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Summary

Much of the pathogenicity of the bovine disease tropical theileriosis, caused by the 

protozoan parasite Theileria annulata, results from the parasite differentiating from one life 

cycle stage to another. Given the observation, by Shiels et al., (1994) that the timing of 

differentiation from macroschizont to merozoite can be altered and that this correlates with 

changes in the expression of the 30kDa merozoite surface polypeptide (TamSl); the aim of 

this study was to identify the molecular mechanisms controlling the expression of the 

TamSl gene. Furthermore, the identification of the factors controlling TamSl expression 

could lead to the identification of a factor involved in the timing of differentiation events. 

Therefore, it was intended to clone and sequence the regulatory regions controlling the 

expression of the TamSl gene and to develop a gel retardation mobility assay in order to 

analyse transcription factors interacting with TamSl promoter elements particularly with 

respect to factors binding during induction of differentiation.

Isolation and sequencing of the 5' and 3' regions flanking the TamSl protein coding 

sequence, identified three additional open reading frames. Attempts to identify each gene or 

functional motifs within each gene by sequence comparisons with polypeptides in known 

databases was unsuccessful. Nuclear run analysis demonstrated that the TamSl gene is 

monocistronically transcribed with definite start and termination signals. Additionally, the 

orientation of the other open reading frames would suggest that all of the genes within the 

isolated contig are monocistronically transcribed. In an attempt to identify the promoter 

region involved in the regulation of the TamSl gene the RNA start site was mapped. Two 

strategies were used in an attempt to identify the promoter elements; firstly the 5' intergenic 

regions from related genes in other species of Theileria were cloned and sequenced to allow 

for comparisons to be made and the 5' region of the TamSJ gene was compared with that of 

known promoter elements. However, neither of these approaches was successful in 

highlighting possible functional promoter elements.

Theileria annulata macroschizont infected cell lines can be induced to produce 

merozoites by culture at an elevated temperature (41°C). This in vitro system, enabled the 

isolation of host-free parasite nuclear extracts for use in the development of a gel retardation



mobility shift assay. This technique enable the identification of a promoter element which 

bound three specific mobility bands. Analysis of parasite nuclear extracts made from two 

types of clonal cell lines (enhanced and diminished differentiates) showed that two 

electrophoretic bands were only present during a specific stage of parasite differentiation 

corresponding either to commitment or a significant increase in expression of the TamSl 

gene. Determination of the size and number of factors interacting with the promoter element 

were attempted using two strategies, by UV crosslinking and South-Western blotting. 

However, neither of these approaches were successful and the possible reasons for this are 

explained.



1 Introduction

1.1 Theileria annulata

Theileria annulata, a protozoan parasite of cattle and water buffalo, was first 

described by Dschunkowsky and Luhs (1904) and is the causative agent of tropical 

theileriosis or Mediterranean Coast fever, a debilitating and frequently fatal disease of 

cattle. Initially the disease was described as a tropical bovine piroplasmosis and was 

associated with a haemo-protozoan parasite, subsequently named Piroplasma annulatum by 

Bettencourt in 1907 (Irvin, 1987). Discovery of a schizont stage of P.annulatum led to 

reclassification of these organisms, placing them in the genus Theileria.

Other apicomplexan parasites of major importance are Plasmodium, Eimeria, 

Babesia, Sarcocystis, and Toxoplasma. Members of the phylum Apicomplexa are all 

characterised by the possession of an apical complex (consisting, in the majority of cases, of 

the polar ring and conoid complex, forming the leading pole, during the budding process of 

a developing parasite) during at least one stage of their life cycle, with intracellular forms 

occurring in the mammalian host (Shaw and Tilney, 1992). Within the apicomplexan 

phylum Theileria is most closely related to the genus Babesia. These genera are 

distinguished by their morphology at the erythrocytic stages and their target cells. Babesia 

species infect only erythrocytes while Theileria species also invade leukocytes. At least 2 

representatives of the Babesia species are exceptions to this rule, for example B.equi and

B.microti, which unlike other Babesiidae multiply initially in lymphocytes before infecting 

the erythrocytes. In addition, the morphology of the schizonts found in the cytoplasm of the 

lymphocytes have been described as being ”Theileria-\\ke" (Moltman et al, 1983). This and 

morphological similarities coupled by molecular phylogeny studies have brought into 

question the taxonomical placement of these parasites within Babesiidae as they continue to 

show increasing similarities to Theileria (Knowles, 1996; Ellis et al., 1992). Further 

analysis at the genetic (molecular level) should have the ability to resolve existing 

uncertainty over Theileria species and subspecies designation. The phylogenetic 

relationship between Theileria and other apicomplexan parasites has been established and is 

based on the sequence comparison of the small sub-unit ribosomal RNA molecules (Barta et 

al., 1991; Gajadhar et al., 1991). The currently accepted classification of the Theileria genus 

is shown below: (Levine, 1988).
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Sub-kingdom

Phylum

Class

Protozoa

Apicomplexa

Aconoidasida

Piroplasmorida

Theileriidae

Theileria

Order

Family

Genus

Theileria parasites are a group of tick transmitted apicomplexan parasites which 

infect a variety of wild and domestic animals throughout the world. The genus Theileria 

contains a number of species whose characteristics have been reviewed by Uilenberg 

(1981), Dolan (1989) and Morzaria and Nene (1990). Six species of Theileria are infectious 

for cattle and domestic buffalo: T.annulata, T.parva, T.sergenti, T.mutans, Ttaurotragi and 

T.velifera (Irvin, 1987). These species are classified according to geographical distribution, 

the morphology of macroschizont and piroplasm stages, pathogenicity, vector species and 

by indirect immunoflourescence antibody tests (Kimber et al., 1973). Clinically and 

economically, T. annulata and T.parva are the most serious of the six. T.parva, is responsible 

for East Coast Fever, January disease and Corridor disease and is transmitted by 

Rhipicephalus species of tick; whereas T. annulata, the active agent of tropical theileriosis, 

is transmitted by Hyalomma spp. T.sergenti is also significant and is an important pathogen 

in cattle of East Asia. T.taurotragi, T.mutans, and T.velifera are rarely pathogenic. Other 

Theileria species of which infect ruminants, include T.hirci a pathogenic parasite for sheep 

and goats, and can cause significant economic losses in regions where it is endemic 

(Hooshmand-Rad et al., 1973) T.camelensis a parasite infecting camel;, and T.ovis, 

T.recondita and T.separata are non-pathogenic parasites of small runinants (Dolan, 1989, 

Papadopoulos et al., 1996).

1.2 Distribution

Tropical theileriosis is widespread, with endemic regions stretcfing from the 

Western Mediterannean, Southern Europe, Northern Africa to the Pacific, in a broad band 

encompassing, India, the Middle East, China, and parts of the former Soviet Jnion (Dolan, 

1992). Recently, the disease has also been reported in West Africa (Jrcquiet et al., 1994). It
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has been estimated that there are more than 250 million cattle across the globe at risk from 

tropical theileriosis (Tait and Hall, 1990). With such a large number of animals at risk 

making an assessment of economic damage is very difficult. Furthermore, cattle recovering 

from infection suffer weight loss, fertility problems and diminished milk yields. Another 

aspect of the disease is that the risk of contraction is such that it prevents the introduction of 

high-yielding cattle, which are a fully susceptible stock, to endemic areas where preventive 

controls are not practised. This is of major economic importance as it prevents genetic 

improvement to livestock productivity

The distribution and seasonal occurrence of T. annulata is restricted by the 

geographical location of the transmission vector, ixodid ticks of the Hyalomma species and 

depending on the geographical location, different species of Hyalomma are important with 

respect to transmission. Susceptible domestic cattle (Bos taurus and Bos indicus) and Asian 

water buffalo (Bubalus bubalis) in areas where the tick vector occurs are, in principle, at 

risk of contracting tropical theilerosis. Two important vectors of T.annulata, are H. 

anatolicum anatolicum and H.detritum occurring in Southern Europe, Northern Africa, 

Asia, parts of the former Soviet Union and the Middle East (Jongejan and Uilenberg, 1994). 

Developing ticks require shelter, warmth and a relatively humid climate and, as transfer of 

the parasite to the bovine coincides with feeding activity of the tick following moulting, 

outbreaks of Theileriosis can be seasonally dependent. Thus, the majority of outbreaks in 

North Africa occur from June to September (Flach et al., 1994; Bouattour et al., 1994), and 

in India outbreaks are generally reported during the rainy summer months (Grewal et al.,

1994). In general, sporadic cases are encountered in various geographical regions all year 

round (Pipano, 1989).

1.3 The Life Cycle of T.annulata

All apicomplexan parasites undergo a progressive series of differentiation events 

which together comprise the Life-Cycle of the parasite. The parasite is dependent on the 

differentiation from one stage to the next, as these events are necessary for the generation of 

forms with specific function. In general, apicomplexan differentiation is either followed by 

a phase of asexual replication or the generation of a non-dividing invasive phase. As 

apicomplexans are unicellular organisms of haploid genotype, the generation of the sexual
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phase of the Life-Cycle can also be considered to be a differentiation event. It can be seen 

that stage differentiation is a fundamental event of apicomplexan parasite biology. 

T.annulata has a complicated Life-Cycle generated by a progressive series of differentiation 

events within the vertebrate and invertebrate hosts. There are three main phases o f asexual 

multiplication; sporogony, after sexual recombination in the vertebrate host, and schizogony 

and merogony in the vertebrate host. A simplified diagrammatic form of the Life-Cycle is 

shown in Figure 1.1.

1.3.1 Bovine Host

Infection of the bovine host with T.annulata is initiated when sporozoites, contained 

within the salivary glands of the tick vector, are deposited during a blood meal. The 

sporozoites rapidly invade leukocytes (Jura et al., 1983), preferentially targeting cells 

displaying major histocompatibility complex (MHC) class II molecules; primarily B cells 

and monocytes/macrophages (Glass et al., 1989). Sporozoites gain entry into lymphocytes 

within 5-60 minutes of inoculation by receptor mediated endocytosis, and as many as 15 

sporozoites can be internalised within an individual leukocyte (Jura et al., 1983). 

Sporozoite-lymphocyte recognition and binding is a temperature independent event which 

can occur at 0-2°C; all the subsequent stages are temperature dependent (Jura, 1984; Shaw et 

al, 1991). Entry of the sporozoite occurs in a sequential manner with the internalisation step 

being characterised by "zippering" of the host cell and parasite membranes (Fawcett et al., 

1982). Subsequent to invasion, the apposed membranes of the host and parasite separate and 

at the same time the rhoptries and microspheres discharge their contents (Fawcett et al., 

1982; Shaw et al., 1991). A thick layer of fuzzy material of 10-15 nm then appears on the 

surface of the sporozoite (Shaw et al., 1991; Fawcett et al., 1982) and the hosts cell 

membrane is broken down. The parasite finally comes to lie in the cytoplasm of the host 

cell, usually close to the Golgi apparatus, and its surface is surrounded by an orderly array 

which closely associates with the thick layer of fuzzy material (Fawcett et al., 1984, Fawcett 

et al., 1982; Shaw et al., 1991).

Following invasion, the sporozoite develops into a uninucleate trophozoite, a 

transient feeding stage (Jura et al., 1983). The trophozoite enlarges by ingesting the 

cytoplasm of the host cell and undergoes a series of nuclear divisions to produce the

4





multinucleated macroschizont stage. The schizont syncitium contains on average, 15-20 

nuclei and is associated with host cell immortalization. Induction of host cell blastogenesis 

which leads to the rapid clonal expansion of parasitised cells and, in vitro, synchronous 

division of host and parasite, is achieved through attachment of the parasite to the host 

spindle apparatus in prophase and metaphase (Carrington et al., 1995). During this period, 

the DNA is replicated and daughter parasites are separated by cytokinesis of the host cell 

during anaphase (Irvin, et al., 1982). Division of the parasite is sometimes unequal, 

resulting in cells that may have lost the parasite which cease to divide after a few days. The 

process of synchronous division of host cell and macroschizont is the first phase of asexual 

multiplication in the bovine host. Recently a cdc2-related kinase gene was isolated from 

both T.annulata and T.parva which probably functions in all dividing stages of the parasite 

and is likely to play an important role in the regulation of nuclear division (Kinnaird et al., 

1996).

During the macroschizont stage of the parasite’s life-cycle, it lies free within the host 

cell cytoplasm, surrounded by a plasma membrane with no obvious outer surface coat 

(Shaw and Tilney, 1992). The nuclei are surrounded by a typical nuclear envelope with 

nuclear pores. Parasite nuclei and mitochondria are scattered randomly throughout the 

schizont cytoplasm. Apart from numerous ribosomes and occasionally some small 

membrane-bounded vesicles, the schizont cytoplasm contains very few other organelles. No 

smooth or rough endoplasmic reticula or golgi apparatus have been observed in the 

parasite’s cytoplasm (Shaw and Tilney, 1992). Theileria differs from other related protozoa 

such as Toxoplasma and Plasmodium in that it is not retained within a parasitophorous 

vacuole (Mehlhom and Schein, 1984).

Later in the infection, after a finite number of cell divisions, enlarged 

macroschizonts undergo merogony, differentiating into microschizonts. This event is 

characterised by a series of structural and organisational changes within the schizont. These 

changes include the development of smooth and rough endoplasmic reticulum, and the 

formation of an external coat on the outer surface of the schizont plasma membrane which is 

found on the surface of mature merozoites. Nuclei migrate to the periphery of the schizont, 

by an unknown mechanism, and uninucleate merozoites start to form. Rhoptries appear in
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the schizont cytoplasm frequently in small clusters, associated with the schizont nuclei and 

fibrous structures. Ultimately the fibrous material connects the rhoptries and the nuclear 

envelope to a peg which inwardly projects from the schizont plasma membrane, and 

mitochondria become closely associated with the outer membrane of the nuclear envelope. 

Merozoites bud from the surface of the schizont in a synchronous manner, liberating 

themselves from the host by breaking down the host cell membrane (Shaw and Tilney, 

1992).

Upon release into the bloodstream, the merozoites rapidly enter erythrocytes and up 

to 90% of erythrocytes can become infected in extreme cases (Mehlhom and Schein, 1984). 

Very little is known about the process of erythrocyte invasion by merozoites but it has been 

suggested that this process is mediated by ligand receptor interactions as demonstrated in 

malaria (Kawamoto et al., 1990). More recently it has been proposed by Shaw and Tilney 

(1995) that merozoite invasion occurs via a similar process to that described for sporozoites 

(Shaw et al., 1991). Following invasion the erythrocyte membrane enveloping the merozoite 

is disintegrated and the rhoptry contents are discharged. The parasite lies free within the 

cytoplasm of the erythrocyte and, unlike the macroschizont, host cell microtubules do not 

associate with the surface of the merozoite. Two forms of piroplasms have been observed 

free within the erythrocyte matrix: a) spherical form and b) a slender comma shaped form 

(Mehlhorn and Schein, 1984). The frequency with which these two different forms are 

observed varies for different Theileria species. For example in T.annulata both forms occur 

in approximately equal numbers whereas in T.parva 80% of all piroplasms are comma 

shaped. The two forms are believed to have differing roles; the ovoid form representing 

gamonts which are pre-adapted for the generation of gametes in the gut of the tick, while the 

comma forms are thought to undergo further division (Mehlhom and Schein, 1984). 

Division of the comma form is thought to occur by binary fission and this nuclear division 

is associated with cellular division so no multi-nucleate schizont like stages can occur. 

Although true schizonts do not occur, in some species of Theileria four merozoites 

occasionally form a tetrad or "Maltese-cross" arrangement. Division of the merozoites often 

leads to the destruction of the host cell (Mehlhom and Schein, 1984). The merozoites 

released from the erythrocytes are identical to those released from schizont-infected 

lymphocytes, which has led to the suggestion that these forms could be responsible for the
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re-invasion of erythrocytes (Conrad et al., 1985). When a tick feeds on an infected host, 

piroplasms and infected erythrocytes are taken up and, thus transmission of parasite between 

host and vector occurs.

1.3.2 The Invertebrate Vector

Infected erythrocytes are lysed within the gut of the tick releasing the piroplasms 

which then undergo further development (Mehlhom and Schein, 1984). The piroplasms 

differentiate into a form known as ray bodies, which are morphologically similar to 

‘stranhlenkorper’ in Babesia (Schein, 1975), and spherical forms. This process is initiated 

when the piroplasms are released from their erythrocytes during lysis inside the intestine. 

The ray bodies produce uninucleated gamete-like stages which are considered to be 

microgamonts. In addition the spherical forms, which do not divide, are considered to be 

macrogametes. The haploid microgametes fuse with haploid macrogametes to form diploid 

zygotes (Gauer et al., 1995) which enters tick gut epithelial cells. This and the succeeding 

kinete are believed to be the only diploid stages during the entire Life-Cycle of the parasite. 

Morzaria et al., (1992) showed that recombinant parasites of mixed parental genotypes can 

be obtained from ticks fed on animals infected with two distinct parental stocks confirming 

sexual reproduction in T.parva. At this particular stage in the parasite Life-Cycle the 

Theileria species T.annulata and T.parva appear to diverge in their respective development. 

The zygotes of T.parva undergo a two-step meiosis in the gut epithelium of their vector tick 

(Gauer et al., 1995) which appears to be a step for amplifying the parasite in the host. 12 to 

30 days after feeding transformation of the stationary ovoid or spherical zygote is initiated 

leading to a club-shaped motile stage called a kinete. The kinete penetrates the gut epithelial 

cells of the tick as it migrates to the salivary glands via the haemolymph (Schein, 1975) 

where it remains dormant in the cytoplasm of the salivary gland cells. Since few kinete 

reveal diploid DNA contents in T.annulata, it seems likely that a postzygotic meiosis occurs 

after differentiation of zygotes into kinetes (Gauer et al., 1995). The two species of 

Theileria again show similarities in their development as the tick moults and re-attaches to a 

bovine host. An initial feeding phase is followed by a phase of intensive multiplication steps 

yielding thousands of small nuclei. The sporoblast then enlarges dramatically to give a 

multinucleate syncitium, and uninucleate sporozoites form by cytoplasmic fission (Fawcett



et al., 1982). The sporozoites are released into the salivary gland and infection of the bovine 

host then occurs during the next blood meal, completing the Life-Cycle of T.annulata.

Interestingly, Theileria parasites undergo a number of highly similar developmental 

processes during their Life-Cycle (Shaw and Tilney, 1992). There is a remarkable similarity 

in the structure of the merozoites, sporozoites and piroplasms and in the process of their 

formation. Additionally invasion of the bovine host cells by T.parva sporozoites and 

merozoites occurs in a morphologically similar manner. Shaw and Tilney (1992) suggest 

that these repeating patterns in the life-cycle of Theileria are unlikely to have evolved 

independently, and they put forward a hypothesis that a developmental pattern of 

cellularisation was evolved only once, but has been used repeatedly by the parasite 

throughout its life-cycle. Therefore, it seems logical to conclude that the parasite may use 

the same cassette of genes to control these processes. It is possible to speculate that a 

replacement of only a few genes within each stage could account for minor differences in 

each process. For example, sporozoites and merozoites would only need to change the 

molecular composition of their surface coat to account for the selective invasion of different 

host cells. Similarly, the only difference between sporozoites and merozoites is the presence 

of microspheres in the sporozoite. Thus, Shaw and Tilney (1997) have proposed that the 

parasite may undergo a number of seemingly disparate developmental processes numerous 

times throughout its Life-Cycle without the requirement of an extensive genome.

1.4 Tropical Theileriosis

1.4.1 Pathogenesis

The severity of the disease in cattle infected with T.annulata is dependent upon the 

susceptibility of an animal, the virulence of the parasite strain and the number of sporozoites 

inoculated. Clinical symptoms of the disease are identified with the destruction of lymphoid 

cells as a result of the intracellular schizont differentiating into merozoites and haemolytic 

anaemia associated with merozoite division and differentiation of merozoites to the 

piroplasm stage within the erythrocyte.

The first symptoms of an acute infection are detectable following an incubation 

period of between 9 and 24 days after inoculation. The infected animal suffers a massive
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proliferation of parasitized lymphocytes, causing swelling of the lymph nodes draining the 

sites of infection. A high fever of 41°C develops, which usually stays until recovery or 

death, coinciding with the onset of hypertrophy of parasitized and non-parasitized cells in 

the lymphoid tissues. Schizonts are detected in the bloodstream, liver and spleen of the 

animal. The animal loses conditioning and is anorexic. Additional clinical signs include 

diarrhoea, accelerated pulse and breathing, swelling of the eyelids, drooling from the mouth, 

a reduction of milk production, and a cessation of rumination (Barnett, 1977). During the 

course of the infection there is a progressive leucocytosis, followed by leucopenia (Preston 

et al., 1992) and the red blood count also drops nd associated haemolytic anaemia. It has 

been demonstrated that up to 90% of erythrocytes can be infected by the parasites, and 

although direct lysis of infected cells by the parasite adds to the anaemia, it is believed that 

the removal of infected erythrocytes by the spleen and liver is the direct cause (Hooshmand- 

Rad, 1976; Barnett, 1977; Uilenberg, 1981). If the erythrocyte count recovers and the 

animal continues to feed then it has a good chance of recovery; if the erythrocyte count 

remains low, however, and leads to severe anaemia, the animal will die approximately 20 

days post infection.

Until recently is has not been clear how disease progression is related to parasite 

development. It has been proposed that Theileria infection of leukocyte cells induces the 

production of novel metalloproteinases, including matrix metalloproteinases (Baylis et al,

1995). The matrix metalloproteinases are thought to play an important role in the formation 

of ulcerative lesions of the abomasum and cause digestion of connective tissue. Matrix 

metalloproteinases also activate the production of tumour necrosis factor alpha (TNF-a) 

(Adamson and Hall 1996) which has been shown to induce cachexia, pyrexia and 

leucopenia, symptoms similar to those observed in tropical theilerosis (Gearing et al., 1995, 

Beutler and Cerami, 1986, Ulich et al., 1987). Further induction of TNF-a synthesis in 

macrophages and interferon-y (IFN-y) in lymphocytes has been demonstrated in vitro by 

T.annulata macroschizont infected cells producing IFN-a (Preston et al., 1993). Therefore, 

T.annulata infection may stimulate the production of metalloproteinases and a cascade of 

cytokine production through several pathways, and the action of these mediators could 

account for some of the clinical symptoms and tissue destruction associated with tropical 

theilerosis demonstrating a link between the pathogenicity of the parasite and the immune
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response of the host. Furthermore, cytokines may not only underlie certain clinical 

symptoms due to IFN-y induced synthesis of macrophage-derived NO, but could also induce 

the pathological lesions associated with NO production under other circumstances (Visser et 

al, 1995).

The simplest test for diagnosis of tropical theileriosis is by examination of Giemsa 

stained blood or tissue smears for macroschizonts and/or piroplasms. Serological tests such 

as indirect fluorescent antibody test (IFAT) and enzyme-linked immunosorbent assay 

(ELISA) have been developed to detect circulating antibodies and production or release of 

parasite antigens, respectively. IF AT is limited as it is not suitable for large-scale surveys. 

An ELISA was developed by Kachani et al., (1992) using sera from immunised cattle which 

exhibits low non-specific detection by normal sera and high post-infection values. The assay 

has provided an opportunity for epidemiological studies of T. annulata infection in Morocco 

(Kachani et al, 1994). The most sensitive method for the detection of the parasite in carrier 

cattle, recently developed by d'Oliveira et al, (1995), is the use of polymerase chain 

reaction (PCR) for specific amplification of T.annulata DNA from blood samples. Species 

specific primers for the TamSl major merozoite surface antigen were used to amplify a 

372bp fragment specific to T.annulata which was successfully able to amplify DNA from 

stocks of T.annulata from distinct geographic regions. This assay has been shown to 

specifically diagnose T.annulata at parasitaemias as low as 0.00005% and provides an 

opportunity to determine whether animals that are translocated from regions where 

theileriosis is endemic are carries of T.annulata. The sensitivity of the PCR will also 

facilitate monitoring of animals after vaccination with attenuated macroschizont infected 

cell cultures to determine whether vaccinated animals become carriers of T.annulata and 

thus a source of infection for Hyalomma ticks. DNA probes have also been used to detect 

T.annulata infection and have provided an opportunity to study genetic polymorphism of 

parasite populations within Tunisia (Ben-Miled et al, 1994).

1.4.2 The Immune Response to T.annulata Infection

Following each Life-Cycle differentiation event within an infected animal, the host’s 

immune system is exposed to a different set of antigenic determinants. The bovine immune 

response against T.annulata can be divided into humoral and cell mediated responses. Like
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many protozoan pathogens cattle recovering from the infection develop immunity to further 

challenge. This immunity develops irrespective of the source of primary infection, whether 

from feeding ticks or artificial inoculation, with or without drug treatment, or from a 

vaccine derived from attenuated macroschizont infected cells cultured in vitro. Immunity 

lasts three years in the absence of further challenge. A complete understanding of the basis 

of immunity generated by a recovered animal would greatly aid in generating a rational 

approach to vaccine design. However, it seems from vaccine work that reasonable cross 

protection can be gained from attenuated vaccine.

Parasites can evade the immune system of the vertebrate host by several techniques 

(Borst, 1991); (1) invading cells or hiding in sites in the body where the immune system is 

less effective, (2) mimicry of host proteins, (3) suppressing the immune system of the host 

and (4) antigenic polymorphism. All of these mechanisms have been observed to have been 

used by the Theileria parasite during the life-cycle stages in the vertebrate host. The 

importance of antigenic polymorphism is discussed in section 1.4.8.3.

1.4.3 Cell Mediated Response

Animals recovering from a sporozoite challenge have been shown to generate cytotoxic 

T lymphocytes, which in vitro have been shown to lyse infected lymphoblasts (Singh et al., 

1977; Preston et al., 1983). Cattle, upon a primary challenge of T.annulata, generate two 

peaks of cytotoxic cells (Preston et al., 1983). The first peak which is restricted to target 

cells with BoLa antigens (bovine MHC Class 1 antigens) to the infected host and occurred 

two weeks post infection. These cells were shown to lyse schizont infected cells and were 

comprised of BoLA restricted cells, therefore, it was postulated that they were cytotoxic T 

cells. Cytotoxic cells were detected in the circulation and lymph nodes of cattle destined to 

recover. The second cell population, cytotoxic for schizont infected cells appeared four 

weeks post-challenge and manifested itself as both BoLA restricted and non-restricted 

cytotoxicity. The non-restricted cytotoxic response was interpreted as evidence for the 

activation of natural killer cells.

Investigations into the cell mediated immune response against T.annulata infection 

suggests that the macroschizont infected leukocyte is the main target. Macroschizont
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infected cells have been shown to have increased MHC class II expression, allowing the 

infected cell to act as an antigen-presenting cell (APC), for CD4+ T cells in vitro (Glass et 

al, 1990). In addition, infected cells in vitro have been shown to activate T cells, 

irrespective of their memory status (Campbell et al., 1995). Therefore, infected cells may 

have an inherent ability to activate T cells, but inappropriate activation may prevent the host 

from mounting an effective immune response. Further avoidance of the hosts immune 

system may be achieved by the modification of BoLA class I antigens on the cell surface of 

T.annulata transformed cells (Oliver and Williams, 1996) since infection is controlled by 

the MHC class I restricted cytotoxic T cell killing of the infected cells.

In addition to cytotoxic T cell responses, work by Preston and co-workers has shown 

that cytokines and macrophage-mediated cytostasis of macroschizont-infected cells is a 

component of the immune response of cattle infected with T.annulata (Preston and Brown 

1988; Preston et al., 1993). In vitro studies have demonstrated that macroschizont infected 

cells produce TNF-a, and induce TNF-a synthesis in macrophages and interferon-y (IFN- 

y) in lymphocytes (Preston et al., 1993). Also bovine recombinant TNF-a and INF-y can 

suppress the transformation of cells infected with trophozoites into macroschizont-infected 

cells in vitro (Preston et al., 1992). Therefore, in addition to cytotoxcity activation of 

macrophages, cytokines may prevent infection from developing by inhibiting schizont 

formation. So to summarise, there is evidence for a number of mechanisms which function 

at cell mediated and the humoral level.

A recent study by Campbell et al., (1995) demonstrated that T.annulata-infected 

APC have the potential to evade the hosts immune system by supplying sufficient signals in 

vitro to activate T cells irrespective of specificity. Importantly, a similar phenomenon is 

seen in vivo with the rapid appearance of activated T cells within the draining lymph node. 

Subsequently T cell priming in recognised sites of the lymph node does not occur. The 

alteration of T cell function is most dramatically manifested by the loss of the T cell- 

dependent compartments of germinal centres, followed by complete germinal centre 

breakdown.
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1.4.4 Humoral Response

Humoral responses to parasite infection have been observed but they do not appear 

to play a primary role in the development of a protective immune response. Antibodies are 

consistently observed reacting against the sporozoite, macroschizont and piroplasm stage of 

the parasite, but, unfortunately sera do not appear to recognise the surface of infected 

leukocytes in T.annulata (Shiels et al., 1989) or T.parva (Creemers, 1982; Duffus et al., 

1978), or the surface of infected erythrocytes (Hall, 1988). Reaction of sera to the surface of 

an infected cell would be the first step of antibody mediated cellular lysis. In addition, 

experiments using lysates or inactivated schizont material to immunise animals have not 

induced a protective response to T.annulata.

Immunity against sporozoites is not essential for a protective immune response since 

cattle infected with attenuated macroschizont-infected cell lines develop a protective 

immune response which does not recognise the sporozoite stage (Brown, 1990). However, a 

protective humoral response has been detected against the sporozoite stage of the parasite. 

Serum from immune cattle has been shown in vitro to be capable of neutralising sporozoite 

infectivity of lymphocytes (Gray and Brown, 1981) and, after successive sporozoite 

challenges, the neutralising activity has been shown to increase (Preston and Brown, 1985). 

Subsequently, monoclonal antibodies were raised against surface molecules from 

sporozoites and some of these were found to prevent sporozoite infection of lymphocytes in 

vitro (Williamson et al., 1989). Two of the antigens recognised were, SPAG-1 (sporozoite 

antigenl) and SPAG-2 (sporozoite antigen-2). Western blot analysis of a monoclonal 

antibody raised against SPAG-1 recognised a series of polypeptides in sporozoite extracts 

which are thought to be the result of the proteolytic processing of a single gene product. The 

gene encoding SPAG-1 was found to contain regions with a high degree of homology to a 

bovine elastin repeat sequence (Hall et al., 1992) and it has since been proposed that 

sporozoites may be using mimicry to bind to the bovine elastin receptors as a means of 

invading cells. However, this region has since been found to be highly polymorphic (Katzer 

et al, 1994). Additionally, in vitro sporozoite infection, targets elastin receptor positive and 

negative cells populations with an equal frequency, thus making the elastin receptor an 

unlikely binding ligand for the parasite (Campbell et al., 1994). This molecule, though, is a 

candidate for inclusion in a sub-unit vaccine and has been analysed to determine the
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neutralising B-cell epitopes which lie towards the C-terminus (Boulter et al., 1994; as 

described in section 1.4.8.3).

Similarly, immune responses against T.parva have also been found to be directed 

against the sporozoite stage. So far only humoral factors capable of neutralising sporozoite 

infectivity in vitro have been identified (Musoke et al., 1982; Dobbelaere et al., 1984; 

Musoke et al., 1984) These immune responses in T.parva targetp67 (Nene et al., 1992) and 

the 104kDa microneme-rhoptry protein (lams et al., 1990). The genes encoding these 

proteins have been cloned and sequenced. Immunisation trials using recombinant p67 

resulted in the protection of the majority of immunised cattle (Musoke et al., 1992; Musoke 

et al., 1993), indicating that a humoral immune response in cattle against the sporozoite 

could be protective in vivo, although the neutralisation titre does not correlate with 

protection (described in section 1.4.8.3).

A humoral response to merozoites and piroplasms has been found (Shiels et al., 

1989) and antigens recognised by the immune serum seem to originate from the merozoite 

stage (Glascodine et al., 1990). An immune response to this stage may act primarily to 

block merozoite invasion of erythrocytes, reducing symptoms associated with the piroplasm 

stage of the Life-Cycle. This would possibly prevent transfer of the parasite to the tick, and 

disrupt the formation of a succeeding Life-Cycle generation. The recent ability to produce 

merozoites in culture from macroschizont-infected lymphocytes incubated at 41°C 

(Glascodine et al., 1990) has provided a tool for future investigations into the role of anti- 

merozoite antibodies in protection. In addition, a highly abundant 30kDa antigen was 

identified on the surface of T.annulata (Ankara stock) merozoites (Glascodine, 1990). This 

molecule is a major polypeptide of merozoites and piroplasms and is strongly recognised by 

immune sera from cattle infected with T.annulata. It has a variable molecular mass in 

different parasite lines of clonal origin (Dickson and Shiels, 1993). The gene encoding the 

30kDa molecule has been cloned and sequenced. Recent studies on the coding sequence 

have highlighted significant variability within the protein coding sequence between amino 

acids 40-60 which also corresponds to the sequence where the majority of N-linked putative 

glycosylation sites are predicted (Shiels et al., 1995). The molecule has been shown to be 

glycosylated from periodic acid schiffs and the removal of glycosylation has also been
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shown to correspond to a loss of species specific reactivity of bovine immune serum 

(Dickson and Shiels, 1993; Kawazu et al., 1992). Therefore, secondary modifications play a 

role in the diversity of this molecule. The conservation of this molecule throughout the 

species of Theileria suggests that this molecule has an important functional role (Shiels et 

al, 1995). The role played by this antigen with the bovine immune system is currently 

being investigated and work by Tanka, et al., (1990) on the antigen in T.sergenti has shown 

that passive transfer of a monoclonal antibody directed against the molecule resulted in 

protection of calves against challenge by sporozoites.

1.4.5 Control Measures

Three main types of control for tropical theileriosis are available: chemotherapy, 

vector control, and vaccination. These measures in recent years have been reviewed by a 

number of authors; Brown (1990), Dolan (1989) and Tait and Hall (1990).

1.4.6 Treatment of Tropical Theileriosis

Although very effective, chemotherapy has been used sparingly for the treatment of 

T.annulata infection. This is mainly due to high costs of diagnosis and treatment. The most 

effective therapeutic drugs for the treatment of theileriosis are analogues of the 

naphthoquinones, menoctone (McHardy et al., 1976), parvaquone (Gill et al, 1981) and 

buparvaquone (McHardy et al, 1985). These drugs specifically act against T.annulata by 

targeting the electron transport chain of the parasite, destroying macroschizonts within the 

leukocyte, piroplasms within erythrocytes (McHardy et al., 1983; McHardy et al., 1985). 

Halofuginone, parvaquone and buparvaquone were found to be active against both 

T.annulata and T.parva infection in cattle. The latter would seem to be the more effective 

treatment for T.annulata infection and like parvaquone, it has no significant side effects 

(Hashemi-fesharki, 1992). Halofuginone treatment of infected animals is toxic at levels 

close to the therapeutic dose (Schein and Voigt, 1979).

1.4.7 Vector Control

Tick infestations are currently controlled either by spraying or dipping cattle in 

acaricides such as butocarb or amitraz, once a week. The rationale for this treatment being 

that the acaricides residues are sufficient for about four days and sporozoite transmission
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only occurs three days after tick attachment (Urquhart et al., 1987). Also, acaricide 

treatment has the potential for controlling other tick borne diseases e.g. heartwater and 

babesiosis. In areas where indigenous animals reside natural immunity results in a state 

where challenge and protection are in equilibrium (endemic stability), the strategy should be 

limited to prevent excessive numbers of ticks coupled to full protection (by drugs or 

vaccination) of introduced susceptible animals. In regions of endemic instability or where 

susceptible cattle are reared, interval treatment with acaricides remains an option. 

Unfortunately this strategy is limited by both excessive cost and the selection of resistant 

ticks through long term repeated application of acaracides (Wharton, 1976). In addition to 

their high cost, most acaricides are toxic, cause environmental pollution and leave residues 

in meat and milk (Drummond, 1976).

1.4.8 Vaccination

1.4.8.1 Infection and Treatment

The infection and treatment method of immunising an animal relies on infecting 

cattle with either a stabilate of virulent sporozoites or infected ticks, and subsequently 

treating the resulting infection with chemotherapeutic agents during the latent period. 

Initially, tetracyclines were used for this application but have been substituted by 

buparvaquone more recently. Treated animals suffer from reduced symptoms of the disease 

and develop solid immunity to homologous challenge. At present this is the only method to 

provide immunity against T.parva infection, since an attenuated macroschizont vaccine is 

not available (Morzaria and Nene, 1990). The infection and treatment method also has been 

used with success to immunise cattle against T.annulata (Gills et al., 1978, 1980) but, it is 

rarely used because it is more expensive than attenuated vaccines. In addition, infection and 

treatment may provide other potential problems such as the introduction of other pathogens, 

and for example, several parasite strains in a "cocktail" provided from the necessity of 

including cross protective immunity, could introduce parasite strains which were not already 

present in the region (Musisi, 1990).

1.4.8.2 Cell Culture Schizont Vaccine

Attenuated macroschizont infected cell lines are an efficient and widely used control 

measure against T.annulata infection. Cultivation in vitro of macroschizonts by Tsur (1945)
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served as the basis for developing a schizont vaccine. Continuous culture of macroschizont- 

infected cell lines for prolonged periods results in attenuation of virulence (pathogenicity) 

and is achieved between 30 and several hundred passages depending on the isolate (Pipano, 

1989). Inoculation of cattle with an attenuated cell line produces milder clinical symptoms 

within the animal and a lower parasitaemia. Usually, 106-107 infected cells are used per 

inoculation (Hall, 1988) and one immunisation is adequate to induce cross-protective 

immunity, which is reinforced by subsequent tick challenges within the field. However, 

Friesian cattle usually require a second immunisation from a heterologous schizont stock of 

a lower passage culture to provide full protection (Pipano, 1981). Vaccinated cattle show 

good protection against natural infections and heterologous challenge (Gill et al., 1980; 

Hashemi-Fesharki, 1988). However, the immunity conferred by these vaccines often does 

not prevent the formation of piroplasms in the bloodstream of the animal, leading to the 

development of a carrier state by the host. Piroplasms arise either through new infections by 

feeding ticks or by a limited number of inoculated macroschizont cells differentiating to 

merozoites (Pipano, 1992).

Attenuated macroschizont vaccines have been developed in Israel (Pipano, 1981), 

Iran (Hashemi-Fesharki, 1988), India (Grewal, 1994) Kazakhstan (Sabanshiev, 1994) and 

China (Wenshun and Hong, 1994). So far, it has not been possible to develop an attenuated 

vaccine for T.parva, which has been postulated to be due to an inability to transfer schizonts 

into lymphocytes of the host recipient (Dolan, 1989). This could account for the suggestion 

by Musisi (1990) that the BoLA mis-match inhibits the development of immunity in 

T.parva but not in T.annulata. Unfortunately the application of an attenuated vaccine has a 

number of major drawbacks as postulated by Dolan (1989). These include a short shelf life, 

approximately 1 week at 20°C or 1 month at 4°C, the need for frozen transfer between 

laboratories and sites of immunisation, infection of immunised cattle with other pathogens, 

and the expense of testing and a long culture period for vaccine production. In addition, it is 

not clear whether attenuated cells can revert to virulent parasites following transmission 

through ticks.
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1.4.8.3 Recombinant Vaccines

Antigens from all stages in the Life-Cycle of T.parva and T.annulata are being 

investigated with a view to developing sub-unit vaccines against tropical theileriosis and 

East Coast fever. The aim for such vaccines is to induce cross-immunity to animals at a low 

cost, with a vaccine that is easy to administer and has a long shelf life. A recombinant 

vaccine would have none of the potential hazards of the other vaccines previously 

described. A number of potential antigens have been characterised for inclusion in a 

molecular vaccine including the sporozoite specific antigens, p67 from T.parva (Nene, et 

al., 1992) and SPAG-1 of T.annulata (Hall et al., 1992), and the 30kDa major merozoite 

surface antigen, TamSl (Glascodine et al., 1990).

The sporozoite surface antigen SPAG-1 was identified by a monoclonal antibody 

which inhibited sporozoite penetration of bovine peripheral blood mononuclear cells in vitro 

(Williamson et al., 1989, see section 1.4.4). The SPAG-1 gene has since been isolated and 

sequenced (Hall et al, 1992), and has recently been demonstrated to have cross reactive 

epitopes with the p67 T.parva sporozoite antigen (Knight et al., 1996, Nene et al., 1992). 

The neutralising determinant on SPAG-1, recognised by the antibody which inhibited 

sporozoite penetration of host cells, was mapped to 16 amino acids which implicated the C- 

terminus of the protein as an immunologically relevant region that can be recognised by the 

bovine immune response (Boulter et al., 1994). Vaccine trials using the C-terminal fragment 

of SPAG-1, expressed as a fusion protein in the el loop of the hepatitis B core antigen, 

generated high antibody titres of neutralising antibodies in the animals immunised. Some 

marginal protection of the disease was achieved in this small-scale trial, as assessed by the 

severity of the disease. The clinical symptoms of the disease were delayed, macroschizont 

parasitosis was reduced and there was significant reductions in the level of macroschizonts 

in lymph node smears. In addition, there was a lower piroplasm parasitaemia. Therefore, the 

trend overall would appear to suggest that immunisation with the C-terminal fragment may 

be beneficial (Boulter et al., 1995).

Another sporozoite antigen recognised by a monoclonal antibody raised against 

T.annulata, which blocks invasion of sporozoites into host cells is SPAG-2. Western blot 

analysis of a monoclonal antibody against SPAG-2 recognised a series of polypeptides of
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molecular weights 150, 67, and 17-20kDa demonstrated that like SPAG-1, SPAG-2 is also 

processed (Knight, 1993). The gene encoding SPAG-2 was found to have no sequence 

homology with known genes when the gene banks were searched and, unlike SPAG-1, 

SPAG-2 is not exclusively expressed during the sporozoite stage but also during the 

macroschizont stage as shown by Northern blot analysis (Knight, 1993). Unfortunately, 

vaccination trials using part of the SPAG-2 antigen did not result in any detection of 

protection (Knight, personal communication).

The T.parva sporozoite antigen p67, a gene related to SPAG-1, has recently been 

used in vaccination trials. Immunisation with recombinant p67  induced neutralising 

antibodies and protected six of the nine animals challenged with sporozoites (Musoke et al, 

1992; see section 1.4.4). Direct synthesis of p67 in insect cells has recently been used to 

allow putative post-translation modification events to occur in an effort to increase the level 

of immunity induced by p67. Unfortunately, it was concluded that the production of 

recombinant p67 from insect cells was not a significant advantage over recombinant p67 

expressed in E.coli. Thus it is unclear whether post-translational modification was occurring 

or whether it is relevant to immunity. Efforts are currently being made to improve the 

immunisation regime (Nene et al., 1995). Some of the trials described above indicate that 

sporozoite antigens may induce protective immunity, however, that such a molecule should 

be capable of exhibiting protection alone is to some extent counter intuitive given that 

evidence suggests that sporozoites only exist free in the circulation for probably no more 

than 10 minutes (Fawcett et al., 1982b). The subsequent severity of the disease is dependent 

on the dose of sporozoites (Radley et al., 1974), indicating that achieving a high rate of 

sporozoite neutralisation should result in an effectively low dose and hence a less severe 

disease. To achieve a total elimination of sporozoites is probably unrealistic and thus it 

appears that a sub-unit vaccine containing antigens from all parasite life-cycle stages might 

be more effective.

Evidence from several studies have shown that immunity to theileriosis is mediated 

by cytotoxic cells (Eugui and Emery, 1981; Cox, 1982; Preston et al., 1983) and it is 

thought that these recognise 77zez7m'a-associated antigens on the surface of the infected 

lymphocyte (Pearson et al., 1979; Zinkernagel, 1979). Shiels et al., (1986) provided
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evidence that monoclonal antibodies, for example 4H5, recognise infection-associated 

epitopes present on the surface of a cell parasitized with Theileria and that such antibodies 

could mediate complement lysis of the infected cells (Preston et al., 1986). Attempts to 

establish a direct correlation between parasite infection and the induction of the antigen 

recognised by 4H5 have as yet been inconclusive (Dando, thesis 1997). However, it is 

believed that the antigen which 4H5 recognises is host derived and expression of this 

antigen could involve subtle modifications of host self molecules. Only definitive 

identification of the antigen that is recognised by 4H5 will resolve this hypothesis. 

Therefore, it is possible that the antigens which are involved in the immunity to theileriosis 

are either closely associated with self molecules or involved in subtle modifications of the 

latter (Creemers, 1982). An infection-specific cell surface antigen in the purified form may 

have the ability to immunise cattle.

The merozoite stage is, like the sporozoite, invasive and also a potential target for a 

protective immune response. The most abundant and immunodominant antigen on the 

surface of the merozoite of T.annulata is a 30kDa surface antigen which is conserved 

throughout all species of Theileria analysed to date (Glascodine et al., 1990; Kachani et al., 

1992; Dickson and Shiels, 1993). Recently, allelic forms of TamSl (TamSl-l and TamSl-2) 

which encode the 30- and 32kDa major merozoite antigens of T.annulata respectively, were 

expressed in a Salmonella typhimurium aroA vaccine strain and Esherichia coli for 

inclusion in a sub-unit vaccine (d'Oliveira et al., 1996). Preliminary immunisation trials 

with the recombinant antigens indicate that there may be some protection against challenge 

(d'Oliveiria, et al., 1997).

Polymorphism has been well documented in Theileria and needs to be addressed 

during the rational design of a multi-subunit recombinant vaccine against Theileria 

infection. When a molecule is considered for inclusion in a sub-unit vaccine it is essential to 

understand the degree and nature of variation in its structure. Ideally the aim is to identify 

an immunologically important region which is not polymorphic and will induce immune 

responses cross-protective against different strains of the parasite.
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Initial evidence for strain variation of T.annulata was observed during the 

vaccination of calves by the infection and treatment method. It was demonstrated that calves 

vaccinated by this method were protected against homologous challenges but were not 

protected by heterologous challenge (Gill et al., 1990), indicating the existence of different 

parasite strains from distinct geographical regions. Variation of geographically distinct 

stocks in T.parva, were characterised by raising monoclonal antibodies against different 

stocks. Monoclonal antibodies raised in this way were shown to be specific for certain 

T.parva strains demonstrating polymorphism between stocks (Minami et al., 1983). 

Subsequently monoclonal antibodies were raised which demonstrated variation in 

T.annulata strains allowing strain typing (Shiels et al., 1986). Variation between Theileria 

stocks has been characterised by monoclonal antibodies raised against macroschizonts and 

piroplasms (Minami et al., 1983, Shiels et al., 1986, Dickson and Shiels, 1993), 

demonstration of glucose phosphate isomerase polymorphisms (Melrose et al., 1984; Wilkie 

et al., 1986), DNA melting points between different parasite strains (Allsopp et al., 1988), 

ELISA and western blot analysis (Kawazu et al., 1992b), variations in restriction fragment 

length polymorphism (RFLP) patterns (Mozaria et al., 1990; Katzer et al., 1994, Ben Miled 

et al., 1994; Shiels et al., 1995), and characterisation of polymorphic strains using PCR 

(Ben Miled et al., 1994).

The underlying basis for the diversity of the immunodominant 30-32kDa T.annulata 

merozoite/piroplasm antigen is probably differential glycosylation. It has been shown by 

Shiels et al., (1995) that parasite stocks from different geographical regions can be 

characterised based on their TamSl, EcoRI RFLP profile. Sequence analysis of homologous 

genes in other species of Theileria have shown that there is a significant variability within a 

specific section of the coding region (amino acids 50-60) of the TamSl gene. This variable 

sequence was located in the region of the molecule where the majority of N-linked putative 

glycosylation sites were predicted and the molecule is known to be glycosylated from 

periodic acid shift staining (Dickson and Shiels, 1993). In addition, periodate treatment 

experiments resulted in the removal of species specific reactivity of bovine immune serum 

when tested against recombinant antigens suggesting that secondary modifications play a 

role in diversity. Detailed characterisation of the structure and immunogenicity of the 

secondary modification have not been achieved to date, and the possibility that the amino
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acid sequence contributes to the antigenic diversity via primary or secondary structure has 

not been conclusively ruled out.

Further indications of polymorphism at the protein level were obtained by SDS- 

PAGE. The T.parva polymorphic immunodominant macroschizont antigen (PIM) was 

shown to have a size polymorphism (Toye et al, 1991). Subsequently, similar size 

polymorphisms were observed in the T.parva immunodominant schizont surface antigen 

from different stocks using 2 dimensional SDS-PAGE followed by western blotting 

(Sugimoto et al, 1992). This antigen is probably the same as PIM.

Polymorphism has also been detected in the SPAG-1 molecule in T.annulata. 

Findings by Katzer et al, (1994) have shown that the C-terminal half of SPAG-1 is the most 

conserved region of the molecule and, interestingly, the N-terminus is also reasonably well 

conserved. It is possible that this conservation of sequence could be maintained for a 

functional purpose such as host cell invasion. Polymorphism is greatest between residues 

213 and 502 in the second quarter of the molecule and is most extensive between amino 

acids 285 and 369. The variation is due to multiple gap/insertion and amino acid 

substitutions.

Within the context of vaccine development based on recombinant antigenic 

determinants, the definition of constant and variable regions will assume more relevance 

when more information about immunodominant molecules in Theileria is acquired. Ideally, 

a recombinant vaccine would be based on protective T-cell or B-cell epitopes which are 

identical for all Theileria species. However, polymorphism in Theileria has been well 

documented and needs to be considered during the rational design of an effective sub-unit 

vaccine. Therefore, when a molecule is considered for inclusion in a sub-unit vaccine it will 

be essential to understand the degree and nature of variation in its structure. Ultimately, it is 

likely that a sub-unit recombinant vaccine consisting of engineered antigens from 

sporozoites, schizonts as well as from merozoites/piroplasms will be necessary to induce 

protection against Theileria infection, initiated through the bite of a tick. Therefore, further 

work is necessary to identify schizont antigens which induce an immune response, and to

23



clarify immunologically important regions within known sporozoite and 

merozoite/piroplasm antigens.

1.5 Stage Differentiation in Protozoan Parasites

In general, differentiation from one life-cycle stage to another is fundamental to the 

biology of protozoan parasites and facilitates the expansion within and transmission 

between host and vector. Unlike somatic differentiation in multi-cellular eukaryotic 

systems, terminal differentiation does not take place. Instead the protozoan parasite cycles 

through a number of distinct life-cycle stages, one of which being the formation of sexual 

forms. One way to view stage differentiation in protozoa is to consider it as the net result of 

alterations to the control of gene expression. This in turn results in the production or shut 

down of polypeptides with metabolic or structural functions. Therefore, the signals which 

initiate a parasite to transform must ultimately exert their effect by altering the factors which 

determine the expression status of a particular set of genes, but how this occurs in response 

to changing extracellular environments encountered during the parasite Life-Cycle is 

unknown. Studies on developmental and cellular differentiation in other eukaryotic systems 

provide some clues to these events. Thus, the differential state of a cell during lineage 

development is probably determined by a hierarchy of regulatory factors, which control 

themselves by autoregulation, and control a number of target genes (Serfling, 1989). 

Precedents for several types of mechanisms exist, including homeotic regulation in 

Drosophila (McGinnis and Krumlauf, 1992) and sex determination in Drosophila and 

C.elegans (Hodgkin, 1990). Maintaining the level of gene expression via autoregulation can 

determine a set cellular state or in the case of the parasite a particular Life-Cycle stage. In 

order to move from this status, therefore, a differentiation signal must be transduced into 

altering the autoregulatory networks of the preceding Life-Cycle stage into those of the next 

programmed stage. A variety of signals have been shown to induce differentiation of 

protozoan parasites. Changes in temperature (Hulliger, 1965; Soete et al., 1994; Van der 

Ploeg, 1985), pH (Soete et al, 1994; Ziberstein et al, 1991), growth to stationary phase 

(Vickerman, 1985; Sachs and Perkins, 1984, 1985), addition of drugs (De Gee et al, 1994) 

and intermediates of the TCA cycle (Brun and Schonenberger, 1981) have all been 

implicated in triggering differentiation of one Life-Cycle stage to another. An alternative to 

autoregulation is that cells receive a constant stimulus which keeps turned on particular
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regulators of gene expression. When the signal is removed or a new signal comes on then 

differentiation would occur.

It is unclear how these signals initiate differentiation or if there is any mechanism 

which is common to them directly. However, several models have been proposed for the 

modulation of differentiation by alterations to the extracellular environment. It has been 

suggested that in some instances the signal to differentiate is an exogenous factor produced 

by the parasite in order to prevent life-threatening parasitaemia. In Trypanosoma brucei, 

differentiation from long-slender to the short-stumpy form has been proposed, based upon 

in vitro studies on cultivation of the parasite, to be induced by the production of a factor 

(stumpy initiation factor) at a certain population density of long slender blood stream forms 

(Hesse at al., 1995; Giffin and McCann, 1989; Seed and Sechelski, 1989; 1992; Pays et al.,

1993). It has been proposed that trypanosomes may constantly produce this factor, but only 

above a certain threshold does it induce the differentiation event. Therefore, the 

concentration of such a factor would be low as long as the population density of the parasite 

was low, allowing the establishment of parasitaemia before reaching a density which 

induces differentiation and prepares the parasite for transmission to the insect vector as the 

stumpy form is thought to ensure transmissibility (Hesse et al., 1995).

Additional studies of T. brucei have implicated alterations in the parasite 

environment to be the source of stress factors which induce differentiation from the 

bloodstream form (via the short stumpy) to the procyclic form, found within the insect 

vector. Analysis of gene expression during the transition between bloodstream and procyclic 

forms detected increased expression and activity of a serine-threonine kinase, termed Nrk, 

due to translational control ( Gale et al., 1994), and a transient increase of adenylate cyclase 

activity was detected (Rolin et al., 1993). The role of these two enzymatic activities in 

differentiation remains totally obscure. Expression of the variant surface glycoprotein 

(VSG) is terminated as soon as the bloodstream forms are placed in conditions which induce 

differentiation and in view of the rapidity of this phenomenon, it is thought that the very 

first event is cold-shocking-dependent blocking of RNA elongation (Alexandre et al., 1988; 

Pays et al., 1990). Secondly, within 2 hours of inducing differentiation, procyclin mRNA 

start to accumulate (Pays et al., 1993). Inhibition of protein synthesis within bloodstream
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forms has been shown to mimic these effects of differentiation (Dorn et al, 1991) and a 

transient inhibition of protein synthesis has actually been detected in vivo during 

differentiation (Bass et al, 1992). Taking all of theses observations together, Vanhamme 

and Pays (1995) have proposed the following model of events occurs upon cold shock, a 

temperature-dependent inhibition of protein synthesis causes the rapid loss of labile protein 

involved in transcription elongation on the VSG expression site as well as in the repression 

of procyclin mRNA synthesis. None of the regulatory factors proposed in this model have 

been identified to date.

Two major environmental factors, temperature and pH, play an important role in 

Leishmania species, triggering differentiation of promastigotes (insect form) to the 

intracellular amastigotes (mammalian form). Changes to both of these factors take place 

following inoculation of the host and phagocytosis by host macrophages (Chang and 

Dwyer, 1976). Elevation of temperature appears to be a major signal in the induction of 

morphological changes into amastigotes in New World Leishmania species (Darling and 

Bloon, 1990; Eperson and McMahon-Pratt, 1989; Pan, 1984). However, changing 

temperature only, is not sufficient in most other Leishmania species for generation of a 

long-term amastigote-like culture. A combination of temperature elevation and a decrease in 

pH facilitates the establishment of stable amastigote-like cultures, which displays not only 

the typical amastigote morphology but also markers for differentiation, including specific 

cysteine proteinases, resistance to complement lysis, and increased infectivity (Bates et al., 

1992; Joshi et al, 1993; Bates, 1993).

Temperature shifts are commonly found to induce parasite differentiation and the 

most striking example would seem to take place, not surprisingly, in parasites which 

transfer between a poikilothermic insect vector and a homeothermic mammalian host. 

Therefore, heat shock proteins (Hsps) must play important functions in parasitic and other 

organisms whose Life-Cycle imposes successive temperature shifts. It has been shown that 

these events can be associated with differential expression of heat shock proteins (Hsp) 

(Van der ploeg et al., 1985). In T.brucei, mRNA transcripts of Hsp 70 and Hsp 83 were 

found to be 25 to 100 times more abundant in bloodstream forms compared to the procyclic 

insect stage (Van der Ploeg et al, 1985). While a heat shock response in other eukaryotes

26



serves to shut down overall protein synthesis, elevated temperature, does not interfere with 

parasitic protozoa cell proliferation, indicating a different role for the heat shock response in 

these organisms. In Leishmania (Eperson and McMahon-Pratt, 1989) elevation of 

temperature appears to be significant stimulus for the induction of differentiation in vitro. 

However, heat shock proteins do not appear to play an active role in this response because 

as yet no direct correlation has been found between their expression and differentiation 

(Shapira, et al., 1988; Zilbertstein et al., 1991). It is conceivable that their expression is not 

strictly temperature-dependent, but rather stage-specific (Gerhards et al., 1994).

An important event in the pathogenesis of toxoplasmosis is the interconversion 

between bradyzoite and the tachyzoite stage within the human host. Tachyzoites, a rapidly 

dividing Life-Cycle stage, are involved in an acute infection and the differentiation of the 

tachyzoites to bradyzoites, a dormant stage, correlates with the onset of protective 

immunity. Bradyzoites are located within cysts and are able to reconvert into tachyzoites 

(Gross et al., 1996). However, the factors that influence either bradyzoite or reactivation of 

tachyzoites are unknown. Conversion from tachyzoite to bradyzoite is a gradual process 

with sequential expression of stage specific molecules and gradual morphological changes. 

Two possible models have been proposed concerning the correlation of host immunity and 

stage differentiation. Firstly, the host’s immune system could stimulate differentiation either 

by a spontaneous conversion of the parasite with subsequent immune system-driven 

selection, or the immune system or other factors induce stage conversion. Recently 

conducted experiments on differentiation in vitro have shown the conversion model to be 

the most likely hypothesis (Bohne et al., 1993; Soete et al., 1994). Several reliable and 

efficient methods have been reported for inducing the transformation of tachyzoite to 

bradyzoite including the absence of immune factors, metabolic, chemical or physical stress 

factors such as alkaline pH, sodium arsenite or heat shock (Soete et al., 1994). Similarly, 

Gazzinelli et al., (1993) have shown that IFN gamma is able to inhibit the multiplication of 

tachyzoites in vivo and induces encystation, possibly by means of NO which is known as an 

inhibitor of iron-sulphur proteins involved in mitochondrial respiration (Stamler et al., 

1992). Together with this plus data from Tomavo and Boothroyd (1995) and Bohne et al., 

(1994) suggests a connection between mitochondrial function and the differentiation of 

tachyzoites. Investigations using mitochondrial inhibitors demonstrated that inhibition of
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mitochondrial function induces differentiation to the bradyzoite in vitro. In addition, it has 

been observed that after invasion of T.gondii into the host cell, mitochondria are usually 

located around the parasitophorous vacuole, indicating that they might be important for 

providing energy for the replicating parasite (Bohne et al., 1994).

Differentiation of bradyzoites into tachyzoites occurs through an intermediate stage 

co-expressing bradyzoite and trachyzoite specific proteins, a stage which is also found 

during the transformation of tachyzoites into bradyzoites. The onset of differentiation has 

been defined by the expression of P30, the major surface protein of tachyzoite SAG-1 which 

is not expressed in bradyzoites, but occurs before parasite division, therefore, differentiation 

is not linked to division (Soete et al., 1993). This appears to be the opposite of tachyzoite 

differentiation where multiplication of parasites starts before the expression of bradyzoite- 

specific proteins. Also bradyzoite-tachyzoite interconversion is not synchronous within a 

cell culture or even within a parasitophorous vacuole (Darde et al., 1989; Soete et al., 1993). 

This could suggest that internal factors can play a role in differentiation whereas only 

external factors had been supposed so far.

After the invasion of the red blood cell of the vertebrate host, Plasmodium parasites 

develop either into asexual multiplying schizont or into sexual forms, the gametocytes 

responsible for parasite transmission. Therefore, a mechanism has evolved which enables 

the parasite cell to activate one of two mutually exclusive developmental programmes 

(Bruce et al., 1990). This mechanism must control expression of the appropriate stage- 

specific genes in the daughter cell, after the events of schizogony and merozoite invasion. 

The details of induction to differentiate into either form are still uncharacterised, however, 

commitment occurs in such away that each individual schizont produces progeny of 

merozoites which develop either into asexual or into sexual parasites. It has been postulated 

by Bruce et al., (1990) that commitment in P.falciparum to differentiate into either form is 

predetermined prior to invasion of the red blood cells, following a developmental choice 

which has occurred in the parental schizont.

Molecular studies into the progression of differentiation on P.falciparum and the 

rodent P.berghei have established lines which after prolonged periods of propagation lose
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the ability to differentiate into the sexual forms of the parasite. These include a block in the 

progression beyond morphological stage III of gametocyte maturation (Teklehaiamnot et 

al, 1987) and deficient production of male gametes (Vaidya et al., 1993). In several cases 

the loss of gametocyte production has been attributed to a deletion of chromosome 9 

(Forsyth et al., 1990; Janse et a l, 1992) and it has been postulated that that the terminal 

portion of chromosome 9 regulates an early step in the specialisation of the sexual cell. 

Other parasite sub-clones have been isolated which have lost the ability to produce 

gametocytes but maintain a full length chromosome 9 (Alano et al., 1995). Therefore, these 

mutants are probably blocked in an early stage of gametocytogenesis different from that of 

the lines previously discussed. It would appear that in Plasmodium, that the mechanism for 

sexual development can be affected in several different genetic and functional ways.

1.5.1 Stage differentiation in Theileria

A clinical symptom of tropical theileriosis is the onset of fever of (41°C), which 

develops early in infection and remains until recovery or death (Barnett, 1977). This 

observation led to the hypothesis that elevated temperature occurring during the course of an 

infection could provide the stimulus for differentiation from macroschizont to merozoite 

stage. Work by Hulliger et al., (1966) supported this hypothesis because it was shown that 

in vitro, differentiation could be induced by an elevation in culture temperature from 37°C 

to 41°C during a six day period. However, the exact nature of the part played by elevated 

temperature was unknown. In contrast in vivo studies carried out by Jarrett et al., (1969), did 

not find a correlation between the appearance of merozoites and the onset of fever. 

Indicating that the process controlling the switch to merozoite formation functions on the 

basis of time rather than temperature. The timing of the fever was shown to be determined 

by the initial inoculation to the animal but this was independent of the appearance of 

merozoites. These findings led to the hypothesis that parasite differentiation may occur after 

a set number of mitotic divisions of the macroschizont infected cell. This so-called mitotic 

clock theory was also suggested to be involved in higher eukaryotic differentiation (Temple 

and Raff, 1986). However, the timing of differentiation form macroschizont to merozoite 

was shown to be susceptible to changes in the growth factors supplementing in vitro culture 

(Bogler et al., 1990) and the correlation between division number and differentiation was 

lost. In a similar fashion as Theileria infected cell lines can undergo unlimited proliferation
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without differentiation when cultured in vitro at 37°C, suggesting that like higher eukaryotic 

cells, the mitotic clock hypothesis is too simplistic to explain merozoite differentiation.

The study of temperature induction of macroschizont differentiation to merozoite in 

Theileria has been greatly aided by the isolation of macroschizont infected cell-lines with 

either enhanced or diminished abilities to differentiate in vitro at 41°C (Shiels et al., 1992). 

Established Theileria infected cell lines cultured at 37°C in vitro undergo unlimited 

proliferation without differentiation. Exposure to an elevated temperature does not induce 

an immediate response, cells were cultured at 41°C for more than 24 hours before a 

proportion of the Theileria infected cells were induced to differentiate. Induction to 

differentiate in "enhanced" macroschizont infected cell-lines is characterised by an 

enlargement of the macroschizont and an increase in the rate of parasite nuclear division 

over the first two days at 41°C (Hulliger et al., 1966; Glascodine et al., 1990). This increase 

in parasite nuclear division is then coupled with a decrease in host cell division, and at a 

certain time point host cell division is completely inhibited. As the rate of host cell division 

is reduced, parasite cell division also becomes slower, owing to the association of the 

parasite with host cell spindle for separation of the macroschizont. Consequently, an 

increase in parasite nuclear division/growth and a decrease in parasite cell division led to the 

host cell's cytoplasm being completely filled with the enlarged macroschizont. No 

comparable size increase is seen in the differentiation diminished cell line incubated at 41°C 

(Shiels et al., 1992). Thus, it was proposed from this work that the substantial enlargement 

of the schizont to a predetermined size or condition, or a reduction in the rate of parasite cell 

division is what triggers differentiation (Shiels et al., 1992). For example it has also been 

found for other protozoan systems that alterations to the proliferative rate influences 

differentiation potential. Changing from logarithmic- to stationary-phase growth has also 

been shown to influence differentiation in Trypanosoma brucei (Vickerman, 1985), 

Leishmania (Sachs and Perkins, 1984, 1985) Leishmania major (Shapira et al., 1988), 

Plasmodium falciparum and T.gondi.

Investigations by Shiels and co-workers demonstrated that macroschizont cell-lines 

did not immediately respond to temperature induction of differentiation as cells had to be 

cultured at 41°C for more than 24 hours before a proportion of the culture was induced to
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differentiate. In addition a series of pulse experiments showed that an initial reversible 

phase exists before the macroschizonts are fully committed to differentiate, because 

incubation periods at 41°C correlated with increase levels of differentiation, returning the 

cultures to 37°C reduced differentiation compared to cultures continuously incubated at 

41°C for 7 days. Thus, it was postulated that the longer the cells were incubated at 41°C the 

more likely they were able to reach a threshold which committed them to irreversible 

differentiation events.

Before the regulatory controls that operate during the differentiation of Theileria 

macroschizont infected cell-lines to merozoite can be defined, it is necessary to define the 

temporal order of gene expression reprogramming during this event. Using monoclonal 

antibodies and gene probes Shiels et al., (1994) were able to define several molecular 

changes associated with differentiation. Expression of the 30 kDa merozoite surface 

polypeptide {TamSl) and the 117 kDa rhoptry antigen (TamRl) were shown to dramatically 

increase between days 4 and 6, while the level of major macroschizont polypeptides were 

found to decrease. The TamSl polypeptide and mRNA were detected early during the 

induction of differentiation and were detected unambiguously at day 2 of differentiation, but 

also occurred very faintly at day 0. Using pulse experiments similar to those described 

earlier, it was demonstrated that the expression of TamSl was reversible in the early stages 

of differentiation. Reversible elevation of the TamRl gene was not detected. The factor(s) 

which allow low level expression of TamSl in the preceding stages and during the reversible 

phase of differentiation were unknown. Low level expression in preceding stages appeared 

to be specific to TamSl, however, it may occur for other as yet undefined merozoite genes. 

It has since been proposed that the TamSl polypeptide is one of the first proteins to be 

expressed during the temporal order of induced differentiation of macroschizont to 

merozoite. Low level expression in preceding stages may therefore be due to an overlap of 

target regulation by macroschizont regulatory factors or due to a low level of factors which 

specifically regulate merozoite target gene expression. In addition there appears to be a 

secondary control of gene expression occurring between days 4 and 6 of differentiation 

where there is a dramatic increase of merozoite genes, and repression of macroschizont gene 

expression, possibly coupled to irreversible differentiation (Shiels et al, 1994).
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Recloning of the macroschizont infected cell-line with enhanced ability to 

differentiate resulted in the isolation of cell-lines which have a severely diminished ability 

to differentiate. RFLP analysis demonstrated that one of these attenuated lines appeared to 

be of an identical genotype to the enhanced parental cell-line but lacking an ability to fully 

differentiate. However, the loss of differentiation was not absolute and occasionally a low 

number of parasites would differentiate to merozoite when cultures were incubated a 41°C 

for prolonged periods (Shiels et al., 1994). Therefore, the reduced ability to differentiate 

must have been caused by an alteration of the original cell line and a similar result has been 

observed during the propagation of Leishmania promastigotes in vitro (da Silva and Sacks, 

1987). The observation that parasites were able to differentiate occasionally in the 

attenuated lines coupled to the finding that the TamSl level of up regulation during the 

reversible phase was higher in the differentiation competent cells lead to the hypothesis that 

the difference in the ability of these two cell lines to reach commitment was a quantitative 

one. Shiels et al., (1994) proposed that a quantitative basis for differentiation could be 

explained by the postulation of a stoichiometric model for stage differentiation. In this 

model a mechanism is believed to operate, where the level or activity of factors controlling 

gene expression build up to a concentration threshold, which triggers commitment. Such a 

model could explain the reversibility of the differentiation process as in this phase the 

accumulation of the factors defining cell specificity would be below the threshold to commit 

the cell to irreversible differentiation. Removal of the stimuli necessary for inducing 

differentiation during this initial phase would result in the cell returning to the 

undifferentiated state, and increasing factor level, which was the result observed in the pulse 

field experiments.

The observation of asynchronous differentiation within a culture of differentiation 

enhanced cells is believed to be the inevitable consequence of a stochastic model, as the 

time taken to reach commitment to differentiation will be dependent upon how near or far 

each cell is from the commitment threshold. The regulatory factors involved in the 

concentration threshold have yet to be identified in Theileria. The stochastic model 

proposed by Shiels et al., (1994) is reminiscent of differentiation events which occur both in 

other protozoan parasites and higher eukaryotic systems. A step process for committing to 

differentiation has been described for T. brucei differentiation from bloodstream form to
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procyclic form (Czichos, et al., 1986; Ehlers et al., 1987; Pays et al., 1993) and in higher 

eukaryotes, DMSO differentiation of either the human leukemic cell line HL-60 towards 

granulocytes (Tarella et al., 1982) or erythroleukemia cells (Gusella et al., 1976) has been 

shown to involve an initial reversible phase. Asynchrony of differentiation has been 

observed in Trypanosomes (Soete et al., 1993, Heath et al., 1990, Duszenko, 1990), in 

Leishmania (Sacks and Perkins, 1984) and in higher eukaryotes, such as DMSO induced 

differentiation of HL-60 cells (Tarella, et al., 1982).

While commitment to differentiate is proposed to be determined by reaching a 

threshold mechanism of a factor(s), it is unclear whether this mechanism functions on the 

basis of time. From previous work it was postulated that disruption to the synchrony 

between parasite growth and division influence differentiation potential. Therefore to 

address whether differentiation occurs as a function of time, Shiels et al., (1997) examined 

the effect of drugs which inhibited DNA synthesis (aphidicolin) or growth (oxytetracycline) 

on differentiation. Aphidicolin was shown to reduce the time taken for individual parasites 

to reach commitment while treatment with oxytetracycline had the opposite effect. Although 

the aphidicolin treated cultures at 41°C showed higher levels of differentiation, the 

stochastic nature of the differentiation process was retained. The drugs either shorten time 

taken to commitment or delay it. This differentiation does occur as a function of time which 

can be corrupted. The timing is associated with increased TamSl levels, supporting the 

stoichiometric model. However, aphidicolin does not induce differentiation at 37°C even 

though host cell division (and the parasite) cell cycle were inhibited. This suggested that 

blocking host or parasite cell division per se was not enough to initiate differentiation. 

Additional experiments demonstrated that at 41°C there was a disruption between protein 

synthesis and DNA levels and it was proposed that in order to reach commitment there has 

to be a stoichiometric increase in factors relative to DNA templates. This postulation was 

supported by data which indicated that the drugs either exacerbated this disruption and 

reduced timing, or inhibited it and delayed the time taken to reach commitment. In 

conclusion it appears that cell cycle and a reduction of host cell division are associated with 

parasite commitment but are not the cause. Instead by exacerbating a disruption between 

protein relative to DNA levels at 41°C using aphidicolin increased levels of differentiation 

can be induced. Therefore, Shiels et al., (1997) propose that the differentiation clock is
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controlled by the progressive build up of a regulatory factor(s) of merozoite gene expression 

relative to their DNA templates, until a quantitative commitment threshold is reached. This 

elaboration of Shiels et al., (1994) stoichiometric mechanism, could account for the 

corruption of the timing mechanism to differentiation and could explain why a temperature 

shift does not appear to be necessary for initiation of the differentiation process in vivo 

(Jarret et al., 1969). This could be explained by proposing that in vivo at the bovine body 

temperature (38-39°C) the parasite is held in an equilibrium between growth and division 

which favours a time dependent progression towards commitment. This equilibrium could 

be altered in vitro due to the selection of proliferation at 37°C which can be re-established 

by placing the cultures at 41°C allowing differentiation to be initiated. Another 

differentiation event in the Life-Cycle of Theileria which may have a corruptible timing 

mechanism controlling differentiation, could be the formation of sporozoites in the tick 

salivary gland. In vivo, an increase in temperature can induce sporozoite formation within 

the tick salivary gland, but at a reduced level and with a delayed timing, compared to the 

induction of a blood meal (Walker and McKellar, 1983). Therefore, in vivo differentiation to 

the sporozoite is initiated by temperature whereas for the merozoite this appears 

unnecessary.

1.6 Gene structure and Regulation in Theileria

DNA replication and gene expression in protozoan parasites is carried out by similar 

mechanisms to those found in other eukaryotic organisms. The study of gene expression in 

protozoa has uncovered several novel processes involved in transcription and gene 

arrangement, although in general, DNA replication, gene expression, RNA processing, 

translation etc. follow known eukaryotic processes.

1.6.1 Gene Structure

Extrachromosonal elements are important carriers of genetic information and have 

been found in all types of organisms, including protozoa. Examples of extrachromosomal 

elements in protozoa, include the mitochondrial DNA of trypanosomes, termed kinetoplast 

DNA. The kinetoplast consists of a huge network of intercatenated mini- and maxicircles 

(Benne, 1994), and circular elements found in Leishmania (Hightower et al., 1987). A 6.5 

kb and 7.1 kb linear double stranded extrachromosomal DNA element has been discovered
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in Theileria annulata (Hall et al, 1990) and T.parva respectively (Kairo et a l, 1994). 

Molecules of similar size have been detected in the DNA of T.buffeli, T.mutans, T.sergenti 

and T.taurotagi (Kairo et al., 1994). The element in T.parva has the potential to encode 

three mitochondrial respiratory chain proteins, apocytochrome B and polypeptides I and III 

of cytochrome oxidase, and it has fragmented rDNA sequences. Functional genes for coxl, 

cob and organellar LSU and SSU rRNA are universal features of mitochondrial DNA (Gray, 

1989). Hence, the structure, protein coding potential and scrambled rDNA sequences are 

reminiscent of those described in the mitochondrial DNA of C.reinhardtii (Boer and Gray, 

1988; Michaelis et al, 1990), suggesting that the extrachromosomal DNA element is part, if 

not all, of the parasite mitochondrial genome. The extrachromsomal element is a direct 

homologue of elements described in the malaria parasites P.yoelii (Vaidya et al, 1989), 

P.gallinaceum (Aldritt et al., 1989) and P.falciparum (Feagin et al., 1992). The P.yoelii 

(Vaidya et al, 1989; Suplick et al., 1990) and P.falciparum (Feagin et al., 1992) elements 

have the same protein and fragmented rDNA coding potential as the T.parva element, but 

there is a difference in the organization of the sequences. However, the most obvious 

difference between the extrachromosomal molecules is their structure: Plasmodium contains 

a tandemly linked element (Vaidya and Arasu, 1987; Joseph et al, 1989), Babesia bovis 

contains a circular element (Jasmer et al, 1990), while T.annulata (Hall et al, 1990) and 

T.parva (Kairo et al., 1994) contain a linear molecule. In addition, analysis between related 

apicomplexan parasites is complicated by the finding of a DNA fragment containing partial 

cob and coxl sequences dispersed within the nuclear DNA of Toxoplasma gondii (Ossorio 

et al., 1991).

Evidence exists for extensive polycistronic transcription of the Plasmodium 6kb 

element, which implies that processing of large precursor RNAs is a necessary part of the 

expression of its genes (Ji et al., 1996). Polycistronic transcription and processing have been 

reported for other mitochondrial genomes including the 16kb circular mammalian 

mitochondrial genomes (Clayton, 1984; Shadel and Clayton, 1993) and mitochondrial gene 

expression in Trypanosoma brucei (Feagin and Stuart, 1985; Feagin et al., 1985; Jasmer et 

al, 1985). Therefore, the proposed polycistronic transcription and processing of the 

mitochondrial genes on the 6kb element are consistent with known mitochondrial 

expression mechanisms. However, as yet there is no evidence for mRNA editing or
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processing of any of the genes transcribed on the extrachromosmal element in T.parva. 

Northern blot analysis of RNA transcripts generated by the element by Northern blotting 

have corresponded in size to the full length cDNA for the open reading frame (Kairo et al, 

1994).

Novel structural arrangements of genes have been detected in Theileria and other 

member of the Apicomplexan family. Typically eukaryotic organisms have multiple copies 

of rRNA genes, which are tandemly arranged, but the organisation of Theileria rRNA genes 

appears to be unlike that of most eukaryotes. The ribosomal RNA genes are split between 

two separate chromosomes (Kibe et al., 1994). This unusual rRNA gene organisation 

appears to be widespread among apicomplexan protozoa, though not universal, since it does 

not appear in Toxoplasma gondii (Johnson et al, 1987). Plasmodium ssp. have 4-8 rRNA 

transcription units (McCutchan, 1986) and Babesia have 3 (Dalrymple, 1990; Reddy et al.,

1991).

Another unusual cluster of Theileria genes is that of the Tpr family, a collection of 

repetitive sequences with protein coding potential found in T.parva (Baylis et a l, 1991). 

The Tpr family is transcribed in piroplasms, and apparently consists of a few potentially 

complete genes containing TprZ and many partial copies of either Tpr\ or Tpr2 arranged in 

long arrays. Possible mechanisms by which the partial genes in the Tpr family could be 

expressed either in or as polypeptides include, DNA rearrangements, RNA splicing and 

gene conversion. This arrangement appears to be unique, although reminiscent of other 

systems including immunoglobulin genes (Alt et al., 1987). A BabR multigene family in the 

protozoan parasite Babesia bovis has some resemblance to the Tpr family, however, the 

sequences are not significantly similar and there are relatively few individual genes 

(Cowman et al, 1984).

1.6.2 Initiation

The study of gene regulation in Theileria annulata is in its infancy. One of the first 

indications of differentially controlled gene expression was demonstrated by Shiels et al., 

(1986) using monoclonal antibodies raised against the macroschizont infected cell. These 

antibodies raised were shown to either react exclusively with one stage of the parasites Life-
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Cycle e.g. with schizonts or with several stages e.g. schizonts and sporozoites. Therefore, it 

was possible to conclude that Theileria expressed antigens in a stage specific manner. 

Subsequently, additional monoclonal antibodies have been raised which are specific for 

macroschizonts of T.parva (Shapiro et al., 1987). Therefore, immunological studies of 

antigen expression in Theileria demonstrated that a mechanism for regulatory control of 

stage specific gene expression must exist within the parasite, but as yet no component of 

this mechanism has been isolated. Further evidence was obtained by Northern blot analysis, 

indicating stage-specific patterns of RNA accumulation (Shiels et al., 1994; Mason et al., 

1989; Swan et al., 1996; Kinnaird et al., 1996, see section 1.5.1).

Most of the genes so far isolated from Theileria show some form of stage regulated 

control throughout the Life-Cycle stages analysed. In addition, several genes have been 

shown to be constitutively expressed. Constitutively expressed genes investigated, include 

apocytochrome B (see section 1.6.1), a cysteine protease (Baylis et al., 1992), a hsp 70.1 

gene and 28S ribosomal RNA (Shiels et al., 1994). The hsp 70.1 gene of T.annulata appears 

to be constitutively expressed in four stages of the parasites which occur in both the 

mammalian host and tick vector. The expression of the hsp 70.1 gene product is inducible 

by heat shock in both sporozoites and in macroschizont infected cell lines (Mason et al., 

1989). Induction of hsp 70.1 has been speculated to play a role in macroschizont 

differentiation to merozoites, but unlike other eukaryotes the expression of the heat shock 

genes does not interfere with cell proliferation, indicating that the heat shock response may 

play a different role in parasitic protozoa. Although these genes are constitutively expressed 

during the mammalian phase of Life-Cycle, very little is known about gene expression 

within the tick. It may become apparent that not all genes constitutively expressed in the 

bovine host are expressed during the stages in the tick host. This may be of particular 

interest with respect to the hsp genes within the poikilothermic host.

Stage specific regulation has been documented for a number of genes in Theileria by 

either Northern analysis or antigenic analysis. Transcription of the SPAG-1 (Williamson et 

al., 1989) and p67 genes occurs only during the sporozoite stage of the parasite (Nene et al., 

1992). ORF-1, an open reading frame 5' to the p67 of unknown function, is transcribed 

during the schizont stage and the open reading frame 3' to the p67  gene, ORF-2, is
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transcribed during the sporozoite, schizont and piroplasm stages. Expression of genes 

during differentiation of the parasite from one life-cycle stage to another does not appear to 

occur uniformly. For example, mRNA and polypeptide encoded by TamSl has been 

observed to occur several days before the expression of the TamRl 117 kDa rhoptry protein 

encoding gene during differentiation to merozoite, demonstrating a temporal order for the 

stage-specific expression of genes between one Life-Cycle stage to another (Shiels et al, 

1994). Also TamSl must be on the surface of the membrane before budding, so that the 

merozoite get its surface coat. The mRNA for the 117 kDa rhoptry protein occurs 

approximately 2 to 3 days prior to rhoptry formation, presumably indicating the need for 

nascent polypeptide prior to the formation of this organelle. These limited examples 

demonstrate the necessity for a sequential ordering of gene expression events during 

differentiation which allow a functional merozoite to be formed correctly. Unfortunately 

very little is known about the mechanisms allowing for these complex networks of control.

In higher eukaryotes, genes encoding mRNAs are transcribed by RNA polymerase II 

(pol II) the activity of which is initiated by transcription signals via promoters upstream to 

the start site of transcription (or RNA formation). Some promoter elements, such as TATA, 

GC and CCAAT boxes are highly conserved among many of the genes transcribed by pol II 

and interact with the basal transcription machinery (Pugh and Tjian, 1992). Other sequence 

elements are less common or unique and are implicated in specialised types of signal- 

dependent transcriptional regulation, such as controlling developmental expression, 

response to heat shock, hormones, and growth factors (Mitchell and Tjian, 1989). Within 

the group of protozoan parasites, analysis and characterisation of promoters has been 

limited. The lack of DNA transfection for Theileria has hampered the determination of the 

elements involved in gene transcription. However, recent work on the apicomplexan 

parasites Toxoplasma (Soldati et al, 1995) and Plasmodium (Crabb et al, 1996), where 

genetic transfection is available, indicates that this obstacle will soon be overcome. In 

Kinetoplastida (e.g Leishmania and Trypanosoma) for which transfection is available, 

promoter analysis is complicated by the fact that transcription involves the synthesis of 

large polycistronic precursors from which mature RNAs are produced by transplicing 

(Cross, 1990). Only a few promoters have been characterised in trypanosomes, specifically 

for genes encoding surface antigens (VSG, PARP), ribosomal sequences and for some small
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RNA genes (reviewed in Vahamme and Pays, 1995). Furthermore, gene transcription is 

unusual in trypanosomes in that a significant number of genes are apparently transcribed by 

RNA polymerase I (Pol I) e.g. VSG and PARP (Pays et al., 1990; Clayton et al., 1990; 

Zomerdijk et al., 1990). This is possibly due to the ability of the 5' cap, essential for mRNA 

functioning, to be added post-transcriptionally by trans-splicing to the pre-mRNA. Whereas 

for Pol II transcribed genes the cap is generated by guanylyl transferase (Lewin, 1990(a)) In 

most other systems Pol I transcribes only ribosomal coding genes.

There is no evidence of polycistronic transcription or trans-splicing in Toxoplasma 

or Theileria, to date. This should facilitate the identification of promoters and make likely 

that a polymerase similar in properties to the higher eukaryotic RNA polymerase II is 

responsible for the transcription of protein-coding genes in these organisms. Initial attempts 

to identify Theileria promoters has been restricted to cloning and sequencing analysis 

upstream of the initiation site of several stage specifically expressed genes. The upstream 

region of three Theileria genes have been cloned and the RNA initiation sites of these genes 

has been determined either by SI mapping, primer extension or 5' Race. Transcription 

initiation sites have been mapped for the hsp70.1 gene (Mason et al., 1989), and SPAG-1 

gene (Katzer, thesis 1995). The beginning of the mRNA's for these genes has been mapped 

to 215 bp and 278 bp respectively, 5' of the ATG start codon. As yet only the hsp70.1 

promoter shows sequence homology to DNA sequence motifs. Some homology was found 

to the heat-shock element binding sites consensus sequence but as the motifs are not a 

classical heat shock element it is unknown as to whether they do carry out this function, and 

a putative TATA box was found in the 5' region (Mason et al, 1989). Putative TATA box 

sequences have been detected in the 5' regions of the 117 kDa rhoptry and SPAG-1 genes 

but due to their positions in relation to the transcription initiation site and the ATG start 

codon it seems unlikely that they are involved in the regulation of these genes, in a manner 

similar to the TATA motif of higher eukaryotes (Katzer, thesis 1995). Thus it is possible 

that a classical TATA motif in a position approximately 20-3 Obp upstream of the 

transcription initiation site is not necessary for the correct positioning of the RNA 

polymerase in certain Theileria genes. "TATA-less" promoters have also been identified in 

the apicomplexa parasite Toxoplasma gondii (Soldati et al., 1994). In higher eukaryotes " 

TATA-less" promoters have generally been found associated with housekeeping genes
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(Smale and Baltimore, 1989) and multiple sites of transcription initiation are often seen 

(Pave-Preux et al., 1990).

To date, no details of novel promoter sequences or promoter binding proteins for 

Theileria have been published. However, several promoters have been characterised from 

the related aplicomplexan parasites Plasmodium and Toxoplasma. Five different upstream 

sequences are known which are functionally active in P.falciparum. These are the 5' regions 

of the PfCAM, PfDHFR-TS, and PCDHFR-TS genes described by Crabb and Cowman 

(1996) and the hsp86 and hrp2 genes described by Wu et al., (1995). In addition polypurine 

motifs have been reported in the promoter regions of several protozoan parasites. Mercier et 

al., (1996) for example drew attention to the presence of an A/TGAGACG motif in T.gondi 

which is common to the four GRA genes and present in either the forward or reverse 

orientation. Interestingly, this motif is found within the promoter region of other 

Toxoplasma genes. This includes the core element demonstrated to function as selecting the 

transcription start site of the SAG1 gene, which contains a stretch of six 27bp repeats 

(Soldati and Boothroyd, 1995). Other related motifs have been reported in the promoter 

region of the tubulin genes of the ciliate protozoan Tetrahymena pyriformis (Barahona et 

al, 1988) and a repeated motif (T/AGTGTAC) that resembles those found in both 

Toxoplasma and ciliate promoters was reported in the promoter regions of the Plasmodium 

GBP 130 and KAHRP genes (Lanzer et al., 1992a,b; 1993). It may therefore be possible 

that promoter motifs are conserved among apicomplexan parasites.

A highly divergent TATA-binding protein (TBP) has been characterised in the 

apicomplexan parasite Plasmodium falciparum (McAndrew et al., 1993). Thus, it is very 

likely that TBP exists in Theileria and Toxoplasma. If it is involved in the promoter 

function of the Theileria promoters without a correctly positioned consensus eukaryotic 

TATA-box, it must recognise either a noncanonical TATA box or interact with another 

DNA-binding protein. Several cases have been reported where, in the absence of a TATA 

box, regulatory factors are believed to tether TFIID (of which TBP is part) or other 

components of the pre-initiation complex of RNA pol II to the promoter. For example, the 

Spl binding domain directs initiation of transcription in the hamster dihydrofolate reductase 

promoter (Blake et al., 1990). The activation proteins recognising these sites are believed to

40



determine the specific initiation start site through protein-protein interactions (Kollmar and 

Famham, 1993). Another transcription factor identified in Plasmodium is a highly 

conserved HMG-like protein (PF16) isolated from Plasmodium falciparum (Guntaka et al.,

1992).

Although factors are beginning to be analysed, there is as yet not much data on 

factors which control stage specific gene expression and what mechanisms bring about a 

change over in factor activity. At present the identification of transcriptional signals 

controlling Theileria gene expression during differentiation is limited to structural analysis, 

mainly because assays such as transfection, or in vitro transcription are not yet available. 

However, an important step towards the development of these techniques has been the 

isolation of macroschizont infected cell lines by Shiels et al., (1994) which differentiate 

with enhanced capabilities allowing large amounts of parasites undergoing differentiation to 

be harvested. This system has the potential to allow studies to analyse regulation of gene 

expression during differentiation at an in vivo level.

1.6.3 RNA Processing and Termination

The majority of higher eukaryotic genes are composed of coding sequences, exons, 

interrupted by one or more, intervening sequences, introns. In Theileria only four genes 

have as yet been identified which have been shown to have introns; SPAG-1 (Katzer, Thesis 

York 1995) and ThaCRK2 (Kinnaird et al., 1996) genes of T.annulata, and P67 (Nene et 

al., 1992) and the cysteine protease genes (Nene et al., 1990) of T.parva. Analysis of the 

flanking regions of the introns identified that the splice donor and acceptor sites are in 

accordance with those for other eukaryotes, and revealed the conserved GU—AG 

nucleotides for splice sites found in introns isolated in Plasmodium (Scherf et al., 1988; 

Weber, 1988).

Theileria mRNAs can be separated from ribosomal RNA species by their affinity to 

bind to oligo (dT) indicating that like most eukaryotic mRNAs Theileria mRNAs are 

polyadenylated at their 3' end. This has been confirmed by the generation of a T. annulata 

cDNA library (Shiels et al., 1994) and the isolation from this library of several genes 

including the 30kDa major merozoite surface antigen and the 117 kDa rhoptry protein
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(Shiels et al., 1994). No detailed mapping of the precise 3' ends of Theileria genes has yet 

been performed. Sequence analysis of the hsp 70.1 sequence from T.annulata highlighted 

two possible motifs which have perfect homology to the AATAAA or ATTAAA consensus 

polyadenylation signals found in eukaryotic genes (Mason et al, 1989).

Structural analysis, and mapping of the mRNA initiation site has defined regions 

where cis acting regulatory motifs for transcription possibly exist both for initiation and 

termination of Theileria genes. In the absence of assays, such as transfection, gel mobility 

shifts and in vitro transcription, it is impossible to address mechanisms of gene regulation at 

a functional level and define the structural elements responsible for the regulation of gene 

expression. An understanding of these processes will not only improve our knowledge about 

stage specific gene regulation during the parasite’s Life-Cycle but, may also provide new 

targets for treating parasitic disease.

1.6.4 Post-Transcriptional Gene Regulation

Evidence for post-transcriptional control of gene expression in protozoa is becoming 

more and more evident, and is believed to account for the majority of the gene expression 

regulation in Trypanosoma procyclin units and a number of Leishmania genes (Ziberstein 

and Shapira, 1994). The 3'-untranslated region (UTR) of Trypanosoma procyclin mRNA 

contains elements which have been shown to play a role in post-transcriptional regulation 

which is conserved among different 3'-UTR's of procyclin mRNAs, as well as in the 3' UTR 

of an unrelated mRNA for a major surface antigen of the procyclic form of T.congolense 

(Bayne et al., 1993). The procyclin 3' UTR might serve as a target for mRNA degradation in 

bloodstream forms (Jefferies et al., 1991), however, the involvement of this element in the 

regulation of procyclin expression remains to be demonstrated. Evidence for post- 

transcriptional regulation in Leishmania was obtained from transfection experiments where 

the downstream intergenic regions of hsp 83 were replaced with increased stability of the 

mRNA normally observed in response to elevated temperature. This exchange eliminated 

the temperature-induced differential stability of the corresponding mRNA (Ziberstein and 

Shapira, 1994). Additionally in Plasmodium, post-transcriptional control has been observed 

in the stage specific expression of different ribosomal sub-units (Gunderson, et al., 1987;
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Waters et al., 1989) and the gene encodes surface protein Pbs21 in Plasmodium (Paton et 

al., 1993).

In general; gene expression, appears to controlled via conventional mechanisms in 

Theileria parasites, but this does not mean that regulation will be limited to transcriptional 

control. Evidence for post-transcriptional control does indeed exist for the regulation of Hsp 

90 gene in T.parva (Gerhards et al, 1994) and the Tacyp gene in T.annulata (David Swan, 

personnal communication). The hsp 90 gene is believed to be post-transcriptionally 

regulated in the piroplasm stage of the parasite (Gerhards et al., 1994). Transcriptional and 

post-transcriptional control of the hsp family has been described for a number of other 

organisms, in particular for Drosophila (Morimoto et al., 1990).
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1.7 Objectives of this work

The precise cellular and molecular events which trigger differentiation of protozoan 

parasites have not yet been fully elucidated. Shiels et al., (1994) have proposed a 

stoichiometric mechanism for in vitro differentiation of the macroschizont to merozoite 

stage in T. annulata. The underlying basis of this model is that a concentration threshold of 

regulatory factors must be reached before the parasite is committed to differentiate. Below 

this threshold differentiation is reversible as described in section 1.5. The T.annulata 30kDa 

merozoite surface polypeptide {TamSl) is initially expressed during the reversible phase of 

in vitro differentiation from macroschizont to merozoite stage and low level expression of 

this molecule can be detected in the preceding stage before differentiation (Shiels et al.,

1994). Low level expression of the TamSl molecule in the preceding stages is believed to be 

due either to a functional overlap of regulatory factors or due to a low level (or activity) of 

regulatory factors for merozoite stage specific expression (Shiels et al., 1994). In addition, 

the expression of the 30kDa molecule is likely to be controlled by regulatory factors 

defining the early stages of the temporal order of molecular changes that occur during in 

vitro differentiation, and following commitment expression levels are very high. The 30kDa 

merozoite surface antigen is, therefore, a good candidate gene with which to examine the 

process of gene expression within the parasite and to characterise regulatory proteins which 

may be involved in the temporal control of differentiation. One of the primary objectives of 

this thesis was to isolate and characterise the regulatory elements controlling the expression 

of TamSl. To do this it was necessary to determine the level at which the expression of 

TamSl was controlled and to map the mRNA initiation site. In view of this limited ability to 

study promoter function and the lack of a DNA transfection system for Theileria, a further 

aim of this work was to develop a gel mobility shift assay suitable for studying nucleic acid- 

protein interactions for putative TamSl gene regulatory regions. Identification and 

characterisation of DNA-protein interactions with the TamSl 5' untranslated region is hoped 

to correspond to functional promoter elements. Additionally, this assay would allow the 

interactions of transcription factors with TamSl to be compared between diminished and 

enhanced cell line during differentiation from macroschizont to merozoite.
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Stage differentiation is a fundamental event of protozoan biology allowing 

expansion and transmission of parasite populations. As changes to gene expression are 

central to stage differentiation it is possible to view these events as central to the process. 

Understanding the mechanisms which control gene expression changes will ultimately lead 

to an understanding of how differentiation is initiated. This study aimed to initiate work to 

investigate how changes to the control of TamSl gene expression is altered during 

differentiation from macroschizont to merozoite. The observation that the timing of 

differentiation can be altered extrinsically and correlates with changes in levels of TamSl 

gene expression. Therefore by identifying the molecular mechanisms of TamSl gene 

expression this could lead to the identification of a factor involved in the timing of 

differentiation events. Modulation of this factor could be relevant to control strategies based 

on the extrinsic modulation of apicomplexan differentiation.

1.8 Summary of work presented

Chapter 2: describes the cloning and sequencing of a ~8kb genomic fragment containing the 

TamSl sequence and investigations into the organisation of the open reading frames 

flanking the coding region of the TamSl gene.

Chapter 3: describes the characterisation of transcriptional control of the TamSl gene,

mapping of the mRNA initiation site, and investigations into sequence comparisons to 

determine the promoter elements involved in controlling the expression of the TamSl gene.

Chapter 4: describes the strategies used to determine protein binding to the 5' non

transcribed region of the TamSl gene and the attempts made to determine the size of each

polypeptide binding to the regulatory element.

Chapter 5: describes the characterisation of differences between differentiation competent 

and attenuated cell lines. These experiments involved investigating alterations in gene 

expression of a number of target genes, including TamSl and the binding of factors to the 

TamSl promoter element.
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Chapter 6: is a general discussion of the findings of this thesis and their relevance to 

apicomplexan differentiation
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2 The Cloning and Sequencing of the Regulatory Regions Controlling the

Expression of the TamSl Gene

2.1 Introduction

Differential gene expression between Life-Cycle stages of protozoan parasites has 

been well documented but it is only recently that studies have begun to investigate the 

mechanisms which control this process. Stage-regulated genes encode molecules that are 

involved in biochemical pathways and structural functions as well as those which are 

involved in the evasion of the host defence mechanism (Parsons, 1990). The level at which 

gene expression can be controlled is at transcriptional and post-transcriptional levels. 

Transcriptional regulation can either be constitutive, suppressible or inducible; while post- 

transcriptional regulation can be controlled by mRNA stability, mRNA splicing or by 

regulating translation. Transcriptional regulation is predicted to be the most economical 

mode of regulation (Latchman, 1990) and the expression of many genes have been found to 

be controlled by this process.

Little is known about the process of gene regulation in Theileria. The first indication 

of controlled gene expression was demonstrated by Shiels et al., (1986) by raising 

monoclonal antibodies against surface molecules of different parasite stages for vaccine 

development. Using a series of monoclonal antibodies, raised against T. annulata 

macro schizonts and piroplasms, Shiels et al., (1990) were able to identify several stage 

specific antigens by indirect immunofluorescence assay (IFA). Three of the monoclonal 

antibodies raised against the piroplasm stage (5E1, 2D5 and 1E11) were positive against 

merozoites, but showed no reactivity when tested against macroschizonts. Monoclonal 

antibody 5E1 reacted intensely against the periphery of the parasite, and using protein A- 

gold to enable the monoclonal antibody to be visible by electron microscopy, 5E1 was 

demonstrated to bind to the outer surface of the merozoite suggesting that it may be a target 

for a protective immune response. 5E1 detected a 30kDa molecule in extracts derived from 

merozoite preparations of heat induced cultures, which has since been shown to be the most 

abundant and immunodominant antigen on the surface of merozoites and piroplasms of 

T.annulata (Dickson and Shiels, 1993).
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Molecules with similar characteristics to the 30kDa polypeptide have been 

identified in other species of Theileria. In the T.sergenti/buffeli/orentalis group of parasites, 

stocks were characterised by the possession of a 3 3 kDa or a 34kDa polypeptide (Sugimoto 

et al, 1991; Kawazu et al., 1992; Tanaka et al., 1990). Experiments with a monoclonal 

antibody raised against the T.sergenti 32kDa merozoite surface molecule indicated that a 

humoral response may inhibit merozoite invasion of erythrocytes (Tanaka et al., 1990). An 

immunodominant molecule of 32 kDa has also been described for the erythrocyte stages of 

Theileria mutans, and this antigen has been used in the development of a diagnostic test 

(Katende et al., 1990). Thus, the 30kDa - 34 kDa polypeptide family is probably distributed 

throughout all the bovine species of Theileria, with antigenic diversity being present both 

between and within the different species.

Isolates and stocks of T. annulata usually consist of more than one parasite genotype 

(Shiels et al., 1992; Ben Miled et al., 1994). Shiels et al., (1993), demonstrated that the 

major merozoite surface polypeptide is antigenically diverse and can vary in size. 

Genotypically distinct parasites were shown to possess either a 30 or a 32 kDa form of the 

antigen. The two molecules were shown to be closely related by peptide mapping and 

periodate oxidation experiments indicated that they are glycosylated (Shiels et al, 1993). In 

order to characterise and compare the genes encoding the 30 (TamSl-1) and the 32 kDa 

{TamSl-2) merozoite antigens in more detail the nucleotide sequences representing the 

polypeptide coding region were elucidated. Both genes contained an open reading frame 

which was sufficient to encode a polypeptide of 281 amino acids with a predicted molecular 

mass of 32 kDa. Analysis of the predicted amino acid sequences highlighted a hydrophobic 

stretch at the C terminus of the molecule which probably functions to anchor the 

polypeptide in the merozoite membrane. Also, the erythrocyte-binding sequences Lys-Glu- 

Leu (KEL) and Lys-Glu (KE) described for Plasmodium (Molano et al., 1992) were found 

at a number of positions within the TamSl-1 and TamSl-2 sequences. Comparisons with the 

published amino acid sequences of the major merozoite polypeptide predicted for T.sergenti 

and T.buffeli, and the partial amino-acid sequence predicted for the T.parva gene, showed 

that all five polypeptides are likely to be structurally related (Shiels et al, 1995).
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Studies aimed at defining the regulatory control of the 30kDa molecule at the 

nucleic acid level confirmed that the polypeptide is highly expressed in the merozoite and 

piroplasm stages of the parasite. Observations were made that low level expression of the 

merozoite gene, TamSl could be detected in the preceding macroschizont life-cycle phase 

(Shiels et al., 1994) which was attributed to either merozoite regulatory factors that operate 

at a low level in the macroschizont or alternatively due to a functional overlap of factors that 

regulate gene expression in the different stages. Investigations in to whether low level 

expression is found in all stages of the parasite was not determined due to an inability to 

study the stages within the tick. However, basal expression of all parasite genes throughout 

the Life-Cycle does not appear to occur, as SPAG-1 gave no signal against macroschizont or 

piroplasm RNA (Williamson et al., 1989 Shiels et al., 1994).

Expression of the 30kDa merozoite surface polypeptide was assessed during the 

differentiation from macroschizont to merozoite in vitro. Levels of TamSl RNA increased 

dramatically between days 4 and 6 of differentiation coinciding with the loss of 

macroschizont antigens (Shiels et al., 1994). Thus, there is a temporal link between the 

events which positively and negatively control stage specific gene expression. In addition 

pulse experiments showed that differentiation and the expression of TamSl was reversible 

during the first 2 days of induced differentiation. If the inducement to differentiate was 

removed during this period the merozoite genes were down regulated and the parasite 

returned to the macroschizont cellular state. It was also found that following the initial 

reversible phase the parasite becomes committed to differentiation and TamSl was 

expressed at very high levels. Therefore, the expression of the TamSl appears to be linked 

to the temporal order of differentiation within the macroschizont and alteration to its control 

is one of the earliest molecular alterations associated with differentiation. This would imply 

that TamSl is controlled by a regulatory factor(s) which may also be involved in the 

commitment step of differentiation. Therefore understanding the mechanisms which 

differentially control TamSl during merozoite production could shed light on the molecular 

events which initiate and regulate the transformation of one parasite stage to the next

49



Aims

Given the high level of mRNA production and the association between the 

differential control of TamSl expression with the temporal ordering of the major phases of 

the differentiation process, it would appear that TamSl is a good candidate for studying the 

mechanisms which control gene expression during stage differentiation of T. annulata. The 

aim of the work presented in this chapter was to initiate these studies by isolating and 

sequencing regions of genomic DNA which were likely to contain the regulatory elements 

controlling the expression of TamSl. In addition, as little is known about the genomic 

arrangement of genes which are stage regulated in T. annulata, the second aim of this 

chapter was to determine the position and expression of any open reading frames flanking 

the TamSl protein coding sequence.
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2.2 Materials and Methods

2.2.1 Phage Stocks and Liquid Lysates

A genomic DNA library was constructed (by Dr Kinnaird, WUMP, University of 

Glasgow) in the vector X DASH using DNA isolated from merozoites that had been 

partially purified by differential centrifugation from a 500ml culture of the enhanced cloned 

cell line D7, incubated at 41°C for 7 days. Dr Kinnaird screened the genomic library and 

isolated 3 X DASH clones (using a TamSl cDNA probe representing the 30kDa merozoite 

surface antigen). These clones were the starting point for the work described in this chapter. 

Eschericia coli strain XL-1 Blue MRF (Stratagene) was the host bacterium used to plate out 

one of the X DASH clones. The bacteria were streaked out onto 2XYT plates (1.6% 

bactotryptone, 1% yeast extract, 5% sodium chloride, 1.5% bactoagar) containing 

lOOpg/ml'1 tetracycline and incubated overnight at 37°C and the following day, an overnight 

culture was prepared by picking a single colony from this plate into 5ml of 2XYT medium 

(as 2XYT plates minus bactoagar) containing 0.2% maltose and lOmM magnesium sulphate 

and incubated overnight at 37°C in an orbital shaker. 50ml of 2XYT medium was inoculated 

with 0.5ml of overnight culture, and incubated in an orbital shaker at 37°C until an 

absorbance of 0.5 OD at 600nm was obtained (corresponding to a cell density of 2.5 x 108 

cells ml'1). The cells were harvested by centrifugation at 800g for 5 minutes at 4°C, and 

resuspended in 5ml of lOmM magnesium sulphate. Plating bacteria were stored at 4°C and 

were viable for up to 2 days.

The titre of the X DASH clone, was determined by serial 10 fold dilutions in SM 

buffer (50mM Tris.HCl (pH7.5), lOmM magnesium sulphate, lOOmM sodium chloride, 

0.01% w/v gelatine). lOOpl aliquots of each dilution were incubated with 100p.l of XL- 

lBlue MRF cells in lOmM magnesium sulphate by incubation at 37°C for 15 minutes. 3ml 

of top agarose BBL (1% Bacto-trypticase, 0.5% sodium chloride, 0.7% low EEO agarose 

(Sigma)) at approximately 50°C was added to the cells and the samples poured on to a BBL 

plates (1% trypticase, 0.5% sodium chloride, 1.5% bactoagar). Once set the plates were 

inverted and incubated at 37°C overnight. The plaques were counted and the titre 

determined from appropriate dilutions.
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Phage stocks were prepared using a dilution of bacteriophage, estimated from the 

titrations described above, that would almost generate confluent lysis of the plated bacterial 

lawn. lOOjil aliquots of this dilution was mixed with lOOpl of plating bacteria, incubated at 

37°C for 15 minutes and plated out as previously described. Following incubation overnight 

at 37°C, or until lysis was confluent, 3-4ml of SM buffer was added and the plates were 

placed at room temperature on a shaker for 5 hours. With a sterile pasteur pipette, as much 

as possible of the SM buffer was harvested. The top layer of agar was then scraped off and 

added to the pooled phage and SM buffer. 0.1 ml of chloroform was added and following an 

overnight incubation at 4°C the top agarose SM buffer suspension was centrifuged at 4000g 

for 10 minutes at 4°C. High titre phage supernatant was then removed and stored at 4°C, 

after the addition of chloroform to individual aliquots.

To prepare phage liquid lysates XL-1 blue MRF cells, first grown overnight in LB 

media (1% bactotryptone, 0.5% yeast extract, 1% sodium chloride) supplemented with 

0.2% maltose and lOmM magnesium sulphate defined as above were inoculated into 100ml 

of LB media to a turbidity of 0.1 OD at 600nm (OD600nm). The culture was then incubated at 

37°C shaking vigorously on a orbital shaker until the OD600nm reached 0.45-0.6, 1ml of 1M 

magnesium sulphate was then added to each flask plus 2-3x1010 plaque forming units (pfti) 

of the X DASH clone and the culture was incubated for a further 6 - 8  hours. During this 

period the OD600nm was followed and was seen to rise to approximately 1.2, before dropping 

to 0.4-0.6. 200pl of CHC13 was then added, the flask shaken for a further 15 minutes and 

stored at 4°C.

Phage DNA was isolated and purified using the Promega Magic Lambda Prep kit 

(Promega Corporation) according to the manufacturer’s protocol. 10ml aliquots of liquid 

lysate culture were mixed with 40j_l1 of nuclease mixture (0.25mg/ml RNase A, 0.25mg/ml 

DNase I, 150mM NaCl, 50% glycerol), followed by incubation at 37°C for 30 minutes. On 

completion of the reaction, 4 ml of phage precipitant (33% polyethylene glycol (PEG-8000), 

3.3M NaCl) was mixed gently with the lysate and placed on ice for 30 minutes. Samples 

were centrifuged at 10,000g for 10 minutes and the supernatant removed. Pelleted phage 

was resuspended in 500|ul of phage buffer (150mM NaCl, 40mM Tris.HCl (pH7.4), lOmM 

MgS04) and transferred into fresh microfuge tubes, followed by the addition of 1 ml of
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purification resin (Promega) which was mixed with the phage suspension by inverting. The 

resin/lysate mix was pushed through a Wizard Minicolumn (Promega) using a syringe 

attached to the luer-lock extension of each Minicolumn, and the column was washed by 

gently pushing through 2ml of 80% isopropanol. A spin at 12,000g for 20 seconds dried the 

resin, and the DNA was eluted with lOOpl of dH20  preheated to 80°C, the eluate being 

collected by centrifugation at 12,000g for 20 seconds.

2.2.2 Restriction digests of DNA and agarose gel electrophoresis

All restriction endonuclease digests were performed according to the procedures 

recommended by the manufacturer (Gibco-BRL) using the buffers supplied and the 

temperature for optimal activity of the enzyme, 37°C. In general, 0.2 to lpg of DNA was 

made up to a total volume of 20ul with dH20 , mixed with 2pl of the appropriate lOx REact 

buffer (Gibco-BRL) and 1 to 2 units of restriction enzyme (Gibco-BRL). Following 

completion of digestion the samples were incubated at 65°C for 5 minutes, chilled on ice 

and centrifuged for 5 minutes at 12,000g. Plasmid DNA was digested for an average of two 

hours, while genomic DNA was left to digest overnight.

Restriction digested DNA samples were separated by agarose gel electrophoresis as 

described by Sambrook et al. (1989). 0.7 to 1% agarose gels were prepared by dissolving 

agarose in an appropriate volume of TAE buffer (40mM Tris-acetate, ImM EDTA) with 

0.5pg/ml ethidium bromide. When DNA fragments were to be excised from an agarose gel, 

low melting point agarose (Sigma) was used and the gels were cast at 4°C. DNA samples 

were diluted in 6 x agarose gel loading buffer (0.05% bromophenol blue, lOOmM EDTA, 

pH 7.5, 22% Ficoll) and electrophoresed at 100V until it was possible to estimate the size of 

the DNA fragments of interest, or at 20V overnight in TAE buffer. The size of DNA 

fragments were estimated by comparison to the lkb maker ladder (Gibco-BRL), which 

ranges from 12kb to 75bp. DNA fragments were then visualised using a UV 

transilluminator (366nm).

2.2.3 Mapping of X DASH clones by restriction digestion and Southern blotting

The method of capillary transfer of DNA from agarose gel to nylon membrane 

(Amersham, Hybond N) was adapted from the standard Southern blotting method
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(Sambrook et al, 1989, Southern 1975). DNA was purified from the X DASH clone (see 

section 2.2.1), digested with a variety of restriction enzymes and run on a 0.7% agarose gel 

(see section 2.2.2). After electrophoresis the agarose gels were washed twice in denaturing 

solution (1.5M NaCl, 0.5M NaOH) for 15 minutes per wash, then once in neutralising 

solution (2M NaCl, 0.5M Tris-HCl, pH 7.4) for 20 minutes. The gel was then equilibrated 

in phosphate transfer buffer (50mM phosphate buffer, 25mM NaH2P 0 4 pH 5.5 with 25mM 

Na2H P04) for 30 minutes, before being placed on a platform of 3MM paper which had its 

ends immersed in phosphate transfer buffer. Hybond N membrane cut to the same size as 

the gel was laid on top followed by 3 sheets of 3MM paper, a stack of paper towels and a 

light weight. DNA was transferred overnight and fixed to the nylon membrane by exposure 

to 150 Joules short wave Ultra-violet radiation using a GS Gene linker (Biorad).

Following UV cross-linking the membranes were prehybridised in 10ml of Church 

and Gilbert hybridisation solution (0.5M Na2HP04, 3.4% Orthosphoric acid (pH 7.2) 1.75% 

SDS, ImM EDTA, Church & Gilbert, 1984) at 65°C for 30 minutes, using the Hybaid 

cylinder and hybridisation oven system (Hybaid). Probes were prepared using the Random 

Priming DNA Labelling Kit (Boehringer-Mannheim Pharmaceuticals) according to the 

manufacturer's instructions: selected restriction digested DNA fragments were excised from 

low melting point agarose gels, melted in 1.5 ml of dH20  per gram of agarose slice and 

boiled for 5 minutes. Approximately 25ng of denatured DNA was randomly labelled during 

the synthesis of a complementary DNA strand using 50pCi a 32P dCTP, (3000 ci/mmol), 3 pi 

of 0.166mM, dATP, dTTP, dGTP mixture, 2pl of lOx hexanucleotide mixture (Boehringer- 

Mannheim Pharmaceuticals) and lpl (2 units) of Klenow enzyme. The reaction was 

incubated at 37°C for 30 minutes, before it was boiled for 3 minutes to denature the double 

stranded probe and added to the 10ml of Church and Gilbert hybridisation solution. 

Hybridisation was allowed to proceed overnight at 65°C. The nylon membranes were then 

washed three times with lx SSC (0.15M NaCl, 0.15M trisodium citrate, pH 7.0), 5% SDS at 

65°C, before being wrapped in Saran wrap and exposed to Kodak X-OMAT film overnight 

in a X-ray film cassette at -70°C.
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2.2.4 Cloning and transforming X DASH genomic clones

DNA fragments identified in 2.2.3 as containing genomic Theileria annulata 

sequence flanking the TamSl open reading frame were inserted into the pGem (Promega) 

and pBluescript (Stratagene) vectors to facilitate further sub-cloning and sequencing. DNA 

was first digested with the appropriate enzymes, see section 2.2.2. and restriction digests 

subjected to electrophoresis through a 0.7% low melting point TAE agarose gel. Bands of 

interest were excised and purified either by salt phenol extraction or using the QIAquick gel 

extraction kit, according to manufacturers instructions (Qiagen).

DNA fragments purified by the salt phenol extraction method were initially 

electrophorese on low melting point TAE agarose gels. The required fragment was 

identified by UV illumination, excised from the gel and the gel slice was weighed. The 

agarose was melted at 65°C for 15 minutes before adding a volume of 5M NaCl which was 

equivalent to l/9th of the weight of the agarose slice (i.e. 100pl/0.9g). The DNA was 

extracted by the addition of an equal volume of phenol saturated with 0.5M NaCl and 

vigorous shaking for 10 minutes. The aqueous and phenol phases were then separated by 

centrifugation at 13,000g for 10 minutes, before the aqueous phase was transferred to a 

fresh eppendorf and before further extraction with an equal volume of chloroform isoamyl 

alcohol. After shaking for 1 minute, the samples were centrifuged at 13,000g for 1 minute 

and the aqueous phase removed and transferred to a fresh eppendorf. 1 pi of glycogen was 

then added and the DNA fragment precipitated by the addition of 2 volumes of ethanol 

followed by incubation at -20°C for 30 minutes. DNA was pelleted by centrifugation at 

13,000g for 10 minutes and washed with 75% ethanol, before drying for 5 minutes under 

vacuum. DNA pellets were resuspended in sterile dH20  and stored at -20°C.

DNA fragments were also purified from agarose gels by the QIAquick Gel 

Extraction Kit (Qiagen) on the basis of ion exchange chromatography. The band was 

excised from an agarose gel, 3 volumes of Buffer QX1 (Qiagen) was added and the agarose 

was dissolved at 50°C for 10 minutes. The sample was placed in a QIAquick spin column, 

centrifuged at 12,000g for 1 minute before disposal of the drain through fraction from the 

collection tube. To wash the extracted DNA fragment, 0.75ml of PE buffer (Qiagen) was 

added, and the column centrifuged for a further minute at 13,000g. An extra spin at 13,000g
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removed residual buffer, to prevented the presence of ethanol from interfering with 

subsequent reactions. DNA was eluted with 50pl of dH20 , the eluate being collected by 

centrifugation.

Vector DNA was prepared for cloning by digestion with an appropriate restriction 

enzyme(s) in order to generate cohesive ends for ligation (see 2.2.2). To prevent vector- 

vector ligations, vector DNA cut with a single restriction enzyme was dephosphorylated 

with calf intestinal alkaline phosphatase (CIAP). 20pg of digested vector was extracted once 

with Tris saturated phenol (pH 7.8) and once with Tris saturated phenol:chloroform (1:1), 

ethanol precipitated (as previously described above) and resuspended in 22.5pi of dH20 . 2.5 

pi of lOx CIAP buffer (500 mM Tris.HCl, pH 8.5, lmM EDTA) and 30 units of CIAP 

(Gibco-BRL) was then added, and the mixture incubated at 37°C for 60 minutes. To inhibit 

the CIAP, 2.5pl 500mM EDTA was added to the mixture followed by heating to 65°C for 

45 minutes, phenol extraction and ethanol precipitation.

Ligation reactions consisted of an insert:vector ratio of 3:1, dissolved in a final 

volume of 20pl. DNA was made up to a total volume of 17pl with dH20  and 2pl of 10 x T4 

DNA ligation buffer (500mM Tris. HC1, pH 7.8, lOOmM dithiothreitol, lmM ATP, 

25pg/mf' bovine serum albumin) and 1-2 units of T4 DNA ligase (Gibco-BRL) was added. 

The ligation mixture was then incubated overnight at 13°C.

Competent cells were prepared from a 1ml aliquot of an overnight culture of E.coli 

XL-1 Blue cells mixed with 50ml of 2XYT broth and incubated at 37°C with shaking, until a 

OD600nm of 0.3 was reached (see 2.2.1). The cells were harvested by centrifugation at 4°C for 

10 minutes at 4,200g. The cell pellet was resuspended in 25ml of ice cold 50mM CaCl2, 

placed on ice for 45 minutes, harvested as before and resuspended in 5ml of ice cold 50mM 

CaCl2. Cells were transformed into 200pl of competent cells by adding 1 to 20pl of DNA 

(of approx. 1 mg/ml) and incubating on ice for 45 minutes. The cells were heat shocked at 

42°C for 2 minutes and returned to ice for 5 minutes. 400pl of 2XYT broth was then added 

to the cells which were incubated at 37°C for a further 45 minutes to allow the expression of 

antibiotic resistance markers encoded by the plasmid. The cells were spread out onto 2XYT 

plates containing the appropriate selective antibiotic, and 50pl of X-gal (20mg ml'1 5-
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bromo-4 chloro 3 indoly p-D galactosidase, in dimethylformamide, Gibco-BRL) and 2 j l x 1 of 

IPTG (lOmg ml'1 isopropythio-p-D galactosidase, Gibco-BRL) which had previously been 

spread onto the plate surface and allowed to dry. Inoculated plates were incubated overnight 

at 37°C and the next day white putative recombinant colonies were picked and streaked onto 

fresh 2XYT plates containing the appropriate selective antibiotic. Plasmid DNA was then 

made from overnight cultures of selected colonies by picking one colony into 5ml of 2XYT 

media containing the appropriate selective antibiotic and incubating overnight on an orbital 

shaker at 37°C.

2.2.5 Preparation of plasmid DNA

(A) Alkaline Lysis Minipreparation Method

1.5ml aliquots of overnight recombinant bacteria culture were pelleted by 

centrifugation at 13,000g for 5 minutes. The supernatant was removed and the pelleted cells 

were resuspended in lOOpl of resuspension solution (50mM Tris.HCl, pH 7.5, lOmM 

EDTA, 100 mg ml'1 RNase A). The cells were lysed by the addition of 200pl of freshly 

prepared lysis buffer (200mM NaOH, 1% SDS) and then 150pl of neutralisation solution 

(2.55M KAc, pH 4.8) was added. The cells were vortexed and, centrifuged at 13,000g for 5 

minutes, before the supernatant was transferred to a new eppendorf. DNA was extracted by 

an equal volume of phenol/chloroform see 2.2.4, the aqueous layer was recovered after 

centrifugation, precipitated with two volumes of ethanol. The DNA was then pelleted by 

centrifugation, washed in 70% ethanol, centrifuged, vacuum dried, and resuspended in 30jnl 

of sterile dH20 and stored at -20°C.

(B) Magic Minipreps purification kit (Promega)

Alternatively, plasmid purification was carried out using the magic miniprep 

purification kit (Promega). According to the protocol given by the manufacturer, 1 to 3 ml 

of cells from an overnight bacterial cell culture were pelleted by centrifugation at 13,000g 

for 5 minutes. The cell pellet was taken up in 200pl of cell resuspension solution, lysed by 

the addition of 200pl of lysis solution and neutralised by the addition of 200pl of 

neutralisation solution. After inverting the eppendorf several times, the samples were 

centrifuged at 13000g for 5 minutes and the clear supernatant was decanted into a new 

microfuge tube. 1ml of wizard miniprep DNA purification resin, a silica based resin, was
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mixed with the supernatant by inverting and the samples were pushed through a Wizard 

Minicolumn (Promega) using a syringe attached to the luer-lock extension of each 

Minicolumn. The DNA was washed by gently pushing 2ml of wash solution (200mM NaCl, 

20mM Tris.HCl, pH 7.5, 5mM EDTA, diluted with 95% ethanol to a final ethanol 

concentration of 55%) through the Minicolumn. A spin at 13,000g dried the resin and the 

DNA was eluted with 50pl of dH20 , the eluate being collected by centrifugation in a new 

microfuge tube.

2.2.6 Generation of Exo III deletions via Erase-a-Base System (Promega)

The Erase-a-Base System (Promega), was used, following the manufacturer's 

instructions, to generate unidirectional deletions of DNA, inserted within a plasmid vector. 

5 pg of closed circular DNA was linearized with two different restriction enzymes within the 

multiple cloning site, faning one side of the insert. The direction with which the deletions 

were to proceed was determined by the restriction enzymes sites selected. The first enzyme 

digest generated a 3' overhanging end close to the binding site of the oligonucleotide primer 

used for sequencing, resistant to Exonuclease III (Exo III) digestion, while the second digest 

generated a blunt end or a 5' overhang proximal to the insert, susceptible to Exonuclease III 

digestion (see 2.2.2). Restriction digested DNA was run on a 0.7% agarose gel (see 2.2.2) 

and the band of interest was excised and purified using the salt phenol extraction method, 

see 2.2.4. Pelleted DNA was dissolved in lx Exo III buffer (66mM Tris.HCl, 0.66mM 

MgCl2) and warmed at 37°C. 450 units of Exo III were mixed with the DNA and at 30 

second intervals, 2.5pi samples were removed into eppendorfs placed on ice, which 

contained 7.5pl of SI nuclease mix (40mM potassium acetate, pH 4.6, 338mM NaCl, 

1.35mM ZnS04, 6.8% glycerol, 60 units of SI nuclease). The tubes were then incubated at 

room temperature for 30 minutes, before adding lp l of SI stop buffer (0.3M Tris base, 

0.05M EDTA) to each sample and heating the tubes to 70°C for 10 minutes. 2pl of each 

time point sample was removed, diluted 1:1 in agarose sample buffer and analysed (by 

agarose gel electrophoresis (see 2.2.2)) to determine the extent of the Exo III digestion. The 

remainder of the samples were transferred to 37°C and lp l of klenow mix (20mM Tris.HCl, 

pH 8.0, lOOmM MgCl2, 4 units of Klenow DNA polymerase) was added. Incubation of the 

samples was carried out for 3 minutes at 37°C before adding lp l of dNTP mix, and 

incubating for a further 5 minutes at 37°C. Ligation was carried out in a total volume of
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15pl in lx  T4 ligase buffer and (1 unit) of T4 Ligase at 13°C overnight (see 2.2.4). Half of 

the total volume of the ligation products were transformed in to XL-1 blue cells (see 2.2.4), 

plated out onto 2XYT plates containing the appropriate selective antibiotic and incubated 

overnight at 37°C. Recombinant colonies were randomly picked the following day, placed 

in 5ml of 2XYT media and grown overnight on an orbital shaker. Plasmid DNA was 

prepared from each overnight using the alkaline lysis minipreparation method (see 2.2.5) 

and analysed by restriction enzyme digestion and agarose electrophoresis. Stocks of bacteria 

containing the deleted plasmid/insert DNA were prepared by pelleting cell which were 

resuspended in 1ml of 2XYT medium containing 10% glycerol and stored at -70°C. DNA 

was prepared from samples selected for sequencing using the Magic Minipreps purification 

kit (Promega),

2.2.7 DNA Sequencing

(A) Manual DNA Polymerase Sequencing of Double Stranded DNA

Sequencing was carried out using the dideoxy chain termination method of Sanger 

and co-workers (1977). A Sequenase version 2.0 DNA sequencing kit (United States 

Biochemical) was used for all manual sequencing reactions. Double stranded DNA was 

prepared using the Promega Wizard Miniprep method and denatured in 200mM NaOH 

(freshly made) for 5 minutes. 0.4 volume of 5M ammonium acetate pH 7.5 was added, 

immediately followed by 4 total volumes of ethanol and incubated at -20°C for 2 hours. The 

DNA was pellet by centrifugation at 13000g, washed in 100% ethanol, dried and 

resuspended in 7pl of dH20  to give a concentration of between 300-500ng ml'1, and 2pl of 

sequencing buffer (200mM Tris.HCl, pH7.5, lOOmM MgCl2, 250mM NaCl). The T7, T3 or 

SP6 sequencing primers were annealed to the DNA at 65°C for 2 minutes and allowed to 

cool slowly. Sequence reactions were generated by combining the DNA/primer mix with 

2 j l i 1 of lx labelling mix (1.5pM dGTP, 1.5pM dCTP, 1.5pM dTTP), diluted sequenase 

enzyme version 2.0 (8.75mM Tris.HCl, 4.375 mM DTT, 0.4275 mg/ml BSA, sequenase 

version 2.0 enzyme), lpl of 0.1M DTT and 0.5pl of 35S dATP, (1000 Ci/mmol) and 

incubating the reaction at room temperature for 5 minutes. 2.5pl of dideoxy termination mix 

(80pM dGTP, 80pM dATP, 80pM dCTP, 80pM dTTP, 50mM NaCl, 8pM ddGTP or 

ddATP or ddTTP, or ddCTP) was then added into each of 4 reaction mixtures together with 

3.5pi of the template/primer/enzyme mix. The reactions mix were then incubated for a
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further 5 minutes at 37°C, before termination with the addition of 4 j l l 1 of stop solution (95% 

formamide, 20mM EDTA, 0.05% bromophenol blue, 0.05% xylene cyanol FF). The 

samples were denatured at 80°C for 2 minutes prior to loading 2 .5 j l x 1 of each reaction onto 

6% acrylamide, 0.5xTBE non-gradient gels. The 6% acrylamide gels were prepared by 

dissolving 21 Og of Urea in 72.5ml of a 40% acrylamide stock solution (Scotlab), 50ml of 

lOx TBE (0.9M Tris base, 0.9M boric acid, 20mM EDTA and the final volume made up to 

500ml with dH20 . Before polymerisation was initiated, 75ml of acrylamide mix was filtered 

and degassed, followed by the addition of 75pi tetra-methyl-l,2-diaminoethane (TEMED) 

and 150pl freshly made 25% ammonium persulphate (APS). The gel was cast and left to set 

for approximately 60 minutes, followed by the assembly of the sequencing apparatus. The 

upper and lower tanks were filled with 0.5xTBE buffer and the gel was pre-run at 50-55 

watts to preheated the gel and sequencing plates. After the gel was loaded, electrophoresis 

was carried out for the desired time at 50-55 watts, approximately 1500V. After completion 

of electrophoresis the gels were fixed in 20% ethanol, 20% acetic acid for 15 minutes dried 

onto 3MM paper at 80°C for 2 hours using a Biorad gel drier. Finally the gels were exposed 

to Kodak X-OMAT S film in a x-ray cassette at room temperature for 24 hours.

(B) Automated DNA Polymerase Sequencing of Double Stranded DNA

The LiCor sequencer (LiCor Corp) was used for all automated sequencing reactions. 

All samples were prepared using the Fluoro Sequenase kit (CamBio) which uses priming 

oligonucleotides covalently coupled to an infrared fluorophore (laser dye IRD41; 

commercial primers used included T3, T7 and Sp6). The Licor automated sequencer 

protocol uses a PCR amplification step of the template DNA. As the DNA migrates through 

the sequencing gels the sequence image is collected by a microscope/detector, following 

excitation of labelled fragments by a laser diode emitting at 785nm. Once the gel has 

finished the sequences were manually edited for any necessary corrections.

For each sample, 500ng of template DNA was combined with 2.0pmol of IRD41 

labelled primer, 2.5pl of lOx sequencing buffer (0.5M Tris.HCl, pH 9.3, 25mMMgCl) lpl 

of BioPro thermostable DNA polymerase (Bioline) and dH20  to a total of 17pl. In 4 

labelled thermocycler tubes, 2.0pl of the appropriate SequiTherm™ Long-Read Termination 

mix (50mM NaCl; 180 pM 7-deaza-dGTP or 180 pM dATP or 180 pM dCTP or 180 pM
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dTTP) was combined with 4 jal of the template/primer/enzyme/mix. 20pl of mineral oil was 

placed on top of each reaction mixture and the tubes were placed in a thermocycler 

programmed with the following cycles: initial 95°C for 5 minutes; followed by 95°C for 30 

seconds (denaturing step), 60°C for 30 seconds (annealing step) and 70°C for 1 minute 

(elongation step) for a total of 25 cycles. After the program was complete, 4pl of stop 

solution was added to each reaction and the samples denatured prior to loading onto a 6% 

Long RangerTM gel, prepared by dissolving 21g of ULTRA pure urea (Gibco-BRL) in 6ml 

of lOx TBE and 6ml of Long Ranger™ gel mix (50% FMC), and the final volume was made 

up to 50ml with dH20. The acrylamide solution was filtered and degassed before 

polymerisation was initiated by the addition of 25pl TEMED and 250pl 10% APS freshly 

made. The gel was pre-run using lxTBE buffer, until the running temperature reach 50°C, 

1 pi of each sample was loaded and electrophoresis was continued overnight.

2.2.8 Culture of T.annulata Cell lines and a Bovine B Cell Lymphosarcoma Cell line

The cloned macroschizont infected cell lines D7 and D7B12 isolated by Shiels et al 

(1992, 1994) were maintained in culture at 37°C in a 5% C 0 2 atmosphere. Routine cell 

culture was carried out using RPMI 1640 media (Gibco) supplemented with 15% heat- 

inactivated foetal calf serum (Sigma), 8pg/ml streptomycin, 8U/ml penicillin, 600ng/ml 

amphotericin B and 0.05% NaHC03. A bovine B cell lymphosarcoma cell line, (BL20 

Morzaria et al, 1982) was maintained as described for the Theileria infected cells, except 

myoclone calf serum (Gibco) was substituted for heat inactivated foetal calf serum.

The differentiation of competent (D7) and attenuated (D7B12) macroschizont 

infected cloned cell lines was carried out by incubation at 41°C. The cultures were passaged, 

using fresh supplemented medium, every two to three days to give a cell density of 

approximately 1.4xl05 cells/ml. Morphological examination of cultures during 

differentiation time course was carried out by light microscopy of Giemsa stained cytospin 

preparations. Slides were prepared by spinning 60pl of culture at 1500 rev min'1 (240g) for 

5 minutes in a Shandon cytospin 2. The slides were then air dried for 10 minutes and fixed 

in methanol for 15 minutes, before staining in Gurr's improved R66 Giemsa stain (BDH) 

(4% solution in water) for 40 minutes, followed by a brief wash with dH2Q and air drying.
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Slides were examined using a Leitz Wetzlar SM-Lux light microscope fitted with an oil 

immersion xlOO objective lens.

2.2.9 Isolation of RNA, gel electrophoresis and Northern blotting

TRI Reagent (Molecular Research Centre) was used to purify RNA from piroplasms 

and T.annulata infected cell lines. Macroschizont infected cells pelleted from 200ml of 

culture by centrifugation at lOOOg for 5 minutes or 500pl of pellet piroplasms provided by 

F.McDonald, were resuspended in 5ml of TRI reagent. The samples were incubated at room 

temperature for 5 minutes, before the addition of 1ml of Chloroform. The samples were then 

covered tightly, shaken vigorously for 15 seconds and placed at room temperature for 

further 15 minutes. The resulting mixture was centrifuged at 12,000g for 15 minutes at 4°C. 

Following centrifugation, 60% of the aqueous phase was transferred to a fresh tube. RNA 

was precipitated by the addition of 2.5ml of isopropanol to the aqueous phase and incubated 

at room temperature for 10 minutes, before centrifuging at 13,000g for 10 minutes. The 

resulting RNA pellet was washed in 75% ethanol, air dried and resuspended in diethyl 

pyrocarbonate (DEPC) treated dH20. The RNA concentration of each sample was 

determined by taking an optical density (OD) reading, at wavelengths 260 and 280nm, and 

calculated as 1.0 OD unit at 260nm equals 40mg ml'1. The purity of the RNA sample was 

determined by the 260/280nm ratio (Sambrook et al., 1989).

RNA was separated by formaldehyde/agarose gel electrophoresis. 

Formaldehyde/agarose (1.2%) denaturing gels were prepared by melting 3.0g of agarose 

(Sigma, low EEO) in 195ml of dH20. When cooled to hand temperature, 50ml of 5x MOPS 

buffer (0.2M 3-[N-morpholino]-2-hydroxypropanesulfonic acid (MOPS) (pH 7.0) 50mM 

NaOAC, 5mM EDTA) and 5ml of formaldehyde (37%) were added and the agarose was 

poured into a casting frame. The gels were allowed to set at room temperature before being 

removed to the cold room for 15 minutes. 20pg of total RNA, for each sample, was 

denatured in 7.9 pi formaldehyde, 22.5pi formamide and xl MOPS buffer, by heating to 

55°C for 15 minutes before adding 5pl of formamide/EDTA/dye mix (0.3% bromophenol 

blue, 0.3% xylene cyanol FF, lOmM EDTA, pH 7.5, 97.5% deionised formamide). 

Electrophoresis was carried out in a fume hood overnight at 30 Volts, in recirculating 

(negative to positive electrode) lx MOPS buffer, until the xylene cyanol dye front was
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approximately one inch from the bottom of the gel. RNA standards (Gibco BRL) were run 

in conjunction with the samples of interest. The standard ladder, 0.24kb to 9.5kb, was 

visualised by removing the maker lane from the gel and staining in ethidium bromide (lmg 

ml"1) for 20 minutes, followed by destaining with dH20  for 2 hours after electrophoresis. 

Bands were visualised by exposure to short wave ultraviolet light (366nm). The remainder 

of the gel was equilibrated in phosphate transfer buffer (see section 2.2.3) for 15 minutes. 

RNA was transferred onto nylon membrane as described for Southern blotting (see section 

2.2.3) then transferred before blotting overnight onto a Hybond N membrane (Amersham), 

see 2.2.3. The RNA was fixed to the nylon membrane by exposure to Ultra-violet radiation 

(see 2.2.3) and the blot was prehybridised in Church and Gilbert buffer. A probe was 

prepared using the Random Priming DNA Labelling Kit (see 2.2.3) prior to hybridisation.
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2.3 Results

2.3.1 Characterisation of the X DASH Clones

To initiate studies aimed at defining the regulatory elements that control the 

differential expression of TamSl, a genomic library was constructed using DNA isolated 

from purified T.annulata Ankara (D7) merozoites. Screening of the genomic library with a 

TamSl cDNA probe encoding the 30kDa piroplasm surface protein of T.annulata, resulted 

in a number of positive plaques. Three representative plaques were purified through 

subsequent rounds of screening and were donated by Dr Kinnaird. The X DASH clone 1.1 

was randomly selected for further characterisation with the proviso that if the clone did not 

represent the intergenic regions overlapping both 5' and 3' regions of the TamSl protein 

coding sequence, characterisation of other clones would be carried out. DNA was isolated 

from the phage following the preparation of a liquid lysate (see 2.2.1). To estimate the size 

of the cloned X DASH insert, DNA was restriction digested with enzymes BamHI, Hindlll, 

EcoRI and Xba I, and the DNA fragments separated by agarose gel electrophoresis. 

Analysis of the digested DNA revealed that the X insert size was approximately 20kb, if not 

greater (Figure 2.1). Therefore, the X DASH insert was too large to either sequence or sub

clone without further characterisation. Firstly it was necessary to identify fragments 

flanking the 5' and 3' ends of the protein coding region of TamSl which were considered 

large enough to contain putative regulatory domains. If it was found that these regions did 

not contain the control domains, for example, if evidence for polycistronic transcription and 

processing was found, then subsequently mapping and characterisation of overlapping 5’ 

and 3’ genomic fragments was to be performed.

The 5' and 3' ends of TamSl were identified using restriction enzymes known to cut 

in the polypeptide coding region, coupled with hybridisation using 5' and 3' specific cDNA 

probes. DNA prepared from the X DASH clone 1.1 was digested with restriction enzymes 

Hind III x (Ava I, Hae I, Sal I), EcoR I x (Ava I, Hae I, Sal I), and Xba I x (Ava I, Hae I, Sal 

I), Southern blotted and hybridised with the TA37d probe (Figure 2.2). This probe 

represents a deletion of the TamSl cDNA insert generated for sequencing purposes and 

contained a 261 bp segment located to the 5' end of the known cDNA sequence. The TA37d 

probe hybridised to DNA fragments over 6kb in size for the restriction digests Hind III, 

Hind III + Ava I, EcoRI, EcoRI + Ava I, Xba I and Xba I + Ava I (Figure 2.2; Lanes 1, 2, 5,
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6, 9 and 10) which were considered to be too large for initial sub-cloning and sequencing. 

Common to the Hind III + Sail, EcoR I + Sail and Xba I + Sail digests (Figure 2.2; Lanes 

4, 8, and 11) was the detection of a 600bp fragment, in addition to larger fragments. 

Analysis of the TamSl cDNA sequence revealed two Sal 1 sites internal to the protein 

coding sequence of TamSl which are separated by 615bp. It was therefore concluded that 

the hybridisation of the probe to the ~600bp fragment corresponded to the Sal I restriction 

enzymes sites internal to the protein coding sequence. In addition to the Sal I fragment the 

TA37d probe hybridised to 4.0kb and 3.0kb bands for the restriction digests EcoR I + Sal I 

and Hind III + Sal I, (Figure 2.2; Lanes 8 and 4) respectively. From the limited information 

on the size of apicomplexan intergenic regions these fragments were postulated to be large 

enough to incorporate the 5' end of the TamSl coding region plus the majority of the 

intergenic sequence regulatory elements. In addition both fragments which contained 

putative elements were of a suitable size to sub-cloned into standard plasmid vectors.

Identification of the two Sal I restriction enzymes sites within the protein coding 

sequence of TamSl also provided an opportunity to identify the 3' intergenic region. It was 

therefore decided to determine whether a Hind III (which does not cut in the coding region) 

+ Sal I digest of the X DASH clone would generate a genomic fragment corresponding to 

the 3' downstream sequence which was of suitable size to allow sub-cloning. X DASH 1.1 

DNA clone was cut with Hind III, Sal I or Hind III + Sal I to completion. Digests were run 

in triplicate on an agarose gel and Southern blotted. The filter was divided into three and 

each section hybridised with probes representing either the 5', middle or 3' sections of the 

TamSl cDNA generated using the internal Sal I restriction enzyme sites (see Figure 2.4). 

The 3' probe hybridised to a Hind III + Sal 1 (Figure 2.4C; Lane 3) insert of 4.0 kb which 

was of suitable size for sub-cloning and considered large enough to contain a significant 

section of the 3' intergenic sequence region. Additionally, the 3’ probe hybridised to a Sal I 

~4.0kb fragment, identifying a Sal I site just upstream of the Hind III site. 3.0kb (Figure 

2.4A; Lane 3) and 600bp (Figure 2.4B, Lanes 2 and 3) fragments were detected by the 5' 

and centre probes respectively, confirming the previous digest obtained with Sal I and the 5' 

region TA37d probe. The resulting restriction map is shown in Figure 2.3.
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Figure 2.1. Agarose electrophoresis analysis of genomic clone isolated from X DASH 

genomic library. The genomic clone was digested with the restriction enzymes; Lane : 

BamHI; Lane 3, Hind III; Lane 4, EcoRI; and Lane 5 Xba I. Lane 1 shows the lkb Lt 

DNA Marker (Gibco-BRL) ranging form 12kb to 75bp

Figure 2.2 Autoradiograph of Southern blot of Lambda Dash clone TamSl 1.1 probti 

TA37d. Arrowheads at the right hand-side indicate the position in kilobases (kb) ex 

markers. The tracks contained the following digests of the Lambda Dash clone TamSl

Lane 1) Hind III,

Lane 2) Hind III + Ava I,

Lane 3) Hind III + Hae I 

Lane 4) Hind III + Sal I,

Lane 5) EcoR I,

Lane 6) EcoR I + Ava I 

Lane 7) EcoR I + Hae I 

Lane 8) EcoR I + Sal I 

Lane 9) Xba I 

Lane 10) Xba I + Ava I 

Lane 11) Xba I + Hae I 

Lane 12) Xba I + Sal I
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Figure 2.4 Autoradiographs of bacteriophage DNA Tamsl 1.1 cut with (Lane 1) Hindlll, 

(Lane 2) Sal I, and (Lane 3) Hind III x Sal I. Hybridized with (A) 5' region of Tamsl cDNA,

(B) central 600bp Sal 1 fragment of Tamsl cDNA and (C) 3' region of Tamsl cDNA. The 

position of each band is indicated by an arrowhead and in kilo-bases.



2.3.2 Subcloning the 5’ and 3' regions of the TamSl gene

Restriction mapping and Southern blotting identified two fragments which were 

considered, from the known 3' end of the cDNA and the prediction that the 5' untranslated 

mRNA would be < 500bp, to represent a significant proportion of the intergenic regions 5' 

and 3' to the TamSl protein coding sequence. It was decided, therefore, to sub-clone the 5’ 

3.0kb Hind III x Sal I fragment and 3’ 4.0kb Hind III + Sal I, respectively, into the pGem3zf 

vector for further characterisation. The sub-cloning procedure is summarised in Figure 2.5.

The 3 kb and 4 kb genomic fragments, separated from the bacteriophage vector, 

were excised, purified from the gel (see 2.2.4) and ligated into pGem3zf DNA which was 

also digested with Hind III and Sal I. Seven white transformants were picked for each 

ligation (see 2.2.4). Isolated DNA from the 5' genomic insert transformants was digested 

with Hind III x Sal I and 3' genomic transformants were linearized with the restriction 

enzymes EcoRI. Positive sub-clones were identified by Southern blotting and hybridisation 

with the appropriate 5’ or 3’ cDNA probe (Figure 2.6). 5' genomic sub-clones 3, 5,6,and 7 

(Figure 2.6A; Lanes 3, 5, 6, and 7) hybridised to the 5’ cDNA probe and contained DNA 

fragments of the expected size (3.0 kb), sub-clones 6 and 7 were selected for subsequent 

sequence analysis (Figure 2.6 A; Lanes 6 and 7). Sub-clones 1 and 2 of the 3' genomic 

transformations contained DNA fragments of the expected size to which the 3’ cDNA probe 

hybridised to and both were subsequently sequenced (Figure 2.6 B; Lanes 1 and 2). The 

selected sub-clones were manually sequenced in both directions (see 2.2.7). Comparison of 

the nucleotide sequence of each clone with the TamSl cDNA sequence to which they 

overlapped, either 5’ or 3’, gave an identity of 99.8%. It was, therefore, concluded that the 5' 

and 3' ends of the coding region plus intergenic sequence had been identified and sub

cloned.
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(A)

5' Protein Coding Sequence 3'

TamSl

Hind III

( ? )

Hind II 
<------

3.0 kb

Sal I Sal I

Sal I SaH  
—► <-

4.0 kb

Hind III

Hind III

( C)

4kbHind III 3 kb Sai l Hind III

SP6 ^ imHISP6 ^

3' Tamsl 
(pGem3zf)5' Tamsl 

(pGem3zf) T7 ^T7 ^

Figure 2.5 A diagramatic representation of the sub-cloning of the 5' and 3' TamSl regions 

in to the vector pGem 3zf. A) shows a representation of the genomic TamSl fragment from 

the original Lambda DASH clone 1.1; (B) shows how the intergenic regions of TamSl were 

sub-cloned in two fragments, one was 3 kb and the other 4 kb; (C) depicts the final pGem 

3zf plasmids.
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Figure 2.6. Southern blot analysis o f  genomic sub-clones following digestion with 

Hind III + Sal I or EcoRI restriction enzymes and probing with cDNA probes as ind 

A * indicates the sub-clones subsequently selected for sequencing.

A: 5' genomic sub-clones digested with restriction enzymes Hind III + Sail and probe 

the TA37d probe. The position of the insert is indicated by an arrowhead and in kilob;

B: 3' genomic sub-clones linearized with the restriction enzymes EcoRI and probed w 

3' cDNA probe. The position of the linearized ~7kb vector:insert band is indicated by 

arrowhead.
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2.3.3 Initial Sequencing of the 3kb Hind III + Sal I 5' TamSl intergenic fragment

To sequence the 3.0kb 5’ intergenic genomic Hind III x Sal I fragment a set of Exo 

III deletions of this insert were generated using the methodology outlined in section 2.2.6. 

DNA for each deletion clone was analyzed by agarose electrophoresis and 11 out of the 30 

randomly selected clones contained a range of deletions, which were subsequently 

sequenced. Preliminary analysis of the sequence data demonstrated that the 3.0kb clone had 

not been sequenced in its entirety and that 3 gaps existed within the nucleotide data. It was 

decided that due to the lack of success in generating a complete collection of overlapping 

deletions spanning the 3.0kb insert, that attempts would be made to sub-clone the genomic 

insert into smaller fragments for subsequent sequence generation. 5'TamSl plasmid DNA 

was restriction digested with enzymes Hpa I, Hinc II, Sac I, Ava I, BamHI + Ava I and 

BamHI and the DNA fragments analyzed by agarose gel electrophoresis (see Figure 2.7).

The Hinc II restriction enzyme cut within the genomic DNA to give three distinct 

bands of approximate sizes 800bp, 1.2 kb and 4.0kb (Figure 2.7; Lane3). Further analysis of 

the sequence data from the 3.0kb 5' intergenic fragment confirmed that a Hinc II enzyme 

site was present approximately 1.2kb from the 5' internal Sal I enzyme site. It was therefore 

concluded that the 1.2kb fragment contained both coding and intergenic sequence for 

TamSl and that the 4.0kb fragment consisted of 1 .Okb of intergenic sequence and vector. It 

was decided to sub-clone the 1.2kb and 0.8kb fragments and religate the 4.Okb vector/insert 

band.

Plasmid DNA was cut to completion with the restriction enzyme Hinc II, the 1.2kb 

and 0.8kb fragments were isolated and blunt ended, ligated into the pGem7zf and pGem3zf 

vector DNA digested respectively with Sma I or HincII (see sections 2.2.2. and 2.2.4). The 4 

kb fragment containing the pGem3zf vector plus 1 kb of 5' intergenic insert was religated. 

Three white transformants were picked for each ligation and screened for the presence of 

inserts either by Hind III + Sal I digestion of the pGem3zf DNA or BamHI + EcoR I 

digestion of the pGem7zf DNA. All three colonies screened for each ligation contained 

insert of the appropriate size and a representative clone of all three inserts was manually 

sequenced from either end using the T7 and Sp6 primers. Comparison of the nucleotide 

sequence of each clone with the sequence data from the deletions previously obtained
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Figure 2.7. Agarose electrophoresis analysis of the 5' genomic clone of the 30kDa molecule 

from the X DASH genomic library. The 5' genomic clone was digested with restriction 

enzymes; Lane 2) Hpa I, Lane 3) Hinc II, Lane 4) Sac I, Lane 5) Ava I, Lane 6) Ava 1 + 

BamHI, Lane 7) BamHI. Lanes 1 and 8 show the lkb Lambda DNA Marker (Gibco-BRL) 

ranging form 12kb to 75bp. The position of the Hinc II fragments are indicated by 

arrowheads and in kilobases



deduced the order and orientation of each clone in relation to one another. Therefore, as 

previously concluded the 1.2kb fragment contained the 5' intergenic sequence proximal to 

the protein coding region of TamSl. The 0.8kb fragments splits the 1.2kb and l.Okb 

fragments and the l.Okb fragment is the most distal region relative to the protein coding 

region of the gene. Out of the three 5' TamSl 0.8kb clones, 1 had the fragment inserted in 

the opposite orientation to the other two sub-clones which aided in the generation of 

deletions to complete the sequence of this insert on both DNA strands. The sub-cloning 

procedure and the position of each clone in relation to each other is summarised in Figure 

2 . 8 .

2.3.4 Sequencing of the sub-cloned 5' TamSl intergenic fragments

Having obtained the 0.8kb, l.Okb and 1.2kb sub-clones described above it was 

feasible to complete the sequence of the 5’ intergenic fragment spanning from the upstream 

Hindlll site to the Sal 1 site within the 5’ protein coding region of the gene. From the nested 

deletions of the original 5’ TamSl sub-clone, sequence data covering 1.2kb of the coding 

strand proximal to the polypeptide start site had been obtained. In addition sequence 

covering the Hinc II restriction sites had been derived from these deletion clones. Therefore, 

only the 5’ strand of the 1.2kb sub-clone had still to be sequenced while for completion both 

strands of the 0.8kb and lkb fragments had to be sequenced. All of the sub-cloned 5’ TamSl 

intergenic inserts were greater than 500 base pairs in length and were too long to be 

sequenced conveniently from a single primer binding site on the vector. In order to obtain 

the complete sequence data from each sub-clone, unidirectional deletions were generated for 

both strands.

The orientation of the 1.2kb HincII 5' intergenic fragment within the pGem7zf 

vector had previously been determined by sequencing, see Figure 2.8. To generate 

unidirectional deletions allowing sequencing of the 5' strand of the 1.2kb insert, Exo III 

resistant and susceptible restriction sites were chosen within the vector, Sac I and BamHI 

respectively, and deletions generated as described previously. A total of 50 transformants 

were randomly selected from 12, 30 second deletion time points and screened to confirm 

deletion size by restriction digestion to release the insert and agarose electrophoresis. 14
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(A)

Hind Hi .Okb Hinc II 

 I
0.8kb Hinc II 

________________ I
1.2kb Sal I /Hinc II

TamSl

5' Tams 1 1.2 
( pGe m 7zf)

5' Tams 1 0.8 [T7 

(pGem 3zf) ** )
5' Tams 1.0
( pGem 3zf)

3.Okb vector

l .Okb insert 0.8 kb 1 .2  k b

I *Hinc
I I l /Sma I

Bam HI 
SacI

~  0 .8kb T *Hinc  II Nsi I ~  1.2kb 
BamHI
Sac I 
EcoRI

*Sal 1/ 
HincII /  
Smal  
EcoRI

re I mat  ion

Hind III

*Hinc II 
Hind III

Hinc II

BamHI

EcoRI

Figure 2.8 A diagramatic representation of the sub-cloning 5' TamSJ into plasmids 5' Tams 

1.0, 5' Tamsl 0.8, and 5' Tamsl 1.2. A) shows a representation of the genomic clone 5' 

TamSl cloned into the vector pGem 3zf; B) represent the 5' region of TamSJ divided into 

three Hinc II restriction fragments of 1 kb, 0.8 and 1.2 kb C) depicts the sub-cloned inserts 

in the pGem plasmids, the 1.2 kb fragment was sub-cloned into the pGem7zf vector, the 0.8 

kb insert as sub-cloned into the pGem3zf vector, while the 1 .Okb construct was generated by 

religaion of the original 5‘ TamSJ.\ sub-clone following Hinc II digestion

* Sites removed by blunt end cloning procedure
** This fragment was also sub-cloned in the opposite orientation
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sub-clones were identified that represented a set of deletions spanning the 1.2 kb fragment. 

All 14 clones were subsequently sequenced.

The isolation of two clones containing the 0.8 kb fragment in alternate orientations 

provided an opportunity to construct unidirectional deletions for both DNA strands using 

the same restriction enzyme sites in the polylinker of the vector. Plasmid DNA was cut with 

BamHI to generate a 5' overhang proximal to the Hinc II cloning site of the insert and Sac I 

to generate a 3' overhang to the insert/vector Hinc II site (see Figure 2.8) and Exo III 

digestion was as described in section 2.2.6. 10 recombinant clones, randomly selected from 

7 time points were screened for deletions of the desired size. 6 deletions for the 5' sense 

strand and 5 for the anti-sense strand were of appropriate size for further analysis and were 

subsequently sequenced using the T7 primer binding site.

The sub-cloned Tamsl.0 was obtained by religation of 5’TamSl following digestion 

with restriction enzyme Hinc II. Unfortunately, this strategy only left restriction sites 

suitable for generating deletions which would allow the anti-sense to be sequenced. 

Therefore, it was necessary to reclone the lkb insert so that deletions for sequencing the 

coding strand could be generated. 5' Tamsl.0 plasmid DNA was digested with restriction 

enzymes Hind III + Hinc II, and sub-cloned into the pBluescript SK (+/-) vector. DNA was 

prepared from 10 white colonies and screened for the presence of insert by digestion with 

Kpn I + EcoRI and gel electrophoresis. 9 out of the 10 clones contained insert of the 

appropriate size and two of these clones were confirmed by sequencing.

Deletions of the lkb 5' intergenic fragment in either the pGem3zf vector or 

pBluescript Sk (+/-) vector were generated following the digestion of plasmid DNA with 

restriction enzymes, Sac I + BamHI or Sac I + EcoR I respectively. 4 Exo III deletion time 

points were taken and 30 recombinant clones were screened for deletions of appropriate 

sizes to allow the anti-sense strand to be sequenced. In addition 40 recombinants were 

screened for the deletions for the sense strand. DNA inserts were analysed by digestion with 

restriction enzymes Hind III + Kpn I and analysed by agarose gel electrophoresis. Selected 

deletions were then sequenced as described using either T7 or T3 primers.
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2.3.5 Initial Sequencing of the 4kb Hind III + Sal I 3' intergenic fragment

The 3' Hind III + Sal I genomic fragment cloned into the pGem3zf vector is 

approximately 4kb in length. This sub-cloning strategy only allowed the generation of (see 

Figure 2.5) unidirectional deletions which were suitable for determination of the sense 

strand sequence. Following Exo II digestion and analysis of transformants, 23 deletions 

were selected and subsequently sequenced. Preliminary analysis of the sequence data 

generated showed that the 4kb 3' intergenic clone overlapped with the published cDNA 

sequence and that the 4kb insert had been completely sequenced on the sense strand. Further 

analysis of the sequence data revealed that the Kpnl and Xho I restriction sites were located 

in the 3’ half of TamSl intergenic region, ~ 2. lkb and ~2.4kb respectively, from the internal 

Sal I site to the protein coding sequence. Using this information it was decided to clone a 

2. lkb Xbal x Xhol and a 2.4kb Kpn I x Hind III fragment to determine the sequence of the 

anti-sense strand of the 3’ intergenic region. An advantage of this strategy was that it 

generated an overlap between the sub-clones allowing sequence determination of the Kpnl 

and Xhol restriction site junctions.

The sub-cloning procedure is summarised in Figure 2.9. DNA was prepared from 10 

white colonies and analysed by selected restriction enzyme digestion and gel 

electrophoresis. All of the selected clones contained an insert of the appropriate size and 2 

clones for each ligation reaction were confirmed by sequencing the insert terminal regions. 

Comparison of the nucleotide sequence of each clone to the 3' sequence of the 

complementary strand previously determined gave a 98.7% identity.

The cloning sites within the polylinker of the pGem7zf vector utilised for sub

cloning the ~2.1kb and ~2.4kb 3' intergenic fragments, allowed the sequence of the anti 

sense strand to be determined from Exo III deletions generated following digestion of both 

plasmids with restriction enzymes Sac I and Hind III. DNA prepared from each of the 58 

randomly selected recombinants for each 3' deleted plasmid were screened for inserts of the 

appropriate size by digestion with restriction enzymes Nsi I + Apa I and analysed by gel 

electrophoresis. Selected deletions were subsequently sequenced.
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The sequence data of the genomic DNA flanking the 5' and 3' ends of the coding 

region of the TamSl gene (cDNA) was assembled into two contigs using the gel assemble 

programme. As shown in Figure 2.5 both contigs overlapped with the 5' and 3' respective 

termini of the published cDNA sequence and the restriction analysis performed during the 

sub-cloning. This confirmed that the correct regions had been sub-cloned and sequenced to 

allow the generation of 1 large contig of 8kb. The DNA sequence covering this contig is 

given in Appendix I of this thesis.

2.3.6 General Analysis of Sequence

The complete sequence of TamSl plus the 5' and 3' contigs is 8068 base pairs in 

length and has a base composition of 32.8% G+C, 67.2% A+T. This is comparable with 

T.parva which is estimated to be 31% G+C (Nene et al, 1992), but higher than Plasmodium 

falciparum which has an unusually low G+C content of 18% (Weber, 1988; Pollack et al., 

1982). The overall nucleotide compositions of protein coding sequences, total intergenic 

sequence, and 5' and 3' flanking sequences across the ~8kb contig are shown in Table 2.1. 

In addition, the % G+C content has been plotted across the entire 8kb sequence, see Figure 

2.15. Analysis of this data reveals, as expected, that the G+C% is highest within open 

reading frames and that G+C rich regions, relative to the remaining intergenic (or total) 

sequence, exists immediately 5' to the these open reading frames. These G+C rich islands 

may be indicative of control elements for each of the protein coding sequences. Analysis of 

the composition of the first 400 bases 3' to each open reading revealed an A+T rich 

sequence in the immediate 3' flanking region of each gene. The role of this A+T rich 

sequence is unknown, however, work on other eukaryotic genes suggest that the termination 

process for transcription may require a T-rich or A-rich sequence immediately 3' to the 

gene.

The overall base compositions of the open reading frames within the 8kb contig is 

40% G+C which is comparable with T.parva at 42.5%. All of the coding sequences within 

the 8kb contig have a small excess of T and A over G and C. The nucleotide composition of 

TamSl had been previously determined as 42.7% G/C (Shiels et al., 1994) and the Ta-ORF- 

1 has a similar G+C content of 40%.
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Figure 2.9 A diagramatic representation of the sub-cloning of the 3' TamSl into plasmids 

Tam 13 and Tam33. A) shows a representation of the genomic clone 3' TamSl cloned into 

the vector pGem 3zf; B) shows how the 3' region of TamSl was sub-cloned into two 

fragments of 2061 bp and 2387bp inserts; C) depicts the final pGem7zf plasmids.
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2.3.7 Open Reading Frames

Sequence analysis of the compiled 8kb contig identified four open reading frames, 

including TamSl, see Figure 2.10-2.13. A complete open reading frame was identified 

downstream from TamSl, Ta-ORF-1 and the two other partial open reading frames were 

detected at either end of the contig sequence, Ta-ORF-2 and Ta-ORF-3, see Figure 2.14

The potential product of Ta-ORF-1 is 303 amino acids in length, as shown in Figure 

2.11. The nucleotide composition of the Ta-ORF-1 gene (see Figure 2.11 or Appendix 1 

nucleotides 5816-4906) has been determined as 60.2% A/T and 39.8% G/C. In order to 

determine whether Ta-ORF-1 was expressed by either of the macroschizont, merozoite or 

piroplasm stages a Northern blot was hybridised with a 1.2kb Ta-ORF-1 probe generated 

from the clone Taml3. This analysis showed that Ta-ORF-1 detected an abundant mRNA of 

1.8kb, in RNA isolated from the infected cloned cell line D7 cultured at 37°C and during 

differentiation towards the merozoite (Figure 2.16). This mRNA was also detected in total 

RNA isolated from the piroplasm stage, but at a reduced level. Reprobing the blot with the 

TamSl, cDNA probe confirmed previous finding of Shiels et al., (1994) in that an abundant

1.1 kb mRNA was detected which is expressed at low levels by the macroschizont and is 

significantly up regulated during differentiation to the merozoite, and is expressed at a high 

level in the piroplasm (Figure 2.16). It was concluded that while Ta-ORF-1 and TamSl are 

expressed in the same stages the temporal pattern of expression of the genes in the stages 

analysed is different. Unfortunately, no RNA from the sporozoite or tick stages of the 

parasite was available in order to determine the complete expression of the gene. The data 

from the Northern blot suggests that Ta-ORF-1 is expressed and has a structural/functional 

role in Theileria parasites.

Analysis of the amino acid sequence for Ta-ORF-1 with the GCG program MOTIFS 

or FASTA did not reveal any similarities with other polypeptide sequences in the databases. 

The deduced 303 amino acid residue sequence of Ta-ORF-1 has a calculated molecular 

mass of 34.2kDa. It is a highly hydrophilic molecule which has 4 predicted N-linked 

glycosylation sites but no other recognisable sequence domains. The predicted amino acid 

sequence from Ta-ORF-1 was compared with that of the equivalent predicted open reading 

frame from the T.parva contig (Chapter 3). An overall degree of identity of 66.1% was
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2 6 4 1  AACTTATAATAATGTTATATTAAAATATGACAAATTAATGTGTGAAATAAATAAAGTAAA

2 7  0 1  GTGGAGGGAAATTCTGTCCTAATATTTAACTGGGTCTAGTGACTTAAAAAAGAAAGCAGG  

2 7  6 1  TTATTGGTTTGAAAAAATAATAAATTCATCTTTTTATAGTCATCAAAAAATGAAAAATGG  

2 8 2 1  ATAAATATACATGTTATTTCATTAAGATGGACTTCAATGGAGGATAAGGCATTAGGCGTG  

2 8 8 1  ATGAGTGCATAGATACAGATAAACATGCACACAATTTGTAGGGCGACATTGTTTTGTATG

2 9 4 1  GTGAATGCATATCCATCTCACTTCACTTATAGTTATTGGTCTTTTTTTCCATAACATCCA

3 0 0 1  CCCAATTAGTTAATTTTTAATATTTAAATCGCTCACTAGTCTGCCCTTTCTTATCTTTTT

3 0  6 1  ATAATATAAT TAT T T GAGAT GT T GT C CAG GACCAC C C T CAAGT TCT TATAT T T GAGCTTC
M L S R T T L K F L Y L S F  

3 1 2 1  TTCGTTATCTCATCCGTTAATGCTGCAAATGAGGATGAAAAGAAAAAGGAGGAAAAAAAA  
F V I  S S V N A A N E D E K K K E E K K  

3 1 8 1  GATGTTGTTCTTGATGTTACTCTCACTTCATGTGAGAATGTAACCTTTAAAAACGTCGAC 
D V V L D V T L T S C E N V T F K N V D  

3 2 4 1  TCTAACACCACTGAGTTAACTGTCGCGGATGGCTACCGTTTCAAGACCCTTAAGGTCGGA  
S N T T E L T V A D G Y R F K T L K V G  

3 3 0 1  GACAAGACCTTGTTCAATGTTGACACCTCAAAACATACCCCAGTACAGGCATTCAAACTT  
D K T L F N V D T S K H T P V Q A F K L  

3 3 6 1  AAGCATGAATCCGATGAGTGGTTCAGACTTAATCTTCACCCTGCCCAGCCAAAGATGTTC  
K H E S D E W F R L N L H P A Q P K M F  

3 4  2 1  AAGAAGAAGG GAGACAAGGAATAT T C T GAG G T CAAAT T C GAGAC C TAC TAC GAT GAT G T C 
K K K G D K E Y S E V K F E T Y Y D D V  

3 4  8 1  TTGTTCAAGGGAAAATCCGCCAAGGAACTAGATGCTTCCAAGTTCGAAGATACATCTTTG  
L F K G K S A K E L D A S K F E D T S L  

3 5 4 1  TTCACCTCCTCCGCCTTCGGCACTGGAAAGATGTACACCTTTAAAAAGGAATTTAAACCT  
F T S S A F G T G K M Y T F K K E F K P

3 6 0 1  T C C AAAG TCACCTTC G AC AAG AAA G AAG T C G G AAAAC C AAAC AAT G C CAAG T AT C T T G AA
S K V T F D K K E V G K P N N A K Y L E  

3 6 6 1  GTTGTTGTTTTTGTTGGTTCTGATTCCAAGAAGTTCGTCAAACTCTACTACTTCTATACC  
V V V F V G S D S K K F V K L Y Y F Y T  

3 7  2 1  GGTGACTCAAGGTTGAAGGAGACCTACTTCGAGCTTAAGGACGATAAGTGGGTTCAAATG  
G D S R L K E T Y F E L K D D K W V Q M

3 7  8 1  ACACAGGCAGATGCAAACAAGGCCTTGAATGCCATGAACTCATCCTGGTCAACCGATTAC
T Q A D A N K A L N A M N S S W S T D Y

3 8  4 1  AAACCAGTTGTCGACAAGTTCTCCCCCCTTGCAGTCTTCGCCTCAGTACTCATCGTCTTC
K P V V D K F S P L A V F A S V L I V F  

3 9 0 1  TCATCAGTCCTTTACTTCCTTTAAAACCCATGTTCGTAACAACTTATCAACTTTTAAAAC  
S S V L Y F L *

3 9 6 1  AATTTTGATAATTTGTATACAATTGCAGAAACTAAATAACTAGCTTAAGTCATTATATGC

4 0 2 1  CACTTAATTTTATACTTTAAACTTATATGTTTAGATATAACTTCAACAGCTATAGGTCAT  

4 0 8 1  CAATATCCAAGTCACGGTAAAATCGCGGCCCTCACGCTAACCAGCTAAAAGCAGAACAGC  

4 1 4 1  AAACTCTGGTTATCGCAGCTTCCTCTTCACTTTCGTCATCTCTTTCCACAGTGTGCAATG  

4 2 0 1  AACCTGTAAAAATTAAGTGAATTGTAAAAATGAAATTATTAATCTTACTGAAAAGACGGT

Figure 2.10. The nucleotide and derived amino acid sequence of the TamSl gene. Regions 

of sequence overlap between published cDNA sequence and the genomic contigs are 

underlined. The numbers depicted the position of the sequence on the 8kb contig (see 

Appendix 1).

* denotes termination codon TAA
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4 5 2 0 CAACGATGCAGTTGTCCAAGATTCTGTTAATTTTGTCCCTGCCAATCGAAGTGATAATGG

4 5 8 0 TAGTGTCCAAAGTGTACCCTAGGTGTTTCCTGACCCTTATGTTTGAATTAAACTCCAGGT  

4 6 4  0 T G T G GAGGAT GAAT C T CAAAG TAGCAGAGAG T C CAG GAC GAAC T TAGAG TAAAAAAT TAC 

4 7 0 0  AAGTAACAAATATTTCATTTGAAAAGACTAACTGCATAAATATTTTTACTAGCTAAATTA  

4 7 6 0  TTACTGAAATGACAAAATGGAAATAAAATTAAAACAAGCTAGCTGGAGAACATGGTCTGA  

4 8 2 0  CAAAAAGCTAGGCAGATAATAAGTTACAAAAAACAACTTTACAAAATT TTTTAAAACAAC

4 8 8 0 TAGTTTCCTGAGGCTCAGACAATTTAATTTAATGTGGAAATATATCGAAGAGATTAATCA
* N L T S I I D F L N I

4 9 4  0 ACTTTAGTGGTATTCGGCTCAGTGTTTTCGTGATGTTTATGCTTAGGCTTACTTTTGAAA
L K L P I R S L T K S I N I S L S V K S  

5 0 0 0  TATTTCCGTCTGTGTGTATTTTTCTCTGAATTGACTGCGTTATTTTGTGGTTTTTCGTTT  
I N G N T H I K R Q I S Q T I K H N K T  

5 0  6 0  GCGGAGTTCCTCCAGTTCTCATTCTCGTCCCTGTGGTGGGACTTTGGGCTCGTGACGGGA 
Q P T G G T R M R T G T T P S P G T V P  

5 1 2  0 TCTACGAGACCTACCGGAGCCTGTTCCCGAGGTGGGAAGTTTATCATTTTTAGGGTCAGG  
D V L G V P A Q E R P P F N I M K L T L  

5 1 8  0 AGGCTGTTCAGAAACACTAGAAGTAGCGGGAGGCGCTGAGAGTCTGGAGGTTTGGAGGTT 
L S N L F V L L L P L R Q L T Q L N H L

5 2  4 0 GGAACGTCATTGGGGTTTTAGTTGGATCAGAATTAGTGAATAACCTGTCCTTTTTATCCT
Q F T M P T K T P D S N T F L R D K K D  

5 3 0 0  TTTGAGATTTAGCATTTAATGTTTGGTTGATTAGTATTTACAGTTTGAGCGTTAGAAGAT  
K Q S K A N I N P Q N T N V T Q A N S S

5 3  6 0  GTACTAGTGGGTTTTTTGCGTCTTGGATAACGATCCTTTTTACGCTTCTCTGCTAAAGGT
T S T  P K K R R P Y R D K K R K E A L P

5 4  2 0 GATAAATCACTTGTAAGAGTTTCATGAATTGTGGGTTCCAGCTGGTCTGACAGTGTATTT
S L D S T L T E H I T P E L Q D S L T N

5 4 8 0 TCCAGCTGATTTGATAATGTGTTTTCTAACTGATTTGTTAGTCTACTTTCTAGCTGTCCG
E L Q N S L T N E L Q N T L R S E L Q G  

5 5 4  0 ACGAGTCTTTCATCTAGTTTGTTGGTTAATGACTCTTGCAATAAAAGAGAGTTGTCTTTA  
V L R E D L K N T L S E Q L L L S N D K  

5 6 0 0  TAGTTGGTTAAATCCAGAAAAGGCTGCGACAGCTTATCAGATACATACTGCTTAATTGTA  
Y N T L D L F P Q S L K D S V Y Q K I T  

5 6 6 0  AGTCTATCGTCTCTTGTTCTATCTGATAGAATTGAGTGGTTAAGAGTGTCAATTGCTGTT  
L R D D R T R D S L I S H N L T D I A T  

5 7 2 0  GTCAGGTCAGCTTCGTTATATCCATCACTTTTGTTGTCCATCCAATTAGACTCTGAGACG  
T L E A E N Y G D S K N D M W N S E S V

5 7  8 0 GTAGGCGACTCCACCATAACGTTTGGGTTAAACATTTGAGGTCTCGAATTACTCTTCAAC
T P S E V M V N P K F M

5 8  4 0 CTTGTTGCATACTGCTGAAAACCTTGGTAGATCCCGTTAGGGTGGCTGGGTACGGCACTG

5 9 0 0  AAGGTGGAGGTGGAGGTGGTGACTCTACACCTCTTCCGAGGAAGTTGGTAAACCCTAGTG  

5 9 6 0  GGTAGTTGCCCTTCATTTCAGGGCATGAGGAAGTCCGGTACTCGGTACCCCAGGATATTA  

6 0 2 0  TCAGTGTCATCGCTGTTGGAATTTCTGAAAGATAACGAGTT

Figure 2.11 The nucleotide and predicted amino acid sequence of open reading frame 1. 

The numbers depicted the position of the sequence on the 8kb contig (see Appendix 1).
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7 3 2 1  ATTTCTTTAAGTATTTTTTCTTCTCTACTGCGATACCCTCCAGTTGACACATTATACTTA

7 3 8 1  TTTTCCAGGCTTTTTATTCTCTTAGATAGATTTTCCAGGTGTTTCTCGTATTCTTTACAT

7 4 4 1  AACATTTCTTCCGCTAACTTTTGTTCTTGCAGTGTTAGCTTTTCACATGGCATATATCTC

7 5 0 1  TTTTGGAGGTGAGAATACTTAAAGTTGCTCGTTTTCCTATTAAATGTGTTGATTTTGGTA

7 5 6 1  GAGAACGTACCATTCTAGCAACAAATTTGAATCTTCTAGGCCTTTTGACAAGTTTTCCGC

7 6 2 1  TTCGGAATCGATTAGTTTCCTTGATTCCTACAGATAATTTCAATTGGAGTTAGTTACCTC

7 6 8 1  TATTAGTTTCAAATCAAAATACTCCTTAGGTTTGTACTGGTCCGCAGTCTTCCGTGAGGA  
* I L I S R L N T S T R L R G H P  

7 7 4 1  ATAGGATGTTTCACACTGTCGTATGCCAGCAGGTTTACGAACTCTTCATTTATTAACTGG  
I  P H K V S D Y A L L N V F E E N I L Q  

7 8 0 1  TTATACTTGGACTGCGATTCATTAAATGTATTTTCTAGGTCATTTACAAAAACTATTGAA  
N Y K S Q S E N F T N E L D N V F V I  S 

7 8 6 1  TTGAAGACTACTGGTCTTGGCAGCTTTCTCTGGATGACTTGTGTCTCCAGGAGTTCTCTT  
N F V V P R P L K R Q I V Q T E L L E R  

7 9 2 1  TCTTCTTG TTTTTTCTTTTCCAATTCCTGTTTACGTCTTTCTATCTCTTCCATATCCAAA  
E E Q K K K E L E Q K R R E I  E E M D L  

7 9 8 1  TCTTGTTCAACTTCTTCCTCTTCCATGGTTTCAATATCTGGAATTGTAACTTCAACATTC  
D Q E V E E E E M T E I D P I T V E V N  

8 0 4 1  CCTTCTGGCTCTGGGAGGTTTGACAAGC 
G E P E P L N S L

Figure 2.12 The nucleotide and predicted amino acid sequence of open reading frame 2. 

The numbers depicted the position of the sequence on the 8kb contig (see Appendix 1).
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1 AAGCTTGCGAACAGTCTCCAAGGGCTTCTCTGAGACGAAGTTCGCTCAATCAATGTTGTC 6 0  
A C E Q S P R A S L R R S S L N Q C C P  

6 1  CAGGTCTGAAGTTTTACGACTGGATGGTTAAGATTTACCGGGATCAGAAGGGTAGTAATC 1 2 0  
G L K F Y D W M V K I Y R D Q K G S N P  

1 2 1  CTCAATTATCTACCTTCGATTATGATAACTACGTCTACACCTATAACCCTATCGCAAAGA 1 8 0  
Q L S T F D Y D N Y V Y T Y N P I A K K  

1 8 1  AGAGCTAGTTCAGCTTATTCTAAGAATCCGTTCTCCTATTCGTATAAATCTTTTTTTCTT 2 4  0 
S *

2 4 1  TTTACTTTTATAGGTTTTCCTTCTCATATTTGTTCCCCAGGTTCTAAGAAGGACGTTATT 3 0 0  

3 0 1  TGTGATGATTTCTTTTTCTTCTGGGACACTGAAATGCAGTTTAAATATTTGAGAACAAAT 3 6 0

3 6 1  TGGCTTTAAAATTAATGAAGTATTGTTATTTATTGAGTTTAAGATTTTGTTATTTTTAAT 4 2 0

4 2 1  TATTTGGCAAATTTGGTTTAATTGAGTCATTTTAAATTTAATTATTCACTTACACATTTA 4 8 0  

4 8 1  TTATTCTCACCTCTATAAATAAATTACTTCTGGTTTTTTAAAACCCCATATTTATTTGAA 5 4  0 

5 4 1  AT T T T AAAAT G T T T AT AC GC AAAT TAT AT TAT C T AAT T T C AG T T T C AC GAAAACAAG AAA 6 0 0

Figure 2.13. DNA sequence of open reading frame 3 plus 400bp of 3' intergenic sequence. 

The predicted amino acid sequence is shown below. The numbers depicted the position of 

the sequence on the 8kb contig (see Appendix 1).
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determined between the two predicted polypeptides, with the most conserved region lying 

in the C terminal half (78% identity). The amino acid sequences diverge in the N-terminal 

half of the molecule. Comparisons of the Ta-ORF-1 sequence with TamRl, representing the 

merozoite 117kDa rhoptry gene, or TamSl and Tams2, encoding the polypeptide of >30kDa 

located on the surface of the merozoite, showed no significant homology with either the 

nucleic acid or protein sequence.

The partial open reading frames, Ta-ORF-2 and Ta-ORF-3 showed no sequence 

homology with any known gene in the databases searched or to any known conserved 

polypeptide motifs. Additional, preliminary studies into the expression of Ta-ORF-2 and -3 

suggest that Ta-ORF-2 may be expressed during the differentiation of merozoites to 

macroschizonts. The Ta-ORF-3 probes did not hybridise with RNA made from either 

macroschizont, merozoite or piroplasm stages of the parasite (results not shown).
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ORF-3 TamSl ORF-1 ORF-2

Figure 2.15 Distribution of nucleotide composition across the ~8kb genomic clone. The 
diagram represents the position of each open reading frame in comparison to the G+C 
content.

Table 2.1 Nucleotide composition of different regions of the 8.0kb genomic fragment.

G +C % N um ber o f nucleotides
Protein coding sequence 40 2418
Total intergenic sequence 34 5726
5 ’ flanking sequences 38 780
3 ’ flanking sequences 31 1460
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1 2 3 4 5

Figure 2.16 Analysis of RNA levels during a differentiation time course of 

macroschizont infected cell line D7 and Piroplasm RNA by Northern blotting. RNA

was isolated from piroplasms and from D7 parasite infected cells at 37°C and every 2 days 

following incubation of the culture at 41 °C. The blot was hybridized with the Tams I cDNA 

and Ta-ORF-1 probes. The size of the bands estimated in kilobases relative to RNA markers 

are indicated by the arrowheads. Macroschizont D7 culture incubated at 37°C, Lane 1; and at 

41°C, Lane 2, Day 2; Lane 3, Day 4; Lane 4, day 6 and piroplasm RNA, Lane 5.



2.4 Discussion

To clone the regulatory elements controlling expression of the TamSl gene, a 

genomic library, constructed from DNA isolated from T.annulata (Ankara) merozoites, was 

screened with a cDNA probe encoding the 30kDa merozoite surface antigen. Three 

representative plaques were purified and DNA from one of the clones was restriction 

mapped with respect to TamSl. To maximise the likelihood of cloning the regulatory 

elements, a 3kb 5' intergenic genomic and a 4kb 3' intergenic genomic fragment were 

cloned and sequenced (Figure 2.3). The sequence data from the genomic fragments was 

assembled and allowed the generation of 1 large genomic DNA contig of 8kb (see Appendix 

1).

Analysis of the genomic 8kb contig, containing TamSl, identified 4 open reading 

frames in various orientations (Figure 2.14). The genes flanking TamSl are of unknown 

identity and only open reading frame Ta-ORF-1 3' to TamSl was sequenced in its entirety. 

The nucleotide and predicted amino acid sequence of Ta-ORF-1 gene was compared to 

other polypeptides in the Genbank and Swiss Prot databases by FAST A search, however, no 

significant homology to other sequences was detected. Comparisons with known Theileria 

genes was also unsuccessful. Investigations into the expression of the Ta-ORF-1 product 

detected an abundant message of 1.8kb during day 6 of macroschizont differentiation to 

merozoites which was also observed at a much lower level at day 4. Interestingly, the RNA 

was also found in macroschizont infected cells at 37°C and showed an increase at day 2 of 

the time course. This temporal pattern of mRNA levels was similar to that detected by the 

TamSl cDNA and TamRl probes (Shiels et al., 1994), although the level of the probe 

representing TamRl mRNA appears lower during the early phase of the time course. Low 

level expression of the Ta-ORF-1 gene was detected in RNA isolated from macroschizont 

infected cell lines incubated at 37°C and basal expression of the TamSl and TamRl in 

macroschizont cells has been previously demonstrated by Shiels et al., (1994). However, 

basal expression did not to seem to operate for all parasite genes as there was no detectable 

mRNA for the SPAG-1 gene in the macroschizont stage. Only a limited number of examples 

of highly expressed merozoite genes have been isolated to date, and it is possible that basal 

expression of merozoite genes in the preceding stage of the parasite Life-Cycle stage may 

turn out to be a common occurrence. The role of the low level expression is unknown,
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however, Shiels et al., (1994) have postulated that it might relate to priming of the parasite 

for the next differentiation event and two possible mechanisms which explain how it occurs 

were suggested (see 2.1).

Northern blot analysis of Ta-ORF-1 revealed low level expression in the piroplasm 

stage of the Life-Cycle. It is however, unclear whether the Ta-ORF-1 product is expressed 

in piroplasm stage or if expression may be attributed to low level merozoite contamination 

or production within erythrocytes. Further investigations into RNA and polypeptide 

expression of Ta-ORF-1 are needed. Sporozoite and other tick stages of the parasite have, as 

yet, not been examined for the expression of the Ta-ORF-1 gene, but may be informative if 

expression of the gene was found to be limited to the Life-Cycle stages within the leukocyte 

or bovine host cells. The polypeptide and nucleic acid sequence of the Ta-ORF-1 gene did 

not show any similarity to other polypeptides sequences in any of the gene banks searched. 

However, the absence of a group of hydrophobic amino acids would suggest that the 

polypeptide is present in the cytoplasm of the parasite but without an antibody raised 

against the molecule, this cannot be proven.

Open reading frames Ta-ORF-2 and TaORF-3 are positioned at either end of the 8kb 

contig (Figure 2.14) and neither sequence showed any similarity to other polypeptide 

sequences in either the Swissplot or Genbank databases. Only the 3' end of each open 

reading frame was present within the 8kb. Comparisons of the full nucleotide and predicted 

amino acid sequence for each gene within the above databases may resolve their identity 

and function. Preliminary Northern analysis suggests that Ta-ORF-3 is not expressed in 

either macroschizont, merozoite, or piroplasm stages of the parasite and it is unclear 

whether this open reading frame is functional while Ta-ORF-2 was shown to be expressed 

at low levels in differentiating macroschizont cultures. Therefore, even though similarities 

in expression exist between 3 of the 4 open reading frames within the 8kb contig, no two 

genes are expressed to the same degree and with the same temporal order during the 

parasite’s Life-Cycle. Different gene expression patterns of flanking genes have also been 

demonstrated by Nene et al., (1992), suggesting that it is not necessary for genes expressed 

at the same time within the life-cycle to be clustered together.
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Genes are often expressed in a temporal sequence, the activation of one gene 

triggering the expression of another (downstream) gene, ultimately leading to a cascade of 

expression which accompanies the transition of one cellular state to the next for the parasite, 

possibly differentiation. Alternatively, genes or related groups of genes are expressed co- 

ordinately, that is they respond simultaneously and usually to the same degree, to a 

regulatory signal. Genes that are co-ordinately regulated are often linked together in the 

genome and can be transcribed from a promoter at the 5' end of the gene cluster into a single 

RNA molecule, a polycistronic transcript. Most prokaryotic and some parasite transcription 

units are polycistronic, however, clustering of genes in apicomplexa parasites is not well 

documented, to date, and appears to be limited to rRNA sequences and the mitochondria 

(extrachromosomal element). Regardless of their relative order in the mitochondrial genome 

(extrachromosomal element) there is no firm evidence suggesting that the genes encoding 

polypeptides of the electron transport chain are expressed as large precursor RNA’s within 

Theileria. However, polycistronic transcription and processing have been reported for the 

Plasmodium mitochondrial genome (Ji et al., 1996) and is predicted to be involved in the 

expression of the Trypanosoma brucei mitochondrial genome (Feagin and Stuart, 1985; 

Jasmer et al., 1985).

In higher eukaryotic organisms, individual genes are transcribed into individual 

monocistronic RNAs encoding single proteins. Therefore, genes which are co-ordinately 

expressed are transcribed as individual genes and tend not to be closely associated in the 

genome. As the genes (ORF’s) defined in the 8kb TamSl contig are not co-ordinately 

expressed it seems likely that transcription operates monocistronically. Also genes which 

are polycistronically expressed are normally positioned 5’-3’- 5’-3’, therefore, since the 

TamSl and Ta-ORF-1 reading frames are ordered 5’-3’-3’-5 \ this argues against this 

mechanism because the coding strands of mRNA do not match. However, as differential 

expression can occur, following precursor processing, at the level of mRNA stability in 

protozoan parasites a polycistronic mechanism, cannot be discounted. Indeed while many of 

the genes so far isolated in Plasmodium, Toxoplasma, Babesia and Theileria are believed to 

be transcribed monocistronically this hypothesis has only been proven for a relatively low 

number of apicomplexan parasite genes by nuclear run on analysis (Lanzer et al., 1992a). 

Further studies analysing expression of TamSl by nuclear run on methodology are
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necessary before a conclusion on the mechanism of transcriptional control can be made and 

on what role mRNA stability plays in controlling the differential control of this gene.

Nucleotide sequence comparisons between the 30-kDa merozoite surface molecule 

in T.parva and T.annulata has demonstrated a 75.5% identity (Shiels et al., 1995) and 

similarities between T.parva p67 and SPAG-1 of T.annulata have shown a similarity of 54% 

(Nene et al., 1992). It is seems likely, therefore, that ORF-1 cloned and sequence for both 

T.parva and T.annulata with an identity of 66.1% is the same gene or from the same gene 

family. Unfortunately, the length of the genomic T.parva clone (Chapter 3) did not include 

the two open reading frames found at either end of the 8kb contig. It is therefore, impossible 

to determine whether the gene organisation between T.parva and T.annulata is conserved.

While the expression patterns of TamSl and Ta-ORF-1 are similar during 

differentiation of macroschizonts towards the merozoite, sequence comparisons of the 

intergenic regions of both genes did not reveal distinct similarities which could be involved 

to co-ordinate the expression of these genes. This may mean that if expression of these 

genes is monocistronic then recognition of the important regulatory elements is by distinct 

factors. This possibility is supported by the differential regulation observed in the piroplasm 

stage, that there must be multiple factors involved in the control of expression of these two 

genes, at least within this stage. The lack of definition of shared motifs between intergenic 

regions of TamSl and Ta-ORF-1, however, necessitated that a different strategy was needed 

to define DNA sequence motifs involved in the control of TamSl gene expression. 

Interestingly, the size of the 3’ intergenic region of both genes, where the 3’-3’ regions are 

together, is much shorter that the 5’ intergenic sequences. The 5’ intergenic sequences may 

be longer due to the presence of important regulatory control elements, a hypothesis 

supported by G+C rich islands flanking the protein coding start site of each open reading 

frame. Additionally the 3’-3’ intergenic region flanking both genes is very A+T rich 

suggesting that it may have a role to play in the termination process of transcription. 

Termination sites for eukaryotic RNA polymerase II genes have been shown to be either 

within a few hundred bases beyond the polyadenylation site, for example the a-globin gene 

(Sheffery et al., 1984), or a few thousand bases beyond the polyadenylation site, for 

example the a-amylase gene (Hagenbuchle et al., 1984). Comparisons between the
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terminator signals for several genes, have implicated a long stretch of A or T residues in the 

process of transcriptional termination signals. Alternatively, the A or T rich 3’ intergenic 

sequence may play a role in mRNA stability.

93



3 Structural Analysis of the 5’ Upstream Region of the TamSl Gene

3.1 Introduction

During the differentiation of the macroschizont to merozoite in vitro, the 30kDa 

polypeptide is expressed differentially, as indicated by the analysis of steady state RNA and 

protein accumulation (Shiels et al., 1994). The molecular mechanisms regulating this 

differential expression are unknown but, as indicated in section 1.5.1, are of importance 

because up regulation of TamSl gene expression is one of the earliest detectable events of 

the differentiation process. Furthermore, a direct correlation between the observed elevation 

with the ability to form merozoites (or reach commitment) was reported. Therefore, 

identification and analysis of structural motifs which direct the expression of Theileria 

genes during differentiation may lead to a greater understanding of the molecular 

mechanisms involved in determining merozoite formation.

The current picture of transcriptional control in eukaryotes is a complex one, where 

each of three RNA polymerases depends upon a particular set of transcription factors for 

correct initiation. The transcriptional control regions of eukaryotic protein coding genes 

transcribed by RNA polymerase II (pol II) can be separated into at least two categories: a 

core promoter and upstream (or downstream) regulatory elements. Promoters have been 

defined as modulatory DNA structures containing a complex array of cis-acting regulatory 

elements required for accurate and efficient transcription and for controlling differential 

expression of a gene (Polyanovsky et al, 1990). Each gene can also carry a unique array of 

proximal and distal enhancer elements that are important for elevating, activating or 

repressing transcriptional activity (Tjian and Maniatis, 1994). Eukaryotic promoters and 

enhancers are regulated by a combination of sequence specific DNA binding proteins in 

combination with general transcription initiation factors plus accessory factors. Many 

eukaryotic protein coding gene promoters contain a TATA element, which is located 

approximately 25 to 30bp upstream of the transcription start site (Benoist and Chambon, 

1981; Ghosh et al, 1981). Interaction of a TATA binding protein with this sequence 

specifies the site of initiation in many of these promoters (Jones et al., 1987; Schmidt et al., 

1989). In addition, it is generally accepted that the simplest promoter includes a TATA box 

and a transcription start site, or only a TATA box (reviewed in Breathnach and Chambon,
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1981; Buratowski et al., 1988). Other common important control elements highly conserved 

among many genes transcribed by pol II and which interact with the basal transcriptional 

machinery are GC and CCAAT boxes (Pugh and Tjian, 1992).

Protozoan parasites progress through a number of distinct life-cycle stages. 

Therefore, expression of genes in more than one developmental stage may require, in some 

cases, distinct combinations of transcription factors, especially if the same gene is expressed 

in response to different extracellular signals in different Life-Cycle stages. One single 

promoter region, therefore, may not always be sufficient to accommodate all the required 

information. Several genes have been described in eukaryotes that use alternative promoters 

during development. Both insulinlike growth factor I (IGF-I) and insulinlike growth factor 

II (IGF-II) genes are regulated by multiple promoters that are active in a variety of 

embryonic and adult tissues and are subjected to developmental and tissue specific 

regulation (van Dijk et al., 1992; Gilmour et al., 1994). Alternative promoter usage can 

influence gene expression in very diverse ways. The level of transcription initiation can vary 

between alternative promoters, and translational efficiency of mRNA isoforms with 

different leader exons can differ: they can also direct tissue specificity, differential 

responsiveness to extracellular signals and the generation of protein isoforms with variable 

amino termini (for review see Ayoubi and Van de ven, 1996).

To date, attempts to identify promoter elements in Theileria have been restricted to 

cloning DNA regions upstream of the transcriptional initiation site of several stage 

specifically expressed genes for sequence analysis. As yet only the promoter for the 

constitutively expressed gene hsp70.1 has shown sequence homology to DNA sequence 

motifs. Homology was found to the consensus sequence of the heat-shock element binding 

site and a putative TATA box was reported in the 5' region (Mason et al., 1989). Putative 

TATA box sequences have been detected in the 5' region of several stage specifically 

expressed genes. These motifs are not believed to be functional, however, due to their 

positions in relation to the transcriptional initiation site and the ATG start codon (Katzer, 

thesis 1995; Fraser McDonald, personal communication).
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Several promoters have been characterised for the related apicomplexan parasites, 

Plasmodium and Toxoplasma. Perhaps the most surprising revelation of all the studies 

conducted on Toxoplasma, is that to date no canonical TATA box has been found. In 

Plasmodium, with a non-coding region consisting of -90% AJT content (Weber, 1988; 

Pollack et al., 1982), a number of TATA boxes have been defined, although they are not a 

universal feature. In addition, McAndrew et al., (1993) have reported the isolation of a gene 

encoding a divergent TATA-binding protein from P.falciparum. Thus it is very likely that a 

similar TATA-binding protein exists in Toxoplasma and Theileria and, if it is involved in 

transcriptional initiation of genes which lack a TATA box in their promoter, must work by 

either recognising a noncanonical TATA box or via indirect interaction with another DNA 

binding protein (Soldati et al., 1995).

Polypurine motifs have been reported to be conserved between protozoan parasites 

but, the functional role of these motifs is, as yet, unknown. For example, Mercier et al., 

(1996) drew attention to the presence of an A/TGAGACG motif which is common to four 

GRA genes and the SAG1 genes in Toxoplasma (Soldati and Boothroyd, 1995). In addition, 

a related motif, T/AGTGTAC, was reported in the putative promoter regions of the 

Plasmodium GBP 130 and KAHRP genes (Lanzer et al., 1992a, b; 1993). Interestingly, the 

purine rich sequence elements of both the SAG1 and GRA genes are present in tandem 

arrays, like the GC-rich motif recognised by the SP1 transcription factor of higher 

eukaryotes (Kadonaga et al., 1986). Moreover, consistent with a SP1 like motif, it has been 

demonstrated that the A/TGAGACG motif acts in an orientation independent fashion 

(Mercier et al., 1996).

The direct involvement of the purine motifs in the regulation of stage specific gene 

expression seems unlikely. In Toxoplasma the A/TGAGACG motif is found in the promoter 

regions of genes that are expressed in both tachyzoite and bradyzoite stages of the parasite 

(Mercier et al., 1996). In addition, a purine rich sequence element in the Plasmodium 

GBP 130 promoter region, expressed at the erythrocytic stage, was found to be homologous 

to the core region of the SV40 enhancer (Weiher et al., 1983) and to a similar sequence 

motif in the upstream region of the P.knowlesi circumsporozoite gene (Altaba et al., 1987). 

Therefore, it is expected that these purine motifs are involved in more general
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transcriptional processes, since they are present in genes transcribed at different states of a 

parasite's Life-Cycle.

As described above, the primary control of gene expression lies at the level of 

transcription, however, is some cases the rate of synthesis of a particular protein can be 

altered without a change in the transcription rate of the corresponding gene. In principle, 

such post-transcriptional regulation could operate at any of the many stages between 

transcription and translation of the corresponding mRNA in the cytoplasm. One possible 

mechanism for regulating expression post-transcriptionally is by differential removal 

(splicing) of sequences which intervene between polypeptide coding regions of a gene. 

However, the inability to detect introns within multiple genomes sequences of TamSl 

(Frank Katzer, personnal communication), removes the possibility that differential splicing 

operates in the expression of this gene.

An important factor controlling the amount of proteins produced is the stability of 

mRNAs. Degradation of a mRNA transcript proceeds from the 3'- end and deadenylation 

may lead to the removal of the methyl-guanyl cap at the 5'-end of the mRNA so that 

degradation also proceeds from that end. The more rapidly degraded an RNA is, the less 

protein it is likely to produce. Hence an effective means of gene regulation is by changing 

the stability of an RNA species in response to a regulatory signal. Stability of RNA can be 

conferred by motifs generally repeated several times in the 3' untranslated region of the 

transcript. These motifs have either the ability to increase stability or to greatly increase the 

rate of degradation. For example the stability of the H3 mRNA is controlled by a 30 

nucleotide sequence at the extreme 3' end of the molecule (Latchman, 1990) that confers the 

potential to form stem-loop structures by intra-molecular base pairing (Mullner and Kuhn, 

1988). It has been suggested that changes in stability might be brought about by alterations 

in the folding of this region of the RNA in response to a specific signal. Similarly the 

destabilisation of the mRNA encoding a number of cytokine and proto-oncognes is 

conferred by a motif AUUUA which is repeated several times in their 3' untranslated region. 

Transposition of these sequences to the corresponding position in more stable mRNAs 

greatly increases their degradation (Hawkins, 1996).
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In addition to specific sequence motifs, Poly (A) containing mRNAs are stabilised 

by Poly(A)-binding protein (PABP), a cytoplasmic protein that binds to a site containing at 

least 27 A residues in their Poly(A) tails. mRNAs with a smaller number of A residues are 

degraded so rapidly that they are generally undetectable (Hawkins, 1996).

The final stage in the expression of a gene is the translation of its messenger RNA 

into protein. In theory the regulation of gene expression could be achieved by production of 

all possible mRNA species by a cell followed by selection of particular mRNAs for 

translation into protein. Therefore, regulation of translation could operate via modifications 

in translational apparatus affecting the efficiency of translation of RNAs or by modifications 

in the RNA which affect the way in which it is translated by the ribosome. Modification of 

RNA can be mediated either by sequences in various parts of the RNA, involve secondary 

structure similar to that observed for mRNA stability and the use of different translation 

initiation codons. Furthermore, once the primary translation products are produced they may 

need further processing to acquire full functional properties. Thus, theoretically regulation 

of TamSl gene expression during differentiation could occur by any of the mechanisms 

outlined above. However, the temporal and quantitative correlation between mRNA and 

polypeptide levels observed during differentiation time course suggest that primary control 

is likely to be at the level of transcription and/or mRNA stability.

3.1.2 Aims.

The primary aim of work presented in this chapter was to identify the structural 

motifs which could be associated with the developmental regulation of the TamSl gene. 

Initially experiments were to be carried out to define whether the regulation was mainly 

controlled at the transcriptional or post-transcriptional level. It was also necessary to map 

the transcriptional start site of the gene and to identify potential poly A addition signals. A 

final aim of the work carried out in this chapter was to clone and sequence 5' and 3' 

intergenic regions from other Theileria species in order to pinpoint conserved domains 

which could be of functional significance. Designated domains may be shared across gene 

types and this was to be tested for by comparison with the available intergenic regions of the 

TamRl, SPAG1, and known control motifs of eukaryotic genes, in general.
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3.2 Materials and Methods

3.2.1 Nuclear run on analysis.

Parasite nuclei were prepared using the method of Lanzer et al., (1992). All steps 

were carried out on ice or at 4°C. 200ml of differentiating D7 macroschizont infected cells 

(Shiels et al., 1994) were spun down at 1500g for 5-10 minutes. The cells pellet were 

resuspended in 12ml of ice cold nuclear wash buffer (20mM PIPES, pH 7.5, 15mM NaCl, 

60mM KC1, 14mM P-mercaptoethanol, 0.5mM EGTA, 4mM EDTA, 0.5mM spermidine, 

0.15mM spermine, 0.125 mM PMSF) and transferred to a dounce homogenizer. 270 pi of a 

10% NP40 solution was added and seven strokes with a pestle were applied. The cell 

homogenate was analysed under phase contrast microscopy to estimate cell breakage, 

transferred to a sterile Sorvall tube and spun at 1500g for 5 minutes to separate the host and 

parasite nuclei. Supernatant was transferred to eppendorfs and the 1500g pellet discarded. 

The supernatant was then spun at 5000g before being washed in 1ml of nuclear wash buffer 

and respun at 5000g. The 5000g pellet was resuspended in 50pl of 2x Elongation buffer 

(lOOmM Tris, pH 8.0, 50mM NaCl, lOOmM KC1, 2mM MgCl2, 4mM MnCl2, 2mM DTT, 

0.15mM spermine, 0.5mM spermidine, lOmM creatine phosphate, 2mM GTP, 2mM CTP, 

2mM ATP, 25% glycerol) on ice, followed by the addition of 20pl of sterile DEPC treated 

dH20, 125 units/ml of RNasin (Promega) and 30pl of 32P labelled UTP (300 Ci/mmole). The 

nuclei were incubated at 37°C for 5 minutes before stopping transcript production by 

heating at 70°C for 5 minutes. Following cooling of the reaction mix to 37°C, lOpg/ml of 

RNase-free DNase was added and incubated at 37°C for 5 minutes. lOOpg/ml of E.coli 

tRNA was then added and unincorporated [a-32P] UTP was removed by size exclusion 

chromatography through a Nuc-Trap Probe purification column (Stratagene). The column 

was pre-run with 70pl of STE buffer (lOOmM NaCl, 20mM Tris.HCl, pH 7.5, lOmM 

EDTA) and the reaction was passed down the equilibrated column using a syringe. 

Radiolabelled RNA was eluted by passing 150pil of STE buffer down the column. The 

eluate was collected into a fresh sterile eppendorf tube containing lOOpl of Church and 

Gilbert buffer. The probe was either immediately frozen at -20°C or used directly in 

hybridisation experiments.

DNA fragments cloned into the pGem vectors, to be hybridised with the labelled 

RNA, were slot blotted onto nylon membrane filters, lpg of sample DNA was diluted in
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25mM phosphate buffer (pH 5.5) to a total volume of 50pl. The solution was boiled for 3 

minutes, chilled and the DNA transferred onto nylon membrane pre-soaked in phosphate 

buffer, using a hybri-slot manifold (Gibco-BRL 24 well filtration manifold) under vacuum. 

The DNA was fixed to the nylon membrane, (as described previously, section 2.2.3), by 

exposure to 150 Joules short wave Ultra-violet radiation using a GS Gene linker (Biorad). 

Following UV cross-linking the membranes were prehybridised in 10ml of Church and 

Gilbert hybridisation solution (section 2.2.3) at 45°C for 30 minutes, with rotation, using the 

Hybaid cylinder and hybridisation oven system (Hybaid). The labelled RNA was added and 

hybridisation carried out for 48 hours. The filter was then washed three times with lx SSC 

buffer and 5% SDS for 30 minutes at 45°C and exposed to X-ray film for 6 days.

3.2.2 5’ Rapid Amplification of cDNA Ends (5’ RACE)

The 5’ RACE system (Gibco-BRL) and was used to determine the transcriptional 

start of TamSl. To carry out this method it was necessary to isolate piroplasm Poly A+ 

RNA, because it was known that high levels of TamSl RNA was present in this stage. 

Isolation of T.annulata piroplasm total RNA was carried with the Tri reagent (section 2.2.9) 

and used for isolation of mRNA using the Poly A Tract mRNA Isolation System (Promega). 

lmg of total piroplasm RNA was combined with RNase-free sterile dH20  to a final volume 

of 2.43ml and heated to 65°C for 10 minutes. The RNA was allowed to cool following the 

addition 1 OjliI of Biotinylated-Oligo (dT) probe and 60pl of 20x SSC. Streptavidin- 

paramagnetic particles were then added to the annealing reaction and the tubes incubated at 

room temperature for 10 minutes. Using a magnetic stand the streptavidin-paramagnetic 

particles were collected, then washed in 1.5ml of 0.1 x SSC; this was repeated four times. 

Finally the mRNA was eluted by resuspending the streptavidin-paramagnetic particles in 1.0 

ml of RNase free dH20. The streptavidin-paramagnetic particles were collected and the 

eluted mRNA transferred to a sterile RNase-free eppendorf.

First strand cDNA synthesis was generated by combining lpg of piroplasm mRNA 

with 2.5 pmole of the TamSl gene specific primer, GSP1 (see Table 3.1). The RNA was 

denatured by incubating the mixture at 70°C for 5 minutes, before cooling on ice for 1 

minute. The contents of the tube were combined with 2.5pl of lOx reaction buffer (200mM 

Tris-HCl, pH 8.4, 500mM KC1), 3pl of MgCl2, lp l of lOmM dNTP mix (lOmM each,
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dATP, dCTP, dGTP, dTTP) and 2.5pl of 0.1M DTT. The sample was incubated for 2 

minutes at 42°C, before addition of lpl of Superscript Reverse Transcriptase, followed by a 

further incubation at 42°C for 30 minutes. The reaction was stopped by heating at 70°C for 

15 minutes, before digesting the mRNA template with lp l of RNase H, at 55°C for 10 

minutes. The resulting cDNA was purified using a Glassmax DNA isolation cartridge 

(Stratagene). 120pl of binding solution (6M Nal) was added to the sample and transferred to 

the Glassmax cartridge. Following a 13,000g spin for 20 seconds, the column was washed 

once with 400pl of lx  wash buffer (Stratagene) and twice with 400pi of cold (4°C) 70% 

ethanol. The cDNA was eluted with 50pl of sterile dH20  preheated to 65°C and 

centrifugation at 13,000g for 20 seconds. The single stranded cDNA fragment was now 

tailed with Poly dC by combining lOpl of cDNA with 2.5pl of 2mM dCTP, 1.5pl of 25mM 

MgCl2, 2.5pl of lOx reaction buffer and 7.5pl DEPC-treated dH20 ; incubating at 94°C for 3 

minutes; chilling on ice and adding lp l of terminal deoxynucleotidyl transferase 

(lOunits/pl); followed by a incubation at 37°C for 10 minutes. The enzyme was then heat 

inactivated at 65°C for 10 minutes.

To PCR amplify the dC-tailed cDNA product, 5pi of tailed cDNA was combined 

with 2pl of anchor primer (Stratagene), 2pl of GSP2 (see Table 3.1) (prepared as a lOpM 

solution) lp l of lOmM dNTP mix, 3pl of 25mM MgC12, 4pl of lOx reaction buffer, 5pl of 

diluted Taq DNA polymerase, and dH20  to a final volume of 50pl. 30pl of mineral oil was 

placed on top of the reaction mixture and the tube incubated in a thermocycler for the 

following cycles: 94°C for 60 seconds (denaturing step) 57°C for 30 seconds (annealing 

step) and 72°C for 2 minutes (elongation step), followed by a final step of 10 minutes at 

72°C. A total of 30 cycles was performed and the amplified sample analysed using agarose 

gel electrophoresis. The 5' Race product was excised from the gel, purified using the 

QIAquick gel extraction method and cloned in the TA Cloning Vector (Invitrogen), as 

described in section 2.2.4.

3.2.3 DNA amplification by Polymerase chain reaction (PCR)

The primers used for PCR are listed in Table 3.1. In all cases the PCR reaction mix 

was made up to lOOpl and contained lpg of each primer, lOOng of template, 9pl of 11.1 x 

PCR stock buffer (45mM Tris-HCl, pH8.8, llm M  NH4S 04, 4.5mM MgCl2, 6.7mM 2-0-
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mercaptoethanol, 4.4 pM EDTA, pH 8.0, ImM dATP, ImM dCTP, ImM dGTP, ImM 

dTTP, 113pg/ml BSA) and lp l of Taq polymerase (amplitaq). 30pl of mineral oil was 

placed on top of each reaction mix and the tubes were incubated in a thermocycler for the 

following cycles: initially the mixture was incubated at 95°C for 4 minutes, followed by 25 

cycles of 1 minute at 95°C (denaturing step), 1 minute at 45°C (annealing step) and 1 minute 

at 72°C (elongation step). The PCR products were separated by agarose gel electrophoresis, 

from which fragments were purified using the QIAquick gel extraction method following 

manufacturer guidelines as described in section 2.2.4.

3.2.4 Generation of genomic DNA mini-library and cloning of the TamSl gene from 

T.parva.

50pg of genomic DNA was digested with restriction enzymes, using standard 

conditions (section 2.2.2), to completion overnight at 37°C. The samples were run on a 0.7% 

agarose TBE gel until maximum resolution of the DNA fragment size to be isolated was 

obtained. Viewing under UV radiation, a scalpel cut was placed across the track, 0.5cm 

below the region of DNA to be eluted. Dialysis tubing was inserted into the cut, folding 

under the gel. The DNA was run onto the membrane for 3 hours at 100 volts. The length of 

the run was monitored under UV radiation by visualising how far the lkb DNA marker 

bands migrated. Turning the current down to 20 volts, the tubing was removed quickly from 

the gel using plastic handled forceps. The tubing was placed in 1ml of low salt elution 

buffer (0.2M NaCl, 20mM Tris, pH 7.3, ImM EDTA), and rinsed several times in the buffer 

before the tubing was discarded. The DNA was then purified using an Elutip column. The 

column was pre-washed with 2ml of high salt buffer (1M NaCl, 20mM Tris, pH 7.3, ImM 

EDTA) and then primed by pushing 2ml of low salt elution buffer through the column. 1ml 

of gel eluted DNA was then passed over the column and this was repeated to increase 

efficiency of DNA binding. To elute the DNA, 200pl of high salt buffer was passed down 

the column, and DNA precipitated from the eluate by the addition of 2 volumes of ethanol 

and incubation at -70°C for 30 minutes.
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Name of 

Primer

Sequence of Drimer 5’ to 3' Position on TamSl 

genomic Sequence 

(Appendix I)

GSP 1 cgaacttggaagcatctagttccttggcgg 3526-3497

GSP 2 caucaucaucaugggtcttgaaacggtagccatccgcgacag 3289-3260

1945 gcgaattcgggtgtagtattgctgaag 2416-2436

1944 gcaagctttttgtcgttatgagctgtcc 2544-2524

1963 gtcgacgggtaaggacagctcataacg 2517-2540

1964 tctagagaatttccctccactttactt 2715-2694

1947 gcggatccaaataaagtaaagtggagggaaat 2684-2712

1946 gcggtaccccatcttaatgaataacatg 2850-2830

TamslDB gcgctcgagcttgtctccgaccttaagggtctt 3306-3282

Table 3.1: The oligonucleotide primers used for PCR and 5' RACE system. The name of 

the primers, their sequence, the origin of the sequence and the position they map to on the 

sequence given in Appendix I is listed.
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2.5pg of Lambda ZAP Express vector DNA was cut with appropriate restriction 

enzymes (see sections 2.2.2) for one hour before dephosphorylating the 5' terminal 

nucleotides with calf intestinal alkaline phosphatase (see 2.2.4). The digested DNA was 

phenol:chloroform extracted before ethanol precipitation and the pelleted DNA was 

resuspended in 5pi of sterile dH20 . Gel eluted T.parva DNA fragments were then ligated 

into the Lambda ZAP Express vector by combining 1 pi of digested Lambda ZAP Express 

DNA with, 0.5pl lOx ligation buffer (see 2.2.4), 0.5pl lOmM rATP, lp l of T4 DNA ligase 

and 2pl of T.parva DNA. Incubation of the ligation mixture was carried out for 2 days at 

13°C and then packaged with the Stratagene Gigapack II packaging extract. A sample of 

freeze/thaw extract (Stratagene) was thawed quickly and lp l of the ligation mix 

immediately added. The packaging reaction was placed on ice before adding 15pl of Sonic 

extract (Stratagene) and the mixture incubated at 22°C for 2 hours. 500pl of SM buffer and 

20pl of chloroform were then added and the supernatant was stored at 4°C, before titration 

of plaque forming units as described previously (see 2.2.1).

To screen the X Zap express mini-library, 50,000 plaque forming units were plated 

out onto BBL plates (section 2.2.1) and incubated overnight at 37°C. The following day the 

plates were chilled at 4°C for 2 hours, before plaque lifts were taken by placing 

nitrocellulose filters on the agarose for 2 minutes. During this period the position of the 

filters were marked with a needle. Removed filters were immersed in denaturing solution 

(1.5M NaCl, 0.5M NaOH) for 2 minutes before neutralising for 5 minutes by immersion in 

1.5M NaCl, 0.5M Tris-HCl, pH 8.0. The filters were then rinsed in 0.2M Tris-HCl, pH 7.5, 

2x SSC and the DNA was fixed by baking the filters at 80°C for 2 hours, under vacuum. 

Following fixation, the filters were hybridised with a radiolabelled probe (section 2.2.3) for 

24 hours, washed 3x 30 minutes in lx SSC, 5% SDS at 65°C and exposed to X-ray film 

overnight at -70°C. On development of the autoradiograph, positive plaques were identified 

and picked into SM buffer containing 20pl of chloroform and stored at 4°C overnight. In 

addition, one negative plaque was also picked to serve as a control in subsequent rounds of 

screening. Secondary and tertiary screens were performed as above until phage were derived 

from a single plaque.
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To excise the plasmid containing the T.parva genomic insert from the X ZAP, DNA, 

a 250pl aliquot of a positive pure phage stock (containing approximately lxlO5 phage 

particles) and lpl of R408 helper phage (approximately lx l0 6 pfu ml'1) were absorbed onto 

200pl of XL-1 blue MRF cells (Stratagene, see section 2.2.1). 5ml of 2XYT media was 

added and the mixture incubated for 2.5 hours at 37°C in an orbital shaker. The sample was 

heated to 70°C for 20 minutes before centrifuging at 4000g for 15 minutes. The supernatant 

was then decanted into a sterile tube and stored at 4°C. 200pl of XL-1 Blue MRF' cells was 

then mixed with 200pl of phagemid stock and incubated for 15 minutes at 37°C before the 

addition of 200pl of 2XYT media and a further incubation at 37°C for 45 minutes. 200pl of 

the sample mix was then plated out onto LB/kanamycin plates and the plates incubated 

overnight at 37°C.
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3.3 Results

3.3.1 Isolation of gene clones encoding the major merozoite antigen in T.parva

To try to define conserved sequences which may function as regulatory elements 

controlling the expression of the TamSl gene, the 5' and 3' intergenic regions of the related 

gene from T.parva (TpmSl, Shiels et al., 1995) were cloned. As attempts to clone this gene 

from a T.parva genomic library with the TamSl cDNA probe were unsuccessful it was 

decided to construct a genomic DNA mini-library using DNA isolated from T.parva 

piroplasms (Muguga stock).

Restriction sites suitable for generating the mini-library were identified by digesting 

genomic T.parva DNA with, BamHI, Hind III, Kpn I, EcoR I and Sal I. The DNA was 

separated on a agarose gel, Southern blotted and probed with the 5' cDNA probe of TamSl 

(see 2.3.1). The resulting autoradiograph is represented by Figure 3.1(A). The blot was then 

stripped, reprobed with the 3' cDNA probe of TamSl (see section 2.3.1) and the result 

obtained shown by Figure 3.1(B). These results showed that both probes detected a single 

Hind III band at 6kb. This could be due to recognition of the same fragment by both probes 

or the presence of two Hind III fragments which were very close in size. If a Hind III site 

was close to 5’ or 3’ end of the probes used then only one intergenic region would be 

obtained, necessitating further cloning. From the limited information in chapter 2, and the 

size of the TamSl coding region, it was thought that there was a reasonable chance that a 

single 6kb Hind III fragment may contain sufficient additional sequence both 5’ and 3’ to 

the respective probes to allow a meaningful analysis. Thus, it was decided to construct the 

mini-library from genomic T.parva DNA cut with the restriction enzyme Hind III. The 

DNA was separated on an agarose gel before being electroeluted, ligated and packaged as 

described in section 3.2.4. A number of positive plaques were identified and purified to 

homogeneity by successive rounds of screening, using the cDNA probe of the TamSl gene 

(see 3.2.4).
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Figure 3.1 Southern blot analysis of T.parva genomic DNA following restriction di 

and hybridisation with (A) 5' TamSl cDNA probe and (B) 3' TamSl cDNA pro 

section 2.3.1). Arrowheads at the right hand-side indicate the position in kilobases 

the DNA markers.

Lane 1) BamHI

Lane 2) Hind III

Lane 3) Kpn I

Lane 4) EcoRI

Lane 5) Sal I

Figure 3.2. Agarose electrophoresis analysis o f  the TpmS13.2 genomic clone isolate 

T.parva genomic mini-library. The cloned DNA was digested with restriction er: 

Lane 2) Acc I and Lane 3) Acc I + Hind III, and Lane 1) shows the Lambda kb DNA. 

track. Arrowheads at the left hand-side indicate the position in kilobases (kb) o f  tb 

markers. The arrowhead on the right hand side o f  the diagram highlights a AccI frag; 

~250bp
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To excise the genomic DNA from the X ZAP clone, XL-1 Blue MRF cells were co

infected with purified X ZAP phage and filamentous helper phage R480 (as described in 

section 3.2.4). The size of the genomic insert in the resulting plasmid was estimated by 

digestion with Hind III followed by agarose gel electrophoresis and found to be ~5.5kb. 

Sequence data previously obtained by PCR (Shiels et al., 1995) revealed that there was a 

Acc I site internal to the protein coding sequence of TpmSl. Restriction mapping 

demonstrated that the genomic insert plus vector could be divided into two fragments of 

approximately 2.7kb and 6.0kb when digested with Acc I (see Figure 3.2, Lane 2). The 

2.7kb fragment consisted of the TpmSl genomic insert (band A) and the 6.0kb fragment of 

vector plus genomic insert (band B). Digestion of the excised clone with Hind III +Acc I 

resulted in the generation of three fragments, two of which were of approximately 2.7kb 

(Figure 3.3; Lane 3, band C). As digestion with Hind III releases an insert of 5.5kb and the 

4.5kb band corresponds in size to linearized pBK-CMV vector DNA, it was concluded that 

the 2.7kb bands resulted from an AccI site in the vector polylinker for the 2.7kb band 

obtained with the AccI digest.

Following the result of the Southern blot, it was therefore decided, to sub-clone 3' 

and 5' regions of the TpmSl genomic clone using the Acc I sites within in the poly linker of 

the pBK-CMV vector and within the protein coding sequence of TpmSl. Plasmid DNA 

was digested with restriction enzyme Acc I and the products were analysed by gel 

electrophoresis on a low melting point agarose gel. Two fragments were excised from the 

gel, a 2.7kb fragment containing the 5' region of TpmSl and a 6kb fragment which 

contained the pBk-CMV vector plus 2.7kb of the 3' region. The 5' fragment was sub-cloned 

into the AccI site within the Bluescript vector and the 6kb fragment was religated. The 5' 

clone was given to Ms McKellar for sequencing.

3.3.2 Sequencing of the 3f untranslated of the TamSl related gene in T.parva

The 3' genomic insert of the TpmSl gene religated into pBK-CMV vector, was 

approximately 2.0kb in length. Unfortunately, this strategy only left restriction sites suitable 

for generating unidirectional deletions which would allow determination of the sense strand 

sequence. Plasmid DNA was digested with restriction enzymes Hind III + Kpn I, to generate 

a 5' overhang susceptible, and a 3' overhang resistant to Exo III, respectively. Exonuclease
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digestion of the insert was performed as described previously in section 2.2.6. 64 randomly 

selected transformants were screened for deletions of appropriate size by digestion of 

plasmid DNA with restriction enzyme Pst I and gel electrophoresis. 18 deletions were 

selected for further analysis and were sequenced manually using the T7 sequencing primer. 

Preliminary analysis of the data indicated that the fragment had been completely sequenced 

on one strand.

To facilitate the sequencing of the anti sense strand, a Hind III x Pst I fragment was 

sub-cloned into the pGem3zf vector (see 2.2.4). DNA was prepared from 10 white colonies 

and screened for the presence of insert by digestion with Kpn 1 and agarose gel 

electrophoresis. 7 out of the 10 clones screened contained insert of the appropriate size and 

two positive clones were confirmed by sequencing. Deletions of the ~2.0kb 3' intergenic 

fragment were constructed following digestion with Kpn I x BamHI. The resultant deletions 

were transformed into E.coli XL-1 Blue competent cells and the screened for the presence of 

appropriate size inserts by digestion with EcoRI and Hind III, followed by sequencing (see 

section 2.2.7).

The sequence data of the genomic DNA flanking the 3' end of the coding region of 

the TpmSl gene was assembled into a contig using the GCG gelassemble program. 

Unfortunately, analysis of the 3’ end of the 5’ intergenic sequence contig (sequenced by Ms 

McKellar) did not show an overlap with the 5’ end of the 3’ intergenic sequence contig. To 

confirm that the correct fragment for the 5’ intergenic region of TpmSl had been sub-cloned 

and sequenced the excised genomic clone, TpmSl3.2, was digested with Hind III + Acc I 

and Acc I and hybridised with the 5’ TamSl cDNA probe (see Figure 3.3(A)). The probe 

detected a band of 2.7kb for both digests (highlighted with an arrowhead) corresponding in 

size to the band observed in Figure 3.2. The Southern blot was stripped and reprobed with 

the 3’ TamSl cDNA probe which hybridised to a 0.25kb band (Figure 3.3(B)). Re-analysis 

of the restriction digest of the original excised T.parva genomic clone with enzymes Hind 

III + Acc I and Acc I, confirmed that a ~250bp Acc I fragment had been overlooked during 

the original sub-cloning of the original clone (see Figure 3.2, band highlight with an 

arrowhead). To obtain overlapping sequence across the AccI sites, including the 250bp 

sequence, of the
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Figure 3.3. Southern blot analysis of genomic clone isolated from the T.parva genomic 

library. Following digestion with Acc I (Lane 1) and Acc I +Hind III (Lane 2) the blotted 

DNA was hybridized with the 5' (A) and 3’ (B) TamSl cDNA probes (see section 2.3.1). 

The position of each band is indicated by an arrowhead and in kilobases.



5’ and 3’ sequence contigs of TpmSl fragment, primers were made using known sequence 

from the protein coding region of TpmSl, upstream of the known AccI site and downstream 

of the previously undefined AccI site within the 3’ intergenic fragment. The ~250bp gap 

was sequenced in either direction by automated sequencing using DNA from the excised 

TpmSl 3.2 genomic clone. The accumulation of this data allowed for the generation of 1 

genomic contig of ~5kb. The DNA sequence covering this contig is given in the Appendix 

II of this thesis.

3.3.3 Sequence comparison of the T.annulata and T.parva contigs

The T.parva and T.annulata contigs were compared over 5kb of sequence, which 

included the polypeptide reading frames and the immediate flanking intergenic sequences of 

the TamSl and TpmSl genes (Appendix III). The sequences were found to be conserved 

across the two species giving 80% identity between the open reading frames and 73.3% 

identity between the compared intergenic regions. The most significant region of sequence 

diversity was observed in the region between the polypeptide coding region of TamSl and 

TpmSl and the unidentified ORF-1 sequence. As this region appears to consist of the 3’ 

intergenic regions of the TamSl/TpmSl and the ORF-1 genes, the lack of conservation may 

indicate that little of this sequence has a functional role. In contrast the sequences of both 

sets of genes is highly conserved within 40-60 base pairs 3’ to the polypeptide stop codons, 

the noted divergence occurring downstream of this position (see Appendix III).

Enhancers can act from a distance, independent of orientation and either from the 5' 

or 3' end of a gene (Hames and Glover, 1988). Therefore, to determine if sequences which 

could function as enhancers for either TamSl or ORF-1 were present, the 3'intergenic region 

was examined for homology to defined enhancers of known eukaryotic transcription factors 

using the GCG program pattemfinds. Unfortunately, no known enhancers were found to be 

conserved between both the T.annulata and T.parva sequences which could either be due to 

the region of conservation of enhancer being quite short and missed on general match up, or 

possibly, though unlikely, it was present in 3’ untranslated RNA sequence. In addition to 

analysing the 3' intergenic sequences of the TamSl and ORF-1 genes for enhancers, analysis 

for signals indicative of RNA processing and polyadenylation was carried out. In most 

higher eukaryotes RNA processing of a mRNA transcribed by pol II requires a AAUAAA
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sequence plus GU and U-rich elements downstream. Unfortunately, no such conserved 

elements were detected in either the T.parva or T.annulata sequences of the TamSl or ORF- 

1 genes. However, there are examples of natural Poly (A) sites which are not dependent on 

these sequence elements, for example p-globin gene expression in Xenopus oocytes (Mason 

et al., 1986). Therefore, known Poly (A) signals may not be relevant to the polyadenylation 

of transcribed mRNA in Theileria.

3.3.4 Transcriptional regulation of the TamSl gene

Investigations into the expression of the TamSl gene by Shiels et al., (1994) 

demonstrated that there is an up regulation of TamSl RNA production during differentiation 

to the merozoite which is maintained by the piroplasm stage of the parasite. Clues to where 

control motifs are likely to be located, can be made by knowing whether primary control of 

gene expression is at the transcriptional or post-transcriptional level. It was therefore 

decided to perform nuclear run on analysis to determine if altered transcriptional control 

contributes to TamSl differential expression. In addition, this assay could be used to 

confirm whether transcription of the TamSl gene was mono-cistronic or polycistronic. The 

TamRl gene encoding the 117kDa rhoptry protein, was analysed in parallel.

Parasite nuclei were isolated from 200ml of cell culture which had either been 

incubated at 37°C or incubated at 41°C for 6 days to induce macroschizont differentiation to 

merozoites (see 3.2.1). Preformed transcriptional complexes were allowed to elongate in the 

presence of labelled UTP. The labelled nascent RNA was purified from unincorporated 

[a32P] UTP by size exclusion chromatography through a NucTrap Probe purification 

column (Stratagene, see 3.2.1) and donated by Dr Swan. The radiolabelled nascent RNA 

was used as a probe for DNA fragments specific for the TamSl and TamRl gene coding 

regions and their respective 5' and 3' intergenic sequences (Figure 3.4). Low level 

hybridisation was observed to the coding regions of both the TamSl and TamRl genes by 

radiolabelled nascent RNA prepared from macroschizont cells (Figure 3.4A). The intensity 

of this signal was greater with DNA hybridised with nascent RNA prepared from day 6 

differentiating macroschizont cultures and no hybridisation was observed to the intergenic 

regions of either gene (Figure 3.4B). This would indicate that transcription

112



1. 2. 3.

Transcription unit

(A)

2

TamRl

TamSl

(B)

2 1 3

TamRl

TamSl

Figure 3.4 TamSl and TamRl genes define independent transcription units. The schematic 

drawing reveals the organization of each gene. DNA fragments spanning each region of the 

genes are presented and numbered. The coding region is labeled 2, the 5' intergenic 

sequence, labeled 1 and the 3' intergenic region, labeled 3. The DNA fragments were 

hybridized with radiolabelled, nascent RNA generated by nuclear run on analysis from A) 

macroschizont cells and B) differentiating macroschizont cells incubated at 41°C for 6 days.
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for both genes is monocistronic and that the 5' intergenic region of each gene must contain 

at least the minimal signals for transcription initiation and termination. Furthermore, the 

observation of an increase in nascent transcript production by differentiating cell between 

the promoter activity of macroschizont and differentiating macroschizont cells, plus RNA 

indicates that the previously detected accumulation of TamSl mRNA (Shiels et al., 1994) 

must, at least in part be due to an elevation of transcription rate.

3.3.5 Mapping the Transcriptional Initiation Site of the TamSl Gene

Monocistronic transcription units usually produce a single transcript encoding a 

single type of polypeptide. In addition, each unit is governed by initiation and termination 

signal which determine the length of the individual transcript. Transcription by eukaryotic 

RNA polymerases I and II are dependent, to a major extent, on nucleotide sequences located 

within about lOObp surrounding the 5' end of their respective transcription RNA initiation 

sites and often on additional sequences which can be located up to several kilobase pairs 

upstream from this position. Therefore, mapping of the RNA initiation site of the TamSl 

gene could aid in a screen for motifs which may bind transcription factors and control 

production of the 30kDa polypeptide.

The RNA initiation site of the TamSl gene was mapped using the 5' Race assay 

(Gibco-BRL). In this method the first strand cDNA is synthesised from mRNA and tailed 

with Poly dC residues. The cDNA is then amplified by PCR using a gene specific primer 

and a Poly dG (anchor) primer and the amplified product sub-cloned and sequenced. Two 

primers were designed which were located downstream of the ATG (methione) start codon. 

The first primer, GSP 1, maps to a position 3526 to 3497 (see Appendix I), 418 nucleotides 

downstream of the ATG while the second primer, GSP 2 is located at 3289 to 3260 (see 

Appendix I), 237 upstream of GSP1. mRNA was isolated from piroplasms and reversed 

transcribed using the GSP1 oligonucleotide as a primer. The product was treated with 

RNase H to remove the mRNA template and the single stranded cDNA was purified before 

being tailed using terminal deoxynucleotide transferase. The product was subsequently 

amplified by PCR using the anchor primer (provided by the kit) and the GSP 2 primer. The 

resulting PCR reaction was analysed on an agarose gel, but unfortunately no visible bands

114



Figure 3.5 Southern blot analysis of 5' RACE products derived from TamSl mRNA. The 

position of the band is indicated by an arrowhead and in kilobases. Lane 1) cDNA template, 

Lane 2) cDNA template amplified by one round of PCR.



were detected (data not shown). The agarose gel was Southern blotted and probed with the 

TamSl cDNA, and the resulting autoradiograph is shown in Figure 3.5. The TamSl cDNA 

insert hybridised to a band of approximately 400bp.

To amplify enough product to allow sub-cloning, lOpl of the PCR reaction was used 

in a secondary round of PCR. The 400bp band, now visible on an agarose gel, was purified 

by the QIAquick gel extraction method and cloned into the pGem T vector. DNA minipreps 

were prepared using the alkali lysis method and clones containing insert were identified by 

agarose gel electrophoresis. Two clones containing the PCR amplified insert were identified 

and sequenced. The beginning of the PCR sequence for both TamSl clones was mapped to 

an adenosine residue 117bp 5' of the ATG start codon which is highlighted by an arrow in 

Figure 3.6. The sequence of the nucleotides flanking this position, CTCACTTTC, is in 

accordance with the transcription initiation site consensus sequence, Py Py C A Py Py Py Py 

Py (Corden et al, 1980) and it was concluded that this was likely to be the major 

transcription initiation position of the TamSl gene.

3.3.6 Comparative Sequence Analysis of the 5’ Sequence of Major Merozoite Surface 

Antigen Genes

As functional DNA protein binding domains can be conserved across a wide range 

of species, it was decided to clone and sequence the 5' intergenic region of the T.hirci and 

T.sergenti and compare these sequences with those already obtained for TamSl and TpmSl. 

An initial analysis between the TpmSl and TamSl upstream sequences revealed that the 

most extensive homology occurred over the first 500-600bp upstream of the transcriptional 

start site. Therefore, it was decided, if possible, to PCR amplify this region using genomic 

DNA from T.sergenti and T.hirci. Primers 2735 and Tams 1DB were used to amplify a 

771 bp fragment from T.hirci, and primers CAT4a and Tams 1DB were used to amplify a 

~320bp fragment from T.sergenti DNA. The PCR products were cloned into pGem-T and 

sequenced. The sequence comparisons between TamSl, TpmSl, ThmSl, over the first 608bp 

upstream of the ATG codon are shown in Figure 3.6.

The overall level of identity between TamSl and the TpmSl and ThmSl fragments 

was high, making it difficult to identify small conserved DNA motifs. However, as
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suggested for Plasmodium, it is possible that control elements will contain a higher content 

of G+C nucleotides when compared to the overall intergenic region (Lanzer et a l,  1992a, 

b). Interestingly, several regions which show conservation across the species had a higher 

G+C content (see boxed regions in Figure 3.6) and this was most evident in the conserved 

upstream region (Figure 3.6; Box A) proximal to the transcription start site. More 

specifically a number of palindromic motifs containing G or C residues were found within 

the conserved boxes of sequence. For example, a heptamer TCACACT and the related 

pentamer ACACA were located within boxes A and J (Figure 3.6), while other related 

palindromes AGTGA and TGTGT were located to boxes F and D (Figure 3.6). All of these 

sequences are G rich and conserved between the three sequences making then candidate 

sequences for motifs involved in the transcriptional regulation of the major merozoite 

antigen.

During the course of this study sequence information was published showing that 

T.parva and T.annulata were more closely related to one another than to the 

T. sergenti/buffeli group. This may explain why a PCR product was only obtained with one 

of the primer combinations used and this only generated 178bp of sequence data for 

comparative analysis. In general this sequence showed extensive divergence from the other 

sequences. However, a lOmer motif (Figure 3.7, Box 2; TTTTAATATTT) 54 bases 

upstream of the ATG polypeptide initiation codon showed an exact match over all 4 

sequences. The mapping of the transcriptional start site of TamSl places this motif within 

the untranslated region of mRNA, confirmed by comparison with available cDNA sequence 

from T.sergenti (Kawazu et a l, 1992). A second region of homology is also represented in 

Figure 3.7. However, this sequence represents the primer used in the PCR amplification and 

the homology is based on the presumed annealing of the primer at this position.
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Figure 3.6 Comparison of TamSl like 5’ UTR isolated from different Theileria species. The 

comparison was carried out using sequence data covering the first 608bp. The numbers 

represent the sequence position with reference to the transcriptional initiation site (marked 

by an arrowhead and is highlighted in bold). All alignments are made to the TamSl 

sequence; dash represents identity, dot represents a gap, any substitutions are shown by the 

relevant letter. The boxes labelled with a capital letter represent regions of high homology.
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Figure 3.7 Comparison of TamSl like genes isolated from different Theileria species over 

the first 178bp of 5' region. Numbers represent the sequence position with reference to the 

transcription initiation site (marked by an arrowhead and is highlighted in bold). All 

alignments are made to the TamSl sequence and dash represents identity, dot represents a 

gap, and any substitutions are shown by the relevant letter. The number boxes surround 

regions of high homology.
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3.3.7 Putative Promoter binding Sites in the 5’ Untranslated Region of TamSl

For eukaryotic RNA polymerase II to transcribe a gene, an array of proteins must be 

assembled at the promoter region (Buratowski et al., 1994), and a number of these 

transcription factors must specifically recognise a promoter sequence motif. With the hope 

of identifying putative DNA binding sites of proteins which may be involved in the 

regulation of TamSl expression, the sequence 5’ to the RNA initiation site was examined 

for homology to defined binding sites of known eukaryotic transcription factors. In this 

analysis only motifs conserved across the sequences from T.parva, T.annulata, and T.hirci 

were considered and those sequences identified are shown in Figure 3.8

Seven binding sites of known eukaryotic transcription factors had homology to the 5' 

region of TamSl. Of these, 3 binding sites were known to act as putative TATA boxes and 

are capable of binding the transcription factor TFIID (the TATA-binding protein (TBP)) 

directly, which is the first step in the assembly of the initiation complex in higher 

eukaryotes (Buratowski, 1994). Two of the binding sites consisted of the classical TATA 

box motif, TAT t/a A t/a and the third motif, GATAAA (betaP-Fl), has been shown to be a 

putative TATA box for human Factor VIII, a glycoprotein essential for blood coagulation 

(Figuiredo and Brownlee, 1995). Interestingly, only the GATAAA binding site was 

positioned upstream of the transcription start site. The 2 traditionally recognised TATA 

boxes were situated between the transcription initiation site and the ATG start codon, see 

Figure 3.8.

The c-mos_DSl binding site, TGGTTTG, Figure 3.8, has been shown to control the 

cell type-specific expression of the c-mos proto-oncogene. Analysis of this motif has 

demonstrated that it acts as a repressor in an orientation-independent manner over large 

distances (van der Hoorn, 1987). Therefore, the role of this motif in controlling the 

expression of the TamSl gene could, if functional, relate to stage specificity, preventing 

expression in those stages of the Life-Cycle where the TamSl polypeptide is not required.

Interestingly 3 different elements, MRE, GR-MT-IIA and IBP-1_CS2 are inducible 

enhancers. The MRE element is induced by heavy metals (Labbe et al., 1991), GR-MT-IIA 

is induced by the many factors which affect the expression of the glucocorticoid hormone
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(Ram et al., 1995) and the IBP-1_CS2 elements can be induced by phorbol ester (Cohen et 

al., 1991). It would seem unlikely that the TamSl gene is controlled by a classical inducible 

enhancer. The TamSl gene product is a surface antigen and appears to be constitutively 

expressed by merozoites and piroplasms. However, the possibility that gene expression is 

upregulated during differentiation by the production/activation of factors which bind to 

enhancer type motifs is possible.

Any of the 7 known transcription factor binding elements in Figure 3.8 could play a 

role in TamSl gene expression. However, without either a functional assay or a method for 

identifying DNA-protein interactions it was impossible to determine whether these motifs 

were identified by chance or because they play a role in regulating gene expression, and 

have been conserved across Theileria species.

3.3.8 Comparative Sequence Analysis of the upstream sequences of the TamSl, 

TamRl, Ta-ORF-1 and SPAG-1 genes.

To test whether any of the promoter like motifs identified in the upstream region of 

the TamSl gene could be involved in the general transcriptional process, upstream regions 

of the TamRl (McDonald, unpublished results), Ta-ORF-1 and SPAG-1 (Katzer, 1995) 

genes were compared with the 5' intergenic region of the TamSl gene. Using the GCG 

program pileup, the sequences were compared over the first lkb of intergenic sequence 

(Figure 3.9) the postulation being that general motifs would be shared between the different 

genes and located to a similar position relative to the transcriptional start site.

The overall identity between the 4 sequences was low, however, it was possible to 

identify small regions of conserved sequence. These could range from a few bases in length, 

to pentamers and even a 16mer. More specifically a number of palindromic motifs, 

previously noted in section 3.3.6, were found to be present in the upstream sequences of all 

four T.annulata genes, providing further evidence for a possible role in transcription 

regulation (see Figure 3.9, sequences underlined and labelled, I, II and III).
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(3)
- 4 8 2  A T T A A A C T C A A A G A C A T C A C A C T C T G A T G A A A G T G A A G G C G G G T A A G G A C

- 4 3 2  A G C T C A T A A C G A C A A A T T C A G T A T A A A A A C A T A A T G A A T G A T T G T T T T A A

- 3 8 2  G G A A A T G A T G T G T G G A A T C A C G G T T A T T T G T G C G G G A A A T T A T G C A T G G A

- 3 3 2  T A T T A T C T A T T T A A C T T A T A A T A A T G T T A T A T T A A A A T A T G A C A A A T T A A

( 2 )

- 2  8 2  T G T G T G A A A T A A A T A A A G T A A A G T G G A G G G A A A T T C T G T C C T A A T A T T T A

( 4 )

- 2  3 2  A C T G G G T C T A G T G A C T T A A A A A A G A A A G C A G G T T A T T G G T T T G A A A A A A T

( 5 )

- 1 8 2  A A T A A A T T C A T C T T T T T A T A G T C A T C A A A A A A T G A A A A A T G G A T A A A T A T

- 1 3 2  A C A T G T T A T T T C A T T A A G A T G G A C T T C A A T G G A G G A T A A G G C A T T A G G C G

( 5 )  ( 1 )

- 8 2  T G A T G A G T G C A T A G A T A C A G A T A A A C A T G C A C A C A A T T T G T A G G G C G A C A

▼
- 3 2  T T G T T T T G T A T G G T G A A T G C A T A T C C A T C T C A C T T C A C T T A T A G T T A T T G  

1 8  G T C T T T T T T T C C A T A A C A T C C A C C C A A T T A G T T A A T T T T T A A T A T T T A A A

6 8  T C G C T C A C T A G T C T G C C C T T T C T T A T C T T T 1 T A T A / 3  A T A A T T A T T T G A G

1 1 8  | ATG|TTGTCCAGGACCACCCTCAAGTTCTTATATTTGAGCTTCTTCGTTAT

Figure 3.8 Factor binding sequence motifs identified in the 5' untranslated region of TamSl 

by GCG pattemfind program. Numbers represent the sequence position with reference to 

transcription initiation site, marked by an arrowhead and highlighted in bold. 5 transcription 

factor consensus sequences have been underlined: (1) MREe (Labbe et al., 1991); (2) GR- 

MT-IIA (Ram et al., 1995); (3) IBP-1CS2 (Cohen et al., 1991); (4) c-mos_DSl (van der 

Hoorn, 1987); and (5) betaP-Fl (Figueirdo and Brownlee, 1995), the two classical TATA 

box motifs are boxed, as is the ATG start codon.

122



Larger regions of sequence homology were detected between the intergenic 

sequences. For example, two regions of homology which are A+T rich were located within 

boxes A, and highlighted in bold and italics. The homology between the TamRl and ORF-1 

sequences only differ by one base (see Figure 3.9; boxes A) while the TamSl and TamRl 

sequences (Figure 3.9; highlighted in bold and italics) are the reverse of each other and a 

significant distance apart. Both of these sequences are located over 100 bases from the RNA 

initiation site of each gene but neither of motifs are conserved between all of the intergenic 

regions analysed. Therefore, although A+T rich, it is doubtful that these motifs are acting as 

an alternative TATA box, involving the recognition of the DNA by a TFIID or equivalent 

factor prior to binding by the RNA polymerase. An alternative possibility is that the 

conservation of the A type sequences within the intergenic regions of genes expressed in the 

merozoite stage, is an indication that they maybe required for regulating expression during 

this part of the parasite Life-Cycle.

Three of the seven known promoter elements shown to have homology with the 5' 

region of TamSl were detected in the intergenic regions of the TamRl, SPAG and ORF-1 

genes. However, the betaP-Fl element was only detected in the TamRl 5' region and as its 

position is over 700 bases from the RNA initiation site it is unlikely that this element is used 

as a TFIID binding site. The inducible elements GR-MT-IIA and IBP-1_CS2 are located in 

the TamRl and SPAG-1 sequences respectively. The GR-MT-IIA element was found within 

the TamRl sequence while the IBP-1CS2 motif was detected in the upstream region of 

SPAG-1 while it is possible that, as mentioned previously these elements could function in 

regulation of stage specific gene expression, the presence of the IBP-1_CS2 in SPAG-1 

makes this unlikely for this element.

For many promoters, control elements have been identified to be within the first 

lOObp upstream of the transcriptional start site. Therefore, it was decided to compare the 

first 100 bases upstream of the initiation site for the TamSl, TamRl and SPAG-1 genes in 

isolation from the rest of the intergenic sequence (See Figure 3.10). As for the TamSl 

intergenic sequence (see section 3.3.7) no putative TATA box was detected immediately 

upstream of the transcription start sites for either the TamRl or SPAG1 genes. Interestingly 

several regions showed conservation across the intergenic regions of the genes, specifically
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to a CTTTTT motif. This motif was repeated several times within the TamRl sequence and 

a further search of the lkb intergenic region, in addition to the SPAG-1 sequence, was also 

shown to be present in the upstream region of the TamSl gene. Indeed the only motif that 

could be considered to be conserved was the CTTTTT sequence. This sequence was 

repeated in TamRl and was present in SPAG-1. Although the sequence was not detected 

within the first lOObp of TamSl 5’ sequence, it was shown to be present further upstream. 

Similar, but incomplete motifs were detected in the ORF-1 sequence.
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I
Figure 3.9 Comparison of the intergenic regions of the TamSl, TamRl, SPAG-1 andORf 

over the first lkb 5' to the ATG start codon. The numbers represent the sequence posite 

with reference to the ATG start codon of each gene. The transcriptional start site are mart 

with labelled arrowheads: TamRl, mR; TamSl, mS; and SPAG-1, SP. Sequence wfr 

show a match with higher eukaryotic motifs (see 3.3.7) are labelled (1), IBP-l_CS2(2)iJ 

GR-MT-IIA (3). Conserved palindromes and pentamers are labelled I) CACA, II) ACAG. 

III) AGTGA, and IV) CTTTTT. The sequences which are boxed or in bold italic Wf

identified as conserved sequences and their significance is discussed in the text.
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T T C CACAATG
T T T C G A A T T T
ATATAGAGTG
GATCAAACCA

A T C TTC TA G A
AACGGCGAAA
TCTGGATAGA
AATTCTGAGG

A TAGTGTACT
ATATATGAAT
CTCTCTGGAG
GACAAAGGCT

T TTG TCA A TG
T T T T T G A A T A
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I

- 5 2 2  ( 2 ) - 4 7 3
|  TamRl A A TA TTG TC T A A A C G G C C A T T A T T T A C T T A T T A A A T T A T T T C A A C A A T T T

SPAG1 GTTTAAGTGA A A A T T G A G G G G A A T T T A A T A T G C G A T A G A T T A A T T G T T T G
1 TamSl A T T G T T T T A A G G A A A T G A T G T G T G G A A T C A C G G T T A T T T G T G C G G G A A A T
1 ORF-1 ATCAAACGTC G A A A G C A A A A C G T A A G C T A A C T A A T T A A A T A A A A A T A T G T

- 4 7 2 - 4 2 3
|  TamRl CAAGAT T T T T T A T T C A T T C A A T T T A A C G G C A A C A T T C C T T A C A C A T C T C A

SPAG1 GCTAGCAGAA T G A G C T C A A A T A A A G A G C T A G C C A A T G T C A T T A A A G C T C C
'  TamSl TATGCATGGA T A T T A T C T A T T T A A C T T A T A A T A A T G T T A T A T T A A A A T A T
' ORF-1 AGCGGAACAC T G G A C G A T G T T T C A T T C C C A G A T T T A C T G G G C T C G A G T A A

- 4 2 2 - 3 7 3
i  TamRl GATT TAG A C  A A C C T T C T A T T C G T G A T T T A C A T . T A G A T G T G T A G T A G G G T

|  SPAG1 AATAAACCCA A G A T T A G A C T C G T T C A C T A G A T A T A C T A A T A A A A T C C A T C
;  TamSl GACAAAT T A A T G T G T G A A A T A A A T A A A G T A A A G T G G A G G G A A A T T C T G T C
' ORF-1 CCGAGATGTT A G T G T A A A T A A T C G G A T C T C G G A A A C C T C A A G C G T C A C C A

- 3 7 2 I I I - 3 2 3
1 TamRl G C A T T G T A T T A T A G G A A A T C C T T T A C A C A T T C A A A T C A C G C G T G A G C C C T

SPAG1 A T T A T T T T T G T G C A T T T A T C A T C G A G T T A T T T T C A C A A A A A A T T A T A C T A
\ TamSl C T A A T A T T T A A C T G G G T C T A G T G A C T T A A A A A A G A A A G C A G G T T A T T G G T

ORF-1 AC G AC C AAG A T C G C C T C T C C A A G G A A C C T C G A A G T A C C A G A T A C A A G T T C
*

- 3 2 2  I I I V ( 3 ) - 2 7 3
TamRl AGT T AGAC A T T G T T C A T A A T T T G T G C A C C A G G G T G T C C T C A A T T G G A T A T
SPAG1 ACACACAACT G T A T A A G A C C G T G T T T A G T C T T T T T C C T T A A A T T T G C T A C
TamSl TTGAAAAAAT A A T A A A T T C A T C T T T T T A T A G T C A T C A A A A A A T G A A A A A .
ORF-1 AAACATAGAA T T T C A A G C G T T A A A T C A G T T G C C A G C C C A G G A T T C C A T A G

/ C D \ 1

- 2 7 2 I I - 2 2 3
TamRl GTGT . TA G A C A A A A A C C A A G A G T G T G C A G G A A T A C T T C C C C A T A C C T T A A
SPAG1 C T A T A T C T G T A A A A C A C A A G C T T A T G T T T T A C A A A T T A C T A T A A A A A A C A
Tam Sl .............T G G A T A A A T A T A C A T G T T A T T T C A T T A A G A T G G A C T T C A A T G G A G
ORF-1 TA G TCG TG A C A G C A G C T A C T C C A A C T C G T T A T C T T T C A G A A A T T C C A A C A

- 2 2 2 ( 1 ) 1 - 1 7 3
TamRl G T T A T T T A G A C A A T C A T T T T A T C T T T A T T T T A T T T A T A T A T T G T T A G C C A
SPAG1 AATAAAACAA A A A C  A C A C T C G T T T T G A G A T A A T T T T C T T A A T A A C A A G T G
Tam Sl GATAAGGCAT T A G G C G T G A T G A G T G C A T A G A T A C A G A T A A A C A T G C A C A C
ORF-1 GCGATGACAC T G A T A A T A T C C T G G G G T A C C G A G T A C C G A C T T C C T G A T G C

( m S l
- 1 7 2 I V I V ▼ 1 2  3

TamRl TAT TG A A A T G A G G C T A A T T T A C T T T T T G T T C T T T T T A T T T G G T C T T T T T T
SPAG1 TT TT A A A A A G G T A G G A C T T T A T C A C C T A A A A G C A G A A T A G T C T C A A A T G C
T am Sl A A T T T G T A G G G C G A C A T T G T T T T G T A T G G T G A A T G C A T A T C C A T C T C A C T
ORF-1 CCT G A A A T G A A G G G C A A C T A C C C A C T A G G G T T T A C C A A C T T C A T C G G A A G

- 1 2 2 - 7 3
Tam Rl C C A A T T C A T T T G T T G G A G C A G A C T C T G T T T T A G A C T T A G A C T T T T A C G A C
SPAG1 ATT GAG A T T  A G A G G C T C C C T G A T A A T T G A C T A A A A A T G T T A T A T T A C A C A
T a m S l T C A C T T A T A G T T A T T G G T C T T T T T T T C C A T A A C A T C C A C C C A A T T A G T T A
O RF-1 AGGTGTAGAG T C A C C A C C T C C A C C T C C A C C T T C A G T G C C G T A C C C A G C C A

(mR).
- 7 2 t - 2 3

T am R l TCTGAAAAGG T G T A T C A T T C T T C A T C A C T A C A A A A T A A T T A C T C A G T T G A
SPAG1 g c t t t t t a t t C G A T T A A T T T A T A A C A A T T A T T T A T A A A T A T T A C T T A T C G
T a m S l A T T T T T A A T A T T T A A A T C G C T C A C T A G T C T G C C C T T T C T T A T C T T T T T A T
O R F -1 ACCTA ACG G G A T C T A C C A A G G T T T T C A G C A G T A T G C A A C A A G G T T G A A G A



- 22
lamRl A G T T T T C C A - 
5PJG1 AGATAGTTTC 
loSl AATATAATTA 
1F-1 GTAATTCGAG

1

T T T A A A ---------
T T T G A G A T ~ ~  
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- 1 0 0 - 5 1

TamR l  A C T T T T T GTT CTTTTTATTT GGTCT T T T T T CCAATTCATT TGTTGGAGCA
T a m S l  AGGATAAGGC ATTAGGCGTG ATGAGTGCAT AGATACAGAT AAACATGCAC
SPAG1  AACACACAAC TGTATAAGAC CGTGTTTAGT CT T T T T CCTT AAATTTGCTA

- 5 0  - 1
TamRl  GACTCTGTTT TAGACTTAGA CTTTTACGAC TCTGAAAAGG TGTATCATTC
T a m S l  ACAATTTGTA GGGCGACATT GTTTTGTATG GTGAATGCAT ATCCATCTCA
SPAG1  CCTATATCTG TAAAACACAA GCTTATGTTT TACAAATTAC TATAAAAAAC

Figure 3.10 Comparison of the intergenic regions of the TamSl, TamRl and SPAG-1 genes 

over the first lOObp 5' to the transcription initiation site of each gene. The numbers represent 

the sequence position with reference to the transcription initiation site of each gene. The 

conserved CTTTTT motif is underlined.
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3.4 Discussion

The protozoan parasite T.annulata has a complex Life-Cycle alternating between a 

vertebrate and an invertebrate host. During the Life-Cycle changes in gene expression 

control are manifest as alterations to the pattern of RNA and protein accumulation. 

Understanding how these alterations come about could provide insight into what determines 

how and when the parasite switches from one stage to another. It was the aim of this chapter 

to initiate investigation into how the TamSl gene is regulated during differentiation and 

delineate possible nucleic acid motifs that may be associated with this process.

Transcription across the TamSl and TamRl intergenic regions is discontinuous as 

demonstrated by nuclear run on assay. Using radiolabelled nascent RNA as a probe for 

DNA fragments representing coding, 5’ and 3’ intergenic regions of the TamSl and TamRl 

genes, no hybridisation was observed to the intergenic regions, whereas the coding 

sequences hybridised to nascent RNA. This indicates that transcription is monocistronic for 

both genes and it was concluded that the intergenic regions contain the minimal necessary 

signals for transcription initiation and mRNA termination/poly A addition. In addition, 

comparison of transcription activity from nuclei isolated from infected cells cultured at 37°C 

with nuclei isolated from D7 infected cells differentiating at 41°C indicates that the TamSl 

and TamRl genes are transcriptionally regulated during the merozoite stage (Figure 3.4). 

Eukaryotic genes transcribed monocistronically by RNA polymerase II frequently contain 

transcription signals upstream of the RNA initiation site and a termination signal 3' to the 

coding sequence. As it appears that certain T.annulata genes are transcribed in a 

discontinuous manner it is possible that a polymerase similar in properties to the higher 

eukaryotic RNA polymerase II carries out this function in T.annulata. This would be 

confirmed if transcription were found to be sensitive to a-amanitin, as this enzyme is known 

to inhibit RNA polymerase II in a wide range of organisms (Sentenac, 1985).

A single RNA initiation site was observed for the TamSl gene. This was also shown 

for the Hsp 70.1 (Mason et al., 1989), SPAG-1 (Katzer, 1995) and TamRl genes 

(McDonald, unpublished data). The transcription start site was mapped to 118 bases from 

the ATG start codon of the 30kDa polypeptide coding sequence, and is in accordance with 

the transcription initiation site consensus sequence Py Py CA Py Py Py Py Py (Corden et
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ah, 1980) for the T.annulata, parva and hirci sequences (Figure 3.6). The T.sergenti 

sequence was divergent over the transcription initiation site from that of the three related 

sequences described above. This could be an indication that RNA initiation of the TsmSl 

molecule differs in position from the other related genes, a possibility which is supported by 

the larger size of the coding region of the TsmSl gene.

At present the identification of transcriptional signals of Theileria is limited to a 

structural analysis of the sequence upstream of the RNA initiation site. Sequence analysis of 

the TamSl intergenic region has revealed several features characteristic of eukaryotic 

promoter regions. For example, 7 different known eukaryotic transcription factor binding 

DNA sequence motifs were identified, conserved across the species analysed. Two TATA 

boxes were identified but were found to be located before the RNA initiation site. It is, 

therefore, unlikely that they regulate the expression of the TamSl gene in a similar manner 

to the TATA motifs of other eukaryotes. Alternatively, the classical description of a higher 

eukaryotic TATA box may not be functional in Theileria. A possible non-classical TATA 

box was found 57 base pairs upstream of the transcriptional start site. The GATAAA motif 

has been shown to be a putative TATA box for the human Factor VIII (Figuiredo and 

Brownlee, 1995) and could therefore be involved in the expression of the TamSl gene. It is 

also possible that, the TATA-binding protein (TBP) in Theileria may not recognise any 

known TATA box sequences. The recent characterisation of the TBP protein in a related 

parasite, Plasmodium falciparum (McAndrew et ah, 1993), suggested that this molecule 

was likely to perform the same general function as the TBPs from higher eukaryotes but 

would require alterations in its interaction with DNA. Therefore, if the TBP protein of 

Theileria was altered with respect to its DNA recognition sequence it was impossible to 

determine this without functional binding studies with recombinant Theileria TBP.

The high A+T content of the Plasmodium and Theileria parasites may make it 

necessary for an alternative sequence to have the same function as the TATA box of other 

eukaryotes. Soldati et al., (1994) proposed for Toxoplasma, however, that certain genes 

have "TATA-less" promoters. Thus, in addition to the recognition of an alternative motif by 

a Theileria TBP, it is also possible that for some genes, including TamSl, positioning of the 

RNA polymerase is determined by a unique motif and/or polypeptide factor. These motifs
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could be in a different position or even be relatively independent of the transcriptional 

initiation site.

It was hoped that the search for potential elements within the TamSl 5’ intergenic 

region would be simplified by cloning and sequencing the homologous intergenic regions 

from T.parva, Third, and T.sergenti. A sequence comparison between the first ~600 bases 

of the 5' untranslated region of the TamSl, ThmSl, TpmSl genes revealed that the 5' 

intergenic sequence shows high conservation between these species. Thus, motifs of the 

expected size (10-20bp) were difficult to identify because of the extent of homology. Given 

the high A+T content of the Theileria promoter it could be predicted that the chance of G+C 

rich sequences being conserved, even across these quite closely related species, is more 

remote and may point to a functional role for such motifs. Interestingly the G+C content of 

conserved domains (Figure 3.6; Boxes A, D, F and J) was higher than the intergenic region 

overall, and was highest in the conserved region proximal to the transcription initiation site. 

Sequence palindromes, pentamers, and heptamers were also located in the conserved boxes. 

In the absence of functional data it can only be speculated that the conserved GC rich 

sequences play a role in the regulation of the TamSl gene. However, the AGTGA pentamer 

is part of the IBP-1CS2 motif indicating that the motif could have functionality. The IBP- 

1_CS2 motif is an inducible enhancer which can be induced by phorbol ester (Cohen et al.,

1991). Expression of the TamSl gene is specific to certain Life-Cycle stages therefore, it is 

unlikely that its expression is controlled by an inducible enhancer. Rather expression is 

more likely to be controlled by a cell type specific enhancer. Therefore, if this motif is 

involved in TamSl expression it is likely that it interacts with regulatory factors in a 

different manner from that described previously.

The MREe motif TGCACACA is conserved in the TamSl upstream region, and 

indicates that the conserved AC AC A motifs could have a functional role. The MREe motif 

functions as an enhancer which is induced by heavy metals (Labbe et al., 1991). It is, 

however, unlikely that the ACACA motif acts as an enhancer stimulated by heavy metals 

but does provides evidence that the described pentamer like motifs can be involved in 

binding of regulatory factors. Also the complementary pentamer TGTGT has been found in 

a number of stage regulated genes in Toxoplasma gondii (Mercier et al, 1996) and

129



resembles an element (T/A GTGTAC) reported in the upstream region of the Plasmodium 

GBP 130 gene (Lanzer et al, 1992a). Therefore, it may be that these types of sequences play 

a general role in the control of apicomplexan gene expression, which awaits further 

definition. In addition to the MREe and IBP-1_CS2 motifs, two other enhancers were 

identified c-mos_DSl, and GR-MTIIA. The c-mos_DSl functions as an enhancer 

controlling cell type-specific expression of the c-mos proto-oncogene (van der Hoorn, 1987) 

and GR-MT IIA functions as a binding element for the glucocorticoid hormone receptor 

(Ram et al., 1995).

The comparison of the 5' untranslated region of the TamSl gene with the related 

region in T.sergenti demonstrated a greater diversity than that observed with the T.parva 

and T.hirci data. Phylogenetic analysis of the major merozoite surface antigens has shown 

that the T.parva sequence has a greater similarity to the T.annulata sequence than T.sergenti 

(Shiels et al., 1995). Therefore, as expected the greatest amount of diversity between 5' 

intergenic sequences is observed with species furthest apart on the phylogenic tree. It is 

unfortunate, therefore, that more sequence data from T.sergenti could not be obtained. 

Interestingly within the T.sergenti sequence there was one region of homology consisting of 

a lOmer motif 54 bases upstream from the ATG start codon of the TamSl gene. The lOmer 

is located prior to the transcriptional start site, is highly conserved amongst all four species 

of Theileria analysed, but shows no homology to known eukaryotic transcription factor 

binding elements. As this motif is located before the RNA initiation site it is less likely that 

it is involved in the transcriptional regulation of the TamSl gene. However, regulatory 

motifs downstream of the transcriptional start site have been reported for a number of genes 

(Lehn and Bustin, 1993); and it is possible that this motif functions in a post-transcriptional 

manner. The motif was not absolutely conserved or present in a similar position within the 

untranslated regions of TamRl, SPAG-1 or Ta-ORF-1. Therefore, if it does have a 

regulatory role it is probably specific to TamSl homologs or genes expressed in a similar 

temporal manner with respect to merozoite differentiation.

The T.sergenti sequence was isolated by PCR using primers designed from the 5' 

intergenic DNA fragment and coding regions of TamSl. It is interesting that although a 

number of upstream primers used in the attempts to PCR amplify the 5' intergenic region of
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T.sergenti, only the CAT4 primer was successful. Therefore, this primer must have a 

reasonable degree of homology across Theileria species. Taken into consideration with the 

limited homology present over the rest of the upstream sequence this may indicate 

conservation of a domain involved in transcriptional control of TamSl.

It was not possible to obtain additional 5' sequence from the T.sergenti genomic 

DNA using PCR with the primers that were available. Furthermore, as the primer used 

represented the most highly conserved regions from the other species analysed, it is unlikely 

that more sequence could have been obtained by this strategy. To do this it may be 

necessary to either screen genomic libraries or mini-libraries for the required sequence. 

Alternatively, it maybe possible to clone the complete intergenic region between the TpmSl 

gene and the gene immediately 5' to the TsmSl. This would require the gene 5' to the TamSl 

present in the same position in T.sergenti and that primers which recognised conserved 

amino acid sequence of this gene were available. However, because the T.annulata, 

T.sergenti comparison does have the potential to pinpoint putative control motifs, further 

studies could aim to isolate more 5’ sequence of the TsmSl gene. Alternatively the 

technique of inverse PCR (Williams, 1989; Pang and Knecht, 1997) could be used. This 

method has been employed recently to isolate the upstream region of the T. annulata HSP90 

gene (D.Smith, York personal communication).

When the TamSl 5' intergenic region was compared with upstream regions of other 

T.annulata genes, the overall identity was low. However, it was possible to identify small 

conserved regions between the 5' intergenic sequences of the TamRl, Ta-ORF-1, SPAG-1 

and TamSl genes. Palindromes and pentamers were identified which were found to be 

conserved between all of the sequences. These included the AGTGA and ACACA 

pentamers described above. The SPAG-1, TamRl, ORF-1 and TamSl are all expressed 

either at different stages of the parasite’s Life-Cycle or during different points of 

differentiation to the merozoite. Therefore, if functional, these pentamers must be involved 

in the general transcriptional control of Theileria genes, and if they are involved in the 

regulation of gene expression during differentiation it is likely to be in an accessory rather 

than a direct role. A similar conclusion has been made for pentamers believed to be
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involved in the expression of certain Plasmodium genes (Lanzer et al., 1992a, b), but their 

specific function awaits further definition.

In conclusion a number of motifs have been found with homology to higher 

eukaryotic domains which function in transcriptional control, and GC rich palindromic 

sequences are repeated in both TamSl and TamRl upstream regions now identified. 

However without a functional assay or further structural/biochemical analysis it is not 

possible to identify which of these putative domains are involved in the regulation of TamSl 

gene expression. Ideally, transfection studies with a range of deletions of the 5' untranslated 

region of TamSl linked to a reporter gene would be used to carry this out. Unfortunately, no 

transfection system is available for Theileria. However, another strategy to identify regions 

involved in transcription control is to use nuclear extracts from either differentiating 

macroschizont cell lines, merozoites or piroplasms in assays developed to identify DNA 

sequences which specifically bind nuclear polypeptides.
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4 Identification and Characterisation of a Nuclear Factor Binding 

Element in the Upstream Region of the TamSl Gene

4.1 Introduction

Many studies carried out on a wide range of eukaryotic cell types have led to the 

identification of cis-regulatory DNA sequences which bind proteins that control the level of 

gene transcription (see section 1.6.2; Maniatis et al., 1987; Mitchell and Tjian, 1989). The 

activity of a promoter is determined by firstly its architecture, consisting of the type of 

control elements contained in the promoter and the context in which they appear, and 

secondly by the regulatory state of the proteins that recognise these control elements. It is 

well known that in terms of differential gene expression during development that control 

can be exerted by modification of access to the regulatory domains, by for example 

methylation of histone packaging, or altering the milieu of transactivating factors both 

qualitatively and quantitatively.

Data from preceding chapters describe the cloning, sequencing and analysis of the 5' 

intergenic region of the TamSl gene, which encodes a 30kDa merozoite antigen. 

Furthermore, it was found that regulation of TamSl expression during differentiation is 

through, at least in part, elevation of transcription levels, and a number of putative motifs 

were defined which could function in transcription control. However, identification of 

motifs on the basis of homology across related species of Theileria and comparison with 

known control sequences defined for a wide range of eukaryotic systems was of limited use 

in the absence of further data indicating functional importance. If these motifs are functional 

it is likely that they interact with polypeptide factors located to the nucleus. Moreover, a 

correlation between motif-factor interaction with gene transcription at different 

developmental stages could provide further information on the elements (protein and DNA 

sequences) and nature (activation or suppression) of the mechanisms governing TamSl gene 

expression during differentiation of T.annulata.

In vitro techniques developed to study protein-DNA interactions can provide a large 

amount of information pertinent to the regulation of gene expression. This information is 

directly relevant to, and can be complemented by functional assays such as in vitro
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transcription and gene transfection. One of the relatively simple procedures most useful in 

identifying relevant cis-regulatory DNA sequences and putative transcription factors, is the 

electrophoretic mobility shift assay (EMSA) (Fried and Crothers, 1981; Strauss and 

Varshavsky, 1984).

This assay typically involves the addition of purified, nuclear extracts or total cell 

extracts to linear radiolabelled double-stranded DNA fragments, which under incubation 

conditions allow complex(es) to be formed. Samples are then electrophoresed under non

denaturing conditions to separate the protein-DNA complexes from unbound DNA, and 

retarded bands due to factor bound DNA can be visualised by autoradiography (Lane et al.,

1992). With a little modification this assay can also be used to measure kinetic parameters 

and to assess the sequence specificity of a particular protein-DNA interaction under 

investigation (Fried, 1989, Revzin, 1987).

Another widely used in vitro technique in which the precise location of a bound 

protein is detected by the protection it affords the DNA against chemical or enzymatic 

attack, is known as DNA footprinting (Galas and Schmitz, 1978). In general this assay 

involves the limited degradation of an end labelled DNA fragment by an agent which 

cleaves the DNA, preferably using conditions in which each DNA fragment is cut only once 

generating a set of radioactive DNA sub-fragments of different lengths. The number and 

length of fragments produced will depend on the sequence specificity of the agent used for 

cleavage. If the DNA is complexed with a protein(s) before being treated with the cleavage 

agent, the nucleotides to which the protein is bound will be protected against cleavage. 

Thus, when paired samples, are prepared for incubation in the presence and absence of cell 

nuclear extracts, compared by denaturing electrophoresis, a number of bands will be 

missing in the sample where nuclear protein has bound to a specific DNA sequence. The 

resulting gap in the DNA ladder is termed the footprint. A number of DNA-footprinting 

techniques have been developed which use different agents to cleave the DNA (Larkin,

1993).

Once a protein binding element has been identified, in vitro techniques can be used 

to determine the relative molecular masses of polypeptides interacting with DNA sequences.
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An advantage of these techniques is that they allow characterisation of the factor from crude 

material to provide vital information about the factor before complete purification of the 

polypeptide(s) is undertaken. Furthermore, although screening an expression library using 

DNA-binding site probes can be carried out with minimal characterisation of the factor(s) of 

interest, pre-characterisation allows verification of the identity of putative positive gene 

clones and provides some indication of the probability of the success of using this screening 

protocol.

Determination of the molecular weight of the individual transcription factors 

involved in a complex can be characterised by (UV) crosslinking the factor to a 

radiolabelled DNA motif followed by SDS-PAGE analysis. The UV cross-linking assay 

relies on irradiation of DNA-protein complexes with UV light causing the formation of 

covalent bonds between pyrimidines and certain amino acid residues in the DNA-binding 

domain of the polypeptide in close proximity to the DNA. Thus, transcription factors can be 

selectively labelled as a consequence of specific binding to a DNA sequence before rapid 

determination of its molecular weight under denaturing conditions in a SDS-polyacrylamide 

gel (Chodosh et al., 1986).

South-Western blotting can also be used to estimate a DNA binding factor’s mass. In 

this method DNA binding polypeptides are identified by incubating Western blots of crude 

nuclear extracts separated by SDS-PAGE with radiolabelled double stranded DNA probes 

containing the binding motif. South-Western blotting is particularly useful for the detection 

of previously undiscovered DNA-binding proteins which specifically bind to particular 

nucleotide motifs (Knepel et al., 1990; Tully and Cidlowski, 1993). A modification of the 

South-Western technique is to use labelled DNA to screen gene expression libraries for 

phage plaques producing recombinant protein which bind to the DNA probe (Sambrook et 

al., 1989; Kwok et al., 1990; Hoffmann et al., 1990).

The advantages of several of the techniques described above is that not only are they 

relatively simple procedures but that they can be used with relatively crude cell extracts. 

Whole cell or nuclear extracts are easy to prepare enabling the entire DNA-binding content 

of the cell to be examined and allow access of multi-protein complexes to the DNA binding
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motif. Moreover, a correlation of factor activity with (or between factor activity and) the 

physiological state of the cell can be assessed directly by growing cells under different 

conditions before extract preparation (Arcangioli and Lescure, 1985).

The generation of extracts from apicomplexan parasites is problematical. Problems 

can include the limited supply of parasites, the small size of the parasite nuclei, and 

difficulties encountered in isolation of parasites or parasite nuclei free from host cell 

contamination. These problems have been overcome in Plasmodium by growing 

erythrocytic cultures of the parasite. Erythrocytic cultures have the advantage that they do 

not contain host nuclei and that after lysis, the parasite can be significantly purified from 

host material following centrifugation (Lanzer et al., 1992a, b). However, the large-scale 

production of parasites using this methodology is a considerable task.

The ability of T.annulata schizonts to immortalise the host cell allows unlimited 

production of parasite infected cells. This coupled to the ability to induce a high level of 

differentiation in individual cloned cell lines provides a system where, potentially, in vitro 

derived extracts from differentiating and non-differentiating cells could be compared for 

detection of factors which bind to 5' upstream regions of stage regulated genes. 

Unfortunately, it was considered likely that the generation of parasite nuclear extracts frcm 

macroschizont cell lines would require the removal of the host cell nuclei from parasite 

material. This was because due to the size and complexity of the host nucleus relative to the 

parasite (particularly under non-differentiation conditions) it was thought that host non

specific interactions could mask parasite representation and that parasite factors would be 

relatively low. In the event that these drawbacks were unable to be removed one possibility 

was to use piroplasms isolated from erythrocytes, as it was previously shown that the 

TamSl gene is highly expressed by this stage.

Aims 4.1.2

As outlined above the EMSA has been used in many systems to define the 

interactions of cis-acting elements and sequence-specific trans-acting factors, and is ideally 

suited to quickly screening for such interactions with crude nuclear extracts. Even with the 

potential problem of host contamination it was decided to use this technology as a first step
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towards identification of factors which interact with the TamSl 5' region. The primary aim 

of this chapter, therefore, was to screen for DNA protein interactions by preparing parasite 

enriched nuclear extracts and performing EMSA analysis across the conserved sequence of 

TamSl 5' intergenic region. If this proved successful a second aim was to define the specific 

binding site of any motifs and if possible, the number and size of the polypeptide which 

bound to them. In addition, analysis of extracts derived from macroschizont compared to 

cells cultured at 41°C could provide information on the molecular mechanism(s) operating 

during differentiation and link this to the quantitative and qualitative changes of TamSl 

gene expression previously observed (Shiels et al., 1994); and this comparison was the final 

aim of work presented in this chapter.
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4.2 Material and Methods

4.2.1 Isolation of Macroschizont or Differentiating Macroschizont Nuclei and Extract 

Preparation

Isolation of Theileria nuclei and preparation of nuclear extracts were based on the 

method of Lanzer et al., (1992) with the addition of a differential centrifugation step for 

enrichment of parasite nuclei relative to host. 100ml of culture of parasite infected cells 

were spun down at 400g for 5-10 minutes. The cell pellet was resuspended in 12ml of ice 

cold nuclear wash buffer (20mM PIPES, pH 7.5, 15mM NaCl, 60mM KC1, 14mM P- 

mercaptoethanol, 0.5mM EGTA, 4mM EDTA, 0.5mM Spermidine, 0.15mM Spermine, 

0.125 PMSF) and transferred to a dounce homogenizer. 780pl of a 10% NP40 solution was 

added and seven strokes with a pestle applied. The cell homogenate was then transferred to 

a sterile Sorvall tube before being spun at 400g for 5 minutes. The resulting supernatant was 

transferred to eppendorf tubes and pellet resuspended in 600pl of solution C (i) (20mM 

HEPES pH 7.9, ImM EDTA, ImM DTT, ImM PMSF). The supernatant was re

centrifuged at 2000g and the pellet resuspended in 6ml of nuclear wash buffer before a final 

spin at 2000g. The resulting pellet was then resuspended in 600pl of solution C(i) and the 

volume of the 400g and 2000g pellets plus buffer measured. NaCl from a 3M stock solution 

was added to a final concentration of 300mM and the samples left on ice for 30 minutes, 

with gentle vortexing every 5 minutes. After centrifugation at 2000g for 5 minutes, the 

supernatant was dispensed and snap frozen in liquid nitrogen. All extracts were stored in 

liquid nitrogen until use. Nuclear extracts for the BL20 cell line were prepared in an 

identical manner to the 400g pellet.

4.2.2 Indirect Immunofluorescence Assay

An indirect immunofluorescence assay (IFAs) based on the method of Minami et al., 

(1983) was performed using material fixed onto cytospin slides. Slides were prepared by 

spinning IOOjlxI of culture or material from different points of the nuclear isolation procedure 

in a Shandon Cytospin at 240g for 5 minutes. When necessary, the cell/nuclear density was 

adjusted by dilution in phosphate-buffered saline (PBS) (150mM NaCl, 16mM 

Na2HP04.2H20 , 4mM NaH2P 04.2H20 , 4mM KC1, pH 7.2). The slides were then air dried, 

and fixed by immersion in acetone at -20°C for 15 minutes, followed by air drying. 20 j l i 1 of 

the first antibody was spotted onto the fixed cells and the slide placed in a humidified box
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for 30 minutes at room temperature. Unbound antibody was removed with 2x 5 minute 

washes in PBS. The slide was then air dried before the addition of 20pl fluorescein 

isothiocyanate (FITC) conjugated anti-mouse IgG (Sigma), at a dilution of 1:100 in TBL 

culture media. The slide was again incubated in a humidified box for 30 minutes at room 

temperature, washed in PBS as before and counter-stained with Evans Blue (0.1% in PBS) 

for 5 minutes. The slide was mounted with a few drops of 50% glycerol/H20  containing 

2.5% w/v 1,4 diazabicyclo(2.2.2.)octane (DABCO), pH 8.0. Immunofluorescence was 

analysed with a leitz Ortholux II fluorescent microscope and an Orthomat-W camera 

attachment.

4.2.3 SDS-polyacrylamide gel electrophoresis

The method for SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was adapted 

from Laemmli (1970). The Biorad Protean II and mini Protean II gel electrophoresis 

systems were used. 30ml of 10% resolving gel mix, composed of 10ml 30% acrylamide-bis 

mix (30% acrylamide, 0.85% N-N Bis-methylene acrylamide, Scotlab), 7.5ml 1.5M Tris- 

HC1 pH 8.8, 0.3ml 10% (w/v) SDS, 11.9ml dH20  was poured after the addition of 0.3ml 

10% (w/v) ammonium persulphate (freshly made), and 20pl of TEMED (Sigma) to initiate 

polymerisation. The gel was then overlaid with water saturated 2-butanol and allowed to set. 

Following polymerisation, the overlay of water saturated 2-butanol was removed and the 

top of the gel rinsed in dH20. 12ml of 4% stacking mix consisting of 2ml 30% acrylamide- 

bis, 1.875ml 0.5M Tris-HCl pH 6.8, 0.15ml 10% (w/v) SDS, 10.9ml water, was then poured 

on top of the resolving gel after the addition of 0.15ml 10% (w/v) ammonium persulphate 

(freshly made), and 15pi of TEMED to initiate polymerisation. The volume of the resolving 

and stacking gel mixes were reduced to 10ml and 3ml respectively when the Protean II mini 

gel apparatus was used.

Protein samples were boiled in lx sample buffer (diluted from 4x stock, 0.25M Tris- 

HCl, pH 6.8, 4% SDS, 20% glycerol, 10% p-mercaptoethanol, 0.001% bromophenol blue) 

for 5 minutes and cooled prior to loading. High and low molecular weight markers were 

generally loaded into the first and last tracks of the gels, and electrophoresis was carried out 

overnight at 50-60V. Following electrophoresis, the gels were either processed for South- 

Western blotting or fixed and stained in a solution of 20% methanol, 10% acetic acid and
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0.5mg ml'1 Coomassie Brilliant Blue R-250, for approximately 60 minutes before, 

destaining in the same solution lacking the Coomassie dye.

4.2.4 Preparation of labelled DNA probes for retardation assay and South-Western

assays

Larger fragments were generated by PCR using the 5' intergenic region of the 

TamSl gene as a template. The primers used for each PCR reaction are listed in Table 4.1. 

In all cases the PCR reaction mix was made up to lOOpl containing lpg  of each primer, 

lOOng of template DNA, 9pl of 11.1 x PCR buffer, lp l of amplitaq and 60pl of dH20. The 

reaction mix was incubated at 95°C for 4 minutes and this was followed by 25 cycles of 1 

minute at 95°C, 1 minute at 45°C and 1 minute at 72°C, with a final incubation at 72°C for 

10 minutes. The PCR products were separated from unannealed primers by agarose gel 

electrophoresis, and purified using the QIAquick gel extraction method. The PCR fragments 

were then sub-cloned in to the TA cloning vector prior to labelling. Each fragment was 

released from the vector using at least one restriction enzyme which generated a 5' 

overhanging that would allowed, the incorporation of cytosine residues upon end fill 

reaction. After digestion the DNA was analysed on a low melting point agarose gel and the 

band of interest excised and purified using the QIAquick gel extraction kit. The isolated 

restriction fragment was then radiolabelled by end filling using klenow fraction of DNA 

polymerase. Standard labelling reactions, were carried out for 40 minutes at 37°C and 

consisted of lpg of template DNA, lpl of lOx Klenow buffer (500mM Tris-HCl, pH 7.2, 

lOOmM MgS04, ImM DTT, Promega), 0.5mM of each, dATP, dTTP, dGTP, lOpCi of 

[a32P]-dCTP, 0.5 pi of Exo minus-Klenow polymerase (Promega). Unincorporated 

nucleotides were then removed using aNuctrap Column (Stratagene), see 3.2.1.

The primers used for generating double stranded oligonucleotides are listed in Table

4.1 and the complementary pairs are designated for each with the lower case (a) the sense 

strand or (b) representing the anti-sense strand of the TamSl sequence. In all cases 20pl of 

each oligonucleotide (1 mg/ml) was added to 5pl lOx Polynucleotide Kinase buffer, and 

made up to a final volume of 50pl with dH20. The reaction mix was incubated for 5 minutes 

at 80°C before being allowed to cool slowly to room temperature. Once annealed, 4pM of 

double stranded oligonucleotide was labelled with 10 units of T4 polynucleotide kinase,
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160pCi y-32P ATP and lx Polynucleotide Kinase buffer (700mM Tris-HCl, pH 7.8, lOOmM 

magnesium chloride, 50mM dithiothreitol, Promega), in a final volume of 1 OjlxL The 

reaction mix was incubated for 40 minutes at 37°C, and the unincorporated radioactive 

nucleotides separated from the labelled primer using Stratagene Nuctrap Columns (see 

3.2.1).

4.2.5 Gel Mobility Shift Assay

Gel retardation experiments were carried out according to the method of Dent and 

Latchman (1993), using the Biorad Protean II gel electrophoresis system. A 4.5% non

denaturing gel mix composed of 6.75ml 40% acrylamide-bis , 4ml lOxTBE (0.9M Tris, 

0.9M boric acid, 20mM EDTA) and 50.25 ml dH20  was poured and polymerisation 

initiated by the addition of 57.5pl TEMED and 120pl of freshly made 25% APS. Following 

casting the gel was left for approximately 60 minutes to set and the assembled rig placed at 

4°C. Many protein-DNA interactions are unstable and by performing the gel mobility shift 

assay at low temperature it is possible to increase the sensitivity of the assay. The upper and 

lower tanks were filled with 0.5 xTBE and the gel was pre-run for between 1-2 hours.

Standard protein binding reactions comprised of 4pl nuclear extract, lp l of 

radiolabelled probe, 2pg of poly dl-dC (200ng/ml) and 14pl of binding buffer (lOmM 

HEPES pH 7.9, 5% Ficoll), and were performed on ice for 40 minutes. For competition 

experiments, cold competitor oligonucleotides were incubated with extract, at variable fold 

excess relative to the labelled probe, 20 minutes prior to the addition of the labelled probe, 

and the reactions were incubated for a further 40 minutes. Samples were loaded following 

pre-electrophoresis and was performed while the gel was still connected to the electrical 

supply. Bromophenol blue can rapidly disrupt some protein-DNA complexes and so was 

omitted from all samples. A dye lane consisting of Bromophenol blue in a 10% glycerol 

solution was run in parallel with the samples, and electrophoresis was performed at 230V in 

0.5x TBE buffer. The duration of each run was dependent upon the size of the DNA 

fragment used in each binding experiment and was monitored by the mobility of the 

bromophenol blue marker dye lane. On completion the gel apparatus was disassembled and 

the gel was transferred onto filter paper, dried and exposed to X-ray film.
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Name of 
Primer

Sequence of primers 5* to 3' used 
for PCR

Position on TamSl 
genomic Seauence 

(Appendix I)
1945 gcgaattcgggtgtagtattgctgaag 2416-2436
1944 gcaagctttttgtcgttatgagctgtcc 2544-2524
1963 gtcgacgggtaaggacagctcataacg 2517-2540
1964 tctagagaatttccctccactttactt 2715-2694
1947 gcggatccaaataaagtaaagtggagggaaat 2684-2712
1946 gcggtaccccatcttaatgaataacatg 2850-2830
TA3051 gggtctaggacttcaatggaggataagg 2845-2869
TA3052 gggagctcgaagtgagatggatatgcattcacc 2939-2964

Complementary oligonucleotides 
for double stranded Drobes

GATA35a atgctagagtgcatagatacagataaacat 2882-2905
GAT A3 5b gcatatgtttatctgtatctatgcactcta 2902-2882
TATI a atgcattgttttctatggtgaatg 2927-2947
TATlb gcatcattcaccatagaaaacaat 2947-2927
CAT la atgcgcacacaatttgtagggcgac 2906-2927
CAT lb gcatgtcgccctacaaattgtgtgc 2927-2906
CAT2a atgcagataaacatgcacacaatttgta 2895-2920
CAT2b gcattacaaattgtgtgcatgtttatct 2920-2895
CAT3a atgcagggcgac 2920-2927
CAT3b gcatgtcgccct 2927-2920
CAT4a gatcacaatttgtagggcga 2910-2926
CAT4b gatctcgccctacaaattgt 2926-2910
CATlMla atgcgcactggatttgtagggcgac 2906-2927
CATlMlb gcatgtcgccctacaaatccagtgc 2927-2906
CATlM2a atgcgcacacaattacgagggcgac 2906-2927
CATlM2b gcatgtcgccctcgtaattgtgtgc 2927-2906
CAT 1 M3 a atgcgcacacaatttgtaggcgtac 2906-2927
CATlM3b gcatgtacgcctacaaattgtgtgc 2927-2906

Table 4.1 Oligonucleotide primers used to generate gel shift assay probes by annealing or 

PCR amplification of TamSl genomic DNA.
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4.2.6 Preparation of Single Stranded Plasmid DNA

XL-1 Blue cells transformed with pGem7zf plasmid containing the concatenated 

CAT1 double-stranded sequence element were donated by Ms McKellar. 2mls of an 

overnight culture was used to inoculate 100ml of 2XYT broth. The culture was shaken at 

37°C for 30 minutes, before the addition of 0.8ml of helper phage R408 (Stratagene), and 

then continually shaken vigorously for a further 6 hours. The supernatant harvested by 

pelleting the cells at 13,000g for 15 minutes, was poured off into a fresh tube and spun 

again for 15 minutes. Phage was precipitated by adding 0.25 volumes of a solution 

containing 20% polyethylene glycol, 3.75M ammonium acetate and incubated on ice for 30 

minutes. The phage pellet was collected by centrifugation at 13,000g for 15 minutes, 

resuspended in 0.4ml of TE and extracted twice by phenol/chloroform. The resulting 

aqueous phase was transferred to a fresh tube and 0.5 volume of 7.5M ammonium acetate 

and 2 volumes of ethanol were added and the tube left at -20°C for 30 minutes. The 

precipitated DNA was then pelleted by centrifugation at 13,000g for 15 minutes. The pellet 

was resuspended in 15pil of dH20

4.2.7 Preparation of Radiolabelled Probe for UV Crosslinking

To 5pg of single stranded (+)pGem7zf vector containing the concatenated CAT1 

insert, 15ng of T7 sequencing primer and lOpl of lOx medium salt restriction enzyme buffer 

(0.5M NaCl, lOOmM MgCl2, lOmM DTT, lOOmM Tris-HCl pH 7.5) were added, and the 

final volume was made up to 74pl with sterile dH20. The mixture was heated to 90°C for 5 

minutes before being allowed to cool slowly to room temperature. Once cooled, 1 OjllI of 

crosslinking nucleotide mixture (0.5mM dGTP, 0.5mM dATP, 0.5mM 5-bromo-2'- 

deoxyuridine triphosphate (BrdU), and 50pM dCTP), lp l of 0.1 M DTT and 10ml of [y-32P] 

dCTP (3000ci/mmol) were added and the contents mixed. 25U of klenow was then added 

and the solution incubated for 1.5 hours at 16°C. Klenow was inactivated by incubation at 

65°C for 10 minutes and 25 units of the restriction enzymes Xba I and Hind III were added 

and the tube incubated for 2 hours at 37°C. The labelled/modified DNA was ethanol 

precipitated and resuspended in 20pl of dH20  before being run on a 0.7% agarose gel. The 

labelled modified probe was then purified from the gel matrix using the QIAquick gel 

extraction kit before use.
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4.2.8 UV Crosslinking Procedure

Binding reactions with extract were performed in a 96 well plate and comprised of 

8pl of extract, 2pl of radiolabelled probe, 2pg of poly dl-dC, and 28pl of Binding Buffer. 

Reactions were incubated for at least 10 minutes on ice before being exposed to UV 

radiation (305nm). After exposure to the UV source, 5pl of DNase I buffer (0.1M CaCl2, 

0.1M MgCl2), 4pg DNase I (Promega) and 1 international unit (IU) micrococcal nuclease 

(Sigma) were added to each sample. The samples were incubated at 37°C for 30 minutes 

before the addition of 40p,l of 2x protein sample buffer and boiling for 2 minutes. The 

boiled samples were loaded onto an SDS-PAGE gel and electrophoresed at 50-60V 

overnight until the bromophenol blue dye front reached the bottom of the gel. Following 

electrophoresis, the gels were stained with Coomassie Blue (see 4.2.3), dried on a piece of 

Whatman 3MM paper and exposed to X-ray film at -70°C.

4.2.9 South-Western Blotting

Samples were prepared by mixing nuclear extracts with SDS-page sample buffer and 

boiling for 3 minutes. The samples were loaded onto a 10% SDS-page gel to resolve protein 

with molecular masses in the range of 10-200 kDa. High and low molecular weight markers 

(Sigma) were run in the outer tracks of the gel. Electrophoresis was terminated when the 

marker dye reached the bottom of the gel. The Biorad mini Protean II gel kit was dismantled 

and proteins transferred from the polyacrylamide gel on to a nitro-cellulose filter using the 

method of Sambrook et al., (1989). The nitro-cellulose membrane was cut to the dimensions 

of the gel and placed on top, followed by sheets of 3MM Whatman paper soaked in transfer 

buffer (25mM Tris, 192 mM glycine, 20% methanol) on either side of the gel and nitro

cellulose filter. The resulting sandwich was placed in the miniblot cell (Biorad) so that the 

nitro-cellulose membrane faced the anode, and electrophoresis was carried out in transfer 

buffer with a current of 300mA for 1 hour at 4°C. Efficiency of transfer was determined by 

staining the filter for 5 minutes with 0.2% Ponceau-S (Sigma) in 3% TCA, followed by 

destaining in distilled water, Marker lanes were cut off and stored. The filter was then 

washed in Buffer 2 (50mM Tris-HCl, pH 8.0, 2mM P-mercaptoethanol, 25mM NaCl, ImM 

EDTA) before being completely immersed in buffer 1 (lOmM Tris-HCl, pH 8.0, 15mM Mg 

Acetate, 7mM KC1, lOmM P-mercaptoethanol, lx Denharts solution diluted from a 50x
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stock: 5g Ficoll, 5g polyvinylpyrrolidone, 5g BSA and made up to a total volume of 500ml 

with dH20) and stored at 4°C overnight. The filter was removed from buffer 1 and washed 

briefly in buffer 2. Each filter was hybridised with 200pmol of P32 labelled oligonucleotide 

in 3ml of buffer 2 and lOmg/ml of the non-specific competitor, Poly dl-dC. Hybridisation 

was carried out at room temperature for 3 hours before the filters were washed several times 

in buffer 2 and exposed to X-ray film overnight at -70°C.
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4.3 Results

4.3.1 Analysis of Nuclei from Macroschizont cell lines

The literature describes many methods for the preparation of nuclear extracts, 

several of which were developed for eukaryotic cells in cultured in vitro. However, 

preparation of T.annulata nuclear extracts from macroschizont cell lines is complicated by 

the presence of the host nucleus. Due to the large difference in size between host and 

parasite nuclei and the problems this could generate in detecting and identifying parasite 

specific shifts, it was considered essential to perform enrichment of parasite material away 

from host.

Several methods for isolating T.annulata nuclei from macroschizont infected cells 

have been used, including the french press combined with ficoll gradients (David Swan, 

personal communication). This procedure was successful in isolating parasite nuclei, 

however, it suffered from significant host nuclear contamination and loss of parasite 

material. Attempts were also made to isolate the parasite from the host using a bionebuliser. 

This procedure relied on compressed gas to propel macroschizont culture against a barrier 

generating an aerosol which depending on droplet size can disrupt eukaryotic cell 

membranes. The preliminary experiments were partially successful, in that extracts 

generated from the isolated parasites were sufficiently active to demonstrate specific 

binding to the TamRl promoter (C. Robertson, unpublished data). Unfortunately, in this 

study no binding activity to the promoter region of the TamSl gene was found using these 

extracts. In addition to these contradictory results, the bionebulisation procedure could 

result in significant destruction of host nuclei, if not carefully calibrated, and was not 

particularly amenable to rapid processing of large cell/culture volumes. With this last 

disadvantage in mind a crude nuclear purification and extraction method was selected, 

which had been successfully employed to produce active extracts from both higher 

eukaryotic (Dent and Latchman, 1993) and Plasmodium infected cell cultures (Lanzer et al, 

1992a, b). For T.annulata infected cells it was necessary to introduce an additional 

centrifugal step into the protocol in an attempt to separate parasite nuclei from the host.

The aim of the final protocol was to generate as pure nuclei as possible but in as 

short a time as possible to increase the probability of preserving the activity of any nuclear
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factors. To achieve both aims was likely to result in a compromise of either purity or speed. 

In the first instance, therefore, preparations were kept as simple as possible, and the purity 

of the nuclei assessed by IF A. To assess the purity of the resulting preparations this analysis 

was undertaken using monoclonal antibody 5E1, raised against the 30kDa merozoite 

membrane polypeptide, and anti-TamRl, an anti-rabbit sera raised against the 117kDa 

rhoptry protein. DAPI staining of nuclei was used to assess host contamination.

DAPI staining of intact macroschizont and differentiating macroschizont infected 

cells, in Figure 4.1, clearly highlights the size difference between the parasite and host 

nuclei (host nuclei are marked with the arrow heads; Figure 4.1; Plates 1A and 2A). When 

isolated, parasite nuclei appeared in clumps (Figure 4.1; Plates IB and 2B), with some large 

clumps containing hundreds and perhaps thousands of nuclei. Visual analysis of parasite 

nuclei preparations would suggest that host nuclei contamination was low relative to the 

initial culture and this was confirmed by comparison of the 400g pellet to the 2000g pellet 

for host nuclei (Figure 4.1; comparing plates IB and 1C, 2B and 2C). This analysis 

indicated that a reasonable separation between host and parasite had occurred and it was 

concluded that the ratio of host to parasite nuclei within the 400g pellet would not interfere 

with the extraction of and investigations into parasite DNA binding proteins.

Figure 4.2 represents IFA analysis using mAb5El on slide preparations of intact 

cells (Figure 4.2; Plates 1A and 2A), isolated parasite nuclei (Figure 4.2; Plates IB and 2B) 

and isolated host nuclei (Figure 4.2; Plates 1C and 2C) prepared from day 0 (37°C) (Figure 

4.2; Column 1) and differentiating (41°C) macroschizont infected cell cultures (Figure 4.2; 

Column 2). Very faint reactivity was exhibited by intact cells (Figure 4.2; Plate 1A) and 

isolated parasite nuclei (Figure 4.2; Plate IB) from non-differentiating macroschizont 

infected cells at 37°C. No reactivity was observed with isolated host nuclei (Figure 4.2; 

Plate 1C) prepared from this culture. Faint reactivity with the macroschizont infected cells 

at 37°C is probably due to the low level expression of this antigen in non differentiating 

cells described previously, while reactivity with this nuclear extract is either artifactual or 

recognition of merozoites generated from occasional differentiating cells produced by sub 

optimal culture conditions. Strong reactivity was detected with the intact differentiating 

macroschizont infected cells incubated at 41°C for 6 days (Figure 4.2; Plate 2A), and some
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positive reactivity was detected in the parasite nuclei prepared from this culture (Figure 4.2; 

Plate 2B). However, as for the culture incubated at 37°C, no reactivity was detected with 

isolated host nuclei (Figure 4.2; Plate 2C). Thus this analysis suggested that the parasite 

membrane content had been significantly reduced in the generation of the parasite nuclear 

fraction but that this was not absolute.

Reactivity of the anti-TamRl serum demonstrated similar reactivity to that of the 

monoclonal antibody 5E1 (Figure 4.3). No reactivity was detected with whole 

macroschizont-infected cells incubated at 37°C (Figure 4.3; Plate 1A), nor the isolated host 

nuclei (Figure 4.3; Plate 1C), but some reactivity was found with the parasite nuclei 

preparations (Figure 4.3; Plate IB) which, as for monoclonal antibody 5E1, could be due to 

a low level of merozoite production induced by sub-optimal culturing or from the unusual 

pattern of reactivity compared to differentiating cells (see punctuated reactivity, Figure 4.3, 

plate 2B) due to artifactual reactivity. Analysis of cells cultured at 41°C for 6 days with the 

anti-TamRl serum showed positive reactivity specific to the differentiating parasite for the 

intact cells (Figure 4.3; Plate 2A) and parasite nuclei preparations (Figure 4.3; Plate 2B), but 

no reactivity was observed with the host nuclei (Figure 4.3; Plate 2C). This pattern of 

reactivity confirmed that the parasite is being partially purified from host material but also 

showed that the rhoptry organelle was not being separated from the parasite nuclei. In 

addition comparisons between the results with mAb5El and anti-TamRl indicated that the 

parasite cytoplasmic membrane was removed to a greater extent that the rhoptry proteins. 

Given the relative sizes of the rhoptry organelle and the parasite nucleus combined with the 

centrifuged forces employed this contamination of the nuclei preparation was not expected.

4.3.2 Preparation of nuclear extracts

Extracts of both parasite and host nuclear fractions, by salt extraction, were obtained 

(see section 4.2.1). To confirm that partial purification of parasite nuclear proteins had 

occurred, samples for each part of the purification step including intact cells were analysed 

by SDS page gel followed by staining with Coomassie blue. This analysis was performed 

for infected cells cultured at 37°C.
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Figure 4.1 DAPI staining o f fixed slide preparations of the cloned cell line D7 after 

were incubated at 37°C (Column 1) or at 41°C for 6 days (Column 2).

Row A :-Whole cell preparations 

Row B:- Parasite nuclei 

Row C:- Host nuclei

The magnification bar shown in plate 1A applies to all o f the plates (Bar =36|um).
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Figure 4.2 Immunofluorescence reactivity o f  monoclonal antibody 5E1 on fixed 

preparations o f  cloned cell line D7 after cultures were incubated at 37°C (Column 1) 

41°C for 6 days (Column 2).

Row A:- Whole cell preparations 

Row B:- Parasite nuclei fraction 

Row C:- Host nuclei fraction

The magnification bar shown in plate 1A applies to all o f  the plates (Bar =50pm).
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Figure 4.3 Immunofluorescence reactivity of anti-TamRl serum on fixed slide prepan 

o f cloned cell line D7 after cultures were incubated at 37HC (Column 1) or at 41°C for 6 

(Column 2).

Row A:- Whole cell preparations 

Row B> Parasite nuclei fraction 

Row C:- Host nuclei fraction

The magnification bar shown in plate 1A applies to all o f the plates (Bar =50pm).
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As shown in Figure 4.4 a visibly different profile of proteins was observed between 

total cell, host nuclei and parasite enriched nuclear fractions. For example, a pronounced 

band of 205kDa observed in the total cell sample (Figure 4.4, Track 1 marked with an 

arrowhead) was significantly reduced in host nuclei fractions and absent in parasite samples. 

In addition, two bands of approximately 50kDa present in host nuclei fractions, were absent 

in both total cell and parasite samples (Figure 4.4; Track 2 marked with arrowheads). Many 

other such examples were clearly visible. Thus it appeared that partial purification of 

nuclear proteins was occurring.

Salt extraction of nuclear fractions from host and parasite nuclei resulted in a 

significant loss of polypeptide levels (Figure 4.4; comparing Tracks 2 and 3, 4 and 5). The 

most notable decrease in protein yield was observed for extracts prepared from parasite 

nuclei (Figure 4.4; comparing Tracks 4 and 5), however, no clear qualitative changes were 

observed between these fractions.

DNA Mobility Shift Assay

4.3.3 Subcloning the 5’ untranslated region of the TamSl gene

As a functional assay was not available to characterise the 5' intergenic region of the 

TamSl gene, it was decided to screen this region for sites which bound nuclear polypeptides 

using EM AS. In addition to nuclear extracts, the application of the mobility shift assay 

requires the selection of a DNA probe. Either restriction fragments or synthetic 

oligonucleotide probes may be used, but the size of the fragment is normally kept below 250 

base pairs to enable the clear distinction of the probe from any complexes.

Approximately 2.0 kb of the 5' intergenic region for the 30kDa merozoite molecule 

had been cloned, see chapter 2. Based on the observation that significant homology was 

found between the T.parva and T.annulata sequences over the first 600bp of intergenic 

sequence proximal to the RNA initiation site of the TamSl gene, it was decided to use this 

region to screen for nuclear factor binding motifs. 4 fragments (A-D) spanning this region 

were amplified by PCR from the 5’ proximal boundary of the 600bp homologous sequence 

towards the transcription start site. The primers used were 1945 x 1944, generating a 120bp 

fragment (TamslpA); 1947 x 1946, generating a 170bp fragment (TamslpB); 1964 x 1963,
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Figure 4.4 Coomassie blue stained SDS-polyacrylamide gel o f  total cell extrac 

material from different points o f  the nuclear isolation procedure. The positions c 

molecular weight makers are indicated in kDa. Tracks were loaded with protein san 

based on equal volume, prepared from the following stages o f  making nuclear extracts 

D7 macroschizont cells incubated at 37°C.

Track 1 - Total cell extract

Track 2 - Host nuclei fraction

Track 3 - Host enriched nuclear extract

Track 4 - Parasite nuclei fraction

Track 5 - Parasite enriched nuclear fraction

Track 6 - Markers
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generating a 130bp fragment (TamslpC); and TA3051 x TA3052, generating a 108bp 

fragment (TamslpD). The primers were designed so that an overlapping 3’ to 5’ junction 

was present, so that a motif at the boundary of each fragment would not be split. The PCR 

products were cloned into pGem-T vector and sequenced. Sequence comparisons with the 

genomic sequence of the 5' region of the TamSl gene confirmed that the regions of interest 

had been cloned. Figure 4.5 shows the position of each fragment cloned in relation to the 

gene and the transcriptional start site.

4.3.4 Gel Shift Analysis of the 5* Untranslated Fragments of the TamSl Gene

Differentiation to the merozoite is characterised by an enlargement of the 

macroschizont and an increase in parasite nuclear division which can consequently lead to 

the host cell cytoplasm being completely filled by parasite (Shiels et al., 1992). Thus 

differentiating parasites have a significant parasite load per cell, providing a large amount of 

parasite nuclear matter for investigation. In addition from the nuclear run on data it was 

considered possible that an elevation in factors which bind to the TamSl 5’ upstream region 

and increase TamSl transcription rate may occur during differentiation. Therefore, initial 

investigations using EMSA were made using nuclear extracts prepared from the 

macroschizont cell line D7 incubated at 41°C for 6 days.

The concentration of probe DNA and binding proteins must be optimised for the 

binding reaction to ensure optimal and quantitative results. Determination of the 

concentration of nuclear extract for optimal shift resolution was undertaken by decreasing 

the concentrations of parasite extract which were reacted under standard binding conditions 

(see section 4.2.5). Thus probes, TamslpA, TamslpB, TamslpC and TamslpD, were 

generated (see section 4.2.4) and radiolabelled as described and incubated with 0.48, 0.24, 

0.12, 0.06, 0.03, and 0.015pg of protein extract. The products were separated on a 0.5 x 

TBE, 4% native polyacrylamide gel and visualised by autoradiography.

As shown in Figure 4.6, all of these fragments resulted in a multiple banding pattern 

when incubated with extract. In general more distinct bands appeared following dilution of 

the extract to 0.24pg (Figure 4.6; Lane 3). The smear at the higher concentrations was most 

likely due to non-specific binding of multiple factors (Figure 4.6; Lane 2). A number of
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bands were also present in the probe alone tracks; which may be due to secondary structure 

of the probe (Yamada et al., 1990). The bands specific to the extract are marked with an 

arrowhead in Figure 4.6. Thus, this experiment gave an indication of the level of extract 

relative to probe necessary for visualisation of shifts due to polypeptide/probe interaction. 

However, in the absence of additional experimental data, these results cannot be interpreted 

as being due to specific complexes of DNA binding protein(s) interacting with the probe. 

Furthermore, it was unclear from this analysis whether the shifts obtained were specific or 

enriched in parasite nuclear extracts.

4.3.5 Evidence for Parasite Associated Mobility Shifts

During the preparation of nuclear extracts, parasite nuclei were separated from the 

host nuclei by differential centrifugation and IFA showed that contamination by host nuclei 

was significantly reduced, see section 4.3.1. However, due to the relative sizes of host and 

parasite nuclei, the possibility of mobility shifts of the 4 PCR fragments, illustrated in 

Figure 4.6, being due to host nuclear factor could not be ruled out conclusively. 

Additionally, DNA-protein complexes binding to any of the fragments could be constitutive 

protein-complexes, specifically involved in the basic machinery of the transcriptional 

initiation process, or parasite stage specific factors, involved in the regulation of TamSl 

during differentiation. It was therefore, necessary to determine whether any of the shifts 

were (a) due to parasite derived factor and (b) were associated with differentiation events.

In order to characterise the nature of each electrophoretic band, probes, were reacted 

with nuclear extracts of D7 cells incubated at 37°C, D7 cells incubated at 41°C for 6 days 

and uninfected BL20 cells line. Extracts from host and parasite enriched nuclear fractions 

were reacted with each probe under standard binding conditions (see section 4.2.5) at a 

protein concentration of 0.24pg, and the results are shown in Figure 4.7.

By extending the running time of the gel, the single electrophoretic band previously 

observed for the TamslpA probe (Figure 4.6A; Track 6) with differentiating parasite 

nuclear extracts, was shown to consist of two electrophoretic forms, marked with arrow 

heads (Figure 4.7A; Track6). In contrast, the TamslpA probe formed only one distinct 

complex with parasite enriched nuclear extracts derived from D7 cells cultured at 37°C
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Figure 4.6 Analysis of protein concentration upon DNA binding complexes. Decr< 

protein concentrations of parasite nuclear extracts from D7 macroschizont-infected 

incubated at 41°C for 6 days were reacted with labelled fragments (A) TamslpA 

TamslpB, (C) TamslpC and (D) TamslpD. The concentration of protein indicate 

reaction under standard binding conditions is the total protein concentration. An exc 

radiolabelled fragment is indicated by the unbound probe.

Lane 1) Probe only 

Lane 2) 0.48 pg 

Lane 3) 0.24 pg 

Lane 4) 0.12 pg 

Lane 5) 0.06 pg 

Lane 6) 0.03 pg 

Lane 7) 0.015 pg
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(Figure 4.7A; Track 4). This band was also obtained with the parasite enriched extract from 

differentiating D7 cells, the greater intensity of the shift possibly being due to a greater 

parasite load in these cells. Multiple very faint complexes were observed with nuclear 

extracts prepared from host nuclei from both differentiating D7 (Figure 4.7A; Track 5) and 

D7 cultures incubated at 37°C (Figure 4.7A; Track 3). No complexes were observed to form 

when the probe was incubated with extracts prepared from the BL20 cell line (Figure 4.7A; 

Track 2). Comparisons between extracts derived from host and parasite nuclear fractions 

indicate that mobility alterations to the TamslpA probe are due to parasite specific factors. 

In addition, the upper band observed with the differentiating parasite enriched extract maybe 

a result of this process (Figure 4.7A; Track6).

The multiple electrophoretic forms of probe TamslpB first observed in Figure 4.6 

(Figure 4.7B; Track 3) appear specific to neither the parasite or host (Figure 4.7B,). Extracts 

prepared from macroschizont cultures and BL20 cells interact with the TamslpB probe 

forming one distinct band, shown by an arrowhead, and several faint bands, some of which 

are blurred. Several of the very faint bands, present in Tracks 4 and 6, appear to be 

associated with parasite enriched extracts, however, the lack of intensity of these bands 

made it difficult to study them in detail and to confirm that they were not present in host 

nuclei. Similar conclusions were made from the results obtained with the TamslpC probe 

(Figure 4.7C). Therefore, although parasite specific protein binding may occur for both 

TamslpB and C fragments, the standard binding conditions used in this experiment could 

not detect them at a significant level and the possibility that weak shifts in parasite enriched 

extracts were simply due to a greater level of non-specific binding could not be discarded.

The probe TamslpD contains the transcription initiation site for the TamSl gene and 

is the fragment upstream closest to the protein start site. Based on the considerable evidence 

that important regulatory motifs have been found within this region for multiple promoters 

from other systems, it was predicted that control sequences of the TamSl gene could be 

located to this probe. Two distinct complexes were found to interact with the TamslpD 

probe (Figure 4.7D) when incubated with extracts prepared from parasite nuclei from either 

differentiating (Figure 4.6D; Track 6) or 37°C D7 cultures (Figure 4.7D; Track 4), shown by 

arrowheads. A single band, separate to those seen in the parasite extracts, was observed
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Figure 4.7 Gel mobility shift analysis o f parasite specific DNA complexes. DNA frag 

containing the 30kDa polypeptide promoter; (A) Tam slpA , (B) T am slpB , (C) Tan 

and (D) T am slpD  were incubated with crude nuclear extracts derived from p< 

enriched and host enriched D7 cell nuclear fractions and a nuclear derived form unin 

BL20 cells (a bovine B cell lymphosarcome cell line (Morzaria et al., 1982)).

Lane 1) Probe only

Lane 2) BL20 crude nuclear extract

Lane 3) Host enriched nuclear extract prepared from D7 cells incubated at 37°C

Lane 4) Parasite enriched nuclear extract prepared from D7 cells incubated at 37°C

Lane 5) Host enriched nuclear extract prepared from D7 cells incubated at 41°C for 6 c.

Lane 6) Parasite enriched nuclear extract prepared from D7 cells incubated at 41°C fori 

days
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when the TamslpD probed was incubated with BL20 extracts (Figure 4.7D; Track 2). In 

contrast, extracts prepared from the host enriched nuclear fractions of D7 cells either 

showed no discernible shifts interactions (Figure 4.7D; Track 5), or a smear which indicated 

non specific binding (Figure 4.7D; Track 3).

4.3.6 Specificity of Binding to TamslpD Probe

The data presented in the above section identified DNA fragments TamslpA and 

TamslpD as containing potential motifs which bind factors in extracts of parasite enriched 

nuclear fractions. It was decided that work in this study should centre on the TamslpD 

fragment due to its close proximity to the transcriptional start site and because parallel 

experiments carried out by Ms McKellar indicated that the observed shifts were most 

intense with this probe. The specificity of binding to the TamslpD fragment was evaluated 

further by competition experiments in parasite enriched nuclear extracts from both 37°C and 

41°C D7 cultures. Unlabeled TamslpD probe was added to each reaction at an excess of 

xlOO.

The results shown in Figure 4.8 demonstrate that the binding of parasite specific 

factors from macroschizont (Figure 4.8; Track 4) and differentiating macroschizont parasite 

enriched extracts (Figure 4.8; Track 6) to the TamslpD probe are reproducible and strong, 

supporting the data presented in 4.7D and generated by Ms McKellar. Addition of the 

unlabelled competitor (Figure 4.8; Tracks 7-10), prior to incubation with the radiolabelled 

probe resulted in a decreased intensity for all of the detected complexes, including the single 

major host complex first observed in the BL20 extracts (compare Tracks 7 and 9 with the 

single major BL-20 complex (shown with arrowhead) in Track 2 and also see host cell 

enriched nuclear extracts; Tracks 3 and 5). These findings indicate a specific interaction 

between the parasite enriched nuclear extracts and TamslpD probe. However, competition 

with a non-specific competitor was necessary to confirm this conclusion.

4.3.7 Defining the Position of Binding Sites Within the TamslpD Probe

TamslpD is a 126bp fragment containing the transcriptional start site at its 3' end 

and 120bp of upstream sequence. To enable a more precise positional determination of the 

binding sites within the TamslpD probe it was possible to either sequentially delete the
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Figure 4.8 Competition EMSA with probe Tam slpD . The T am slpD  sequence elemei 

incubated with crude nuclear extracts derived from parasite infected cultures D7 ai 

BL20 cell line prior to incubation with radiolabelled probe (lanes 7-10). For comp< 

experiments unlabeled T am slpD  fragment was added.

Lane 1) Probe only

Lane 2) BL20 crude nuclear extract

Lane 3) Host enriched crude nuclear extract prepared from D7 cells incubated at 37°C 

Lane 4) Parasite enriched crude nuclear extract prepared from D7 cells incubated at 37

Lane 5) Host cell enriched crude nuclear extract prepared from D7 cells incubated at 4

for 6 days

Lane 6) Parasite enriched crude nuclear extract prepared from D7 cells incubated at 41

6 days

Lane 7) Host cell enriched crude nuclear extract prepared from D7 cells incubated at 3

Lane 8) Parasite enriched crude nuclear extract prepared from D7 cells incubated at 37

Lane 9) Host cell enriched crude nuclear extract prepared from D7 cells incubated at 4 

for 6 days

Lane 10) Parasite crude enriched nuclear extract prepared from D7 cells incubated a t L 

for 6 days
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probe or compete for binding of factors using double stranded oligonucleotides representing 

sub-regions of the probe. Deleting the probe in a controlled manner would have been 

problematical due to the relatively small size of the fragment. It was decided, therefore, that 

competition analysis would be more practical, and could be supported by subsequent 

experiments testing the ability of the competing oligonucleotides to give a specific shift in 

EMSA. Three double stranded oligonucleotides, GATA, TATI and CAT1 were generated 

which, when combined, cover the regions of the TamslpD probe which are conserved 

across the Theileria species analysed (Figure 4.17).

Competition experiments were performed using unlabeled double stranded 

oligonucleotides added to each reaction at an excess of x 100 and the results obtained shown 

in Figure 4.9. The oligonucleotide GATA, containing the GATA-1-MC-CPA binding 

sequence (Zon et al., 1991), did not compete the shift with labelled TamslpD when present 

at 100 fold excess with either parasite (Figure 4.9; Lanes 12 and 14) or host (Figure 4.9; 

Lanes 11 and 13) enriched extracts. Complex formation with extracts prepared from parasite 

nuclei from either 37°C D7 cells or differentiating D7 cultures were competed by both 

unlabelled CAT1 and TATI. Competition with these oligonucleotides appeared to be 

directed against parasite enriched extract/probe interactions because competition of the shift 

obtained with host enriched nuclear extracts from D7 cells cultured at 37°C was minimal 

(Figure 4.9; Lanes 7, 11 and 21). No complexes were observed when extracts prepared from 

parasite nuclei from D7 cells incubated at 41°C were incubated with the TamslpD probe.

In contrast, the mobility shifts associated with parasite enriched nuclear fractions 

were significantly competed with cold TATI (Figure 4.9; Lanes 22 and 24) and almost 

completely removed with cold CAT1 (Figure 4.9; Lanes 8 and 10). This result showed that 

the extent of competition with TATI and CAT1 varied in the degree of effectiveness. 

Competition of binding to the TamslpD fragment by both the CAT1 and TATI competitors 

suggested that either nuclear protein(s) recognise sequences spanning the two 

oligonucleotides or complete binding sites are present on one or both oligonucleotides. In 

addition, complete competition by the CAT1 sequence relative to the partial competition of 

TATI may relate to the possession of a higher affinity binding site. Sequence comparison
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showed that both oligonucleotides share the sequence TTTGTA which could, in 

combination with differences in flanking sequence, account for the similar qualitative, but 

different quantitative, effect of these oligonucleotides in the competition experiments.

4.3.8 Confirmation of DNA-Protein interactions with Oligonucleotides GATA, CAT1 

and TATI

Sequence-specific DNA-binding proteins are often capable of binding to a series of 

variations on a basic consensus sequence. A binding site that is further removed from the 

consensus may bind the factor(s) less strongly, and therefore, be a weaker site for 

transcription activation (Dent and Latchman, 1993). Sequence flanking the core binding site 

may also affect binding. Differences in affinity of different sites for the same factor(s) can 

contribute to the differential effects of a single transcription factor on different genes. In 

order to study the comparative affinities of the CAT1 and TATI sequences further, direct 

binding reactions were set up using radiolabelled oligonucleotides CAT1, TATI, GATA 

and nuclear extracts. In addition, cross-competition reactions were set up, using a 100-fold 

excess of unlabelled oligonucleotide. The introduction of a competitor would not only allow 

the specificity of any binding activity to be determined but could also assess the affinity of 

binding of CAT1 relative to TATI. More importantly these direct binding experiments 

would determine if binding of fractions to the TamslpD probe was due to sequences 

spanning the oligonucleotides or motifs located within CAT1 and/or TATI.

The results represented in Figure 4.10 demonstrated the ability of BL20, 37°C D7, 

and differentiating D7 extracts to form complexes with the CAT1 oligonucleotide (Figure 

4.10; Lanes 2 to 6). A single complex mobility shift was observed when the probe was with 

BL20 extracts (Figure 4.10; Lane2) which was also observed in the parasite (Figure 4.10; 

Lane 4) and host enriched nuclear extracts (Figure 4.10; Lane 3) from D7 cells. Additional 

mobility shifts were also observed both with host and parasite enriched fractions of D7 cells 

incubated at 37°C and parasite enriched fractions incubated at 41°C; but not in uninfected 

BL-20 cells or host nuclear fractions of D7 cell cultured at 41°C. From the reduction in 

levels of the mobility shift associated with the uninfected BL20 extracts in both extracts of 

parasite enriched nuclei, it was concluded that this shift represented binding by a host factor 

which was depleted by preparation of parasite nuclei and differentiation of infected cells. In
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Figure 4.9 Analysis o f the position of protein binding within the T am slpD  prob 

labe l led  P C R  f r a g m e n t  T a m s l p D  w a s  in cub a ted  w ith  paras ite  o r  h o s t  e n r ic h e d  n u c le a r  e x tr a c t  der ive  

37°C  o r  41°C  cu ltu res .  F o r  c o m p e t i t io n  e x p e r im e n ts  un lab e led  o l ig o n u c le o t id e s  C A T 1 ,  G A T A  and  

c o n ta in in g  s e q u e n c e  e le m e n ts  o f  th e  labe l led  T a m s l p D  f r a g m e n t  w e re  in c u b a te d  w i th  e x t r a c t  p r io r  to  1 

p ro b e .  L a n e s  6 to  9 w e re  c o m p e te d  w ith  o l ig o n u c le o t id e  C A T 1 ,  lanes 10 to  13 w e r e  c o m p e te  

o l ig o n u c le o t id e  G A T A  a nd  lanes 21 to  24  w e re  c o m p e te d  w ith  o l ig o n u c le o t id e  T A T I .

L a n e  1) p ro b e

L a n e  2 )  B L 2 0  c ru d e  n u c le a r  ex trac t

L a n e  3) H o s t  e n r ic h e d  n u c le a r  e x tr a c t  p rep a re d  f ro m  D7 cells  in c u b a te d  at 37°C

L an e  4 )  P a ras i te  e n r ic h e d  n u c le a r  e x trac t  p re p a re d  f rom  D7 ce lls  in c u b a te d  at 37°C

L a n e  5) H o s t  e n r ic h e d  n u c le a r  e x tr a c t  p rep a re d  f ro m  D7 cells  in c u b a te d  at 41°C  fo r  6 d a y s

L an e  6 )  P a ras i te  e n r ic h e d  n u c le a r  ex trac t  p re p a re d  f ro m  D7 cells  in cu b a ted  at 41 °C  fo r  6 d a y s

L an e  7) H o s t  e n r ic h e d  n u c le a r  e x tra c t  p rep a re d  f ro m  D7 cells  in c u b a te d  at 37°C

L a n e  8) P a ras i te  e n r ic h e d  n u c le a r  ex trac t  p re p a re d  f ro m  D7 ce lls  in cu b a ted  at 37°C

L a n e  9) H o s t  e n r ic h e d  n u c le a r  e x tra c t  p rep a re d  f ro m  D7 ceils  in c u b a te d  at 41°C  fo r  6 d a y s

L a n e  10) P a ras i te  e n r ic h e d  n u c le a r  ex trac t  p re p a re d  fro m  D7 ce l ls  in c u b a te d  at 41°C  fo r  6 d a y s

L an e  1 1) H o s t  e n r ic h e d  n u c le a r  e x tra c t  p re p a red  f ro m  D7 ce lls  in c u b a te d  at 37°C

L a n e  12) P a ras i te  e n r ic h e d  n u c le a r  ex trac t  p re p a re d  from  D7 ce l ls  in c u b a te d  at 37°C

L a n e  13) H o s t  e n r ic h e d  n u c le a r  ex trac t  p rep a red  f ro m  D 7 ce lls  in c u b a te d  at 41°C  fo r  6 d a y s

L an e  14) Paras i te  e n r ic h e d  n u c le a r  ex trac t  p re p a re d  from  D7 ce l ls  in cu b a te d  at 41°C  fo r  6 d a y s

L a n e  15) P ro be

L an e  16) B L 2 0  c ru d e  n u c le a r  ex trac t

L an e  17) H o s t  e n r ic h e d  n u c le a r  e x tra c t  p rep a red  fro m  D 7 cells  in c u b a te d  at 37°C

L an e  18) P a ras i te  e n r ic h e d  n u c le a r  ex trac t  p re p a re d  from  D7 ce l ls  in cu b a te d  at 37°C

L a n e  19) H o s t  e n r ic h e d  n u c le a r  e x tra c t  p rep a red  f ro m  D 7 cells  in c u b a te d  at 41°C  fo r  6 d a y s

L a n e  2 0 )  P a ras i te  e n r ic h e d  n u c le a r  ex trac t  p re p a red  from  D 7 ce l ls  in cu b a te d  at 4 1°C  fo r  6 d a y s

L a n e  2 1 )  H o s t  e n r i c h e d  n u c le a r  e x trac t  p rep a red  f rom  D 7 cells  in c u b a te d  at 37°C

L an e  2 2 )  P a ras i te  e n r i c h e d  n u c le a r  ex trac t  p re p a re d  from  D7 cells  in cu b a te d  at 37°C

L an e  2 3 )  H o s t  e n r i c h e d  n u c le a r  e x tra c t  p rep a red  f ro m  D7 cells  in c u b a te d  at 41°C  fo r  6 d a y s

L a n e  2 4 )  P a ras i te  e n r ic h e d  n u c le a r  ex tra c t  p re p a re d  from  D 7 ce l ls  in c u b a te d  at 4 1°C  fo r  6 d a y s

A r r o w h e a d s  on  F ig u re  4 .9  d e n o te  sh if ts  d e tec ted  in ho s t  (H )  o r  e n r i c h e d  p a ras i te  (P )  n u c le a r  ex trac ts  

ca se  le t te r  on  b o t to m  o f  t r a c k s  d e n o te  o rig in  o f  ex trac t:  hs, hos t  spec if ic ;  h, ho s t  e n r i c h e d ;  p, p a ras i te  er
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contrast, the association of the additional shifts (marked A, B, and C on Figure 4.10) with 

parasite enriched fractions and differentiating cultures indicated that these were due to 

parasite factors; the presence of the B mobility shift in the host fraction of D7 37°C cells 

demonstrating contamination of host with parasite material.

As previously described (section 4.2.7) the GATA oligonucleotide contains the 

GATA-1 binding element. It is, therefore, not surprising that extracts prepared from BL20 

cells, and D7 37°C cultures where the parasite load is low, should form complexes with this 

oligonucleotide (Figure 4.11). Four mobility shifts, were observed with the BL20 extract 

(Lane 2) and both parasite and host enriched nuclear extracts (although at low level) of D7 

37°C cells (Lanes 3 and 4). In contrast, host extracts prepared from differentiating cultures 

did not give a mobility shift with the GATA oligonucleotide (Lane 5), while a very faint 

shift was observed for the parasite enriched extract (Figure 4.11; Lane 6). The complexes, 

formed by the interaction of the GATA probe and extracts, were competed by both 

unlabelled GATA (Figure 4.11; Lanes 7-10) and TATI (Figure 4.11; Lanes 21-24) but were 

found to be stable in the presence of unlabelled CAT1 (Figure 4.11; Lanes 11-14). In 

conclusion it appears that binding to the GATA oligonucleotide was biased towards host 

enriched extracts.

The experiment represented by Figure 4.12 demonstrated direct mobility shifts of the 

TATI oligonucleotide, most notably with the uninfected BL-20 nuclear extract and host 

enriched nuclear extract from D7 cells incubated at 37°C. These mobility shifts were 

competed to some extent with all three cold oligonucleotides, and although competition was 

greatest with cold TATI it was not absolute. Therefore, it was difficult to conclude that a 

sequence specific mobility shift was occurring with the TATI probe. However, more 

pertinent to the present study was the absence of a shift associated with parasite enriched or 

differentiation. It was concluded, that under the conditions tested, a self-contained binding 

domain was not present in the TATI sequence.

In summary, the data from these direct binding experiments indicated that the CAT1 

sequence specifically bound factors from parasite enriched nuclear extracts. In contrast no 

evidence was produced which indicated specific binding of the GATA or TATI probes to
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Figure 4.10 EMSA o f the CAT1 sequence element with nuclear extracts. E n d  I 

o l ig o n u c le o t id e  C A T 1  w a s  in c u b a te d  w ith  p a ras i te  o r  h o s t  e n r ic h e d  n u c le a r  e x tra c t  d e r iv e d  f ro m  37°C  < 

cu ltu res .  F o r  c ro s s  c o m p e t i t io n  ex p e r im e n ts  u n la b e le d  o l ig o n u c le o t id e s  C A T 1 ,  G A T A  an d  T A T I  in« 

w ith  e x trac t  p r io r  to ad d i t io n  o f  label led  p ro be .  L an es  7 to  10 w e re  c o m p e te d  w ith  o l ig o n u c le o t id e  

lanes 11 to  14 w e re  c o m p e te d  w ith  o l ig o n u c le o t id e  G A T A  an d  lanes  21 to  24  w e re  c o m p e te  

o l ig o n u c le o t id e  T A T I .

L ane  1) p ro b e

L an e  2) B L 2 0  c ru d e  n u c le a r  ex trac t

L ane  3) H o s t  e n r ic h e d  n u c le a r  ex trac t  p re p a red  f ro m  D 7  ce lls  in cu b a ted  at 37°C

L an e  4 )  P a ra s i te  e n r i c h e d  n u c le a r  ex trac t  p re p a re d  f ro m  D 7 cells  in c u b a te d  at 37°C

L an e  5) H o s t  e n r ic h e d  n u c le a r  ex trac t  p re p a re d  f ro m  D 7 ce lls  in cu b a ted  at 4 1°C fo r  6 d ay s

L an e  6) P a ra s i te  e n r i c h e d  n u c le a r  ex trac t  p re p a re d  f ro m  D7 ce lls  in c u b a te d  at 4 1°C  fo r  6 d a y s

L an e  7) H o s t  e n r ic h e d  n u c le a r  ex trac t  p re p a red  f ro m  D 7  ce lls  in cu b a ted  at 37°C

L ane  8) P a ra s i te  e n r i c h e d  n u c le a r  ex trac t  p re p a re d  from  D7 ce lls  in cu b a ted  at 37°C

L an e  9) H o s t  e n r ic h e d  n u c le a r  ex trac t  p rep a red  f ro m  D 7 ce lls  in c u b a te d  at 4 1°C fo r  6 d ay s

L an e  10) P a ra s i te  e n r i c h e d  n u c le a r  ex trac t  p re p a re d  f ro m  D 7  ce lls  in c u b a te d  at 41°C  fo r  6 d a y s

L an e  11) H o s t  e n r ic h e d  n u c le a r  ex trac t  p rep a re d  f ro m  D 7  ce lls  in c u b a te d  at 37°C

L ane  12) P a ra s i te  e n r i c h e d  n u c le a r  ex trac t  p re p a re d  f ro m  D7 ce lls  in cu b a ted  at 37°C

L ane  13) H o s t  e n r ic h e d  n u c le a r  ex trac t  p rep a red  fro m  D 7 ce lls  in c u b a te d  at 41°C  fo r  6 d a y s

L ane  14) P a ras i te  e n r ic h e d  n u c le a r  ex trac t  p re p a re d  f ro m  D 7 ce l ls  in cu b a ted  at 41°C  for 6 d a y s

L an e  15) P ro b e

L an e  16) B L 2 0  c ru d e  n u c le a r  ex trac t

L an e  17) H o s t  e n r ic h e d  n u c le a r  ex trac t  p re p a re d  f ro m  D 7  ce lls  in cu b a ted  at 37°C

L ane  18) P a ra s i te  e n r i c h e d  n u c le a r  ex trac t  p re p a re d  f ro m  D 7 ce l ls  in cu b a ted  at 37°C

L an e  19) H o s t  e n r ic h e d  n u c le a r  ex trac t  p re p a re d  fro m  D 7  ce lls  in c u b a ted  at 41°C  fo r  6 d ay s

L ane  20 )  P a ra s i te  e n r ic h e d  n u c le a r  ex trac t  p re p a re d  f ro m  D 7 ce l ls  in c u b a te d  at 41°C  fo r  6 d a y s

L ane  2 1 )  H o s t  e n r ic h e d  n u c le a r  ex trac t  p re p a re d  f ro m  D 7  cells  in c u b a ted  at 37°C

L ane  2 2 )  P a ra s i te  e n r ic h e d  n u c le a r  ex trac t  p re p a re d  f ro m  ce lls  in c u b a te d  a t  37°C

L ane  2 3 )  H o s t  e n r ic h e d  n u c le a r  ex trac t  p re p a re d  f ro m  D 7 cells  in c u b a te d  a t  4 1°C  fo r  6 d a y s

L ane  2 4 )  P a ra s i te  e n r ic h e d  n u c le a r  ex trac t  p re p a re d  f ro m  D 7 ce l ls  in c u b a te d  at 41°C  fo r  6 d a y s

A r r o w h e a d s  on  f ig u re s  d e n o te  sh ifts  d e te c te d  in e n r ic h e d  p a ra s i te  n u c le a r  e x tr a c ts  (A , B 

L o w e r  c a se  le t ter  on  b o t to m  o f  t r a c k s  d en o te  o r ig in  o f  ex trac t:  hs, h o s t  sp ec if ic ;  h, h o s t  e n r i c h e d ;  p, 

en r iched .
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Figure 4.11 EMSA o f the GATA sequence element with nuclear extracts. E nd  1 

o l ig o n uc leo t id e  G A T A  w as  incubated  w ith  c rud e  n uc lea r  ex trac t  d e r ived  from  paras i te  o r  h o s t  en r iche  

or 41°C D 7 cu ltu res .  F or  c ross  com pet i t ion  ex p e r im en ts  u n labe led  o l ig o n u c leo t id e s  G A T A ,  C A T 1 and 

incu ba ted  w ith  ex trac t  p r io r  to  labelled probe. L anes  7 to  10 w e re  c o m p e te d  w i th  o l ig o n u c le o t id e  » 

lanes 11 to 14 w e re  co m p e ted  with o lig o n u c leo t id e  C A T 1 and  lanes 21 to  24  w e re  c o m p e te  

o lig o n u c leo t id e  T A T I .  L ane  1) probe 

Lanes  2 )  B L 2 0  c ru d e  n u c le a r  extract

Lane 3) H ost en r ich ed  nu c lea r  extrac t p rep a red  from  D7 ce lls  incu ba ted  at 37°C

Lane 4) Paras ite  e n r ich ed  n u c lea r  extrac t p rep a red  from  D7 cells  incuba ted  at 37°C

Lane 5) H ost en r ich ed  nu c lea r  extract p rep a red  from  D7 cells  incuba ted  at 41°C  fo r  6 days

Lane 6) Paras ite  e n r ich ed  n u c lea r  extrac t p rep a red  from  D7 cells  incuba ted  at 41°C  for 6 d ay s

Lane 7) H os t  en r ich ed  nu c lea r  extract p rep a red  from  D7 cells  incuba ted  at 37°C

Lane 8) Paras ite  e n r ich ed  n u c lea r  extrac t p rep a red  from  D7 cells  incub a ted  at 37°C

Lane 9) H ost en r ich ed  nu c lea r  extract p rep a red  from  D7 cells  incu ba ted  at 41°C  fo r  6 d ay s

Lane 10) Paras ite  en r ich ed  nuc lea r  ex trac t  p repa red  from  D7 cells incuba ted  at 41°C  fo r  6 d ays

Lane 11) H ost en r ich ed  nu c lea r  extract p rep a red  from D7 cells  incuba ted  at 37°C

Lane 12) Paras ite  en r ich ed  n uc lea r  ex trac t  p rep a red  from  D7 cells  incuba ted  at 37°C

Lane 13) H ost en r ich ed  nu c lea r  extract p rep a red  from  D7 cells  incuba ted  at 41°C  fo r  6 d ay s

Lane 14) Paras ite  e n r ich ed  n uc lea r  ex trac t  p repared  from  D7 cells  incuba ted  at 41°C  for 6 d ay s

Lane 15) Probe

Lane 16) B L 2 0  c ru d e  n u c lea r  extract

Lane 17) H ost e n r iched  n u c le a r  extrac t p repa red  from D7 cells  in cub a ted  at 37°C

Lane 18) Paras ite  en r iched  n u c lea r  ex trac t  p repa red  from  D7 cells  incuba ted  at 37°C

Lane 19) H ost en r ich ed  n u c lea r  extrac t p rep a red  from  D7 cells incub a ted  at 41°C  fo r  6 d ays

Lane 2 0 )  Paras ite  en r iched  n uc lea r  extrac t p repa red  from  D7 cells incuba ted  at 41°C  for 6 d ays

Lane 2 1 )  H ost en r ich ed  n u c lea r  extract p repa red  from  D7 cells incuba ted  at 37°C

Lane 2 2 )  Paras ite  en r ich e d  n uc lea r  ex trac t  p repa red  from  D7 cells incuba ted  at 37°C

L ane 2 3 )  H os t  en r ich ed  n u c le a r  extrac t p rep a red  from D7 cells  incuba ted  at 41°C  fo r  6 d ay s

L ane 2 4 )  Paras ite  en r ich e d  n uc lea r  ex trac t  p repa red  from  D7 cells  incuba ted  at 41°C  fo r  6 d ays

L o w e r  case  let ter on bo ttom  o f  tracks d eno te  orig in  o f  extract: hs,  hos t  specific ;  h, h o s t  e n r ic h e d ;  p, par  

enriched .
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Figure 4.12 EM SA o f  the TATI sequence elem ent with nuclear extracts. E n d  I 

o l ig o n u c le o t id e  T A T I  w a s  in c u b a te d  w ith  c ru d e  n u c le a r  e x t r a c t  d e r iv e d  f ro m  p a ra s i te  o r  h o s t  en riche  

o r  41 °C  D 7  c u l tu re s .  F o r  c ro s s  c o m p e t i t io n  e x p e r im e n t s  u n la b e le d  o l ig o n u c le o t id e s  T A T I ,  C A T 1  a n d  

w e re  in c u b a te d  w i th  e x t r a c t  p r io r  to  a d d i t io n  o f  lab e l led  p ro b e .  L a n e s  7 to  10 w e r e  c o m p e te  

o l i g o n u c le o t id e  T A T I ,  lanes  1 1 to  14 w e re  c o m p e t e d  w ith  o l i g o n u c le o t id e  C A T 1  a n d  lan es  21 to  2 

c o m p e t e d  w i th  o l i g o n u c le o t id e  G A T A .

L a n e  1) p ro b e

L a n e s  2 )  B L 2 0  c ru d e  n u c l e a r  ex trac t

L a n e  3 )  H o s t  e n r i c h e d  n u c l e a r  e x trac t  p re p a re d  f ro m  D 7  ce l ls  in c u b a te d  at 37°C

L a n e  4 )  P a ra s i te  e n r i c h e d  n u c le a r  e x tra c t  p re p a re d  f ro m  D 7  c e l ls  in c u b a te d  at 37°C

L a n e  5) H o s t  e n r i c h e d  n u c le a r  e x t r a c t  p re p a re d  f ro m  D 7 ce l ls  in c u b a te d  at 4 1°C  fo r  6 d a y s

L a n e  6 )  P a ra s i te  e n r i c h e d  n u c le a r  e x tra c t  p re p a re d  f ro m  D 7 ce l l s  in c u b a te d  a t  4 1°C  fo r  6 d a y s

L a n e  7) H o s t  e n r i c h e d  n u c le a r  e x tr a c t  p re p a re d  f ro m  D 7  ce l ls  in c u b a te d  at 37°C

L a n e  8) P a ra s i te  e n r i c h e d  n u c le a r  e x t r a c t  p re p a re d  f ro m  D 7 c e l l s  in c u b a te d  a t  37°C

L a n e  9) H o s t  e n r i c h e d  n u c le a r  e x tr a c t  p re p a r e d  from  D 7  ce l ls  in c u b a te d  at 4 1°C  fo r  6 d a y s

L a n e  10) P a ra s i te  e n r i c h e d  n u c le a r  e x tr a c t  p re p a re d  f ro m  D 7  ce l ls  in c u b a te d  at 4 1°C  fo r  6 d a y s

L a n e  1 1) H o s t  e n r i c h e d  n u c le a r  e x trac t  p re p a re d  f ro m  D 7  ce l ls  in c u b a te d  at 37°C

L a n e  12) P a ra s i te  e n r i c h e d  n u c le a r  e x trac t  p re p a re d  f ro m  D 7  ce l ls  in c u b a te d  at 37°C

L a n e  13) H o s t  e n r i c h e d  n u c le a r  e x trac t  p re p a re d  f ro m  D 7 ce l ls  in c u b a te d  at 41 °C  fo r  6 d a y s

L a n e  14) P a ra s i te  e n r i c h e d  n u c le a r  e x tr a c t  p re p a re d  f rom  D 7 ce l ls  in c u b a te d  at 4  P C  fo r  6 d a y s

L a n e  15) P ro b e

L a n e  16) B L 2 0  c ru d e  n u c le a r  ex tra c t

L a n e  17) H o s t  e n r i c h e d  n u c le a r  ex trac t  p re p a re d  f ro m  D 7  ce l ls  in c u b a te d  at 37°C

L a n e  18) P a ra s i te  e n r i c h e d  n u c le a r  e x tra c t  p re p a r e d  f ro m  D 7  c e l ls  in c u b a te d  at 37°C

L a n e  19) H o s t  e n r i c h e d  n u c le a r  e x tra c t  p re p a re d  f ro m  D 7  ce l ls  in c u b a te d  at 4 1°C  fo r  6 d a y s

L a n e  2 0 )  P a ra s i te  e n r i c h e d  n u c le a r  e x trac t  p r e p a r e d  f ro m  D 7  c e l ls  in c u b a te d  at 41 °C  fo r  6 d a y s

L a n e  2 1 )  H o s t  e n r i c h e d  n u c l e a r  e x t r a c t  p re p a re d  f ro m  D 7  ce l ls  in c u b a te d  at 37°C

L a n e  2 2 )  P a ra s i te  e n r i c h e d  n u c le a r  e x tra c t  p re p a re d  f ro m  D 7  c e l ls  in c u b a te d  at 37°C

L a n e  2 3 )  H o s t  e n r i c h e d  n u c le a r  e x tra c t  p re p a re d  f ro m  D 7  ce l ls  in c u b a te d  at 41°C  fo r  6 d a y s

L a n e  2 4 )  P a ra s i te  e n r i c h e d  n u c le a r  e x tra c t  p re p a re d  f ro m  D 7  ce l l s  in c u b a te d  a t  41 °C  for 6 d a y s

L o w e r  ca se  le t te r  on  b o t to m  o f  t r a ck s  d e n o te  o r ig in  o f  e x tra c t :  hs,  h o s t  sp ec i f ic ;  h, h o s t  e n r i c h e d ;  p, pai 

e n r ic h e d .
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parasite associated nuclear factors although, in a similar fashion to the TamslpD probe, a 

degree of competition of binding to CAT1 was obtained with cold TATI. Based on these 

results it was decided to study binding to CAT1 in more detail as it appeared to possess a 

core sequence element responsible for the binding of parasite associated nuclear factors to 

the 120bp TamslpD probe.

4.3.9 Effect of Poly d(I-C) concentration on Protein Binding to CAT1

Poly d(I-C) is used in binding reactions to reduce low affinity, non-specific binding 

of probes with proteins in nuclear extracts. However, complexes can be intolerant of 

variations in poly d(I-C) concentrations and this can be an indication of how stable a 

complex is when bound. Thus, poly d(I-C) can be used to assess complex stability by 

investigating the effect of different concentrations on the level of mobility shift formation. 

Probe CAT1 was incubated with increasing concentrations poly d(I-C), in the presence of 

parasite enriched nuclear extracts from D7 cells incubated at 41°C for 6 days shown in 

Figure 4.13.

As shown in Figure 4.13, between CAT1 and nuclear factors all concentrations of 

poly d(I-C) allow efficient complexes to form, and in the absence of poly d(I-C) the 

complex becomes more non-defined (Figure 4.13, Lane 2). The reduced clarity of this 

mobility shift may be due to a higher level of low affinity non-specific protein binding to 

the CAT1 probe which competes with specific complex formation. It was concluded from 

this experiment that the CAT1 complex was stable over a 10-fold increase of poly d(I-C) 

relative to the level used in the standard EMSA conditions.

4.3.10 Analysis of Protein Binding to CAT1

From the EMSA experiments performed with CAT1, three mobility shifts were 

detected which are likely to represent different complex formation of nuclear factors with 

the DNA probe. Of these complexes two A and B were detected when parasite enriched 

extracts were made from both 37°C cultures and differentiating cultures of D7, although the 

level of complex formation frequently appeared greater with extracts representing 

differentiating cells. The third complex (C) appeared only to be detected when extracts from 

differentiating cells were used in the analysis. However, it was unclear whether the
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Figure 4.13 Binding of radiolabelled CAT1 in the presence of Poly d(I-C). End W 

oligonucleotide CAT1 was incubated with parasite enriched nuclear extract derived from! 

D7 infected cell cultures incubated at 41°C for 6 days and increasing concentrations of» 

specific competitor poly d(I-C) as indicated.

Lane 1) Probe only

Lane 2) no poly d(I-C)

Lane 3) lOOng/ml poly d(I-C) stock

Lane 4) 200ng/ml poly d(I-C) stock

Lane 5) 300ng/ml poly d(I-C) stock

Lane 6) 400ng/ml poly d(I-C) stock

Lane 7) 500ng/ml poly d(I-C) stock

Lane 8) 600ng/ml poly d(I-C) stock |

Lane 9) 700ng/ml poly d(I-C) stock |l

Lane 10) 800ng/ml poly d(I-C) stock 11

Lane 11) 900ng/ml poly d(I-C) stock [

Lane 12) 1 mg/ml poly d(I-C) stock

Arrowheads on figures denote shifts detected in enriched parasite nuclear extracts (A. Bi I

C). I I
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formation of the different complexes were related to each other and whether they could have 

different properties relative to each other. For example, different complexes could display 

differences in the affinity of the nuclear factor(s) to the DNA probe. To investigate possible 

differences in affinity, titration experiments were conducted where either the level of 

labelled oligonucleotides, or the protein concentration used in the binding reactions was 

altered. In addition, an experiment was performed where binding to the CAT1 probe was 

competed against titrated levels of cold competitor. The results of these experiments are 

shown in Figures 4.14, 4.15, and 4.16.

Figure 4.14 shows the effect of increasing probe concentration on complex 

formation between parasite enriched nuclear extracts from differentiating D7 cells and the 

CAT1 oligonucleotide probe. Both low (Figure 4.14; Lane 2) and high concentrations 

(Figure 4.14; Lane 12) of probe allow efficient complexes to form with no obvious 

alteration in complex formation as the probe concentration increases. However, titration of 

the protein concentration of the parasite enriched extract shown in Figure 4.15 demonstrates 

that the intensities of the three detected mobility shifts decreased at different rates. As the 

protein concentration drops from 0.48|ig (Figure 4.15; Lane 1) to 0.032pg (Figure 4.15; 

Lane 6) the intensity of shift C was seen to significantly decrease, and eventually disappear, 

while the intensities of shifts A and B dropped but remained visible. Interestingly when the 

protein concentration was reduced to below 0.12p,g the complex represented by shift A 

altered as it appeared that the intensities of shift A became greater relative to B at the lower 

extract concentrations.

The effect of altering the level of cold CAT1 on the formation of complexes A, B 

and C is represented by Figure 4.16. In the presence of parasite enriched nuclear extracts 

from differentiating D7 and x200 of unlabelled CAT1 oligonucleotide, binding of all 

complexes to the labelled probe was significantly reduced (Figure 4.16; Lanel). Complex C 

was eliminated by the addition of only x20 competitor (Figure 4.16; Lane 6) while 

Complexes A and B survived. As shift B appears to be the most abundant of the three in the 

non-competed reactions it may be that it is more difficult to compete because of higher level 

of complex formation. However, affinity difference between the different complexes could 

also play a role and cannot be discounted from the obtained result.
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Figure 4.14 Titration o f probe concentration in CAT1 EMSA. Increasing amounts o f 

were reacted with parasite enriched nuclear extracts prepared from D7 cells incuba 

41°C for 6 days.

Lane 1) no CAT1 

Lane 2) 0.002pmoles o f CAT1 

Lane 3) 0.2pmoles o f CAT1 

Lane 4) 0.3pmoles o f CAT1 

Lane 5) 0.4pmoles o f CAT1 

Lane 6) 0.5pmoles o f CAT1 

Lane 7) O.bpmoles o f CAT1 

Lane 8) 0.7pmoles o f CAT1 

Lane 9) O.Spmoles o f CAT1 

Lane 10) 0.9pmoles of CAT1 

Lane 11) lpm oles o f CAT1

Arrowheads on figures denote shifts detected in enriched parasite nuclear extracts (A,

C).
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Figure 4.15 Titration o f extract concentration in CAT1 EMSA. l2P-labelled CAT 

reacted with decreasing amounts o f parasite enriched nuclear extract prepared from D' 

incubated at 41°C for 6 days.

Lane 1) 0.48pg o f parasite nuclear extract per reaction

Lane 2) 0.36pg o f parasite nuclear extract per reaction

Lane 3) 0.24pg o f parasite nuclear extract per reaction

Lane 4) 0.12pg o f parasite nuclear extract per reaction

Lane 5) 0.048pg o f parasite nuclear extract per reaction 

Lane 6) 0.032pg o f parasite nuclear extract per reaction 

Lane 7) 0.024pg o f parasite nuclear extract per reaction 

Lane 8) 0.0192pig o f parasite nuclear extract per reaction 

Lane 9) 0.016pg o f parasite nuclear extract per reaction 

Lane 10) 0.0137fig o f parasite nuclear extract per reaction 

Lane 11) 0.012pg o f parasite nuclear extract per reaction 

Lane 12) Probe only

Arrowheads on figures denote shifts detected in enriched parasite nuclear extracts (A,

C).
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Figure 4.16 Competition experiments showing specificity of CAT 1-extract coi 

formation. Mobility shift assay of parasite enriched extracts reacted with radiola 

CAT1 in the absence and presence of decreasing amounts of unlabelled DNA probe.

Lane 1) 200

Lane 2) 100 fold excess

Lane 3) 80 fold excess

Lane 4) 60 fold excess

Lane 5) 40 fold excess

Lane 6) 20 fold excess

Lane 7) 10 fold excess

Lane 8) 5 fold excess

Lane 9) 1 fold excess

Lane 10) no competitor 

Lane 11) Probe only

Arrowheads on figures denote shifts detected in enriched parasite nuclear extracts (A, j

C).
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4.3.11 CAT1 Binding Elements

From the EMSA experiments performed to this point with the CAT1 probe, it was 

unknown whether the complexes A, B and C were related, or distinct from, each other in 

terms of the polypeptides which bound to them. For example, the different shift patterns 

could be due to the binding of single distinct polypeptides or be intermediates in the 

formation of a final complex of two or more different polypeptides or the probe. In the event 

that distinct polypeptides could recognise different sequences, one possible way to try and 

characterise the differences between the three complexes was to investigate whether they 

were conferred by different sequences.

Initially this was carried out by generating double stranded oligonucleotides 

representing different defined regions or variants of the CAT1 probe, CAT 2, 3, and 4. 

Figure 4.17 shows the sequence of the 3 oligonucleotides (CAT2, CAT3 and CAT4) and 

their relationship to CAT1. Oligonucleotide CAT2 consisted of sequence from the GATA 

and CAT1 oligonucleotides, but lacked the last 7 (3') base pairs of CAT1. CAT3 essentially 

encompassed these 3' nucleotides of CAT1 missing from CAT2, the A at position 14 of 

CAT1 being the 3' and 5' terminal nucleotides of CAT2 and CAT3 respectively. CAT4 was 

a truncated version of CAT1, the 5' and 3' nucleotides of CAT4 corresponding to positions 5 

and 20 ofCATl.

These oligonucleotides and CAT1 were incubated with parasite enriched nuclear 

extracts prepared from 37°C and differentiating D7 cell cultures (Figure 4.18). As has been 

observed previously, the CAT1 probe formed 3 complexes A, B, and C when incubated 

with extracts prepared from differentiating parasite nuclei (Figure 4.18; Lane IB). 

Furthermore, it also confirmed that the CAT1 probe formed complexes A and B when 

incubated with parasite extracts prepared from D7 cells cultured at 37°C (Figure 4.18; Lane 

1A). The CAT4 probe, incubated with parasite extracts from differentiating cultures also 

formed complexes A, B and C (Figure 4.18; Lane 4B), with reduced efficiency and the 

representative shifts were not obtained when CAT4 was incubated with the 37°C parasite 

enriched nuclear extract. A shift of similar mobility to that representative of CAT1 complex 

A was also observed for the CAT2 probe (Figure 4.18; Lane 2B) but, shifts at the same
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-109 G A T A
AATGGAGGATAAGGCATTAGGCGTGATGAGTGCATAGATACAGATA

C A T 1  T A T I  - i s
AACAT GCACACAATTTGTAGGGCGAC AT TGTTTTGTAT GGTGAAT G

CAT 2

CAT 3

CAT 4

Oligonucleotides:

CAT 1 - GCACACAATTTGTAGGGCGAC 

CAT 2 - AG AT A A AC AT GC AC AC A ATTT GT A 

CAT 3 - AGGGCGAC 

CAT 4 - AC A ATTT GT AGGGCG A

Figure 4.17. The area depicted represents part of the TamslpD fragment which is proximal 

to the RNA initiation site of the TamSl gene. The numbers indicate the position of the 

sequence with respect to the start of transcription. The composition and position of the 

oligonucleotides used in the mobility shift assay are shown above.
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relative mobility as CAT1 complex B and C were not observed. Two additional mobility 

shifts were detected for the CAT2 probe when incubated with parasite nuclear extract for 

D7 37°C cells (Figure 4.18; Lane 2A). The CAT3 probe did not generate any detectable 

mobility shift with either of the extracts.

To confirm the results of the previous experiment, a competition experiment was 

performed, where labelled CAT1 probe was competed with xlOO unlabeled double

stranded, CAT2, CAT3 and CAT4, in the presence of parasite enriched nuclear extracts, 

(Figure 4.19). Comparisons between competed and non-competed reactions show that only 

CAT4 prevented the formation of the 3 complexes (Figure 4.19; Lane 4B). These 

complexes were found to be stable in the presence of high concentrations of unlabelled 

oligonucleotides CAT 2 (Figure 4.19; Lanes 2A and 2B) and 3 (Figure 4.19; Lanes 3A and 

3B). In contrast to the previous experiment, shifts representative of complexes A and B 

were not clearly detected with the parasite enriched nuclear extracts (Figure 4.19; Lane 1A).

From these results it appeared that neither the CAT2 or CAT3 oligonucleotides were 

able to reproduce complex formation to generate the A, B and C mobility shifts. The CAT2 

probe did generate a mobility shift of similar size to the CAT1 A complex (Figure 4.18, 

Lane 2B), however, the inability of the cold CAT2 to compete the formation of this shift 

from the labelled CAT1 probe suggests that the two complexes are not identical (Figure 

4.19, Lane 2B). In contrast the CAT4 probe reproduced all three CAT1 mobility shifts. It 

was concluded that the sequence of CAT1 and CAT4 which crosses the junction of CAT2 

and CAT3 are necessary for complex formation. Moreover in that the binding sites for all 3 

complexes are contained within the 16 nucleotides of CAT4.

4.3.12 Generation of Mutations that Abolish Specific Binding to CAT1

To analyse further the nature of the sequences motif(s) within CAT1 which confer 

formation of complexes A, B and C with parasite enriched nuclear extracts site specific 

mutant oligonucleotides were generated. It was hoped that if there were overlapping binding 

sites which preferentially contributed to the formation of one shift complex over another, 

then this would be revealed by use of these mutants. As the CAT4 oligonucleotide 

generated all three complexes, mutants were made within this sequence. Three mutants were
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Figure 4.18 Binding activity o f the CAT 1, 2, 3 and 4 probes in parasite enriched ea 

prepared from (A) D7 cells cultured at 37°C or (B) 41°C for 6 days.

1) Parasite enriched nuclear extracts reacted with 2P labelled CAT1

2) Parasite enriched nuclear extracts reacted with 32P labelled CAT2

3) Parasite enriched nuclear extracts reacted with 32P labelled CAT3

4) Parasite enriched nuclear extracts reacted with 32P labelled CAT4

Arrowheads on figures denote shifts detected in enriched parasite nuclear extracts (A, ’ 

C).
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Figure 4.19 EMSA competition experiments of CAT1 complex formation. Mobility w 

assay of parasite enriched nuclear extracts derived form D7 cells cultured at 37°C(A)i

DNA probes (100-fold excess).

1) Parasite enriched nuclear extracts reacted with 32P labelled CAT1 1

2) Parasite enriched nuclear extracts reacted with '2P labelled CAT1 in the presence of | 

unlabelled CAT2 I

3) Parasite enriched nuclear extracts reacted with 32P labelled CAT1 in the presence of | 

unlabelled CAT3 |

4) Parasite enriched nuclear extracts reacted with 32P labelled CAT1 in the presence of ! 

unlabelled CAT4

Arrowheads on figures denote shifts detected in enriched parasite nuclear extracts (A,





made, differing from CAT1 by only 3 base changes (Figure 4.20). These triplets were 

chosen to span the CAT1 motif but in particular were designed to disrupt the a) AC AC A 

pentamer, b) the TTT triplet and the GGG triplet and c) the CTA triplet which is between 

the TTT and GGG triplets.

The three mutant double stranded oligonucleotides and CAT1 probe were incubated 

in the presence of parasite enriched extracts made from D7 cells incubated at 41°C for 6 

days as shown in Figure 4.21. Formation of the complexes A, B and C was limited to the 

CAT1 (Figure 4.21; Lane 4) and Ml oligonucleotides (Figure 4.21; Lane 3). Complexes B 

and C appeared unaffected by the mutation in the Ml probe and formed as effectively with 

the mutant as with the CAT1 oligonucleotide. The upper complex A, however showed a 

significant reduction in intensity relative to the wild type, CAT1. Both mutants M2 and M3 

appeared to abrogate formation of all 3 complex, although faint levels of a shift at the C 

position were detectable with the M3 oligonucleotide. It was concluded that the core 

binding site for CAT1 complex formation is likely to reside after base pair 7 with critical 

residues likely to be contained within th^ TTTGTAGGG sequence. Additional shifts to 

those normally observed with CAT1 were detected with mutant oligonucleotides, in 

particular M2 and M3. It was unclear whether they represent specific shifts or are caused by 

non-specific binding of factors whose access to the probe is normally blocked by the 

specific complex formation.

To confirm the binding experiments with the mutant oligonucleotides, a competition 

assay using cold mutant oligonucleotides was carried out. Increasing concentrations of 

unlabelled mutant oligonucleotides, at 50, 100 and 200 fold excess, were added to parasite 

enriched nuclear extracts made from D7 cells at 41°C for 6 days prior to incubation with the 

labelled CAT1 probe. Formation of the complexes A, B and C, were significantly reduced 

in the presence of x50 excess of unlabelled Ml oligonucleotide (Figure 4.22, Lane 9) and 

almost were totally removed x200 competitor (Figure 4.22; Lane 7). In contrast, the three 

base pair alterations within the M2 and M3 mutant oligonucleotides destroyed the ability of 

these oligonucleotides to effectively compete for binding of the three complexes (Figure 

4.22; Lanes 1 - 6), although M2 may have competed complex C relative to complex A or B, 

and also relative to the M3 oligonucleotides. Thus the competition experiments with the
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mutants confirmed that results of the direct binding assays. These experiments seem to rule 

out the possession of non-overlapping multiple distinct binding sites within the CAT1 

region.

4.3.13 Identification of Transcription Factors

4.3.14 UV Crosslinking of Transcription Factors to CAT1 Sequence

If factors which were quantitatively distinct were binding to generate complexes A, 

B, and C then one possible way to characterise them would be by their molecular masses. 

This information would also be useful for further studies to purify the transcription factors. 

To attempt to determine the number and relative molecular mass of proteins involved in 

recognising the CAT1 sequence, UV fixation studies were conducted using parasite 

enriched nuclear extracts made from D7 cells incubated at 41°C for 6 days. The assay relies 

on DNA-protein complexes subjected to UV" radiation forming covalent bonds between the 

DNA and bound protein. Substituting thymidine residues with bromodeoyuridine allows the 

DNA to crosslink with protein more readily and also allows a lower wavelength of UV light 

to be used, reducing damage to the protein. Firstly, single-stranded DNA was made from a 

pGem7zf clone containing an insert of concatenated CAT1. As internally radiolabelled 

double stranded DNA probe, incorporating, 5-bromo-21-deoxyuridine triphosphate, was 

then generated as described and used in a standard binding assay. Following incubation on 

ice binding reactions were exposed to UV radiation for 0, 5, 10, 15, 20, 30, 40, 50 and 60 

minutes. Unbound DNA was then digested with DNAsel and the samples analysed by SDS- 

PAGE. The mobility of radiolabelled DNA/protein complex was estimated.

The optimal time for irradiation varies from one protein-DNA complex to another. 

By performing a series of time points between 5 and 60 minutes it was possible that the best 

time for fixation of each complex could be determined. Exposure times of 30 minutes or 

more to UV irradiation detected 6 distinct bands whose intensity increased with time (see 

Figure 4.23, Lanes 6-9). In particular a significant increase was observed for bands at 

45kDA and 97kDa and the irradiation time point appeared to result in a significant increase 

of bands with estimated mass of 45kDa and 97kDa. In order to distinguish specific from 

non-specific binding the UV fixation experiment was repeated in the presence of cold
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CAT 1 MUTANTS

Ml  M2 M3

T G G  A C G C G T

• • •  • • • • • •

GC AC AC AATTT GT AGGGCG AC

CAT 1 - GCACACAATTTGTAGGGCGAC 

M 1 - GCACTGGATTTGTAGGGCGAC

M 2 - GCACACAATTACGAGGGCGAC

M 3 - GCACACAATTTGTAGGCGTAC

Figure 4.20. Base substitutions of CAT1. Closed circles below the nucleotides indicate the 

bases of CAT1 which were substituted with the nucleotides denoted above the closed 

circles. The complete sequences of the mutated oligonucleotides and wild type CAT1 are as 

indicated.
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Figure 4.21 EMSA and base substitution analysis of CAT1. Mobility shift assay 

differentiating parasite enriched nuclear extracts reacted with "2P-labelled CAT1 or MU 

M3. 1

1) Parasite enriched extracts reacted with 32P labelled M3

2) Parasite enriched extracts reacted with 32P labelled M2

3) Parasite enriched extracts reacted with 32P labelled Ml

4) Parasite enriched extracts reacted with 32P labelled CAT1

Arrowheads on figures denote shifts detected in enriched parasite nuclear extracts (A, B



M3 M2 M l WT

1 2  3  4



Figure 4.22 Competition experiments using base substitution mutants to demonstii 

specificity of binding to the CAT1 element. Mobility shift assay of differential̂  

macroschizont parasite extracts reacted with "2P-labelled CAT1 in the absence and preset 

of increasing unlabelled DNA probes (50, 100 and 200 fold excess)

Lane 1) Parasite enriched extracts reacted with 32P labelled CAT1 in the presence of 200 

fold excess of unlabelled M3

Lane 2) Parasite enriched extracts reacted with 32P labelled CAT1 in the presence of 100 

fold excess of unlabelled M3

Lane 3) Parasite enriched extracts reacted with '2P labelled CAT1 in the presence of 50toil 

excess of unlabelled M3

Lane 4) Parasite enriched extracts reacted with 32P labelled CAT1 in the presence of 200 

fold excess of unlabelled M2

Lane 5) Parasite enriched extracts reacted with 32P labelled CAT1 in the presence of .1 

fold excess of unlabelled M3

Lane 6) Parasite enriched extracts reacted with 32P labelled CAT1 in the presence of 50f i 

excess of unlabelled M2

Lane 7) Parasite enriched extracts reacted with 32P labelled CAT1 in the presence of! 

fold excess of unlabelled Ml

Lane 8) Parasite enriched extracts reacted with 32P labelled CAT1 in the presence ofi 

fold excess of unlabelled Ml

Lane 9) Parasite enriched extracts reacted with 32P labelled CAT1 in the presence of 50i 

excess of unlabelled Ml

Lane 10) Parasite enriched extracts reacted with 32P labelled CAT1

Arrowheads on figures denote shifts detected in enriched parasite nuclear extracts (A, Bf

Q II
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competitor oligonucleotides known to remove the radiolabelled complexes observed in 

EMSA. In addition, competition reactions were also carried out with the 3 mutant CAT1 

oligonucleotides: and, to try and distinguish parasite from host factors and factors associated 

with differentiation binding reactions were carried out with uninfected BL-20 nuclear 

extract and parasite enriched nuclear extract form D7 cells cultures at 37°C and for 6 days at 

41°C. Each reaction mixture was incubated on ice for 10 minutes before being exposed to 

UV irradiation for 60 minutes.

The results of these experiments are shown in Figure 4.24. Incubation of the 

bromodeoxyuridine probe with extracts derived from differentiating macroschizont cultures 

(Figure 4.24; Lanes 4) and parasite enriched extracts prepared from macroschizont cells 

(Figure 4.2.4; Lane 5) resulted in the formation of 6 bands of similar size to those observed 

in Figure 4.23 (Lane 9). Interestingly, the probe did not appear to interact with extracts 

derived from BL20 (Figure 4.24; Lane 1) and macroschizont host enriched extracts (Figure 

4.24; Lane 2) suggesting that the 6 bands were specific to parasite extracts. Formation of the 

6 bands using the differentiating macroschizont host enriched extracts could possibly be 

related to parasite contamination resulting from the parasite load. Unfortunately, none of the 

competing oligonucleotides (Figure 4.24; I^nes 6 - 12) inhibited the formation of any of the 

6 bands. This would suggest that the specific complexes associated with the CAT1 probe 

did not form in these experiments and that the detected bands on the SDS-PAGE were not 

representative of complex A, B or C.

4.3.15 Identification of DNA-Binding Proteins by South-Western Blotting

The previous UV crosslinking experiments did not show conclusive evidence that 

any of the detected bands on SDS-PAGE were specific interactions of nuclear factor(s) with 

the CAT1 probe. A final attempt was made to try to determine the mass of proteins within 

parasite nuclear extracts which interact with the CAT1 by South-Western blotting. Whole 

cell protein samples of BL20, D7 at 37°C and differentiating D7 cultures were run on a 

SDS-polyacrylamide gel and blotted on to a nitro-cellulose membrane. Ponceau S staining 

of the membranes confirmed that protein had been transferred prior to washing and 

renaturing of the protein on the membrane overnight at 4°C. The nitro-cellulose membrane
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Figure 4.23 UV crosslinking of mobility shift reaction. Parasites enriched nuclear extrâ 

from differentiating D7 cells were reacted with 2P labelled probe followed by 11 

irradiation of increasing duration.

Lane 1) Parasite enriched extracts reacted with 32P labelled concatenated CAT1 I

Lane 2 )  Parasite enriched extracts reacted with 32P labelled concatenated CAT1 and J 

irradiated for 5minutes

Lane 3) Parasite enriched extracts reacted with 32P labelled concatenated CAT1 and 

irradiated for 10 minutes

Lane 4) Parasite enriched extracts reacted with 32P labelled concatenated CAT1 and 

irradiated for 20 minutes

. M

Lane 5) Parasite enriched extracts reacted with 32P labelled concatenated CAT1 a 

irradiated for 30 minutes

Lane 6) Parasite enriched extracts reacted with l2P labelled concatenated CAT11 \ 

irradiated for 40 minutes

Lane 7) Parasite enriched extracts reacted with 32P labelled concatenated CAT1 a 

irradiated for 50 minutes

Lane 8) Parasite enriched extracts reacted with 32P labelled concatenated CAT11 

irradiated for 60 minutes
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Figure 4.24 Competition analysis of UV crosslinking of mobility shift reactions. BL 

macroschizont and differentiating macroschizont extracts were reacted with concatei 

CAT1 before UV irradiation for 60minutes in the presence or absence of unlabelled pra 

(100 fold excess). I I

Lane 1) BL20 extracts reacted with 32P labelled concatenated CAT1 

Lane 2) Host enriched extracts prepared from D7 cells cultured at 37°C were reacted wit 

32P labelled concatenated CAT1

Lane 3) Parasite enriched extracts prepared from D7 cells cultured at 37°C were reacted1-1 

32P labelled concatenated CAT1

Lane 4) Host enriched extracts prepared from D7 cells incubated at 41°C for 6 days were 

reacted with 32P labelled concatenated CAT1

Lane 5) Parasite enriched extracts prepared from D7 cells incubated at 41°C for 6 days si \ 

reacted with 32P labelled concatenated CAT1

Lane 6) Parasite enriched extracts prepared from D7 cells incubated at 41°C for 6 days A 

reacted with 32P labelled concatenated CAT1 in the presence of unlabelled CAT1 

Lane 7) Parasite enriched extracts prepared from D7 cells incubated at 41°C for 6 days* 

reacted with 32P labelled concatenated CAT1 in the presence of unlabelled CAT2 

Lane 8) Parasite enriched extracts prepared from D7 cells incubated at 41°C for 6 dayswii 

reacted with 32P labelled concatenated CAT1 in the presence of unlabelled CAT3 

Lane 9) Parasite enriched extracts prepared from D7 cells incubated at 41°C for 6 days«' 

reacted with 32P labelled concatenated CAT1 in the presence of unlabelled CAT4 

Lane 10) Parasite enriched extracts prepared from D7 cells incubated at 41°C for 6 A 

were reacted with 32P labelled concatenated CAT1 in the presence of unlabelled Ml 

Lane 11) Parasite enriched extracts prepared from D7 cells incubated at 41°C for 6 if 

were reacted with 32P labelled concatenated CAT1 in the presence of unlabelled M2 

Lane 12) Parasite enriched extracts prepared from D7 cells incubated at 41°C for 6 a 

were reacted with 32P labelled concatenated CAT1 in the presence of unlabelled M3
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was incubated at room temperature with radiolabelled probes, TamslpD, CAT1 and GATA 

for 3 hours washed and exposed to X-ray film (section 4.2.9).

South-Western blot analysis of the BL20 and D7 protein samples using the 

TamslpD, CAT1 and GATA probes is shown in Figure 4.25. The TamslpD (Figure 4.25b) 

and GATA (Figure 4.25C) probes recognized polypeptides in BL20 (Lane 4), D7 (lane 3) 

and differentiating D7 (Lanes 1 and 2) whole cell protein samples. The banding pattern 

obtained was similar for both probes and neither probe recognized any polypeptides in the 

parasite enriched nuclear sample. As described in section 4.3.7, the GATA oligonucleotide 

contains a GATA-1 binding element and it could be that recognition of higher eukaryotic 

GATA factor was being detected. The intensity of the bands would suggest that the 

polypeptide(s) recognized by both probes; are more prevalent in uninfected BL20 and 

infected host cells which have a low parasite load. The CAT1 oligonucleotide (Figure 

4.25 A), however, did recognise not any polypeptides bound to the membrane.
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Figure 4.25 South-Western blot analysis of CAT1, TamslpD and GATA. Total cell extracj 

of BL20, 37°C or 41°C D7 cultures and parasites enriched extract derived from D7ce| 

cultured at 41°C for 6 days were western blotted onto a nitro-cellulose membrane 4 

hybridised with 32P labelled probes (A) CAT1, (B) TamslpD and (C) GATA. I
Lane 1) Parasite enriched nuclear extract prepared from D7 cells incubated at 41°C for 6 | 

days.

Lane 2) Parasite nuclei prepared from D7 cells incubated at 41°C for 6 days 

Lane 3) Total cell extract prepared from D7 cells incubated at 37°C.

Lane 4) BL20 Total cell extracts
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4.4 Discussion

Nuclear extracts with active transcription factors are usually obtained from relatively 

homogeneous cellular populations such as tissue-culture cell lines or isolated tissues (eg 

Liver). Macroschizont infected cells are a homogeneous population, when cultured at 37°C, 

but the parasite resides within the cytoplasm of the host cell. Therefore, before extracts 

enriched for parasite factors could be prepared, it was necessary to separate parasite from 

host nuclei. Attempts to isolate parasite nuclear extracts, which gave positive mobility shifts 

with the TamSl upstream region using Bionebulisation were unsuccessful. Therefore, this 

study adapted methodology employed by Lanzer et al, (1992) to generate nuclear extracts 

from Plasmodium falciparum. The Plasmodium method has the advantage that the infected 

erythrocyte does not have a nucleus to contaminate parasite samples, therefore, to adapt this 

procedure to Theileria infected leukocytes, it was necessary to introduce a differential 

centrifugation step to enrich for parasite nuclei. Salt extraction of nuclear factors from 

parasite nuclei yielded a protein concentration of 0.1-0.2 ptg/jul which was 10 fold less than 

that achieved by Lanzer et al., (1992). Attempts were also made to use this procedure on 

piroplasms isolated from T.annulata infected cattle as 10 litre volumes of infected blood 

with parasitaemias of up to 80% provide a large amount of starting material for extract 

preparation. Unfortunately the nuclear extracts produced did not give any positive mobility 

shifts. As yet it is unknown why active nuclear extracts for the TamSl upstream region were 

not generated from piroplasms as isolated piroplasm nuclei have been shown to be 

transcriptionally active (David Swan, unpublished data) and the gene is highly expressed in 

this stage. Therefore, at present higher levels of extract could only be obtained by increasing 

the volume of tissue culture or increasing the efficiency of factor extraction.

Assessment of contamination during the nuclear preparation by both IF A and DAPI 

analysis of various steps in the protocol showed (see Figures 4.1, 4.2, and 4.3) that, in 

general, a significant enrichment of parasite nuclei was achieved by the developed 

methodology. The parasite enriched nuclear extracts were stored at -70°C for 3-4 months 

without significant loss of activity. However, as all extracts prepared were used within this 

period, the actual length of time that extracts can remain active has as yet to be determined. 

Thus, although optimisation may be necessary, a reproducible procedure for the preparation 

of parasite nuclear extracts was developed in this study and could be an important step
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towards the further understanding of gene regulation in Theileria annulata using in vitro 

techniques.

To screen for factors which specifically bind to the promoter of the TamSl gene, 

600bp of the 5' intergenic region proximal to the polypeptide open reading frame was 

divided into four fragments of approximately equal size using PCR amplification (see 

section 4.3.4). Putative cis-Regulatory elements involved in protein-DNA interactions were 

identified by incubation with parasite enriched nuclear extracts before separation on a non

denaturing polyacrylamide gel. The gel retardation assay located specific binding to the 

fragments most proximal and distal to the mapped transcription initiation site (see section 

4.3.5).

Further work concentrated on the fragment TamslpD, due to its location next to the 

transcription initiation site. Oligonucleotides representing species conserved sequences 

within TamslpD were then used in competition and direct binding assays (see 4.3.7 and 

4.3.8). This showed that one oligonucleotide, CAT1, competed the TamslpD mobility shifts 

associated with parasite enriched nuclear extracts, but not host. Moreover, of the three 

oligonucleotides tested, CAT1 alone showed evidence of parasite associated shifts in direct 

binding assays. The specificity of the shifts was confirmed by competition with CAT1, 

whereas the GATA oligonucleotide, representing sequence flanking CAT1, failed to 

compete. The interaction of parasite specific factors with the CAT1 sequence was also 

competed with the TATI oligonucleotide. However, TATI did not completely compete the 

parasite associated mobility shifts obtained with TamslpD and there was no evidence of 

direct binding to the TATI sequence. Sequence comparisons between CAT1 and TATI 

revealed that both oligonucleotides share a 6 base pair sequence, TTTGTA, which in 

combination with differences in flanking sequence could account for the different abilities 

to bind and compete for parasite specific factors. Thus, it can be hypothesised from this data 

that the TATI sequence may function to stabilise factor binding to the CAT1 motif but does 

not form a core domain which is essential for mobility shift formation.

The profile of complexes formed with the CAT1 element differed depending on the 

differentiation state of the parasite. Complexes A and B were detected in both
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macroschizont and differentiating macroschizont extracts, while the presence of an extra 

complex (C) was only detected in differentiating macroschizont extracts. Therefore, the 

presence of complexes A and B in parasite enriched nuclear extracts from macroschizont 

cells suggested that factors bind to the 5’ upstream region of TamSl in parasites cultured at 

37°C. In addition a quantitative increase of complexes A and B was observed when parasite 

enriched nuclear extracts from macroschizont and differentiating macroschizont cells were 

compared, although this has as yet to be controlled for by a constitutive factor and complex 

C appeared to be specific to differentiating cells. This data could be accounted for by the 

model proposed by Shiels et al., (1994). Here it was postulated that expression of the 

TamSl gene in the macroschizont could be due to either factors which have low functional 

activity after commitment, or is caused by a functional overlap of stage specific factors. In 

the second case it would be expected that the macroschizont would be down regulated or 

remain constant following commitment, while both models are consistent with a qualitative 

change over of factors after the commitment step. Thus it is possible that complexes A and 

B represent merozoite factors which function at a lower activity in the macroschizont and 

display increased activity up to and after commitment, and that complex C could represent a 

qualitative change in factor composition. These possibilities were supported by further 

studies analysing mobility shifts from cells attenuated for differentiation (see chapter 6). To 

clarify the observed shifts with the model of Shiels, it will be necessary for future studies to 

find an association between complex formation and functional activity.

The DNA-protein contacts of the three complexes were investigated by base 

substitutions within the CAT1 element. Surprisingly, all three mobility shift complexes 

were affected by base substitutions within the middle and the region most proximal to the 

RNA initiation site. Mobility shift A was also affected by the sequence mutation of ACA in 

the 5' region of the CAT1 sequence. This suggests that all three mobility shifts result from 

the recognition of either an identical or slightly overlapping sequence motifs. Future studies 

using saturation mutagenesis of the CAT1 sequence may further define the number and 

position of the motifs

As yet the relationship of each complex with the CAT1 sequence is unknown. 

However, there are at least three general mechanisms for interacting with a regulatory
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element and it may be that a combination of these mechanisms that could account for the 3 

complexes which form with the CAT1 probe. Firstly, ‘co-occupancy’ may occur, where 

factors from the different regulatory families interact specifically with the same region of 

DNA as well as with each other (Diamond et al., 1990). Mutation analysis of the CAT1 

probe has suggested that mobility shift A binds slightly upstream of complexes B and C 

providing evidence of a overlapping motif, and complexes A and B are both present in 

macroschizont parasite enriched nuclear extracts. The quantitative differences in the two 

complexes (see 4.3.10) would suggest that complex A is more likely to be the result of such 

a mechanism.

The second mechanism, denoted as ‘factor tethering’, where two different regulators 

establish protein-protein contacts on the DNA, but only one of the two actually binds to the 

DNA could also account for the appearance of either complex (Miner et al., 1991; Liu and 

Green, 1990; Gaub et al., 1990). ‘Factor tethering’ also has the flexibility of using proteins 

that specifically bind to the DNA motif; or without DNA-binding capability which could 

interact protein-protein with a factor that could require sequences in addition to those 

involved in binding to provide stabilisation to a complex. Such interactions could mediate a 

diverse range of functions, for example, acting as a bridging factor between the transcription 

factor binding to the DNA and the basal transcriptional machinery, stabilising the DNA- 

binding complex or changing the specificity of target sequence recognition (Calkhoven and 

AB, 1996). While the ‘factor tethering’ and ‘co-occupancy models’ bear obvious 

similarities, the co-occupancy mechanism provides greater site specificity, as functionality 

would only result from interaction with a motif bearing binding sites for both interacting 

factors. This means that within the same cell, individual regulators can still act 

independently at their simple response elements, or together with other factors at different 

composite elements.

The complexes observed in this study could also result from a ‘direct competition’ 

mechanism where factors from distinct regulator families compete for a motif by interacting 

in the absence of DNA, each factor having the potential to block the DNA-binding activity 

of the other. Here quantitative differences between factor levels determine which factor 

binds to the motif (Yang-yen et al., 1990; Schule et al., 1990). Alternatively, one factor may
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have a greater affinity for the motif either/and preventing another factor from binding, or 

displacing a factor already bound; (Papazafiri et al., 1991; Weissman and Singer, 1991). A 

modification of this last possibility is that a negatively acting factor can bind to a sequence 

adjacent to or overlapping the binding site and prevent positive factors binding by steric 

hindrance (Masquillier and Sassone, 1992; Lamph et al., 1990). Therefore, direct 

competition could explain the binding of each of the complexes to the CAT1 probe. For 

example, titration of parasite enriched extracts prepared from differentiating macroschizont 

cells (see 4.3.10) suggested that complex A could be of higher affinity than B or C. In 

addition, the mobility of complex C is faster than that of mobility shifts A and B, and the 

formation of C occurs after that of A and B. Therefore, competition maybe required to 

remove complexes A and B so that complex C may form. The faster mobility of complex C 

could also be due either to ‘factor tethering’ or ‘co-occupancy’ which result in a structural 

change or alters the overall charge of the original complex.

Transcription activation occurs via protein-protein interactions, which bring the 

basal transcriptional machinery (or RNA polymerase and associated factors) into 

juxtaposition with the regulatory factors near the transcriptional start. It is currently believed 

that the activation domain of DNA binding factors interact directly or indirectly with co

activators or adapters which in turn bind to the basal machinery (Kelleher et al., 1990; 

Berger et al., 1990; Lewin, 1990(b)). It was demonstrated by EMSA in this study that the 

CAT1 sequence was the element closest to the RNA start site in TamSl which specifically 

interacted with parasite specific factors. Therefore, it is possible that at least one of the 

complexes described above is the result of ‘factor tethering’ and conceivable due to the 

position of the CAT1 sequence, that the CAT1 motif is required for transcription activity of 

TamSl. However, it has not been established whether the CAT1 sequence is the only motif 

to bind parasite specific factors and whether this motif is required for both basal 

transcriptional activity and/or inducible expression of TamSl during differentiation to the 

merozoite.

Attempts to employ UV DNA-protein crosslinking and South-Western blotting 

assays to determine the size and number of proteins binding to the CAT1 element were 

unsuccessful. The draw back with both assays is that a number of conditions have to be
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fulfilled for positive binding to occur. The UV crosslinking assay relies on UV light to 

cause the formation of covalent bonds between pyrimidines and certain amino acid residues, 

and the correct level of irradiation required to fix individual complexes can vary 

significantly (Dent and Latchman, 1993). Experimental design requires that the distance 

from the UV source and duration of exposure is taken into consideration. An unfortunate 

consequence of this is that if a protein in general is in close proximity to the DNA probe and 

the sample is the correct distance from the UV source it can be bound non-specifically to the 

DNA and complicate the analysis. This can be overcome by partial purification of extracts, 

irradiating the complex of interest within the non-denaturing gel or by titrating the 

concentration of non-specific competitor in an effort to remove non-specific binding. The 

South-Western procedure relies on the ability of proteins to bind as monomers to the DNA 

probe, thus, factors which are dependent on sub-unit association for DNA binding are 

unlikely to be detected. In addition, this assay may rely on the renaturation of the protein 

bound to the nitro-cellulose membrane (Dent and Latchman, 1993). Not all proteins renature 

under the same conditions, to reproduce the native structure, and this can introduce further 

variability into the assay.

The CAT1 oligonucleotide was named because of a CAATT sequence within the 

probe which has similarity with the CCAAT box defined for a large number of eukaryotic 

genes. In higher eukaryotes, the position of the CCAAT box varies. It is most frequently 80 

nucleotides upstream of the transcription start site, but can be found between position -50 to 

nearly -200 (Nussinov, 1990). Several proteins that specifically recognise CCAAT elements 

have been described (Benoist et al., 1980; Efstratiadis et al, 1980; McKnight and Tjian, 

1986). The CAATT sequence of TamSl, therefore, could fulfil the role played by CCAATT 

in other eukaryotic genes, which can function in the absence of a consensus downstream 

TATA motif (Nussinov, 1990) to initiate transcription at the defined start site. However, 

mutation analysis of the CAT1 sequence revealed that the core motif required for protein 

binding was TTTGTAGGGCGAC and that the CAATT sequence is most likely required for 

stabilisation of binding. Furthermore, if the CAATT sequence was required for recognition 

of the basal transcription machinery it would be expected would be present in a similar 

position in other genes. From the data presented in chapter 3 this has not been shown to be 

the case for SPAG-1, and TamRl. Thus, taking the data together it appears that the mobility
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shifts detected in this study are brought about by recognition of a motif which seems to be, 

at present, unique to the TamSl gene.
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5 Comparative Analysis of Differential Gene Expression Between 

Enhanced and Attenuated Macroschizont Infected Cell Lines.

5.1 Introduction

Differentiation from one Life-Cycle stage to the next is crucial for parasite survival 

but upon in vitro cultivation of protozoan parasites the loss of/or reduction in ability to 

differentiate is a common event. For example, the loss or attenuation of differentiation has 

been observed for Leishmania (da Silva and Sacks, 1987), T.gondi (Gross et al, 1996), 

Trypanosomes (Seed and Sechelshki, 1989), Plasmodium (Alano et al, 1995), Babesia 

(Carson et al, 1990), Eimeria (Matsui et al, 1996), as well as Theileria parasites (Shiels et 

al, 1994, Adamson and Hall, 1996; Baylis et al, 1992). Moreover, a reduction in 

differentiation capability has also been documented in higher eukaryotic systems such as 

HL-60 (Tarella et al, 1982).

The molecular alterations which result in attenuation are unknown. This is partly 

because the process which controls differentiation has not been elucidated, and determining 

attenuation mechanisms in isolation may be as complex as determining how differentiation 

occurs. By comparing competent and attenuated cell lines simultaneously, however, it may 

be possible to confirm whether this event is associated with differentiation and gain 

information on how attenuation occurs. Perhaps the most informative way attenuated lines 

could be used is that if attenuation is known to be linked to the alteration or loss of genetic 

material, it would be possible by mapping the mutation to identify key molecules involved 

in controlling differentiation. Caveats of these types of studies are: comparative lines of 

parasites should be as genetically related as possible and it should be kept in mind that the 

attenuation trait determined may be a secondary rather than primary event.

A number of studies on Plasmodium have shown that parasite isolates adapting to in 

vitro cultures can result in the loss in the ability to differentiate into the sexual forms, 

gametocytes. Various types of defects have been described which include a block in the 

progression beyond morphological stage III of gametocyte maturation (Teklehaiamnot et 

al., 1987) and deficient production of male gametes (Vaidya et al., 1993). In several cases 

the loss of gametocyte production has been attributed to the rapid generation of deletions in
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a subtelomeric portion of chromosome 9, of about 300kb. (Shirley et al., 1990). Studies 

using parasite populations heterogeneous for chromosome 9 size have confirmed that these 

deletions are associated with defective gametocyte production, and suggest that the terminal 

portion of chromosome 9 regulates an early step in the specialisation of the sexual cell 

(Alano et al., 1995). In many cases break point deletions in chromosome 9 cluster to a 

specific region which is thought to be structurally prone to undergo rearrangement (Shirley 

et al., 1990; Barnes et al., 1994). In addition, within a cloned cell line, chromosome 9 

molecules of heterogeneous sizes have been observed indicating that it may be possible to 

study these rearrangements in a controlled fashion starting from a parasite population 

homogeneous for an intact chromosome 9 (Alano et al., 1995) and relate these to observed 

effects on gametocytogenesis.

Other genetic determinants, besides those located in the subtelomeric locus of 

chromosome 9, appear to govern early events in sexual differentiation of Plasmodium. 

Parasite clones have been observed which conserve the full length chromosome 9 as well as 

the cytoadherent phenotype, but are totally defective in gametocyte production. It has been 

proposed that these mutants have been blocked in an early stage of gametocytogenesis, 

which is distinct from the defect described for the lines previously discussed (Alano et al.,

1995). It would therefore appear that in Plasmodium attenuation could result from alteration 

to the structure/function of a number of genes involved in different processes during 

gametocyte formation or different stages of gametogenesis.

In T.gondi the loss of ability to differentiate has not been linked to a known genetic 

alteration but, variability of different strains to differentiate and an association of 

attenuation with in vitro cultivation have been documented. Most bradyzoites develop into 

tachyzoites under standard cell culture conditions and this process has been observed in 

human fibroblasts and in murine macrophages, indicating that spontaneous differentiation 

takes place regardless of the host cell type (Gross et al., 1996). However, this process is not 

synchronous within a cloned parasite population (Soete et al., 1993). This phenomenon has 

as yet not been explained and it could suggest that an internal factor(s) could play a role in 

differentiation whereas, previously only external factors had been thought to be involved 

(Soete et al., 1993).
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As in the case of Toxoplasma strains, Theileria parasites show variable levels of 

differentiation potential and it has been found that long term cultivation results in the loss of 

differentiation (Brown, 1980; Subramanian et al., 1986). The observation that these 

attenuated cell lines continue to afford protection from heterologous challenge has been 

used in the development of live attenuated vaccines (Subramanian et al, 1986). Although 

the process of attenuation is well established and documented in T.annulata, little is known 

of the molecular mechanisms involved. It is possible that the loss of virulence is due to 

either the selection of pre-existing avirulent subpopulations of the parasite or due to a 

genetic alteration of a parasite type. Both mechanisms have been detected in apicomplexan 

parasites. For example in B.bovis avirulent subpopulations have been shown to be enriched 

as a result of faster growth rate of the parasite by passage in splenectomised calves (Carson 

et al., 1990). As described above in Plasmodium large chromosomal deletions occur 

following continuous culture which adversely affect the parasite undergoing 

gametocytogenesis, (Alano et al., 1995) but probably provides a proliferative advantage in 

vitro.

Observed alterations in T.annulata infected lines kept in vitro culture (Melrose et al., 

1991; Baylis et al., 1992) have provided evidence that the selection of parasites with 

different virulence phenotypes maybe taking place. Further studies by Sutherland et al., 

(1996) have provided evidence that attenuated T.annulata cell lines are the result of both 

genotype selection and altered gene expression during the continuous in vitro culture.

Shiels et al., (1992) isolated cloned macroschizont-infected cells lines from a 

T.annulata (Ankara stock) parental cell line by limiting dilution. Two types of cloned lines 

were isolated: D7 and C9 cloned cell lines differentiated at an enhanced level and produced 

large quantities of merozoites upon heat induction at 41°C whereas the cell lines, D3 and E3 

had a diminished ability to differentiate and produced fewer merozoites. Theses two types 

of clones were represented by distinct genotypes but, it was also observed for diminished 

clones that after a peak point of merozoite formation at 41°C the cells could adapt to culture 

at the higher temperature and shows an even lower level differentiation. Therefore, the 

degree of attenuation displayed by a cell line could either be due to the selection of different
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genotypes with different abilities to differentiate or a loss in ability/or adaption of a single 

parasite genotype to differentiate.

Recloning of the enhanced D7 cell line resulted in the isolation of a cell line 

D7/B12, that showed a severely attenuated ability to differentiate (Shiels et al., 1994). From 

RFLP analysis it was demonstrated that the isolation of the D7/B12 cell line was unlikely to 

be due to the presence of more than one clonal type of parasite in the parental clone as both 

the D7 and D7/B12 cell lines appeared to have identical genotypes. This means that the 

reduction in differentiation was probably caused by an alteration that occurred during the 

recloning procedure. The D7/B12 cell line demonstrates that attenuation could be due to a 

loss in the ability of a single genotype to undergo differentiation and may not increasingly 

depend on the selection of distinct parasite types.

A characteristic that has been observed for Theileria infected cloned cell lines which 

show enhanced differentiation levels in vitro, is an enlargement of the macroschizont, with a 

concomitant increase in parasite nuclear number (Shiels et al., 1992). As noted previously 

(Hulliger et al., 1966), this appears to be caused by a reduction in the rate of host cell 

proliferation, while parasite nuclear division may actually increase (Shiels et al., 1992). 

Also, because the parasite is dependent on host cell division for division of its cytoplasm, as 

host cell proliferation slows down the leucocyte cytoplasm becomes completely filled with 

enlarged macroschizont syncitia. In contrast, the observed size increase of the diminished 

clones was significantly lower and this was concomitment with a higher rate of host cell 

division at all time points tested. Therefore, it may be that the diminished phenotype is 

caused by an altered relationship between parasite growth and host cell division. Indeed it 

has been postulated that attenuated cells are impaired in their ability to reach a putative 

quantitative threshold of commitment and that movement towards this threshold is mediated 

through the disruption between parasite growth and host/parasite cell division (Shiels et al., 

1997, see section 1.6). These conclusions were based on the smaller size increase of 

diminished cell lines and the result that attenuated D7/B12 cells show a marked reduction in 

TamSl gene expression relative to differentiation competent D7 cells over the reversible 

phase of the differentiation process. It is also possible that in addition to an alteration which 

affects growth and/or division that specific mutations which change the activity of factors
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regulating merozoite gene expression are responsible for an attenuated ability to 

differentiate. Some of these factors must ensure the correct ordering of the sequential 

development events and bring about the biochemical and structural changes which 

culminate in merozoite formation. Therefore, mutations within regulatory factors which 

control gene expression or target genes which they control could generate a diminished 

ability to differentiate. However, from the ability of most attenuated cell lines to generate 

apparently normal merozoites, it seems that the majority of the mutations would be confined 

to regulatory polypeptides.

5.1.2 Aims

Previous studies have shown that attenuation of the D7/B12 line to differentiate, 

correlated with an inability to up regulate TamSl polypeptide production in the early phase 

of the differentiation process. The aim of this chapter was to carry out further comparative 

studies at the molecular level and search for possible mutations which could alter the ability 

of the D7/B12 cell line up regulate TamSl gene expression. To achieve these aims, 

comparative Northern analysis and gel shift mobility assays were carried out, in addition to 

a structural study of the 5’ intergenic region of the TamSl gene of the D7/B12 cell line.
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5.2 Materials and Methods

Genomic DNA was prepared from lOOmls of macroschizont infected cell culture 

grown to a density of 106 cells/ml was spun down at 1500g for 10 minutes. The pellet was 

resuspended in 5ml of lx  SSC (section 2.2.3) plus 4.5ml of TNE (lOOmM Tris-HCl, pH7.5, 

lOOmM NaCl, lOmM EDTA) and mixed with 0.5ml of 10% Sarkosyl. Proteinase K was 

then added to a final concentration of lOOng/ml and the cell lysate incubated for 2 hours at 

55°C. Following this incubation, the lysate was extracted once with phenol:chloroform and 

once with chloroform. DNA contained within the resulting aqueous phase was precipitated 

by the addition of 1/10th volume of 3M Na Acetate, 2.5 volumes of ethanol and incubation 

at overnight at -20°C. The following day the precipitate was collected by centrifugation at 

13,000g for 10 minutes and the DNA pellet resuspended in 600pl of sterile dH20.

For Southern blots, 5pg of genomic DNA was digested overnight at 37°C as 

described in section 2.2.2. DNA fragments were resolved by agarose gel electrophoresis and 

the DNA transferred to nylon membrane filters by Southern blotting (see section 2.2.3). 

Following transfer the DNA was fixed to the membrane by exposure to ultra-violet light and 

incubated with a radiolabelled probe. Hybridisation was allowed to proceed overnight at 

65°C before washing and exposure of the filter to Kodak K-OMAT film overnight was 

carried out (section 2.2.3).

For Northern blots, Tri-Reagent (Molecular Research Centre) was used to isolate 

RNA from T.annulata infected cell lines incubated at 37°C and 41°C (see sections 2.2.8 and 

2.2.9). RNA was separated by formaldehyde/agarose gel electrophoresis (1.2%) before 

transfer overnight onto a Hybond N membrane (Amersham), see 2.2.3. The RNA was fixed 

to the membrane by exposure to ultra-violet light and hybridised with probes prepared using 

the Random Priming DNA labelling kit (2.2.3).

For the electrophoretic mobility shift assay parasite enriched nuclear extracts were 

prepared from T.annulata infected cell lines as described in section 4.2.1. The assay was 

carried out (see section 4.2.5) using the double stranded oligonucleotide CAT1 end labelled 

with y-32P ATP (section 4.3.4). Samples for the protein binding reaction were run on a non
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denaturing polyacrylamide gel. Upon completion of the run the gel was dried onto filter 

paper and exposed to a K-OMAT film overnight.

To isolate and sequence the 5’ upstream sequence of the TamSl gene from D7/B12 

cells genomic DNA was used as a template for PCR amplification with primers TamSlDB 

and 2735, as described in section 3.2.3 (the sequence of each primer is shown in Table 4.1). 

The amplified DNA was analysed by agarose gel electrophoresis, excised form the gel and 

cloned into the TA cloning vector (Invitrogen) (see 2.2.4). The clones were sequenced by 

automated DNA polymerase sequencing as described in section 2.2.7.
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5.3 Results

5.3.1 Restriction fragment polymorphism (RFLP) analysis of the macroschizont 

enchanced cell line D7 and diminished cell line D7/B12.

RFLP analysis of enhanced and diminished D7 lines demonstrated that both cell 

lines appeared to have the same genotype (Shiels et al., 1994). Therefore, the reduction in 

differentiation observed for the D7/B12 cell line was thought to be caused by an alteration 

to the original D7 cell line during the cloning procedure. One possibility is that the altered 

differentiation of the D7/B12 phenotype is due to mutations/deletions which were not 

detected in the initial Southern blot analysis. To test if the intergenic regions of the TamSl 

gene had been altered, RFLP analysis was performed on genomic DNA isolated from the 

parental D7 cell line and its attenuated derivative, D7/B12. The DNA was digested with 

restriction enzymes Hind III, Sal I, Nsi I, Hinc III, Dde I, Spe I and EcoRV overnight and 

analysed by agarose gel electrophoresis. The gel was Southern blotted and probed with the 

TamSl cDNA probe. The result of the analysis is shown in Figure 5.1.

For all seven restriction enzymes the TamSl probe hybridised to an identical pattern 

of bands in DNA from both D7 and D7/B12. The Hind III band detected for both cell lines 

(Figure 5.1; Lanes 1 and 8) corresponded to the ~8kb contig cloned and sequenced in chapter 

2, while the Sail band corresponded to a 600bp fragment formed by two Sail sites internal 

to the TamSl gene (Figure 5.1; Lanes 2 and 9) see Figure 2.14. Three Hinc II bands were 

detected, the ~400bp, as for the Sail digest, corresponded to restriction sites within the 

protein coding sequence of the TamSl gene while the 1.2 kb and ~4kb fragments 

corresponded to the 5' and 3' intergenic regions of the gene, respectively (Figure 5.1; Lanes 

4 and 11). Two bands of ~300bp and 1.4kb were observed for the Dde I digests. The 300bp 

fragment contained most of the 5' coding sequence of the TamSl gene and the 1.4kb 

contained the 3' coding sequence plus intergenic sequence (Figure 5.1; Lanes 5 and 12). 

Single bands were observed for the Nsi I (Figure 5.1; Lanes 3 and 10), EcoRV (Figure 5.1; 

Lanes 7 and 14) and Spe I (Figure 5.1; Lanes 6 and 13) digests.
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Figure 5.1 Southern blot analysis of genomic DNA isolated from D7 cells (Lanes 1- 

D7/B12 cells (Lanes 8-14), digested with a variety o f  restriction enzymes and hyb: 

with the TamSl cDNA probe. The position o f  each band is indicated by an arrowhead 

kilobases

Lane 1) Hind III 

Lane 2) Sal I 

Lane 3) Nsi I 

Lane 4) Hinc II 

Lane 5) Dde I 

Lane 6) Spe 1 

Lane 7) EcoR V 

Lane 8) Hind III 

Lane 9) Sal 1 

Lane 10) Nsi I 

Lane 1 1) Hinc II 

Lane 12) Dde I 

Lane 13) Spe I 

Lane 14) EcoRV

2 0 5



1 2 3 4 5 6 7 8 9 10 11 12 13 14

%

* >

* -12kb 
-8kb

M

-4 k b
-3 k b

—2kb 
-1.6 kb



This experiment provided further evidence that the genotype of the attenuated 

parasite cell line derived from the recloning procedure is the same as the parasite 

represented by the D7 macroschizont infected cell line. It was concluded, therefore, that if 

mutations were present in the promoter/intergenic regions of the TamSl gene of the D7/B12 

cell line, then they were present as point mutations that were not detectable by the analysis 

employed.

5.3.2 Analysis of TamSl expression in D7 (enhanced) and D7/B12 (diminished) cell 

lines

Shiels et al., 1994 demonstrated that the diminished cell line D7/B12 was associated 

with an inability to express differentiation markers, specifically the TamSl and rhoptry 

117kDa (TamRl) antigen. In addition it was demonstrated by IFA analysis that the 

reversible elevation of the TamSl polypeptide occurred at a significantly lower level in the 

D7/B12 cell line. To determine whether the changes to TamSl expression were due to 

alterations either at the post-transcriptional or transcriptional level Northern blot analysis 

was performed on RNA isolated from a differentiation time course of D7 and D7/B12 cell 

lines. Figure 5.2A shows the result of the analysis when the blot was hybridised with the 

TamSl cDNA probe. The probe detected a message of 1.1 kb at day 0 (Figure 5.2A; Lane 1) 

of the D7 time course, which was observed to progressively increase from days 0 (Figure 

5.2A; Lane 1) to day 6 (Figure 5.2A; Lane 4). l.lkb  band was detected in the Day 0 time 

point of the D7/B12 time course (Figure 5.2A; Lane 5) and this band was observed to be of 

similar intensity throughout the time course (Figure 5.2A; Lanes 5 to 10). Thus, the inability 

of the D7/B12 cell line to express the TamSl polypeptide during induction of differentiation 

is the result of changes in the production of the corresponding mRNA.

In addition to the l.lkb  band, the cDNA probe detect a larger band of ~1.5kb when 

hybridised with RNA prepared from the Day 4 (Figure 5.2A; Lane 3) and Day 6 (Lane 4) 

time points of the D7 differentiation time course. It is possible that either this detected 

species is due to differential transcription start sites, intron splicing, this is unlikely as no 

introns have been found when genomic sequences were compared with cDNA sequence 

(Katzer, unpublished data), or homology to a related gene. To
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Figure 5.2. Analysis of RNA levels during a differentiation time course o f  cell lines I 

D7/B12 by Northern blotting. RNA was isolated from the cells at 37°C and every : 

following incubation of the culture at 41°C. The size o f  the bands estimated in kil 

relative to RNA markers are indicated by arrowheads. (A) Hybridisation with the 

cDNA probe; Lane 1) D7 Day 0; Lane 2) D7 Day 2; Lane 3) D7 Day 4; Lane 4) D7 

Lane 5) D7/B12 Day 0; Lane 6) D7/B12 Day 2; Lane 7) D7/B12 Day 4; Lane 8) E 

Day 6; Lane 9) D7/B12 Day 8; Lane 10) D7/B12 Day 10. (B) Hybridisation with th 

centre (ii) and 3' (iii) cDNA TamSl probes (see 2.3.1); Lane 1) D7 Day 4 RNA a n d ! 

D7 Day 6 RNA.

2 0 7





determine the origin of this extra band a Northern blot of differentiating macroschizont 

(days 4 and day 6) RNA was hybridised with the 5', 3' and centre cDNA probes of the 

TamSl gene (see section 2.3.1). The centre probe detected the abundant l.lkb  message of 

the TamSl gene at days 4 and 6 of the D7 time course and the additional 1.5kb band (Figure 

5.2B, Lanes (ii) 1 + 2). When the blot was re-washed at increased stringency is was 

observed that the 1.5kb band decreased in intensity until it disappeared (results not shown). 

In addition only the l.lkb  band was detected by either the 5' or 3' cDNA probes (Figure 

5.2B; Lanes (ii) 1 + 2  and (iii) 1 + 2). From these results, it appears that the hybridisation of 

the TamSl cDNA probe to the 1.5kb band is due to homology with a related gene.

To determine whether changes of gene expression within the diminished cell line 

D7/B12 were specific to the TamSl gene during differentiation or were a global event 

affecting all macroschizont and merozoite genes, Northern blots of macroschizont RNA 

were hybridised with probes representing macroschizont stage specifically expressed gene, 

CL 12, and a constitutive expressed gene, the large SU ribosomal 2P3 probe (Swan et al.,

1996). A 3.2kb band was detected by the 2P3 probe in RNA isolated from D7 and D7/B12 

macroschizont cells. The transcript of the large ribosomal unit was observed to gradually 

increase from day 0 to day 6 of the D7 time course (Figure 5.3A; Lanes 1 to 4). This 

progressive increase in the ribosomal unit appeared to correspond with the amplitude in 

parasite load of differentiating D7 cells (Shiels et al., 1992, 1994). A much lower increase 

in the expression of the LSU ribosomal gene was observed in the D7/B12 cell line (Figure 

5.3A; Lanes 5 to 8), although the levels at 37°C between the D7 and D7/B12 samples were 

comparable. It was concluded that, as previously described, the increase in ribosomal RNA 

relative to TamSl RNA showed that within the D7 cell the expression of the TamSl gene is 

elevated during differentiation. For the D7/B12 line it appears that expression of TamSl 

does not increase relative to the LSU rRNA and that the levels of both RNAs are lower in 

this cell line. This is likely to be due to the inability of the parasite load to increase at 41°C. 

Interestingly it appeared from the analysis that, relative to the rRNA control, the expression 

level of TamSl at 37°C in D7/B12 cells was lower than D7 cells. This confirms previous 

observations at the polypeptide level and implies that basal expression of TamSl in the 

macroschizont stage is lower in attenuated cell lines.
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Figure 5.3 Analysis of RNA levels during a differentiation time course of cell lines D7 arj 

D7/B12. RNA was isolated from the cells at 37°C and every 2 days following incubationcf 

the culture at 41°C. The size of the bands estimated in kilobases relative to RNA marteij 

are indicated by arrowheads. The Northern blots were hybridised with (A) large Sl( 

ribosomal, 2P3 probe, (B) macroschizont stage CL 12 probe.
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The CL 12 probe, contains two open reading frames one of which represents a gene 

with homology to genes encoding an A.T hook motif (TashA.Thl, David Swan, 

unpublished data) which are down regulated as the parasite differentiates from 

macroschizont to merozoite. Three bands were detected by the CL 12 probe, band A 4.4kb, 

band B 1.4 kb, and band C l.Okb in the D7/B12 RNA samples (Figure 5.3B; Lanes 5 to 10). 

Only band B was detected in the D7 differentiating time course (Figure 5.3B; Lanes 1 to 4) 

and was observed (as described previously) to progressively decrease from day 0 to day 6 of 

the time course. Band B was more abundant in the D7/B12 samples than in the D7 time 

course. Therefore, it is possible that all of the bands detected in the D7/B12 time course are 

present in the D7 samples but that the levels of RNA which represent species A and C are so 

low that the bands are not visibly detectable. Thus there appears to be the possibility of 

differential expression of the gene(s) detected by the CL 12 probe.

5.3.3 Mobility shift analysis of nuclear extracts derived from D7 and D7/B12 cell line

The Northern analysis described above demonstrated that the ability of attenuated 

cells to up regulate TamSl mRNA production during differentiation induction conditions 

was severely limited. Possible reasons for this loss^of function are either an inability of these 

cells to express factors which bind to the upstream region of TamSl or a loss in the activity 

of these factors to bind this region and/or activate expression. To analyse these possibilities, 

parasite enriched nuclear extracts were made from a time course of both D7 and D7/B12 

macroschizont infected cell lines and analysed by EMSA using the double stranded CAT1 

oligonucleotide.

Figure 5.4 shows that as previously demonstrated, three electrophoretic forms (A, B 

and C) bind to the CAT1 oligonucleotide when incubated with D7 day 8 parasite enriched 

nuclear extract (Figure 5.4; Lane 6). The upper (A) and middle (B) electrophoretic forms 

appear in both D7 macroschizont and differentiating macroschizont extracts (Figure 5.4; 

Lanes 2 to 8) although the complex represented by shift A is at a very low level in cells 

incubated at 37°C. Complexes A and B were observed to gradually increase in intensity with
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Figure 5.4 Interaction of the CAT1 sequence element with parasite enriched nuclei 

extracts prepared from differentiation time courses of D7 and D7/B12 macroschiziij 

infected cell lines. End labelled oligonucleotide CAT1 was incubated with the crude nuclei 

extracts under standard conditions.

Lane 1) Probe alone

Lane 2) Nuclear extract prepared from D7 day 0 

Lane 3) Nuclear extract prepared from D7 day 2 

Lane 4) Nuclear extract prepared from D7 day 4 

Lane 5) Nuclear extract prepared from D7 day 6 

Lane 6) Nuclear extract prepared from D7 day 8 

Lane 7) Nuclear extract prepared from D7 day 10

Lane 8) Nuclear extract prepared from D7 day 12

Lane 9) Nuclear extract prepared from D7/B12 day 0
- *

Lane 10) Nuclear extract prepared from D7/B12 day 2 

Lane 11) Nuclear extract prepared from D7/B12 day 4 

Lane 12) Nuclear extract prepared from D7/B12 day 6

A. , *
Lane 13) Nuclear extract prepared from D7/B12 day 8

■*' *> " *•»

Lane 14) Nuclear extract prepared from D7/B12 day 10 

Lane 15) Nuclear extract prepared from D7/B12 day 12
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Day 0 to Day 8 (Figure 5.4; Lanes 2 to 6) extracts with the major elevation in band intensity 

occurring between day 4 and 6 (Figure 5.4; Lanes 4 and 5). It is possible that elevation of 

shift A was greater relative to shift B over these time points, but this would need further 

verification by a quantitative assessment of band intensity. A further increase in mobility 

shift activity appeared to occur at day 8 (Figure 5.4; Lane 6) and appeared to be 

approximately, maintained until day 12 (Figure 5.4; Lane 8). In contrast to complexes A and 

B, the C mobility shift was not detected in the early time points of the time course, up to day 

6 (Figure 5.4; Lane 5). Indeed the presence of this shift appeared to coincide with the time 

points where the majority of merozoite production took place, day 8 -  day 12 (Figure 5.4; 

Lanes 6 to 8).

The pattern of complex formation was drastically altered when D7/B12 extracts 

were analysed by EMSA. In this case only the major mobility shift B was clearly detectable 

with extracts from any of the time points. Furthermore, apart from the day 8 extract (Figure 

5.4; Lane 13), these was no obvious increase in the level of mobility shift when the cells 

were placed under conditions to differentiate. It can be concluded, therefore, that 

differentiation of the D7 cell line correlated with increases in the level/activity of factor(s) 

which specifically bind to the CAT1 motif in the upstream region of the TamSl gene and 

that the C mobility shift appears specific to differentiating cultures. This conclusion is 

strengthened by the observation that the attenuated cells are unable to elevate 

expression/activity of these factor(s).

5.3.4 Sequence comparison of the 5’ untranslated region of the D7 and D7/B12 alleles 

of TamSl

Although the EMSA analysis appeared to show either loss of function of factor 

activity or expression in cells attenuated for differentiation, it as possible lower TamSl 

expression levels were also due to an alteration in the CAT1 binding domain of the D7/B12 

cell line. To test this possibility the upstream region of TamSl DNA was cloned from 

D7/B12 genomic DNA and sequenced.

DNA was purified from a culture of D7/B12 cells that had previously been shown 

net to differentiate. Primers 2735 and TamslDB were used to amplify a 771 bp D7/B12
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fragment from genomic DNA, and the PCR product was cloned into pGem-T and sequenced 

using methodology described in section 5.2. The sequence comparison over the first -608bp 

upstream of the ATG start codon is shown in Figure 5.5. Only one base difference was 

noted between the obtained sequence with that of the homologous sequence determined for 

non-attenuated D7 cells. Therefore, the diminished ability of the D7/B12 cell line to express 

the TamSl gene was not found to be associated with sequence mutations within the CAT1 

motif. Furthermore, the sequence alteration which was observed is unlikely to influence 

TamSl expression levels as this was located to the junction of a conserved and non

conserved regions of sequence which were previously shown to be conserved and non 

conserved across Theileria species.
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- 5 4 6

D7 B 1 2  GAGACTGATTAAACTCAAAGACATCACACTCTGATGAAAGTGAAGGCGGGTAAGGACAGCT
I I I I I I I I II  I I I I I I I I II  I I I I I II  I I I I II  I I I II  I I I I I I I I I I I I I I I I I I M I I I

D7 GAGACTGATTAAACTCAAAGACATCACACTCTGATGAAAGTGAAGGCGGGTAAGGACAGCT
- 4 8 5

D7 B 1 2  CATAACGACAAATTCAGTATAAAAACATAATGAATGATTGTTTTAAGGAAATGATGTGTGG
I I I I I I I I I I I I I I I II  I I I I I I I I I I I I I I I I I II  I I I I I I I I I I I I I I I I I I I I I I I I I 

D7 CATAACGACAAATTCAGTATAAAAACATAATGAATGATTGTTTTAAGGAAATGATGTGTGG
- 4 2 4

D 7 B 1 2  AATCACGGTTATTTGTGCGGGAAATTATGCATGGATAT TATCTAT T TAACTTATAATAATG
I I I I I I I I I II  I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II  I I I I I I I I I I  I I I I I I I  I I 

D7 AATCACGGTTATTTGTGCGGGAAATTATGCATGGATATTATCTATTTAACTTATAATAATG
- 3 6 3

D 7 B 1 2  T TAT AT TAAAATAT GACAAAT T AAT GT GT GAAAT AAAT AAAGT AAAGT GGAGGGAAAT TCT
I I I I I I I I I I I I I I I I I I II I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

D7 TTATAT TAAAATAT GACAAAT T AAT G T G T GAAAT AAAT AAAG T AAAG T G GAG G GAAAT TCT
- 3 0 2

D 7 B 1 2  GTCCTAATATTTAACTGGGTCTAGTGACTT-AAAAAGAAAGCAGGTTATTGGTTTGAAAAA
I I I I I I I I I I I I I I II I I II I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I

D7 GTCCTAATATTTAACTGGGTCTAGTGACTTAAAAAAGAAAGCAGGTTATTGGTTTGAAAAA
- 2 4 1

D 7 B 1 2  ATAATAAATTCATCTTTTTATAGTCATCAAAAAATGAAAAATGGATAAATATACATGTTAT
I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I II I II I I 

D7 ATAATAAATTCATCTTTTTATAGTCATCAAAAAATGAAAAATGGATAAATATACATGTTAT
- 1 8 0

D 7 B 1 2  TTCATTAAGATGGACTTCAATGGAGGATAAGGCATTAGGCGTGATGAGTGCATAGATACAG
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

D7 TTCATTAAGATGGACTTCAATGGAGGATAAGGCATTAGGCGTGATGAGTGCATAGATACAG
- 1 1 9

D 7 B 1 2  ATAAACATGCACACAATTTGTAGGGCGACATTGTTTTGTATGGTGAATGCATATCCATCTC
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

D7 ATAAACATGCACACAATTTGTAGGGCGACATTGTTTTGTATGGTGAATGCATATCCATCTC
- 5 8

D 7 B 1 2  ACTTCACTTATAGTTATTGGTCTTTTTTTCCATAACATCCACCCAATTAGTTAATTTTTAA
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

D7 ACTTCACTTATAGTTATTGGTCTTTTTTTCCATAACATCCACCCAATTAGTTAATTTTTAA

D 7 B 1 2  TATTTAAATCGCTCACTAGTCTGCCCTTTCTTATCTTTTTATAATATAATTATTTGAG
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

D7 TATTTAAATCGCTCACTAGTCTGCCCTTTCTTATCTTTTTATAATATAATTATTTGAG

Figure 5.5 Sequence comparison of the 5' untranslated sequence of TamSl from the cell 

lines D7 and D7/B12. The numbers at the end of each row represents the sequence position 

with reference to the ATG start codon. A line indicates that the bases compared are identical 

and a space indicates that they are different.
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5.4 Discussion

Studies carried out in vitro have demonstrated that cloned macroschizont infected 

cell lines can be isolated with enhanced or diminished/attenuated ability to differentiate 

(Shiels et al., 1992). By comparing cloned cell lines that are attenuated or competent for 

differentiation, it was investigated which molecular mechanisms are associated with the 

ability of a cell line to differentiate. The mechanism(s) which bring about the attenuation of 

differentiation are unknown. In this study four possibilities were considered. These are: 1) 

the selection of parasite genotypes which are inherently unable to differentiate at a high 

level, 2) alteration of the ability through major genotypic rearrangement or 3) point 

mutations which confer quantitative differences in the control of gene expression and 4) an 

epigenetic alteration arising from the adaptation of cells in vitro.

Recloning of the enhanced D7 cell line by Shiels et al., (1994) resulted in the 

isolation of a cell line that showed an attenuated ability to differentiate. RFLP analysis 

(Figure 5.1) confirmed that the isolation of the D7/B12 cell line was unlikely to be due to 

the presence of more than one clonal type of parasite in the parental cell line as both the D7 

and D7/B12 cell lines appeared to have identical genotypes. This would mean that the 

reduction in differentiation potential was caused by an alteration to the original cell line that 

occurred during the cloning procedure. In addition, comparison of the intergenic region 5’ to 

the TamSl gene for both cell lines demonstrated that the attenuated phenotype was most 

likely not the result of major genomic rearrangements to this region of the genome. It cannot 

be discounted, from this work, that a detectable alteration has occurred elsewhere in the 

genome and has been missed in the analysis carried out to date. However, as pulse field gel 

electrophoresis studies also showed no obvious differences between the two cell line 

genotypes (Tait, unpublished) it appears that such alterations are not a common event, 

unlike the situation described for Plasmodium (Alano et al., 1995). Thus it would appear 

that attenuation of differentiation in the D7/B12 may not arise from selection of parasites 

which have undergone major genomic alterations.

To extend previous studies examining the association of TamSl antigen production 

with attenuation a comparison of the ability of the cell lines to express the TamSl gene at 

the RNA level was carried out by Northern blot analysis. As expected both cell lines
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showed a very low level of TamSl mRNA at day 0 (Figures 5.2A, 5.3). This level of 

expression was maintained for the D7/B12 cell line under differentiation while a progressive 

increase in TamSl RNA was observed for the D7 cell line (Figure 5.2A). Therefore, it can 

be concluded that the changes previously detected at the polypeptide level between these 

cell lines (Shiels et al., 1994) are a result of an alteration to the production of mRNA.

Although a difference in TamSl transcription has still to be confirmed it is possible, 

due to the findings outlined in the previous chapter, that an alteration to the control of 

TamSl transcription has occurred through modulation of factor binding the upstream region 

of the genes. Theoretically, altered transcriptional control of the 30kDa merozoite 

polypeptide in the diminished cell line D7/B12 could occur as the result of a mutation in the 

TamSl promoter, a mutation within the transcription factor which recognises the TamSl 

promoter, or a mutation within a more primary regulator which is necessary to initiate or 

commit the parasite to the differentiation process. It is also possible that attenuation is a 

result of a general alteration which could cause an inability to elevate the levels of factors 

which control TamSl expression, for example, an inability to respond to an elevated 

temperature.

Cloning of the TamSl 5' intergenic region from the D7/B12 cell line revealed that 

except for one base alteration, the TamSl promoter region for both enhanced and 

diminished cell lines were identical. The single base alteration was located at the junction 

between a conserved and non-conserved sequence region, which were distinct from CAT1 

sequence shown previously to specifically interact with parasite nuclear factors. The 

diminished ability of the D7/B12 cell line to express the TamSl gene is therefore, unlikely, 

to result from the sequence alteration.

Gel mobility shift analysis with the CAT1 oligonucleotide and parasite enriched 

nuclear extracts prepared from enhanced and diminished cell lines revealed that the changes 

in TamSl regulation correlated directly with changes in complex formation. Two complexes 

(A and B) were shown to bind to the CAT1 sequence when incubated with parasite enriched 

nuclear extracts prepared from the D7 cell line grown at 37°C. As the D7 cells differentiate 

there was a progressive increase in intensity of the complexes A and B which correlates
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with the detected elevation in TamSl mRNA. By day 8 of the differentiation time course an 

additional complex (C) was observed. Thus, it is possible that the increase in the factor(s) 

forming complexes A and B could be associated with the differentiation process and may 

function in its initial phase, while the appearance of a third complex (C) could be associated 

with a later point in the process after it has been initiated. These correlations were 

supported by the data obtained with the D7/B12 cell line where only complex B was 

observed to form with the CAT1. Moreover, when under differentiation induction 

conditions there was no observable increase or reduction in factor binding to CAT1, which 

correlated with the constant level of TamSl. Therefore, it is possible that the detection of the 

upper (A) and lower (C) complexes detected in the D7 day 8 parasite enriched extracts are 

directly associated with high level expression of the TamSl 30kDa merozoite antigen, while 

a quantitative charge in complex B may also relate to increased mRNA production. Indeed 

the lower level of this complex in D7/B12 could account from the lower level of TamSl 

mRNA detected in the early part of the differentiation time course (see Figure 5.2A).

It is important to note that the inability of the gel retardation assay to detect 

complexes A and C in the D7/B12 parasite enriched extracts may not be related to whether 

the factors forming these complexes are present. It is possible that mutations which affect 

the ability of the factors to interact with DNA sequences would prevent them from forming 

the complexes and regulating the expression of the TamSl gene. Thus experiments need to 

be conducted to determine whether those factors which form complexes A and C are present 

in the extracts prepared from the D7/B12 cells. This will require either purification of the 

relevant factors and generation of antibody reagents or the cloning of the gene(s) which 

encode the factor(s). Detection of the factors at approximately equal levels in both cell lines 

would then suggest an impairment of binding affinity and would be followed by sequence 

comparison of the relevant site. Although unlikely, if attenuation is associated with a lack of 

specific production of TamSl antigen, which prevents the parasite from differentiating 

without its surface coat, this could be the cause.

The results discussed above show that an inability to upregulate is clearly associated 

with attenuation of differentiation TamSl gene expression while it is possible that 

attenuation is specifically linked to this one gene this seems unlikely, unless the block was
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due to an inability to differentiate without a surface coat. It seems more probable that the 

failure to upregulate TamSl gene expression is caused by a general failure to carry out 

differentiation. This reasoning was supported by the Northern analysis with probes 

representing a number of other parasite genes. Thus the LSU rRNA probe revealed that size 

changes in the parasite which bring about an increase in parasite RNA load do not occur in 

the D7/B12 cells. Furthermore, down regulation of the macroschizont gene TashA.Thl was 

not observed in D7/B12 cells at 41°C, but clearly occurred in the differentiation competent 

D7 cell line. Thus a number of changes associated with progression of or commitment to 

differentiation are not observed for the D7/B12 cell line, indicating that the attenuation 

alteration is more primary than at the level of target gene expression.

Interestingly, the CL 12 probe detected three bands in the D7/B12 RNA samples but 

only one band in the D7 samples. The CL 12 probe hybridises with a family of genes 

(TashA.Thl) which have been shown to have homology to the high mobility group (HMG) 

proteins (David Swan, unpublished data). In eukaryotes HMG-like proteins have been 

shown to switch a transcriptional activator to a repressor (Lehming et al., 1994). Thus, the 

ability of HMG proteins to repress transcription coupled with the possibility that a putative 

homologue is up regulated within the D7/B12 cell line suggests that a mechanism could be 

present where genes controlling differentiation are preferentially repressed in attenuated 

cells. However, it should be pointed out that the upregulated mRNA has not been 

conclusively shown to be related to the TashA.Thl gene as another open reading frame is 

present on the isolated gene clone, and the ability to down regulate expression may simply 

be related to an ability to carry out the differentiation process. Thus, like the TamSl gene 

the observed changes could easily be due to the loss of differentiation rather than causing 

attenuation of this process.

If an epigenetic model were to exist which determined whether or not the parasite 

were to differentiate it would be expected that the process would be reversible. Shiels et al. 

(1994) have demonstrated that when induced to differentiate, by placing the cultures at 

elevated temperatures, a small number of the D7/B12 population can differentiate to the 

merozoite but evidence for reversal of the population as a whole has not been found in vitro 

or upon transfer of attenuated cell lines into bovines (Darghouth et al., 1996). In contrast
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evidence for reversible attenuation has been found for HL-60 (Tarella et al., 1982). It would 

appear, therefore, that the underlying basis that determines whether the parasite has an 

enhanced or diminished ability in D7/B12 to differentiate is either a point mutation within a 

factor crucial to the regulation of the differentiation mechanism or/and an epigenetic 

phenomenon. Both mechanisms would explain global changes to gene expression observed 

between the D7 and D7/B12 cell lines. They would also account for the low level of 

differentiation detected in the D7/B12 cell line by Shiels et al., (1994) as neither mechanism 

is absolute and could be overcome by changes to culture conditions which alter the 

probability of a cell reaching a quantitative threshold which determine commitment.
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6 General Discussion

One of the primary aims of the work presented in this thesis was to identify the 

regulatory elements controlling the expression of the TamSl gene and to characterise the 

DNA binding protein(s) which recognise these elements. This was on the basis that 

expression of TamSl reflects, in a temporal manner, important events which occur during 

differentiation from the macroschizont. Moreover, the finding that a direct correlation exists 

between the amplitude of TamSl gene expression during the initial stages of differentiation 

and the potential of cell lines to form merozoites indicated that the events which control 

TamSl expression are linked to the control of parasite differentiation. Thus, identification of 

the regulatory process and factors would, ultimately, aid in understanding the mechanisms 

which lead to and commit the parasite to merozoite production.

Nuclear run on analysis indicated that the TamSl and TamRl genes are independent 

transcription units, with discrete initiation and termination sites. This conclusion was 

supported further by the findings that the open reading frames identified within the 8.0kb 

T.annulata contig are not ordered in the same orientation. In addition, initial investigations 

into the expression of each open reading frame has demonstrated that each gene is either 

expressed in different parasite Life-Cycle stages or in a different temporal order during 

differentiation to the merozoite. Similar studies by Nene et al., (1992) also suggest than 

several genes within T.parva are expressed monocistronically and that stage specific genes 

are not clustered together, although, monocistronic expression has not been demonstrated 

experimentally. Therefore, it is possible that many, if not all, stage specifically regulated 

genes are randomly scattered across the Theileria genome, rather than being clustered 

together, which is indicative of monocistronic gene expression (Latchman, 1990).

All higher eukaryotic protein coding genes are transcribed by RNA polymerase II 

and initiation of transcription is usually very precise, beginning at one particular nucleotide 

which is most frequently, though not invariably an A residue. Upstream from this initiation 

site is the promoter region containing the TATA box, and 3' to the protein coding sequence 

of the gene is a Poly A signal (Hawkins, 1996). The transcription initiation site of the 

TamSl gene was mapped to an A residue and the flanking sequence to this residue was in
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accordance with the transcription initiation site consensus sequence (Cohen et al., 1980). 

However, upstream of the transcription initiation site evidence for a functional putative 

TATA box in the correct position was not found and no consensus Poly A signal could be 

observed in the sequence 3' to the protein coding sequence of the TamSl gene. Putative 

TATA box sequences have been detected for the 117kDa rhoptry (TamRl) and SPAG-1 

genes (Katzer, 1995; Fraser McDonald, personal communication) in the conventional 

manner but, due to their position in relative to the transcription initiation site and the ATG 

start codon, it is unlikely that they are involved in the regulation of these genes. Thus, it 

appears that the classical TATA motif, in a position approximately 20-3 Obp upstream of the 

transcription initiation site, is not necessary for the correct positioning of the RNA 

polymerase in the Theileria genes studied so far.

So called "TATA-less" promoters have been identified in both Toxoplasma (Soldati 

et al., 1994) and Plasmodium (Lanzer et al, 1992a, b). A recent study by McAndrew et al., 

1993, demonstrated that the TATA-binding protein (TBP) is highly divergent from its 

eukaryotic counterpart and was postulated that it recognises a different motif to that of the 

TATA-box. An alteration believed to be due to the high A+T content of the Plasmodium 

genome. Therefore, motifs which bind TBP probably exist in Toxoplasma, Plasmodium, and 

Theileria, but as yet the motif which the TBP in apicomplexan parasites recognises has yet 

to be identified. In conclusion it appears that the TamSl gene is expressed in a similar 

manner to that of many other eukaryotic genes but, the signals for positioning the RNA 

polymerase and where polyadenylation occurs will be novel and probably relate to that of 

other apicomplexan parasites

Palindromic and pentamer motifs were identified in the TamSl 5’ intergenic region 

which were found to be conserved between several Theileria genes and had previously been 

identified as potential promoter motifs for other protozoan parasites. These included the 

AGTGA and ACACA pentamers which resembled, an element (T/AGTGTAC) reported in 

the upstream region of the Plasmodium GBP 130 gene (Lanzer et al., 1992a) and the 

pentamer TGTGT found in a number of stage regulated genes in Toxoplasma gondii 

(Mercier et al, 1996). In addition, a CTTTTT motif showed conservation across several 

intergenic regions of Theileria genes and was repeated several times in the upstream region
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of the TamRl gene. Therefore, if functional, these motifs must be involved in the general 

transcriptional control of Theileria genes. It would be expected that genes from related 

protozoan parasites or species of parasite would contain common or related cis-acting 

regulatory elements in their promoter regions but they are apparently very difficult to detect. 

In particular, to date, no TBP sequence has been detected in apicomplexan parasites. This 

may be a consequence of the genomic composition of these parasites, therefore, the A+T 

content of the parasites may preclude dependence upon TATA recognition and compel then 

to utilise motifs which vary according to the A+T content of each genome.

The nuclear run on data also showed that differential expression of TamSl was 

mediated, at least in part, at the transcriptional level. This led to studies investigating the 5’ 

upstream region of TamSl for motifs that bind polypeptide factors which could be involved 

in this control. DNA protein interactions between the 5' intergenic region of the TamSl gene 

and parasite nuclear factors were investigated using the mobility shift assay. Specific 

binding by parasite nuclear factors was located to DNA fragments most proximal and distal 

to the mapped transcriptional start site. However, it has not been established whether these 

motifs are the only elements required for controlling TamSl gene expression. Most 

eukaryotic genes have several sequences which regulate transcription (Polyanovsky and 

Stepchenko, 1990). Therefore, the conditions used for binding factors to motifs 5’ to the 

TamSl gene may inhibit the formation of additional complexes required for gene regulation. 

This postulation underscores the necessity for future functional studies specifically designed 

to dissected the upstream region of the TamSl gene, by deletion analysis, to define 

important additional regulatory motifs.

A motif proximal to the transcriptional start site of the TamSl gene was identified 

which bound factors in a sequence specific manner. Three distinct complexes (A, B, and C) 

of different mobilities were observed when the motif was incubated with parasite enriched 

nuclear extracts prepared from differentiating macroschizont infected cells and two of the 

complexes (A and B) were also identified in extracts prepared from infected cells cultured at 

37°C. The formation of the two complexes A and B in extracts derived from macroschizont 

infected cells may correspond to the basal transcriptional machinery of Theileria necessary 

for RNA polymerase binding so that transcription can occur. Evidence for the involvement
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of complexes A and B in the expression of the TamSl gene was provided by the gel 

mobility time course experiment in section 5.5.3 which demonstrated a correlation between 

mRNA expression of the TamSl gene and binding of complexes A and B to the CAT1 

sequence element. In addition, the CAT1 sequence is the closest element to the 

transcriptional start site shown to bind parasite specific factors and only complexes A and B 

have been shown to be present in both macroschizont and differentiating macroschizont 

extracts. On the other hand, the CAT1 sequence was not unambiguously identified in a 

similar position in any of the additional genes analysed. Therefore, if the factors forming 

complex A and B are part of the basal transcriptional machinery (i.e. like an apicomplexan 

TBP) they or it must have the ability to recognise distinct structural motifs in different genes 

or be directed by another unidentified factor or motif.

Previous studies have shown that the expression of the TamSl gene correlates with 

the timing of differentiation and it is thought that at around commitment point an 

irreversible elevation of TamSl expression occurs (Shiels et al., 1994). Complex (C) is the 

only band which specifically interacts with the CAT1 motif during differentiation to the 

merozoite. Formation of the complex was observed to occur between days 6 and 8 of the 

differentiation time course, corresponding with the most evident increase in the expression 

of the TamSl mRNA levels. It is, therefore, possible that the factors forming the lower 

complex (C) could be involved either in determining or occur following the commitment to 

differentiate.

Investigations into how each complex bound to the CAT1 probe and their 

relationship to one another were inconclusive. The upper band (A) was believed to be either 

the result of dimerisation by the factor which formed complex (B) or due to co-operative 

binding of two factors, one of which formed the middle complex. Alternatively both 

complexes could be due to distinct factors. If this is the case then the binding sites must 

either overlap or be identical. It could be predicted that if the site was identified then the 

factors may compete with one another under probe saturation conditions, while at lower 

levels of factor relative to probe a complex would be more likely to dissociate. 

Unfortunately it is not clear from this study, which of these possibilities operate, although 

the experiment titrating extract concentration relative to CAT1 indicated that the factors(s)
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forming mobility shift A have a greater affinity, suggesting a competition model. The 

situation outlined for A and B shifts is also pertinent to complex C. As this complex appears 

to occur at a different time point and migrates faster under electrophoresis conditions it 

might be predicted that this shift is more likely to be due to the production of a novel factor. 

However, if this is the case its binding site appears to be almost identical to that of the factor 

associated with shift B. It is also possible that the C shift could be due to the formation of a 

complex but, if this complex involved the factor(s) which generate shifts A and B, the C 

specific factor would have to either bring about a conformational change in the DNA probe 

or have a significantly higher negative charge to account for the migration of the complex. 

In conclusion it is possible that expression of the TamSl gene is controlled by either a 

number of distinct factors or complexes of factor(s) which bind to a core sequence of 14 

nucleotides. Identifying these factors and determining how they interact is clearly a 

necessary goal for future research.

The work conducted on the CAT1 motif in this study used crude extracts prepared 

from macroschizont infected cell lines. To understand the exact relationship between the 

different CAT1 mobility shifts it will be necessary to use purified or recombinant factors. 

Initial attempts have been made to clone each factor by direct screening of a merozoite 

expression library with the CAT1 motif (McKellar and Shiels, unpublished data). However, 

this was not successful, possibly because the factors are part of a multi-protein complex and 

more than one protein is required for DNA binding. The successful isolation of protein also 

requires that the molecular weight of the factor has been determined for monitoring the final 

stages of the purification step. Initial attempts using UV cross-linking and South-Western 

blot analysis to determine the molecular weight of those factors binding to the CAT1 motif 

were unsuccessful. From the results obtained it was unclear why the experiments failed, but 

this assay is known to give variable results with different probe combinations. One 

possibility would be to repeat the experiments with partially purified extracts in an attempt 

to remove some of the non-specific binding detected in this study.

In addition to identification of the factors, it will also be necessary to associate 

complex formation with function. Ideally this will involve analysis by in vitro transcription 

using purified factors in combination with deletion analysis of transiently transfected TamSl
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promoter constructs. Unfortunately, neither of these techniques are currently available. 

Transfection technology has recently been developed for other apicomplexans and barring 

some Theileria specific impediment to the introduction of DNA into the parasite should be 

achievable. To date in vitro transcription is not a standard method for analysis of 

apicomplexan gene function but has been developed for other protozoan parasites (Bennett 

et al., 1997). The Theileria system may allow this assay to be developed as production of 

litre volumes of differentiating parasites can be easily achieved. Therefore the establishment 

of methods for the isolation of nuclear extracts and demonstration of specific factor binding 

in this study may be an important step forward for future examination of gene expression in 

vitro. Moreover, the ability to correlate complex formation with transcriptional activity and 

the molecular and cellular events previously mapped for differentiation to the merozoite 

should provide a greater understanding of how an apicomplexan parasite can respond to, or 

be programmed for, events which necessitate a change in biological form.
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Appendix I. The nucleotide sequence of the TamSl 8.0kb contig, showing restriction 

enzymes sites for Ava I, Dde I, Dra I, EcoRV, Hha I, Hinc II, Hind III, Hpa I, Kpn I, Nde I, 

Nhe I, Nsi I, Sal I, and Xho I. The numbers represent the sequence position with reference 

to the most 5’ base. The TamSl open reading frames is located between 3079-3922, ORF-1 

between 5816-4906, ORF-2 between 8068-7692 and ORF-3 1-188. Many of the 

oligonucleotides used for PCR and mobility shift reactions are highlighted in bold with an 

arrowhead showing the orientation of each oligonucleotide 5’ to 3’.
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K i n d i I I  D d e I
I I

AAGCTTGCGAACAGTCTCCAAGGGCTTCTCTGAGACGAAGTTCGCTCAATCAATGTTGTC
1 -------------------- + -------------------- + ------------------- + --------------------+ --------------------- + ------------------- + 60

TTCGAACGCTTGTCAGAGGTTCCCGAAGAGACTCTGCTTCAAGCGAGTTAGTTACAACAG

CAGGTCTGAAGTTTTACGACTGGATGGTTAAGATTTACCGGGATCAGAAGGGTAGTAATC
6 1 -------------------1------------------- 1------------------- 1------------------- 1--------------------- I------------------  ̂ 1 2 0

GTCCAGACTTCAAAATGCTGACCTACCAATTCTAAATGGCCCTAGTCTTCCCATCATTAG

CTCAATTATCTACCTTCGATTATGATAACTACGTCTACACCTATAACCCTATCGCAAAGA

GAGTTAATAGATGGAAGCTAATACTATTGATGCAGATGTGGATATTGGGATAGCGTTTCT

D d e  I
I

AGAGCTAGTTCAGCTTATTCTAAGAATCCGTTCTCCTATTCGTATAAATCTTTTTTTCTT

T C T C GAT CAAG T C GAATAAGAT T C T TAGGCAAGAGGATAAG CATAT T TAGAAAAAAAGAA

D d e  I  
I

TTTACTTTTATAGGTTTTCCTTCTCATATTTGTTCCCCAGGTTCTAAGAAGGACGTTATT

AAATGAAAATATCCAAAAGGAAGAGTATAAACAAGGGGTCCAAGATTCTTCCTGCAATAA

D r a l
I

TGTGATGATTTCTTTTTCTTCTGGGACACTGAAATGCAGTTTAAATATTTGAGAACAAAT

ACACTACTAAAGAAAAAGAAGACCCTGTGACTTTACGTCAAATTTATAAACTCTTGTTTA

D r a l
I

TGGCTTTAAAATTAATGAAGTATTGTTATTTATTGAGTTTAAGATTTTGTTATTTTTAAT

ACCGAAATTTTAATTACTTCATAACAATAAATAACTCAAATTCTAAAACAATAAAAATTA

D r a l
I

TATTTGGC AAATTTGGTTTAATTGAGTCATTTTAAATTTAATTATTCACTTACACATTTA

ATAAACCGTTTAAACCAAATTAACTCAGTAAAATTTAAATTAATAAGTGAATGTGTAAAT

D r a l
I

TTATTCTCACCTCTATAAATAAATTACTTCTGGTTTTTTAAAACCCCATATTTATTTGAA  

AATAAGAG T GGAGATAT T TAT T TAAT GAAGAC CAAAAAAT T T T GG GG TATAAATAAAC T T 

D r a l

AT T T TAAAAT G T T TATACGCAAAT TATAT TAT C TAAT T T CAG T T T CAC GAAAACAAGAAA

TAAAATTTTACAAATATGCGTTTAATATAATAGATTAAAGTCAAAGTGCTTTTGTTCTTT

D r a l
I

TAATAAGCCCTACACAT GAAT T TATAATGTAATAAT CAACACAT TAAAT T T TAAAAGT TA 

ATTATTCGGGATGTGTACTTAAATATTACATTATTAGTTGTGTAATTTAAAATTTTCAAT

GTTAAATTTACAAATCACTGTTACAACTTTATCTTCATTTTTTGGTTTACTAAATATGAT

CAATTTAAATGTTTAGTGACAATGTTGAAATAGAAGTAAAAAACCAAATGATTTATACTA
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D d e  I  
I

GTGTAGGAATCCACCCAACTTAGGTCCAACTGTGTTATGAAATTAGAATCCTAAAACTTT

CACATCCTTAGGTGGGTTGAATCCAGGTTGACACAATACTTTAATCTTAGGATTTTGAAA

ACCTTTTGAAAGTGACTCACATCCAACCTTCTTCCCATTTATATAGTACAATGATATTAT

TGGAAAACTTTCACTGAGTGTAGGTTGGAAGAAGGGTAAATATATCATGTTACTATAATA

D d e  I  
I

TACAAGTCCCACCTCCCTCAGCAACACCCTAATGAATATCTTATTTATATATTTATTCAT  

ATGTTCAGGGTGGAGGGAGTCGTTGTGGGATTACTTATAGAATAAATATATAAATAAGTA  

AC CAT GCTTCCTT TAACAGAT TAAAT GAATAC T C G T T T GATAT TATAC CAT TAT T TAAT T 

TGGTACGAAGGAAATTGTCTAATTTACTTATGAGCAAACTATAATATGGTAATAAATTAA  

TACCTTTTGAAAGTGACTCACATCCAACCTTCTTCCCATTTATATAGTACAATGATATTA  

ATGGAAAACTTTCACTGAGTGTAGGTTGGAAGAAGGGTAAATATATCATGTTACTATAAT

D d e  I
I

TTACAAGTCCCACCTCCCTCAGCAACACCCTAATGAATATCTTATTTATATATTTATTCA

AATGTTCAGGGTGGAGGGAGTCGTTGTGGGATTACTTATAGAATAAATATATAAATAAGT

TACCATGCTTCCTTTAACAGATTAAATGAATACTCGTTTGATATTATACCATTATTTAAT
1 0 8 1 --------------------- + ---------------------- + ----------------------+ --------------------- + ---------------------- + --------------------- +

ATGGTACGAAGGAAATTGTCTAATTTACTTATGAGCAAACTATAATATGGTAATAAATTA

H i n c I I
N d e l  H p a l

I I
TTCAACAACTCATATGTTTCTGTGTTGTTAACTGCGTTTTGTTGATCGGTATCGTTTGAA

1 1 4 1 --------------------- + ---------------------- + ----------------------+ ---------------------+ ---------------------- + --------------------- +
AAGTTGTTGAGTATACAAAGACACAACAATTGACGCAAAACAACTAGCCATAGCAAACTT

TTAGAGAAATTACAGGAGCCAACCTTGAGACTTTCGAGGTTTATGTGATCTATGAAAGAT
1 2 0 1  I I------------------------------ 1----------------------------1-------------------------------- 1---------------------------- h

AATCTCTTTAATGTCCTCGGTTGGAACTCTGAAAGCTCCAAATACACTAGATACTTTCTA
D r a l

I
ATAAGGTTGTGTATTGGTGTTTTCTTTTCTGAAAATTCGTTTAAATTCTTCCTATTCAGT  

TAT TCCAACACATAAC CACAAAAGAAAAGAC T T T TAAGCAAAT T T AAGAAGGATAAGT CA

TCGTGGATCATGTCCTTAATCACTTGCTTGCTTTTTAACGGTTTCTTTTTCAATGTGCTA

AG CAC C TAG TACAGGAAT TAG T GAAC GAAC GAAAAAT T G C CAAAGAAAAAG T TACACGAT

AATACCCTTTACCAAAATCTCTCTCTGACTTTCCATTTTCTCATATCTATGTTCCAAATC
1 3 8 1 ----------------------- I------------------------1------------------------1------------------------1------------------------ 1------------------------H

T T AT GGGAAAT G G T T T T AGAG AG AG AC T GAAAGG T AAAAG AG T AT AGAT AC AAG GT T TAG

ATCGTTATCTAGTATCAGTTTTAAGACGTTTTCCACAACTTCCGTTTAATTCATGGCTCT
1 4 4 1 ---------------------+ --------------------- + --------------------- + ----------------------+ ----------------------+ ---------------------- +

TAGCAATAGATCATAGTCAAAATTCTGCAAAAGGTGTTGAAGGCAAATTAAGTACCGAGA

7 8 0

8 4 0

9 0 0

9 6 0

1020

1 0 8 0

1 1 4 0

1200

1 2 6 0

1 3 2 0

1 3 8 0

1 4 4 0

1 5 0 0
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GTTCTTCAACTAACTTCTCAATGTTTTCACTAAAGAACTTTAGAGAGTATTCCTTGTGGT

CAAGAAGTTGATTGAAGAGTTACAAAAGTGATTTCTTGAAATCTCTCATAAGGAACACCA

D d e  I

TCAGGGGGACCTAAGATGAAACTTTTGGGATCTCAAAATTACCCTAAAATGCTCAACATT

AGTCCCCCTGGATTCTACTTTGAAAACCCTAGAGTTTTAATGGGATTTTACGAGTTGTAA

D d e  I  
I

AGTACGACAGGGAGAAATTGTAACCTCTTGACCCGCCTTTAGAGATGTTCTAAGCTCGTT

TCATGCTGTCCCTCTTTAACATTGGAGAACTGGGCGGAAATCTCTACAAGATTCGAGCAA

D r a l  E c o R V
I I

CAAATCCATAGAGTTTAAAATTTCCGATAAAATGATCACAGTTGATGGCGATATCTTTGA

GTTTAGGTATCTCAAATTTTAAAGGCTATTTTACTAGTGTCAACTACCGCTATAGAAACT

TAAACTAAATAGTAAACGTTCGTAAAGCCTCGAATGAGGTTTCAAATACGATGTGTCCAG

ATTTGATTTATCATTTGCAAGCATTTCGGAGCTTACTCCAAAGTTTATGCTACACAGGTC

TAAATTTATTTCCAAAGTCACAGACTCATCTAAAGAAGTTATTACCACTAAATCAAACCT

ATTTAAATAAAGGTTTCAGTGTCTGAGTAGATTTCTTCAATAATGGTGATTTAGTTTGGA

TCGTTGCGATGTGTTATATTACAGTTTGACAATCCTATAGTTCTGAAAACTTCCAGATCA

AGCAACGCTACACAATATAATGTCAAACTGTTAGGATATCAAGACTTTTGAAGGTCTAGT

H i n c I I
H p a l

AG C TATAAAT TAT TATAAAATATAACAAAT GAAAT TAT TAAACATACAT T GAT T G T TAAC 

TCGATATTTAATAATATTTTATATTGTTTACTTTAATAATTTGTATGTAACTAACAATTG

D r a l

ACCCCTTTGGAGCTTATTATGAAATTGATTTTCGATTTATAATTATAATATATATTTAAA  

T GGGGAAACC T CGAAT AAT AC T T T AACT AAAAGCT AAAT AT TAAT AT T AT AT AT AAAT T T

AC G GAGAG TCTTTTGG GAAC CAAATAAT T TACAATAAAG T C CAAAT TAAG CAAAGAC G T C 

TGCCTCTCAGAAAACCCTTGGTTTATTAAATGTTATTTCAGGTTTAATTCGTTTCTGCAG

D r a l

AGAGTAATGTTCGAAACAACAAAGCATGTGTCCTGTTTAACTCAAATTAGTCATTTTAAA

TCTCATTACAAGCTTTGTTGTTTCGTACACAGGACAAATTGAGTTTAATCAGTAAAATTT

D d e l

TAAATTAAGGGGTAAAATCAAATACACATCAAAAGTATAAATATATAAAATACCTTAGAA  

ATTTAATTCCCCATTTTAGTTTATGTGTAGTTTTCATATTTATATATTTTATGGAATCTT

1 6 2 0

1 6 8 0

1 7 4 0

1 8 0 0

1 8 6 0

1 9 2 0

1 9 8 0

2 0 4 0

2100

2 1 6 0

2220
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TTAAAAAGATCTCTCTAAAAGAATCAATGCAAGGATTCTCTTGGGTAGGGATGAGAGGCA
2 2 2 1 -----------------------+ ----------------------+ -------------------- + ----------------------+ -----------------------+ ---------------------- + 2 2 8 0

AATTTTTCTAGAGAGATTTTCTTAGTTACGTTCCTAAGAGAACCCATCCCTACTCTCCGT

CCGTTGCCTATACGACAGATATAGAGTGTTAGGATCGACAAGCACAGTAGTTTAATTACA
2 2 8 1 -----------------------+ ----------------------+ -------------------- + ----------------------+ -----------------------+ ---------------------- + 2 3 4 0

GGCAACGGATATGCTGTCTATATCTCACAATCCTAGCTGTTCGTGTCATCAAATTAATGT

TATTACAATCTGGATAGATGTATAGAAATAAAAAGAGCATACACACCTCTATCTGTAACT
2 3 4 1 -----------------------+ ----------------------+ --------------------- f-----------------------+ -----------------------+ ---------------------- + 2 4 0 0

ATAATGTTAGACCTATCTACATATCTTTATTTTTCTCGTATGTGTGGAGATAGACATTGA

1 9 4 5
CTCTGGAGAATAAATAGGGTGTACTATTTGCTGAAGAAAATTTTCAAAATCCGGGCCGGT

2 4 0 1 ----------------------+ -------------------- + ---------------------- + --------------------- + -----------------------+ ----------------------+ 2 4 6 0
GAGACCTCTTATTTATCCCACATGATAAACGACTTCTTTTAAAAGTTTTAGGCCCGGCCA

AATAT C T GAAG GAGAC T GAT TAAAC T CAAAGACAT CACAC T C T GAT GAAAG T GAAG G C G G
2 4 6 1 -----------------------1----------------------1--------------------------1---------------------- 1--------------------------- 1---------------------- 1- 2 5 2 0

TTATAGACTTCCTCTGACTAATTTGAGTTTCTGTAGTGTGAGACTACTTTCACTTCCGCC

1 9 6 3  -----^
G T A A G G A C A G C T C A T A A C G A C  AAAT T C AG T AT AAAAAC AT AAT GAAT GAT T GT T T TAAGG

2 5 2 1 -----------------------1--------------------- 1--------------------------1---------------------- 1--------------------------- 1----------------------- H 2 5 8 0
CATTCCTGTCGAGTATTGCTGTTTAAGTCATATTTTTGTATTACTTACTAACAAAATTCC

4~  1 9 4 4  N s i l
I

AAATGATGTGTGGAATCACGGTTATTTGTGCGGGAAATTATGCATGGATATTATCTATTT
2 5 8 1 -----------------------1--------------------- H------------------------- 1---------------------- 1--------------------------- 1----------------------- H 2 6 4 0

TTTACTACACACCTTAGTGCCAATAAACACGCCCTTTAATACGTACCTATAATAGATAAA

1 9 4 7  ^
AAC T TAT AAT AAT G T TAT AT T AAAAT AT GAC AAAT TAAT G T G T G A A A T A A A T A A A G T A A A

2 6 4 1 ----------------------+ -------------------- + ---------------------- + --------------------- + -----------------------+ ---------------------- + 2 7 0 0
TTGAAT AT TATTACAATATAATTTTATACTGTTTAATTACACACTTTATTTATT T C A T T T

GTGGAGGGAAATTCTGTCCTAATATTTAACTGGGTCTAGTGACTTAAAAAAGAAAGCAGG

CACCTCCCTTTAAGACAGGATTATAAATTGACCCAGATCACTGAATTTTTTCTTTCGTCC  
4 -----  1 9 6 3

TTATTGGTTTGAAAAAATAATAAATTCATCTTTTTATAGTCAT CAAAAAATGAAAAATGG
2 7 6 1 --------------------- + --------------------- + --------------------- + --------------------- + ----------------------+ ---------------------- + 2 8 2 0

AATAACCAAACTTTTTTATTATTTAAGTAGAAAAATATCAGTAGTTTTTTACTTTTTACC

T A 3 0 5 1

ATAAATATACATGTTATTTCATTAAGATGGACTTCAATGGAGGATAAGGCATTAGGCGTG
2 8 2 1  +  +  +  +  +  + 2 8 8 0

TATTTATATGTACAATAAAGTAATTCTACCTGAAGTTACCTCCTATTCCGTAATCCGCAC

4 ------ 1 9 4 6

T A T I
G A T A 3 5 a  ► CAT l a  “ ► 4 -----------------------------

AT GAGTGCA TAG A TAC AG A TAAAC A  TG C A C A C A A T  T T G T A G G G C G A C A T  T G T T T T G TAT G
2 8 8 1 --------------------- + --------------------- + --------------------- + ---------------------- + --------------------- + ---------------------- + 2 9 4 0

TA C T C A C G rA T C T A T G rC T A rrT G rA CGTGTGTTAAACATCCCGCTGTAACAAAACATAC

4  G A T A 35b  4-  CAT l b
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N s i l

GTGAATGCATATCCATCTCACTTCACTTATAGTTATTGGTCTTTTTTTCCATAACATCCA
2 9 4 1 --------------------- + ----------------------+ ----------------------+ ----------------------+ --------------------- + ---------------------- +

CACTTACGTATAGGTAGAGTGAAGTGAATATCAATAACCAGAAAAAAAGGTATTGTAGGT

T A 3 0 5 2  D r a l  
I

CCCAATTAGTTAATTTTTAATATTTAAATCGCTCACTAGTCTGCCCTTTCTTATCTTTTT

GGGTTAATCAATTAAAAATTATAAATTTAGCGAGTGATCAGACGGGAAAGAATAGAAAAA

ATAATATAATTATTTGAGATGTTGTCCAGGACCACCCTCAAGTTCTTATATTTGAGCTTC

TATTATATTAATAAACTCTACAACAGGTCCTGGTGGGAGTTCAAGAATATAAACTCGAAG

TTCGTTATCTCATCCGTTAATGCTGCAAATGAGGATGAAAAGAAAAAGGAGGAAAAAAAA

AAGCAATAGAGTAGGCAATTACGACGTTTACTCCTACTTTTCTTTTTCCTCCTTTTTTTT
H i n c I I  

D r a l  S a i l  I
I I I

GATGTTGTTCTTGATGTTACTCTCACTTCATGTGAGAATGTAACCTTTAAAAACGTCGAC

C TACAACAAGAAC TACAAT GAGAG T GAAG TACAC T C T TACAT T GGAAAT T T T T G CAGCTG

H i n c I I  
D d e I  H p a l  

I I
TCTAACACCACTGAGTTAACTGTCGCGGATGGCTACCGTTTCAAGACCCTTAAGGTCGGA

AGATTGTGGTG ACTCAATTGACA GCGCCTA CCGATGG CAAA GT TC TG G G A A TTC C A G C C T
^ -----  G SP 2________________ , 4 ____  T a m lD B

H i n c I I
I

GACAAGAC C T T G T T CAAT G T T GACACCT CAAAACATACCCCAGTACAGGCAT T CAAACT T
3 3 0 1 --------------------- + --------------------- + ----------------------+ ----------------------+ --------------------- + ---------------------- +

CTGTTCTGGAACAAGTTACAACTGTGGAGTTTTGTATGGGGTCATGTCCGTAAGTTTGAA

AAGCATGAATCCGATGAGTGGTTCAGACTTAATCTTCACCCTGCCCAGCCAAAGATGTTC

TTCGTACTTAGGCTACTCACCAAGTCTGAATTAGAAGTGGGACGGGTCGGTTTCTACAAG

D d e  I

AAGAAGAAGG GAGACAAG GAATAT T C T GAGG T CAAAT T C GAGAC C TAC TAC GAT GAT G T C
3 4 2 1  I------------------------ 1------------------------ 1------------------------1------------------------ 1------------------------ i-

TTCTTCTTCCCTCTGTTCCTTATAAGACTCCAGTTTAAGCTCTGGATGATGCTACTACAG

TTGTTCAAGGGAAAATCCGCCAAGGAACTAGATGCTTCCAAGTTCGAAGATACATCTTTG

A A C A A G TTC C C TTTTA G G C G G TTC C TTG A TC TA C G A A G G TTC A A G C TTC TA TG TA G A A A C
^  G SP 1

D r a l  D r a l
I I

TTCACCTCCTCCGCCTTCGGCACTGGAAAGATGTACACCTTTAAAAAGGAATTTAAACCT
3 5 4 1 ----------------------- + -------------------- + ----------------------+ ----------------------+ ----------------------+ ----------------------+

AAGTGGAGGAGGCGGAAGCCGTGACCTTTCTACATGTGGAAATTTTTCCTTAAATTTGGA

T C CAAAG T CAC C T T C GACAAGAAAGAAG T C G GAAAACCAAACAAT G C CAAG TAT C T T GAA
3 6 0 1 ----------------------- + -------------------- + ----------------------+ ----------------------+ ----------------------+ ----------------------+

AGGTTTCAGTGGAAGCTGTTCTTTCTTCAGCCTTTTGGTTTGTTACGGTTCATAGAACTT

3 0 0 0

3 0 6 0

3 1 2 0

3 1 8 0

3 2 4 0

3 3 0 0

3 3 6 0

3 4 2 0

3 4 8 0

3 5 4 0

3 6 0 0

3 6 6 0
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GTTGTTGTTTTTGTTGGTTCTGATTCCAAGAAGTTCGTCAAACTCTACTACTTCTATACC
3 6 6 1 --------------------- + ----------------------+ --------------------- + ----------------------+ ----------------------+ ---------------------- + 3 7 2 0

CAACAACAAAAACAACCAAGACTAAGGTTCTTCAAGCAGTTTGAGATGATGAAGATATGG

GGTGACTCAAGGTTGAAGGAGACCTACTTCGAGCTTAAGGACGATAAGTGGGTTCAAATG
3 7 2 1 -----------------------+ ----------------------+ -------------------- + ----------------------+ ----------------------+ ----------------------+

CCACTGAGTTCCAACTTCCTCTGGATGAAGCTCGAATTCCTGCTATTCACCCAAGTTTAC

H i n c I I

ACACAGGCAGATGCAAACAAGGCCTTGAATGCCATGAACTCATCCTGGTCAACCGATTAC
3 7 8 1 -----------------------+ ----------------------+ -------------------- + ----------------------+ ----------------------+ ----------------------+

TGTGTCCGTCTACGTTTGTTCCGGAACTTACGGTACTTGAGTAGGACCAGTTGGCTAATG

H i n c I I
S a i l  | D d e I

I I I
AAACCAGTTGTCGACAAGTTCTCCCCCCTTGCAGTCTTCGCCTCAGTACTCATCGTCTTC

T T T G G T CAACAG C T G T T CAAGAG G G G G GAAC G T CAGAAG C G GAG T CAT GAG TAG CAGAAG

D r a l  D r a l
I I

TCATCAGTCCTTTACTTCCTTTAAAACCCATGTTCGTAACAACTTATCAACTTTTAAAAC

AGTAGTCAGGAAATGAAGGAAATTTTGGGTACAAGCATTGTTGAATAGTTGAAAATTTTG

AATTTTGATAATTTGTATACAATTGCAGAAACTAAATAACTAGCTTAAGTCATTATATGC

TTAAAACTATTAAACATATGTTAACGTCTTTGATTTATTGATCGAATTCAGTAATATACG

D r a l
I

CACTTAATTTTATACTTTAAACTTATATGTTTAGATATAACTTCAACAGCTATAGGTCAT  

G T GAAT TAAAATAT GAAAT T T GAATATACAAAT C TATAT T GAAGTTGTCGATATCCAGTA

CAATATCCAAGTCACGGTAAAATCGCGGCCCTCACGCTAACCAGCTAAAAGCAGAACAGC

GTTATAGGTTCAGTGCCATTTTAGCGCCGGGAGTGCGATTGGTCGATTTTCGTCTTGTCG

AAACTCTGGTTATCGCAGCTTCCTCTTCACTTTCGTCATCTCTTTCCACAGTGTGCAATG

TTTGAGACCAATAGCGTCGAAGGAGAAGTGAAAGCAGTAGAGAAAGGTGTCACACGTTAC

AACCTGTAAAAATTAAGTGAATTGTAAAAATGAAATTATTAATCTTACTGAAAAGACGGT

TTGGACATTTTTAATTCACTTAACATTTTTACTTTAATAATTAGAATGACTTTTCTGCCA

D d e  I

CGAACTCAGAATAGGCATCGTAATCGTCCTCAACAACCCCTAAAGCCTCGTTAATAGGAC

GCTTGAGTCTTATCCGTAGCATTAGCAGGAGTTGTTGGGGATTTCGGAGCAATTATCCTG

D d e l  D d e l
I I

GAGAATAGAGCCGTAGTCCCTAAGCAAATTCTGGTACTGAATGAAACTAGTCCTCAGCCA

CTCTTATCTCGGCATCAGGGATTCGTTTAAGACCATGACTTACTTTGATCAGGAGTCGGT

3 7 8 0

3 8 4 0

3 9 0 0

3 9 6 0

4 0 2 0

4 0 8 0

4 1 4 0

4 2 0 0

4 2 6 0

4 3 2 0

4 3 8 0
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H h a l

GCACCTGCGAGTGAACACGAAATGGTAGTCCTTGCGCACATCGTCCTGATTCACAGAGTA
4 3 8 1 ---------------------+ ----------------------+ --------------------- + ----------------------+ ----------------------+ -----------------------+

CGTGGACGCTCACTTGTGCTTTACCATCAGGAACGCGTGTAGCAGGACTAAGTGTCTCAT

TATCTCCATCATGAGGTGGTTTCCATTCTTCTCACGCAAAAAAATCTCGACGACACCCTC

ATAGAGGTAGTACTCCACCAAAGGTAAGAAGAGTGCGTTTTTTTAGAGCTGCTGTGGGAG

H h a l
I

ACTGCCGGCGCCAGTCCAAACAACGATGCAGTTGTCCAAGATTCTGTTAATTTTGTCCCT

TGACGGCCGCGGTCAGGTTTGTTGCTACGTCAACAGGTTCTAAGACAATTAAAACAGGGA

GCCAATCGAAGTGATAATGGTAGTGTCCAAAGTGTACCCTAGGTGTTTCCTGACCCTTAT

CGGTTAGCTTCACTATTACCATCACAGGTTTCACATGGGATCCACAAAGGACTGGGAATA

GTTTGAATTAAACTCCAGGTTGTGGAGATTAATCTCAAAGTAGCAGAGAGTCCAGGACGA

CAAACTTAATTTGAGGTCCAACACCTCTAATTAGAGTTTCATCGTCTCTCAGGTCCTGCT

D d e l
I

AC T T AG AT AAAAAAT T AC AAG T AAC AAAT AT T T CAT T T G AAAAG AC T AAC T G CAT AAAT A

TGAATCTATTTTTTAATGTTCATTGTTTATAAAGTAAACTTTTCTGATTGACGTATTTAT

N h e l
I

T T T T T AC TAG C T AAAT TAT T T AC T G AAAT G T AC AAAAT G G AAAT AAAAT T AAAAC AAGC T

AAAAATGATCGATTTAATAAATGACTTTACATGTTTTACCTTTATTTTAATTTTGTTCGA

AG C T G G AG AAC AT GG T C T GAC AAAAAG C T AGG C AG AT AAT AAG T T AC AAAAAAC AAC T T T
4 8 0 1 --------------------- + --------------------- + --------------------- + ----------------------+ ---------------------- + -----------------------+

TCGACCTCTTGTACCAGACTGTTTTTCGATCCGTCTATTATTCAATGTTTTTTGTTGAAA

D r a l  D d e l  D d e l
I I I

AC AAAAT T T T T T AAAAC AAC TAG T T T CC T G AGG C T CAGAC AAT T TAAT T TAAT G T GG AAA
4 8 6 1 --------------------- + --------------------- + --------------------- + ----------------------+ ----------------------+ -----------------------+

T G T T T T AAAAAAT T T T G T T GAT CAAAGG AC T C C GAG T C T G T T AAAT T AAAT T AC AC C T T T

D d e l
I

TAATATCGAAGAGATTAATCAACTTTAGTGGTATTCGGCTCAGTGTTTTGCTGATGTTTA
4 9 2 1 ---------------------+ ----------------------+ --------------------- + ----------------------+ ---------------------- + -----------------------+

ATTATAGCTTCTCTAATTAGTTGAAATCACCATAAGCCGAGTCACAAAACGACTACAAAT

D d e l
I

TGCTTAGGCTTACTTTTGAAATATTTCCGTTCGTGTGTATTTTTCTCTGAATTGACTGCG
4 9 8 1 --------------------- + ---------------------- + ----------------------+ ----------------------+ ----------------------+ --------------------- +

AC GAAT C C GAAT G AAAAC T T TAT AAAG GC AAG C AC AC AT AAAAAG AG AC T T AAC T GAC G C

TTATTTTGTGGTTTTTCGTTTGCGGAGTTCCTCCAGTTCTCATCCTCGTCCCTGTGGTGG
5 0 4 1 --------------------- + ---------------------- + ----------------------+ ----------------------+ ----------------------+ --------------------- +

AATAAAACACCAAAAAGCAAACGCCTCAAGGAGGTCAAGAGTAGGAGCAGGGACACCACC

4 4 4 0

4 5 0 0

4 5 6 0

4 6 2 0

4 6 8 0

4 7 4 0

4 8 0 0

4 8 6 0

4 9 2 0

4 9 8 0

5 0 4 0

5 1 0 0
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A v a l

GACTTGGGCCTGTGACGGGATCTACGAGACCTACCGGAGCCTGTTCCCGAGGTGGGAAGT
5 1 0 1 --------------------- + ----------------------+ --------------------- + ----------------------+ ----------------------+ ---------------------- +

CTGAACCCGGACACTGCCCTAGATGCTCTGGATGGCCTCGGACAAGGGCTCCACCCTTCA

H h a l
I

TTATCATTTTTAGGGTCAGGAGGCTGTTCAGAAACACTAGAAGTAGCGGGAGGCGCTGTA

AATAGTAAAAATCCCAGTCCTCCGACAAGTCTTTGTGATCTTCATCGCCCTCCGCGACAT

GAGTCTGGAGGTTGTGAAGTTGGAACGTCATTGGGGTTTTAGTTGGATCAGAATTAGTGA

CTCAGACCTCCAACACTTCAACCTTGCAGTAACCCCAAAATCAACCTAGTCTTAATCACT

ATAACCTGTCCTTTTTATCCTTTTGAGATTTAGCATTAATGTTTGGTTGATTAGTATTTA

TAT T G GACAG GAAAAATAG GAAAAC T CTAAAT C G TAAT TACAAACCAAC TAAT CATAAAT

CAGTTTGAGCGTTAGAAGATGTACTAGTGGGTTTTTTGCGTCTTGGATAACGATCCTTTT

GTCAAACTCGCAATCTTCTACATGATCACCCAAAAAACGCAGAACCTATTGCTAGGAAAA

TACGCTTCTCTGCTAAAGGTGATAAATCACTTGTAAGAGTTTCATGAATTGTGGGTTCCA

AT GC GAAGAGAC GAT T T C CAC TAT T TAG T GAACAT T C T CAAAG TAC T TAACAC C CAAG G T

GCTGGTCTGACAGTGTATTTTCCAGCTGATTTGATAATGTGTTTTCTAACTGATTTGTTA

CGACCAGACTGTCACATAAAAGGTCGACTAAACTATTACACAAAAGATTGACTAAACAAT

GTCTACTTTCTAGCTGTCCGACGAGTCTTTCATCTAGTTTGTTGGTTAATGACTCTTGCA

CAGAT GAAAGAT C GACAGGC T G C T CAGAAAG TAGAT CAAACAAC CAAT TAC T GAGAAC G T

ATAAAAGAGAG TTGTCTTTATAGTTGGTTAAAT CCAGAAAAGGCTGCGACAGC T TAT CAG

TATTTTCTCTCAACAGAAATATCAACCAATTTAGGTCTTTTCCGACGCTGTCGAATAGTC

ATACATACTGCTTAATTGTAAGTCTATCGTCTCTTGTTCTATCTGATAGAATTGAGTGGT

TATGTATGACGAATTAACATTCAGATAGCAGAGAACAAGATAGACTATCTTAACTCACCA

TAAGAGTGTCAATTGCTGTTGTCAGTTCAGCTTCGTTATATCCATCACTTTTGTTGTCCA

ATTCTCACAGTTAACGACAACAGTCAAGTCGAAGCAATATAGGTAGTGAAAACAACAGGT

D d e l  D r a l
I I

TCCAATTAGACTCTGAGACGGTAGGCGACTCCACCATAACGTTTGGTTTAAACATTTGAG

AGGTTAATCTGAGACTCTGCCATCCGCTGAGGTGGTATTGCAAACCAAATTTGTAAACTC

GTCTCGAATTACTCTTCAACCTTGTTGCATACTGCTGAAAACCTTGGTAGATCCCGTTAG

CAGAG C T TAAT GAGAAG T T G GAACAAC GTATGACGACTTTTG GAAC CAT C TAG G G CAAT C

GTTGGCTGGGTACGGCACTGAAGGTGGAGGTGGAGGTGGTGACTCTACACCTCTTCCGAT

CAACCGACCCATGCCGTGACTTCCACCTCCACCTCCACCACTGAGATGTGGAGAAGGCTA

GAAGTTGGTAAACCCTAGTGGGTAGTTGCCCTTCATTTCAGGGCATCAGGAAGTCGGTAC
5941------------- +--------------+--------------+-------------- +--------------+-------------- +

CTTCAACCATTTGGGATCACCCATCAACGGGAAGTAAAGTCCCGTAGTCCTTCAGCCATG

5 1 6 0

5 2 2 0

5 2 8 0

5 3 4 0

5 4 0 0

5 4 6 0

5 5 2 0

5 5 8 0

5 6 4 0

5 7 0 0

5 7 6 0

5 8 2 0

5 8 8 0

5 9 4 0

6 0 0 0
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K p n l
I

TCGGTACCCCAGGATATTATCAGTGTCATCGCTGTTGGAATTTCTGAAAGATAACGAGTT

AGCCATGGGGTCCTATAATAGTCACAGTAGCGACAACCTTAAAGACTTTCTATTGCTCAA

GGAGTAGCTGCTGTCACGACTACTATGGAATCCTGGGCTGGCAACTGATTTAACGCTTGA

CCTCATCGACGACAGTGCTGATGATACCTTAGGACCCGACCGTTGACTAAATTGCGAACT

AATTCTATGTTTGAACTTGTATCTGGTACTTCGAGGTTCCTTGGAGAGGCGATCTTGGTC

TTAAGATACAAACTTGAACATAGACCATGAAGCTCCAAGGAACCTCTCCGCTAGAACCAG

A v a l
X h o l

I
GTTGGTGACGCTTGAGGTTTCCGAGATCCGATTATTTACACTAACATCTCGGTTACTCGA

CAACCACTGCGAACTCCAAAGGCTCTAGGCTAATAAATGTGATTGTAGAGCCAATGAGCT

GCCCAGTAAATCTGGGAATGAAACATCGTCCAGTGTTCCGCTACATATTTTTATTTAATT

CGGGTCATTTAGACCCTTACTTTGTAGCAGGTCACAAGGCGATGTATAAAAATAAATTAA

H h a l
I

AGTTAGCTTACGTTTTGCTTTCGACGTTTGATTCGTACTTTACTTCTGATTTCCAAGCGC

TCAATCGAATGCAAAACGAAAGCTGCAAACTAAGCATGAAATGAAGACTAAAGGTTCGCG
H i n c I I

H p a l
I

TTCCCGCTGTCTTAATTTGGCTGGTTGTGTTAACTGCTATACCTCGTACGCTTACACTTA

AAGGGCGACAGAATTAAACCGACCAACACAATTGACGATATGGAGCATGCGAATGTGAAT

TGCCTGAATAAAATATTAATTTTTATTTATATGTTTATTTGCCTACCGGTCTTTTTTAAG

AC G GAC T TAT T T TAT AAT T AAAAAT AAAT AT AC AAAT AAAC GG AT GG C CAGAAAAAAT T C

D d e l
I

CACTTAGATAATAGCCTTTGTCCCAGTGATAGGGATTCGAGGCTCATATTAGACAAATTT
6 4 8 1 --------------------- + ----------------------+ --------------------- + ----------------------+ ----------------------+ -----------------------+

GTGAATCTATTATCGGAAACAGGGTCACTATCCCTAAGCTCCGAGTATAATCTGTTTAAA

D d e l

TCCTCAGAATTGGTTTCATTATTCCAATTTTTATCCATTTTTATAAATGAGTGGTTTGAT

AGGAGTCTTAACCAAAGTAATAAGGTTAAAAATAGGTAAAAATATTTACTCACCAAACTA

CAGGCAAACTTGGTGAAAATATACAAAACAACCAATATACCCTTAAATAAAATCCCAGGT
6601-------------- +--------------+------------ +--------------- +--------------+--------------+

GTCCGTTTGAACCACTTTTATATGTTTTGTTGGTTATATGGGAATTTATTTTAGGGTCCA
D r a l

I
T AAG GC AAAAT TAT GAAT CG TAT AT G T T AAAAT AC G AAAAG T T GG AAG T T T T GG T T T AAA

6 6 6 1 ---------------------+ -------------------- + ------------------+ ---------------------- + --------------------+ --------------------+
ATTCCGTTT TAAT ACT TAGCATATACAAT TTTATGCTTTT CAAC C T TCAAAACCAAAT T T

6 0 6 0

6 1 2 0

6 1 8 0

6 2 4 0

6 3 0 0

6 3 6 0

6 4 2 0

6 4 8 0

6 5 4 0

6 6 0 0

6 6 6 0

6 7 2 0
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D d e l
I

AATGCTATGAGTTGGATTTGGTAGGGAATTAGCCTTAGACCAGAAGATACCCAAACAACA
6 7 2 1 ---------------------+ ----------------------+ ----------------------+ ----------------------+ ----------------------+ ---------------------- +

TTACGATACTCAACCTAAACCATCCCTTAATCGGAATCTGGTCTTCTATGGGTTTGTTGT

AAGTTTTTGGATTTAAGGGTAACAGTTTACCAATTTAGGCAAAAGCCTAGTGGGAACGAT

TTCAAAAACCTAAATTCCCATTGTCAAATGGTTAAATCCGTTTTCGGATCACCCTTGCTA

AAGAAAATAAAATATAGATGTATAATTATAAACAAGGGGCAAACATGAAGGTATCTGGGA

TTCTTTTATTTTATATCTACATATTAATATTTGTTCCCCGTTTGTACTTCCATAGACCCT

TGTTTTGGGATCTTTTACTCCTTCACGAGCCCAACAACCGACCCAAGGATTACTTAATAG

ACAAAACCCTAGAAAATGAGGAAGTGCTCGGGTTGTTGGCTGGGTTCCTAATGAATTATC

D d e l  D r a l
I I

CCAAGGGTAACGGGAGTACATATCAACTATATCACTCAGAGAAGTTTAAATAGTCTGGGT

GGTTCCCATTGCCCTCATGTATAGTTGATATAGTGAGTCTCTTCAAATTTATCAGACCCA

AAGTATATGATAAGAAATTAGTTCAGTTCCATATTAAAATATTGTACACATCCAAGTGTC

TTCATATACTATTCTTTAATCAAGTCAAGGTATAATTTTATAACATGTGTAGGTTCACAG

ACATCCGAGCCACCTCTCCGTACAGTTCCTGAAAATTCTTTCAAGTTACTTATTATACCT

TGTAGGCTCGGTGGAGAGGCATGTCAAGGACTTTTAAGAAAGTTCAATGAATAATATGGA

GTAATTTTCTGTTCATTGATTTTTCCTTCTGTAATTGGCTCAACTGGAATGATATTCTCT

CATTAAAAGACAAGTAACTAAAAAGGAAGACATTAACCGAGTTGACCTTACTATAAGAGA

CCTCCGATGATCTTCTTTCCACCTGTTCCATTTCCTTGAATGAGTTGCAGTCATTTGTTG

GGAGGCTACTAGAAGAAAGGTGGACAAGGTAAAGGAACTTACTCAACGTCAGTAAACAAC

ATTG TATAATGGAATCATACATTTCTCCTATTACAATTTTATTATTTCTTCTACTTACCA

TAACATATTACCTTAGTATGTAAAGAGGATAATGTTAAAATAATAAAGAAGATGAATGGT

H i n d  I  
I

ATTTCTTTAAGTATTTTTTCTTCTCTACTGCGATACCCTCCAGTTGACACATTATACTTA

TAAAGAAATTCATAAAAAAGAAGAGATGACGCTATGGGAGGTCAACTGTGTAATATGAAT

D d e l
I

TTTTCCAGGCTTTTTATTCTCTTAGATAGATTTTCCAGGTGTTTCTCGTATTCTTTACAT  

AAAAGGT C C GAAAAATAAGAGAAT C TAT C TAAAAGG T C CACAAAGAGCATAAGAAAT G TA  

AACATTTCTTCCGCTAACTTTTGTTCTTGCAGTGTTAGCTTTTCACATGGCATATATCTC  

T T G T AAAGAAGG C GATT GAAAACAAGAAC G T CACAAT C GAAAAG T G TAC C G TATATAGAG  

TTTTGGAGGTGAGAATACTTAAAGTTGCTCGTTTTCCTATTAAATGTGTTGATTTTGGTA  

AAAAC C T C CAC T C T TAT GAAT T T CAACGAGCAAAAGGATAAT T TACACAAC TAAAAC CAT

6 7 8 0

6 8 4 0

6 9 0 0

6 9 6 0

7 0 2 0

7 0 8 0

7 1 4 0

7 2 0 0

7 2 6 0

7 3 2 0

7 3 8 0

7 4 4 0

7 5 0 0

7 5 6 0
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GAGAACGTACCATTCTAGCAACAAATTTGAATCTTCTAGGCCTTTTGACAAGTTTTCCGC
7 5  6 1 --------------------- + -----------------------+ -------------------- + ----------------------+ ----------------------+ ----------------------+

CTCTTGCATGGTAAGATCGTTGTTTAAACTTAGAAGATCCGGAAAACTGTTCAAAAGGCG

TTCGGAATCGATTAGTTTCCTTGATTCCTACAGATAATTTCAATTGGAGTTAGTTACCTC
7 6 2 1 --------------------- + -----------------------+ -------------------- + ----------------------+ ----------------------+ ---------------------- +

AAGCCTTAGCTAATCAAAGGAACTAAGGATGTCTATTAAAGTTAACCTCAATCAATGGAG

D d e l
I

TATTAGTTTCAAATCAAAATACTCCTTAGGTTTGTACTGGTCCGCAGTCTTCCGTGAGGA

ATAAT CAAAG T T TAG T T T TAT GAGGAAT C CAAACAT GAC CAG G C G T CAGAAG G CAC T C C T

ATAGGATGTTTCACACTGTCGTATGCCAGCAGGTTTACGAACTCTTCATTTATTAACTGG

TATCCTACAAAGTGTGACAGCATACGGTCGTCCAAATGCTTGAGAAGTAAATAATTGACC

TTATACTTGGACTGCGATTCATTAAATGTATTTTCTAGGTCATTTACAAAAACTATTGAA

AATATGAACCTGACGCTAAGTAATTTACATAAAAGATCCAGTAAATGTTTTTGATAACTT

TTGAAGACTACTGGTCTTGGCAGCTTTCTCTGGATGACTTGTGTCTCCAGGAGTTCTCTT

AAC T T C T GAT GAC CAGAAC C G T C GAAAGAGAC C TAC T GAACACAGAG G T C C T CAAGAGAA

TCTTCTTGTTTTTTCTTTTCCAATTCCTGTTTACGTCTTTCTATCTCTTCCATATCCAAA

AGAAGAACAAAAAAGAAAAGGTTAAGGACAAATGCAGAAAGATAGAGAAGGTATAGGTTT

TCTTGTTCAACTTCTTCCTCTTCCATGGTTTCAATATCTGGAATTGTAACTTCAACATTC

AGAACAAGTTGAAGAAGGAGAAGGTACCAAAGTTATAGACCTTAACATTGAAGTTGTAAG

CCTTCTGGCTCTGGGAGGTTTGACAAGC
8 0 4 1 ---------------------+ ----------------------+ -------------------  8 0 6 8

GGAAGACCGAGACCCTCCAAACTGTTCG

7 6 2 0

7 6 8 0

7 7 4 0

7 8 0 0

7 8 6 0

7 9 2 0

7 9 8 0

8 0 4 0
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.Appendix II. The nucleotide sequence of the TpmSl ~5.5kb contig, showing restriction 

ienzymes sites for Ava I, Dde I, Dra I, EcoRV, Hha I, Hinc II, Hind III, Hpa I, Kpn I, Nde I, 

Nhe I, Nsi I, Sal I, and Xho I. The numbers represent the sequence position with reference 

ito the most 5’ base. The TpmSl open reading frames is located between 2079-2974, and 

'ORF-1 between 5005-4053,
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H i n c I I
S a i l  | H i n d l l l

I I I
TCGAGGTCGACACTAGTGGATCCAAGAATTCAAAAAGCTTCGTCCCGTTTACAAAATACA

AGCTCCAGCTGTGATCACCTAGGTTCTTAAGTTTTTCGAAGCAGGGCAAATGTTTTATGT

AT GACAT TAT TAC GAGT C C TAC T T CC T T CAG CAATAC C C T GAAATAAT T TATACACAC T T

TACTGTAATAATGCTCAGGATGAAGGAAGTCGTTATGGGACTTTATTAAATATGTGTGAA
D r a l

I
GTTTACATCCACGCCTCCTTTAAAAGATTAAATGTGATCTCATTGGATATTATACCATTA

CAAAT G TAG G T GC GGAGGAAAT T T T C TAAT T TACAC TAGAG TAAC C TATAATAT G GTAAT

TTTAATTTCAACAACTCGTATGTTTCCGAGTTATCAACTGCATTTCCCGGATCGTGCCCG

AAATTAAAGTTGTTGAGCATACAAAGGCTCAATAGTTGACGTAAAGGGCCTAGCACGGGC
A v a l

D r a l  X h o l
I I

TTTAAATTAGATATATTACACGAGCCAACTTTAAGACTCTCGAGGTTATATGATCTATGA

AAATTTAATCTATATAATGTGCTCGGTTGAAATTCTGAGAGCTCCAATATACTAGATACT
D r a l

I
AAGATAAAAGGTTGTGTATTGGAGTTTTCTTCTCGGAAAATTCATTTAAATTCTTCTTAT

TTCTATTTTC CAACACATAACC T CAAAAGAAGAGC C T T T TAAG TAAAT T TAAGAAGAATA

TCAATTCGTGGATCATGTCCTTGATCACTTGCTTATTTTTTATCGGTTTTTTCTTCAATG

AGTTAAGCACCTAGTACAGGAACTAGTGAACGAATAAAAAATAGCCAAAAAAGAAGTTAC

TGTTAAATATCTTTACCAAAATCTCTCTCTGACTTTCCATCTTCTCATATCTATGCTCCA

ACAAT T TATAGAAAT G G T T T TAGAGAGAGAC T GAAAGG TAGAAGAG TATAGATAC GAGG T 
D d e l  

I
AATCATCACTGTTTGTCTCAGTTTTGTGCCGCTTTTCTGATGTTCCATGTACTTCGAGGT

TTAGTAGT GACAAACAGAG T CAAAACAC G G C GAAAAGAC TACAAG G TACAT GAAG C T C CA

TCTGTTCCTGAACTAACTTCTTGATGTTTTCATTAAAGAAATTAACCGAGTATTCTTTGG

AGACAAGGACTTGATTGAAGAACTACAAAAGTAATTTCTTTAATTGGCTCATAAGAAACC
D d e l

AATTCACAGGAAACTAAGGAGTAATTTTTAGACTTAAATATTACCTTAAAATGCTCAAAT

TTAAGTGTCCTTTGATTCCTCATTAAAAATCTGAATTTATAATGGAATTTTACGAGTTTA
D d e l

I
TTAGTATAACAAGGTGAAATAGTGACCTGATCACCTGGTTTCAGCCATGCTCTAAGCTCT 

AATCATATTGTTCCACTTTATCACTGGACTAGTGGACCAAAGTCGGTACGAGATTCGAGA  

GTCAAGTCTAGAGAGTTGAAGATCTCTGATGAAATGATCACAGTGACGGGTGTTATCTTT 

CAG TTCAGATCTCT CAAC T T C TAGAGAC TAC TTTACTAGTGT CAC T G C C CACAATAGAAA

GATAAATTAGTTAGTAACCGGTCGTAAAGCCTAGATTGAGGTTTCAAATATGATGTGTCG

CTATTTAATCAATCATTGGCCAGCATTTCGGATCTAACTCCAAAGTTTATACTACACAGC
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D d e l

AG TAGAT T TAT T T C CAAAG TAAC AG AC T GG T C T GAGAAT G T TAT TAT TAC T TAAT CAAAC
8 4 1 --------------------- + -------------------- + -----------------------+ -----------------------+ ------------------- + ----------------------- +

T CAT C T AAAT AAAGGT T T CAT T G T C T G ACC AG AC T C T T AC AAT AAT AAT GAAT T AGT T T G

C T T CAT T G C G AT GT AC TAT AT T AC AG T T T GAT AAT CCC AAAG T T C TAAAAAC C T CC AAAT
9 0 1 --------------------- + -------------------- + -----------------------+ ----------------------- + ------------------- + ----------------------- +

GAAGTAACGCTACATGATATAATGTCAAACTATTAGGGTTTCAAGATTTTTGGAGGTTTA
H i n c I I

D r a l  H p a l
I I

C AAG C T G T AAAT CAT T AT T GAAT GC AC T AAAT G AGAT AT T TAAAC AT AC AT T GAG T G T T A
9 6 1  ------------------ 1--------------------- 1-------------------------- I-------------------------- 1------------------- 1-------------------------- 1"

GTTCGACATTTAGTAATAACTTACGTGATTTACTCTATAAATTTGTATGTAACTCACAAT
D r a l

I
ACACCCCTTTGGAATTTATCACAAAATTGATCTTTGATTTATAATTATAATATATATTTA

TGTGGGGAAACCTTAAATAGTGTTTTAACTAGAAACTAAATATTAATATTATATATAAAT

AAAT T GAC AG T C T T T T AGG AAC C AAAT AAT T T AC AAT AAAG T C C AG AT T GAC C AAAG AT T

TTTAACTGTCAGAAAATCCTTGGTTTATTAAATGTTATTTCAGGTCTAACTGGTTTCTAA

CAAGAGTAATGTTCGATGCAACAAAGCATGTGTCCTGTGTAAAGTAAATTAGTCGTTTTT

G T T C T CAT TACAAG C TAC GTTGTTTC G TACACAGGACACAT T T CAT T TAAT CAG CAAAAA

AAT AAAT AAC AAC AAAAG T C GAAT AC AC AC T AAAAG TAT AT AT G T AAAAAT ACC C TAGAA

TTATTTATTGTTGTTTTCAGCTTATGTGTGATTTTCATATATACATTTTTATGGGATCTT

TTAAAAAGTTTCTCTCTGAAGGCATTAGCGAAAGGGGTCTCCTGGTAGGGATAGAGGACG

AATTTTTCAAAGAGAGACTTCCGTAATCGCTTTCCCCAGAGGACCATCCCTATCTCCTGC
D d e l

I
G T C GC C TAAAG T G TAAAT G T TAGGAAT C T CAG CAGAT TAT TAAAT CAT T GAAT T CAGAAT 

CAGCGGATTTCACATTTACAATCCTTAGAGTCGTCTAATAATTTAGTAACTTAAGTCTTA  

AAAAAACATAC G C T C T T GACAAAAT T T G GAGAAAAAATAACAG G GAG TAT T T GAG G CAAA 

TTTTTTGTATGCGAGAACTGTTTTAAACCTCTTTTTTATTGTCCCTCATAAACTCCGTTT  

AAAT T T T CAAAAT T T G GAC C CAGAAAAT C TAAAT GAGAC T GAC TAAAC T CAAAGACAT CA 

TTTAAAAGTTTTAAACCTGGGTCTTTTAGATTTACTCTGACTGATTTGAGTTTCTGTAGT  

CAC T C T GAT G GAAG T GACAATAGAT GAG TAC GAAC CAT GAT TACAAAT TACATAT TAAAA  

GTGAGACTACCTTCACTGTTATCTACTCATGCTTGGTACTAATGTTTAATGTATAATTTT  

CACGTTAGATGAGTGTTTTACGGAAAAGATGTGTGGGACCGTTTTAACTTGTGCGGAAAA  

GTGCAATCTACTCACAAAATGCCTTTTCTACACACCCTGGCAAAATTGAACACGCCTTTT

D d e l  D d e l  
I I

TTGATTAAAGTTATTCTCTATCTAAGTCTGAGTATTGTTATATGAAAATATAATAAATTA  

AAC TAAT T T CAATAAGAGATAGAT T CAGACT CATAACAATATACT T T TATAT TAT T TAAT

9 0 0

9 6 0

1020

1 0 8 0

1 1 4 0

1200

1 2 6 0

1 3 2 0

1 3 8 0

1 4 4 0

1 5 0 0

1 5 6 0

1 6 2 0

1 6 8 0
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ATGTGTGGAATAAATGAAGAAAAGTAGGTAGGAATCGTGTCCTAATATTTAACTGGGTCT

TACACACCTTATTTACTTCTTTTCATCCATCCTTAGCACAGGATTATAAATTGACCCAGA
D d e l

I
AGTGAACTAAAAATAAAGCAGGTTATTTGTTTGAAAAAACAACGAATTTTCTTTTTTCTA

T CAC T T GAT T T T TAT T T CG T C CAAT AAAC AAAC T T T T T T G T T GC T T AAAAG AAAAAAG AT

AGCGTCAAAAAATAAAAAATAGATAAATATATATGTTATGCAATTATGATGATGTGAAAT

TCG CAGTTTTTTATTTTTTATCTATTTATATATACAATACGTTAATACTACTACACTTTA

TGAGCGTTAGGGGTTAGGCGTGACGAGTGCAATGATACAGATGAACATGCACACAATTTG

ACTCGCAATCCCCAATCCGCACTGCTCACGTTACTATGTCTACTTGTACGTGTGTTAAAC

TTGGGCGAGAACGCTTTGTATGGTGAATCTTCCTCCATCTCACTTCAATTATAGTTATTG

AAC C CGC T C T T GC GAAAC AT AC CAC T T AGAAGG AG G TAG AG T GAAG T TAAT AT CAAT AAC

GTCTTTTTCCATAACATTTATCCGGTTATTTAATTTTTAATATTTGGATCGCTAACTAGT
1981-------------- +--------------+--------------+------------- +--------------+-------------- +

CAGAAAAAGGTATTGTAAATAGGCCAATAAATTAAAAATTATAAACCTAGCGATTGATCA

CTGCCTTTTGTTCGGTTTTTATAATATAATTATTTGAGATGTTGTCCAGAAATACCCTCA
2 0 4 1 -----------------------+ ----------------------+ ----------------------+ ---------------------+ ----------------------+ ---------------------- +

GACGGAAAACAAGCCAAAAATATTATATTAATAAACTCTACAACAGGTCTTTATGGGAGT

AGTTCTTATATTTGAGTTTCTTCGTTATCTCTTGCGTTAATGCCGCAAAAGAAGAAGAGA
2 1 0 1 ---------------------+ -------------------- + -------------------- + ------------------- + -------------------- + -------------------- +

TCAAGAATATAAACTCAAAGAAGCAATAGAGAACGCAATTACGGCGTTTTCTTCTTCTCT

AGAAGAAGGAGAAAAAGGAG GAT C T TACAG TTGATGTTACCCTTTCGTCAT GGGAAAATG
2161-------------- +--------------+--------------+------------- +--------------+-------------- +

TCTTCTTCCTCTTTTTCCTCCTAGAATGTCAACTACAATGGGAAAGCAGTACCCTTTTAC
A v a l

I
TTACTTCTACTCCCGAGGCTGGCGGTACATTATTGAAAGCCAATGAAGGTTACCGTTTCA

2 2 2 1 ---------------------- + ----------------------+ ----------------------+ ---------------------+ ----------------------+ ---------------------- +
AATGAAGATGAGGGCTCCGACCGCCATGTAATAACTTTCGGTTACTTCCAATGGCAAAGT

H i n c I I
I

AGACAC T TAAG G T C G GC GACAAGAC T T T G TACAAC G T T GACAC C T CAAAATAC GAT G CAG
2 2 8 1 -----------------------+ ----------------------+ ----------------------+ -------------------- + ----------------------+ ---------------------- +

TCTGTGAATTCCAGCCGCTGTTCTGAAACATGTTGCAACTGTGGAGTTTTATGCTACGTC

TACACCTATACAAACTTACCCATGATTCTGATGAATGGCTAAAGCTCCTTCTCCACCCAG
2 3 4 1  I------------------------ 1-----------------------1---------------------- 1------------------------1-------------------------f-

ATGTGGATATGTTTGAATGGGTACTAAGACTACTTACCGATTTCGAGGAAGAGGTGGGTC

CCAAGCCAGTGATGTTCAAGAAGAAGT CAGACAAGGAATAT TCCGAAG T CAAAT T CG AAA
2 4 0 1 -----------------------+ ----------------------+ -------------------- + --------------------- + ----------------------+ -----------------------+

GGTTCGGTCACTACAAGTTCTTCTTCAGTCTGTTCCTTATAAGGCTTCAGTTTAAGCTTT

CCTACTATGATGATGTCTTGTTCAAGGGGAAATCAGCCAAGGAACTCGATGCTTCCAAGG
2 4  6 1 -----------------------+ ----------------------+ -------------------- + --------------------- + ----------------------+ ---------------------- +

GGATGATACTACTACAGAACAAGTTCCCCTTTAGTCGGTTCCTTGAGCTACGAAGGTTCC

TCACTGATACTGGCTTGTTTACCCAAGAGAGCTTCGGCACTGGGAAGAAGTACACCTTCA
2 5 2 1 -----------------------+ ----------------------+ -------------------- + --------------------- + ----------------------+ ---------------------- +

AGTGACTATGACCGAACAAATGGGTTCTCTCGAAGCCGTGACCCTTCTTCATGTGGAAGT

ACAATAGCTTCAAACCTTCCAAGGTCTCATTCGACAAAAAAGATGTTGGAAAGCCCG AC A
2 5 8 1 -----------------------+ ----------------------+ ---------------------+ --------------------- + ----------------------+ ---------------------- +

TGTTATCGAAGTTTGGAAGGTTCCAGAGTAAGCTGTTTTTTCTACAACCTTTCGGGCTGT

1 7 4 0

1 8 0 0

1 8 6 0

1 9 2 0

1 9 8 0

2 0 4 0

210 0

2 1 6 0

22 20

2 2 8 0

2 3 4 0

2 4 0 0

2 4 6 0

2 5 2 0

2 5 8 0

2 6 4 0
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AGGCCAAGTTCCTCGACGTTTTCGTCTATGTCGGCTCTGATGACAAGAAGGTTGTTAGGC
2 6 4 1 --------------------- + ----------------------+ --------------------- + ----------------------+ ----------------------+ ---------------------- + 2 7 0 0

TCCGGTTCAAGGAGCTGCAAAAGCAGATACAGCCGAGACTACTGTTCTTCCAACAATCCG

TCGACTACTTCTTTGGTGGTGACTCAAGGTTGAAGGAGGTCTACTTCGAGCTTAAAGACG
2 7 0 1 --------------------- + ----------------------+ --------------------- + ----------------------+ ----------------------+ ---------------------- +

AGCTGATGAAGAAACCACCACTGAGTTCCAACTTCCTCCAGATGAAGCTCGAATTTCTGC

ACAAGTGGGTCAAAATGGAACAGAATGACGCAAACAAGGCATTGCATGCCATGAGCGATT

TGTTCACCCAGTTTTACCTTGTCTTACTGCGTTTGTTCCGTAACGTACGGTACTCGCTAA
H i n c I I
S a i l  | D d e l

I I I
CATGGAAATTGGACTACAAACCAGTCGTCGACAAGTTCTCTCCCCTTGCAGTCCTCGCCT

GTACCTTTAACCTGATGTTTGGTCAGCAGCTGTTCAAGAGAGGGGAACGTCAGGAGCGGA
D r a l

I
CAGTACTCATCGTCGCCGCTTCAGTCTTTTACAACCTTTAAAACCCATGTGCGTAACAAC

GTCATGAGTAGCAGCGGCGAAGTCAGAAAATGTTGGAAATTTTGGGTACACGCATTGTTG
D r a l

I
T TAT CAAC G T T TAAAACAATAT T GATAAT T T G TATACAAT TACAGCAGC TAAC TAACT TA

AATAGTTGCAAATTTTGTTATAACTATTAAACATATGTTAATGTCGTCGATTGATTGAAT

AGTCATTTTATTGACCACTTAATTTCATACCCTTCGACATATCTATCTAGTTATTACCAG

TCAGTAAAATAACTGGTGAATTAAAGTATGGGAAGCTGTATAGATAGATCAATAATGGTC

TTTACAGTTTTGATTTCTACGTTTTTATATCTCTTGAGAATAGTTATAGTAAGCAGGTGA

AAATGTCAAAACTAAAGATGCAAAAATATAGAGAACTCTTATCAATATCATTCGTCCACT
H h a l

TAGCGCCGCAACAGATTTTAGTAACCGTAGATTCCTCTTCTACCTCCTCCGGTACGTTGT

ATCGCGGCGTTGTCTAAAATCATTGGCATCTAAGGAGAAGATGGAGGAGGCCATGCAACA
H i n c I I

H p a l

TGGCACCTGTAGCATTTAATTTGACAATTGTACTAATATGTTAACTAGAATTTATATAAA

ACCGTGGACATCGTAAATTAAACTGTTAACATGATTATACAATTGATCTTAAATATATTT

GAAAATTACTGAAGAGAAGGTCGAATTCGGAGTAGGAATTGAATTCCTCTTCAGCGACTT

CTTTTAATGACTTCTCTTCCAGCTTAAGCCTCATCCTTAACTTAAGGAGAAGTCGCTGAA  
D d e l  D d e l

I I
CCGCATAAAAATCTCAGACATAGGCTTGGAACGAAGCCTTAAGTCCCTAAGGAGATTACA

GGCGTATTTTTAGAGTCTGTATCCGAACCTTGCTTCGGAATTCAGGGATTCCTCTAATGT

GTACTGAAGGAAAGTCGTCTTGACCCAGAAGTTGGAAGTGAAGACAAAGTAATAATCTTT

CATGACTTCCTTTCAGCAGAACTGGGTCTTCAACCTTCACTTCTGTTTCATTATTAGAAA

ACGAATTTGATATTCATTCACAGAATAAATCTCAAGCATGAGGTGTTTCCCATTCTTTTC

TGCTTAAACTATAAGTAAGTGTCTTATTTAGAGTTCGTACTCCACAAAGGGTAAGAAAAG

2 7 6 0

2 8 2 0

2 8 8 0

2 9 4 0

3 0 0 0

3 0 6 0

3 1 2 0

3 1 8 0

3 2 4 0

3 3 0 0

3 3 6 0

3 4 2 0

3 4 8 0
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CTGAAGATGTATCTCAATGACACCCTCGCCTCCGACTCCATTCCAGATAACCACACAGTT
3 4 : 8 1 --------------------- + ----------------------+ ----------------------+ --------------------- + ---------------------- + ---------------------- +

GACTTCTACATAGAGTTACTGTGGGAGCGGAGGCTGAGGTAAGGTCTATTGGTGTGTCAA

GTCGAAGATCTTGTTGATTTTCTCACTGCCAACAGATGTGATCATTAACGTCTCCAAAGT

CAGC T T C TAGAACAAC TAAAAGAG T GACGGT T GTCTACACTAGTAATTGCAGAGGT T T CA 
D d e l  

I
GTACCCTGAGTATTTCCTGACTGTTATGTTTTGATTAAACTCCAGGTTGTGAAGGTTAAT

CATGGGACTCATAAAGGACTGACAATACAAAACTAATTTGAGGTCCAACACTTCCAATTA
D d e l

I
CTCGAAGTTACACAGGGACTGAGATACACACAAGCAAAAAAGTGGGAGGAATAAACGTTT

GAGCTTCAATGTGTCCCTGACTCTATGTGTGTTCGTTTTTTCACCCTCCTTATTTGCAAA

CATTTCCTAATATTAACTATATAAGTTATTTGGTCTGAATGTTTTTTATAAATAGTTTTA

GTAAAGGAT T ATAAT TGAT AT AT T CAAT AAACCAGACT T ACAAAAAAT AT T TAT C AAAAT
N h e l

I
TATAAAATATTTTAGATCAAATGTATAAATCCAGAAACAAAATTAGAGAAAGCTAGCTCA

ATATTTTATAAAATCTAGTTTACATATTTAGGTCTTTGTTTTAATCTCTTTCGATCGAGT

AAAG C C T T G GAAAT TAAAAT G T T GG T T GAGATATAAAT TAGGAAAAAC CAAT T TAT GAGA

TTTCGGAACCTTTAATTTTACAACCAACTCTATATTTAATCCTTTTTGGTTAAATACTCT

AT T T TAT GGAAAT G T T T TAC T GACAGAT TAT TATAAAAAT T T T GAGAAATTAAAAAC T T T

TAAAATACCTTTACAAAATGACTGTCTAATAATATTTTTAAAACTCTTTAATTTTTGAAA

CATCGAAAAATTAAAAAGGAACAGCGACATATTAATAAAGCGATTCACTTAAAAGTAAAA

GTAGCTTTTTAATTTTTCCTTGTCGCTGTATAATTATTTCGCTAAGTGAATTTTCATTTT
D r a l

GTAAACAAATTGATTAATGTTGATAATAGTTAAAATTTAAATGTAAAAAATGTCATTAAA

C AT T T G T T T AACT AAT T ACAAC T AT TAT CAAT T T T AAAT T T ACAT T T T T T ACAGT AAT T T

AGAGATTAATCAACTTTAATTAGTGGTGGCTGATGAGTCAGTATTTTGCTGCTGCTTATG

TCTCTAATTAGTTGAAATTAATCACCACCGACTACTCAGTCATAAAACGACGACGAATAC
D d e l

CTTAGATTTACTTTTGAAATATTTCCTTTCGTGTGTTTTATTCTCTGAATTGACTGCGTT  

GAAT C T AAAT GAAAAC T T TAT AAAG G AAAGC ACAC AAAAT AAGAG AC T T AAC T GAC G C AA

ATTTTGTGGCTTTTCATTCGCGGAGTTCCTCCAGCTCTCATCATCGTCCCTAGGACGTGG

TAAAACACCGAAAAGTAAGCGCCTCAAGGAGGTCGAGAGTAGTAGCAGGGATCCTGCACC

CTTGGCCCTGTGACGAGATCTACGAGACCTACCAGAGCCACTGCCTGAAGTGGCAGGCTT

GAACCGGGACACTGCTCTAGATGCTCTGGATGGTCTCGGTGACGGACTTCACCGTCCGAA
D d e l

CTCAGTTTTGGGGACAGAAGGTTGTGGATCAGAAACGCCAGTTGTAGGTGGGGGATCTGT

GAGTCAAAACCCCTGTCTTCCAACACCTAGTCTTTGCGGTCAACATCCACCCCCTAGACA

3 5 4 0

3 6 0 0

3 6 6 0

3 7 2 0

3 7 8 0

3 8 4 0

3 9 0 0

3 9 6 0

4 0 2 0

4 0 8 0

4 1 4 0

4 2 0 0

4 2 6 0

4 3 2 0

4 3 8 0
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AGAAGGTGTGGCGTTTGGAGGTTGAGAAGTTGGAACCTCATTGGAATTTATTTGGGTCAG
4 3 : 8 1 ---------------------+ ----------------------+ --------------------- + ----------------------+ ----------------------+ ---------------------- +

TCTTCCACACCGCAAACCTCCAACTCTTCAACCTTGGAGTAACCTTAAATAAACCCAGTC
D d e l

GCTTAGTGAATAACCTGTCCTTTTTATCCTTTTGAGGTTCGCATTTGTGTTTGGTTGATT

CGAATCACTTATTGGACAGGAAAAATAGGAAAACTCCAAGCGTAAACACAAACCAACTAA

AGAAT T T G CATAT T T GAGCAT TAGAAGAC GAAC TAG T G TAT T T T C TACGT C T T GAATAAC

TCTTAAACGTATAAACTCGTAATCTTCTGCTTGATCACATAAAAGATGCAGAACTTATTG

GATCCTTTTTACGCTTCTCTACTCCAGCTGGTAAAGTAGTTGTGAGGGTTTCACGAATTG

C TAG GAAAAAT G C GAAGAGAT GAG GTCGACCATTTCAT C AACAC T C C CAAAG T G C T TAAC

TAGTGTCAAGCTGGTCTGAAAGTGTATTTTCCAGCTGATTTGATAGTGTGTTGTCGATTT

AT CACAG T T C GAC CAGAC T T T CACATAAAAG G T CGAC TAAAC TAT CACACAACAG C TAAA

GATCTGATAATGTGTTTTCTAGCTGGTTTGTAAGCCTATTCTCAAGCTGGCCGACAAGTC

CTAGACTATTACACAAAAGATCGACCAAACATTCGGATAAGAGTTCGACCGGCTGTTCAG

TTTCATCCAACTTGTTTGTTTGTGAATCTTGTAAAAGAATGGAGTTGTCTTTGAAGTTGG

AAAG TAG G T T GAACAAACAAACAC T TAGAACAT T T T C T TAC C T CAACAGAAAC T T CAAC C

TTAAATCCAGAAAAGGCTGGGACAGCTTATCAGATACATACCCCTTAATTGTTAGACCAT

AATTTAGGTCTTTTCCGACCCTGTCGAATAGTCTATGTATGGGGAATTAACAATCTGGTA

CGTCCGGTGCTCTATCTGACAGAATTGAGTGATTAAGGGTGTCAATTGCAGTTGTCAGTT

GCAGGCCACGAGATAGACTGTCTTAACTCACTAATTCCCACAGTTAACGTCAACAGTCAA

CTGCCTCATTGTATCCTTCACTTTTGTTATCAAGCCAATTAGAGTCCGATACAGTAGGCG

GACGGAGTAACATAGGAAGTGAAAACAATAGTTCGGTTAATCTCAGGCTATGTCATCCGC
A v a l
X h o l

I
ACCCTACCATGACGTTTGGCTTAAACATTTGAGGTCTCGAGCTCTTCAGCCTTGTGGCAT

TGGGATGGTACTGCAAACCGAATTTGTAAACTCCAGAGCTCGAGAAGTCGGAACACCGTA
D d e l

I
ACTGCTGAAAACCTTGGTAAATGCCGTTAGGGTTAGCTGGATATGGAACTGAGGGTGGAG

TGACGACTTTTGGAACCATTTACGGCAATCCCAATCGACCTATACCTTGACTCCCACCTC

GTGGAGGTGGAGACTCTACGCCTCTTCCAATGAAGTTGGTAAATCCCAGGGGGTAGTTAC

CACCTCCACCTCTGAGATGCGGAGAAGGTTACTTCAACCATTTAGGGTCCCCCATCAATG

CCTTCATTCCAGGCATCAGGAAGTCAGTACCCAGGATATTGTCAGAGTCTTCGTTGCTGG

GGAAGTAAGGTCCGTAGTCCTTCAGTCATGGGTCCTATAACAGTCTCAGAAGCAACGACC

AATTCCTGAAAGACAAAGAGTTTGAATAGCTGCTGTCACGACTACTATGGAATCCTGGGC

TTAAGGACTTTCTGTTTCTCAAACTTATCGACGACAGTGCTGATGATACCTTAGGACCCG

4 4 4 0

4 5 0 0

4 5 6 0

4 6 2 0

4 6 8 0

4 7 4 0

4 8 0 0

4 8 6 0

4 9 2 0

4 9 8 0

5 0 4 0

5 1 0 0

5 1 6 0

5 2 2 0

5 2 8 0
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TTGCAACCGACTTAACACTCGAAATTCTGTGCTTGAACTTGTACCTAGTACTTCGAGGTT
5 2 8 1 --------------------- + ----------------------+ ----------------------+ ----------------------+ ----------------------+ ---------------------- + 5 3 4 0

AACGTTGGCTGAATTGTGAGCTTTAAGACACGAACTTGAACATGGATCATGAAGCTCCAA

CTTTAGAAAGGCGATCTTGGTCATTTGTAACGCTGGAGGCTTCAGAGATACGATTATTTA

GAAATCTTTCCGCTAGAACCAGTAAACATTGCGACCTCCGAAGTCTCTATGCTAATAAAT
A v a l

I
CACTAACATCGCGGTTACTTGACCCGAGTAGATCTGGGAATGACACGTCGTCCAGTGTTC

GTGATTGTAGCGCCAATGAACTGGGCTCATCTAGACCCTTACTGTGCAGCAGGTCACAAG
H i n c I I

H p a l
I

CACTGCATATCTTTTATTTAATTAGTTAACTTACGTTTTAGTTTCAACGTTTGAGTCGTA

G T GACGTATAGAAAATAAATTAAT CAAT T GAAT GCAAAAT CAAAGT T GC AAAC T CAGCAT
H i n c I I

H h a l  H p a l
I I

CTTTGCTTCTGACTCCCAGGCGCTTCCGGCAGTCTTAATCTGGCTGGTCGTGTTAACTGC

GAAAC GAAGAC TGAGGGTCCGC GAAG G C C G T CAGAAT TAGAC C GAC CAG CACAAT T GAC G
H i n c I I

H p a l
I

AATAGCCCCGGACACTAACACTTATACCTGAATAAAATGTTAACCTTTGGTTGTATATAT

TTATCGGGGCCTGTGATTGTGAATATGGACTTATTTTACAATTGGAAACCAACATATATA

H i n d l l l

AAGCTTGAGTA
5 6 4 1  + -  5 6 5 1

TTCGAACTCAT

5 4 0 0

5 4 6 0

5 5 2 0

5 5 8 0

5 6 4 0
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Appendix III Comparison of the TamSl contig with the TpmSl contig over the 5.0kb. The 

T.annulata {TamSl) and T.parva {TpmSl) sequences were derived from the genomic clones 

from chapters 2 and 3 respectively. The numbers represent the sequence position with 

reference to the most 5’ base. All alignments are made to the TamSl sequence and dash 

represents identity, dot represents a gap and any substitutions are shown by the relevant 

letter. The protein coding start site for the 30kDa polypeptide is located at base 2127 (ATG 

sequence is boxed) and terminates at 3026 (highlighted in bold print). The protein coding 

sequence for the Ta-ORF-1 gene starts are position 5063 (ATG sequence is boxed) and 

terminates at 4109 (highlighted in bold print).
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1 5 0
T a m S l  ------ - -  —  - - -  —  - -   ---------------------- ----------------------------------------- ---------t
T p m S l  TCGAGGTCGA CACTAGTGGA TCCAAGAATT CAAAAAGCTT CGTCCCGTTT

5 1  1 0 0
T a m S l  ATATAGTACA ATGATATTAT TACAAGTCCC ACCTCCCTCA GCAACACCCT 
T p m S l  - C - A - A   C   G T - - T  T   T -----------

1 0 1  1 5 0
T a m S l  AATGAATATC TTATTTATAT ATTTATTCAT ACCATGCTTC CTTTAACAGA  
T p m S l  G - . .  A A T  A C -C -C  T - G - T - A  .  C— C— -------------A -------

1 5 1  2 0 0
T a m S l  TTAAATGAAT ACTCGTTTGA TATTATACCA TTATTTAATT TCAACAACTC
T p m S l  ------------------ TGA T  A - - G — ----------------------- ------------------------------------------------------

2 0 1  2 5 0
T a m S l  ATATGTTTCT GTGTTGTTAA CTGCGTTTTG TTGATCGGTA TCGTTTGAAT  
T p m S l  G C - A -A - C —  A  CC - G --------------------- TGC C A ------

2 5 1  3 0 0
T a m S l  TAGAGAAATT ACAGGAGCCA ACCTTGAGAC TTTCGAGGTT TATGTGATCT  
T p m S l   T - T   C----------------------  A ---- C  .   A --------

3 0 1  3 5 0
T a m S l  ATGAAAGATA TAAGGTTGTG TATTGGTGTT TTCTTTTCTG AAAATTCGTT  
T p m S l  ----------------------- A ---------------------------------- A ------- ------ C -G — ----------------- A —

3 5 1  4 0 0
T a m S l  TAAATTCTTC CTATTCAGTT CGTGGATCAT GTCCTTAATC ACTTGCTTGC  
T p m S l  ----------------------- T ---------------A — -------------------------------------------G --------------------AT

4 0 1  4 5 0
T a m S l  TTTTTAACGG TTTCTTTTTC AATGTGCTAA ATACCCTTTA CCAAAATCTC

4 5 1  5 0 0
T a m S l  TCTCTGACTT TCCATTTTCT CATATCTATG TTCCAAATCA TCGTTATCTA  
T p m S l  --------------------------------  C----------------------------- C------------------------ — A C - G - . - T

5 0 1  5 5 0
T a m S l  GTATCAGTTT TAAGACGTTT TCCACAACTT CCGTTTAATT CATGGCTCTG
T p m S l  — C----------------- -G T G C — C—  - T - T G - T G —  — A - G — C—  -G A — T ----------

5 5 1  6 0 0
T a m S l  TTCTTCAACT AACTTCTCAA TGTTTTCACT AAAGAACTTT AGAGAGTATT
T p m S l   C -G  ---------------T G - -------------------- T - ---------------- A — A - C C -----------------

6 0 1  6 5 0
T a m S l  CCTTGTGGTT CAGGGGGACC TAAGATGAAA CTTTTGGGAT CTCAAAATTA
T p m S l  - T  GAA—  — CA— A - A -  G A -T —  .  T A G -C  T - A — T ----------

6 5 1  7 0 0
T a m S l  CCCTAAAATG CTCAACATTA GTACGACAGG GAGAAATTGT AACCTCTTGA  
T p m S l  — T ------------------------- A T ---------- TA -------A -  - T ------------A —  G--------- G A -C -

7 0 1  7 5 0
T a mS l  CCCGCCTTTA GAGATGTTCT AAGCTCGTTC AAATCCATAG AGTTTAAAAT  
T p m Sl  — T -G T  —  C -  -C C  C --------------- TG—  — G— T - G —  G— G —

275



7 5 1  8 0 0
T a m S l  TTCCGATAAA ATGATCACAG TTGATGGCGA TATCTTTGAT AAACTAAATA
T p m S l  C— T  G— ------------------------ -G A C G — T - T ---------------------------- --------T - - G T - -

8 0 1  8 5 0
T a m S l  GTAAACGTTC GTAAAGCCTC GAATGAGGTT TCAAATACGA TGTGTCCAGT 
T p m S l  ------ C - - G - - ------------------------ A  — T --------------- ------------------- T — ---------------G------

8 5 1  9 0 0
T a m S l  AAATTTATTT CCAAAGTCAC AGACTCATCT AAAGAAGTTA TTACCACTAA  
T p m S l  - G -------------------------------------- A — ------------GG G -G A -T   T T  T -

9 0 1  9 5 0
T a m S l  ATCAAACCTT CGTTGCGATG TGTTATATTA CAGTTTGACA ATCCTATAGT
T p m S l  -------------------------- A -----------------------A C ------------------- ----------------------T -  C - A -------

9 5 1  1 0 0 0
T a m S l  TCTGAAAACT TCCAGATCAA GCTATAAATT ATTATAAAAT ATAACAAATG  
T p m S l   A ---------C ------------A ------------------  G--------C ------------ TG-------G C -C T --------------

1 0 0 1  1 0 5 0
T a m S l  AAATTATTAA ACATACATTG ATTGTTAACA CCCCTTTGGA GCTTATTATG
T p m S l  - G — A  -------------------------- G -------------------------------------------------A T  C -C A

1 0 5 1  1 1 0 0
T a m S l  AAATTGATTT TCGATTTATA ATTATAATAT ATATTTAAAA CGGAGAGTCT

1 1 0 1  1 1 5 0
T a m S l  TTTGGGAACC AAATAATTTA CAATAAAGTC CAAATTAAGC AAAGACGTCA  
T p m S l   A ---------------------------------------- -------------------------- — G----------G - C - ------------T T C A -

1 1 5 1  1 2 0 0
T a m S l  GAGTAATGTT CGAAACAACA AAGCATGTGT CCTGTTTAAC TCAAATTAGT  
T p m S l  ------------------------------  TG-------------------------------------------- G-A GT-------------------

1 2 0 1  1 2 5 0
T a m S l  CATTTTAAAT AAATTAAGGG GTAAAATCAA ATACACATCA AAAGTATAAA  
T p m S l  CG T  -------. -------CAA CA-------G - C G - --------------C T - ---------------------- T -

1 2 5 1  1 3 0 0
T a m S l  TATATAAAAT ACCTTAGAAT TAAAAAGATC TCTCTAAAAG AATCAATGCA
T p m S l  - G — A  TA C A G A -T -  A  G T - T - ---------------G— G - C —  T -G C G A -

1 3 0 1  1 3 5 0
T a m S l  AGGATTCTCT TGGGTAGGGA TGAGAGGCAC CGTTGCCTAT ACGACAGATA  
T p m S l   GG C  TAG— AT A  GACGGT — ...................................................... CC

1 3 5 1  1 4 0 0
T a m S l  TAGAGTGTTA GGATCGACAA GCACAGTAGT TTAATTACAT ATTACAATCT
T p m S l  — A  A -  A T G -T A G G —  T - T  C — A  T - A - A T C  G A -T — A

1 4 0 1  1 4 5 0
T a m S l  GGATAGATGT ATAGAAATAA AAAGAGCATA CACACCTCTA TCTGTAACTC
T p m S l  - A   - A -  A  TACGCT C T — A C -A A A

1 4 5 1  1 5 0 0
T a m S l  TCTGGAGAAT AAATAGGGTG TACTATTTGC TGAAGAAAAT TTTCAAAATC  
T p m S l  - T --------------A --------------AC A G - G -G  A G - C - A  ----------------------T
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1 5 0 1  1 5 5 0
T a m S l  CGGGCCGGTA ATATCTGAAG GAGACTGATT AAACTCAAAG ACATCACACT
T p m S l  T - - A — C A G - - A  A — T --------------------C - ------------------------ ---------------------------

1 5 5 1  1 6 0 0
T a m S l  CTGATGAAAG TGAAGGCGGG TAAGGACAGC TCATAACGAC AAATTCAGTA  
T p m S l  --------------G------ --------- C A A T A -A  - G — T — GAA C G -T T — ------------ACA—

1 6 0 1  1 6 5 0
T a m S l  TAAAAACATA ATGAATGATT GTTTTAAGGA AATGATGTGT GGAATCACGG 
T p m S l  T T -------------- CG T -A G  G - -------------- C------ — A ------------------- — G -C -G T T T

1 6 5 1  1 7 0 0
T a m S l  TTATTTGTGC GGGAAATTAT GCATGGATAT TATCTATTTA ACTTATAATA  
T p m S l  - A - C -------------— A ---------------- GA T T -A A -T  - C ------------ C —  - G - C T G - G - -

1 7 0 1  1 7 5 0
T a m S l  ATGTTATATT AAAATATGAC AAATTAATGT GTGAAATAAA TAAAGTAAAG  
T p m S l  T ---------------- G ---------------- A - T --------------------------------- G---------- - G  A ------------

1 7 5 1  1 8 0 0
T a m S l  TGGAGGGAAA TTCTGTCCTA ATATTTAACT GGGTCTAGTG ACTTAAAAAA
T p m S l  -A - G T A - G —  -C G -------------------------------------------- -------------------------- - A C - . --------------

1 8 0 1  1 8 5 0
T a m S l  GAAAGCAGGT TATTGGTTTG AAAAAATAAT AAATTCATCT TTTTATAGTC  
T p m S l  T ----------------------------- T ------------------------C— C G T T C T -  C— AGC

1 8 5 1  1 9 0 0
T a m S l  ATCAAAAAAT GAAAAATGGA TAAATATACA TGTTATTTCA TTAAGATGGA  
T p m S l  G--------------------- A --------------- A — -------------------- T - -----------G C A - ----------T ----------AT

1 9 0 1  1 9 5 0
T a m S l  CTTCAATGGA GGATAAGGCA TTAGGCGTGA TGAGTGCATA GATACAGATA  
T p m S l  G -G A ---- T —  -C G ------------G G -------------------------C----------------- A T ------------------------ G

1 9 5 1  2 0 0 0
T a m S l  AACATGCACA CAATTTGTAG GGCGACATTG TTTTGTATGG TGAATGCATA
T p m S l ------ ---------------------------------------------T -  G -A C -  C-------------------------  CTTCC

2 0 0 1  2 0 5 0
T a m S l  TCCATCTCAC TTCACTTATA GTTATTGGTC TTTTTTTCCA TAACATCCAC  
T p m S l  -------------------------------  A ---------------------------------  . . ---------------------- T T -T

2 0 5 1  2 1 0 0
T a m S l  CCAATTAGTT AATTTTTAAT ATTTAAATCG CTCACTAGTC TGCCCTTTCT
T p m S l  — GG T — ------------------------ ---------- GG — A ----------------------------- T  G -

2 1 0 1  2 1 5 0
T a m S l  TATC TTTTTA TAATATAATT ATTTGAGATG TTGTCCAGGA CCACCCTCAA
T p m S l  —CGG' - A -  AT-

2 1 5 1  2 2 0 0
T a m S l  GTTCTTATAT TTGAGCTTCT TCGTTATCTC ATCCGTTAAT GCTGCAAATG

2 2 0 1  2 2 5 0
T a m S l  AGGATGAAAA GAAAAAGGAG GAAAAAAAAG ATGTTGTTCT TGATGTTACT  
T p m S l  - A G - A — G—  G--------------A  G G -G - — C— AC A G - -------------------------C
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2 2 5 1  2 3 0 0
T a m S l  CTCACTTCAT GTGAGAATGT AACCTTTAAA AACGTCGACT CTAACACCAC
T p m S l  — T T -G  - G — A  T - C T - C - . . .  -C T C C  GG — G G -G G T —

2 3 0 1  2 3 5 0
T a m S l  TGAGTTAACT GTCGCGGATG GCTACCGTTT CAAGACCCTT AAGGTCGGAG 
T p m S l  A T T A — G -A A  - C - A A T — A -  - T ----------------------------- A ---------------------- C -

2 3 5 1  2 4 0 0
T a m S l  ACAAGACCTT GTTCAATGTT GACACCTCAA AACATACCCC AGTACAGGCA
T p m S l  ---------------------T —  — A  C  -----------------------— T - C G A T G - ----------------- C C T -

2 4 0 1  2 4 5 0
T a m S l  TTCAAACTTA AGCATGAATC CGATGAGTGG TTCAGACTTA ATCTTCACCC  
T p m S l  TA-------------------CC---------------- T —  T  A  C - A - A G - -C C  T  C -----------

2 4 5 1  2 5 0 0
T a m S l  TGCCCAGCCA AAGATGTTCA AGAAGAAGGG AGACAAGGAA TATTCTGAGG
T p m S l  A  A  GT-----------------  T C -------------------------- -------------- C— A -

2 5 0 1  2 5 5 0
T a m S l  TCAAATTCGA GACCTACTAC GATGATGTCT TGTTCAAGGG AAAATCCGCC  
T p m S l  ------------------------A -------------------T -------------------------- ---------------------------G A ---------

2 5 5 1  2 6 0 0
T a m S l  AAGGAACTAG ATGCTTCCAA GTTCGAAGAT ACATCTTTGT TCACCTCCTC
T p m S l ----- -------------------- C - -GG— AC T — TGGC T T  CAAGA

2 6 0 1  2 6 5 0
TaimSl  CGCCTTCGGC ACTGGAAAGA TGTACACCTT TAAAAAGGAA TTTAAACCTT  
T p m S l  GAG-------------------------  G---A ------------------------C— C —  TAGC — C -------------------

2 6 5 1  2 7 0 0
T a m S l  CCAAAGTCAC CTTCGACAAG AAAGAAGTCG GAAAACCAAA CAATGCCAAG 
T p m S l   G T -  A ----------------A -------------- T —  T - --------- G— C G -  G--------------

2 7 0 1  2 7 5 0
T a m S l  TATCTTGAAG TTGTTGTTTT TGTTGGTTCT GATTCCAAGA AGTTCGTCAA  
T p m S l  T - C - - C - - C -  — T -C  —  C - A  C — C  GA — G - T - - T - G

2 7 5 1  2 8 0 0
Ta.mSl  ACTCTACTAC TTCTATACCG GTGACTCAAG GTTGAAGGAG ACCTACTTCG  
T p m S l  G G  T - G G T - ---------------------------------------------------GT----------------------

2 8 0 1  2 8 5 0
T a m S l  AGCTTAAGGA CGATAAGTGG GTTCAAATGA CACAGGCAGA TGCAAACAAG  
T p m S l  ----- A —  C-------------------------— CA --------------G A -----------AA T—  C----------------------

2 8 5 1  2 9 0 0
T a m S l  GCCTTGAATG CCATGAACTC ATCCTGGTCA ACCGATTACA AACCAGTTGT  
T p m S l  - - A  C -G -G A  T - - A  A A - TTG— C -------------------------------C —

2 9 0 1  2 9 5 0
T a m S l  CGACAAGTTC TCCCCCCTTG CAGTCTTCGC CTCAGTACTC ATCGTCTTCT  
T p m S l  ------------------------— T ----------------------------  C--------------------------------- G C -G

2 9 5 1  3 0 0 0
T a m S l  CATCAGTCCT TTACTTCCTT TAAAACCCAT GTTCGTAACA ACTTATCAAC  
T p m S l  - T ----------- T - ------------AA--------- ---------------------------— G------------------- ---------------------------
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3 0 0 1  3 0 5 0
T a m S l  TTTTAAAACA ATTTTGATAA TTTGTATACA ATTGCAGAAA CTAAATAACT  
T p m S l  G--------------------- - T A ---------------------------------------   A ------- C - G ---- C------------

3 0 5 1  3 1 0 0
T a m S l  AGCTTAAGTC ATTATATGCC ACTTAATTTT A T A .C T T T A A  ACTTATATGT
T p m S l  T A A G -C -T -  . .  T G A - - ---------------------- C --------C - C - - C G  — A -------C - A -

3 1 0 1  3 1 5 0
T a m S l  TTAGATATAA C . . TTCAACA GCTATAGGTC ATCAATATCC AAGTCACGGT
T p m S l  C— G T T -  -C A G -T T   - T - T - G A T - T  C -A C G -T -T T  - T A — T -T T G

3 1 5 1  3 2 0 0
T a m S l  AA AATC G . . .  CGGCCCTCAC GCTAACCAGC TAAAAGCAGA ACAGCAAACT
T p m S l  - G  A -T T A  T A -T A A G — G -T G -T A G C —  CGC— CAGAT TTTAG T C

3 2 0 1  3 2 5 0
T a m S l  CTGGTTATCG CAGCTTCCTC TTCACTTTCG TCATCTCTTT CCACAGTGTG
T p m Sl  G - A - A - T C - T  - T T — A   C - - C G G - A - -  -T G -T G G C A C  - T G T - - C A - T

3 2 5 1  3 3 0 0
T a m Sl  CAATGAACCT GTAAAAATTA AGTGAATTGT AAAAATGAAA TTATTAATCT
T p m Sl  T  T T G A -A  A - T G T - C - A -  TA— T T A A C - - G — T - T - T -  - A - A G — A A -

3 3 0 1  3 3 5 0
T am Sl  TACTGAAAAG ACGGTCGAAC TCAGAATAGG CATCGTAATC GTCCTCAACA
T pm Sl  -------------------G—  - A ------------------ T — G— G A — T - A - T —  C— T  G -G

3 3 5 1  3 4 0 0
TamS l  A C  CCC TAAAGCCTCG TTAATAGGAC GAGAATAGAG CC G T.AG TCC
T pm Sl  - -T T C C G -A T  A  A T  A GAC CT TG CGA—  — T - A -----------

3 4 0 1  3 4 5 0
T amSl  CTAAGCAAAT TCTGGTACTG AATGAAACTA GTCCTCAGCC AGCACCTGCG
T pmSl   G -G —  -A C A --------------— G G -C  — T - G - C —  — A -G T — GA

3 4 5 1  3 5 0 0
T amSl  AGTGAACACG AAATGGTAGT CCTTGCGCAC ATCGTCCTGA TTCACAGAGT
T pmSl  ----------------G— A — G -A A — A -  - T — A — A -T  T - G A - A T - C - -------------------A -

3 5 0 1  3 5 5 0
TamSl  ATATCTCCAT CATGAGGTGG TTTCCATTCT TCTCACGCAA AAAAATCTCG
TpmSl  - A  A - G ------------------------ T — C---------------- - T  —  C T -A -G  -T G T  A

3 5 5 1  3 6 0 0
TamSl  ACGACACCCT CACTGCCGGC GCCAGTCCAA ACAACGATGC AGTTGTCCAA
TpmSl  - T -- G - C T  A -  T  T  G - T  C - C A - ------------------G—

3 6 0 1  3 6 5 0
TamSl  GATTCTGTTA ATTTTGTCCC TGCCAATCGA AGTGATAATG GTAGTGTCCA 
TpmSl   C T  G  C— A - ----------------CA—  T  C - T -  AA C— C---------

3 6 5 1  3 7 0 0
T amSl  AAGTGTACCC TAGGTGTTTC CTGACCCTTA TGTTTGAATT AAACTCCAGG  
TpmSl  -------------------------G A — A   TG ------ TG --------------------------------

3 7 0 1  3 7 5 0
TamSl  TTGTGGAGAT TAATCTCAAA GTAGCAGAGA GTCCAGGACG AACTTAGATA
TpmSl   A — G - ---------------------G—  — TA— C— G - A — GA— TA C— A C -A G C -
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3 7 5 1  3 8 0 0
T a m S l  AAAAAT T AC A  AGTAACAAAT ATTTCATTTG AAAAG AC T AA C ..........................
T p m S l   G-GGG — G— T  C G------------------ C CT —  T - T  -TA TA TA A G T

3 8 0 1  3 8 5 0
T a m S l   TG CATAAATATT TTTACTAGCT AAATTATTTA
T p m S l  TATTTGGTCT G A A T G T T T -T  T -------------G - ---------- TATAAA - T -------T -A G -

3 8 5 1  3 9 0 0
T a m S l  CTGAAATGTA CAAAATGGAA ATAAAATTAA AACAAGCTAG CTGGAGAACA 
T p m S l  TCA— TGTAT A — TCCA - C --------------- G -G A -----------------— C A -A -G -C

3 9 0 1  3 9 5 0
T a m S l  TGGTCTGACA AAAAGCTAGG CAGATAATAA GTTACAAAAA ACAACTTTAC
T p m S l  - T - G A A A T T -  T - T - G - T  TGAGAT A  GG — C - A  T

3 9 5 1  4 0 0 0
T a m S l  A A A A T T T T T ................................................................................................................................................
T p m S l  G - G - A  A  TGGAAATGTT TTACTGACAG ATTATTATAA AAATTTTGAG

4 0 0 1  4 0 5 0
T a m S l  .............................................................................................................................................................................
T p m S l  AAATTAAAAA CTTTCATCGA AAAATTAAAA AGGAACAGCG ACATATTAAT

4 0 5 1  4 1 0 0
T a m S l   TAAAAC AACTAGTTTC CTGAGGCTCA
T p m S l  AAAGCGATTC ACTTAAAAGT AAAAGT — A - T - A — A A — T T -A T A -

4 1 0 1  4 1 5 0
Ta.mSl  GACAATTTAA TTTAATGTGG A A A T A A T . . A TCGAAGAGAT TAATCAACTT
T p m S l  T -G T T A A A -T  — A  A A  A T G -C A T  -A A ------------------ ---------------------------

4 1 5 1  4 2 0 0
T a m S l  T A  G TGGTATTCGG CTCAGTGTTT TGCTGATGTT TATGCTTAGG
T p m S l  — A T T A G T G -  C T G A T -A  G A  ---------C T - C - -------------------------A

4 2 0 1  4 2 5 0
T a m S l  CTTACTTTTG AAATATTTCC GTTCGTGTGT ATTTTTCTCT GAATTGACTG

4 2 5 1  4 3 0 0
T a m S l  CGTTATTTTG TGGTTTTTCG TTTGCGGAGT TCCTCCAGTT CTCATCCTCG  
T p m S l  ------------------------------  C--------A - - C ----------------  C - -------------- CA-------

4 3 0 1  4 3 5 0
T a m S l  TCCCTGTGGT GGGACTTGGG CCTGTGACGG GATCTACGAG ACCTACCGGA
T p m S l   A G -A C  - T - G ------------  A --------------------------- ------------------ A —

4 3 5 1  4 4 0 0
T a m S l  GCCTGTTCCC GAGGTGGGAA GTTTATCATT TTTAGGGTCA GGAGGCTGT.
T p m S l   A C - G - - T  — A  C -G  - C - - C  G -  G A —  - A  T  G

4 4 0 1  4 4 5 0
T a m S l  . . TCAGAAAC ACTAGAAGTA GCGGGAGGCG CTGTAGA............................... GTCT
T p m S l  GA------------------ G - C - - T T  - G T — G— A T  AGG TGTGGC—T -

4 4 5 1  4 5 0 0
T a m S l  GGAGGTTGTG AAGTTGGAAC GTCATTGGGG TTTTAGTTGG ATCAGAATTA  
T p m S l  ----------------A - ---------------------------C  . — A A  T  G GC 
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4 5 0 1  4 5 5 0
T a m S l  GTGAATAACC TGTCCTTTTT ATCCTTTTGA GATTTAGCAT TAATGTTTGG

4 5 5 1  4 6 0 0
T a m S l  TTGATTAGTA T T T A C A .G T T  TGAGCGTTAG AAGATGTACT AGTGGGTTTT  
T p m S l  ----------------A - --------- G— TA— ----------- A --------- ------------C -A  --------- TA----------

4 6 0 1  4 6 5 0
T a m S l  TTGCGTCTTG GATAACGATC CTTTTTACGC TTCTCTGCTA AAGGTGATAA  
T p m S l  C - A ---------------- A ------------------------ -------------------------- -----------------A — C C — C— G-------

4 6 5 1  4 7 0 0
T a m S l  ATCACTTGTA AGAGTTTCAT GAATTGTGGG TTCCAGCTGG TCTGACAGTG  
T p m S l  - G T - G  G — G----------- C  A - T  G— A ----------------------- A ---

4 7 0 1  4 7 5 0
T a m S l  TATTTTCCAG C T G A T T .................................................................................. TGATAATGTG
T p m S l    TGAT AGTGTGTTGT C G A T T T G A T C -------------------------

4 7 5 1  4 8 0 0
T a m S l  TTTTCTAACT GATTTGTTAG TCTACTTTCT AGCTGTCCGA CGAGTCTTTC  
T p m S l  ----------------- G—  - G ------------- A —  C T - C — A  G - A --------------------

4 8 0 1  4 8 5 0
T a m S l  ATCTAGTTTG TTGGTTAATG ACTCTTGCAA TAAAAGAGAG TTG TCTTTAT  
T p m S l   C -A C  — T  TG—  A --------------T—  A - G - T - G  -------------------- GA

4 8 5 1  4 9 0 0
T a m S l  AGTTGGTTAA ATCCAGAAAA GGCTGCGACA GCTTATCAGA TACATACTGC  
T p m S l  ----------------------------------------------   G------------ -------  C C -

4 9 0 1  4 9 5 0
T a m S l  TTAATTGTAA GTCTATCGTC TCTTGTTCTA TCTGATAGAA TTGAGTGGTT  
T p m S l   T -  - A - C --------------CGG— C -------------- C--------- ------------------- A —

4 9 5 1  5 0 0 0
T a m S l  AAGAGTGTCA ATTGCTGTTG TCAGTTCAGC TTCGTTATAT CCATCACTTT  
T p m S l   G----------------------- A ---------------------- T —  C - - A — G — T -----------------

5 0 0 1  5 0 5 0
T a m S l  TGTTGTCCAT CCAATTAGAC TCTGAGACGG TAGGCGACTC CACCATAACG  
T p m S l   A — A - G  G — C— T — A - --------------- C  T ------------ G-------

5 0 5 1
T a m S l  TTTGGTTTAA  
T p m S l  ------------------------

5 1 0 0
ACAlTTGAGG TCTCGAATTA CTCTTCAACC TTGTTGCATA

5 1 0 1  5 1 5 0
T a m S l  CTGCTGAAAA CCTTGGTAGA TCCCGTTAGG TTGGCTGGGT ACGGCACTGA  
T p m S l  -------------------------------------------------- -------------------------- -------------------------- ---------------------------

5 1 5 1  5 2 0 0
T a m S l  AGGTGGAGGT GGAGGTGGTG ACTCTACACC TCTTCCGATG AAGTTGGTAA  
T p m S l  ---------------------------- ------------------------------------------------ ------------------------ -----------------------------

5 2 0 1  5 2 4 6
T a m S l  ACCCTAGTGG GTAGTTGCCC TTCATTTCAG GGCATCAGGA AGTCGG 
T pm Sl  -------------------------------------------------- ----  —   ----------- --------------------------------------- --
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