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SUMMARY

This investigation was designed to characterise the expression of enFeLV in 

vitro and in vivo at both RNA and protein levels in feline cells and tissues because of 

the potential importance of endogenous virus expression in mediating resistance to 

infection and participating in genetic recombination. A new enFeLV specific probe 

was generated which enabled the examination of endogenous expression on a 

background of exogenous virus expression. EnFeLV expression was shown to be 

more widespread than had been previously been reported. The expressed transcripts 

contained an env open reading frame which was highly conserved in length and 

sequence content. Sequence analysis of these highly expressed enFeLV env genes 

suggested that they are not the primary source of recombinant viruses, although a 

novel recombinant vims, FeLV-B/GM l, may be an exception to this rule. The 

heterogeneity and conservation of individual loci were examined, and it was 

established that the expressed loci showed no more genetic polymorphism than their 

apparently non-expressed relatives. A C-terminal fragment of the enFeLV env-orf 

was expressed in bacteria and the purified protein product used to generate an 

enFeLV £/iv-specific polyclonal antiserum. This serum detected a candidate protein 

product from enFeLV loci, and the expression of this protein was found to correlate 

with resistance to FeLV-B infection in feline cells. These studies provide new 

insights into the significance of enFeLV expression in resistance to infection and 

have major implications on the immune responses to enFeLV and exogenous FeLV.
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SECTION 1 THE RETROVIRAL FAMILY.

1.1 Introduction.

Retroviruses are a highly specialised group of viruses whose members are 

closely related in genetic organisation, virion structure, and mode of replication. 

Viruses within this group display an exceptional diversity of biological effects on 

their hosts and have evolved a large variety of distinct lifestyles ranging from 

apparently benign transposable elements co-existing in the host germ line over the 

millenia, to horizontally infectious viruses causing the death of the host via the 

induction of neoplastic, lytic or immunological disease. The retroviruses are 

classified by a number of criteria, reviewed by Teich (1982, 1985). The taxonomic 

family Retroviridae is divided into three major sub-families based on the 

consequences of infection by well characterised representatives of each group. The 

Oncovirinae (oncoviruses) usually cause malignancies but some have no known 

pathogenicity. The Lentivirinae (lentiviruses) are "slow" viruses that induce various 

diseases (including Acquired Immune Deficiency Syndrome- AIDS), and the 

Spumavirinae (spumaviruses) cause vacuolation of cells in tissue culture but no 

apparent disease in vivo. Retroviruses are also classified according to morphology 

and subcellular location as viewed by electron microscopy. Most oncoviruses fall 

into the type-C virus group, which do not form intracytoplasmic core panicles, and 

have mature virions with a dense, centrally located core. O f the exceptions, mouse 

mammary tumour virus (MMTV) is a type-B virus which can be distinguished by the 

doughnut shaped cores of budding viruses, the dense, eccentrically located cores of 

the mature particles, and the prominent envelope spikes on the virion surface. Some 

primate oncoviruses are type-D viruses, which are found as both intracellular ring 

shaped panicles and mature, extracellular particles which have a core structure 

similar to the type-B viruses but without the prominent surface spikes. Type-A 

particles are only found intracellularly. The type-C oncoviruses, of which this study 

is concerned, are further classified according to whether they are passed on in the
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germ line of vertebrate species (endogenous) or propagate by infectious virus spread 

(exogenous). (Coffin, 1982, Stoye & Coffin, 1985)

1.2. Tvpe-C avian and mammalian oncoviruses.

Although the individual families designated as type-C oncoviruses are not 

closely related to one another, they are all quite similar in virion structure, genomic 

organisation and mode of replication. Most of the structural and functional data 

concerning both exogenous and endogenous viruses come from studies of the avian 

leukosis-sarcoma viruses and murine leukaemia viruses. Therefore at this stage, 

these viruses will be briefly described and feline leukaemia virus, with which this 

study is concerned, will be introduced.

1.2.1. The avian leukosis-sarcoma virus group.

This group consists of exogenous and closely related endogenous viruses of 

birds. The sarcoma viruses are modified by the presence of cellular oncogenes (such 

as src in Rous sarcoma virus), all except RSV are replication defective, requiring a 

"helper' virus for viral spread. They are further subdivided according to their 

cellular receptor utilisation (host range) into at least seven subgroups denoted A to 

G. The first four are characteristic of exogenous viruses of chickens. Subgroup E 

viruses are endogenous in chickens, and subgroups F and G are endogenous viruses 

in pheasants. The avian leukosis viruses (ALV) or Rous associated viruses (RAV) 

do not contain cellular oncogenes, and typically cause B-cell lymphomas and 

leukaemias. Other diseases associated with individual strains of ALV include 

erythroid or myeloid leukaemia, osteoporosis and fibrosarcomas. (Teich, 1982)

1.2.2. The murine leukaemia-sarcoma virus group.

The murine leukaemia and sarcoma viruses (MuLV and MSV) are a complex 

group of viruses found in both inbred and feral mice. Like the avian sarcoma 

viruses, murine sarcoma viruses (MSV) are replication defective, because
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a portion of the viral genome has been substituted for cellular oncogene sequences. 

(Teich, 1982)

These viruses are further subdivided according to the species distribution of 

their specific receptors. (Coffin, 1990) Ecotropic viruses replicate only in mouse 

cells, xenotropic viruses replicate in many species except mice, and polytropic and 

amphotropic viruses replicate in many species, including mice. Ecotropic viruses 

can be found both as exogenous and endogenous viruses, xenotropic and polytropic 

viruses are endogenous, and amphotropic viruses are exogenous. (Kozak et al. 1989) 

MuLVs are associated with the induction of a number of diseases including T-cell 

lymphomas. An interesting variant of MuLV is the Friend virus complex which is 

associated with the induction of erythroleukaemia. There are two viruses in this 

complex; a replication competent, ecotropic helper virus, Friend-M uLV, and a 

defective virus, spleen focus forming virus (SFFV). The Friend-M uLV is only 

acutely pathogenic in newborn mice, but SFFV is acutely pathogenic in adult mice. 

The LTR of Friend-MuLV encodes a strong determinant for erythroleukemogenesis 

in young mice presumably by promoting virus replication in erythroid cells. (Chatis 

et al. 1984) The erythroleukemic ability of SFFV has been linked to its truncated 

recombinant envelope protein. (Berger et al. 1985, Linemeyer et al. 1981, Li et 

al. 1986, Li et al. 1987) The pathogenicity of many MuLV infections are further 

complicated by the frequent recombinations with endogenous viruses that occur to 

create the highly pathogenic MCF viruses. (See Section 4.2.3.)

1.2.3. Feline leukaemia virus.

Feline leukaemia virus (FeLV) is an important pathogen of the domestic cat, 

and is probably the major non-traumatic cause of death in this species. FeLV was 

first identified by Jarrett et al. (1964a, 1964b). Leukaemias, lymphomas and other 

tumours of mesodermal origin that are caused directly by FeLV account for more 

than a third of cancer deaths among cats. In addition, persistent infection establishes 

an immune-suppressed state that predisposes the animal to lethal infections by a 

variety of pathogens.
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FeLV biology, and the molecular aspects of pathogenesis have been reviewed 

by Jarrett (1984) and Neil and Onions (1985). FeLV induced leukaemias are 

commonly T-cell in origin, although isolates from other tum our types, including a 

myeloid tumour, have been characterised. (Tzavaras et a l, 1990) The mechanism of 

leukaemia induction by FeLV has been reviewed by Neil (1984) and Neil & Forrest, 

(1987). Capture of the myc oncogene is commonly found in cases of T-cell 

lymphoma, (Mullins et al. 1984, Neil et al. 1984, Levy et al. 1984) and in feline 

fibrosarcomas, a variety of cellular oncogenes have been transduced. (Besmer, 1983)

There are three subgroups of FeLV which are distinguished by their host 

range and interference properties. (Sarma & Log, 1973, Sarma et al. 1975) FeLV-A 

can be classed as an ecotropic virus having a host range that is restricted to 

replication in feline cells. FeLV-B can infect feline, human and canine cells, while 

FeLV-C can infect feline, human and guinea-pig cells and so both may be described 

as amphotropic. The frequency of occurrence of each subgroup is unusual in that 

FeLV-A is present in every natural isolate, with FeLV-B also present in 40-60% and 

FeLV-C in 1% of natural isolates. (Jarrett et al. 1978a, Jarrett et a/. 1978b) This 

restriction is thought not to involve a genetic defect in these viruses, because each 

has been shown to replicate successfully on their own, in vitro. (Sarma & Log, 1971) 

There is an age related restriction on the replication of FeLV in cats. (Jarrett & 

Russell, 1978, Jarrett et al. 1978b) Experimental inoculation of FeLV-A into 

neonatal cats results in a 100% induction of persistent viremia. Older cats have an 

increased ability to clear the virus from their system. By contrast, inoculation with 

FeLV-B results in a low (15-20%) rate of establishment of viraemia, even in 

neonatal cats, and no establishment of infection in weaned cats. In cats infected with 

both A and B, initially only FeLV-A can be detected and only a proportion of cats 

will later produce detectable FeLV-B.

1.3. Genomic organisation.

All retroviruses share the same basic genome structure. (Coffin, 1990) 

Figure 1 shows the structure of the RNA genome of FeLV and the viral products it
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encodes. (Throughout this thesis, the nomenclature suggested by Leis et al (1988), 

will be used.

Short terminal redundancies (R) of 10-100nt flank the unique region of the 

RNA genome. At the 5’ and 3' ends of the genome are unique sequences (U5 and 

U3) which, during reverse transcription, generate the long terminal repeats (LTRs). 

Within the U3 region are the promoters and enhancers which direct viral 

transcription. Between these sequences, from 5' to 3' are, a packaging signal 

required for the efficient incorporation of the RNA genome into the virion, and the 

three essential retroviral genes, gag, pol and env. Although the "complex" 

retroviruses, such as HIV and HTLV, have other open reading frames encoding 

regulatory proteins (Varmus, 1988) these have not been found in the basic type-C 

oncoviruses and so will not be considered here.

The gag and pol genes appear to be translated from RNA that is identical to 

the genomic virion RNA, whilst the env gene products are translated from a 

subgenomic spliced envelope mRNA. In MuLV and FeLV, the splice donor site is 

positioned upstream of the packaging signal and consequently, the spliced env 

message does not have the packaging signal, preventing its incorporation into 

virions. The gag gene, so named because the proteins encoded by it were first 

identified as group specific antigens, is translated to produce a precursor polyprotein 

that is subsequently cleaved to yield three to five capsid proteins (depending on the 

virus). The three invariant proteins are; the matrix (MA) protein, the capsid (CA) 

protein and the nucleic-acid binding nucleocapsid (NC) protein. Avian and 

mammalian C-type viruses have an additional cleavage product, translated from a 

region between the MA and CA coding regions (plO in ALV and p 12 in both MuLV 

and FeLV). This protein is found in the virion but as yet no function has been 

identified.

The po l gene of MuLV and FeLV encodes three proteins with important enzyme 

activities. Reverse transcriptase (RT) and integrase (IN) are responsible for the
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F ig .l. The genome of feline leukemia virus and its protein products.

This figure depicts the proviral DNA, the genomic RNA from which the DNA is transcribed, 

and the spliced mRNA which is the second transcriptional product o f the provirus. The sites o f 

functional signals are also shown, (sd splice donor, sa splice acceptor, psi packaging signal) Both the 

polyprotein precursors and final protein products translated from the two RNA species are shown 

below.
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synthesis of viral DNA and its subsequent integration into cellular DNA. The 

protease (PR) is responsible for the cleavage o f gag and pol polyproteins (and found 

at the 3' end of gag in ALV). The translation o f the po l gene products occurs by a 

slip in the translation machinery, misreading the termination codon at the end o f gag, 

and enabling translation to continue through the pol reading frame.

The env gene encodes the two envelope proteins that are themselves cleaved 

from a large precursor. The surface (SU) glycoprotein is responsible for recognition 

of cell surface receptors, and the transmembrane (TM) protein anchors the complex 

to the virion envelope.

1.4. The retroviral life cvcle.

The unique retroviral life cycle is accomplished by three different enzyme 

systems, each responsible for a different phase. The first phase involves the 

synthesis of double stranded viral DNA and integration into the host genome and is 

accomplished by virus-coded enzymes carried in the infecting virion core. The 

second phase, replication of the integrated DNA during normal cell division, uses the 

usual cellular DNA polymerases. The third phase is the synthesis of progeny 

genomes, which depends both on the cells transcription machinery and virally 

encoded enzymes. The following synopsis is based on a number of reviews covering 

various aspects of the retroviral life cycle, including Coffin, (1990), Katz and Skalka 

(1990) and Hunter & Swanstrom, (1990).

1.4.1. Infection.

Retroviruses are composed of a ribonucleoprotein core surrounded by a lipid 

membrane which is derived from the host cell and is embedded with viral envelope 

proteins. The first stage of the retroviral life cycle initiates with virus infection, or 

entry of the virion core into the host cell. The SU protein on the surface of the virion 

is responsible for the recognition and binding of the virus to a specific host cellular 

receptor. (Hunter & Swanstrom, 1990) The viral membrane then fuses with the 

cellular membrane in a process that is not fully understood, but that appears to
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involve exposure of a fusion domain on the TM protein. (W hite et al. 1983, Gallaher, 

1987) The virion core which enters the cell contains two identical, non-covalently 

linked RNA genomes, a number of virally encoded enzymes required for both 

production of the viral DNA and its integration into the host cell chromosomes, and 

a cellular tRNA which acts as the initial primer for reverse transcriptase. As the core 

disassembles, transcription of the RNA genome into a DNA form commences.

1.4.2. Synthesis of viral DNA.

The process of reverse transcription as it is currently understood is 

represented in Figure 2. (Hu & Temin, 1990b) 1. The tRNA binds to the primer 

binding site located near the 5’ end of the genome, and is used as a primer for the 

synthesis of minus strand DNA. 2. Reverse transcription first copies U5 and R 

sequences forming minus strand strong stop DNA. 3. A ribonuclease (RNase) H 

activity of RT degrades the U5 and R of the template RNA exposing the now single 

stranded minus strand strong stop DNA. 4. This DNA region now transfers to the 3' 

end of the genome, presumably through interaction with the complementary R 

sequences also present at this end of the genome. 5. At this point, the enzyme jumps 

from one template to another and transcription of the minus strand continues. 6. 

RNase H makes a specific nick just 5' of the U3 sequences, at the polypurine tract 

(ppt). The nicked viral RNA acts as a primer for plus strand synthesis. 7. The minus 

strand U3-R-U5 DNA (the long terminal repeat-LTR), as well as a portion of the 

tRNA that is homologous to the pbs, is copied and forms the plus strand strong stop 

DNA. 9. The plus strand strong stop DNA transfers to the almost completed minus 

strand DNA, presumably through complementation of the R-U5-PBS sequences. 

DNA synthesis of the plus strand DNA involves a second "jump" for the RT enzyme. 

The second strand synthesis is sometimes discontinuous. Internally RNase H nicked 

viral RNA can act as transcription primers for RT; this discontinuous synthesis 

leaves gaps that are filled in by either displacement of the previously synthesised 

fragments by a 5' growing DNA strand or by ligation of the existing products. 10. 

DNA synthesis of both minus and plus strands proceeds to form a complete copy of
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Represented above is the accepted rational for the process o f reverse transcription. 1. The 

binding o f primer tRNA. 2. Initiation o f reverse transcription (minus strand synthesis). 3. 

Degradation o f RNA base paired to DNA. 4. Translocation o f primer and jump of RT from one 

template to another. 5. Continuation of reverse transcription. 6. Degradation o f RNA base paired to 

DNA to form primer for plus strand synthesis. 7. Initiation o f plus strand synthesis. 8. Degradation 

of RNA base paired to DNA to leave small primers for further transcription initiation. 9. 

Translocation o f primer and jump of RT from one end o f the template to the other. 10. Continuation 

of plus strand synthesis from both this primer and intermediate ones to produce double stranded DNA  

provirus.
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the retroviral RNA genome flanked by two LTRs, the products of the reduplication 

of the U5 and U3 regions during the procedure. The ability of reverse transcriptase 

to transfer from one template to the next is one possible explanation for the frequent 

generation of retroviral recombinants.

1.4.3. Integration.

The viral DNA is integrated into the genome of the host under the control of 

the viral integrase enzyme (IN) and the core proteins, whose involvement is 

necessary but whose functions are as yet unknown. Retroviral integration shows no 

strict sequence requirement and can occur at many sites, although there have been 

reports of preferred sites (Shih et al. 1988) and a general preference for regions of 

open chromatin. (Vijaya et al. 1986, Rohdewohlde et al. 1987) The integration of the 

DNA provirus, as it is now referred to, can be considered a mutagenic event of 

potential importance to the host. Integrarion of proviruses can lead both to the 

activation of neighbouring proto-oncogenes by the strong promoter and enhancer 

elements contained within the viral LTR, (Bishop & Varmus, 1985) and the 

inactivation of cellular genes by integration within a gene coding sequence, or in an 

intron. disrupting normal transcription.

1.4.4. Synthesis of progeny virions.

After integration, proviral transcription is accomplished by cellular enzymes. 

(Varmus & Swanstrom, 1982, 1985) The provirus is transcribed as a single species 

that initiates in the 5' LTR and undergoes a polyadenylation at the 3' end of the 

genome. A portion of this RNA is spliced to form the subgenomic env mRNA. The 

full length RNA functions both as the mRNA for gag and pol products, which are 

translated on membrane free ribosomes, and as the genomic RNA to be packaged 

into the new virions. The env mRNA is translated on membrane bound ribosomes 

and is co-translationally translocated into the endoplasmic reticulum (ER) via an N- 

terminal signal peptide. A hydrophobic stretch in the C-terminal half of TM anchors 

the polvprotein in the membrane. The gag-pol viral polyproteins are cleaved into
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individual proteins by PR, and the env polyproteins by cellular proteases within the 

ER. The env proteins remain associated after cleavage and during transport to the 

plasma membrane. Studies on Rous sarcoma virus suggest that the envelope 

proteins associate as trimers and that this oligomerisation is necessary for 

translocation to the cell membrane. (Einfeld & Hunter, 1988) The envelope proteins 

of HIV are thought to associate as dimers or tetramers. (Thomas et al. 1991) The SU 

protein (and in some viruses, TM) is heavily glycosylated on its transfer from the ER 

to the cell membrane via the Golgi. The env gene products reach the outer cell 

membrane, the TM protein anchoring the extracellular SU protein to the cell/virion 

surface. In the cytoplasm, the virion core assembles and buds out from the cell, 

surrounded by host cell membrane which is embedded with the envelope proteins. 

And so the cycle begins again.

SECTION 2. FACTORS INVOLVED IN THE HOST RANGE 

SPECIFICITY OF ONCOVIRUSES.

2.1. The surface envelope protein.

The ability to bind to cellular receptors is a major determinant of the host 

range of a virus and is a function of the SU protein of the env gene.

2.1.1. Sequence requirements for receptor recognition.

Comparisons of the env gene sequences encoding SU of related avian and 

mammalian type-C viruses which display different host ranges show that there are 

clustered amino acid changes (variable regions) within SU that are implicated in the 

recognition of different receptors. The construction of viruses with chimeric 

envelope genes has been particularly useful in localising the regions determining 

receptor specificity. (Dorner & Coffin, 1986, Battini et al. 1992)

The avian leukosis viruses of chickens can be divided into 5 host range 

subgroups, A-E. The domain of the env gene product responsible for subgroup 

specificity has been mapped to the middle third of SU. Sequence analysis of three of
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the subgroups, B, C and E, identified two major variable regions of low sequence 

homology (hrl and hr2) and three minor ones (vrl and vr2, displaying subgroup B 

variation and vr3). (Dorner et al. 1985, Domer & Coffin, 1986, Bova et al. 1988) 

Construction of viruses with recombinant SU molecules containing different 

combinations of these variable regions showed that receptor binding specificity was 

determined by the two major regions, hrl and hr2, and one minor region, vr3. These 

regions are presumably on the surface of the folded SU protein and interact directly 

with the cell receptor binding sites.

The SU proteins encoded by MuLVs and generally by all mammalian type-C 

retroviruses are composed of three structurally distinct domains. (Battini et al. 1992) 

The N-terminal two thirds of the SU domain of MuLV contains the greatest 

sequence variation, consisting of 200-230 amino terminal residues with important 

sequence variations among viruses of different subgroups, and a proline-rich region 

of 50-60 amino acids. These regions presumably carry the determinants of specific 

receptor interaction. The last third of SU and the whole of TM are much more 

highly conserved. (Stoye & Coffin, 1987) The N-terminal regions of ecotropic viral 

envelopes are most dissimilar from the other MuLVs, with only about 40% sequence 

homology with xeno- or polytropic viruses in this region. This dissimilarity is 

emphasised by the presence of several insertions of 10-34 amino acids in the 

ecotropic env gene compared to other viruses. The xeno- and polytropic viruses are 

much more similar, with greater than 80% sequence homology.

The SU coding sequence of the three different subgroups of FeLV have been 

shown to display a number of variable regions relative to endogenous SU sequences, 

which have been designated variable regions (Vr) I-VII. (Kumar et al. 1989) Figure 

3 shows the amino acid sequences of the gp70 SU of different isolates of FeLV-A, B 

and endogenous FeLV (enFeLV), compared to FeLV -A /Glasgowl. A number of 

insertions and deletions in the sequences of the subgroup B viruses had to be made in 

order to get the best alignment of sequences. The variable regions are underlined. 

This comparison has identified a further variable region, which has been designated 

Vr la. The proline rich region is located just upstream of Vr V. There
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are many amino acid changes in the sequence of FeLV-B SU relative to those of 

subgroup A SU. Those that are found in all FeLV-B SU sequences may be 

presumed to be responsible for the subgroup B specificity of these proteins.

Hybridisation studies of FeLV-B env sequences to feline DNA (Stewart et 

al. 1986) and the sequence analysis of two endogenous FeLV env genes (Kumar et 

al. 1989) have suggested that FeLV-B viruses are natural recombinants between 

FeLV-A and endogenous envelope sequences. This proposal has been supported by 

the production of FeLV-B-like viruses in feline cells that had been transfected with 

FeLV-A DNA. (Overbaugh et al. 1988)

2.1.2. Viral interference.

Viruses can be shown to belong to the same or to different subgroups by their 

ability to overcome viral interference. Viral interference is established in 

productively infected cells presumably by the binding of newly synthesised SU to 

their specific cellular receptors. (Weiss, 1982, Buller et al. 1987,1989) Consequently, 

there is a significant reduction in free cellular receptors available for new infecting 

virus and as a result, virally infected cells cannot be reinfected by viruses of the 

same subgroup. Viral interference can be overcome by viruses of another subgroup, 

however, as they will use a different cellular receptor. Viral interference may benetit 

both the virus and host, as unrestricted viral entry and proviral integration would 

increase the chance of disruption or activation of important cellular genes, and lead 

to host cell death.

2.2. Cell receptors.

The host range of a virus depends both on the ability of the particular virus 

SU to bind to a specific cellular receptor and the distribution of that receptor. 

Therefore the identification and characterisation of these receptors is an important 

aspect of the study of retrovirus host range.



2.2.1. Avian virus receptors.

Genetic studies have shown the susceptibility of chicken cells to ALV is 

controlled by three genetic loci, tv-a, tv-b and tv-c (Weiss, 1982), and these are 

thought to encode receptors, tv-a controls susceptibility to subgroup A viruses and 

tv-c to subgroup C viruses, tv-b has a number of alleles and these are thought to 

control the susceptibility to infection by subgroups B, D and E, although it has been 

suggested that another locus, tv-e encodes the subgroup E receptor. (Pani, 1977). 

Subgroup B and D viruses can use the same receptors, but subgroup D viruses show 

only incomplete interference to B infection and, unlike subgroup B viruses, can 

infect mammalian cells. Subgroup E viruses also use the same receptors as B but are 

unable to interfere with B infection, presumably due to the subgroup E-SU having a 

decreased affinity for the receptor compared to subgroup-B viruses. (Weiss, 1982)

2.2.2. Murine virus receptors.

MuLVs with divergent host ranges and antigenicity, have also been shown to 

use different cellular receptors. The ecotropic receptor, Rec-1, mapped to 

chromosome 5, (Gazdar et a/. 1977, Kozak et al. 1990) has been cloned and partially 

characterised. (Albritton et al. 1989) Although the sequence of Rec-1 has not been 

linked to the sequence of any known gene, there are a number of motifs typical of a 

transmembrane transport protein. Functional studies have suggested that Rec-1 is a 

basic amino acid transporter. (Kim et al. 1990, Wang et al. 1991) The murine cell 

receptors for polytropic viruses, Rmc-1 (Rein, 1982, Kozak, 1983) and amphotropic 

viruses, Ram-1 (Gazdar et al. 1977, Garcia et al. 1991) have been mapped to 

chromosomes 1 and 8 respectively. Although xenotropic viruses cannot infect 

laboratory strains of mice, wild mice do possess a cell receptor, Sxv-1, which allows 

xenotropic virus infection. (Copeland et al. 1983) As this genetic locus maps close to 

Rmc-1 on chromosome 1, it suggests that an allele of Rmc-1 may serve as a receptor 

for xenotropic viruses. It is likely that this locus has been lost during the inbreeding 

of laboratory mice.
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2.2.3. Feline virus receptors.

The cellular receptors involved in the FeLV infection are less well 

characterised but it has been recently shown that FeLV-B can use the receptor for 

gibbon ape leukaemia virus in human cells. (Takeiuchi et al. 1992) This human 

receptor shows between 31-38% homology to pho-4+, a phosphate permease of 

Neurospora crassa. (Johann et al. 1992) The receptor shows no significant 

homology to other known genes found in the GenBank or NBRF data bases. It has 

yet to be shown if this represents the FeLV-B receptor found in feline cells.

SECTION 3. ENDOGENOUS RETROVIRAL ELEMENTS.

3.1. Introduction.

As a consequence of the normal retroviral life cycle and the repeated 

integration of DNA proviruses into the host genome over a long period of time, the 

genomes of many vertebrates have accumulated a large number of retrovirus related 

sequences (endogenous retroviral elements-ERVs). (Coffin, 1982, Stoye & Coffin,

1985) In fact, all ERVs resemble integrated proviruses in both their gross gene 

structure (LTR-gag-pol-env-LTR) and at the cell-virus junction, with a deletion of 

LTR sequence and a duplication of cellular DNA at the site of integration, 

characteristic of retroviral integration. (Cullen et al. 1983, Stoye & Coffin, 1985) In 

the relatively small time scale involved in genetic experiments, the endogenous loci 

behave as stable genetic elements and are inherited as Mendelian genes. However, 

over the longer period, these loci have proved to be genetically mobile. (Coffin et 

al. 1991) In inbred mice, each strain contains a unique pattern of proviral DNA 

incorporated into the genome at unique chromosomal positions. (Stoye & Coffin, 

1988) These can be viewed as virus-cell junction fragment polymorphisms, and the 

term "locus" will be used in this thesis to describe a provirus of unique structure 

and/or cellular location. In inbred mouse strains, some loci may be shared among 

related strains, but no two strains appear to have the same ERV pattern (or 

"fingerprint"). In fact only one locus has been identified as common to all inbred
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mice tested. (Coffin et al. 1991) In much less inbred chicken flocks, individuals 

possess an assortment of loci from a species pool. (Rovigatti & Astrin, 1983) The 

genetic heterogeneity of ERVs appears to be related to the length of time that the 

endogenous viruses have been integrated into the gene pool of the species. 

Compared to other vertebrates, the inbred mice have acquired many of their 

endogenous viruses relatively recently, and some within the last century of 

inbreeding. This has been complicated by the gain and loss of proviral sequences. 

The host genome is always subject to new proviral integrations of infectious 

sequences; if this occurs in germ line cells it will be inherited as a host gene. The 

homology of the LTRs flanking the provirus allows for rare homologous 

recombination resulting in the loss of the genome and leaving a single LTR in the 

host DNA.. A number of single LTRs have been cloned from the mouse genome 

(Stoye & Coffin, 1987), and feline genomes are "littered" with single LTR 

sequences. (O'Brien, 1986)

Endogenous retroviruses are considered to be non-essential to the host, and 

so deletions and mutations, occurring at integration or as a consequence of cellular 

mutations, can be tolerated. Many ERVs have gross gene deletions and others, point 

mutational defects. (Hayward et al. 1980, Hughes et al. 1981, Soe et al. 1983, 1985, 

Ikeda et al. 1985) The flanking DNA of a number of loci have been shown, by 

restriction enzyme mapping, to be similar (Soe et al. 1983) and the mapping of 6 

ERV loci to chromosome 1 in chickens suggests that the process of gene duplication 

may have been involved in the generation of these ERVs (Tereba, 1981, Tereba & 

Astrin, 1982). After the duplication event each new locus would be subject to 

independent genetic drift. Other loci, however are clearly the result of unique 

integrations. (Soe et al. 1985)

Endogenous proviral loci are less prone to individual sequence mutations 

than exogenous infectious virus since they are replicated by host DNA polymerases 

whilst the infectious viruses are replicated (more frequently) by the viral enzyme 

reverse transcriptase, an enzyme with lower fidelity, and no proof reading capacity. 

(Roberts et al. 1989)
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3.2. Characterisation of endogenous retroviral elements.

Endogenous (and exogenous) viruses of different species are sub-classified 

by a number of criteria but the most common distinguishing features are the 

polymorphic envelope genes and specific envelope antigens.

3.2.1. Endogenous retroviruses related to ALV.

The genome of the domesticated chicken contains multiple ERVs related to 

ALV. (Rovigatti & Astrin, 1983) Using Southern blotting and genetic studies, more 

than 22 individual loci have been identified and characterised to varying degrees. 

(Astrin et al. 1980b, Hughes et al. 1981, Zemiecki et al. 1988) These are known as the 

ev- loci. Some, like ev-I, 2 and 7 represent complete proviruses, while others, like 

ev-3, 6 and 9 contain gross structural deletions. The env genes of the ev- loci are 

classed as subgroup E, (Vogt, 1969) and the ev-2 locus is responsible for producing 

the endogenous infectious virus, RAV-0. (Astrin et al. 1980a) Most of the 

structurally complete loci are not expressed but a few truncated loci do express one 

or more viral gene products at high levels. (Hayward et al. 1980, Rovigatti & Astrin, 

1983)

3.2.2. Endogenous retroviruses related to MuLV.

In the mouse, the situation is more complicated, because there are 3 different 

classes of ERVs related to MuLV in mice. These are ecotropic, xenotropic and 

polytropic. Ecotropic loci occasionally can produce an infectious virus, whose 

replication is restricted to murine cells. Xenotropic loci can occasionally produce 

infectious virus, which is restricted to replicate in non murine cells only. The 

polytropic endogenous viral sequences never produce infectious virus in their own 

right but the env genes confer a new host range to ecotropic viruses via 

recombination. (Section 4.2.) The polytropic host range allows the virus to infect 

both murine and non murine cells. The polytropic loci can be sub-divided into 

polytropic and modified polvtropic loci (the modifications being the acquisition of a 

H indlll site at the 3' end of pol, and a 27bp deletion in the SU coding region o f the
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env gene. (Stoye & Coffin, 1987) There is extreme genetic variation between strains 

of mice regarding the possession of endogenous loci. (Stoye & Coffin, 1988, Frankel 

et al, 1989a, 1989b, 1990) A number of high leukaemia incidence strains of mice 

possess 2-3 ecotropic loci capable of producing virus. (Chattopadhyay et al. 1980) 

Those in the high leukaemic AKR mouse strain are active from an early stage in 

development. (Rowe & Pincus, 1972, Kawashima et al. 1976) Low leukaemia 

incidence strains such as BALB/c possess only one ecotropic locus, and many strains 

have none. (Chattopadhyay et al. 1980, Kozak & Rowe, 1982) Mouse strains are 

also heterogeneous in the possession and production of xenotropic virus. (Hoggan et 

a/. 1986)

A laboratory mouse may contain from 0-6 ecotropic loci, 5-16 xenotropic 

loci, and from 30-50 poly- and modified polytropic loci. (Stoye & Coffin, 1988) 

Analysis of the ERV content of inbred mice is further complicated because the 

different classes of ERV related to MuLV are closely related, with differences 

limited to small regions of the env gene The development of oligonucleotide probes 

that distinguish between the individual classes of ERV (Stoye & Coffin, 1988) has 

resulted in the identification of 40 individual xenotropic loci, 47 polytropic loci, and 

30 modified polytropic loci in the inbred mouse gene pool. (Frankel et al. 1989a, 

1989b, 1990)

3.2.3. Endogenous retroviruses related to FeLV.

The genome of the domestic cat contains approximately 8-12 integrated 

copies of endogenous proviral elements related to FeLV. (Koshy et al. 1980) The 

loci are heterogeneous in size and chromosomal position. This can be shown, as in 

the other systems, as a length polymorphism of virus-cell junction restriction 

fragments. As the domestic cat is a diverse, outbred population, each animal has a 

unique set of loci which are inherited as Mendelian genes. Close relatives would be 

expected to have a greater proportion of common loci. EnFeLV elements are found 

in the domestic cat and its five closest relatives in the genus Felis. (O'Brien, 

1986)(Fig.4) These are thought to have diverged from a common ancestor species
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which was found in the Mediterranean basin (Southern Europe, North Africa, Asia 

Minor) (Benveniste & Todaro,1974) about 6-8 million years ago. (O'Brien, 1986) 

The incorporation of the retroviral elements into the genome of this species was 

presumably the result of a widespread epidemic resulting in the incorporation of 

DNA proviruses into germ line cells. EnFeLV elements presumably segregated as 

independent Mendelian elements in the subsequent evolution and divergence of the 

six species named. It is interesting to consider the origin of the enFeLV genetic 

information. The env gene of enFeLV displays an unexpectedly high sequence 

homology to the env genes of murine polytropic MCF viruses. (Elder & Mullins, 

1983, Wunsch et al. 1983) Recombinant env genes containing enFeLV sequences 

also confer a polytropic host range. (Jarrett et al. 1978b, Stewart et al. 1986) The 

MCF-related endogenous elements are found in wild mice in limited geographical 

areas, including the M editerranean area. (Kozak & O ’Neill, 1987) Although it 

cannot be said that these geographical limitations have been constant over 6 million 

years, it is an interesting coincidence. It is therefore conceivable that the enFeLV 

could have originated from a polytropic mouse vims. However, transmission in the 

opposite (cat to mouse) direction cannot be excluded. Another retrovirus family 

endogenous to the feline genome is the xenotropic virus, RD114. (M cAllister et 

al.\912, Baluda & Roy-Burman, 1973, Livingston & Todaro, 1973) Although this 

virus is unrelated to FeLV, (Livingston & Todaro, 1973) it is found in the same six 

feline species that enFeLV loci are found. (Benveniste & Todaro, 1974, O 'Brien,

1986) In fact, the sequence homology of R D 114 suggests an origin from a baboon 

type C vims. (Hu et a/. 1977) A study of the segregation of RD114 and enFeLV 

related proviruses in feline DNA in experimental crosses of the domestic cat and a 

species negative for both endogenous families, indicated that in the backcross of the 

FI progeny with the negative species, the two endogenous families segregated as if 

they were closely linked. (Benveniste & Todaro, 1975) However only two progeny 

were studied, and there is too little evidence to conclude that the two unrelated 

retroviral families are genetically linked in the complex feline genome.

31



Early Southern blot analysis data using FeLV-B proviral DNA as a probe 

showed that using appropriate restriction enzymes, individual endogenous loci could 

be separated and identified in virus negative tissue. (Koshy et al. 1980) In this study, 

the most satisfactory results were obtained using an EcoRI digest which was thought 

to cut in the cellular flanking DNA and not within the provirus itself. Assuming that 

proviral DNA was of constant size, the differences in location of restriction enzyme 

sites in the flanking DNA would result in an unique fragment for each locus. 

Heterogeneity was observed between the proviral loci of two different cats. It was 

also confirmed that the proviral pattern was the same in different tissues of the same 

individual.

The cloning and characterisation of a number of enFeLV loci from a 

placental DNA library of a specific pathogen free cat showed that there was a great 

deal of heterogeneity in the overall size and structure of the enFeLV loci present in 

one individual. (Soe et al. 1983, Soe et al. 1985) Overall the enFeLV proviruses 

could be divided into two categories; those with essentially full length genomes, and 

those which were truncated, with gross deletions involving gag, pol or env genes. 

The clones were all analysed by restriction enzyme analysis. There appeared to be a 

conservation among all the clones of the pol to env boundary and the SU region of 

env gene itself (when these regions were present in the deleted clones). A much 

greater degree of heterogeneity was observed in the gag and TM -env regions. A 

proportion of truncated proviruses had similar restriction enzyme sites in the 

flanking DNA, suggesting that these loci may have been the result of gene 

duplication. (Soe et al. 1983) However, the essentially full length isolates 

demonstrated unique flanking restriction maps suggesting that they are the result of 

independent insertions. (Soe et al. 1985)

Nucleotide sequence analysis of the env genes o f two of the enFeLV clones 

was performed. Of these, one represented a complete env gene and the other a 

substantially truncated gene, the deletion encompassing the 3' half of SU and the 

whole of TM. (Kumar et al. 1989) (See Fig.3)
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3.3. Control of cellular expression of ERVs.

The expression of endogenous related genomes can, as discussed, result in 

the spontaneous production of infectious virus. However expression of ERVs can 

vary, ranging from spontaneous or induced virus production, to expression of single 

gene products to transcriptional silence (or transcription at levels that cannot be 

detected). (Coffin, 1982, Stoye & Coffin, 1985) Therefore expression varies widely 

and the controlling mechanisms are poorly understood.

The first requirement for expression is the inheritance of active loci. Many 

loci are transcriptionally repressed or silent. (Hayward et al. 1980) This may 

represent a defect in the viral promoter and initiation sequences, but the expression 

of many structurally intact loci are also repressed.

3.1.1. Methylation.

One factor that has been shown to correlate with transcription of endogenous 

proviruses is DNA methylation. The ev-J locus is transcriptionally silent but 

contains the gross gene structure required for virus production. (Hayward et al. 1980) 

A comparison of the relative levels of methylation of the relatively silent ev-1 locus, 

and the transcriptionally active ev-3 locus, showed that levels of methylation were 

inversely proportional to the rate of transcription. The transcription of ev-1 is 

induced in vitro by the treatment of fibroblast cells with 5-azacytidine, an inhibitor 

of cellular DNA methylation. (Groudine et al. 1981) However, the virus induced 

from this locus has been found to be non infectious, lacking reverse transcriptase and 

envelope surface antigens. (Conklin et al. 1982) These are probably the result of 

small mutational defects. The action of methylation inhibitors has also been shown 

to induce the increased transcription of ev-2 , the ERV locus capable of the 

production of subgroup E infectious virus, RAV-0. (Astrin et al. 1980a) The 

observation that cloned viral DNA from the Mov-3 substrain of mice was infectious 

after transfection, while genomic viral DNA was not infectious, was interpreted by 

Harbers et al (1981) to demonstrate the action of methylation of genomic DNA in 

repressing proviral expression. (However, the insertion of the provirus into a novel
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chromosomal location could affect the ERV expression. (See 3.3.3.)) Further, 

transient exposure of murine fibroblasts to 5-azacytidine resulted in the expression of 

endogenous type-C and type-A viruses, and also to transformation of the cells. 

(Hsiao et al. 1986)

It is possible that during viral infection a number of proviruses could be 

integrated into heavily methylated regions of DNA and that their further 

transcriptional activity would be repressed.

3.3.2. The long terminal repeat.

The study of the LTRs of ev-1 and ev-2 indicated that differences relative to 

the exogenous RAV-2 (subgroup A) LTR accounted for the relatively low level of 

virus production despite induction of transcription. The endogenous LTR was 

shown to be ten fold less active than the exogenous LTR. (Cullen et al. 1983) This 

difference was linked to the divergent U3 sequences of exogenous and endogenous 

viruses. In particular, the endogenous LTRs lack the enhancer element present in the 

exogenous virus LTR. (Hughes, 1982, Schwartz et al. 1983)

The U3 region of the FeLV LTR has been shown to be significantly different 

from endogenous LTR sequences. (Casey et al. 1981) Transient expression studies 

have indicated a differential ability of enFeLV LTRs to drive transcription, but this 

was linked primarily to sequences in the flanking DNA. (See 3.3.3.)

3.3.3. Chromosomal position.

Another form of control was indicated by the observation that the ev-2 locus 

was transcribed at low levels in situ but that the resulting virus was capable of high 

transcription after integration into a new cellular location. (Jenkins & Cooper, 1980, 

Humphries et al.1919, 1981) Aside from the possibility that the new location is in a 

different methylation state, these results suggested that cellular flanking sequences 

may have an effect the transcription of proviral DNA. This may reflect integration 

into a region of chromosome that is transcriptionally active or the actions of tissue 

specific cellular enhancers on the viral LTR.
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EnFeLV have never been found to produce infectious virus. (Quintrell et 

al. 1974, Benveniste et a/. 1975) EnFeLV gag sequences have been shown to contain 

extensive nonsense mutations that would prohibit the production o f virus. (Berry et 

al. 1988) The LTR of a cloned full length enFeLV locus has been shown to be 

potentially active but is strongly repressed by cis acting sequences within the 5' 

flanking DNA. (Berry et al. 1988)

The importance of the influence of flanking DNA sequences for some ERV 

loci is demonstrated by the avian ev-6 locus and the murine Fv-4 locus. Both loci 

lack 5' LTRs and transcription is presumed to be from cellular promoters. (Hayward 

et al. 1980, Hughes et al. 1981, Ikeda et al. 1985, Ikeda & Sugimura, 1989)

3.3.4. Cell differentiation and development.

The chromosomal locations of many ERVs have been mapped close to 

lymphoid and differentiation specific antigen genes, (Blatt et al. 1983, M eruelo et 

al. 1983, Wejman et al. 1984) and the expression of some ERVs has been linked to 

differentiation. Expression of a xenotropic ERV (Bxv) in B-cells has also been 

induced by B-cell mitogens such as lipo-polysaccharide (LPS) (Moroni et al. 1975, 

Moroni & Schumann, 1975), and amplified by chemicals such as BUdR. (Stoye & 

Moroni, 1983) An apparently defective virus (Bdv) is also induced by LPS 

stimulation of B-cells, but is unaffected by BUdR treatment. (Stoye & Moroni, 1983, 

Stoye & Moroni, 1984) Further studies have shown that the production of these 

endogenous viruses requires DNA synthesis, cell proliferation, and for Bxv, at least, 

B-cell differentiation. (Stoye & Moroni, 1985) Expression o f some ERVs therefore 

may be linked to the multi-stage process of B-cell differentiation. An example of the 

control o f ERV expression being linked to development is the Akv-1 locus of AKR 

mice which is activated to produce ecotropic virus at around 18 days gestation. 

(Rowe & Pincus, 1972)

35



3.3.5. Tissue specific factors.

Tissue specific control of ERV expression may be affected by trans activator 

proteins expressed only in certain tissue types. The LTRs may also be influenced in 

cis by both cellular enhancers or silencers. The G K differentiation antigen, found on 

the surface of thymocytes in strain 129 mice (Stockert et al. 1971) has been shown to 

be a polytropic env gene SU (Obata et al. 1975, Levy et al. 1985a) and its expression 

is controlled in trans by two distinct loci, Gv-1 and Gv-2. (Stockert et al. 1971, Levy 

et al. 1985b) It has been demonstrated that a null allele at Gv-1 correlated with a 

reduction in the steady state levels of retroviral RNA and a reduction in the 

transcription of the ERVs. (Levy et al. 1982) Multiple sized mRNAs were linked 

to Gv-1 action, and it may be that the product of Gv-1 is a diffusible protein which 

interacts with DNA sequences associated with a number of ERV transcription units 

including the G K locus. GIX levels are also hormonally regulated. The increased 

levels of expression found in male mice compared to female mice have been shown 

to be the result of the action of the steroid hormone, testosterone on an unidentified 

tissue common to both sexes. (Obata et al. 1978) It is possible that the action of 

testosterone is linked with the action of Gv-1 or 2.

In summary, a number of ERV loci are transcriptionally inactive due to 

factors including methylation, trans-aciing factors and c/s-acting factors in the 

flanking DNA. Some ERV loci may be induced by activation of the transcription of 

flanking genes, by tissue specific factors or by other gene products acting in trans. 

In natural populations there appears to be a selection against the expression of ERV 

loci encoding fully infectious virus. ERV loci with the full genetic information 

required to produce virus are not translated to high levels and ERV loci which are 

transcribed represent substantially deleted proviruses and they express only a subset 

of viral gene products.

SECTION 4. BIOLOGICAL EFFECTS OF ERVS

Endogenous retroviral elements are considered non essential to the host. This 

has been formally shown for the ev loci in chickens where the polymorphic loci have
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been deliberately bred out, with no ill effects. (Astrin et al. 1979) (It has since been 

shown that these birds do contain reverse transcriptase related gene sequences. 

(Dunwiddie & Faras, 1985)) However, there is a growing body o f evidence to 

suggest that ERVs should not be regarded as simply selfish DNA, but that they have 

significant effects to both disease potential and host susceptibility to infection.

4.1. Germ line insertion of retroviruses.

The possibility that endogenous retroviral elements are genetically mobile is 

predicted from the retroviral lifestyle and suggested further by the heterogeneity of 

loci present in different individuals or sub-strains of a species. Studies have shown 

that incorporation of a new ecotropic locus into the genome of the high 

leukaemogenic AKR mouse occurs on average once every 12 generations, (Buckler 

et al. 1982) or once every 15-30 years. (Steffen et al. 1982) This high rate of viral 

insertion may reflect the high selection placed on the development of leukaemia in 

the genetic inbreeding to produce the AKR strain. It is much more likely that in an 

unselected system, the acquisition of ecotropic viral loci capable of producing 

infectious virus would have been selected against. A much lower, but still 

detectable, frequency of novel integrations of the non-ecotropic ERVs has been 

measured. These are presumably under different selective pressures. The 

observations of both loss and gain of proviruses in the study of the linkage patterns 

of the three classes of non-ecotropic ERVs in recombinant inbred mice strains 

(Frankel et al. 1989a, 1989b, 1990) led to the calculation that a novel provirus was 

gained every 3,500 generations, and the rate of virus loss was 4x1 O'6 per provirus per 

generation. (Coffin et al. 1991)

The observed frequency of insertions and deletions of ERV loci is therefore 

very small, but a number of cellular gene mutations have been linked with 

endogenous proviruses, and two have been directly shown to be caused by virus 

insertions. The dilute (d) coat colour mutation in DBA mice is caused by the 

integration of an ecotropic provirus, emv-3 (Jenkins et al. 1981) The genetic markers 

for d  and em-3 were shown to be very closely linked, and spontaneous revertants
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were found to have lost the proviral genomic sequences, presumably through 

homologous recombination o f the LTRs. (Copeland et al. 1983) The hairless 

mutation (hr) of HRS/J mice is autosomal, recessive and maps to chromosome 14. 

(Meier et al. 1969) Again this locus was seen to display very close linkage to an 

endogenous retroviral locus, in this case a polytropic locus pmv-43, and again the 

isolation of a spontaneous revertant of the phenotype lacking the linked proviral 

DNA genome sequence established causality. (Stoye et al. 1988) In both cases, 

therefore, it has been shown that the presence of a proviral genome integrated at the 

hr or d  loci cause the defect in the phenotype coded by these genes. Although it is 

suspected that the proviruses may be integrated in a non-coding region (because the 

presence of the single LTR has no observed disruptive effect) the precise mechanism 

involved in gene disruption has not been established. (Coffin et al. 1991)

4.2. Generation o f viral diversity bv recombination with ERVs.

ERVs have been shown to participate in recombination with infectious 

exogenous virus with a variety of consequences for both virus and host. The 

phenomenon of high frequency recombination and the natural forces of selection are 

largely responsible for the genetic variation of retroviruses. Retroviral 

recombination is a consequence both of the virus packaging two genomes in each 

virion, and the characteristics of the enzyme reverse transcriptase. (Coffin, 1990, 

Katz & Skalka, 1990)

4.2.1.Retroviral recombination.

Most evidence indicates that recombination of two different viral genomes 

requires the formation o f heterozygous particles, with recombinants being observed 

in the second round of infection. This therefore requires the expression of both 

progenitor genomes in the cells in the first round infection (Weiss et al. 1973) and the 

co-packaging of both genomes in the emerging virus particles. (Hunter, 1978, Hu & 

Temin, 1990a) Several mechanisms of recombination have been proposed but the 

evidence points to recombination being a function of the viral enzyme reverse
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transcriptase and its ability to move from one template to another during DNA 

synthesis. (See section 1.4.2.) (Panganiban & Fiore, 1988) Within this model there 

are a number of different methods proposed as to when and how the reverse 

transcriptase transfers from one template to another, but there is evidence to indicate 

that recombination occurs both during minus (Coffin, 1979, Goodrich & Duesberg, 

1990) and plus strand (Junghans et al. 1982, Hu & Temin, 1990a) synthesis. 

Retroviral recombination has been shown to repair defective viruses, with 

endogenous sequences providing functional DNA sequences (Schwartzberg et 

al. 1985, Martinelli & Goff, 1990) and the recombination o f two retroviral genomes 

mediated by RT has been shown to produce a broad spectrum of frameshifts, 

substitutions and other mutations (Pathak & Temin, 1990a), deletions and deletions 

with insertions. (Pathak & Temin, 1990b)

4.2.2. Avian leukosis virus recombinants.

Recombination involving the env genes of endogenous loci has been 

identified in chickens. This has a number of consequences for both virus and host. 

The chicken ev-2 locus harbours a complete provirus (Hayward et al. 1980, Hughes 

et al. 1981) capable of producing infectious virus of subgroup E. (Astrin et al. 1980) 

However the expression of this locus and the corresponding virus production is low 

and the basis of this has been discussed previously. (See section 3.3)

A number of truncated endogenous avian proviral loci express large amounts 

of RNA including the loci ev-3, -6 and 9, which all express a subgroup E env gene. 

(Astrin, 1978, Astrin & Robinson, 1979, Hayward et al. 1980) The protein product 

of this gene has been shown to be involved in phenotypic mixing with infectious 

virus, the resulting "pseudotype" having a mixture o f both exogenous and 

endogenous SU, or in combination with envelope defective viruses such as the Bryan 

high strain of RSV, subgroup E alone. (Weiss, 1969, W eiss et al. 1973) It was this 

ability to "rescue" envelope defective viruses that led to the coining of the term, 

chick helper factor (chf) to describe the product of the endogenous env gene. 

(Shields et al. 1978, Hanafusa et al. 1970a)
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ERVs are also involved in genetic recombination to produce replication 

competent viruses of subgroup E host range. (Hanafusa et al. 1970b, Weiss et 

al. 1973) These viruses, collectively termed RAV-60 viruses, can be isolated by 

recombination with ALV of any subgroup, and from all chicken cells although the 

efficiency of isolation from cells not expressing endogenous env genes (chf-) is low. 

(Coffin et al. 1983) Recombination has also been reported involving non-defective 

transforming RSV and again efficiency of expression was shown to be dependent on 

the expression of chf. (Weiss et al. 1973) These recombinants generally involved 

only the endogenous env gene, which is sufficient to determine the subgroup 

properties of the virus. (Tsichlis & Coffin, 1980)

Other recombinants have been described in which exogenous subgroup B or 

D viruses acquired a small portion of an endogenous env gene, leading to new 

viruses with a "dual"-tropic host range, being able to infect both chicken cells which 

were permissive for subgroup B and D but not E, and turkey cells permissive for 

subgroup E but not B or D. (Tsichlis et al. 1980) The sequence differences 

responsible for this expanded host range are more limited than those involved in 

subgroup specificity of the avian env gene, and is further complicated by the genetic 

diversity of the cellular receptors for these subgroups in chicken and turkey cells. 

(Vogt, 1977)

Avian endogenous viruses are generally non pathogenic in chickens, (Motta 

et al. 1975, Robinson et al. 1982) but the acquisition of a new subgroup would allow 

virus spread to new hosts, or the re-infection of cells already infected by the parental 

exogenous virus, by-passing receptor interference, through the use of a subgroup E 

receptor. However most chicken cells cannot support the replication o f subgroup E 

virus, which has a xenotropic host range, and so the significance of the viral 

acquisition of an endogenously encoded host range in chicken infections may be 

limited.
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4.2.3. Murine leukaemia virus recombinants.

In the inbred mouse, recombinants between exogenous and endogenous viral 

sequences are often complex, due in part to the large number and heterogeneity of 

the endogenous population of the mouse genome, and many of these recombinant 

viruses play an important role in MuLV induced leukemogenesis.

4.2.3.1. MCF viruses.

The MCF viruses are associated with the development of spontaneous 

leukaemias in a number of mouse strains. (Flartley et al. 1977, Green et al. 1980) 

These viruses were first described as novel agents associated with the development 

of thymoma in the AKR mouse strain. (Hartley et al. 1977) AKR mice harbour 

ecotropic viral loci (Chattopadhyay et al. 1980) which express large amounts of virus 

from about 18 days gestation until death (Rowe & Pincus, 1972), and the presence of 

this virus is a prerequisite for leukaemia development. (Lilly et a/. 1975) MCF 

viruses are detected in pre-leukemic tissues and appear to be the proximal leukemic 

agent in these mice. (Kawashima et al. 1976, Hanley et al. 1977) MCF viruses 

represent recombinants between the ecotropic virus and endogenous viral sequences. 

(Chattopadhyay et al. 1982) The acquisition of some or all of the env gene of 

endogenous polvtropic loci (Khan, 1984) results in an expanded host range with the 

viruses being able to infect both murine and non murine cells (Hartley et al. 1911, 

Fischinger et al. 1975). The name MCF (Mink Cell Focus-forming) comes from the 

observation that these viruses can induce cytopathic foci on mink lung cells (initially 

used as a diagnostic test for MCF viruses.) (Hartley et al. 1977)

MCF related viruses have also been linked to leukemic induction by a 

number of exogenous MuLVs, including Moloney and Friend MuLV. (Bosselman et 

al. 1982, Evans & Cloyd, 1985) Indeed it is now thought that a portion of the 

Moloney-MuLV genome itself is derived from endogenous envelope sequences. 

(Khan et al. 1982) and the erythroleukaemia inducing virus, SFFV, possesses a 

truncated env gene that also is derived from endogenous sequences. (Troxler et 

al. 1917, Ruscetti et al. 1979, Amanuma et al. 1983, Clark & Mak, 1983, W olff et 

al. 1983, Bestwick et al. 1984)
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The MCF viruses differ in detailed structure and points of recombination but 

they can be sub-divided into two groups on the basis of the extent of sequence 

substitution and leukemogenic potential (Lung et al. 1980, 1983, Evans & Morrey,

1987). Class I MCF viruses represent the classic leukemogenic recombinants, with 

the ability to induce cytopathic foci on mink lung cells. They are composed o f an 

ecotropic backbone, with a large region of the env gene substituted with endogenous 

polytropic env sequences. At least two thirds of the SU protein, including both the 

amino-terminal and the proline rich regions are involved. A second substitution 

involves the replacement of the C-terminal region of TM and U3 of the ecotropic 

virus with those from an endogenous xenotropic virus. Class II viruses are non- 

leukemogenic but do have the expanded host range, and contain only the envelope 

substitution, which usually involves the entire env gene. The mouse genome 

contains a large number (25-50) of endogenous loci related to the polvtropic 

envelope genes. (Jenkins et al. 1981, Stoye & Coffin, 1988, Frankel et al. 1989a) It is 

probable that many do not commonly donate their env gene sequences to 

recombinants, and in fact some of those characterised display disabling deletions and 

mutations. (Stoye & Coffin, 1987) A comparison of the nucleotide sequence 

analysis of the env genes of a number of different MCF isolates suggested that those 

polvtropic ERV loci participating in the generation of M CF viruses were highly 

related as regards to env gene sequences. (Khan, 1984) Studies of recombinant 

inbred mice have failed to link one single polytropic provirus to the generation of 

MCF related disease in mice. One locus, pmv-25 was found in many, but not all, 

mice with a predominance of thymomas, (Frankel et al. 1989a) and this may 

represent a preferred locus. In contrast, a single endogenous xenotropic locus 

capable of producing vims has been shown to be the most likely source of the MCF 

vims TM/U3 sequences. (Quint et al. 1984, Hoggan et al. 1986) This locus, Bxv-1, 

has been mapped to chromosome 1 and is found in most inbred strains of mice. 

(Kozak & Rowe, 1980, Morse et al. 1982) In Class I MCF viruses, the U3 LTR has 

further undergone a somatic duplication of an approximately 70bp enhancer region 

(Holland et al. 1989, Coffin et al. 1991) containing the binding sites for at least six
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transcriptional factors. (Speck & Baltimore, 1987) These LTR sequences have been 

shown to be responsible for the targeting and efficient replication of Class I MCF 

viruses in the thymus (Holland et al. 1989) as compared to the non-thymotropic Class 

II MCF viruses containing ecotropic LTR elements. (Rosen et al. 1985, Cloyd & 

Chattopadhyay, 1986)

4.2.3.2. Generation of M CF viruses.

It is generally considered that the generation of MCF viruses involves a series 

of steps initiated by the ecotropic virus infecting cells expressing the individual non- 

ecotropic progenitors, followed by a series of recombinations involving the 

polytropic env gene and the xenotropic TM/U3, and finally the duplication of the 

enhancer region of the U3 LTR. Recombinants appear to be produced in a 

remarkably consistent manner. W hether this is due to particular recombinations 

conferring a selective growth advantage to the virus over others, or a tissue tropism 

encouraging the infection of a tissue where further recombinations are favoured is a 

matter for speculation. A number of different, if related theories have been proposed 

regarding the locations and mechanisms involved in the generation o f MCF virus. 

(Evans & Malik, 1987, Laigret et al. 1988, Stoye et al. 1991) and are based on the 

known locations of endogenous provirus expression, and the structures of potential 

intermediates in the recombination process that have been isolated. Overall 

however, it may be the ability of the final viral recombinant to replicate in its target 

organ that leads to its outgrowth above the background of the many random 

recombinants that are presumably formed. In general the genetic variability of 

retroviruses relies not only on the high mutation frequency, but also on the selective 

pressures which decide whether a particular mutant persists. MCF Class I viruses 

have been shown to selectively infect and replicate in immature lymphocytes found 

only in the thymic cortex. (Cloyd, 1983) Massive viral infection and viral 

integration of this cellular subset would lead to the activation of cellular oncogene(s) 

by insertional activation.

There is abundant evidence to suggest that the xenotropic LTR with its 

enhancer duplication is required for efficient replication in the target cells for MCF
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leukemogenesis. The role of the polytropic env sequences in leukemogenesis are 

less well understood. The replication defective virus SFFV, which causes acute 

erythroleukaemia in adult mice, encodes a truncated envelope SU gp55 which has 

been direcdy implicated in leukemogenesis. (Li et al. 1987) The observation of high 

sequence homology between gp55 and polytropic env sequences, have suggested that 

gp55 is derived from these MCF-like env genes via a recombination step and a major 

deletion and point mutations. (Troxler et al. 1977, Ruscetti et al. 1979, Amanuma et 

<3/. 1983, Clark & Mak, 1983, W olff et al. 1983, Bestwick et <2/. 1984) Recent work 

has established that gp55 binds the cellular receptor for erythropoetin (Epo-R) and 

that this interaction can activate cell growth. (Li et al. 1990) Further to this theory, 

Tsichlis and Bear have demonstrated MCF SU binding to the IL-2 receptor (one of a 

family of related cellular receptors including Epo-R) of a rat T-cell lymphoma line 

resulting in TL-2 independent growth. (Tsichlis & Bear, 1991) These studies suggest 

that the role of the polvtropic env gene sequences in MCF viruses may be to promote 

the proliferation of the target cell population thereby providing increased numbers of 

cells for virus infection, and so increasing the chance of an "oncogenic" integration.

4.2.3.3. MCF viruses and wild mice.

It is interesting to note that there are differences in the endogenous proviral 

content of different strains of wild (outbred) mice. The high conservation evident in 

the mitochondrial DNA of many inbred strains, suggests that they were all derived 

from a single female. (Ferris et al. 1982) Studies of the endogenous env content of a 

variety of wild mouse species have shown that the two progenitors of Class I MCF 

viruses, the xenotropic and polvtropic loci, are restricted to geographically separate 

populations, with xenotropic loci found in mice species from Japan {Mas musculus 

molossinus), Thailand (Mus musculus castaneus) and the south eastern regions of the 

Soviet Union (as was), China, and eastern Europe CMus musculus musculus), and 

polvtropic loci from mice species of Western Europe, the M editerranean basin and 

North America (Mus musculus domesticus) (Kozak & O 'Neill, 1987) The few 

exceptions are thought to be natural hybrids of M.m. domesticus and M.m.musculus 

(central Europe) or M.m. castaneus (Lake Casitas mice, California). The Lake
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Casitas (LC) mice (Gardner et al. 1991) have a high incidence of infectious MuLV 

and disease. Two viruses are commonly isolated from these mice. The first group 

are not found in the germline DNA of mice and have an amphotropic host range. 

(These viruses are distinct from inbred polytropic viruses and are found only in wild 

mice.) (Hartley & Rowe, 1976, Rasheed et al. 1976) These have been shown to 

induce a low level of lymphoma in infected mice. The second group of viruses 

isolated from these mice have an ecotropic host range, but can be distinguished from 

inbred ecotropic viruses. There is about 70% sequence homology of the env genes 

of Akv-1 (from AKR mice) and Cas-Br-E from (LC mice) (Rassart et al. 1986, 

Masuda & Yoshikura, 1990). These wild mouse ecotropic viruses have been 

implicated in lymphomagenesis but are also responsible for a low incidence of hind 

limb paralysis. MCF like viruses have been isolated from a species of wild mouse 

possessing polytropic endogenous loci, after infection by M oloney-MuLV. (Villar et 

6z/. 1988) This mouse species does not contain any functional ecotropic viral loci and 

so recombination would require exogenous infection. Recombination occurs readily 

between amphotropic viruses and endogenous loci of inbred mice, but there is little 

information on the relevance of this in the natural mouse population. (Kozak et 

al. 1989) The differences between pathogenic and non pathogenic ecotropic viruses 

may be due to more subtle genetic changes which do not alter viral host range as 

defined by receptor interference. This may become apparent with further studies of 

the natural viral isolates of the outbred species.

In the inbred mouse system therefore, endogenous retroviral elements play a 

significant role in the induction of leukaemia. Their effects in the outbred wild 

mouse population are less obvious.

4.2.4. FeLV recombinants.

EnFeLV proviruses of the cat appear to be highly related in their env 

sequences. (Stewart et al. 1986, Kumar et al. 1989) The recom bination between 

exogenous FeLV-A (with an ecotropic host range) and endogenous env sequences, 

results in FeLV-B viruses which have a polytropic host range. (Stewart et al. 1986,
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Kumar et al. 1989) As with MuLV recombinants, the replaced env gene sequences 

invariably include the amino-terminal and the proline-rich domains. (See Fig.3) The 

generation of FeLV-B in vivo has been much less closely studied than the MCF 

viruses. FeLV-B isolates were found in 40-60% of virus infected cats (in association 

with FeLV-A as always) (Jarrett et al. 1978a) However these studies were carried 

out in multi cat households and it was not determined what percentage of isolates 

resulted from de novo recombination, as opposed to horizontal spread.

The leukemic potential of FeLV-B is less clear than that o f MCF viruses. 

FeLV-B infection has not been linked to any particular disease state (unlike the rare 

FeLV-C viruses which induce fatal erythroplasia (Onions et al. 1982)), but the 

frequency of isolation of FeLV-B is higher from leukemic cats than healthy cats 

(Jarrett et al. 1978a). This may result from superinfection of exogenous virus 

infected cells and consequently, an increased chance of integration near cellular 

proto-oncogenes. Alternatively it may be a consequence of binding of FeLV-B to 

growth factor receptors or some more subtle effect of FeLV-B specific sequences on 

the feline haematopoetic system.

FeLV-B viruses can be more pathogenic than their ecotropic parents, but the 

difference is not generally as dramatic as that observed in the generation of murine 

MCF viruses. (Jarrett et a/.1978a,b). This may reflect the importance of the LTR 

substitution in MCF viruses, as the FeLV-B viruses retain the ecotropic virus LTR 

(Casey et al. 1981). However, it may also reflect the possible restriction of the 

replication of FeLV-B due to resistance to infection of important target cells.

4.3. Viral resistance.

The study of ERVs has suggested another role for endogenous retroviral 

products in the restriction of replication of infectious retroviruses. From the current 

information, it appears that the mediation of viral resistance by ERVs may be the 

most significant role of endogenous retroviral elements in outbred species, and may 

go some way to explain the persistence of ERVs at high copy number in the host 

genomes. The mechanism of resistance is thought to involve the blocking of specific
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cellular receptors significantly reducing the rate of penetration o f virus into cells. 

(Robinson et a/.1981, Ikeda & Odaka, 1983, Delwart & Panganiban, 1989) 

Therefore, the expression of SU is inversely correlated with viral entry into cells.

4.3.1. Viral resistance in mice.

A number of genetic loci in the mouse have been linked with the restriction 

of viral replication in particular cell types. O f these, two have been directly linked 

with the expression of an endogenous SU protein.

4.3.1.1. The Fv-4 resistance gene.

Fv-4 was first described as a gene mediating resistance to N- and NB-tropic 

Friend MuLV in the FRG strain of mice. (Kai et al. 1976, Odaka et al. 1978, 1981) 

Fv-4r expression was associated with the expression of a unique cell surface antigen 

related to ecotropic SU. (Ikeda & Odaka, 1983, 1984) A second locus, Akvr-1 

described in a number o f species of feral mice (Gardner et al. 1980) has shown 100% 

sequence homology to the proviral DNA found at the Fv-4 locus. (Dandekar et 

al. 1987) Resistance is dominant, and the gene frequency of the two alleles (r for 

resistant and s for sensitive) corresponded precisely for the observed viraemia and 

disease in LC feral mice. Both loci map to the same chromosome (Odaka et al. 1981, 

O'Brien et al. 1983) and the flanking DNA has the same restriction enzyme 

map.(Dandekar et al. 1987) Both loci behave as alleles in cross breeding 

experiments (O'Brien et al. 1983). The entire Fv-4 proviral locus and approximately 

13kb of upstream sequence has been cloned and analysed. It represents a truncated 

provirus consisting of the C-terminal 850bp of pol, an ecotropic related env gene, 

and 3' LTR. (Ikeda et al. 1985) No 5' viral sequences were found in the 13kb of 

upstream flanking DNA and so this locus is the result of either a widespread deletion 

or the insertion of at least 12kb of cellular DNA. This upstream flanking DNA was 

shown to be important for the biological function of the provirus, and was considered 

to contain sequences capable of driving the transcription of the proviral DNA in the 

absence of the 5' LTR. (Ikeda & Sugimura, 1989) The m olecular mechanisms 

controlling expression have not yet been described. Nucleotide sequence analysis of
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the env gene of Fv-4/Akvr-l showed that it encodes complete SU and TM proteins. 

Comparison of the Fv-4 sequence to other MuLV sequences showed only 70-75% 

sequence homology in the N-terminal region of env to inbred ecotropic viruses 

(Ikeda et al. 1985) but 90% sequence homology to a cloned ecotropic virus isolated 

from a wild mouse (Cas-Br-E) (Masuda & Yoshikura, 1990) again indicating that the 

Fv-4/Akvr-l locus is more specific for wild mice and was incorporated into FRG 

mice by inbreeding with Fv-4 positive wild mice. This gene therefore functions in a 

number of species of wild mice from south east Asia (or hybrids with other species) 

to restrict the replication of the wild mouse ecotropic virus by receptor interference. 

Although wild and inbred ecotropic virus SU share only about 70% homology, 

(Rassart et al. 1986) this appears sufficient for the Fv-4 gene product in FRG mice to 

bind the ecotropic receptor of inbred mice and establish viral interference.

4.3.1.2. The R m cf resistance locus.

The R m cf locus is another resistance gene that may exert its effects via the 

expression of an endogenous envelope glycoprotein. This locus was originally 

described in DBA/2 mice as a gene located on chromosome 5, mediating the 

resistance to MCF virus replication. (Hartley et al. 1983) These mice also produce a 

non ecotropic SU protein related to MCF virus SU. (Bassin et al. 1982, Ruscetti et 

al. 1981) Other strains of mice permissive for MCF viral replication {R m cf)  express 

either no endogenous SU (IRW mice) or a xenotropic SU (C57BL/6). (Buller et 

tf/.1987) In back crosses, the two genes encoding the different endogenous SU 

proteins were found to be linked to R m cf phenotype, and were allelic. (Buller et 

al.1987) However, one discordancy in co-segregation o f these alleles in recombinant inbred mice 

suggested that Rm cf may not encode the non-ecotropic SU directly. (Frankel et al. 1989a) The 

discordant Rm cf locus however, could lack sequence homologous to the oligonucleotide probe (28bp) 

used. The expression of R m c f  linked SU has been shown to be restricted to 

erythroid precursors, BFU-E and CFU-E, as well as the myeloid progenitors, CFU- 

GM. (Buller et al. 1989) A percentage of more primitive multipotential CFU-S also 

expressed Rmcf-related SU and these were considered to represent a sub-population 

that were about to differentiate. No expression of Rmcf-related SU was detected in
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mature T or B lymphocytes or myeloid cells. R m cf mediated resistance is thought to 

protect mice from early erythroleukaemia induced by Friend-MuLV by restricting 

the replication of recombinant MCF viruses in specific target cells. (Ruscetti et 

al. 1981, Buller et al. 1985, 1988, 1989) However there is no effect on the late 

myeloid, lymphoid or erythroid diseases induced by the ecotropic virus. (Ruscetti et 

al. 1985) The restriction of MCF-related SU expression may reflect the target cells 

for the disease inducing Friend MCF virus. The R m cf locus does not protect mice 

from disease induced by Moloney-MuLV MCF recombinants. (Brightman et 

al. 1991) This difference has been mapped to the LTR of Moloney-MCF 

recombinants and possibly results from the targeting of the Moloney-MCF virus to a 

cell population which does not express Rmcf.

4.3.2. Viral resistance in chickens.

In the avian system, the expression of chf (ALV SU) has been shown to be 

responsible for the decrease in susceptibility in chf+ cells of ALV of subgroup E. 

(Robinson, 1976, Robinson et al. 1981) The endogenous loci involved are ev-3,-6 

and -9. (Astrin, 1978, Astrin & Robinson, 1979, Astrin et a/. 1980b) Ev-3 is also 

responsible for the expression of gag gene products identified as group specific 

antigens (gs). (Astrin & Robinson, 1979) The differences in susceptibility to 

infection of cells carrying one of the responsible endogenous loci was shown to be 

linked to the transcriptional activity of the loci and by inference the levels of SU 

production. (Robinson et al. 1981, Shields et al. 1978) Although the loci encoding 

subgroup E viruses are generally repressed (Rovigatti & Astrin, 1983), productive 

infections can be established (Vogt & Friis, 1971), and the endogenous env genes 

can rescue defective exogenous (Weiss, 1969) and endogenous viruses (Robinson et 

<3 /. 1979). It has also been suggested that the expression o f enALV SU protects 

chickens from lethal inflammatory responses frequently seen in chf- chickens, by 

establishing a partial tolerance to ALV envelope antigens. (Halpem & Friis, 1978, 

Crittenden et al. 1982) If enALV env is expressed during thymic education and is 

recognised as self, those antigens common to all ALV env proteins (group specific)
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will also be regarded as self. Infection of exogenous ALV of subgroups A-D would 

therefore stimulate an immune response to only the proportion of antigens that are 

type specific, that is, specific for the particular subgroup or individual isolate. 

However the infection of an exogenous virus related to endogenous viral sequences 

has been shown, in some instances, to break tolerance, leading to attack of 

endogenous antigen-expressing cells by the immune system. (Ohashi et al. 1991, 

Oldstone et al. 1991)

Therefore there is a paradox, that expression of endogenous SU can lead to 

the rescue and outgrowth of viruses with altered receptor specificities, leading to 

infectious spread but that the same SU expression restricts the spread of these 

viruses.

SECTION 5. EXPRESSION OF FELINE ERVS.

The models of retroviral recombination with ERV sequences, and of 

resistance via receptor interference generally require the expression of the ERV 

involved. The expression of ERVs in chickens and mice has been extensively 

studied and some of the limiting factors have already been discused. (Section 3.3.)

The characterisation of the ERVs present in the domestic cat has only 

recently been studied in detail. The study of expression of endogenous FeLV 

elements (enFeLV) has long been hampered by the lack of highly specific DNA 

probes that were capable of high stringency identification of enFeLV sequences 

without being affected by the presence of exogenous FeLV.

SI nuclease analysis of cellular RNA using labelled FeLV-B cDNA failed to 

detect enFeLV transcripts in the majority of virus free lymphomas, which generally 

occurs in older cats. (Niman et al.1911b) Further studies detected enFeLV related 

RNA in placental and embryonic thymus tissues of specific pathogen free animals. 

(Niman et al. 1980, Busch et al. 1983) Accompanying immune precipitations failed 

to detect any p308a8 protein in any feline virus free tissues tested. Using a portion 

of FeLV-B env as a probe in Northern blot hybridisation analysis, Busch et al (1983) 

identified a number of env related RNA transcripts in the placental tissue of a virus
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free cat, with sizes ranging from 4.8-1.8kb. In this study no gag or pol related 

transcripts were detected.

O f a number of enFeLV loci isolated all but one failed to display significant 

promoter activity, and in one case the lack of activity was shown to be due to 

repression by cis acting sequences in the flanking DNA. (Berry et al. 1988)

51



CHAPTER 2 M ATERIAL AND METHODS.

INDEX

2.1. Materials 54

2.1.1. Chemicals 54

2.1.2. Radiochemicals 54

2.1.3. Equipment 54

2.1.4. Cloning vectors and recombinant DNA clones 55

2.1.5. Cell lines 55

2.1.7. Experimental animals 56

2.1.7. Bacterial strains 56

2.1.8. DNA probes 58

2.1.9. FeLV-specific sera 58

2.1.10. Solutions and growth media 58

2.2. Methods. 60

2.2.1. Isolation of high molecular weight DNA 60

2.2.2. Isolation of plasmid DNA 61

(i) Small scale isolation 61

(ii) Large scale purification 61

(iii) Small scale preparation of sequencing grade

plasmid DNA 62

2.2.3. Preparation of M 13 phage replicative form 63

2.2.4. Preparation of single stranded M l3 phage DNA 63

2.2.5. Isolation of cellular RNA 63

(i) Isolation of total cellular RNA 63

(ii) Isolation of poly-(A)+ mRNA 64

2.2.6. Southern blotting 64

2.2.7. Northern blotting 65

2.2.8. Radio-labelling of DNA probes 66

(i) End labelling of XHindlll markers 66

(ii) Labelling of DNA probes by nick translation 66

52



2.2.9. Hybridisation of labelled probes to membrane bound

nucleic acids 66

2.2.10. Synthesis and purification of synthetic oligonucleotides 67

2.2.11. Amplification of DNA sequences by polymerase chain reaction68

2.2.12. Synthesis of cDNA from poly(A)+ RNA 68

2.2.13. Agarose gel electrophoresis 69

2.2.14. Purification of DNA from agarose gels 69

2.2.15. Acrylamide gel electrophoresis 70

2.2.16. Purification of DNA from acrylamide gels 70

2.2.17. Enzymatic manipulation of nucleic acids 70

2.2.18. Growth and manipulation of bacteria 71

(i) Preparation of competent cells 71

(ii) Transformation with phage or plasmid vector DNA 72

2.2.19. Sequencing of nucleic acids 72

2.2.20. Production of bacterial fusion proteins 73

(i) Small scale 73

(ii) Large scale 73

2.2.21. Western blot analysis of proteins 74

2.2.22. Immunostaining of immobilised proteins 75

2.2.23. Immunisation of rabbits 75

2.2.24. Enzyme linked immunesorbent assay (ELISA) 75

2.2.25. Growth and manipulation of eukaryotic cells 76

2.2.26. Infection of cells with FeLV 76

2.2.27. Preparation of virus from cell supernatants 77

2.2.28 Metabolic labelling of cellular proteins 77

2.2.29 Immune-precipitation of radio-labelled cell proteins 77

53



2.1 MATERIALS.

2.1.1. Chemicals.

All chemicals were of "Analar" quality, and were obtained from the Sigma Chemical 

Company, BDH Chemicals, Boehringer Mannheim, Gibco BRL or Pharmacia Ltd, 

except:

Ampicillin "Penbritin" - Beecham Ltd.

Ethyl alcohol - James Burrows (FAD) Ltd.

Bacto Agar and Tryptone - Difco labs.

Yeast Extract - Beta Lab.

PBS tablets - Oxoid Ltd.

The sources of chemicals specific for particular procedures are given in the relevant 

methods section.

All enzymes were from Gibco BRL, NBL or Pharmacia Ltd. except where indicated.

2.1.2. Radiochemicals.

a [ 32P] dCTP [3000 Ci/mmoll Amersham International pic

C 5S] dATP aS  [600 Ci/mmoll Amersham International pic

[35S1-Met/Cys Trans35S-Label [1000 Ci/mmol] ICN Flow.

2.1.3. Equipment.

Particular pieces of equiptment are mentioned in the relevant section. The following 

are the manufacturers of the most general items:

Microcentrifuge tubes Sarstedt

Pipette tips Sarstedt

Tissue culture flasks Nunclon

Collodium dialysis bags Sartorius

Hybridisation membranes Genescreen

Nitrocellulose 

Film for autoradiography Kodak

Dupont NEN Research Products 

Schleicher+Schuell
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pFGA-5/ Replication competent subgroup A virus clones (FeLV-A/Glasgow-1)

pFGA-22 (Stewart et al. 1984).

pFGB Replication competent subgroup B virus (FeLV-B/Gardner-Arnstein)

(Mullins e t a l . m i . )



2.1.4. Cloning Vectors and recombinant DNA clones

pIC20H/ pIC20R

pBluescript

pGEX-2T

pLCM-1

pLC M l/K O

pBCM-3

pGMB-3

pEPP-3

2.1.5. Cell lines. 

AH927

FEA

3201B

MCC

lac z+/ampR+ pBR322 derived plasmid vectors. (Marsh 

et al. 1984)

lac z+/ampR+ pUC19 derived phagemid vector (Stratagene). 

ampR+ GST gene fusion vector (Pharmacia), 

full length endogenous provirus clone in pK125 (pBR322 with 

a H aelll deletion) ( from Dr J Mullins, Stanford University), 

a modified version of pLCM-1 containing a single LTR.

(Robert McFarlane).

full length endogenous provirus clone in pBR322 

( from Dr J Mullins, Stanford University).

Replication defective subgroup B component o f the FeLV/GM 1 

complex in pUC18. (Tzavaras et al 1990)

Subclone of pGMB-3 containing a 2.1 kb PstI fragment 

containing the complete envelope gene in pIC20H (Dr A 

Tsujimoto, National Cancer Centre Research Institute, Tokyo.).

Non-established primary feline fibroblasts.

(Rasheed & Gardner, 1980)

Maintained in Special Liquid Medium (Gibco).

Non-established primary feline fibroblasts.

(Sarma et al. 1975)

Maintained in Special Liquid Medium (Gibco).

Virus negative T-cell tumour line established 

from a thymic lymphosarcoma. (Snyder et al. 1978)

Maintained in RPMI medium (Gibco)/15% FCS.

Virus negative lymphoid cell line derived from 

a large granular lymphoma. (Cheney et al. 1990)

Maintained in RPMI medium (Gibco)/15% FCS.
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T3 Virus positive T-cell tumour line established

from a thymic lymphosarcoma. (Neil, 1984)

Maintained in RPMI medium (Gibco)/10% FCS.

F422 Virus positive T-cell tumour line established

from a thymic tumour. (Rickard et al. 1969)

Release FeLV-A/Rickard.

Maintained in RPMI medium (Gibco)/10% FCS.

FL74 Virus positive T-cell tumour line established

from a thymic tumour. (Theilen et al. 1970)

Release FeLV-ABC/KT.

Maintained in RPMI medium (Gibco)/10% FCS.

BHK21-pFGA-5 Suspension Syrian hamster kidney fibroblast line 

derived at Wellcome Co. Maintained in modified 

Eagle's Medium (SMEM) (Gibco).

2.1.6. Experimental Animals.

All feline tissues came from the Feline Breeding Colony, Veterinary School. 

University of Glasgow.

2.1.7. Bacterial Strains.

E Coli JM101 is designed for use with lacZ-containing M13 phage vectors. 

The natural lac locus is deleted and that part of lacZ which can be complemented 

with the (3-galactosidase gene contained in the vector sequences is incorporated into 

an F plasmid, along with the repressor sequence. This allows blue/white colony 

screening of colonies on bacterial plates containing X-gal.

E Coli D H 5a, prepared by BRL is designed for the generation of cDNA 

libraries using pUC derived plasmid vectors. The lacZ marker provides a -  

complementation of the p-galactosidase gene contained in these vectors therefore 

can be used to produce blue/white colony screening of colonies on bacterial plates 

containing X-gal.
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F:ig.5. Origin of DNA probes specific for FeLV.

The FeLV-specific DNA resiriction fragment probes used in this study are shown, and their 

locations shown relative to the virus genome. Indicated are the restriction sites used to generate the 

probes and the cloned proviruses from which they were derived.
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2.1.8. DN A probes.

A number of DNA probes specific for particular regions of the FeLV genome 

were used in this work. The relative position to the genome, restriction enzymes 

used and the virus source of each probe is shown in Figure 5. The preparation and 

relative position to the genome of new, synthesised probes is reported in the results 

sections.

The presence o f intact cellular RNA in Northern blots was tested by re­

hybridisation of the blots with a rat glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) probe provided by Robert Hennigan (Beatson Institute for Cancer 

Research)

2.1.9. FcLV-specific sera.

Goat anti-F422 gp706V*v was raised by immunisation with lentil-lectin purified 

FeLV-A protein from F422 tumour cells. (V. Moennig, University of Giessen, 

Germany) Rabbit anti-FeLV p l5 # fl£ was raised by immunisation with sepharose 6B 

chromatography purified FeLV-A protein (J.Neil)

2.1.10. Solutions and growth media

A crylam ide Elution Buffer: 5()0mM NH4OAc, lOmiM MgCOAcL, O.lmM EDTA, 

0.1% SDS.

A crylam ide Gel (6%  denaturing): 180ml acrylamide/bisacrylamide(19.T), 252g 

urea (42%), 60ml lOx TBE, 165ml dH 20.

A crylam ide Gel (13%  protein gel): 17.3ml acrylamide/bisacrvlamide (30:0.39), 

15ml 1M Tris pH 8.8, 3.5ml glycerol, 400|il SDS (to 40ml total volume).

A crylam ide Gel (stacking gel): 4.5ml acrylamide/bisacrylamide (30:0.8) 5.75ml 

0.5M Tris pH 6.8, 300|il SDS ( to 30ml total volume).

A gar plates: 500ml L-broth, 1.5% bacto agar, 10()|ig/ml ampicillin.

Buffer A: lOmM EDTA, lOmM Tris, lOmM NaCl, 0.5% SDS, pH 8.0.

Coating buffer: 15mM NaoCC^, 33mM N aH C 03, pH 9.6.

D enatu ra tion  Buffer: 1.5M NaCl, 0.5M NaOH.
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Denhardt's Solution (50x): 1% bovine serum albumin, 1% Ficoll (Fraction V), 1% 

polyvinyl pyrollidone.

DNA running dye (lOx): 30% glycerol, 0.2% bromophenol blue, 0.2% xylene 

cyanol green.

GTE buffer: 50mM glucose, 25mM Tris, lOmM EDTA, pH 8.0.

Guanidinium buffer: 8M Guanidinium chloride, 20mM NaOAc, 5mM EDTA, 

0.05% p-mercaptoethanol, pH 7.0;

H plates: 1% bactotryptone, 0.8% NaCl, 1.2% agar, w/v.

H top agar: 1% bactotryptone, 0.8% NaCl, 0.8% agar, w/v.

L-broth: 1% Bacto tryptone, 0.5% Yeast extract, 1% NaCl, w/v.

Lysis solution for bacteria: 50mM Glucose, 25mM Tris, lOmM EDTA, pH 8.0. 

Lysis solution for eukaryotic cells (5x): 0.5M Tris, 0.7M NaCL, 5mM EDTA, 5% 

Triton-X-100, 2.5% deoxycholate, 0.5% SDS, 5% aprotinin, w/v, pH 7.4.

Minimal medium: 34mM Na2H P 0 4, 22mM KH2P 0 4, 20mM NH4C1, 8mM NaCl, 

ImM M gS04, 0.1 mM CaCH, 0.1 mM Thiamine hydrochloride, 0.2% D-glucose. 

MOPS (lOx): 200mM MOPS (morpholinopropane-sulphonic acid), 50mM NaOAc, 

lOmM EDTA, pH 7.0.

Neutralisation Buffer: 3M NaCl, 0.5M Tris pH 7.0.

Neutralisation solution for plasmids: 60% 5M potassium acetate, 11.5% acetic 

acid.

PEG /N aCl: 20% polyethylene glycol 6000, 2.5M NaCl.

Phosphate Buffer (20x): 0.5M Na2H P 0 4, 0.5M NaH2P 0 4. pH 6.5 

Prehybridisation solution: 23ml 50% formamide, 10ml 20xSSC, 4ml 50x 

Denhardt's solution, 4ml 20x phosphate buffer, 8ml 50% dextran sulphate, 0.2ml 

20% SDS.

Protein Gel Fix-Stain: 42.1% methanol, 5.26% Acetic acid, 0.0125% Coomassie 

Blue.

Protein Gel Destain: 5% Methanol, 7.5% Acetic acid v/v

Protein Sample buffer(2x): 0.0625M Tris, 2% SDS, 5% p-mercaptoethanol, 10% 

glycerol, 0.001% bromophenol blue, pH 6.8.
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RNA Loading Dye (lOx): 50% glycerol, lx  MOPS buffer, 0.2% bromophenol blue. 

RNA Loading Buffer: 50% formamide, 2.2M formaldehyde, lx  MOPS buffer. 

RPMI medium: RPMI medium/ 10 or 15% FCS/ 2mM glutamine/ 0.15% NaHC0 3

w/v.

SLM  medium: Special liquid medium/ 9% FCS/ 4mM glutamine.

SMEM: 9% Suspension Modified Eagle’s Medium (Gibco), 9% Tryptose phosphate 

broth (Gibco), 9% FCS, 0.15% NaHC0 3 , w/v, 4mM glutamine.

SSC (20x): 3M NaCl, 0.3M trisodium citrate.

STET: 5% Triton-X-100, 50mM EDTA, 50mM Tris, 8% sucrose, pH 8.0.

Substrate buffer: 0.1M Tris, 0.1M NaCl, 5mM MgC12, pH 9.5.

TAE (lx): 40mM Tris, 20mM NaOAc, 20mM NaCl, 2mM EDTA, pH 8.15.

TBE (lx): 90mM Tris, 90mM boric acid, 2.5mM EDTA, pH 8.3.

TBS (5x): 20mM Tris, 500mM NaCl, pH 7.5.

TE: lOmM Tris, ImM  EDTA, pH as appropriate.

Towbin (W estern Buffer): 25mM Tris, 200mM glycine, 20% methanol, v/v, pH8.3. 

Tris-glycine buffer: 25mM Tris, 192mM glycine, 0.1% SDS, pH 8.3.

2xTY m edium : 1.6% bactotryptone, 1% yeast extract, 0.5% NaCl w/v.

X-gal top agar: 1.5% bacto agar, lOOug/ml ampicillin, 200ug/ml X-gal in L-broth.

2.2. METHODS.

2.2.1. Isolation of high molecular weight DNA.

High molecular weight DNA was prepared from 108 cells or 200-500mg of

tissue.

Cells were washed in PBS before resuspending in 5ml guanidinium chloride 

buffer. Frozen tissues were ground in a mortar then disrupted in 5ml guanidinium 

chloride buffer, in a "Dounce" homogeniser with 8-10 strokes of a loose fitting 

pestle. An equal volume of isopropanol was added and the precipitated DNA 

spooled gently through the interface using a glass hook. The spooled DNA was 

washed sequentially with 3 washes of 70% then 3 of 100% ethanol. The dehydrated 

DNA was air dried for a few minutes before resuspending in an appropriate volume

60



of Buffer A (5ml) containing 50|ig/ml Proteinase K. The solution was gently shaken 

o/n at 37°C. Three phenol extractions were performed to remove contaminating 

proteins, then the solution was dialysed against TE pH 8.0 until all phenol was 

removed. The solution was incubated with 50fig/ml RNase for 1 hour at 37°C, then 

repeated phenol extractions performed. The solutions were dialysed against TE pH 

8.0 until all phenol was removed (OD27o<005). The yield of DNA was calculated 

on the basis that a 50p.g/ml solution of double stranded DNA would have an OD26q 

measurement of 1

2.2.2. Isolation of plasmid DNA.

Recombinant plasmid DNA was isolated according to the alkaline lysis 

procedure introduced by Birnboim & Doly, (1979) involving the denaturation of 

E.coli DNA and the selective renaturation of covalently closed circle DNA.

(i) Small scale isolation.

A single colony was innoculated into 10ml of L-broth and incubated at 37°C 

o/n. 1.5ml of o/n culture was pelleted, then resuspended in 300[il STET and 50pl of 

fresh lysozyme solution added (lOmg/ml in STET). The solution was boiled for 45 

seconds, then the lysate cleared in a microcentrifuge (12,000xg). The pellet was 

removed and the DNA precipitated from the solution with 0.5 volumes 7.5M 

ammonium acetate and 2-3 volumes ethanol in dry ice for 30 minutes. The 

precipitate was pelleted in a microcentrifuge, washed in 70% ethanol, dried and 

resuspended in 20(ll dH 20.

(ii) Large scale purification.

High quality plasmid DNA was purified from a 500ml exponentially growing 

o/n culture. Cells were pelleted at 4,420xg at 4°C, then resuspended by vigorous 

stirring in 20ml lysis solution containing 5mg/ml lysozyme. After 30 minutes on ice, 

40ml of fresh 0.2M NaOH/1% SDS was added, and left on ice for a further 5 

minutes. The lysates were neutralised with 30ml of neutralisation solution for 15 

minutes on ice. The lysates were clarified by centrifugation at ll ,3 0 0 x g  for 5 

minutes and the supernatant filtered through gauze swabs (Vernon Cams Ltd.).
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DNA was precipitated with the addition of 0.6 volumes of isopropanol, at room 

temperature for 30 minutes, or -20°C o/n, and pelleted by centrifugation at ll,300xg  

for 5 minutes. The pellet was drained thoroughly then resuspended in 6.7ml TE pH

8.0., then 7.2g caesium chloride and 700p.l of a 3mg/ml solution of ethidium bromide 

added. The refractive index was adjusted to 1.390 with CsCl or TE and the plasmid 

DNA separated on a density gradient by centrifugation at 126,000xg for 40 hours at 

20°C. Closed circular DNA (the lower band) was removed by syringe and needle 

and the ethidium bromide removed by repeated extraction with isopropanol until no 

trace of colour was left. The CsCl was removed by extensive dialysis in collodium 

bags against TE pH 8.0 and the yield of DNA calculated on the basis that a 50(ig/ml 

solution of double stranded DNA would have an ODo6q measurement of 1. The 

DNA was concentrated by extraction of the aqueous phase with butan-2-ol then 

precipitated with 0.1 volumes 3M NaOAc, and 2-3 volumes ethanol.

An intermediate scale preparation from 100ml of culture used the 

corresponding volumes of reagents and the density gradient produced on a Beckman 

TL-100 bench top ultracentrifuge at 346.000xg for 18-20 hours.

(iii) Small scale preparation of sequencing grade plasmid DNA.

1.5mls of o/n cultures were spun on a bench top microcentrifuge (12,000xg), 

and the pellets resuspended in 60fil GTE buffer and 40 fil of GTE with 10(ig/ml 

lysozyme added. This was mixed gently, and 200fil 0.2M NaOH/1% SDS added and 

the solutions incubated on ice for 5 minutes. 150p.l o f plasmid neutralisation 

solution was added then mixed well and incubated on ice for 10 minutes. 450pil of 

5M LiClo was added and incubated on ice for 5 minutes. The lysates were clarified 

by centrifugation for 5 minutes at 12,000xg and the DNA precipitated from the 

supernatant with 0.6 volumes isopropanol. After 5 minutes on ice, the DNA was 

pelleted, then washed with 80% ethanol, and dried. The pellet was disolved in 50|il 

TE containing 0.01(ig/ml RNase A and incubated at 37°C for 30 minutes. The DNA 

was precipitated with 0.6 volumes of 20% PEG/ NaCl at 0°C for 2-3 hours. The 

DNA was pelleted by a 5 minute spin, washed with 70% ethanol, dried and
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resuspended in 20-50p.l TE. A third of this DNA preparation was used per 

sequencing reaction.

2.2.3. Preparation of M l3 phage replicative forms.

M l3 vectors were prepared in double stranded replicative form for sub­

cloning. Fresh plaque stabs or glycerol stocks were incubated in 5ml 2xTY medium 

for 3 hours. Concurrently, 5ml of a freshly grown o/n culture of E.Coli JM101 was 

diluted 1:100 with fresh medium and grown for 3 hours. The two cultures were 

mixed, and incubated for a further 5 hours, the bacteria pelleted and vector DNA 

extracted as in 2.2.2.(ii).

2.2.4. Preparation of single stranded M13 phage DNA.

Single stranded M13 DNA was prepared by a method based on that of Sanger 

et al. (1980), described in the Amersham "Cloning and Sequencing" handbook. 

Bacteria expressing recombinant M13 phage were inoculated into 1.5 ml of a 1:100 

dilution of a freshly grown JM101 culture, in polycarbonate tubes, and shaken at 

37°C for 5 hours. The cells were pelleted by microcentrifugation for 10 minutes and 

the virus precipitated from the supernatant with 200p.l PEG/NaCl incubated at room 

temperature for 15 minutes. After the vims was pelleted by a 5 minute spin, all the 

liquid was carefully removed then the DNA purified from the vims by phenol 

extraction followed by ethanol precipitation. The DNA was dried and resuspended 

in 24|il of TE. 3(il was was used for analysis by agarose gel electrophoresis, and 

typically 7fil of DNA used per sequencing reaction.

2.2.5. Isolation o f cellular RNA.

(i) Isolation of total cellular RNA.

Total cellular RNA was prepared by a Guanidinium thyocyanate-phenol 

chloroform extraction method (Chomczynski & Sacchi, 1987) marketed as RNasol B 

(Biogenesis Ltd.) All procedures were performed using diethyl pyrocarbonate 

treated plasticware. The concentration of RNA extracted was calculated on the basis
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that a 40p.g/ml solution of single stranded RNA would have an OD^so measurement 

of 1 RNA was stored in a small volume of diethyl pyrocarbonate treated dH 20  at - 

70°C.

(ii) Isolation of poly-(A)+ mRNA.

Poly-(A)+ mRNA was separated from total cellular RNA using the Poly- 

ATtract mRNA Isolation System (Promega) which uses a biotinylated oligo d(T) 

primer to hybridise in solution to the 3' poly (A) region present in eukaryotic mRNA 

species. The hybrids are captured and washed using streptavidin coupled to 

magnetic particles and a magnet. The mRNA was eluted from the solid phase by the 

addition of ribonuclease free dH 20. The concentration of mRNA was determined 

by spectrophotometry, by the assumption that a 40fig/ml solution of mRNA has an 

adsorbance at 260nm of 1. For further use, the RNA was concentrated by alcohol 

precipitation using 0.1 volumes of 3M sodium acetate, and 1 volume of isopropanol, 

which was incubated at -20°C o/n. The RNA was pelleted, dried for 15 minutes in a 

freeze dryer, and resuspended in ribonuclease free dH 20  at 1 gig/pii at -70°C.

2.2.6. Southern blotting

DNA was prepared for hybridisation analysis by the transfer technique of 

Southern. (1975)

20|ig high m olecular weight DNA was digested with 100 units of the appropriate 

restriction enzyme overnight, precipitated and resuspended overnight in 45jil 0 .lx 

TE. 3ql of running dye was added and the digested DNA separated by 

electrophoresis in a 250ml (20x 14.5cm) 0.8% agarose/TAE gel o/n at 25V. ^phage 

DNA, digested by H indlll was used as molecular weight markers ( l |ig  of cold 

markers and 5 x l0 3 counts per minute of end labelled DNA per lane). After 

electrophoresis, the gels were stained in buffer containing 3|ig/m l ethidium bromide. 

The DNA was visualised using a 312nm transilluminator and the gel photographed 

using Polaroid Type 57 high speed film. The gel was trimmed and measured then 

washed for 30 minutes each in denaturation buffer then neutralisation buffer. Finally
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the gel was washed in three changes of lx  phosphate buffer for a total of 90 minutes. 

The DNA was then transfered to a filter membrane by capillary blotting.

A glass plate just larger than the gel was placed in a dish half full of 

phosphate buffer, supported above the buffer by rubber bungs. Three thicknesses of 

Whatman 3MM paper were immersed in buffer and placed on the glass plate so as 

the ends of the paper were placed in the buffer reservoir and all air bubbles between 

the sheets carefully removed by rolling a glass tube over them. The gel was 

carefully placed on top of the paper, and a presoaked piece of GeneScreen 

Hybridisation Transfer Membrane (DuPont) cut to the same size as the gel was 

carefully layered on top. This was covered by two pieces of precut and presoaked 

3MM paper. Again all air bubbles were carefully removed. The area around the gel 

was sealed using pieces of X-ray film to ensure that the capillary action was 

concentrated over the area of the gel. Several layers of paper towels placed on top 

provided the capillary action, and these were weighted down and the transfer 

allowed to proceed for 16-20 hours. The membrane was carefully removed, washed 

once in lx  phosphate buffer, and the DNA permanently bound to the membrane 

either by baking at 80°C for 2-6 hours, or UV cross-linking (UV Stratalinker 1800. 

Stratagene)

2.2.7. Northern blotting

20[ig of total cellular RNA was lyophilised then resuspended in 20|il of RNA 

loading buffer. Samples were denatured at 65°C for 15 minutes and quenched on ice 

before 5fil RNA Running dye was added and the samples electrophoresed for 3-5 

hours at 120V in 200ml 1% agarose gels containing 2.2M formaldehyde, and lx  

MOPS, in lx  MOPS running buffer that was continually recirculated. RNA ladders 

(Gibco) were used as molecular weight markers. Commonly, 3-6)ig were used per 

lane and prepared in the same way as the RNA samples.

The marker lanes were removed and separately stained in 3fig/ml ethidium 

bromide, and photographed. The gel was washed in three changes of distilled water 

to remove the formaldehyde before the RNA was transferred to a GeneScreen
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membrane as described in 2.2.6. After blotting, the membrane was carefully 

removed and the RNA permanently bound to the membrane either by baking at 80°C 

for 2-6 hours, or UV cross-linking.

2.2.8. Radio-labelling of DNA probes.

(i) End labelling of ^.Hindlll markers.

ljig  of H indlll digested lambda (X) phage DNA was added to 5 |ig  of nick- 

translation solution 1 (Amersham Nick Translation Kit) which contained lOOjiM 

each of dATP, dGTP and dTTP. This was incubated with 5p.l a [ 22P] dCTP and 10 

units of T4 polynucleotide kinase in a total aqueous volume of 50jil for 5 minutes at 

37°C, then 100|iM unlabelled dCTP added, and incubated for a further 25 minutes. 

The sample volume was increased to 200pl and phenol extracted. The sample was 

dialysed against TE pH 8.0 in microcollodion bags for at least 5 hours with more 

than one change of TE. The activity of lu l was determined and the sample diluted 

appropriately.

(ii) Labelling of DNA probes by nick-translation.

PCR or restriction fragment DNA probes were radio-labelled using a [ j2P] 

dCTP by a method of nick-translation (Rigby et al. 1977) marketed as a Nick- 

Translation Kit (Amersham) and the products purified on Sephadex-G50 beads (Nick 

Columns, Pharmacia). Generally, incorporations of 107-108 cpm /pg were achieved.

2.2.9. Hybridisation of labelled probes to membrane bound nucleic acids.

The detection of specific nucleic acid species that had been im mobilised onto

membranes was achieved by the hybridisation of specific radiolabelled probes at 

high stringency. The membranes were pre-wetted with 1% Triton-X-100 before they 

were pre-incubated at 42°C in a sealed polythene bag containing 15ml 

prehybridisation solution that had been supplemented with freshly boiled salmon 

sperm DNA to a concentration of 0.4mg/ml. Freshly boiled DNA probe was added 

to the prehybridisation solution to a final concentration of 5ng/ml and incubated at 

42°C overnight. After rinsing briefly in 2xSSC the membrane was washed in three
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changes of 0.1xSSC/0.5%SDS at high stringency (65°C) for up to 60 minutes, then 

rinsed in O.lx SCC prior to autoradiography. Blots were reprobed with GAPDH 

after the initial signal had decayed or after the probe had been stripped from the blot 

by washing at 70°C in 70% formamide for 30-60 minutes. Hybridisation with 

GAPDH was carried out under high stringency conditions, but washing stringency 

was reduced at 42°C for 20-40 minutes only.

2.2.10. Synthesis and purification of synthetic oligonucleotides.

Oligonucleotides were synthesised on an Applied Biosystems 392 DNA 

synthesiser. The 5' methoxy-trityl protecting group remained in place after 

incorporation of the final (5') nucleotide in order to ensure efficient purification of 

fully synthesised oligonucleotides from any aborted synthetic products. The 

oligonucleotides were eluted from the synthesis columns with 2ml concentrated 

ammonia, and the side chain protecting groups removed by overnight incubation at 

55°C in air tight tubes. The trityl protected oligonucleotides were purified by their 

entrapment on a trityl affinity column. (Applied Biosystems) The column was 

prepared for trityl binding by the passage of 5ml of concentrated acetonitryl through 

the column followed by 5ml of 5M triethymamine. 1.5ml of the 

oligonucleotide/ammonia solution was further diluted with 500pl dH 20  before being 

passed through the column twice. The unbound oligonucleotides were removed 

from the column by subsequent passage through the column of 20% ammonia 

(15ml), dH20  (10ml), 2% trifluoroacetic acid (10ml) and dH 20  (12ml). The 

purified oligonucleotides were released from the column by 2x1 ml washes of 20% 

acetonitryl, the majority of the DNA being eluted in the first wash.

The DNA was lyophilised in a centrifugal evaporator system (Hetovac) and 

the resuspended in dH 20 . The concentration was determined by spectrophotometry, 

based on the assumption that a 35|ig/ml solution of single stranded oligonucleotides 

has an absorbance at 260nm of 1. The oligonucleotides were resuspended at l(ig/pi 

for use as PCR primers, and at 30ng/|il for use as sequencing primers. 

Oligonucleotide solutions were stored at -20°C.
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2.2.11. Amplification of DNA sequences bv polymerase chain reaction.

Amplification of specific DNA sequences by polymerase chain reaction

(PCR) (Saiki et al. 1988, White et al. 1989) was achieved using specific 

oligonucleotide primers (typically 20-22 bases long) and the Gene Amp DNA 

Amplification kit (Perkin Elmer Cetus) using AmpliTaq recom binant Taq DNA 

polymerase. All reagents except the template and enzyme were premixed to ensure 

standard conditions and to avoid contamination of the reactions with unwanted 

DNA. All the reagents were handled using Gilson positive displacement pipettes. 

1 pig of each oligonucleotide primer was used per reaction. Reaction mixes were 

placed in 0.5ml micro centrifuge tubes and the volumes adjusted to 95 |il minus the 

volume of template to be used. 50fil of light liquid paraffin was layered on top to 

prevent the evaporation of substrates during the reaction. The template DNA (ljig  

of cDNA or lOng of plasmid DNA) was added to all tubes with the exception of a 

control reaction containing primers only, to ensure products resulted from the 

amplification of template DNA. The DNA in the reaction mixture was denatured at 

100°C for 7 minutes before 1 unit of enzyme was added and the tubes placed in the 

thermal cycler. Amplifications were carried out in a Pharmacia LKB Gene ATAQ 

Thermocvcler under various programs as indicated for each experiment in the results 

sections. Products were visualised by acrylamide or agarose gel electrophoresis of 

10% of the reaction mix before the remaining products were gel purified.

2.2.12. Synthesis of cDNA from polv(A) RNA.

Double stranded cDNA was synthesised from poly(A)+ mRNA using a 

cDNA synthesis kit (Pharmacia) which utilised cloned MuLV reverse transcriptase. 

Both first and second strand syntheses were performed using l-5 jig  of poly(A)+ 

RNA (procedure A of the accompanying protocol). The products of the second 

strand synthesis were purified on Sephacryl S-300 spun columns using ligation 

buffer (BRL), and the DNA precipitated and resuspended in distilled H 2 0 , prior to 

PCR amplification.
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2.2.13. Agarose gel electrophoresis.

1% w/v agarose/TEA gels were used to separate DNA fragments of a size 

greater than lkb for analysis. 20, 100 of 200ml gels were prepared as appropriate. 

DNA solutions were adjusted to 3% glycerol, 0.02% bromophenol blue, 0.02% 

xylene cyanol green, and electrophoresis carried out at about 5V/cm. After 

electrophoresis, the DNA fragments were stained with 3fig/ml ethidium bromide for 

20 minutes then using a 312nm transilluminator.

For preparative electrophoresis of particular DNA fragments, low melting 

point agarose was used to separate fragments over 600bp, and for the separation of 

small fragments of DNA ranging from 200-600bp, 1% agarose/3% NuSieve GTG 

agarose (FMC) gels were used and the fragments purified by electroelution.

2.2.14. Purification of DNA from agarose gels.

(i) DNA of less than 2kb was simply purified from agarose by overnight 

incubation of the gel fragment in TF pH 8.0 then filtration/centrifugation of the 

DNA through a SpinX DNA filtration column (Costar)(12,000xg). The DNA was 

precipitated using 0.3M NaOAc and 2.5 volumes of ethanol.

(ii) DNA fragments greater than 2kb were separated on low melting point 

agarose gels, and the fragment of choice purified from the gel by first re-melting the 

fragment at 70°C in two volumes of lxTEA buffer, and after cooling, repeated 

phenol extractions at room temperature. The DNA was precipitated using 0.3M 

NaOAc and 2.5 volumes of ethanol.

(iii) This most efficient method of purifying DNA from gels was used when 

only small amounts of DNA were available. The gel fragment was placed in a small 

piece of dialysis tubing, a small volume of the appropriate running buffer added, and 

the tube sealed. The tube was placed in an electrophoresis tank filled with buffer, 

the gel placed at the tube wall nearest to the cathode. A 50mA current was passed 

through the tank for 3 hours. The current was reversed once for 60 seconds then 

again for 30 seconds. The liquid was removed from the bag, and the transfer of 

DNA from the gel could be checked by looking for ethidium bromide fluorescence
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of the DNA in the liquid and not the gel fragment. The DNA was precipitated, 

generally using 1 gLg of glycogen as carrier, dried and resuspended in an appropriate 

volume of distilled water.

2.2.15. Acrylamide gel electrophoresis.

Polyacrylamide gel electrophoresis was the method of choice for the 

separation and accurate size estimation of DNA molecules of less than lkb in length 

using acrylamide concentrations of 4-8%. The monom enbis ratio was 19:1, and 

polymerisation was effected by the addition of 10% ammonium persulphate, w/v, 

and 0.08% TEMED, v/v. 13cm vertical gels of 1.5mm thickness were used (Atto) 

and run in TBE buffer, at lOV/cm. Products of sequencing reactions were 

electrophoresed on 6% acrylamide denaturing gels (containing 42% urea) of 2mm 

thickness and 48cm long (Flowgen) at about 30V/cm.

2.2.16. Purification of DNA from acrylamide gels.

This procedure was used when agarose gel electrophoresis gave insufficient 

resolution, particularly in the purification of PCR amplified DNA. DNA was eluted 

from the gel slice in 4 volumes of acrylamide elution buffer overnight at room 

temperature. The DNA was precipitated as normal, using lp.g glycogen as earner 

and resuspended as required.

2.2.17. Enzymatic manipulation of nucleic acids.

Restriction endonucleases, T4 polynucleotide kinase and calf intestinal 

alkaline phosphatase were all used according to the manufacturers' recommendations 

in the buffers supplied.

(i) 100 units of enzyme were used to digest high m olecular weigh DNA, the 

first 50 units incubated with the DNA overnight then the second 50 units added for a 

final 2 hours o f digest. Generally, 1-5 units of enzyme were used per qg of plasmid 

DNA to be digested for 1 hour.
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(ii) 1 unit of T4 polynucleotide kinase was incubated with the appropriate 

buffer, ljLil of lOmM ATP and approximately 0.5|ig of DNA in a kinase reaction to 

add 5' terminal phosphates to synthetic DNA molecules. The reaction was carried 

out at 37°C for 1 hour.

(iii) 0.01 units of calf intestinal alkaline phosphatase (CIAP) in the 

appropriate buffer, to remove the 5' terminal phosphate groups from lpM  of vector 

DNA with 5’ protruding ends at 37°C for 30 minutes. For 5' recessed ends or blunt 

ends, 1 unit per pM was used at 50°C for 1 hour. The CIAP was inactivated by 

heating at 75°C for 10 minutes.

(iv) Ligations were carried out according to the protocols supplied by BRL 

Ltd together with their T4 DNA ligase and 5x buffer. 50ng of vector and generally a 

10 fold molar excess of insert DNA was used in a minimal volume (20|ul) and 

ligations carried out at 12-14°C overnight. Blunt end ligations, which are much less 

efficient than sticky end ligations, were incubated at 4-6°C overnight.

2.2.18 Growth and manipulation of bacteria.

Stocks of bacteria were stored in growth medium adjusted to 10% glycerol at 

-20°C. E.Coli strain JM101 was maintained in a state that supported M13 infection 

by selection for the proAB gene on the F plasmid using minimal medium. JM101 

was grown in 2xTY medium overnight prior to use for the propagation of 

recombinant M13 phage. D H 5a competent cells (BRL) were stored at -70°C and 

grown in L-Broth.

(i) Preparation of competent cells.

JM101 strain E.Coli were grown to an O D ^ o  of 0.4-0.6 and then pelleted by 

centrifugation at l,430xg for 10 minutes. The cells were resuspended in half the 

growth volume of ice-cold 50mM CaCl2.6H20 and incubated on ice for 15 minutes. 

After pelleting at 4°C, the cells were resuspended in one tenth of the original growth 

volume of ice-cold 50mM CaCl2. Competent JM101 cells were used on the day of 

preparation. Competent E.Coli host cells for plasmid DNA transformation (D H 5a) 

were purchased from BRL.
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(ii) Transformation with phage or plasmid vector DNA.

To 300pl of competent JM101 cells was added 10p.l o f ligation mix 

containing 25ng of phage vector DNA, or 5ng of uncut vector as a control. The 

mixture was incubated in a polycarbonate tube for at least 40 minutes (the longer the 

incubation, the higher the efficiency) then the cells were heat shocked by incubation 

at 42°C for 3 minutes. The cells were then returned to the ice bath. 200|il of fresh 

exponentially growing JM101 cells was added to each tube of heat shocked cells 

followed by 40|il of lOOrmM IPTG and 40|il 2% X-gal in dimethylformamide. 3ml 

of molten (42°C) H-top agar was added and mixed by rolling before pouring 

immediately onto prewarmed (37°C) H plates. After the plates had set they were 

incubated overnight at 37°C. Recombinants were selected by virtue of their 

colourless plaque phenotype in the presence of X-gal.

For plasmid cloning, the ligations were diluted 5-fold, and one twentieth 

(5jil) added to 20fil of D H 5a cells. Each sample was incubated on ice for 30 

minutes, heat shocked for 45 seconds at 42°C then 180fil of L-broth containing 

lOmM MgCl, lOmM M gS04 added and each sample incubated with shaking for 1 

hour at 37°C. 100-200|il of ceils were spread on L-broth agar plates containing

lOOfig/ml ampicillin. If colour selection was required, X-gal (5-bromo-4-chloro-3- 

indovl-pgalactoside) was included the plates as a top agar layer containing 300|ig/ml 

X-gal using a 2% solution in dimethyl formamide. As before, the plates were 

incubated overnight at 37°C. Recombinants were selected by virtue of their 

colourless colony phenotype in the presence of X-gal.

2.2.19. Sequencing of nucleic acids.

Sequencing of both single and double stranded DNA was carried out 

according to the chain termination method of Sanger et al. (1977) using the reagents 

and protocol of the "Sequenase" version 2.0 reagent kit (United States Biochemical). 

Plasmid DNA was first denatured by the addition of 2fil 2M NaOH and 8ql TE to 

1 OjLil of DNA solution (about 5fig). After 5 minutes at room temperature the solution 

was neutralised with 8fil of 5M NH4OAc and precipitated. The DNA was dried and
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Fig.5a Oligonucleotide sequencing primers

Oligonucleotide primers used to sequence enFeLV Numbers refer to position 

relative to c fe -16 env (Fig. 18) with with the start of the signal peptide as zero.

2/3 -32 5' TCAGACGACCCCAGCTCAGA 3’ 13

70A 94 5 ' GGAATGGCCAATCCTAGTCC 3 ' 107

2/4 286 5 ' TACGGATGTGATCAGCCTAT 3 ' 306

2/1 531 5' CGATAAAGCTGTTCACTCCT 3 ' 551

2/2 540 5 ' TGTTCACTCCTCGACAACGG 3' 559

3/5 i07 5' GGACTAGGATTGGCCATTCC 3’ 94

70B 373 5' ACATTGCTTCCGGTTGGCAT 3 ' 353

3/1 551 5 ' AGGAGTGAACAGCTTTATCG 3' 53i

3/2 559 5 ' CCGTTGTCGAGGAGTGAACA 3' 54o

4/1 889 5' GCATATTATGACAGGGGGTC 3 'K6S

4/2 963 5 ' GGAGCTAAACGGTTGACTTA 3' 944

C >084 5 ' CCAGAATGAGGGGAACAAAC 3 ’ 1065

Additional oligonucleotide primers used to sequence FeLV -B/G M l gp70e,!V. 

Numbers refer to the position relative to pOF-3 (Fig.24)

1 7°s 5' T ATCCCGGCA AGTA ATG ACC 3 ’ 737

9 845 5 ' AAACAGGGTCCAAAGTGGCG 3' 8«

3 " ° 3 5' CTTAGGTACCTACAGCAACC 3' 1131

4 1303 5' CTGTAACACTGGACTCACCC 3' >333



resuspended in distilled water, and one third (l-2 |ig ) used per sequencing reactions. 

6% denaturing acrylamide gels were used to separate the labelled, terminated 

fragments and gels were run at 1500V/ 30-40mA. Aliquots of each reaction were 

run for 2, 4 and 6 hours, usually allowing the reading of 400bp of DNA sequence per 

primer. The sequencing primers are listed in Fig.5a

G or A tracking involved a miniaturisation of the procedure, using only half 

the DNA mix and only one chain terminating dideoxynucleotide in order to allow the 

screening of larger numbers of samples. Those samples exhibiting dGTP or dATP 

motifs as expected, were fully sequenced.

2.2.20. Production of bacterial fusion proteins.

(i) Small scale

To test for the production of the appropriate sized fusion protein from cloned 

vectors, individual colonies were picked, and grown overnight in 10ml of L-broth 

with 100|ig/ml ampicillin. In 24 well plates (1cm diameter) 2x1 ml of a 1:10 dilution 

of each culture was incubated for 2 hours at 37°C then production of fusion protein 

induced in one of each pair of cultures by the addition of 23q.g/ml IPTG. The 

cultures were incubated for a further two hours before the cells were transferred to 

1.5ml Eppendorf tubes, pelleted in a microcentrifuge, and resuspended in lOOp.1 of 

2x protein sample buffer, boiled for 5 minutes to disrupt the cells and 30pil loaded on 

each lane of a 13% SDS polyacrylamide gel with stacker. Protein standards (116- 

30kD, BRL) were also run on the gels. Electrophoresis was carried out at 12V/cm. 

The proteins were visualised by staining with protein gel fix-stain and destaining 

before drying the gel under vacuum at 80°C.

Gels to be immunostained were run with prestained protein standards (200- 

14.3LD, BRL) and transferred to nitrocellulose by Western blotting.

(ii) Large scale

Large quantities of fusion proteins were purified according to a modification 

of that used in the procedure of Smith & Johnson, (1988) for the production of 

purified GST fusion proteins. 10 litres of a 1:10 overnight culture of pGEX vector
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clones in L-broth were incubated with shaking, for two hours at 37°C. IPTG 

(23mg/l) was added to induce fusion protein production and the incubation continued 

for a further two hours. The cells were pelleted by centrifugation at ll,3 0 0 x g  for 5 

minutes and resuspended in as small a volume as possible (usually 10-20ml) o f ice 

cold lxPBS/lOmM  EDTA/20mM benzamidine. The cells were lysed by sonication, 

2x30 seconds at maximum amplitude. PMSF to 0.1 (iM was added to inhibit protease 

activity, and the lysates centrifuged at 27,200xg for 30 minutes to remove the 

cellular debris. The soluble fraction was incubated with glutathione bound agarose 

beads, at room temperature for 30 minutes, with shaking. The bead and protein 

mixture was placed in a chromatography column and the unbound fraction washed 

through with lx  PBS. The pure GST fusion protein was eluted from the column by 

competition with lOmM glutathione. Aliquots of sample at each stage of the 

purification were collected and run on 13% SDS polyacrylamide gels as in 2.2.20(1). 

The amount of protein produced was calculated on the basis that a typical 0.5mg/ml 

solution should have an ODo6o of 1 and the protein was concentrated by 

lvophilisation.

2.2.21. Western blot analysis of  proteins.

Proteins that had been separated by SDS-PAGE were transferred to 

nitrocellulose membranes by Western blotting in a Biorad Trans-Blot Cell. The blot 

was set up by layering first a piece of "Scotchbrite" soaked in Towbin buffer, then 

two layers of Whatman 3MM paper, again presoaked. The gel was carefully placed 

on the paper and a presoaked and precut piece of nitrocellulose placed on top. The 

sandwich was completed by the addition of a double layer of 3MM paper and a 

second piece of "Scotchbrite" before the blotting frame was closed over and inserted 

into the tank filled with Towbin buffer, with the gel at the cathode end of the tank. 

Electrophoresis was carried out at 20V overnight at 4°C.



2.2.22. Immunostaining of immobilised proteins

Proteins immobilised onto nitrocellulose by Western blotting were 

immunostained using a secondary antibody conjugated with alkaline phosphatase. 

The blot was removed from the tank and washed 2x30 minutes in 3% gelatine/ 

lxTB S/ 0.01% NaAzide w/v at 37°C. The membrane was then washed twice in 

lxTB S/ 0.01% NaAzide w/v/ 0.05% Tween-20 (T IB S) to remove excess gelatine 

block. The primary antiserum, goat anti-F422 gp70 was diluted 1:1000 in TTBS 

with 1% gelatine and incubated with the membrane for 1 hour at 37°C. After two 

washes of TTBS the second antiserum (anti-goat alkaline phosphatase conjugate, 

Pierce Warrener) was diluted according to the manufacturers instructions in TTBS 

and 1% gelatine and incubated with the membrane for 1 hour at 37°C. The 

membrane was washed again in TTBS then in TBS, and the colour reaction was 

developed by the addition of 50 ml substrate buffer containing 0.44mM tetrazolium 

Nitro Blue/ 0.44mM 5-bromo-4chloro-3-indoyl phosphate. The reaction was 

neutralised by washing the membrane extensively with water.

2.2.23. Immunisation of  rabbits.

Rabbits were immunised sub-cutaneouslv with 500pg of protein in Freund's 

complete adjuvant, then boosted 3 weeks later with the same dose of protein in 

Freund's incomplete adjuvant. Pre and post immune sera were collected by bleeding 

the main ear vein. The blood was allowed to clot and the clot to shrink overnight at 

4°C, then the serum separated by centrifugation at l,430xg for 10 minutes. Serum 

was aliquoted and stored at -20°C.

2.2.24. Enzyme linked immunesorbent assay (ELISA)

The protein to be tested was dissolved at lpg/m l in coating buffer and lOOng 

bound to each well in a 96 well Dvnatech "Immulon" plate except for a negative 

control well to test for antibody binding to the plastic. This plate was incubated at 

4°C overnight. Each well was washed thoroughly with lxPBS/ 0.05% Tween-20. 

Each well was blocked with 1% BSA in PBS for 1 hour at room temperature then
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washed as before. The antiserum to be tested was placed in the first well, and 

successive dilutions in PBS made in the remaining wells of each row. The plate was 

then incubated for 1 hour at room temperature and washed again as before. The 

secondary antibody conjugated with alkaline phosphatase was diluted 1:1000 in PBS 

and 100p.l added to each well and this was incubated for 1 hour at room temperature. 

The wells were washed as before and then the colour reaction performed. The 

colour reaction solution was Sigma 104 phosphatase substrate at Img/ml in 0.1M 

glycine buffer with ImM M gC ^, ImM ZnC h,  pH 10.4. lOOfil was added to each 

well. After a maximum of 30 minutes the reaction was stopped by the addition of 

30(j.l IN NaOH. The intensity of each reaction was measured on the MR7000 plate 

reader (Dynatech) at 405nm.

2.2.25. Growth and manipulation of eukaryotic cells.

Eukaryotic cells were maintained on plastic, at 37°C in an atmosphere of 5% 

COi. Suspension cells were grown up to densities of 5 x l0 6 cells/ml. Adherent cells 

were grown to sub-confluence then rinsed briefly in PBS before trypsinisation with 

0.25% trypsin for 3 minutes, and after washing the cells, replating at the required 

density in fresh medium. For long term storage, fibroblast cells were resuspended at 

approximately 3-5x1 Ofyml in medium adjusted to 10% glycerol and cooled overnight 

to -70°C in plastic vials, before being transferred to liquid nitrogen storage. 

Lymphoid cells were stored in the same way but with the replacement of 10% 

glycerol for 10% DMSO in the medium.

2.2.26. Infection of cells with FeLV.

BHK cells producing FeLV-A were grown and the supernatant containing 

virus harvested and filtered through 0.4qm filters to remove cells. 5 x l0 6 cells were 

pelleted and resuspended in 5mls of the virus-containing supernatant. The medium 

was replaced after 2 hours and the cells grown for 2-3 weeks to allow virus spread.
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2.2.27. Preparation of virus from cell supernatants.

The medium from 2 litres of exponentially growing cells was collected by 

pelleting the cells at 4,420xg for 5 minutes. The supernatant was mixed with an 

equal volume of saturated ammonium sulphate to precipitate the virions. After 10 

minutes incubation at 4°C, the ammonium sulphate precipitate was pelleted by 

centrifugation at 4,420xg for 20 minutes at 4°C. The pellet was resuspended in a 

small volume PBS and any remaining debris pelleted by centrifugation at 3,000xg 

for 10 minutes. The virus was purified through a sucrose gradient, banding at the 

interface between the 50% and 20% sucrose layers after centrifugation at 53,800xg 

for 2 hours at 4°C. The virus band was removed using a syringe and needle, and 

diluted 1:2 in PBS. The purified virus was pelleted at 272,400xg in 1 hour, and the 

viral pellet resuspended in 1ml RNasol to prepare RNA.

2.2.28. Metabolic labelling of cellular proteins.

Exponentially growing cells were rinsed in PBS and 106 cells incubated in 

lm l of pre-gassed methionine free medium/ 4mM glutamine for 30 minutes

at 37°C in sealed eppendorf tubes. This was done to deplete the cell's amino acid 

reserves, and to allow efficient incorporation of the labelled amino acids. 100qCi of 

P 5S] met/cys label (NEN) was added and the cells labelled for 30 minutes to 

examine the immediate products of protein synthesis.

2.2.29. Immune-precipitation of radio-labelled cell proteins.

Labeled cells were pelleted by microcentrifugation, rinsed twice in lx  TBS 

pH 7.4 and lysed by the addition of 500|il of lx  eukaryotic lysis solution. The 

samples were incubated on ice for 15 minutes before being spun in a microcentrifuge 

for 5 minutes to precipitate the insoluble debris. Each sample was split in two and 

either control serum or test serum added to each aliquot. The reaction mixture was 

allowed to stand on ice for 60 minutes. lOOpl of protein A sepharose (Sigma 

lOOmg/ml preswollen in lx  lysis buffer) was added and mixed by inversion for 1 

hour at 4°C. The sepharose beads were pelleted in a microcentrifuge for 1 minute,
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rinsed once in 50()[il 0.5M LiCl and 3 times in 500fil lysis solution. The adsorbed 

proteins were released from the beads and denatured by incubation at 100°C for 3 

minutes before analysis by SDS polyacrylamide gel electrophoresis.

For optimal resolution of the immuno-precipitated proteins, the samples were 

electrophoresed through an 8-15% gradient SDS-polyacrylamide gel. Both an 8% 

and 15% acrylamide (30:0.39 monomer:bis) were prepared, the 15% containing 5% 

glycerol to prevent the gel form cracking when it was handled and dried. The 

gradient gel was poured using a gradient former. [14C] labeled protein molecular 

weight standards (Rainbow Markers, Amersham) were used as markers. 

Electrophoresis was carried out at 5V/cm using lx tris glycine buffer. Following 

electrophoresis, gels were fixed in 5% methanol, 7.5% acetic acid v/v for 1 hour, 

then incubated with 5 volumes of autoradiographic enhancer solution ("Enlightning" 

NEN research products) for 30 minutes prior to drying under vacuum at 80°C and 

autoradiography.
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3.1. INTRODUCTION.

The expression of endogenous viral elements related to FeLV was studied in 

feline cells and tissues from a variety of sources using short, highly specific DNA 

probes. Little was known of the factors controlling expression of these enFeLV 

elements at the start of this project, although the influence of flanking DNA 

sequences had been implicated. Expression of enFeLV transcripts had been clearly 

demonstrated only in placental and embryonic tissues of specific pathogen free cats 

and a small number of virus free lymphomas. These studies had found no evidence 

of endogenous gag-related proteins but did not address the expression of an envelope 

protein product. (Niman et al. 1980, Niman et al. 1977b)

Because of the endogenous origin of the FeLV-B env gene, the B/S FeLV-B 

env probe was suitable to detect enFeLV U'anscripts (Stewart et al. 1986). However, 

in order to detect enFeLV transcripts against a background of exogenous virus 

expression, it was necessary to design a more specific probe. Casey et al (1981) 

showed that the U3 portion of the LTR of infectious (exogenous) FeLV is not 

endogenous to domestic cats. In an attempt to identify the reciprocal endogenous- 

specific sequence, an enU3 probe comprising a 600bp KpnI-Hindlll fragment of an 

endogenous LTR had been tested in preliminary experiments however problems 

arose, presumably due to homology with exogenous FeLV LTR promoter sequences 

as weil as the presence in the probe of host genome sequences 5' to the start of U3. 

(Fig. 6)

The publication of the sequences of three endogenous LTR elements by 

Berry et al (1988) allowed the design and synthesis of a more specific probe using 

polymerase chain reaction (PCR). Using these probes a number of cell lines were 

examined for enFeLV expression, as were a number of virus positive and negative 

tissues. The results indicated that enFeLV expression is more widespread than had 

previously been suspected.
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Fig.fr. Production of a DNA probe specific for enU3 bv PCR amplification.

The figure shows the restriction fragment enU3 DNA probe as shown in Fig.5, containing both 

U 3, R and non-specific flanking DNA sequences, and the relative position of specific 

oligonucleotides (arrows) designed from the sequence of other endogenous LTRs (Berry et al. 1988) 

to amplify a portion of the U3 region from a cloned endogenous element, pLCM l-KO.
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3.2. RESULTS.

3.2.1. Design of  an endogenous specific LTR probe.

To prepare a specific endogenous U3 probe the DNA sequences of three 

endogenous LTRs were compared and a region with minimal homology to 

exogenous U3 was selected. Two oligonucleotides were prepared with the following 

sequences:

oligo A 5' GACCCCCTGTCATAATATGC 3’

oligo C 5' CCAGAATGAGGGGAACAAAC 3’

Oligo A was situated 25bp downstream from the 5’ end of U3. Oligo C was 

situated 36bp upstream of the CAAT box and the orientations of the oligonucleotides 

were chosen to amplify the intervening 236bp. (Fig. 6)

Following the standard PCR protocol (Chapter 2.2.11.), lOng of plasmid 

pLCM l-KO was amplified. pLCM l-KO is derived from an enFeLV proviral clone 

pLCM-1 (supplied by J.Mullins, Stanford University) which was modified by 

digestion with Kpni and reiigation, removing the entire viral coding sequence and 

leaving a solo LTR derived in part from 5’ and 3' elements.

The PCR reaction was carried out at 94°C for 1 min., 50°C for 1 min. and 

72°C for 2 mins. The cycle was repeated thirty times. The size of the product was 

confirmed on a 6% acrylamide gel. The product was cut from the gel and eluted in 

acrylamide elution buffer. After Spin-X column purification, the eluate from the gel 

was phenol extracted, then precipitated with ethanol and dried under vacuum. The 

DNA was then resuspended in a small volume of ddFUO. The PCR product was 

blunt end ligated into the pBluescript vector at the Smal site after the vector had 

been phosphatased to prevent it religating with itself, and the insert incubated with 

T4 polymerase kinase to add a 5' terminal phosphate to the synthetic DNA. Ligation 

was carried out for 16 hours at 4-6°C using a vector to insert ratio of 1:10. A 

number of white colonies were picked, grown overnight in 10ml L-broth with 

ampicillin, and extracted to prepare sequencing grade plasmid DNA. These DNAs
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5 0

e n U 3  GACCCCCTGTCATAATATGCTTAGCAATAGTAACGAAATTTGCAAGACAG
C F E -6  ....................................................................................................... C C .......................... G. . .
C F E - 1 6  ....................................................................................................... C C ..........................G. . .
C F E - 1 4  ....................................................................................................................................................
e x U 3  AGCAAG GCCATTT CAAG

1 0 0

e n U 3  CACCAAGAAGTTCAGGGGTCTTATCCTAAGTCCACCGTTTAGCTGCCAAA
C F E -6   G . . C .......................................T ......................................................................
C F E - 1 6   G ...................................................... T .................A ..................................................
C F E - 1 4  ....................................................................................................................................................
e x U 3  TTAG AAA

1 5 0

e n U 3  CAGGATATCTGTGGTCAGCCACCCGGCCCTAAGATAGCCACCTGGCCCTA
C F E -6  ...................................................................T .................C ..............
C F E - 1 6  ...................................................................T ...................................
C F E - 1 4  ....................................................................................................................................................
e x U 3  CAGGATATCTGTGGT A CACCTGG

2 0 0

e n U 3  AGATGGGAATGGAAAGTACTGACTCCACCCGATAGACCCTAGAGATGAGC
C F E -6  . .G ............................................................................. A ...............................................
C F E - 1 6  . . . . G ....................................................................T ...............................................
C F E - 1 4  .....................................................................................................................................................
e x U 3

2 3 6

e n U 3  CTAGTCAGCCACCCATGTTTGTTCCCCTCATTCTGG
C F E -6  . A C ....................................................................................................
C F E - 1 6  . A T ..................... T ........................................................................
C F E - 1 4  ......................................................... T . C ......................................
e x U 3

Fig.7. The sequence o f the enU3 probe generated bv PCR amplification.

The nucleotide sequence o f the enU3 probe generated by PCR amplification is compared to the 

relative sequences from three endogenous LTRs (Berry et al. 1988). The dots represent sequence 

identity to the enU3 probe sequence and the spaces represent gaps inserted to maintain to homology. 

The specific oligonucleotides used to amplify the enU3 probe, and designed from the sequence ol 

CFE-6 and 16, are underlined. The regions o f homology found in exogenous U3 are shown in the 

bottom line, in italics.
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were sequenced (G-tracked) using universal primer. Two clones were selected for 

complete sequencing. (Fig. 7) The sequences of both clones were identical and were 

very similar to a previously published sequence, CF-14, but had an additional residue 

in each copy of the direct repeat and two further point mutational differences. The 

figure also shows the limited residue homology to exU3. As all enFeLV U3 

sequences were 86% homologous to each other it was expected that this probe would 

recognise all known enFeLV LTRs. The probes for experiments were prepared from 

CsCl purified plasmid by Bam Hl-Pstl digestion and gel purification.

3.2.2. Expression of enFeLV in cell lines.

A number of FeLV positive and negative cell lines were tested for enFeLV 

expression by Northern blot analysis. (Fig. 8/8a) The origins of these cell lines are 

given in chapter 2.1.5. The virus status of the cells was confirmed by hybridisation 

of total RNA to an exogenous U3 probe (exU3) (and an FeLV-A env probe, results

not shown). T3, F422 and FL74 ceils are tumour cell lines infected with exogenous 

FeLV, both full length and defective viruses. The presence of RNA in all lanes was 

confirmed by re-hybridisation of the blot to the GAPDH probe. A duplicate blot was 

hybridised to enU3 (the B/S probe was unsuitable here due to the presence of 

exogenous virus.)

No enFeLV expression was detected in AH927 or FEA fibroblast cells (there 

is no RNA in the AH927 lane of Fig.8, as determined by GAPDH hybridisation, but 

Fig. 8a confirms AH927 cells to be negative for enFeLV expression). Expression 

was detected in all lymphoid cell lines tested, both virus positive (T3, F422 and 

FL74) and negative (320IB and MCC). The pattern of transcripts varied with a 

larger transcript from 4.5-3.5kb and a smaller more consistent form at 2kb. Three 

transcripts were detected in the FL74 cell line. (The smear seen below the major 

transcripts of RNA from 3201B cells was not a consistent feature, and appeared only 

in older preparations of RNA. It was therefore considered to be the result of partial 

degradation of the major transcripts) There was some evidence of differential 

expression of the transcripts, with MCC and FL74 cells having stronger
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Fig.8. Expression of enFeLV in cell lines.

20(ig of total cellular RNA from a number of feline cell lines were separated on two 1% agarose 

gels containing formaldehyde. Each gel was blotted onto a nitrocellulose membrane and hybridised 

wiih either P^P] labelled enU3 or exU3 probes. Once the activity on the membranes had decayed, 

the blots were re-hybridised with P~P] labelled GAPDF1 probe. The positions of the molecular 

weight markers are indicated on the left o f each blot and the sizes are in kb.

The size o f the GAPDH transcript is 1.8kb
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Fig.8a. EnFeLV expression in AH927 cells.

20fig of total cellular RNA from AH927 and 3201B cell lines were separated on a 1% agarose 

gel containing formaldehyde. The gel was blotted onto a hybridisation filter membrane and 

hybridised with [^ P ]  labelled enU3 probe. The enU3 probe was stripped from the blot by high 

temperature washes in 70% formamide before the blot was re-hybridised to a [^ P ]  labelled GAPDH  

probe. The two enFeLV transcripts found in 32 0 IB cells are indicated.



signals for the larger transcripts and 3201B, T3 and F422 cells having more abundant 

smaller transcripts.

3.2.3. Expression of enFeLV in feline tissues.

fil Expression of enFeLV in FeLV positive tumours.

Tumours were obtained from cats experimentally inoculated with FeLV. 

(T17 strain (Fulton et a/. 1987, Terry et al. 1992)) The samples were collected 

between 24 and 28 weeks post inoculation, all animals having presented with thymic 

lymphosarcoma. Thymic tumour and kidney total RNA were tested for enFeLV 

expression by Northern blot analysis. (Fig. 9)

The exU3 probe detected exogenous viral transcripts in all tumours. The 

enU3 probe detected expression of endogenous transcripts in all tumour tissues. 

Samples J49/1 and J53/1 were too heavily degraded for specific band sizes to be seen 

but in the others, two bands were detected with sizes similar to those of the 320IB 

ceil lines except for the larger transcript of the J53/2 tumour, which appeared to be 

smaller than the others.

The presence of RNA was checked by reprobing the blots with the GAPDH 

probe. Unfortunately, a number of the kidney RNA samples appeared to be 

degraded. However in those samples with intact RNA, no expression could be 

detected in kidney tissue.

There was again evidence of differential expression of the two transcripts, in 

all cases here, as in 320IB cells, the smaller transcript having a stronger signal than 

the larger.

(ii) Expression of enFeLV in FeLV positive healthy tissue.

FeLV positive thymic and kidney tissues from a number of apparently 

healthy, but viraemic cats were obtained, and total RNA tested for enFeLV 

expression by Northern blot analysis.

The enU3 probe detected expression in the thymic tissues of the four healthy 

virus positive cats. (Fig.10) All transcripts were of a similar size. Cat PI 12
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Fig.9. Expression of enFeLV in virus positive tumours.

20fig o f total cellular RNA from thymic tumours and kidney or liver tissue from a number ot 

virus infected animals were separated on two 1% agarose gels containing formaldehyde. Each gel 

was blotted onto a hybridisation filter membrane and hybridised with either [^-P] labelled cnU3 or 

exU3 probes. Once the activity on the membranes had decayed, the blots were re-hybridised with 

P^p] labelled GAPDH probe. The positions o f the molecular weight markers are indicated on the left 

of each blot and the sizes are in kb.
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Fig. 10. Expression o f enFeLV in virus positive healthy tissue.

20fig o f total cellular RNA from thymic and kidney tissues from a number o f virus infected, but 

apparently healthy animals were separated on two 1% agarose gels containing formaldehyde. The gel 

was blotted onto a hybridisation filter membrane and hybridised with [^ P ]  labelled enU3 probe. 

Once the activity on the membrane had decayed, the blot was re-hybridised with labelled

GAPDH probe. The positions o f the molecular weight markers are indicated on the left of the blot 

and the sizes are in kb.
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displayed three transcripts. Again differential expression was apparent with the 

smaller transcript displaying a stronger signal. There also appeared to be low level 

expression in two of the kidney samples, PI 12 and PI 13.

3.2.4. Comparison of enFeLV genomic content of expressing and non­

expressing tissues.

At this point the available evidence suggested that enFeLV expression might 

be induced by exogenous virus infection. This hypothesis was based on the 

observation that only virus positive tissues from infected animals expressed enFeLV 

and on the published studies of enFeLV expression which failed to show expression 

in virus free, healthy adult cats. It was considered that infection with exogenous 

FeLV might influence the expression of enFeLV loci by co-packaging endogenous 

transcripts which were expressed at low levels and thereby mediating the integration 

of the endogenous provirus into a new chromosomal position more favourable for 

expression. Such a process, if widespread, would result in unique integrations in 

individual cells and so be impossible to detect by Southern blotting analysis of 

provirus-host junction fragments. This problem might be overcome, however, if the 

same analysis was performed on clonal tumour cells expressing enFeLV, since these 

resulted from the expansion of one or a few virus infected cells.

To examine the chromosomal location of enFeLV elements a method of 

fingerprinting the feline genome was employed. (Fig. 11) All the tumours tested 

were of clonal origin (as defined by rearrangement of the T-cell receptor (3 chain 

gene, not shown) and all expressed enFeLV to levels equivalent to 3201B cells. The 

genetic fingerprints of these enFeLV expressing tumours were compared to kidney 

tissues from the same animal which did not express enFeLV transcripts.

DNA was digested with BamHI and separated on a 0.8% agarose gel. The 

resulting Southern blots were probed with the B/S env probe. Most endogenous 

proviruses would be expected to be cut by this enzyme at a conserved site at the 5' 

end of the env gene, and in the 3' flanking DNA. The B/S probe would selectively 

detect these fragments. The difference in location of the BamHI site in tthe 3'
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LTR gag pol en v  LTR

B /S  probe
7

Fig.l 1. Identification o f virus-cell junction restriction fragment polymorphisms.

This diagram shows the principle o f the "fingerprinting" studies to identify individual enFeLV  

loci. The restriction enzyme BamHI cuts the enFeLV provirus at a conserved site within the env gene 

and at unique sites in the 3' flanking DNA. The size o f the restriction fragment w ill depend upon the 

size of the env gene, and the specific region o f flanking DNA. Each locus in a genom e can therefore 

be separated on an agarose gel as unique sized fragments which can be identified by Southern blotting 

and hybridisation to the B/S env probe. The resulting pattern is a unique genetic fingerprint o f the 

DNA sample tested.
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flanking DNA would then result in a unique band for each provirus in a different 

chromosomal location. Between two tissues of the same cat then, any changes in 

bands would represent the acquisition of a new endogenous provirus or translocation 

to a new chromosomal location.

Kidney tissues generally had no detectable enFeLV transcripts while thymic 

tumour tissues were consistently shown to express enFeLV. These two tissues were 

therefore selected to look for evidence of a change in chromosome position of 

enFeLV loci which may be responsible for the tissue specific expression of enFeLV 

transcripts. Concomitantly, these studies allowed the characterisation of the genetic 

heterogeneity of enFeLV loci within the species. (Fig. 12a,b) Figures 12a and b 

represent the endogenous virus fingerprint of a number of thymic tumours that had 

been found to express enFeLV (Fig.9 and other results not shown) and kidney tissues 

from the same animals. Fig. 12a shows the fingerprints from a num ber of  cases from 

a bank of feline tumour tissues. T15 and T19 were both virus positive samples, T16 

and T20 were both free of detectable exogenous virus. Fig. 12b shows the 

fingerprints o f  a number of FeLV positive cats that were related through the male 

parent. Each cat had a different proviral pattern, and there was no difference in the 

pattern between expressing and non-expressing tissues of the same cat. The genetic 

fingerprints in Fig. 12b showed more similarities to each other and reflected the close 

genetic relationship of the animals. The J49 cats were from the same litter, and the 

J53 cats were from another litter. The patterns of these differed by only one or two 

restriction fragments.

3.2.5. Expression of enFeLV in specific pathogen free cats .

Wendy 3 and F6 were two specific pathogen free cats which had never been 

exposed to exogenous FeLV. A Northern blot using the exU3 probe confirmed that 

the Wendy3 samples were free of infectious vims, (data not shown)

From Wendy 3, four tissues were initially tested for enFeLV expression by 

hybridisation to the B/S env probe. (Fig. 13a) EnFeLV transcripts were detected in 

thymus, mesenteric lymph node and bone marrow samples. Expression was not
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Fig. 12a. Comparison of the enFeLV content and distribution in tissues with and without 

detectable enFeLV expression.

20|ig o f high molecular weight DNA from a number o f thymic tumours that had been found to 

express enFeLV (T), and kidney tissues (K) from the same animals (T15, T16, T19, and T20) were 

digested with BamHI, and the resulting fragments separated on a 0.8% agarose/TAE gel. The DNA  

was transferred to a filter membrane by Southern blotting and hybridised with [^ P ]  labelled B/S env 

probe. The positions of the molecular weight markers are indicated on the left o f the blot and the 

sizes are in kb.
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Fig. 12b. Comparison of the enFeLV content and distribution in tissues with and without 

detectable enFeLV expression.

20|ag o f high molecular weight DNA from a number of thymic tumours that had been found to 

express enFeLV (T), and kidney or liver tissues (K or L) from the same animals (J49/1, J49/2, J51/3, 

J53/1, J53/2) were digested with BamHI, and the resulting fragments separated on a 0.8%  

agarose/TAE gel. High molecular weight DNA from 3 2 0 IB and MCC cell lines were also tested. 

The DNA was transferred to a filter membrane by Southern blotting and hybridised with P~P] 

labelled B/S env probe. The positions o f  the molecular weight markers are indicated on the left o f the 

blot and the sizes are in kb.
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Fig. 13a. Expression o f enFeLV in specific pathogen free cats (1).

20|ig o f total cellular RNA from a number of tissues from a specific pathcgen free cat were

separated on a 1% agarose gel containing formaldehyde. The gel was blotted or to a hybridisation 

filter membrane and hybridised with [^ P ]  labelled B/S env probe. The positions of the molecular

weight markers are indicated on the left o f the blot and the sizes are in kb.
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Fig. 13b. Expression of enFeLV in specific pathogen free cats (1).

20 |ig  o f total cellular RNA from a number o f tissues from a specific pathogen free cat were 

separated on a 1% agarose gel containing formaldehyde. The gel was bio ted onto a hybridisation 

filter membrane and hybridised with P~P] labelled en(J3 probe. The enU3 probe was stripped from 

the blot by high temperature washes in 70% formamide before the blot was re-hybridised to a P~P] 

labelled GAPDH probe. The positions o f the molecular weight markers arc indicated on the left of 

the blot and the sizes are in kb.
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detected in the kidney RNA. In a subsequent analysis, this time using the e;nU3 

probe, (Fig. 13b) enFeLV expression was confirmed in bone marrow, meseniteric 

node and thymus and also detected in prescapular lymph node and spleen. 

Expression was not detected in liver and kidney. In those samples with undegraded 

RNA, two transcripts were detected. The smaller of these appeared to be relatively 

more abundant. The GAPDH probe analysis confirmed the presence of RNA in  all 

lanes.

For the F6 samples, a wider range of tissues were tested using the emU3 

probe. (Fig. 14a) High levels of enFeLV RNA were detected in peripheral bllood 

lymphocytes, bone marrow, and mesenteric node. Lower levels were seen in the 

thymus and spleen. Because of the poor quality of the results, (due to the inadvertent 

use of an excess of probe) the procedure was repeated using those RNA samples still 

available. (Fig. 14b) EnFeLV expression was detected in the small intestine, liver 

and mesenteric node. It was possible to enhance the signals using a computer 

densitometer and image analyser (SUN Microsystems). (Fig. 14c) The enhanced 

image revealed enFeLV transcripts in spleen, thymus, liver and lung tissue. In both 

experiments, no expression was detected in salivary gland, brain, and cardiac or 

striated muscle. GAPDH probing confirmed the presence of RNA in all lanes.

A number of tissues displayed more complex transcript patterns, and the size 

of transcnpts appeared to vary from tissue to tissue. For example, the peripheral 

blood lymphocytes had three different transcripts. Also, the size of the relatively 

less mobile transcript in intestine and mesenteric node tissues was larger than in 

spleen, thymus and lung tissues, and in liver tissue it was smaller still.

3.3. DISCUSSION.

The results of this study indicate that enFeLV expression is more widespread 

than previously reported. This new finding was made possible, in part, by the 

development of a more specific and sensitive probe. The high sequence homology 

between the published sequences of three enFeLV LTR elements and the enU3 probi 

generated here suggests that the new probe will be broadly specific for enFeLV loci.
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Fig.14a. Expression o f enFeLV in specific pathogen free cats (2).

20ug of total cellular RNA from a number of tissues from a specific pathogen free cat were 

separated on a 1% agarose gel containing formaldehyde. The gel was blotted onto a hybridisation 

filter membrane and hybridised with f^ P ]  labelled enU3 probe. The enU3 probe was stripped from 

the blot by high temperature washes in 70% formamide before the blot was re-hybridised to a [J“P] 

labelled GAPDH probe. The positions o f the molecular weight markers are indicated on the left of 

the blot and the sizes are in kb.
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Fig. 14b. Expression o f enFeLV in specific pathogen free cats (2).

20p.g o f total cellular RNA from a number of tissues from a specific pathogen free cat were 

separated on a 1% agarose gel containing formaldehyde in a repeat o f the experiment shown in 

Fig. 14a. The gel was blotted onto a hybridisation filter membrane and hybridised with P^p] labelled 

enU3 probe. The enU3 probe was stripped from the blot by high temperature washes in 70% 

formamide before the blot was re-hybridised to a f^-P] labelled GAPDH probe. The positions o f the 

molecular weight markers are indicated on the left o f the blot and the sizes are in kb.
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This Figure shows the result o f the enhancement of the enFeLV signals present on the blot 

shown in Fig. 14b by a computer densitometer and image analyser (SUN Microsystems). The 

enhancement was performed by Lynn McGarry (Beatson Institute for Cancer Research)
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There were a number of technical problems encountered regarding the 

isolation of RNA. Although flash-freezing of tissues immediately upon excision did, 

in general, give good quality RNA, this was not the case with bone marrow RNA 

which was consistently degraded. This may reflect the heterogeneous nature of the 

tissue, and the extraction procedure (scraping the marrow out of a crushed femur) 

which may have resulted in cell lysis and release of RNases. There was also an 

unexpected difficulty in obtaining intact RNA from kidney tissue which was 

apparent in some control hybridisation blots. This may have been the result ol tissue 

degradation, in the J series cats, as these tissues were not immediately flash-frozen 

after excision (a few of the corresponding thymus RNA samples were also 

degraded). However the problem of kidney RNA isolation may not be tissue 

specific, but reflect the simple fact that it was commonly collected after the 

neoplastic tissues during the post-mortem procedure.

Initial analyses suggested that enFeLV expression might have been 

influenced by exogenous virus infection. However, a study of enFeLV expressing 

and non-expressing tissues revealed no difference in enFeLV provirus numbers or 

chromosomal location. Hence, novel insertions of enFeLV sequences did not appear 

to be responsible for expression. The possibility remained that the mobilisation ot 

enFeLV sequences occurred in a small percentage of cells which were not detected. 

However the amount of endogenous specific RNA produced in these tissues is 

comparable to 320IB cells which suggests either the majority of cells express 

endogenous specific RNA or a smaller proportion of cells in these tissues express 

enFeLV at higher levels than 3201B cells. Therefore a further level of control was 

considered to be involved. The possibility that exogenous viral sequences could 

indirectly influence the transcription of enFeLV loci (e.g. via trans acting factors), 

was not considered further after the observation of enFeLV expression in specific 

pathogen free cats proved that enFeLV expression can occur independently of 

exogenous FeLV.

Overall, the data from both FeLV positive and negative cats showed that 

enFeLV expression was a consistent feature of lymphoid tissues, whether exposed to
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exogenous FeLV or not. EnFeLV expression appeared to be controlled in a tissue 

specific manner. Thus, the fibroblast cell lines AH927 and FEA displayed little 

detectable expression as did kidney, muscle or brain tissues. It is conceivable that 

expression in non-lymphoid tissues may have been due to the presence of lymphoid 

cells in these tissues, and might explain the detection of low levels of expression in 

liver and lung dssue. Similarly, higher levels of enFeLV expression detected in the 

smooth intestine tissue was perhaps the result of enFeLV expression in gut- 

associated lymphoid tissue, including Peyer's patches which are located in the 

intestinal wall. It might also be considered that the tissues not displaying high 

enFeLV expression were less mitotically active than lymphoid cells, and so may be 

less transcriptionally active, but the observation that mitotically active fibroblast cell 

lines also failed to express enFeLV suggested that the tissue specific restriction is a 

more salient feature in the control of enFeLV expression.

In a number of samples, including FL74 cells, the thymus of PI 12 cat and the 

lymphocytes of F6 cat, more than two enFeLV transcripts were detected. These 

presumably arose either from the expression of a greater number of loci or from a 

more complex splicing mechanism. The study of a panel of tissues of F6 cat also 

indicated the expression of different sizes of transcripts in different tissues. This 

may reflect some tissue specific control of the activity of different enFeLV loci. The 

differences in the sizes of enFeLV transcripts expressed in different cell lines and 

tissues presumably indicated the presence of different active loci. However, in all 

RNA samples tested, from both a cellular and tissue origin, the size of the smaller 

transcript was considerably more conserved than the larger transcript(s). The 

possible significance of this is explored further in Chapter 8.
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4.1. INTRODUCTION.

The following studies were performed to characterise the composition of 

enFeLV transcripts and to identify possible translation products.

4.2. RESULTS.

4.2.1. Expression of sub-genomic transcripts in the 3201B cell line.

This experiment was performed by Robert McFarlane. (Beatson Institute for 

Cancer Research)

Northern blot strips of total RNA from 3201B cells were hybridised with 

DNA probes specific for the individual viral genes of FeLV to characterise the 

genetic content of the enFeLV transcripts. (Fig. 15) 320IB cells were selected for 

this analysis because they were free of exogenous virus which would react with the 

subgenomic FeLV probes.

Both size classes were detected by enU3 and B/S env. Only the larger 

transcript was detected by the gag probe, and neither transcripts was detected by the 

pal or the exU3 probe. In subsequent Northern analyses, 320IB RNA was generally 

used as a positive control for enFeLV expression.

4.2.2. Identification of candidate enFeLV proteins using polyclonal antisera.

The initial work to identify the protein products of the endogenous envelope

open reading frame was performed by Anne Terry. (Beatson Institute for Cancer 

Research)

FeLV positive and negative lymphoma lines, which had been shown to 

express endogenous related proviruses, were labelled with [35S] met/cys, and 

immune-precipitated with an anti-pl5£a£ or an t i-g p 7 0 ^ v polyclonal antisera. 

(Fig. 16a/b) No gag related proteins were detected in the virus negative cell lines 

(320IB, MCC). Therefore, although the larger RNA transcript in the 3201B cells 

contains gag related sequences these do not appear to be translated into a stable 

protein. As expected, gag related proteins were readily detected in the FeLV 

positive T-cell lines (T3, FL74).
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Fig. 15. Expression o f subgenomic transcripts in 3201B cell line.

5 aliquots of 20pg o f total cellular RNA from 320IB cells were separated on a 1% agarose gel 

containing formaldehyde. The gel was blotted onto a hybridisation filter membrane and strips 

hybridised with P “P] labelled probes specific for gag, p o l, env, and ex or enU 3.(see Fig.5) The 

positions o f the molecular weight markers are indicated on the right and the sizes are in kb.
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(+) rabbit anti p 15 gag  serum £oat anl< gp70 envserum

(-) normal rabbit serum (-) normal goat serum

Fig, 16 Identification of candidate endogenous proteins using nolvclonal antisern.

106 cells from enFeLV expressing lines were metabolically labelled with [35S] met/cys and the 

cellular proteins precipitated with polyclonal anti-p l5£a£ (a) or anti-gp70e/IV (b) sera. The 

precipitated proteins were separated by denatunng electrophoresis through a 8-15% gradient SDS- 

polyacrylamide gel and visualised by autoradiography. The positions o f the molecular weight 

markers are indicated on the left o f each blot and the sizes are in kD.
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The polyclonal env antiserum precipitated a number of proteins in these cell 

lines. The exogenous envelope gene precursor polyprotein, Pr80e/iv was detected in 

virus positive cells. The sizes of the proteins precipitated from both the FeLV 

negative and positive cell lines were of 70-80kD, 60kD, 50kD and 35kD.

4.2.3. Amplification of endogenous envelope gene sequences from feline

cDNA

The technique of polymerase chain reaction was used to amplify cDNA 

prepared from enFeLV expressing cells using oligonucleotide primers designed Irom 

endogenous env sequences published. (Kumar el al. 1989) By amplifying cDNA, 

only those genes which were expressed would be isolated. Oligo 2/3 corresponded 

to DNA sequences 33bp 5' to the signal peptide ATG of the env gene.

Oligo 2/3 5TCAGACAGACCCCAGCTCAGA3'

Oligo C was previously described for the amplification of enU3.

The use of a 3’ oligo primer located within enU3 was to ensure the 

amplification of the entire env coding sequences.

Poly-(A)~ RNA was isolated from total cellular RNA using poly-d(T) bound 

magnetic beads. Double stranded cDNA was synthesized from this mRNA using a 

commercially available cDNA synthesis kit (Pharmacia). This was then used as the 

template for PCR amplification.

Amplification was carried out under the following conditions: 

lOng of control plasmid or lq l of cDNA were amplified using 1 gig of each 

primer per reaction. The reaction cycle consisted of 94°C for two mins, 60°C for 2 

mins and 72°C for 10 mins. The longer extension times were chosen to allow the 

amplification of full length envelope genes. One tenth of the reaction products were 

run on a 6% acrylamide gel and visualised by ethidium bromide staining and UV 

fluorescence. (Fig. 17)

Lanes 1 and 2 show the products of amplifying two full length endogenous 

clones pLCM-1 and pBCM-3 respectively. These gave products of the size expected
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Fig. 17. Amplification o f endogenous envelope gene sequences from feline cDNA.

Oligonucleotides were designed to specifically amplify the entire env gene using PCR. The 

endogenous env gene sequences from two full length endogenous clones (pL C M l, lane 1, and pBCM- 

3, lane 2) or from the prepared cDNA from 32 0 IB (lane 3) and MCC cells (lane 4) were amplified by 

PCR using these probes. One tenth of the products are shown after electrophoresis on a 6%  

acrylamide gel, and visualising by ethidium bromide fluorescence. The positions o f the molecular 

weight markers are indicated on the left and the sizes are in bp.
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for full length env genes. Lanes 3 and 4 show the products of amplifying the cDNAs 

of 320IB and MCC. these products were much smaller, at only 1.1 kb.

4.2.4. Cloning of endogenous envelope gene DNA and sequence analysis.

The l . lk b  DNA fragments from the 3201B and MCC cDNA amplifications 

were independently gel purified and cloned into an M l 3 mplO vectors. Before 

ligation, the synthetic DNA was incubated with T4 polynucleotide kinase to add 5' 

terminal phosphates. It was found that contaminants of gel-purified DNA inhibited 

the kinase enzyme and it was therefore necessary to kinase the PCR products prior to 

gel purification. The DNA was then eluted from the gel and precipitated with 

sodium acetate and ethanol, dried and resuspended in ddH 20. The inserts were then 

blunt end ligated into Smal digested, phosphatased M13 mplO vector. (Amersham) 

Plaques were picked and single stranded DNA phage prepared. These were then 

sequenced, firstly by A-tracking then by full sequencing. In total, 1 envelope clone 

from 320IB cells and 2 from MCC cells were fully sequenced. (Fig. 18) These 

clones contained an open reading frame (orf) coding for a 273 amino acid 

polypeptide, which would produce a truncated envelope protein consisting of the 5' 

half of the FeLV SU, gp70c' /zv with a predicted size of 33.5kD, excluding the first 32 

residues comprising the hydrophobic signal peptide. (Fig. 19)

4.3. DISCUSSION.

The detailed study of the enFeLV transcripts in 320IB cells with sub- 

genomic probes indicated that the larger transcript contained LTR, gag and env 

sequences, while the smaller had LTR and env sequences only. This suggests that 

the enFeLV locus (or loci) involved is a truncated provirus, substantially deleted in 

pol, that is transcribed into genomic length RNA. The smaller RNA could be a 

spliced envelope mRNA derived from the larger form. Inspection o f  the published 

enFeLV 5’ sequences indicated that in all cases studies, the splice donor site 5' of the 

glycosylated gag gene sequence was intact. (Berry et al. 1988) Sequence information 

on the env splice acceptor is not available at present. The possibility that the two
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c f e - 6  .................................................................................................................................................................................................................................................................................................................................................

C F E -1 6  TCAGACCACCCCAGCTCAGACGATCTATCAAGATCGAAGCTCCAACGCACCCAAAACCCTCTAAAGATAAGACTTTCTCGTGGGACCTAATAATTCTGGTGGGGCTCTTACTAAGACTAG

33

c f e - 6  . . . C .........................................................G ..................................................   T ................................... A . . .
C F E - 16 ACGTGGGAATGCCCAATCCTAGTCCACACCAAGTGTATAATATAACTTGGACAATAACCAACCTTGTAACTGGAACAAAGGCTAATGCCACCTCCATGTTGGGAACCCTGACAGACGCCT

2 4 1  . . .  . . . . . . .  360

cfe-6..................... ............... A . . . . .   .................................................   - .........................................A....................................................................................... ....................................................... ..............
C F E - ! 6 TCCCTACCCTATATTTTGACTTATGTGATATAATAGGAAATACATGGAACCCTTCAGGTCAGGAACCATTCCCAGGGTACGGATGTGATCAGCCTATGAGGAGGTGGCAGCAGAGAAACA

c f e - 6   1 ................................................................................. a ..............................................................
C F E -1 6  CAGCCTTTTATGTCTGTCCAGGACATGCCAACCGGAAGCAATGTGGGGGGCCACAGGATGGGTTCTGCGCCGTATGGGGTTGCGAGACCACCGGGGAGACCTATTGGAAACCCACCTCCT

c f e - 6   A........................................................................................................................................................................................
C F E -1 6  CCTGGGACTACATCACAGTAAAAAAAGGGGTTACTCAGGGAATATATCAATGTAGTGGAGGTGGTTGGTGTGGGCCCTGTTACGATAAAGCTGTTCACTCCTCGACAACGGGAGCTAGTG

001 120 
AAGGGGGCCCG7GCAACCCCTTGATCTTCCAATTTACCCAAAAGGGAAGACAAACGTCTTGGGATGGACCTAAGTCATGGGGGCTACCACTATACCGTTCAGGATATGACCCTATAGCCC

C F E -1 6  CCTTCTCGGTATCCCGGCAAGTAATGACCATTACGCCGCCTCAGGCCATGCGACCAGATCCAGTCCTGCCTGATCAAAAACCCCCATCCAGGCAATCTCAAATAGAGTCCCGAGTAATAC

c f e - 6   \ / .....................................................A ...........................................................................................A .......................................................................................................................................................................

C F E - 1 6 CTCACCCCAGCTAAATGTATGATTCCGTTTAGGCTCCTAAGAAAAGGGGGAAATGAAAGTCCCCTTCCCCTTGCTTTGACCCCCTGTCATAATATCCTTAGCAATAGTAACGCCATTTGC

9 6 1  . . . . . . . . . .  108 0
c f e - 6   C .................  C ...........................................................................................................................................................G .............A ..................................................

C F E - 16  AAGGC AGCACCAGGAAGTTCAGGGGTCTTATCTTAAGTCAACCGTTTAGCTGCCAAACAGGATATCTGTGGTCAGCCACCTGGCCCTAAGATAGGAACGCAGAGTACTGACTCCACCCGA

1 0 8 1  . . . . .

c f e - 6  . . A ..............................................C ......................C ...................................................................

C F E - 16 TATACCCTAGAGATGAGCCATGTCAGCCATCCATGTTTGTTCCCCTCATTCTGG

Fig, 18. Sequence analysis o f the endogenous env genes isolated bv amplification o f feline 

cDNA.

The nucleotide sequence o f the three individual enFeLV env clones, isolated by the specific 

amplification from cDNA, was determined by chain termination sequencing and is shown here. F and 

B3 are the sequences of the env genes isolated from MCC cDNA and J is the sequence of the env gene 

isolated from 320IB cDNA. The sequences are compared to that o f CFE-16 and CFE-6 (Kumar et 

al. 1989). The dots represent identity to CFE-16. The arrow in the sequence o f CFE-6 at position 845 

represents the site of the deletion o f env gene sequences in both CFE-16 and the enFeLV env genes 

isolated in this study compared to CFE-6 and to other full length FeLV env genes.
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transcripts arose from separate proviral loci cannot be formally excluded. However, 

the proposal that a single locus is transcribed is consistent with published findings 

that only one of a panel of enFeLV LTRs displayed significant promoter activity. 

This clone, CFE-16, was a truncated provirus of a size consistent with the major 

transcript observed here. (Berry et al. 1988)

A number of proteins were precipitated in tumour cell lines by polyclonal 

antisera to gplOenv and p l5 £ fl£. Gag related proteins were detected, as expected, in 

the virus positive cell lines T3 and FL74. No gag related proteins were detected in 

the 3201B and MCC cells suggesting that although gag related RNA is present, at 

least in 320IB cells, it is not translated into a stable product. A number of proteins 

were precipitated in tumour cell lines by the polyclonal antiserum for gp706' /zv, 

including proteins of approximately 70-80kD, 60kD, 50kD and 35kD. The proteins 

of 70-80kD precipitated in the virus positive cell lines were of the expected size for 

the glycoproteins of exogenous FeLV. The 320IB and MCC cells were free of 

exogenous virus (as confirmed by precipitation with the polyclonal antiserum, anti- 

p l 5 #a<? ) and so this could not explain the 70-80kD bands precipitated in these cells. 

Each cell line produces a number of prominent envelope related bands and different 

sized proteins were found in different cell samples. These proteins were not seen in 

the AH927 fibroblast cell line. It was suspected that some of the bands may have 

been due to the presence of contaminating antibodies to other endogenous feline 

retroviruses, in particular RD114. The gp706̂ v protein used to raise the antiserum 

in goat was prepared by lentil lectin fractionation of the viral proteins produced by 

another T-cell lymphoma line, F422. The expression of another endogenous 

retrovirus, RD114, has been shown to be significantly increased in cats with 

lymphomas (Niman et al. 1977a,b) perhaps due to some aspect of the neoplastic 

condition induced proviral expression, or simply the expansion of an expressing cell. 

This virus although genetically unrelated to FeLV (Livingston & Todaro, 1973) does 

have an envelope glycoprotein that is immunologically unrelated, but of similar size 

to FeLV gp70 and so it is possible that R D 114 is released by F422 cells and R D 114 

gp706̂ zy contaminated the FeLV gp70 used for immunisation. It is therefore not
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clear whether the unexpected reactivities were due to the expression of RD114 

related proteins in these lymphoma cells, or were non-viral contaminants. Molecular 

characterisation of the endogenous RD114 proviruses in the domestic cat showed 

many of the env genes to be substantially deleted or substituted and generally more 

divergent than RD114 gag and pol genes (Spodick et al. 1984, Reeves & O'Brien, 

1984) or the restriction maps of env genes of enFeLV clones. (Soe et al. 1983, 1985) 

This may therefore explain the heterologous proteins precipitated from different cell 

lines. Although it was apparent that no gag related proteins were translated from 

enFeLV transcripts, it was possible that endogenous env proteins were translated, but 

I cannot be certain that all the observed species were encoded by enFeLV. It was 

clear that the identification of the coding potential of the expressed env genes would 

help to distinguish between the protein products precipitated by the polyclonal 

antiserum, anti-gp70^zv. Also, it was known that enFeLV env genes recombine with 

infectious FeLV-A to produce a new virus subgroup (FeLV-B) with an expanded 

host range. (Stewart et al. 1986) However, it was not known which enFeLV loci 

contribute to the recombination. It was considered that the highly expressed enFeLV 

loci may be more likely to become involved in retroviral recombination. For these 

reasons, it was decided to characterise those env genes being expressed in feline 

cells. The choice of cDNA cloning allowed the specific isolation and analysis of 

those envelope sequences that were expressed. The 3201B and MCC cell lines were 

chosen because both are from virus negative lymphomas, and although the PCR 

amplimers were designed not to amplify exogenous viral sequences (by choosing a 3' 

amplimer homologous only to endogenous U3 sequences), the use of FeLV negative 

cells was a further safeguard against isolating exogenous sequences. These cell lines 

were also selected because they appeared to express different proviruses, the larger 

transcript from MCC cells being approximately 0.5kb shorter than the most typical 

transcript in 3201B cells. The smaller transcripts were of apparently identical size. 

The cloning and sequencing analysis would therefore address two questions: the 

first, whether the different large transcripts represented the expression of env genes 

of different sizes or different loci with the same size of env gene (the sub-genomic
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analysis done on 3201B ceils had not been performed on MCC cells) and the second, 

how conserved the env genes expressed in these two different cell lines were.

The envelope genes cloned from the two feline cell lines were found to be 

almost identical. The sequences isolated from the 320IB cells compared to the 

MCC cells showed only a few single nucleotide differences. (Fig. 18) All three 

cloned envelope gene sequences almost exactly match the sequence of the truncated 

env gene from CFE-16, a truncated endogenous provirus isolated from a placental 

DNA library. (Soe et al 1983, Kumar et al. 1989) The predicted amino acid sequence 

of these genes were calculated and compared to those of exogenous FeLV-A and B. 

(Fig. 19) The 3201B clone encoded a protein of precisely the same primary sequence 

as CFE-16, while the MCC clones has just one amino acid change. This change 

from aspartic acid to asparagine just before the C-terminus is also found in the amino 

acid sequence of CFE-6, a full length envelope gene from a complete provirus 

isolated from the same DNA library as CFE-16. (Kumar et al. 1989) All display an 

identical, large deletion involving the 3' half of gp7() (SU) and the entire coding 

sequence for the FeLV TM protein, pl5E, with the exception of the final 15bp of 

pl5E. There are several point mutations relative to CFE-16 which appear in CFE-6. 

In the two MCC cell derived clones there are two points of difference, the first a 

conservative change in the env-ori and the second, in the non-coding sequence of the 

LTR. Whether these represent the expression of two closely similar loci in the MCC 

cells or the artefacts of PCR amplification and cloning cannot be determined without 

the isolation of more clones or the direct sequencing of the products of further PCR 

amplifications.

The truncated endogenous env-orfs encode a protein of approximately 

33.5kD assuming the removal of the signal peptide, but discounting glycosylation. 

All potential N-linked glycosylation sites are conserved. The 35kD protein immuno- 

precipitated from the lymphoid tumour cell lines (Fig. 16) was therefore considered a 

candidate product of the truncated e^v-orf.

The use of PCR to isolate the endogenous envelope genes had the major 

advantage of speed. The construction of a full cDNA phage library and the
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subsequent screening for env containing elements would have resulted in perhaps a 

larger number of clones being isolated and may have determined whether a number 

of different proviruses were expressed in the same cell line. However, both should 

have resulted in the isolation of the predominant species. Any enFeLV proviruses 

lacking primer complementary sequences would not be isolated by the specific PCR 

technique although the primers were selected from relatively conserved regions of 

enFeLV proviruses. It was uncertain whether any PCR products amplified from low 

abundance transcripts would be seen given the sensitivity of ethidium bromide 

fluorescence, but the immediate aim of the experiment was to isolate env genes from 

those enFeLV proviruses that were highly expressed and so the process was 

considered satisfactory. The use of PCR may also have generated point mutations or 

other artefacts in the sequences of the envelope genes due to the misincorporation of 

bases by Taq polymerase. Taq polymerase has been reported to have an error rate 

for single base paired substitutions of 1 per 9000 bases, but the rate is higher if the 

level of nucleotide substrate is limiting. (Tindal & Kunkel, 1988) This would be a 

greater problem in PCR experiments involving a large number of cycles without 

adding more nucleotide to the sample, but in the protocol involved here, may not be 

so important, as the number of cycles was comparatively small and the nucleotides 

always in excess. The consistency of the derived sequences suggest that there has 

been very little, if any misincorporation. Sequencing of the PCR products of known 

cloned genes would show the percentage misreading due to the procedure as would 

the sequence analysis of additional independent amplifications of target DNA. 

Direct sequencing of a larger number of enFeLV env genes may identify other 

variants of these transcripts. Because the full length proviruses were successfully 

amplified by the PCR procedure, it did not appear to bias against the amplification of 

longer env sequences. However, the possibility that the synthesis of cDNA from full 

length env genes may have been less efficient could not be discounted. The highly 

expressed enFeLV sequences seen by Northern blot analysis would be expected to 

predominate in cDNA libraries, but it is also possible that other enFeLV transcripts 

expressed at low levels were amplified in the PCR reaction but not detected by
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ethidium bromide staining of the DNA on a polyacrylamide gel. However, the DNA 

amplified appeared to represent the major expressed species in both cell lines.

117



CHAPTER 5 EXPRESSION OF enFeLV: POSSIBLE ROLE IN 

RECOMBINATION.

5.1. Introduction. 119

5.2. Results. 119

5.2.1. Comparison of the coding potential of enFeLV env genes. 119

5.2.2. Packaging of enFeLV transcripts into FeLV virions. 121

5.2.3. Sequence analysis of FeLV-B/GMl. 121

5.3. Discussion. 126

118



5.1. INTRODUCTION.

The involvement of expressed endogenous transcripts in recombination of 

murine and avian viruses has already been discussed. (Chapter 1/4.2.) 

Recombination of endogenous viral sequences requires the expression of ERV 

elements in virally infected cells, their co-packaging into exogenous virions, and the 

transfer of reverse transcriptase from one template to another during the synthesis of 

the DNA provirus in newly infected cells. In the following studies, the ability of the 

expressed endogenous transcripts to be co-packaged into virion particles, as the 

putative first step in recombination, was tested. The sequence analysis of a novel 

FeLV-B isolate suggested that loci resembling the expressed transcripts are involved 

in some recombinations.

5.2. RESULTS.

5.2.1. Comparison of the coding potential of enFeLV env genes.

The characterisation of enFeLV env genes expressed in feline lymphoma cell 

lines allowed the comparison of these sequences with the published gp70 sequences 

of other enFeLV env gene sequences and exogenous FeLV of subgroups A and B. 

Comparison of the gp70 (SU) coding regions of enFeLV env genes to those of 

FeLV-A identifies a number of sequence features unique to endogenous viruses. 

(Fig.20) Some of these are also found in FeLV-B viruses as a result of their 

recombinational origin, and are hence implicated in the binding of FeLV-B gp70 to 

its cell receptor. The expressed enFeLV env genes encoded only endogenous 

specific regions, Vr I, la, II, III and IV in full. However, all FeLV-B viruses for 

which sequence information was available, contain the entire endogenous derived Vr 

V region and some, a Vr VI region. This analysis suggested that the expressed 

enFeLV env genes contain insufficient information to account for all enFeLV 

derived sequences found in the FeLV-B viruses and therefore could not produce 

these viruses by a simple recombination. Of the enFeLV proviruses so far 

sequenced, only the full length CFE-6 clone had all the appropriate sequences 

present in the FeLV-B viruses.
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Fig.20. The vanablc domain structure o f FeLV-B env genes.

The figure shows the structure of a number of FeLV-B and enFeLV env genes that have been 

described in Figs.3 and 19. The endogenous derived variable domains are shown as shaded boxes and 

are numbered I to X. The black boxes represent hydrophobic sequences (signal peptide and 

transmembrane domains). The env gene o f FeLV-A is shown below for comparison.
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5.2.2. Packaging of enFeLV transcripts into FeLV virions.

In order to test the packaging of the endogenous proviral transcripts 

contained in 320IB cells, FeLV-A/Glasgow-1 virus from a productively transfected 

BHK line (BHK21-pFGA-5) was used to infect 3201B cells at high multiplicity. 

The infected cells were cultured and expanded for 3 weeks before viral particles 

were harvested from 2 litres of exponentially growing cells. RNA was isolated and 

tested for FeLV-B env related sequences by Northern blot analysis. (Fig.21) Using 

an exogenous FeLV-A envelope probe, A/HH, the vast majority of the RNA was 

shown to be of exogenous FeLV origin. The B/S probe picked up a faint signal 

corresponding to the 4kb transcript of 3201B cells. The faint genomic length band 

detected by this probe may have resulted from cross hybridisation of the FeLV-B 

related envelope sequences with the FeLV-A envelope sequences, which were in 

vast excess. Unfortunately that meant that any evidence of co-packaging of full 

length transcripts or novel FeLV-B recombinants would be hidden by this cross 

hybridisation. This problem might be solved by using the enU3 probe instead of the 

B/S env probe to detect enFeLV specific sequences.

5.2.3. Sequence analysis of FeLV-B/GMl.

The GM-1 strain of FeLV was isolated from a naturally occurring case of 

myeloid leukemia and induces severe haematopoetic abnormalities, including 

myeloblastic leukemia, on inoculation into cats. (Tzavaras et al. 1990) The strain 

contains a mixture of at least two viruses, including a replication competent FeLV of 

subgroup A, resembling other low or minimally pathogenic FeLV-A isolates and a 

replication defective virus of subgroup B. Restriction enzyme analysis of this FeLV- 

B virus showed extensive deletions in gag or pol but the envelope gene appeared to 

be intact. (Fig.22) Because this virus had extensive deletions in gag and pol similar 

to those seen in the truncated endogenous viruses it is conceivable that it resulted 

from recombination between exogenous vims and a truncated enFeLV element 

similar to the ones that have been shown to be expressed in lymphoid cells. 

Therefore studies were initiated to characterise the GM-1 provirus with particular
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Fig.22, M olecular structure of viral clones isolated from FeL V -G M l.

The structures of the replication-competent viral clone, pG M l-A -3-2, and a replication defective 

clone, pG M l-B-3 are presented. For comparison, the restriction map o f a clone o f FeLV-A/Glasgow 1 

(pFGA-5) is shown at the top o f the figure, below a gene map o f the provirus. Host cell sequences 

flanking integrated proviruses are not to scale. From sequence analysis, the precise location of a 

1.6kb deletion in po l o f pG M l-B-3 has been determined, and is indicated by the dashed lines between 

the pG M l-A -3-2 and pG M l-B-3 structures. Restriction enzyme site abbreviations are: B, BamHI; 

B2, Bglll; E, EcoRI; H, Hindlll; K, Kpnl; P, PstI; S, SstI; X, Xhol.
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emphasis on those areas of the genome likely to contain the 5' and 3' sites of 

recombination and the intervening enFeLV-derived sequences.

To determine the 5' point of recombination and the extent of the deletion a 

2.6kb Sstl-Kpnl gag-pol fragment was sub-cloned into M l 3 vectors in both 

orientations and partially sequenced from either end of the fragment using a series of 

oligonucleotide primers designed as the sequence was established. Sequencing from 

the Kpnl site in an upstream direction identified a 1.6kb deletion in the coding 

sequence of the pol gene. (See fig.22, sequence not shown.) Comparison with the 

DNA sequence of 1161E, a weakly leukaemogenic FeLV-A isolate (Donahue et 

al. 1988) showed the deletion to involve the reverse transcriptase coding region. The 

sequence of the LTR was analysed previously and shown to be typical of the 

exogenous LTR of FeLV-A/Glasgow 1 and 1161E. (Tzavaras et al. 1990) In the 

610bp 3' to the SstI site, the sequence diverged from exogenous FeLV but showed a 

closer match to enFeLV in the coding sequence of the glycosylated gag leader and 

more markedly in the Pr65<^£ precursor. (Fig.23) FeLV-B/GMl and CFE-6 shared 

a 9bp insert and multiple point mutations relative to exogenous FeLV-A sequences, 

but also had numerous individual base pair substitutions. The FeLV-B/GMl 

glycosylated gag leader was in frame with the main body of the gag gene but 

terminated prematurely within the p l5 £ fl# coding sequence. These termination 

codons would also cause the premature termination of the Pr65#a£ protein, 316 

bases downstream of its initiation site. The sequence information suggested that the 

5' point of recombination of FeLV-A with endogenous sequences was in the region 

between the primer binding site and the 9bp insert located in the glycosylated gag 

precursor coding region. The exact point of recombination could not be determined 

since enFeLV and exogenous FeLV are closely matched here.

The entire g p 7 0 ^ v sequence was determined by double stranded plasmid 

sequencing of a subclone of FeLV-B/GMl, pEPP-3 which contained the envelope 

gene and a portion of the 3' LTR coding sequence. This proved to be more easily 

sequenced than the plasmid containing the entire genomic sequence, possibly due to 

the smaller size making denaturation of double stranded DNA more efficient, or the
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Fig.23. Nucleotide sequence anaivsis o f the 5' end o f FeLV-B/GM l.

Sequence o f 1247bp of pG M l-B-3, extending from the 5' LTR. The GM1 sequence is shown in 

full. Matches in the other sequences are indicated by dots, whereas differences are shown in letter 

code or as gaps in the sequence. The sequences compared to pG M l-B-3 are from two exogenous 

FeLVs, FeLV-A/Glasgow 1 (pFGA-5), (Tzavaras et al. 1990) and FeLV-A/1161E (Donahue et 

al. 1988), and one enFeLV sequence, CFE-6 (Kumar et al. 1989). The boundaries of U3, R and U5 

sequences are indicated, as are the inverted repeats (IR) marking the termini o f the LTR, the tRNA 

pnmer-binding site (PBS), the consensus splice donor (sd) site for env mRNA and the initiation 

codons for glycosylated and non-glycosylated forms of the gag precursors (gPr80 and Pr65£a£).
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reduced genetic information present, reducing the chance of the oligonucleotides 

mis-priming. Sequencing primers were constructed where required. The nucleotide 

and predicted amino acid sequences when aligned with those of other FeLV gp706J/tv 

genes and their endogenous counterparts showed the region of recombination where 

the sequence ceased to be like endogenous env and to have sequences present only in 

exogenous env lay just downstream of the Vr 5 region. (Figs.24 and 25) The exact 

point of recombination where the sequences cease to resemble enFeLV env appeared 

to be at an ACCCC nucleotide motif. After this point, the sequence appeared to be 

derived from FeLV-A env.

5.3. DISCUSSION.

Analysis of the sequences of the enFeLV env genes expressed in 320IB and 

MCC cells and comparison with FeLV-B virus isolates suggested that the expressed 

env genes did not contain sufficient enFeLV sequences to generate any of the FeLV- 

B viruses so far characterised. All the FeLV-B viruses contain enFeLV sequences 

that must have come from more complete enFeLV env genes such as that of CFE-6. 

However, no expression of these sequences has been detected in any tissue examined 

so far.

The result of the co-packaging experiment in section 5.2.2. shows that the 

4kb transcript in 320IB cells does possess sequences sufficient for packaging 

although the packaging efficiency appears to be low. Given the homology between 

exogenous FeLV and enFeLV, recombination might be expected to be favoured by 

co-packaging. It can be concluded that the apparent restriction of expressed enFeLV 

proviruses in recombination is not due to an inability to be co-packaged into virions. 

A recent examination of the pol gene sequence of the enFeLV clone CFE-6 by Roy- 

Burman's group, (Pandey et al. 1991) revealed a complete open reading frame, with 

high homology to exogenous FeLV pol. The 5' point of recombination involved in 

the production of FeLV-B viruses may therefore be within the pol gene. It may be 

that the highly expressed enFeLV loci are less prone to recombine due to the 

extensive deletion of pol sequences as in the 3201B cell transcripts, and the CFE-16
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C FE -6   C . . . T .................... G .................... A ............................ C ...............C . .A .A .................. G____ A .C . .C .................. TA............ T ............ T ............ C ............ A . . C .............C . . G . . A . .

G A -FeLV -B  T .............................................................................................................................................................................................................................................................................................................C

S T -F eL V -B   A ...............................................................................C .......................... G ................................... C ......................................................T ______________ C .A _____A_____
pO F -3  CCCATGCATTTCCATGGCGGTGCTCAATTGGACCTCTGATTTT7GTGTCTTAATCGAATTATGGCCCAGAGTGACTTACCATCAACCCGAATATGTGTACACACATTTTCCCAAAGCTGT

C FE -6  C .....................A....................C ....................................................... C . G . C . . . G .............................. A .A ........................ G . G . . T . . G . . . A . C . . T T . C . . C . . C . A A .  . T A ACCC

G A - F e L V - B

S T -FeL V -B

pOF-3
C FE -6

__
CAGGTTCCGAAGA 

. C  AAG. . .

Fig,24, Nucleotide sequence analysis o f  FeLV-B/G M l gp70.

Sequence o f gp70 o f pG M l-B-3 (pOF-3) is shown in code. Matches in the other sequences are 

indicated by dots, whereas differences are shown in letter code or as dashes to indicate gaps in the 

sequence. The sequences compared to pG M l-B-3 are from two exogenous FeLVs, FeLV-B/Gardner 

Amstein (GA-FeLV-B)(Elder & Mullins, 1983) and FeLV-B/Snyder Theilen (ST-FeLV-B)(Nunberg  

et al. 1984), two enFeLV sequences, CFE-6 and CFE-16 (Kumar et al. 1989) and the sequence o f the 

expressed truncated env genes isolated from 3 2 0 IB and MCC cells ( Chapter 4).
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clone. Nevertheless, it is possible that the recombination of truncated, expressed loci 

occurs, but that the resultant viruses are defective, due to the extensive deletions 

found in the endogenous parent sequence. Such a virus may not be able to replicate 

and therefore expand to become a significant virus population. The observed 

preference for full length, but apparently non-expressed sequences may simply 

represent the competence of these recombinants to replicate. The key to this 

restriction may be that envelope chimeras of endogenous and exogenous sequences 

are functional only when the recombinant contains a particular portion of the 

enFeLV env gene missing from expressed enFeLV. The GM1-B virus may be the 

exception to this rule by virtue of the unique sequences inserted at the recombination 

site. The construction of envelope chimeras would be necessary to define further the 

exogenous sequence requirements for virus function.

The GM1-B virus is an example of a defective recombinant that propagates 

efficiently along with its non-defective FeLV-A helper virus. The sequence of the 

GM1-B gag gene is homologous to the gag sequence of an endogenous provirus, 

CFE-6. (This was the only published gag sequence from the enFeLV clones isolated 

by Roy-Burman's group.) The GM1-B virus contained multiple defects including 

the premature termination of the gag open reading frame and the deletion of 1.6kb of 

DNA from the reverse transcriptase coding region of pol. The fact that the FeLV- 

B/GMl gag gene sequences are highly homologous to enFeLV gag suggests that the 

5' end of the genome was a site of recombination. This recombinant therefore 

contains a greater extent of the enFeLV derived sequences than has been previously 

been reported for FeLV-B viruses.

The 3' point of recombination occurs after ACCCC, a motif commonly seen 

at recombination sites between FeLV and cellular oncogenes (Neil et al. 1987), and is 

complicated by the presence of a 50bp insert at the 3' recombination site. 30bp of 

this insert were a reiteration of FeLV-A specific sequences. This sequence also 

occurs after ACCCC found 184bp upstream in FeLV-A. This sequence in FeLV- 

B/GM-1 is in an alternative reading frame resulting in a completely novel stretch of 

amino acids. The remaining nucleotides from this insert were of unknown origin.
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Examples of this sort of illegitimate insertion have been recorded, (Pulsinelli & 

Temin, 1991) and a number of studies of retroviral recombination have identified 

many examples of deletions, insertions and other mutations resulting from the 

process of reverse transcription. (Pathak & Temin, 1990 a,b)

The GM1-B env gene contains the endogenous specific variable regions la, 

II, III and IV, which are found in both full length and truncated enFeLV env genes. 

(Fig.26) Therefore the recombination leading to the generation of FeLV-B/GMl 

could have involved a truncated enFeLV, with a large deletion in po l, and an 

incomplete env gene. In fact, the predicted genetic structure of the enFeLV locus 

responsible for the GM1-B virus is similar to those of the transcripts expressed in 

320IB cells and isolated from placental DNA (CFE-16). There are a number of 

point mutations in the gp70 coding region present in the GM1-B virus compared to 

CFE-16 and pEN-MC-F to suggesting that these are not the actual progenitor loci. 

However, polymorphisms of enFeLV in different animals and viral sequence 

evolution after capture may have obscured the true origin of this env sequence. It 

should be recalled that the mutational frequency of viral sequences is much higher 

than that of cellular genes, because of the lower fidelity of reverse transcriptase due 

to its lack of proof reading systems and the subsequent rounds of replication. 

(Gojobori & Yokoyama, 1985) However, it cannot be ruled out that FeLV-B viruses 

are the result of multiple recombinations with the expressed enFeLV playing a role 

in the first steps. The analysis of GM1-B shows that Vr la, II, III and IV are, in this 

case, sufficient to confer B-subgroup specificity. However, it is conceivable that the 

novel insert at the env recombination site containing FeLV-A env sequences 

compensated for the lack of enFeLV derived env sequences. It is unlikely that this 

sequence is required for FeLV-A envelope function in the same way as it may be for 

FeLV-B/GMl function, because although the nucleotide sequence is reiterated, it is 

in an alternative reading frame in FeLV-B/GMl than in FeLV-A, and so would 

produce a novel peptide sequence. The GM1-B virus therefore proves to be an 

exception to the general observation that FeLV-B viruses contain more enFeLV 

derived sequences that are present in the expressed, truncated transcripts. In this
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Fiii.26. The variable domain structure of FcLV-B env genes.

The Figure shows a modification o f Fig.20. to include the env gene sequence isolated from 

FeLV-B/GM l The endogenous derived variable domains are shown as shaded boxes and are 

numbered I to X. The black boxes represent hydrophobic sequences (signal peptide and 

transmembrane domains). The env gene o f FeLV-A is shown below for comparison. The positions 

of the inserts present in FeLV-B/GM l are shown as triangles.
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case, the defective virus expanded to become a major virus population perhaps due 

to some unusual advantage of this particular recombinant. FeLV is frequently 

associated with T-cell abnormalities. The GM1 complex, however induces a number 

of severe haematopoetic abnormalities including myeloblastic leukemia. 

Experimental inoculation of the FeLV-A/GMl component alone or with the FeLV-B 

component of the GM1 isolate demonstrated that the FeLV-A virus was minimally 

pathogenic, and caused persistent viremia in only one sixth of the cats involved 

whereas the AB complex induced persistent viraemia in all cats inoculated. It is 

possible that the FeLV-B specific envelope gene with its novel sequence insert may 

have altered the tropism of the FeLV-B/GMl virus but this remains to be proved. 

What is clear is that the GM1-B virus, although defective, has a significant effect on 

viral pathogenicity.
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6.1. INTRODUCTION.

Immune-precipitation analysis using a polyclonal anti-F422 gp70gAZV showed 

the presence of a candidate product of the env-orf but was inconclusive due to the 

apparently extraneous reactivity of the antiserum. Two monoclonal antibodies were 

tested for reactivity to env related proteins in 3201B and MCC cells (results not 

shown). The failure of these to recognise env related proteins in MCC and 3 2 0 IB 

cells was unremarkable in view of the loss of epitopes the truncated env gene. 

Knowing the DNA sequence encoding the truncated envelope protein, it was 

possible to construct synthetic peptides and to raise a specific antiserum.

6.2. RESULTS.

6.2.1. Development of endogenous specific antisera.

(i) Design of pGEX constructs.

The pGEX vector is a bacterial expression vector that directs the synthesis of 

foreign polypeptides in E.coli as C-terminal fusions o f  Sj26, a 26kD glutathione-S- 

transferase (GST) encoded by the parasitic helminth Schistosoma japonicum  (Smith 

& Johnson, 1988). At the 3' end of the GST-orf in pGEX is a cloning site followed 

by translational termination signals. Different versions o f  the vector have the 

cloning sites in three different reading frames. Protein synthesis is under the control 

of the IPTG inducible tac promoter. In the absence of inducer, the plasmid-encoded 

l a c d  gene efficiently represses transcription from the tac promoter regardless of the 

lacl status of  the host cell strain.

In deciding which fragments of env-ovi DNA to clone into the pGEX vectors, 

a number of factors had to be considered.

1. Although the pGEX system has been reported to accommodate proteins up 

to 84kD, problems with solubility of larger proteins have been encountered by others 

using the vector. (M.Rigby, N.Spibey, University of Glasgow, pers.commun.) Better 

success rates were achieved with small fragments encoding around 100 amino acids.

2. It was decided to exclude regions of high hydrophobicity to avoid 

problems with solubility and hence difficulties in recovering the products.
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3. Finally it was necessary that the reading frame of the protein should be 

preserved.

The env-orf is deficient in restriction enzyme sites useful for cloning into the 

vector sites, BamHI, EcoRI and Smal. The sites o f a number of 4 base pair cutting 

enzymes were analysed and five fragments selected which, if successfully cloned, 

would encompass the complete gene apart from the leader peptide, which was 

avoided due to its hydrophobic nature. Because the enzymes selected were frequent 

cutters, it was necessary to remove the env-orf from its vector before digesting to 

isolate the fragments of choice. (Fig.27)

fiB Construction of recombinant pGEX vectors.

The truncated cnv-orfs from 320 IB and MCC cell lines were transferred from 

phage to plasmid vector by digesting M l 3 RF DNA with Bam HI and EcoRI, 

removing the env-orf, and ligating it into BamHI and EcoRI digested pIC20H. The 

ligated DNAs were transfected into competent E.coli D H 5 a  and the white positive 

colonies grown o/n in lOmls L-broth with ampicillin. Test plasmids were prepared 

using the STET method, BamHI and EcoRI digested and the DNA separated on a 

1% agarose/TAE gel to test for the presence o f  the insert. Plasmids containing an 

appropriately sized insert were prepared in bulk by CsCl gradient purification. 

lOOmg of plasmid pEN-M C-F (containing the env-orf from M CC cells) was digested 

with BamHI and EcoRI and the insert separated from the vector by electrophoresis in 

a 1% agarose/TAE gel. The insert band was excised from the gel and the DNA 

extracted from the gel by electroelution. The DNA was precipitated with am m onium  

acetate and ethanol, dried under vacuum and resuspended in ddH^O. The purified 

insen DNA was subsequently digested to isolate fragments for cloning into the 

pGEX vector.

One clone, H5A, representing the 3' fragment encompassing both env and 

LTR, encoded the terminal 30 amino acids of the env-orf. Because of the small size, 

it was thought that this might be likely to produce a stable product. The clones were 

tested for fusion protein production by the induction of bacterial miniprep cultures
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Fig.27. EnFeLV ncntides selected for pGEX cloning.

Tlie enFeLV env containing clone isolated from feline lymphoid cells is shown as a line marked 

at lOObp intervals, with the regions encoding the hydrophobic leader sequence, the envelope open 

reading frame (Aenv) and the U3 region indicated above. The bold lines below represent a number ot 

fragments produced by the appropriate restriction enzymes (AluI,AluI and Rsal, H aelll, SauIIIA) that 

were considered appropriate for enFeLV-fusion protein synthesis. The carboxy-terminal fragment 

resulting from Haelll digestion successfully produced a GST-fusion protein.
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with IPTG followed by lysis and protein separation on a 13% denaturing PAGE gel. 

Proteins were visualised by staining with Coomassie brilliant blue. (Fig.28) Bulk 

protein preparations were produced from the clone H5A. The fusion protein was 

analysed by Western blotting and immune staining using the polyclonal antiserum 

for gp70env followed by an alkaline phosphatase conjugated secondary antibody. 

Fig.29 shows a protein gel and the corresponding Western blot to test whether the 

GST protein encoded by pGEX-2T alone was antigenic for the polyclonal antiserum 

for gp70£mv. Both H5A and GST (pGEX-2T) were run in the same lane, and were 

stained by Coomassie blue, however only the env-orf fusion protein was stained in 

the Western blot by the antiserum conjugate.

Fig.30. shows samples taken at various stages o f  protein purification 

described in Methods, section 2.2.20, run on duplicate 13% SDS-PAGE gels, one 

stained with Coomassie blue, the other Western blotted and im m uno-stained with the 

polyclonal antiserum for gp7()env. The fusion protein reacted with the antiserum, 

and so contained some epitopes cross-reactive with the viral envelope protein. There 

appeared to be some loss of fusion protein in the purification steps as shown by the 

presence o f  reactive protein in the unbound fraction and subsequent washes. This 

may have been due to a lack o f  bead excess in the binding step which was not 

optimised, or to the failure of a proportion of the fusion protein to bind to the 

glutathione beads. Nevertheless, 10 litres of induced bacterial culture provided 

sufficient protein for immunisation and further characterisation (approximately 

5mg).

O f the other fragments chosen, two were not used, and two failed to produce 

stable proteins or envelope specific sera.

(iiO Immunisation of rabbits with GST fusion proteins.

Tw o rabbits were immunised subcutaneously with 500fig each of H5A 

protein, in an equal volume of Freund's Complete adjuvant. Serum was collected 

from each rabbit prior to immunisation for use as a control pre-immune serum. The 

immune response was boosted 3 weeks later by a second duplicate injection this time
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Fig.28. Identification of a GST-cnFeLV env fusion protein.

lm l o f exponentially growing E.coli containing either pGEX-2T or pGEX-enFeLV H aelll 

digested env fragment (H5A) were incubated with (+) or without (-) 23|ig/m l IPTG before the cells 

were peileted, lysed and separated on a 13% SDS-polyacrylamide gel. The cell proteins were stained 

with Coomassie brilliant blue. The lower arrow identifies the 26kD GST protein, while the upper 

arrow identifies the 30kD enFeLV env fusion protein. The positions o f the molecular weight markers 

are indicated on the right and the sizes are in kD.
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Fig.29. Reaciion of GST and H5A enFeLV fusion protein to a polyclonal antiserum for gp70.

2 aliquots o f 3(ig of a equimoiar mixture o f purified GST (pGEX-2T) and H5A enFeLV fusion 

protein were separated on a 13% SDS-polyacrylamide gel. One half o f  the gel was stained with 

Coomassie brilliant blue, (a) The proteins on the half o f the gel were transferred onto nitrocellulose 

by Western blotting and immunostained with anti gp70 polyclonal antiserum and a secondary alkaline 

phosphatase antibody conjugate, (b) The positions o f the molecular weight markers are indicated on 

the left and the sizes are in kD.

14 0



pGEX2T-H5 in DH5alphaI
induce IPTG 2h

harvest bacteria, sonic extractI
glutathione-agarose beads

a

bound fraction 

glutathione eluate

h

unbound fraction 

washes d

e

*

141



h g  f e d c  b a
i i i

205-
116-

97.4-

66 -

i i w

45-

29-

Fig.30. Purification o f GST-H5A enFeLV env fusion protein.

The purification o f GST fusion proteins is described as a flow diagram (left) and the purification 

of the enFeLV env fusion protein, H5a, is shown above. 50p.l aliquots from each stage numbered in 

the flow diagram were collected and separated on duplicate 13% SDS-polyacrylamide gels. The 

proteins were stained by Coomassie Brilliant Blue (C) or after transfer of the proteins to a 

nitrocellulose filter by Western blotting, stained with polyclonal g p !0 env antiserum and an alkaline 

phosphatase conjugated secondary antibody (W). The positions o f the molecular weight markers are 

indicated on the left and the sizes are in kD.
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using Freund's incomplete adjuvant. Serum samples were collected 3 weeks later for 

use in the following studies.

(iv) Detection of reactivities to GST fusion proteins.

In order to establish the success of immunisation, an ELISA was performed 

in which serial dilutions of test sera were reacted with the fusion protein used for 

immunisation, to a 96 well plate. The results, summarised in Fig.31, indicated that 

both rabbit sera contained reactivity to the target pGEX proteins significantly greater 

than pre-immune sera. This confirmed that the rabbits had made an immune 

response to the GST-fusion protein.

6.2.2. Characterisation of a truncated endogenous envelope protein in feline 

lvmphoma cells.

Metabolic labelling followed by immune-precipitation and SDS-PAGE were 

used to test the rabbit sera for activity to the reactive FeLV envelope protein, and to 

identify an endogenous viral envelope proteins in feline T-cell lines. (Fig.32)

Fibroblast cells uninfected or infected with FeLV-B/GA and two FeLV 

negative T-cell lymphoma lines were metabolically labelled with 100pCi/ml [^5S] 

met/cys by the method described. (Chapter 2.2.28.) Cells were lysed and the 

precipitation of envelope proteins carried out using polyclonal serum against gp70 or 

the test serum from rabbit 573 and compared to pre-immune controls. No envelope- 

related proteins were specifically precipitated by either anti-gp706̂ v or serum 573 in 

uninfected AH927 cells. Serum 573 precipitated the FeLV-B envelope protein from 

infected AH927 cells but with a reduced efficiency com pared to anti-gp70env. This 

dem onstrated that the serum reacted with full length FeLV gp70eA2V. The 35kD 

protein, one of several originally detected by the anti-gp70e/2V serum, was also 

precipitated from both 320IB and MCC cells by the new antiserum. The other 

proteins precipitated by the anti-gp70fmv serum were not precipitated by the new
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Fiu.31 Detection of reactivity to enFeLV fusion protein bv ELISA

The H5A-pGEX fusion protein used for immunisation, was bound to a 96 weil plate at a 

concentration of 1 jig/ml. After blocking each well with 1% BSA, undiluted antiserum from rabbits 

572 or 573 were placed in a well and serial dilutions (1:2) performed. This was repeated with the pre- 

immune serum from the rabbits immunised (NRS 572 and NRS 573). After binding, a secondary 

antibody-alkaline phosphatase conjugate was bound and the products o f the colour reaction read as 

optical density at 405nm. The graph represents the O D ^  plotted against the number o f dilutions for 

both the pre-immune sera and the test sera 572 or 573 (see legend). The results show both rabbits 

have produced a significant immune response to the GST-enFeLV fusion protein compared to the 

responses of the pre-immune sera.
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Fig.32. Identification of a truncated env protein using an enFeLV specific antiserum.

10^ cells from virus free AH927, FeLV-B/GA infected AH927, 3201B and MCC cell lines were 

metabolically labelled with [ ^ S ]  met/cys and the cellular proteins precipitated with polyclonal anti- 

gp70env serum or the enFeLV specific antiserum, (573) together with the control serum for the 

gp70env serum and the pre-immune serum from rabbit 573. The precipitated proteins were separated 

by denaturing electrophoresis through a 15-8% gradient SDS-poiyacrylamide gel and visualised by 

autoradiography. The positions of the molecular weight markers are indicated on the right and the 

sizes are in kD.
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serum. The 35kD protein corresponded with the size predicted from the truncated 

enFeLV env-ovi and was therefore identified as its probable protein product. The 

serum from rabbit 572 failed to precipitate FeLV-related proteins. (Results not 

shown)

6.3. DISCUSSION.

A series of proteins were precipitated in tumour cell lines by the polyclonal 

antiserum, anti-F422 gp70em;, including proteins of approximately 70-80kD, 60kD, 

50kD and 35kD. Only the 35kD protein corresponded with the size of the predicted 

protein from the env-orf. From these data however, the 35kD protein could not be 

conclusively identified as the product of the env-ori. In order to raise an antiserum 

to recognise the protein product of the expressed env-ovf, a bacterial protein 

expression system was used. Although five peptides were examined, only one was 

ultimately successful in raising a specific antiserum. A number of factors 

contributed to this, including time limitation, and the instability of two of the fusion 

products. This is not an uncommon problem with fusion proteins in bacteria.

The development of a new FeLV envelope antiserum led to the 

demonstration that feline lymphoma cells produce a truncated enFeLV env protein. 

p 3 5 ^ v. The other proteins seen with the polyclonal antiserum, anti-F422 gp70c w , 

were not precipitated by the new serum and were considered to be the result of 

contaminant reactivities in the serum. There is no conclusive proof that any of the 

proteins precipitated by either antisera were full length enFeLV env genes expressed 

at low levels, although this remains a possibility. The enFeLV p 3 5 ^ v protein was 

not detected in fibroblast cells, but the specific enFeLV serum does have a weak 

reactivity with exogenous FeLV-B gp ltienv. The lower reactivity of serum 573 to 

FeLV-B gp70^/n compared to anti F422 gp70£mv is presumably due to the fact that 

the immunising peptide is internal in the full length gplO env molecule, but a free C- 

terminal peptide on both the truncated p35cnv protein and the pGEX fusion protein. 

This explanation would also account for the efficient recognition of p35env by serum 

573.
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In precipitations with both anti-F422 gplOenv and serum 573, the amount of 

p 3 5 ^ y protein detected in MCC cells was low compared to 3201B cells. Because 

the env coding sequences expressed in these cell lines have been shown to be almost 

identical, it is unlikely that the reduced level of precipitated protein in MCC cells is 

due to any physical difference in the protein. On the other hand, there is evidence of 

a correlation between the amount of protein produced and the level of the 2kb 

transcript. This presumptive env mRNA was significantly more abundant in 3201B 

than in MCC cells. The larger transcript expressed in MCC cells was significantly 

smaller than those found in most other cell lines and tissues, and consequently may 

be a variant enFeLV locus, having lost sequences required for efficient splicing. 

Alternatively host-cell specific mechanisms may reduce the levels of enFeLV 

splicing in MCC cells.
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7.1. INTRODUCTION.

This study showed that the putative env mRNA transcript of enFeLV is 

conserved throughout a variety of cell lines and tissues, and that the env genes 

expressed in two feline cell lines are highly conserved. The final experiments 

discussed here were performed to identify genetic loci within feline DNA that might 

be responsible for the expressed truncated env-ori and its corresponding protein, to 

examine the conservation of these loci in the feline population, and to compare this 

with the degree of conservation of loci containing larger amounts of env coding 

DNA.

7.2. RESULTS Distribution of truncated and full length env genes in feline 

genomes.

In order to discriminate between the endogenous proviral elements with full 

length and truncated envelope genes, a new probe was designed and constructed. 

(Fig.33) Oligonucleotides were designed to amplify the 3' half of the envelope gene 

which is missing from the truncated endogenous envelope genes responsible for the 

coding of p35e/zv. Oligo enl was homologous to DNA directly downstream from 

the gp70 deletion site, and en2 directly upstream from the p l5E  (TM) deletion site.

Oligo en 1 5’AATGCCTCCATTGCCCCTCTAAGC3'

Oligo en2 5'ACTGCACCAACCGGTTAAGGATGC3'

PCR amplification of the full length endogenous clones pLCM-1 and pBCM- 

3 using these two primers was carried out at 94°C for 1 min., 60°C for 1 min. and 

72°C for 2 mins. and resulted in the amplification of a single DNA fragment o f the 

predicted size of approximately lkb.

In conjunction with the 5' env B/S probe, this A env probe should distinguish 

proviruses deleted in this region, and those which possess both 5' and 3' regions of 

gp70 and hence presumably represent full length envelope genes. Since this A env 

probe covers the entire deleted region, it should hybridise to endogenous loci
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Fig.33. Production of a DNA probe specific for full length enFeLV env genes bv PCR 

amplification.

The Figure shows the structure of enFeLV env genes, both full length and truncated, that have 

been characterised. The restriction fragment B/S env DNA probe as shown in Fig.5. is marked. The 

arrows mark the relative position of specific oligonucleotides designed to amplify that portion o f the 

full length env gene o f the endogenous clone pLCM-1 that is not found in the expressed env genes.

150



containing smaller deletions in this region but not to those loci with the deletions 

found in the expressed transcripts. The amplified A env fragment was gel purified, 

precipitated and labelled with [32P] by nick-translation. Identical Southern blots 

were prepared and hybridised with this probe or the B/S probe and the proviral 

patterns compared. (Fig.34) The loci were thereby distinguished as containing 5' env 

sequences, or 3' env sequences (underlined). Those loci which reacted with both 5' 

and 3' env probes, were classed as full length env genes, m inor deletions 

notwithstanding. The most conserved loci appeared to be those containing 5' env 

sequences only.

7.3. DISCUSSION

High molecular weight DNA from a number of cell lines and tissues were 

digested with BamHI and probed with the B/S probe to examine the heterogeneity of 

proviruses and their chromosomal location in cats. Every cat revealed a unique 

pattern and this can be of practical use in determining the origin of a particular feline 

cell line or tissue. As can be seen in Fig. 12b and the final 3 lanes of Fig.34, cats 

with one or both shared parents possessed quite similar patterns, with only a few 

differences. These analyses illustrate the Mendelian pattern of inheritance of 

enFeLV loci from each parent. In the J series, all the cats were sired by the same cat 

and the numbers 49, 51 and 53 refer to the female parent. Those cats with the same 

parents correspondingly had closely related fingerprints. However even DNA 

fingerprints from unrelated animals revealed a number of conserved bands.

Endogenous loci identified by both the B/S probe or A env probe contain both 

the 5' gp70£?/lv and 3' gp70/pl5E6' ,2V sequences and were in the majority. Of these, a 

proportion are conserved, but many are not. Two sets of bands hybridised to the 5' 

env B/S probe alone, and are thus identified as possible sources of enFeLV 

transcripts. The size and/or chromosomal location of these appear to be very highly 

conserved, with every sample tested having a band of about 13kb and 6kb. 

Therefore there appear to be only two endogenous proviruses capable of producing 

the p3567zv protein, and these are highly conserved within the feline population.
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Fig.34. The relative distribution and conservation o f truncated and full length env genes.

20 |ig  of high molecular weight DNA from a number of feline cell lines (AH927, 3201B and 

MCC) and the kidney tissue from a number o f virus negative (T20) and virus positive (J51/1, J51/3 

and J53/2) were digested with BamHI, and the resulting fragments separated on duplicate 0.8% 

agarose/TAE gels. The DNA was transferred to a Filter membrane by Southern blotting and 

hybridised with P^p] labelled B/S env or Aenv probes. The positions o f  the molecular weight 

markers are indicated on the left o f each blot and the sizes are in kb. Below  each o f the upper blots is 

a duplicate picture where the bands containing 3’ env (Aenv) or 5' env (B /S) sequences only are 

highlighted.
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AH927 cells (negative for enFeLV expression) possess both these bands further 

suggesting that the control of enFeLV involves tissue specific factors working in 

trans to either permit or inhibit expression.

Also of interest were a number of proviruses which appeared to react solely 

with the 3’Aenv probe. It was considered that these might represent exogenous FeLV 

because of the high homology between FeLV-A and B env sequences in the 3' half of 

the gp70 coding sequence and, although hybridisation was performed at high 

stringency, there was a possibility of cross hybridisation. This was discounted 

because although all the samples had one or more of these bands, only the DNA in 

lanes J51/1, J51/3 and J53/1 came from virus-infected animals, and these tissues 

appeared to be free from exogenous virus. (Chapter 3.2.3.(i)) Therefore it was 

concluded that these bands represented a new set of endogenous proviruses defective 

in the 5' half of gp7() but possessing the 3' half. A further implication of this finding 

is that enFeLV proviral number would be underestimated using the B/S env probe 

alone. There appeared to be less conservation of these endogenous proviruses, with 

similar sized restriction fragments seen only in closely related cats. If these 

represent intact proviruses with long terminal repeats, they are probably not 

expressed at detectable levels as they would have been seen in Northern analyses 

with the enU3 probe. If, however, the provirus had different LTR sequences than 

those tested for by the enU3 probe, or lacked LTR elements, transcription being 

driven by cellular sequences, the enU3 probe would not detect the transcript either. 

To answer this question further experiments should be performed using the 3' A env 

probe to test for expression.
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8.1. EnFeLV expression is a widespread feature in cats.

The analyses presented in this thesis showed that enFeLV expression is much 

more widespread than reported previously, being found in every animal tested. This 

expression was shown to be independent of exogenous virus infection since it was 

detected in two specific pathogen free cats. In total, my studies on enFeLV 

expression have included tissues from more than 16 animals, 11 o f which feature in 

this thesis. Although enFeLV expression was detected in all cases, individual 

differences in the level and possibly the tissue specific sites of enFeLV expression 

cannot be excluded. While the sample size is not large enough to justify extrapolation 

to the entire feline population it can be concluded that the majority of cats express 

enFeLV elements.

8.2. Genetic structure of expressed enFeLV transcripts.

The analysis of the RNA from the 3201B cell line with subgenomic probes 

suggested that these cells express genomic length RNA from a locus substantially 

deleted in pol and a smaller RNA which is most likely its spliced env mRNA. This 

inference was further supported by the observation (Chapter 6) that the larger enFeLV 

transcript of 320IB cells (and not the smaller) Could be packaged into virion particles. 

In exogenous FeLV, signals necessary for packaging lie downstream of the splice 

donor site in the provirus (M. Stewart, Beatson Institute for Cancer Research. 

Unpublished results.) and so the spliced mRNA does not have a functional packaging 

signal thus preventing its incorporation into the virion. The correlation between the 

level of the smaller transcript observed in the RNA of 320IB and MCC cells, and the 

amount of c/tv-related protein precipitated from these cells also suggests that the 

smaller transcript only represents env mRNA.
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8.3 Restrictions on enFeLV replication.

(0 Only a proportion of the enFeLV loci are detectably expressed.

Despite the simple pattern of enFeLV-related transcripts, the RNA data alone 

did not reveal whether these transcripts originated from one locus or multiple loci of 

similar structure. Nine different ERVs were cloned by Soe et al (1983, 1985) from 

the DNA of a single animal. Those studies indicated similarities between the 

restriction enzyme maps of the flanking DNA of a number of the truncated loci, 

suggesting a common origin, perhaps by gene duplication. However, the enFeLV 

proviruses cloned so far are heterogeneous in length and structure suggesting that the 

number of candidate loci cannot be large. It was also noted that the apparently full 

length enFeLV proviruses, the majority species, had unique flanking DNA. In this 

thesis, the fingerprinting experiments of Chapter 7 confirmed these findings, showing 

that those enFeLV loci containing both 5' and 3' env sequences (and assumed to be 

full length env genes) were in the majority.

Two enFeLV loci which could be considered possible sources of the truncated 

env gene products, and were detected in every feline DNA sample tested. The 

differences in the size of the flanking DNA, as judged by BamHI digestion, shows 

either these are unique proviral insertions or that the duplicated unit suggested by Soe 

and colleagues does not extend as far as the BamHI restriction sites. This issue could 

be clarified by more exclusive restriction enzyme analysis of the 3' virus cell- 

junctions. It appears likely that the expression of the other enFeLV elements present 

in the feline genome is repressed by the flanking DNA sequences. (Berry et al. 1988)

Although most cell lines and tissues revealed a very similar pattern of enFeLV 

transcripts, at 4kb and 2kb, some heterogeneity was observed in the larger enFeLV 

transcripts in several cell lines and tissue samples. This may represent the expression 

of different proviral loci in these different cells, capable of expression perhaps 

because of their integration at favourable sites in the feline genome. Alternatively, 

expression of these loci may be linked to genetic differences o f other controlling 

genes active in different animals in the feline population. However, the smaller
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transcripts appeared to be much more conserved, at least in size, suggesting that the 

env genes of these different proviruses may be similar. Thus the transcripts of 320IB 

cells and MCC cells appeared to come from proviruses of different sizes but have 

very similar env gene sequences. Both cell lines had the same pattern of enFeLV 

proviruses which were B/S positive and A env negative and may represent the same 

original integrations. The presence of 3 transcripts in a number o f samples, most 

obviously in FL74 cells, could represent the co-expression of two different loci. It 

would be of interest to investigate the genetic content of these transcripts and their 

inter-relationships by further analysis with subgenomic probes, cloning and 

sequencing. The expressed loci are likely to be different in genetic structure, and it 

would be of interest to see whether the env genes expressed were of similar structure, 

or if the different transcripts from FL74 cells were responsible for the expression of 

other enFeLV env genes. The conservation of enFeLV env genes observed in this 

thesis would suggest that the former is the more likely situation.

(ii). Only truncated enFeLV proviruses are detectably expressed.

In both cell lines and primary tissues, I found no evidence of expression of 

complete enFeLV loci: the sizes of the larger transcripts varied from 4.5-3.5kb and 

the smaller was generally about 2kb. A full length viral genome would be expected to 

produce a genomic transcript of approximately 8kb and a spliced env message of 3kb. 

No infectious virus has been isolated from enFeLV loci, and it may be that loci 

capable of producing infectious virus have been lost or silenced in the outbred feline 

population, due to their detrimental effects on the host.

The enFeLV transcripts from 3201B cells have not been shown unequivocally 

to have a U5 sequence. It is therefore not clear, at present, whether transcription is 

driven by a complete 5' LTR element, or like the murine Fv-4 locus, by upstream 

cellular sequences. The isolation of the entire genomic transcript sequence from the 

cDNA of the 3201B cells would enable both the characterisation of the entire genome 

and test for the presence of U5 sequences. Alternatively, the 5' end of the mRNA 

from 320IB cells could be isolated by primer extension from a specific
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oligonucleotide. The product of primer extension could be analysed for LTR derived 

sequences either by SI nuclease protection analysis using an endogenous LTR probe, 

or by direct sequencing.

(iii) EnFeLV expression is controlled bv tissue specific factors.

It was established that tissues expressing enFeLV transcripts had no obvious 

rearrangement or gain of ERV genetic information compared to non-expressing 

tissues of the same animal. This further level of control of the expression of enFeLV 

loci appeared to be tissue specific. It is possible that, like the R m cf locus, enFeLV 

expression is limited to a subset of lymphoid cells that vary in abundance in high and 

low expressing tissues. (Buller et al. 1989) Quantitative studies on the relative levels 

of RNA produced by each tissue could be performed to yield a more accurate measure 

of expression than the Northern analyses presented here. In situ analysis of enFeLV 

expression may be possible using the newly synthesised endogenous antiserum to 

stain enFeLV proteins in tissues. Lymphocytes represent a mobile cell population 

that are found in peripheral blood in a variety of tissues, and in high concentrations in 

specific lymphoid organs. It would be of interest to separate peripheral blood 

lymphocytes into a number of different subsets on the basis of the expression of cell 

surface markers, and then quantify enFeLV expression in each of these differentiated 

cell types.

8.4. The expressed env gene is highly conserved.

Despite some variations in larger transcript size, cell lines and tissues all 

appeared to have a conserved 2kb transcript, the putative env mRNA. This 

conservation was further shown to extend to the sequence of env genes expressed in 

two cell lines established from different cats. The env genes expressed in both 3201B 

and MCC cells were almost identical to each other and to the clone CFE-16, isolated 

by Soe et al (1983). The conservation of the expressed enFeLV env gene sequences 

is remarkable given the genetic heterogeneity of enFeLV loci in the domestic cat (as 

revealed by the DNA polymorphisms). The sources of the cells from which these
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three env genes were isolated are all separated by both geography and time of 

isolation. The 320IB thymic lymphoma cells were isolated in the laboratory of 

William Hardy in New York, 1978 (Snyder et al. 1978); the MCC ceils were isolated 

from a cat with a large granular lymphoma in the laboratory of Jennifer Rojko in 

Ohio, 1988 (Cheney et al. 1990); the CFE-16 clone was isolated from the placental 

DNA of a specific pathogen free cat by Pradip Roy-Burman and his co-workers in 

California, 1983 (Soe et al. 1983). It was therefore considered that this strong 

conservation of sequence may be the result of a positive selection on these sequences 

arising from some beneficial effect to the host.

8.5. Conservation of the enFeLV loci in feline DNA.

Those enFeLV loci containing both 5' and 3' env sequences do not appear to 

be particularly well conserved with regards to chromosomal position in the feline 

genome. Only two constant loci were found in every sample analysed, from a total of 

over 16 unique proviral loci in the population sampled. There is, however, a 

significant conservation of loci containing only 5' env sequences. Two such loci were 

identified and found in every cell line and tissue tested with one possible exception 

(T20) where the presence of the larger band was obscured by the excess of DNA 

present in that sample. However, it was concluded that each sample contained at least 

one unique locus containing 5' env sequences only, which might therefore be 

suspected to be the source of enFeLV. The observed conservation may be due to the 

diploid nature of the locus, thereby favouring inheritance. In general, because of their 

insertional origins, ERVs tend to be haploid, but genetic mutations may have resulted 

in a diploid phenotype. Alternatively, it may be that conservation of chromosomal 

position represents the conservation of integration at a site favourable to enFeLV 

expression and therefore represent a positive selection of the product(s) of this locus. 

Nevertheless, these results do not suggest that individual proviruses are highly 

conserved. The genetic fingerprinting technique looks at the polymorphisms present 

in the 3’ half of the genome encompassing the env gene, the 3' LTR and adjoining
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cellular DNA. Therefore, although the fingerprints suggest that there is a 

conservation of the env gene sequences in a specific chromosomal position, the 

expression of different sizes of genomic (larger) transcripts from different cell lines 

and tissues (e.g. 320IB and MCC cells) indicated that the 5' half o f these genomes 

may be different. It is possible that these expressing loci represent the integration of 

an enFeLV provirus into a site favourable for expression in an ancestor of the modem 

cat, which has since been subject to autonomous genetic drift in individual animals. 

The conservation of the env gene sequences may have been positively selected for, 

while mutations and deletions in the rest of the provirus were tolerated. The 5' virus 

-cell junctions could be used to examine this hypothesis, but would be com plicated 

by the greater heterogeneity of the gag and pol regions of the truncated enFeLV loci 

seen in Soe's studies. (Soe et al. 1983 Soe et al. 1985). Therefore the use of gag or pol 

probes may not be suitable and the use of the enU3 probe is prohibited because of the 

presence in feline DNA of multiple (>150) solo LTR elements. (O'Brien, 1986) 

Perhaps the best way to compare if the two truncated env containing bands are from 

the same or different sized loci in individual cats would be to digest the feline DNA 

with EcoRI, an enzyme that generally fails to cut within the provirus, and probing the 

resulting Southern blot with an env specific' probe. If the two conserved env 

containing bands represent the same locus in each sample, they would also appear 

conserved after EcoRI digest. If, however, they are different proviruses, with 

conserved env genes and integration sites, they may not be conserved in size.

8.6. Recombination of enFeLV loci.

Because recombination of retroviral sequences is considered be a consequence 

of the co-packaging of two RNA species in a virion, (see Chapter 1/4.2.1.) it seemed 

likely that the expressed enFeLV loci would be more favourably involved in 

recombination to produce FeLV-B viruses. The sequence comparison of the SU 

coding regions of both exogenous and endogenous viruses has indicated that, in most 

cases, the recombination process must involve proviruses with more extensive
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enFeLV env sequences than contained in the expressed, truncated species. Sequence 

analysis of FeLV-B/GM l virus identified a novel recombinant which may have arisen 

from a truncated enFeLV locus. However, although the highly expressed enFeLV 

transcripts can be packaged into virions, recombination resulting in functional FeLV- 

B does not appear to follow this course, in most cases. The generation of 

recombinants from these sequences appear to be the exception rather than the rule. 

More often, it seems that recombination involves the enFeLV sequences whose 

expression has not been detected in this study. The reasons for this and a possible 

alternative mechanism of recombination have not been addressed, but may simply 

reflect the greater probability of creating a functional FeLV-B env gene by 

recombination with low expressed but full length enFeLV proviruses. Expression of 

full length env genes may occur in a tissue which has not yet been examined, or at a 

level too low for detection by Northern analysis, but sufficient for recombination. 

This expression may occur in a subset of cells that is highly susceptible to infection 

by FeLV-A. The frequency of recombination leading to the generation of FeLV-B 

viruses in natural feline populations cannot be accurately estimated, as subgroup B 

viruses could arise as novel recombinants or due to horizontal transmission in the cat 

population. The detection of recombinants 'may be further complicated by the 

restricted replication of FeLV-B viruses in cats. (See section 8.10) A recently 

published study involving the PCR amplification of DNA derived from 3201B cells 

transfected with infectious FeLV subgroup C DNA have identified recombinant virus 

sequences using polymerase chain reaction and specific oligonucleotide amplimers. 

(Pandey et al. 1991) Analysis of the PCR amplimers used in this study against the 

sequences of FeLV-C and enFeLV env suggest that the major size of recombinant 

generated in this study could come only from recombination with an enFeLV locus 

containing a full length env gene. However, there is some evidence of a minor 

species whose size may be compatible with recombination involving a truncated 

envelope sequence. This observation is in line with the results of Overbaugh et al 

(1988) who recovered FeLV-B like viruses from AH927 feline fibroblast cells
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transfected with FeLV-A DNA at a high frequency and in a short time. From the 

results of this thesis, these cells appear to be free from detectable enFeLV expression. 

W hether the method of recombination involved in transfected cells is representative 

of recombination in vivo is not known and recombination following exogenous virus 

infection has not been studied. The identification of FeLV-B like recombinants from 

FeLV-A infected cells may therefore be a useful system in which to test the 

parameters affecting enFeLV sequence involvement in recombination.

8.7. Sequence requirements for FeLV-B specificity

Sequence analysis of all FeLV-B viruses isolated prior to this study suggested 

that some portion of enFeLV derived variable regions common to all FeLV-B gp70 

coding sequences would be responsible for the specific binding of FeLV-B gp70 to its 

receptor. The common variable regions concerned were Vr la, II, III, IV and V. 

However, GM1-B gp7() does not contain Vr V. This indicates that the Vr V region of 

FeLV-B viruses is not necessary for FeLV-B subgroup specificity. The requirements 

for Vr Ia-IV could be examined further by the construction of viruses with hybrid 

gp70 coding sequences containing different proportions of FeLV-A and B sequences. 

The results noted here are consistent with the recent observation that the first 120 

amino acids of MuLV SU carries the determinants which allow the SU protein to 

recognise its specific receptor. This domain encompasses the first of two variable 

regions in the amino-terminal domain, identified by alignment of a broad range of 

mammalian type-C retroviruses (Battini et al. 1992) and corresponds to enFeLV Vr II 

and III. The second variable region identified in this amino-term inal domain, 

corresponds to enFeLV Vr IV, and is proposed to play a role in the stabilisation of the 

receptor specific structure of amphotropic MuLV SU. (Battini et al. 1992) Therefore, 

although recombination of both MuLV and FeLV usually involves the replacement of 

both the amino-terminal and proline rich domains, it is the specific sequence 

variations in the amino-terminus which are implicated in receptor specificity. For 

FeLV-B, the proline-rich region may have to be exchanged to stabilise the very
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different amino terminal domain, or may confer some further functional necessity to 

the FeLV SU. This could be investigated further by constructing FeLV SU chimeric 

viruses and analysis of virus subgroup and efficiency of replication.

8 .8. Possible role of enFeLV expression in resistance to virus infection.

The major beneficial role in vertebrates with which ERVs have been 

associated is cellular resistance to infection by exogenous viruses which use the same 

receptor as the endogenous env gene. This is generally considered to follow from the 

expression of an endogenous env protein product and its blockade of the cell 

receptors. It has been reported that 320IB cells are resistant to infection by FeLV-B 

(J. Rojko, Ohio State University, pers. commun.) It is possible that this restriction 

may simply be due to the lack of specific receptor expression in these cells, (the tissue 

distribution of receptors for FeLV-B has not been established as yet) but the evidence 

of env gene expression leads to the suggestion that resistance is a function of the 

expressed env gene protein product. Sequence analysis of the truncated env gene has 

shown that this gene encodes a truncated protein of approximately half the length of 

normal FeLV SU (calculated at 33.5kD excluding glycosylation) Chapter 6 described 

the identification of a protein of 35kD that has properties consistent with the 

translational product of the expressed env-orf. The p35e’/lv encodes all of the FeLV- 

B-like amino acid sequences found in the GM1-B virus. Therefore, despite the fact 

that only half the SU protein is present, it appears to carry information sufficient for 

receptor specificity. It is therefore proposed that p356' nv contains sufficient sequence 

information for specific receptor binding, although this has yet to be formally tested. 

Recent work on MuLV has shown that a similarly truncated MuLV SU, containing 

the 5' 245 amino acids of SU (encoding a 30kD protein) was capable of generating 

resistance to exogenous MuLV, indicating that this fragment was capable of 

interacting with the cellular receptor. (Heard & Danos, 1991) This implied that the 

amino-terminal of MuLV could adopt a functional conformation and recognise its 

receptor even without the carboxy-terminal domain. The truncated MuLV SU protein
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still exhibited resistance when artificially retained in the endoplasmic reticulum by a 

KDEL sequence, indicating that the interaction between the SU and the cellular 

receptor resulting in blockade could occur within the ER. Given the overall structural 

and functional similarities of retroviral SU proteins, it is highly likely that the 

truncated feline env protein has similar properties.

The same group that found 3201B cells to be resistant to FeLV-B infection 

also reported that MCC cells were permissive for FeLV-B, albeit at a reduced 

efficiency compared to fibroblast cells. (J. Rojko, Ohio State University, pers. 

commun.) One possible explanation of this apparent discrepancy might have been a 

sequence difference between the expressed enFeLV env genes. However, no such 

differences were apparent. A more likely explanadon follows the fact that the MCC 

cells express less of enFeLV env protein and hence, display a lower level of receptor 

blockade and consequently, lower cellular resistance than 3201B cells. These two 

cell lines expressed similar amounts of enFeLV RNA but there was a significant and 

consistent difference in the relative proportions of small and large transcripts. In 

3201B cells, the smaller transcript was generally more abundant than the larger; this 

was also the case for T3 and F422 cells, and for many expressing tissues in vivo. 

However in MCC cells, the larger transcript was consistently more abundant than the 

smaller. This differential transcript level may be a consequence of splicing controls, 

resulting in the reduced levels of enFeLV env mRNA and of protein. Immune- 

precipitation studies of 320IB and MCC cells confirmed that p 3 5 ^ v content, as a 

percentage of the total cell protein in the precipitate, was lower in MCC cells than in 

3201B cells. The small amount of protein produced in MCC cells may be functional 

but insufficient to titrate out free receptors for exogenous virus completely. This 

would explain the reduced infectibility of MCC cells as compared to fibroblast cells. 

As the larger transcript of MCC enFeLV RNA is clearly smaller than that in 320IB 

cells, and so presumably more extensively deleted, the decrease in splicing may be a 

consequence of the deletion of some cis-acting sequences important to the control of 

splicing.
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The results therefore suggested that the expression of p356' /lv was proportional 

to its relative resistance to infection by FeLV-B. In order to confirm that p 3 5 ^ v can 

bind to the cell receptors for FeLV-B and thereby cause resistance to exogenous 

infection, it will be necessary express the env-ori in cells that are permissive for 

FeLV-B but do not express enFeLV RNA to see if the resulting cell line is resistant 

to subsequent infection by FeLV-B. Feline fibroblast cells (such as AH927 or FEA) 

or canine cell lines would be suitable. It may be interesting to test if cats are homo- 

or heterozygous for the enFeLV expressing loci, and if this affects the level of 

expression of enFeLV env expression and correlates with resistance to infection by 

FeLV-B.

The presence of expressed enFeLV sequences in the cat does not appear to 

present an increased risk of viral recombination and disease (unlike the murine 

ERVs). It may be that the more ancient feline ERVs have been modified through 

evolutionary selection, in order to provide an effective method of resistance to virus 

infection but reducing the risk of virus recombination.

8.9. Possible effects of enFeLV expression on the feline immune response.

As well as causing resistance to FeLV;B infection by receptor blockade, the 

expression of enFeLV env may have an influence on the host immune response to 

exogenous virus infection. It has been suggested that the expression of enALV SU 

protects chickens from lethal inflammatory responses frequently seen in chf(-) 

chickens by establishing a partial tolerance to ALV env antigens. (Halpem & Friis, 

1978, Crittenden et al. 1982) Central to this theory is that the T-cell epitopes of the 

endogenous ALV env proteins expressed during thymic education would be 

recognised as self antigens. These would include epitopes common to all ALV SUs 

regardless of subgroup. Infection of exogenous ALV may therefore stimulate an 

immune response only to a proportion of epitopes on SU that are specific for the 

exogenous virus. This is suggested to reduce the amount of cell killing by the 

immune system and so limit deleterious inflammatory responses. The expression of
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enFeLV elements has been shown in foetal thymic cells and hence occurs early in 

development. It is therefore likely that these are seen as self antigens. W hether 

exogenous FeLV infection has the same effect on the host immune system as has been 

suggested for ALV is not known, but the influence of enFeLV env gene expression 

may be more complex. Exogenous lymphomacytic choriomeningitis virus (LCMV) 

infection of mice carrying viral transgenes targeted to pancreatic cells resulted in the 

breakdown of tolerance to the endogenously expressed antigens and a destructive 

immune response leading to diabetes. (Oldstone et al. 1991, Ohashi et al. 1991) This 

suggested that the T-cells specific for these endogenous virus proteins were not 

deleted during thymic differentiation of self and non-self, but were inactivated by 

another means. Reactivity to self andgens by previously inactivate immune cells has 

also been implicated in the development of other autoimmune diseases. (Kronenberg, 

1991) It is possible that in the feline system, the loss of tolerance to endogenous 

antigens could result in the destruction of those cells expressing enFeLV env proteins, 

as well as exogenous virus infected cells. Depending on the extent of cell destruction, 

this could result in severe immune suppression due to the massive destruction of 

lymphoid cells, or the clearing of the infection from the animal via the destruction of 

virally infected cells. FeLV-infected cats frequently present with thymic atrophy 

(Anderson et al. 1971, Jarrett, 1984) despite apparently low levels of FeLV infection 

in the thymus (Rojko et al. 1981) and it is interesting to speculate that this may be a 

consequence of a host immune response to uninfected feline tissue expressing 

enFeLV.

The immune system could also be influenced by the processing of p35env. 

The stable insertion of viral envelope proteins into the cell membrane is dependent on 

the anchoring function of TM. As the enFeLV env-orf expressed does not contain 

TM coding sequences, it is unlikely that in uninfected cells, these proteins would be 

retained in the plasma membrane. However, it is not known whether the protein is 

transported from the ER into the secretory pathway and released from the cell, or
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whether it is retained in the ER and degraded. This could significandy affect the 

exposure of the immune system to p35env epitopes.

It may be further speculated that the infecting virus can alter the cellular 

location of p35em/. A number of studies have indicated that the env proteins of 

retroviruses associate as oligomers within the ER (Einfeld & Hunter, 1988, Thomas et 

al. 1991). Further, it has been demonstrated that this association is necessary for the 

efficient transport of env proteins from the ER to the cell surface, (Einfeld & Hunter, 

1988) and that the oligomerisation can occur with surface proteins alone, although the 

interaction is stabilised by TM. The truncated MuLV gp70 that had been shown to 

mediate resistance in cells was shown to be efficiently excreted from the cells. (Heard 

& Danos, 1991) In contrast, a RSV env gene lacking most of TM was unable to be 

transported from the ER. (Delwart & Panganiban, 1989) For FeLV, exogenous virus 

infection could result in p35env reaching the cell surface in association with 

exogenous virus env oligomers. This may lead to a de novo immune response to 

p35env.

The controversial FeLV-associated tumour specific antigen, FOCMA, was 

demonstrated on the surface of FL74 lymphoma cells and on the surface of virally 

transformed cells. (Essex et al. 1971a, Snyder et al. 1978) The presence of FOCMA 

was tested by looking for a FOCMA specific antibody response in cats. The sera 

were tested by immune fluorescence against FL74 cells, and a positive reaction of 

feline sera to the epitopes on the surface of these cells was considered a positive 

indication of the expression of the tumour antigen in the animal. (Mathes et al. 1976) 

It was also reported that a FOCMA antiserum response indicated a good prognosis for 

the development of leukemia. (Essex et a l.\9 1 \b , Schaller et a/. 1975) A number of 

theories were advanced regarding the genetic origin and function of this antigen. The 

observation that monoclonal antibodies reactive against FOCMA expressing cells 

were also reactive against cells infected with FeLV-C led one group to propose that 

FOCMA was encoded by an FeLV-C virus infecting the cell. (Vedbrat et al. 1983) 

Further studies led to the conclusion that the FOCMA antigen was structurally similar
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but distinct from FeLV-C. (Snyder et al. 1983) It has also been suggested that the 

expression of FOCMA is the result of the generation of a recombinant FeLV 

containing sequences not found in standard replication competent FeLV strains. 

(Ruscetti et al. 1980, Snyder et al. 1983) The true nature o f FOCMA is still 

unresolved. From the results of this study it cannot be conclusively shown that 

enFeLV env expression accounts for all the phenomena attributed to the FOCMA 

antigen but it demonstrates a rational basis for an immune response to enFeLV env 

genes and its cross reaction with FL74 cells.

It will be important to follow these observations further by examining the 

cellular localisation of p35env , before and after virus infection, and to look at the 

host immune response to p35env during the course of viral infection. In this way it 

may be established whether the p 3 5 ^ iV is normally regarded as a self or a foreign 

antigen.
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