2)
. 1
p= Vh—r}loo dlogyV

log Gy (5.3)

Since the coeflicients @ in eq(5.1) are positive, we note that the polynomial has
no real positive roots. If we do not consider the limit of infinite volume then no
singularities can occur: p and p being analytic functions of y everywhere on the

real axis, p would be an analytic function of p for all physical values of p.

We now expose the two theorems before to discuss how they will lead us to
find the phase diagram of the yU1s model.

o theorem 7 : For all positive real values of y, (3)log Gy approaches, as
V — oo, a limit which is independent of the shape of V.
Furthermore, this limit is a continuous, monotonically increasing function

of y. (it is assumed that the surface area doesn’t increase faster than Vf).

e theorem Z7 : If in the complex y plane a region R containing a segment of

the positive real axis is always free of roots, then in this region as V — oo
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8
6logy
respect to y. Furthermore the operations [b—ﬂ)‘?g—y] and [limy_.] commute in

R

all the quantities: ( )N L log Gy approach limits which are analytic with

Hence a thermodynamic phase is defined by any single region R of theorem
IZ. Since in each of these regions the convergence to the limit of infinite volume
is uniform we can interchange the order of lim and % This leads in fact to a
reformulation of the parametric form of the equations of state. These equations
will apply to the whole system provided that the region R includes the entire
positive y axis. However if a zero of the grand partition function approaches a
point yo on the real positive axis, it splits the region R into two regions, Ry and

R,, in which the theorem ZZ holds separately.

Ry
A Re(y)

The theorem Z requires p(y) to be continuous - even at y = yo - but its deriva-
tive may be discontinuous. In this last case R; and R, will correspond to two
different phases of the system. Following the discussion of section(1.4) we note
that the phase transition will be of first order if a discontinuity is exhibited by

the first derivative (g%).

4
/
/ ©
. /
)a :’y Y. —y
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In an other hand, if it is only the second derivative which is discontinuous (or
even the third by all means) then one can speak of a continuous phase transition

for the observable related to the density ,1—).

ﬂ.
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e
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e ———

y
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In practice this provides us with a very convenient way to localize phase
transitions: At finite volume the partition function exhibits a finite number of
complex zeros which lie outside of the real axis - due to the analycity of the
function. At increasing volume the sequence of the real parts of the zeros lying
nearest to the real axis "pinch” the real axis at a given point where the analytical
region is therefore splitted into two parts. Of course this corresponds precisely
to the area where the phase transition has to be investigated.

We investigate this region by studying the scaling behavior of the imaginary
parts of the critical zeros with increasing volume. For example in a critical region

their behavior is given by the scaling law [22]
Im(yi)=A-L"% (5.4)

Where A is a complex number. The critical exponent o is directly connected to

the order of the phase transition: for a first order transition we would have 7 = %
where d is the dimension of the lattice. We can also study the universality class
to which the region belongs by measuring the quantity: § = 5z5. Those tools
have been established from experimental observations and the reliability of its

results has been confirmed, although no rigorous proof has been given yet.
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5.1.2 The partition function as a polynomial in the fermion
mass

The partition function which corresponds to our lattice gauge theory is defined

by the relation
Zpm = [ [ [laxlidRlidgliasiav)e (5.5)

The integration over the grassmann variables can be explicitly taken.

| [1astagnavie s [iagiaxtess = [ [lagllaotdvie=(+5) et Mlm, U, ()]
(5.6)

where M[m,U,(z)] is the fermionic matrix.

My o [m, Uy(z)} = mébyy + % Z h[UU(“’)nu(m)‘sy.r-!-u - Uj(a: —v)nu()byz-] (5.7)
v=z+j+2+t

This characteristic form of M allows one to write its determinant as a polyno-

mial in the fermion mass for each configuration of the gauge and scalar fields. All

our numerical procedure rests on this feature and the starting point is to express

this polynomial from which the Lee-Yang zeros can be extracted.

The fermionic matrix of equation(5.7) can be decomposed for a finite
lattice as the sum of a diagonal matrix and an anti-hermitian matrix which cor-
responds to the nearest-neighbour interaction between even and odd sites.

ml M )

—J\fT mls (5.8)

M[m,Ul=ml,+H = (

The subscripts of the square unit matrices denote their size and the % X % block
matrix M is the even-to-odd site interaction. Hence we can write the fermion

determinant as
det(M[m)]) = det(m? + MTM) = 1_[(1712 + A3, (5.9)
i=1

where 1)\; are the eigenvalues of +H. Since the partition function is the expectation
value < det(M[m]) >y 4 of this determinant (averaged over configurations which
are generated with a probability weight proportional to exp —(Suy + S¢)) we can

express equation(5.5) in the form of a polynomial in the fermion mass.

v

v v
Zgm =< Y aym? >= Y <a, >m?" ' (5.10)
n=0

n=0
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The zeros of this polynomial are the Lee-Yang zeros introduced in section (5.1.1).

The corresponding numerical procedure has been designed as follows:

We use an Hybrid Monte Carlo algorithm to obtain an ensemble of thermalised
configurations generated with the probability weight P[U,¢]. Then the averaged
coefficients < ezp(c,) > of this polynomial are extracted by an iterative method,
based on a Lanczos algorithm, which is described in section(5.2.4). We finally
obtain the complex zeros by using a standard root-finding routine. As we will
see below, during this procedure one must introduce two additional - tuning -
parameters in order to neutralise some technical problems which are due to certain
features of the distribution of the fermionic determinants in the configuration
space as well as the wide range of magnitudes of the coeflicients of the resulting
polynomial.

The whole process will be repeated at different values of 8 and « and by using
the Lee-Yang method we will be able to draw the main characteristics of the

phase diagram.

5.2 Numerical procedure

5.2.1 Monte Carlo approach

The partition function has been expressed in equation(5.6) as the vacuum
expectation values of the fermionic determinant, weighted for each configuration
by a probability weight P[U,¢] proportional to exp[—(Suy + Ss)]. All possible
configurations being involved, the number of terms in the integrand is quite
enormous and the usual methods of calculations cannot handle it.

Monte-Carlo methods solve the problem by selecting only the terms which
are not negligible. Clearly a configuration which gives a very high action makes
a small contribution to the path integral. In the mean time, configurations for
which the action is small are usually so rare that their contribution is not very
significant either.

Let p(S) be the density of states for a given S. We rewrite

z-= / p(§)e7509 det( M([m])dS (5.11)
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The configurations which contribute the most to the partition function are
those for which p(S§)e=#5¢¢ is maximised !. A Monte-Carlo algorithm will find
such configurations by the following process: Starting from a given configuration,
it will randomly move on to some neighbouring configurations. Then it records
which configuration has just been found before to move again. This operation
is repeated a numerous number of times until it finds that the probability dis-
tribution drawn during the process has become stable. On the ground of this
appraisal it can work out a reliable approximation of the integral. This will work
if the process is really stochastic ("random walk”). If it was more deterministic
then the ergodicity would not be guaranteed and the configurations tested would
not be independent from each other. Provided there is enough randomness in the
process we can expect that the average obtained will then converge to the correct

ensemble average. For a given observable O we write
1 1
<O0>= =) O +0(—= 5.12
N RZ::I (\/'1\7 ) (5.12)

where O(\/LN—) is concerned with the statistical error (which also takes in account
the residual correlations between various O,s).

There are various Monte-Carlo algorithms which all share the same kind of
properties. The most important one is the following: If we consider the transition
probability W({u}, {«'}) that the algorithm specify from one configuration {u} to

the next one {u'}, we must have at the equilibrium

e~ SHeh) = > W({ul}, {u'})e= 5D (5.13)
{w'}
This is known as the detailed balance condition. It assures that the transition
{u} — {u'} occurs at the same rate as {u'} — {u}. This condition fullfiled by all
Monte Carlo algorithms can be rewritten as

W({u},{v}) _ e 5U)

W({w'}, {u}) ~ e S} (5.14)

5.2.2 Introduction of the updating mass

By ‘simulating’ the probability distribution of field configurations, Monte-

Carlo algorithms allow one to perform numerically enormous path integrations.

ldet(M[m]) doesn’t play any role with respect to the discussion above. We will take it in
account in the next section.

41



In the present case however the determinant of the fermionic matrix gives rise
to an additional difficulty: The two distributions P[U,¢] and det(M[m]) don’t
overlap properly. The region of configuration space where the probability weight
peaks is characterised by a negligible contribution of the determinant and vice
versa, P[U, ¢] is negligible in the region of large determinant values. Consequently
the measurements of m give systematically tiny values due to the vanishing effects
of at least one of the two distributions.

The solution to this problem is to introduce a parameter my which shifts the
probability weight and makes it to overlap significantly with the distribution of
the observable det(M[m]). As we will consider a particular region of the configu-
ration space we will tune mg to be as near as possible as the expected value of the
lowest zero. We will then perform measurements on the ratios i’i‘g w which is

then close to the unity.
This parameter is introduced as follow: Since we are looking for the zeros

of the partition function, the effects of overall multiplicative factors are not so

significant and we can therefore rewrite Z - for a given B and « - as

[[d¢][dU] det M (m)e=(Su+Ss)

galm) = [[d¢][dU] det M (mg)e(Su+5s) (5.15)
Hence
5 S dU] 5o det M(mo)e(5u+5%) (5.16)
pue(m) = [d¢][dU] det M (mg)e=(SutSe) '

det M
Zaulm) = [ 146AV) Sk PIU, &, (5.17)

Where we set the coefficient P[U, ¢, mg] to be

—(Su+S,

PlU, ¢, mq] = det M(mo, U)e™ (5] (5.18)

f[d¢][dUI] det M(mo’ Ul)e—(SU1+S¢)
We then designed an Hybrid Monte Carlo algorithm. The partition function is

now expressed as the vacuum expectation value of the determinant ratio %,
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averaged over configurations which are generated with the probability weight

P[U7 (ba mO]‘ d tM( )
e m

Zon(m) = (det M(myg)

) P[U ¢ ,mo] (5.19)

5.2.3 Shifted expansion of the partition function

From the particular expuression of the fermionic determinant in terms of its
eigenvalues (det(M([m]) = ]EI (m? + A?)) we have found an expansion of Z as a
polynomial in the fermion 2;11&53 (equation 5.10).

There are in fact various forms of expansion of the partition function. For

instance it is more suitable in the present case to write a shifted expansion by

introducing a mass shift in the determinant:

det(M[m]) = [[(m? — w2 + A?) (5.20)

.

1

1

where we just substituted A2 = (A2+7?). Hence the partition function’s expansion

will be written as

det(M[m]) = i < by > (m? - m?) (5.21)
=0

It is convenient to write the coefficients in an exponentional form, say b, =
exp(z,), since they vary over many orders of magnitude (see figure(5.6)). More-
over the measurements being actually performed on the ratio f&(—%%ﬁ the coefli-
cients z,, will be immediately replaced by ¢, = z,—In det(M[mo]). The polynomial
of interest is then given by the expression

v

Z[m,p] = i: < exp(en) > Plmo,B] (m2 - n"zQ)" (5.22)

n=0

The purpose of this mass shift is twofold. First it is a means to control the
reliability of the results by repeating the process above with different choices of
m?. Clearly the same zeros in m are supposed to appear for adjacent choices of
7 if they are true zeros of the polynomial.

In certain circumstances this technique can also serve to counter the fact that
the polynomial coefficients < exp(cn) > pjm, /= exp(Cr) vary over many orders of
magnitude. If |m? — m?| is quite small then the last terms of the polynomial will

give negligible contributions. This allows the truncation of the polynomial to a
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certain order K. The stability of the corresponding zeros can be controlled by

then increasing K.

<00 }.
150
300 K \

250

W Cin)

150

100

<0

<0 100 1S0 200 250 00 S0 <00
1

Figure 5.6: The logarithms of the coefficients of the partition function ?. The

2

Cns vary in magnitude between € and e*?? and we therefore express them in

exponentional form.

5.2.4 Determination of the coefficients of the polynomial

We now state the iterative method that has been used in order to extract the

coefficients of the polynomial.

We see from equation (5.9) - where the determinant has been expressed in
terms of the eigenvalues of H - that for real m? the coefficients exp(cy) are real
positive numbers. We are thus looking for real positive coeflicients corresponding
to the determinant ratio det(M[m])/ det(M[mo}) expressed as a polynomial in
(m?—m2). The first step is the Lanczos tridiagonalisation of the hermitian matrix

M? through a similarity transformation

xtmix =T (5.23)

2These results were obtained for a QCD model (SU(3) gauge group). Nonetheless this wide
variation of magnitude is very similar in the U(1) case.
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v

where T is a ¥ x ¥ real tridiagonal matrix:

ay ﬁl
Br ay [P
Ty = B2 o3 (5.24)
’ BN -1
BN-1 an

and X is a series of column vectors (z1, z2,...,2n). These are the Lanczos vectors
which are orthogonal: zlz; = é;;. Since the fermionic determinant is invariant

under similarity transformations, we can write for example
det(M[mg)) = det(M? + m2) = det(Tv + m?) (5.25)

By omitting the last p rows and columns of Tv we then obtain a new matrix
T,, for which there exists a recursive relation: The Laplace expansion of the

determinant gives rise to the equation
det(T, + md) = (ap + m3) det(Tp_1 + m3) — ﬂg_l det(Tp—g + m2) (5.26)

It is convenient to express it in exponential form since we are dealing with vari-

ations of several orders: By defining E, = In det(T, + m2) we have
E, = E,1 + In(a, + m) — 3_1 exp(Ep_2 — Ep_q) (5.27)
with the initial conditions
Eo =0, E; = In(a; + m3) (5.28)

Hence we find the value of In det(M[mo]) after ¥ iterations of equation (5.24).

The calculation of the characteristic polynomial of M[m] is naturally more
complicated. The first steps are identical to those above: writing the determinant

in terms of Ty, [det(M[m]) = det(Tv + m? — m?)] and using the recursion

det [Ty (m? )] = [ty +((m? )] det{ Ty +(m? ~ )] — B2_; det[Tyopt(m?—1?)]

(5.29)
Each minor determinant is then expressed as a polynomial in (m? — m?):
P
det[T, + (m? — m?)] = 3~ exp(z®P)(m? — m?)" (5.30)

n=0
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This time the recursion (5.27) imposes a recursion on the zP)s too. It is written

as

2®) = 27V 4 Infa, + exp(e?3) — 2PV) — 2 exp(aP~P —2P7V)]  (5.31)

with the initial conditions

(1)

— 1 _
o0~ losten o (@) (5.32)
2y’ = log(anag — B?), ;" =log(a; + a3z), zy ' =0,

The coefficients ezp(z,) are obtained after ¥ iterations and lead to the ¢,s of
equation (5.22) which correspond to isolated configurations. We finally average
them over our ensemble of thermalised configurations, still using the exponential
form, and end up with all the C,s after having performed the recursion:
k — 1) exp(cF—1) — (k)

2 )
where k runs over configurations (we have dropped the subscript n) and the initial

T® = o8 4 1 LEL (5.33)

condition is simply
Ci=a (5.34)

This method is efficient when applied to small lattices (up to 4%) but it meets
additional difficulties from 63 lattices. The rounding errors tend to build up
exponentially and as a result of this the last vector z; obtained after each iteration
loses the orthogonality with the earliest Lanczos vector of equation(5.22). The
usual way to remedy this is to re-orthogonalise: One projects each new Lanczos
vector [z; — a:,-—:cj(:v}:vi)] to make it orthogonal with an earlier vector z;. However
in the present case it would be too costly in storage space and computation time.

Fortunately we can avoid the reorthogonalisation of the Lanczos vectors by
using some properties of the Sturm sequences. Our method consists in making the
previous algorithm to proceed beyond the %th iterations and hence to calculate
new Lanczos vectors and a’s and B’s. After N iterations, we then obtain a
tridiagonal matrix T with N eigenvalues X;. Each minor determinant D, of
T — I is then extracted through the relations

Dy = (an = \)Dp_y — B2_ Du_s
Do=1, =0 | (5.35)
Di=a; -
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Now if we let A be a continuous variable the D,(A)’s become analytic functions
and their emerging properties can serve to determine accurately the eigenvalues
of T matrix.

Loosely, we run the recurrence (5.35) with an arbitrary value of A. We note
that the sign of a given D,()) might be opposite to the one of the previous
Dni1(X). As we perform the recursion again for neighbouring values of X the
total number of sign changes from D; to Dy might be different. It means that
at least one of the D,s changed sign between the two As. Since they are analytic
functions their graphs necessarily crossed the absisse axis. This is how one can
track the precise value of A at which Dy vanished: Simply by running the D,
sequence for closer and closer values of A until the total number of sign changes
increases. We can then identify each A; thanks to a theorem which shows that if
we obtained i sign changes then we are between the i** and the (i41)* eigenvalue
of T. These is how the );’s are found.

Having found the eigenvalues of T we can deduce from them the eigenvalues
of M?2: It has been found empirically that if N is sufficiently large the \’s will
all converge toward some of the X’s. The task now is to identify the spurious
eigenvalues A, which are not eigenvalue of M%. One way to do so is to look at
the eigenvalues of the matrix 7 formed from the N — 1 first iterations. Like T,
T will contain the eigenvalues of M2. However the spurious eigenvalues will have
changed: indeed the last component of their eigenvectors are large and they are
therefore greatly affected by removing the last o and 8. Hence the true eigenval-
ues are those that M? shares with both T and T.

Once we have found the eigenvalues of the fermion matrix, we define coefhi-

cients r,(c") through the expansion.

det(M[m]) = f[(m2 +AY) = Zn: r(M 2k (5.36)
=1 k=0

It gives rises to the iteration
Y = N (5.37)

with r(()l) = A? and ril). After ¥ of these iterations one finally obtains the coeffi-

: _ )
cients exp(c,) = ra?".
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Chapter 6

Results

6.1 Introduction

The procedure defined in chapter 5 has been applied to the U(1)gauge-fermion-
scalar model on a three dimensional lattice. We present the results of our numer-
ical simulations which has led, in collaboration with a group in Aachen !, to the
determination of the phase diagram for the system.

Measurements of the expectation value of the fermionic determinant were
performed at various values of 8 (on a three dimensional lattice 3 is now related
to the gauge coupling constant through the relation g = #) and k. We then
obtained the distribution of the zeros of the partition function in the complex
mass plane for various regions of the § —  plane.

The graphs displayed in the following sections show the zeros in the upper-
right quarter of the complex mass plane (Im(Z) and Re(Z) positive). Nonetheless
the complete distribution covers the whole complex plane: the complex conju-
gates of these zeros and their negative are also zeros of the polynomial.

The zeros of the partition function were first determined on a 42 lattice. The
update mass in the Hybrid Monte Carlo generation of the ensemble was chosen
to be ir the vicinity of the expected real part of the lowest zero. We used amg =
0.005, 0.02 or 0.05. This preliminary investigation revealed the main properties of
the phase diagram. We could identify three main regions as discussed below.

We then generated new ensembles on 63, 8% and 103 lattices in order to perform

a finite size scaling analysis on the zeros closest to the real axis 2. This analysis of

'In particular the work of W.Franzki from the Institut fir Theoretische Physik[21]
2We used also 123 lattices in regions where the gauge coupling was weak
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the scaling behavior of these zeros determines the order of the phase transitions
and allows us to obtain a precise localisation of the critical points.

This work will be presented in the following order: We first discuss measure-
ments obtained from simulations on the 43 lattice at strong and intermediate
couplings. This provides an introduction to the way that one can extract qual-
itative information on the thermodynamic properties of the system by looking
at the distribution of the zeros and their response to a change in the physical
parameters 4 and k.

We then summarize our results on larger lattices and present the finite size
scaling analysis and the critical exponents found. Finally we describe our in-
terpretation of these measurements via the phase diagram and discuss its main

characteristics as well as their physical implications.

6.2 Strong coupling on a 43 lattice.

The line along the x axis at 8 = 0 is useful in checking the validity of our
method since the model can then be rewritten exactly as a four fermion theory
[19] and we recover the (2 + 1) Gross Neveu model 3.

Since the zeros are imaginary in this region we took a low updating mass,
mo = 0.005. The distribution of the zeros was first determined at « = 0.33 and is

shown in Fig. 6.1.

The zeros are observed to be purely imaginary and evenly spaced along the
imaginary axis. The lost of linearity observed above the 28t zero is due to the
fact that the coefficients controlling these zeros are not well determined. These
zeros would be better determined if more measurements were averaged over. This
feature has no major consequences since we base our finite size scaling analysis
only on the zeros which lie near to the real axis.

The equal spacing of the zeros does allow a simple method for the determi-

nation of the fermion condensate < yx >. We can parameterize the zeros as

Yn = F1(a + nb) (6.1)

3This model is the first to disclose that 4-fermion theories are in fact renormalizable in the

+ expansion in d = 1+ 2. It then revealed information on non-pertubative possibilities [16].

49



Im(Z)

Figure 6.1: The zeros of the partition function in the complex mass plane for a
43 lattice at strong coupling and x = 0.33. 2500 measurements were made to
determine the averaged characteristic polynomial. On the right hand side the
imaginary part of the n'* zero is plotted against n.

Then the relation (5.22) leads us to

InZ = Z?: In(m? + (a + nb)?) (6.2)
n=0
= V/%ln(mz + (a+ Vbz)Y)dz (6.3)
0

for the grand canonical partition function and for the fermion condensate:

10
X = == 4
< XX > 75 InZ (6.4)
_ Vb/2+a a
= Vb(arctan( ) — arctan(m)) (6.5)

In order that we have a first order phase transition in the infinite volume limit
at m = 0 the edge a must scale with some positive power of the inverse of V and
b must scale inversely with V. As we show below, simulations on larger lattices
show that in this region of s they both scale as 1/V. Therefore if we introduce

in eq(6.5) the following expressions: a = &, b = & and go to the limit V' — oo (
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a’'/V becomes negligible), we obtain

<Xy >= 2 arctan(<2) (6.6)
Xx >= 37 arctan(g— .
Finally by taking the limit m — 0 we have the simple relation:

m

Figure 6.1 corresponds to a spacing b = 0.058 4+ 0.003 between each zeros. Hence,
assuming that a and b scale with the volume, the fermion condensate at the point
B =0 and x = 0.33 is equal in lattice units to < yx >= 0.841. These results are
consistent with the prediction given by the strong coupling expansion [23].
Further simulations at 8 = 0 have been performed by the Aachen group. They
confirm this first order behaviour at x = 0.33. At larger « (around « = 1) they find
a transition to second order critical behaviour as expected for the Gross-Neveu

model. Their results in this region are discussed below.

6.3 Intermediate couplings on a 43 lattice.

Fig 6.2 shows the distribution of the zeros on a 43 lattice at various values of
8 and k.

Consider the behaviour of the zeros along the line k = 0.33 in the 2 —  plane.
At B = 0, as discussed above, the zeros are imaginary and equally spaced. As
increases to 1.0 we see the same behaviour in the zeros closest to the origin but
at 8 = 1.0 we have a signal that some of the zeros are developing a non-zero real
part. At 8 = 1.25 the lowest zero, the edge singularity, has a non-zero real part.
We have checked this result by measuring the zeros on two different ensembles:
one developed at update mass 0.05 and the other at update mass 0.005. The
edge singularity is the same in both.

We also note that along this line, the imaginary part of the edge singularity
increases with 8. In addition, for 8 < 1.25 the lowest zeros of the partition func-
tion are, to a good approximation, still evenly spaced along the imaginary axis.
However the spacing b between each zero has however increased and therefore the
fermion condensate is decreasing.

At 8 = 1 for k = 0.15,0.33 and 0.45 we also find the edge singularity to
be imaginary and increasing with . Again there is a signal that the zeros are

developing a real part at larger &
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Figure 6.2: The distribution of the Lee-Yang zeros on a 4* lattice at various

values of 8 and &
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The above results indicate the possibility of a transition around g of 1.25 (at
k = 0.33) from a region with a first order chiral transition at m = 0 to a region
with different critical behaviour. Thus for 8 < 1.25 we have two regions with
different chiral critical behaviour separated by a line or curve starting at k = 1
for 8 = 0 and terminating at x = 0 for § &~ 1.25. In one region, the Nambu phase,
the chiral symmetry appears to be strongly broken. In the other, the Higgs phase,
it is either zero or very small®.

The measurements on the 44 lattice have signalled the dominant critical fea-
tures of the model in its chiral limit. More detailed analysis must depend on

simulations on larger lattices and on finite size scaling.

6.4 Finite size scaling of the zeros at strong cou-
pling.

Fig. 6.3 shows the finite size scaling of the edge singularity for different values
of «.
The lowest zeros Z.(L) should scale with the lattice size L (on an L3 lattice)

as

Ze(L) — Ze(o0) = AL (6.8)

where A is a complex number. [22] This was originally established for the case of a
continuous phase transition and can also be extended to a first order transition. It
requires that the real and imaginary part of the zeros should scale independently

with the same exponent. In particular
ImZ, ~ AL (6.9)

Since there is no divergent correlation length the exponent (namely ) is

determined only by the actual size of the system. A first order phase transition

5 — 1
corresponds to 7 = 3.

We took the lowest zero in the distribution at each volume and plotted the
the logarithm of imaginary part and their real part against the logarithm of the

lattice size L (see Figure 6.5).

4More detailed analysis by the Aachen group on large lattices with high statistics now shows
that, in the chiral limit, the condensate is zero in the Higgs phase.
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Figure 6.3: Finite size scaling behavior of the lowest zeros of the partition func-
tion for various values of & at strong coupling.(From simulations performed in

Aachen))

At strong coupling the edge singularity signals a first order phase transition
for k < 1.0. This is particularly clear at « = 0.70 where the critical exponent is
equal to 0.36 ~ 1 (d is the dimension of the lattice).

At k = 1.00, 7 = 0.47(5) which is consistent with a continuous phase transition.
For k > 1.0 the chiral condensate is small and consistent with zero whereas for
k < 11t is clearly non-zero.

Moreover the exponent § = -~ = 2.4(10) and therefore indicates [21] that
this point belongs to the same universality class as the chiral phase transition
observed in the (24+1) Gross-Neveu model[14].

6.5 Finite size scaling of the zeros at intermedi-
ate couplings.

At fixed 8 and k we generated ensembles on lattices of increasing volume. As

stated above, the critical zeros in the complex plane should obey the scaling law:

Ze(L) = Zo(c0) = AL™% (6.10)
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where A is a complex number. We took the lowest zero of the distribution for
each volume, V, and plotted its imaginary part and real part against the lattice
length (L = v/V) on a log-log plot.

£=0.80
4 it asL
:x=0.70
v= 0877(17)
v:x=0.60
1 v= 0.781(31)
¢:x=0.50
1 v= 0577(31)
1 ex=0.47
1 9= 0533(10)
1 0«x=0.45
D= 0.4970{37)
1 2«=043
U= 0.4513(70)
*:x=0.40
v= 0.373(11)

0:¢=0.30
U= 0.33975(64)

Figure 6.4: Fitting of the imaginary and real part of the edge singularity for
increasing lattice volumes. On a logarithmic scale the curve appears to be a
straight line.

Fig. 6.4 shows the scaling behaviour of the edge singularity at 8 = 0.8 for
various values of k. This set of results should be compared with the equivalent
set at strong coupling, Fig 6.3.

Whereas at strong coupling we found the critical k. = 1.00(05), at 8 = 0.8
we find the same qualitative features but with x. = 0.45(2) We therefore have a
critical line extending into the 8 — « plane separating the Higgs phase (large )
from the Nambu phase.

However our simulations on the 42 lattice did indicate the possibility of a
further transition at 8 ~ 1.25 and s ~ 0.33 to a region with different critical
behaviour  i.e, the region 8 > 1.25 and « < 0.3).

In that region the edge singularity develops a non-zero real part. Fig.6.9 shows
the distribution of the zeros on 62,83, and 103 lattices. We found the real part of
the edge singularity to be zero on the 10° lattice but, within our statistical errors,

it equally well could be non-zero but very small.
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Figure 6.5: Fitting of the imaginary and real part of the edge singularity for
increasing lattice volumes on a log-log plot at f =1.25 and & = 0.33.

Fig. 6.5 shows the scaling behaviour of the real and imaginary parts of the
edge singularity. We have also included our data on the 43 lattice.

The real part of the edge singularity on the 10® lattice is predicted to be
~ 0.005 which we believe would be consistent, within our errors, with that of
Fig.6.9.

The critical exponents were found to be g, = 0.4276 and 7, = 0.4707. This
1s consistent with a second order phase transition. Simulations at larger values
of § show that finite size effects are large at weak coupling. We find the critical
exponents at weak coupling to be second order. Fig.6.6 shows the scaling be-
haviour of the zeros at 8 = 2.0 and « = 0.15. There the critical exponent 7 = 0.71.

The phase diagram at weak coupling is discussed in more detail below.

6.6 Fine tuning of « critical

We discuss here a technique which leads to the fine tuning of the «, at which,
for fixed 3, we move from the Nambu phase to a region with second order critical
behaviour. The technique again depends on the scaling behaviour of the zeros of

the partition function.
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Figure 6.6: The finite size scaling of the imaginary part of the critical zeros at
weak coupling. The critical exponent 7 at f = 2.0 and & = 0.15 15 0.71

However we now consider a lattice of constant volume: it is the value of the
hopping parameter x which will be the variable.

We determined the distributions of the zeros on an 83 lattice with 3 fixed at
1.25 at various values of x; from & = 0.75 to k = 0.33 where the critical point is
expected.

The distributions of the zeros for x = 0.75, 0.43, 0.40 and 0.35 are shown in
Figs.6.10 and 6.11.

We are "tracking” a critical line which separates the Nambu phase where
the chiral symmetry is broken via a first order transition and a phase where
the transition is second order and the chiral condensate is small (zero). In the
latter phase we assume that the imaginary part of the edge singularity has a &
dependence

Im(Z)= A+ B(k — k). (6.11)

We found a best fit to the x dependence by considering A, B, k. and v as free
parameters. The best fit is shown in Fig.6.7. It gave k. = 0.348 and v = 0.488(6)
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Figure 6.7: final fitting after having determinated k. numerically.

6.7 Phase diagram

Having reviewed the main techniques that have been employed in this inves-
tigation we now describe the phase diagram of the xUws model. In this section
we make use of the more detailed results regarding the mass amp of the fermion
state F = 9ty and the fermion condensate obtained in the Aachen simulations
[21].

The edge singularity, at 8 = 0, displays a first order phase transition: We
have for example at xk = 0.7, 7 = 0.356 (— 1/3).

Below this point the chiral symmetry is broken and measurements of the
fermion condensate < Xx > give non-zero values. However at x = 1.1 < Xx >
vanishes and the scaling behaviour of the zeros indicates a second order phase
transition. This critical point corresponds to the chiral phase transition observed
in the Gross Neveu model and it would be interesting to pursue further studies of
the scaling of zeros at this point. From the critical exponent § = -5 we might
find that this point is universal.

A critical line extends into the 8, x plane separating the regions with first and

second order chiral transitions. This critical line starts from the point (8,x) =
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Figure 6.8: Phase diagram of the 3 dimensional xUt model

(0,1.1) and passes through the points (0.8,0.45), (1.25,0.35) and may extend to
B = oo for small values of «.

Below this critical line, the zeros of the partition function are imaginary and
the scaling of their linear density indicates a first order transition similar to the
scaling of the edge singularity as discussed above. The fermion condensate as
well as the mass amp of the fermion state F' = 'y are non-zero: This is the
phase where the dynamical symmetry breaking operates. Both x and v fields are
confined and in the limiting case 8 = 0 the x and F states become identical. For
this reason, this phase is referred to as the Nambu phase.

Above the critical line, the Higgs mechanism operates. The zeros of the
partition function are still imaginary but the behavior of the physical observables
is quite different from that of the previous case. Both the fermion mass and the
fermion condensate vanish. All physical states are gauge invariant and the U(1)

charge is screened by the scalar condensate. Provided we choose the gauge charge
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to be equal to one, we also recover, for weak coupling, the U(1) vector boson and
the Higgs boson. We call this phase the Higgs phase.

There is a third phase "X” whose nature has not been understood thoroughly
yet. It lies below the critical line at weak coupling. Here the zeros are complex
(i.e. have a nonzero real part), and, as shown in Fig.6.6 the edge singularity has
a scaling behaviour corresponding to a second order transition. We believe that
it is the nonzero real part of the zeros which distinguishes this phase from the
Higgs phase.

In addition the fermion condensate Yy is small or zero but the fermion mass
amp is quite big (in the Higgs phase amp is zero).

The transition to the Higgs phase is therefore difficult to investigate. Further
investigations have to be performed. Indeed it is not clear from the finite size

scaling of the zeros that there is a change in critical behaviour for g > 1.3.
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Chapter 7

Conclusion

The study of the zeros of the partition functions proved once again to be a
powerful tool in the investigation of the phase structure of a lattice field theory.
Although the computing power available is often a major limitation for this kind
of study, the Hybrid Monte Carlo scheme which has been introduced here en-
abled us to extract the most valuable data on the yUws model , at strong and
intermediate coupling, and revealed crucial properties of the system with respect
to the generation of the fermion mass.

The model displays a mechanism of dynamical fermion mass generation which
is analogous to those of the Gross-Neveu model at strong coupling and persists
at finite values of 3. As x increases, the order parameter vanishes and the chiral
symmetry is then restored. The scaling behavior of the corresponding critical
line gives evidence of a second order phase transition where the fermion mass is
observed to tend continuously to zero. Furthermore the points along this chiral
transition line which correspond to 8 = 0 and 8 = 0.8 both belong to the same
universality class as the (24+1) Gross-Neveu model and we can expect that it
would be true for the whole transition line - in which case the model would be
non-pertubatively renormalizable in the continuum limit. However some devia-
tion, along the transition line, have been observed and further measurements have
to be performed. Clearly the non-perturbative renormalizability of the model is
a matter which will require a rigorous verification.

Further investigations have also to be carried out on the region of weak gauge
coupling and small . In particular the transition within the Nambu phase at
which the fermion mass vanishes is not well explained. This transition line - which

joins at k = 0 the pure QED theory - requires to be understood a wider scale
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analysis of the physical observables by means of larger lattices. This is currently

being studied within another project.
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