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ABSTRACT

The principle aim of this thesis is the detailing of the development and subsequent use 

of electron crystallographic techniques which employ the maximum entropy 

approach.

An account is given of the electron microscope as a crystallographic instrument, along 

with the necessary theory involved. Also, an overview of the development of electron 

crystallography, as a whole, is given. This progresses to a description of the maximum 

entropy methodology and how use can be made of electron diffraction data in ab initio 

phasing techniques. Details are also given of the utilisation of image derived phases in 

the determination of structural information. Extensive examples are given of the use 

of the maximum entropy program MICE, as applied to a variety of structural 

problems.

A particular area of interest covered by this thesis is regarding the solid state structure 

of organic pigments. A detailed structure review of both p-naphthol and 

acetoacetanilide pigments was undertaken. Information gained from this review was 

used as a starting point for the attempted structural elucidation of a related pigment, 

Barium Lake Red C. Details are given of the synthesis, electron microscope studies 

and subsequent ab initio phasing procedures applied in the determination of structural 

information on Barium Lake Red C.

The final sections of this thesis detail electron crystallographic analyses of three quite 

different structures. Common to all was the use of maximum entropy methods, both 

for ab initio phasing and use of image derived phases.

Overall, it is shown that electron crystallographic structure analyses using maximum 

entropy methods are successful using electron diffraction data and do provide distinct 

structural information even when significant perturbations to the data exist.



The important thing in science is 

not so much to obtain new facts, as 

to discover new ways o f thinking 

about them.

Sir W.L. Bragg.
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1.0. ORGANIC PIGMENTS.

1.1. A Perspective.

The origins of colourants and their applications can be traced back to prehistoric man, 

who used colourants of animal and vegetable origin to dye furs, textiles and other 

materials. Even the hieroglyphs of Ancient Egypt contain a thorough description of 

the extraction and application of natural colourants.

Prior to the discovery of Mauveine in 1856 by William Perkin1, colour had been 

obtained from natural sources such as indigo and cochineal.2 Perkin can be credited as 

being the pioneer of the organic chemical industry, not only because of his discovery 

of Mauveine, but because he set to work to manufacture and sell it.

Rapid advances in colour chemistry were initiated by the discovery of diazo 

compounds and their derivatives. The colour potential of this class of compounds and 

their ease of preparation led to the development of azo colours, which represent the 

largest fraction of organic colourants.

The basic level of classification of a colourant is either inorganic or more importantly 

in this context, organic. The most important differentiation of colourants is that they 

are either dyes or pigments.

In general, colourants are either soluble (dyes) or insoluble (pigments). Pigments are 

coloured or fluorescent particulate solids that are usually insoluble in and essentially 

are physically or chemically unaffected by the vehicle or medium in which they are 

incorporated. They alter appearance either by selective absorption or by scattering of 

light. Among organic pigments, azo compounds constitute the largest group both with 

respect to the number of different chemical structures and to the total volume of 

commercial production.
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The purpose of this introductory chapter is to provide background to some aspects of 

pigment chemistry and later in chapter 5, a review is given on the extensive work that 

has been carried out on the solid state structures of pigments related to the ones 

examined in this research

1.2. Pigment Properties.

Before undertaking a detailed discussion of the chemistry used to describe azo 

pigments, it is of fundamental importance to examine some aspects of pigment 

properties.

By definition, pigments retain a crystallite structure throughout the colouring process. 

Therefore, consideration has to be made of crystal properties and not just simple 

molecular chemistry. Thus, it can be stated that pigment properties are not dependent 

entirely on molecular chemistry present.

The interactions of the pigment with its specified medium are mediated through 

features including particle size, shape and the nature of the crystal surface. It follows 

that pigment properties are a result of both molecular chemistry and the 

crystallographic arrangement of these molecules.

Unlike dye chemistry, the relationship between chemical structure and colour for 

organic pigments is not as well defined and is found to be subject to influence from a 

greater number of factors.

At the level of an individual molecule, variation in substituents can lead to improved 

properties for the pigment through simple electronic effects, in the case of halogen 

functionality or through physical effects including extensive hydrogen bonding or an 

increase in packing volume of molecules.
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Fastness properties of pigments are principally conditional on molecular structure, 

although particle size can also influence lightfastness. Larger particles have smaller 

specific surface area and since light energy initially destroys outer molecular layers, 

larger particles will have better lightfastness.

Most organic molecules exhibit a small solubility in polar organic solvents and some 

pigments contain structural features designed to enhance solvent fastness. It is thought 

that presence of functionality that leads to the formation of intermolecular or 

intramolecular hydrogen bonding can augment fastness to light, heat and solvents, 

hence another substituent effect.

Colour strength of a pigment is dependent on the amount of reflected light, thus it is 

important to develop as large a surface area as possible. Therefore, in considering 

pigment crystallites, the degree of particle dispersion, aggregation and flocculation is 

very critical for general pigment properties such as strength, transparency and 

rheology.

This is by no means an exhaustive summary of pigment properties, but merely an 

attempt to illustrate the point that pigment properties are in fact influenced by a 

variety of factors, and that to gain any understanding of these properties, some 

knowledge on the crystallographic arrangement of the molecules within the particles 

is a prerequisite.

The next section of this introductory chapter offers a treatise on some aspects of the 

basic chemistry of azo pigments, the major class of organic pigment of which some of 

the pigments investigated during the course of this research belong.
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1.3. Azo Pigments.

1.3.1. Background.

The success of azo pigments is due to the simplicity of their synthesis by diazotisation 

and azo coupling and to the almost innumerable possibilities presented by variation of 

diazo compounds and coupling components. Most commercially important azo 

pigments are formed by successive diazotisation and coupling. A primary aromatic 

amine is diazotised to give a diazonium salt, which is then coupled with an 

appropriate coupling component to form the azo compound.

The azo pigments contain one or more chromophore of the form (-N=N-). These 

pigments can be subdivided into two groups, pigment dyes and precipitated azos. 

Pigments include products that are insoluble in the aqueous reaction medium directly 

on formation and hence require no metal ions or other means to effect precipitation. 

Precipitated azos include products with salt forming groups, principally sulphonic or 

carboxylic acid which precipitate. Salts most commonly used include those of 

calcium, barium or manganese.

The physical and chemical characteristics that define the performance of a commercial 

pigment in a vehicle system include its chemical composition, stability, particle size 

and shape, degree of dispersion, crystal geometry and especially surface character. 

Not all of these properties are dependent entirely on the molecular chemistry of the 

pigment, but depend for instance on the form and size of its particles. The 

chromophore, the intrinsic chemical unit in the pigment crystal imparts colour and 

may also be important in properties such as solubility, heat fastness and light stability.

Characteristic properties of azo pigments are partial solubility in organic solvents and 

vehicles, poor bleed resistance, good acid and alkali resistance and good lightfastness.
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Colouring applications of azo pigments are widespread. Traditional uses such as inks 

and paints still account for a large percentage of the pigments produced. These 

generally require large quantities of pigment to achieve the desired shade. The 

colouring of plastics e.g. Polyvinylchloride (PVC) require proportionally less 

pigmentary material. Other areas of usage include coatings and man made fibre 

industries.

1.3.2. Synthesis of Azo Pigments.

As was discussed briefly in the previous section, azo pigments are formed by the 

coupling of a diazotised amine with a variety of coupling components. In general, the 

overall reaction can be stated as in Figure 1.1.

ArNH2 — — — Ar-N^N ^  ► Ar-N=N-Ar'

Figure 1.1 Overview of diazotisation reaction.

1.3.3. Diazotisation

The reaction between a primary amine and nitrous acid in an aqueous medium results 

in the formation of a diazonium salt 4. For aromatic amines, the reaction is very 

general. Halogen, nitro, alkyl, aldehyde and sulphonic acid groups do not interfere. 

Despite the fact that diazotisation takes place in acid solution, the actual species 

attacked is not the salt of the amine, but the small amount of free amine present5. In 

dilute acid, the actual attacking species is N20 3, which acts as a carrier of NO+. 

Evidence is that the reaction is second order in nitrous acid and, at sufficiently low 

pH, the amine does not appear in the rate expression.6 The mechanism as elucidated 

by Hughes, Ingold and Ridd7 is given in Figure 1.2.

5



STEP 1
slow

2HONO -------------- ► N2 O3 +  H20

H
I +

STEP 2 ArNH2  +  N2 0 3 ----------- ► Ar—N -N = Q I + N 02'

H

H
I© , -H+

STEP 3 At—N—N = O l  ► Ar— N —N=OI

H H

STEP 4 Ar—N jN = Q l / autom- „ Ai— N = N —Q—H

H

H+ © -

STEP 5 Ar—N = N —O—H ----------► Ar—N = N  + H20

Figure 1.2. Mechanism of diazotisation.

Nitrosation of the amino group is the essential step in diazotisation.

Unlike aliphatic diazonium salts, the aromatic product is relatively stable at low 

temperatures. This is explained by the resonance interaction between the nitrogens 

and the ring. (Figure 1.3.)

© _ 
,N =N

©
,N =N

©  _© 
f̂ ^ N=S

Figure 1.3. Resonance of nitrogen atoms in benzene diazonium.

The diazonium ion may be described as a Lewis acid, in which the P-nitrogen has 

electrophilic character. Under the correct conditions, diazonium ions attack
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nucleophilic coupling components at a position with high electron density. This is the 

azo coupling reaction. Activation by electron releasing groups indicates that coupling 

is electrophilic aromatic substitution.

1.3.4. Coupling Reaction

The coupling component must, in general, contain a powerfully electron releasing 

group. Common coupling components are amines and phenols. Due to the size of the 

attacking species, substitution is mostly para to the activating group, unless that 

position is already occupied, in which case ortho substitution takes place. The pH of 

the solution is important for both amines and phenols. For amines, the solution may 

be neutral or mildly acidic. This pH strikes a balance between maximising the 

quantity of free amine available, while keeping the diazonium ion stable.

Phenols must be coupled in slightly alkaline solution, where they are converted to the 

more reactive phenoxide ions, because phenols themselves are not active enough for 

the reaction.

2-Naphthol

3-Hydroxy-2-naphthoic Acid
COOH

Acetoacetanilide

H

Figure 1.4. Examples of coupling components.
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1.4. Classification of Azo Pigments.

In order to review the multiplicity of azo pigments that have already been synthesised, 

it is useful to classify these pigments according to their chemical structure. However, 

it should be kept in mind that pigments of identical structure need not necessarily 

have the same applicational properties. Thus, the presentation of pigments in such 

classes can serve only as an initial but fairly reliable guide. This will be discussed in 

the next section and examples of the relevant classes of azo pigment will be 

illustrated.

1.4.1. Azo Yellows

Hansa Yellows are mono azo pigments, a representative of which is Pigment Yellow 3 

(Figure 1.5.). The Hansa Yellows are intense pigments that are semi-opaque and are 

resistant to both acid and alkali.

^ 0 2

r °
C1 \  / - N - N - C H - ^ - N H ^

o

Figure 1.5. Pigment Yellow 3.

1.4.2. Diarylide Yellows

Related quasi-dimers of the Hansa Yellows are the Diarylides. The same chemistry is 

involved, except that the first component amine is a disubstituted diaminobiphenyl. 

Upon diazotisation this yields two diazonium salt groupings. The latter couples with 

two molecules of the second component to yield the disazo yellow. An example 

pigment is Yellow 12 (Figure 1.6.), which commercially belongs to the top five of all 

organic pigments as it is relatively cheap.
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Figure 1.6. Pigment Yellow 12.

1.4.3. Toluidine Reds

Pigment Red 3 (Figure 1.7.) is a typical example of the Toluidine Red pigment class. 

It is one of the most popular red pigments for industrial enamels. Pigments of this 

class are available in several different shades, but are being displaced by other more 

durable reds.

Figure 1.7. Pigment Red 3.

1.4.4. Para Reds

Para Red (Pigment Red 1) was the first commercial azo pigment and it was obtained 

from diazotised p-nitroaniline and 2-naphthol as early as the end of the 19th century.

9



Use of this class of pigment is severely limited by poor bleed resistance. Structure of 

this pigment is given in Figure 1.8.

Figure 1.8. Pigment Red 1.

1.4.5. Lithol Reds

These are among the more important of the precipitated azo pigment dyes. They 

comprise a family of the sodium, barium, calcium and strontium salts of the coupling 

product from diazotised 2-naphthylamine-l-sulphonic acid and 2-naphthol. Shown in 

Figure 1.9., is the barium salt of Pigment Red 49.

S 0 3"

Ba2+

OH

Figure 1.9. Pigment Red 49.
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1.4.6. Laked p-Naphthol Pigments

Synthesis of these pigments involves formation of the soluble sodium salt by alkaline 

coupling then the pigment is produced by laking, i.e. precipitating the soluble salt 

with calcium or barium chloride. One of the more commonly used of this class is Lake 

Red C (Pigment Red 53:1). This is produced by coupling diazotised 2-amino-5- 

chloro-4-methylbenzene sulphonic acid with 2-naphthol and then laking with barium 

chloride. Structure is illustrated in Figure 1.10.

Figure 1.10. Pigment Red 53:1.

1.4.7. BON Reds

The BON Reds derive their name from the use of P-oxynaphthoic acid as the second 

coupling component in the coupling of various diazotised amines containing salt 

forming groups. Precipitation is effected by metal ions e.g. calcium, barium or 

manganese. A typical example is Pigment Red 57.
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Figure 1.11. Pigment Red 57.

Having considered both generalities of pigment properties and some more detailed 

chemistry of azo pigments, it becomes obvious that a detailed picture of the 

crystallographic arrangement of pigment molecules must be obtained. This knowledge 

must be gained before any attempt to correlate pigment structure to property is 

attempted or even improvement of those properties by pigment manufacturers is 

undertaken.

Previous attempts to attain this crystallographic information about azo pigments via 

conventional X-ray methods have proved difficult due to the small crystallite size 

present. However, earlier work by Duckett8, Miller9 and Connell10 utilising techniques 

of electron microscopy and latterly electron crystallography have shown that this 

methodology could provide crystallographic information on pigments of the azo class. 

Therefore, one of the aims of this work is to utilise developments in the field of 

electron crystallography to obtain structural information about some organic 

pigments.

This leads to the next sections where a discussion of the use of the electron 

microscope as a crystallographic instrument is given, along with a review of the 

development of electron crystallography as a powerful technique for elucidation of 

structural information.



2.0. ELECTRON MICROSCOPY

2.1. Electron Microscopy - An Introduction.

Much has been written about the development of the theory describing the wave 

nature of electrons, but in terms of electron microscopy, the most important statement 

is that of De Broglie.11 In his theory, De Broglie combined two universal principles 

that linked fast moving electrons with short wavelength, these being the quantum 

theory of Planck12 and the theory of relativity of Einstein.13

De Broglie postulatecl that any fast moving particle would have an electromagnetic 

radiation associated with it. If the particles are electrons, with a velocity one third the 

speed of light, the wavelength is approximately 0.05A. This is 100 000 times shorter 

than the wavelength of green light, so if electrons are utilised, resolution is greatly 

enhanced over that of the best light microscope. Thus the De Broglie relationship was 

derived.

X = —  Equation 2.1.
mv

where ^wavelength, /*=Planck’s constant, m=mass of an electron and v=velocity of 

an electron.

This theoretical analysis was confirmed experimentally by Davisson and Germer14 

and by G.P. Thomson15, with the observation of diffraction phenomena.

It is not clear from the published literature who it was who had the original idea of 

using electron beams to form images of objects at resolution higher than that of the 

conventional light microscope. Electron optics were thoroughly investigated by 

Busch16,17 and he showed that axial magnetic fields refracted electron beams in a way 

geometrically analogous to refraction of light beams by glass lenses.
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This research encouraged Knoll and Ruska to construct the first true electron 

microscope. A description of an instrument designed for high resolution work was 

published by Ruska in 193418.

Subsequent development of both instruments and techniques saw the rapid adoption 

of electron microscopy as a method for obtaining structural information about a wide 

variety of materials ranging from those of a biological nature through to materials of 

chemical interest.

The purpose of this chapter is to provide a description of the transmission electron 

microscope and to outline some important theories that are relevant to later 

discussions on the development of electron crystallography.

2.2. The Electron Microscope.

The conventional transmission electron microscope has an electron-optical 

arrangement which is in essence the same as the optical arrangement in a light 

microscope. In an electron microscope the magnification scheme is more elaborate 

and of course, the electron source, the specimen and the whole assembly of lenses are 

in an evacuated column. The electrons are emitted most commonly from a hot 

tungsten filament and are accelerated through a large potential difference, V, of the 

order of 105 volts and so acquire kinetic energy, eV, where e is the electron charge. 

The velocities of the electrons are not negligible in comparison with the velocity of 

light, so that a relativistic correction has to be made. The wavelength of an electron is 

thus given by Equation 2.2.

Equation 2.2.

where m0 is the rest mass of an electron and c is speed of light.
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The arrangement of the parts of the microscope are shown schematically in Figure

2.1. The electrons emitted from the electron gun are immediately controlled by a 

sequence of two electromagnetic lenses, the condenser lenses, which determine the 

area of the specimen illuminated by the electron beam and the divergence o f the 

electron beam incident on the sample.

electron gun 
anode

condenser lens 

condenser lens aperture

specimen

objective lens 

objective lens aperture

intermediate aperture in 
image plane

intermediate lens
second intermediate image plane I2  

projector lens

view ing screen

Figure 2.1. Descriptive diagram of an electron microscope.

Since the specimen is necessarily very thin, of the order of 1000A, it must be 

supported in a special holder, and since the microscope interior is at high vacuum, the 

holder is introduced through an airlock. The specimen stage in which the holder fits, 

is situated within the bore of the next electromagnetic lens, the objective lens and is 

provided with the drives necessary to both move and tilt the specimen, so that
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different areas can be studied at controllable orientations with respect to the 

microscope axis and the incident electron beam.

The objective lens forms an image of the specimen at image plane 1, Ij in Figure 2.1, 

which is known as the first intermediate image. A sequence of two projector lenses 

further magnify this image produced by the objective lens. The first projector lens 

produces an image of Ij at I2, the second intermediate image and the second projector 

lens produces an image of I2 on a fluorescent viewing screen. The final image may be 

recorded on a photographic film placed beneath the viewing screen or by an electronic 

recording device such as a CCD camera. The magnification of the final image can be 

varied in the range from lOOOx to as much as 100 OOOx by varying the focal lengths of 

the two projector lenses, with the variation being achieved by adjustment of the 

energising current supplied to the lens.

If the image formed by the electron microscope were a perfect image, then any point 

in the image would correspond to a point in the specimen. This is not the situation in 

practice because magnetic lenses suffer from defects. The arrangement of the 

microscope is such that defects in the objective lens have a greater effect on the final 

image than do defects in the projector lenses. The principal effects to manifest 

themselves are astigmatism, chromatic aberration and spherical aberration. 

Astigmatism can be eliminated in the design and construction of the magnetic lenses. 

Chromatic aberration occurs when there is an energy spread in the electron beam, as 

well as on the magnetic field produced by the lens. Chromatic aberration can be 

minimised by stabilisation of the energizing current of the lenses and of the electron 

source.

An important defect of magnetic lenses is spherical aberration. If a lens is free from 

spherical aberration, all the electrons leaving the object from the point S will reach the 

image plane at point I (Figure 2.2) When spherical aberration is present, the rays 

passing through the outer parts of the lens will be bent excessively and so brought to a 

point closer to the lens than the point, I.
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a b jec t

Figure 2.2. Illustration of spherical aberration.

Having given a physical description of the microscope, now the interactions of 

electrons with the specimen have to be considered and following from this, an 

understanding of the theoretical nature of image formation and diffraction within the 

microscope has to be gained.

2.3. Interaction of Electrons with Sample.

When considering the theory behind the interactions of electrons with the specimen, it 

is essential to refer to the comprehensive works of Hirsch et al19 and Buseck et al20 

These texts offer a thorough discourse on electron interactions and as such only a 

cursory description of the theoretical basis will be discussed here.

Relative to other radiation, electrons interact strongly with matter. The electrons are 

scattered by the electrostatic potential, 9 (r) which plays the same role as electron 

density p(r) does in X-ray scattering.

In considering the interactions of electrons with matter, various approximations exist 

which provide more simple mathematical descriptions of the scattering events that are 

occurring. Each of the approximations has a useful range of validity and this will be 

explored.
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The scattering process is readily understood by the analogy of interaction of light with 

a transparent object. For electrons, there is a change in refractive index where the 

wave enters a region of different electrostatic potential, which changes the velocity 

and hence the wavelength of the electron waves.

2.4. Phase Object Approximation.

As a first approximation to understanding the interaction of electrons and specimen, 

assume that electrons passing through a thin specimen suffer a phase change that 

depends on the potential distribution along a straight line through the crystal. Thus if a 

potential distribution in the object is represented by a function, cp(xyz), a plane wave 

transmitted through the object in z direction suffers a phase change that is a function 

of the xy coordinates proportional to the projection of the potential in the z direction, 

as shown in Equation 2.3.

The phase change of the wave relative to a wave transmitted through a vacuum (<p=0)

is given by the product of (p (xy) and an interaction constant, a, where a  = m
h

This defines the strength of interaction with matter.

The effect on an incident wave of the phase change is given by multiplying the 

incident wave amplitude by a transmission function,

Equation 2.3.

q(xy) = exp[-ro9  (xy)\ Equation 2.4.

This equation gives the Phase Object Approximation. It is an approximation in that it 

ignores sideways scattering of waves.



Phase object approximation is useful because it emphasises the non-linear nature of 

electron scattering. For a single heavy atom, the phase differences from the centre to 

the outside of the atom in projection may exceed n. If the electron wave passes 

successively through several atoms in a row, as in a crystal, the phase changes add 

and non-linearity of the function given in Equation 2.4. ensures that scattering 

amplitudes are not added linearly.

For thicker specimens, the phase object approximation fails as the whole concept of 

transmission function becomes invalid in that the effect of a specimen on an incident 

wave cannot be represented by a multiplicative function.

For suitably thin specimens the wavefunction at the exit surface can be described as a 

2D function, i]Jj(xy), which can be represented as the product of the incident wave 

amplitude \yo(xy)\ and the transmission function q(xy). The exit wave has variations in 

phase and amplitude related to the specimen structure. Due to these variations, 

scattered waves diverge into the aperture of the objective lens. The aims of the 

imaging process are then to produce a magnified representation of \|tj(xy) and to 

record an intensity distribution from which some information about the specimen 

structure can be derived.

2.5. Weak Phase Object Approximation.

A further simplification of the phase object approximation allows for the derivation of 

the weak phase object approximation. This approximation assumes that the total phase 

change is small and is only valid when, for the maximum phase change due to the 

object, ocp(r) <1. Thus scattering is now expressed by,

q(xy) = 1 -  zcrcp (xy) Equation 2.5.

The exit wave function is therefore linearly related to the projected potential of the 

crystal. The constant, 1, is then representative of the directly transmitted wave, which 

is unaffected by the object. The scattering function is given by i<jy(xy), which gives
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rise to distribution of scattering amplitude in the back focal plane. For weak elastic 

scattering, the scattered wave is always 90° out of phase with the incident beam. The 

interaction constant a, previously defined, decreases slowly with incident electron 

energy. The most important factor is the distribution of the projected potential which 

is dependent upon the atomic number, Z, of the atoms present. Another important 

factor to be considered is the number of atoms superimposed in the beam direction.

As described, the condition of validity of the weak phase object approximation is 

acp(r) < 1. This condition is not satisfied for single, very heavy atoms. At the centre of 

the projection of a uranium atom <J(p(r) may be of the order of 1. For a light atom such 

as carbon, nitrogen or oxygen, the maximum is of the order of 0.1 However, in a 

specimen 50 to 100A'thick, especially in a crystal, 10 or more atoms may be aligned 

in the beam direction. In this situation values of o(p(r) for the projection through the 

line of atoms may greatly exceed unity. Hence the validity of the weak phase object 

approximation is strictly limited.

The simple approximations given above describing the interactions of electrons with 

the specimen and the subsequent formation of image have provided a framework that 

has allowed further development of imaging theory. Description of the specifics of 

imaging theory and its areas of application are beyond the remit of this thesis and, 

again, consultation with the aforementioned texts provides an extensive treatment.

The next section of theoretical discussion on electron microscopy details the more 

pertinent theories of electron diffraction, after first giving a description of some of the 

more important physical and geometrical aspects.



2.6. Electron Diffraction.

After consideration of the physical description of the electron microscope given in 

section 2 .2 , it can be seen that the final image is formed at the viewing screen. 

However, due to the existent lens arrangement, each lens within the column has its 

own image and back focal plane. Manipulation of the lens system and insertion of 

appropriate apertures allows for the collection of electron diffraction patterns on the 

viewing screen and subsequently on photographic film or CCD camera. In particular, 

if an aperture is inserted at the image plane of the objective lens, thus facilitating the 

magnification of a limited area of the sample, the diffraction pattern observed will 

also originate from this area. This technique can provide methods of obtaining 

diffraction patterns from discrete crystals or indeed specific areas within a given 

specimen.

2.7. Formation of Electron Diffraction Pattern.

In accordance with the well developed theories of X-ray diffraction, observation of 

electron diffraction patterns occurs under fulfillment of the Bragg condition.

21Bragg’s law states that for a given set of planes (hid), the reflected monochromatic 

radiation, in this instance electrons, only occurs at certain angles that are determined 

by the wavelength of the electrons and the perpendicular distance between adjacent 

planes. The relationship between these three variables is the Bragg equation.

2d sinG = rik Equation 2.6.

where d=interplanar spacing, 0=Bragg angle, w=integer and A=wavelength of incident 

electrons.

The small wavelength of high energy electrons considerably simplifies the geometric 

theory of electron diffraction patterns and by using the Bragg relationship, the concept 

of the reciprocal lattice can be arrived at.
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The reciprocal lattice is defined by axial vectors a ,b*,c which have lengths a 1, b'1 

and c 1 where a,b,c are conventional unit cell dimensions. Thus, the condition for a 

strong Bragg diffracted beam being produced from an incident beam vector, s0, is that 

the diffraction vector drawn from the origin of reciprocal space should end on a 

reciprocal lattice point, defined by a vector, h=ha +kb*+lc , where hkl are Miller 

indices. Therefore Bragg’s law can be written more completely as,

s = sr s0=h = ha +kb +lc Equation 2.7.

A graphical representation of the above equation is given by the Ewald sphere 

construction which is shown in Figure 2.3.

Figure 2.3. Representation of Ewald sphere.

For a given incident beam direction, the vector s0 of length X 1 is drawn from a point L 

to the origin of the reciprocal lattice. Then, a sphere o f radius X 1 (the Ewald sphere) is 

drawn about the point L. If this sphere cuts the hkl reciprocal lattice point, then the 

vector from L to the reciprocal lattice point will be the vector sx for a diffracted beam.

For electrons of wavelength of about 0.05A, the corresponding Ewald sphere, X 1, is 

very large compared with the distance between reciprocal lattice points, a'1 (for a real- 

space, unit cell dimension, a). The curvature of the Ewald sphere is small and as such, 

segments are approximately planar and it is therefore possible to record 

simultaneously the set of reflections belonging to the zero order plane of the 

reciprocal lattice.
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The electron diffraction pattern can be thought of as an image of the central plane 

cross section of the reciprocal lattice. Thus, utilising this simple relationship, a 

geometrical relationship between the distance, r, of reflections in the pattern from the 

central spot with dhkf= H^ ' 1 is shown in Figure 2.4.

1A

Figure 2.4. - Adapted from Fundamentals of Crystals22, p339.

Thus,

Hhki = £ ’ r<̂ hu ~ LX 9 rhkJ = HLX

where L is the distance from the specimen to the photographic plate and X is the 

wavelength. In other words, the reciprocal lattice cross section is directly represented 

on the electron diffraction pattern to a scale LX.

Crystals are defined by the periodic repetition of groups of atoms in three dimensions 

with periodicities described in terms of a real-space lattice of points defined by unit 

cell axes a,b,c and interaxial angles a,(3,y. This real-space pattern of repetition 

manifests itself within the symmetry of diffraction patterns. This information, 

combined with the relation of geometry in real space to reciprocal space can provide 

information about unit cell constants and the symmetry therein.
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2.8. Atomic Scattering Factors for Electrons.

After examination of aspects of the formation of electron diffraction patterns, where 

the assumption was made according to Bragg’s Law, of reflection from planes, 

consideration has to be made of how areas of atomic presence scatter the incident 

beam, or more correctly the factors affecting atomic scattering.

As previously described, electrons are scattered by potential fields thus the nucleus 

and electrons of a given atom are involved in electron scattering phenomena. 

Normally, the potential distribution is expressed in terms of the contribution of 

individual atoms centered at the positions, r=ri, leading to,

as such, the potential distribution can be represented by a Fourier transform, Vt of the 

<p/(r)>

where h represents reciprocal lattice vectors.

The function cpj(r) may be identified with the potential distributions for individual 

isolated atoms or ions, with the usual spread due to thermal motion. It has to be noted 

however, that interatomic binding and interactions of ions are neglected and these 

may have important effects on diffraction intensities.

The Fourier transforms of individual atoms may be given as,

9 (r) = 2 cP'(r ' ri) Equation 2.8.

As the crystal is periodic, a Fourier series can be used to represent this periodicity and

F(h) = F)(h) exp(2n ih • r{) Equation 2.9.

Equation 2.10.
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where 5=47r ‘̂7sin 0, f  = Bom electron scattering amplitudes as conventionally 

defined in units of A, 0 is half the scattering angle and .

Values of f ( s )  are obtained from the atomic potentials, <p0 f°r isolated, spherically 

symmetrical atoms or ions using the relation,

oo

f B (5 ) = 47t K  Jr29  (r) s*11 s^ r dr Equation 2.11.
0

By using known relationships between potential and charge density distribution, the 

Mott-Bethe formula23 was derived to d escr ib e (s) in terms of the previously derived 

atomic scattering factors for X-rays ,fx(s),

2 y

f B(s) = 2% ~ ^ - { z ~ f x(s) } / ,  Equation 2.12.

where e0 is the permittivity of a vacuum or another representation is,

f * ( s ) = 0.023934 Equation2.13.

where X is in A , / (s) in A and fx(s) in electron units.

Values of atomic scattering amplitudes for electrons are listed in International Tables 

for Crystallography Volume C,24 calculated by Doyle and Turner25.

It can be seen that the scattering amplitude thus varies with wavelength, X and 

scattering angle 0. For sin0/A, greater than 0.4A'1, scattering amplitude increases 

regularly with atomic number, while for sin0/A, less than about 0.4A’1, scattering 

amplitude does not vary in a regular manner. For elements of the first three periods of 

the periodic table there is a tendency for scattering amplitude at small angles to 

decrease with increasing atomic number.
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Figure'2.5. Comparison of atomic scattering factors.

Since the wavelength of electrons is very much less than that of X-rays, 0 will be 

much smaller for a given value of sinGA.. As a consequence of this, the scattering 

factor for electrons falls off very rapidly, and therefore diffracted beams have 

appreciable intensity only at rather small Bragg angles.

As with the interactions of electrons with the specimen, certain approximations can be 

made regarding electron diffraction. The use of approximations provides relatively 

simple relationships that allow for determination of diffraction geometry, as seen with 

the concept of the Ewald sphere being regarded as planar. Also, approximations 

enable estimates to be made of the relative intensities in diffraction patterns.

2.9. Kinematical Scattering.

In essence, the kinematical theory of electron diffraction assumes that for sufficiently 

thin crystals, the intensity of the incident beam is not significantly reduced in its 

passage through the crystal and that a diffracted beam is not re-scattered.

In the previous treatment of the geometry of electron diffraction, it was utilisation of 

kinematical approximations that allowed derivation of the stated geometrical
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relationships. Kinematical theory of electron diffraction also allows for assumptions 

to be made regarding the intensity of diffracted beams.

Information relating to the relative positions of atoms within a crystal is contained in 

the intensities of diffraction spots. Kinematical diffraction allows for the derivation of 

a simple relationship between these intensities and the required atomic positions.

Bragg reflections from a crystal will have the scattered amplitudes from all real space 

lattice points adding in phase. If there is an identical atom at each point in the lattice, 

the scattering from each atom is given by the atomic scattering factor, f(u) so that the 

total scattering in the direction defined by a reciprocal lattice point is proportional to 

Nf(ii), if there are N' atoms present. Then, the intensity scattered in this direction 

defined by u=h is proportional to N2f  (u).

For most crystals there is in fact more than one atom associated with each real space 

lattice point. The scattering amplitudes from all atoms in the unit cell must be 

summed, with their phase factors corresponding to the atom position, ij, with respect 

to the unit cell origin. Therefore, instead of an amplitude, f(u) from each lattice point, 

there is a contribution from all atoms in the unit cell given by,

O(u) = 2 ]  f j (u)exp(2rc iu T j) Equation2.14.
i

The total integrated intensity for a Bragg reflection then becomes proportional to 

TV'| O(u) 12 The quantity | <&(u) | is the structure amplitude. The intensity is that of the 

h-reciprocal lattice point and as such,

i>h=Xi//(h)exp 2ni\ h— + k — + l — 
a b

Equation 2.15.

and therefore,
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Im oc \®(hklf Equation 2.16.

As electrons are scattered by the potential distribution of the atoms, (p(r), the atomic 

scattering factor for a single atom is given by,

/ ( u) = 3  cp(r) Equation 2.17.

where 3  represents a Fourier transform integral.

Similarly, the structure amplitude O(u) is given by the Fourier transform of the 

potential distribution in the whole unit cell. This Fourier transform integral can be 

inverted leading to the potential distribution in the unit cell being obtainable from the 

scattered amplitude,

cp (r) = 3 ‘70 (u )  = Jo(u) exp(-27i /u • r)du Equation 2.18.

The integral can be replaced by the summation,

9  (r) = 2  ® (to)exp
hkl

- 2 k i
hx ky Iz —  + —  + — 

\  a b cJ
Equation 2.19.

Equation 2.19. is identical to the expression relating the electron density distribution, 

p(r) to the structure amplitudes, Fhkb for X-ray diffraction. For the X-ray case, this 

relationship forms the basis of structure analysis from diffraction data. In an 

analogous manner, Equation 2.19. provides the foundation for structure elucidation 

using electron diffraction data.

As with X-ray diffraction, the outstanding problem with this approximation is that it is 

the intensities, proportional to | Oh | 2, rather than the amplitudes, <Dh that are derived 

directly from kinematical diffraction data. Thus, in the recording of intensities the 

phase of structure amplitudes Oh are lost, illustrating the fundamental crystallographic 

phase problem.
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2.10. Limitations of Kinematical Approximation.

The kinematical approximation is based upon the assumption that scattering 

amplitudes are directly proportional to the three dimensional Fourier transform of the 

potential distribution, (p(r),

so that the potential (p(r) takes the place of p(r), the charge density distribution, 

relevant for X-ray scattering.

Thus, it can be stated that the kinematical approximation is described as a single 

scattering event since it is first order with respect to the scattering potential. This 

approximation is attractive for structural analysis in electron microscopy due to the 

linear relationship of transmitted wave function to the object structure. The important 

property that this linearity provides is that the approximation is invertible, in the sense 

that the object structure can be retrieved directly from the transmitted wave function.

The validity of the kinematical approximation as a basis for structure analysis is

limited. The domain of validity for quantitative structure analysis of organic crystals
26was evaluated by Jap and Glaeser in terms of crystal thickness, structural resolution 

and incident electron energy. The thickness for which the approximation gives 

reasonably accurate zone axis patterns from single crystals is the order of 100A for 

lOOkeV electrons and increases approximately as a ' 1 for higher energies.

For the validity domains calculated in the above work, the cases studied had their 

potential projected along a crystal axis, however, the single scattering approximation 

may have a larger domain of validity for projections that are not parallel to the zone 

axis.

Equation 2.20.
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2.11. Dynamical Diffraction.

Having considered what are very generalised approximations about the scattering of 

electrons by solids, along with the limitations inherent in these approximations, the 

formalism has to be further developed to one in which the diffraction process is more 

thoroughly understood.

Although different theories have been postulated, they are basically equivalent in that 

they must produce the same results. Each theory provides a different insight into the 

diffraction process and can allow convenient descriptions of particular special cases.

Bethe set up the wave equation for electrons in the periodic potential field of a 

crystal and then applied the boundary conditions appropriate for a crystal surface with 

incident and diffracted waves in a vacuum.

98MacGillavry further developed the general theory of Bethe, with a simplification by 

limiting the number of diffracted beams to one, so that only the interactions of the
29incident and diffracted beam are considered. However, Dorset has stated that while 

this procedure can be used to detect the presence of dynamical .scattering, the two- 

beam model also can be shown to be inadequate for explaining how individual 

intensities are influenced by multiple scattering. In consequence, this theory is 

inadequate for explaining electron scattering from single crystals. Failure of this two- 

beam theory led to the later development of the many-beam formalism as described 

by Hirsch et al. 19

The alternative approach is to consider the progressive modification of wave 

amplitudes or diffracted beam amplitudes as the electron beam passes through the 

crystal. Various theoretical concepts are based on this, including the multislice
30 •proposal of Cowley and Moodie , where scattering is by planar sections of the

31specimen. Another theoretical direction was taken by Howie and Whelan in using 

differential equations to give the progressive modification of diffracted beam 

amplitudes by the scattering processes.
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Other approaches involve Bethe-type, Bloch wave formulations using a scattering 

matrix, introduced by Sturkey32, which was the basis of the first attempts at many- 

beam dynamical intensity calculations.

Of the above mentioned theoretical approaches only the Bloch wave formulation and 

Multislice theory will be discussed. For a more detailed discourse on the theories 

involved refer to the coverage in the texts of Hirsch et al19 and Buseck et al20.

2.12. The Bloch Wave Formulation.

Following from the work of Bethe, solutions are sought for the Schrodinger equation 

for electron waves in the periodic potential field of a crystal. A solution consists of an 

incident beam, represented by wave vector, lq, directed to the reciprocal lattice origin 

and many diffracted beams represented by wave vectors, kh, directed to the reciprocal 

lattice points. All of these wave vectors originate at the same point, L. The collection 

of incident and diffracted waves that constitute one solution of the wave equation is 

known as a Bloch wave.

The wave vectors kh do not have the same lengths and there is no restriction that 

requires all diffracted beams to have the same wavelength as seen in kinematical 

theory. Instead, with each wave vector, kh there is an associated amplitude T h which 

will be large if the h- reciprocal lattice point lies close to the Ewald sphere.
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■ ■ ■

Figure 2.6. Illustration of Bloch wave description.

As the direction of the incident wave vector, ko, varies, so does its length, depending 

on the diffraction effects. Hence, instead of being a sphere of radius the locus of

point L is a surface, known as the dispersion surface.

In general, there are many solutions to be found to the wave equation and it follows 

that there will be many Bloch waves within a crystal. In practice, only a finite number 

of Bloch waves need be considered.

A wave function satisfying the wave equation in a periodic potential field must have 

the periodicity of the crystal lattice and so the Bloch wave takes the form,

V (r) = Z  eXP(2lt !h •r)  • exp(z k 0 • r) = ^  exp(z k h • r) Equation 2.21.
h h

where ko is the incident wave vector and kh= ko+27ih where h is a reciprocal lattice 

vector.

To determine what Bloch waves are generated in a crystal and more importantly, what 

their relative amplitudes are for a given wave incident on a crystal, the boundary 

conditions for the entrance face must be applied. The requirement is that the
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projection onto the crystal boundary of any incident wave vector in the crystal must be 

equal to the projection on the boundary of the wave vector, K of the incident wave in 

a vacuum.

For each Bloch wave there is a corresponding point Ll and a corresponding surface 

that is the locus of point Ll. All points Ll must lie on a line perpendicular to the 

surface. Since the positions of the points Ll define all the wave vectors for all the 

Bloch waves, the problem then is to solve the wave equation to deduce the relative 

strengths of the various Bloch waves and the amplitudes of the diffracted waves 

within each Bloch wave. The usual form is to employ a matrix equation with 

eigenvalues and eigenvectors representing strength and amplitudes of Bloch waves for 

the solution. This theoretical approach can form the basis of methods of computation 

o f diffraction intensities and amplitudes.

2.13. Multislice Theory of Dynamical Electron Diffraction.

Having briefly mentioned the two-beam theory of dynamical diffraction and the 

reasons for its non-inclusion in common descriptions of dynamical diffraction, a
30description is now given of the multislice theory of Cowley and Moodie.

As previously described, the reciprocal lattice is sampled by an Ewald sphere of very 

large radius and as such, the interaction of all simultaneously diffracted beams must 

be taken into account. More simply, not only has the association of a diffracted beam 

to the incident beam to be considered, but also the interactions and association of a 

diffracted beam with all other diffracted beams. Therefore, a relevant dynamical 

scattering theory has to account for interactions of all beams involved in the 

diffraction phenomena. Several different accounts of this w-beam dynamical theory
. , • 30,31,3 3 ,3 4 .have been given.

It is often most convenient to employ the multislice method of Cowley and Moodie 

for calculating dynamical structure factors and phases.
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As the incident electron wave passes through a crystal, it can be considered to have 

been modified in two ways. The phase of the wave is affected by traversing the 

varying potential, cp(r) of the crystal and the wave is spread by Fresnel diffraction or 

propagation effects. In this approach, the two effects are separated, dealt with 

individually and then recombined.

The phase changes are considered to be concentrated on a series of planes spaced a 

distance of Az apart.

Az Az Az

Figure 2.7. Description of Multislice theory.

For each thickness, Az, the phase change due to the potential (p(r) is considered to take 

place on one plane and is found by

(*y)= exp [ - '  « p „  (xy)l Equation 2.22.

where

<P.(*v)= J!"+% (r)dz Equation 2.23.

where qn(xy) is the transmission function.

The Fresnel diffraction effects are taking place between planes and are represented by 

convolution with the propagation function p n(xy). As the small angle approximation 

holds for electron scattering, the propagation function is
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p(xy) = exp '(*2 +y2) / Equation 2.24./A Z'X

Then, the wave function after the nth slice is given in terms of the wave function after 

the (in-1) slice as,

<p „(*?)= [<p „-i &}■ Pn~\ ( ’ey)] (’ey) Equation 2.25.

The wave function at the exit face of the specimen can then be obtained by performing 

the series of alternating convolutions and multiplications given in Equation 2.25. for 

the successive slices of the specimen, starting from the incident wave function.

As before, when the scattering object is a crystal, the potential distributions q>n(xy) for 

the individual slices are periodic in two dimensions and as such the transmission 

function is also periodic.

If, in the limiting case, slice thickness tends to zero, the first order approximation to 

q(xy) can be made

discrete structure amplitudes and as such the exit wave function can be represented by

Equation 2.26.

Equation 2.27.

and

exp 2n i —zn Equation 2.28

For a periodic object such as a crystal it is more convenient to deal with the set of

35



^ „ ( uv) =  [ ^ - i ( “ v)--P»(“ v) ] * 2 » ( “ v) Equation 2.29.

where

*¥»(uv)  = 2 X  Y , ( k t y i u ~ ~ ’v ~ t \ Equation 2.30.
h k i \  a bJ

Cowley and Moodie showed that the iteration of Equation 2.29 through N  slices of the 

crystal could be expressed in a form analogous to that of a Bom series. Thus, they had 

arrived at a general solution of the many-beam, dynamical diffraction problem in 

terms of a doubly infinite series. Summing the series in various ways gave a single 

series from which, under the appropriate assumptions, it is possible to derive the 

kinematical approximation, the two-beam approximation, the phase object 

approximation and some other less useful approximations.

As a basis for the calculation of diffracted amplitudes using this multislice 

approximation, the assumption is made of a finite number of thin slices. The 

diffracted amplitudes are calculated by iteration of Equation 2.27, once for each slice. 

The number of iteration thus depends on the crystal thickness.

2.14. Multiple Scattering.

Previous sections have considered several theories and approximations regarding 

electron diffraction. An understanding was gained of the non-simplistic relationships 

that can exist between a given structure and the intensity information present within a 

diffraction pattern.

Other factors exist that have the propensity to cause deviations from the above 

discussed theoretical constraints. Multiple scattering is one such effect that can cause 

perturbations to intensity information.
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The presence of multiple electron scattering is favoured by the existence of a layered 

structure. This layered structure allows the strongly excited beams from upper 

crystalline layers, which are incoherently related to each other, to act as ancillary 

primary beams for the lower layers of the crystal.

Observation of space group forbidden reflections in electron diffraction patterns was 

commonly thought to be due to «-beam dynamical scattering. In fact, appearance of
29these forbidden reflections is due to secondary or multiple scattering and increased 

thickness of the crystal.

The pronounced effect of multiple scattering, besides concealment of actual 

symmetry, is the spurious increase of data resolution. Multiple scattering involves 

self-convolution of intensities such that all reflections in the diffraction pattern are 

involved. To correct for this would involve deconvolution of the whole data set, 

which would be a difficult frisk. Thus, the best correction for multiple scattering is 

taking all steps to ensure its avoidance.35

2.15. Radiation Damage.

The final effect to be considered, with respect to perturbations of structural 

information obtainable from the electron microscope, is that of radiation damage. In 

essence, the degradation of samples on exposure to the electron beam is the 

fundamental limitation to the collection of structural information. This is especially 

true when the aim of the electron microscope study of a given material is to obtain 

high resolution images.

The major problem in electron microscope studies of organic pigments, of which this
36research is especially concerned with, is their radiation sensitivity. Degradation of 

the crystal in the electron beam can affect both the size and shape of the particle under 

investigation, as well as eliminating information about the internal order of the 

particle.
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Discussions of the specifics of the processes involved in radiation damage of organic 

materials have been given extensive treatment by several researchers.37 ’3S ,39 ’40

Although, consideration has to be made of the existence of such processes, it is 

beyond the brief of this thesis to become involved in any further discourse. In this 

section, only an introduction to radiation damage and more importantly, discussion of 

the methods employed to alleviate its effects will be given.

A proportion of an electron beam incident on the specimen undergoes inelastic 

interactions with that specimen. Subsequently, energy is transferred from the electron 

to the target atom. This energy can be dissipated by a variety of means including 

ionisation, formation o f excited molecular states or even radical reactions. Many of 

these processes will cause bond rupture within the sample.

The excited molecular species produced by this primary radiation damage can then 

undergo secondary chemical reactions which can involve neighbouring molecules in a 

complex series of steps. Thus, the consequences of these inelastic events are that the 

damage caused is normally of a chemical origin.41 The rates of these chemical 

reactions and their effect upon the molecular and crystal structure of the crystal, will 

vary from specimen to specimen as they are dependent on the chemical identity of the 

sample.

Damage is evident as loss of structure in high resolution imaging, and the feature of 

damage which is immediately apparent for diffraction is that the diffraction pattern 

fades from the outside towards the centre. Also, radiation damage is seen to be present 

at lower electron accelerating voltages, therefore damage is voltage dependent. The 

rate of loss of structure, as seen with diffraction patterns illustrates the point that at 

higher resolution, the problem of radiation damage increases, as fine detail is more 

susceptible to damage.

Methods employed to improve resistance to damage include reduction of 

temperature.40,42,43,44 This has the effect of stabilising the crystalline order of the
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damaged sample. However, this may not stop the initial radiation damage but can 

slow down the diffusion of the chemically reactive products of initial damage.45

Another method of increasing resistance to electron beam damage is that of 

encapsulation.38,46 In simple terms this may involve protection of the specimen by 

deposition of a protective film of carbon.47 The protection offered by the carbon is a 

function of the nature of the peripheral atom of the specimen molecule and not related 

to the structure of the parent molecule.

Employment of minimum exposure techniques48 can also aid in the reduction of 

radiation damage to the specimen. The essence of minimum exposure lies in 

attempting to record' images or diffraction patterns from a specimen as close as 

possible to its original state. Two variants of this method exist. The first is to deflect 

the electron beam away from the normally exposed area and carry out focusing on the 

specimen in this deflected position before returning to normal illumination conditions, 

along with recording of image at the same time. Alternatively, focusing is carried out 

as normal, then the beam is either deflected or blanked above the specimen, shifting 

the specimen then brings an unexposed area into the beam path and then unblanking 

of the beam and exposure to specimen begin simultaneously with image capture 49

Finally, use of a sensitive photographic emulsion, such as X-ray film allows for the 

use of comparatively small electron exposure times, again reducing time of exposure 

of sample to the damaging electron beam.

2.16. Conclusions.

Extensive discussion has been made of the theoretical fundamentals of electron 

diffraction. Also, an awareness has been achieved of some of the causes of deviation 

of observed electron diffraction intensities from a straightforward representation of 

the unit cell. Only by taking all of these points into consideration and by ensuring use 

of experimental conditions that favour collection of quasi-kinematical intensity
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information, can one proceed with any confidence towards the elucidation of 

structural information using electron diffraction data.
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3.0. ELECTRON CRYSTALLOGRAPHY.

3.1. Introduction.

“Electron crystallography by its broadest definition includes any use o f electron 

diffraction, electron scattering or direct imaging in which the analysis o f data is 

essentially crystallographic in its execution or objectives.50This has led to its 

application in both biological and chemical domains. ”

In molecular biology, crystallographic image processing is a standard technique for 

structure determination of proteins and other biological macromolecules by electron 

microscopy. The first practical use of the electron microscope for the three- 

dimensional crystallographic structure determination of a biological specimen was 

described by DeRosier and Klug.51 A generalised approach of merging electron 

diffraction data from different tilt angles to obtain the 3D structure of
52bacteriorhodopsin was made by Henderson and Unwin. More recent developments 

include the structures of such macromolecules as tubulin53 and Aquaporin-154. Thus, 

it can be seen that the terminology employed has a very broad frame of reference. 

Within the context of this thesis, a more precise definition of electron crystallography 

is required.

A further clarification is that of structural electron crystallography. This is 

characterised as the quantitative use of electron scattering data to determine the 

average structure of a crystal. With reference to the crystallographic phase problem 

and within the confines of this definition, an additional demarcation exists between 

strict ab initio phase determination and use of phases derived from electron 

microscope images.
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3.2. Development of Electron Crystallography.

Early structure determinations were led by Russian researchers following from the 

characterisation of paraffin layer packing from electron diffraction data by 

Rigamonti.55 Initial work by the Russian groups was based on intensity data from 

polycrystalline textures along with single crystal data. Among those organic structures 

studied, diketopiperazine56, urea57, thiourea58,59 and copper salts of some amino 

acids 60 5 61 were featured. Reasonable results were achieved with this approach using 

light atom structures, but difficulties were experienced when electron diffraction data
62 63from heavier atom structures were utilised. ’

As a test of validity of structure analyses of this kind, comparisons were made 

between observed diffraction amplitudes and those calculated from a packing model 

based on structure solution from previous X-ray studies. No obvious correspondence 

was found leading to skepticism of the methodology from conventional X-ray 

crystallographers.64

In recent years there has been a resurgence in the use of electron diffraction data for 

structure elucidation of small molecules, mainly due to the championing of the subject 

by Dorset.65 Initial work involved the techniques of traditional direct methods, which 

has stimulated the interest of other crystallographic research groups bringing with 

them new crystallographic techniques of phase determination to be applied to electron 

diffraction data. In fact, it has now been stated that electron crystallography is indeed 

a valid technique for quantitative ab initio structure analysis.66

At this point, a description of the theoretical framework of electron diffraction has 

been given, along with a perspective on the development of the subject. The next 

treatise is a theoretical consideration of phase determination and crystal structure 

analysis. Therefore a section that links these two areas is needed to describe the 

retrieval of intensity information from electron diffraction patterns required for 

subsequent structure elucidation.

42



3.3. Extracting Intensities from Electron Diffraction Patterns.

Before any use is made of electron scattering data in structure analysis, there has to be 

a quantification of the intensity information present in electron diffraction patterns. In 

the past this was achieved by digitisation of electron diffraction patterns using a 

microdensitometer. Corrections were made for background, non-linearity of the 

densitometer and curvature of the Ewald sphere. This methodology led Baldwin and 

Henderson to develop a program that would measure and evaluate electron diffraction 

patterns from two dimensional crystals of the membrane protein, bacteriorhodopsin.67

A new program has emerged for quantitatively evaluating electron diffraction patterns 

via digitisation using CCD cameras and conventional flatbed scanners. This facility is 

called ELD68, which is part of the CRISP69 suite of programs for crystallographic 

image processing. A digitised image of an electron diffraction pattern is imported into 

ELD either from disk, as a saved image or directly from CCD camera allied with a 

frame grabber.

Before the intensities of the electron diffraction peaks can be extracted, the lattice 

must be found with sufficient accuracy. The lattice is defined by the user, by 

specifying the indices of two diffraction maxima. The criteria for reflections chosen 

for lattice refinement is that they are neither too weak or strong and that they are 

without neighbouring reflections that are too strong. All other strong diffraction points 

are found automatically by the program and after two cycles of least-squares 

refinement, the exact lattice is established.

Once the lattice vectors have been found and refined, intensities are integrated for 

each peak found on the pattern from the exact positions predicted by the refined lattice 

vectors and (0,0) position. Peak heights are determined from a curve-fitting procedure, 

allowing ELD to estimate intensities quite accurately over a large dynamic range. The 

list of reflections found along with their extracted intensities can be saved to file for
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subsequent use. A summary of the procedure involved in extraction of electron 

diffraction intensities within the ELD program is given in Figure 3.1.

HKA File

Do All

CCD CameraFlatbed Scanner

Extract Intensities

Electron Diffraction Pattern

Manual Lattice Refinement

Digitisation

Figure 3.1. Outline of use of ELD.

Thus, suitable retrieval of intensity information has been achieved and as was stated in 

the theoretical preamble, before structure reconstruction can be realised, the 

fundamental problem of missing phase information has to be overcome.

3.4. Solution of the Phase Problem.

Electron crystallography has mirrored the development of X-ray crystallography 

earlier this century. This is also true for procedures of overcoming the phase problem, 

where there has been a crossover of some of the conventional X-ray methods for 

phase determination to electron crystallography. These ‘Direct Methods’ will be 

mentioned and a discussion given of recently developed phase determining methods, 

along with a description of phase retrieval from images which is peculiar only to 

electron microscopy.
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3.5. Phase Retrieval from Images.

It has been stated that an advantage that electron crystallography has over X-ray 

crystallography is that the focusing of electrons by electromagnetic lenses allows for 

the acquisition of images - but why should this be an advantage?

Quite simply, the reasoning for this is with regard to the crystallographic phase 

problem. A low resolution electron microscope image, under certain conditions and 

employing certain approximations, can be directly related to the projected potential of 

the crystal. It follows that the Fourier transform of the image will provide a section of 

the reciprocal space and as such structure factors and hence, amplitudes and phases.

This can only be found to be true if certain factors are considered. Assumption is 

made of the existence of conditions where the weak phase object approximation or 

single scattering approximation are valid. Also, correction for the contrast transfer 

function, which modulates the amplitudes and phases, is taken into account. It must 

also hold that the low resolution electron microscope images have been obtained at 

approximately Scherzer defocus, in that phases from images are shifted by 180° with 

respect to phases of structure factors for electrons.

Admittedly, this is a very generalised conjecture of quite complex theories involving 

image formation, but as was stated previously, the aim of this thesis is not to provide a 

rigorous discourse on image theory but to show the generalised applications of such
70detailed theory. Again for an extended approach, recourse to the appropriate text is 

recommended.

Application of this school of thought regarding phase retrieval have been successful in
71 •  •structural terms, initially in biophysical areas and subsequently to inorganic 

materials.72 Another approach has been taken, whereby phases derived from low 

resolution images by methods described are used as the start point for phase extension



via a variety of direct phasing routes.73,74 ,75 It is these routes which will be explained 

in ensuing sections.

3.6. Trial and Error methods.

In attempting ab initio structure determination from diffraction data, it is possible that 

by using a trial and error guess of the atomic or molecular packing, a correct structure 

solution could be arrived at.

By using trial positions, it is possible to calculate the structure factors, F(h). Use of 

the crystallographic residual or ^-factor allows for a measure of correctness of the 

trial structure.

I | |F h° | - * K C|
R = —— yn— -----  Equation 3.1.

2^\Rh I
h

where k = X  |Eh° I |Ehc I Equation 3.2.

Trial and error methods consist of a systematic trial of all structural hypotheses 

compatible with the known physical and chemical properties of the crystal being 

considered. Utilisation of the j?-factor allows a check to be made as to whether the 

structure amplitudes calculated for the model are in qualitative agreement with the 

observed magnitudes.

76As shown by Wilson , atoms placed randomly in the unit cell give a crystallographic 

residual value of 0.83 and 0.59 for centrosymmetric and non-centrosymmetric space 

groups respectively. It has also been shown that if a ^-factor value of 0.45 is 

calculated, then the model under consideration has distinct merit. However, if a 

residual value of 0.35 is reached, then a model has been proposed that can be refined 

to the correct structure. Finally, if a i?-factor value of 0.25 is calculated then the
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atomic positions found should be within 0.1 A of their correct value. Therefore, when 

a minimum value of the crystallographic residual has been achieved, structure 

refinement has been realised.

The difficulty in using this trial and error approach is that for any unit cell, there is an 

infinite number of possible packing arrangements for a given molecule, that will fit
77the unit cell. However, not all of these possibilities are energetically favourable.

Another approach, especially in the study of polymer chains, has been to utilise 

molecular geometry suggested from an X-ray structure to search for the best fit to the 

data. Monomer units define the conformationally invariant part of the polymer repeat. 

Therefore, structure search using electron diffraction data involves investigation of the
78 79conformational changes around linkage bonds. ’

Structures of flexible aromatic molecules have been determined using a procedure

whereby molecular packing and conformation found by energy minimisation
80 81techniques, have been verified by direct methods. ’

3.7. Patterson Synthesis.

Use of the Patterson function was the major means of determining crystallographic
82phases in the early days of X-ray crystallography.

i’(uvw) = K_I£ |.F |2(M/)cos27t (hu + kv + lw) Equation3.3.

Maxima in the Patterson function are found to correspond to all possible interatomic 

vectors within the unit cell. The height of each peak will be proportional to the 

product of the atomic numbers of the atoms connected by the vector u, multiplied by 

the multiplicity of the same vector.
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The Patterson function will have the same periodicity as the electron density and 

therefore the size of the unit cell will be identical. However, the number of peaks in 

the Patterson map is much greater than in the corresponding electron density map, in 

that N  atoms in the unit cell give rise to N2 peaks in the Patterson map.

The Patterson function has also been employed for structure analyses in electron 

crystallography, including the determination of methylene chain packing in alkane 

derivatives.83 Likely molecular orientation assignation can be aided by the use of the 

Patterson map, as seen in the electron crystallographic investigation of 

phospholipids.84

A likely drawback of the use of Patterson maps in electron crystallography is the poor
29detectability of heavy atom positions due to the range of electron scattering 

magnitudes being compressed relative to that for X-ray form factors.

3.8. Direct Methods of Crystallographic Phase Determination.

Direct methods of X-ray crystallography are defined as the class of methods which 

attempt, by mathematical means, to derive the phases of the structure factors using
85only intensity information. These direct methods have been shown to be applicable 

to phase determination in electron crystallographic analyses. An overview will be 

given of different aspects of conventional direct methods.

In general the phase and amplitude of a wave are independent quantities and in order 

to understand how it is possible to relate these two quantities, two important 

properties of the electron density function have to be considered. The first is that 

obviously the electron density must be positive at every point within the crystal. The 

second property is that the electron density is composed of discrete atoms, thus the 

constraint of atomicity.
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Historically, the first mathematical relationships capable of giving phase information 

were obtained in the form of inequalities by Harker and Kasper and then further
87developed by Karle and Hauptman.

Three separate papers were published in Acta Crystallographica by Sayre88, 

Cochran89, and Zachariasen90 which provided a mathematical relationship linking the 

phases of a centrosymmetric crystal where the phases are restricted to 0 and n. Thus, 

the phase <|>h can be thought of as a sign, sh of the structure factor where <|>h= 0  

corresponds to sh=+l and §h=n corresponds to sh=-l. For this reason, the relationship 

given in these papers is referred to as the ‘sign relationship’.

This triplet product si'gn relationship can be expressed in the form given in Equation 

3.4.

s(h)s(k)s(h + k) » +1 Equation 3.4.

where » means ‘probably equal’. Another way of expressing this relationship is,

s(h+k) « s(h)s(k) Equation 3.5.

such that if  the signs of two structure factors are known, then the probable sign of the 

third can be obtained. The probability of the relationship depends on the product of 

the three structure amplitudes and where all three are large, the probability can be 

close to or even equal unity.

In 1953 Hauptman and Karle further developed this relationship to allow the basic 

concepts and probabilistic foundations of direct methods to be established 91 The key
92to the solution of non-centrosymmetric structures was provided by Cochran in 1955. 

Here, a relationship was introduced for general phases

0  (modulo 2n) Equation 3.6.



where « now means ‘is concentrated about’, vector index, h represents h,k,l and 

hi+h2+h3=0 is the null vector. Therefore, if the structure factors are all large, then the 

sum of the three phases will tend to be close to 0 , 2n, 4n, etc.

As statistical or probabilistic methods are to be applied to structure factor amplitudes, 

which themselves are derived from experimental intensity information, a correction 

has to be made for the fall off of scattering factors with diffraction angle.

where Lp is the Lorentz polarisation correction factor.

Measured structure factors are found to decrease with increasing diffraction angle. To 

fulfill the criteria of atomicity, where the structure is composed of point atoms at rest, 

use has to be made of the normalised structure factor, Ê , defined in Equation 3.8.

where fj is the scattering factor, X is wavelength, is a statistical weight that 

compensates for special classes of reflection, Kisa. scale factor which places Fh on an 

absolute scale and B is the isotropic temperature factor where,

It is easier to understand how this derivation occurs, if the normalised structure factor 

is expressed in a slightly different way.

F(hkl') = Jl(hid)
Lp

Equation 3.7.

2

E
2

Equation 3.8.

B = 8712 (u)2 Equation 3.9.

where (w) 2 is the mean squared amplitude of atomic vibration. Both B and K  in the
93above equation can be derived from a Wilson plot.
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Another expression for the normalised structure factor is given in Equation 3.10.

IF I2 - 7** Equation 3.10.

where s is as defined above and f  is as defined below,

/ ' = /  exp(^-B„ 0 sul2 %  2 J  Equation 3.11.

A plot of the natural logarithm of the right hand side of Equation 3.11., against
2 2median values of sin 0/A, will approximate to a straight line. A least squares line can 

then be calculated and B is obtainable from the slope and K  from the intercept at 0=0°.

Normalised structure factors are found by definition to satisfy the relationship,

K ) = i -

By using normalised structure factors, the Cochran phase relationship can be 

represented by the quantity,

0 3(h ,k ) = 4>(h) + + (k) + <|> (h+ k) Equation 3.12.

which has the probability distribution,

L J 27t/0|ic(h,k)]
Equation 3.13.

. 1/
where k = 2N /2 E(h)E(k)E(h+ k)
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Another way to express Equation 3.12. by changing the form of the indices is

(|)(h)«<|>(k)+<[)(li-k) Equation 3.14.

then the probability distribution is for values of <|>h.

The relationship given in Equation 3.14. gives a probable value for ^  when there is a 

pair of known phases <|>(k) and <j)(h-k). This was developed upon by Karle and 

Hauptman94 who provided the tangent formula. Where there are several such triplets 

for a given <|)(h), the tangent formula given in Equation 3.15, allows for an estimate 

for <|>(h) when several pairs of known phases are available.

2 ] k (h>k)sin[<|> (k)+ <|> (h - k)]

^  (h)h  XK(h,k)cOs[4>(k)+ <|>(h-k)] E<1Uati0n 315-

It is this tangent formula which is the basis for some of the most commonly used 

computer programs for ab initio phase determination in X-ray crystallography, an 

example of which is SHELX.95

3.9. Multisolution Methods in Crystallographic Phase 

Determination.

The basic idea of multisolution methods is that instead of using symbols for phase 

assignment, starting phases are given approximate numerical values. Initial errors 

present due to these values are found not to spoil subsequent structure solutions.

The starting set of phases, defined by a convergence procedure, will include the 

origin, enantiomorph fixing reflections if necessary and a limited number of other 

phases necessary to initiate the phase expansion process via the tangent formula.
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The number of possible combinations of numerical phase values developed by the 

tangent formula grows very rapidly. Only by limiting the number of starting set 

reflections is it possible to keep calculations computationally feasible. This is greatly 

helped by use of the so-called magic integers96 which allow a considerable reduction 

of the number of combinations with a minimum increase in phase error.

Most multisolution programs such as MULTAN97 are based mainly on the use of 

triplets estimated by Cochran’s formula. It is possible using multisolutional methods 

to solve structures with up to 70 atoms in the asymmetric unit. However, two main 

limitations exist regarding these methods. The first is that the initial steps of the phase 

expansion are very critical due to the restricted number of starting set phases. This 

effect will be amplified by the chain nature of the phase expansion process by means 

of the tangent formula.

3.10. Figures of Merit.

The phase determination process invariably leads to more than one solution. Given 

several sets of phases, it would be time consuming to compute and attempt to interpret 

all the corresponding electron density maps to see which yield the correct structure. 

Instead, it is easier to compute some appropriate functions called figures of merit 

which allow an a priori estimate of the correctness of each phase set.

For a figure of merit to be independent of the phasing technique, it should use phase 

relationships that have not been used as a phasing technique. This leads to a situation 

where a relationship may be strong enough for calculation of a figure of merit, but is 

also good enough to derive phases. Generally a compromise is reached regarding 

these two situations. Several figures of merit are in use in traditional direct methods 

and following are brief descriptions of the four most commonly used.

3.10.1. ABSFOM.
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ABSFOM is a measure of the internal consistency of the triplet invariants used in 

estimating the phases.

ABSFOM = £ ( a h - a  /Jh) / 2 ] ( a  £h “ a  jb,) Equation 3.16.
h /  h

where a th2 = Z a \  + Z Z A k A r  \  Equation3.17.

V'Rh ~
2
hk

V h /

V1
Equation 3.18.

and A _  ^ rh ^ k ^ -h -k/iki, “Lhk 4 n
Equation 3.19.

For random phases ABSFOM is zero. Typical values considered as giving a good 

indication about the phases set are values of ABSFOM of 1.0-1.3.

3.10.2. RESID.

RESID is a i?-factor between estimated and actual values of a  and since it is 

dependent on a, it must also rely on tangent refinement. RESID can also be defined 

on E-magnitude.

Ra = 1 0 0 x 2 | a h - a  sh l/X a  £h Equation 3.20.
h /  h

A correct phase set should have a residual value less than 20%, although structures 

containing a large number of atoms in the unit cell may have correct phase sets with 

Ra in excess of this figure.

3.10.3. PSI-ZERO.
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PSI-ZERO, \|/0, is a measure of fit of small E-magnitudes. This figure of merit is 

largely independent of the phasing methods and is sensitive to atomic positions.

¥  =To
k̂ h-k

Equation 3.21.

A value of vj/ 0 less than one is usually indicative of a correct phase set. However, if all 

other figures of merit are good but a value of \j/ 0 greater than one is obtained, then this 

indicates a correct fragment in the wrong position.

3.10.4. NQEST.

NQEST is summed over all negative quartets. Like \|/0, NQEST uses the information 

contained in the small E-magnitudes although the information is used in a different 

way, thus making the two figures of merit independent of each other. This dependence 

on small E-magnitudes also makes NQEST largely independent of the phasing 

procedure. NQEST can lie anywhere in the range -1.0 to +1.0, with the most negative 

values likely to correspond to correct phase sets.

^  ^ h k l m  h + < l) k ‘*‘ <t>I + ( l>i n )

NQEST = ----------- y — ----------------  Equation 3.22.
Z-i^hklm

h,k,l,m

where, for centrosymmetric reflections hkIm = |l -  2P+1 Equation 3.23.

and for non-centrosymmetrics reflections hkim = —T Equation 3.24.
a

and a  is the variance of the quartet probability distribution.
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3.11. Summing Up.

As was stated in the introduction to this section, the aim was to provide an overview 

of direct methods and therefore reference has to be made to the appropriate texts for a 

more thorough discussion of the relevant theoretical descriptions of direct 

methods.98

For detailed examples of the application of some of these conventional direct methods 

to phase determination in electron crystallography, again reference has to be made to
29the monograph of Dorset.

As the research detailed in this thesis has applied maximum entropy and likelihood 

procedures to the determination of crystallographic phase information a full treatment 

of the theory will be given in the next section, combined with a discussion of the 

applications of this methodology to electron crystallography.
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4.0 MAXIMUM ENTROPY AND LIKELIHOOD METHODS IN 

CRYSTALLOGRAPHY.

4.1 Limitations of Conventional Direct Methods.

Direct methods of crystallographic phase determination have been found to be an 

extremely powerful tool to the small molecule crystallographer, as illustrated by their 

use in routine structure solution to resolution of around 1.1 - 1.2 A. However, these 

well developed methods can fail in certain circumstances.

Traditional direct methods require data at atomic resolution coupled with a complete 

sampling of reciprocal space. This criteria is justification alone for direct methods to 

be inapplicable to projection electron diffraction data. Problems are also encountered 

with powder and fibre diffraction data and also with certain aspects of 

macromolecular crystallography. Maximum entropy methods do not offer a 

completely different approach to that of direct methods, it is an improvement on 

conventional methods in terms of the probability theory on which they are based.

Before describing the maximum entropy formalism, it is pertinent to review in a 

simplistic way the assumptions of conventional direct methods, with regard to 

probability.

4.2. Probability Distributions in Direct Methods.

Direct methods are based on the idea of a probability distribution describing where 

atoms might be located in the, as yet unknown, structure contained in the unit cell. A 

probable distribution of atomic positions can be approximated to a conventional 

electron density map, where probabilities and not electron density are present at any 

given point.
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Initially, this distribution is assumed to be uniform as we have no knowledge about 

the locus of atoms. The probable distribution of atomic positions changes as phases 

and other aspects of the structural arrangement become known. Owing to the 

mathematical relationship that exists between atomic positions and structure factors, 

any knowledge about one of these changes the probable distribution of the other. 

Thus, as phases become known, the probable distribution of atomic positions changes 

and so, too, does the probable distribution of the remaining phases. When enough 

phase information has been accumulated, the probability distribution of the remaining

| phases becomes so sharp as to allow determination of their values with great accuracy,

and thus the crystal structure is solved.
i

!
| The initial assumption that the probability distribution is uniform, is the safest one to

! make when no information is available regarding the atomic positions. However, once
j

I diffraction data has been collected, phases can be chosen for two or three strong

reflections allowing the origin of the unit cell to be fixed. Doing so changes the 

uniform atomic probability distribution law irreversibly and now some regions of the 

unit cell are more likely than others to contain atoms. This new probability 

distribution is said to be conditional, in the sense that it is only valid given the specific 

phase choices that have already been made. Associated with this is also a new 

conditional probability distribution for the remaining unknown phases.

The problem of choosing new probability distribution laws for the random atomic 

positions and unknown phases, once some reflections have been phased is the 

quintessential phase problem of crystallography.

One approximation to the probable distribution of atomic positions is the Fourier 

synthesis calculated from the structure factors of the phased reflections. However, for 

a realistic map to be obtained, reasonable estimates for the phases and amplitudes of 

the missing reflections has to be introduced. Structure solution will be realised when 

the probable distribution of atomic positions and the electron density map converge to 

very similar functions.
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4.3. Shortcomings of Conventional Direct Methods.

A fundamental limitation of conventional direct methods is that it assumes that atoms 

are distributed randomly, independently and uniformly in the asymmetric unit. This is 

quite obviously a false assumption as atomic positions are not random entities, but are 

in fact governed by strict structural criteria regarding bond lengths and geometries. As 

discussed by Bricogne100, the limit theorems of probability theory used to 

approximate joint probability distributions have turned out to be unsuitable for large 

structure factor amplitudes. Traditionally, the Gram-Charlier or Edgeworth 

series101,102 or formal expressions related to them have been used. Thus, use of these 

series based upon the above assumption of uniformity yield approximations to the 

probability distribution which are good only for small structure factor amplitudes. 

Therefore, the situation can arise where the approximate conditional distribution of 

phases are most accurate where least informative and least accurate where potentially
103most informative. The difficulty is that there is no tractable, unique expression for 

the probability distribution into which the measured values of large structure factor 

moduli could be substituted, which would then yield the conditional distribution of 

the corresponding phases.

By considering these two limitations, it can be seen that there are intrinsic failings in 

the probabilistic foundations of direct methods, and as such, these can be overcome by 

utilisation of more powerful analytical techniques.

4.4 Bayesian Statistics.

Maximum entropy methods are based upon Bayesian statistics which themselves are 

derived from Bayes’ theorem.104 In its simplest form, this theorem can be stated as 

given in Equation 4.1.

P(E\F) oc P(E)P(F]E) Equation 4.1.
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where E and F are two events and P denotes probability.

The three components of the above equation are termed the posterior, the prior and 

the likelihood respectively. P(F\E) is the posterior and is calculated after measurement 

and it is the probability of event F occurring given that event E has already occurred. 

P(E) is the prior and is knowledge before measurement and can be thought of as the 

probability of event F  occurring. Finally, P(E\F) is the likelihood and consults the 

measured data and thus it is the probability of event E being true if event F  has 

happened.

In this Bayesian approach, prior knowledge is first defined, then likelihood is used to 

consult the experimental data and then the two are used to produce a posterior 

probability which reflects modifications to the prior which arise from the data. Thus, 

the posterior generated can be used as the new prior and the whole process repeated in 

a cyclical way until likelihood remains unchanged. This is described in Figure 4.1.

---------------------- ► Prior P(E)

Consult data via likelihood P(E\F)

Posterior P(F\E)

Figure 4.1. Bayes’ theorem.

When Bayesian statistics have been applied to situations of scientific inference, 

concerns have been expressed regarding the possibility of bias towards the solutions
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that are sought, in that a bias of the prior could lead to a bias in the final result. Daniel 

expressed these concerns in 105

‘Construction of a solution is easy; the difficult part is 

discovering what features of that solution follow 

inexorably from the data and which ones are a result of the 

model. Model fitting is easy, common and dangerous.’

Bias is reduced by placing constraints upon the Bayesian prior. The constraints placed 

upon the prior are:

(i) The prior must always be capable of reproducing what we 

know to within experimental error.

(ii) The prior must be maximally non-committal towards that 

which we do not know. This can be expressed another way, 

in that the prior must carry minimal information content 

about that which it does not know.

This can be achieved through implementation of maximum entropy methods.

4.5. The Maximum Entropy Principle.

Consider now a discrete probability distribution for which we know a set of N

normalised probabilities P=(p\,P2> p ny Such a distribution has an entropy, S, as

above or information content, /, given by,

Equation 4.2.

Note that logarithm can be to any base.
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Consider then, m constraints expressed as expectation values, (Ar) which represent 

knowledge derived from experiment. These constraints can be written as,

2 l4 ,P ,= (A r) Equation 4.3.

where r= 1,2, m

From this we want to derive a set of probabilities {P}. The situation is often 

mathematically indeterminate, in that N  is much greater than m. The maximum 

entropy principle consists of maximising the entropy in Equation 4.2. subject to the 

constraints of Equation 4.3. to determine the set of probabilities {P}.

Equation 4.2. was first derived by Shannon106 working in the field of information 

theory and is applicable in the discrete case. For an continuous function such as 

electron density, Equation 4.2. can be written as an integral.

where m(x) is a prior which can be uniform.

Thus, for a probability distribution to be maximally non-committal, its entropy must 

be a maximum, subject to the constraints of reproducing what is known. It can then be 

seen that if a prior is chosen via maximum entropy methods, it has a minimum bias 

and is maximally non-committal towards the missing data and therefore is an optimal 

prior for use within Bayes theorem.

Equation 4.4.

Use of maximum entropy methods combined with Bayesian statistics can be viewed 

as having two benefits with regard to scientific inference;



(i) Bayes’ theorem allows for the modulation of prior 

probabilities as extra evidence arrives.

(ii) Maximum entropy methods indicate how to assign the 

prior probabilities initially.

Having gained an overview of both Bayesian statistics and maximum entropy 

methods, the next section details their relevance pertaining to the crystallographic 

phase problem.

4.6. Application of Maximum Entropy and Bayesian Statistics in 

Crystallography.

Bricogne100,103,107 ’108,109 has detailed in a series of papers the applicability of the 

concepts outlined above, to the crystallographic phase problem. He has employed the 

Saddlepoint approximation110,111 which overcomes the limitations of the 

aforementioned Edgeworth series. Use of the saddlepoint approximation always yields 

optimal estimates of joint probability distributions involving large structure 

amplitudes. This is equivalent to requiring that the distribution of random atomic 

positions should be updated whenever phase assumptions are made, so as to retain 

maximum entropy under the constraints embodied in those assumptions.

Therefore, Bricogne demonstrated that the results obtainable from maximum entropy 

can also be derived without recourse to the maximum entropy formalism by use of the 

saddlepoint approximation and that in essence, the two techniques are equivalent. 

Application of this revised statistical analysis of the phase problem does not 

necessitate use of distributions such as triplets and quartets to generate phase 

information, although it is related to such methods. Before a description of the 

implementation of the theory involved, it is necessary to describe normalisation of 

data for use within maximum entropy calculations.
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4.7. Normalisation of Data for Maximum Entropy Calculations.

It has been found that for maximum entropy calculations it is better to use unitary 

structure factors, UH, rather that normalised structure factors, EH, of conventional 

direct methods.

where |iy  is the normalised structure magnitude and N  is the number of atoms in the 

unit cell.

From the above equation the maximum value of If/J is 1.0. Also, the distribution of 

|£/J is independent of scattering angle, 0. Thus observed values have been 

modified so that they correspond to a hypothetical structure in which actual atoms
117with more or less diffuse electron densities have been replaced by point atoms.

4.8. Strategy for Implementation of Maximum Entropy 

Calculations.

Having dealt with the rationale of the theory, it can be stated that maximum entropy 

methods view an unknown crystal structure as being made up of atoms of known 

chemical identity but unknown atomic positions. These positions are considered as 

being random, with an initially uniform distribution in the asymmetric unit. Thus,
113structure determination consists of the gradual removal of that randomness.

Implementation of the principles involved has been described 

extensively.114,115,116’117 The MICE program (Maximum Entropy In a 

Crystallographic Environment) is the practical realisation of part of the Bricogne 

formalism, and it is to this program that all references about calculations allude to.

Equation 4.5.
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4.8.1. The Basis Set.

Solution to the phase problem for a specific set of data does not always start with a 

complete lack of knowledge. Following on from normalisation of data, a set of unitary 

structure factors are obtained, |UiJobs There is also a set of phase angles, most of 

which are unknown. In order to fully define a structure in real space, an origin must be 

defined to enable a fixed frame of reference for atomic coordinates to be obtained. 

This is achieved in reciprocal space by assigning phases to a limited number of 

| U / bs. For ab initio structure solution, because of the rules of origin definition, some 

phases can be assigned subject to certain rules, depending on the space group chosen. 

A criterion that must be fulfilled is that the origin defining reflections must contain no 

semi-invariants and be linearly independent of each other. This means that the 

combinations of two or three reflections must not be structure invariants or semi

invariant. Phase information can also be derived, in the case of electron diffraction, 

from the Fourier transform of the corresponding image.

Partitioning of data can occur at this point and the phased reflections define the basis 

set, {H}, with the remaining unphased reflections being assigned to the non-basis or 

disjoint set, {K}.

BASIS SET NON-BASIS SET

{H}

h  U jjg K

(J)j, known ^  unknown

Figure 4.2. Partitioning of data within MICE.



The reflections in the basis set {H} are now used as constraints in the generation of a 

maximum entropy prior, termed #ME(x).

4.8.2. Entropy Maximisation.

Before generation of a maximum entropy prior, the reflections in the basis set are used 

to calculate an initial electron density map, p(x), by Fourier transform. This map 

contains only information that has been input and is therefore heavily biased. As in 

conventional direct methods, areas of negative electron density are forbidden in the 

maximum entropy formalism and so all areas of the map which are negative are set to 

zero to form a new map, p‘(x)- This new map is still heavily biased and so its entropy 

is maximised subject to the constraint that the Fourier transform of the map p‘(x) 

must contain the basis set reflections to within experimental error of those input to the 

original calculation. Thus, in the language employed by Bricogne et al. in the theory, 

the prior ^^(x) must reproduce the known phases and amplitudes but be maximally 

non-committal with respect to unknown structure factors.

The Fourier transform of the ^^(x) map contains not only the phases of the basis set 

reflections used in the initial calculation but also contains phase information on 

UheK. This generation of estimates of amplitudes and phases for reflections in {K} is 

called extrapolation, shown graphically in Figure 4.3.

ME

Extrapolated reflections, 
Non-basis set {K} 
Unmeasured reflections

Figure 4.3. Extrapolation of phases and amplitudes.



4.8.3. The Phasing Tree.

When the basis set is small, comprising only 2 or 3 reflections, the extrapolation is 

weak and most reflections will not have reliably extrapolated phases. While it is 

possible to add the strongly extrapolated reflections to the basis set, difficulties can be 

encountered as entropy optimisation can become trapped into a local minimum. Thus 

some other technique has to be employed to move reflections from the non-basis set 

{K} to the basis set {H}.

To proceed, therefore several reflections with large U-magnitude need to be given 

permuted phases, just as in conventional direct methods, giving rise to a multisolution 

environment. These new permuted reflections are added to the basis set and are 

treated as additional constraints in entropy maximisation. The reflections are chosen 

on the premise that they are those about which the current ^^(x) knows least. This 

implies that the* next #ME(x) map will have maximum information gain relative to the 

previous map. The reflections about which the ^^(x) map knows least are also the 

reflections least coupled to those already known, thus preventing islands of highly 

correlated reflections being determined.

Use of this method of phase permutation gives rise to a node for each choice of phase 

for each permuted reflection and so build a phasing tree, as illustrated in Figure 4.4. 

for a centrosymmetric situation.

Node 1

Node 2 Node 3 Node 4 Node 5

Node 6 Node 7 Node 8 Node 9

Figure 4.4. Phasing tree.
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Clearly construction of such a phasing tree could prove to be computationally 

cumbersome, since each node has to be subjected to entropy maximisation. To 

determine which nodes are most promising to continue the phasing procedure, the 

other component of Bayesian statistics, likelihood, is employed.

4.8.4. Likelihood as a Figure of Merit.

In the early stages of phase determination likelihood has proved to be a reliable figure 

of merit, and as such is used as a criteria for phase set discrimination. Likelihood 

measures the degree to which the phase choices made are able to anticipate correctly, 

through maximum entropy extrapolation, some of the information present in the non

basis set. Thus, likelihood can be thought of as a figure of merit determining the 

future viability of a given node.

Likelihood is not used in its native form, but rather calculated relative to the null 

hypothesis, L0i where for all the extrapolated reflections, |Uj1|ME=0. Thus, likelihood is 

in the form of a ratio, or as it is used in MICE, as the log likelihood gain (LLG).

For the acentric extrapolated reflections, (heK), log likelihood gain is defined as

V Pv
I obs

s kXa + a k
l l ( k f  J + K f > t p k r f

2 ekS a +<7k £kv y
Equation 4.6.

where s k is the statistical weight of reflection k, a k the variance of |C/k|0̂ , £  a a 

refinable measure of unit cell contents E«l/(2jV) for N point atoms in the unit cell 

and I0 is a zero order Bessel function.

For centric reflections, log likelihood gain is as shown in Equation 4.7.
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K =  ,k Jt(2
2| Ut

I obs

s k2 + a £
exp

ME

2 s t S+<Jk
cosh k * K ElN

2 s kS+crJ j
Equation 4.7.

As the likelihood equations given were derived using the diagonal form of likelihood, 

they are only sensitive to the extrapolated moduli, |Ull|ME and not to the associated 

extrapolated phases.

A corresponding null hypothesis is defined for the situation of null extrapolation, 

I£7^1= 0 , which gives the Gaussian distribution of Wilson statistics. This is defined

for acentric reflections as,

A 9 . J 5
\obs

Sk2+CTk
exp

2 8 kX+(T k

Then, if Lk is defined as,

Equation 4.8.

^ = l o g - f Equation 4.9.

global log likelihood gain (LLG), can now be defined as,

L U J -Z L , Equation 4.10.

118Log likelihood gains are analysed for phase indication using the Student t-test. The 

simplest test involves the detection of the main effect associated with the sign of a 

single phase. The log likelihood gain averages p+ and p’ with associated variances, V* 

and V  are computed for those nodes in which the sign of the phase under test is + or - 

respectively. The use of the /-test enables a sign choice to be derived with an associate 

significance level.
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Equation 4.11.

This calculation is repeated for all the single phase indications and then is extended to 

combinations of two or three phases. In general, only relationships with associated 

significance levels >2% are used, but this is sometimes relaxed with sparse data sets.

Only those solutions which are consistent with the 7-test results are kept, and further 

reduced if necessary to 8 in a given level. Further reflections are then permuted and a 

new level of nodes generated. This procedure is continued until most structure factors 

have significant phase indications.

4.8.5. Centroid Maps.

The maximum entropy distributions associated with the various nodes are not electron 

density maps in the traditional sense. A #ME(x) maps displays many of the features 

normally associated with maps, in that peaks correspond to atomic positions. The 

^ ( x )  map is subjected to a Sim filter119,120thus producing a centroid map.

For k acentric the Fourier coefficients are:

Equation 4.12.

where:
Equation 4.13.

For k centric, these coefficients become:

i^k r tanh (x k) exp (/(f> “ ) Equation 4.14.

with:

Equation 4.15.
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In the centroid map, both reflections from the basis set {H} and the extrapolated 

reflections {K} are used. Phase angles are those extrapolated by the maximum 

entropy procedure. These centroid maps are then examined in a conventional manner.

4.9. Application of Maximum Entropy Methods using MICE.

As described, maximum entropy methods are not subject to the same constraints as 

conventional direct methods. This leads to application of said methods in 

crystallographic situations where perhaps data is of low resolution or there is 

incomplete sampling of reciprocal space. This has particular relevance in dealing with 

powder diffraction, macromolecular crystallography and of course, electron
1̂ 1

diffraction data from both small molecules and macromolecules.

4.9.1 Powder Diffraction and MICE.

Powder diffraction patterns are a one-dimensional representation of a three- 

dimensional pattern that has been reduced by spherical averaging. This results in the 

possibility of reflections that would be otherwise separate, overlapping - a phenomena 

which increases with Bragg angle and unit cell dimensions. The problem of peak 

overlap in the powder pattern is the factor which can limit the complexity of structure 

that can be solved. The maximum entropy approach has been shown to be applicable
I 1 ft 100to powder work, and as such, MICE has been adapted to deal with such datasets. ’

The theoretical basis for the application of maximum entropy and likelihood to 

powder diffraction has been outlined by Bricogne.109 The approach here differs from 

conventional avenues to ab initio structure solution from powder data, where 

overlapped reflections are ignored or have their intensities equally partitioned. 

Maximum entropy methods utilise all the intensity data in the normalisation 

procedure and the log likelihood gain is calculated using both overlapped and non

overlapped reflections. The overlapped reflections are also used in the final centroid 

maps, thus playing a contributory role in the entire phasing procedure.
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The methodology detailed has been employed to solve structures from powder data, 

ab initio, for a variety of inorganic compounds including the salts, KA1P20 7 122 and
1 1 o i

Mg3BN3 and anhydrous lithium triflate, LiCF3S0 3 . A more complex structure 

solved by these means was the clathrasil, Sigma-2. 118 Further application to organic 

structures has been achieved through determination of formylurea124 and 1 ,3 ,4 ,6 -
125tetrathiapentalene-2,5-dione.

The examples given demonstrate the feasibility of applying maximum entropy 

methods to the determination of previously unknown structures directly from powder 

diffraction data.

4.9.2. Macromolecular X-ray Crystallography and MICE.

Some of the earliest applications of maximum entropy techniques were made in 

protein crystallography, as Bricogne illustrated in the extrapolation of phases from 3 A 

resolution to that of 1.5A, using experimental data coupled with correct phases. 100

MICE has been used, with adaptation, in situations where additional constraints arise
126 ■..from the molecular envelope in conjunction with solvent flattening. The previously 

unknown protein TrpRS {Bacillus stearothermophilus tryptophanyl-tRNA synthetase) 

was solved, again utilising MICE. In this instance, phase permutation was required to 

overcome problems that were encountered in the previous attempts at structure
127elucidation using conventional direct methods. Again, demonstration of the power 

of maximum entropy methods in the face of problems shunned by conventional direct 

methods.

4.9.3. Protein Electron Crystallography and MICE.

Certain aspects of macromolecular electron crystallography involving the processing 

of low-dose high resolution electron micrographs from tilted two dimensional data 

have been discussed previously. These methods have proved successful in certain 

cases, but ultimately their usefulness is limited by the resolution of the experimental
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images. However, a varied approach to this problem was offered in the study of two
1^0

dimensional purple membrane data from Halobacterium Halobium. The route 

taken for the maximum entropy calculations, in this instance involved using phases 

obtained from the Fourier transform of a suitable image as the basis set. 117,129 Thus, 

the full apparatus of phase permutation, phasing trees and likelihood ranking was not 

employed. Use was simply made of the centroid maps produced by phase 

extrapolation. Overall, this phase extension provides resolution enhancement as seen 

on examination of the centroid maps produced.

A commonly held belief is that ab initio phase determination is not practical in most

cases of protein electron crystallography, due to the structural complexity of the

molecules. However,' ab initio structure determination of two membrane protein
110structures in projection was achieved using maximum entropy and likelihood. 

Phase determination was carried out for the Omp F porin from the outer membrane of 

E. coll and for Halorhodopsin. Accurate phase information was found for the most 

likely solutions, thus enabling potential maps to be calculated. These maps were 

found to contain most of the essential structural features of the macromolecules. The 

essential difference in this work, compared to previous examples employing 

maximum entropy methods is that no use was made of image derived phases as a 

starting set for phase extension. Also, there was no need to use envelopes or electron 

density histograms though they may add more to the power of the method.

4.9.4. Small Molecules, Electron Diffraction and MICE.

As with macromolecular electron crystallography, initial use of maximum entropy 

methods as applied to small molecules, was for phase extension purposes. The first
73 •molecule to be studied was perchlorocoronene, using projection data. Experimental 

images of resolution of 3.2A were obtained, together with a diffraction pattern 

extending to 1.0A resolution. Fourier transform of the image yielded four phases 

which were used as the basis set for entropy maximisation procedures. Maps obtained
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131were compared to results from a previous X-ray study and were found to produce a 

solution that, in projection, was identical.

Validation of data sets and indeed structure solutions of organic molecules determined 

in the early days of electron crystallography by the group led by Vainshtein, has also 

been achieved through application of the maximum entropy formalism. Structure 

solution of both diketopiperazine and CuC12 .3Cu(OH) 2 was accomplished by ab initio 

means using MICE.

MICE has also been utilised in a study, whereby the unknown structure of 4-[4-(N,N- 

dimethylamino)benzylidene]pyrazolidine-3,5-dione was solved in projection. 

Although structure solution was from a very sparse data set, excellent agreement was 

seen between the maximum entropy solution and independent model building 

combined with high resolution electron microscopy studies.

In an analogous manner, the structure of [9,9’-bianthryl]-10-carbonitrile was solved
o 1

by the same group. Again, a sparse data set was used and the results obtained from 

maximum entropy methods were independently verified by model building and image 

simulation techniques. Thus, giving credence to the belief that ab initio structure 

solution using electron diffraction data does indeed have a distinct viability.

4.10. Maximum Entropy Methods in Crystallography - Perspective.

In common with many of the radical departures from conventional beliefs that have 

been proposed throughout the course of the development of science as a whole, 

maximum entropy methods in crystallography were treated with a certain amount of 

guardedness and not a little disdain.

In a wide ranging review on the role of direct methods in X-ray crystallography, 

Woolfson stated,



‘It seems that maximum entropy is adding nothing 

completely new to the crystallographic scene and since it 

involves a great deal of effort, perhaps nothing useful.’

Having detailed aspects of the role and application of maximum entropy methods in 

crystallography, it can be concluded that these methods do indeed add something 

fundamentally new to crystallographers searching for ways of overcoming the phase 

problem and that overall, it is worth the effort.

4.11. Concluding Remarks.

Electron crystallography, in the context of this body of research, has brought together 

many differing aspects of structural science. It is hoped that this broad theoretical 

description has highlighted the reasoning behind use of such methods and illustrated 

the common thread of gaining structural information to whatever degree about a 

variety of molecules. The methodology has been described ranging from simple 

electron diffraction through to complex crystallographic concepts.

The subsequent sections of this thesis bring an account of all of these methods and 

techniques as applied to pigment structures, both in further investigation of previously 

studied molecules and attempted ab initio structure solution of an unknown structure.
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5.0. REVIEW OF PIGMENT CRYSTAL STRUCTURES

As was discussed in the introduction, the properties of organic pigments are strongly 

influenced by the chemical structure and the physical characteristics of the crystals. 

The importance of particle size, shape and knowledge of the crystallographic 

arrangement of the pigment molecules within the crystal are crucial in understanding 

the relationship between structure and property.

Crystal structure analyses have been carried out on several pigments of the (3- 

Naphthol and Acetoacetanilide classes. There is a diversity of functionality between 

these distinct classes, but there are important structural features that are consistent in 

both. Preliminary reviews have been undertaken and these identified certain structural 

trends132 ’133. Since that work was carried out, more structures have been solved and 

the aim of this work is to include these structures in a further, more detailed review of 

the structural architecture of these pigments.

Analysis of these structures and trends therein could lead to further work involving 

the design of surface active molecules that could modify the physical properties of the 

pigment, such as solubility, dispersibility and fastness.

5.1. Structural Review - Background.

Structural information was derived from many sources including the structural 

literature, Chemical Abstracts and most importantly, the Cambridge Structural 

Database. 134,135,136 Crystallographic information could be taken from CSD and used 

in computer based molecular visualisation packages, namely CERIUS*}31

CERIUS2 allows for the investigation, manipulation and analysis of 3D 

representations of molecules. Areas that can be investigated include mode of packing 

of molecules, extent of hydrogen bonding and surface functionality.
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5.2. Cambridge Structural Database.

Computers have had an unprecedented role in the advancement of modem 

crystallography. This has led to the facile management of data either in its collection, 

retrieval or analysis. The rapid development of structural crystallography has created a 

vast amount of structural information that obviously needed some sort of 

comprehensive organisation.

Crystallographic databases have had the common aim of recording not only the 

relevant biographical and chemical information needed for searching and for access to 

the original literature, but also the often extensive primary numerical results. These 

primary results include cell dimensions and symmetry, atomic coordinates and 

thermal parameters. All this information provides a basis from which a wealth of 

secondary information can be derived and used by anyone interested in chemical 

structure.

The main crystallographic database is the Cambridge Structural Database. It stores the 

primary results of full three-dimensional X-ray and neutron diffraction studies of 

organics, organometallics and of metal complexes having organic ligands. The 

database is fully retrospective and is updated regularly. The CSD can be thought of as 

a reservoir of precise coordinate based information on molecular structure. This is 

information which is accessible via search queries composed, primarily in chemical 

terms. Entry is provided to the relevant literature and numerical experimental data for 

individual crystal structures. However, the literature is already replete with detailed 

descriptions of individual structures, so the most important function of CSD is to 

provide the basis for systematic and detailed analyses of sets of related compounds.

Crystallographic data can be employed in studies which result in a systematic 

statement about molecular shape, molecular dimensions or of the intramolecular and 

intermolecular interactions.
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5.3. Inferred Trends from Crystallographic Databases.

5.3.1. Bond Lengths.

The determination of molecular geometry is of vital importance to the understanding 

of chemical structure and bonding. This led to the first compilation of results from X-
138ray analysis giving interatomic distances and configurations in molecules and ions. 

Further studies followed, including summary tables of bond lengths between carbon
1 3Qand other elements in Vol. 3 of International Tables for Crystallography.

CSD has been used to prepare a table of average bond lengths in organic 

compounds. 140 The table lists average lengths for bonds involving the elements H, B, 

C, N, O, F, Si, P, S, Cl, As, Se, Br, Te and I. Classification of bonds used in the table 

is based on common functional groups, rings, ring systems and coordination spheres. 

Within the context of this study, the bond lengths of most interest are those that define 

either the azo or hydrazone tautomer of a particular pigment, that is, N-N, C-N and C- 

O distances. Listed in Table 5.1. are the values obtained from CSD and those 

normally accepted values quoted in International Tables141 are listed in Table 5.2.

Single Double

N-N 1.401 1.240
C-N 1.465 1.279
C -0 1.432 1.221

Table 5.1. CSD Average Bond Lengths (A)

Single Double

N-N 1.44 1.24
C-N 1.47 1.32
C -0 1.43 1.23

Table 5.2. International Tables Average Bond Lengths (A)
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The tabulation of results in this manner, was an attempt by the authors to obtain the 

average geometries of functional groups, rigid rings and the low energy conformations 

of flexible rings. It is hoped that the systematic survey could be extended to derive 

information about distances, angles, directionality and environment dependence of 

hydrogen bonds and non-bonded interactions.

5.3.2. Space Group Frequencies for Organic Compounds.

Another study142 was undertaken which used a different database, NBS Crystal Data 

Identification File. 143 The frequency of occurrence has been calculated for each of the 

230 different space groups. The space group frequencies were calculated for organic 

materials. Most of the entries correspond to entries that results from full structure 

determinations.

Since it was possible to tabulate frequencies for 29 059 organic compounds, the 

results should be representative of their distribution in nature. The five most common 

space groups and their percentage occurrence are given in Table 5.3.

Space Group % Occurrence

P2j/c 36.0
PI 13.7

P212,2, 11.6
P2i 6.7
C2/c 6.6

Table 5.3. Space Group occurrence.

From examination of the relevant results, it can be concluded that 75% of the 

compounds studied have been described in only 5 space groups and 90% of the 

structures in 16 space groups. The space group frequencies table can be used in 

routine structure work. The frequencies may indicate that a space group determination 

should be rechecked if the substance has been characterised by a rare or previously 

unoccupied space group.
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It may be possible to develop theories which could explain why certain space groups 

are rare or even uninhabited. Within the remit of this research on pigments, other 

researchers144 have tried to correlate molecular shape or physical properties of a given 

pigment with the probability that the compound falls into a certain space group or 

class of space groups.

5.3.3. Hydrogen Bond Geometry in Organic Crystals.145

In 1920, Latimer and Rodebush suggested that a free pair of electrons on one water 

molecule might be able to exert sufficient force on a hydrogen held by a pair of 

electrons on another water molecule to bind the two molecules together. 146,147 This 

speculation generated many years of research into the hydrogen bond.

Even although many crystal structures are determined with the specific intention of 

studying the hydrogen bond arrangement, there are still many aspects of hydrogen 

bonding which are still contentious.

The hydrogen bond is largely an electrostatic phenomenon. Consequently, the length 

of a hydrogen bond is highly dependent on the nature of the donor and acceptor 

atoms. A survey was undertaken of 1509 (N-H....O=C) hydrogen bonds observed by 

X-ray or Neutron diffraction in 889 organic crystal structures. Again, only the 

hydrogen bond distances of most relevance in this work will be considered. The 

distances examined were (N....O) and (H....O) of the (N-H....O=C) bonding. Mean 

values of the hydrogen bonds in question are given in Tables 5.4. and 5.5.

Type (H....O) Distance (A)
Intramolecular 1.988
Intermolecular 1.913

Table 5.4. (H....O) Distance (A)
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(N....O) Distance (A)
Intramolecular 2.755
Intermolecular 2.892

Table 5.5. (N....O) Distance (A)

The value for intermolecular distance for (N....O) corresponds favourably to the value 

given by Pimental and McClellan of 2.90A.148 The (H....O) and (N....O) distances of 

intramolecular bonds tend to be longer and shorter respectively than those of 

intermolecular bonds. Although hydrogen bond lengths are affected by the nature of 

I the donor and acceptor atoms, there is little doubt that most of the observed variation

in hydrogen bonding distances is due to crystal packing effects.
t

i
| The values listed here can be used to determine whether intermolecular or
|
| intramolecular hydrogen bonding exists within the pigment structures studied. It is

| thought that hydrogen bonding is essential for keeping the molecules planar, which is

j thought to be crucial to pigment properties. The above three studies show how

analysis of the vast array of structural data held within various crystallographic 

| databases can be analysed for the trends therein.
|
i

5.4. Crystal Structures of p-Naphthol Pigments.

From their initial discovery, it was thought that p-Naphthol pigments existed as the 

hydroxy-azo tautomer and this is the form that they are normally represented as. This 

view was challenged by Liebermann149 in 1883, who postulated that the hydroxy 

proton of 1 -phenylazo-2 -naphthol was labile and thus capable of bonding with a 

nitrogen atom of the azo group. Shifting of this proton gives rise to the keto- 

hydrazone tautomer shown in Figure 5.1.
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Figure 5.1. Keto-hydrazone tautomer.

Further evidence to support this came from Zincke and Bindewald 150 who found that 

they got the same product from either coupling benzene diazonium ion with 1 - 

naphthol or by condensing phenylhydrazine with 1,4-naphthoquinone. Later studies 

151,152 involving 13C NMR, UV/Vis and IR spectroscopy have all proved the existence 

of the ketohydrazone tautomer.

153Brown and Yadav have suggested that this hydrazone configuration was in 

agreement with the concept of extensive 7t-electron resonance throughout the 

molecule, which promotes geometric planarity and in consequence, stability and light 

fastness of pigments. Partial double bonds would also suggest a degree of 

delocalisation.

Conclusive evidence about the tautomeric form in which a given pigment exists can 

be decided from certain bond lengths within the structure. As the azo form and 

hydrazone form only differ with regard to certain bonds, it is worthwhile to compare 

the lengths of these bonds in each pigment.

If the azo tautomer is found to exist, then the azo bond (-N=N-) is a double bond, with 

adjacent bonds single, (-C-N) and hydroxyl, (C-OH). If, however, it is the hydrazone 

tautomer , then these bonds are single azo, (-N-N-) and double bonds for both (C=N)
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and (C=0). The values for these bond lengths can be accurately obtained from the 

analysis of the results of a crystal structure solution.

5.4.1. Structure Retrieval and Examination.

Extensive literature searching followed by use of Cambridge Structural Database 

[Version 5.09, April 1995] furnished X-ray crystal structure results for 17 pigments of 

the p-Naphthol class and 17 of the Acetoacetanilide class. The protocol employed to 

search CSD is outlined in Figure 5.2. The file created by CSD,filename.fdat contains 

structural information including atomic coordinates, element types, crystal cell 

parameters, symmetry operators and bonding connectivity. As described, it was 

possible to use this file created from successful searches within CSD for use in other 

applications, namely VISTA 154 and CERIUS*.

VISTA stands for Fzsualisation of STMtistics and allows interactive examination of the 

numerical results of searches carried out within the database. The program allows the 

production of histograms, scattergrams and principle component analysis plots.

CERIUS* was used to aid molecular visualisation. With the geometry tools contained 

in this suite of programs, it was possible to closely examine the 3D structure o f the 

molecular models being studied. The geometry analysis tools do not alter the stored 

coordinates of the model, they only add extra information or change the view being 

observed. Possible information that can be retrieved includes measurement of 

distances, angles, calculation of close contacts between non-bonded atoms and 

calculation of contact surfaces for a molecule, crystal or surface.
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STRUCTURE FRAGMENT 

e.g. -N=N-

AUTHOR 

e.g. Whitaker

COMPOUND NAME 

e.g. p-naphthol

QUEST 3D

SEARCH OF CSD

SAVE CRYSTALLOGRAPHIC DATA 

filename.fdat

FILE STORED IN UNIX DIRECTORY

FILE USED BY OTHER APPLICATIONS 

eg CERIUS2

Figure 5.2. CSD Search Protocol.



5.4.2. Structure Review of P-Naphthol Pigments.

As mentioned above numerical results from 17 crystal structures of P-Naphthol 

pigments were compiled and a systematic survey undertaken of certain structural 

characteristics. Individual molecular structures of each pigment found, along with 

CSD reference code and original literature reference are given in Table 5.6. Various 

structural parameters were tabulated and examined using VISTA, the results of which 

are now discussed.

CSD Refcode R| r2 r3 R4 RefNo.
ANACMO Cl H Cl see Fig. 5.11. 155
CBANAP H H H H 156
CPZNXA Cl H Cl see Fig. 5.11. 157
CPZPAN Cl H Cl see Fig 5.11. 158
JARPEX H H H H 159

JARPEX01 H H H H 161
JARPEX02 H H H H 160

JARPIB H NMe H H 161
JARPIB01 H NMe2 H H 161

JATJIX OCHj H H H 162
MNIPZN n o 2 ch3 H H 161
NBZANO H n o 2 H H 162

NBZANOl 1 H n o 2 H H 163
NQNCPH n o 2 Cl H H 164

NQNCPH01 n o 2 Cl H H 165
PAMBOO OH H H H 166
TOAZNI H H ch3 H 167

Table 5.6. CSD refcodes and Molecular Formula of selected p-Naphthol pigments

Figure 5.3. shows a plot obtained from VISTA of the distribution of (N-N) bond 

lengths observed in 17 P-Naphthol pigments. Mean (N-N) bond length was found to 

be 1.308(9) A. As was shown in Table 5.1, average (N-N) single and double bonds are 

1.401 A and 1.240 A respectively. Therefore, the mean value obtained in this survey
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is intermediate between double and single bond order, thus a certain degree of 

delocalisation is present.

Naphthd Pigments: N-N Distance.

No. Occurence

1.18 1.20 1.22 1.24 1.26. 1.28 1.30 1.32 1.34 1.36 1.38
N-N

Rat Data
FBtanaphthS
Tsst-2
Tot.Ob6.-17
Obe^17
Supp.-O

X-axis 
Mm.-1.195 
Mat-1.361 
Range-0.166 . 
M ui>1.308 
Mean SE-0.009 
Sample 8D-0.C36

Histogram 
MecBan-1.312 
Skaw—1.608 
Quantlle-10.000 
LQ-1.195 
HQ-1.345 
Bln Wldtt^0.005 
Max. Bin -4.000

Figure 5.3. N-N Distance.

Other bonds whose order will help in the determination of tautomeric form present, 

include (C=N). Figure 5.4. displays the VISTA obtained plot of the distribution of 

(C=N) distance, which has a mean value of 1.342(6) A, thus indicating the presence of 

(C=N) double bond as the normally accepted values quoted in International Tables for 

crystallography give (C-N) as 1.47 A and (C=N) as 1.32 A. This bond length is 

indicative of the existence of the keto-hydrazone tautomer.
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Naphthoi Pigments: C-N Distance.

No. Occurence

1.300 1.310 1.320 1.330 1.340 1.350 1.360 1.370 1.380 1. 1.400

Rot Data
F i l e - n a p h t h S
Teet-2
Tot.Obt.-17
O b e j * 1 7
Supp.«0

X-axit
Ma-1.309
Max-1.398
Range-0.089
Mean* 1.342
MaanSE-0.006
Sample SD-0.0Z7

Medan-1.334 
SkMMc0 .a i1 
Quantfle-10.000 
LO-1.309 
HQ-1392 
Bin Wldtt^O.003 
Max Bin-3.000

Figure 5.4. C-N distance.

Existence of this tautomeric form is further confirmed by (C=0) bond length. Figure 

5.5. contains another VISTA plot of the distribution of (C=0) bond lengths, with a 

calculated mean value of 1.267(8)A.

Naphthd Rgmanta: G-O Distance.

No. Occurence.
Rot Data

TotObe.-17

X-a 
M o -1.208 
Max-1.343 
Range-ai3S 
Mear* 1.267 
Mean 8E-0.008 
Sample SD-0.033

Htetogram 
Medan-1.262 
Skew-0.701 
Quantfle-10.000 
LO= 1.208 
HQ-1337 
Bin Wfdh-0.004 
Max Bin -3.000

Figure 5.5. C-0 Distance.
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Comparison with accepted values from International Tables for crystallography of 

1.43 A and 1.23 A for single and double (C-O) bonds respectively, leads to the decision 

that the (C-O) bond present has double bond character. From bond length information 

alone, the presented evidence is in favour of the presence of the hydrazone tautomer.

In addition, the angles that the bonds subtend at the nitrogen atoms are not 180° as 

implied by a linear modelling of the azo linkage, but have an approximate value of 

120°. Conclusive evidence of this is derived from a plot of distribution of angles at 

the two nitrogen atoms, shown in Figure 5.6. Mean bond angle value of 118.060° was 

obtained. Strictly speaking, this means that the molecule could be either cis- or trans-, 

but in all cases investigated, the £r<ms-configuration of the keto-hydrazone tautomer 

was seen to prevail. *

Naphthoi Pigments: G-N-N Angle.

No. Occurence.

110.0 112.0 114.0 116.0 118.0 120.0 122.0 124.0 126.0
C-N-N

Plot Data 
FRe-naphtH5 
TMt-2 
TotObe.-17 
01)6.-17 
Supp.-O

X-axis
Mn-110.623
Max.-125.427
Range-14.804
Mean-118.060
MaanSE-0.767
Sample SD-3.161

Histogram 
Median-118.739 
Stew—0.348 
QuantHe-10.000 
LO. 110.623 
HO-119.758 
Bln Width-0400 
Max. Bin -8.000

Figure 5.6. C-N-N Angle.

Further investigation of the structural architecture arising from this primary 

geometrical information leads to consideration of non-bonded interactions. Values for
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non-bonded distances can indicate whether intramolecular and intermolecular 

hydrogen bonding is present within the structure.

The presence of a hydrogen atom attached to one of the azo nitrogens allows for 

possible intermolecular hydrogen bonding to the naphthoi oxygen, as demonstrated in 

Figure 5.7.

Again, using VISTA, it was possible to tabulate intramolecular (N....O) distances. The 

mean value of 2.561 (14)A was obtained from the histogram shown in Figure 5.8.

.N.

Figure 5.7. Possible intramolecular hydrogen bonding,

Naphttid Pigments: N-H..O Distance.

2
No. Occurence.

Plot Data 
Flo-naphth5 
Tact-2 
Tot.Obc.-17
O b c .* 1 7
Supp—O

X-ado 
Mia-2.471 
Mcx—2.719 
Range 10.248 
Msai»2.561 
Moan SE-0.014 
Sampto SD-0.059

II I I t i o g m  
Medbut-2554 
8tar*-1.049 
Quanlila-10.000 
L 02471  
H 02.655  
BlnWWtl>0.007 
Max. Bin -2.000

Or-™- T— —i . i— i ■ 1 i 1
2 4 6  2.49 25 2  2.55 258 261 264 2.67 2 70  2.73

_____________________________________________  • N-H..O

Figure 5.8. N-H....0 Distance,
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168Comparison with tabulated hydrogen bonding distances suggest that there is 

hydrogen bonding between N(l) and naphthoi oxygen in all cases, as the average (N-

H....O) distance is about 2.9A

Intramolecular hydrogen bonding in these molecules has two effects, firstly it tends to 

hold the azo group in the same plane as the naphthalene moiety. Secondly it will tend 

to lock the structure in the trans configuration, thus allowing a hydrogen bonding 

interaction, which would otherwise not be possible if a cis conformation was adopted.

Note however that 2 pigments of those studied, namely CBANAP and TOAZNI have 

slightly longer (N-H....O) distances of 2.719A and 2.655A respectively. This is due to 

the fact that both of these pigments have two organic fragments coordinated to a metal 

atom, although the distances involved still qualify the interaction as a hydrogen 

bonding one. An interesting feature to note is that certain functionality at R(l) of the 

phenyl residue can potentially form another intramolecular hydrogen bonding 

interaction. The most common side groups, and those exhibiting hydrogen bonding 

potential are Cl and N 0 2. In all cases investigated, this side group, -R, is on the same 

side of the azo bond as the naphthoi oxygen.

Tabulation of the distances from side group, R=C1, to N (l) of the azo bond are given 

in Table 5.7., along with their found mean value.

Figure 5.9. H....C1 Intramolecular Hydrogen Bonding.
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Refcode C1....H-N(1) A
ANACMO 2.924
CPZNXA 2.893
CPZPAN 3.026

Mean Value 2.948(40)

Table 5.7. N-H....C1 Distances (A)

The above tabulated distances are too short for a non-bonded pair of atoms and 

comparison with the known average N-H....C1 bond of 3.21A, confirms that there is 

further hydrogen bonding present.

When R=N02, values for (N-H....O) distances have been obtained and are given in 

Table 5.8.

Figure 5.10. (N-H......0 ) intramolecular interactions.

Refcode N -H ....0(N 02) A
MNIPZN 2.619
NQNCPH 2.608

NQNCPH01 2.619
Mean Value 2.615(6)

Table 5.8. N-H....0 Distances (A)

Again, remembering that average N-H....0 distance is about 2.9A, all of the three 

above interactions can be considered to be intramolecular hydrogen bonds.
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Thus, it can be concluded that if there is a side group, in this case Cl or N 02, in the 

ortho position of the phenyl connected to the azo group that has hydrogen bonding 

capabilities, then a bifurcated hydrogen bond exists between the keto oxygen and this 

side group. Furthermore, this is another driving force for molecular planarity.

Three of the pigments studied have functionality present at R4 . In all cases, this is a 

derived amido side chain of the form, CONHPh, with the subsidiary phenyl group 

having some additional functional groups, shown in Figure 5.11.

Rc

Figure 5.11. Amido Functionality.

Refcode Ra Rb Rc
ANACMO OCH3 Cl OCH3
CPZNXA OCH3 H H
CPZPAN H H H

Table 5.9. Functionality.

Utilising previous structural evidence for intramolecular hydrogen bonding, these 

pigments with the amido side groups should have the propensity to hydrogen bond, 

but only if  the nitrogen of the amido group is sufficiently close to the naphthoi 

oxygen.
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These distances were measured and are given in Table 5.10, along with the obtained 

mean value. Values show that hydrogen bonding does exist between these two atoms.

Refcode (amido) N -H ....0 Distance A
ANACMO 2.281
CPZNXA 2.307
CPZPAN 2.285

Mean Value 2.291(8)

Table 5.10. N-H(amido) . . . . 0  Distance (A)

In continuing the investigation of intramolecular hydrogen bonding, two pigments, 

CPZNXA and CPZPAN whose molecular structure has previously been illustrated, 

contain in the subsidiary amido group, an ortho-methoxy group that could possibly 

have a bifurcated hydrogen bond with the amido NH as shown in Figure 5.12.

Rb

Rc

Figure 5.12. Bifurcated hydrogen bonding.

Again, using VISTA the values obtained for N-H....O(methoxy) distance for 

ANACMO and CPZNXA are 2.549 A and 2.554 A respectively thus indicating 

another bifurcated hydrogen bond as normally accepted value is around 2.9A.
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Thus it is possible to have an intramolecular network of up to 4 hydrogen bonds 

present in the structure, depending on the functionality present, which all contribute to 

the planarity of these molecules.

Investigation of the 3D arrangement of these p-naphthol pigments, finds that they all 

conform with regard to the stacking of molecules. They stack above one another, thus 

giving rise to a columnar structure. The column nature of the crystal structure 

develops parallel to the shortest unit cell dimension. Although the molecules stacking 

in this manner may do so such that the relationship between adjacent molecules may 

be anti-parallel or parallel, a common feature is for the development of a ‘herring

bone’ type packing. Figure 5.13. depicts a view of JARPIB01. As can be seen, when 

viewed along certain directions, the orientation of the molecules is found to alternate 

such that the molecules in adjacent columns are inverted and rotated with respect to 

each other.

Figure 5.13. Packing arrangement in JARPIB01.

Previous studies of p-naphthol pigments, based on more limited structural information 

concluded that no intermolecular hydrogen bonding was found to exist. It was thought 

that molecules of this type were only linked by weak van der Waals forces, and indeed 

for some of the structures studied here, this still holds true. However, contrary to the 

above, the more extensive studies presented here show that intermolecular hydrogen 

bonding can, and does exist in some of the pigments studied.
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Using CER1US2 it was possible to monitor all possible close contacts between

adjacent molecules. A cut-off distance of 3.28 A was imposed, following from the
168evidence presented by Sutor that C-H....0 hydrogen bonding could occur at 

distances of up to 3.28 A. Table 5.14. lists the (H....O) contact distances found for 

each of the p-naphthol pigments under investigation.

Refcode (H...O)
Distance

ANACMO - - - - - - -

CBANAP - - - - - - -

CPZNXA - - - - - - -

CPZPAN - - - - - - -

JARPEX 2.65 3.07 3.13
JARPEX01 2.58 2.97 3.09
JARPEX02 - - - - - - -

JARPIB - - - - - - -

JARPIB01 - '  - - - - - -

JATJDC - - - - - - -

MNIPZN 2.69 2.89 2.92 3.07 3.14 - -

NBZANO - - - - - - -

NBZANOll 2.48 2.96 3.04 - - - -

NQNCPH 2.51 2.68 2.81 2.98 3.02 - -

NQNCPH01 2.67 2.75 2.81 2.91 3.12 3.16 -

PAMBOO 2.28 2.69 2.80 2.83 2.84 2.89 2.90
TOAZNI - - - - - - -

Table 5.11. (C-H O) Intermolecular contact distances.

PAMBOO, which has hydroxyl functionality ortho to the azo linkage is found to 

possess the most extensive intermolecular hydrogen bonding. Other pigments 

exhibiting this intermolecular interaction , although to a lesser degree, are MNIPZN, 

NBZANOll, NQNCPH and NQNCPH01. All are found to have nitro functionality, 

again in the ortho position, but also in the position para to the azo linkage. This 

highlights the fact that N 02 groups present in pigment molecules have a propensity to 

hydrogen bond, both intramolecularly and intermolecularly. It is believed that 

extensive hydrogen bonding interactions are beneficial for the required pigmentary 

properties, and as such inclusion of nitro functionality, either in ortho or para 

position, is recommended.

An interesting point to note is that possible (C-H....O) interactions were identified in 

both JARPEX and JARPEX01. Neither of these pigments have recognised
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functionality capable of hydrogen bonding, as each possible position on the phenyl 

ring is occupied by hydrogen. Therefore, hydrogen bonding in this case is via the 

naphthoi oxygen and is derived only from the basic structural template.

This extensive examination of crystal structures representative of the p-naphthol class 

has identified several structural features that are common to all of the pigments 

studied, regardless of functionality. Also other features important with respect to 

pigment chemistry have been investigated, especially hydrogen bonding 

characteristics and identification of functionality that can aid this important structural 

feature.

Overall, these pigments are found to exist not as the azo-tautomer, but as the keto- 

hydrazone form. Depending on the functionality present, an extensive network of up 

to 4 hydrogen bonds can develop within the molecule, aiding planarity. Finally, 

intermolecular hydrogen bonding does exist under certain conditions of functionality 

within the stacked columns of molecules.

5.5. Structure Review of Acetoacetanilide Pigments.

Azo Yellows, or pigments belonging to the acetoacetanilide class have the general 

structural formula shown in Figure 5.14.

OH

.NH.

Figure 5.14. Generalised structure of Acetoacetanilides.

As discussed, pigments of this class are typically orange and yellow pigments, with 

their coupling components being acetoacetanilide derivatives.
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Acetoacetanilide pigments share many of the structural features discussed previously 

for P-naphthol pigments, especially the tautomerism at the azo bond. There exists the 

possibility for azo-enol form or keto-hydrazone form.

Again, study of the results of crystal structure analyses can help in the determination 

of which tautomeric form each given pigment exists as, along with finding structural 

trends that could give a clue to the relationship that exists between the structure of 

pigments and their physical characteristics.

17 completed crystal structures of pigments in this class were found using the search 

procedure previously outlined. Individual Cambridge Database refcodes, molecular 

structure and primary literature reference are now given in Table 5.12.

Refcode Ri r 2 r 3 R4 Reference
CEWGOA c h 3 H c h 3 H 169
CEWGUG o c h 3 H o c h 3 H 171
CIVYIP01 H H H H 170
CIVZEM10 c h 3 H H H 171
DANDIF n o 2 H c h 3 Cl 172
DUXXID n o 2 Cl H H 173
FOVNOT n o 2 H H H 174
FUCTOM n o 2 c h 3 o c h 3 H 175
FUCTUS o c h 3 n o 2 o c h 3 H 176
NCPAAA01 n o 2 Cl H H 177
QQQAZG02 n o 2 c h 3 H H 155
QQQAZG03 n o 2 c h 3 H H 178
QQQAZG21 n o 2 c h 3 H H 179
QQQAZG31 n o 2 c h 3 H H 180
QQQEKP10 n o 2 Cl Cl H 181
QQQELA03 H n o 2 H H 182
SANZEM H Cl H H 183

Table 5.12. CSD Refcodes for acetoacetanilide pigments.

Further examination of these crystal structures using VISTA and CERIUS2 has allowed 

tabulation of various structural parameters in an analogous manner to that of P- 

naphthol pigments.

Bond lengths to be considered when assigning the tautomeric form of the pigment are 

those adjacent to and including the azo bond. In the acetoacetanilide case, the
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situation is more complicated due to the fact that there are two hydrogen atoms that 

maybe involved in tautomerism and these give rise to several possible configurations, 

some of which are given in Figure 5.15.

N = N •N=N-

NH

> = 0

\  /  'i
N —N = \

H / = N ' \  /  
OH x 7

N—N:
NH

Figure 5.15. Possible tautomers of acetoacetanilide pigments.

In X-ray crystal structure analyses, there are two ways of detecting a tautomer. One is 

to determine the hydrogen atoms positions and the other is to determine the various 

bond lengths. As these lengths will determine whether bonds are single or double in 

character, accurate information on bond length will help to assign bond character. 

When determining hydrogen atom positions, it must be remembered that hydrogen is 

a much weaker scatterer of X-rays than carbon, oxygen or nitrogen, so much so, that it 

may not be possible to find hydrogen atoms in the presence of heavier atoms. 

Subsequently, not all of the crystal structures studied have located the positions of the 

relevant hydrogen atoms, therefore, bond lengths will be used to assign tautomeric 

form.

As was mentioned, examination of the appropriate bond lengths adjacent to the azo 

bond indicate the given tautomeric form. Figure 5.16. shows a more detailed picture 

of the bonds involved (shown in red) and whose distance will be tabulated and 

discussed later.
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Figure 5.16. Bond distances o f interest.

The bond of primary interest is the azo linkage. VISTA obtained plot for N(l)-N(2) 

distance is given in Figure 5.17. A mean N-N distance of 1.319(2)A was found and 

comparison with tabulated double and single values shows that this bond is 

intermediate between double and single values of 1.240A and 1.401 A respectively. 

This suggests some degree of delocalisation.
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Figure 5.17. N-N Distance.

The C-N(2) bond adjacent to the azo linkage can again be either single or double 

bond in character depending on the conformation adopted. Expected lengths for 

double and single bonds are 1.32A and 1.47A respectively. Using VISTA for analysis



The C-N(2) bond adjacent to the azo linkage can again be either single or double bond 

in character depending on the conformation adopted. Expected lengths for double and 

single bonds are 1.32A and 1.47A respectively. Using VISTA for analysis of (C-N) 

bond lengths allows for the production of histogram shown in Figure 5.18. A mean 

value of 1.313(2)A was obtained, which is indicative of double bond character.

I i M o g n u n  
M a d t e n - 1 .3 1 3  
S K m w -O .IO S  
Q u a n tf l  * - 1 0 . 0 0 0  
LCW 1 .2 9 7  
H O - 1 .3 2 0  
B ln  W ld t tw 0 .0 0 1  
M a x . B l n - 2 . 0 0 0

Figure 5.18. C-N Distance.

The next bond to be considered, as shown in Figure 5.16., is [C-(01)]. This was found 

to have a mean value of 1.224(2)A, as demonstrated in the histogram in Figure 5.19., 
which again indicates the presence of a double bond when compared to the tabulated 

value for (C=0) of 1.23 A.

A o a to a c a l a n H d a  P l ty n a n w :  C - O  P t a t a n c a

N o . O c c u r a n c a
P lo t  D a ta
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1 .2 1 2  1 .2 1 5  1 .2 1 8  1 .2 2 1  1 .2 2 4  1 .2 2 7  1 .2 3 0  1 .2 3 3  1 2 3 6  1 .2 3 9

Figure 5.19. [C-O(l)] Distance
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In an analogous manner, [C-0(2)] bond length was found to have a mean value of

1.233(2)A, as obtained from Figure 5.20. Again, this is confirmation of the existence 

of double bond character when compared to the expected (C=0) values given above.

Acatpaeetan1d» Pkynwite: 0 -0  Dtetmnob

N o . O c c u r a n c *

.2 1 8  1 .2 2 1  1 .2 2 4  1 .2 2 7  1 2 3 0  1 .2 3 3

PM  Data
F1l«-ac«t6
Test-1
T o t .C b e . - 1 7
O b a - 1 7
8 u p p . - 0

X-axto
M o - 1 2 2 1  
M a x . - 1 2 4 3  
R a n g e - O .0 2 2  
M m i - 1 2 3 3  
M e a n  8 E - 0 . 0 0 2  
S a m p le  8 D - 0 .0 0 7

M a d ta n - 1 .2 3 8  
S h a w —0 2 1 1  
O i a n W a - l  0 .0 0 0  LO-1221 
H O .  1 2 4 2  
B ln  VVkBt—0 .0 0 1  
M a x  B in  - 2 . 0 0 0  .

Figure 5.20. C-0(2) Distance.

The final bond to be investigated is [C-N(3)], which if following the above 

convention that suggests hydrazone conformation, should have close to single bond 

character. In fact, mean (C-N) length was found to be 1.348(1)A, which is longer than 

the accepted partial double bond value of 1.32A, but still shorter that single bond of 

1.47 A. Again giving credence to the postulated concept of delocalisation within these 

structures. The presence of these bond lengths as outlined above confirms the 

hydrazone conformation, along with it would appear, the presence of some partial 

double bonds, in that their lengths lie between accepted single and double bond 

values.

It has to be noted that the distributions present in the histograms are not complete and 

do not have a Gaussian distribution and as a consequence of this, the standard 

deviations given could be unreliable.
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Once primary bond lengths were considered, non-bonded or more specifically 

hydrogen bonding interactions within these molecules were examined.

Common to all of the 17 Acetoacetanilide pigments studied are two (N....O) 

interactions which arise due to the adoption of the hydrazone conformation. The 

atoms involved and the positions of these interactions are shown in Figure 5.21.

Figure 5.21. Possible Hydrogen bonding interactions.

Mean values obtained for interaction (a) were obtained from the VISTA histogram in 

Figure 5.22., and was found to be 2.584(5)A. Comparison with tabulated hydrogen 

bonding distance for (N....O) of 2.9A proves that this is in fact a non-bonded 

interaction.
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Figure 5.22. N-H....0 Distance.



Examination of interaction (b) furnishes a mean non-bonded (N....O) interaction 

distance of 2.658(3)A as shown in Figure 5.23.
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Figure 5.23. N-H....O Distance.

For some of the pigments under investigation there is functionality present in the 

ortho- position of one or both of the phenyl groups. If these functional groups are 

oxygen containing, then further intramolecular hydrogen bonding can be seen to exist. 

The most common side groups involved are N 0 2 and OCH3.

When Ri or R3 is OCH3, Figure 5.24. shows the extent of possible (N....0) 

interactions, along with the found mean values.(Table 5.13.)

Rr
\  / 7 - i R N

V
ch3

Figure 5.24. Possible (N-H....O) Interactions.
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Refcode N 1....0(0C H 3)A N 3....0(0C H 3)A
CEWGUG 2.599 2.599
FUCTUS 2.623 2.568

Mean Value 2.611(1) 2.583(2)

Table 5.13. (N....O) Distances A

Again, all of these values indicate a (N....O) non-bonded interaction, thus a network of

hydrogen bonding can be seen to exist.

When the functionality present is R1=N02, a similar trend can be seen to exist. Table

5.14. contains tabulated (N....O) distances as obtained from conformational analysis

using VISTA.

Refcode [Nl-H 0(N 02)]A

DANDIF 2.625
DUXXID 2.603
FOVNOT 2.603
FUCTOM 2.600

NCPAAA01 2.617
QQQAZG02 2.604
QQQAZG03 2.604
QQQAZG21 2.608
QQQAZG31 2.599
QQQEKP10 2.598

Table 5.14. (N-H....O) intermolecular interactions.

As with previous findings, the values shown here indicate the presence of (N-H....O) 

intramolecular hydrogen bonding.

Overall, it can be concluded that when there is an oxygen-containing side group, in 

this instance methoxy or nitro, occupying the position ortho to the hydrazone linkage, 

then this hydrogen bond is bifurcated. The important point to note is that this occurs 

regardless of whether the functionality is nitro or methoxy.

104



Most of the pigments studied do not have functionality present at the ortho position 

on the second phenyl ring. However, CEWGUG, FUCTOM and FUCTUS have 

methoxy functionality in this position and as indicated, this gives rise to another 

bifurcated hydrogen bond. Therefore, there exists the possibility of a network of 

hydrogen bonding throughout the molecule thus holding parts of the molecule planar, 

which again is a prerequisite for good pigment properties.

Having completed an investigation of the important structural features of individual 

molecules, it follows that the arrangement and relationship of molecules in 3D as 

found in a crystal have to be examined.

Initial investigations Of the determined crystal structures found that, in common with 

p-naphthol pigments, the almost planar molecules are stacked above one another 

giving a columnar structure.

In all cases examined, the relationship between adjacent molecules within the columns 

is of an anti-parallel nature. Figure 5.25. illustrates the most common packing motif 

with a view of CEWGUG shown.

Figure 5.25. Packing arrangement in CEWGUG.
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Note that this is similar to the ‘herring-bone’ packing arrangement identified in the 

previously studied p-naphthol pigments. However, QQQEKP10 was found to have a 

different three-dimensional array of molecules, in that the molecules are found in 

slightly undulating layers, shown in Figure 5.26.

Figure 5.26. Layered structure of QQQEKP10.

As for packing of columns of molecules, it is found to be parallel to the shortest unit 

cell dimension.

Pointed out previously was the extensive intramolecular hydrogen bonding found in 

all o f the pigments studied, but is this also seen for intermolecular interactions? Use 

was made of CER1US2, with a cut-off distance of 3.28 A imposed, as it was expected 

that no hydrogen bonding interaction exists beyond this distance. Each pigment was 

studied in turn and Table 5.15. lists the values obtained for (C-H....O) intermolecular 

interactions.

In contrast to the P-naphthol pigments, intermolecular hydrogen bonding is found to 

be extensive throughout this acetoacetanilide series of pigments. All values found are 

less than 3.28 A, thus indicating the presence of hydrogen bonding interactions.
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Refcode (C-H....O) A

CEWGOA 2.92 3.06 - - - -

CEWGUG 2.57 2.83 2.89 3.01 - -

CIVYIP01- - - - - - -

CIVZEM10 2.54 2.58 2.68 2.77 2.78 -

DANDIF 2.93 3.04 - - - -

DUXXID 2.58 2.71 2.75 - - -

FOVNOT 2.54 2.88 2.89 2.91 3.17 3.23
FUCTOM 2.58 2.95 3.09 3.25 - -

FUCTUS 2.54 - - - - -

NCPAAA01 2.81 2.82 2.88 2.92 3.21 -

QQQAZG02 2.53 2.67 2.68 2.70 2.95 3.21
QQQAZG03 2.60 2.71 2.80 3.02 3.10 -

QQQAZG21 2.57 2.70 2.71 2.95 - -

QQQAZG31 2.55 2.73 2.80 2.97 3.06 -

QQQEKP10 2.82 2.90 - - - -

QQQELA03 2.59 - - - - -

SANZEM - - - - - -

Table 5.15. (C-H....O) Intermolecular interactions.

If the functionality present has the propensity to hydrogen bond, as with methoxy and 

nitro groups, then it is found that intermolecular hydrogen bonding is common. This 

is further evidence for the inclusion of such functionality thus giving rise to cohesive 

intermolecular interactions which are of particular importance to the pigment chemist.

Thus, the extensive findings presented here provide further evidence for certain 

structural features that are of paramount importance for the success of these molecules 

as pigments.

In conclusion, these pigments exist in the solid state as the hydrazone tautomer. 

Intramolecular hydrogen bonding is a common structural aspect and regardless of the 

functionality present, there is always at least two of those interactions per molecule. 

However, subject to the appropriate functionality of the phenyl rings, this may rise to 

up to four per molecule. Finally, a columnar stacking array is most common and 

extensive intermolecular hydrogen bonding can exist, again conditional of the side- 

groups present.
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6.0. ELECTRON CRYSTALLOGRAPHIC STUDIES OF

BARIUM LAKE RED C.

6.1. Introduction.

Cl

h3c

S03‘

N H

O
Ba2+

Figure 6.1. Barium Lake Red C.

At the present time Barium Lake Red C (Pigment Red 53:1)184,185 *186 is one of the 

most commonly used organic pigments. It is produced in a range of particle sizes, 

with a result that its qualities can range from transparent to opaque. As a group, this 

family of pigments are characterised by fairly poor lightfastness and indifferent 

chemical fastness. They do however exhibit good solvent and migration resistance. 

They are generally inexpensive pigments and are tinctorially strong, thus finding their 

greatest usage in printing inks. Surprisingly, Barium Lake Red C exhibits good heat 

stability and is occasionally used in plastic applications where lightfastness is not a 

crucial factor.

Barium Lake Red C is formed by the coupling of P-naphthol with 2-chloro-5-amino- 

toluene-4-sulphonic acid. Pigment is laked or precipitated with barium chloride. The 

choice of laking agent determines the shade of the pigment, extending from yellowish 

red to bluish red. The most important colour is the yellowish red of the barium salt.
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As crystallite size is of the range 0.01 - 0.1 (am, it is not possible to carry out structure 

elucidation by conventional X-ray methods and so structure determination has to be 

achieved by other means.

6.2. Experimental Synthesis of Barium Lake Red C.

The following procedure describing the experimental synthesis of Barium Lake Red C 

is adapted from an industrial process. Synthesis of the compound was carried out 

during time spent at the research laboratories of Ciba Specialty Chemicals, Paisley.

6.2.1. Diazotisation.

In the diazotisation vessel 2-chloro-5-amino-toluene-4-sulphonic acid (43.05g, 0.194 

mol) was dispersed in water (320 cm ). Added to this solution was concentrated 

ammonia solution (10.3g), while continuously stirring the mixture to effect complete 

dissolution. Once fully dissolved the solution was checked to be alkaline in nature. 

Hydrochloric acid (62g, 1.701 mol) was added and then temperature of solution was 

lowered to below 3°C by the addition of ice. This temperature was maintained 

throughout the course of the reaction. In a separate beaker sodium nitrate (13.2g, 

0.191mol) was dissolved in water ( 25cm3). This solution was then added gradually to 

the diazo solution. Solution was then stirred continuously over a period of 45 minutes.

6.2.2. Coupling Component.

p-naphthol (28.04g, 0.195mol) was dispersed in water (270ml) and sodium hydroxide 

(17.9g, 0.447mol) was added. Once p-naphthol was completely dissolved, the 

temperature of the reaction was reduced to less than 5°C by the addition of ice.
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6.2.3. Direct Coupling.

In the direct coupling route, the coupling reaction occurs in the coupling component 

vessel. The diazo component was pumped at a continuous rate into the coupling 

component vessel, which is being constantly stirred. This was continued until pH was 

seen to fall from about 10 down to 4. At this point diazo addition was stopped and pH 

of the solution raised to 7 with the addition of dilute ammonia. Coupling was then 

continued with diazo, while maintaining pH 7 by the simultaneous addition of dilute 

ammonia. Reaction mixture was then stirred for a further 5 minutes.

6.2.4. Laking.

In a separate beaker barium chloride (55.7g, 0.268 mol) in water (150 cm3) were 

stirred and heated to 80°C. Pigment slurry was then heated to the same temperature by 

the passing of steam directly into the beaker. Upon reaching this temperature, barium 

chloride solution was added to the pigment slurry and the resulting mixture stirred for 

a further 5 minutes. Temperature was then raised to 90°C and maintained for 10 

minutes. Temperature was then reduced to 70°C by the addition of ice. Pigment slurry 

was the filtered and washed through a large Buchner funnel until conductivity of 

filtrate was found to be less than 200pS. Pigment was then dried in an oven overnight 

at 70°C. The dried pigment was then weighed (70.78g, 71% yield)

6.3. Elemental Analysis of Barium Lake Red C.

Previous studies of similar pigments8,9’10 had proposed dimer structures, in that the 

relationship between metal and organic moieties was in the ratio 2:1. Due to the 

presence of Ba2+ and only one negatively charged functionality in Barium Lake Red 

C, this ratio of metal to organic component was also expected.

This was confirmed by simple elemental analysis, where the ratio of organic to barium 

was indeed found to be in the ratio 2:1. Thus, agreeing with previous studies and
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suggesting the presence of a dimeric relationship between barium and organic diazo 

component.

6.4. Determination of Tautomeric Form.

One of the most important structural features to be discussed in the previous chapter 

that reviewed crystal structures of some p-naphthol pigments, was that of keto- 

hydrazone tautomerism. It was noted that all pigments investigated were found to 

exist, not as the expected hydroxy-azo tautomer, but as the related keto-hydrazone 

tautomer. As was shown, the existence of a particular tautomer can be determined 

through examination of bond lengths in crystal structures. However, infrared 

spectroscopy studies can also aid in the elucidation of tautomeric form.

Each tautomer will have identifiable stretches in infrared spectroscopy. The hydroxy- 

azo tautomer will be recognisable due to the presence of a strong hydroxyl stretch, 

whereas the presence of both a carbonyl stretch and N-H band will indicate the 

existence of the keto-hydrazone tautomer.

IR spectrum was obtained for Barium Lake Red C. The presence of a carbonyl stretch 

at 1500cm*1 and the amido stretch at 3400cm"1 are both indicative of the keto- 

hydrazone tautomer, thus agreeing with those pigments studied previously in chapter 

5.

6.5. X-ray Powder Diffraction.

X-ray powder diffraction spectra of Barium Lake Red C were obtained from Ciba 

Specialty Chemicals, Paisley. Studies were carried out using a Siemens D5000 

Powder Diffractometer with Cu radiation of wavelength 1.5406 A, sampling at 0.02° 

per second. Figure 6.2. shows the spectra obtained for a sample of Barium Lake Red 

C, with appropriate indexing and spacings found indicated.
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6.6. Electron Microscopy of Barium Lake Red C.

6.6.1. Sample Preparation.

The aim of sample preparation for electron microscopy is to obtain mainly thin, well 

dispersed crystals throughout the sample grid. Previous studies on azo pigments had 

found that vapour epitaxy methods used to deposit thin films of the pigment were 

unsuitable due to the pigment undergoing degradation upon heating. As a result, these 

methods were not employed in these studies.

Initially, the pigment was ground using an agate mortar and pestle. The ground 

pigment was then added to a test tube containing a mixture of ethanol and water (ratio 

1:10) to give a fine suspension. A test tube was then placed in an ultrasonic bath for a 

period of 10 minutes. Using a micropipette, a drop of this suspension was pipetted on 

to carbon coated copper grids which were then dried in an oven overnight at 40°C.

6.6.2. Specimen Examination.

All microscopy was carried out using a JEOL 1200EX electron microscope, operating 

with an accelerating voltage of 120kV. This microscope is equipped with a side entry 

specimen stage, fitted with a goniometer allowing tilting of specimen along both the x 

andy axes. As the material under investigation is very susceptible to radiation damage 

within the electron beam, techniques were employed to limit the exposure of the 

crystals to the damaging electron beam. Various methods of reducing radiation 

damage were discussed in section 2.14.

During the course of these studies, the technique used was one where focusing is 

carried out as normal followed by the electron beam being deflected above the 

specimen. Shifting of the specimen then brings a previously unexposed area of the 

sample into view. Return of the electron beam to the specimen is simultaneous with 

image capture using the in-built camera, thus reducing the degree of radiation damage.
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All images were captured on X-ray film (Kodak Industrex 100 CX), thus ensuring use 

of relatively small electron exposure times due to the inherent increased sensitivity of 

the film.

6.7. Electron Microscope Images of Barium Lake Red C.

The low magnification micrograph of crystals of Barium Lake Red C given in Plate 

6.1. show an even distribution of crystals. Pigment is found to consist of mainly flat 

plate-like crystals, along with some shorter, thicker crystals. The crystallites are found 

to have average dimensions, in projection, of 5 pm and 20pm . Some of the crystals 

are found to have rounded edges which are characteristic of the manifestations of 

radiation damage.

Plate 6.2. shows the achieved resolution of a large lattice spacing of around 18 A 

observable in some of the thin, plate-like crystals.

6.8. Electron Diffraction Patterns of Barium Lake Red C.

Upon examination of single crystals of Barium Lake Red C by selected area 

diffraction, two patterns were routinely observed. Plate 6.3. shows projection 1, the 

most commonly obtained projection. This was found to originate from the thinner 

plate-like crystals.

Plate 6.4. shows the less frequently obtained projection 2, which is found to occur 

from the observed thicker crystals, which themselves are found to be present in lesser 

numbers than the above plate-like crystals.

In an attempt to obtain further projection diffraction patterns, tilting experiments were 

carried out both in Glasgow and at The Hauptman-Woodward Institute, Buffalo. Very
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Plate 6.1. Low magnification micrograph of Barium Lake Red C
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Plate 6.2. Micrograph o f Barium Lake Red C showing lattice spacing

116



. . V  _

• £ i ■ v ?  ..•« r 5, 'i

>r .v-y.S  ̂ .r* ■ <■>"?
-Vv?-:, •/>• r-i: v .»'>■v*

• . s  j -  ■ ^  / > .  •• # r & -  •

- »  ■ :

%>I  &:••,>:. • 1cm '-200pm•■•*•■..,. . . ■ V  ■ . - vgjl
• V . V. • V** '. f*. • . V. v  , r J  >V . j  a ' *-‘V > 1 • • • •■ *\ ■*■ ■* ..■ ' '  ‘: • ;

d m ,. .  ■ •

\ :; ■ • "

v-i
& fc?4  &» y * •'».«. # * ?*£*- i ■

■ • • ' <:>' \y>“t e' ■ V
•vl

.

■ . .
■■ . ■ '■ ■

•  ̂ if . V*’ t'r‘* *,
. ■

t V*- \  a, “£ £< 
.

iU-vy"*

> tl

HQ6rtfcMfcU*Slr' *' 

i TraUSeKKtfsl

i

fiiSP& M

*■ •■'•••' v--v\ y : .I#
|

?. . . ’■ */•r ) j t .  it v, ** ’• XfijtiEi
. ^

'  K l|B N n E £

/ V < K £ f t * f e 5S i p W* ’»< •*-.. v f. ‘ J *1 ,v. A» "a



Plate 6.3. Electron diffraction pattern from projection 1
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Plate 6.4. Electron diffraction pattern from projection 2
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little success was achieved, with the limiting factor being the amount of exposure that 

the crystals could survive in the damaging electron beam.

Using electron microscope operating constants, the ^-spacings present in each 

diffraction pattern could be determined. It was found that the two projections had a d- 

spacing in common. Comparison with the previously obtained X-ray powder 

diffraction pattern, found that the most common spacings were existent in both the X- 

ray and electron diffraction patterns. Also, by taking into account the systematic 

absences that are present in the X-ray powder pattern and in projection 1, the 

monoclinic unit cell dimensions were determined to be a = 34.98 A,b  = 10.92 A, c = 

8.74 A and p = 94.2°.

Using standard crystallographic relationships regarding density and unit cell 

parameters, Z, the number of molecules per unit cell could be determined. This was 

found to be equivalent to 4 of the postulated dimeric units.

6.9. Intensity Retrieval and Data Processing.

As described previously in section 3.3, it is possible to retrieve intensity information 

directly from electron micrographs using digitisation techniques followed by use of
ASELD - software for quantification of diffraction patterns. Obtained from this are a list 

of indexed reflections and their corresponding intensities.

Many diffraction patterns were collected for each projection, thus enforcing the
29criteria of self-consistency as stated by Dorset. Quantification of diffraction 

intensities for the best of these diffraction patterns of each projection was carried out 

in the manner as described above. Then, by utilisation of the SG MERGE facility 

within the maXus187 suite of programs for structure determination, it was possible to 

correctly scale data and merge equivalent reflections. i?-factor on merging was Rinit= 

0.122 and Rinit= 0.169 for projections 1 and 2 respectively. By conventional X-ray 

structure analysis standards these values are quite poor, but upon consideration of the
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possible perturbations that can affect the quality of electron diffraction data, they are 

deemed acceptable for use in electron crystallographic analysis.

At this point in the electron crystallographic analysis of Barium Lake Red C, intensity 

information for several diffraction patterns of each projection have been successfully 

combined giving rise to suitable single data sets for each projection. Now follows a 

description of the attempted ab initio phase determination for each projection using 

maximum entropy methods.

6.10. Ab initio Phasing using Maximum Entropy Methods.

6.10.1. h k0 Projection.

In accordance with the unit cell parameters detailed previously, projection 1 can be 

considered as the hkO projection due to the spacings found. Examination of the 

diffraction pattern and the systematic absences therein led to the assignment of plane 

group c2mmi due to the presence of reflection conditions, h+k=2n and centering of 

the lattice.

From the outset of these calculations, it was expected that the heavier barium atoms 

would be the dominant structural feature. Comparison of scattering factors for 

electrons of barium and the other atoms present found that barium scatters electrons at 

least twice as strongly as the next heaviest atom, based upon values for neutral atoms. 

This was confirmed by the generation of a Patterson map where peaks due to vectors 

between barium atoms were found to overshadow any other structural features 

inherent in the Patterson map.

The theoretical basis of ab initio phase determination by maximum entropy methods 

was described extensively in chapter 4, here this theory is implemented through use of
*/rrrvr< 114,115,116,117.the MICE program.
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The diffraction data were normalised using MITHRIL to give the unitary structure 

magnitudes (|Uh|obs) and their associated standard deviations using electron scattering 

factors. The overall isotropic temperature factor B was found to be 1.94. After 

normalisation, 21 unique reflections remained for use within MICE. Table 6.1. 

tabulates relevant reflection numbers, h, k, unitary structure factors and resolution, d  

in A.

No. h k iuhr d(A)

1 16 0 0.264 2.18
2 18 0 0.243 1.94
3 12 0 0.170 2.91
4 15 1 0.157 2.27
5 13 1 0.135 2.61
6 10 0 0.132 3.49
7 20 0 0.106 1.74
8 14 0 0.104 2.49
9 8 0 0.102 4.36
10 4 2 0.089 4.63
11 9 1 0.082 3.65
12 2 2 0.079 5.21
13 10 2 0.077 2.94
14 19 1 0.076 1.81
15 7 1 0.074 4.53
16 0 2 0.070 5.46
17 6 0 0.066 5.81
18 12 2 0.064 2.57
19 11 1 0.061 3.05
20 5 1 0.554 5.88
21 17 1 0.553 2.02

Table 6.1. Reflection number, h, k, |Uh|obs and resolution, d  in A.

As this projection is C-centred, only one reflection was required for origin definition, 

thus forming the basis set {H}. Reflection used for origin definition was number 4, 

(15,1) with U-magnitude of 0.157. The root node of the phasing tree was then 

generated by carrying out constrained entropy maximisation, in which the phases and 

amplitudes of the origin phases were used as constraints in the production of a 

maximum entropy distribution gME(x).

Seven strong reflections were selected and their phases permuted, thus generating 2 

nodes. The phasing tree was now found to extend from node 1 through to node 129. 

Each node was subjected to a constrained entropy maximisation as previously
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outlined. Subsequent analysis of nodes allowed the log likelihood gain (LLG) to be 

computed for each node, thus providing a ranking of nodes. The first level of the 

phasing tree is summarised in Table 6.2.

Node Entropy LLG Node Entropy LLG Node Entropy LLG

1 -0.022 0.00 44 -0.075 -0.09 87 -0.075 -0.08
2 -0.072 -0.09 45 -0.078 -0.05 88 -0.081 -0.15
3 -0.076 -0.02 46 -0.086 0.00 89 -0.076 -0.06
4 -0.082 -0.06 47 -0.077 -0.10 90 -0.076 -0.04
5 -0.080 -0.12 48 -0.074 -0.11 91 -0.075 -0.13
6 -0.084 -0.13 49 -0.075 -0.08 92 -0.075 -0.09
7 -0.069 -0.04 50 -0.079 -0.17 93 -0.074 -0.04
8 -0.075 0.00 51 -0.073 -0.06 94 -0.069 -0.01
9 -0.074 -0.07 52 -0.075 -0.04 95 -0.077 -0.11
10 -0.073 -0.05 53 -0.077 -0.10 96 -0.072 -0.08
11 -0.073 -0.04 54 -0.076 -0.11 97 -0.074 -0.05
12 -0.071 -0.05 55 -0.065 -0.02 98 -0.077 -0.09
13 -0.075 -0.11 56 -0.076 -0.05 99 -0.075 -0.13
14 -0.079 -0.09 57 -0.074 -0.12 100 -0.072 -0.08
15 -0.079 -0.06 58 -0.076 -0.13 101 -0.078 0.01
16 -0.078 -0.03 59 -0.083 -0.09 102 -0.075 0.02
17 -0.073 -0.09 60 -0.079 -0.02 103 -0.074 -0.06
18 -0.079 -0.09 61 -0.076 -0.11 104 -0.072 -0.12
19 -0.074 -0.13 62 -0.074 -0.08 105 -0.079 -0.08
20 -0.072 -0.06 63 -0.080 -0.04 106 -0.076 -0.14
21 -0.080 0.03 64 -0.059 -0.02 107 -0.074 -0.04
22 -0.080 0.01 65 -0.070 -0.12 108 -0.076 -0.04
23 -0.073 -0.05 66 -0.077 -0.14 109 -0.073 0.00
24 -0.073 -0.13 67 -0.079 -0.07 110 -0.075 0.02
25 -0.080 -0.07 68 -0.081 -0.06 111 -0.074 -0.07
26 -0.078 -0.07 69 -0.075 -0.08 112 -0.077 -0.12
27 -0.072 -0.13 70 -0.071 -0.07 113 -0.073 -0.09
28 -0.077 -0.06 71 -0.077 -0.03 114 -0.072 -0.09
29 -0.072 0.00 72 -0.079 -0.06 115 -0.075 0.00
30 -0.071 0.01 73 -0.078 -0.12 116 -0.064 -0.04
31 -0.078 -0.06 74 -0.0076 -0.11 117 -0.080 -0.14
32 -0.074 -0.12 75 -0.081 -0.08 118 -0.077 -0.12
33 -0.077 -0.09 76 -0.076 -0.01 119 -0.076 -0.03
34 -0.076 -0.09 77 -0.073 -0.08 120 -0.076 -0.01
35 -0.076 -0.12 78 -0.070 -0.07 121 -0.069 -0.09
36 -0.072 -0.11 79 -0.081 -0.06 122 -0.071 -0.08
37 -0.080 -0.03 80 -0.077 -0.04 123 -0.074 -0.04
38 -0.063 -0.02 81 -0.073 -0.11 124 -0.077 -0.04
39 -0.071 -0.08 82 -0.077 -0.06 125 -0.076 -0.12
40 -0.071 -0.10 83 -0.072 -0.10 126 -0.074 -0.10
41 -0.078 -0.06 84 -0.075 -0.11 127 -0.077 -0.07
42 -0.078 -0.04 85 -0.083 -0.04 128 -0.070 -0.01
43 -0.074 -0.11 86 -0.071 -0.02 129 -0.076 -0.09

Table 6.2. First level of phasing tree from MICE.

The top 8 nodes from analysis and likelihood ranking had centroid maps generated. 

Initial inspection of these maps offered very little structural information, even in terms
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of identification of molecular orientation within the unit cell. As a result, a second 

level of the phasing tree was generated.

In common with other structure analyses using maximum entropy methods, 

generation of the second level of the phasing tree required selection of more 

reflections to undergo phase permutation. Five further reflections were selected, thus 

after phase permutation, the second level of the phasing tree extended to 321 nodes. 

As before, nodes were subjected to constrained entropy maximisation followed by 

analysis and ranking using likelihood. Table 6.3. lists the top nodes for level 2 and it 

is found that these are predominately generated from node 102.

Node From node Entropy LLG

165 102 -0.086 0.22
167 102 -0.095 0.24
169 102 -0.085 0.23
185 102 -0.083 0.28
197 110 -0.085 0.26

Table 6.3. Top nodes from level 2 of the phasing tree.

Again, centroid maps were computed for these nodes and Figure 6.3. depicts the maps 

obtained for node 185. As expected the main structural features to appear are the 

barium atom positions. However, at this stage, the very crowded unit cell does not 

allow for any other molecular fragments to be located. Therefore, the phasing tree was 

extended to a further, third level.

Figure 6.3. Highest node from second level of MICE.
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A third level phasing tree required selection of reflections and permutation of phases 

as before. Five reflections were selected, these being numbered 5, 15, 16, 18 and 21. 

Phasing tree now grew to 481 nodes. Entropy maximisation followed by analysis and 

generation of likelihood valued produced a ranking of nodes, the top 5 of which are 

listed in Table 6.4.

Node From node Entropy LLG

328 185 -0.151 3.37
332 185 -0.148 2.26
340 185 -0.147 2.03
342 185 -0.138 1.66
348 185 -0.141 1.71

Table 6.4. Top nodes from level 3 using MICE.

Figure 6.4. shows the centroid map generated for the highest node of level 3, node 

328. This was the best possible centroid map, or phase solution that was obtainable 

with this data.

Figure 6.4. Centroid map obtained for node 328.

Barium atom positions are immediately apparent and are found to be the overriding 

aspect of this centroid map. However, it is now possible to see the development of 

other localised areas corresponding to molecular features. It can be assumed that due 

to the crowded nature of the unit cell, some molecules are being viewed face-on, 

explained by the observation of localised areas of molecular density. Attempts to 

generate any further levels in the phasing environment failed as LLG values were
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found to collapse, an indication that generation of three levels of the phasing tree was 

as much as this very sparse and limited data set would allow.

Using MICE it was possible to extract projection coordinates for the barium positions 

identified from the centroid map. Table 6.5. lists the found coordinates along with 

their expected occupancy values. Previously, from using standard crystallographic 

relationships, unit cell contents of 4 dimeric units were proposed. Some 

conformations of these postulated contents is given here by the identification of the 

barium positions that correspond to a total barium content in the unit cell of 4.

Atom X y Occupancy

B al 0.974 0.500 1
Ba2 0.092 0.500 1
Ba 3 0.416 0.000 0.5
Ba4 0.599 0.000 0.5
Ba5 0.416 1.000 0.5
Ba 6 0.599 1.000 0.5

Table 6.5. Projection coordinates for barium atoms.

Various attempts were made to increase the structural content achievable from this 

data set by alteration of different parameters within MICE. Ultimately, this met with 

little success and it was concluded that due to the very limited data combined with the 

disrupting presence of the heavy barium atoms, perhaps location of barium positions 

was all that could be achieved in this study. However, it was hoped that structural 

information could be retrieved from similar maximum entropy calculations on data 

from the other projection and at the very least, a correlation made between the barium 

positions in each projection.

6.10.2. Okl Projection.

Following from assignment of projection 1 as being hid), the data under investigation 

here has the axis of length 10.92A in common and as such can be though of as being 

the Okl projection.
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From examination of the diffraction pattern, plane group pm can be used to describe 

the symmetry present. As was explained earlier, the single data set used here was 

created from the merging of several diffraction patterns that were obtained for this 

projection.

Following the protocol outlined for the calculations on projection 1, Patterson maps 

were generated for this data set. The effect of the barium atoms has been discussed, 

with respect to their electron scattering ability. In accordance with the previous work, 

the vectors between barium atoms were the outstanding feature of the Patterson map. 

This was taken as an indication that for the subsequent ab initio phasing by maximum 

entropy means, the centroid maps generated should also have the barium atoms as the 

most identifiable feature.

The diffraction data were normalised using MITHRIL to give the unitary structure 

factors (|Uh|obs) and their associated standard deviations using electron scattering 

factors. The overall isotropic temperature factor B was found to be 0.815. This was a 

favourable value for electron diffraction data as the temperature factor is often found 

to be negative. After normalisation 94 unique reflections remained. Obviously this is a 

larger dataset than that which was used for projection 1 and this is mainly due to the 

quality of the respective diffraction patterns. Table 6.6. lists data for the reflections 

used with reflection number, h, k, unitary structure factors and resolution, d, in A 

tabulated.

Subsequent maximum entropy calculations were initiated by definition of an origin. 

Two reflections were required in this instance and they were numbers 9 and 33, both 

of which were given phase angles of 0°. These reflections defined the basis set {H} 

and from this the root node of the phasing tree was generated. This node was then 

subjected to constrained entropy maximisation, where the amplitudes and phases of 

the origin defining reflections were used as constraints to produce a maximum entropy 

distribution ^^(x).
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Reflections were chosen to have their phase permuted, thus generating more nodes on 

the phasing tree and subsequently these nodes had to undergo entropy maximisation 

procedures. Analysis of nodes was achieved through utilisation of /-tests, The phasing 

tree generated at this level for projection 2 is summarised in Table 6.7.

No. k 1 iu hr d(A) No. k 1 iuhr d(A)

1 0 8 0.187 1.36 48 2 4 0.082 2.31
2 15 4 0.181 0.57 49 5 3 0.082 1.57
3 13 8 0.171 0.60 50 2 3 0.081 2.79
4 13 3 0.168 0.66 51 10 3 0.080 0.85
5 4 0 0.160 2.18 52 2 8 0.078 1.30
6 14 2 0.158 0.62 53 0 9 0.077 1.21
7 0 10 0.143 1.09 54 6 5 0.077 1.21
8 0 4 0.142 2.73 55 7 2 0.076 1.21
9 8 1 0.139 1.08 56 7 4 0.074 1.13
10 8 3 0.138 1.04 57 10 2 0.073 0.86
11 13 7 ‘ 0.138 0.62 58 5 6 0.073 1.26
12 6 0 0.133 1.45 59 8 5 0.073 0.98
13 13 5 0.132 0.64 60 1 5 0.071 2.12
14 13 6 0.131 0.63 61 9 3 0.070 0.94
15 8 0 0.130 1.09 62 0 5 0.070 2.18
16 14 3 0.127 0.61 63 12 4 0.070 0.70
17 11 8 0.124 0.69 64 2 7 0.069 1.47
18 1 8 0.123 1.35 65 5 5 0.068 1.36
19 12 5 0.117 0.69 66 5 0 0.067 1.74
20 4 3 0.115 1.87 67 9 0 0.067 0.97
21 4 2 0.115 2.02 68 4 5 0.067 1.54
22 4 1 0.113 2.14 69 6 6 0.065 1.14
23 6 1 0.113 1.44 70 7 0 0.063 1.25
24 8 2 0.111 1.07 71 2 5 0.063 1.95
25 9 2 0.110 0.95 72 9 4 0.060 0.91
26 6 3 0.108 1.35 73 3 5 0.060 1.75
27 13 0 0.107 0.67 74 9 9 0.059 0.76
28 12 3 0.103 0.71 75 7 5 0.059 1.08
29 7 1 0.103 1.24 76 0 6 0.059 1.82
30 3 3 0.102 2.27 77 7 7 0.058 0.97
31 10 1 0.100 0.87 78 0 7 0.058 1.56
32 12 6 0.098 0.67 79 1 10 0.058 1.08
33 5 1 0.099 1.72 80 4 7 0.058 1.27
34 9 1 0.097 0.96 81 4 6 0.057 1.40
35 6 2 0.095 1.40 82 3 6 0.057 1.54
36 4 4 0.095 1.70 83 1 11 0.057 0.99
37 5 2 0.095 1.66 84 1 9 0.056 1.20
38 6 4 0.093 1.28 85 5 4 0.056 1.47
39 0 3 0.089 3.64 86 3 1 0.056 2.81
40 7 3 0.087 1.18 87 2 9 0.055 1.17
41 11 5 0.086 0.74 88 2 6 0.054 1.68
42 8 4 0.086 1.01 89 8 6 0.054 0.93
43 11 4 0.085 0.76 90 1 4 0.052 2.61
44 13 1 0.084 0.67 91 1 6 0.052 1.78
45 3 9 0.083 1.12 92 3 4 0.051 1.99
46 1 3 0.083 3.36 93 9 5 0.050 0.89
47 3 2 0.083 2.57 94 7 6 0.050 1.03

Table 6.6. Reflection number, k, I, unitary structure factor |Uh|obs and d  in A.
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Node Entropy LLG Node Entropy LLG Node Entropy LLG

1 0.00 0.00 44 -0.050 0.01 87 -0.032 -0.07
2 -0032 -0.09 45 -0.037 -0.02 88 -0.031 -0.08
3 -0.034 -0.04 46 -0.034 -0.04 89 -0.034 -0.04
4 -0.035 -0.02 47 -0.031 -0.08 90 -0.035 -0.04
5 -0.031 -0.07 48 -0.032 -0.07 91 -0.036 -0.02
6 -0.035 -0.02 49 -0.035 -0.02 92 -0.047 0.01
7 -0.034 -0.04 50 -0.041 -0.03 93 -0.035 -0.02
8 -0.037 -0.02 51 -0.035 -0.04 94 -0.034 -0.04
9 -0.046 0.01 52 -0.036 -0.02 95 -0.035 -0.02
10 -0.031 -0.07 53 -0.046 0.01 96 -0.032 -0.07
11 -0.032 -0.08 54 -0.035 -0.02 97 -0.031 -0.08
12 -0.034 -0.04 55 -0.033 -0.04 98 -0.031 -0.08
13 -0.034 -0.02 56 -0.032 -0.08 99 -0.032 -0.07
14 -0.051 0.01 57 -0.031 -0.07 100 -0.036 -0.02
15 -0.035 -0.02 * 58 -0.041 0.01 101 -0.034 -0.04
16 -0.035 -0.04 59 -0.037 -0.02 102 -0.035 -0.02
17 -0.039 -0.02 60 -0.034 -0.04 103 -0.050 0.01
18 -0.035 -0.02 61 -0.040 -0.02 104 -0.036 -0.02
19 -0.032 -0.08 62 -0.030 -0.06 105 -0.035 -0.04
20 -0.031 -0.08 63 -0.035 -0.02 106 -0.034 -0.04
21 -0.034 -0.04 64 -0.034 -0.04 107 -0.031 -0.08
22 -0.036 -0.02 65 -0.032 -0.08 108 -0.032 -0.08
23 -0.052 0.01 66 -0.040 -0.02 109 -0.035 -0.02
24 -0.035 -0.02 67 -0.034 -0.04 110 -0.035 -0.04
25 -0.035 -0.04 68 -0.037 -0.02 111 -0.035 -0.02
26 -0.034 -0.04 69 -0.041 0.01 112 -0.052 0.01
27 -0.036 -0.02 70 -0.032 -0.08 113 -0.036 -0.02
28 -0.032 -0.07 71 -0.034 -0.04 114 -0.034 -0.02
29 -0.031 -0.08 72 -0.035 -0.02 115 -0.034 -0.04
30 -0.035 -0.04 73 -0.030 -0.06 116 -0.032 -0.08
31 -0.036 -0.02 74 -0.046 0.01 117 -0.031 -0.07
32 -0.050 0.01 75 -0.036 -0.02 118 -0.039 -0.02
33 -0.035 -0.02 76 -0.035 -0.04 119 -0.035 -0.04
34 -0.035 -0.02 77 -0.041 -0.03 120 -0.035 -0.02
35 -0.047 0.01 78 -0.031 -0.07 121 -0.051 0.01
36 -0.036 -0.02 79 -0.032 -0.08 122 -0.031 -0.07
37 -0.035 -0.04 80 -0.033 -0.04 123 -0.035 -0.02
38 -0.031 -0.08 81 -0.035 -0.02 124 -0.034 -0.04
39 -0.032 -0.07 82 -0.037 -0.02 125 -0.032 -0.09
40 -0.035 -0.02 83 -0.050 0.01 126 -0.046 0.01
41 -0.034 -0.04 84 -0.035 -0.02 127 -0.037 -0.02
42 -0.035 -0.04 85 -0.035 -0.04 128 -0.034 -0.04
43 -0.035 -0.02 86 -0.035 -0.02 129 -0.035 -0.02

Table 6.7. First level of the maximum entropy phasing tree.

128



Examination of the listing of nodes shows mostly negative LLG values, with only a 

few nodes having the same positive value of 0.01. No identifiable solution is reached 

at this point of the calculations and so further phasing has to be undertaken.

A second level was generated by keeping the nodes with positive LLG values and 

selecting new reflections to undergo phase permutation, thus extending the phasing 

tree to 513 nodes. Again, constrained entropy maximisation was repeated, followed by 

analysis and ranking of nodes. Table 6.8. lists the highest nodes for level 2, along with 

their entropy and LLG values.

Node From node Entropy LLG

160 112 -0.049 0.036
162 112 -0.045 0.036
177 112 -0.050 0.031
272 126 -0.048 0.039
336 121 -0.047 0.034
394 23 -0.047 0.038
418 23 -0.046 0.039

Table 6.8. Top nodes from second level of phasing tree.

Centroid maps were generated and as expected the barium atomic positions were very 

prominent. However, in comparison with projection 1, more detail is present 

regarding other atomic presence. As no unique solution had manifested itself, a further 

third level of phasing was undertaken.

Again, further reflections were selected to have phases permuted and the resulting 

nodes were subjected to constrained entropy maximisation. Analysis by use of Mests 

and likelihood values provided a ranking of nodes. The top 5 nodes are listed in Table 

6.9. and it can be seen that three nodes have the same LLG values and two of these 

have the same entropy value. Generation of centroid maps found that the maps were 

very similar and indeed, were found to have the barium atoms in the same positions. 

Figure 6.5 illustrates the centroid map obtained for node 698, which is representative 

of those generated for nodes 678 and 694.
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Node From node Entropy LLG

678 394 -0.049 0.05
682 394 -0.049 0.04
694 394 -0.049 0.05
698 394 -0.048 0.05
702 394 -0.049 0.04

Table 6.9. Top nodes from level 3 of phasing tree.

m

0 .0-

Figure 6.5. Centroid map generated for node 698.
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It was pleasing to obtain from MICE coordinates for 6 barium positions, totaling an 

occupancy of 4, thus giving credence to the postulated unit cell contents. Table 6.10. 

lists these obtained projection coordinates along with relevant occupancy values.

Atom X y Occupancy

Ba 1 0.500 0.874 1
Ba2 0.500 0.220 1
Ba3 0.000 0.218 0.5
Ba4 0.000 0.875 0.5
Ba5 1.000 0.218 0.5
Ba6 1.000 0.875 0.5

Table 6.10. Barium coordinates for projection 2.

Attempts were made 'to improve the content of the structural information available 

from the data using maximum entropy methods, however, the sparseness and quality 

of the data set were perhaps the limiting factors, and no improvement could be 

achieved.

6.10.3. Comparison of Projection 1 and 2.

As previously indicated, projections 1 and 2 share a common axis and as such it is 

possible to correlate information obtained from each individual projection. Projection 

coordinates of the barium atoms were found to have some common positions. 

Combinations of the individual projection information led to the realisation of three 

dimensional coordinates for the barium atoms, as listed in Table 6.11.

Atom X y z

Ba 1 0.974 0.500 0.874
Ba2 0.092 0.500 0.220
Ba3 0.416 0.000 0.218
Ba4 0.599 0.000 0.875
Ba 5 0.416 1.000 0.218
Ba6 0.599 1.000 0.875

Table 6.11. Coordinates for barium atomic positions.

131



Using the CERIUS2 molecular visualisation package, it was possible to place the 

barium atoms at their found positions within the proposed unit cell, as illustrated in 

Figure 6.6.

Investigation of possible Ba-Ba contact distances found that the minimum distance to 

be 8.01 A, which was deemed acceptable after comparison with previously solved 

structures containing barium atoms.

m ' -

Figure 6.6. Barium atom positions.

6.10.4. Combining of Projection Data.

Many other electron crystallographic structure analyses have merged extensive 

projection data to form a 3D data set. In this study, as much structural information as 

was possible had been obtained from the individual datasets. Therefore it was decided 

to combine projection information, themselves composed of combined datasets, to 

form a 3D dataset. It is apparent that this is far from a complete sampling of reciprocal 

space, but given the limited information obtained from projection data, it was deemed 

a suitable course of action.
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The two sets of projection data were appropriately combined and duplicate reflections 

were rejected. Normalisation procedures using MITHRIL were followed to give 

unitary structure factors (|Uh|obs) and their associated standard deviations using 

electron scattering factors. 61 unique reflections remained after normalisation. Overall 

isotropic temperature factor B was calculated to be 1.506 A2, this being an acceptable 

value for electron diffraction data. Examination of the symmetry present in both 

projections led to the assignment of symmetry appropriate to space group C2/m.

Maximum entropy calculations were carried out using MICE, as before. Two suitable 

reflections were chosen to define the origin, obeying origin defining rules appropriate 

to the symmetry used: The reflections chosen were 12(0,6,1) and 18(15,1,0), with U- 

magnitudes of 0.178 and 0.156 respectively. The root node of the phasing tree was 

then generated by carrying out constrained entropy maximisation, in which the phases 

and amplitudes of the origin reflections were used as constraints to produce a 

maximum entropy distribution #ME(x).

The phasing tree was then extended by the selection of seven strong reflections to 

undergo phase permutation. This gave rise to a further 128 nodes and each node then 

underwent constrained entropy maximisation, as before. Analysis of the nodes was 

achieved through use of r-tests and LLG values were computed for each. The top 8 

nodes of the phasing tree were identified and centroid maps were produced for each. 

Table 6.12. lists these nodes, while Figure 6.7. depicts the centroid map obtained for 

node 67.

Node Entropy LLG

59 -0.185 0.079
60 -0.179 0.052
63 -0.189 0.050
64 -0.194 0.074
67 -0.185 0.079
68 -0.179 0.052
71 -0.189 0.050
72 -0.194 0.074

Table 6.12. Top 8 nodes from first level of phasing tree.
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Figure 6.7. Centroid map from node 67.

All of the 8 centroid maps generated were very similar, in that distinct areas of 

molecular presence could be identified.

A second level of the phasing tree was generated by keeping the top 8 nodes from 

level 1 and permuting phases for 5 more reflections, these being numbered 4, 16, 22, 

23 and 32. Entropy maximisation procedures were repeated, followed by analysis and 

calculation of LLG values. Again, centroid maps were generated and Figure 6.8. 

illustrates the centroid map obtained for node 215.

Figure 6.8. Representative centroid map of level 2 of phasing tree.
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At this stage of the maximum entropy calculations, no discernible solution was found 

to manifest itself and several of the top nodes had similar likelihood values. As a 

consequence of this similarity, the procedure of generating further levels of the 

phasing tree, by identifying the top nodes for a given level and then permuting more 

phases, was repeated several times. As before, nodes generated were subjected to 

constrained entropy maximisation. This extensive branching of the phasing tree from 

level 2 to level 6 is summarised in Table 6.13.

Level Permute No. nodes generated Nodes kept and LLG 
values

2 4 130-385 215(0.150)
16 223 (0.164)
22 225 (0.159)
23 231 (0.150)
32 239(0.154)

241 (0.164)

3 17 386-577 443 (0.34)
26 445 (0.34)
34 538 (0.34)
43 540 (0.34)
49

4 40 578-641 598(1.39)
44 600(1.39)
46 630(1.39)
57 632(1.39)

5 31 642-705 651 (2.32)
33 668 (2.31)
38 683 (2.32)
45 700 (2.31)

6 53 706-769 728 (2.35)
54 761 (2.36)
55
59

Table 6.13. Summary of phasing tree.

Finally, a distinct solution was seen to emerge at level 6 with nodes 728 and 761 

having noticeably higher LLG values. Figure 6.9. illustrates the centroid map 

generated for node 761. Immediately apparent is the increase in molecular detail over 

that present in the centroid map shown for level 2.
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Figure 6.9. Centroid map from node 761.

Examination of this centroid map, which is representative of hOl projection, clearly 

shows two columns of molecules stacking parallel to the shortest unit cell axis. Also, 

an anti-parallel array of molecular packing can be discerned. Given that in this 

centroid map molecules are being viewed, essentially edge-on, it is now clear why it 

was difficult to determine areas of molecular presence.

Dimensions of these molecules of around 16 A by 2 A, obtainable from these centroid 

maps agree favourable with calculated values. This is illustrated in Figure 6.9. by the 

superimposing of two molecules in the correct orientation within the unit cell. Also, 

further credence is given to the postulated unit cell contents with the identification of 

8 areas of organic presence. However, location of barium positions, which were found 

to be so dominant in the other projections, is less obvious here. This may be due to 

dynamical scattering effects or perhaps, due to the crowded nature of this large unit 

cell.

Overall, it can be concluded that in accordance with the findings of the previous 

structural review of p-naphthol and acetoacetanilide pigments, Barium Lake Red C 

exists as the keto-hydrazone tautomer. A pseudo-dimeric relationship exists between 

one barium atom and two organic moieties, indicated by the location of 4 barium 

atoms and 8 areas of organic presence. Molecules are seen to pack in a columnar
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manner, with an alternate relationship seen to develop between molecules in adjacent 

columns. Finally, this packing of molecules is seen to be parallel to the shortest unit 

cell dimension.

6.11. Concluding Remarks.

Throughout all stages of this challenging electron crystallographic analysis, a certain 

degree of pessimism has prevailed. It was kept in mind that Dorset had stated that 

study of perbromophthalocyanine represented an extreme case for accepting data to be 

used in ab initio electron crystallographic studies. It was believed that the study 

undertaken here perhaps lay beyond the criteria required to fulfill a successful 

structural elucidation. However, after obtaining internally consistent diffraction 

patterns, ab initio phase determination using maximum entropy methods was 

attempted. The results presented here indicate that, although significant perturbations 

to the data exist, through such effects as dynamical scattering and the intractable 

problem of this compounds sensitivity to the electron beam, structural information is 

obtainable regarding molecules for which all conventional structural methods failed.
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7.0. STUDIES OF DYNAMICAL EFFECTS IN SUBSTITUTED

PHTHALOCYANINE MOLECULES.

7.1. Introduction to Phthalocyanine.

Phthalocyanine and its halogenated derivatives are extensively used as pigments due 

to their blue-green shading and excellent properties. In terms of cost, tinctorial 

strength, brightness of shade and all round fastness properties, they approximate 

closely to ideal pigments.

The generalised structure of phthalocyanine is given in Figure 7.1. As it can be seen, it 

is closely related to the porphyrins of chlorophyll and haemoglobin. The 

phthalocyanine nucleus, an azoporphyrin, can be derived from the parent porphyrin by 

replacement of the methine groups by nitrogen atoms.

Figure 7.1. Phthalocyanine Molecule.

The phthalocyanine molecule is rigidly coplanar and tetradentate. Usually the metal 

coordinated is copper, but other elements can be coordinated in this position, 

including platinum, manganese, aluminium and silicon.
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The pigment as shown is blue in colour, with substitution of the aromatic hydrogens 

by chlorine giving rise to a green pigment. Preparation of the pigment is achieved 

through the vigorous reaction of phthalic anhydride with urea and a copper salt in a 

high boiling solvent such as nitrobenzene, with ammonium molybdate as a catalyst.

Phthalocyanine exists in several polymorphic forms, the most stable of which is the p- 

form. In the p-form, the planar molecules stack in zigzag columns in such a way as to 

permit distorted coordination of the copper atom through nitrogen atoms. This 

arrangement is due to the copper atom of one molecule being above the nitrogen atom 

of another.

The p-form is found to be the most thermodynamically stable polymorph and 

possesses a green-blue shading, with the other major polymorph, a-form, existing as a 

red-blue shade. Other polymorphs of phthalocyanine, y, 8 and s possess distorted a- 

like structures, but these are of little commercial significance.

Phthalocyanines have been extensively studied by X-ray crystallography, including 

the first solution of the p-form by J.M. Robertson in the Chemistry Department at
1 QQGlasgow University. Many other crystallographic studies have been carried out, 

but of most interest within the context of this research are the commercially important 

p- and a-forms.

Phthalocyanines have also been extensively studied by electron microscopy. The
189development of epitaxial specimen preparation techniques and minimal dose 

techniques,190 along with improvements in general electron microscope capability 

have allowed for the examination of the structure of the crystals by high resolution 

electron microscopy. This work culminated in the direct observation of molecular
191 192 193images of chlorinated copper phthalocyanines by various research groups.

194
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7.2. Previous Electron Crystallographic Studies of Halogenated 

Phthalocyanines.

Phthalocyanines have been found to be very favourable molecules for study by 

electron imaging and diffraction techniques. This is especially true for halogenated 

phthalocyanines, as they exhibit greater resistance to radiation damage within the 

microscope. In terms of structural analyses by electron crystallographic means, Dorset 

has extensively studied both copper perchlorophthalocyanine and copper 

perbromophthalocyanine.195,196,197,198

Dorset states that the greatest challenge to ab initio electron crystallographic analyses 

of organic molecules experienced so far has been for the perhalogenated 

phthalocyanines. Studies where the halogen is chlorine have been the most successful 

when intensity data has been collected from thin crystals at sufficiently high electron 

accelerating voltage.199 It was possible to generate maps with a few identifiable 

atomic positions via phase determination by symbolic addition, with the complete 

structure apparent after Fourier refinement. Other routes to structure solution have 

included use of starting phase sets from the Fourier transform of electron 

micrographs200,201 in phase extension via the tangent formula or Sayre equation.9,202,75

Structure determination of the perbromo derivative was less favourable even when 

diffraction patterns were obtained from thin crystals at high accelerating voltage. 

Direct phase determinations produced results that were of less use than those of the 

perchlorophthalocyanine. Dynamical scattering was found to affect the accuracy of 

bond angles and distances by distorting them so that potential maps obtained did not 

correspond with a chemically correct model.

7.3. Aims of Present Work.

In general, dynamical scattering affects both the intensities and phases of elastically 

scattered electrons. This can have significant consequences for both images and
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diffraction patterns. The purpose of this study is to explore the effects of dynamical 

scattering on structures determined by direct phasing, achieved through use of 

maximum entropy methods, of simulated electron diffraction patterns.

Therefore, in common with other studies detailed in this thesis, both ab initio phasing 

and procedures involving image derived phases will be utilised. However, in this 

instance simulated electron diffraction patterns of copper perchlorophthalocyanine 

will be used.

7.4. Model Construction and HRTEM Simulation.

Using atomic coordinates listed in Table 7.1, which were obtained from previous 

studies, an initial model could be constructed using the CERIUS2 suite of programs.

Atom X y

Cu 0.000 0.000
Cl 1 0.081 0.302
Cl 2 0.157 0.202
Cl 3 0.271 0.120
Cl 4 0.405 0.057
N 1 0.000 0.070
N 2 0.093 0.000
N 3 0.117 0.090
C 1 0.136 0.042
C 2 0.203 0.025
C 3 0.265 0.055
C 4 0.327 0.025
C 5 0.055 0.106
C 6 0.036 0.158
C 7 0.074 0.202
C 8 0.036 0.246

Table 7.1. Zonal Atomic Coordinates for Copper Perchlorophthalocyanine.

The plane view of the molecule tilted 26° finds the [001] orientation of the monoclinic 

unit cell. Dimensions of the cmm projection were determined to be d]00= ll.56  A and 

6=26.08 A. Figure 7.2. illustrates the model structure used throughout this study.
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The CER1US2 HRTEM (High Resolution Transmission Electron Microscopy) module 

enables simulation of dynamic electron diffraction patterns and allows transformation
203 30of these patterns into real space images, using a multislice simulation technique. ,

Figure 7.2. Model Structure of Copper Perchlorophthalocyanine.

Dynamical and inelastic scattering are found to affect the reliability of measured 

intensities in a non-linear manner which is dependent upon sample thickness. As a 

result of this, simulated dynamical electron diffraction patterns were generated over a 

range of specimen thickness from 20-200 A.

The HRTEM simulation within CERIUS2 consists of four steps. First, the projected 

potential is calculated. This is regarded as the atomic electrostatic potential of the 

model cell averaged along the direction of the incident electron beam. Next, the phase 

transfer function is approximated. Thirdly, the electron beam is propagated through 

the crystal, calculating the diffracted beam. Finally, this diffracted beam is propagated 

through the microscope to produce a real space image. Many options exist that can 

provide flexibility with regard to how the simulation is carried out. These include
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altering microscope parameters such as electron energy, aperture size or crystal 

thickness.

Figure 7.3. (a-g) shows the CER1US2 generated projected potential map, dynamical 

diffraction pattern and multislice images for copper perchlorophthalocyanine at 

thickness of 20,40, 60, 80,100,150 and 200A.

As expected the spread of the diffraction pattern is found to decrease with increasing 

crystal thickness. This corresponds to a shortening of the reciprocal lattice spikes. 

Even at 200A thickness, the data set is at a higher resolution than would be acheived 

experimentally due to radiation damage.

For each appropriate thickness examined, the generated multislice image retains the 

acknowledged molecular quatrefoil of phthalocyanine. However, as specimen 

thickness increases, a loss of contrast is seen with respect to the central copper atom. 

Multislice image calculation is seen to concentrate contrast into the aromatic carbon 

ring centres, again increasing with increasing crystal thickness.

7.5. Data Processing and Manipulation.

As the intention of this study was to carry out ab initio phasing using maximum 

entropy methods, use was made of the previously described software for 

quantification of electron diffraction patterns.

To simulate the acquisition of intensity information, as carried out with experimental

data, the simulated diffraction patterns were printed and then digitised using a
68scanner, ready to be imported into ELD. As described, ELD allows for quantitative 

evaluation of electron diffraction patterns producing listings of indexed reflections 

and their extracted intensities.This procedure was repeated for diffraction patterns of 

each investigated thickness.
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7.6. Patterson Map Interpretation.

As a prelude to the electron crystallographic structure investigation by maximum 

entropy methods, Patterson maps were generated. Structural information contained 

within the simulated diffraction pattern is portrayed by the Patterson function. Figure

7.4. (a-g) shows the Patterson maps generated for each individual data set.

Examination of these Patterson maps showed that the data did indeed show promise 

for use within further structural calculations. Information regarding atomicity was 

seen to exist throughout the range of thickness examined. More importantly, the 

correct molecular orientation in the unit cell could be identified. Therefore, even when 

dynamical scattering is present, Patterson maps are found to still represent the 

underlying crystal structure.

(a) 20 A (b) 40 A
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Figure 7.4. contd. Patterson Maps obtained for data from a range of sample

thickness 20-200 A.

7.7. Ab Initio Phase Determination using Maximum Entropy 

Methods.

In accordance with the theoretical description of maximum entropy methods and the 

experimental procedures employed elsewhere in this thesis, the following procedure 

was carried out for each of the datasets investigated.

The diffraction data were normalised using MITHRIL204,205 to give the unitary 

structure magnitudes (|Uh|obs) and their associated standard deviations using electron 

scattering factors. Reflections remaining after normalisation were used within MICE.

Due to the projection under investigation being centered, only one reflection was 

required for origin definition, thus forming the basis set {H}. The root node of the
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phasing tree was generated by carrying out a constrained entropy maximisation. Here, 

the phases and amplitudes of the origin phases were used as constraints in producing a 

maximum entropy distribution #ME(x).

Depending on the size of the data set being investigated, either five or seven 

reflections were chosen that optimally enlarged the second neighbourhood of the basis 

set {H}. These reflections had phases permuted, thus increasing the number of nodes 

at this branch of the phasing tree. Each node was subjected to constrained entropy 

maximisation as before. Log likelihood gains were computed for each and analysis 

using student t-test produced a ranking of nodes.

The best nodes from the first level were kept and used to generate a further level of 

the tree. Again, depending upon the data set, either two, four or five reflections were 

selected to undergo phase permutation. This allowed for the generation of up to a 

maximum of 256 new nodes. Entropy maximisation and analysis using log likelihood 

gain and (-test were repeated. Centroid maps were generated for the solution 

remaining with the highest LLG.

Table 7.2. details the development of the phasing tree for each data set. The number of 

unique reflection, origin defining reflection, permuted reflections and top nodes, with 

associated LLG, for each level are given.

LEVEL 1 LEVEL 2

Dataset No. refs. Origin Permuted Nodes Top LLG Permuted Nodes Top LLG

20 57 (5,3) 7 1-129 0.078(87) 5 130-385 0.26(346)

40 40 (1,3) 7 1-129 0.593(42) 5 130-385 0.94(218)

60 34 (1,3) 7 1-129 0.533(42) 5 130-385 0.94(153)

80 19 ' (3,3) 5 1-33 0.091(19) 4 34-129 0.22(137)

100 13 (3,3) 7 1-129 3.188(65) 4 130-225 3.73(161)

150 15 (1,3) 5 1-33 0.890(33) 4 34-129 2.36(62)

200 9 (3,5) 5 1-33 0.676(25) 2 34-61 1.75(37)

Table 7.2. Details of calculations using MICE.
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Figure 7.5. (a-g) depicts the best potential maps obtained for each data set from phase 

determination by maximum entropy means. Upon examination of all maps generated, 

the orientation of the molecule within the unit cell is apparent. As expected, achieved 

resolution decreases with increasing crystal thickness. However, in terms of 

identification of the heavier atom positions, structure solution by ab initio means is 

very successful.

Dominant throughout the whole series of centroid maps are chlorine positions and 

areas of presence approximating to the aromatic rings of the molecule. At 20 A 

thickness, the areas of aromatic presence can be resolved to bond level. As thickness 

increases, a smearing of these aromatic bonds is seen to give concentrations of density 

approximating to those aromatic areas. Likewise, with the chlorine positions, loss of 

individual positions is seen in a merging with aromatic areas. An interesting feature to 

note is that for specimen thickness up to 60 A no evidence of the copper atoms is 

found. However, above 80 A thickness copper atoms are found to be the most 

prominent feature of the centroid maps.

(a) 20 A (b) 40 A
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(c) 60 A

(e) 100 A (f) 150 A
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(g) 200 A

Figure 7.5. (contd.) Centroid maps from ab initio phasing.

Overall, results using ab initio phasing techniques are very encouraging. It is clear 

that for electron crystallographic analyses employing maximum entropy methods, 

strict adherence to the kinematical scattering approximation is not necessarily 

required. This is exemplified by the results acheived in this study. Under extraneous 

circumstances of dynamical scattering and the presence of considerable errors, direct 

phasing by maximum entropy methods is shown to be robust and more importantly 

successful.

7.8. Use of Image Derived Phases in Maximum Entropy Methods.

Use of phases derived from the Fourier transform of electron micrographs is a well 

documented route to structure solution by electron crystallography. In these studies, 

phase information was derived from images, then combined with the previously used
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diffraction intensities in maximum entropy procedures and phase searching 

techniques, to furnish structural information about copper perchlorophthalocyanine.

Using the methodology described in chapter 3 regarding phase retrieval from images, 

Fourier transforms of previously obtained images of copper perchlorophthalocyanine 

yielded a large number of phased reflections.

The number of phased reflections assigned to a particular dataset was dependent upon 

the size of the data set involved. Table 7.3. lists the number of reflections assigned to 

each dataset.

Dataset No. Phased Reflections

20 A 9

40 A 15

60 A 7

80 A 8

100 A 6

150 A 5

200 A 3

Table 7.3. Phased Reflections.

All intensity information was the same as was utilised in the ab initio calculations 

described in the previous section.

Again, diffraction data were normalised using MITHRIL to give unitary structure 

magnitudes and their associated standard deviations using electron scattering factors. 

Using the phases assigned for each dataset, the basis set {H} was formed. This 

consists of the relevant phases and amplitudes of the assigned reflections. Thus, the 

root node of the phasing tree was generated and subsequently subjected to constrained 

entropy maximisation.
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Using a selection algorithm, further reflections were chosen to be added to this basis 

set. As the phases of these reflections are unknown, all possible combinations of 0° 

and 180° were used , thus generating new nodes on the phasing tree. Each node was 

subjected to constrained entropy maximisation as before.

Following convention, analysis of the nodes generated was carried out employing 

student f-test. This generates a ranking of nodes according to their likelihood values. 

The top nodes found at this level had centroid maps generated.

For some of the smaller datasets, this was as far as the size of the dataset would allow 

the calculations to progress. The larger datasets could allow generation of a further, 

second level of the phasing tree.

For generation of a second level, the best nodes from the previous level were kept. 

Further reflections were selected to have their phases permuted. As before, this 

generates a new family of nodes which undergo entropy maximisation and subsequent 

analysis and ranking. Centroid maps were generated for the solutions with the highest 

log likelihood gain. Table 7.4. details the development of the calculations using image 

derived phases within MICE.

Dataset No. refs. Phased Permuted Nodes Top LLG Permuted Nodes Top LLG

20 A 57 9 7 1-129 0.348(71) 5 130-385 0.95(218)

40 A 40 15 7 1-129 1.469(98) 5 130-385 5.86(184)

60 A 34 7 7 1-129 0.400(28) 5 130-385 1.00(213)

80 A 19 8 5 1-33 5.03(2) - - -
100 A 13 6 5 1-33 0.108(21) 1 34-45 0.16(36)

150 A 15 5 5 1-33 2.20(9) - - -
200 A 9 3 5 1-33 0.755(24) - - -

Table 7.4. Details of calculations using MICE.

Figure 7.6. (a-g) depicts the most successful centroid maps for each dataset of a given 

specimen thickness of copper perchlorophthalocyanine.
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(a) 20 A
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(c) 60 A

(b) 40 A

(d) 80 A
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(g) 200 A

Figure 7.6.(contd.) Centroid Maps from MICE using image derived phases.
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As with ab initio phasing, the correct molecular orientation is immediately apparent 

upon inspection of the maps. What is surprising is the superior molecular detail 

contained in these maps compared to the previously obtained multislice images. For 

each respective thickness, resolution is greatly enhanced over that of centroid maps 

obtained from ab initio phasing. Therefore, this is another study which gives emphasis 

to the use of image derived phases in electron crystallography.

An important feature of the maps obtained is that for all datasets, the copper atoms are 

not present in the centroid maps. This could be due to the fact that the phases obtained 

are affected by dynamical scattering and that phases are found to have a profound 

effect of the correctness of any proposed structure. However, with respect to the other 

atomic species that are present, atomic resolution is greatly enhanced. Inspection of 

the 20 A thickness centroid map allows for identification of all chlorine positions, 

along with aromatic bond presence.

This degree of resolution is lost slightly as thickness increases, with the observation of 

a merging of the chlorine and aromatic bond positions to give a concentrated area of 

atomic presence. This merging of atomic areas is retained throughout the series of 

thickness investigated, even up to and including 200 A.

Overall, resolution and atomic detail is greatly improved over that of results from ab 

initio phasing, with no appearance of the spurious peaks seen in ab initio centroid 

maps of specimen of greater thickness.

In conclusion, the comments made regarding successful ab initio phase determination 

by maximum entropy methods hold true for this study using image derived phases. 

The difference here is that resolution and atomic detail is seen to be greatly improved. 

This is very advantageous to the electron crystallographer in that the methods 

employed here are found to be stable even when data is of questionable quality and of 

significant sparseness.
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8.0 ELECTRON CRYSTALLOGRAPHIC STUDIES OF AN

ALUMINIUM PHTHALOCYANINE POLYMER SYSTEM.

8.1. Introduction.

L J

Figure 8.1. Structure of (AlPcF)„ (adapted from ref 206.)

(AlPcF)„, where Pc is phthalocyanine ligand, is a cofacial phthalocyanine polymer 

system. Several studies have been carried out on this polymer, and ones related to it. 

A study of (AlPcF)„ by X-ray powder diffraction, allied with other techniques found 

that the polymer chains were packed parallel to each other, which was confirmed by 

the spacing data collected.206

Much interest was generated in polymers of this type due to the expression of 

properties such as conductivity. This led to the study of this material by high
207resolution electron microscopy.

High resolution electron microscopy images of (AlPcF)„ were obtained in which 

molecular columns could be resolved. This led to the conclusion that the molecules in 

the crystallites are parallel to each other and orientated vertically. Therefore, the 

phthalocyanine rings are perpendicular to the Al-F backbone. Descriptions are given
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in this work of the specimen preparation techniques necessary, along with methods of 

collection of such high resolution images.

One of the themes of this thesis is the validation of electron crystallographic methods 

involving phase determination by maximum entropy means. In accordance with this, 

use is made of image and diffraction data from the aforementioned electron 

microscopy study for an electron crystallographic analysis of (AlPcF)„.

As described in the previous theoretical sections, structure elucidation by maximum 

entropy methods can be attempted through ab initio phase determination or by 

utilising image derived phases. Both approaches have been used in this work and a 

detailed description of the experimental procedures involved in structural electron 

crystallographic analyses of this nature will be given.

8.2. Experimental Methods.

Use has been made of the original micrographs obtained by Fryer and Kenney in their 

study of (AlPcF)„. This has included both information from images and diffraction 

patterns. As described previously, phase information can be retrieved from 

experimental electron microscope images. Using the appropriate software, CRISP69, 

an image can be transferred to PC via a frame grabber. The Fourier transform of the 

image can be obtained and from this, the necessary phase information is derived.

Intensity information is quantified in an analogous manner, in that the diffraction
68pattern is transferred to PC using a frame grabber. However, in this instance, ELD 

software is used for quantification of diffraction pattern. The theoretical basis for both 

of these procedures has been described in the sections detailing retrieval of 

information from both diffraction patterns and images.
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8.3. Ab initio Phase Determination.

Electron diffraction data for crystallites of (AlPcF)„ allowed determination of the 

tetragonal unit cell parameters which were found to be a=b= 13.37 A and c= 3.6 A, 

with one molecule per unit cell. Diffraction data utilised here is from the ab projection 

and the plane group is determined to be p4gm.

The diffraction data were normalised using MITHRIL to give the unitary structure 

magnitudes (|Uh|obs) and their associated standard deviations using electron scattering 

factors. The overall isotropic temperature factor B was found to slightly negative, with 

a value of -0.8. Negative temperature factor values are common for sparse electron 

diffraction datasets such as those examined here. After normalisation, 64 unique 

reflections remained for use within MICE. U-magnitudes and their resolution in A are 

tabulated in Table 8.1.

No. h k |Uh|uU! d(A)
1 0 2 0.567 6.68
2 2 0 0.567 6.68
3 4 0 0.367 3.34
4 0 4 0.367 3.34
5 2 2 0.301 4.73
6 1 2 0.220 5.98
7 2 1 0.220 5.98
8 3 2 0.207 3.71
9 2 3 0.207 3.71
10 1 11 0.203 1.21
11 11 1 0.203 1.21
12 9 7 0.189 1.17
13 7 9 0.189 1.17
14 6 0 0.185 2.23
15 0 6 0.185 2.23
16 10 3 0.180 1.28
17 3 10 0.180 1.28
18 6 1 0.159 2.20
19 1 6 0.159 2.20
20 5 10 0.156 1.20
21 10 5 0.156 1.20
22 4 12 0.154 1.06
23 12 4 0.154 1.06
24 4 4 0.154 2.36
25 9 3 0.151 1.41
26 3 9 0.151 1.41
27 12 0 0.148 1.11
28 0 12 0.148 1.11
29 9 1 0.144 1.48
30 1 9 0.144 1.48
31 6 5 0.142 1.71
32 5 6 0.142 1.71

Table 8.1. Reflection number, h,k, the

No. h k iu „ r d (A)
33 2 9 0.139 1.45
34 9 2 0.139 1.45
35 8 2 0.136 1.62
36 2 8 0.136 1.62
37 3 1 0.136 4.23
38 1 3 0.136 4.23
39 2 5 0.126 2.48
40 5 2 0.126 2.48
41 4 8 0.126 1.49
42 8 4 0.126 1.49
43 1 1 0.125 9.45
44 4 7 0.124 1.66
45 7 4 0.124 1.66
46 1 4 0.123 3.24
47 4 1 0.123 3.24
48 2 4 0.123 2.99
49 4 2 0.123 2.99
50 10 2 0.120 1.31
51 2 10 0.120 1.31
52 3 6 0.120 1.99
53 6 3 0.120 1.99
54 0 10 0.118 1.34
55 10 0 0.118 1.34
56 5 3 0.117 2.29
57 3 5 0.117 2.29
58 5 5 0.116 1.89
59 4 5 0.110 2.09
60 5 4 0.110 2.09
61 0 8 0.101 1.67
62 8 0 0.101 1.67
63 6 2 0.091 2.11
64 2 6 0.091 2.11

unitary structure factor |Uh|obs and Jin  A
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Subsequent maximum entropy calculations were carried out within MICE. Two 

suitable reflections were chosen to define the origin and were given phase angles of 

0°. The reflections chosen were 8 (3,2) and 9 (2,3) with U magnitudes for both of 

0.207. These reflections thus define the basis set {H}. Node 1 of the phasing tree was 

generated by carrying out a constrained entropy maximisation. In this, the phases and 

amplitudes of the origin phases were used as constraints in producing a maximum 

entropy distribution ^^(x).

Seven strong reflections were selected to have their phases permuted. This generated 

27 further nodes, giving a total of 129. Each node was subjected to constrained 

entropy maximisation as outlined previously and log likelihood gain, LLG, was 

calculated for each. Analysis of nodes was achieved through utilisation of student t- 

tests, again described previously. The first level of the phasing tree is summarised in 

Table 8.2.

The top 4 nodes were identified from analysis and subsequently centroid maps were 

produced for each of these. Upon examination, all maps appeared similar and no 

discernible molecular features could be identified and it was decided to generate a 

second level of the phasing tree.

Nodes 5, 21, 59 and 115 were selected to have further phases permuted in the 

generation of the second level of the phasing tree. Five reflections were selected and 

there were numbers 12, 13, 16, 17 and 25. This led to the generation of a 128 nodes, 

giving 257 in total. Constrained entropy maximisation and analysis was repeated. 

Listed in Table 8.3. are the highest nodes for level 2, along with their entropy values.

Node From node Entropy LLG

197 5 -0.501 1.39
201 5 -0.528 1.59
205 5 -0.528 1.59
217 5 -0.470 1.43
237 21 -0.470 1.43

Table 8.3. Top Nodes from Second Level of Phasing Tree.
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Two possible paths to solution are seen to emerge. Centroid maps were generated and 

upon examination, the recognised phthalocyanine molecular motif could be discerned.

Node Entropy LLG Node Entropy LLG Node Entropy LLG

1 -0.095 0.00 44 -0.343 0.61 87 -0.334 0.59
2 -0.385 0.49 45 -0.320 -0.04 88 -0.356 0.66
3 -0.352 -0.02 46 -0.365 0.26 89 -0.314 -0.05
4 -0.356 -0.04 47 -0.329 0.25 90 -0.379 0.50
5 -0.305 0.69 48 -0.337 0.34 91 -0.368 -0.04
6 -0.365 0.25 49 -0.294 0.31 92 -0.339 -0.01
7 -0.327 0.30 50 -0.390 0.20 93 -0.296 0.67
8 -0.347 0.22 51 -0.347 0.31 94 -0.366 0.26
9 -0.302 0.28 52 -0.369 0.26 95 -0.331 0.31
10 -0.372 0.25 53 -0.308 0.25 96 -0.324 0.25
11 -0.347 0.23 54 -0.375 0.47 97 -0.299 0.30
12 -0.329 0.28 55 -0.320 0.00 98 -0.425 -0.06
13 -0.309 0.31, 56 -0.343 -0.03 99 -0.371 0.65
14 -0.345 0.01 57 -0.282 0.59 100 -0.355 0.59
15 -0.308 0.52 58 -0.374 -0.02 101 -0.327 -0.03
16 -0.308 0.49 59 -0.378 0.76 102 -0.391 0.22
17 -0.293 -0.06 60 -0.349 0.63 103 -0.339 0.23
18 -0.391 0.47 61 -0.309 -0.08 104 -0.353 0.31
19 -0.377 -0.01 62 -0.351 0.22 105 -0.298 0.32
20 -0.371 -0.01 63 -0.317 0.26 106 -0.411 0.29
21 -0.310 0.69 64 -0.321 0.31 107 -0.352 0.28
22 -0.383 0.26 65 -0.287 0.26 108 -0.350 0.24
23 -0.337 0.33 66 -0.409 0.26 109 -0.308 0.34
24 -0.359 0.28 67 -0.365 0.22 110 -0.360 0.49
25 -0.311 0.31 68 -0.340 0.24 111 -0.327 -0.03
26 -0.387 0.23 69 -0.314 0.30 112 -0.327 -0.03
27 -0.377 0.32 70 -0.373 0.00 113 -0.279 0.64
28 -0.348 0.37 71 -0.323 0.55 114 -0.407 -0.06
29 -0.319 0.33 72 -0.361 0.61 115 -0.381 0.70
30 -0.363 -0.01 73 -0.301 -0.05 116 -0.385 0.67
31 -0.321 0.59 74 -0.386 0.53 117 -0.313 -0.07
32 -0.321 0.60 75 -0.346 -0.05 118 -0.377 0.21
33 -0.304 -0.06 76 -0.325 -0.03 119 -0.330 0.24
34 -0.420 0.27 77 -0.290 0.66 120 -0.333 0.27
35 -0.355 0.29 78 -0.352 0.27 121 -0.292 0.25
36 -0.391 0.27 79 -0.323 0.30 122 -0.376 0.22
37 -0.326 0.33 80 -0.316 0.19 123 -0.344 0.30
38 -0.376 0.50 81 -0.287 0.28 124 -0.332 0.22
39 -0.334 -0.01 82 -0.414 0.20 125 -0.294 0.24
40 -0.361 -0.04 83 -0.394 0.29 126 -0.366 0.46
41 -0.290 0.66 84 -0.359 0.31 127 -0.315 -0.03
42 -0.400 -0.03 85 -0.322 0.31 128 -0.313 -0.04
43 -0.366 0.67 86 -0.390 -0.04 129 -0.287 0.62

Table 8.2. First level of the maximum entropy phasing tree.
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Figure 8.2. shows a representative centroid map from level 2 of the phasing tree. The 

molecular motif is obvious, with the phthalocyanine quatrefoil apparent.

0.8-

0 .6-

0.2-

r\o .o
0.40.2 0.6 0.8

Figure 8.2. Node 205 from level 2 of phasing tree.

As nodes 201 and 205 both have the same likelihood values and give rise to similar 

centroid maps, it is of value to construct a third level of the phasing tree. The aim of 

any tree-based phase search is to arrive at a solution deriving from one set of phase 

choices.

Generation of the third level was achieved by following the same procedure as above. 

The top five nodes from level two were used, these being nodes 197, 201, 205, 217 

and 237. Reflection chosen to have their phases permuted are 32, 33, 34, 50 and 51. 

This extended the phasing tree to 417 nodes. Again, new nodes generated underwent 

constrained entropy maximisation. Subsequent analysis and scoring produced a 

ranking of nodes. Examination of these results shows two nodes with distinctly high 

likelihoods. Values of entropy and likelihood for these nodes are listed in Table 8.4.
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Node From node Entropy LLG

326 217 -0.556 1.65
357 237 -0.559 1.67

Table 8.4. Level three of phasing tree from MICE.

As with previous levels, centroid maps were generated and upon examination node 

357 was found to represent best the molecular motif of the aluminium phthalocyanine 

monomer. Figure 8.3. shows centroid map obtained for node 357.

Figure 8.3. Final map obtained from MICE.

It has to be noted, that at no point during this electron crystallographic study was 

reference made to any model. The procedures involved here were entirely model-free 

and phase determination was achieved solely by ab initio means. Taking this 

background into consideration along with the sparseness of the data set involved, 

phase determination by maximum entropy means is shown to be viable even with 

poor electron diffraction datasets. As mentioned previous structural studies of
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(AlPcF)w had reached resolution of the molecular columns, it hoped that this study has 

shown that it is possible to increase that resolution by using electron diffraction data 

combined with maximum entropy methods. Observation of the molecular quatrefoil of 

the phthalocyanine polymer has been realised, thus giving credence to structural 

investigations by these methods from what are regarded as being very sparse data.

8.4. Use of Image Derived Phases in Maximum Entropy Methods.

Previously in this thesis, descriptions have been given of structural analyses that have 

employed phase information derived from electron microscope images. This phase 

information is combined with electron diffraction data to achieve enhanced phase 

extension.

Use was made of previously obtained high resolution electron microscopy images of 

(AlPcF)„. CRISP software was then used to obtain the Fourier transform of images, 

which in turn allowed the retrieval of phase information. Combination of the 

previously studied electron diffraction data with this phase information leads to the 

collection of structural information through use of maximum entropy methods.

A total of six phases were obtained from Fourier transform studies of images of 

(AlPcF)„. Table 8.5. lists the relevant reflections along with their h, k values and 

associated U magnitudes.

Reflection No. h k iuhrb’ Phase

1 0 2 0.567 180
2 2 0 0.567 -180
5 2 2 0.308 -180
6 1 2 0.220 0
7 2 1 0.220 0

43 1 1 0.125 0

Table 8.5. Phased reflections.
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All intensity information is the same as was utilised in the previous ab initio 

calculations and as such, reference is made to Table 8.1. for a complete listing of h, k 

values, unitary structure factors |Uh|obsand resolution, J in  A.

The diffraction data were normalised using MITHRIL3,4 to give unitary structure 

magnitudes and their standard deviations using electron scattering factors. The phases 

listed above and their associated [/-magnitudes were used to form the initial basis set 

{H}. The root node of the phasing tree was generated and subjected to constrained 

entropy maximisation. Using a selection algorithm, seven further reflections were 

chosen to be added to this basis set. The reflections chosen were numbered 14, 15, 29, 

30, 36, 42 and 58. As their phases were as yet unknown, all possible combinations of 

0° and 180° were used. This led to the generation of 128 new nodes (number 2-129) 

on the phasing tree. As before, each node was subjected to constrained entropy 

maximisation. The first level of the phasing tree is summarised in Table 8.6.

Analysis of nodes generated was carried out by procedures that have previously been 

detailed. This employed student /-test and nodes were ranked according to likelihood 

values. Identification of the top eight nodes from this level was followed by 

generation of centroid maps. Node 94 was found to have the highest likelihood value 

of 3.381. Examination of all centroid maps found similar structural features. Again, 

the phthalocyanine molecular motif was obvious and Figure 8.4. shows a 

representative centroid map of a first level node of the phasing tree.
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Node Entropy LLG Node Entropy LLG Node Entropy LLG
1 -0.665 0.00 44 -1.084 2.16 87 -1.140 2.33
2 -1.139 1.68 45 -1.162 0.41 88 -1.090 1.75
3 -1.179 0.59 46 -0.971 2.21 89 -1.176 0.91
4 -1.165 1.12 47 -1.051 1.27 90 -1.119 3.04
5 -1.181 0.60 48 -1.035 2.02 91 -1.081 2.41
6 -1.205 1.59 49 -1.188 0.32 92 -1.212 1.10
7 -1.276 0.57 50 -1.120 2.74 93 -1.237 0.36
8 -1.122 1.43 51 -1.176 1.21 94 -1.001 3.38
9 -1.122 0.71 52 -1.235 0.68 95 -1.059 2.77
10 -1.121 2.08 53 -1.272 -1.56 96 -1.093 1.90
11 -1.229 0.45 54 -1.075 2.76 97 -1.226 0.95
12 -1.142 1.76 55 -1.085 1.93 98 -1.142 1.41
13 -1.225 0.83 56 -1.129 1.52 99 -1.182 0.10
14 -0.996 2.27 57 -.1246 -0.61 100 -1.197 1.14
15 -1.199 1.20 58 -1.112 2.82 101 -1.197 -0.51
16 -1.077 1.89 59 -1.060 1.93 102 -1.244 0.89
17 -1.256 0.85 60 -1.232 0.94 103 -1.296 -0.25
18 -1.109 2.75 61 -1.303 -1.05 104 -1.089 1.82
19 -1.170 1.86 62 -0.969 2.82 105 -1.123 0.57
20 -1.205 0.85' 63 -1.042 2.12 106 -1.249 1.56
21 -1.227 0.03 64 -1.143 1.51 107 -1.079 1.22
22 -1.069 2.98 65 -1.314 -0.66 108 -1.175 1.96
23 -1.193 2.01 66 -1.138 1.87 109 -1.063 1.01
24 -1.181 1.25 67 -1.204 0.75 110 -1.036 2.37
25 -1.248 0.49 68 -1.190 1.14 111 -1.023 1.87
26 -1.134 2.81 69 -1.247 0.48 112 -1.017 2.47
27 -1.202 1.79 70 -1.225 1.87 113 -1.042 1.53
28 -1.290 0.62 71 -1.284 0.63 114 -1.133 2.42
29 -1.261 0.09 72 -1.084 2.10 115 -1.193 0.89
30 -0.993 3.01 73 -1.161 1.41 116 -1.255 0.38
31 -1.201 2.22 74 -1.135 2.29 117 -1.147 -0.61
32 -1.203 1.27 75 -1.115 1.52 118 -1.181 2.58
33 -1.279 0.55 76 -1.116 2.05 119 -1.136 1.83
34 -1.143 1.51 77 -1.132 1.56 120 -1.090 1.52
35 -1.185 -0.24 78 -1.020 2.63 121 -1.099 0.37
36 -1.181 1.35 79 -1.047 1.98 122 -1.231 2.55
37 -1.224 -0.97 80 -1.015 2.47 123 -1.037 2.06
38 -1.208 1.20 81 -1.109 1.95 124 -1.277 0.47
39 -1.241 0.02 82 -1.126 2.81 125 -1.131 -0.01
40 -1.090 1.67 83 -1.217 1.62 126 -1.020 3.07
41 -1.232 -0.50 84 -1.232 0.59 127 -1.017 2.57
42 -1.082 2.16 85 -1.290 -0.56 128 -1.085 1.72
43 -1.065 0.98 86 -1.113 3.39 129 -1.107 0.59

Table 8.6. First level of maximum entropy-likelihood phasing tree.
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Figure 8.4. Representative centroid map from first level of phasing tree.

From initial inspection of centroid maps the phthalocyanine molecular shape is 

apparent, but no one solution had been identified as all top 8 nodes had likelihood 

values that were similar. Therefore, a second level of the phasing tree was generated. 

For the second level of the phasing tree the top four nodes were used and 

subsequently a further five reflections had phases permuted. This resulted in the 

generation of 128 nodes, allowing the second level to be from node 130 through to 

node 257. Nodes were subjected to entropy maximisation as before, followed by 

analysis and ranking using likelihood. Table 8.7. lists the top nodes from level 2, as 

derived from analysis.

Node From node Entropy LLG

136 94 -1.134 3.97
149 94 -1.071 3.92
152 94 -1.099 3.95
153 94 -1.089 3.83
213 30 -1.127 4.09

Table 8.7. Top nodes from level two of phasing tree.
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Inspection of the phasing tree hierarchy finds that nodes with the highest likelihood 

values are derived from two nodes, 94 and 30 respectively. Figure 8.5. depicts a 

centroid map obtained for node 136. Clarity of map has improved and map is found to 

contain more structural detail.

Figure 8.5. Centroid map of node 213.

Again, no unique solution could be determined and maps for all top nodes of this level 

were found to have little distinction between them, in terms of structural information. 

Thus, a final third level of the phasing tree was generated using nodes 136, 149, 152, 

153 and 213.

This time, the reflections chosen to have their phases permuted were numbered 12,17, 

27, 31 and 51. Thus, level three of the tree ran from node 258 through to 417. All of 

these nodes were subjected to constrained entropy maximisation, as described 

previously. Subsequent analysis and scoring produced a list of nodes with the most 

correct phase choices, or highest likelihood values. Table 8.8. lists these nodes, along 

with their associated entropy and likelihood values.
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Node From node Entropy LLG

299 149 -1.331 6.18
395 213 -1.322 6.28
397 213 -1.325 6.10
399 213 -1.364 6.37
401 213 -1.353 6.19

Table 8.8. Highest nodes from level three of phasing tree.

Following established convention, centroid maps were generated and upon inspection 

node 399 was found to represent the best structure solution. Figure 8.6. shows the 

centroid map obtained for this node.

1.0-

0.8-

0.6-

0.4-

0.2-

0 .&
0.2 0.4 0.6 0.8

Figure 8.6. Final centroid map from MICE using image derived phases.

However, some spurious peaks are found to exist that are not apparent in structures 

determined by ab initio means. Further work involving assignation of more phases 

could perhaps obtain a clearer structure using image derived phases. However, this
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does not negate the fact that in this study, the structural motif is apparent and phase 

determination using maximum entropy methods is still shown to be very robust.

8.5. Conclusions.

Once again, when using sparse and what is regarded as poor quality electron 

diffraction data, phase determination by maximum entropy means overcomes these 

problems to provide structural information about previously unknown structures. The 

power of these methods cannot be underestimated and it is for the benefit of anyone 

undertaking such structural investigations to have recourse to such methodologies. It 

has been demonstrated here that phase determination by these procedures is possible 

and when carried out, structural information is obtainable via routine calculations.
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9.0. ELECTRON CRYSTALLOGRAPHY OF POLY[l,6-DI(N-

C ARB AZOL YL)-2,4-HEXADI YNE].

9.1. Introduction.

Poly[l,6-di(N-carbazolyl)-2,4-hexadiyne] belongs to a class of polymers that are 

obtained via solid state polymerisation reactions of diacetylenes 208,209 giving rise to 

large and almost defect free monocrystalline polymers.

—c=c- f-c-

where R,R’ are

Figure 9.1. Structure of Poly[l ,6-di(N-carbazolyl)-2,4-hexadiyne]

The material can be polymerised quantitatively by heat or y radiation, with large
210changes in the lattice parameters between monomer and polymer.

X-ray crystal structure analysis was carried out to provide a basis for interpreting the

highly anisotropic properties of the polymer, along with its interesting mechanical,
211thermomechanical and photoconductive properties. Crystals were found to be 

monoclinic, space group P 2/c  with cell parameters a = 12.9, b = 4.91, c = 17.4 A and 

p = 108.3°. The calculated density is 1.301 g cm' with 2 monomer units per unit cell.
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This crystal structure determination showed that the polymer backbone has an 

alternating double-single-triple-single bonding pattern and is a planar conjugated 

system. It is to these results that the validation of structure obtained by maximum 

entropy methods has recourse.

Studies have also been carried out investigating radiation damage and the application 

of high resolution electron microscopy to polydiacetylene single crystals.212 These 

studies used techniques previously described for examination of beam sensitive 

materials, thus facilitating the collection of both images and diffraction patterns. It is 

these images and electron diffraction patterns that will form the basis of this electron 

crystallographic study ofpoly[l,6-di(N-carbazolyl)-2,4-hexadiyne].

Previously in this thesis, the theoretical methodology employed in a electron 

crystallographic analysis of this kind has been greatly detailed. A description will now 

be given of the use of maximum entropy methods in the determination of the structure 

of poly[ 1,6-di(N-carbazolyl)-2,4-hexadiyne], both by ab initio phase determination 

and use of image derived phases.

9.2. Experimental Methods.

68Electron diffraction intensities were quantified using the ELD system . The electron 

diffraction pattern was transferred to PC using a frame grabber. Intensities were 

evaluated by the ELD software, as previously described in the section detailing 

intensity retrieval from electron diffraction patterns.

For the phases derived from images, again use was made of a frame grabber and this 

time, CRISP software69. The Fourier transform of the image provides low resolution 

phase information. Again, the theoretical basis of CRISP and retrieval of phases from 

images has been described elsewhere in this thesis.
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9.3. Ab Initio Phase Determination.

The diffraction data obtained by the above methods were normalised using MITHRIL 

to give the unitary structure magnitudes (|Uh|obs) and their associated standard 

deviations using electron scattering factors. 64 independent reflections remained after 

normalisation. The overall isotropic temperature factor B was calculated to be -2.279 

A 2. It is common to obtain negative temperature factors when using such incomplete 

datasets, as found with electron diffraction projection data. The plane group of this ac 

projection was determined to be p2gg. The U-magnitudes , their associated standard 

deviations and their resolution in A are tabulated in Table 9.1.

No. h k |Uhous| d(A) No. h k |Uhobs| d(A)

1 0 2 0.453 6.12 33 4 12 0.108 0.93
2 2 0 0.436 8.26 34 3 6 0.105 1.74
3 0 4 0.294 3.06 35 6 5 0.104 1.60
4 4 0 0.258 4.13 36 0 12 0.104 1.02
5 2 2 0.247 4.31 37 1 6 0.102 1.95
6 2 1 0.216 6.03 38 4 8 0.101 1.31
7 3 2 0.205 3.57 39 4 4 0.100 2.16
8 1 11 0.178 1.09 40 5 2 0.099 2.59
9 7 9 0.170 1.05 41 9 3 0.099 1.51
10 9 7 0.163 1.10 42 12 4 0.093 1.13
11 3 10 0.155 1.12 43 4 2 0.092 3.01
12 0 6 0.148 2.04 44 2 10 0.091 1.16
13 5 10 0.148 1.05 45 1 5 0.090 2.32
14 3 9 0.147 1.23 46 4 5 0.090 1.87
15 11 1 0.144 1.44 47 5 3 0.089 2.25
16 5 6 0.143 1.53 48 0 10 0.088 1.22
17 1 9 0.139 1.32 49 5 5 0.088 1.73
18 10 5 0.130 1.21 50 7 4 0.088 1.64
19 1 3 0.129 3.70 51 5 4 0.086 1.96
20 1 4 0.127 2.85 52 12 0 0.080 1.38
21 4 7 0.127 1.46 53 0 8 0.079 1.53
22 2 9 0.125 1.28 54 2 3 0.078 3.27
23 6 1 0.124 2.52 55 8 2 0.076 1.79
24 6 0 0.120 2.75 56 1 1 0.071 8.63
25 3 5 0.119 2.02 57 8 4 0.068 1.51
26 10 3 0.117 1.39 58 10 0 0.067 1.65
27 2 5 0.115 2.17 59 2 6 0.067 1.85
28 4 1 0.113 3.59 60 1 2 0.065 5.23
29 9 2 0.111 1.62 61 6 2 0.064 2.26
30 2 8 0.110 1.43 62 10 2 0.064 1.48
31 6 3 0.110 2.01 63 8 0 0.061 2.07
32 9 1 0.108 1.74 64 3 1 0.060 4.52

Table 9.1. Reflection number, h, k, the unitary structure factor |Uh|obs and J in  A.
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Subsequent maximum entropy calculations were carried out using the MICE computer 

program. Two suitable reflections were selected to define the origin and given phase 

angles of 0°. The reflections chosen were 6 (2,1) and 20 (1,4) with U magnitudes of 

0.216 and 0.127 respectively. At this stage, it has to be emphasised that no recourse 

was made to image derived phases as this is a strict ab initio phase determination. 

These reflections thus defined the basis set {H}. Node 1, the root node, of the phasing 

tree was generated by carrying out a constrained entropy maximisation, in which the 

phases and amplitudes of the origin phases were used as constraints to produce a 

maximum entropy distribution ^^(x).

Seven strong reflections were selected and given permuted phases , thus generating 

27=129 nodes. Each node was subjected to constrained entropy maximisation, as 

outlined previously and the log likelihood gain, LLG, computed for each. Analysis of 

these nodes was achieved through utilisation of Mests, again described in the 

theoretical sections of this thesis. The phasing tree thus generated is summarised in 

Table 9.2.

The top 8 nodes were identified from analysis and subsequently centroid maps were 

produced for each of these. Node 30 was found to have the highest LLG of 3.461 and 

its centroid map is given in Figure 9.2. The remaining maps were very similar, with 

distinct areas of atomic presence identifiable.

Figure 9.2. Level 1 Centroid map from MICE
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Node Entropy LLG Node Entropy LLG Node Entropy LLG

1 -0.088 0.00
2 -0.642 1.00
3 -0.542 2.40
4 -0.538 1.46
5 -0.457 2.33
6 -0.584 2.71
7 -0.554 2.07
8 -0.516 2.63
9 -0.462 1.08
10 -0.539 1.33
11 -0.613 2.11
12 -0.470 1.14
13 -0.525 2.47
14 -0.542. 3.21
15 -0.600 1.28
16 -0.434 2.23
17 -0.511 1.24
18 -0.538 1.26
19 -0.606 2.61
20 -0.510 1.05
21 -0.595 2.57
22 -0.494 2.77
23 -0.566 2.16
24 -0.502 2.47
25 -0.550 0.86
26 -0.578 1.59
27 -0.485 2.07
28 -0.574 1.06
29 -0.495 2.34
30 -0.576 3.46
31 -0.526 1.94
32 -0.533 2.38
33 -0.491 0.96
34 -0.558 1.57
35 -0.542 2.59
36 -0.528 1.16
37 -0.495 2.43
38 -0.571 3.05
39 -0.501 1.58
40 -0.563 2.27
41 -0.492 0.79
42 -0.467 1.12
43 -0.557 2.67

44 -0.488 1.10
45 -0.591 2.54
46 -0.539 2.82
47 -0.582 1.77
48 -0.494 2.16
49 -0.538 0.79
50 -0.533 1.37
51 -0.594 1.99
52 -0.433 1.08
53 -0.517 2.72
54 -0.547 2.87
55 -0.607 1.43
56 -0.479 2.36
57 -0.513 1.00
58 -0.600 1.11
59 -0.532 2.49
60 -0.512 1.49
61 -0.462 2.49
62 -0.655 2.74
63 -0.545 1.90
64 -0.516 2.50
65 -0.434 0.98
66 -0.634 1.76
67 -0.518 2.82
68 -0.507 1.70
69 -0.419 2.25
70 -0.566 2.19
71 -0.544 1.80
72 -0.502 2.63
73 -0.452 1.28
74 -0.511 1.77
75 -0.566 2.49
76 -0.449 1.43
77 -0.501 2.63
78 -0.519 2.61
79 -0.610 1.08
80 -0.420 2.11
81 -0.514 1.65
82 -0.512 1.83
83 -0.554 2.86
84 -0.485 1.32
85 -0.523 2.42
86 -0.472 2.22

87 -0.573 1.98
88 -0.482 2.40
89 -0.552 1.12
90 -0.549 2.08
91 -0.452 2.31
92 -0.562 1.46
93 -0.477 2.45
94 -0.561 2.85
95 -0.532 1.81
96 -0.552 2.46
97 -0.486 1.27
98 -0.562 2.24
99 -0.510 2.83
100 -0.521 1.18
101 -0.487 2.65
102 -0.555 2.99
103 -0.469 1.47
104 -0.541 2.35
105 -0.468 0.98
106 -0.472 1.59
107 -0.551 3.25
108 -0.474 1.22
109 -0.548 2.47
110 -0.496 2.59
111 -0.554 1.72
112 -0.469 2.20
113 -0.538 1.18
114 -0.520 2.01
115 -0.583 2.41
116 -0.421 1.18
117 -0.507 2.89
118 -0.510 2.65
119 -0.585 1.42
120 -0.440 2.30
121 -0.493 1.24
122 -0.569 1.37
123 -0.513 2.89
124 -0.506 1.72
125 -0.450 2.56
126 -0.594 2.46
127 -0.527 1.80
128 -0.493 2.51
129 -0.413 1.06

Table 9.2. The first level of the maximum entropy phasing tree.
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A second level of the phasing tree was generated by taking the top 8 nodes from level 

1 and permuting phases for 5 more reflections. This gave rise to 256 new nodes. 

Entropy maximisation and analysis using Mest was repeated. This time, from 

examination of results of analysis, it could be seen that nodes with highest likelihood 

were derived mostly from nodes 30 and 14. Highest nodes for level 2, along with their 

entropy are given in Table 9.3.

Node From Entropy LLG

130 30 -0.762 4.82
194 14 -0.748 4.60
199 14 -0.743 4.58
247 38 -0.694 4.47
195 14 -0.664 4.46

Table 9.3. Top Nodes from Second Level of Phasing Tree.

Again, centroid maps were generated and this second level gives rise to clearer maps 

as shown for node 130 in Figure 9.3.

Figure 9.3. Node 130 from level 2 of phasing tree.
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As no solution had become apparent from a single node of the phasing tree a third 

level was generated. This was achieved by following the procedure outlined above. 

Top five nodes from level two were used, these being 130, 194, 199, 247 and 195. 

Phases were permuted for 5 reflections, thus giving a third level of nodes from 

number 386 through to 545. Subsequent analysis and scoring of nodes produced 

listings of the top nodes. For the third level of the phasing tree the top 3 nodes are 

listed in Table 9.4. and are all seen to derive from node 195 of the previous level.

Node From Entropy LLG

525 195 -0.766 4.83
543 195 -0.850 4.82
544 195 -0.835 4.88

Table 9.4. Level 3 of phasing tree from MICE.

As all of these solutions were derived from a single node, i.e. a single set of phase 

choices, no further permutation of phases or generation of subsequent levels of the 

phasing tree were generated. Therefore, in accordance with above procedure centroid 

maps were produced for the top node at this level, node 544. The centroid map for 

node 544 is given in Figure 9.4. As validation of the structure solution achieved 

through utilisation of maximum entropy methods, comparison can be made with the 

structure solution resulting from X-ray analysis. It has to be emphasised that the maps 

generated by the maximum entropy procedure in no way consulted this information. 

Figure 9.5. shows the same ac projection that is being studied here, as retrieved from 

the Cambridge Structural Database and subsequently manipulated using CERIUS . 

The correspondence with the determined crystal structure is immediately apparent.



Figure 9.4. Final map obtained from MICE.

Figure 9.5. ac projection from solved X-ray structure.
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9.4. Use of Image Derived Phases in Maximum Entropy Methods.

In chapter 3, the methodology of electron crystallographic structure determination was 

described and examples were given of structure determinations that had employed 

phase information derived from electron microscope images. In an analogous manner, 

phase information was derived from images of single crystals of poly[l,6-di(N- 

carbazolyl)-2,4-hexadiyne]. This phase information was combined with the previously 

used diffraction intensities in entropy maximisation procedures and tree directed 

phase search techniques to furnish structural information.

A total of 9 phases were available from Fourier transform studies of images. Table 

9.5. lists the relevant reflections, along with their h, k values and associated U 

magnitudes.

No. h k l O Phase

1 0 2 0.453 0
2 2 0 0.436 0
5 2 2 0.247 180
19 1 3 0.129 0
37 1 6 0.102 180
45 1 5 0.091 180
54 2 3 0.078 180
56 1 1 0.072 0
64 3 1 0.060 0

Table 9.5. Phased reflections.

All intensity information is the same as was utilised in the ab initio calculations 

described previously and reference is made to Table 9.1. for a complete listing of h, k, 

unitary structure factors |Uhobs| and resolution, d  in A.

The diffraction data were normalised using MITHRIL8’9 to give unitary structure 

magnitudes and their standard deviations using electron scattering factors. The phases 

listed above and their associated [/-magnitudes were used to form the initial basis set 

{H}. The root node of the phasing tree was generated and subjected to constrained 

entropy maximisation. Using a selection algorithm, seven reflections were chosen to
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be added to this basis set with serial numbers 10, 11, 12, 13, 24, 28 and 52. As their 

phases were unknown, all possible combinations of 0° and 180° were used, thus 

generating 128 new nodes (number 2-129) on the phasing tree. Each node was 

subjected to constrained entropy maximisation as before. The phasing tree for the first 

level of the calculation is summarised in Table 9.6.

Node Entropy LLG Node Entropy LLG Node Entropy LLG
1 -0.740 0.98 44 -0.738 1.58 87 -0.752 3.33
2 -0.741 1.93 45 -0.682 1.57 88 -0.797 2.47
3 -0.709 1.94 46 -0.833 2.00 89 -0.803 2.63
4 -0.764 1.69 47 -0.848 1.73 90 -0.776 2.34
5 -0.714 1.69 48 -0.762 2.36 91 -0.777 1.96
6 -0.717 2.67 49 -0.772 2.22 92 -0.674 2.55
7 -0.768 2.64 50 -0.713 2.85 93 -0.692 2.25
8 -0.798 2.30 51 -0.739 2.48 94 -0.837 2.81
9 -0.814 2.07 52 -0.763 2.24 95 -0.787 2.54
10 -0.827 '1.90 53 -0.781 2.07 96 -0.754 2.99
11 -0.743 1.62 54 -0.744 3.35 97 -0.748 2.70
12 -0.699 2.07 55 -0.761 3.08 98 -0.725 2.46
13 -0.648 1.62 56 -0.810 2.94 99 -0.748 1.72
14 -0.820 2.32 57 -0.824 2.84 100 -0.789 1.61
15 -0.821 1.86 58 -0.787 2.17 101 -0.782 1.26
16 -0.752 2.47 59 -0.780 2.02 102 -0.751 2.93
17 -0.748 2.03 60 -0.705 2.21 103 -0.773 2.43
18 -0.719 2.56 61 -0.709 2.24 104 -0.829 2.26
19 -0.737 2.67 62 -0.823 2.64 105 -0.839 1.91
20 -0.731 2.22 63 -0.817 2.47 106 -0.818 1.69
21 -0.758 2.29 64 -0.749 2.99 107 -0.784 1.49
22 -0.737 3.31 65 -0.753 3.02 108 -0.724 1.68
23 -0.756 3.45 66 -0.736 1.92 109 -0.712 1.56
24 -0.795 2.81 67 -0.723 1.92 110 -0.849 2.05
25 -0.809 2.89 68 -0.735 1.64 111 -0.850 1.78
26 -0.794 2.51 69 -0.728 1.62 112 -0.771 2.44
27 -0.768 2.19 70 -0.733 2.72 113 -0.775 2.33
28 -0.690 2.70 71 -0.760 2.68 114 -0.710 2.81
29 -0.678 2.36 72 -0.798 2.17 115 -0.754 2.28
30 -0.828 2.95 73 -0.809 2.03 116 -0.751 2.04
31 -0.791 2.65 74 -0.804 1.92 117 -0.804 1.66
32 -0.752 3.11 75 -0.754 1.56 118 -0.755 3.34
33 -0.747 2.79 76 -0.688 2.10 119 -0.757 2.96
34 -0.737 2.26 77 -0.668 1.66 120 -0.819 2.65
35 -0.732 1.85 78 -0.842 2.32 121 -0.826 2.52
36 -0.811 1.58 79 -0.808 1.91 122 -0.769 2.12
37 -0.752 1.52 80 -0.755 2.52 123 -0.804 1.80
38 -0.738 2.78 81 -0.750 2.09 124 -0.703 2.10
39 -0.778 2.40 82 -0.718 2.36 125 -0.733 2.08
40 -0.826 2.33 83 -0.753 2.46 126 -0.837 2.56
41 -0.839 2.03 84 -0.709 1.99 127 -0.814 2.40
42 -0.833 1.56 85 -0.772 2.00 128 -0.752 2.91
43 -0.760 1.57 86 -0.749 3.19 129 -0.757 2.96

Table 9.6. First level of maximum entropy-likelihood phasing tree.
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Analysis of nodes generated was carried out, employing student Mest and nodes were 

ranked according to likelihood values. The top eight nodes from this initial level of 

the phasing tree were identified and centroid maps generated. Node 23 had the highest 

LLG, with a value of 3.45 and the centroid map for this node is given in figure 9.6.

Figure 9.6. Centroid map from first level of phasing tree.

From initial inspection, it is immediately apparent that in comparison with centroid 

maps obtained by ab initio means areas of electron density are in reverse. Within 

MICE it was possible to construct Babinet maps. This was carried out and inspection 

of resulting maps does indeed have areas of density at the correct location, but also 

maps have less spurious detail as expected. Figure 9.7. gives an example of the 

babinet maps obtained for node 23 above. Centroid maps generated for the top eight 

nodes were all found to be similar to that of node 23. These eight nodes were kept 

and used to generate a second level of the phasing tree.

Further reflections were chosen to have permuted phases. These were reflections 14, 

18, 20, 21 and 23. This gave rise to a second level of nodes from number 130 to 321.
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Nodes were subjected to constrained entropy maximisation as before, followed by 

analysis and ranking using likelihood.

Figure 9.6. Babinet map from first level of phasing tree.

Table 9.7. lists the top nodes from analysis for level 2, with node 214 having the 

highest likelihood of 4.31. Inspection of the phasing tree hierarchy finds that nodes 

with the highest likelihood for level two are derived from nodes 54 and 118 alone.

Node From Entropy LLG

166 54 -1.030 4.12
182 54 -0.934 4.16
214 118 -0.953 4.31
216 118 -0.939 4.10

Table 9.7. Top nodes from level two of phasing tree.

Figure 9.8. illustrates the centroid map obtained from node 214. Clarity of the map 

has improved and highest peaks are easier resolvable.
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Figure 9.8. Centroid map of node 214.

As no unique solution could be associated with a single node on the phasing tree, a 

further third level was generated using nodes 166,182, 214 and 216 from level two.

Reflections selected to have their phases permuted were 15, 26, 32, 38 and 50. Thus, 

level three of the phasing tree ran from node 322 to 449. All of these nodes had their 

entropy maximised under constraints and subsequent analysis and scoring produced a 

list of the nodes with highest likelihood, or more correct phase choices. Table 9.8. 

lists these nodes, along with their associated entropy and likelihood values.

Node From node Entropy LLG

350 214 -1.019 5.10
402 166 -1.126 5.04
410 166 -1.132 5.25
411 166 -1.113 5.04
412 166 -1.135 5.05

Table 9.8. Highest nodes from level three of phasing tree.
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Following with the convention described, centroid maps were generated and upon 

inspection node 410 represented the best solution to the structure. As with phase 

determination by ab initio means, comparison is made with the recognised X-ray 

solution. There is a marked similarity between the two structures, when viewed in the 

same orientation. This is represented graphically in Figures 9.9. and 9.10. which are 

the obtained centroid map and solved X-ray structure, respectively.

9.5. Conclusions

It has been shown that there is much to be gained from attempting maximum entropy 

phase determination by ab initio means. The methodology and procedure is rigorous 

and is stable even with very limited data as seen here, when basis set contained only 

65 reflections. Comparison with X-ray structure is very agreeable.

Furthermore, if phase information can be retrieved from even low resolution images, 

this is of tremendous aid in the subsequent maximum entropy calculations. These 

phases can be though of as helping to direct the search through the phasing tree with 

greater ease, thus arriving at a more probable structure solution.
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Figure 9.9. Final centroid map from MICE.

Figure 9.10. Solved X-ray structure for comparison.
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10.0. CONCLUDING REMARKS.

The important thing in science is not so much 

to obtain new facts, as to discover new ways 

of thinking about them.

Sir W.L. Bragg.

Throughout this thesis it has been illustrated that studies employing electron 

crystallographic techniques combined with maximum entropy methods can, and do 

provide structural information about materials that conventional X-ray 

crystallographic techniques have failed. Therefore, by developing new methodology 

and techniques in electron crystallography, while having recourse to some of the 

previously developed theories of X-ray crystallography, it is now possible to think 

about structure determination of materials in a new way. In conclusion, it can be 

stated that electron crystallography has established itself as a new and viable route to 

structure elucidation, which is the aim of all crystallographic studies.

192



REFERENCES

1. Perkin, W.H., (1896). Journal of the Chemical Society, 69, 596-637.

2. Fytelson, M. (1982) Kirk-Othmer Encyclopaedia o f Chemical Technology, 3rd 

edition, J.Wiley and Sons, New York, pp83 8-870.

3. Zollinger, H.. (1991). Color Chemistry. VCH Publishers, New York.

4. Patai, S. (1978). The Chemistry of Diazonium and Diazo groups,. J. Wiley and 

Sons, New York, pp. 511-591

5. Challis, B.C., Ridd, J.H.(1968) Journal o f the Chemical Society, 5197-5208.

6. March, J. (1992). Advanced Organic Chemistry, J. Wiley and Sons, New York, 

p636.

7. Hughes, E.D., Ingold, C.K., and Ridd, J.H. (1958) Journal of the Chemical 

Society, 58-65, 65-69, 77-82, 82-88.

8. Duckett, G.R.(1987) Ph.D. Thesis, University of Glasgow.

9. Miller, G.G.(1992) Ph.D. Thesis, University of Glasgow.

10. Connell, G. Unpublished work.

11. De Broglie, L. (1924) Philos. Mag. 47, 476.

12. Planck, M. (1890)^4w2. Phys. Chem. 3 9 ,161.

13. Einstein, A. (1905) Ann. Phys. 17, 549-560.

14. Davisson C.J. and Germer, L.H. (1927) Nature (London) 119, 558-560.

15. Thomson, G.P and Reid, A. (1927) Nature (London) 119, 890-895.

16. Busch, H. (1926) Ann.Physik, 81, 974-993.

17. Busch, H. (1927) Arch. Elektrotech, 18, 583-594.

18. Ruska, E. (1934) Z. Physik, 87, 580-602.

19. Hirsch, P.B., Howie, A., Nicholson, R.B., Pashley, D.W. and Whelan, M.J. (1971) 

Electron Microscopy o f thin crystals, Butterworth, London.

20. Buseck, P., Cowley, J. and Eyring, L. eds.,(1988) High Resolution Transmission 

Electron Microscopy and Associated Techniques, New York, Oxford University 

Press.

21. Bragg, W.H. and Bragg, W.L. (1913) Proc. R. Soc. London. A 88,428-438.

22. Vainshtein, B.K. (1994) Fundamentals of Crystals, Springer-Verlag, New York., 

p339.

193



23. Mott, N.F. (1930) Proc. Roy. Soc. Lond. A127, 658.

24. International Tables for Crystallography Vol C (1992) Kluwer Academic 

Publishers, Dordrecht

25. Doyle and Turner, (1968) Acta Crystallogr. A24, 390-397.

26. Jap, B.K. and Glaeser, R.M. (1980) Acta Crystallogr. A36, 57-67.

27. Bethe, H.A. (1928). Ann. Phys. 87, 55-129.

28. MacGillavry, C.H. (1940) Physica 7, 329-343.

29. Dorset, D.L. (1995) Structural Electron Crystallography, Plenum Press, New 

York.

30. Cowley, J.M. and Moodie, A.F. (1957) Acta Crystallogr. 10, 609-619.

31. Howie, A. and Whelan, M.J. (1961) ̂  Proc. R. Soc. London, Ser. A 26 3 ,217.

32. Sturkey, L. (\95T)Acta Crystallogr. 10, 858-859.

33. Fujiwara, K. (1959) J. Phys. Soc. Japan 14, 1513-1524.

34. Sturkey, L. (1962) Proc. R. Soc. London 80, 321.

35. Dorset, D.L. (1983) Polymer 24, 291-294.

36. Fryer, J.R. (1980) Journal o f Microscopy 120 ,1-14.

37. Fryer, J.R. and Holland, F. (1984) Proc. R. Soc. London A393, 353-369.

38. Fryer, J.R. and Holland, F. (1983) Ultramicroscopy 11, 67-70.

39. Fryer, J.R., McConnell, C.H., Zemlin, F. and Dorset, D.L. (1992) 

Ultramicroscopy 4 0 ,163-169.

40. Murata, Y., Fryer, J.R., Baird, T. and Murata, H. (1977) Acta Crystallogr. A33, 

198-200.

41. Fryer, J.R. (1987) Ultramicroscopy 23, 321-328.

42. International Study Group (1986) Microsc. 141, 385-391.

43. Salih, S.M. and Cosslett, V.E. (1975) J. Microsc. 105,269-276.

44. Zemlin, F., Beckmann, E., Reuber, E., Zeitler, E. and Dorset, D.L. (1985) Science 

229 ,461-462.

45. Siegel, G. (1972) Naturforschung219, 325-332.

46. Salih, S.M. and Cosslett, V.E. (1974) Phil. Mag. 3 0 ,225-228.

47. Holland, F., Fryer, J.R. and Baird, T. (1983) Inst. Phys. Conf. Ser 68,19-22.

48. Fryer, J.R. and Smith, D.J. (1982) Proc. R. Soc. London A 381,225-240.

49. Fryer, J.R. (1978) Acta Crystallogr. A34, 603-607.

194



50. Glaeser, R.M. (1985) Ann. Rev. Phys. Chem. 36, 243-275.

51. DeRosier, D.J. and Klug. A. (1985) Nature 2 1 7 ,130-134.

52. Henderson, R. and Unwin, P.N.T. (1975) Nature 2 5 7 ,28-32.

53. Nagales, E., Wolf, S.G. and Downing, K.H. (1997) Journal o f Structural Biology 

1 1 8 ,119-127.

54. Walz, L., Hirai, T., Murata, K., Heymann, J.B., Mitsuoka, K., Fujiyoshi, Y., 

Smith, B.L., Agre, R. and Engel, A. (1997) Nature 387, 624-627.

55. Rigamonti, R. (1936) Gazz. Chim. Ital. 66,174-182.

56. Vainshtein, B.K. (1955) Zh. Fiz. Khim. 29, 327-344.

57. Lobachev, A.N. and Vainshtein, B.K. (1961) Sov. Phys. Cryst. 6, 313-317.

58. Dvoryankin, V.F. and Vainshtein, B.K. (1960) Sov. Phys. Cryst 5, 564-574.

59. Dvoryankin, V.F. and Vainshtein, B.K. (1962) Sov. Phys. Cryst 6, 765-772.

60. Vainshtein, B.K., D’Yakon, I.A. and Ablov, A.V. (1971) Sov. Phys. Dokl. 15, 

645-647.

61. D’Yakon, I.A., Kairyak, L.N., Ablov, A.V. and Chapurina, L.F. (1977) Dokl.

Akad. NaukSSSR 236, 103-105.

62. Cowley, J.M. (1953) Acta Crystallogr. 6, 846-853.

63. Cowley, J.M. (1956) Acta Crystallogr. 9, 391-395.

64. Lipson, H. and Cochran, W. (1966) The Determination of Crystal Structures, 

revised and enlarged ed., Cornell University Press, Ithaca, pp377-381.

65. Dorset, D.L. (1996) Acta Crystallogr. B52, 753-769.

66. Dorset, D.L. (1991) Ultramicroscopy 3 8 ,23-40.

67. Baldwin, J. and Henderson, R. (1984) Ultramicroscopy 14, 319-336.

68. Zou, X.D., Sukharev, Y. and Hovmoller, S. (1993) Ultramicroscopy 49, 147-158.

69. Hovmoller, S. (1992) Ultramicroscopy 41,121-135.

70. Cowley, J.M., ed. (1992) Electron Diffraction Techniques (IUCr Monograph on 

Crystallography 3), Vols. I and II, Oxford University Press, Oxford.

71. Henderson, R., Baldwin, J.M., Ceska, T., Zemlin, F., Beckmann, E. and Downing, 

K.H. (1990) J. Mol. Biol. 213, 899-929.

72. Wenk, H.R., Downing, K.H., Meisheng, H. and O’Keefe, M.A. (1992)Acta 

Crystallogr. A48, 700-716.

195



73. Dong, W., Baird, T., Fryer, J.R., Gilmore, C.J. MacNicol, D.D., Bricogne, G., 

Smith, D.J., O’Keefe, M.A. and Hovmoller, S. (1992) Nature 355, 605-609.

74. Dorset, D.L., McCourt, M.P., Fryer, J.R., Tivol, W.F. and Turner, J.N. (1994) 

Micros. Soc. Am. Bull. 24, 398-404.

75. Dorset, D.L., Kopp, S., Fryer, J.R. and Tivol, W.F.(1995) Ultramicroscopy 57, 59- 

89.

76. Wilson, A.J.C. (1950) Acta Crystallogr. 3, 397-398.

77. Kitaigorodskii, A.I. (1973) Molecular Crystals and Molecules, New York, 

Academic Press.

78. Brisse, F. (1989) J. Electron Micro. Tech. 11 ,272-279.

79. Perez, S. and Chanzy, H. (1989) J. Electron Micro. Tech. 11 ,280-295.

80. Voigt-Martin, I.G.; Yan, D.H., Wortmann, R. and Elich, K. (1995) 

Ultramicroscopy, 57, 29-43.

81. Voigt-Martin, I.G., Yan, D.H., Yakimansky, A., Schollmeyer, D., Gilmore, C.J. 

and Bricogne, G. (1995) Acta Crystallogr. A51, 849-868.

82. Buerger, M.J. (1959) Vector Space and its Applications in Crystal Structure 

Investigation, Wiley, New York.

83. Dorset, D.L. (1976) Biochim. Biophys. Acta, 424, 396-403.

84. Dorset, D.L. (1987) Biochim. Biophys. Acta, 898,121-128.

85. Woolfson, M.M. (1987) Acta Crystallogr. A43, 593-612.

86. Harker, D. and Kasper, J.S. (1948) Acta Crystallogr. 1, 70-75.

87. Karle, J. and Hauptman, H.A. (1950) Acta Crystallogr. 3,181-187.

88. Sayre, D. (1952) Acta Crystallogr. 5, 60-65.

89. Cochran, W. (1952) Acta Crystallogr. 5, 65-67.

90. Zachariasen, W.H. (1952) Acta Crystallogr. 5, 68-73.

91. Hauptman, H.A. and Karle, J. (1953) The Solution o f the Phase Problem. I. The 

Centrosymmetric Crystal, AC A Monograph, No. 3. Polycrystal Book Service, 

New York.

92. Cochran, W. (1952) Acta Crystallogr. 8,473-478.

93. Wilson, A.J.C. (1942) Nature 150, 151-152.

94. Karle, J. and Haputman, H.A. (1956) Acta Crystallogr. 9, 635-651.

95. Sheldrick, G.M. (1990) Acta Crystallogr. A46, 467-473

196



96. White, P.S. and Woolfson, M.M. (\915)Acta Crystallogr. A31, 53-56.

97. Main, P., Fiske, S.J., Hull, S.E., Lessinger, L., Germain, G., Declercq, J.P. and 

Woolfson, M.M. (1980) MULTAN80: A system o f computer programs for the 

automatic solution o f crystal structures from x-ray diffraction data. Universities 

of York and Louvain.

98. Giacovazzo, C. (1980) Direct Methods in Crystallography, Academic Press, 

London.

99. Giacovazzo, C. [ed.] (1992) Fundamentals o f Crystallography. Oxford University 

Press, Oxford.

100. Bricogne, G. (1984) Acta Crystallogr. A40,410-445.

101. Cramer, H. (1946) Mathematical Methods of Statistics, Princeton University 

Press, Princeton. *

102. Klug, A. (1958)Acta Crystallogr. A46, 515-543.

103. Bricogne, G. (1991) Crystallographic Computing 4: Techniques and New 

Technologies, edited by N.W. Isaacs and M.R. Taylor, Clarendon Press, Oxford, 

pp 60-79.

104. Bayes. T. (1763) Phil. Trans. Roy. Soc. 53, 370-418.

105. Daniel, G.J. (1991) in Maximum Entropy in Action, edited by B. Buck and V.A. 

MacAulay Clarendon Press, Oxford, p7.

106. Shannon, C.E. and Weaver, W. (1949) The Mathematical Theory of  

Communication, University of Illinois Press, Urbana.

107. Bricogne, G. (1988) Acta Crystallogr. A44, 517-545.

108. Bricogne, G. (1991) Maximum Entropy in Action, edited by B. Buck and V.A. 

MacAuley, Clarendon Press, Oxford.

109. Bricogne , G. (1991) Acta Crystallogr. A47, 803-829.

110. Daniels, M. E. (1954) Ann. Math. Stat. 25, 631-650.

111. Reid,N. (1988) Stat. Sci. 3, 213-238.

112. Dunitz, J.D. (1995) X-ray Analysis and the Structure of Organic Molecules, 2nd 

corr. reprint, VHCA, Basel, pp 153-154.

113. Bricogne, G. (1993) Acta Crystallogr. D49, 37-60.

114. Bricogne, G. and Gilmore, C.J. (1990) Acta Crystallogr. A46, 284-297.

197



115. Gilmore, C.J., Bricogne, G and Bannister, C. (1990) Acta Crystallogr. A46, 297- 

308.

116. Gilmore, C.J. and Bricogne, G. (1992) Crystallographic Computing 5: From 

Chemistry to Biology, edited by D. Moras, A.D. Podjamy and J.C. Thierry,

Oxford University Press, Oxford, pp 298-307.

117. Gilmore, C.J., Shankland, K. and Bricogne, G. (1993) Proc. Roy. Soc. London 

Ser. A 442, 97-111.

118. Shankland, K., Gilmore, C.J., Bricogne, G. and Hashizume, H. (1993) Acta 

Crystallogr. A49, 493-501.

119. Sim, G.A. (1959) Acta Crystallogr. 12, 813-815.

120. Sim, G.A. (1960)Acta Crystallogr. 13, 511-512.

121. Gilmore, C.J. (1996) Acta Crystallogr. A52, 561-589.

122. Gilmore, C.J., Henderson, K. and Bricogne, G. (1991) Acta Crystallogr. A47, 

830-841.

123. Tremayne, M., Lightfoot, P., Glidewell, C., Mehta, M.A., Bruce, P.G., Harris, 

K.D.M., Shankland, K., Gilmore, C.J. and Bricogne, G. (1992) J. Solid State 

Chem. 100,191-196.

124. Tremayne, M., Lightfoot, P., Harris, K.D.M., Shankland, K., Gilmore, C.J., 

Bricogne, G. and Bruce, P.G. (1992) J. Mater. Chem. 2,1301-1302.

125. Lightfoot, P., Tremayne, M., Harris, K.D.M., Glidewell, C., Shankland, K., 

Gilmore, C.J. and Bruce, P.G. (1993) Mater. Sci. Forum 133-136, 207-212.

126. Xiang, S., Carter, C.W.C.Jr, Bricogne, G. and Gilmore, C.J. (1993)Acta 

Crystallogr. D49, 193-212.

127. Doublie, S., Xiang, S., Gilmore, C.J., Bricogne, G. and Carter, C.W.C.Jr (1994) 

Acta Crystallogr. A 50 ,164-182.

128. Henderson, R., Baldwin, J.M., Downing, K.H., Lepault, J. and Zemlin, F. (1986) 

Ultramicroscopy 19,147-178.

129. Gilmore, C.J., Shankland, K. and Fryer, J.R. (1993) Ultramicroscopy 49,132-

146.

130. Gilmore, C.J., Nicholson, W.V. and Dorset, D.L. (1996) Acta Crystallogr. A52, 

937-946.

198



131. Baird, T., Gall, J.H., MacNicol, D.D., Mallinson, P.R. and Mitchie, C.R.(1988) 

J.Chem. Soc. Chem. Commun. 1471-1473.

132. Whitaker, A. (1978) Journal of the Soc. Dyers and Col., 431-435.

133. Whitaker, A. (1988) Journal of the Soc. Dyers and Col., 294-300.

134. Allen, F.H., Davies, J.E., Galloy, J.J., Johnson, O., Kennard, O., Macrae, C.F., 

Mitchell, E.M., Mitchell, G.F., Smith, J.M. and Watson, D.G. (1991) J. Chem. 

Inf. Comp. Sci. 31,187-204.

135. Allen, F.H. and Kennard, O. (1993) Chem. Des. Autom. News 8,1-30.

136. Allen, F.H. and Kennard, O. (1993) Chem. Des. Autom. News 8, 31-37.

137. CERIUS2 . Molecular Simulations Inc., San Diego.

138. Sutton, L.E. (1958) Tables of Interatomic Distances and Configuration in 

Molecules and Ions. Chemical Society Special Publication, 11, Chemical Society , 

London.

139. Kennard, O. in International Tables for Crystallography, Vol. 3, Kynoch Press, 

Birmingham, pp 257-276.

140. Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G. and Taylor, 

R. (1987) Journal of the Chemical Society, Perkin Transactions 2, SI-SI 9.

141. International Tables for Crystallography (1969) Vol I, Kynoch Press, 

Birmingham. pp530-535.

142. Mighell, A.D., Himes, V.L. and Rodgers, J.R. (1983) Acta Crystallogr. A39, 

737-740.

143. Crystal Identification File (1982) National Bureau of Standards

144. Badcock, T.D. (1992) Ph.D. Thesis, Scottish College of Textiles, Galashiels.

145. Latimer, W.M. andRodebush, W.H. (1920) J. Arner. Chem. Soc. 4 2 ,1419-1433.

146. Taylor, R. and Kennard, O. (1984) Acc. Chem. Res. 17, 320-326.

147. Taylor, R., Kennard, O. and Versichel, W. (1984) Acta Crystallogr. B 40,280- 

288.

148. Pimental, G.C. and McClellan, A.L. (1960) The Hydrogen Bond. W.H. Freeman, 

San Francisco.

149. Liebermann, C. (1883) Chem. Ber. 16,2858.

150. Zincke, T. and Bindewald, H. (1884) Chem. Ber. 17, 3026.

151. Morgan, K.J.(1961)^ Chem. Soc., 2151-2159.

199



152. Burawoy, A., Salem, A.G. and Thompson, A.R. (1952) J. Chem. Soc, 4793- 

4798.

153. Brown, C.J. and Yadav, H.R. (1984) Acta Crystallogr. C40, 564-566.

154. Cambridge Structural Database (1995). CSD User’s Manual. Cambridge 

Crystallographic Data Centre, Cambridge.

155. Kobelt, D., Paulus, E.F. and Kunstmann, W. (1972) Acta Crystallogr. B28, 

1319-1322.

156. Jarvis, J.A.H. (1961) Acta Crystallogr. 14, 961-964.

157. Kobelt, D., Paulus, E.F. and Kunstmann, W. (1974) Z Kristallogr. 139, 15-19.

158. Whitaker, A. (1977) Z. Kristallogr. 1 4 6 ,173-184.

159. Olivieri, A.C., Wilson, R.B., Paul, I.C. and Curtin, D.Y.(1989) J. Am. Chem. 

Soc. I l l ,  5525-5532.

160. Salmen, R., Malterud, K.E. and Pedersen, B.F. (1988) Acta Chem. Scand. A42, 

493-499.

161. Whitaker, A. (1977) Z. Kristallogr. 147, 99-112.

162. Grainger, C.T. and McConnell, J.F. (1969) Acta Crystallogr. 2 5 ,1962-1970.

163. Whitaker, A. (1980) Z Kristallogr. 152,227-238.

164. Guggenberger, L.J. and Teufer, G. (1975) Acta Crystallogr. B31, 785-790.

165. Whitaker, A. (1977) Z Kristallogr. 145,271-288.

166. Diamantis, A.A., Manikas, M., Salam, M.A. and Tiekink, E.R.T. (1992) Z 

Kristallogr. 2 0 2 ,154-156.

167. Alcock, N.W., Spencer, R.C., Prince, R.H. and Kennard, O. (19689 J- Chem. Soc. 

A , 2383-2388.

168. Sutor, D.J. (1963)7. Chem. Soc., 1105-1110.

169. Paulus, E.F., Rieper, W. and Wagner, D. (1983) Z. Kristallogr. 1 6 5 ,137-149.

170. Gridunova, G.V., Tafeenko, V.A., Tambieva, O.A., Lisitsyna, E.S. and Medev, 

S.V. (1991) Zh. Strukt. Khim. 32, 53-55.

171. Paulus, E.F. and Rieper, W. (1985) Z Kristallogr. 171, 87-100.

172. Whitaker, A. (1984) Z Kristallogr. 167,225-233.

173. Whitaker, A. (1986) Acta Crystallogr. C 4 2 ,1566-1569.

174. Whitaker, A. (1985) Z. Kristallogr. 1 7 1 ,17-22.

175. Whitaker, A. (1987) Acta Crystallogr. C43, 2141-2144

200



176. Whitaker, A. and Walker, N.P.C. (1987) Acta Crystallogr. C43, 2137-2141.

177. Whitaker, A. (1983) Z. Kristallogr. 163, 139-149.

178. Paulus, E.F. (1984) Z Kristallogr. 167, 65-72

179. Whitaker, A. (1984) Z Kristallogr. 1 6 6 ,177-188.

180. Whitaker, A. (1985) Z Kristallogr. 170,213-223.

181. Whitaker, A. (1983) Z Kristallogr. 163,19-30.

182. Whitaker, A. (1985) Z Kristallogr. 171, 7-15.

183. Golinsk, B. (1988) Z. Kristallogr. 184,161-167.

184. British Patent No. 23831

185. British Patent No. 23832

186. United States Patent No. 733280

187. maXus. MAC Science Ltd, Yokohama, Japan and Nonius B.V., Delft, The 

Netherlands.

188. Robertson, J.M. (1936) Journal o f the Chemical Society,\ 195-1209.

189. Ashida, M. (1966) Bull. Chem. Soc. Japan 39, 2632-2638.

190. Williams, R.C. and Fisher, H.W. (1970) J  Mol. Biol. 5 2 ,121-123.

191. Uyeda, N., Kobayashi, T., Suito, E., Harada, R. and Watanabe, M. (1972,) J. 

Appl. Physics 43, 5181 -5189.

192. Murata, Y., Fryer, J.R. and Baird, T. (1976) J. Micros. 108,261-275.

193. Fryer, J.R. (1977) Inst. Phys. Conf. Ser No. 36, pp 423-242.

194. Fryer, J.R. (1978) Acta Crystallogr. A34 603-607.

195. Dorset, D.L., Tivol, W.F. and Turner, J.N. (1991) Ultramicroscopy 38,41-45.

196. Dorset, D.L., Tivol, W.F. and Turner, J.N. (1992) Acta Crystallogr. A48, 562- 

568.

197. Dorset, D.L., McCourt, M.P., Fryer, J.R., Tivol, W.F. and Turner, J.N. (1994) 

Microsc. Soc. Am. Bull. 24, 398-404.

198. Dorset, D.L. (1997) Acta Crystallogr. A53, 356-365.

199. Tivol, W.F., Dorset, D.L., McCourt, M.P. and Turner, J.N. (1993) Microsc. Soc. 

Am. Bull. 23, 91-98.

200. Uyeda, N., Kobayashi, T., Ishizuka, K. and Fujiyoshi, Y. (1978-1979) Chem. 

Scr. 1 4 ,47-61.

201



201. O’Keefe, M.A., Fryer, J.R. and Smith, D.J. (1983) Acta Crystallogr. A39, 838- 

847.

202. Fan, H.F., Xiang, S.B., Li, H.F., Pan, Q., Uyeda, N. and Fujiyoshi, Y. (1991) 

Ultramicroscopy 36, 361-365.

203. Saxton, W.O., O’Keefe, M.A., Cockayne, D.J.H. and Wilkens, M. (1983) 

Ultramicroscopy 12, 75-86.

204. Gilmore, C.J. (1984) J. Appl. Cryst. 17, 42-46.

205. Gilmore, C.J. and Brown, S.R. (1988)./ Appl. Cryst. 22, 571-572.

206. Linsky, J.P., Paul, T.R., Nohr, R.S. and Kenney, M.E. (1980) Inorg. Chem. 19, 

3131-3135.

207. Fryer, J.R. and Kenney, M.E. (1988) Macromolecules 21, 259-262.

208. Wegner, G. (1969) Z. Naturforsch. Teil B, 24, 824-832.

209. Weger, G. (1972) Makromol. Chem. 154, 35-48.

210. Yee, K.C. and Chance, R.R.(1977) J. Polym. Sci. Polym. Phys. Ed. 16,431-441.

211. Apgar, A.P. and Yee, K.C. (1978) Acta Crystallogr. B34, 957-959.

212. Read, R.T. and Young, R.J. (1984) J. Mater. Sci. 19, 327-338.

202


