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Abstract 

 This thesis describes a collection of studies into the electrical response of a 

III-V MOS stack comprising metal/GaGdO/GaAs layers as a function of fabrication 

process variables and the findings of those studies. As a result of this work, areas of 

improvement in the gate process module of a III-V heterostructure MOSFET were 

identified.

Compared to traditional bulk silicon MOSFET design, one featuring a III-V 

channel heterostructure with a high-dielectric-constant oxide as the gate insulator 

provides numerous benefits, for example: the insulator can be made thicker for the 

same capacitance, the operating voltage can be made lower for the same current 

output, and improved output characteristics can be achieved without reducing the 

channel length further. It is known that transistors composed of III-V materials are 

most  susceptible  to damage induced by radiation and plasma processing.  These 

devices utilise sub-10 nm gate dielectric films, which are prone to contamination, 

degradation and damage. Therefore, throughout the course of this work, process 

damage  and  contamination  issues,  as  well  as  various  techniques  to  mitigate  or 

prevent those have been investigated through comparative studies of III-V MOS 

capacitors  and  transistors  comprising  various  forms  of  metal  gates,  various 

thicknesses of GaGdO dielectric, and a number of GaAs-based semiconductor layer 

structures. 

Transistors  which  were  fabricated  before  this  work  commenced,  showed 

problems  with  threshold  voltage  control.  Specifically,  MOSFETs  designed  for 

normally-off (VTH > 0) operation exhibited below-zero threshold voltages. With the 

results obtained during this work, it was possible to gain an understanding of why 

the transistor threshold voltage shifts as the gate length decreases and of what pulls 

the threshold voltage downwards preventing normally-off device operation.

Two  main  culprits  for  the  negative  VTH  shift  were  found.  The  first  was 

radiation  damage  induced  by  the  gate  metal  deposition  process,  which  can  be 

prevented by slowing down the deposition rate. The second was the layer of gold 
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added on top of platinum in the gate metal stack which reduces the effective work 

function of the whole gate due to its electronegativity properties. Since the device 

was designed for a platinum-only gate, this could explain the below zero VTH. This 

could be prevented either by using a platinum-only gate, or by matching the layer 

structure  design  and  the  actual  gate  metal  used  for  the  future  devices.  Post-

metallisation thermal anneal was shown to mitigate both these effects. However, if 

post-metallisation annealing is used, care should be taken to ensure it is performed 

before  the  ohmic  contacts  are  formed  as  the  thermal  treatment  was  shown  to 

degrade the source/drain contacts.

In addition, the programme of studies this thesis describes, also found that if 

the gate contact is deposited before the source/drain contacts, it causes a shift in 

threshold voltage towards negative values as the gate length decreases, because the 

ohmic  contact  anneal  process  affects  the  properties  of  the  underlying  material 

differently depending on whether it is covered with the gate metal or not.  In terms 

of surface contamination; this work found that it causes device-to-device parameter 

variation, and a plasma clean is therefore essential.

This work also demonstrated that the parasitic capacitances in the system, 

namely the contact periphery dependent gate-ohmic capacitance, plays a significant 

role in the total gate capacitance. This is true to such an extent that reducing the 

distance between the gate and the source/drain ohmic contacts in the device would 

help with shifting the threshold voltages closely towards the designed values.

The findings made available by the collection of experiments performed for 

this work have two major applications. Firstly, these findings provide useful data in 

the study of the possible phenomena taking place inside the metal/GaGdO/GaAs 

layers and interfaces as the result of chemical processes applied to it. In addition, 

these findings allow recommendations as to how to best approach fabrication of  

devices utilising these layers.  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Chapter 1. Introduction                                                                                                   

1 Introduction 

This thesis presents an investigation into a III-V heterostructure MOSFET (metal-

oxide-semiconductor field-effect transistor) with an InGaAs channel and a Ga2O3/

GaGdO gate  dielectric,  designed as  an n-channel  candidate  for  high-speed low-

voltage  CMOS  (complementary  metal-oxide-semiconductor  technology)  digital 

logic  circuits.  The  aim  of  this  work  was  to  improve  the  gate  field  control  by:                 

a) optimisation of fabrication processes associated with the gate stack of the device, 

and b) investigation into parasitic elements associated with its gate and source/

drain contacts layout. The former was achieved through observation of changes in 

capacitance-voltage  measurements  of  MOS  capacitors  (MOSCAPs)  as  the  gate 

processing parameters were varied, with some of the processes tested on devices. To 

achieve the latter aim, a specialist MOS capacitor structure was designed, modifying 

the standard MOSCAP towards increased periphery and much smaller dimensions 

of its contacts and spacing between them. 

The investigated transistor design was first reported in literature in 2005, following 

the development of a low-defect GaAs/Ga2O3 interface, implantation-free source/

drain  regions,  and numerous  previous  reports  of  improved electron mobility  in 

doped barrier / undoped channel heterojunctions. The popularity of heterojunction 

transistors for digital logic applications increased with the need for replacement of 

silicon-channel  (Si)  SiO2-dielectric  CMOS technology that  was  used to  construct 

large-scale digital logic integrated circuits populated by fast-switching low-voltage 

transistors until recently.

The  success  of  the  Si  MOSFET  stems  from  its  scalability,  i.e.  the  proportional 

reduction of all its lateral and vertical dimensions, which achieves faster, denser and 

therefore cheaper to manufacture circuits.  However, at the turn of the century it 
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became apparent that if the aggressive dimensional scaling is to be continued, the 

gate insulator - the thinnest layer of the MOSFET - would have to be 4-5 atoms thick 

by the  end of  the  next  decade.  At  these  thicknesses,  the  tunnelling of  electrons 

across the insulator are predicted to reach significant levels in terms of gate leakage 

current, affecting reproducibility and reliability of devices, therefore an alternative 

to SiO2 gate dielectric was to be sought. 

In parallel to investigating alternative dielectrics, functional scaling methods were 

explored,  aimed  at  delivering  improved  system  functionalities,  such  as  higher 

output  current  and  more  efficient  switching,  at  fixed  physical  dimensions.  This 

spurred research into materials with a higher carrier mobility and structures with 

lower  current  leakage,  naturally  leading  to  III-V  heterostructures  with  undoped 

quantum well channels and eventually resulting in the development of the device 

investigated in  this  work.  The  InGaAs-channel  GaGdO-dielectric  heterostructure 

MOSFET produced a high output current and good subthreshold characteristics at 1 

µm gate length and 100 µm gate width, but when scaled tenfold to 100 nm gate at 

the same width, a shift of threshold voltage towards smaller values and degradation 

of transconductance occurred. Moreover, the threshold voltage values measured  on 

a number of wafers were generally at least 0.3 V lower than the theoretical value. 

This suggested the issues were related to the processes involved in the fabrication of 

the device and the design of the device introducing parasitic elements into the MOS 

system. It was thus clear that the fabrication process required optimisation, and the 

effects of  the parasitics an investigation.  The details  of  the work carried out are 

provided below.

In  this  thesis,  the  experimental  results  are  presented  in  three  chapters  in  the 

following order:

First, large-area MOS capacitor measurements are presented and discussed, leading 

to  identification  of  the  most  promising  processes.  A section  presents  a  method 

developed to determine the thickness of  Electron Beam Lithography (EBL) post-

development resist residual layer.
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The second chapter presents the results of electrical characterisation of MOSFETs 

fabricated using processes based on MOS capacitor measurement outcomes.  

 

Finally,  a  specialised  MOSCAP  layout  will  be  presented,  combining  large  area 

capacitance  gate  stacks  with  scaled  test  structures  mimicking  the  range  of 

dimensions used for the actual devices. A section is dedicated to a description of 

challenges that were overcome in order to fabricate the structures.

Supporting theory sections are contained within the experimental chapters focusing 

on non-idealities of the MOS stack, as well as MOS transistor characteristics and key 

parameters.  These  are  explained  via  carrier  dynamics  and  equivalent  circuit 

diagrams.  The  background section expands  on the  introduction providing more 

detail  about  the  evolution  of  the  heterostructure  MOSFET  device.  It  also 

complements  the  theory  sections  summarising  the  most  common  methods  to 

measure  defects  in  the  MOS  structure,  followed  by  a  review  of  the  effects  of 

common fabrication processes on the amount of defects for various semiconductor-

oxide  structures.  For  this,  semiconductor  surface  passivation  methods  are 

presented,  as  well  as  techniques  to  minimise  charge  trapping  at  the  oxide-

semiconductor interface and/or unwanted charge in the oxide.

The key findings can be summarised as follows:

1) Gate region processing and thermal, mechanical, and radiation-induced damage

- E-beam exposure during gate lithography introduces interface states

- E-beam evaporation of metals introduces interface states 

- Oxygen plasma barrel ashing is non-damaging

- Polymer contamination at the gate-oxide interface decreases gate capacitance 

and degrades device output characteristics

- Post-metallisation anneal at 430°C causes damage at the interface, but removes 

fixed charge in the dielectric

- Ultrasonic agitation during substrate cleaning introduces interface states  
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2) Gate region process damage prevention / mitigation

- Slowing down the deposition rate of metals

- Using a single-layer gate metal

- Post-metallisation anneal in N2 or O2 ≤ 350°C, for gate-first fabrication method 

only

3)  Parasitic  components  associated  with  the  gate  region,  and  other  device 

fabrication elements that could affect scaling

- Periphery capacitance element of the total gate capacitance is dependent on the 

separation between the gate and the source contact 

- Uneven lateral distribution of density of oxygen vacancies in GaGdO

- Lateral diffusion of Ni/Ge/Au metal during 430°C ohmic contact anneal

Expanding  on  the  key  findings,  this  work  showed  that  the  effect  of  radiation 

damage during fabrication is dependent on which fabrication process is the source 

of damage. Electron-beam exposure was found to induce a change in the amount of 

charge traps present at the interface, while oxygen ashing did not cause observable 

changes  in  the  gate  oxide,  proving  instead  to  be  a  necessary  step  to  avoid  the 

detrimental effect of PMMA resist residues. These beneficial effects first observed 

from  analysis  of  bulk-doped  surface-inversion  MOSCAPs  were  confirmed  for 

buried  channel  quantum-well  heterostructure  MOSFETs.  With  regard  to 

metallisation techniques, it was found that electron beam metal evaporation induces 

damage  to  GaGdO  and  InGaAs  layers,  with  the  amount  of  damage  directly 

proportional to the number of metal layers composing the stack. Depositing metals 

at a slower rate resulted in damage mitigation. It was also found that the thickness 

and the type of the top layers affect the electrical response of the entire stack, most 

likely due to the differences in electronegativity of the metals chosen.
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From  the  experiments  on  thermal  treatment  of  the  material  stack,  a  trade-off 

between  the  benefits  of  a  thermal  step  and  thermally  induced  damage  was 

observed, with the best results obtained when the temperature did not go beyond 

350°C. Regarding the atmosphere in which the thermal step was carried out, GGO  

(short for GaGdO) and InGaAs were annealed in nitrogen and oxygen at 350°C and 

no difference was observed. This is most likely due to the gas molecules which were 

not  provided  enough  thermal  energy  to  decompose  into  their  elemental 

components  and  drive  the  annealing  of  defects.  The  inclusion  of  a  post-gate 

metallisation  thermal  step  in  oxygen  atmosphere  at  350°C  on  buried  channel 

quantum-well heterostructure MOSFETs, which were also subject to an annealing 

step at 430°C in nitrogen atmosphere, was beneficial to device performance as long 

as the devices were “gate-first”, i.e. the nitrogen anneal took place after the oxygen 

one.

Finally,  the results  from the specially  developed scaled gate  capacitor  structures 

compared periphery and area effects on the total capacitance, and provided useful 

insight  into  parasitics  in  a  metal  gate  GGO  dielectric  MOS  structure.  First,  the 

experiments  showed a  varying spatial  density  of  oxygen vacancies  in  the  GGO 

which would affect performance uniformity of scaled devices. Moreover, scaling of 

the capacitors was severely affected by lateral diffusion of the ohmic metal after the 

annealing step, which contributes as another limiting factor to device scaling. The 

scaled gate capacitors also showed an increase in periphery effect when reducing 

the spacing between the gate and the source contact.

The results presented in this thesis will be of use to the MOS research community to 

offer a better understanding of the way fabrication processes influence the charge 

behaviour in metal-gate / high-κ dielectric / III-V semiconductor structures, and as 

a  tool  towards  a  successful  manufacturing  of  high  switching-speed,  low-power 

transistors  made  of  these  materials  in  the  future.  The  optimisation  of  the  gate 

function for scaled MOSFETs on III-V substrates, alongside development of low-

resistance source/drain ohmic contacts, could pave the way for the transfer of the 

technology on a silicon platform, that could provide improved functionality to a 

CMOS transistor without affecting the manufacturing costs.  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2 Background 

2.1   Non-classical MOSFET

As stated in the introduction, the CMOS transistor technology based on the Si/SiO2 

interface, which has seen unprecedented progress since the beginning of its use [1], 

requires an alternative. The improvements in speed, power and density of CMOS 

circuits enabled by dimensional [2] and functional scaling now require a complete 

transformation of the MOSFET in terms of gate dielectric material, channel material 

and device  structure.  The new dielectric  material  needs to  be physically  thicker 

whilst having the capacitance of SiO2 [3], the carriers in the channel need to have a 

higher than Si  effective mobility,  and most  importantly,  the new semiconductor-

oxide interface would need to match the quality of Si/SiO2. The first few sections of 

this  chapter  show how this  can be achieved,  starting from a comparison of  the 

conventional and the improved device design.

2.1.1  Device design

In cross-section, the planar MOSFET has all three terminals on the top surface of the 

semiconductor with the gate metal separated by a layer of dielectric, as illustrated in 

figure 2.1. Under bias, the two components of the total electric field in the device are 

the vertical gate field that concentrates charge in the channel and the horizontal 

gate-source field that moves that charge through the channel. All this can be simply 

expressed through the movement of the semiconductor Fermi level in the channel 

region, as shown in figure 2.1. If the Fermi level is viewed as an indicator of the 

conductivity of the material, then when it is above the conduction band edge, that 

region of the semiconductor is populated with charge. For specifications of design 
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and operation of the device used in this work, refer to the theory section of Chapter 

4.

Traditionally, the classical design for the normally-off n-channel CMOS FET was a 

p-doped bulk  silicon wafer  having source/drain  regions  implanted with  a  high 

concentration of electrons. To turn on the device, a positive gate voltage is applied 

which repels positive charge away from the surface forming a depletion region in 

the semiconductor. When the gate voltage is high enough, the gate field pulls free 

electrons from the n+ implanted source and drain regions until all of the surface is 

populated with electrons and a channel between the source and the drain is formed. 

At this point, the band-bending at the surface is so significant that the Fermi level 

overlaps  the  conduction  band.  This  device  is  dubbed inversion-channel  MOSFET 

since an n-type channel is formed in a p-type material.

As  opposed  to  the  bulk  Si  device,  in  the  non-classical  III-V  solution,  the 

semiconductor part is  a heterostructure,  composed of layers of varying bandgap 

width in such a way that the channel is formed in a quantum well. The channel 

region is initially undoped, but populated with carriers by diffusion of electrons 

from the doped layers surrounding it. Here only one type of charge is involved in 

the formation of the channel. The movement of charge is reversed compared to the 

classical device with the channel region initially depleted when the device is off. 

With positive gate bias applied, the gate field pulls the charge towards the surface, 

until the maximum concentration is reached. Since no carriers are taken from source 

and  drain  regions  for  channel  formation,  there  is  no  need  for  source/drain 

implantation, and the only requirement for the source and drain regions is to have a 

low-resistance ohmic contact to the channel, which can be achieved by thermally-

induced metal diffusion into the top semiconductor layers. Figure 2.1 lists the key 

differences in the design of the two types of devices and shows their cross-section in 

ON and OFF states with corresponding conduction band and Fermi energy levels.

!7
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2.1.2  III-V heterojunction channel

As briefly mentioned in Introduction, one method to functionally scale CMOS was 

to replace the Si channel with a material in which the mobility of carriers is higher. 

This would enable device operation at lower voltages whilst delivering a higher 

output current omitting the decrease in channel dimensions. This is expressed in 

equation 2.1 that shows the output drain current at saturation. It is a known fact 

that  group  III-V  compound  arsenides  such  as  GaAs,  InGaAs  or  InAs  have 

considerably higher electron mobilities, especially when undoped [4]. One way to 

populate an undoped channel region with electrons was by transfer of electrons 

from a doped semiconductor layer with a higher bandgap to an adjacent undoped 

layer with a lower bandgap by diffusion. Using this technique, extra high electron 

mobility  was  first  demonstrated  in  an  GaAs/n-AlGaAs  heterojunction  metal-

semiconductor FET in 1980s [5, 6]. A two-dimensional layer of electrons (known as 

two-dimensional electron gas 2DEG) that formed in GaAs at its junction with the 

AlGaAs  had Hall  mobility  three  times  higher  compared  to  a  bulk-doped GaAs 

device [7].

(2.1)
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ID,SAT = W 
L

µ CG
(VG - VTH) 2 

2
,   for VG > VTH 

• ID,SAT is the output current density when the device in saturation 
• W and L are the dimensions of the channel 
• µ is the carrier mobility of the channel 
• CG is the capacitance density associated with the gate dielectric 
• VG is the voltage across the gate 

• VTH is the on/off threshold, the gate voltage at which the channel 

current is 1 µA/mm
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———————————————————————————————————
Figure 2.1  The key features (a) and simplified physical structure (b) of two 
most contrasting types of a normally-off n-channel MOSFET for low-voltage 
CMOS  logic  applications.  Device  cross-sections  in  on  and  off  states  with 
corresponding  conduction-band  and  Fermi-energy  levels  are  shown  for  the 
conventional  design with a  channel  formed in bulk Si  (top)  and the design 
studied in this work with a quantum-well InGaAs channel (bottom).
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The single heterojunction 2DEG channel evolved into a quantum well channel when 

the two heterojunction layers were mirrored with respect to the smaller band-gap 

layer,  creating  a  three-layer  structure.  With  this  configuration,  better  carrier 

confinement in the channel  region was achieved,  and with the confinement,  the 

subthreshold current and output conductance were reduced. The material stack was 

optimised to have a larger conduction band discontinuity to decrease gate leakage 

current.  This  resulted  in  an  n-AlGaAs/InGaAs/n-GaAs  device  with  a  typical 

InGaAs channel layer thickness of 10 nm [8].

After this three-layer structure was embedded into a MOSFET by adding a gate 

dielectric  layer  between  the  semiconductor  and  the  gate,  the  heterostructure 

underwent further optimisations. One of the most successful designs had AlGaAs/

GaAs/InGaAs/GaAs/AlGaAs channel confinement layers [9] and a GaGdO-based 

dielectric, achieving a high output current and a low subthreshold leakage [10, 11]. 

It is this device that this work is based on, and the structure details can be found in 

chapter 4.

2.1.3  High-κ oxide / III-V substrate interface region

As expressed in equation 2.2,  the simple solution for the alternative dielectric to 

have a larger physical thickness whilst maintaining SiO2 capacitance for the same 

gate  geometry,  is  a  larger  relative  dielectric  constant  κ.  The  alternative  high-κ 

candidates  are  all  metal  oxides,  falling in the following categories:  a)  rare  earth 

oxides, such as yttrium oxide Y2O3, lanthanum oxide La2O3, and gadolinium oxide 

Gd2O3, b) transition metal oxides, such as HfO2, ZrO2, and TiO2, c) post-transition 

metal oxides, such as Ga2O3 and aluminium oxide Al2O3, or d) mixed layer oxides 

like gallium Ga2O3(Gd2O3). The choice is defined by which layer can provide the 

best chemical stability at its interface with the III-V semiconductor surface, the best 

barrier  to  thermal  diffusion  of  III-V  atoms into  the  dielectric  layer,  and a  wide 

bandgap for low gate current - all whilst exceeding κ = 3.9 of SiO2 by at least a factor 

of two [12]. The physical properties of the high-κ oxides are listed in table 2.1.

!10
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(2.2)

The formation of high-κ dielectric layers on III-V layers can be either implemented 

in-situ  or ex-situ.  In-situ deposition of the dielectric layer takes place in the same 

deposition system as the III-V substrate, where vacuum is maintained at all times. 

Ex-situ deposition, on the contrary, is when the semiconductor and the dielectric 

layers are formed by different methods, and the semiconductor surface is exposed 

to  air  while  the  sample  is  transferred  between  the  chambers.  Albeit  surface 

oxidation  problems,  the  most  commonly  used  methods  are  ex-situ,  as  more 

flexibility is allowed in terms of materials, requiring less complex equipment. In-

situ  techniques,  however,  have  the  advantage  of  no  contamination-related  or 

oxidation-related defects in the semiconductor-dielectric interface.

———————————————————————————————————
Table 2.1  High-κ oxides and their dielectric properties.

Various methods are used to deposit III-V epitaxial layers and high-κ  oxides, all 

involving  a  chemical  reaction  between  atomic  elements  deposited  on  a  given 
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Cox = κ ε0 A
tox

• A is the gate area 
• κ is the relative dielectric constant of the insulator 
• ε0 is the permittivity of free space 
• tox is the gate insulator thickness
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surface. The main three types are chemical vapour deposition CVD, molecular beam 

epitaxy MBE, and atomic layer deposition ALD. However, deposition using e-beam 

evaporation  has  also  been  reported.  The  most  widely  studied  III-V/high-κ 

interfaces and the corresponding deposition methods are listed in table 2.2.

The in-situ GaAs/GGO structure listed last  in  table  2.1  and table  2.2  should be 

described in more detail, being the one used in this work. It was discovered that 

when Ga2O3 dielectric was deposited on an MBE-grown GaAs surface in-situ, a low-

defect  Ga2O-GaAs  interface  formed  in  the  beginning  of  the  Ga2O3  deposition 

process.  After  a  monolayer  of  Ga2O  chemisorbed  on  the  GaAs  surface,  growth 

proceeded  via  formation  of  an  amorphous  Ga2O3  film.  This  dielectric  was 

demonstrated in a MOSFET with 9 nm Ga2O3 [25]. However, with Ga2O3 only, gate 

current  leakage activation energies  were found to be too low due to a  negative 

conduction band offset between Ga2O3 and GaAs [17]. This was unsuitable for low 

power device applications, requiring an additional large bandgap oxide layer [26]. 

Amorphous GaGdO was a good candidate for this, as it could be deposited in-situ 

in a dual-chamber MBE system. This led to the bulk Ga2O3 layer replacement with a 

multi-layer stack comprising 1 nm interfacial Ga2O3 layer and a bulk (GdxGa1-x)2O3 

layer  [17].  The  details  of  the  development  process  of  the  high-κ  GdxGa0.4-xO0.6/

Ga2O3 dielectric stack on GaAs can be found in [27] and [24]. It was found that for a 

better oxide-GaAs interface and reduced leakage current density, the concentration 

of Gd must be below 20% as less Gd moves towards the oxide interface at lower Gd 

percentage, with the best results achieved with an amorphous Gd0.15Ga0.25O0.6 film.

———————————————————————————————————
Table  2.2   A summary  of  the  most  common III-V  arsenide  /  high-κ  oxide 
interfaces and their deposition methods. Dielectric thicknesses vary between 1 
and 10 nm.
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2.2   MOS non-idealities

In  a  perfect  MOS  transistor,  the  free  charges  in  the  semiconductor  channel 

immediately and fully respond to the field created across the dielectric when bias is 

applied to the gate. Such a device switches on and off with minimum delay and 

outputs the maximum available current at saturation. The oxide layer in the ideal 

device is electrically and chemically balanced, i.e. it does not have any unsaturated 

bonds or displaced atoms, and therefore it  does not have any charge that could 

respond to the gate bias or interfere with the carriers in the channel. In reality, both 

the surface and the dielectric  layer are non-ideal,  simply because they are finite 

layers  terminated  abruptly  and  created  by  imperfect  processes,  all  resulting  in 

creation of various types of defects.

In general, replacing a Si/SiO2 semiconductor-oxide interface with a III-V/high-κ 

interface  is  very  challenging.  The  Si/SiO2  interface  is  formed  between  a 

stoichiometric semiconductor surface and its native oxide with a low concentrations 

of defects, making it easy to modulate the semiconductor surface potential over an 

appropriate range and move the charge carriers near to the interface with mobilities 

unaffected. The only factor that can have an effect is the surface orientation. The III-

V compound semiconductor surfaces are susceptible to non-stoichiometry and the 

lattice defects associated with it, and arising from it, the possibility of the native 

oxide to be a mixed oxide of uncertain composition [28], giving rise to conductive 

paths and leakage of currents through them. In addition to the non-stoichiometry, 

there is also surface orientation and surface termination factor.

2.2.1  Classification of defects

From a chemical perspective, every defect, be it a vacancy, an interstitial atom, a 

dislocation,  or  line  and  plane  defects  in  the  crystal  structure,  can  be  seen  as 

something  that  induces  a  change  in  the  material  electron  balance;  in  undoped 

material, a defect would cause ionisation of atoms, deficit or excessive of electrons. 

Therefore, defects are classified according to the behaviour of charges surrounding 
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them under the influence of a field. The two main types of defects are either the 

ones that are rechargeable and temporarily capture electrons, known as trap states or 

charge traps,  or the ones that are non-rechargeable, the charging state of which is 

fixed at either positive or negative, known as fixed charge. Whether the defect is a 

fixed anomalous charge or a trap, its incidence is independent of the location in the 

oxide, and either type can occur at any point across the MOS stack. For example, in 

some materials,  in  the  area  between 0  and 3  nm from the  oxide-semiconductor 

interface into the oxide, there are interface traps, anomalous fixed positive charge 

and rechargeable electronically-active defects [29].

However,  whether  the  defect  is  of  fixed  or  trapping  nature,  it  can  be  further 

differentiated according to their physical proximity to the semiconductor surface. 

The main types of MOS defects are schematically shown in figure 2.2. At the few 

atomic layers of the oxide-semiconductor interface, there are interface defects, caused 

by dangling bonds and lattice imperfections. Of interface defects, there are ones that 

trap semiconductor charge, known as interface traps and interface states, and there are 

fixed  charge  defects,  known  as  interface  fixed  charges.  From  the  semiconductor 

surface upwards, there are border traps 0 to 3 nm into the oxide and bulk oxide traps 

further  deep  in  the  oxide.  These  defects  are  broken  bonds  in  the  oxide  with 

maximum density near the interface. In the bulk of the oxide there are also bulk fixed 

charges, which are electrons trapped at defect sites.

———————————————————————————————————
Figure 2.2  Types of defects in the dielectric region of a MOS structure that 
electrically respond to bias.
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Fig. 10 Insertion of a- Al2O3 and a-LaAlO3 
interlayer reduces hysteresis which may 
relate to comparatively lesser border traps in 
bilayer stack 
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Fig. 2. TEM images indicate that Al2O3 and LaAlO3 

interlayers are amorphous. ~4 nm thick ZrO2 is 
crystallized and results in higher-k. Sharp interface 
suggests good thermal stability on these stacks.  LaAlO3 
is better for CET scaling compared to Al2O3. 
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Interlayer thickness > 1nm give same Dit 
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(7.5×1019 cm-3vs 2.6×1019 cm-3) extracted at 1MHz and 10 kHz, 
respectively. There are still signs of bulk trapping with 5A Al2O3 
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is beneficial. 
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ZrO2 single layer stack. 

Fig. 4. CET vs Tphysical plot provides 
the effective k-value of Al2O3, LaAlO3, 
and ZrO2 extracted using single and 
bilayer stacks. 

Fig. 6.   Vfb,quasi vs CET for ZrO2 and 
Al2O3 capacitors. 

Fig. 7. Dit extracted by full 
conductance method in single and 
bilayer gate stacks. 
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Fig. 5.  Schematic of charge/trap 
types including fixed charge, traps 
and interface states. 
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Semiconductor  bandgap  states  arising  from the  interfacial  defects  act  as  charge 

traps  and  have  the  most  adverse  effect  on  the  channel  conduction  in  terms  of 

maximum current and switching action as they effectively ‘pin’ the semiconductor 

Fermi level in a fixed position. Fixed charges at the interface and in the bulk of the 

oxide reduce the field strength and cause reliability problems. Each stage in the 

fabrication of the MOS structure will either alter the existing defects or create new 

ones, and the effect of a process on the concentration of defects can be assessed both 

chemically and electrically.

2.2.2  Measuring defects

This section contains an overview of methods that have been reported in literature 

to provide electrical and chemical characterisation of semiconductor and dielectric 

layers before and after a fabrication process. Individually or combined, they provide 

a measure of process-induced surface and sub-surface disorder and its associated 

electrically  active  defect  levels  in  the  bandgap.  Aside  from  device  fabrication 

process development, these methods are useful in development of material growth 

processes for identification of the least detrimental process to the quality of the MOS 

stack. The techniques can be divided into two major groups: electrical for trap state 

density  assessment  and  chemical  for  structural  defect  assessment.  Electrical 

characterisation is performed by physically probing the device under test,  which 

requires metal contacts to the surface. It allows measurement of electrically-active 

defects in response to electrical stimulus. Chemical methods such as spectroscopy 

and microscopy, on the contrary, benefit from contactless probing, and are capable 

of providing spatial information about the distribution of structural defects in the 

material. Combining the two types of techniques allow to determine the percentage 

of defects participating in carrier removal.

2.2.2.1  Spectroscopy

Spectroscopy  is  based  on  illuminating  the  sample  surface  with  electromagnetic 

radiation  at  a  range  of  frequencies  and  observing  the  interaction  with  the 
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underlying matter. The measured signal is the transmittance or reflectance spectrum 

of absorbed energy. Observing changes in the height and position of peaks in the 

absorbed energy spectrum can provide useful  information about:  a)  presence of 

contaminants on the semiconductor surface,  b)  presence of  ionised atoms in the 

dielectric  due  to  broken bonds,  c)  location  of  defects  in  the  dielectric  film,  and         

d) qualitative information about the concentration of defects.

In the order of decreasing frequency (increasing wavelength), radiation sources are 

X-ray,  ultra-violet  (UV),  visible,  infra-red  (IR),  and  microwaves.  Lower  energy 

radiation (microwave, long-IR) can only go as far as cause molecular vibrations in 

the material. These vibrations are picked up as peaks in the measured spectrum, 

each corresponding to a particular frequency component, which in turn corresponds 

to  a  particular  chemical  species.  This  makes  low energy  spectroscopy  useful  in 

detecting  surface  contamination  or  presence  of  native  oxides  on  surfaces.  High 

energy radiation (near-IR, UV, X-ray) is used where assessment of bonding between 

elements is required, both surface and sub-surface. It causes excitation of electrons 

in inner shells of atoms and is used to analyse semiconductor-oxide interfaces.

Spectroscopy methods can be classified as: high or low energy, optical or electron-

beam. For low-energy techniques,  electrons induce stronger molecular vibrations 

than photons, making electron-beam based spectroscopy more sensitive than optical 

spectroscopy. For assessment of defects in III-V / high-κ stacks, low-energy optical 

spectroscopy  methods  are  Photoluminescence  (PL),  Raman,  and  Infrared  (IR) 

spectroscopy;  low-energy  electron-beam  (20-200  eV)  spectroscopy  methods  are 

reflection  electron  energy  loss  (REELS),  low  energy  electron  diffraction  (LEED), 

inelastic  electron  tunnelling  spectroscopy  (IETS),  electron  spin  resonance  (ESR), 

medium energy ion spectroscopy (MEIS);  high-energy optical  methods are X-ray 

photoelectron  spectroscopy  (XPS),  near-edge  X-ray  absorption  fine  structure 

(NEXAFS);  and high-energy e-beam methods are  reflection high energy electron 

diffraction (RHEED).
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Dielectric film

Fabrication processes can have a detrimental effect on the properties of a dielectric 

layer  in  terms  of  reducing  its  bandgap,  its  crystallinity  and  concentration  of 

unpaired  electrons  as  a  function  of  depth.  The  spectroscopic  characterisation 

techniques that have been used to measure these are REELS, XPS, NEXAFS, IETS, 

and ESR.

Using ESR, Revesz et al. assessed the dielectric layer for presence for defects in the 

form of  unstable  chemical  species.  Peaks  in  the  spectrum indicated  presence  of 

molecules or atoms with unpaired electrons. No ESR signal (no absorption peaks) 

was  observed  if  the  system was  stable  and  only  contains  paired  electrons  [30]. 

Concentration  and  energy  levels  of  electrically-active  defects  in  the  oxide  as  a 

function of depth were measured using ESR by Nishi et al. [31] and IETS by He et al. 

[32]. Using REELS, it was possible to determine the effective bandgap energy of a 

dielectric post-process. A process causing a reduction in the bandgap is undesirable 

as it would cause an increase in gate leakage current. Kim et al. combined XPS with 

NEXAFS to assess crystallisation of dielectric layers [22].

III-V surface

III-V surface properties such as termination, contamination, and formation of native 

oxides,  are  essential  to  its  electrical  behaviour  and  its  sensitivity  to  processing. 

Using XPS, Hackley et al. detected As-O bonds on GaAs surface (associated with 

interface  states),  and  then  treated  GaAs  surface  to  HF  (hydrofluoric  acid)  and 

NH4OH  (ammonia)  solution  to  de-oxidise  and  passivate  (reduce  reactivity)  the 

surface  [33].  Structural  properties  of  GaAs  surfaces  like  termination  atoms  and 

lattice  disorder,  as  well  as  surface  contamination,  have  been  measured  by 

Laukkanen et al., who observed LEED diffraction patterns, capable of detecting as 

little  as  a  small  fraction  of  a  monolayer  of  contamination  [34].  Rahbi  et  al. 

characterised  the  effects  of  hydrogen  passivation  on  GaAs  layers  using  IR 

spectroscopy [35].
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Interface

Dalapati et al.  made an assessment of the interface quality by measuring bonded 

semiconductor and oxygen molecules at the interface using XPS [36], whilst Nishi  

et al. characterised defects according to their types by observing peaks during ESR 

spectroscopy [31]. Defect passivation at interfaces has been validated with optical 

measurements like IR by Sweeney et al. [37] and also with PL spectroscopy. In GGO 

dielectric  stack  development,  PL  spectroscopy  showed  that  the  phenomenon 

responsible  for  such  an  effective  GaAs  surface  defects  passivation  with  Ga2O3 

interfacial layer was formation of Ga2O between the (001)-GaAs and the interfacial 

layer [24].

Sub-surface

For  sub-surface  analysis,  IR  spectroscopy  has  been  used  for  a  number  of 

applications. Songprakob et al. used IR to study carbon as an alternative p-dopant 

for GaAs [38], Hellman et al. used it to optimise MBE growth temperature of GaAs 

layers by monitoring bandgap shifts [39], and defects in MBE-grown GaAs lattices 

were investigated through this technique as well by Eickhoff et al. [40] and Gledhill 

et al.  [41]. Depth profiling of multi-layer III-V stacks was the most effective with 

higher energy methods such as XPS and NEXAFS. However, the lower-energy ESR 

technique was used to determine how far surface and interfacial defects extend into 

the top semiconductor layers. Kang et al. concluded that for Si/high-κ stack, it was 

within one nanometer.  Finally,  sub-surface characterisation was also achieved by 

MEIS: by using this technique, Kim et al. [22] determined relative concentration of 

an element as a function of distance from the surface for film elemental composition 

data.
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2.2.2.2  Electrical Characterisation

As opposed to chemical methods that can tell specific information about defects in a 

given material  system,  electrical  methods determine concentration of  electrically 

active  defects,  non-specific  to  the  nature  of  the  defects  or  the  type  of  atoms. 

Electrical  characterisation  enables  assessment  of  the  effect  of  a  process  on  the 

system through:  a)  densities  of  interface-trapped  charge,  border-trapped  charge,  and 

oxide-trapped charge, b) densities of fixed interface charge and fixed bulk oxide charge.

The  most  important  traps  for  electrical  characterisation  are  those  whose  energy 

levels happen to fall  within the energy bandgap, hindering switching operation. 

Charge  trapping  in  these  interface  states  causes  diminished  surface  potential 

control, removes carriers from the channel and reduces carrier mobility. The energy 

levels of interface traps are distributed across the semiconductor bandgap and the 

amount of charge that will get trapped will depend on the semiconductor Fermi 

level position at the oxide-semiconductor interface. Depending on the type of defect 

from which the trap originates, it will either capture an electron (an acceptor-like 

state) or release an electron / capture a hole (a donor-like state). If mostly acceptor-

like states are present in the bandgap, it will result in a net negative charge. In the 

same way, a net positive charge at the interface will mean that most bandgap states 

are  donor-like.  The  presence  of  both  net  negative  and  positive  charge  can  be 

detected by electrical methods.

These  measure  the  distribution  of  surface  electric  charge  by  surface  impedance 

measurements that require probing a MOS capacitor to measure density of trapped 

charges in the oxide; contrary to contactless physical-chemical methods, they cannot 

be used to characterise semiconductor surface on his own. Electrical and physical-

chemical methods are both necessary for a complete assessment of a semiconductor 

device  material  system:  while  the  latter  methods  help  identify  presence  of 

unwanted atoms or other defect types (e.g. a broken bond, a vacant or an interstitial 

atom) and assess if a particular defect in the lattice will act as a trapping centre, 

electrical methods will show the net contribution to charge carrier trapping of all 
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the defects in the structure. The use of both helps with understanding how and why 

a particular fabrication process would affect channel conduction.

The main electrical methods used for characterisation of electronic devices material 

systems  can  be  divided  into  categories  depending  on  which  quantities  are 

monitored: the most common methods are based on measurements of changes in 

capacitance as a function of voltage applied. Capacitance is the ability of a body to 

store charge, and its measurement in a MOS system can be related to the presence 

and density of  charge trapping centres.  Changes in capacitance as  a  function of 

frequency can be used to determine the values of density of interface states Dit for 

energies  within  the  band gap.  Conductance  methods  work  in  a  similar  way  to 

capacitance measurements but the measured quantity changes. Finally, current vs. 

voltage  measurements  are  normally  used  for  leakage  current  and  dielectric 

breakdown  voltage  evaluation  in  MOS  systems  to  study  the  quality  of  gate 

dielectrics. Current-voltage measurements are performed either in MOS capacitor 

systems or on MOS transistors. The following will report on MOS capacitor and 

MOS  transistor  I-V  methods,  C-V  methods  and  conductance  methods.  MOS 

capacitor measurements are the ones that have been used most extensively in this 

work therefore particular attention will be given to C-V measurements. Here only a 

general overview of different electrical methods is provided, and a more detailed 

analysis is presented in the theory section of the experiments chapters.

MOS capacitor I-V

Current-voltage  methods  are  based  simply  on  measuring  the  current  flowing 

through the MOS stack while sweeping an applied DC voltage from negative to 

positive values. The measured device can either be a MOS capacitor or a complete 

MOS transistor, but the focus here will be on MOS capacitors. The main quantity of 

interest  for  I-V measurements  of  MOS capacitors  is  the  leakage current:  a  large 

value can be attributed to structural defects or trap centres in the high-κ dielectric. 

The  slope  of  the  I-V  curve  at  low  voltages  can  be  used  to  extract  the  specific 

resistivity of the oxide film; typically values greater than 1014 Ω.cm are required for 

acceptable gate leakage currents: ~10-3 A/cm2 for low-power transistor applications 
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[42, 12]. The I-V characteristic of a MOS capacitor provides information also on the 

insulating properties of the dielectric film. These can be deducted from the gate 

leakage current,  due to charges moving by tunnelling,  and from the breakdown 

voltage, for which the system switches from an insulating to a conducting state. The 

breakdown voltage in a MOS stack is generally defined as the value of gate bias for 

which the current flowing through 1x1 cm2 area of dielectric exceeds a set value 

[36].

MOS transistor I-V

I-V  characterisation  of  a  complete  MOSFET  allows  for  the  extraction  of  more 

information  with  respect  to  a  MOS  capacitor  structure.  Full  MOSFET  I-V 

characterisation  normally  yields  two sets  of  curves,  measuring the  drain  source 

current Ids either as a function of drain-source voltage Vds for a range of gate biases, 

or as a function of gate-source voltage Vgs for operation in saturation and in the 

linear region (high and low Vds, respectively). The threshold voltage extracted from 

the Ids-Vgs curve can be used as an indicator of the effectiveness of the gate stack in 

controlling the flow of carriers in the channel, thus assessing MOS stack function. If 

appropriate  processing  and  fabrication  methods  have  been  used,  the  value  of 

threshold  voltage  should  not  deviate  from its  theoretical  value.  If  the  device  is 

designed  for  enhancement  mode  operation,  i.e.  theoretical  positive  threshold 

voltage,  but  the  measured value  is  lower  or  negative,  it  can  be  concluded that 

process-induced  defects  in  the  MOS  stack  have  cause  Fermi-level  pinning  and 

caused degradation in the gate control function. Other quantities associated with 

good  oxide-semiconductor  interface  are  high  saturation  current  and  high 

transconductance.

Frequency-dependent C-V

The  reason  for  performing  C-V  sweeps  at  different  frequencies  is  to  detect  the 

entirety of traps present in the capacitors. Traps can be classified by their trapping 

response  time:  those  that  respond  to  an  applied  electric  field  only  up  to  an 
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oscillating frequency of 1 kHz are called slow traps, while those that are able to trap 

charges even for higher frequencies are known as fast traps. For high frequency (e.g. 

100 kHz), a typical C-V curve for n-doped semiconductor is shown in figure 2.3(a), 

while figure 2.3(b) displays the traps energies within bandgap covered by a typical 

multi-frequency  sweep.  It  can  be  seen  that  the  curve  tends  to  saturate  at  the 

minimum and maximum values for high negative DC voltages or high positive DC 

voltages applied, respectively. The minimum capacitance value is called depletion 

capacitance (Cmin or Cd), and it is related to the maximum extension of the depletion 

region  in  the  capacitor.  On  the  other  hand,  the  maximum  capacitance  value  is 

known as accumulation capacitance (Cacc) and, with a sufficiently large DC bias, it is 

the oxide capacitance. A difference in accumulation capacitance Cacc is observed for 

different frequencies, commonly called frequency dispersion,  if there are trap states 

whose energy levels fall in the semiconductor bandgap. An increased accumulation 

capacitance value may suggest a presence of a transitional dielectric layer with low 

resistivity adjacent to the interface [36, 43].

With regard to the transition region, the change in capacitance with applied voltage, 

i.e.  the  slope  of  curve,  is  related  to  the  presence  of  defects  at  the  oxide-

semiconductor interface. This is explained in more detail at the start of chapter 3. 

The slope of the curve, often called stretch-out, can therefore be used as an indicator 

of how effectively the gate stack can control the channel charge, and has been used 

extensively in this work for characterisation of different gate stacks. It can be seen 

from figure 2.3 that for low frequency C-V measurements (< 1KHz) an n-doped 

semiconductor will produce a curve that saturates at the oxide capacitance for large 

DC voltages, while displaying a relative minimum near zero bias. The measured 

capacitance  does  saturate  to  the  minimum  theoretical  value  for  large  applied 

negative  voltages  only  when  measuring  at  high  frequency,  since  then  only  the 

majority  carriers  response  can  be  detected.  Lack  of  dispersion  in  minimum 

capacitance for frequencies > 1 kHz is typical of a structure where interface traps do 

not  respond  to  high  frequency  signal.  At  low  AC  frequency  instead  the  signal 

variation  is  slow  enough  for  minority  carriers  at  the  semiconductor  surface  to 

follow the variation in voltage, and their contribution can be observed in the C-V 

curve.
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———————————————————————————————————
Figure 2.3  (a)  Typical multi-frequency C-V response of an n-MOS capacitor 
[44]. (b) Coverage of bandgap energy levels probed with a multi-frequency C-V 
measurement.

Multi-frequency  C-V  sweeps  can  also  be  used  to  assess  the  presence  and 

characteristics of trapping centres in the oxide, and measuring the trapping time of 

interface  defects,  which  can  range  from ns  to  several  seconds,  can  indicate  the 

location of defects in the oxide [43]. Multi-frequency C-V sweeps were also used to 

assess the position of interface states within the bandgap, since traps response time 

is  related to their  energy level.  A comparison of capacitance values in depletion 

between quasi-static (described shortly) and high frequency for n-MOS and p-MOS 

stacks yielded the density of interface traps near the conduction (n-MOS) or valence 

(p-MOS) band, from which the mid-gap value of interface traps density could be 

extracted by interpolation [43].
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Analysis of the minority carrier response of n-type and p-type Au/Ni/Al2O3/
In0.53Ga0.47As/InP capacitors following an optimized (NH4)2S treatment

É. O’Connor,a) S. Monaghan, K. Cherkaoui, I. M. Povey, and P. K. Hurley
Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland

(Received 29 July 2011; accepted 12 October 2011; published online 21 November 2011)

The electrical properties of metal-oxide-semiconductor capacitors incorporating atomic layer
deposited Al2O3 on n-type and p-type In0.53Ga0.47As were investigated. A clear minority carrier
response was observed for both n-type and p-type Au/Ni/Al2O3/In0.53Ga0.47As devices following
an optimized ammonium sulfide (NH4)2S treatment. Capacitance-voltage and conductance-voltage
measurements performed at varying temperatures allowed an Arrhenius extraction of activation
energies for the minority carrier response, indicating a transition from a generation-recombination
regime to a diffusion controlled response. VC 2011 American Institute of Physics.
[doi:10.1063/1.3663535]

In order to continue complementary metal oxide semi-
conductor (CMOS) development, III-V channel layers such as
In0.53Ga0.47As, in combination with gate oxides such as
Al2O3, are under investigation. To date, very few studies in
the literature have demonstrated true minority carrier behav-
iour on either n-type or p-type In0.53Ga0.47As. In the case of
n-type In0.53Ga0.47As, a capacitance voltage (CV) response at
negative gate bias consistent with mid-gap interface states is
typically observed, regardless of the gate oxide or passivation
method employed.1–7 In the case of p-type In0.53Ga0.47As, at
positive gate bias, CV characteristics consistent with a mid-
gap interface state response have been observed.8–11 Recently,
Trinh et al.12 and Lin et al.7 presented CV responses consist-
ent with true minority carrier behaviour for n-In0.53Ga0.47As
and p-In0.53Ga0.47As, respectively. In this work, we report on
a study of the minority carrier response of both n-type and
p-type In0.53Ga0.47As metal-oxide-semiconductor (MOS)
devices formed using an optimized 10% ammonium sulfide
((NH4)2S) treatment.11,13 The temperature dependent CV and
GV responses are analyzed using an Arrhenius relationship to
determine activation energies following the procedure
described by Nicollian and Brews for SiO2/Si devices.14

The In0.53Ga0.47As epitaxial layers used in this work were
either (1) !2 lm n-type In0.53Ga0.47As (S at !4"1017 cm#3)
grown by metalorganic-vapour-phase-epitaxy (MOVPE) on
n-doped (S at !2 " 1018 cm#3) InP(100) wafers or (2) !2 lm
p-type In0.53Ga0.47As (Zn at !4 " 1017 cm–3) grown by
MOVPE on p-doped (Zn at !2 " 1018 cm–3) InP(100) wafers.
In0.53Ga0.47As surfaces were initially rinsed for 1 min each in
acetone, methanol, and isopropanol. (NH4)2S concentrations
of 10% in deionised H2O were used (20 min, !295 K). These
optimized passivation parameters were determined from pre-
vious physical and electrical studies.11,13 The Al2O3 layers
(8 nm) were grown by atomic layer deposition (ALD) at
300 $C (Cambridge NanoTech, Fiji F200LLC), using alternat-
ing pulses of TMA (Al(CH3)3) and H2O. Samples were loaded
to the ALD reactor within !3 min after removal from the
(NH4)2S solution. Finally, gate contacts !160 nm thick were
formed by e-beam evaporation of Ni (70 nm), and Au

(90 nm), using a lift-off process. Electrical measurements
were recorded using an Agilent E4980A and were performed
on-wafer in a microchamber probe station (Cascade, Summit
12971B) in a dry air, dark environment (dew point% 203 K).

The CV responses at room temperature (295 K) with ac
signal frequencies from 20 Hz to 1 MHz for the n-type and
p-type Au/Ni/Al2O3/In0.53Ga0.47As devices are shown in
Figs. 1(a) and 1(b), respectively. The CV response for the
passivated n-In0.53Ga0.47As device exhibits a small peak due
to a mid-gap interface state response around #0.6 Vgate to
#1 Vgate. The CV is seen to pass through this interface defect
feature and then rise to a plateau over the remaining bias
range, with this latter behaviour being consistent with a true
minority carrier response.14 This is in marked contrast to the
frequency dispersion typically observed in the literature for

FIG. 1. (Color online) Multifrequency CV (20 Hz to 1 MHz, 295 K) for (a)
n-type and (b) p-type Au/Ni/Al2O3/In0.53Ga0.47As devices (optimum 10%
(NH4)2S treatment, !3 min ALD transfer). The dispersion in accumulation
is relatively low for both the n-type and p-type In0.53Ga0.47As devices, par-
ticularly given that the measurement is over an extended frequency range of
20 Hz to 1 MHz. The theoretical Cmin is !0.00185 F/m2 and 0.00182 F/m2

for the n-type and p-type devices, respectively, calculated using the nominal
In0.53Ga0.47As doping of !4" 1017 cm#3. The p-In0.53Ga0.47As device
received a 275 $C forming gas anneal (5% H2:95% N2, 30 min).

a)Author to whom correspondence should be addressed. Electronic mail:
eamon.oconnor@tyndall.ie.

0003-6951/2011/99(21)/212901/3/$30.00 VC 2011 American Institute of Physics99, 212901-1

APPLIED PHYSICS LETTERS 99, 212901 (2011)
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C-V measurements have reportedly been used to detect trapped charges densities 

between 1010 and 1013 cm-2. The acceptable number of electrically active defects for 

effective operation of a III-V high-κ MOS device is approximately 1011 traps per cm2. 

In order to detect this concentration of traps, large-area probing is necessary to have 

sufficient sensitivity and average out local variations, thus a 250 µm diameter top 

metal contact is commonly used.

Combination of high and low frequency C-V method

This is a particular case of multi-frequency C-V. All techniques reviewed so far take 

place at room temperature. A combination of high and low frequency C-V curves 

recorded for various temperatures was reported to attain an accurate estimate of the 

density of interface traps. This method is based on measuring multi-frequency C-V 

curves for substrate temperatures ranging between room temperature and -50°C. 

This method is based on the fact that accessing different energy levels within the 

bandgap  could  either  be  achieved  by  sweeping  the  frequencies  (because  of  the 

different response time of  the traps which depends on their  energy level)  or  by 

changing the temperature. The density of interface states can then be obtained from 

an  analytical  formula.  This  technique  is  commonly  named  the  “hi-low”  C-V 

method, and one of its limitations has been shown to be a relevant underestimation 

of Dit for samples with large time constant dispersion [45].

Fixed frequency C-V

Quasi-static C-V

Quasi-static C-V measurements lack the AC component of the applied voltage. The 

measured  current  from  which  the  capacitance  is  calculated  is  the  induced 

displacement current that derives from applying a linear voltage ramp across the 

capacitor.  Typical  sweep  rates  are  in  the  range  from  5  to  500  mV  per  second, 

depending on oxide capacitance and minority carrier lifetime. This corresponds to 

an  equivalent  frequency  approximately  40  times  smaller  than  the  lowest  AC 
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frequency attainable with standard laboratory equipment (1 Hz).  This method is 

therefore  sensitive  enough  to  assess  whether  accumulation  or  inversion  are 

achieved, which was not possible with standard low frequency C-V approach, since 

as previously stated minority carrier response can only be detected for very slow 

voltage  variations.  The  quasi-static  technique  can  also  produce  an  estimate  of 

surface potential and surface state density over a large part of the energy gap, while 

also testing the presence of nonuniformities in MOS structures. If the C-V curves 

obtained with the quasi-static method display a difference between accumulation 

and inversion capacitances, it is an indication of a low concentration of interface 

states  near  the  conduction  or  valence  band  edge.  If  formation  of  an  electron 

inversion layer is observed in p-type samples, the density of interface states near the 

conduction band edge is low. Quasi-static C-V analysis has been used by Passlack et 

al. in combination with frequency sweep C-V methods to measure the interface state 

density as a function of the bandgap energy, but this only worked for structures 

where interface states do not respond to frequencies > 1 kHz, i.e. when there was no 

dispersion in the minimum capacitance [43]. The main downside of the quasi-static 

C-V technique is that it requires measurement of very low currents (picoamps to 

femtoamps), thus it is sensitive to noise, which can make it challenging to obtain 

smooth C-V curves.

High frequency C-V

This is one of the most common C-V characterisation techniques, used for quick 

assessment of the MOS stack quality. Previous research has shown that the stretch-

out and hysteresis of high-frequency C-V curves can be used to qualitatively assess 

the  presence  of  electrically  active  defects  in  the  system,  with  more  stretch-out 

indicating  more  interface  states,  as  shown  by  Dalapati  et  al.  [36],  for  example. 

Horizontal shifting of the curve can be an indicator of an increase of the charge in 

the dielectric. 

In  this  work,  the  horizontal  shift  of  C-V  curves  is  measured  by  extracting  the  

voltage at which the slope of the curve is maximum: V gate-maximum-slope, or 

VGMS. The gate voltage at maximum slope is directly related to the flat-band voltage, 
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i.e.  to  the  surface  potential  of  the  semiconductor-oxide  interface.  Therefore 

differences in threshold voltages of a MOS stack correspond to differences in flat-

band voltages, and this can be used as a comparative tool to assess the quality of 

two gate stacks. For an n-type semiconductor, a positive shift of flat-band voltages 

has been widely used as an indicator of increased amount of fixed charge in the 

oxide. For example, O’Sullivan et al. observed flat-band shifts as a result of thermal 

processing on Si/SiO2 systems [46].

As previously stated, the value of the accumulation capacitance for large enough 

DC biases corresponds to the dielectric capacitance. Starting from this value and 

using the equivalent oxide thickness (EOT) and physical thickness measurements of 

the  dielectric  by  transmission  electron  microscopy,  Dalapati  et  al.  extracted  the 

effective dielectric constant of  high-κ  dielectrics on p-doped and n-doped GaAs 

[36].

A sweep of the DC voltage component in two directions causes the C-V curve to 

display  hysteresis,  which  can  be  used  to  obtain  a  number  of  useful  pieces  of 

information. The presence of hysteresis is related to the slow discharge time of the 

charge trapping states. Since the backward sweep is performed immediately after 

the forward sweep, the states that trapped charges have not yet released it and only 

the  free  charge  will  be  detected.  Therefore  the  amount  of  hysteresis  is  directly 

related to the density of active charge traps. Passlack et al. showed that for a Ga2O3/

GaAs MBE-grown stack, 350 mV of hysteresis corresponded to sheet concentration 

of  traps  equal  to  6x1011  per  square  centimetre  [43].  A large  hysteresis  in  high-

frequency  C-V  curves  in  combination  with  other  characterisation  methods  can 

confirm the presence of a transitional oxide layer close to the semiconductor surface.

Chapter  3,  in  which  MOS  capacitor  measurements  are  presented,  contains  an 

expansion of all above information on high-frequency C-V.
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Conductance

Standard C-V measurement are carried out by sweeping the DC voltage component 

of the applied voltage while keeping the frequency constant for each curve. The 

conductance (G) method instead is based on capacitance measurements carried out 

whilst  keeping  the  gate  at  a  fixed  voltage  and  sweeping  the  frequency,  and 

acquiring the curves for several gate biases.  Despite the name, conductance method 

is still based on capacitance measurements, but an equivalent circuit approach is 

used to derive formulas allowing the conductance of interface states to be calculated 

and to lead to the mid-gap value of Dit [47, 48]. This technique was also used by 

Passlack et al. to detect presence of a transitional dielectric layer at its interface with 

the semiconductor. Dalapati et al. combined the conductance method with standard 

C-V measurements to calculate a mid-bandgap value of Dit by using the maximum 

capacitance and conductance values from the conductance method and C-V curves 

at 100 Hz respectively.

2.3   Causes of defects

Certain fabrication processes involve the use of photons and/or charged particles 

with  high  incident  energies.  Upon substrate  penetration,  these  energetic  species 

give rise to defects by causing ionisation of atoms. Such processes include all types 

of lithography (e-beam, X-ray, photo), metallisation techniques (e-beam and thermal 

evaporation,  sputtering),  and  plasma-based  processes  (RIE,  etc.).  The  material 

damage threshold will be dependent on the typical energies of the process, the type 

of substrate (e. g. III-Vs are more susceptible to process damage than silicon), and 

also the doping of the uppermost layer. When this high-energy radiation is inflicted 

upon the oxide/semiconductor system, the number of growth-related defects, such 

as net positive charge in the oxide, charge-neutral traps in the oxide and charge 

traps at the interface, increases. Generally, a process is considered low-damage if 

incident ion energies are a few eV or less, and damage should be expected from 

processes using a few hundreds of eV [50].
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2.3.1  Metallisation-induced damage

Compared to plasma or lithography processes where incident energies are between 

a few hundreds to hundreds of thousands of eV, typical incident atomic energies of 

metal deposition processes are only a few or a few tens of eV. For this reason, when 

comparing  damage  caused by  metallisation  parameters,  a  sensitive  technique  is 

required.  Chen  et  al.  [50]  assessed  metallisation  damage  of  III-V  substrates  by 

observing degradation in photoluminescence response to argon laser excitation of 

strained  (more  susceptible  to  damage)  GaAs/InGaAs  quantum  wells  buried  at 

varying  distances  from  the  substrate  surface.  All  three  main  metallisation 

techniques  used  in  electronic  devices  fabrication  -  e-beam  metal  evaporation, 

thermal evaporation and deposition by sputtering - were shown to cause damage to 

the underlying substrate. Evidence of damage was found after both argon sputter 

deposition and e-beam evaporation of 10 nm Ti, and after thermal evaporation and 

e-beam evaporation of 10 nm Au, especially significant at the depth of 30 nm below 

the surface. Although normally considered a non-damaging metallisation method, 

thermal  evaporation  was  shown to  induce  trap  levels  in  Schottky  diodes  when 

highly energetic vaporised metal atoms exhibiting a distribution of kinetic energies 

transfer that energy to the semiconductor surface upon landing on it, resulting in 

some disordering of the surface. In addition to that,  e-beam evaporation process 

generates x-rays due to its source of radiation, which further degrades the substrate. 

In Chen’s work, the e-beam evaporation method was found the most damaging. 

However, the type of metal played a role in the distribution of damage, with Ti-

deposition induced damage displaying a significant decrease between 30 and 60 nm 

from the surface, with no change observed in Au and Al. This was explained by the 

fact  that  for  the  same  deposition  rate  the  electron  beam  current  is  varied  for 

different  metals.  The  effect  of  current  variation  was  also  revealed  when Ti  was 

deposited by e-beam evaporation at different rates, where higher deposition rates 

are achieved through higher electron beam currents. Reducing the deposition rate 

from 0.5  nm/s to  0.08 nm/s showed a 50% reduction in damage caused to  the 

substrate, even considering the six-fold increase in deposition time required. Chen’s 

findings were confirmed by Burek et al. [51], who evaluated metallisation damage 
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on Al2O3/InGaAs and HfO2/InGaAs structures and found significant damage from 

thermally-evaporated Ni and e-beam evaporated Pt  in both stacks,  with e-beam 

evaporation causing significantly more damage. In Burek’s work the damage was 

evaluated  by  measuring  MOSCAP  capacitance  and  conductance  and  analysing      

C-V(f)  and  G(f,V)  plots.  With  regard  to  the  electrical  properties  of  the  metal-

semiconductor interface, Auret et al. [52] concluded that these are determined by the 

first few monolayers of metal deposition.

2.3.2  Thermal damage

Thermal process damage to a semiconductor surface and its  dependence on the 

gaseous atmosphere in which the process is carried out was first reported by Revesz 

et al. [30].  Defects were introduced on the silicon surface when the material was 

subject to thermal treatment at 1150°C.  With regard to III-V/high-κ stacks, the main 

issue with thermal processing is atomic inter-diffusion between layers. Cabrera et al. 

[53] investigated indium diffusion by examining the top surface layer of an HfO2/

In0.53Ga0.47As sample before and after receiving a post deposition anneal in forming 

gas (a mixture of N2 and H2). Both desorption and diffusion of arsenic and indium 

through the HfO2 interfacial region to its surface were observed. Samples annealed 

in  N2  instead  of  forming  gas  yielded  similar  results,  and  XPS  measurements 

confirmed their findings. Despite the results from [53] suggesting that the hydrogen 

in the forming gas promotes arsenic desorption, the role of hydrogen is still not well 

understood. Similar indium diffusion was also observed for other systems, such as 

Al2O3/InGaAs  gate  stacks,  by  Weiland  et  al.  [54].  For  those  systems  also  out-

diffusion of Ga and As through an ALD Al2O3 layer was observed, after annealing 

in a N2 environment with temperatures ranging from 400°C to 700°C. This suggests 

that elemental out-diffusion is more problematic for ALD Al2O3 layers on InGaAs 

than  for  HfO2  on  InGaAs  systems,  where  only  out-diffusion  of  indium  was 

observed.  Indium  diffusion  occurrence  is  common  to  other  III-V/high-κ  stacks: 

Dong et al. observed indium out-diffusion from an InP substrate through HfO2 and 

Al2O3 after post deposition annealing [55].
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2.4   Reducing MOS defects by process optimisation

2.4.1  Wet surface clean

Surfaces are inherently reactive, due to unpaired valence electrons in surface atoms. 

Surface  and interfacial  defects  arise  from the  presence  of  native  oxides,  surface 

contamination, dimers and dangling bonds at the semiconductor surface, as well as 

the presence of Coulomb scattering and surface phonon effects. This can result in 

Fermi-level pinning and poor electrical performance. Normally, the ionised atoms 

on the surface react with oxygen in the air forming a layer of native oxide, and thus 

electrically passivating the surface. This layer is commonly removed by wet or dry 

chemical  treatment  and  the  surface  is  passivated  in  a  more  controlled  way. 

Comparative studies of the surface before and after surface clean are a standard 

way to obtain information about the effectiveness of the clean, and the number of 

defects on the surface.

In  order  to  achieve  an  acceptable  oxide-semiconductor  interface  quality  for 

dielectrics deposited ex-situ on III-V surfaces, it is required to use a dielectric layer 

with  good passivating properties  to  passivate  the  dangling bonds.  Sometimes  a 

separate ‘interfacial’ layer is deposited prior to the bulk dielectric layer deposition. 

If that is not possible, the surface can be passivated with a chemical treatment prior 

to loading the sample in the  dielectric deposition chamber. In any case, the first step 

before  surface  defects  passivation  is  removal  of  native  oxides,  commonly  using 

hydrofluoric acid (HF), hydrochloric acid (HCl), piranha type etches and standard 

organic solvent cleans.

Passivants suitable for III-V surfaces will depend on the origin of the defect, which 

determine  the  local  charge  distribution.  In  Si,  for  example,  the  largely  isolated 

dangling  bond  is  the  dominant  type  of  surface  defect,  which  can  be  easily 

passivated with atomic hydrogen. In III-V arsenides, due to variability in surface 

termination atoms, many types of defects and subsequently many types of charge 
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distributions could be present. Each type of defect will be effectively passivated by a 

different  substance,  with  the  most  common  ones  being  hydrogen,  halogens, 

sulphur,  and selenium.  Amongst  the  most  effective  are  sulphur-based solutions, 

such  as  S2Cl2  and  H2S,  with  the  best  results  reported  for  ammonium  sulphide 

((NH4)2S) [56]. Aqueous ammonium sulphide has been shown to both fully remove 

the native oxide and chemically and electrically passivate surfaces of InP, GaAs and 

InGaAs.

Fermi level pinning occurs due to unstable oxygen coverage of the semiconductor 

surface. Sulphur is less chemically reactive and has the same electron number in its 

outer shell as oxygen. A few monolayers of sulphur on GaAs surface can prevent 

GaAs from oxidation and passivate it in a more stable way.

Optimisation  of  surface  cleaning  and  surface  passivation  processes  is  always 

required for III-V materials, because a particular treatment can have different effect 

depending on arrangement  of  atoms in  the  surface  layers.  For  example  etching 

processes can produce differential  etching rates and surface roughening, and for 

thermally-assisted treatments like forming gas annealing care has to be taken not to 

decompose III-V substrates.

XPS studies are often part of the passivation process optimisation: combined with 

surface  roughness  AFM  scans,  they  were  reportedly  used  to  find  the  optimal 

processing parameters for sulphide treatment of InGaAs surface [56]. Furthermore, 

they were also used to study the reactivity of GaAs surfaces after treatment with 

hydrofluoric  acid  (HF)  and  ammonia  solution  (NH4OH),  which  simultaneously 

removed  the  native  oxides  and  passivated  the  surface  against  the  formation  of 

defect-inducing As-O species [33]. Kim et al. [22] successfully treated a GaAs surface 

with buffered HF as well, prior to deposition of 3.5 nm of HfO2 deposited by ALD.
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2.4.2  Surface plasma treatment

Room  temperature  plasma  treatments  can  be  categorised  according  to  their 

purpose: cleaning the surfaces off organic contamination or passivation of surface 

defects. For the former, oxygen plasma (O2) ashing in either a barrel asher or an 

etcher is commonly used, whereas for passivation, hydrogen (H2), nitrogen (N2) and 

oxygen-based  (O2,  N2O)  atmosphere  allows  termination  of  dangling  bonds  or 

oxidation of the surface, respectively [57]. Oxygen plasma ashing has been shown to 

effectively remove post resist development residue, however the oxygen plasma RF 

power must be carefully tuned in order not to cause damage to the material. There 

is not much reported evidence towards the use of oxygen plasmas for fabrication 

damage mitigation on arsenides. Nitrous oxide (N2O) plasma treatment on a GaN 

surface  was  reported  to  reduce  Dit  by  an  order  of  magnitude  [58],  but  the 

mechanism is not well understood, and it is unclear if the same treatment would be 

beneficial on arsenides as well.

2.4.3  Annealing for damage mitigation

It  was  previously  mentioned  in  the  thermal  damage  section  that  annealing  at 

temperatures  above  1000°C  could  induce  damage  to  the  substrate.  However,  if 

temperature  are  kept  below  500°C  thermal  annealing  can  be  used  to  remove 

ionising radiation damage, with different temperatures applying to passivation of 

different types of defects. Oxide charge and interface traps can be removed at 450°C 

or lower, while neutrally-charged oxide traps need much higher temperatures. Thus 

an  annealing  step  at  an  insufficiently  high  temperature  will  result  in  ionising 

damage not being completely removed.

During fabrication of the gate stack, it is common to use annealing to reduce defects 

in  the  bulk  and  at  the  interfaces  of  the  dielectric  and  semiconductor  materials. 

Annealing is generally used twice: after the deposition of the oxide (post-oxidation 

anneal)  and  after  the  deposition  of  the  metal  (post-metallisation  anneal).  Post-

oxidation anneal  reduces the oxide charge density  and passivates  the interfacial 
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states  that  III-V/high-κ  interfaces  are  prone to  because  of  the  tendency of  III-V 

surfaces to non-stoichiometry, as mentioned earlier in the text.  Post-metallisation 

anneal  mitigates  the  damage  caused  by  metal  deposition  processes  that  cause 

ionisation and introduce defects. A typical post-oxidation anneal is carried out at 

500°C  in  nitrogen  atmosphere,  whereas  for  post-metallisation  anneal  the 

temperature  is  generally  lower  (400°C)  and  the  thermal  step  is  carried  out  in 

forming  gas  ambient.  The  dependence  of  the  anneal  outcome on  the  annealing 

ambient  is  something that  was already reported in  [30],  where  a  post-oxidation 

anneal at 1150°C in helium resulted in no measurable defects, whereas annealing in 

hydrogen at the same temperature created more defects. Despite what is observed 

for  silicon  by  [30],  incorporation  of  hydrogen  makes  thermal  annealing  more 

effective for some material systems, as it will be discussed shortly. When sufficient 

active hydrogen species are introduced into the oxide, the temperature required to 

anneal  out  the  radiation-induced  charges  can  be  significantly  reduced.  In  the 

following  the  characteristics  of  thermal  annealing  for  the  most  commonly  used 

gases (nitrogen, hydrogen and oxygen) will be discussed.

2.4.3.1  High-temperature nitrogen anneal

Annealing in nitrogen atmosphere can be used to drive crystallisation of dielectric 

layers. Kim et al.  [22] showed that for a deposition temperature of 290°C the as-

deposited HfO2  layer  was only partially  crystallised and had a  1  nm interfacial 

layer. However, adding post-deposition annealing step in nitrogen atmosphere at 

sufficiently  high temperature  supplied enough kinetic  energy to  achieve a  well-

ordered and fully crystallised film. The best results were obtained by heating the 

film  to  600°C.  Above  this  optimum  temperature  GaAs  and  HfO2  reacted  and 

produced an interfacial Ga2O3 layer which diffused to the film surface, increasing 

the film thickness, and reducing the bandgap energy of the dielectric. Annealing in 

nitrogen atmosphere was also used by Chen et al. [50] to mitigate substrate damage 

from e-beam deposition of Ti contacts.  With a temperature of 450°C only partial 

recovery (~30%) of luminescence of a quantum well buried 30 nm below the surface 

was achieved.
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2.4.3.2  Hydrogen- and oxygen-assisted

Adding a small part of hydrogen to nitrogen gas (what has already been mentioned 

as forming gas) during the anneal has been shown to have a defect-reducing effect. 

The most common composition of forming gas is 5% H2 and 95% N2. Kim et al. [22] 

reported that 400°C post-metallisation forming-gas annealing of Pt/Al2O3/InGaAs 

capacitors  passivates  border  traps  in  the  oxide,  which  was  supported  by  the 

improvement in the multi-frequency C-V characteristics. Burek et al. [51] clarified 

that  improvement  in  C-V is  due  to  reduction  of  metallisation-induced  trapping 

defects in the stack, which is restored by the annealing. Trinh et al. [59] showed that 

a  wet  surface  treatment  followed  by  a  pure  hydrogen  annealing  at  500°C  was 

effective  in  reducing  InGaAs  native  oxide  and  subsequently  minimising  Dit. 

Beneficial effects from forming gas annealing of III-V surfaces were also reported at 

440°C [60] and 450°C [61]. Post-metallisation forming gas annealing at even lower 

temperature (400°C)  on MOS capacitors  comprising n-GaAs/Ge/HfO2/TaN gate 

was shown to reduce midgap Dit,  as the reduced frequency dispersion in multi-

frequency C-V demonstrated [62].

The use of oxygen and oxygen-argon mixture during the metal annealing step of n-

GaAs/GGO MOS capacitors were studied by Passlack’s group. Pure oxygen was 

the  most  effective  at  producing  positive  flat-band  voltage  shifts,  related  to  an 

increased effective work function. The change in the effective work function was 

attributed  to  the  presence  of  induced  electrical  dipole  layer  at  the  metal/GGO 

interface.  The  rise  of  the  effective  work  function  after  the  anneal  suggested  a 

reduction in the dipole layer. Since oxygen annealing caused the most significant 

change, it was postulated that it is related to the role of oxygen at the metal/GGO 

interface or in the bulk of the dielectric in such a way that annealing in oxygen-rich 

atmosphere could be driving oxygen atoms to fill oxygen vacancies in the material. 

Because of this positive effect,  a significant part of this work focused on oxygen 

annealing studies.
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3 Effect of process variations           
                          on electrical response of  
                                         MOS capacitors 

3.1   Overview

Here  the  changes  in  high-frequency  capacitance-voltage  characteristics  of  MOS 

capacitors in response to variables in the MOS transistor gate region fabrication 

module  are  presented  and  discussed.  The  MOS  stack  comprised  a  metal  gate 

electrode, a Ga2O3/GdGaO dielectric stack and a GaAs surface. The analysis of the 

high-frequency C-V curves was of comparative nature, with the aim to identify the 

most promising processes for application to the actual device. When comparing C-V 

plots, the focus was on observing its five main characteristics:

- Cacc - accumulation capacitance per unit area (F/cm2)

- Cmin - depletion capacitance per unit area (F/cm2)

- Stretch-out - peak value of dC/dV, the slope of the curve (F/V/cm2)

- VGMS - gate voltage value at maximum slope (V), and

- Hysteresis (V) - difference in the forward and reverse sweep gate voltage taken 

at midpoint of the C-V curve, as indicated in figure 3.1.
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———————————————————————————————————
Figure  3.1   Typical  high-frequency  (1  MHz)  C-V curves  of  MOS capacitors 
fabricated using  two different  processes  on  the  same material,  showing the 
main C/V curve and its  slope dC/dV. The gate  is  swept  from inversion to 
accumulation (negative to positive voltages) and back.

3.2   Theory

An overview of different methods for electrical characterisation of defects in MOS 

stacks can be found in section Measuring defects of the background chapter. Here, 

only the theory relevant to high-frequency C-V measurements of MOS capacitors is 

presented.

3.2.1  C-V response

The function of the MOS gate in a MOS transistor is placement of charge in the 

channel  via  a  bias  swing  on  the  gate.  The  equivalent  circuit  for  the  C-V 

measurement is shown in figure 3.2. The applied voltage has a DC component and a 

small  signal  component  oscillating  at  the  measurement  frequency.  The 

concentration of charge underneath the gate will react to the change in gate bias in 

order to maintain the overall charge neutrality in the system. Figure 3.3(a) illustrates 

a typical Q-V response. 
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In an n-doped MOS structure at negative gate voltages electrons are repelled from 

the semiconductor surface leaving fixed positively ionised atoms, and at positive 

gate voltages, the electrons from the bulk migrate and accumulate on the surface. 

Due to this movement of charge in the semiconductor, the behaviour of a voltage-

dependent capacitor is observed, consisting of two capacitances in series: the fixed 

dielectric  capacitance  Cox  and  the  variable  capacitance  element,  defined  by  the 

width of the charge depletion layer, Cdep as shown in figure 3.2. In terms of charge, 

the  MOS capacitance  is  expressed as  C(V)  =  dQ/dV,  i.e  the  MOS C-V curve  is 

obtained by differentiating the Q-V curve, as illustrated in figure 3.3(b).

———————————————————————————————————
Figure  3.2   The  equivalent  circuit  diagram  of  a  bulk-doped  vertical  MOS 
capacitor set up for CG-VG measurement.

The change in capacitance results from the modulation of the width of the surface 

depletion layer by the gate field. If the frequency of the small AC signal applied is 

lower than 1 kHz, in inversion it will be the minority carriers in the depletion region 

near  the  oxide-semiconductor  interface  mainly  contributing  to  the  measured 

capacitance, yielding the curve labelled LF in figure 3.3. At frequencies above 1 kHz 

(i.e. in HF mode) the response of minority carriers is too slow to oscillate with the 

applied field,  therefore only the majority carrier response will be captured in the 

measured C-V curve, as shown in figure 3.3 by the HF curves.  As shown in the 

figures,  three different  operation regimes can be identified in the measured C-V 

curves: accumulation when the maximum capacitance is reached,  depletion in the
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———————————————————————————————————
Figure  3.3  The  three  regions  of  a  voltage-dependent  MOS  capacitor: 
accumulation,  depletion,  inversion.  (a)  Total  gate  charge  density  QG  as  a 
function  of  gate  voltage  VG.  (b)  Gate  capacitance  CG  as  a  function  of  gate 
voltage  VG  calculated  from  dQG/dVG  of  graph  (a),  highlighting  minority 
carriers and majority carriers in inversion region. (c) A typical measured C-V, 
showing the majority (measured with a high frequency HF small signal bias) 
and minority  (measured with  a  low frequency LF small  signal  bias)  carrier 
response  when the  surface  is  inverted,  and carrier  response  (HF,  LF)  when 
inversion of the surface does not take place (deep depletion) due to overly fast 
DC bias voltage giving insufficient time for inversion charge generation.
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transition region and inversion when the minimum capacitance is measured. These 

regimes will be explained in more detail in the next sections. In this work, most C-V 

curves were measured with a small signal component at 1 MHz frequency. This is 

because,  due  to  the  design of  the  final  device  not  being based on an inversion 

channel operation, only the response of the majority carriers (i.e.  electrons) is of 

interest. Therefore, here the C-V is used as a probe for the electrons trapped by mid-

bandgap defect-induced states, either in the oxide or at the oxide-semiconductor 

interface.

3.2.2  Cacc and Cmin

When a  high positive  voltage  (2-3  volts  for  these  devices)  is  applied across  the 

device, free electrons have accumulated at the surface of the semiconductor, and the 

electron concentration has reached maximum. This corresponds to a capacitor with 

zero depletion region, meaning that the total measured capacitance equals the oxide 

capacitance,  as  figure  3.4(a)  illustrates.  If  the  electric  field  across  the  device  is 

reduced, not all free carriers accumulate at the semiconductor surface, and the total 

capacitance will result of the series between the oxide capacitance and the depletion 

capacitance, rapidly decreasing while voltage is reduced. If the applied voltage is 

reduced to high negative values, the extension of the depletion region will reach its 

maximum, thus yielding a constant measured capacitance at a Cmin value which will 

not be affected by further increases in the strength of the electric field.

———————————————————————————————————
Figure 3.4   High-frequency C-V:  In  accumulation,  the  incremental  charge is 
located at the semiconductor surface, in depletion, the charge is located at a 
distance  from  the  semiconductor  surface,  and  in  inversion,  the  minority 
incremental  charge is  located at  the semiconductor surface and the majority 
incremental charge is located at the bottom edge of the depletion region.
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The value of Cmin is given by the series of the oxide capacitance with the minimum 

depletion capacitance, and can be calculated using the expression in (3.1).

(3.1)

Since  the  capacitance  indicates  the  amount  of  charge  stored  at  the  plates  with 

respect to voltage drop between the plates (figure 3.3), the physical origin of the 

accumulation capacitance difference between two samples is either more charge is 

accumulated at the surface at the same gate voltage, or there is a difference in the 

physical separation between the capacitor plates, or in other words, the equivalent 

dielectric thickness has changed.

3.2.3  Stretch-out

It has been said how in the depletion region the total measured capacitance is given 

from the series of the oxide capacitance Cox and a variable capacitance related to the 

extension of the depletion region Cdep. The variable component itself arises from the 

parallel of two components: one is the capacitance related to the free semiconductor 

carriers, and the other is a parasitic resistance Rit and parasitic capacitance Cit in 

series, as illustrated in figure 3.5. The parasitic component is linked to the density of 

interface traps at the surface of the semiconductor, and it is fixed throughout the 

depletion. A higher density of interface traps will increase the value of the variable 

capacitance related to  depletion,  meaning the curve will  reach accumulation for 

higher voltages and the stretch-out (or slope) of the curve will be lower. On the 

contrary, if less charge is trapped, the transition from depletion to accumulation will 

happen over a smaller range of voltage. It thus becomes obvious how the influence 

of a fabrication process variable on the stretch-out of a curve can be used to assess if 

the process introduces additional interface states.   The slope of the C-V curve is 

related to the majority carrier concentration in the bulk of the semiconductor (see 

equation (1) in [63]) for non-heterostructure bulk materials, or in the 2D electron gas 

layer of the quantum well junction for multi-layer structures.

!40

EE105 Fall 2007 Prof. Liu, UC Berkeley6

MOS Small-Signal Capacitance Model

oxC oxC
oxC

depC

Accumulation Depletion Inversion

ox

ox
ox t
C

ε
≡

d

Si
dep X
C ε

≡
The incremental 

charge is located 

at the 

semiconductor 

surface

The incremental 

charge is located 

at the bottom edge 

of the depletion 

region

The incremental 

charge is located 

at the 

semiconductor 

surface

max,
min,

min,

min,
min

   where

   

d

Si
dep

depox

depox

X
C

CC
CC

C

ε
≡

+
=



Chapter 3. Experimental Results I                                                                                                   

3.2.4  VTH and VFB

The threshold voltage VTH is the gate voltage at which the depletion charge has 

reached its maximum and the surface inverts accumulating minority carriers at the 

surface. The flat-band voltage VFB is the gate voltage required to compensate for the 

band-bending arising from the built-in potential due to workfunction differences 

between the metal and the semiconductor, and to flatten the bands. Extracting both 

of these from the dQG(dVG) shown in figure 3.3(b) is only possible for low frequency 

C-V due to  a  sharp transition of  capacitance trace  at  these points.  In  real  high-

frequency C-V it  is  more problematic,  because of curved corners and sometimes 

large stretch-out, and because at high frequencies it is not obvious at which point 

the inversion takes place. For these reasons, an arbitrary value of VG in the region 

between the VFB and VTH was used to enable a quick assessment of the flat-band / 

threshold voltage shift as a result of processing (as indicated in figure 3.1), namely, 

VGMS - the gate voltage at which the slope of the C-V curve is maximum. The point 

of  the  maximum  slope  marks  the  gate  voltage  at  which  the  rate  of  charge 

accumulation is the highest. If at the same gate voltage, the VGMS is shifted, a change 

in the electric field in the oxide has taken place. An observed change in VGMS, i.e. a 

horizontal  shift  of  the C-V curve as shown in figure 3.6,  could be linked to the 

following: a) immobile charges in the dielectric due to structural defects, and b) the 

value of the effective workfunction of the gate metal. This way, a positive/negative 

shift would correspond to an increase/decrease of process damage induced fixed 

positive charge, or decrease/increase of the effective workfunction of the gate due 

to changes in material properties of the gate metal.

———————————————————————————————————
Figure  3.5   The  equivalent  circuit  diagram  of  a  bulk-doped  vertical  MOS 
capacitor including parasitic elements due to interface defects.
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!

———————————————————————————————————
Figure 3.6  Flat-band voltage shift: (a) ideal C-V curve; (b) parallel negative shift 
due to a combined effect of band bending (i.e.  effective workfunction of the 
gate) and fixed / mobile / trapped charges in the oxide; (c) effect of trapped 
interface charge.

3.2.5  Hysteresis

The hysteresis phenomenon is observed when a double sweep of the gate voltage is 

performed, where a reverse sweep immediately follows forward sweep over the 

same voltage range. Hysteresis is calculated as the difference in values of the gate 

voltage at mid-capacitance Cmid = (Cacc - Cmin)/2 extracted from the forward and 

reverse sweep. Hysteresis occurs due to trapping and de-trapping of electrons at 

mid-bandgap energies that are not emptied fast enough. For a high-frequency AC 

signal measurement where f = 1 MHz, most of the traps states (fast and slow) are 

filled during the forward sweep. When ~1 min later (for ~5V/min sweep), during 

the reverse sweep, the Cmid gate voltage value is higher, some charge is still trapped. 

If, as a result of processing, more charge-trapping defects have been induced, it will 

be reflected in a larger hysteresis, suggesting that more charge was trapped during 

the  first  sweep.  Thus,  the  hysteresis  is  a  qualitative  measure  of  interface  state 

density, and an increase in the hysteresis would indicate an increase in the number 

of  energy  states  in  the  forbidden  gap  of  the  dielectric  and  degradation  of  the 

interface quality.
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3.3   Material

In the following three sections the behaviour of mobile charge in the semiconductor 

under the influence of the bias applied between the gate and the semiconductor 

separated by a dielectric layer will be analysed. Three types of material design and 

capacitor contact design were used: one with the active region formed in a thick 

bulk-doped n-GaAs  layer  with  charge  accumulating  at  the  oxide-semiconductor 

interface and two with a quantum well active region formed in a thin  InGaAs layer 

away from the oxide-semiconductor interface where charge is supplied by a delta-

doping layer and confined in the channel by AlGaAs barriers (see figure 3.7). The 

first two structures are built on a conducting substrate and comprise doped layers 

for vertical fields and gate electrode and source/drain ohmic contacts formed on the 

top and the bottom surfaces of the wafer,  i.e.  vertical  structures,  whilst  the third 

structure has a semi-insulating substrate and non-conducting bottom layers with 

both contacts  formed on the top surface of  the sample for lateral  field direction 

across the capacitor, i.e. lateral  structure. All structures had a 500 µm thick GaAs 

substrate (doped or undoped), a few micron thick GaAs-based III-V epitaxial layer 

structure and a thin high-κ dielectric layer. The key feature of the material is that all 

semiconductor  layers  and  the  dielectric  layer  were  grown  by  molecular  beam 

epitaxy (MBE) in-situ,  i.e. without exposing the sample to air at any point of the 

process.  This  ensured  that  the  interface  between  the  dielectric  and  the 

semiconductor was formed in a controlled manner and its quality was maintained 

for all wafer growth runs.

From the substrate upwards, the structure referred to as bulk vertical structure (figure 

3.7(a)) consisted of a 200 nm heavily-doped GaAs buffer layer (Si, 5x1024 m-3), a 100 

nm undoped Al0.45Ga0.55As layer, a 200 nm heavily-doped GaAs layer (Si, 5x1024 m-3) 

and a 1500 nm n-doped GaAs layer (Si, 2x1022 m-3). The function of the buffer layer 

is to reduce the density of dislocations due to mismatch between crystalline lattices 

of  the  substrate  and the  layers  above.  The  heavier  doping in  the  substrate  and 

around the  AlGaAs ensured a  reduced series  resistance  through the  conducting 
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path extending from the  back surface  to  the  oxide-semiconductor  interface.  The 

lower  doping  concentration  GaAs  immediately  beneath  the  dielectric  ensured  a 

great extension of the depletion region to make the material more responsive to the 

voltage sweep during C-V measurements. The gate dielectric stack comprised a 1 

nm Ga2O3 template layer and a GdGaO layer ranging between 20 and 30 nm. The 

thickness of Ga2O3 is 1 nm for all wafers grown and the thickness of the GaGdO 

layer varied between 6 and 30 nm depending on the type of structure.

In the structure referred to as vertical heterostructure (figure 3.7(b)) the layers were 

identical to the bulk structure, with additional epitaxy between the 1500 nm n-GaAs 

layer and Ga2O3: a 10 nm undoped In0.3Ga0.7As layer, followed by a few nanometers 

of Al0.45Ga0.55As encompassing a monolayer of 1x1012 m-2 silicon to provide delta-

doping  to  the  InGaAs  layer,  topped  with  an  ultra-thin  2ML  undoped  GaAs 

interfacial layer to allow the dielectric to be grown with an unpinned interface and 

good  morphology.  The  AlGaAs  layer  acts  as  a  barrier,  reducing  the  leakage  of 

electrons provided by the Si delta-doping to the gate metal. The thickness of the 

GdGaO/GaO dielectric stack for these structures was 10 nm. The reason for using 

the heterostructure is that it is more affected by Fermi level pinning than the bulk 

structure due to the nature of charge modulation mechanism in quantum wells, as 

explained in Chapter II. Since the pinning of the Fermi level is mainly caused by 

interface states,  any changes in the C-V hysteresis would be a good indicator of 

improvement/degradation of the interface quality. It was for this reason that the 

double-sweep  C-V  was  only  performed  when  measuring  heterostructures. 

Therefore,  in  the  section  containing  C-V  measurement  data,  all  bulk  structure 

measurements were single gate voltage sweep measurements,  with no hysteresis 

taken.

Finally, the structure referred to as lateral heterostructure (figure 3.7(c)) is similar to 

the vertical one, but grown on a non-conducting substrate. This structure was used 

for  MOS transistor  fabrication and measurement,  described in detail  in the next 

chapter. The top layers down to the quantum well layer are identical to the vertical 

heterostructure.
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The main difference between the two heterostructures is that in the lateral one, in 

addition to the doped AlGaAs layer above the active InGaAs layer for free carrier 

provision, there is also one below the active layer, also encompassed in an AlGaAs 

layer.  Between it  and the substrate is an AlGaAs superlattice.  A superlattice is a 

series of layers of alternating composition and is included to reduce the number of 

impurities that can migrate from the substrate to the active regions of the wafer 

during  the  wafer  growth.  The  lateral  heterostructure  had the  thinnest  dielectric 

thickness of the all three structures - 6 nm. In the quantum well structure the active 

depletion region is away from the oxide-semiconductor interface and the dielectric 

is  thinned,  therefore,  measuring  this  structure  enables  separating  the  effects  of 

processing on the integrity of the dielectric film from effects of interface damage.

The two vertical structures were mainly involved in the experimental work due to 

the simple processing required to deposit  the capacitor contacts.  Circular Pt/Au 

gate contacts were directly deposited onto the top surface of the sample through a 

shadow mask. Then the sample was flipped onto the other side and Ni/Ge/Au 

ohmic contact metal was deposited on the back surface of the sample as a blanket 

layer.  The  resulting  n-type  contact  was  low  resistance  without  the  need  for 

annealing.  Such rapid  feedback process  was  the  main  advantage  of  the  vertical 

structures.  For  lateral  MOSCAPs fabrication both  contacts  were  deposited by e-

beam lithography patterning and metal lift-off on the top surface of the sample with 

the ohmic contact surrounding the gate contact. An electron-beam metal evaporator 

was used for all metallisation, and the gate contacts were always 250 µm diameter 

circles.

During the course of the project, many wafers were grown of each type of structure 

with a certain degree of variability between them, e.g. random dopant concentration 

variation  and nonuniformities.  It  was  ensured that  all  comparison  studies  were 

performed on samples from the same wafer, thus data plotted on the same graph 

comes from the same growth. Due to the variability in the wafer growth, no direct 

comparison between all data from the same layer structure design was possible.
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———————————————————————————————————
Figure  3.7   Summary  of  the  epitaxial  metal-oxide-semiconductor  capacitor 
structures  used  in  this  chapter  post-MBE  growth  (left)  and  with  gate  and 
semiconductor  contacts  deposited.  Schematic  diagrams  on  the  right  are 
coloured in such a way as to roughly indicate the concentration of electrons 
when a positive gate bias is applied.
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3.4   Experimental results

The experiments carried out all assessed the dependence of charge behaviour on: 1) 

e-beam lithography patterning, 2) gate metal deposition, 3) thermal treatment of 

complete MOS stack. The following lists detail how the charge behaviour has been 

studied in each of the three cases.

1) Dependence of charge behaviour on variables of EBL processing:

- Electron  irradiation,  assessed  through  removal  of  EBL steps  and  replacement 

with shadow masks.

- Analysed  effect  of  post-development  ash  step  and  exposure  dose  on  post-

development resist residue.

- Difference between post-development resist residue in exposed areas (gate) and 

residue post removal of resist in unexposed areas (source and drain).

- Absence  of  pre-metallisation  surface  treatment,  direct  post-growth 

measurements.

2) Dependence on various metallisation parameters:

- Varying the composition of gate metal layers

- Using different types of gate metal altogether

- Effect of various metal deposition rates

3) Dependence on thermal treatment:

- Influence of duration and temperature of a rapid thermal annealing (RTA) step in 

oxygen atmosphere carried out after the gate contact deposition.

- Effect of carrying out the two RTA steps required for the full device fabrication in 

various  gaseous  atmospheres,  with  two  cases  examined:  nitrogen  (inert)  RTA 

first, then oxygen (reactive), and vice versa.

!47



Chapter 3. Experimental Results I                                                                                                   

- Impact  of  varying  metal  thickness  on  gate  contacts  which  were  thermally 

annealed in oxygen atmosphere.

Below, the experimental activities are explained in further detail, highlighting the 

main conclusions from each section.

3.4.1  Charge response to varying EBL process parameters

3.4.1.1  Electron beam irradiation

The effect  of  electron irradiation during e-beam exposure of  the gate pattern on 

charge  trapping  in  the  oxide  was  assessed  through  removal  of  EBL steps  and 

replacement with direct deposition of gate metal through a cobalt shadow mask. 

Both samples were subjected to a standard acetone/IPA clean, and then one sample 

had gate contact deposited directly on the dielectric surface through a shadow mask 

and another went through the full lift-off process starting with e-beam exposure of 

PMMA, MIBK:IPA development and an oxygen plasma ash. The parameters (dose, 

O2 ash power and time) of the e-beam lithography process were optimised so that 

the  amount  of  PMMA residues  on  the  surface  was  minimised and so  that  it  is 

reasonable to assume the differences between the C-V curves only due to the effect 

of electron beam irradiation.

From the C-V results in figure 3.8 it can be seen that the sample which went through 

the  entire  lithographic  process  shows  similar  values  of  capacitance  density  at 

accumulation Cox to the sample where the gate metal was deposited directly on the 

surface, suggesting there were no substantial changes in the dielectric properties of 

the oxide stack after exposure to the electron beam. The measured Cacc value is 290 

nF/cm2, lower than its theoretical value of 348 nF/cm2 by ~17% . On the other hand, 

there  is  an  obvious  change  in  slope  which  is  higher  for  the  electron  irradiated 

sample, and a ~125 mV shift of the curve towards more negative voltages. These 

results both indicate a reduction in the number of charge traps and a decrease in the 

positive charge. This can be explained in the following way: the secondary electrons 
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generated by electron-electron scattering provide a mechanism for charge transfer. 

These slow moving (~10-100 eV) electrons may be influenced by trapped charge. 

They then act to neutralise any existing fixed charge, since the material is rendered, 

temporarily, conducting. It is unlikely for this process to happen also in the bulk of 

the oxide since, as previously stated, similar values of Cox are observed. One could 

argue that  the differences  in  C-V could be due to  oxygen ash removal  of  resist 

residues, which the non-e-beam irradiated sample was not subject to. However, as 

discussed later, the effect of an O2 ash is negligible compared to that of electron 

beam irradiation.

!

———————————————————————————————————
Figure 3.8  The effect of using e-beam lithography process to pattern the gate of 
a  vertical  bulk  n-GaAs  MOS capacitor  with  25  nm GGO and Pt/Au gates, 
shown by comparing high-frequency (1 MHz) single-sweep C-V response of 
capacitors with gates fabricated by e-beam patterning and metal lift-off (blue 
trace) and gates fabricated by metal deposited through a shadow mask (black 
trace).

3.4.1.2  PMMA resist residue in the gate region

It  is  well  known that  PMMA is  not  fully  removed in  the  development  process 

forming a residue on the substrate surface. Using the method shown in the next 

chapter, it was found that the amount of PMMA present on GaGdO surface after 

development depends on the exposure dose. Figure 3.9 shows how the differences 

shadow mask

e-beam resist patterning and lift-off
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in the polymer layer between the oxide and the gate metal are reflected in behaviour 

of semiconductor charges at the interface between the oxide and the semiconductor. 

As described in the next chapter, PMMA residues result in complete detachment of 

the deposited gate metal from the dielectric surface underneath, and it remains so at 

all exposure doses. However, the PMMA residues comprise of two elements: a 1-3 

nm thick layer and granular blobs of PMMA on top of the thin layer. A dependency 

of the amount of granules on the exposure dose was found, and the differences in 

Cacc shown in the C-V plots in figure 3.9 where the accumulation capacitance is the 

sum  of  oxide  capacitance  and  residue  capacitance  in  series,  confirming  that  at 

higher doses the average thickness of the PMMA residue decreases. The fact that no 

other change but the Cacc has been observed in the C-V characteristics suggests that 

the  only  parameter  affected  with  the  change  in  exposure  dose  is  the  average 

thickness of the residual PMMA layer.

———————————————————————————————————
Figure 3.9  The effect of PMMA residues in the gate region of vertical bulk n-
GaAs MOS capacitors with 25 nm GGO and Pt/Au gates when using e-beam 
lithography process to pattern the gate, shown by comparing high-frequency (1 
MHz) single-sweep C-V response. (a) Varying the e-beam exposure dose. (b) 
Comparing the residues in the gate region (exposed) with the residues outside 
of the gate region (unexposed) with a control residue-free surface (with ash).

The dependance of such thickness for three different scenarios is depicted in figure 

3.9. The three samples compared all underwent electron beam lithography at the 

same  dose  of  600  µC/cm2,  but  then  only  two  of  them  were  developed  (with 
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standard  IPA:MIBK  development),  whereas  the  third  one  had  its  resist  layer 

stripped in acetone, and the C-V contact pattern later defined by shadow mask. Of 

the two developed ones,  one of  them was subject  to oxygen plasma ash,  which 

removed any PMMA residues from the surface. In fact the ashed sample, indicated 

in the figure by the black line, was the one with the highest Cacc value, thus the 

thinnest total dielectric layer since all of the PMMA residue was removed. The blue 

line  instead  illustrates  the  result  from  the  sample  which  was  not  ashed  after 

development,  and  confirms  a  thicker  residual  PMMA layer.  Finally,  the  sample 

where resist was stripped by acetone without undergoing development or oxygen 

ashing was the one with the thickest residual layer,  as shown by the green line. 

Based on these  results,  it  can be  concluded that  the  presence of  a  thin layer  of 

polymer between the gate metal and the gate dielectric does not have any effect on 

the amount of charge trapping at the interface, being physically too far from the 

interface to have an electrically observable effect. However, the residual layer did 

have an effect on MOSFET device characteristics, as it will be shown in the next 

chapter.

———————————————————————————————————
Figure 3.10  High frequency (1 MHz) double-sweep C-V characteristics of bulk 
vertical n-GaAs structure with 25 nm GGO and Pt/Au gate. Investigating the 
effect of unexposed resist stripped in acetone and annealed at 430°C during the 
ohmic contact fabrication. Gate metal was deposited through shadow mask.
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The effect of thermal treatment on a surface where resist residues are present has 

also  been  assessed,  as  figure  3.10  shows.  The  black  curve  displays  the  results 

obtained from shadow mask patterning on a PMMA-free surface, while the blue 

curve shows the measurement obtained from a sample which was first spun with 

PMMA, then had the resist  layer removed with 1 hour warm acetone soak and 

finally annealed. This experiment aimed at showing the effects of an annealed layer 

of resist  on the gate-dielectric interface,  by mimicking what happens in the gate 

region when the ashing step is omitted after lift-off of source and drain metal in a 

gate-last fabrication process. As can be seen from figure 3.10, almost no change in 

hysteresis or flat-band voltage was measured, indicating no degradation of the gate 

stack. The unusual fact portrayed by the figure is that the value of Cacc in the sample 

with the resist  is  much higher that  that  of  the sample without the resist,  which 

suggests that the decrease of Cacc normally observed when an additional thickness is 

present  has been compensated by a  large increase.  This  has been interpreted as 

related to the thermal treatment, with the following explanation: as a result of MBE 

process  there  are  some  lattice  imperfections  in  the  amorphous  GaGdO  layer; 

thermal  treatment  gives  the  atoms  in  the  material  system  enough  energy  to 

redistribute  themselves  into  a  more  ideal  lattice,  thus  increasing  the  dielectric 

constant  which  is  reflected  in  the  higher  Cacc  value.  In  fact,  Dalapati  et  al.  [36] 

observed a densification of high-κ films at post-deposition annealing temperatures 

below 500°C which improved the dielectric properties.

3.4.1.3  Oxygen plasma for removal of resist residue in the gate
  region

Oxygen plasma exposure is  a  technique commonly used to de-scum the surface 

from organic contaminants. It is most commonly used after development of a resist 

layer  to  remove residues  from lithographic  processes.  Several  experiments  were 

carried out to explore the effect of oxygen plasma exposure on the GaGdO dielectric 

layer.  The tool  used was a barrel  asher,  and unless otherwise stated the sample 

surfaces were always ashed for 60 seconds with an RF power of  40 Watts  -  the 

minimum power required to achieve stable plasma on the machine.
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The  black  trace  in  figure  3.11  shows  the  C-V  curve  obtained  from  a  sample 

patterned directly with a shadow mask, whereas the blue trace was obtained for a 

sample subject to oxygen ash before shadow mask patterning. It is evident from the 

unaltered hysteresis and the near-coinciding accumulation capacitances and slopes 

that no increase in surface charge trapping has occurred as a result of the low power 

oxygen plasma ashing. A small change in the flat-band voltage as indicated by the 

shift of the curve generally means a reduction of fixed positive charge in the oxide. 

In a similar way to what happens for electron beam irradiation, the reduction in 

positive  charge  can  be  explained by  the  oxygen plasma acting  a  source  of  free 

electrons for the oxide surface; those electrons which enter the oxide layer partially 

neutralise  the  positively  charged  ions  in  the  oxide,  thus  reducing  the  net  fixed 

positive  charge.  Contrary  to  electron  beam  irradiation,  where  the  high  energy 

electrons reach the interface layer and alter its properties, the oxygen ash does not 

affect the interface, since the concentration of trapped charge remains unchanged.

———————————————————————————————————
Figure 3.11  The effect of subjecting the GGO surface to oxygen plasma as part 
of barrel ashing technique, shown by high-frequency (1 MHz) double sweep 
capacitance-voltage characteristics of vertical heterostructure samples with 25 
nm dielectric.  The  surface  was  subjected  to  standard  solvent  clean  prior  to 
oxygen ashing.
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The previous experiment analysed the effect of oxygen ash on a resist-free surface. 

As stated in the previous paragraph, oxygen plasma can be used to remove PMMA 

residues from the GaGdO surface after resist development. The experiments for the 

assessment  of  PMMA residues  were  carried  out  on  the  bulk  material  structure, 

where  the  channel  is  formed  by  inversion  at  the  semiconductor  surface.  These 

experiments  were  repeated  on  a  hetero-structure  where  the  channel  is  located 

deeper in the semiconductor, separated from the oxide interface by barrier layers. 

As previously explained in section Material  of  this chapter,  this kind of material 

structure  is  more  sensitive  to  the  effect  of  the  imperfections  at  the  oxide-

semiconductor interface because a significant number of trap-inducing defects at 

the oxide-semiconductor interface can pin the Fermi level  below the conduction 

band of the quantum well layer.

Figure  3.12(a)  shows  a  comparison  between  a  C-V  curve  obtained  by  shadow 

masking a resist-free surface, indicated by the black line, and one obtained from a 

sample which was coated with PMMA, had the resist removed by acetone strip and 

was ashed before metal deposition. A great reduction in hysteresis and a positive 

threshold  voltage  shift  can  be  observed  between  the  two  curves,  meaning  a 

reduction  of  positive  fixed  charge,  consistent  with  the  effect  of  oxygen  ash  as 

interpreted previously from the results on the bulk material. Figure 3.12(b) instead 

shows  a  comparison  between  two  samples  which  were  also  both  coated  with 

PMMA and subsequently had the resist stripped in acetone, but with only one of 

them undergoing oxygen plasma treatment, represented by the black line. In this 

case the ash caused a great change in the value of Cacc, confirming once again the 

effective  removal  of  the  PMMA residues.  Also,  a  considerable  shift  of  the  gate 

threshold voltage (nearing 1 Volt) is observed, nearly an order of magnitude greater 

than that observed for the bulk structure subjected to oxygen ash (figure 3.10). If the 

shift of the C-V curve in the positive direction is attributed to a reduction in the 

positive net charge in the dielectric stack, then this result would translate into a 

poorer  dielectric  quality  due  to  a  higher  presence  of  ionised  atoms  in  the 

heterostructure  dielectric film with respect to the bulk material.
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———————————————————————————————————
Figure 3.12  High-frequency double-sweep C-V measurements of two vertical 
heterostructure  samples,  comparing  (a)  unexposed  PMMA  removed  with 
acetone  and an  O2  ash  against  a  virgin  surface,  and (b)  unexposed PMMA 
removed with acetone, with and without an O2  ash.

3.4.1.4  Wafer cleaning

The baseline MOSCAP fabrication process used ultrasonically-agitated cleaning in 

standard organic solvents as a default surface preparation procedure. Two samples 

have  been  processed  with  and  without  organic  solvent  clean  of  the  dielectric 

surface, subsequent to which, the gate metal was deposited directly on the substrate 

using a shadow mask. The electrical characterisation result and the layer structure 

are shown in figure 3.13.

Two noticeable differences can be observed between the two samples: the upward 

shift of capacitance values of the curve that received wafer surface clean, and its 

increased  hysteresis.  Based  on  these  observations,  it  can  be  assumed  that  the 

acetone was effective in removing inorganic particles from the dielectric surface and 

the  difference  in  capacitance  values  across  the  gate  bias  range  is  due  to  the 

difference in the physical separation between the capacitor plates. Since the oxide-

semiconductor  interface  was  not  exposed  during  the  cleaning  procedure,  the 

increase  in  the  hysteresis  observed  in  the  cleaned  sample  could  be  due  to  an 

increase  in  interface  states  induced  by  the  structural  damage  at  the  interface 

between GaAs and the oxide stack, caused by high intensity (> 20 kHz) waves that 

are used in ultrasonic techniques to generate pressure fluctuations in order to create 
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cavitation bubbles which upon collapsing release enough energy to dislodge and 

disperse particles. The bubbles in the ultrasonic bath have been previously reported 

to cause damage to delicate nanoelectronic structures [64]. Ultrasonically-assisted 

cleaning was the default procedure in the processing of MOSCAPs, and since the 

detrimental  effect  was  discovered  at  a  later  stages  of  the  project,  all  samples 

reported here were cleaned in the ultrasonic bath.

!
———————————————————————————————————
Figure 3.13  The GGO/GaAs sample with and without ultrasonically-agitated 
clean, shown by high frequency (1 MHz) double-sweep C-V characteristics of 
vertical heterostructure material with 25 nm GGO. The cleaning procedure was 
5 minutes in acetone at room temperature, followed by 5 minutes in IPA.

3.4.1.5  Section summary

In summary, the radiation damage during e-beam exposure was found to induce a 

change in the amount of charge traps present at the interface. The nearly identical 

accumulation  capacitances  obtained  from  ashed  and  unprocessed  resist-free 

surfaces indicates that the gate oxide did not react with oxygen during the ashing 

process. Also the experiments shown prove that removing the barrel oxygen plasma 

ashing step causes  a  large  drop in  capacitance,  due to  a  presence  of  a  residual 

PMMA layer on the dielectric surface, the thickness and surface roughness of which 

was reduced with increasing exposure dose.

with wafer surface cleaning

without wafer surface cleaning
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3.4.2  Charge response to varying metallisation parameters

There is a disagreement in literature about how metallisation process affects charge 

response. Auret et al., for instance, state that the electrical properties of the metal-

semiconductor interface are determined within the first few monolayers of metal 

deposition [52].  In the following it  was assessed if  altering several  metallisation 

parameters had observable effects on the measured C-V curves. Theoretically, for a 

given  gate  bias  a  change  in  the  metal  stack  should  not  affect  the  electric  field 

sufficiently to show measurable differences in the amount of charge accumulating 

on the surface of the dielectric, due to the high conductivity of metals, regardless of 

which  metal  is  chosen.  However,  all  materials  have  different  electrochemical 

potential, which means that their workfunctions change when in contact with the 

dielectric. Thus, because of the Fermi level alignment in a multi-material stack, a 

change in the workfunction of the gate metal stack corresponds to a change of the 

surface potential of the bottom layer, which is observed electrically as a shift of the 

C-V curve. The following experiments were designed to see if a shift in the C-V 

curve is the only observable difference caused by changes in the metal stack, and to 

determine if an optimal metal gate stack could be identified.

3.4.2.1  Varying the composition of gate metal layers

Two different  approaches were adopted:  first,  only platinum (Pt)  and gold (Au) 

were used, because of the high workfunction of Pt for which the MOSFET device 

material layers were designed. On top of Pt, a thicker layer of Au was required to 

decrease the total resistivity of the contact. Secondly, different metals were studied, 

with the experiments discussed in the next paragraph.

It was of high interest for this work to try to reduce the thickness of Pt in the Pt-Au 

stack,  the  reason  being  the  ease  of  etching  a  thinner  Pt  layer  with  dry  etch 

techniques in a subtractive type of gate contact formation. The effect of a metal stack 

with a Pt thickness reduced to 1 nm is shown in figure 3.14. It can be seen than a 

decrease in Pt thickness from 10 nm to 1 nm shifted the flatband voltage in the 
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negative direction. The observed effect can be related to the proximity of Au to the 

dielectric surface. First, the Au layer is only a few atomic layers away from the oxide 

surface;  second,  the Pt  layer was deposited by standard rate (0.3  nm/s)  e-beam 

evaporation, therefore its thickness might not be uniform in the contact area (the 

exact value for the non-uniformity of coverage is not known).  This could mean that, 

as far as the dielectric surface is concerned, there is Au partially in direct contact 

with it. As a result, a change in the gate workfunction takes place, reflected in the 

flatband voltage shift.

!
———————————————————————————————————
Figure 3.14  High frequency (1 MHz) single-sweep C-V characteristics of bulk 
n-GaAs with 31 nm GGO where the thickness of Pt in the Pt/Au gate metal 
stack changed between 10 nm and 1 nm, and the Au thickness was changed 
accordingly to achieve 100 nm total contact thickness.

After comparing a nearly Au-only stack with a Pt-Au one, the latter was compared 

with a Pt-only layer, with the results shown in figure 3.15. The most obvious change 

between  the  two  plots  is  the  value  of  the  accumulation  capacitance,  which  is 

considerably higher when Pt is the only metal used. Since the resistivity of platinum 

is  approximately 4.4  times that  of  gold,  this  is  thought  to  be due to  the higher 

impedance of the 100 nm Pt layer compared with the composite Pt-Au one, where 

the thickness of Pt is only a tenth of the Pt-only layer. As discussed in the theory 

10 nm Pt / 90 nm Au
1 nm Pt / 99 nm Au
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section  of  this  chapter,  the  accumulation  capacitance  difference  between  two 

samples may be interpreted as more charge accumulating at the surface at the same 

gate voltage. Thus comparison of gate metal stacks with different impedance will 

have different associated parasitic capacitances (discussed later in Chapter 5), and 

the total Cacc will consist of a contribution from the oxide and a contribution from 

the metal stack. The greater value of Cacc confirms a higher parasitic capacitance for 

the Pt-only case, and therefore the need to cap the metal stack with a thick layer of 

gold.

——————————————————————————————————
Figure  3.15   High  frequency  (1  MHz)  double-sweep  C-V  characteristics 
comparing 100 nm Pt gate (black) and 10 nm Pt / 90 nm Au gate (blue) MOS 
capacitors fabricated on vertical heterostructure material with 10 nm dielectric.

The results shown in figure 3.15 were measured on the hetero-structure material 

from figure 3.7(b).  A comparison between a Pt-only stack and a Pt-Au one was 

compared also for the bulk structure, as the plots in figure 3.16 show. In this case, 

there is no change in the value of Cacc observed, and this can be explained with the 

different dielectric thicknesses between the two epi-structures.  The bulk material 

has a considerably thicker dielectric, at 25 nm, compared with the heterostructure 

whose GdGaO/GaO layer is 10 nm thick. This will translate into a higher value of 

oxide  capacitance  for  the  latter  structure,  which  will  also  be  less  sensitive  to 

parasitic capacitance in the metal stack.
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———————————————————————————————————
Figure  3.16   High  frequency  (1  MHz)  double-sweep  C-V  characteristics 
comparing 10 nm Pt gate (black) and 20 nm Pt / 200 nm Au gate (blue) MOS 
capacitors fabricated on vertical bulk material with 25 nm dielectric.

3.4.2.2  Using different types of gate metal altogether

After comparing the effect of different thicknesses of Pt and Au in a Pt-Au stack, the 

possibility of using a metal other than gold as the low resistivity layer to deposit on 

top of the Pt layer was explored. Given that the final fabricated devices had to be 

annealed in  oxygen atmosphere  as  a  way to  raise  the  workfunction of  the  gate 

metal, nickel (Ni) seemed a viable alternative to Au. Platinum and gold are both 

noble  metals,  and  their  effective  workfunctions  will  remain  unchanged  after  a 

treatment  in  oxygen atmosphere [65],  unlike that  of  nickel  that  was reported to 

result in a higher workfunction facilitated by oxygen diffusion through the metal 

[66]. Resistivity values for Pt, Ni and Au are provided in table 3.1.

Figure 3.17 shows the different C-V responses measured for Pt (10 nm) / Au (90 nm) 

and Pt (10 nm) / Ni (90 nm) gates, where the latter showed a positive ∆VFB. As 

explained in the theory section of this chapter, this could either suggest a reduction 

of immobile positive charge in the dielectric, a change in the effective workfunction 

of  the  gate.  Since  the  wafer  and the  fabrication  process  were  identical  for  both 

samples, the effective workfunction of Pt/Au must be different to that of Pt/Ni. It 
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seems that top Ni causes an increase in the effective workfunction of the gate, i.e. a 

decrease in the semiconductor surface band bending.  This suggests that, contrary to 

previous reports stating that the electrical properties of metal-semiconductor system 

are  determined  within  the  first  few  monolayers  of  metal  [52],  it  is  instead 

determined  by  the  whole  metal  stack.  The  effective  workfunction  of  Pt/Ni  is 

smaller than that of Pt/Au, meaning the subsequent band bending yields a thicker 

depletion layer for the same applied voltage, thus less carriers modulated during 

the forward sweep, and causing an increase in the stretch-out of the curve. This 

effect was observed for all the experiments carried out on bulk vertical structures: as 

summarised by the results in table 3.2, a change in VGMS was always measured. The 

different values of VGMS differential  further confirm that the behaviour observed 

could only be ascribed to phenomena related to electron-beam metal evaporation 

process.

!

———————————————————————————————————
Figure 3.17  High frequency (1 MHz) single-sweep C-V characteristics of bulk 
n-GaAs with 31 nm GdGaO/GaO dielectric stack where the Au layer on top of 
Pt in the Pt/Au gate metal stack changed to Ni.

10 nm Pt / 90 nm Au
10 nm Pt / 90 nm Ni
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———————————————————————————————————
Table  3.1   Key  parameters  of  the  materials  used  in  the  gate  metal  stacks. 
Workfunction values are taken from CRC Handbook of Chemistry and Physics 
2008.

3.4.2.3  Effect of various metal deposition rates

As previously stated, the deposition of thin layers of Pt is prone to uniformity issues 

if the deposition rate is too fast. The standard deposition rate used for the samples 

discussed so far is 0.3 nm/s, therefore requiring only approximately three seconds 

to  deposit  a  1  nm film.  A decrease  of  the  deposition  rate  was  thus  targeted  to 

increase the time required to attain 1 nm to at least twenty seconds at a new rate of 

0.05 nm/s, thus attaining a better thickness control and layer uniformity. As the data 

shown in  figure  3.18  show,  it  is  clear  that  slowing down the  deposition  rate  is 

greatly beneficial to the resulting structure, as proved by the positive shift in the 

flatband voltage. In both cases the total thickness of the metal was 100 nm, of which 

1 nm of Pt and 99 nm of Au. For the sample deposited with the higher deposition 

rate,  as  previously  discussed  there  will  be  uniformity  issues  and  Au  atoms  in 

contact with the dielectric surface. This will not be the case for the sample deposited 

with slow deposition rate, and the change in the C-V curves mirrors the change in 

the workfunction. The change in maximum capacitance values should not be taken 

as a real Cacc difference since no full accumulation was achieved at the measurement 

range  for  any of  the  curves.  However,  a  change  in  accumulation  capacitance  is 

possible, given that a slower deposition rate means more exposure to contamination 

which could yield a lower Cacc.

Resistivity (Ω.m) Workfunction (eV)

Au 2.24E-08 5.1 - 5.47

Pt 1.1E-07 5.12 - 5.93

Ni 6.85E-08 5.04 - 5.35 
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———————————————————————————————————
Figure 3.18  High frequency (1 MHz) single-sweep C-V characteristics of bulk 
n-GaAs with 31 nm GdGaO/GaO dielectric stack and a metal stack consisting 
of 1 nm Pt and 99 nm Au, deposited at two deposition rates.

3.4.2.4  Section summary

The results from this section are summarised in table 3.2. The common feature of the 

experiments  was  a  positive  shift  of  Vfb,  always  accompanied  by  an  increase  in 

stretch-out  of  the  curve.  A double  C-V sweep was performed only  in  one case, 

providing a  decrease in hysteresis  together  with the positive VFB  shift,  and C-V 

curves overlapping during the reverse sweep. Both a reduced slope and a reduced 

hysteresis are conflicting results if analysed in terms of trapped charge. However, 

the reverse sweep overlap indicates that there is  no difference in the amount of 

charge since the same amount of it  is trapped. Thus the changes in the forward 

sweeps could not be ascribed to charge trapping, but only to changes in the effective 

workfunction, the only other variable in the processes compared.
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———————————————————————————————————
Table  3.2   A summary  of  key  parameters  extracted  from  C-V  plots  of  the 
Metallisation section in order of appearance starting from the top of the table. 
The accumulation capacitance and peak slope values are normalised to their 
maximum values. The metal layers are in nanometers and are presented in the 
order of deposition.

It can be also noted from the summary table that a negative flat-band voltage shift is 

observed every time Au is added to the gate metal, or the thickness of Au in the Pt/

Au  stack  is  increased.  A  possible  explanation  to  this  could  be  the  group 

electronegativity concept as applied to the effective workfunctions of  metal  gate 

electrodes on high-κ gate oxides [67, 68].  Pauling electronegativity values for Pt, Au 

and Ni are 2.28, 2.54 and 1.91, respectively. An addition of a more electro-positive  

Au to the Pt  layer  strengthens the local  dipoles  generated on the GGO surface, 

reducing the effective workfunction of the gate and therefore causing a reduction of 

VFB. The opposite is true for the addition of Ni to Pt layer. In Ref. [68], two multi-

component gate electrode materials with 0.6 electronegativity difference exhibit an 

up to 0.4 eV increase in the effective workfunction.

Based on the surface inversion capacitor results, reducing the deposition rate of the 

bottom metal in the gate proved to achieve the most significant positive ∆VFB. In this 

case nominally identical gate stacks were compared, thus the results are not related 

Gate metal stack Material Cacc Slope ΔVFB Hysteresis

Pt 1 / Au 99 bulk 1 1 0 N/A

Pt 10 / Au 90 bulk 0.95 0.9 +0.15 V N/A

Pt 10 / Au 90 hetero (vert.) 0.88 - 0 1.4 V

Pt 100 hetero (vert.) 1 - + 0.07 V 1.6 V

Pt 20 / Au 200 bulk - 1 0 1.3 V

Pt 10 bulk - 0.7 + 0.20 V 1.0 V

Pt 10 / Au 90 bulk 1 1 0 N/A

Pt 10 / Ni 90 bulk 0.97 0.87 + 0.30 V N/A

Pt 1 / Au 99 bulk 1 1 0 N/A

Pt 1 / Au 99 (slow) bulk 0.92 0.75 + 0.70 V N/A
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to  changes  in  the  effective  workfunction.  The  improvement  could be  due to  an 

improved uniformity  of  the  deposited layer,  as  well  as  the  slower  metallisation 

process being less damaging. This will be explored in the next section that looks into 

post-metallisation annealing.

3.4.3  Charge response after thermal treatment

As mentioned in the background chapter of this thesis,  post-oxidation and post-

metallisation annealing are commonly used techniques to reduce trapping of charge 

in  MOS  stacks.  Here,  the  effects  of  post-metallisation  anneal  are  explored  by 

subjecting samples to thermal treatment in either inert (N2) or reactive (O2) gaseous 

atmosphere  with  varying  temperatures  and  durations.  The  aim  was  to  achieve 

reduction  of  growth-related  and  metallisation-induced  defects  by  means  of  one 

anneal only. In all experiments described below, the annealing was performed in an 

RTA (rapid  thermal  anneal)  tool  immediately  after  the  deposition  of  250  µm 

diameter  Pt/Au-based  contacts  through  a  shadow  mask,  followed  by  blanket 

deposition of Au/Ge/Ni/Au back contacts. This ensured only the gate metal was 

exposed to the thermal treatment.

3.4.3.1  Annealing in oxygen atmosphere

In the previous section it was shown that the thickness of Pt in 100 nm Pt/Au gate 

has an effect on the MOS high-frequency C-V response. Here, 100 nm Pt/Au gates 

with Pt thicknesses varying between 1 nm and 10 nm were annealed for 60 s in O2 at 

430°C. The resulting C-V response is shown in figure 3.19. Despite the differences 

observed  between  the  as-deposited  samples  with  minimum  and  maximum  Pt 

thicknesses,  after  thermal  treatment  their  C-V curves overlap,  as  can be seen in 

figure 3.19(c).  This effect is confirmed by including 3 nm and 5 nm Pt data and 

observing the same result (figure 3.19(d)).  It  can therefore be concluded that the 

effect  of  thermal  treatment  on  the  gate  stack  is  such,  that  the  ratio  of  metals 
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composing the gate stack is an irrelevant factor to the quality of the interface in a 

process where a post-gate deposition annealing step is employed.

As discussed earlier, when 1 nm Pt was deposited at a slower rate (0.05 nm/s), it 

produced a very different high-frequency C-V response, the most significant change 

being the ∆VFB of +0.7 V. Possible thin Pt layer uniformity issues may have been the 

reason for that, improved by reducing the rate and consequently increasing the time 

of the deposition. These differences were annihilated by the 430°C O2 treatment, as 

shown in figure 3.20, which presents the 1 nm Pt deposited at 0.05 nm/s and 1 nm - 

10 nm deposited at 0.3 nm/s after the anneal. However, the post-anneal slow-rate 

C-V showed an increased maximum slope (figure 3.20 (b)). If considering the anneal 

as a method to recover the damage caused to the material during the metallisation, 

as discussed in chapter Background, the independence of the fast-rate Pt thickness on 

the post-anneal results versus an improvement of the slow-rate Pt after the anneal, 

could suggest that slow deposition is less damaging to the GGO/GaAs stack. This 

has  been  previously  reported  by  Chen  et  al.  [50],  who  found  GaAs-based 

heterostructures  producing  better  optical  response  when  the  rate  of  Ti  contacts 

deposited on them was slowed down. From the data in figures 3.19 and 3.20, it can 

be  concluded  that  430°C  O2  post-metallisation  annealing  is  a  useful  step  to  be 

included in gate fabrication process, and as long as the total thickness of the contact 

and the metal deposition rates are kept constant, Pt fraction can be changed from 0.5 

to 10% with negligible effect on gate stack performance if the annealing step is used.

The  next  set  of  experiments  looked  at  MOS  capacitors  where  the  metal  stack 

consisted of Pt only, before and after thermal treatment in oxygen atmosphere. The 

C-V curves in figure 3.21 display a reduction in stretch-out, an increase in maximum 

capacitance, and a positive shift of the flatband voltage after annealing, similar to 

the outcome of the Pt/Au contact annealing (figure 3.19(a)).
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———————————————————————————————————
Figure 3.19  High frequency (1 MHz) single-sweep C-V characteristics of bulk 
n-GaAs structure with 31 nm GGO showing the effect of 60 s in 430°C O2 RTA 
on Pt/Au gates with varying Pt thickness. The response of 10 nm Pt (a) and 1 
nm  Pt  (b)  before  and  after  annealing  are  shown  separately  (a,  b)  and 
superimposed (c). Post-anneal responses of all four samples with Pt thickness 
varying from 1 nm to 10 nm are shown in (d).

———————————————————————————————————
Figure 3.20  High frequency (1 MHz) single-sweep C-V characteristics (a) and 
dC-dV (b) of bulk n-GaAs with 31 nm GGO showing the effect of annealing on 
100  nm  Pt/Au  gate  stacks  with  different  Pt  thicknesses  showing  1  nm  Pt 
deposited at 0.3 nm/s (scatter) and 0.05 nm/s (solid line) rate.
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——————————————————————————————————
Figure 3.21  High frequency (1 MHz) double-sweep C-V characteristics of bulk 
n-GaAs structure with 25 nm GGO and 10 nm Pt before and after 60 s in 430°C 
O2 RTA.

The following paragraphs will look at the effect on MOS capacitors of RTA steps at 

different temperatures and/or for shorter times, and also assess if the benefits of 

RTA are exclusive to a process in oxygen atmosphere or if they can be obtained also 

with use of inert gases.

3.4.3.2  Effect of anneal time and temperature

All  annealing  processes  in  the  experiments  described  so  far  were  conducted  at 

430°C for 60 seconds. These parameters were chosen for a simple reason: they were 

identical to the nitrogen anneal that was used in the MOSFET process flow after 

ohmic contact metal deposition, which could provide a possibility to combine the 

two.  The  test  described  next  was  done  after  it  was  postulated  that  the  430°C 

temperature is optimised for a nitrogen process, but could be causing damage in 

combination with the reactive oxygen. The annealing process optimisation involved 

reducing the temperature to 300°C and also reducing the initially chosen duration of 

the 430°C anneal, and measuring the effect of it on Pt (10 nm) / Au (90 nm) gate 

MOS capacitors.  The C-V curves  plotted in  figure  3.22  indeed confirmed that  a 

lower temperature was better for this process with an increase in the maximum 

slope observed as the temperature decreased. It can be also seen that cutting the 
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annealing time in half greatly improved the C-V of the 430°C anneal. From the VGMS 

values  analysis,  higher  values  are  achieved  for  increasing  temperatures.  In 

combination  with  the  previous  observations,  it  could  be  concluded  that  higher 

temperatures help with reducing fixed positive charge in the oxide, but are more 

damaging to the semiconductor. For this reason, the optimised O2 RTA process was 

30 s at 350°C.

——————————————————————————————————
Figure 3.22  High frequency (1 MHz) single-sweep C-V characteristics of bulk 
n-GaAs  with  25  nm  GdGaO/GaO  dielectric  stack  where  the  structure  was 
annealed in O2 for different times and temperatures after the Pt/Au gate metal 
deposition.

3.4.3.3  Annealing in nitrogen atmosphere

In order to assess if the beneficial effects of the thermal treatment were dependent 

on the gas used during the RTA step, samples deposited with a thin layer of Pt were 

annealed at  350°C for  30  seconds either  in  nitrogen or  oxygen atmosphere.  The 

results, displayed in figure 3.23, show superimposing C-V curves, albeit previously 

reported differences between 350°C Ar- and O2-based treatments of 10 nm Pt gates, 

where O2 caused 0.5 V VFB shifts. It is possible that not enough energy was supplied 
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to break molecular O2 and N2 into atoms so that a reaction with the defects in the 

dielectric can occur. In combination with the data shown in figure 3.19, where C-V 

curves overlap after anneal for different Pt/Au ratios used in the gate metal, it is 

possible that the changes in the C-V characteristics that are observed after 350-430°C 

annealing  are  not  caused  by  changes  in  the  dielectric  film,  but  result  from 

intermixing of gate metals and subsequent equalisation of workfunction value at 

the metal-oxide interface.

———————————————————————————————————
Figure 3.23  High frequency (1 MHz) double-sweep C-V characteristics of bulk 
n-GaAs structures with 25 nm GGO and 10 nm Pt comparing O2 and N2 as 
annealing atmosphere.

3.4.3.4  Investigation of the effects of the two RTA steps required for 

the full device fabrication

It  is  useful  to  perform MOSCAP measurements  on a  layer  structure  specifically 

designed to de-couple the MOS layers (the gate stack in a MOSFET device) from the 

rest of the complex epitaxial structure needed for a high-mobility transistor device. 

This simplified structure allows the use of  simple fabrication processes (shadow 

masks, etc.)  in order to understand how the fabrication will  affect the control of 
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charges on the surface of the semiconductor. So far, we have examined the effect of 

thermal  treatment  after  deposition  of  the  gate  metal.  However,  due  to  the 

requirements of process integration the fabrication of the actual device will imply 

another thermal step to occur in order to form a low resistivity ohmic contact to the 

source and drain regions. It was therefore of importance to determine the effect of 

multiple thermal processes on the gate stack. In order to carry out this assessment, 

the vertical heterostructure samples were employed containing the full device layers. 

Since the substrate was semi-insulating, both contacts of the MOS capacitor were 

defined on top of the sample, with the top contact being the gate metal stack and the 

bottom contact consisting of the source and drain ohmic metals, defined on an area 

where the gate dielectric was etched. All metal contacts were defined by electron-

beam lithography and lift-off technique. The fabricated geometry is depicted in the 

inset  of  figure  3.24(b).  In  both  cases  the  gate  metal  was  deposited  first  and 

underwent  a  post-metallisation  RTA  step  at  350°C  for  30  seconds  in  oxygen 

atmosphere,  while  the  ohmic  contacts  were  annealed in  nitrogen atmosphere  as 

standard.

The  layer  composition  of  the  Ni/Ge/Au contacts  are  slightly  different  between 

3.24(a)  and  3.24(b)  with  the  Ge20/Ni15/Au40  contact  having  a  reduced  lateral 

alloying  effect  (see  section  5.3.2.2).  The  data  in  3.24(a)  were  obtained  during  

annealing conditions tests for the Ge20/Ni15/Au40 contact and show a particularly 

interesting result.  The 30°C change in annealing temperature produced a drastic 

effect on the C-V characteristics, mainly expressed in a much greater value of Cacc 

for the higher temperature, with the rest of the C-V curve parameters remaining 

generally unchanged between the two cases. This result can be explained by the 

bottom  contact  of  the  capacitor  having  lower  resistivity  for  a  higher  annealing 

temperature,  with  at  least  430°C  needed  for  a  good  ohmic  contact.  At  lower 

annealing temperature the ohmic contact has a residual parasitic capacitance which 

affects the measured value of Cacc.

Figure 3.24(b) depicts the effects on the C-V curve of an added annealing step in 

oxygen atmosphere after both the gate and the ohmic metal annealing were carried 

out. The introduction of an additional annealing step in oxygen gas does not seem 
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to affect the measured curves, and it can be concluded that the benefits of annealing 

the device after metallisation do not increase with the number of anneals performed 

- at least at 350°C it does not. Comparing the two curves in 3.24(a) with the blue 

curve in 3.24(b), the dominance of annealing temperature over annealing duration is 

evident.

———————————————————————————————————
Figure 3.24  High frequency (1 MHz) single-sweep C-V characteristics of GaAs-
based heterostructure with 6 nm GGO dielectric comparing the effect of the two 
RTA steps on gate and ohmic metal required for a complete gate-first MOSFET 
process with a gate post-metallisation anneal step: (a) Ge20Ni15Au40 annealed 
at 430°C and 400°C; (b) Ni10Ge10Au100 annealed at 430°C with an added post-
ohmic gate anneal.

3.4.3.5  Section Summary

The conclusions drawn from the results of this section are based on a) all anneals at 

430°C improving C-V, regardless of the composition of the gate stack, b) O2 and N2 

anneals  at  350°C  displaying  no  difference,  albeit  previous  reports  of  varying 

annealing gases, c) similarities between a two-O2-anneal one-N2-anneal and a one-

O2-anneal  one-N2-anneal  process flows.  First  of  all,  it  can be concluded that  the 

350°C temperature level  fails  to  provide enough energy to  break up O2  and N2 

atoms and affect the substrate in any way.  When the sample is heated to 430°C the 

workfunctions  of  the  different  metal  stacks  all  collapse  at  a  similar  value,  thus 
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yielding a conduction band offset in the semiconductor and C-V results with little 

variation, yet before the annealing this is not the case. The possibility of  Pt and Au 

metal layers intermixing during the heating is unlikely because platinum is known 

as  a  good  diffusion  barrier.  One  possible  reason  for  the  observed  phenomenon 

could be the difference in the duration of the deposition of each metal layer. The 

extent of damage caused to the substrate will vary with layer thicknesses as the 

currents required for the deposition will  differ.  This will  be reflected in the C-V 

response of as-deposited capacitors. During the heating, the metallisation-induced 

defects are annealed out, and the C-V curves are merged. In the dielectric layers, the 

damage recovery could be due to self-rearranging of atoms taking place as a result 

of  thermal energy supplied by the annealing process.   However,  in the event of 

metallisation-induced  damage  being  insensitive  to  small  variations  in  beam 

currents, the explanation could be that the metal intermixing does occur when the 

high diffusion coefficient of gold overpowers the high diffusion barrier properties of 

platinum, especially for thin Pt layers, making the contact a more ideal conductor. 

In  this  case,  the  initial  differences  in  C-V  are  because  of  the  gate  effective 

workfunction  being  tuned  by  the  electronegativity  properties  of  the  metals,  as 

discussed earlier.
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4 Gate fabrication challenges and 
      the effect of resist residues and  
     post-metallisation annealing on   
    device performance 

The device used in this work for process optimisation experiments was based on a 

layer structure developed at Freescale Semiconductor by M. Passlack et al. [9]. It was 

grown by M.  Holland in  the  West  of  Scotland Science  Park and the  fabrication 

process was developed in the University of Glasgow by R. Hill, D. Moran and I. 

Thayne [10, 11]. Given a brief overview of design and operation of a normally-off 

buried  quantum-well  channel  n-type  heterostructure  MOSFET  was  provided  in 

chapter Background,  while the explanation of its layer structure in chapter 3, this 

chapter starts with a description of the device layout and fabrication process.

4.1   Device layout and fabrication process

A MOSFET is a three-terminal device where ohmic contacts are required for the 

source and drain regions and a rectifying contact  is  required on the gate region 

between  the  source  and  the  drain.  In  a  CMOS  chip  the  ultra-high  density  of 

transistors  is  achieved  by  stacking  metal  contact  layers  upwards,  isolated  by 

insulators.  The  contacts  are  narrow  lines  shared  between  multiple  devices.  The 

effect of a process variation on device performance or reliability needs to be tested 

on a complete device, and this requires probing each device separately. Because of 

this, a simple planar layout which enables rapid process turn-around and access to 

individual devices is much more suitable.
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———————————————————————————————————
Figure 4.1  (a) III-V device layers grown by molecular-beam epitaxy. (b) Process 
steps for gate-first and gate-last fabrication flow. (c) Examples of test MOSFET 
contacts layout with isolation. (d) Design used in this work, where no isolation 
was required.
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For this reason, layout for a test MOSFET normally has probe pads for gate and 

source/drain  contacts  on  the  same  plane,  and  the  contacts  are  normally  just 

continued into a larger area probe pad. Such a device would inevitably use up a 

larger  area,  and  normally,  test  patterns  for  devices  consist  of  arrays  of  isolated 

devices,  each having their  own probe pads for the three terminals.  Figure 4.1(c) 

shows two different versions of test device layout, varying in gate width and active 

region isolation size, where the active region either extends over the source/drain 

probing pads or covers the active device area only. The layout used in this work, 

shown in figure 4.1(d), required no isolation as the gate contact wrapped around the 

drain, isolating it from the source.

The key dimensions were:

- Source/drain contact width = 150 µm

- Source/drain contact height = 100 µm

- Gate length Lg = 100 nm to 1 µm

- Distance between gate and ohmic contact Lg/o = 1 µm

The  fabrication  process  of  the  rapid  feedback  device  only  had  two  layers  of 

lithography:  the  gate  level  and  the  ohmic  level.  When  the  gate  contact  was 

patterned  first,  the  process  was  called  gate-first,  whereas  gate-last  process  had 

source/drain ohmic contacts patterned first. All patterns were written by electron-

beam  lithography,  using  metal  markers  for  level-to-level  alignment.  The  metal 

layers were lifted-off rather than etched, which was better for surface damage. The 

default gate metal was 20/200 nm Pt/Au, and the metal used for the source/drain 

ohmic contacts was always 20/20/200 nm Ni/Ge/Au. Since both of these types of 

metals  were  equally  effective  as  alignment  markers  metal,  providing  enough 

contrast between the metal and the substrate surfaces, it was possible to combine 

the markers lithography level with either the gate or the ohmic level, thus keeping 

the fabrication process to the maximum of two lithography levels at all times. The 

baseline fabrication flows for gate-first and gate-last devices are shown in figure 

4.1(b). The last step is blanket Si3N4 deposition necessary to passivate the surface 

between the gate and the source/drain contacts, i.e. the access region.
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4.2   Gate contact patterning issues

All metal contacts in the device shown in figure 4.1(d) were fabricated by lift-off 

technique.  In lift-off,  the features are first  patterned in a  resist  (a  polymer layer 

sensitive to radiation),  then a sheet of  metal  is  blanket deposited over the resist 

pattern, followed by removal of the metal outside contacts area by dissolving the 

resist underneath the metal in those areas in acetone. Electron-beam lithography 

was  used  for  resist  exposure,  due  to  strict  alignment  requirements  regarding 

placement of the gate pattern in the centre of the gap between the source and drain 

contacts.

Two issues are immediately apparent with fabrication by e-beam lithography and 

lift-off: a) surface contamination by polymer associated with resist processing, and 

b)  proximity  effect  associated  with  electron-beam  exposure  that  affects  dense 

patterns. These were explored, and the results are presented below.

4.2.1  E-beam resist residue in the gate region

A very common and easily available e-beam resist  suitable for lift-off  process is 

polymethyl methacrylate (PMMA). Residues left on semiconductor surfaces after e-

beam exposure and development of  PMMA became a popular  research topic  in 

early 2000s when the cleanliness of the semiconductor surface became important to 

achieving  good  semiconductor-dielectric  and  dielectric-metal  interfaces.  A  few 

groups studied Si and SiO2 surfaces after PMMA development in the standard IPA-

MIBK solution [69, 70], and found residual resist to be a 0.5 to 1 nm layer covered 

with granular island structures that were highly dependent on the exposure dose. 

The granular structures were well visible in an SEM (scanning electron microscope), 

but  the  layer  underneath  had  to  be  measured  with  photoelectron  spectroscopy. 

Here, a method was developed to measure the residual PMMA layer that employed 

two  electron  beam  exposures  and  a  subsequent  step  height  measurement  to 

quantify PMMA residues in the gate region, demonstrated on both Si and GaGdO 

surfaces. As a preliminary step, the clearing exposure dose for PMMA resist was 
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determined. In order to carry out this step, a common method consists of defining a 

series  of  rectangular  patterns  subject  to  increasing electron dose.  Each rectangle 

must  be  spaced  at  least  200  µm  from  the  next  one  in  order  to  avoid  being 

additionally  exposed  with  the  electrons  backscattered  during  the  neighbouring 

pattern exposure.  After  resist  exposure and development,  the clearing dose was 

determined by means of a profilometer scan of the pattern, as shown in figure 4.2(a). 

At  the  clearing  dose,  surface  scans  using  an  atomic-force  microscope  (AFM)  in 

tapping measurement mode showed the granularity illustrated in figure 4.2(b).

———————————————————————————————————
Figure 4.2  Residual PMMA on Si surface at clearing dose. (a) Exposure test for 
identification of the clearing dose using vertical profile analysis of an array of 
100 x 50 µm2 rectangles exposed with 200 - 1200 µC/cm2 electron dose at 100 
keV in 300 nm 120K PMMA and developed in IPA-MIBK solution, measured 
with a surface profiler; b) AFM scan of 3 x 1.5 µm2 area of the surface exposed 
to clearing dose after development.

The surface granularity dependence on electron beam exposure dose and molecular 

weight of the resist was assessed, and the resulting AFM surface scans are shown in 

figures  4.3(a)  and  4.3(b),  for  PMMA  with  molecular  weight  120K  and  495K, 

respectively. The size of granules at clearing dose was found to be larger for the 

lower molecular weight resist. The granules became more scattered and diminished 

in size with increase in exposure dose and with increase in molecular weight. The 

amount of overexposure required to remove the granules from the surface varied 

with the molecular weight: with 90% increase required to clear 495K PMMA and 

53% increase to clear 120K PMMA.
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———————————————————————————————————
Figure  4.3   Difference  in  granularity  of  residual  PMMA on Si  surface  after 
exposure and development of (a) 120K molecular weight PMMA and (b) 495K 
molecular  weight  PMMA. The dose  range shown starts  from the respective 
clearing doses.

Albeit the disappearance of the granularity at high electron beam doses, a thin layer 

of residual PMMA was reported under the granules, which, as previously stated, 

could only be measured with photoelectron spectroscopy. Here the presence of such 

layer was assessed with a different method, described in the following. First a mask 

consisting of PMMA gratings was defined on the sample surface by means of e-

beam exposure, resist development and oxygen ashing, this last step to guarantee a 

residue-free reference surface to act as zero level. Without removal of the developed 

PMMA, the sample underwent a second electron beam lithography step, patterning 

both  previously  unexposed  areas  and  some  exposed  ones.  After  the  second 

development step but this time without any oxygen ashing, profile scans were taken 

across  surfaces  containing  both  previously  cleaned  and  residue-free  areas  and 

freshly  developed ones,  with  the  step  measured indicating  PMMA residue.  The 

process is schematically illustrated in figure 4.4. The effectiveness of oxygen plasma 

in providing residue-free surfaces is well established. It is a standard process used 

to remove resist residues prior to etching or metallisation [71, 72].

445 µC/cm2 465 µC/cm2 490 µC/cm2 515 µC/cm2 845 µC/cm2
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———————————————————————————————————
Figure 4.4  Schematic diagrams of the ‘two-exposures’ technique to assess post-
EBL process resist residue on the substrate surface: (a) and (b) show the final 
structure highlighting the AFM scan area, where vertical lines are written in 
PMMA first and cleaned with O2 plasma to achieve a residue-free surface at the 
bottom  of  the  trenches,  followed  by  a  second  e-beam  exposure  and 
development  where  a  rectangle  is  written  covering  the  lines  without  any 
cleaning step, as shown in (c); the step height difference between the ‘residue-
free’  lines  and  the  space  between  the  lines  is  the  thickness  of  the  residual 
PMMA film. 

The  advantage  of  the  two-exposures  method  is  that  it  provides  simultaneous 

measurement of residual layer thickness and its surface roughness measurement, as 

figure 4.5 shows. All measurements presented here were based upon patterning a 

single layer of PMMA on either silicon or GaGdO surface. On silicon, a residual 

PMMA thin film of approximately 2.5 nm hosting a granular structure of 10-15 nm 

islands was observed. On GaGdO surface, the film was approximately 1 nm (scans 

not shown), but the granular structure was observed to be independent of dose.
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An  important  finding  regarding  surface  cleanliness  post  PMMA exposure  was 

revealed  by  this  technique.  Upon  inspection  of  the  post-EBL  surface  in  a 

microscope, the surface may appear clean if a sufficient enough exposure dose was 

applied for clearing the granules, and give a false impression, as there is always a 

thin resist layer existing on the surface, and its thickness varies from 1 to 3 nm if the 

underlying surface is a dielectric or a semiconductor, respectively. A cleaning step, 

such as a short low power oxygen plasma ash (somewhere between 40W and 80W, 

depending on the system), should therefore always be included after development 

to ensure the surface is clean and no reaction with the surface layers will  occur 

during  the  following  processing  steps,  e.g.  in  the  case  of  a  thermal  annealing. 

However, oxygen ashing enlarges the size of the patterned features, thus its impact 

can be detrimental for small dense patterns.

———————————————————————————————————
Figure 4.5  Step height measurements of the PMMA residual layer on Si surface: 
surface scans of measured areas and corresponding height profiles for exposure 
doses of 350 µC/cm2 (underexposed) and 800 µC/cm2 (overexposed). The film 
is 2.5 nm thick and the height of the granules is 10-15 nm.

The usefulness of a technique to measure post-development residual layer might 

not be obvious, since it can be easily removed by oxygen ashing, a widespread post-

gate lithography practice in the gate region when using e-beam resist.  However, 

knowing exactly the thickness of the residual layer is important when there is a 

concern about oxygen plasma damaging the underlying material,  as is  often the 

case with III-V materials,  susceptible to plasma damage.  Since the nature of  the 
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residue determines the power and the duration of the ash, this technique allows to 

choose the minimum required settings.

4.2.2  Non-uniformity of gate resist and gate metal linewidth 

dependance on e-beam exposure parameters

In the baseline gate-last  process,  the source and drain contacts  are defined first, 

consisting of 240 nm thick Ni/Ge/Au layers, 2-3 µm apart depending on the gate 

length. As illustrated in figure 4.6(d), this causes a sample non-planarity, which will 

result in thicker resist within the small gap between the source and drain contacts 

when the gate resist (320 nm film) is spin-coated on the sample. Resist thickness 

variation along the source/drain gap was measured by spinning 140 nm PMMA 

over 150 nm thick source/drain contacts with 300 nm, 540 nm, and 1000 nm gaps. A 

500 nm wide PMMA line was written in PMMA across the source and drain gap 

(shown in figure 4.6(c) as yellow lines), so that resist thicknesses in different points 

along the length of the gap could be extracted from an AFM surface scan (shown in 

figure  4.6(c)  as  yellow  boxes).  Proximity  effect  correction  was  used  for  all 

lithography. From figure 4.6(a), a 1:2 ratio was measured between open areas and 

the smallest source and drain gap, highlighting a possible issue when defining the 

gate.  In order to produce reliable gate contacts the electron exposure dose must 

ensure  that  the  resist  will  be  cleared  after  development  even  where  it  is  at  its 

thickest.  The  need  for  a  constant  linewidth  defined  in  the  developed  resist 

independently of the film thickness arises because the dimension of the final metal 

line is determined by the topology of the resist uppermost layer.

An experiment was designed to determine which electron beam dose could provide 

a certain gate metal linewidth in two different thicknesses of PMMA, approximately 

corresponding  to  the  maximum  and  minimum  values  extracted  from  the 

measurement in figure 4.6(b). The results are shown in figure 4.7. The three families 

of curves were obtained for three digital linewidths, nominally 10, 20 and 80 nm. It 

can be seen from the measured linewidth values on the y-axis that the minimum 

dimension achieved was 30 nm independently of the dose or of the designed size. 
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From all the curves it can be noticed that the dose providing a certain linewidth is 

approximately the same for the two thicknesses of PMMA tested, especially at high 

doses.

———————————————————————————————————
Figure 4.6   Gate resist  over metal  S/D contacts:  (a)  table of  resist  thickness 
measured by AFM in the gap between the source and drain metal contacts half 
way through the width of the device as a function of source-drain gap; both the 
S/D metal thickness and the PMMA thickness were 140 nm; (b) diagram of 
resist profile for two cross-sections in the S/D region; (c) patterned layout for 
resist  thickness  measurements;  (d)  AFM  surface  topography  showing  resist 
thickness fluctuation at the edge of the two closely-spaced S/D contacts with a 
trench across the S/D gap to enable resist thickness measurement in the gap.
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All data shown in figure 4.7 were obtained with the beam current of 4 nA on a 100 

kV column, corresponding to a beam diameter of 9 nm, while the beam step size 

was 5 nm. The effect of writing the gate metal with different beam currents was also 

assessed, with figure 4.8 depicting the results for a 20 nm linewidth patterned on a 

280 nm PMMA layer. From the various beam diameters compared it can be seen 

that the smallest ratio between actual and designed linewidth is achieved for the 

smallest beam at the lowest exposure dose tested, as it could be intuitively expected. 

If a 64 nA beam (having a diameter of 33 nm) is instead used with a high dose, a 

linewidth of 60 nm can be achieved by a 10 nm designed value, which can be of use 

when writing larger gate lengths to reduce the writing time.

From  the  designed  experiments  it  can  be  concluded  that  even  with  1:2  resist 

thicknesses difference between the resist film in open areas and over the small gaps 

between source  and drain,  the  clearing  dose  of  the  thinner  PMMA will  still  be 

effective in defining the gate line between the ohmic contacts. The change in resist 

profile over the source and drain metal will not have a detrimental impact on the 

gate  definition.  With  regard  to  the  actual  linewidth  defined  in  the  resist  in 

comparison with its nominal value, the smallest which could be achieved was still 

twice the designed width, but as long as the ratio is known the desired value can be 

obtained by changes at  layout stage.

———————————————————————————————————
Figure 4.7  Linewidth against exposure dose for PMMA thicknesses 150 and 280 
nm written with the beam current of 4 nA, showing results for 10, 20 and 80 nm 
digital linewidths.  Metal - Pt20/Au100.
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———————————————————————————————————
Figure 4.8  Linewidth against exposure dose for PMMA thickness of 280 nm 
and beam currents  4,  16  and 64  nA,  showing results  for  the  20  nm digital 
linewidth. Metal - Pt20/Au100.

———————————————————————————————————
Figure 4.9  Metal linewidth post-lift-off against exposure dose for two PMMA 
thicknesses exposed at a range of doses and beam currents at 100 kV on a thick 
layer of n-GaAs. Metal layers are 20 nm Pt and 100 nm Au. The bi-layer PMMA 
films consisted of a thicker lower molecular weight bottom layer and a thinner 
higher molecular weight top layer, with concentrations chosen to achieve 150 
nm and 280 nm total film thicknesses.
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4.3   Effect of gate region contamination and gate metal thermal 

anneal on transistor characteristics

Of many experimental outcomes and observations deduced in this work so far, two 

of them were related to negative effects of resist contamination in the gate region 

underneath the metal and positive effects of post-metallisation annealing. These are 

explored further in this section by either removing the oxygen ash step before gate 

metallisation or adding an O2 anneal step after the gate metallisation for both gate-

first and gate-last processed MOSFETs. The step sequence for the gate-first and the 

gate-last processes is shown in figure 4.10. 

———————————————————————————————————
Figure 4.10  Sequence of steps for gate-first and gate-last fabrication process 
indicating the optional steps in brackets.

4.3.1  Resist residues on dielectric surface in the gate region

In order to assess the effect of resist residues on the gate region, two sets of gate-first 

devices were fabricated, having identical process flows except for the plasma ashing 

of the gate region, which was omitted for one of the sets. The ashing step consisted 

of subjecting the sample to two minutes of oxygen plasma at an RF power of 110 

Watts.  This  power  is  different  from  the  previously  mentioned  40  W  as  it  was 
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performed on a barrel asher of a different make and model. In both cases, the power 

setting was chosen to achieve ~5 nm/min resist removal rate. No thermal annealing 

of the gate contact was carried out for any of the devices that were part of the gate 

region resist residues study. Figure 4.11 compares the effect of ashing the gate region 

in terms of drain current Id and transconductance gm vs. Vgs for two gate lengths of 

1 µm and 300 nm and a drain-source voltage Vds of 0.05 V. The spread in measured 

values between different devices on one sample is negligible for the set of MOSFETs 

with ashed gate region, whereas it can be clearly seen when oxygen ashing was not 

applied. The spread in values is due to the random distribution of resist residues on 

the dielectric surface underlying the gate metal. This is supported also by the fact 

that MOSFETs with a shorter gate length of 300 nm (figure 4.11(a))  showed less 

spread  in  the  measured  values,  because  considering  a  similar  residue  surface 

density,  smaller areas are more likely to experience similar residues distribution. 

The same trend was also observed in the 300 nm and 1 µm Lg devices at Vds = 1 V 

(not  shown).  With  regard  to  the  changes  in  channel  conduction,  Figure  4.12 

compares  the  output  characteristics  of  the  two  sets  of  devices  with  or  without 

ashing of the gate region for a gate length of 300 nm (a) and 1 µm (b). Devices where 

the gate region was not subject to oxygen plasma provided lower off-state and sub-

threshold leakage currents, suggesting a more effective gate function. It is likely that  

the oxygen plasma step caused damage to the thin (~6 nm) gate dielectric, resulting 

in a poorer gate control of the channel. A trade-off thus emerges between uniformity 

of  MOSFET  performance  on  the  wafer  requiring  resist  residues  removal  and 

limiting the damage inflicted to the dielectric surface by oxygen plasma.

The maximum output current measured in the saturation region provided  different  

results  between  ashed  and  un-ashed  gate regions  depending on gate length: 

MOSFETs with 1 µm gate length showed Id reduction for ashed gate region similar 

to  that  observed  for  off-state  and  sub-threshold  current.  The  saturation  drain 

current for MOSFETs with 300 nm gate length instead reached approximately 450 

µA/µm if the gate region was not ashed, while only 300 µA/µm if the same region 

was subject to oxygen plasma, a reduction by more than 30%. This suggests some 

charge trapping for high electric fields applied to the gate electrode, and could be 
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due to the introduction of fixed charges to the oxide layer during the oxygen plasma 

step. 

———————————————————————————————————
Figure  4.11   Id  and  gm,max  curves  as  a  function  of  Vgs  comparing  gate-first 
MOSFETs with and without gate region O2 plasma ash for 1 µm gate length and 
300 nm gate length devices.
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———————————————————————————————————
Figure 4.12  Id vs Vds curves for various Vgs comparing gate-first MOSFETs with 
and without gate region O2 plasma ash for 1 µm gate length and 300 nm gate 
length devices.
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From the analysed data, it can be concluded that ashing of the gate region provided 

an improved device uniformity, however at the expenses of a degradation in device 

performance, more pronounced for sub-micrometer gate lengths. This is in contrast 

with the findings from similar experiments on MOSCAP material presented in the 

previous  chapter,  where  an  oxygen  ashing  step  with  the  same  parameters  was 

applied without casing any noticeable damage to the dielectric. It must be noted, 

however, that the dielectric thickness for the MOSCAP material was 20 nm, whereas 

for the aforementioned MOSFETs the gate dielectric was 6 nm thick, more prone to 

plasma damage.

 

For  future  MOSFETs fabrication,  a  trade-off  between resist  residue removal  and 

dielectric  damage  must  be  sought,  and  an  assessment  of  the  minimum oxygen 

plasma RF power still effective for residue removal without damaging the dielectric 

on the actual device material could be object of future work.

4.3.2  Post gate metallisation thermal anneal

The MOSFETs discussed in the previous paragraph were only subject to a 430°C 

thermal  anneal  in  nitrogen  atmosphere  after  source/drain  contact  definition, 

whereas the gate metal was not annealed. Another set of experiments was carried 

out to determine the influence of a 350°C gate annealing step in oxygen atmosphere 

on device performance both for gate-first and gate-last fabrication processes. The 

effect of thermal anneal of the gate contact on gate-first devices can be seen from the 

output characteristics of figure 4.13, showing the results measured for two devices 

with gate length of 1 µm (a) and 300 nm (b). In both cases the introduction of the 

gate annealing step in oxygen atmosphere slightly degraded device performance, 

causing  a  reduction  in  the  output  current  Id,sat,  with  smaller  gate  lengths  more 

affected.  A  300  nm  gate  length  gate-first  MOSFET  showed  a  reduction  of 

approximately 40 µA/µm, whereas a gate-first device with a 1 µm channel had the 

output  current  reduced  by  an  average  of  25  µA/µm.  With  regard  to  the  linear 

increase of the output curve in saturation for high Vds, a decrease was observed in 

gate-first  devices  with annealed gate region,  meaning MOSFETs less  affected by 
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channel  width  modulation.  Since  the  slope  of  the  output  curve  in  saturation  is 

entirely process-technology dependent,  a more ideal behaviour indicates a better 

process, suggesting the thermal anneal of the gate contact in a gate-first process is 

beneficial to device performance despite the slight reduction in output current.

———————————————————————————————————
Figure 4.13  Id vs Vds curves for various Vgs for 1 µm (a) and 300 nm (b) gate 
length MOSFETs showing the effect of thermal anneal of the gate contact on 
gate-first devices. All traces are average of multiple devices.

This is further confirmed by other parameters extracted from the measurements, 

shown in table 4.1. Here, the threshold voltage was taken from an Id(Vg) curve as the 

value  of  the  gate  voltage  when  the  drain  current  is  1  µA/µm,  whereas  the 

subthreshold slope was extracted as the change in the gate voltage per decade of 

drain current in the linear part of a log Id(Vg) plot. The values of threshold voltage 
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were always negative for all fabricated devices, thus indicating possible material 

growth  issues,  e.g.  variations  in  delta-doping  layer  concentration  and  in  layer 

thickness.  The  thermal  anneal  of  the  gate  metal,  however,  shifted  Vth  towards 

positive values,  both for  1  µm and 300 nm gate length,  an improvement for  an 

enhancement-mode transistor. The thermal anneal of the gate provided a beneficial 

effect  also  in  terms  of  sub-threshold  slope,  with  smaller  values  provided  by 

MOSFETs having their  gate annealed;  this  effect  was more pronounced for  sub-

micrometer channel lengths. Summarising, for gate-first devices annealing of the 

gate  metal  in  oxygen  atmosphere  generally  caused  a  small  decrease  in  output 

current. However, it also improved device performance, by causing a positive shift 

in threshold voltage, a reduction in sub-threshold slope and an output characteristic 

less affected by channel width modulation. It can thus be concluded that for gate-

first  devices  thermal  treatment  of  the  gate  metal  in  oxygen  atmosphere  is 

recommended to achieve better MOSFETs.

———————————————————————————————————
Table 4.1  Summary of sub-threshold characteristics extracted from GF devices 
showing the effect of annealing the gate metal.

With regard to gate-last devices, a decrease in output current was also observed for 

MOSFETs whose gate was subject to thermal annealing, as figure 4.14 shows. This 

decrease was much more significant than that observed for gate-first devices, with 

an obtained average reduction in current by approximately 40% for MOSFETs with 

1  µm channel  between  not  annealed  and annealed  devices.  The  impact  of  gate 

annealing on device performance was even more dramatic with scaling of the gate 

length, causing an average reduction in output current by approximately 60% for a 

300  nm  channel.  There  are  three  main  reasons  for  the  worsening  of  device 

performance in gate-last devices with gate metal subject to annealing in oxygen:     

1) Double anneal of the source/drain metals in gate-last, with the second annealing 

Gate-first Lg = 1 µm Lg = 300 nm

Post gate metallisation O2 anneal No Yes No Yes

Vth [V] (Vg at Id = 1 µA/µm) -0.18 -0.02 -0.47 -0.34

Slopemin of log(Id)-Vg [mV/dec] 96 91 94 81
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in  oxygen  atmosphere,  compared  to  only  one  nitrogen  anneal  in  gate-first 

MOSFETs; 2) The source/drain anneal of gate-last transistors happens before gate 

metal deposition, i.e. the dielectric is unprotected in the gate region; 3) In the gate-

last device, resist residues are present in the gate region after source/drain metal 

lift-off, and are subject to high temperatures during the source/drain anneal. The 

last can be excluded, since performance of gate-last and gate-first devices without 

gate  metal  oxygen  anneal  was  comparable  at  all  gate  lengths,  suggesting  the 

presence of resist residues in the gate region during source/drain anneal is not an 

issue. With regard to thermal treatment of the uncapped dielectric, this took place 

also for gate-last devices not subject to O2 anneal of the gate region, thus it does no 

cause device deterioration. It is therefore thought that the main reason for the great 

reduction in output current is the second anneal of source/drain contacts, which 

happens in oxygen atmosphere. It is likely that the contacts became more resistive 

due to reaction of metal with the annealing gas, thus injecting fewer carriers into the 

channel for a given Vds.

A comparison  of  other  device  parameters  for  gate-last  devices  with  or  without 

annealing  of  the  gate  metal,  shown  in  table  4.2,  exhibits  an  improvement  in 

threshold voltage values,  which shift  towards positive  values,  similarly  to  what 

observed  for  gate-first  devices.  Once  again  smaller  channel  lengths  presented  a 

higher shift in threshold voltage. The sub-threshold slope either showed no change 

for  1  µm gate  lengths  or  displayed a  reduction  for  more  scaled  MOSFETs.  The 

reduction in sub-threshold slope and the positive shift of the threshold voltage are 

both indicators of a better gate control.  This suggests the oxygen annealing was 

beneficial to the gate stack, and further supports the theory that deterioration of 

source/drain contacts caused the reduction in output current, given other device 

parameters  not  dependent  on  source/drain  resistance  showed an  improvement. 

Summarising,  in  gate-last  devices  the  thermal  anneal  of  the  gate  in  oxygen 

atmosphere  has  a  beneficial  effect  on  the  gate  control  function  similar  to  what 

observed  for  gate-first  devices,  but  the  degradation  in  source/drain  contact 

resistance  due  to  their  exposure  to  oxygen  gas  at  high  temperature  causes  a 

reduction in output current.
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———————————————————————————————————
Figure 4.14  Id vs Vds curves for various Vgs, comparison of gate-last MOSFETs 
with and without O2 anneal step after gate metallisation for a 1 µm gate length 
(a) and a 300 nm gate length (b). All traces are average of multiple devices.

———————————————————————————————————
Table 4.2  Summary of sub-threshold characteristics extracted from GL devices 
summarising the effect of annealing the gate metal.

Gate-last Lg = 1 µm Lg = 300 nm

Post gate metallisation O2 
anneal

No Yes No Yes

Vth [V] (Vg at Id = 1 µA/µm) -0.43 -0.27 -0.45 -0.16

Slopemin of log(Id)-Vg [mV/dec] 82 82 140 87
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This  is  consistent  with  gate-last  and  gate-first  devices  showing  comparable 

performance at all gate lengths if gate annealing was not part of the fabrication flow, 

and instead presenting  major  differences  in  the  way oxygen anneal  of  the  gate 

affected  output  current.  Given  the  results  obtained,  it  can  be  concluded  that 

annealing  of  the  gate  metal  in  oxygen  atmosphere  improves  the  gate  function. 

However, if a reduction in output current is to be avoided a gate-first fabrication 

flow must be chosen so that the oxygen anneal does not hinder the source/drain 

contact resistance.

4.4   Chapter conclusions

In this chapter several fabrication aspects that could affect MOSFET performance 

were analysed, and their impact assessed.

 

It was found that some resist residue is always present in the gate region regardless 

of  development  time,  exposure  dose  and  type  of  surface  (i.e.  dielectric  or 

semiconductor).  Oxygen plasma is thus always needed to achieve a metal oxide 

interface free of organic contamination. A method to determine the thickness of the 

resist residue was developed, which could be of help in deciding the minimum RF 

power and ashing time required to clear the residue. Variation in resist thickness 

was found to have a negligible effect on the gate metal linewidth achieved by lift-

off,  therefore  the  exposure  dose  to  clear  open  areas  can  be  used.  However,  an 

overexposure amounting to a 50-90 % increase from clearing dose, depending on 

the  molecular  weight  of  the  resist  and  the  substrate  type,  is  recommended  to 

minimise the granularity of resist residues after the development and to produce a 

smooth line without metal ‘flagging’ after the lift-off.

When  the  effect  of  resist  residues  on  MOSFETs  performance  was  assessed,  the 

devices not subject to oxygen ashing after the gate lithography step showed a great 

variation in output characteristics. Transistors with an ashed gate region, thus free 

of  resist  residues,  presented  an  improved  uniformity,  however  their  device 

parameters indicated plasma damage. A trade-off must therefore be sought between 
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damage to the gate dielectric and effective removal of resist residue. The effect of an 

oxygen annealing step applied to the gate contact was also studied for two different 

fabrication flows, either gate-first or gate-last. It was found that the annealing of the 

gate improved MOSFET output characteristics for gate-first devices, but negatively 

impacted gate-last ones. This was related to degradation of source/drain contacts, 

and it can be concluded that an annealing step in oxygen atmosphere is beneficial to 

device performance as long as the ohmic contacts have not been patterned yet.   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5 Development of specialised MOS 
      capacitor structures for assess-  
     ment of parasitic elements 

5.1   Threshold voltage issues

The III-V heterostructure MOSFET described in the previous chapter was intended 

for normally-off operation (VON > 0 V) at threshold voltage VTH ~ 0.3 V. This was 

achieved by adjusting the doping levels of the two silicon layers above and below 

the channel according to equations 5.1, which describes the relationship between the 

doping levels and the work function of the metal gate layer, in this case, platinum 

Φm = 5.7 eV.  The equations are taken from [73]. These devices achieved high output 

current and good subthreshold characteristics at 1 µm gate length [9, 10, 11].

(5.1)
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Qs µ q 
,   where  Qs = 

εox (Φm -  Φ(0))

tox q

• ρs is the sheet resistivity (Ω/square) of the source and drain access regions 
• µ is the channel mobility 
• q is the electronic charge (1.6x10-19 As) 
• Qs is the sheet charge (cm-2) of doped layers measured at source and drain 

access regions 
• εox is the dielectric constant of gate oxide layer 
• tox is the thickness of gate oxide layer 
• Φm is the  work function of metal gate electrode 
• Φ(0) is the reference work function of metal gate electrode for a specific threshold 

voltage and no doping layers obtained by two-dimensional device simulation
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However,  as  shown  in  figure  5.1  that  summarises  the  threshold  voltage  values 

extracted from all measured devices in this project, only a few exhibited normally-

off operation. For 1 µm gate length devices, the measured VTH ranged between -0.25 

V and +0.3 V.  Such large variations in device characteristics  could be related to 

variations in the GGO layer growth process. It is expected to have changes in cell 

temperatures between layers, as cell properties changed with time. Even though a 

stable  growth  rate  and  composition  were  maintained  by  a  constant  flux,  GGO 

reproducibility was still an issue compared to III-Vs, and GGO composition varied 

from 19 to 23% varying the thickness by 1-2 nm for a 10 nm layer. This was not 

limited to Glasgow MBE tool and was also observed by Freescale.

It should be noted that 1 µm VTH values for gate-first devices are higher than those 

for gate-last devices. According to the findings reported in chapter 4 that looked at 

gate-metallisation damage, this could be due to a reduction of fixed positive charge 

in the dielectric when the gate metallisation-induced damage was recovered with 

the 430°C N2 ohmic contacts anneal, while gate-last devices did not have a thermal 

treatment after gate deposition.

———————————————————————————————————
Figure  5.1   In0.3Ga0.7As-channel  GGO-dielectric  Pt/Au-gate  heterostructure 
MOSFET. Threshold voltage spread extracted from Log IDS(VGS) in linear (a) 
and saturation (b) regime, for a variety of wafers grown with identical nominal 
semiconductor and dielectric layers thicknesses.
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Apart  from  the  long-channel  device  VTH  variations,  gate-length  dependent 

variations are evident from the data spread of figure 5.1. When the gate length was 

decreased from 1 µm to 100 nm, a shift of threshold voltage towards smaller gate 

voltages was observed [74]. This threshold voltage roll-off effect is undesirable as it 

limits the transistor scaling potential. However, the effect was likely to be process-

dependent  as  only  gate-first  devices  suffered from it,  most  likely  related  to  the 

ohmic anneal process step. It was discussed in chapters 2 and 4 that during thermal 

annealing, atomic out-diffusion of elements could take place. Whether it is arsenic 

or indium in the semiconductor layers or oxygen loosely bound in the dielectric 

layer, migration of atoms could be taking place at 430°C. If it is As or In atoms, it is 

possible that when the gate metal was in place during the ohmic anneal in the gate-

first  process,  accumulation at  the  metal  surface  underneath the  gate  took place, 

whilst  the  atomic  As  and  In  in  the  region  between  the  contacts  out-diffused 

completely.  This  way,  the  part  of  the  dielectric  film under  the gate  would have 

different properties to the part that is not covered with the gate. Since the device is 

designed in such a way that the gate-ohmic separation is fixed for all gate lengths, 

the volume ratio of the gate region to the region between the gate and the ohmic 

would vary with the gate length, thus causing variations in the electrical properties 

of  the whole  system.  In the devices  fabricated gate-last,  the ohmic anneal  takes 

place before the gate contact is deposited so the atomic out-diffusion is uniform  

across all of the dielectric area, and there is no gate-length dependent region with 

properties differing from the rest of the dielectric.

In a planar MOS transistor with lithographically-aligned contacts and a wire-like 

gate contact, a non-ideality phenomenon exists: in addition to the gate parallel-plate 

capacitance,  which is  the main capacitive element in the MOS system, there are 

three more capacitances, namely fringe capacitance, gate-ohmic capacitance, and air 

(or passivation) capacitance. Figure 5.2 shows a schematic diagram of the field lines 

between  the  gate  and  the  source  when  the  transistor  is  biased,  indicating  each 

capacitive element. For a fixed gate dielectric thickness, the fringe capacitance Cfringe 

is dependent on the periphery of the gate contact,  whilst gate-ohmic capacitance 

Cg/o and air capacitances Cair depend on the distance between the source/drain and 

the  gate  contacts.  The  air  capacitance  is  insignificant  in  the  high-κ  dielectric 
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containing MOS system, as the dielectric constant of air is 20 times smaller than the 

dielectric  constant  of  GGO.  The  Cfringe  and  Cg/o  can  be  considered  parasitic 

capacitances  as  both  the  value  of  those  capacitances  and  their  effect  on  the 

performance of small gate length devices are unknown.

———————————————————————————————————
Figure 5.2  Field lines and associated capacitances in a planar MOSFET with 
lithographically-aligned contacts, showing the region between the gate and the 
source contacts only.

It is important to investigate the contribution of the two parasitic capacitances to the 

total gate capacitance for two reasons. First, the majority of the devices measured 

during the course of this project did have threshold voltages below 0 V, albeit the 

materials and the architecture of the device designed for VTH > 0 V. The reason for 

this shift in the threshold voltage could be expressed through equation 5.2 [75] that 

suggests a possible role of parasitic capacitances on the threshold voltage. If  the 

fringing capacitance  is  significant  even at  large  gate  lengths,  it  translates  into  a 

reduced dielectric  thickness parameter  di,  and a subsequently reduced threshold 

voltage.
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(5.2)

The second reason for an investigation into the parasitics is possible issues when the 

devices are scaled to sub-100 nm gate lengths. The gate-ohmic capacitance could be 

dominating the total MOS capacitance, and if the gate width to gate length ratio is 

large, the periphery-dependent fringe capacitance could be an issue also.

For assessment of contribution of the fringe and gate-ohmic capacitances to the total 

gate  capacitance,  the standard large-area MOS capacitor  is  unsuitable  due to its 

parallel-plate capacitance dominating the total capacitance. For this, a specialised 

capacitor structure was designed, where the geometry of the gate and source/drain 

contacts  was  altered  in  such  a  way  as  to  both  mimic  the  device  gate  contact 

geometries and vary the periphery of the gate. The designed structures were then to 

be measured alongside a standard circular gate large area capacitor. The large-area 

structure  was  used  to  study  the  dependence  of  the  total  capacitance  on  the 

periphery  of  the  contacts  and  on  the  gate-ohmic  separation.  Since  the  reduced 

equivalent  source-gate-drain  dimensions  is  the  most  significant  feature  of  the 

specialised structure with respect to the standard MOSCAP, throughout this chapter 

it shall be dubbed “scaled capacitor” or “multi-finger” structure. The reasons for the 

latter denomination will become clear shortly.

Next, the layout of the scaled capacitor structure will be schematically described 

and compared to the large area capacitor structure. A description of the fabrication 

challenges  faced  during  its  process  development  will  follow,  then  C-V 

measurements carried out will be presented and discussed.
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• Φm is the barrier height between the metal and the first epitaxial layer 
• ΔEc is the discontinuity at the heterojunction 
• ND is the doping layer concentration 
• d is the dielectric thickness 
• di is the reduction of the dielectric thickness 
• σpol is the effective thickness of the 2D electron gas



Chapter 5. Experimental Results III                                                                                                   

5.2   Scaled capacitor structure design

The most obvious way to increase the total area of the gate/channel whilst keeping 

the dimensions small is folding the gate contact in a snake-like fashion (figure 5.3). 

This, however, will  have a large gate series resistance. A multi-finger layout is a 

common design solution to this problem, and it was used for the scaled capacitor 

structure as well.

———————————————————————————————————
Figure 5.3  Possible ways to increase the gate region area without altering the 
gate length.  Left: standard design for a test MOS transistor; Centre: gate folded 
into a snake-like shape; Right: multi-finger gate layout.

In  order  to  determine the  minimum gate  area  requirements  for  the  multi-finger 

MOSCAP, capacitances of standard circular large-area MOSCAPs were measured 

and plotted against their corresponding top contact area, as the table in figure 5.4(a) 

summarises.  The  three  measured  points  are  plotted  against  the  effective  area 

(derived from A = πr2) together with a linear fit in figure 5.4(b). Figure 5.4(b) also 

shows the intersection of  the  linear  fit  with the  horizontal  line  representing the 

minimum capacitance measurable by the semiconductor parameter analyser used in 

this work. This is 3.5x10-17 F which corresponds to 124,000 nm2 area. It was decided 

that a gate area 1000 times greater than the measurement limit equivalent should be 

the smallest  gate of the scaled capacitor structure to achieve a valid capacitance 

measurement.
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———————————————————————————————————
Figure  5.4   Determining  the  gate  area  requirements  of  the  multi-finger 
MOSCAP to produce a valid capacitance measurement. Right: Capacitance per 
MOSCAP plotted  against  Gate  Area  of  40,  50  and 70  µm diameter  circular 
MOSCAPs,  continued  until  intersection  with  the  LCR  meter  capacitance 
measurement limit. Left: Key values in a table format.

Assessment of parasitic element contribution to the operation of a MOS capacitor 

requires varying three design parameters: the gate length Lg (the green area in figure 

5.5) taken from a cross-section through the centre of the circle/finger, the gate-ohmic 

gap Lg/o (the gate is the green area, the ohmic is the red area in figure 5.5), and the 

number of  times the cross-section is  repeated,  i.e.  the periphery.  The multi-finger 

design enables both a significant increase in the periphery and a significant decrease 

in the gate length, when compared to the standard circular structure.

!
———————————————————————————————————
Figure 5.5  Large Lg circular (left) and small Lg multi-finger (right) MOSCAP 
layouts.

Radius 
(m)

Effective 
area (m2)

Cacc 
(pF)

Cacc / area 
(F/m2)

3.5 10-5 3.85 10-9 10.7 2.78 10-3

2.5 10-5 1.96 10-9 5.5 2.81 10-3

2.0 10-5 1.26 10-9 3.5 2.78 10-3
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5.3   Fabrication process development

It was challenging to fabricate the scaled capacitor structure due to the dimensions 

of the gate metal fingers and the proximity of the gate and ohmic contacts.  The 

issues and the solutions adopted to implement the final MOSCAP structures are 

described in the following.

5.3.1  Flagging of the gate metal

For the devices fabricated in this work, a gate metal stack of 20nm of Pt and 100 nm 

of Au was used, while the gate metal linewidth went from 90 nm for the smallest 

MOSCAPs up to 1 µm for the largest ones. As the fabrication process was being 

developed, flagging of the gate metal for the smallest gate length was observed. 

This phenomenon occurs when the profile of the resist used for the metal lift-off 

process  does  not  present  sufficient  undercut,  resulting  in  some  metal  being 

deposited on the resist sidewalls and not being lifted off properly, as the top-view 

SEM image in figure 5.6(a) shows. Metal flagging is more likely to occur if a thick 

resist (several hundreds of nm) is used, and at low doses, where the undercut is 

smaller. Dose tests were carried out and it was found that for PMMA exposed to its 

clearing  dose  the  lifted-off  metal  lines  were  severely  affected  by  metal  flagging 

(figure 5.6(a)). Overexposure of resist pattern to as much as 70% above the clearing 

dose was necessary in order to have clean metal lines (figure 5.6(b)), therefore when 

fabricating  the  specialised  MOSCAP structures  small  gate  lengths  were  always 

overexposed to guarantee a clean lift-off.

5.3.2  Fabrication of closely spaced S/D contacts

5.3.2.1  Lift-off challenges

The MOSFET devices analysed in the previous chapter were designed with 1 µm 

spacing between the ohmic contacts and the gate, as shown in figure 5.7(a). For the 
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scaled MOSCAP structures  it  was important  to  reduce that  spacing as  much as 

possible to have a wide range of Lg/o values for Cg/o studies and to minimise the 

impact of Cg/o in periphery studies. As shown in figure 5.7(b), the smallest Lg/o was 

90 nm, the same as the gate length.

———————————————————————————————————
Figure 5.6  Overexposing the gate pattern for a clean gate metal line after lift-
off. Line exposed with the clearing dose (left) and overexposed (right).

———————————————————————————————————
Figure 5.7  MOSFET with large gate-to-ohmic distance (a) and optimised scaled 
design (b).

The small dimension of the source-drain gap, which was eventually to be scaled 

down to 270 nm for 90 nm gates,  created an issue if  it  was to be defined using 

standard e-beam lithography, metallisation and lift-off techniques, since the gap was 

to be achieved between two 100 µm2 contact pads. During electron beam exposure 

large areas suffer proximity effect, due to electron back-scattering through the resist 
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resulting in certain areas receiving extra dose of electrons. In a narrow gap, it is 50% 

of  the  applied  dose.  When trying  to  define  the  270  nm spaced large  rectangles 

constituting  source  and  drain  contacts,  after  exposure  and  development  it  was 

observed  that  the  linewidth  of  the  thin  line  of  PMMA  between  them  was 

significantly lower than the designed value, with this effect being at times so severe 

that the resist line disappeared completely and the rectangles were joined together. 

For this experiment, a bilayer PMMA was used, with a total thickness of 350 nm. 

After proximity-effect corrected e-beam exposure, the resist was developed in IPA/

MIBK 2.5:1 solution for 60 s. Furthermore, AFM surface scans in the source/drain 

gap region highlighted also that the thickness of  the thin PMMA line decreased 

when going from the rectangle corners towards the middle of the source/drain gap. 

Figure 5.8(a) shows this loss in resist thickness for several source/drain gaps. Resist 

thickness loss at the centre of the gaps before oxide etching was measured to be 

between ~80 and ~180 nm, with the highest value measured for a 270 nm source/

drain gap. Such a thin resist between the two large contact areas jeopardised metal 

lift-off, which had a very low yield and was successful in few isolated cases, such as 

the optical micrograph shown in figure 5.8(b).

———————————————————————————————————
Figure 5.8  (a) Resist thickness loss of the thin PMMA line separating the source 
and drain region plotted against  S/D gap width.  Successfully lifted-off  S/D 
contacts are shown in (b).

Many tests were carried out to improve this aspect, e.g. various proximity correction 

schemes,  ‘cold’  PMMA development  at  4°C  for  a  higher  contrast,  and  possible 

alternatives to PMMA resist such as the higher contrast UVIII resist. The alternative 

resist reduced the thinning to 15 nm yielding satisfactory lift-off but also decreased 
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the quality of the ohmic contacts, most likely because of resist residue. Good process 

reliability and repeatability of  lift-off  for  the source/drain contacts  could not  be 

obtained below a 540 nm gap. It can be concluded the source/drain gaps smaller 

than 500 nm are beyond the means of standard e-beam lithography techniques if a 

double layer of PMMA is to be used. More complicated methods, such as lift-off by 

means of a thin HSQ line could overcome this limit, but they were not investigated 

as part of this work.

 

Another issue which the use of sub-micrometer source/drain gaps created regarded 

dielectric removal prior to metal deposition. Removing the oxide from the source 

and drain contact regions using standard wet etch techniques was no longer viable 

below  a  certain  source/drain  gap  because  the  isotropic  nature  typical  of  those 

processes etched the oxide also laterally and removed it from the gate region. The 

need for an anisotropic dry etch process became apparent to define closely-spaced 

structures. Since the same PMMA pattern was to be used both as an oxide etch mask 

and as a metal lift-off mask, its poor dry etch resistance had to be taken into account 

considering  that  as  much as  200  nm of  resist  would  be  eroded during  the  dry 

etching of the oxide. This extra thickness was therefore added to the typical PMMA 

thickness of 350 nm, necessary to  lift off 150 nm thick source/drain contacts, thus 

the specialised MOSCAP structures were fabricated using a total PMMA thickness 

of 550 nm.

5.3.2.2   Thermal annealing challenges

The first  attempt at  fabricating the multi-finger MOSCAP structures with a sub-

micron source/drain gap revealed a problem with the annealing of the source and 

drain contact. Annealing took place in nitrogen atmosphere for 30 seconds at 430°C. 

The  metals  composing  the  stack  laterally  diffused  into  the  semiconductor  and 

altered  the  characteristics  of  the  channel  region.  Fabricated  MOSCAP structures 

which  suffered  from this  phenomenon are  shown in  figure  5.9,  where  a  lateral 

diffusion of approximately 330 nm into the semiconductor was observed. Lateral 

diffusion of ohmic metal did take place also for the devices analysed in the previous 
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chapter, but it was not detrimental to their operation since they had a source/drain 

separation of 2.1 µm, well in excess of the metal lateral diffusion length.

———————————————————————————————————
Figure 5.9  (a) Ni(10nm)/Ge(10nm)/Au(100nm) ohmic contacts with 540 nm 
gap:  a)  showing gate  PMMA pattern  before  metallisation,  and b)  after  gate 
metal lift-off. The maximum length of the annealing-induced lateral diffusion of 
the ohmic metal in the gate region is approximately 330 nm.

Several tests were carried out in order to gain a better understanding of the lateral 

diffusion of the ohmic contact metal and its dependence on various parameters such 

as  temperature and composition of  the metal  stack.  The original  metal  stack,  in 

order from the semiconductor surface up, was composed of 10 nm of nickel, 10 nm 

of germanium, and topped by 100 nm of gold.  Figure 5.10 shows the results  of 

annealing this metal stack in nitrogen atmosphere for a range of durations at 430°C: 

it  can be seen that  the lateral  diffusion length proportionally  increases  with the 

annealing time. Two reasons were thought most likely to cause the lateral diffusion: 

first,  the  reactivity  of  nickel;  second,  the  germanium  and  gold  layers  not 

constituting a eutectic alloy, i.e. an alloy having a single and well defined melting 

point. In order to identify the main cause of lateral diffusion, two alternative ohmic 

contact metal stacks to the original one were tested: in both the germanium-gold 

ratio was changed to Au:Ge 88%:12% by weight to achieve a eutectic composition, 

but in one of them platinum replaced the more-reactive nickel. The corresponding 

metal compositions were Ge (20 nm)/ Pt (15 nm)/ Au (40 nm) for the eutectic case 

without nickel  and Ge (20 nm)/ Ni (15 nm)/ Au (40 nm) for the second tested 

composition, making the total thickness of the contact 70 nm in both cases. In [76] it 
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was  stated  that  Ge/Ni/Au  contacts  are  practically  insensitive  to  changes  in 

annealing  temperature,  while  recommending  450°C  for  Ge/Pt/Au,  thus  it  was 

decided to anneal the non-standard metal  stacks at  450°C. For the non-standard 

metals a series of annealing duration tests were also carried out, with 10, 15, and 30 

seconds long anneal cycles.

———————————————————————————————————
Figure 5.10  Standard source and drain metal stack (Ni(10)/Ge(10)/Au(100)) 
annealed in N2 at 430°C for 10 s (a), 30 s (b), 45 s (c) and 60 s (d). The two lower 
images (e) and (f) illustrate the lateral diffusion problem when the source/drain 
gap is scaled.  

Figure 5.11 shows the results of the annealing tests on the non-standard metals and 

compares them with the original metal composition. It can be seen that the least 

lateral  diffusion  resulted  from  the  platinum  containing  stack,  suggesting  nickel 

played a major role in this phenomenon. However, when the contact resistances  of 

these contacts were compared, it became clear that nickel was required for a good 

ohmic contact  on the adopted epitaxial  structure.  In fact  the nickel-free contacts 
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exhibited the worst ohmic behaviour, in spite of, and maybe because of their lack of 

metal diffusion. Further investigation was needed in order to determine an ohmic 

metal stack with good ohmic behaviour and unaffected by lateral metal diffusion. 

Given the time constraints associated with the project, it was decided to keep the 

original ohmic metal composition (Ni(10)/Ge(10)/Au(100)) while relaxing the gate 

to ohmic spacing to 1 µm.

———————————————————————————————————
Figure 5.11  Attempt at reducing ohmic contact lateral diffusion. The large area 
(top row) and the  gate  region (bottom row) of  (a)  standard Ni/Ge/Au,  (b) 
eutectic Ni/Ge/Au, c) Pt/Ge/Au. The ohmic-gate gaps are 300 nm.

5.3.3  Final process

The final fabrication process flow was a gate-last process. After surface preparation 

with a standard organic solvent clean, the NiGeAu ohmic contacts were formed by 

lift-off ensuring a clean surface prior to dielectric removal in hydrochloric acid with 

an oxygen ash and finishing the contact formation with a 430°C anneal in nitrogen. 

Similarly, the PtAu gate was patterned by lift-off with its pattern lithographically 

aligned to the ohmics using four corner markers.  For the experiments involving 

oxygen annealing of the gate, a 350°C O2 annealing step was inserted straight after 

gate metallisation. The final step of the process was forming a narrow trench (300 

!110

   

   

(a) (c)(b)

Ni_10 / Ge_10 / Au_100 Ge_20 / Ni_15 / Au_40 Ge_20 / Pt_15 / Au_40

430°C 60s 450°C 10s450°C 10s



Chapter 5. Experimental Results III                                                                                                   

nm) around the device to separate the active area from the probing pad area. This 

was done by a two-step wet-etch process, involving an HCl acid step to remove the 

dielectric, followed by a peroxide/orthophosphoric acid etch to etch 50 nm into the 

semiconductor  layer  structure  to  reach below the  active  layers,  finishing with  a 

resist  strip  in  warm  acetone.  The  complete  structure  is  shown  in  figure  5.12, 

detailing various regions.

———————————————————————————————————
Figure 5.12  The complete scaled MOS capacitor structure: (a) the MOS layers 
layout shown for a 330 nm finger width structure, (b) a medium zoom into the 
isolation area shown for a 125 nm finger width structure, (c) a high zoom into 
the  isolation  trench  showing the  metal  gate  line  forming a  bridge  over  the 
trench, and (d) the full device layout, including inlets of mask layout design 
and isolation in various areas of  the device.  The ohmic metal  is  Ni(10nm)/
Ge(10nm)/Au(100nm) annealed by N2 RTA at 430°C for 60s. The gate metal is 
Pt(10nm)/Au(90nm).
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5.4   Measurements

5.4.1 Device layout

In order to assess the effects  of  parasitic  capacitances on the gate control  of  the 

MOSFET, the capacitors were designed with varying finger widths of 90 nm, 125 

nm, 330 nm, 510 nm, 660 nm, and 1 µm. At each finger width, the length of the 

finger was fixed, but the number of fingers were varied in such a way as to cover a 

range  of  total  gate  area  values  with  the  minimum  value  equal  to  39.7  µm2, 

corresponding to an equivalent circular area with a radius of 3.55 µm, as defined by 

the capacitance measurement limit of the LCR meter, described earlier in the design 

part of the chapter. Capacitors with a total gate area equivalent to the  standard 

circular gate MOS capacitor with a diameter of 40 µm were achieved by adding a 

second row of fingers to some of the 1 µm finger-width capacitors,  as shown in 

figure 5.13(a) and (c).

Due to the small  dimensions and many variations in the layout of the gate,  the 

structures were all examined in an SEM and gate contact geometries were measured 

so that an accurate number of the effective gate width Wg and the gate length Lg 

could be fed into total  gate area Ag calculation.  This  was necessary because the 

capacitance  is  measured  per  unit  area  and it  is  calculated  automatically  by  the 

measurement  tool  software  where  the  radius  of  the  equivalent  circular  area  is 

specified for each C-V measurement.

5.4.2 Periphery effect

In order to understand the periphery capacitance, it  is useful to look back at its 

different components. The fact that the dielectric is etched prior to source and drain 

deposition, and the following deposition of ohmic metal, give rise to an electrode 

whose size will be the thickness of the dielectric times the length of the source and 

drain  contact  along  the  gate  direction.  The  gate  metal  constitutes  the  second 
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electrode, and the distance between them to first approximation is the gap between 

the gate  and the ohmics.  This  means that  the  periphery capacitance should be 

affected by both changes in periphery, that correspond to changes in its total area, 

and  changes  in  gate-ohmic  gap,  equivalent  to  changes  in  dielectric  thickness 

instead. Various multi-finger structures were thus designed, either keeping the gate-

ohmic gap the same and changing the periphery or vice-versa. Whenever possible 

the total area was kept the same, even though it is not essential to a meaningful 

comparison.

———————————————————————————————————
Figure 5.13  (a) An array of scaled capacitor structures with varying gate area, 
(b) standard large-area capacitor designs aimed at changing the gate area (“A” 
and “B”), the edge of the gate contact (“C” and “D”), and the gate-ohmic gap 
size (“A” and “C”), (c) the 1 µm finger width structure with an additional row 
of fingers to achieve the gate area equal to the circular capacitor “B”, (d) table 
detailing the geometry of the MOSCAPs from (b). 

Device Area (µm2) Periphery (µm) Gate-ohmic gap 
(µm)

Peripheral area 
(µm2)

Dot “A” 7854 314 10 3140

Dot “B” 1250 126 10 1260

Dot “C" 8495 327 1 327

Dot “D” 8495 2210 1.5 3315

1 μm SCAP 1250 2500 1 2500

!113

A B C Da

b

c



Chapter 5. Experimental Results III                                                                                                   

First, C-V measurements were carried out on multi-finger capacitors having same 

gate length and same total  area but different periphery.  Figure 5.14 displays the 

results for all the different gate lengths measured. The measured capacitance only 

showed a plateau at high positive voltages for a gate length of 90 nm, the smallest 

implemented gate length, whereas for larger gates the capacitance tended not to 

plateau. With regard to the effect of changing the periphery within a single gate 

length, as it can be seen from the black dotted curves the results are contradictory. 

For a gate length of 90 nm a smaller periphery led to an increased stretch-out and to 

a shift of the C-V curve towards more negative voltages, whereas the opposite was 

observed for a gate length of 125 nm, with the rest of the measured gate lengths 

showing a number of behaviours in between. This inconsistency could be due to 

oxygen  vacancies  in  the  dielectric  film  following  epitaxial  growth,  affecting 

differently various parts of the wafer.

In order to determine if this was the case, the C-V measurements were repeated 

after annealing the sample in oxygen atmosphere for 30 seconds at 360°C. The data 

obtained,  displayed  by  the  coloured  empty-dotted  curves,  show  that  annealing 

cancels  out  the  differences  in  C-V curves  due  to  changing  periphery  that  were 

previously described. This confirms that the changes in capacitances were due to 

process  variability,  since  as  discussed  in  chapter  3  oxygen  annealing  improves 

device uniformity.  The lack of observable changes due to periphery in the post-

annealing  C-V  curves  suggests  that  for  a  given  gate  length  and  capacitor  area 

periphery variations have little or no effect on the amount of charges stored in the 

gate stack at equilibrium. In order to validate this result, C-V measurements were 

carried out on standard circular capacitors with various peripheries and gate-ohmic 

spacing and  were then compared with the multi-finger structures.
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———————————————————————————————————
Figure  5.14   High-frequency (1  MHz)  C-V measurement  of  scaled capacitor 
structures with various gate lengths, as specified in graphs. The gate is swept 
once from negative to positive bias (inversion to accumulation). The area was 
kept constant for each Lg group. The Lg/o is fixed at 1 µm for all structures. 
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Figure 5.15 compares results of C-V measurements from two capacitors with total 

area of 1250 µm2, one of them being a standard circular dot and the other a multi-

finger structure having a periphery approximately 20 times larger. The gate-ohmic 

gap of the non-standard structure was also ten times smaller than for the circular 

dot. The different characteristics of the two capacitors should maximise the effect of 

the periphery capacitance for the multi-finger structure. The results are similar in 

terms of quality of the interface, by showing a similar slope and stretch out. The 

main  change  between  the  C-V  curves  regards  the  minimum  and  maximum 

capacitance for  the non-standard MOSCAP,  which increase by approximately 25 

nF/cm2. The shift of the curve towards higher capacitance values for the increased 

periphery case does suggest an increase in parasitic  capacitance,  however small. 

This is because an increased periphery translates into more dielectric area between 

the capacitor plates (the gate and the ohmic contacts), which is equivalent to the 

introduction  of  parallel  RC  branches  into  the  system.  In  addition,  due  to  the 

increased interface in the high periphery structure,  this will have a higher density 

of  interface  traps,  causing  a  lower  return  slope  observed  in  fig.  5.15(b)  and  a 

subsequent slight change in hysteresis because of the increased release time of the 

charge traps.

!
———————————————————————————————————
Figure 5.15  High-frequency (1 MHz) double-sweep (negative-to-positive and 
back) C-V measurement of scaled capacitor structure with 1 µm gate length (b) 
and standard circular capacitor structure (a). The design specifications can be 
viewed in the table of 5.13, “Dot B” and “1 µm SCAP”.
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The effect of gate to ohmic gap on the total capacitance was assessed by comparing 

two circular capacitors differing only in the gate to ohmic distance, namely 10 µm 

and 1 µm. Multi-frequency capacitance data are shown in figure 5.16: the compared 

capacitors  show  nearly  identical  slope  and  stretch-out,  but  vary  in  terms  of 

frequency dispersion and threshold voltage.  The latter  was lower for the 10 µm 

gate-to-ohmic gap case, consistent with a lower periphery capacitance and thus a 

lower electric field required to sway carriers; an increase in threshold voltage of 0.2 

V  was  instead  observed  for  a  gate-to-ohmic  gap  of  1  µm.  With  regard  to  the 

variation in frequency dispersion between the compared cases, it is related to an 

increase in the total density of trapped charges, which generally results in a lower 

maximum capacitance for high frequency and higher for low frequencies. The plots 

in figure 5.16 also display a feature known as the Dit 'bump', more prominent for the 

larger gate-ohmic gap, that indicates uneven distribution of interface states in the 

bandgap. Such feature is associated with the presence of mid-bandgap charge traps. 

The plotted results thus seem to suggest that for larger gate-ohmic gap the total 

density of trapped charge is lower (because of small frequency dispersion) but the 

trapped charge states are mid-bandgap (more obvious 'bump'). On the other hand, a 

decrease  in  the  gate-ohmic  gap associates  with  an  increase  in  the  total  trapped 

charge density (greater frequency dispersion) but the trap states are positioned near  

the conduction and valence band. The greater edge contribution to the periphery 

capacitance  affects  the  surface  potential  and  increases  the  band  bending  thus 

allowing charge trapping at increased levels of energy - reflected in the positive shift 

of the C-V curve in fig. 5.16(b).

———————————————————————————————————
Figure 5.16  Multi-frequency C-V measurement of circular capacitor structure 
with gate-ohmic separation distance of 10 µm (left) and 1 µm (right).
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5.4.3 Area effect

Other than the periphery capacitance, as previously stated also the contribution of 

fringing capacitance increases for scaled structures. The fringing capacitance is not 

related to the gate-to-ohmic gap or to the circumference of the contact, but only to 

the width of the wire, i.e. the gate length. Figure 5.17 summarises the dC/dV of 

multi-finger  capacitors  with  finger  width from 90 nm to  660  nm.  The solid-line 

curves show the data for as-fabricated capacitors, while the scattered points display 

the data for capacitors where an oxygen anneal was performed after the gate metal 

deposition. The peak of the curve indicates the threshold voltage of the device. It 

can be seen that  there is  a  great  dispersion in threshold voltage values prior  to 

annealing, while all  curves overlap after thermal treatment independently of the 

gate length of  the multi-finger capacitor.  The most  viable explanation for this  is 

passivation of the oxygen vacancies in bulk of the dielectric and at the interface 

carried out during the thermal treatment in oxygen ambient. It therefore seems that 

the effect of the change in fringing capacitance is not measurable, at least for the 

range of sub-micron gate lengths considered.  

———————————————————————————————————
Figure 5.17  C-V slope (dC/dV) data from C-V graphs of multi-finger capacitors 
with gate lengths from 90 nm to 660 nm shown in fig. 5.14, highlighting the 
spread of  data before O2 anneal  (shown as solid lines)  and after  the anneal 
(shown as scattered data points). 
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Further  experiments  were  carried  out  exploring  a  comparison  of  a  multi-finger 

scaled capacitor with gate length of 1 µm with a circular capacitor with 104 µm 

diameter. The gate-to-ohmic distance was the same between the two cases, at 1 µm. 

The two structures, whose C-V curves are compared in figure 5.18, show similar 

slope and a negative shift  in threshold voltage for the scaled device,  compatible 

with  what  was  observed  in  MOSFETs  when  scaling  gate  length  (figure  5.1). 

However, their behaviour differed for high positive voltages applied. Capacitance 

attained a maximum value of approximately 700 nF/cm2 in both cases, but for the 

larger structure an overshoot was present in the curve for high voltage, suggesting 

extra  charge  measured,  created  by  current  tunnelling  mechanism  through  the 

dielectric. Another noticeable difference was that the multi-finger C-V curve was 

shifted  upwards  by  approximately  30  nF/cm2  at  all  measured  voltages.  This 

suggests the presence of a considerable amount of charge which is not controlled by 

variations  in  the  electric  field  applied to  the  gate.  During the  measurement  the 

charge  traps  in  the  dielectric  release  carriers  at  a  slower  rate  than  that  of  the 

measurement. In equivalent circuit terms, a large parasitic capacitance is in parallel 

with the parallel-plate capacitance, and the parasitic response time is too long for 

the channel to become fully depleted during the measurement acquisition phase.

!
———————————————————————————————————
Figure 5.18  Double-sweep C-V response of multi-finger capacitors with Lg = 1 
µm (left) and single sweep response of circular capacitors with Lg = 104 µm 
(right). The gate-ohmic distance is 1 µm for both.
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It can therefore be concluded that there is indeed an increase in parasitic capacitance 

when the gate length is  scaled from large values down to micrometer and sub-

micrometer  values.  As  figure  5.19  shows,  when  the  diameter  of  the  circular 

capacitor is decreased from 104 µm to 40 µm (a), no upward shift of the C-V curve 

for the smaller capacitor was observed.  However, when scaling from 40 µm to 1 µm 

(b),  similar  results  to  those  of  figure  5.18  were  obtained.  With  regard  to  the 

differences in threshold voltage between the C-V curves in figure 5.19, these are 

consistent with the decrease in gate length. The results in figure 5.19 once again 

confirm what previously stated, i.e. that an increase in parasitic capacitance exists 

for scaled structures. However, as shown by the similar values of slope and curve 

stretch-out, the effect is not detrimental to the gate stack operation.

———————————————————————————————————
Figure 5.19  (a) High-frequency C-V response of circular capacitors with Lg/o = 
10 µm and Lg = 40 µm (black) and Lg = 100 µm (red). (b) Varying gate area 
whilst keeping periphery and gate-ohmic distance fixed: circular capacitor of 
design “Dot D” , Lg/o = 1 µm, circumference = 2310 µm (black line); multi-finger 
capacitor with large area equivalent d = 40 µm, Lg/o = 1 µm, circumference = 
2310 µm (red line).

5.5   Chapter summary

This chapter described the work carried out in order to understand the threshold 

voltage roll-off observed in sub-micron gate length MOSFETs. A variety of capacitor 

designs were chosen in order to gain a better understanding of the different types of 

parasitic capacitance affecting device performance. Of these, one is related to the 
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parallel-plate  capacitor  periphery while  the other  is  affected by scaling the gate 

length. The designs were thus chosen so that it was possible to independently vary 

two components of the lateral MOS structure: the geometries of the single cross-

section of the device and the number of the repeats of the cross-section to complete 

the device. In terms of cross-section geometries, the parameters were: the length of 

the gate Lg and the distance between the gate and the ohmic contacts Lg/o. Varying 

Lg allowed to probe the contribution of the fringing capacitance to the parallel-plate 

capacitance due to the effect of the contact edge, whilst varying the Lg/o saw the 

peripheral capacitance rise. In order to vary the number of the repeats of the MOS 

device cross-sections, structures with increased periphery of the gate contact were 

designed.  An  initial  attempt  at  fabricating  these  structures  highlighted  several 

fabrication  issues,  such  as  gate  flagging,  lateral  annealing  of  ohmic  metal  and 

problematic lift-off; these were solved by either changing the fabrication process or 

relaxing  the  design.  The  finalised  designs  were  fabricated  and  electrical  C-V 

measurements were carried out, allowing to assess the effect of parasitic capacitance 

on  the  gate  stack  performance.  Great  dispersion  was  observed  in  C-V  data 

measured for capacitors not subject to oxygen anneal, which highlighted the issue 

of  oxygen vacancies  in  the  dielectric  film having  a  random post-growth  spatial 

distribution. The non-uniform spatial density of oxygen vacancies affected greatly 

multi-finger capacitors with sub-micrometer gate lengths, and their presence was 

shown to lower the value of threshold voltage. It was also shown how a thermal 

step  in  oxygen  atmosphere  could  passivate  those  vacancies.  Structures  with 

different number of repeats of the same cross-section were also compared, and it 

was  found  that  increasing  the  number  of  repeats  does  introduce  an  additional 

component to the total capacitance. The slope and stretch-out of the C-V curves, 

however,  are  not  affected,  suggesting  this  effect  is  not  detrimental  to  device 

performance. With regard to changes in the geometry of the single cross-section, the 

reduction  of  Lg/o  yielded  a  higher  threshold  voltage,  but  once  again  slope  and 

stretch-out of the curves were not affected. Changing gate lengths while keeping the 

other parameters of the cross-section geometry constant instead showed a reduction 

of  threshold voltage with decreasing Lg (consistently with what observed in the 

MOSFETs) and also the introduction of an additional parasitic component to the 

total  capacitance.  This additional  component prevented full  depletion of  carriers 
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from the channel by trapping charges and releasing them at a very slow rate. Once 

again, no changes in slope or stretch-out were observed, suggesting the quality of 

the interface is maintained also for scaled structures.

5.6   Chapter conclusions

The results  from this  chapter  provided a  useful  insight  into  some of  the  issues 

encountered when scaling the MOSFETs gate length.  One important observation 

regards the oxygen vacancies present in the dielectric film, whose spatial density 

varies across the wafer. This shows that dielectric films grown by MBE introduce 

defects that are unevenly distributed across areas as small as one square micrometer 

and affect the uniformity of the transistors performance. A thermal treatment of the 

dielectric in oxygen atmosphere was shown to help with passivating the vacancies 

and yielding a better uniformity. 

It was also found that a reduction in Lg/o increases the periphery capacitance and 

shifts  the  threshold  voltage  towards  more  positive  values.  This  could  be  useful 

when fabricating scaled devices with lithographically aligned contacts on wafers 

providing a negative threshold voltage.  However,  in order to bring Lg/o  to sub-

micrometer  length,  the  issue of  post-anneal  lateral  metal  diffusion of  the  ohmic 

contacts would need to be resolved.

Due to the imperfections in the grown material stack and to the limited number of 

devices available for measurements, the multi-finger capacitors did not enable a full 

analysis  of  the  phenomena  underlying  threshold  voltage  variation  for  sub-

micrometer gate lengths. However, these structures proved effective at decoupling 

the effects of changing periphery, gate-ohmic distance and area to a limited extent. 

Thus it is thought that on materials less affected by epitaxial growth problems, the 

multi-finger  capacitors  could  be  exploited  at  their  full  potential  and  enable  a 

complete analysis of the effect of scaling electronic devices.
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6 Conclusions 

6.1   Conclusive remarks

This thesis presented an investigation into a III-V heterostructure MOSFET 

with a high-mobility InGaAs channel and Ga2O3/GaGdO high-dielectric-constant 

gate oxide, designed as an n-channel candidate for high-speed low-voltage CMOS 

logic circuits.  The aim of this work was to improve the gate field control by:  a) 

optimisation of fabrication processes associated with the gate stack of the device, 

and b) investigation into parasitic elements associated with its gate and source/

drain contacts layout. The former was achieved through observation of changes in 

capacitance-voltage  measurements  of  MOS  capacitors  as  the  gate  processing 

parameters were varied, with some of the processes tested on devices. To achieve 

the latter aim, a specialist MOS capacitor structure was designed, modifying the 

standard MOSCAP towards increased periphery and much smaller dimensions of 

its contacts and spacing between them.

Process  optimisation work was  focused on the  gate  region and involved 

investigation of e-beam lithography process parameters, metallisation parameters, 

and  post-metallisation  thermal  treatment.  During  the  course  of  the  e-beam 

lithography  process  studies,  it  was  found  that  some  resist  residue  was  always 

present in the gate region regardless of development time, exposure dose and type 

of surface (i.e.  dielectric or semiconductor).  Oxygen plasma was found to be the 

most  effective  method  for  achieving  a  metal-oxide  interface  free  of  organic 

contamination.  A method  to  determine  the  thickness  of  the  resist  residue  was 

developed, which could be of help in deciding the minimum RF power and ashing 

time required to clear residues, thus minimising induced damage on delicate III-V 

substrates. Variation in resist thickness was found to have a negligible effect on the 

gate metal linewidth achieved by lift-off, therefore the exposure dose to clear open 

areas can be used. However, a slight overexposure is recommended to minimise the 
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granularity of resist residues after the development and to produce a smooth line 

without metal ‘flagging’ after the lift-off. Next, the effect of electron irradiation was 

assessed through replacing electron-beam lithography patterning of the gates with 

shadow mask metallisation.  For  these,  the  radiation damage during the  e-beam 

exposure  was  found  to  induce  interface  states.  When  resist-free  surfaces  were 

compared with surfaces  that  had been through the lithography process  with an 

oxygen  plasma  ashing  step,  nearly  identical  accumulation  capacitances  were 

obtained from ashed and unprocessed resist-free surfaces, indicating that the gate 

oxide did not react with oxygen during the ashing process. The experiments also 

showed that removing the barrel oxygen plasma ashing step caused a large drop in 

capacitance, due to a residual PMMA layer present on the dielectric surface, whose  

thickness  and  surface  roughness  were  reduced  with  increasing  exposure  dose. 

When  the  effect  of  resist  residues  on  MOSFETs  performance  was  assessed,  the 

devices not subject to oxygen ashing after the gate lithography step showed a great 

variation in output characteristics. Transistors with an ashed gate region, thus free 

of  resist  residues,  presented  an  improved  uniformity,  however  their  device 

parameters indicated plasma damage. It was thus concluded that a trade-off must 

therefore be sought between damage to the gate dielectric and effective removal of 

resist residue.

Study of the metallisation parameters made use of shadow mask deposition 

method as this ensured that the substrate surface condition remained constant. A 

variety of layer thickness ratios and metals were compared. The common feature of 

the  experimental  outcomes was a  positive  shift  of  the  flat-band voltage,  always 

accompanied by an increase  in  stretch-out  observed in  the  C-V curves.  When a 

hysteresis measurement was performed, a decrease in hysteresis was observed in 

conjunction with the positive flatband voltage shift, while the reverse sweep parts 

of C-V curves overlapped. This suggested that the changes in the forward sweep 

could  not  be  ascribed  to  charge  trapping,  but  only  to  changes  in  the  effective 

workfunction,  the  only  other  variable  in  the  processes  compared.  It  was  also 

observed that a negative flat-band voltage shift occurred every time Au was added 

to  the  gate  metal,  or  the  thickness  of  Au in  the  Pt/Au stack  was  increased.  A 

plausible explanation to this could be the difference in the Pauling electronegativity 

between Pt and Au. Thus, an addition of a more electro-positive layer in the stack 

!124



Chapter 6. Conclusions                                                                                                   

strengthened the local dipoles generated on the GGO surface, reduced the effective 

workfunction  of  the  gate,  and  caused  a  reduction  of  the  flatband  voltage.  A 

reduction of the deposition rate of the bottom metal in the gate proved to achieve 

the most significant positive threshold voltage shift.. In this case, nominally identical 

gate  stacks  were  compared,  thus  the  results  were  not  related to  changes  in  the 

effective workfunction. The improvement was ascribed to an improved uniformity 

of  the  deposited  layer,  as  well  as  the  slower  metallisation  process  being  less 

damaging.

When the influence of gate post-metallisation thermal treatment in oxygen 

and  nitrogen  on  Pt/Au  gates  was  studied,  it  was  first  of  all  concluded  that  a 

temperature of at least 430°C was required to affect the substrate in any way. When 

the sample was heated to this temperature the workfunctions of the different metal 

stacks all collapsed at a similar value, thus yielding a conduction band offset in the 

semiconductor and C-V results with little variation, yet before the annealing this 

was not the case. It was concluded that platinum did not act as a good diffusion 

barrier thicknesses less than 10 nm. Due to the high diffusion coefficient of gold, 

layer intermixing took place,  making the contact a more ideal conductor.  In this 

case,  the initial  differences in pre-anneal measurements were caused by the gate 

effective workfunction being tuned by the electronegativity properties of the metals. 

Another  reason  for  the  observed  phenomenon  could  be  the  difference  in  the 

duration of the deposition of each metal layer. This is because the extent of damage 

caused to the substrate varied with layer thicknesses as the currents required for the 

deposition  differed,  and  was  reflected  in  the  C-V  response  of  as-deposited 

capacitors. During the heating, the metallisation-induced defects were annealed out, 

and the C-V curves merged. In the dielectric layers, the damage recovery could be 

due to self-rearranging of atoms taking place as a result of thermal energy supplied 

by the annealing process. The effect of an oxygen annealing step applied to the gate 

contact was also studied for two different fabrication flows, either gate-first or gate-

last.  It  was  found  that  the  annealing  of  the  gate  improved  MOSFET  output 

characteristics  for  gate-first  devices,  but  negatively impacted gate-last  ones.  This 

was related to degradation of the source/drain contacts, and it was concluded that 

an annealing step in oxygen atmosphere was beneficial to device performance as 

long as it takes place pre-ohmic contacts patterning.
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The  results  from  fabrication  and  measurement  of  scaled  multi-finger 

capacitor structures provided a useful insight into some of the issues that could be 

encountered when scaling  the  MOSFET gate  length.  One important  observation 

regarded the oxygen vacancies present in the dielectric film, whose spatial density 

varied  across  the  wafer.  It  was  revealed  that  dielectric  films  grown  by  MBE 

presented defects that were unevenly distributed across areas as small as one square 

micrometer and affected the uniformity of the transistors performance. A thermal 

treatment  of  the  dielectric  in  oxygen  atmosphere  was  shown  to  help  with 

passivating the vacancies and yielded a better uniformity. The parasitic capacitances 

in  the  system,  namely  the  contact  periphery  dependent  gate-ohmic  capacitance, 

played a significant role in the total gate capacitance to such an extent that reducing 

the distance between the gate and the source/drain ohmic contacts in the device 

would  help  with  shifting  the  threshold  voltages  closely  towards  the  designed 

values. This could be useful when fabricating scaled devices with lithographically 

aligned contacts  on wafers  providing a  negative  threshold voltage.  However,  in 

order to bring Lg/o to sub-micrometer length, the issue of post-anneal lateral metal 

diffusion of the ohmic contacts would need to be resolved. Due to the imperfections 

in  the  grown material  stack  and to  the  limited number  of  devices  available  for 

measurements,  the  multi-finger  capacitors  did  not  enable  a  full  analysis  of  the 

phenomena  underlying  threshold  voltage  variation  for  sub-micrometer  gate 

lengths.  However,  these  structures  proved  effective  at  decoupling  the  effects  of 

changing periphery,  gate-ohmic distance and area to a  limited extent.  Thus it  is 

thought that  on materials  less  affected by epitaxial  growth problems,  the multi-

finger capacitors could be exploited at their full potential and enable a complete 

analysis of the effect of scaling electronic devices.

In  summary,  the  results  obtained  from  this  work  allowed  gaining  an 

understanding of the negative shift in transistor threshold voltage observed when 

decreasing the gate length,  and of its  causes,  which prevent normally-off  device 

operation. It was found that the main culprits for the negative threshold voltage 

shift were the gate metal deposition process and the choice of metal layers, namely 

the electronegativity properties of metals that alter the effective workfunction of the 

gate.  However,  the  radiation  damage  induced  by  metallisation  by  e-beam 

evaporation could be prevented by slowing down the deposition rate, and effective 
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workfunction shifts could be prevented by either using a platinum-only gate,  or 

matching the layer structure design and the actual gate metal used for the future 

devices. Moreover, post-metallisation thermal anneal was shown to mitigate both 

these effects. When the gate contact was deposited before the source/drain contacts, 

it  caused a shift in threshold voltage towards negative values as the gate length 

decreased, because the ohmic contact anneal process affected the properties of the 

underlying material differently depending on whether it was covered with the gate 

metal or not. Opting for a gate-last process would thus be recommended.

6.2   Future work 

The key findings of this work were supposed to constitute the base for an 

improved fabrication process in attempt to achieve the 0.3 V threshold voltage the 

III-V heterostructure  MOSFET was designed for.  Time constraints  did not  allow 

fabrication of the final devices, and it is therefore proposed as continuation of this 

work to fabricate and measure gate-last devices with Pt only gate, non-diffusing 

ohmic contacts, and scaled gate-ohmic gap with a 350°C thermal anneal step after 

the gate metallisation.

Fabrication of the specialised MOS capacitors developed as part of this work 

on layer structures with more uniformly distributed defects and more uniform layer 

thicknesses, such as inversion-channel bulk GaAs / Al2O3 material, would provide 

a further verification of their effectiveness.

The oxide-semiconductor interface quality assessment in this work has been  

mainly qualitative and limited to majority carrier response. For future devices, fine 

tuning of the fabrication process would benefit from multi-frequency capacitance 

and conductance measurements performed on device layers.
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