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Abstract

Due to the growth of design size and complexity, design verification is an important aspect
of the Logic Circuit development process. The purpose of verification is to validate that the
design meets the system requirements and specification. This is done by either functional or
formal verification.

The most popular approach to functional verification is the use of simulation based tech-
niques. Using models to replicate the behaviour of an actual system is called simulation.

In this thesis, a software/data structure architecture without explicit locks is proposed to ac-
celerate logic gate circuit simulation. We call thus system ZSIM. The ZSIM software archi-
tecture simulator targets low cost SIMD multi-core machines. Its performance is evaluated
on the Intel Xeon Phi and 2 other machines (Intel Xeon and AMD Opteron).

The aim of these experiments is to:

• Verify that the data structure used allows SIMD acceleration, particularly on machines
with gather instructions ( section 5.3.1).

• Verify that, on sufficiently large circuits, substantial gains could be made from multi-
core parallelism ( section 5.3.2 ).

• Show that a simulator using this approach out-performs an existing commercial simu-
lator on a standard workstation ( section 5.3.3 ).

• Show that the performance on a cheap Xeon Phi card is competitive with results re-
ported elsewhere on much more expensive super-computers ( section 5.3.5 ).

To evaluate the ZSIM, two types of test circuits were used:

1. Circuits from the IWLS benchmark suit [1] which allow direct comparison with other
published studies of parallel simulators.



2. Circuits generated by a parametrised circuit synthesizer. The synthesizer used an al-
gorithm that has been shown [2] to generate circuits that are statistically representative
of real logic circuits. The synthesizer allowed testing of a range of very large circuits,
larger than the ones for which it was possible to obtain open source files.

The experimental results show that with SIMD acceleration and multicore, ZSIM gained a
peak parallelisation factor of 300 on Intel Xeon Phi and 11 on Intel Xeon. With only SIMD
enabled, ZSIM achieved a maximum parallelistion gain of 10 on Intel Xeon Phi and 4 on
Intel Xeon.

Furthermore, it was shown that this software architecture simulator running on a SIMD ma-
chine is much faster than, and can handle much bigger circuits than a widely used commer-
cial simulator (Xilinx) running on a workstation.

The performance achieved by ZSIM was also compared with similar pre-existing work on
logic simulation targeting GPUs and supercomputers. It was shown that ZSIM simulator
running on a Xeon Phi machine gives comparable simulation performance to the IBM Blue
Gene supercomputer at very much lower cost. The experimental results have shown that the
Xeon Phi is competitive with simulation on GPUs and allows the handling of much larger
circuits than have been reported for GPU simulation.

When targeting Xeon Phi architecture, the automatic cache management of the Xeon Phi,
handles and manages the on-chip local store without any explicit mention of the local store
being made in the architecture of the simulator itself. However, targeting GPUs, explicit
cache management in program increases the complexity of the software architecture. Fur-
thermore, one of the strongest points of the ZSIM simulator is its portability. Note that the
same code was tested on both AMD and Xeon Phi machines. The same architecture that
efficiently performs on Xeon Phi, was ported into a 64 core NUMA AMD Opteron.

To conclude, the two main achievements are restated as following: The primary achievement
of this work was proving that the ZSIM architecture was faster than previously published
logic simulators on low cost platforms. The secondary achievement was the development
of a synthetic testing suite that went beyond the scale range that was previously publicly
available, based on prior work that showed the synthesis technique is valid [2].
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1

Chapter 1

Introduction

This research aims to use optimization and parallelism to speed up simulation of digital
circuits. Accelerating circuit simulation is an important topic as it is part of the verification
process in electronic circuit design. The purpose of verification is to validate that the design
meets the system requirements and specification. This is done by either functional or formal
verification. The most popular approach to functional verification is the use of simulation
based techniques. Using models to replicate the behaviour of an actual system is called
simulation. Circuit simulation is being widely used as part of a verification testing tool.
However, it becomes more time consuming as a VLSI1 design grows larger.

Given a set of input signal values, a circuit simulator (a program) calculates the values that
a circuit will output. For testing, it is also necessary to generate suitable inputs to feed the
circuit (or circuit simulator). The amount of information which is generated as part of the
output, largely depends upon the abstraction level at which the circuit was described and
subsequently simulated.

Circuits may be described and simulated at several levels of abstraction including analogue
level simulation, switch level, logic level and functional level simulation [3]. Each considers
a different circuit model which abstracts away some properties of electronic circuits. For
example, simulating a circuit described in terms of transistors and capacitors will conven-
tionally show how these components interact at the electrical or analogue level, whereas
simulating a circuit described in terms of gates, flip-flops and registers will demonstrate the
digital interaction amongst the components. Furthermore, at some level of abstraction, some
ignore heat dissipation and power consumption, while others ignore analogue behaviour of
the the electronic circuits. Although abstraction results in ignoring some characteristic of the
circuit in simulation, it also reduces simulation time which is the goal.

This work only considers digital circuits, and analogue behaviour of the components are

1Very-large-scale integration
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abstracted away. This allows a central concept of this thesis to be more specific and refined
to digital logic circuit design and logical correctness. As part of a verification tool, gate level
logic simulation plays an important role in VLSI circuit design. It analyses the behaviour
of the circuit and correctness of its design. However, this does not ignore the importance of
other forms of correctness and validity.

There are several kinds of digital circuits including asynchronous and synchronous, which
only the synchronous digital circuits and logic gate level simulation is considered. Logic gate
level circuits may contain both primitive components and non primitives, in addition to flip
flops. Primitive components could be any of the basic logic gates such as AND, OR, NOT,
NOR, NAND, XOR, XNOR. Non primitives, composed of previously mentioned primitive
elements, are parts such as FULL ADDER and Multiplexer.

In sequential logic circuits, the output depends not only on the state of current inputs, but
also on the condition of earlier inputs. These type of circuits implicitly contain memory
elements. There are two types of sequential circuit, synchronous and asynchronous.

In a discrete sequential synchronous model, there is a global clock whith the content of flip
flop updated at discrete times with respect to that clock, and circuit outputs are generated. In
simulating synchronous circuit models, the aim is to calculate the values that goes into the
flip flops at the clock.

Only simulators for clocked synchronous circuit designs are the main concern of this thesis.
The efficiency and performance of this sort of simulator depends on the following factors.
First, the maximum size of the circuit: numbers of logic gates that can be evaluated. Second,
the time in seconds it takes to simulate the circuit for a fixed number of clock cycles. Let n
be the number of logic gates in the circuit, and t, the time in seconds to simulate the circuit
for one clock cycle. The performance will be n

t
.

Note that the performance of a logic gate simulator is generally expressed in terms of e, the
total number of gate evaluations per unit time. During each clock cycle of the simulated
machine, not every transition on logic gate’s input leads to a different output. So, usually it
is the case that e < n

t
. The difference between the two quantities of e and n

t
is exploited by

event based simulation.

On single processor machine, this method is effective. Event based simulation is imple-
mented by a queue of event. When parallelising the queue, multiple threads may try to
access to add/remove an event in the queue. This leads to lock contention for the queue.
Message passing models of parallelism use queues, for messages. It is built into their ba-
sic communication mechanism. Message passing parallelism has been successfully used to
accelerate event based simulation.

Recently, massively parallel discrete-event execution on several thousands of processors has
been extended to simulating very large numbers of circuits in detailed hardware simulations
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of microprocessors [4, 5]. On the other hand, in contrast to dynamically observing the the
behaviour of the model during the simulation, static scheduling of all the computations would
be well suited on massively parallel machines. The technique is called oblivious simulation.

Availability of multicore SIMD processors with gather instructions, allows more efficient
high performance logic simulations than alternative software.

1.1 Thesis Statement

This thesis is that it is possible, by the use of simple regular data structures to obtain,
with SIMD shared memory multiprocessors, simulation speed, that are as good as or
better than other workstation technologies and more cost effective than small super
computer cluster for the same task.

1.2 Research Proposal

In this thesis, we are proposing an architecture without explicit locks that allows a contention
free parallelism targeted at low cost SIMD multi-core accelerator boards. The Intel Xeon
Phi [6] which is a coprocessor with Many Integrated Core architecture developed by Intel (
based on the earlier Larrabee [7] many core architecture), is used to accelerate digital logic
gate circuit simulation.

There are several existing published works on accelerating digital circuit simulation using
GPUs [8, 9, 10, 11, 12] and multicores [4, 13]. However, to the best of my knowledge, none
have done digital logic simulation by taking advantage of Xeon phi SIMD architecture.

1.3 Research Contribution

Overall, in this work, the main goal is to accelerate logic gate circuit simulation using a
contention free data structure architecture that is targeting low cost SIMD machines. The
major contribution of this dissertation are as follow:

1. Reviewing the previous work in the area of parallel logic level circuit simulation

2. Generating larger range of synthetic circuits, above the range of what is reported in the
literature.

3. Proposing a lock-free data structure
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4. Evaluating the performance of the proposed SIMD simulator (ZSIM)2 on various ar-
chitectures

5. Implementing the proposed SIMD simulator in two different programming languages
and compare its performance across various compilers

6. Studying the relation between #3 and #4 above

7. Comparing the vectorization performance in ZSIM with SIMD acceleration on Single
core and multi-core

8. Comparing the achieved performance to similar existing works on GPU and super-
computers

9. Demonstrating that on larger circuits, the proposed architecture is highly competitive
with what reported in the literature including GPUs and supercomputers

1.4 Thesis Outline

The remainder of this thesis is divided into 5 chapters: Chapter 2 provides background
materials including fundamental concepts in circuit simulation. It also discusses the state-of-
the-art views on various methods of simulation including event based and oblivious. More-
over, it surveys the most close and relevant research to this work, mainly focusing on parallel
logic simulation on GPUs and supercomputers. Chapter 3 comprises of two sections: SIMD
requirements in circuit simulation and the SIMD data structure architecture that is proposed
in this thesis. The chapter explores several possible approaches of using SIMD in circuit
simulation. Techniques to benefit from SIMD in simulation, including ways of data packing
and logic evaluation are discussed. The software simulator architecture that is being used in
this research work requires few locks and no queues. It is required to employ a specific form
of data structure that can take advantage of SIMD. This chapter’s focus is on the SIMD soft-
ware architecture and data structure that is used in this work. Chapter 4, explores various
existing circuit test suites, from standard benchmark circuits to synthetic ones. Moreover,
the method that was used to generate netlists for the SIMD simulator, is discussed. This
chapter also provide details of how the circuits are represented . To evaluate and measure
the performance of the proposed simulator, it was tested on several benchmarks on various
hardware architectures including the Intel Xeon Phi, an Intel Xeon, and an AMD Opteron
NUMA machine. The results were then compared to some of the existing work discussed in
the literature. Chapter 5, describes the experimental setup and used platforms, followed by

2ZSIM is written in C++ and OpenMP by Mozhgan Kabiri Chimeh. Full data is in the university document
repository at doi:10.5525/gla.researchdata.342
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experimental results and discussions. Chapter 6, describes the contributions of this thesis.
It restates the objectives, and the conclusions drawn from the experiments with the proposed
software/data structure architecture, followed by a section on possible future research works.

1.5 Publications

• Mozhgan Chimeh, Paul Cockshott. ”Optimising Simulation Data Structures for the
Xeon Phi”. The 2016 International Conference on High Performance Computing and
Simulation.Austria, July 18 22, 2016

• Mozhgan Chimeh, Paul Cockshott, Susanne B. Oehler, Ashkan Tousimojarad and Tian
Xu. ”Compiling Vector Pascal to the XeonPhi”. Concurrency and Computation: Prac-
tice and Experience. May 2015 [14].

• Mozhgan Chimeh, Cordelia V. Hall, John T. O’Donnell. ”Optimisation and paral-
lelism in synchronous digital circuit simulators”. IEEE International Conference on
Computational Science and Engineering. Nicosia, December 57th, 2012 [8].
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Chapter 2

Related Work And Preliminaries

This chapter explores some of the background material related to circuit simulation includ-
ing circuit models and different level of abstractions, simulation types and techniques. The
second part of this chapter studies related works on logic simulation. We discuss some of the
methods used in the literature and report their results.

2.1 Simulation and Models

Using models to replicate the behaviour of an actual system is called simulation. A model
is a simpler and abstract version of a desired system. In general, simulation refers to time
evolution of a computerized version of a model.

Simulations are used in various areas and fields including the entertainment industry, medicine,
engineering, electronics, etc. For example, the purpose in using simulation in flight training
devices is to train pilots on the ground in a low risk environment to avoid any possible risk
that might happen to pilots or actual aircraft in a case of failure during the process. Other
than providing low risk training process, it can also be beneficial economically, when fuel,
insurance and maintenance are taken into account [15].

In order to test, experiment, and validate a design, we use models. As explained, simulation
itself is a form of modelling. It applies a model over a simulation time to foretell its be-
haviour. For example, computer simulation helps to predict a behaviour of a model without
the need to build the design.

2.2 Simulation as Part of Circuit Design Development

Due to the growth of design size and complexity, design verification is an important aspect
of the Integrated Circuit (IC) development process. The verification process can take up to
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70 percent of the total developmenet time [16]. The purpose of verification is to validate that
the design meets the system requirements and specification. The most popular approach to
verify the functionality of a circuit design is the use of simulation based techniques.

Logic simulation is an approach to determine validity in IC design. During the simulation,
input patterns are applied to the design and the result (output) is compared to the expected
behaviour of the system. Due to the growth of circuit complexity, simulation as part of design
verification has become a bottleneck.

2.3 Software vs Hardware Simulation

Software simulation is a form of simulation that is executed by a computer system. In order
words, we can simulate a software model of the design. Although it is low cost, as the circuit
size grows larger, the simulation coverage will become less. Even with very fast simulation,
we have to use a sparse test set and hope to find errors with this set.

2.3.1 Software Simulation

A software simulator is a program that simulates an abstract model of a particular system. It
takes an input representation of the product or circuit, and processes the hardware description
language that describes it to an internal model and compiles it. A system model typically
includes processor cores, peripheral devices, memories, interconnection buses, hardware ac-
celerators and I/O interfaces.

Simulation is the basis of much functional verification. It can be done at different level
of abstraction and detail from transistor level simulation like SPICE [17] to Register Level
Modelling. An overview of different level of abstraction in simulation will be discussed later
in this chapter.

Over the period of past two decades, the number of transistors on processor chips are in-
creasing. While the operating frequency increased until 2004, it has levelled off since then
(Figure 2.1). These transistors are now used to build multicore processors. However, as
the available cores on the computer are not being efficiently utilized, performance of soft-
ware simulation decreases for larger circuits. Simulation acceleration, emulation, and FPGA
prototyping are all solutions to overcome the slow PC simulation speeds for large designs.

Simulation acceleration

By simulation acceleration, we mean use of a hardware description language, such as Verilog
or VHDL, along with some special equipment which allows simulation faster than could be
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done on a contemporary computer.

Some simulation accelerators use hardware such as GPUs (e.g. NVidia Kepler [19]) or FP-
GAs [20] with embedded processors. Acceleration is done by mapping the synthesizable
part of the circuit design into a specially designed hardware platform. Evaluation of HDL
constructs in parallel increases the performance. The rest of the design (portions of the sim-
ulation that are not mapped into this special hardware), are run in a software simulator on
a PC or workstation. Furthermore, the hardware platform works with a software simulator
to exchange simulation data. In order to increase the performance, the purpose of accelera-
tion is to remove the events from a software simulator that runs on PC and run them on the
hardware platform in parallel.

There are several factors that affect the performance. For instance, the remaining portion of
the simulation that is running on the PC software simulator has a great deal of impact on the
total simulation time. Due to Amdahls law, a high amount of serial work running on the PC
simulator compared to the parallel portion of the work running on the hardware platform,
slows down the total simulation. The number of IO signals that are used for communication
between the hardware platform and the PC, in addition to the PC bandwidth and commu-
nication channel latency, can also reduce the performance. The smaller the bandwidth, the
longer it takes to transfer data. For example, on GPU, the PCIe bandwidth can kill the perfor-
mance. Retaining data on GPU board helps reducing the data transfer time via PCIe between
host and device. On GPU, the more data transfers between the GPU and CPU, the more
computing time it takes.

Figure 2.1: Logarithmic chart of technology growth vs. year [18]
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2.3.2 FPGA Prototyping and Emulation

As explained earlier, functional verification is done in various way including software simu-
lation, software acceleration, FPGA prototyping, and emulation.

Emulation is done by applying stimuli on a hardware prototype of a design. The word emu-

late was first used by IBM in 1963 [21]. They used microcode hardware to execute programs
instead of software simulation. The emulator was used to accelerate simulation. Before
1980, the emulation term only referred to emulation with hardware or microcode [22]. Hard-
ware emulators consist of array of reconfigurable logic computing units that are directly or
indirectly interconnected. Field Programmable Gate Arrays (FPGAs) and Application Spe-
cific Integrated Circuits (ASICs) are examples of programmable logics. FPGAs are used as
a primary hardware/computing unit in emulation.

For example, ProtoFlex [23] simulator uses [22]Simics (a full system simulation plat-
form) [24] that runs on a PC workstation as the reference simulator. It integrates a single
Xilinx FPGA for acceleration. FPGA-acceleration portion of the Hierarchical ProtoFlex
simulator is hosted on a Berkeley Emulation Engine 2 1 FPGA platform [25].

To emulate an IC, FPGAs are programmed by an external computer to emulate a portion of
the circuit. FPGAs may not be easy to use (fitting a design into FPGA is not easy). However,
they improve the verification timing by 2 to 4 order of magnitude compared to software
simulation. Although emulation is faster than software simulation, it still only validates some
of the possible input stimuli. The available number of IO pins in them limits the emulator’s
performance.

Instead of building a prototype board, the design can be partitioned and mapped to multiple
FPGAs and can be reused for other designs. Hardware prototyping using FPGAs is suitable
for up to a medium size ASICs that fit into a single FPGA. For larger circuits, as the number
of needed FPGAs increases, the partitioning of the design and mapping it to the FPGAs are
difficult and error prone.

In order to simulate a design, the design under test (DUT) is modelled to a specific level
of abstraction. Modelling a design at a different level of abstraction can affect the simula-
tion time and required memory. Detailed and more accurate models leads to a slower and
larger simulation model. For example, abstract models that do not consider detailed timing
simulation, are more efficient in terms of simulation runtime; they run faster.

1”Berkeley Emulation Engine 2 (BEE2) project is developing a reusable, modular, and scalable framework
for designing high-end reconfigurable computers.”
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2.4 Software-based Circuit Simulation

As explained earlier, simulation is an approach to predict and verify the correctness of the
design’s behaviour without a physical implementation. As part of design verification, simu-
lation is used at each stage of development and each design stage, to validate the functionally
and performance of the design. This is done with respect to the design requirements and the
circuit description and specification. A software simulator is a computer program that takes
the circuit description in a form of a netlist 2, in addition to the set of input vectors called
stimuli, and generate a set of output vectors or responses. When the circuit is verified, the
design process proceeds to the next stage. Otherwise, the redesign or modification may be
needed if the expected and simulated responses were different.

The history of circuit simulators and the importance of circuit simulation due to growth of
integrated circuit marker goes back to 1960-70 [26]. Circuit simulation is necessary to use
as building ICs were expensive and difficult to troubleshoot.

The result of simulation very much depends on the level of abstraction the circuit model
is described. For example, simulating a circuit model described in terms of transistors will
demonstrate the analogue interaction among its components where as simulating a logic
circuit model contains logic gates and flip flops, will show the digital behaviour between its
components.

2.5 Level of Abstraction Models in Circuit Simulation

For simulation, and testing purposes, circuits are described and modelled at different levels
of abstraction including System Level, Register Transfer Level, Logic Level, and Transistor

Level. Table 2.1, shows different perspectives and levels of abstraction in digital design. In a
behavioural perspective, our interest is only on what the circuit does, where as in a structural
view, the concern is on the connectivity. In other words, what the circuit is composed of and
how the elements are connected. In a physical view, the arrangement of hardware elements
and wires on a chip or a circuit board is of interest. Different time units are used for each
level of abstraction that a circuit is based on.

Table 2.1: Different levels of abstraction in Digital Design, after [26]

level of abstraction behavioural view structural view physical view Concept of time
system input/output relationship system with input/output chip, board,or cabinet sequence,throughput

architecture bus functional model organization into subsystems partitioning,floorplan partial ordering relationships
register transfer data transfers and operations ALUs, muxes, and registers placement and routing clock cycles

logic truth tables, state graph gates, latches, and flip flops standard cells or components events, delays, timing params
transistor transfer functions (algebraic equation) transistors, wires, R, L, C detailed layout, mask polygon continuous

2A netlist is usually generated by a synthesis tool that converts a HDL design by mapping its elements to
logic primitives according to specific cell library.
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Models at each level of abstraction represent different views of the system. At transistor
level, the lowest abstraction level, the component’s models are described as algebraic equa-
tions. An example of a simulator for this level is SPICE. The analogue simulator should be
able to solve differential equations that describes the circuit.

At logic (gate) level, components are described by truth tables, or boolean equations. In
contrast to the previous model, time and signal values at this level are discrete values. Instead
of current and voltage that is used in transistor level, the connection quantities in this level
are 0,1,X, .. values. A simulator that is used could be either event based simulator or cycle
based (Section 2.7). Compared to an analog simulator that is time consuming, the simulators
that are used for the model (at this level of abstraction), are faster.

Register transfer level is similar to the logic level in terms of time and values, and the used
components. However, components in RTL models have higher complexity. The degree of
complexity is even greater in system level. The connection between the components in the
model is by buses. So, the entities in RTL models are words and bytes in opposed to bits in
logic level. In system level, the connection entities are messages.

As the degree of the abstraction goes higher, the model will have less detail. As a result, the
simulation of the model would be faster.

2.6 Circuit Models

The simulation is done at various level of abstraction on various circuit models. In the begin-
ning of this chapter, we briefly defined abstraction and modelling. Abstraction simplifies the
task of building complex systems. A model is an abstraction of a real physical system which
some aspects have been ignored while building it. Some possible models in electronic circuit
designs have been mentioned. Circuit models can be described at many level of abstractions.

For example, basic components in analogue circuit model are wires, transistors, diodes, re-
sistors, inductors and capacitors where as in digital circuit model, the two main components
are logic gates and wires. Wires in analogue circuit models carries analogue signals which
are actually continuous voltages. In contrast, in digital circuit models, signals carry discrete
boolean value of 0 or 1. In this section, we explore some of the main circuit models.

2.6.1 Digital vs Analogue

There are two kind of systems and devices namely analogue and digital. In analogue systems,
information is represented by using physical quantities; continuous values such as voltage
on a wire, magnetic field strength. However, in digital systems, the way of representing the
information is using discrete values. For example 0 and 1, low or high, off or on.
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In digital circuits, there are two types of logic circuits namely, combinational and sequential

logic circuits. The first type implies to the logic circuits whose output is a function of its
inputs, in contrast to sequential logic circuits which their output depends on the history of
the input, as well as the present values of the inputs (Figure 2.2). In other words, sequential
circuit is a combination of combinational circuit with memory devices.

Figure 2.2: Combinational vs Sequential digital circuit model

2.6.2 Synchronous vs Asynchronous

Digital systems are divided in to two categories in terms of their functionality, namely Syn-

chronous and Asynchronous.

Synchronous Synchronous circuits make up the vast majority of practical applications
and are easier to design. In synchronous digital systems there is a global clock which controls
the timing of the operations. For example in a synchronous model of a sequential circuit;
which is a combination of one or more flip flops and logic functions (with no feedback), all
the flip flops get the clock signal at the same time. In other words, all the flip flops in the
circuit output their signal at the same time.

A Flip flop is a component in digital circuits for storing information. A D type flip flop has
one input/output and one clock input. In this work, D flip flop is referred to as a flip flop.
The input to the flip flop is determined by a signal which comes from the logic function in
the circuit. The logic function includes a set of components which are basically connected to
each other with no feed back. In synchronous model of sequential circuits, flip flops change
their state at a point in time called the clock tick.

Clocks are regular periodic signals that can cause the state of memory element (flip flop) to
change. Clock frequency is the number of rising clock edges (clock ticks) in a fixed period of
time that determines the speed of a sequential circuit. Clock cycle time (or clock period) is
the time between two rising clock edges. Duration of the clock cycle should be long enough
so the system has enough time to compute the output and every component in the system
gets calculated. In other words, from a rising clock edge, there should be enough time for D
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flip flops to generate stable output for the state, and for the next state logic to generate the
next state. Furthermore, adequate time is also needed for D flip flops to set up after the next
state is available. So, in general the clock cycle time should be at least equal to the total of
propagation delay of D flip flop and next state logic plus delay the D flip flop setup time. A
maximum delay after which all outputs are stable when input changes is called propagation
delay.

The reason for this is that every logic function must complete in one cycle. In an abstracted
version, clock cycle should be at least as large as critical path which is the longest path
between an input to the circuit and its output with the maximum delay. Note that clock cycle
is another form of abstraction; dividing time into discrete intervals. This will be discuss later
in Section 2.7.

Figure 2.3(a), shows a synchronous circuit. In this example, data clocked into register R4

is function CL4 of the data clocked into R3 at the previous clock. In other words, R4 =

CL4(R3).

Asynchronous The critical path restriction on synchronous circuits causes limitations
in clock speed, and for very large circuits this becomes a major problem. So the modern
trend is for circuits that have synchronous boxes, and these communicate with each other
asynchronously. Asynchronous digital systems do not have a global clock and the output of
the system depends on the input value and can be change at any instant of time. Figure 2.3(b),
is an equivalent asynchronous circuit in Figure 2.3(a).

For example, in asynchronous Sequential digital circuits, output depends on its input variable
changes and can be affected at any instant of time. Although, these kind of circuits are not
controlled by a global clock, there are signals which indicate the completion of operations;
every signal, has its own time and value.

2.7 Simulation Techniques

Based on the type of simulation algorithm and the circuit model, simulation technology is
classified into different categories.

2.7.1 Cycle Based vs Event Driven Simulation

Cycle based simulation is a way of improving the simulation speed that is based on syn-
chronous design principles. The method is known to be successful in verification projects [28].
Note that designing and verifying an asynchronous design is more difficult than a syn-
chronous design. So, the modern designs are mostly synchronous. The method is used for
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(a)

(b)

Figure 2.3: (a) A synchronous circuit,(b) an equivalant asynchronous circuit, taken from [27]

synchronous designs where there is a global clock where all outputs from the state holding
elements (latches) are updated at the same time. A cycle is defined as a finest time granular-
ity. During the cycles, all the logic elements are evaluated in a rank order and inputs to the
latches are calculated. At the end of each cycle, latches outputs are updated.

The rank ordering method is called levelisation. Gates driving inputs to the flipflops are at
level n, gates driving gates at level n have level n− 1 etc. The levelisation is mainly used to
find the order in which circuit elements are simulated.

Event driven simulation is another form of simulation that uses a form scheduler to keep
track of any logic evaluation that needs to be done. In other words, it uses a specific data
structure (queue) to maintain the list of so called events. The list is in the order that the
events must occur. Event occurs when a transition on a logic’s inputs leads to a change on it
output. The low activity rate of logic elements in the circuit, promotes simulation speed.

Cycle Based Simulation Algorithm

Most often, cycle based simulation implements an algorithm called oblivious simulation
whose simplicity makes it efficient for further possible optimizations. During each cycle,
all the combinational logic elements are simulated. Doing some extra work (unnecessary
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evaluation of logic elements) in an oblivious algorithm is a trade-off for not having the event
scheduler in an event-based algorithm. Using synchronous design to eliminate the timing
from functional verification to avoid dealing with hazard and glitches in cycle based sim-
ulation, and avoiding multi-valued representation of signals results in a simpler, efficient
simulation model, which shall meet the verification quality.

During each clock cycle, logic gate are evaluated in the order of their path depth or level.
Then, at the clock tick, the state of the flip flop is updated. At each cycle, the circuit reads in
a new set of inputs and at the clock tick flip flops are updated and the outputs are generated.
Algorithm 1 is the described cycle based simulation algorithm that is used in this work.

Algorithm 1 Cycle Based Simulation Algorithm
1: initialize each flop flop to zero
2: while there is more input do
3: read inputs
4: for pd← 0, critical path depth do
5: simulate each logic function at depth = pd
6: update flip flops

In a levelized circuit, logic gates in the same level are simulated independently. Being able to
evaluate logic gates concurrently, makes it suitable for parallelism. Levelisation techniques
have been used by Wang et al. [29], Maurer et al. [30], and other authors [31, 5, 32, 33,
34, 35]. The technique has also been used under the term ”ranking” [9]. Parallel logic
simulation of independent components at the same time (using a levelisation technique), was
used in [36, 37, 38, 39, 12, 8, 40]. In the section 2.9, these will be reviewed in detail.

2.8 Hardware Platforms

In this section, we divide platforms into categories of Supercomputers and Clusters, and
Engineering Workstations.

• Clusters and Supercomputers: A set of connected (loosely or tightly coupled) com-
puters is called computer cluster. The computers are connected via network, and each
computer has its own instance of the OS. K computer is one of the top clusters man-
ufactured by Fujitsu [41]. It has 705,024 cores and 10,510 TFLOP/s performance. It
comprises 88,128 SPARC64 VIIIfx (8-core) processors. The computers annual run-
ning cost is around $10M. The same as high ranked supercomputers, this cluster is
also very expensive. However, smaller clusters are cheap and available for research
purposes, such as Raspberry pi cloud [42].
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Note that many supercomputers are clusters, but not all clusters are supercomputers.
Supercomputer clusters have high performance interconnect such as Infiniband [43]
whereas lower cost clusters tend to use nothing more sophisticated than Ethernet. The
current top supercomputer is called Tianhe-2 by NUDT with performance of 33862.7
TFLOPS (teraflops) located in China [41]. It has 16,000 computer nodes, each com-
prising two Intel Ivy Bridge Xeon E5-2692 and three Xeon Phi 31S1P. There is a total
of 3,120,000 cores available. It costs about $390M. The total occupied space is around
720 square meter [44].

The Blue Gene/L supercomputer was released in 2004 and is based on an embedded
PowerPC 440 processor, though with significant additions and modifications to the
standard PowerPC system. In Section 2.9, an existing work on parallel logic simulation
targeting Blue Gene/L supercomputer [4] will be reviewed. Its performance will be
compared to ZSIM targeting Xeon Phi. Although, the processor used in Blue Gene/L
is old (1999), this existing work is the only other work that targets an architecture other
than GPU. Due to the reasons below, the comparisons made are meaningful:

– The paper is very recent, so with respect to simulation it is the latest state of the
art in the context of using super computer clusters.

– Although the Blue Gene/L machine is old, but that comparisons of the number
of cores and the clock speed are still relevant, even if the price comparison is less
relevant (see Table 5.18, page 102 in Section 5.3.5).

– The processor design in the Xeon Phi is an early model Pentium core P54C which
was released in 1994. So, the core used in Xeon Phi is even older than the one in
Blue Gene/L.

• Engineering Workstations: It is also called a PC. This is a low cost system comparing
to above options and can be replicated. Workstations are divided to CPUs and CPUs

+ Accelerators. We previously mentioned that the frequency on processor chips lev-
elled off since 2004. Rather than increasing the clock frequencies, CPUs have evolved
through the use of parallelism in the system. The innovation of multi core chips and
multi sockets chips has its own challenges. Available CPUs in the market are by In-
tel, AMD, and etc. The Intel Skylake based i7-6700K processor with 4 cores (hyper
threaded), 4 GHz clock frequency, and 8MB cache is about $350 [45]. There are also
workstations that have CPUs in addition to accelerators such as GPU, Xeon Phi, etc.

CPU + accelerator Workstation

Graphic Processing Units (GPUs) are the example of many core architectures containing
massively parallel processors that are being used for general purpose computations rather
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than only graphical operations. This is due to the availability of this high performance hard-
ware and the general purpose programming models such as Computer Unified Device Archi-
tecture (CUDA). For example, a GTX 770 provides 3.2 Tflops with 1536 cores and it costs
less than 300. With hundreds of threads available, GPUs are able to achieve a performance
of several orders of magnitude in comparison to a traditional CPU. This may not be the case
for specific algorithms. NVIDIA introduced Compute Unified Device Architecture (CUDA);
a parallel computing platform, that exploits and improve the parallel power of GPU.

At the moment, this research is limited to relatively small, low cost machines that an indi-
vidual engineer might have. Therefore, we ignore supercomputer architectures or relatively
cheaper clusters such as Beowulf clusters. Below is the list of platforms that were available
for this work. Table 2.2 is the summary of these machines’ specifications.

• A multi-core AMD Opteron 64

• Nvidia GTX 770 with 4 GB memory capacity and 224.3 GB/s bandwidth

• Xeon Phi 5110P with 60 cores (240 threads)

• Parallela: is a credit card size computer with dual core ARM A9 CPU on 64-core
Epiphany coprocessor 1G RAM at the starting price of $99.

• Tilera TILEPro 64: is a multicore processor with 64 tiles (cores on chip), connected
via a cache coherent 2D mesh network. Each tile is equipped with its own 8KB L1
and 64KB L2 cache. Each core is capable of running a Linux separately. Furthermore,
it has four DDR2 controller to reduce DRAM accesses.

Xeon Phi and Tilera have different design strategies. Xeon Phi has ring topology, Tilera
uses mesh Topology (mesh topology uses more connections). Note that there are NUMA
machines (AMD64) available to use but that is not the key concern as the maximum design
in this work would fit into the first bank of memory. Table 2.2, compares the specifications
of above platforms. Among these relatively low cost machines, SIMD support, auto cache
management, sufficient bandwidth, amount of shared cache and the number of cores are the
factors we are looking at.

Parallella does not support SIMD, has 1.3 GB/s bandwidth, has simple slow cores and it is not
comparable to Xeon Phi with 60 cores (hyper threaded) that supports SIMD. Tilera has four
memory controllers, while Xeon Phi has 16 memory channels and higher bandwidth (320
GB/s) and more cores. After certain number of tiles start accessing memory, the performance
of Tilera remains relatively small with more tiles [46]. The performance flattens out as its
memory channels saturate faster.
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Table 2.2: Specifications of available platforms

Platform Model Core Memory Speed SIMD
Nvidia GTX 770 1536 4 GB 1046 MHz Yes
Xeon Phi 5110P 60 8 GB 1.053 GHz Yes
AMD 6366HE 32 256 GB 1.8 GHz Yes
Tilera TilePro 64 64 16 GB 700 MHz No (VLIW)
Parallella E64G401 66 1 GB 800 MHz No

Although a GPU has a higher number of cores, we will explain in the literature review (Sec-
tion 2.9) that due to the low amount of shared memory, gaining performance is only possible
for small circuit sizes. In this thesis, the Xeon Phi is used as our main target platform.

2.8.1 MIC architecture (Intel Xeon Phi coprocessors)

Intel introduced an alternative technology to GPUs, based on the Many Integrated Core
(MIC) Architecture. The first version is on a 22 nm Knights Corner chip, sold under the
name of Xeon Phi.The Intel Xeon Phi coprocessors are Symmetric Multiprocessing (SMPs)3

systems that plug into the host (Intel Xeon processor) via PCI Express [47]. Xeon Phi cannot
operate on its own and needs a host to provide disk and IO. These make the Xeon Phi similar
to GPUs.

The Xeon Phi cores are based on the x86 Pentium core architecture. It has 57 to 61 cores
clocked at around 1GHz. There are 4 hardware threads per core, which results in roughly
240 logical cores. Every core has 512 bit wide vector registers, in addition to the standard
x86 registers.

The interconnection among cores is based on the ring network model. Cores are connected
by a high speed bidirectional ring that allows the L2 caches to be accessible by all. In other
words, the total of coherent cache over 30MB is available to all the cores. Xeon Phi has its
own 6 to 16 GB on board GDDR5 RAM with around 170 GB/s bandwidth. Each core has
its own 32KB L1 cache that is only accessible locally [47, 6].

Xeon Phi is equipped with the new set of instructions called Intel Initial Many-Core Instruc-
tions (IMCI) that is supported by the Vector Processing Units (VPUs) within each core. Each
VPU has 512 bit SIMD (Single Instruction Multiple Data) vectors.

According to Intel, the KNC chip’s theoretical peak performance is more than 1 TFLOP/s in
double precision. The Xeon Phi has twice the performance per watt of the Xeon.

One of the greatest advantage of using MIC rather than GPUs is that the same code written
for the multicore CPU can be used to run on the Xeon Phi coprocessors. On the other hand,

3SMP systems are tightly coupled multiprocessors with homogeneous processors running independently
while sharing common resources.
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CPU application code needs to be modified in terms of its algorithm and syntax when built
for GPU applications based on the CUDA architecture.

An application written for MIC architecture using the Intel C compiler is reusable not only
for the heterogeneous systems containing several Xeon Phi plus CPUs, but also for a system
without a coprocessor. In this work, the same applications that were written in both C++ and
Pascal, were compiled for Xeon Phi as well as another architecture (AMD Opteron 64). To
target a different architecture, only a different flag and compiler were used to generate the
executables. Although it was possible to use the heterogeneous model (offload), in this work,
this feature was not used. As mentioned in the previous section, the programs were running
natively on Xeon Phi.

The second generation of the MIC architecture is based on a 14 nm Knights Landing (KNL)
chip. The Knight Landing Xeon Phi features up to 8 billion transistors packed inside a large
die. It can be a processor on its own or a coprocessor (connected via PCI device). The Knight
Landing was designed to offer higher floating point performance against older generation of
accelerators. The next generation will support Intel Advanced Vector Extensions (AVX-
512) instead of IMCI with the theoretical performance peak of over 3 TFLOPS/s in double
precision [48].

The design on the KNL chip is separated into several tiles. Each tile comprises of 2 cores,
each with 2 vector processing units (VPU); 2x AVX512 units. A 1M L2 cache is shared be-
tween the two cores. There are 4 threads per core. Tiles are connected via Mesh interconnect.
The KNL has upto 72 cores.

KNL has upto 16 GB on-die high bandwidth memory (upto 400 GB/s). Moreover, the chip
has 2 DDR4 memory controller that allows the support of up to 384 GB RAM by a complete
platform via the 6-channel memory support. Moreover, other than KNL chip, Skylake Xeon
also supports 512 bit AVX vector processing unit. Note that Skylake supports vgather in
all versions. Gather instructions are used to collect non-contiguous data from memory. It
then joins them into a vector register. This makes it more efficient to collect data into vector
registers. The AVX512 will only be supported in Xeon server versions of Skylake. Note that
the generations that support AVX2 instructions, also have gather instructions.

2.9 Review of Simulators

The initial research work on logic simulation started around 1980, where the concept of
oblivious and event based simulation was first addressed [49, 50, 51]. Research on par-
allel simulation algorithms bloomed around the same time targeting both platforms with
distributed memory [52, 53],and multiprocessors with shared memory [54].
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Some of the available commercial simulators are based on these concepts. On a single CPU,
they use optimizations such as compiled code technique to improve their performance. As
previously mentioned, emulation and the use of specialized hardware boards are being used
to increase simulation performance. The system comprises of several connected piece of
homogeneous (similar) hardware. The emulation is done by partitioning the circuit into the
blocks of hardware with optimized computational units [55, 56, 57]. The Yorktown em-
ulation system was the first emulation system developed by IBM [58]. ASICs were used
as its primary computing unit. Current emulators achieve around four orders of magnitude
speedup comparing to software simulators. Emulators can also handle large designs. How-
ever, as previously discussed, they are not cost effective and successful mapping the design
to an emulator is time consuming (may take several weeks).

This work is only concerned with software simulators. The remaining of this section explores
studies on the related subjects to parallelisaing logic simulation targeting various platforms
such as supercomputers and workstations with accelerators such as GPUs.

As previously mentioned, in term of how each logic gates is evaluated by a simulator, logic
simulators can be grouped as oblivious or event based [59]. In oblivious simulators, all logic
gates are simulated during each clock cycle, while only logic gates with a change on their
inputs are simulated in event based simulators. Event based simulation requires analysis to
determine the logic gates that requires scheduling for evaluation. So there will be a dynamic
scheduling in contrast to simple static scheduling in oblivious simulation algorithm. Better
data locality and static data structure in oblivious simulation, makes it a great option for
parallelism targeting SIMD architectures such as GPUs.

Note that, in large designs, only 1 to 10% of the whole circuit is simulated during each cycle.
So, despite the complexity of dynamic scheduling process, most commercial simulators are
based on event based method to gain performance. Although the sequential event driven logic
simulation algorithm is efficient, parallelisation of event based algorithm is challenging [60].

Event based simulation algorithms can be divided into synchronous and asynchronous al-
gorithm. In synchronous event based simulation, a global clock controls the progress of
logic processes 4. For shared accessed, events are stored in a global data structure. The
synchronous event based algorithm can be implemented on SIMD architectures [61]. To im-
plement an asynchronous algorithm, each logic process is assigned to a local clock. Asyn-
chronous simulation algorithms are classified into conservative and optimistic categories.
In conservative approach, events with smaller time-stamp than the evaluated ones will be
pushed forward [62, 63]. In the optimistic approach, events with larger time-stamp than the
later events are allowed to be processed [64, 65]. After the related events were processed, the
previous evaluation may turn out to be incorrect. In this case, there is a roll back mechanism

4Various modules in a simulated system
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that restores the computations to before the incorrect evaluation. The optimistic approach
may not be efficient on GPUs due to divergence as a result of complexity of flow control.

Although, in this work we only focus on oblivious simulation algorithm, in the literature, we
refer to some of the recent works on both form of simulation algorithm.

Parallelising simulation algorithm targeting SIMD (Single Instruction Multiple Data) hard-
ware systems was first done by [38]. The compiled code logic simulation targeting GPUs
did not achieve an ideal performance. Due to the communication overhead (data transfer
overhead) between CPU and GPU and not optimizing the data transfers between host and
device, the CPU outperformed GPU. Moreover, they did not use the general purpose paral-
lel programming model CUDA. Instead, they used Brook [66]. The partitioning algorithm
they used was Combinational Fan Out Free Cone by mapping outputs of logic elements to a
function of their inputs. The function is an arithmetic equation that can be evaluated using
logical operations. The maximum size of the design they used in their tests was around 40K
gates.

In contrast to the work in this thesis, Chatterjee et al. [37, 5, 11] uses circuit partitioning
algorithms to achieve fast simulation. Chatterjee et al. [37] groups their proposed parallel
simulation algorithms into two groups of synchronous and discrete event algorithms. Syn-
chronous algorithms are those where several parallel threads fork and join during each sim-
ulation cycle. The join mode happens at a barrier that could be the end of cycle. In event
driven algorithms, they use the partitioning algorithm. The circuit is partitioned into non
overlapping sub circuits. Then, each is assigned to a thread to simulate. Among the several
methods of partitioning a netlist including cone [67], balanced workload [68], random [69]
or activity based partitioning [52], Chatterjee et al.’s approach is based on the cone partition-
ing algorithm and the use of a clustering algorithm. This choice can make a great impact on
the communication overhead.

The GCS simulator by Chatterjee et al. uses levelisation as part of its process. The term level

in Chatterjee et al. has similarities to the term we use in this work. Levelisation determine
the sequence of logic gate simulation in the circuit. Chatterjee et al. describes levelisation
as a way of organizing the circuit netlist in a way that logic gates in one level are completely
independent from each other. So, their inputs do not depend on the output of another logic
gate in the same level. In other words, the simulation of logic gates in the same level only
depend on the values generated from the previous level. This way, logic gates at the same
level can be simulated concurrently in parallel.

Chatterjee et al. proposed an oblivious simulator (GCS) using synchronous parallel simula-
tion algorithm; a compiled code simulator that targets GPU by partitioning the design into
clusters [37]. Each cluster is then mapped to a thread block. The clusters are independent
and do not communicate with each other during each simulation cycle. To achieve this, a
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cone partitioning method was used. A circuit netlist can be viewed as a set of logic cones.
Each cone contains all the gates contributing to generating the output. Each cluster contains
several logic cones. Once a cone is simulated, the output value is written into the output vec-
tor. Due to the constraint on the size of the GPU local shared memory, only the frequently
accessed data such as the intermediate signal values and the gate type truth table are stored
in it. The truth table was used for evaluation of each gate during the simulation. As each
thread block only has access to the small local shared memory on GPU, only a few data
blocks can be accessible during the simulation. This limits the clustering algorithm perfor-
mance. Then, the cluster is reshaped by the balancing algorithm, so that the cluster width
(number concurrent threads; each thread is responsible for calculating the output of one gate)
and height (logic level) will be changed. The purpose is to overcome the limiting factor of
gaining speedup by minimizing the number of logic levels.

In Chatterjee’s proposed oblivious simulator[37], all the logic gates are simulated during
each clock cycle. The simulator was tested against a commercial simulator (event based
compiled code simulator) for various number of cycles on a set of verilog designs. The
target platforms were 8800 GT GPU (112 cuda cores) with 14 multiprocessors, 512 MB
device memory, and 1500 MHz processor clock, in addition to a Pentium 4 workstation
with 2 GB memory. It was reported that the GCS outperformed the commercial simulator
by a factor of 4 to 60 for designs between 17K and 263K. Although the designed software
was simple and statically optimize-able, unfortunately the size of the circuits that can be
simulated by this simulator is limited due to the size of the local shared memory as well
as number of multiprocessor on the GPU. The GPU used had 16KB shared local memory.
So the maximum size of the design that GCS could have been simulated is around 900K
(64K*14 = 896K).

Chatterjee et al. have also proposed an event based simulator using macro-gates [5]. The
event based simulator has two phases: a compilation, and a simulation phase. The first
phase involves circuit netlist transformation and creating the macro-gates. First, the levelised
circuit netlist is segmented intro layers. Each layer holds a fixed number of levels, called gap.
Gap is in fact the height of a macro-gate. As a logic element could have been assigned to
two or more macro-gate, it will be duplicated. So, each macro-gate has a copy of it and can
evaluate the logic gate without sharing data. Last, the number of outputs from each macro-
gate is variable and called lid. In order to have the same number of gates in each level, the
macro-gates are re-structured.

In simulation phase, one or more macro-gates is/are assigned to a multiprocessor. Macro-
gates corresponds to a thread block. The number of concurrent thread blocks in a multipro-
cessor can determine the number of macro-gates that are simulated together.

Each macro-gate consists of several logic gates that are connected to each other. Macro-
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gates that are required to be simulated due to changes on their input values are tagged and
added to the CUDA scheduler for simulation. The simulation of each of these logic blocks
is assigned to a CUDA multiprocessor. Thus, there is no communication among macro
gates. Concurrent threads within a block simulates logic gates of the same level. After
synchronization, the phase moves on to the next level within a macro gate that was assigned
to the multiprocessor. During the simulation, the data and the program resides on the device
(GPU). The data that is being shared between macro-gates is stored on device memory.
Due to the frequent access to the truth table for logic evaluation, it is kept on GPU shared
memory, as well as intermediate values. In general, data placement for storing look-up table
and intermediate values is similar to the oblivious simulator by Chatterjee et al.

After the simulation of chosen macro gates, their output values will be monitored in order
to choose which of the macro gates will should be activated for simulation in the next level.
The GPU platform that was used was similar to their previous study [37] and performance of
their event-based simulator was compared against the commercial simulator that was running
on an Intel Core 2 with 2.4 clock frequency. They reported that their simulator outperformed
the commercial simulator by a factor of 4 to 44 for designs between 17K and 1M.

In the segmentation technique, the number of gap and lid are important as small gap value
can lead to generation of more outputs (net) per macro-gate and a large gap number can
lead to high activation rate of macro-gates. In [5], a fixed value was used for lid so that
the number of logic elements in each macro-gate was about the same. The GPU they used
allows the concurrent execution of 3 thread block. With 14 multiprocessors available, they
only considered lids that would generate the maximum of 42 macro-gates per layer (14*3 =
42).

Note that having equal height layers may result in an imperfect mapping of partitions to
CUDA blocks. As a results, in some layers, blocks may stay idle waiting for synchroniza-
tion. In a later study [11], Chatterjee et al. addressed the issue by introducing an advanced
segmentation technique that would have allowed flexible gap value for each layer (but kept
the gap value fixed throughout each layer). The value of gap and lid can change the granu-
larity of event based simulation.

Sen et al. [12] also proposed an oblivious logic simulation algorithm similar to Chatterjee et
al [37] targeting GPU architecture. The partitioning algorithm that was used by Sen et al. is
similar to [70] by Hering et al.. In the cone partitioning algorithm by Hering et al., the fan-in
cone of a circuit element includes those part of combinational logic that have influence on
that circuit elements’ signal values.

Sen et al. used two clustering algorithms. In the first clustering algorithm, they used a
threshold value to control the CUDA blocks. Then, they used merging and re-balancing
technique to improve the clusters to efficiently use the shared memory on GPU. Chatterjee
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et al. did not use a threshold value in their clustering algorithm. Instead, they start the
clustering from the outputs of a circuit. Furthermore, Sen et al. uses a fixed number of
blocks to increase the execution of parallel threads.

Moreover, Sen et al. used the term Cycle Based simulation (CBS), while Chatterjee et al.
called it oblivious simulation. Chatterjee et al. used lookup tables for gate evaluation, where
as Sen et al. used AIGs (And Inverter Graph) representation where all the logic gates in the
circuit were AND gates. AIG is a way of representing Boolean function manipulation. Using
De-Morgan’s rule, a combinational logic comprises of an arbitrary Boolean network can be
transformed to an AIG graph.

The technique has been widely used in technology mapping, logic synthetic and verifica-
tion [71, 72, 73, 74, 75]. Later in Section 3.1.4, this technique will be referred as an alterna-
tive to the use of look-up table for logic gate evaluation.

Sen et al. used a different partitioning algorithm to Perinkulam [38] as well as using CUDA
programming model which was not used in [38] work.

The simulator by Sen et al. has two phases of compilation and simulation. During the
compilation phase, a levelised circuit design is partitioned into clusters. Then, the clusters
are balanced and each is mapped to a CUDA block. Each gate at a specific level within
a cluster is simulated independently by a thread. In order to control the number of CUDA
blocks, a threshold value is used in creating clusters. Each cluster is then assigned to a CUDA
block. The threshold value should be equal or greater than the number of logic elements in
the a specific level in the circuit. Some designs may have more or less logic gates than the
threshold value. So, controlling the CUDA blocks using the threshold value leads to manual
effort.

The observed performance of this method states that the execution time is linear with respect
to the threshold values. The threshold number depends on the circuit structure and design.
Sen et al. introduced a second partitioning algorithm to improve their previous approach.

In the optimized version, the clusters are created by starting from circuits primary output
signals and latches instead of the given threshold value. This leads to creation of different
number of clusters and sizes. Followed by the reshaping algorithm, the number of clusters
would be the number of CUDA blocks and the number of gates within the cluster would be
less than the total number of gates in all the clusters divided by the number of CUDA blocks.
The number of logic gates per level would be up to the number of threads that would be
allocated to each thread block. The number of allocated threads to each CUDA block is a
multiple 16 threads that is half warp to ensure coalesced memory access. In this approach
only the intermediate signal values are stored in the shared memory that requires frequent
access. At the end of each cycle, the output data and current state are transferred from GPU
to CPU.
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Due to the limitation on the size of the shared memory, variables of type unsigned char were
used to store the intermediate signal values that are either 0 or 1. This way, there will be
more room for larger designs. The use of AIG format was an effective way of reducing the
wasting space in shared memory that was used in Sen et al. work .

As logic elements in the circuit are all the same type, it uses the limited amount of low
latency memory on GPU. However, the critical path depth of the circuit would be higher
when AIG format is used. So, although the use of AIG representation could reduce the local
memory size, larger number of gate levels result in execution overhead.

Sen et al. tested their two parallel simulators on several designs. They targeted Quadro
FX3800 GPU with 192 CUDA cores (24 streaming multiprocessors and 8 streaming proces-
sors), 1 GB device memory, and 1204 MHz processor clock, in addition to an Intel Xeon
CPU with 2 multiprocessors at 2.27 GHz and 32 GB memory. They reported that their sim-
ulators outperformed the default simulator that is available with AIGER [76] by a factor of 5
and 21 for designs between 2K and 220K. For designed smaller than 1K, their first parallel
simulator that used a fixed threshold value for clusters performed very poor comparing to the
sequential simulator.

Unfortunately the size of the circuits that can be simulated by this simulator is limited due to
the size of the local shared memory as well as number of multiprocessor on the GPU.

Using two blocks for each streaming multiprocessor (SM) on their Quadro FX3800 GPU
will leave 8KB local memory for each (the GPU they used has 16KB shared memory). One
unsigned char variable was used to represent 8 outputs. It allows to have 64K (8KB * 8)
variables for a block. So with the total of 48 blocks, the maximum size of the design that can
be simulated is around 2M gates (48 * 64K = 3M variables including inputs, output, latches,
and number of AND gates). However, Sen et al. did not report any timings for circuits of that
size. There is not enough data to backup their theoretical calculation. The maximum circuit
size they used was less than 220K.

Yuxuan et al. [9] used an adaptable partition strategy to achieve variable macro-gate [5]
partitions based on the characteristics of the circuit, targeting GPU architecture. Macro-
gates are scheduled and executed in blocks. Logic gates are then mapped to threads within
a block. The gate evaluation is done through a look-up table. Note that the intermediate
signals and the look-up table is mapped to the local shared memory.

Having variable macro-gate height instead of equal height [5], would reduce the data com-
munication cost, and saves the amount of synchronization between parallel simulation tasks.

The proposed algorithm was used in both oblivious and event based simulation. The algo-
rithm promotes load balancing among parallel task in order to reduce the synchronization
and communication cost among blocks. The smaller height value results in creation of wider
macro-gates, and vice versa. They introduced two threshold values to guide the partitioning
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algorithm: one to control the number of logic gates within each macro to ensure balanced
load among parallel tasks, and another to limit the number of output signals from each macro-
gates. The second threshold is due to the limited amount of local memory to ensure that all
the signals in each macro fits in the low latency shared memory.

They tested their simulators on GTX465 GPU with 352 CUDA cores, 1 GB memory, in
addition to an Intel Core Due T2400 with 2 GB memory and 1.83 GHz clock frequency. The
parallel versions on GPU was compared to the sequential version on CPU for designs of size
60K to 200K.

Their oblivious simulator achieved a speedup of between 3 to 21, while their event-based
simulator gained performance of 2 to 9. The maximum reported speedup was not large
enough to be able to generalized the conclusion. Furthermore, similarly to the work by Sen
et al [12]. the results were not compared to some existing work and their own sequential
simulator was used as a base line to make the comparisons.

The main goal of this work by Yuxuan et al. was to show how other factors such as circuit
characteristic can affect the partitioning of the circuit design. Moreover, the size of the
partitions and the limited amount of local memory on CUDA platform are related factors
that one has to consider in order efficiently utilize the computing resources on the GPU.

Zhu et al. [10] proposed a parallel asynchronous event based simulation algorithm targeting
GPU architecture. Different from the work in this thesis, this event based simulation algo-
rithm, does not hold a global clock across logic gates in the circuit. Their algorithm is based
on the CMB algorithm [62, 63] (an example of conservative approach). Chandy Misra [62]
and Bryant [63] developed the concept of distributed time, event based simulation and clas-
sified it as CMB algorithm. The idea in the CMB algorithm is that circuit elements are
represented as Logic Processes. Each module in a simulated system is known as a Logic
Process (LP). LPs communicate with each other via messages that are composed of a time

stamp and a value that indicates the content of an event. Each LP may have several inputs
and outputs and maintain its own local evaluation time. During the simulation, one LP may
receive several new events from their inputs and generate several events at it outputs. Al-
though, two or more events may happen as the same time stamp, independent events can be
evaluated in parallel.

The CMB algorithm uses a priority queue data structure to store events for every logic gate.
Due to the distributed time mechanism, deadlock may occur during the simulation [62].

Zhu et al. emulated a message passing model in their simulation algorithm. They adopted
the usages of null messages into their algorithm to avoid deadlocks as a result of distributed
time mechanism. After an evaluation of a LP, if it would not generate a new event, a null
event would be sent. After another LP receives the null event, it simulation time will be set
to null too.
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Due to divergent branches as a result of heap operations on the queue, parallelising the CMB
algorithm and priority queue data structure on GPU will have poor performance. To avoid
time consuming global sorting of the events, Zhu et al, distributed the priority queue of logic
gates to their inputs. They used a distributed data structure that stores events related to each
gate on its input pin. Each gate is mapped to an LP and each LP is assigned to a thread. Gates
are evaluated and new events are added to the data structure. The logic gate evaluation is done
via a look-up table ( similar to [33]) that is stored in the constant memory. Furthermore, they
used gate re-ordering prior to the simulation to avoid the divergence on the GPU. So, threads
in a warp would evaluate gates of the same type. To evaluate the performance of the GPU
based simulator, they used a typical sequential event based simulator as a baseline. Due to the
message passing and local time maintenance overhead, a sequential CMB based simulator
is slower that the classic one. They reported that their baseline sequential simulator was 2
times faster than the Synopsys VCS simulator.

They targeted GTX280 GPU with 240 CUDA cores and 1296 MHz processor clock, and a
2.66 GHz Intel Core2 Duo platforms. They tested the simulator on circuit design of size
6K to 117K with two set of input vectors: randomly generated stimuli and the officially
released one (deterministic). The GPU based simulator achieved an average speedup of 47
for randomly generated stimuli, and the speedup of up to 59 for the released stimuli. When
the activity rate is low, the parallelisation overhead causes insufficient acceleration. Input
pattern with higher activity level would perform better with Zhu et al.’s simulator. The size
of their circuits are not big enough to draw a conclusion on the scalability of their algorithm.

Chatterjee et al. [5] also proposed an algorithm for event based algorithm, their logic simu-
lator evaluated multiple simultaneous events synchronously. Zhu et al.’s work is CMB based
simulator that does not hold a global clock across logic elements in the circuit.

Results from the Previously reported timings by Zhu et al. [77], are inconsistent from these
ones [10] (Figure 2.4). On the same circuits, using the same official released stimuli, the
reported timings for their CPU baseline event based simulator running on the same system,
were inconsistent. For example, the CPU simulation time in seconds for the AES design,
takes 109.90 seconds in [77], and takes 90.50 second in [10] (note that results in both papers
are for the exact 42M cycles). The CPU simulation time for JPEG design, takes 2121.71
seconds for 2.6M cycles in [10], and takes 136.33 seconds for 26M cycles in [77]. Due to
the inconsistency in reported timings for their baseline simulator, their result are not valid
and cannot be used for further comparisons. Table 2.3 shows the comparison of these results
based on the cycle per microsecond metric for the baseline simulator.

The combination approaches explained in [5, 37] led to the creation of GPU event-based
simulator (GCS) by Chatterjee et al. [11]. The GCS is a hybrid simulator that uses event
based simulation as a coarse granularity and oblivious simulation within each coarse grain
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(a) [77]

(b) [10, 78]

Figure 2.4: Inconsistent results for the same circuits for baseline sequential event based
simulator, taken from [10, 77, 78]

Table 2.3: Comparison of Cycle Per Microsecond from reported results by Zhu et al. [10,
77, 78] (Figure 2.4) All figures are the simulation cycle per microsecond reported for their
sequential simulator. Note the huge discrepancy in reported performance between papers.

Design [10, 78] [77]
AES 0.474 0.391
M1 7.374 0.844
SHA1 6.894 0.040
R2000 1.212 3.117
JPEG 0.001 0.192
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group. GCS uses the approach of partitioning the circuit netlist into macro gates and sim-
ulates each macro-gate in an oblivious mode. Logic gates in the same level are simulated
in parallel within a block of threads. Furthermore, each individual cluster is scheduled for
event based simulation. So, micro-gates are simulated by different thread blocks on different
multiprocessors. This way only part of the circuit is simulated at each cycle.

They tested their simulator over a range of designs with 17K-1M logic gates against a com-
mercial simulator for various number of cycles. They targeted the same GPU and CPU that
was used in their previous study [5]. In that study, Chatterjee et al. reported that their sim-
ulator outperformed the commercial simulator by 4 to 44 times. In this current study, they
results showed the advance segmentation method they used led to 15% performance gain.

Limited amount of shared memory on GPU that is shared among threads in a block, puts a
constraint on the size of these micro-gates. The number of levels within a micro-gate and
number of output signals of each micro-gate are other factors that affect the performance and
the scalability of this algorithm.

In one of our previous studies [8], we applied several optimizations techniques to the cycle
based simulation targeting GPU architecture and levelised synchronous circuits. We studied
the interactions between various simulation optimization techniques and other factors such
as circuit structure and the target platform. Instead of using queue as a standard way of im-
plementing event based algorithm, we proposed a lock-free event based simulation technique
called marking algorithm. Parallelising event based algorithm that uses queues may cause
significant problems. Several threads may require access to the queue for basic operations
such as add or removing an event at the same time. This will lead to deadlock.

The marking algorithm is an optimization to the cycle based simulation algorithm (we called
’brute force’). However, we use a Boolean flag for each logic element that indicates whether
the logic gate needs evaluation not. During the simulation, all the logic elements in the same
level are checked. If the flag was 1, then the logic gate is evaluated.

Further optimizations were done by determining the circuit elements that could save some
evaluation time. For example, knowing the value of selector signal in multiplexer in a circuit,
can save a lot of computation time as we can simple ignore evaluating all the logic elements
that would generate the unwanted input signal to the multiplexer. These optimizations were
done to simply avoid the extra work in the cycle based simulation, while maintaining the
simple data structure to target parallel GPU architecture.

The simulation algorithms were tested on GTX 590 GPU with 512 CUDA cores and 1.22
GHz clock frequency. The comparisons were done against the sequential algorithm. The
marking algorithm performance varies. Activity rate of the signals, can cause excess over-
head as the process of flag checking leads to extra computation. Unfortunately, the reported
results in the paper are limited to only one circuit design. The performance of the algorithms
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were not compared to any other simulators. So, a comparative conclusion cannot be drawn
in terms of its performance. Note that depending on the circuit structure (path depth, type of
components, and etc), input vectors, and the target architecture. The limited shared memory,
the problems with using locks and atomic functions, and so on GPU, are the limited factors
that need developers attention.

YAPSIM by Hashiguchi et al. [40] is another parallel logic simulator using GPU. YAPSIM
is a levelised simulator that uses fan-out cone partitioning algorithm. They define the fan-
out cone as a group of logic elements that determine the value of input to a flip flop or its
output. The fan-out cones are re-arranged in descending order of gate count in each cone.
Cone groups are divided between blocks. The gate evaluation is done by a look-up table.
Although their simulation method is straightforward, enough detailed information was not
provided in the paper. Therefore, the netlist and data structure used to represent the signals
was not clearly explained in the literature.

They compared their results with its sequential version and a commercial event based simu-
lator C-SIM. They used three GTX480 GPUs with 480 CUDA cores clocked at 1.4 GHz and
1.5 GB memory, and an Intel Core i7-950 CPU clocked at 3.07 GHz with 3 GB memory.

They reported results for circuits of size 2k to 84K. For combinational test circuits, YAPSIM
achieved performance of up to 29 against C-SIM and up to 25.3 against the its sequential
version. For sequential test circuits, YAPSIM achieved performance of up to 5.6 against
C-SIM and up to 7.5 against the its sequential version. YAPSIM was not tested for any
large scale circuit. So, scalability of the algorithm is not clear. The limited amount of shared
memory (GPU resources) surely affect the performance of YAPSIM as maximum circuit size
that can be used here is limited.

Holst et al. proposed an event based timing simulation algorithm targeting GPU(Kepler
with 6 GB memory clocked with 980MHz)[79]. Their simulator supports hazards, pulse
filtering and pin to pin delays. Signals and wires are treated as a separate delay entities. The
simulator by Holst et al. calculates all events on intermediate and output signals for every
input transitions. The simulator accepts waveform stimuli for input signals and computes
the output value for each logic with multiple inputs. It was tested on a set of circuit designs
of under 550K. They reported speedup of two orders of magnitude against the commercial
event based simulator running on a single threaded CPU (Intel Xeon with 2.8 GHz and 256
GB memory).

There has been other research works on parallel logic simulation targeting platforms other
than GPUs. Gonsiorowski et al. [4] studies parallel logic gate simulation on supercomputers.
They mainly focus on parallel simulation of a OpenSPARC T2 crossbar. Gonsiorowski et al.
use Parallel Discrete Event Simulation (PDES) simulation kernel ROSS [80] framework that
is built on Jefferson’s Time Warp [64] and is designed for PDES. Each object is known as LP
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and messages between two LPs present a signal between gates. Reverse computation [81]
method was used to reverse the state of a gate as ROSS does not have a form of state saving.
Similar to our work, Gonsiorowski et al. uses gate level netlist with basic Boolean gates and
also considers unit-delay model.

The simulation is done at the level of LP. Each LP represents a gate that sends messages to
other gates. Some of the data is stored in ROSS and there is only one copy available for the
current state of each LP. Messages sent from one gate to another is after half cycle. When a
message arrives at a gate, it leads to event update and scheduling for the next half cycle.

The experiments were performed on a 24 core SMP machine clocked at 2.66 GHz, and an
IBM Blue Gene/L with 1024 cores, each clocked at 700 MHz. They duplicated a crossbar
circuit with 211K gates to produce a larger circuit. Two set of randomly generated input
vectors were used: one changing at every 30 cycle, and another every 2 cycles. In general,
the optimistic simulation did not perform as well as conservative. One of the issues with an
optimistic approach is that it takes up more memory than the conservative approach. The
memory is used to store messages in case reverse computation was needed. For a circuit of
size 216M gates, they were able to achieve 116M gate transition events per second.

Gonsiorowski et al. [82] did further experiment on the scalability of the algorithm. For this
purpose, they used two systems. The first system was a 2 rack 418 teraflop Blue Gene/Q with
32,768 cores and 32TB memory, and the second system was a 96 rack, 20 petaflop Sequoina
Blue Gene/Q with 1,572,864 cores and 1.6 PB memory. The second system was joined with
a 24 rack Blue Gene/Q.

The scaling experiment was done on PHOLD benchmark. They achieved event rate of 504
billion on 1,966,080 Blue Gene/Q cores (120 rack) and 164 billion at 48 racks to execute 32
trillion event, 250M LP PHOLD configuration.

There are other recent works on parallel simulation [13, 83, 84]. However, as they are not
directly related, these are not discussed further.

2.9.1 Final Thoughts

The existing literature is not satisfactory due to some common issues with the reported re-
sults; i.e: issue of direct comparison and representative compatibility.

• Using a commercial simulator as a baseline and not disclosing its firm and its perfor-
mance [5, 37]. At least the commercial simulator should have been compared to a
sequential version of the parallel simulator. This way, it would give a better idea of the
performance of this unknown commercial simulator.
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• Using a wide range of test circuits. So, it is difficult to compare the existing works
together due to the very different scales of circuits. There are only a few circuits in
common and there is a wide gap between the circuit sizes. For example, the work by
Gonsiorowski et al. [4] cannot be compared with Sen et al. [12]. One uses a maximum
circuit size of 200M gates and another uses a maximum circuit size of 220K.

• Some of the reported results from the same authors are inconsistent for the baseline
simulator timings. The achieved performance are not valid for further comparisons
(Table 2.3).

Table 2.4, shows the performance comparison of some of the papers discussed in the liter-
ature. Note that the table only shows the timings for the design that was in common in the
papers. Unfortunately, the information related to the commercial simulator was not provided
in some of the papers.The ’Sequential Simulator’ column shows the timings for the sequen-
tial implementation of the same simulator. Sen et al. achieved a better speedup amount
comparing to all. However, it is not clear how well their commercial simulator performed.
Moreover, Yuxuan et al. [9] compared their simulator against their own sequential simulator
with running for lower number of cycles than other simulators. Thus, the direct comparison
of all of these simulators is not possible.

Table 2.4: Comparisons of Gate level GPU simulators for LDPC design (70K gates)

Paper Parallel Commercial Sequential Speedup Cycles
Simulator (sec) Simulator (sec) Simulator (sec)

Sen et al. [12] 24.32 382.21 - 15.71 100K
Chatterjee et al. [37] 193 12014 - 62.24 100K
Yapsim et al. [40] 1.77 51.8 44.8 29.26 100K
Yuxuan et al. [9] 10.13 - 91.54 9.03 25001

Unfortunately there is not enough data to draw any conclusion for the scalability of the
simulators on the GPU. The maximum circuit size that was used on the GPU was around
1M by Chatterjee et al. [11]. Although some of the simulation performance results on GPU
that were presented in the literature are significant, the simulators cannot handle large circuit
designs due to a low capacity of memory on GPUs. There are several factors to consider
when developing a simulator targeting GPU architectures. Some of these factors that can
limit the performance of an application using GPU.

• The limited amount of shared memory

• Local synchronization within a block

• Memory locality within thread blocks

• Regular access pattern to memory for threads within a block
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• Data transfers between host and device

• Explicit synchronization between thread blocks

In order to address the above problems, the issue of direct comparison and representative
comparable have to be addressed. So, I have to be able to :

• to test designs of sizes from 1K to million gates

• to achieve average speedup of 13 to 14.4 or a maximum speedup of 60 over commercial
simulators (comparing to [5, 37])

• to achieve gate transitions per second of at least 116M (comparing to [4])

• to show an improvement over the state of art, ZSIM (my simulator) will be compared
to previous works over a wide range of circuits

To achieve this, Chapter 4 shows how I generate circuits of such range, Chapter 3.1 describe
how I design an architecture to meet these achievements, and Chapter 5.3 shows the results
achieved. The aim of the experiments are to:

• Verify that the data structures used allow SIMD acceleration, particularly on machines
with gather instructions ( section 5.3.1).

• Verify that, on sufficiently large circuits, substantial gains could be made from multi-
core parallelism ( section 5.3.2 ).

• Show that a simulator using this approach out performed an existing commercial sim-
ulator on a standard workstation ( section 5.3.3 ).

• Show that the performance on a cheap Xeon Phi card is competitive with results re-
ported elsewhere on much more expensive super-computers ( section 5.3.5 ).
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Chapter 3

SIMD Simulation Model

This chapter discusses the ways of using SIMD in logic gate simulation. Two questions
are addressed: how to represent signals in the circuit, how to implement logic functions. A
combination of possible answers to these questions are explored as approaches to use SIMD
in simulation. Furthermore, we explain our SIMD simulation model along with the used data
structure.

3.1 SIMD requirements

The vectorization is important because it increases the performance. On Xeon Phi, using
vectorization means doing 16 single precision (SP) or 16 integer, or 8 double precision (DP)
operation at once. Processors that support Intel SSE instructions would do 4 SP, 4 integer,
and 2 DP, while the next generation that would support Intel AVX, could do 8 SP, 8 integer,
and 4 DP. Comparing to this, Xeon Phi does 2 times more operations at once.

In order to use SIMD for simulation that allow a single instruction to perform a logical
operation on 512 bit worth of data at a time, one may face challenges. It is obvious that
one can perform parallel bit operations for logic using either a conventional or a SIMD
machine if one packs multiple logical signals into a word. The problem with doing this for
logic simulation, the special application of fault simulation aside, is that although one can
efficiently handle the logic operations, simulating the interconnect this way is prohibitively
expensive. It involves so much work shifting, masking and packing bits that it outweighs
any parallelism gain in the logic operations. Note that in this method, all the bits in the 512
bit word must perform the same operation : AND, OR, etc. As a result, the SIMD simulator
would have to group logic gates into blocks of ANDs, ORs, etc.

However if one uses one logic value per 32 bit word the Xeon Phi does allow one an effective
way of parallelising logic, since 16 words can be operated on at a time, and the costly shifting
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and masking can be avoided by using the vgather instruction that loads a SIMD register rx
with 16 double-words such that rx[i] is loaded from mem[ry[i]] where ry is another
SIMD register, and i is in range 0..15.

A single instruction can only operate on 16 logic signals instead of 512, but that is still 15
more than we can do without SIMD. Given that there are 60 cores on the Xeon Phi chip we
potentially have a simulation parallelism level of 960.

The challenge is to come up with a data structure that allows both the exploitation of the
vgather instruction and also ensures good cache locality and allows the whole inner loop
of the simulator to operate on multiple logic signals at once. It should be remembered that
similar gather instructions are being made available on AVX-512, so the techniques will soon
be applicable to machines other than the Xeon Phi.

To efficiently make use of SIMD instructions and do parallel vectorization, there are several
factors that one has to consider. The first factor is data layout in memory. If data is not
aligned and not laid out well in the memory, more instructions, cache and memory accesses
are required to collect the data and organize them into registers, so that the vector operations
can perform on them. The extra instructions can reduce the performance. Data locality is
another factor that affects the performance including fetching data from the closest cache
rather than memory and reusing data. Although data is transferred from the memory, the
vector load instruction takes less time if prior to the load, the data has been fetched to the
closest cache. On Xeon Phi, this can be done by pre-fetching data from memory to L2, then
from L2 to L1. Data that is being reused should be stored closer together, to reduce the
number fetches into cache.

When trying to use SIMD for circuit simulation, there are two questions to ask: how to
represent logic signals in terms of programming data types, and how to implement a binary
logic function?

Consider a simple scalar add operation between two integer numbers. Each occupy 4 bytes in
memory. When doing scalar operation, each number is moved from memory to a register and
the result is moved back to the memory after the calculation is done. In vector operations,
we move multiple data into a register instead of a single datum. The data has to be lined up
in the memory, to be able to move one pack of data from memory to a register.

3.1.1 Bit vs Word Data Packing

In this section, we explore the two ways of data packing in memory: 1) bit packing 2) word
packing. The way the data is stored in the memory and how it is represented can affect the
memory latency. Poor memory access to retrieve data leads to poor performance. In other
words, it increases the simulation time.



3.1. SIMD requirements 36

During simulation, the circuit specification along with the signal values are stored in the
memory. However, the information related to the logic elements in the circuit are all read
only. On the other hand, the value of the signals are updated at intervals. So, as these current
state values are accessed frequently, the way they are represented can affect the memory
latency. Poor memory access can affect the performance/simulation time. How well these
signals are packed together, can change the simulation time. A high density of packing
improves information locality and makes the best use of the buses between memory and
cache and between caches and processors. So, the focus is only on ways to represent the
state signals.

Figure 3.1 illustrates the state array when signals are represented as bits or words. The
state array is type integer. So, each 32-bit number either represent a signal (word packing)
or 32 packed signal (bit packing). The figure also shows the comp array that holds the logic
gate type. Note that the location of input value signals are stored in inp0, and inp1 arrays.

As mentioned above, one option is to store each signal data as 1 bit in memory. Then,
we store 32 signals, packed as a 32 bit number (Figure 3.1-b). For machines with larger
words we might pack 64 signals into a word etc. In order to access the data value during the
simulation, the single data bit is retrieved via bit-selection operations. This will normally be
done by explicit << or >> operations in C. In Intel assembly language it can be done using
the BT instruction. In either case access to 32 bits spread out across memory will typically
involve a loop to gather them up.

In order to have an efficient access to the signal values, signals values that are packed together
a 32 bit number must be the outputs of logic gates of the same level and type. They must be
the same type since we can only operate on 32 bits at a time using a CPU logic instruction
which performs the same logic operation on all bits in a register. They must be the same
level since we will be updating them with a single AND, OR etc instruction, and to avoid
race conditions on multiple cores which may be running such instructions we require them
to be at the same level.

It is possible that the number of same type logic elements in the same level may not be a
multiple of 32. In this case, we would use zero padding and leave zero for the extra signals.
This way, we would ensure all the 32 bit values belong to the output signals of gates at the
same level. Figure 3.2) illustrates zero padding in bit packing technique. The state array
in the figure stores the current state signals. Let’s assume that there are 38 signals in level
2 of a circuit. Then, 32 bit signals will be packed together and the next 27 empty locations
will be replaced by zero.

Another approach is to represent each signal as a word (Figure 3.1-a). In this case, each
signal takes 4 bytes in the memory. Each signal value of 0 or 1 takes 4 bytes of memory.
In this method, there is no need to extract a bit, as it is easily retrievable as it is. Obviously
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the density is not so good in this case, but it may still be faster if we have sufficient cache
storage since we avoid shift loops.

Figure 3.1: Signal Representation using a)word packing b)bit packing Technique.

Figure 3.2: Zero padding in Bit Packing Technique

3.1.2 Look-up Table vs Direct Logic

In this section, we explore the two ways of evaluating logic functions: 1) look-up tables
2) direct logic. In gate level circuit simulation, Boolean logic evaluation of two input gate
types can be uniformly implemented through an look-up table calculation.At run time this
translates to a memory access.

Alternatively, a direct logic evaluation is possible using logical operators. At run time this
translates to AND or XOR instructions, etc.

Look-up Table Look-up tables are a known way of implementing arbitrary binary logic
functions such as AND.
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Finite domain functions can be implemented via look-up tables. This often reduces the
amount of computation during their evaluation. The computation of a function now takes a
single memory look-up. However, depending on the complexity of the function and the size
of the look-up table, it can take a lot of space in the memory. For example, when dealing
with complex functions, use of look-up tables has to trade off accuracy against storage space,
but they are still widely used for example to store Gaussian kernels in image processing. We
demonstrated this use for the Xeon Phi in [14].

For a 2-input logic gate, a look-up table of size 16x4 holds all the possible truth tables. If we
use 1 byte per entry, then the table will be permanently resident in the fast cache as it only
takes 64 bytes (16*4) of memory space.

In this work, we used a smaller look-up table of size 6x4 to hold the values for 6 primary
logic gates of AND,NAND,OR,NOR,XOR, and XNOR. To reduce storage, we use char data type
to store the values in the look-up table. Our goal was to have logic function evaluations with
fast memory access. Because we used a small look-up table that fits in cache memory, look-
up table access time will be as fast as the primary cache access plus the time to evaluate two
multiply instructions. The need for the multiply instructions is explained in 3.1.3 on page 40.

Use of look-up tables are a simple idea and it has been around for very long. Look-up tables
are the main logic components in Field Programmable Gate arrays (FPGA). The look-up
table method has been widely used in various studies [33, 37, 77, 11] in that field.

Direct Logic Direct logic is another method for evaluating logic functions. Using bit-
wise logical operators are supported by the CPU. Boolean operations are the efficient to
determine the value of the logic gate. To simulate an and gate, we can simply use bit-wise
operation &. For example, c = a&b

In larger circuits there are several logic gates of the same type. As mentioned in the previous
section, when combining this method with bit packing technique,re-arrangement of logic
gates is need prior to the simulation. In previous section, we have mentioned the necessity of
this re-arrangement. At each level in the circuit, gates of the same type has to be next to one
another. This way, we can pack the value of their output signals together. As a result, less
memory is required to store the information in the structure bytes. The method ensures an
efficient memory density. Figure 3.3 shows an example of a re-arrangement of logic gates in
a circuit in bit packing technique. The figure illustrates the re-arranged logic gates in comp
array. Logic gates of the same type are stored next to each other. The rest of vector arrays
are organized accordingly. The vector array on top is a re-arranged version of array on the
bottom of the figure.



3.1. SIMD requirements 39

Figure 3.3: Re-arrangement of logic gates in a circuit in Bit packing Technique

3.1.3 Look-up table with Bit Packing

One possible approach is to combine a packed bit representation of data in memory with a
look-up table technique for evaluating the logic functions.

In this approach, while sticking to the use of a look-up table to simulate a logic gate, we also
store signal values at bits. We pack 32 bit signals into an single word, represented by an int
in C, and store each in the state vector. During the simulation, we retrieve the value of the
signals by unpacking.

The method is not efficient and not SIMD parallelisable. Everything is scalar during the
simulation. Extracting bit by bit and performing logic operation (either using LUT or direct
bit operation), is very inefficient. It is also possible to use the look-up table without pre-
organizing the logic gate.

Listing 3.2, is an example showing the implementation of the above technique in C. In the
look-up table technique, there is no need to re-arrange the logic gates prior to the simulation.

The circuit specification is stored in flat arrays; inp0, inp1, and comp. The current state
values are hold in state array. All the array types are integers. During each clock cycle, for
each level the simulation function is called once. The logic gates are evaluated and the results
are stored in the state array. The signals values are stored as bit signals. The state array
packs 32 bits of signals into one integer values.

For example, in order to simulate a logic gate at location i, the location of its input signal
values in the state array is to be retrieved. To find the locations where the values of input
signals are stored, multiple shift instructions are done. The values location i in inp0 and
inp1 array are shifted. In mathematical explanation, we need to divide the integer values in
inp0[i] and inp1[i] by 32. The quotient points to a location in state array. Below
are the simple steps of retrieving one of the input values of logic gate i (the full calculation
for x and y is shown in Listing 3.2 (Lines 10 and 11)):

1. n = inp0[i] >> 5 : returns an index location in the state array. So, state[n] is
4 byte integer. When converted, we will have 32 signal values

2. m = inp0[i]&31 : returns the m-th bit of state[n]

3. p = state[n] >> m : right-shifting m-th bit into the least significant bit position
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4. x = p&1 : and masking with 1

Listing 3.2 (Line 13) shows the main part of the simulation that uses the look-up table to
evaluate the logic gate of type comp[i]. The comp array contains integers indicating the
type of the logic gates. Lets assume that the look-up table array lut contains 6x4 values.
Listing 3.1 shows a look-up table array containing 24 elements.

1 char lut[24] = {

2 0,0,0,1,

3 0,1,1,1,

4 1,1,1,0,

5 1,0,0,0,

6 0,1,1,0,

7 1,0,0,1

8 };

Listing 3.1: An example of a look-up table array

Each row in the lut array has the truth table values of a 2-input logic gate. Truth table is to
show the function of a logic gate. To find the row in lut that contains the possible output
values for the logic gate at location i, we multiply the type of that logic gate by 4. This is in
fact a three dimensional array index type that is implemented as a C vector. To calculate the
output signal value of i-th logic gate, we use a simple calculation as shown in Listing 3.2
(Line 16).

The new signal value is stored in newstate variable. Below are the steps for replacing the
previous state value with the new one for logic gate i:

1. j = i >> 5 : returns an index location in the state array. So, state[n] is 4 byte
integer. When converted, we will have 32 signal values

2. k = i&31 : returns the m-th bit of state[n]

3. mybit = newstate << k : left-shifting k-th bit and padding to create a 32bit number

4. p = state[j] : returns the integer value in location j of state array

5. temp = p& ∼ mybit : and-ing the previous value in location j of state array with
negate of mybit

6. s = s|temp : or-ing temp with the previous value state[j]

The simulation is done on one logic gate at a time, so is the bit retrieval. The part where signal
bits are retrieved by shifting operations is not parallelisable and slows down the simulation.
Furthermore, as the the simulation is done on one logic gate at a time, no performance gain
is achieved by running in SIMD.
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1 void simulation_bits (int *state,int glev_Num, int index) {

2

3 int i;

4 int last_index = glev_Num+index;

5

6 int x,y;

7 int newstate;

8

9 for (i = index; i<last_index ; i++ ) {

10 x = 1 & (state[inp0[i]>>5] >> inp0[i] & 31);

11 y = 1 & ( state[ inp1[i]>>5] >> inp1[i] & 31);

12

13 newstate = lut[comp[i]*4 + x *2 + y];

14

15 mybit = newstate << i & 31;

16 state[i>>5] = (state[i>>5] & ˜mybit) | mybit;

17 }

18 }

Listing 3.2: Pseducocode for simulator program using look-up table with Bit packing
technique

3.1.4 Direct Logic with Bit Packing

Another possible approach is to combine a packed bit representation of data in memory with
a direct logic technique for evaluating the logic functions.

We can perform circuit simulation using logical operators while using 32 bit packed data
type. In this approach, we can either pre-organize the logic gates or substitute them using
the De Morgan rule. We previously mentioned the importance of re-arranging logic gates of
the same type in the same level prior to simulation. During each clock cycle, logic gates of
the same type that belong to the same level are simulated together. For each logic gate type,
there is a different simulation function which corresponds to that type. Later, Section 3.1.4,
explains the substituting method that can be used instead of logic gate re-arrangement.

Similar to the previous approach, the signal values are presented as single bits. 32 of these
signals are packed together as 4byte integer in the state array. During the simulation each
signal bit is extracted through shift operations during the simulation. The retrieval of signal
values from state array was explained in the previous section. In the previous method,
simulation of logic gates was done one by one. However, in this method, input value signals
of 32 logic gates are extracted at the same time, and are evaluated all together. The evaluation
is done through performing logical operations.
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Listing 3.3, is an example showing the implementation of the above technique in C. In the
direct logic technique, it is necessary to re-arrange the logic gates prior to the simulation.
Some sort of grouping is done so that logic gates that are in the same level are simulated
together.

In the example Listing 3.3 (Lines 9-13), is a for loop that packs the extracted 32 bit input
signal values for 32 logic gates of the same type at the same level. The steps of retrieving one
of the input values of logic gate i was explained in detail in previous section. In Listing 3.3
x and y contains the input values to 32 logic gates of an and type. Below are the additional
steps that involves packing the extracted 32 bit signal together (the full calculation for x and
y is shown in Listing 3.3 (Lines 11 and 12)):

1. x = 0 : the variable is 4 byte integer, it’s value is zero prior to extraction and packing
the 32 signals, eventually contains 32 signal bits ready for logical operation

2. xbit = state[inp0[j] >> 5] >> (inp0[j]&31 : returns 1 bit (value of the input signal
of logic gatei)

3. x = (x << 1)|xbit : returns the value of 32 input signals of 32 logic gates packed as
integer. x << 1 left-shifting by one, the or-ing the result with the extracted bit signal

Listing 3.3 (Line 14), simulates the 32 logic gates by and-ing x and y; where each x and y
is one 32 bit number containing 32 input signal values as below. The result of the logical
operation is a 32 bit number that is replaced by the previous value onto location i >> 5.
That location in the state array hold the output signals of 32 logic gates.

We unpack 32 bit signals at a time and perform logical operation on them together. Logic
gates can be organized before hand, so that those with the same type will be packed together
and ready for simulation. In this approach, we can benefit from parallelisim. The simulation
is done on 32 logic gates at the same time.

During the simulation the signal bits are extracted and packed together. Then the relevant
logical operator (e.g: &) is applied on the 32 bit signals together. The part where we retrieve
signal bits by shifting operations is not parallelisable and slows down the simulation. How-
ever, the part where we perform the bit-wise operation on 32 elements at the same time in
parallel.

Inspection of the assembly code (generated with -S flag at the compile time) showed that
gcc compiler failed to vectorize the code in Listing 3.3. The C code was compiled using
gcc with auto vectorization enabled (-O3 flag). Due to the dependency in the inner loops,
the Intel compiler cannot safely vectorize this code either.
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1 void and_simulation_32bits (int *state, int glev_Num, int index) {

2 int i,j;

3 int last_index = glev_Num+index;

4 int x,y;

5

6 for (i = index; i<last_index ; i+=32 ) {

7

8 x=0;y=0;

9 for (j = i; j<i+32 ; j++) {

10

11 x = (x<<1) | (state[inp0[j]>>5] >> (inp0[j] & 31));

12 y = (y<<1) | (state[inp1[j]>>5] >> (inp1[j] & 31));

13 }

14 state[i>>5] = x & y;

15 }

16 }

Listing 3.3: Pseducocode for simulator program using Direct logic with Bit packing
technique

Implementing Direct Logic by Substitution

As explained, one way of implementing direct logic and bit packing technique is to organize
the logic elements prior to the simulation. By doing so, one logic operation is applied on 32
packed signals at the same time. Alternatively, instead of sorting the logic elements prior to
simulation, it is possible to substitute logic gates using De Morgan law. Based on the proven
De Morgan’s theorems, we simply swap logic gates to an AND logic gate. A combinational
logic design containing Boolean network can be converted and transform to And Inverter
Graph(AIG) by applying De Morgan rules. Sen et al. [12] used AIG in their logic simulator.
AIG is used to represent the manipulation of Boolean functions. Note that we are not using
AIG format circuit netlist, we only use De Morgan law that is also used in And Inverter
Graphs. The transformation and swapping is done as part of the pre-simulation process.

Equations below show substitution for OR and NOR logical operations using AND logic oper-
ator based on De Morgan law.

A|B = A&B (3.1)

A|B = A&B (3.2)

One of the useful properties of logical operators is the ability to toggle a logical value using
a control bit (MASK). In below equation, if MASK bit is 1, then the value written in A will
be negated. If MASK is 0, then the value of A will remain unchanged.
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A = A⊕MASK (3.3)

By using three control bit signals m1,m2,m3, and above equation, we define the output of
an AND logic gate as below:

C = m3⊕ ((A⊕m1) + (B ⊕m2)) (3.4)

, where the three bits are equal to 0.

By changing the value of control bit signals m1,m2,m3, we can represent one of the OR,
NOR,, or NAND logic gates, according to the De Morgan law for substitutions. We can
convert these logic gates by replacing the control bit values shown in Table 3.1, in the above
equation.

Table 3.1: MASK bits for Logic Substitution

Logic Gate m1 m2 m3
AND 0 0 0
OR 1 1 1

NAND 0 0 1
NOR 1 1 0

In Listing 3.3, we can replace line 14, with below:

state[i >> 5] = m3[i >> 5]⊕ ((x⊕m1[i >> 5])&(y ⊕m2[i >> 5])) (3.5)

, where each of m1, m2, m3 arrays hold 32 packed masking bits.

Figure 3.4, shows the 3 masking arrays holding 0 or 1 values as control bits. Note that the
figure shows the masking arrays for 1 level only. Instead of pre-organizing the logic elements
in the array, each logic gate is substituted to an AND gate and the relative control bits is stored
in masking arrays (Table 3.1). The arrays are packed (good memory density). Comparing
to the previous method, there is a trade off between more number of logic operations and
logic gate’s re-arrangement. Note the for XOR and XNOR logic gates, four masking arrays
are needed.

3.1.5 Direct Logic with Word Packing

It is also feasible to combine a packed word representation of data in memory with a direct
logic technique for evaluating the logic functions.

As in to the previous approach, we use logical operators instead of look up table, while
evaluating logic gates. To implement the direct logic approach, we can also use intrinsics.
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Figure 3.4: Bit packing and direct logic technique using control bits. The m1, m2, m3 are
masking arrays.
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For example, one can use Intel intrinsics specifically for MIC. However, when using intrin-
sics, the programmers have to make sure of using the right instructions to ensure the vector-
ization. The vgatter and scatter instruction has to be used. Alternatively, we can let
the Intel compiler does the auto vectorization and forget about using intrinsics manually.

Listing 3.4, is an example showing the implementation of the above technique in C. In the
direct logic technique, it is necessary to re-arrange the logic gates prior to the simulation.
Some sort of grouping is done so that logic gates that are in the same level are simulated
together.

In the approach, signals are represented as words instead of bits. Each signal value is stored
as a 32 bit number. The data needs more space in memory as it is not as dense as bit packing
method. However, one of the advantage of this method is that there is no need to extract any
signal value using bit-wise operations.

During the simulation, logics gates of the same type are simulated together.

Listing 3.4 (Line 5) is a for loop that loops over the logic gates in the same level and
evaluated them. The loop is manually vectorized, so that the inside loop operation is done on
16 elements at the same time. Below are some explanation for syntaxes in Listing 3.4 (Line
7):

1. temp = inp0[i : i+15] : represent the 16 array element from inp0[i] to inp0[15].
The vector processor such as Xeon Phi can do 16 operations for a single vector instruc-
tion.

• inp0[i] : returns a location in the state array that holds the value of the logic
gate i input signal

2. x = state[temp] : returns the value of input signal

3. state[i : i + 15] : represent the 16 array element from state[i] to state[15].
The vector processor such as Xeon Phi can do 16 operations for a single vector in-
struction.

• state[i] : returns a the value of the logic gate i output signal

1 void and_simulation_ (int *state,int glev_Num, int index) {

2 int i,j;

3 int last_index = glev_Num+index;

4

5 for (i = index; i<(last_index-last_index%16) ; i+=16 ) {

6

7 state [i:i+15] = state[inp0[i:i+15]] & state[inp1[i:i+15]];

8
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9 }

10 }

Listing 3.4: Pseducocode written in Intel Cilk for simulator program using Direct logic with
Word packing technique

In the example Listing 3.4, the simulation is done on 16 logic gates at the same time. During
the simulation the signal values are retrieved and the logic operator & is applied. The for
loop in the simulation function is parallelisable and achieving good speedup is possible.

Listing 3.6 is the generated assembly code for the Listing 3.5. The C code was compiled
using gcc with auto vectorization enabled (-O3 flag). The compiler failed to vectorize the
code. The code would have been vectorized using Intel MIC. However, we compiled this on
the machine that has SSE instructions and it could not vectorize loop.

1 void and_simulation_ (int *state,

int glev_Num, int index) {

2 int i,j;

3 int last_index = glev_Num+index;

4

5 for (i = index; i<last_index ; i

++ ) {

6

7 state [i] = state[inp0[i]] &

state[inp1[i]];

8

9 }

10 }

Listing 3.5: Pseducocode written in C
for simulator program using Direct logic
with Word packing technique

1 .L84:

2 movslq (%r8 ,%rax) , %rdx

3 movslq (%r9 ,%rax) , %rcx

4 movl (%rdi,%rdx,4), %edx

5 andl (%rdi,%rcx,4), %edx

6 movl %edx , (%rsi,%

rax)

7 addq $4 , %rax

8 cmpq %r10 , %rax

9 jne .L84

Listing 3.6: The generated assembly code
for the inner loop of simulator written in
C using the combination of Word packing
and Direct logic technique)

3.1.6 Look-up table with Word Packing

In addition to all the above approaches, another method is the combination of word packing
and look-up tables. As in the previous method, the signals are represented in words rather
than bits. Moreover, a look-up table is used to evaluate the logic functions.

This approach is highly parallelisable. There is no need to use bit-wise operations such as
shift to retrieve signal bits. Furthermore, re-arranging the logic gates prior to the simulation
is not needed either. Listing 3.7, is an example showing the implementation of the this
technique in C.

1 void simulation (int *state,int glev_Num, int index) {
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2 int i;

3

4 // last index in state that the last gates in this level resides

5 int last_index = glev_Num+index;

6

7 for (i = index; i<last_index ; i++ ) {

8

9 state[i] = lut[comp[i]*4

10 + state[inp0[i]]*2

11 + state[inp1[i]]];

12 }

13 }

Listing 3.7: Pseducode for simulator program using Lookup table with Word packing
technique

Below is some explanation for the terms used in the Listing 3.7 (Lines 9-11):

1. comp[i] : returns a value indicating the logic gate type

2. inp0[i] : returns the location of input value signal in the state array

3. state[inp0[i]] : returns the value of input signal to logic gate of type comp[i]

Figure 3.5, shows the location of input 0 signals to logic gates at level d. The result of output
signals is stored in the state array for level d. Values in inp0 array points to a location in
the state array.

Figure 3.5: Illustration of input value retrieval from the state array

The code is parallelisable and we are able to use vectorization with this technique. Below is
the optimization report for inner loop of the code in Listing 3.7. The full program written in
C was compiled with Intel C compiler targeting MIC. The optimization report states that the
inner loop was vectorized (Listing 3.8). To further prove the point that the simulator using
the combination of look-up table and word packing will be vectorized, Listing 3.9 shows the
instruction code for one gather construct with IMCI1.

1Intel Initial Many Core Instructions (Intel IMCI are extensions to the existing Intel 64 architecture based
vector graphic streaming SIMD instructions [47]
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1 ..L448: # optimization report

2 # LOOP WAS VECTORIZED

3 # PEELED LOOP FOR VECTORIZATION

4 ...

Listing 3.8: An example of Intel Compiler Vectorization Report

In Listing 3.9, the vgatherdps instructions load 16 single precision values or fewer into a
register from the 16 addresses specified in the its first argument. Note that every time a gatter
instruction is used, it fetches one cache line,loads all the values that is needed to be gathered,
then stores it into a destination vector register. Note that the number of gather instructions
depends on how the data is distributed. If the data is in different cache lines, then multiple
gather instructions are needed. The jknzd instruction checks the value of mask register.
If one or more bits are non-zero, then it means that there is still more data to fetch. Zero
bits indicate that the data have been gathered, and there is no need jump back to a label and
gather more data. The information is helpful when trying to explain the performance of the
application in case of dealing with non-contiguous data access.

1 kmov %k7, %k2

2 ..L450:

3 vgatherdps (%r13,%zmm0,4), %zmm7{%k2}

4 jkzd ..L449, %k2

5 vgatherdps (%r13,%zmm0,4), %zmm7{%k2}

6 jknzd ..L450, %k2

7 ..L449:

Listing 3.9: Gather instruction interface in IMCI from the generated assembly code for the
inner loop in Listing 3.7

The technique explained in this section was also implemented in Vector Pascal (Listing 3.10.
In this work, we used this combination in our SIMD circuit simulation algorithm. The Pascal
code has been vectorized, compiled for various architectures. Section 3.1, explains the SIMD
based simulator architecture in detail. The data structure and the circuit representation is
discussed in Chapter 4.

Listing 3.11 is the generated assembly code for the simulator written in pascal. The simulator
was compiled targeting MIC architecture. The assembly code only shows for the inner loop.
The code has been vectorized.

1 procedure simulation(var state:buf; glev_Num, index:integer);

2 const stride=256; {the the amount to do on each core}

3 type vectarr= array[0..100000,1..stride] of integer;

4 pva=ˆvectarr;

5 var i,last_index,first_index, count:integer;

6 in0,in1,st,com:pva;

7 begin
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8 last_index := glev_Num+index;

9 count := glev_num div stride;

10 first_index:=last_index mod stride;

11 st:=@state[index];in1:=@inp1ˆ[index];in0:=@inp0ˆ[index];com:=@compˆ[

index];

12 {$par}

13 for i:= 0 to count-1 do

14 stˆ[i]:=lut[comˆ[i]*4

15 + state[in0ˆ[i]]*2

16 + state[in1ˆ[i]]];

17

18 for i:= index+count*stride to last_index-1 do

19 state[i]:=lut[compˆ[i]*4

20 + state[inp0ˆ[i]]*2

21 + state[inp1ˆ[i]]];

22 end;

Listing 3.10: The function simulates logic gates at a given level with a look-up table using
multi-core and SIMD parallelism

1 label1525f8f1bcf424:;#1

2 mov eax , DWORD ptr [rbp+ -24];#1

3 cmp eax , 256;#1

4 jg label1525f8f1bcf426;#1

5 movsx r8 , dword ptr [rbp+ -24];#1

6 imul r8 , 4;#RLIT;#1

7 mov r9 , QWORD ptr [rbp+ -40];#1

8 mov r10 , QWORD ptr [rbp+ -48];#1

9 lea r12 , [r9+r8];#1

10 mov r13 , QWORD ptr [rbp+ -64];#1

11 lea r14 , [r8+r9];#1

12 mov r15 , QWORD ptr [rbp+ -96];#1

13 vloadunpackld zmm13 , [r15+r12]# LDpdw;#1

14 vloadunpackhd zmm13 , [r15+r12+64];#1

15 knot k1 , k0 ;#1

16 1:vgatherdps zmm8{k1} , [r10+ zmm13*4 ];#1

17 jknzd k1 , 1b#VGATHERD;#1

18 mov r15 , QWORD ptr [rbp+ -112];#1

19 vloadunpackld zmm9 , [r15+r12]# LDpdw;#1

20 vloadunpackhd zmm9 , [r15+r12+64];#1

21 .data;#1

22 2:.long 4;#1

23 .text;#1

24 vbroadcastss zmm10 , [2b]#DREPR16C;#1

25 vpmulld zmm9 , zmm9, zmm10 ;#VPDOP;#1

26 vpaddd zmm8 , zmm8, zmm9 ;#VPDOP;#1

27 mov r15 , QWORD ptr [rbp+ -80];#1
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28 vloadunpackld zmm13 , [r15+r12]# LDpdw;#1

29 vloadunpackhd zmm13 , [r15+r12+64];#1

30 knot k1 , k0 ;#1

31 1:vgatherdps zmm9{k1} , [r10+ zmm13*4 ];#1

32 jknzd k1 , 1b#VGATHERD;#1

33 .data;#1

34 2:.long 2;#1

35 .text;#1

36 vbroadcastss zmm10 , [2b]#DREPR16C;#1

37 vpmulld zmm9 , zmm9, zmm10 ;#VPDOP;#1

38 vpaddd zmm13 , zmm8, zmm9 ;#VPDOP;#1

39 lea r15 , [label1525f8f0c92e];#1

40 knot k1 , k0 ;#1

41 1:vgatherdps zmm8{k1} , [r15+ zmm13*4 ];#1

42 jknzd k1 , 1b#VGATHERD;#1

43 vpackstoreld [r13+r14] , zmm8 #STpi;#1

44 vpackstorehd [r13+r14+64], zmm8;#1

45 add DWORD ptr [rbp+ -24] , 16;#1

46 jmp label1525f8f1bcf424;#1

47 label1525f8f1bcf426:;#1

Listing 3.11: The Generated assembly code for the inner vectorized loop of simulator written
in pascal using the combination of Word packing and Look-up technique

3.1.7 Summary of Methods

Table 3.2, shows the summary of pros and cons of using bit vs. word packing techniques in
SIMD or Scalar mode. The memory density is good when the signals are represented as bits
instead of words. However, when trying to access the data stored as bits, it takes longer than
when stored as words. In the bit-packing technique, the bit extraction takes extra time. Using
word-packing in vectorization, multiple signal values can be accessed at the same time.

Table 3.2: Comparison of Bit versus Word packing

Scalar SIMD
Bit-Packing Word-Packing Bit-Packing Word-Packing

Memory Density Good Poor good Poor
Access Time Poor Good poor Very Good

Logic Parallelism Good Poor very good Medium
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3.2 SIMD Based Software Simulator Architecture

In order to benefit from SIMD architectures, we need to have an application with a simple
regular pattern. The same operation should be applied to a large number of data elements.
This is hard to do if one follows a typical object oriented approach. In such an approach a
gate would be represented as an object or record, and wires between gates would be encoded
as pointers between objects. This sort of data structure lends itself poorly to SIMD operation,
which works better with a set of flat arrays.

Different logic gates perform different Boolean functions but all can be represented as truth
table look-up. For any combination of inputs state, we simply use the predefined value
stored in the memory. We can thus perform AND, OR, NAND etc in parallel using SIMD
instructions which read an aggregate look up tablewhich in turn holds truth tables for binary
logic gates. Listing 3.12 is an example of a look-up table array of size 6x4 for two input logic
gates. This look-up table array contains 24 entries. The whole array occupies only 24 bytes
in memory. The array represents logic gate truth table. Each row represents a logic gate
function and its possible 0 or 1 input values. For example, the first four elements (0,0,0,1)
represent the output of AND logic function. It shows that only if inputs to a AND logic gate
are 1, the output will be 1, otherwise, it is zero.

1 char lut[24] = {

2 0,0,0,1,

3 0,1,1,1,

4 1,1,1,0,

5 1,0,0,0,

6 0,1,1,0,

7 1,0,0,1

8 };

Listing 3.12: An example of a look-up table array

To keep the look up table simple, we have used only basic two input logic gates : AND,
NAND, XOR, XNOR, OR, NOR. Larger circuits are broken down to the level of two input
logic gates. For example, NOT gate is treated as a NAND gate with the same inputs. List-
ing 3.13 shows the predefined integer types associated with the logic gates that we use as
row selectors for the look-up table.

1 #define AND 0

2 #define OR 1

3 #define NAND 2

4 #define NOR 3

5 #define XOR 4

6 #define XNOR 5

Listing 3.13: Predefined integer types associated with the logic gates
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The gate array netlist contains a circuit specification that includes information related to the
path depth of each components, their inputs, outputs, and the component type. To make this
simpler, each component in the circuit is given an index ID. The type associated to each
component is stored in an array at location ID. In addition to this, each signal in the circuit
has its own index corresponding to the index of its driving gate.

To allow efficient parallel access we represent the circuit as 4 contiguous vectors. The first
three hold the structure of the circuit: comp which holds component types, inp0, inp1

which identify the two inputs to a component (Figure 3.6). The inp0 and inp1 arrays
points to a location in state array that signal values are stored. The final vector state
holds current value of internal signals (Figure 3.7). Output signals of logic gates in the
same level are stored adjacent to each other. The Level notation in Figure 3.7 follows the
shape vec array.

Figure 3.6: Vector arrays to hold the circuit specification (i.e.: logic gate type and input
signals)

Figure 3.7: Vector array that holds current state signals.

The state array contains the current state values of all the signals (Primary Inputs (PIs),
Primary Outputs (POs), and intermediate signals). We have also defined separate arrays to
update the state of Flip Flips. These arrays points to the location of input and output signal
of each Flip Flop in the state array. The number of components of the same path depth
is kept in the shape vec array. Note that we extract all the relative information from
the generated netlist. Our specific netlist already has an array format circuit specification.
Listing 3.14 shows the definition of these arrays. The size of these arrays are given in the
netlist that is fed into the simulator. The size of comp, inp0, inp1 arrays is the same and
equal to the number of inputs plus number of gates. state array’s size is equal to the size
of comp array plus the number of flip flops in the circuits.

1 csize = gateNum + inputNum; // circuit size

2 stateSize = csize + numdff; // state vector size

3
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4 int * comp = new int[csize];

5 int * inp0 = new int[csize];

6 int * inp1 = new int[csize];

7

8 int * state = new int[stateSize];

9

10 int * ff_in = new int [numdff];

11 int * ff_out = new int [numdff];

12 int * shape_vec = new int [maxLevel];

13 int * outp = new int[outputNum];

Listing 3.14: Definition of vector arrays

An example of vector arrays filled with the circuit specification is shown in Figure 3.8. Each
location i in arrays inp0 and inp1, contains the ID of the input signals to component in
location i in array comp, where the type of this component is stored. The current state value
of its output signals is stored at index i in state array. In this example, the size of comp,
inp0, inp1 arrays is 6 as the circuit has 2 inputs and 4 logic gates. The size of state array
is 7 as in addition to 2 PIs and 4 logic gates, the circuit has 2 flip flops as well. The value
of input signals are stored in state[0] and state[1]. These signals are considered to
be at level 0 (it is annotated as L0 in the figure). Let’s consider the NOR logic gate in the
circuit (Figure 3.8) . Its type will be stored as an integer in comp[2] and the values of
its input signals are held in state[inp0[2]] and state[inp1[2] that is state[0]
and state[7]. The value of its output signal is stored in state[2].
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Figure 3.8: An example of a circuit with label. Logic gates of the same level are shown in
the same color.

Listing 3.15 shows the main program for the simulator. The simulation function is wrapped
in the loop and called at each level (Listing 3.15, line 6). During the simulation, the value
of current state signals is calculated as shown in Listing 3.16, line 7. The use of look up
table in this calculation, and the way the data is stored in the arrays, allows this calculation
to run in SIMD. In order to have an aligned memory access, all the relevant data for a block
of 16 components i..(i+15) is stored at the same block of indices in the arrays. This induces
adjacent memory access which accelerates the running of the calculation in SIMD on each of
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multiple threads. To ease the read and write access pattern, we store chunks of information
related to each level in the circuit, next to each other in the arrays.

1 int main (int argc, char* argv[]){

2 ...

3 generate_input (state);

4 int index = inputNum;

5 for (int level = 1; level < maxLevel; level ++) {

6 simulation(state, shape_vec[level],index);

7 // points to the start of comps in the next Level

8 index += shape_vec[level] ;

9 }

10 ...

11 }

Listing 3.15: Pseudocode for simulator program. Iteration through levels is sequential Note
that the outer for loop start from level 1 as the primary inputs are considered to be at level 0.

1 void simulation (int *state,int glev_Num, int index) {

2 int i;

3 // last index in state that the last gates in this level resides

4 int last_index = glev_Num+index;

5 #pragma omp parallel for simd

6 for (i = index; i<last_index ; i++ ) {

7 state[i] = lut[comp[i]*4

8 + state[inp0[i]]*2

9 + state[inp1[i]]];

10 }

Listing 3.16: The function simulates logic gates at a given level with a lookup table using
multi-core and SIMD parallelism

Intel Xeon Phi has 128, 512-bit SIMD registers on each of its cores (32 per thread). De-
pending on the size of the circuit and its shape, the component of the same path depth will
be simulated as 512 bits chunks of data (Figure 3.9). In other words, the load/store, read-
/write, as well as above calculations are done in SIMD on 512 bit of data at the same time
(Figure 3.9).

Figure 3.9: Example of performing SIMD operation on 512-bits of data in the integer array
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Given an array of size N, on Intel Xeon Phi with 240 threads, each physical thread is allowed
to process N/240 elements of array. On top of this, vectorization allows 16 simultaneous
calculations. So, each arithmetic unit only has to do N/3840 calculations per threads.

Figure 3.10, shows the workload among threads at each level, during the simulation. The
curved lines in the figure symbolized the synchronization between threads. At each level,
logic gates are divided among threads. The amount of workload for each thread may be
different at each level. This depends of the shape of the circuit (distribution of logic gates
per level). The sizes of the boxes in the figure shows the amount of workload per level. Each
thread performs calculations on piece of data, equal to others. This ensures work balancing
among them (Figure 3.11).

Level 2 Level d

...

...

...

...

Level 0 Level 1

Figure 3.10: An example of workload among threads per level simulation. The curved lines
in the figure symbolized the synchronization between threads.
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Figure 3.11: An example of workload per thread per level. Each thread is capable of per-
forming a single operation on 16 ints simultaneously.



57

Chapter 4

Circuit Benchmark Suites

This chapter explores various existing circuit suites, from standard benchmark circuits to
synthetic ones. Moreover, I briefly discuss the method that was used to generate netlist
for my SIMD simulator (ZSIM). The chapter also provide details of how the circuits are
represented.

4.1 Circuit Suites

In order to evaluate the performance of a simulator test circuits are needed. There are several
benchmark suites with different level of abstraction and circuit complexity [85]. These suites
have examples of ’real’ circuits. The number of these test suites is few and within them
the examples are of small circuit size. Furthermore, it is clear that a few examples cannot
represent all circuit classes [86, 2].

The alternative is to use synthetic circuits. With synthetic benchmark circuits, we can have
control over important characteristics of the circuits such as size (total number of logic gates),
depth (the maximum number of levels or critical path depth), and shape (relative number
of gates in each level). This section explores various existing circuit benchmarks and the
concept behind synthetic circuits. Furthermore, we explain the method used to generate our
experimental test suites.

4.1.1 Standard Benchmark Circuit

A main reasons for the lack or large benchmark designs is confidentiality concerns in indus-
try. For over a decade, a small collection of circuit benchmark suites have been used widely
in publications and to validate algorithms. There are various benchmark suites that describe
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a digital circuit at different levels of abstraction. Below we explore some existing sources of
benchmark circuits.

The Microelectronics Center of North Carolina (MCNC) circuits were sponsored by the
ACM/SIGDA. They were collected in 1980ś and are a common source of benchmarks. The
circuit suite comprises 205 circuits which range from 24 Logic Elements (LEs) to 7694 LEs.
It covers several applications. At least 85 of the 205 circuits are state machines or arithmetic
logic units [87]. Out of these 205, 77 multilevel (sequential and combinational) benchmarks
were originally available in BLIF(Berkeley Logic Interchange Format)1, but some of the
others have also since been converted into BLIF files. Although these circuits are small,
their ease of use and wide acceptance make them a popular choice for comparison.

Another recent benchmark suite is from the Quartus University Interface Program (QUIP). It
contains 45 real circuits [89]. The benchmark suite was described by Pistorius et al. in [90]
where they proposed the addition of a black box2 directive to the BLIF format which would
represent hard blocks. Although these circuits are much larger (up to 134,341 LEs) than
the MCNC circuits (7694 LEs), only 7 of them can be synthesised to standard BLIF files of
which the largest would have 9,867 LEs.

A recently released suite is eASIC that provides a series of 5 ASIC netlists [91] with the
sizes in the range 125k to 1M elements.

The two ISCAS [92] and ITC’99 [93, 94] benchmark sets are the most commonly used
ones. The ISCAS sets contain both combinational and sequential circuits. The largest of the
circuits has 22179 gates and 1636 flip flops. The full overview of the benchmark sets can be
found in [85].

Open Source Circuit Repositories OpenCores [95] is an online repository of open
source circuits. A wide range of circuits are available in HDL language that would need
conversion to BLIF or any other preferred netlist format. Often the size of the available
circuits are small3 as they are intended to be used as part of a bigger circuit. For example a
processor containing around 5k Logic Elements is meant to be stitched to other logic cores
in order to shape a complete circuit.

1BLIF [88] is used to represent combinational and sequential logic circuits in logic synthesis and verification
tools such as Quartus.

2In order to enable the representation of the module where specification and logic function is not present,
black box is used.

3They are a collection of Intellectual Property(IP) blocks (a pre-designed module)
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4.1.2 Synthetic Benchmark Circuits

Synthetic benchmark have been used as an alternative to standard benchmark circuits [96,
97, 98, 99, 100, 101]. Such circuits are generated using an automated process that allows
to specify desired circuit characteristics. Attempts to generate synthetic circuits to be used
as benchmark suit for experiments and algorithm validation go back to the 1990s. Circuits
constructed using these generators are homogeneous graphs of basic logic gates and latches.
Real circuits are often less homogeneous, since they would contain memory elements, PLAs
etc. These circuits were, in the main, validated by comparing with MCNC design sets.

However, the main advantage of synthetic circuits is their controllability in terms of char-
acteristic circuit parameters such as size, interconnection structure and functionality. Those
parameters have limited influence on each other and can be set separately. This can give
control over the overall character of the benchmark circuits. In other words, we can gen-
erate a set of circuits of varying sizes with different circuit characteristic. By changing a
single characteristic of the circuit to test a particular application, we are able to draw more
informative conclusions from the experimental results.

For example, one may want to examine the behaviour of a particular algorithm or architecture
on different circuit sizes with the same fan-in count.

Synthetic circuits have been used to test FPGA place and route algorithms [96], logic op-
timizers [97], and partitioning algorithms [98, 99, 102]. By cloning existing circuit bench-
marks, sequential benchmark circuits were also developed to use for testing partitioning,
place and route algorithms [100, 101].

To justify the use of synthetic circuits, they have to be able to show realistic properties.
Among the different approaches for creating synthetic circuits, we chose Hutton et al.’s [2,
103] method of random circuit generation. They proved and validated their method to be
realistic by comparing the examples generated synthetically from properties of the real cir-
cuits to real benchmark circuit sets. They termed such circuits ‘clones’. The clones were
generated based on important characteristics of real circuits such as total wire length after
routing and placement, critical path depth, and power consumption.

Although Hutton et al. successfully validated clones that were purely combinational, clones
for large sequential circuits were less successful. In this work, our circuit generator is derived
from the Hutton et al.’s synthetic circuit generator GEN. Instead of using GEN directly, we
use the parametric formulas discussed in Hutton et al. in a synthesizer that we constructed
from scratch. For instance, in order to generate sequential circuits, we took the purely com-
binational circuits and glued them to latches. Thus our circuits are classic state machines
with a state vector of latches and a large combinatorial block that feeds these. GEN, in
contrast, generates sequential circuits by gluing combinational sub circuits together via flip
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flops. However, as we use levelisation techniques to flatten the circuit, we would eventually
will have the Flip flops in level 0 (Chapter ..) so it is simpler to generate such circuits directly.
Our randomly generated circuits are based on the statistical and structural characteristics of
circuits described by Hutton et al.

4.2 Synthetic Circuit Generation Algorithm

In this section, we discuss the formulas used as the basis of our synthetic circuit generator.
We have used the formulas in [104] to determine reasonable defaults for generating param-
eters that define the characteristic of a combinational circuit as well as sequential ones. The
method and the parameters used were validated against MCNC benchmark circuits and the
properties showed realistic behaviour.

4.2.1 Circuit Characteristics

Given N, the size of the circuit, the synthetic generator would use the default formulas to
produce a circuit with reasonable characteristics. In this process, number of circuit’s primary
inputs(nPI), outputs(nPO) for the given circuit size of(N), the circuit delay4, and the circuit
shape5 is also calculated through the formulas.

To generate sequential synthetic circuits with single global clock, we first calculated the
estimated number of flip flops (nDFF) in the circuit, and connected the the rest of the com-
binational circuit to a latched state register of length nDFF.

The GEN synthetic circuit generator uses the Rent parameter that identifies the interconnec-
tion complexity of the circuit. This parameter is used in the Rent rule formula. It shows a
relationship between the size of the sub circuits and the number of their IOs [105]. Note
that the Rent parameter and Rent rule is not directly used in this work. We are only briefly
mentioning the formula as it was used in GEN.

The Rent rule is based on the following equation:

T = tgp (4.1)
4circuit delay d(x) is the maximum length from the primary input to the point x, for a circuit with unit delay

model
5circuit shape that indicates the distribution of the logic gates at each delay level (excluding primary inputs

and outputs) e.g: for a given circuit c with combinational delay of 4, the shape could be 12,4,4,2. In circuit c,
12 is the number of primary inputs to the circuit, and the remaining numbers of 4, 4, 2 is the number of logic
gates at levels 1,2, and 3.



4.2. Synthetic Circuit Generation Algorithm 61

, where T is the number of pins at the boundaries of the sub circuit, and g is the size of the
sub circuit, and p (rent parameter) and t are constants. This rule is a very important factor
to consider in algorithms for separating the circuit into modules (sub circuits). The rent
parameter is low where the partitions are small, the opposite applies when the sub circuits
are large. The reason is based on the observation of circuit designers to restrict the number
of IO in the circuit that could be fit on a chip. Higher rent parameter in small sub circuits is
due to lack of hierarchy in the logic. The larger, the sub circuit, the lower the p.

The number of IOs achieved by using Rent formula works for purely combinational circuits.
When dealing with sequential circuits, the size of the circuit (number of logic gates) and
IO will not have a statistical correlation, as well as number of flip flops. This is the case
when we have several sequential levels (sub circuits). Although, our focus in this work is to
consider only one sequential level circuit, we can still use GEN subroutine as the basis of
our synthetic circuit generation algorithm. Note that we only allow 2 input logic gates in the
circuit, we do not use all of the formulas defined in GEN.

4.2.2 The circ-gen Generation Algorithm

We use circ-gen that uses GEN [100] subroutines to generate sequential synthetic circuits
with single global clock. The algorithm is implemented in C language. For the given N, the
approximate size of the circuit (nPI + nDFF), we can generate several circuits of different
shape and attributes.

The circ-gen program divides into two parts. The first part of the program is loosely
based on the Hutton et al. method of synthetic circuit generation and directly uses GEN
subroutines to return the number of primary inputs,outputs, flip flops, depth, and the circuit
shape. The circuit shape is a vector of integers whose elements specify the sizes of successive
layers of logic. In other words, GENs input arguments are n(approximate size of the circuit
that includes the total number of logic gate and primary inputs), and f(number of fan-in) and
it returns the number of flips flops, inputs, output, maximum delay, and the shape vector.

The second part of the program uses a gluing algorithm that uses the generated parameters
from GEN to produce a circuit netlist. The netlist contains all the information related to the
circuit in a specific array format that is then read in by the simulator. The gluing algorithm
that does the generation of the circuit has the time complexity of O(n ∗ m) + k) . This
depends on the depth and shape of the circuit (number of logic gates at each depth). k is
almost equal to the number of flip flops in the circuit. Below is the summary of the gluing
algorithm used in circ-gen:

First we calculate the necessary parameters for a given N . Next, we generate the circuit
(connecting logic gates and placing flip flops according to the parameters) based on following
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rules: each logic gate gets its input from primary inputs or from outputs of logic gates from
prior levels. However, at each level, each logic gate is forced to take a signal from the
immediately prior level and one from any of the prior levels. By knowing the shape of the
circuit, the number of logic gates at each path depth is also clear. However, the type of each
logic gate is assigned randomly (it could be XOR, XNOR, AND, OR, NOR, NAND, NOT).
Eventually, we connect the circuit to the flips flops. Note that we also generated a second set
of synthetic circuit in a way that logic gates would get their inputs from previous level only.
The reason for this was to run a few experiments on how the connectivity in the circuit could
affect the performance of ZSIM.

4.3 Test circuits

In order to evaluate our SIMD algorithm, we used a combination of test circuits from stan-
dard benchmark circuits plus synthetic circuits. We took benchmarks available in BLIF(Berkeley
Logic Interchange Format)6. For these circuits we used a parser to read the BLIF and then
flattened the circuit to generate the internal netlist array used by the simulator. In this section,
we first explore each test set, followed by figures showing the characteristic of each set.

4.3.1 IWLS Benchmark circuits

International Workshop on Logic and Synthesis (IWLS) [1] is a benchmark design set that
contains the ITC’99 designs [94], the OpenCores designs [95], and a few other designs. We
took various designs from IWLS benchmark circuits7 to compare the performance of our
simulator: (a) against some other multi-core simulators reported in the literature; (b) against
a simulator from Xilinx. The circuit sizes used are fairly small, yet they are sufficient for us
to draw conclusions from.

We took the designs in BLIF format and used a programme we developed in C to flatten
and levelise the design. It reads in the BLIF netlist, parses the design, applies the flattening
algorithm, levelises it, and generates a netlist in a format to be read in by our simulator.

BLIF format describes a logic gate level circuit in a textual format. Each BLIF file may
contain several models, each of which is a flattened hierarchical circuit. Within this logic
gate objects act as nodes representing logic function on signals in the model, and driving in
turn other signals. A BLIF logic gate approximates to an N input, 1 output PLA description
of a logic function. Listing 4.1 is an example of a simple design in BLIF format.

6BLIF [88] is used to represent combinational and sequential logic circuits in logic synthesis and verification
tools such as Quartus.

7The reason for not using MCNC designs [87] was that the majority of circuits used in other published
works were from IWLS 2005 benchmark suite.
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1 .model simple

2 .inputs a b c d

3 .outputs z

4 .names a b c d z

5 1--0 1

6 -1-1 1

7 0-11 1

8 .end

Listing 4.1: An example of a BLIF netlist

Below is the sum of product equivalent in C notation for the logic gate description shown as
a BLIF netlist in Listing 4.1:

z = (a& d)|(b&d)|( a&c&d) (4.2)

The flattening algorithm decomposes each logic gate’s description and converts it to a set
of two input logic gates. The algorithm is based on binary trees. We create a binary tree of
minimum possible depth for each logic gate. The time complexity of the flattening algorithm
is O(nlogn). Listing 4.2 is a C notation of the 4 input, 1 output PLA description of a logic
function in Listing 4.1 after flattening.

1 z0 = ˜d

2 z1 = a & z0

3 z2 = b & d

4 z3 = ˜a

5 z4 = c & d

6 z5 = z3 & z4

7 z6 = z1 + z2

8 z7 = z6 + z5

Listing 4.2: The C notation for the logic gate description of a flattened netlist

Figure 4.1: An example of circuit flattening

Figure 4.1 shows an example circuit with block component and a flattened version of it. Note
that the programme then uses the levelisation algorithm described in section 4.4 to levelise
the flattened circuit and generates a netlist.
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4.3.2 Randomly Generated circuits

We used our programme circ-gen to generate sequential synthetic circuits in a range of
sizes from 50 to 500 Million logic gates. Memory limitations of our experimental hardware
meant that we were only able to test circuits of less than 200 Million gates.

We generated two sets of different synthetic circuits; v1 and v2. The main difference be-
tween the two versions of the generated synthetic circuits is the way in which gates depend
on previous logic levels. In v1 circuits, the inputs to each logic gate can derived any of the
previous logic levels and in v2 circuits, the inputs to each gate come from the immediately
prior level. The purpose of using these test circuits is to see how the read/write access pattern
of the state vector affects performance. It can be anticipated that v2 circuits will show more
local access than v1 circuits, and in consequence may have better cache performance. We
used compile time a flag in circ-gen program to enable the generation of v2 test circuits.

Figures 4.2, and 4.3, show the distribution of number of flip flops, and IO (input + output),
versus the circuit size for BLIF file circuits and both types of synthetic ones. The synthetic
circuits were generated in a way that was statistically to the real circuits. It can be observed
from the plots that the different test sets overlap in their distributions.
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Figure 4.2: Distribution of the number of Input Output signals against the number of logic
gates in the test circuit collection.

4.4 Circuit Structure and Representation

In this section, we discuss the levelisation algorithm, followed by the netlist format, and the
circuit specification is being represented. We first, discuss the delay model we use and how
we handle delay in our simulation.
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Figure 4.3: Distribution of the number of D type Flip Flops against the number of logic gates
in the test collection.

4.4.1 Levels of logic

There are two general ways of simulating digital logic circuits : Cycle based and Event
based. In Cycle based simulation, every logic gate in the circuit is simulated during each
clock cycle. In reality, not every change on the input signal of a logic gate lead to a change
on its output. As a result, it is clear that cycle based simulation leads to extra calculation. In
event based simulation, we can reduce the number of computations during the simulation, by
excluding those unnecessary calculations. So, a component is simulated, only if there was a
change on its input that could possibly lead to a change on its output.

The implementation of any event based algorithm, requires the use of queues and involves
some sort of locks. The standard way of implementing the an event based algorithm is to
use an event queue that holds the events [5]. During the simulation, events are processed in
a specific order. The related calculation/operation is done. Then the new event is inserted
back into the queue. The sequential implementation uses priority queue data structure.

Parallelising event based algorithm that uses queue is not straight forward. In parallel, par-
allel threads will access the queue at the same time. It is possible that multiple simulation
threads might try to access the same pending event on the queue. This will result in race con-
dition. To avoid this, the queue insertion and removal operations must be done with mutual
exclusion. Using locks (e.g: atomic operations) ensures safe operations [8].

If one wishes to maximise parallelism one should attempt to have a small ratio of lock oper-
ations to useful work done. This is a general principle which applies to any parallelisation.
Since event queue operations will occur at least once per logic gate simulation, they are likely
to be a serious obstacle on a many core machine. And in the context of SIMD operation, it
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is totally impractical to use locks. There are no SIMD lock instructions available on current
Intel CPUs.

Although, there are many existing works on event based simulation, for example [77, 13] ,
we only focus on Cycle based simulation to take advantage of our SIMD architecture.

In Cycle base simulation there are two rules to consider: first, each logic gate should only be
simulated once, and second, inputs to the logic gates should be ready and valid at the time of
evaluation. In order to meet this requirements, logic gates in the circuit have to be simulated
in a specific order. By giving a rank to each logic gate, we ensure a safe evaluation. In the
literature the method is called Rank-ordered and was discussed in Chapter 2. Levelisation
is based on the same concept. However, instead of word ’rank’, the term ’level’ is used.
Levelising the circuit in a way that allows parallel simulation of independent components at
the same time, was used in [36, 37, 38].

We restrict ourselves to simulating synchronous state machines and make the following fur-
ther simplifying assumptions:

• All gates are two input, NOT is represented by a NAND with duplicate inputs, 3 input
NANDs made up of pair of 2 input ones etc.

• All two input gates have same gate delay, t.

Working backwards from the rising edge of the system clock, the state latches can be affected
either by external inputs that feed them directly or by logic gates. No change to an input to
a logic gate occurring after a time −t can affect an input to a latch, so it follows that when
simulating there can be no dependencies in the last t of the machine cycle in the set of
signals that either feed the latches or between the gates the generate signals that feed the
latches. Thus all of these gates can in principle be simulated in parallel. Call this set of
signals level N . Clearly we can, by induction, apply the same argument to the signals which
feed these gates which we will call level N − 1. Given a netlist we can levelise it as follows:

Step 1. form set of all signals feeding the latches or outputs.

Step 2. push gates whose outputs generate this set onto a stack

Step 3. form set of all signals feeding the set of gates on the top of the stack

Step 4. if this set is empty goto step 5 otherwise goto step 2

Step 5. set n=0

Step 6. pop the stack and label all gates with level n
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Step 7. if stack empty terminate, otherwise set n=n+1 and goto step 6

By taking advantage of levelisation in cycle based simulation, we can perform parallel in-
dependent calculations of whole levels and only force synchronization between the parallel
processors at the end of each level’s simulation (Figure 4.4). The following section theoret-
ically explains how the delay can be represented in circuits with non-unit delay gates. Note
that this levelisation algorithm only works for circuits with unit-delay gates. By substituting
a logic gate with non-unit delay with multiple gates with unit-delay, the simulator and the
levelisation algorithm is still usable.

Inputs Outputs

Level 1 Level 2 Level d-1 Level d

Figure 4.4: Levelisation example in a circuit, each of the coloured blocks can be simulated
in parallel

4.4.2 Representing Delay

Depending on the how the synchronization of operations is done among the components in
the circuits, digital circuits are divided into two synchronous and asynchronous circuits. In
synchronous circuits, a periodic signal known as a clock, controls the operation of all the
components in the circuits. In other words, all the calculations must be done at the right
time within the duration of each clock cycle. When clock is active, it takes some time for
a signal value to settle down and becomes valid. Otherwise, the value is not interpreted
correctly during the simulation. Depending on the simulation goal (functional verification,
timing verification, and etc), delays must be properly considered to avoid problems.

In asynchronous circuits, there is no single global clock to control the activity of the com-
ponents. Delays are very important factor in simulating both asynchronous and synchronous
circuits. However, we only discuss this matter for synchronous circuits.

In synchronous circuits, the maximum delay of the combinational logic determines the dura-
tion of the clock cycle, that is the maximum speed of the whole circuit. The maximum delay
(critical path depth) is the longest path from the input to the output. In large circuits, every
path in the circuit can have a different delay. When an input of a circuits changes, it takes
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some time for this change to propagates through the circuit and affects the output. This time
is called the propagation delay. As the circuit grows larger, so does the propagation delay.

In larger circuits, an input could go through different paths to reach the output. Every path
may have different delays. However, the propagation delay of a single input, is the delay
time of a path with longest delay.

For fully characterizing a delay element, we associate a delay model to it. This model is
characterized by a set of rules and parameters. These rules and parameters determine the
value of the propagation delay in the circuit. They also indicate the accuracy of the model.
The choice of the model affects the speed and accuracy of the simulation.

There are different forms of delay model to consider when simulating a circuit at gate level.
Different delay models have different levels of computational complexity. The choice of
model depends on the goal of the simulation. For example, timing simulation provides a
more accurate, detailed, and complete verification of a design. So, a delay model associ-
ated with timing simulation has a higher level of complexity that contains a detail timing
behaviour of circuit elements. Having a less complex delay model leads to less complicated
calculations during the simulation. As a result, the simulation runs faster. For example,
when the purpose of simulation is only to verify the functionality of a design, a simpler, less
detailed delay model would be useful.

When dealing with circuits at gate level, delay models can be divided into two groups of 1)
unit delay and 2) static delay [106]. The simplest form of delay model is where all the logic
gates have the same timing behaviour regardless of their type, number of fan-ins,fan-outs,
and etc.

The unit delay model considers a unit of time as a delay for each logic gate. Meaning, all the
logic gates have the same unit of delay.

In contrast, logic gates have different delays in static delay models. In the simplest form of
this delay model, the delay is associated with the type of logic gates in the circuit. However,
it is possible to add more detailed timing behaviour to this system. For example, the delay
could be defined as a function of load on its output. The difference between this model and
the unit delay model is that the delay value can change from a logic gate to another.

Unit delay models have a much less complexity than static delays. Even with unit delay
models, the degree of the precision in the simulation is not enough to obtain anything more
than relative timings. The simulation is not accurate in terms of an objective time measure
like nanoseconds, instead timing is given in terms of an abstract time unit of gate delays

based on the assumption that all the logic gates in the circuit have the same timing behaviour.
By replacing the path or distributed delay to unit delay, the calculation will become simpler.
As a result, the simulation time will be reduced. When functionality of the design is more
important than the timing correctness, we can simply use any of the above delay modes.
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In a static delay model,there is delay associated with each element type in the circuit. In a
sophisticated system the delay value can also be a function of the load on the output of the
logic gate. Note that complexity makes the high precision timing simulation slow.

Normally, the exact size of delay is unknown in circuits. Delay in circuit may vary with
temperature or power supply voltage. The input value on the logic gates can also affect the
delay. For example, signal value transitioning from 1 to zero may take longer than zero to 1.
Although, in principle delays may be expressed as real numbers, actual circuit delay times
of components are typically specified to integer precision in nanoseconds, picoseconds, and
etc. We can assume that the relative delays between circuit elements will be approximated
as ratios of integers instead of real numbers [107].

In CMOS technology, an AND gate is constructed from a NAND gate and an inverter. So,
the delay of an AND gate is sum of the delay of the NAND and the inverter. So, the delay
ratio for a 2-input, 1-output AND gate is equal to 3:2:1. So, by adding an extra buffer logic
on the output of a logic gate, we can simply add delay (Figure 4.5).

Figure 4.5: Transformation to two input race free logic

Simplified delay models (e.g: unit delay model) are widely used in research programs (e.g:
studying path delay faults). It has also been used in the MCNC [87] benchmark suit library.

In this work, while we ignore the physical properties 8 of the gate, we also ignore the delay of
interconnections and consider the delay for logic gates only. We consider unit delay model
and assume that all the logic gates have the same delay. Factors such as load capacitance on
input and output of the logic gates, and its type do not affect the delay of the element in the
circuit.

Although, by simulating unit delay mode, we may encounter problems. However, we can
add the extra delay by placing an extra buffer on the output of a logic gate in the circuit.
The combination of using levelisation and unit delay in circuit simulation have been used
in previous studies. Levelisation technique have been used by Wang et al. [29], Maurer et
al. [30], and other authors [31, 5, 32, 33, 34, 35, 40]. Furthermore, Maurer et al. [30], Tang
et al. [108], Ahmed et al. [109], and Gonsiorowski et al. [4] used unit-delay model in their
simulation, while Chatterjee et al. [37], Kochte et al. [110], considered zero delay model.

8Changes in power supply voltage and temperature can affect the delay through the circuit.
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4.4.3 Netlist Format

We transformed and processed circuits (IWLS and synthetic circuits) to generate a netlist
that can be efficiently used in our parallel simulator. The final netlist format is a description
of a circuits that is flattened and levelised and is referred to as the gate array netlist. The
gate array netlist will then be fed as an input to the SIMD simulator, along with the input
data file. Note that the IWLS benchmark suit is in BLIF format and in this thesis, the netlist
is referred to as a gate level netlist. Figure 4.6 illustrates the simulation process.

Figure 4.6: Process of transforming Netlists to gate Array Netlist for the Simulator

The gate array netlist is a vector description of the circuit that only contains integers. Each
signal in the circuit is identified by its given ID. Listing 4.3 is the netlist format with a fixed
order that allows it to be efficiently used by the simulator. The format is used in array netlist
fed to the ZSIM simulator. In this listing, gateNum is number of logic gates in the circuit,
inputNum is primary inputs, outputNum is primary outputs, maxLevel is the depth of
the circuit, and ndff is the number of flip flops.

1 [gateNum inputNum outputNum maxLevel ndff]

2 [shape_vec] [comp] [inp0] [inp1] [ff_in] [ff_out] [outp]

Listing 4.3: Array netlist format structure

shape vec is a vector that has the shape profile (distribution of logic gates throughout each
level, i.e.: the number of components in each path depth). A shape profile for a circuit with
D levels of logic can be represented as :

shape vec = [x0, x1, x2..xD−1] (4.3)

, where x0 is the number of inputs to the circuit, x1 is the number of logic gates in level 1,
and so on. In the shape profile, we do not specify a number of Flip flops for intermediate
levels, as we do not consider multiple sub-circuits to be connected by latches. We only have
one combinational circuit that is connected to a vector of flip flops some of whose outputs
are fed back into the circuit or serve as the final outputs of the simulated module.

The vector comp is a list which specifies the types of the logic gates, the vectors inp0,inp1,
and outp are the lists of left and right inputs and the output signals. In all cases the index
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position in the lists identifies the logic gate. The type of components in the circuit is, for
simulated circuits, randomly chosen from one of the primary 2 input logic gates (AND, OR,
NAND,NOR, XOR,XNOR). NOT is converted to a NAND gate where both inputs are the
same.

ff in and ff out, contains indices that point to locations in the current state vector array.
Those locations hold the signal ID that goes in/out Flip flops. Listing 4.4 is an example of a
gate array netlist for the circuit shown in Figure 4.7:

1 6 3 1 4 2

2 3 2 2 2

3 0 0 0 3 0 4 3 2 5

4 0 0 0 1 2 3 4 0 6

5 0 0 0 10 9 4 9 5 10

6 ...

Listing 4.4: An example of a gate array netlist

DFF

DFF

output

clk

1

2

9

10

3

4

6

5

0

7

8

Figure 4.7: An example of a circuit with labels indicating the component ID. Logic gates of
the same level are shown in the same color.

4.4.4 Circuit Representation

The gate array netlist is fed into the ZSIM and the information is held in a run-time data
structure designed for fast run-time access. The data structure representing the circuit ele-
ments and its specification, uses several flat arrays of type integer. The information about the
logic gate types is held in comp array. The values associated with the gate types are stored
as integers. inp0 and inp1 arrays point to the source of input signals values to a logic gate
in the state array. All the current values of signals are stored in the state array.

In previous chapter, vector arrays that are used to store circuit information were shown in
Figure 3.6 and Figure 3.7 (see Page 53). Each array index is indexed by a logic gate ID.
Logic gate i’s information is stored in i th element of all 4 arrays. It’s gate type is stored
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in comp[i], and its output signal is held in state[i]. Its input values are stored in
state[inp0[i]] and state[inp1[i]]. As previously mentioned, output signal val-
ues of logic gates in the same level are stored next to another in the state array.

Figure 4.8 is the schematic of data structure used for holding circuit specifications for the
example circuit (Figure 4.7). Separate arrays hold data for input signals, logic gate types,
and state array. Once the circuit is read in by the simulator, the state array is then updated
by the input signals. The length of the arrays are almost the same, except that the state array
is extended to keep the output signals derived from latches too. Chapter 3.2 discusses the
SIMD simulator architecture in detail.

9 4 9

0     1     2     3     4     5     6     7     8    9    10

L0

state [0..m]

 inp1 [0..n]

inp0 [0..n]

 comp [0..n]

L1 L2

0

NULL

NULL

1 2 3 4NULL

3   4    5   6    7    8

0

5

6

10 10

L3

Figure 4.8: An example of the array data structure used in the SIMD simulator.In practical
examples the vectors would be much longer.
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Chapter 5

Experimental Data

The aim of the experiments was to:

• Verify that the data structures used allow SIMD acceleration, particularly on machines
with gather instructions ( section 5.3.1).

• Verify that, on sufficiently large circuits, substantial gains could be made from multi-
core parallelism ( section 5.3.2 ).

• Show that a simulator using this approach out performed an existing commercial sim-
ulator on a standard workstation ( section 5.3.3 ).

• Show that the performance on a cheap Xeon Phi card is competitive with results re-
ported elsewhere on much more expensive super-computers ( section 5.3.5 ).

ZSIM is a cycle based simulator that is compared with several other cycle based as well as
event based simulators. ZSIM targets various architectures including Xeon Phi, AMD, and
Xeon. Other simulators that are compared with are mainly targeting GPUs. To be able to
compare ZSIM with other previous works, the same set of circuit suites were used. For the
comparisons to be fair, we used number of event transitions per second as the main metric
and not the total execution time. Note that some of these works are quite old. However, these
are the most recent works that could be used for comparisons on.

It is always possible to derive from a cycle based simulator the number of events that an
event based simulator would have generated when give the same problem. One conditionally
compiles in monitoring code that counts the number of actual changes in signal values that
occur during the cycle based simulation. When running performance tests this monitoring
code is elided but a run using the monitoring code gives the total number of events that
would have occurred in an event based simulator on the same circuit with the same inputs.
This allows a fair comparison of the two types of simulator using a common metric.
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5.1 Test sets

To evaluate the ZSIM1 , two types of test circuits were used:

1. Circuits from the IWLS benchmark suit [1] which allow direct comparison with other
published studies of parallel simulators.

2. Circuits generated by a parametrised circuit synthesizer. The synthesizer used an al-
gorithm that has been shown [2] to generate circuits that are statistically representative
of real logic circuits. The synthesizer allowed testing of a range of very large circuits,
larger than the ones for which it was possible to obtain open source files.

From the IWLS circuit benchmark suite, circuit designs in BLIF(Berkeley Logic Interchange
Format)2formats were used. A parser was used to flatten, levelise the circuit designs, and
generate a gate level netlist array. The netlist array is then fed to the simulator as a test circuit.
Description of both parser and synthetic circuit generator was explained in Chapter 4. Note
that for experimental purposes, circ-gen also generates a verilog netlist for each synthetic
circuits. Figure 5.1 illustrates the experimental setup including the process of generating
the test circuits and the simulation itself. The SIMD algorithm was implemented in both
Pascal and C++ and ZSIM was compiled with three different compilers (Intel C, Gcc, Vector
Pascal).

Figure 5.1: Illustration of the experimental setup

1my simulator
2BLIF [88] is used to represent combinational and sequential logic circuits in logic synthesis and verification

tools such as Quartus.
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5.2 Experimental Setup

An Intel Xeon, an Xeon Phi coprocessor, and AMD64 were used as a primary platforms, to
evaluate performance of the parallel SIMD simulators. To assess the performance, the circuit
simulator was ran on different architectures for a varying number of cores over different sizes
of circuits.

The Intel Xeon Phi 5110S coprocessor with 60 cores, each operating at 1.053 GHz, an Intel
Xeon E5-2620 processor operating at 2 GHz, Intel core i7-2630QM, and AMD Opteron
6366HE (a NUMA machine) were used. The AMD machine has four memory banks, but
none of our circuit designs were large enough to require non uniform access memory; they
would fit on 1 memory bank. So the other three memory banks on the AMD machine were
left unused.

The multicore CPU performance for the Intel Xeon processor was measured on a server with
16 GB of 667 MHz DDR3 memory, based on a two-socket Intel Xeon E5-2620 (Ivy Bridge)
CPU for servers. The thermal design power (TDP) of each CPU socket is 95 W. A E5-2620
socket has 6 physical cores clocked at 2 GHz (turbo frequency of 2.5 GHz) with two-way
hyper-threading. The vector units of the system support the AVX instruction set with 256-bit
vector registers.

The host operating system is SUSE Linux Enterprise Server 11 with kernel version 3.0.76-
0.11-default. The simulator program was compiled with the Intel C++ compiler version
15.0.3.

The Xeon Phi coprocessor performance was measured on the same system as the CPU per-
formance. The system contains one Xeon Phi coprocessor of the 5110P series with 60 cores
at 1.053 MHz, and 8 GB of GDDR5 RAM at 2.75 GHz. The driver stack is MPSS ver-
sion 3.1.2. The Xeon Phi itself is running Linux with a memory mapped root file system.
Table 5.1 shows the detail specification for the architectures.

In our experiments, input signals are randomly generated for each circuit. We used a high
volume of randomly generated input signals, one every clock cycle. We could either generate
all the input vectors for all cycles and use them during the simulation. Alternatively we could
repeatedly call a function to generate random inputs during each simulation cycle. We chose
the second approach and measured the total time it takes to generate input values. The time
difference was not significant. Note that the time it takes to generate the random numbers is
not a critical aspect in the performance of our simulator. This time can be ignored over many
simulation cycles. Using random inputs in simulation was also used in previous studies [36,
11, 4] as an alternative to an officially released stimuli for some standard benchmarks [10].

Throughout the experiments, we focus on the wall-clock time, that measures the total physi-
cal elapsed time. Note that in order to measure the elapsed time, the experiments were done
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several times. The reported timings are in seconds with an uncertainty of 0.01. Results shown
throughout this chapter show the timings and averages (rounded up) up to 2 decimal points.
During the measurements, ZSIM was configured to simulate without monitoring values of
internal nets. We also used other metrics such as event rate. A software counter was used
to measure the number of gate transitions. A simple XOR operation between the monitored
current state array and previous signal values determines if any change has occurred. The
counter can be disabled for timing. The metric regardless of how many cores are used, would
give us the number of logic events that can be computed per second. Due to the fact that the
simulation is deterministic, event counts will be consistent. As each event represent a logic
gate transition, the event rate metric can indicate the total simulation speed. The gate per
second rate also reflect the magnitude of logic events the simulator is able to compute (on a
target platform).

To control for variations in compilers two implementations of the simulator were tested, in
C++ and Vector Pascal [111]. Three compilers were also used, gcc, icpc, and vpc.

In order to take advantage of Xeon Phi cores and its wide SIMD registers, we draw advantage
from automatic parallelision feature of Vector Pascal. The Vector Pascal compiler generated
codes specifically for Xeon Phi coprocessor using -cpuMIC flag, and the AMD Opteron
machine using -cpuopteron.

For icpc compiler, the auto-vectorization was enabled using -O2 flag. Furthermore, to
ensure the auto-vectorization was disabled, -O0 or -no-vec was used. To enable auto-
vectorization using gcc compiler, -O3 was used.

The parallel simulator written in C++ targeting Xeon Phi was executed natively3 on MIC.
The executables were copied to the Xeon Phi, and the connection to the device via Xeon host
is done via ssh command. Below is an example of the commands used to copy and connect
to a Phi coprocessor (called mic0)

The OpenMP programming model that is supported by Intel compiler was used to paral-
lelized the C++ programs. In order to execute the OpenMP applications on Xeon Phi, the
libiomp5.so was copied onto the device along with the executables. Note that prior to
the execution of the files, the path to the library was set via below command:

export LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH

To compile the OpenMP programs, -openmp flag was used with icpc, and -fopenmp

was used with gcc compiler. Below are the commands used to compile the OpenMP pro-
grams:

3Offload data transfers usually keep the OS busy. If running the application natively, N cores can be used.
On offload mode, N-1 cores can be used as one core is busy for data movement.



5.2. Experimental Setup 77

icpc -mmic -openmp -O2 <filename>

g++ -O2 -fopenmp <filename>

Furthermore, the simulator was also compared to a commercial simulator (Xilinx) executing
on an Intel i7 machine, also shown on Table 5.1. Note that all the benchmark circuits includ-
ing synthetic ones are synchronous designs with latches driven by a single clock, hence the
commercial simulator and ZSIM both worked on a single clock boundary.

Table 5.1: Specification of Processors Used in the Experiments

Parameter Intel Xeon Phi Intel Xeon AMD Opteron Intel i7

Coprocessor 5110P Processor E5-2620 6366HE 2630QM
Core, Threads 60, 240 6, 12 32, 64 4, 8
Clock Speed 1.053 GHz 2 GHz 1.8 GHz 2 GHz
Memory Capacity 8 GB 16 GB per socket - 6 GB
Memory Technology GDDR5 DDR3 DDR3 DDR3
Memory Speed 2.75 GHz (5.5 GT/s) 667 MHz (1333 MT/s) 1333 MHz
Memory Channels 16 4 per socket 4 2
Memory Data Width 32 bits 64 bits 64 bits (S) 64 bits
Peak Memory Bandwidth 320 GB/s 42.6 GB/s per socket 51.2 GB/s 21.3 GB/s
Vector Length 512 Bits (Intel IMCI) 256 Bits (Intel AVX) 256 Bits (Intel AVX) 256 Bits (Intel AVX)
Data Caches 32 KB L1, 32 KB L1, 16 x 16 KB L1 (S), 32 KB L1 per core

512 KB L2 per core 256 KB per core, 8 x 2 MB L2 (S), 1024KB
15 MB L3 per socket 2 x 6 MB L3 (S) 6144 KB

5.2.1 Platforms

Due to problems such as energy consumption and heat dissipation, gaining extra computa-
tional power from architectures based on a single processing unit (CPU), by solely relying
on the increase of the CPU clock frequencies, have reached its limit around 2003 [112].
Reducing the size of the transistors and fitting more of them on a single chip to gain more
computational power in Microprocessors was challenging. This problem is due to the funda-
mental limitations in semiconductor device physics that restricts the number of tasks being
done in each clock period. The solution adopted by Intel and other firms was to switch to
parallel processing models, multicores and many cores, either through systems with multiple
processors or having multiple cores on single microprocessor [113]. An example of many
core systems are highly parallel graphic processing units (GPU) with as many as hundreds
of cores that have throughput oriented architecture. Processors as such that are derived from
consumer products are widely accessible at an inexpensive prices. However, they require
the software developers to rearrange some of the algorithm’s data structure, so that it would
benefit from the parallel architecture of the system [114].
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5.3 Results

In order to validate the effectiveness of the SIMD ZSIM, the simulator was run over 1000
clock cycles on three main platforms of Intel Xeon, Intel Xeon Phi, and AMD64. The results
are compared to some of the published work in the area (Section 5.3.4 and 5.3.5). Further
experiments were done to verify the performance of the ZSIM across three compilers; gcc,
Intel C, Vector Pascal. Unless specifically stated in graphs or tables, results are
from the compilation of ZSIM with Intel C.

Note that for the AMD, Xeon and Intel i7, runs were done with numbers of threads increasing
by powers of 2 in order to provide data that will fit nicely on a log plot. In consequence for
the Xeon and i7 measurements were taken for 1, 2, 4, 8 threads but not 16 as this would have
exceeded the number of hyper-threads supported. For the AMD the maximum number of
threads tested was 64. For the Xeon Phi the sequence was 1, 5, 25, 125, 240. Full data can
be retrieved from the university document repository at doi:10.5525/gla.researchdata.342.

5.3.1 SIMD acceleration

In order to show the effect of vectorization on the performance of the sequential simulator,
the ZSIM simulator was run on one core with and without SIMD. In this section, no parallel
directive was used. The program is compiled with and without vectorization flag being
enabled. Section 5.3.2 will discuss the performance of ZSIM when both SIMD and multicore
parallelism were used. For that purpose, OpenMP pragmas were used to create both SIMD
and multicore loops. However, SIMD acceleration using single core means taking advantage
of SIMD for a sequential code.

Auto vectorization was enabled by compiling the simulation program with -O2. The com-
piler directive (#pragma simd) was used to enforce SIMD vectorization for the for loop

in the simulation algorithm. SIMD directives give permission to the compiler to vectorize
the loop. Note that this for loop, loops over the logic gates in the same level.

The results were compared against the non optimized version of the simulator compiled with
the -O0 -no-vec flag. The -O0 flag turns off the auto vectorization and any other optimiza-
tions. The -no-vec disables any possible SIMD vectorization (in case there was a #pragma
simd in the program). We measured ZSIM’s performance for both synthetic and standard
circuits. Some of the experiments were done on two sets of synthetic circuits (V1 4,V2 5).
The standard circuits are from IWLS suite.

4V1: Synthetic circuits with inputs from any level
5V2: synthetic circuits with inputs from previous level only
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Table 5.2, shows the ZSIM’s vectorization performance for synthetic circuits V1 across dif-
ferent architectures. Using single core with SIMD acceleration enabled, ZSIM’s peak per-
formance on Xeon Phi is 10.6, then it reduces to around 1.3. On Intel Xeon, ZSIM achieved
speedup of upto 4 for the circuit size of around 105 . Then, the performance reduces to 1.7
(Table 5.2). On Intel i7, the maximum achieved speedup is 14.3.

Since the bit-vector length in Xeon Phi is 512, 256 on Xeon and Intel i7, and the data is
stored as array of integers, the expected potential speedup enabling SIMD acceleration: on
Intel Xeon Phi is 16 (512/32 bit), and 8 (256/32 bit) on Intel Xeon and Intel i7. Meaning 16
logic gates on Xeon Phi and 8 logic gates on Xeon and Intel i7 can be evaluated at the same
time. However, the achieved speedup was 10.6 on Xeon Phi, and 4 on Xeon. Note that the
speedup ZSIM achieved on Intel i7 is more than what we expected. It could be related to
how Intel Compiler optimizes the code on that specific architecture.

The reason for not achieving the desired speedup on both Intel Xeon and Xeon Phi is due
to the access patterns. When simulating logic gates of the same level, their inputs may
be coming from any other previous levels. Therefore, when accessing the state array
to retrieve the data, we may have to read the data from various part of the memory. Non-
contiguous memory access (read and write) can affect the performance. It is possible that the
data that was already loaded in the cache for previous evaluation, is not needed for current
calculations. When the required data is in the different cache line, loading the data into cache
degrades the performance.

Table 5.2: Single core SIMD performance gain against single core nonSIMD across differ-
ence architectures (Synthetic circuits V1)

Circuit Size (gates) Intel Xeon Phi Intel Xeon Intel i7
45 1.4 1.5 1.9

240 2.7 2.8 8.6
828 6.4 3.7 8.3

4140 10.6 3.9 14.3
18274 10.2 4.0 8.1
97814 4.1 3.5 6.3

560251 1.7 2.7 2.1
3892127 1.4 1.9 2.0

18561032 1.4 2.0 2.0
29651508 1.7 2.1 2.0
57765590 1.6 1.9 -

126351272 1.4 1.8 -
139352764 1.5 1.8 -
140083890 1.3 1.7 -
166599511 1.4 1.7 -
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In order to further explain this poor performance, the same experiments and tests were done
on another set of synthetic circuits. This set of circuits are not ideal, and were only generated
to test the impact of read and write access pattern on the performance of ZSIM.

Table 5.3, shows the vectorization performance for synthetic circuits V2 across different ar-
chitectures. It shows that ZSIM achieved the same speedup of 4.9 on Intel Xeon for the
second test circuits. In other words, changing the read and write access pattern did not
have a noticeable impact on the peak performance on Intel Xeon. However, the experiments
showed that non-contiguous memory access can affect the peak performance hugely. When
simulating synthetic circuits with inputs from previous level only, ZSIM achieves the perfor-
mance with the peak value of 22.3. Using the second set of synthetic circuit, Intel i7 shows
almost the same performance as Intel Xeon. As explained before, the reason that ZSIM did
not show the expected speedup for synthetic circuits with inputs from any level, was due to
cache locality and the need to gather data from various cache lines.

Table 5.3: Single core SIMD performance gain against single core nonSIMD across differ-
ence architectures (Synthetic circuits V2)

Circuit Size (gates) Intel Xeon Phi Intel Xeon Intel i7
45 4.1 1.7 1.6

212 9.0 4.2 1.7
1225 13.7 2.4 4.3
4836 21.4 3.8 4.2

17229 22.3 4.9 4.4
96948 16.4 4.2 4.1

425881 19.2 4.1 4.5
2253903 16.4 3.9 3.5

18130360 3.7 3.0 2.5
46256306 6.0 3.2 2.4

The two plots in Figure 5.2, depicts the vectorization performance of both synthetic circuits
(V1 and V2) on Intel Xeon and Xeon Phi.

Figure 5.3, shows the vectorization performance for synthetic circuits V1; with inputs come
from any previous levels. The plot compares the speedup of the ZSIM on single core Xeon,
Xeon phi (left plot) and on multicore SIMD (right plot)6. The plot on the left (Figure 5.3),
shows the performance gradually decreases and levels off at 1M logic gates. When the circuit
does not fit into the cache, the performance degrades. Note that each logic gate occupies
about 4 integers (Figure 4.8). That makes about 16 bytes. With 512 Kbytes L2 cache per
core, the maximum size of the circuit that fits the cache on a single core is about 32k gates.

6See full data at doi:10.5525/gla.researchdata.342
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(a) Synthetic circuits with inputs from any level
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(b) Synthetic circuits with inputs from previous level only

Figure 5.2: Comparison of performance gain for single core SIMD against single core non-
SIMD on Intel Xeon Phi and Xeon
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Although smaller circuits fit into the cache and they benefit from vectorization, they do not
benefit from larger number tasks.
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Figure 5.3: Comparison of performance gain for single core SIMD against single core non-
SIMD on both Intel Xeon Phi and Xeon, and multicore SIMD against nonSIMD on Intel
Xeon Phi (240 threads) for synthetic circuits V1

Table 5.4, shows the ZSIM’s vectorization performance for circuits from IWLS suite across
different architectures. Using single core with SIMD acceleration enabled, ZSIM’s vector-
ization performance on Xeon Phi is 1.33 to 17.71, with the average of 9.54. On Intel Xeon,
ZSIM achieved the average vectorization speedup of 3.47. On Intel i7, the average number
is almost the same on Intel Xeon (average of 3.84) as it has the same bit-vector length of
256 as Intel Xeon. ZSIM’s performance on Intel i7 fluctuated between 0.89 to 6.58. In some
cases, Intel i7 showed a better performance comparing to Intel Xeon. We’ve seen the same
behaviour in Table 5.2 on synthetic circuit V1. As stated before, this could be related to
the compiler optimization on that specific architecture. Plot in Figure 5.4 shows the stated
vectorization performance results. Note that these circuits have 44 to 65K logic gates.

The log/log plot in Figure 5.5, shows the achieved gate transitions per second on single core
for circuits from IWLS suite. The effect of SIMD optimization on both Intel Xeon and Xeon
Phi is clearly evident on the plots. However, as the size of these circuits are fairly small, Intel
Xeon Phi does not perform as well as Intel Xeon. Although we achieved a higher speedup on
Intel Xeon Phi with vectorization, the ZSIM’s execution time is still slower than Intel Xeon.

The log/log plot in Figure 5.6, shows the ZSIM’s execution time comparison for the two
versions of synthetic circuits on Intel Xeon and Intel Xeon Phi, running on single cores of
the two machines.
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Table 5.4: Single core SIMD performance gain against single core nonSIMD across differ-
ence architectures for circuits from IWLS suite

Circuit Size (gates) Xeon Phi Xeon Intel i7
44 1.33 3.09 2.68
76 1.58 3.17 4.65
81 1.59 3.21 0.89

305 2.69 2.94 5.66
1753 5.74 3.14 3.49
1856 7.81 2.77 6.58
3686 10.30 3.76 2.54

11709 12.38 3.94 4.40
16881 13.05 3.78 3.28
21431 15.06 3.51 4.97
21677 13.13 3.87 2.89
23070 17.71 4.03 4.77
28155 13.35 3.95 2.62
34697 12.37 3.07 4.21
35195 12.09 3.84 3.76
51513 10.90 3.79 3.69
65661 11.09 3.05 4.26

Machine Speedup (Avg)
Xeon Phi 9.54

Xeon 3.47
Intel i7 3.84
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Figure 5.5: Number of gate transitions per second of single core sequential code (SIMD and
nonSIMD) on Intel Xeon and Xeon Phi for circuits from IWLS suite

Note that with or without vectorization (on any of the test circuits), the single core ZSIM
simulator runs faster on the Xeon than the Intel Xeon Phi (due to the faster clock rate on Intel
Xeon). However, the purpose of this experiment was only to show how much improvement
the SIMD vectorization would give. Furthermore, in this section, by comparing the test
circuits version 1 and 2, it became clear that how the change in the read/write access pattern,
can affect the performance.

5.3.2 Multi-core acceleration

The log/log plots in Figures (5.7, 5.8), show the effect of multicore parallelism. On Intel
Xeon Phi, as we increase the number of threads (from 1 to 240), we clearly see improvements
on larger circuits. From the circuit size of 3 millions logic gate, the simulator gains speedup
using 240 threads.The larger synthetic circuit (version 1) that was used in these experiment
has around 160 millions of logic gates. For this circuit size, ZSIM achieved the speedup of
10 using 240 threads on Intel Xeon phi, in comparison to the baseline (ZSIM on Intel Xeon).
This number increases to 299.8, if compared to the sequential version on Intel Xeon Phi.The
speedup for synthetic circuits (version 2) was roughly twice as great - presumably because
of better cache use.

Table 5.5, reports the vectorization performance across difference architectures using mul-
ticores for synthetic circuits V1. Using multicore with SIMD enabled, ZSIM’s maximum
vectorization performance on Xeon is 11.1, while the performance increases upto 299.8 on
Intel Xeon Phi. As stated in the previous section, the expected potential speedup enabling
SIMD acceleration: on Intel Xeon Phi is 16, and 8 on Intel Xeon. Using multicore acceler-
ation along with enabling SIMD, it is expected to achieve the maximum performance of on
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Figure 5.6: Performance comparison of single core SIMD and nonSIMD on Intel Xeon Phi
and Xeon
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Figure 5.7: Performance comparison of multicore SIMD and single core nonSIMD on Intel
Xeon Phi
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Figure 5.8: Performance comparison of multicore SIMD on Intel i7 and single core non-
SIMD on Intel Xeon
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Intel Xeon Phi 16∗60 = 960 and 8∗6 = 48 on Intel Xeon. Note that 60 and 6 are the number
of cores on Xeon Phi and Xeon. What we are calculating is the throughput of the hardware,
the number of operations it can perform per cycle, hyper-threading does not increase max
number of operations per cycle. It only allows a more balanced workload between load
operations and compute operations, to reduce the load latency.

Figure 5.3 (left plot), shows the peak performance of 10 on Intel Xeon Phi and 4 on Intel
Xeon. With regards to this numbers, enabling multicore SIMD acceleration, it is expected to
gain the maximum performance of 600 on Intel Xeon Phi and 24 on Intel Xeon.

In Figure 5.3 (right plot) that shows the speedup of multicore SIMD on Intel Xeon Phi for
synthetic circuits with inputs from any level, the performance peaks at around 300 and not
600 as expected. Table 5.5, shows the maximum performance of 11 on Intel Xeon instead of
24.

When using multiple threads, not all the resources (threads) are always available and free to
do the simulation. Furthermore, as the circuit grows larger, there will be memory contention
(when cores trying to access part of memory that is not accessible). Table 5.5, shows that
although smaller circuit sizes fit into cache, using multiple cores, do not lead to any perfor-
mance gain. The reason is that there is not enough work to keep the cores busy. As a result
of that, the overhead degrades the performance.

Table 5.5: Multicore SIMD performance gain against single core nonSIMD across difference
architectures (Synthetic circuits V1)

Circuit Size (gates) Intel Xeon Intel Xeon Phi Intel i7
(8 threads) (240 threads) (8 threads)

45 0.1 0.0 0.06
240 0.3 0.1 0.53
828 0.5 0.2 1.99

4140 2.1 0.8 5.25
18274 2.2 3.1 5.99
97814 11.1 22.0 19.02

560251 9.8 110.1 5.83
3892127 6.5 287.7 5.02

18561032 5.9 299.8 2.78
29651508 5.3 208.9 -
57765590 5.2 206.1 -

126351272 5.2 230.9 -
139352764 5.0 218.5 -
140083890 5.1 280.0 -
166599511 4.3 238.1 -

Using single core, ZSIM achieved the maximum speedup of 22.3 on Xeon Phi, 4.9 on Xeon,
and 4.5 on Intel i7 for synthetic circuits V2. When using multiple cores in addition to SIMD
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acceleration, the expected speedup with respect to these numbers is 1320 on Xeon Phi (22*60
), 30 on Xeon (5*6), and 18 on i7 (4.5*4) (explained the reason before). Note that in these
calculations, the numbers 60, 6, 4 are the number of cores on each machine. Table 5.6, shows
when synthetic circuits with inputs from previous level only are used, the performance gain
is around 460.1 on Intel Xeon Phi, 13.9 on Intel Xeon, and 15.71 on Intel i7. On none of the
machines, have we achieved the theoretical peak performance. However, the speedup per-
formance when using the synthetic circuits V2 is higher than when testing synthetic circuits
V1 (the difference between the two synthetic circuits V1 and V2 was previously explained).
Comparing to synthetic circuits V1, the increased speedup performance is due to the change
in write/read pattern. Most likely, a lesser number of gather instruction cycles is needed to
collect the required data during the simulation.

Table 5.6: Multicore SIMD performance gain against single core nonSIMD across difference
architectures (Synthetic circuits V2)

Circuit Size (gates) Intel Xeon Intel Xeon Phi Intel i7
(8 threads) (240 threads) (8 threads)

45 0.0 0.0 0.10
212 0.4 0.1 0.36

1225 0.5 0.3 1.46
4836 2.3 1.1 5.49

17229 5.0 3.6 8.79
96948 9.6 20.0 15.71

425881 13.9 67.7 10.50
2253903 11.8 266.5 4.87

18130360 8.8 394.6 2.96
46256306 9.1 460.1 2.78

Note that Tables 5.6 and 5.5, only show the speedup when the maximum number of threads
is used. ZSIM was tested for various circuit sizes on Intel Xeon for various number of
threads. For smaller circuits, as the number of threads are increasing, the performance gain
reduces. The reason is that there is not enough work keep the threads busy. The overhead of
spawning threads reduces the performance. The performance is achieved when using larger
circuit sizes. Table 5.7 reports the number of threads and vectorization performance using
multicore for synthetic circuits V1 (10k to 560K logic gates) on Intel Xeon Phi. The table
shows for larger circuits ( from the point where the circuit does not fit into the cache), the
performance increases as the number of threads increases. When the circuits are large, there
is enough work to keep the cores busy and hide latency.

Note that Table 5.7 shows the SIMD vectorization performance on Intel Xeon Phi for three
different circuit size (See full data at doi:10.5525/gla.researchdata.342). The purpose of
this table is to show that using multiple threads on Intel Xeon Phi, ZSIM starts gaining
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speedup performance for circuits of larger than 100,000 gates. Using 240 threads does not
improve the speedup on circuit of size 97814. However, from 125 threads to 240, ZSIM
gains significant performance on circuit of size 560251

Table 5.7: Multicore SIMD performance gain against single core nonSIMD on Intel Xeon
Phi (Synthetic circuits V1)

Circuit Size (gates) Threads Intel Xeon Phi

18274

1 7.9
5 2.6

25 4.0
125 3.5
240 3.1

97814

1 4.2
5 10.2

25 22.6
125 25.8
240 22.0

560251

1 1.8
5 8.8

25 29.8
125 85.6
240 110.1

The plot in Figure 5.9 shows the performance gain of multicore SIMD ZSIM for standard
circuits (IWLS benchmark Suite). The plot only compares the metric on Intel Xeon and i7
(with 8 threads) with Intel Xeon Phi (125 threads).

Table 5.8 shows the average vectorization speedup using multicores for circuits from the
IWLS suite. These circuits are small (less than 65K gates), so we do expect to see any
performance gain as we increase the number of threads.

Table 5.8: Multicore SIMD performance gain against single core nonSIMD across difference
architectures for circuits from IWLS

Theads Speedup (Avg)
Xeon Intel i7

1 1.99 2.32
2 1.35 1.85
4 1.31 1.80
8 0.95 1.13

Threads Xeon Phi (Avg Speedup)
1 2.37
5 1.62
25 1.31
125 0.83

To summarize this section and the previous one, SIMD speedup of up to 11.1 were recorded
showing the effectiveness of the data structure and speedup of up to 299.8 were obtained by
combination of SIMD and multicore (Figure 5.3).
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Figure 5.9: Comparison of performance gain for multicore SIMD against single core non-
SIMD across different architectures for circuits from IWLS suite

Conclusions relative to Multicore and SIMD accelerations

In both previous sections ( 5.3.1and 5.3.2), the effect of SIMD acceleration and the use of
multiple cores was examined. For the first experiment, the simulator was run on a single core
with and without vectorization. Then, the performance of the simulator using multiple cores
was evaluated.

We also observed the effect of SIMD on a single core. On Xeon Phi, ZSIM gained the
maximum performance of 10.6 on Xeon Phi. However, the total simulation time on Xeon
was much less than Xeon Phi. Moreover, the vectorization performance degraded as the
circuit size grew larger. With each logic gate occupying 16 bytes (4bytes * 4), only 2K logic
gates can fit in L1 and 32K in L2 cache. This explains jumps in the performance when size
of the circuit goes beyond 2K, and 32K.

Using multiple cores with SIMD acceleration, the performance increased to almost 300 on
Xeon Phi. The results displayed demonstrate the clear performance benefit which could
have been achieved through SIMD acceleration and multicore parallelisation. It was ob-
served that gaining full parallelisim on Xeon Phi is not possible for smaller circuits due to
the thread scheduling overhead. On larger circuits, increasing the number of cores led to per-
formance gain. However, ZSIM did not gain the full theoretical performance due to memory
contention.

Xeon Phi supports aggressive forms of pre-fetching to hide data access latency. Due to
random memory access patterns (e.g: evaluating a logic gate with inputs from other lev-
els), pre-fetching data from memory reduces memory latency to some extent. Although
not reported,the ZSIM was also tested without the pre-fetching capabilities of the compiler
(no-opt-prefetch). Software pre-fetching is enabled by -O2 optimization, and the
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default degree of aggressive optimization is opt-prefetch=3. The default pre-fetching
mode was used throughout the experiments and all the reported results on Xeon Phi using
multiple cores are with the pre-fetching flag enabled.

Further optimizations such as -O3, did not prove to be useful in a sense to improve the
performance. In our case, the further optimization led to longer simulation time on multiple
cores.

Moreover, to have an efficient parallel simulator, an attempt was made to control the OpenMP
Thread Affinity at the runtime. The KMP AFFINITY variable controls how threads are
bounds to cores (i.e: spreading threads across cores is done by thread affinity). The three
compact, scatter, or guided affinity types were used on various occasions. How-
ever, the monitored results did not show any significant affect on the performance of ZSIM
using 240 cores. It is more likely that having multiple threads gathered on the same core
would result in them competing for the shared resources and reducing the performance as
it would serialize threads’ requests. Distributing the threads among cores using the affinity
variables (in the case we tested) did not make a difference in performance.Note that those
reported in Chapter 5, are the ones that showed some significance in them.

5.3.3 Comparison with a commercial workstation simulator

The commercial simulator that was used in this work is a software tool that was produced by
Xilinx. As part of the Xilinx ISE Design Suite, ISE simulator was used as a HDL simulator.
For the experiments the ISE Design Suite version 14.7 was installed on Intel i7 machine.
The Xilinx simulator simulates the circuit in verilog format. Note that ZSIM and Xilinx
were compared for the same set of test circuits. The set of input vectors to both simulators
were random. Moreover, both simulators were run for the same number of cycles. Although
the multi-threaded compilation was enabled on Xilinx ISE simulator, the simulation was
sequential.

As the Xilinx simulator runs only on standard Intel chips, this comparison did not use the
Xeon Phi. The Xilinx simulator could only take circuits of small size. We tested ZSIM
simulator’s results for IWLS circuits, as well as our synthetic circuits (with inputs from any
level), against Xilinx simulator on an Intel i7 machine.

Although it is not fair to compare the performance of ZSIM running on Xeon Phi and Xeon,
with the commercial simulator running on Intel i7, Table 5.10, and Table 5.9 show the av-
erage speedup of ZSIM against the ISIM (commercial simulator) across different platforms
(ZSIM was compiled by Intel compiler on the three machines).

For circuits from IWLS suite (size: 40 to 65K), when running on single core, ZSIM out-
performs the commercial simulator by 14.89 to 962.73 , and average performance of 207.68
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(with vectorization enabled), and by 4.26 to 1077.73, and average performance of 104.72
without vectorization (Table 5.10). Using multicore with SIMD enabled, ZSIM’s perfor-
mance degrades. Using only 1thread, ZSIM still outperforms the commercial simulator by
7.47 to 263.95 ,and average speedup of 97.68. Using 8 threads, ZSIM’s average relative
speedup to Xilinx reduces to 45.40 (Table 5.9)7

Figure 5.10 shows the number of gate transitions per second for SIMD ZSIM running on
Intel i7 (8 threads), Intel Xeon Phi (125 threads), and the commercial simulator on Intel i7
for circuits from IWLS benchmark suite. It shows the poor performance of ZSIM on Intel
Xeon Phi for small circuit sizes (note that the size of the test circuits are less than 100K).
The event rate metric shows the difference in performance on Intel i7 for both simulators.
Figure 5.11, shows the effect of vectorization on the performance when comparing with the
number of transitions per second in the non vectorized version of ZSIM. Note that ISIM is
the commercial simulator.

The circuits are of a small size for which our simulator works best with small scale 8 threads
parallelism. As we increase the number of threads, the overhead due to thread scheduling
worsen the performance. The circuits are small, there is not enough work to keep the cores
busy and hide latency. However, as stated in previous paragraph, even using one thread on
the same machine, our SIMD simulator is much faster than the commercial simulator.

Figure 5.12 shows the ZSIM’s execution time in seconds using multiple threads and SIMD
enabled on Intel i7. The log/log plot shows how ZSIM runs slower as more number of threads

7(See full data at doi:10.5525/gla.researchdata.342)

Table 5.9: Speedup of ZSIM using multicore and SIMD against the commercial simulator
across different platforms for circuits from IWLS suite

Threads Xeon Phi
1 6.65
5 4.36
25 3.46
125 2.18

Threads Xeon I7
1 78.98 97.68
2 54.53 74.23
4 53.90 72.05
8 38.30 45.40

Table 5.10: Speedup of sequential ZSIM (SIMD and nonSIMD) against the commercial
simulator across different platforms for circuits from IWLS suite

Machine Speedup (Avg)

Xeon Phi
SIMD 26.33
nonSIMD 4.35

Xeon
SIMD 212.10
nonSIMD 62.57

i7
SIMD 207.68
nonSIMD 104.72
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Figure 5.10: Number of gate transitions per second for the commercial simulator ISIM (on
Intel i7), and the multicore SIMD ZSIM running on both Intel i7 and Xeon Phi for circuits
from IWLS suite
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Figure 5.11: Number of gate transitions per second for ZSIM (single core with and without
vectorization), and the commercial simulator (ISIM) on Intel i7 for circuits from IWLS suite
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are used. This is due to the fact that the number of circuits used in this experiment are very
small. As stated before, the poor performance is due to the overhead of thread scheduling.
Note that on Intel i7, ZSIM was able to achieve the peak performance of 19.02 on Intel i7
for larger circuit sizes (shown in Table 5.5).
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Figure 5.12: Performance comparison of ZSIM (multicore SIMD) and the commercial sim-
ulator ISIM on Intel i7 for circuits from IWLS suite

We performed the same experiments with synthetic circuits. Figure 5.13, shows the event
rate per second metric for larger circuits (synthetic circuits). Using 8 threads on Intel i7,
SIMD ZSIM achieves the maximum event rate of 474M for circuits of size 50 to 30M logic
gates. For synthetic circuits (with inputs from any level), sequential ZSIM outperforms the
commercial simulator by 17.40. to 148.40 , and average performance of 66.81 (without vec-
torization), and by 92.93 to 1204.88, and average performance of 511.39 with vectorization
enabled (Table 5.11). Using multicore with SIMD enabled, ZSIM’s performance degrades.
Using only 1thread, ZSIM still outperforms the commercial simulator by 16.47 to 1189.43
,and average speedup of 447.4 (Table 5.12). Note that the numbers 66.81, 511.39, and 447.4
are the average speedup of circuits of size 45 to 97814 given in Table 5.11 and Table 5.12.
We investigated the results from performing the above experiments with synthetic circuits.
The results show the commercial simulator drastically slows down as we increase the circuit
size. Note that this commercial simulator is sequential event based and the activity rate of
the circuit hugely affects it performance.

5.3.4 Comparison with simulations on GPUs

There are several existing papers on logic gate level circuit simulation acceleration on GPUs,
though the results reported in the literature are for comparatively small circuits. Table 5.13



5.3. Results 96

Table 5.11: Speedup of sequential ZSIM (SIMD and nonSIMD) against the commercial
simulator on Intel i7 (Synthetic circuits V1)

Circuit Size (gates) SIMD nonSIMD
45 92.93 49.61

240 275.23 32.11
828 145.21 17.41

4140 686.15 47.83
18274 1204.88 148.40
97814 663.96 105.49

Table 5.12: Speedup of ZSIM using multicore and SIMD against the commercial simulator
on Intel i7 (Synthetic circuits V1)

Circuit Size (gates) 1 thread 8 threads
45 16.47 3.45

240 74.22 17.19
828 126.87 34.75

4140 509.10 251.53
18274 1189.43 889.96
97814 768.34 2007.29
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Figure 5.13: Number of gate transitions per second for the commercial simulator ISIM and
multicore SIMD ZSIM on Intel i7 for synthetic circuits V1 (with inputs from any level)
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shows the characteristic of the GPUs that were used in the literature and are compared to
ZSIM in this section.

Table 5.13: Characteristic comparisons of GPUs used in the reviewed simulators (see Sec-
tion 2.9

Sen et al. Zhu et al. Yuxuan et al. Chatterjee et al.
GPU Model Quadro FX 3800 GTX 280 GTX 465 8800 GT

Cores 192 240 352 112
Clock Frequency 1204 MHz 1296 MHz 1215 MHz 1500 MHz

Launch date March 2009 June 2008 May 2010 October 2007

In [12], the authors use partitioning and replication in conjunction with levelisation in order
to handle the problem that the GPUs provide a small amount of shared memory. They there-
fore put groups of gates into logical blocks which then simulated on these Nvidia blocks
since all threads in a block share the same shared memory. For the experiments they used
Quadro FX 3800 GPU (Table 5.13).

It is possible to directly compare the performance of my data structure with the result they
report for two of their circuits. Table 5.14 shows that when my data structure is run even
on one core of a standard Intel i7, the performance substantially exceeds the results reported
from [12], when we use a common metric of nano seconds per gate simulation. Note that the
comparisons are valid as we are comparing the same circuits and both simulators are cycle
based.

Table 5.14: Comparison of time per gate simulation for Intel i7 and Nvidia Quadro FX3800
GPU

Design Time per gate simulation (nano seconds)
Alpsen et. al Chimeh

PAR2 (Nvidia GPU) Intel i7
aes-core 3.56 1.88

system-cdes 50.67 1.90

It is also worth noting that the mentioned paper reports results only on comparatively small
circuits well under a million gates. So, the applicability of their technique to large circuits is
unclear.

Zhu et al. report simulation on a 2.66 GHz Intel Core2 Duo server with an NVidia GTX 280
graphics card [10] (Table 5.13). It is difficult to compare their results with those reported in
this thesis for two reasons.

• There is a little overlap between the circuit models this thesis reports results for and
the ones they report.
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• For the ones they do report, the random test patterns that they used only change the
data once in every 5 cycles, whereas in this thesis data is changed at every cycle.

Given these limitations the only feasible basis to use is to compare the speedup they report
between their baseline sequential simulator and their parallel simulator with the speedup
obtained between the Xilinx simulator and the parallel ZSIM on circuits of the same size.
Their best results for inputs changing randomly every 5 cycles was a speedup factor of 270.
The best result for circuits of comparable size ( the largest that was attempted to be run on
the commercial simulator ) was a speedup of 260.68 on Xeon Phi (using 125 threads) and a
speedup of 1683.49 running SIMD on Intel Xeon using 8 threads. This was for a circuit of
100K gates in each case. This test is in the small circuit range for ZSIM, the range in which
standard Intel processors outperform the more highly parallelised Xeon Phi. Even in this
range of size, before the data structure is used to its full advantage, ZSIM gets comparable
results to [10].

A paper by Yuxuan et al. [9], introduced a strategy to extract and partition the circuit in order
to compile it to GPUs. Their technique is based on the levelisation and clustering into blocks
as was in [12]. They presented comparison on the Intel Core Duo T2400 processors with 1.8
GHz frequency and the NVIDIA GTX 465 (Table 5.13).

Table 5.15: Time per gate simulation and Gate Transition per second for Parallel Oblivious
simulation (Yuxuan et. al) on NVIDIA GTX 465

Design Time per gate cycles (nano sec) Gate transition per sec
LDPC 6.67 1.50E+008
DES3 2.15 4.65E+008

Or1200 13.30 7.51E+007
OpenSparc 2.17 4.59E+008

They achieved gate cycle times (Table 5.15) comparable to the peak performance of MIC
in shown in Table 5.16. Figure 5.14 shows that the fast time per gate cycle for circuit with
inputs from any level is around 1.93ns (Table 5.16). This reflects the lower task dispatch
cost in CUDA relative to Xeon Phi. The Xeon Phi achieves it best performance on large
circuits where the task dispatch cost can be spread over more gates. It is unclear whether the
approach of Yuxuan et al. would be usable of the larger circuits studied here.

Chatterjee et al. report simulation on NVIDIA 8800GT GPU with 14 multiprocessors (Ta-
ble 5.13) for full detail). Due to no overlap of test circuits, in order to compare the perfor-
mance of ZSIM with the GCS simulator [11], we compare our speedup relative to the Xilinx
simulator mentioned in section 5.2 to the speedup that Chatterjee et al. report relative to
a commercial simulator. Their GCS simulator outperforms their commercial simulator by
between 4 to 44 times with an average speedup of 13. ZSIM running SIMD parallelism on
one core Intel i7, outperforms the Xilinx simulator by an average factor of 356 (Table 5.17).
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Figure 5.14: Comparison of time per gate cycle of multicore SIMD ZSIM on Intel Xeon Phi
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Table 5.16: Time Per gate Cycle of multicore SIMD ZSIM on Intel Xeon Phi using 240
threads (Synthetic circuits V1)

Circuit Size (gates) Time Per gate Cycle (ns)
45 10755.28

240 2663.24
828 695.85

4140 171.46
18274 49.43
97814 8.30

560251 3.33
3892127 2.49

18561032 2.36
29651508 1.93
57765590 2.20

126351272 2.72
139352764 2.54
140083890 3.05
166599511 2.75

Note that in Table 5.17, my average speedup is for sequential SIMD ZSIM on Intel i7 against
the commercial simulator. However, the average speedup for Chatterjee et al. is for the GCS
simulator reported in their paper against the commercial simulator. The speedup of the larger
circuit with 100K gates was previously reported in prior sections.

Table 5.17: Comparison of average speedup relative to commercial simulator

Chatterjee et al. Chimeh
Circuit size range 17K-1M 44 - 100K
Average speedup 13 356

Conclusions relative to GPUs

GPUs can achieve comparable gate cycle per second rates to the Xeon Phi. But this is only
been demonstrated on the GPUs for the relatively small circuits. Although it is not explained
in the literature why small circuits have been used in GPU experiments, it is hypothesized
that the relatively small local memory on GPUs motivates experiments to select problems
that are easier to map to the local memory. Another possibility is simply the lack of large
scale circuits designs like the ones I have used. Whatever the case, it is clear from the
reported results in this thesis that Xeon Phi can be extended to the circuits of around 100
millions of gates. Furthermore, with the ZSIM algorithm no partitioning is needed due to
the automatic cache handling feature on Xeon Phi. We therefore move on to examine the
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relative performance of Xeon Phi against supercomputers which are capable of handling 100
millions of gates.

5.3.5 Comparison with simulation on the IBM Blue Gene

In this section, comparison is made on some of ZSIM’s results with reported work on par-
allel simulation on a supercomputer (Gonsiorowski et al. [4]). They used a discrete event
simulation framework that allows simulations to be run in parallel, called ROSS (Rensselaer
Optimistic Simulation System), a modular time wrap system. The paper reports the perfor-
mance of this framework executing parallel event based simulation (based on the time wrap
protocol) using a message passing interface on Blue Gene/L.

Blue Gene/L Architecture

The experiments were done on two machines (IBM Blue Gene/L, and Intel X5650). The Blue
Gene/L has upto 1024 cores, each performing at 700 MHZ clock rate. However, we only
aim to compare our results with the ones ran on the supercomputer Blue Gene. Table 5.18,
compares some of the characteristics of both Intel Xeon Phi and Blue Gene/L, in terms of
the price per rack and the size, in addition to the number of available cores.

To evaluate the simulation performance, the number of gate transitions per second between
ZSIM and [4] are compared. More specifically, we are comparing the event metric for our
largest circuit (with over 160 millions of gates) with their 216 million gates circuit. Ta-
ble 5.19 compares the event rate data taken from the mentioned paper with the event rate
measured in ZSIM. Here, we are only showing the results for the maximum circuit size. On
Blue Gene/L with 1024 cores, they achieved an event rate of 116 million events per second,
whileZSIM achieved an event rate of 142 million events per second (Table 5.19).Figure 5.15
shows the event rate per second for ZSIM (multicore and SIMD) for the two versions of
synthetic circuits on Intel Xeon Phi. Note that these are actual transitions in contrast to
Figure 5.14 that shows time per gate cycle.

ZSIM achieves better performance on many fewer cores at much lower cost. The Xeon Phi
clock speed is slightly higher than that of the Blue Gene, but the main gain comes from
the ability of our data-structure to handle both SIMD and multicore parallelism with low
synchronization overhead.

5.3.6 Comparative Analysis Across Compilers

Figure. 5.16(left plot) shows the number of gate transitions per second for 64 threads on
the multicore AMD Opteron for both C and Pascal versions compiled with gcc and vpc.
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Figure 5.15: Comparison of number of transitions per second for multicore SIMD ZSIM on
Intel Xeon Phi

Table 5.18: Characteristic comparison of Intel Xeon phi and IBM Blue Gene/L

Parameter IBM Blue Gene/L Intel Xeon phi
Cores 1024 60
Clock Speed 700 MHz/core 1.053 GHz/core
Price $0.8m - $1.3m $1600.00 - $2649.00
Size 2m height x 1m width 24.61cm x 11.12cm x 3.86cm
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Table 5.19: Comparison of number of events per second (IBM Blue Gene/L vs. Intel Xeon
Phi)

Machine Number of gates Cores/Threads Event rate (millions/sec)

Blue Gene/L ' 216 million
512 60

1024 116

Xeon Phi ' 160 million
125 76.8
240 142

Whereas the right plot in Figure. 5.16, shows the event rate per seconds for the Pascal and C
versions on the Xeon Phi using vpc and icpc. The algorithm shows the same acceleration
scaling properties across languages and machines. The performance curves have the same
shape in both figures as we increase the circuit size. On both machines C is faster than
Pascal.The Intel C compiler on Xeon Phi shows a bigger advantage than gcc on the AMD
machine.The peak performance leveled off at around 1M logic gates in all cases. Figure 5.17
shows the number of gate transitions per second for 8 threads on the multicore Intel i7 for C
version of the simulator compiled with gcc and icpc. The plot shows that Intel C compiler
performs better on Intel i7 comparing to gcc. However, after a 1M gate, the performance
difference on both compilers keeps reducing.
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Figure 5.16: Comparison of number of transitions per second of multicore SIMD ZSIM
across different compilers on both AMD Opteron and Xeon Phi machine

Figure 5.18, compares event rate per second of the parallel simulator on both AMD and
Xeon Phi for the circuit size of 170 million gates. The plot only shows the event rate upto
the maximum number of cores on each machine. The plot shows the almost linear relation of
the number of threads with the performance on Xeon Phi using Intel compiler. However, the
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Figure 5.17: Comparison of number of transitions per second of multicore SIMD ZSIM
across different compilers on Intel i7 machine

other compilers do not have the linear relation. In other words, using GCC and VP compilers,
the simulator stopped scaling after 16 threads on AMD, and 60 threads on Xeon Phi. Vector
Pascal compiler shows a better performance on AMD64 than Xeon Phi. In a previous study
of ours [14], Vector Pascal was also compared to other commercial compilers in addition to
Intel C. The comparison to Intel C compiler had the same result.

For 16 and 64 threads, the Vector Pascal and gcc compiler did not show any improvement on
AMD64. On Intel Xeon Phi, using Vector Pascal compiler, event rate leveled off at 2 orders
of magnitude threads.

Furthermore, I have also measured the performance of the simulator written in pascal by
changing the default task scheduling for the Vector Pascal (thread semaphores). I found that
using spin-locks (busy waiting 8) on Xeon Phi was efficient up to a certain circuit size (1M
logic gates). As I increased the size of the circuit, there was no performance gain with the
busy wait flag enabled (Figure 5.19). Using 64 threads on Xeon Phi, with busy waiting, the
ZSIM achieved the maximum performance of 10.6, and 9.02 using 236 threads (Table 5.20).
The table only shows the speedup for circuits under 30M logic gates. For circuits more than
1M, the speedup is not significant.

8Simulator was compiled with the busy wait flag on



5.3. Results 105

10
0

10
1

10
2

10
3

10
5

10
6

10
7

10
8

10
9

N
u

m
b

e
r 

o
f 

G
a

te
 T

ra
n

s
it

io
n

s
 p

e
r 

S
e

c
o

n
d

Threads

 

 

AMD64 (GCC compiler)

AMD64 (VP compiler)

Xeon Phi (VP compiler)

Xeon Phi (ICPC compiler)

Figure 5.18: Comparison of number of transitions per second of multicore SIMD ZSIM on
Intel Xeon Phi and AMD Opteron, compiled by both Vector Pascal and Intel compiler for
circuit size of 170M gates
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Table 5.20: Comparison of performance gain using semaphores versus busy waiting on Intel
Xeon Phi for circuits under 30M gates

Circuit size Threads Speedup

45
64 9.14

236 6.59

240
64 12.22

236 9.02

828
64 10.63

236 7.89

4140
64 10.00

236 8.41

18274
64 8.11

236 9.14

97814
64 4.90

236 6.81

560251
64 2.21

236 3.64

3892127
64 1.10

236 1.22

29651508
64 0.98

236 0.95
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Chapter 6

Conclusion

In this thesis, an architecture without explicit locks for accelerating logic gate simulation
was proposed. The proposed architecture targets multicore machines with gather instruction
support such as Xeon Phi. This data structure reduces the synchronization overhead, while
increases the possibility of SIMD and parallel operations. This was applied on the state the
of art, Intel Xeon Phi technology [47]. The combination of this data structure and the Xeon
Phi chip is a cost effective solution for simulation acceleration. The architecture was tested
on various architectures on large circuit sizes as well as smaller ones.

The thesis statement was :

This thesis is that it is possible, by the use of simple regular data structures to obtain,
with SIMD shared memory multiprocessors, simulation speed, that are as good as or
better than other workstation technologies and more cost effective than small super
computer cluster for the same task.

It was proven that the thesis statement is correct. The results in Section 5.3 show that per-
formance of ZSIM is comparable to performance reported for simulators on Blue Gene/L,
comparable and faster than reported for software simulators targeting GPUs and much faster
than a workstation commercial simulator Xilinx.

6.1 Research Contributions

This work was motivated by the availability of multicore SIMD processors with gather in-
structions. As stated above, this allows more efficient high performance logic simulations
than alternative software architectures. An architecture for logic circuit simulation targeting
SIMD machines was proposed. Moreover, previous works in the area of parallel logic level
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circuit simulation were reviewed. A larger range of synthetic circuits, broader than what is
reported in the logic simulation acceleration literature were generated. The performance of
the proposed SIMD simulator was evaluated on various architectures such as Intel Xeon Phi,
Intel Xeon, and an AMD64 machine.

The ZSIM simulator was implemented in two different programming languages and its per-
formance was compared across various compilers including Intel C, Vector Pascal, and gcc.
When the ZSIM performance was compared across these compilers, Intel C proved to be
more efficient. Above a certain level of parallelism, between 16 and 64 threads, the Vector
Pascal and gcc compiled implementations did not show further speed improvement when
running on AMD64. In contrast, when using the Intel compiler optimised for it, the Xeon
Phi implementation showed continuing improvements up to the maximum number of cores
used.

The thesis compared the vectorization performance in ZSIM1 with SIMD acceleration on
Single core and multicore. Enabling SIMD acceleration and multicore, ZSIM gained peak
performance of 299.8 on Intel Xeon Phi and 11.1 on Intel Xeon. Using only vectorization,
ZSIM achieved the maximum performance of 10.6 on Intel Xeon Phi and 4 on Intel Xeon.

It was shown that this combination (the proposed architecture on SIMD machine) is much
faster than, and can handle much bigger circuits than a widely used commercial simulator
(Xilinx) running on a workstation.

We compared the achieved performance with similar pre-existing work on logic simulation
using GPUs and supercomputers. The results presented in this dissertation show that the
ZSIM simulator running on a Xeon Phi gives comparable simulation performance to the
IBM Blue Gene supercomputer at very much lower cost. The experimental results have
shown that the Xeon Phi is competitive with simulation on GPUs and allows the handling of
much larger circuits than have been reported for GPU simulation.

When targeting Xeon Phi architecture, the automatic cache management of the Xeon Phi,
handles and manages the on-chip local store without any explicit mention of the local store
being made in the architecture of the simulator itself. However, targeting GPUs, explicit
cache management in program increases the complexity of the software architecture. Fur-
thermore, one of the strongest points of the ZSIM simulator is its portability. Note that the
same code was tested on both AMD and Xeon Phi machines. The same architecture that
efficiently performs on Xeon Phi, was ported into a 64 core NUMA AMD Opteron.

The performance gains were also compared with the performance of the proposed algorithm
in this thesis with stereo vision algorithms on the same compilers and machines from a
previous study [14]. The algorithms in that study showed a much greater performance on
the GPU than what was achieved on either the Intel or AMD machines. This contrasts with

1my simulator
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the results in this thesis which show a clear advantage for the Xeon Phi. The reported results
were for identical algorithms. Note that ZSIM was compared to the previous published work
on the GPU. These studies used different algorithms from ZSIM, so either the Xeon Phi is
better for logic simulation than GPUs or the ZSIM architecture is an advance on previous
work.

To conclude, the two main achievements are restated as following: The primary achievement
of this work was proving that the ZSIM architecture was faster than previously published
logic simulators on low cost platforms. The secondary achievement was the development
of a synthetic testing suite that went beyond the scale range that was previously publicly
available, based on prior work that showed the synthesis technique is valid [2].

6.2 Future Work and Limitations

This research is a self contained piece of work that was done within the timing and resource
constraint available for the PhD work. It is not a production simulator and does not handle
a wide range of input formats (handles BLIF formats only). Although it does not recognize
all the input formats that a more sophisticated commercial product would recognize, the
ZSIM simulator handles considerably larger circuits than the Xilinx reference simulator.
The experimental results that were demonstrated are within the limited availability of the
benchmarks that could have been tested with limited time and resources, in particular the
limited availability of real circuit designs in the 100 million gate range.

A further direction of research could be to investigate the performance of the ZSIM simu-
lator on a machine with cluster of Xeon Phis, as we only had access to a single Xeon Phi.
Furthermore, it is worth evaluating the impact of using the combination of direct logic with
word packing technique in the simulator instead of using look-up table and word packing.

Another direction would be to see how to handle in a more realistic way the different timing
in logic gates. Although it was shown in principle that different timing delays in logic gate
can be handled by adding extra buffer layers, it would be useful to verify what impact that
has in overall performance. However, given the order of magnitude speedup the simulator
achieved, the impact of adding extra buffers to the design can be expected to be relatively
small.
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