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SUMMARY

This thesis describes the environmental loading and motion response prediction 

methods of mooring systems.

The first chapter presents existing Single Point Mooring Terminals and gives a 
summary of previous studies carried out on this subject The main objectives of the study 
are also explained. Finally the structure of the thesis is given.

The second chapter is concerned with the motion response prediction of moored 
buoys. Wave forces acting on the buoy are calculated using Morison's Equation. 
Catenary equations are utilized to derive cable forces. Two different buoy geometries, 
cylindrical and conical, are considered in the study. Experimental measurements are 
compared with time and frequency domain modellings.

In the third chapter, diffraction theory used to derive the wave forces is explained. 
The tanker is modelled as a vertical elliptical cylinder with a finite draught. Calculated 
wave forces are compared with Oortmerssen's experiments and with the results of a 3-D 
program developed by Chan. The water depth effect on wave forces is investigated. 
Program results for various angles of incidence and for different elliptic cylinders are 
presented. The second order mean force is calculated using the far-field approach, 
introduced by Maruo. Also the radiation problem of the tanker which is modelled as an 
elliptical cylinder is solved. Program results are compared with Oortmerssen's 
experiments and with Chan's 3-D program results. Program results for different cylinders 
and for different water depth/draught ratios are presented.

Chapter 4 describes a time domain model used to predict the motion responses of 
a tanker-buoy system under wave, wind and current loading. Motion equations of the 
tanker-buoy system are derived by using Cummins' method. Frequency-independent 
hydrodynamic coefficients and time histories of wave forces in irregular seas are 
calculated. Experimental measurements are compared with the time domain simulation 
results.

Chapter 5 presents the results of a series of parametric studies. A computer 
program developed to predict the motion responses of the coupled tanker-buoy system is 
run for different parameters, such as; wave, wind and current angle of attacks, wind and

xix



current speed, elasticity of the mooring lines and the hawser line, buoy and tanker 
geometry, water depth, draught of the ship. Numerical aspects of the program, such as 
the solution of the differential equations and the evaluation of the convolution integral are 
discussed.

In chapter 6 a description of model tests performed in regular waves is presented. 
Two sets of experiments are conducted. The first set of experiments aims to predict the 
motion responses of conical and cylindrical buoys, the second to predict the motion 
responses of the tanker-buoy system and the hawser line forces.

In the final chapter general conclusions are drawn and some recommendations for 
future work are made.
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CHAPTER 1 

INTRODUCTION

1.1 SINGLE POINT MOORING SYSTEMS

A large number of Single Point Mooring (SPM) systems have been installed in 

various parts of the world over the past 30 years. As North Sea oil production moves 

towards a greater dependence on smaller reservoirs, not only in comparatively shallow 

water on the continental shelf, but also in deeper water off it, there will be a 

correspondingly greater role for floating production facilities. An example of such a 

facility is a large tanker moored to a single point. A single point moored tanker 

weathervanes according to the prevailing weather conditions thus staying on location with 

a minimum of mooring loads. Single point mooring systems have been installed in 

various parts of the world and depending on the weather conditions they vary from 

chain/turret systems to rigid-articulated systems and hybrid-type structures. Economic 

viability is one reason for this tendency towards SPM systems as they have become 

alternatives to fixed platforms and subsea pipelines for transportation of oil and gas which 

becomes an important part of the oil-field development as offshore production activities 

move into deeper waters. Another noticeable distinction of such systems is that they can 

endure severe sea and weather conditions. As a result they experience numerous 

combinations of wave, wind and current. Therefore dynamic analysis of such systems is 

essential to ensure satisfactory overall performance of these systems.

As single-point mooring systems have increased in size and complexity, a 

pressing need has arisen for a method of objectively assessing competing designs. A 

computer-based mathematical model would provide a quick and cost effective means for 

design assessment. The programs would also provide an independent check on physical 

model tests of the final design, which would be of use to manufacturers, designers and

1



certifying authorities. Prediction of the motion responses of moored buoys and mooring 

forces should be the first step towards the understanding of the dynamic behaviour of the 

single-point mooring systems under environmental conditions.

Several types of Single Point Mooring systems exist:

1. CALM (Catenary Anchor Leg Mooring)

2. ELSBM (Exposed Location Single Buoy Mooring)

3. SPAR

4. SALM (Single Anchor Leg Mooring)

5. Fixed Mooring Tower

6. Articulated Mooring Tower

7. Yoke Moored Storage

The idea of SPMs is to moor a vessel to a single point and allow it to weathervane 

under environmental forces to take up the position with minimum mooring loads. All of 

the SPMs mentioned above have the means to transfer oil to (or from) the tanker through 

pipelines. Some of the SPM systems are shown in Figs. 1.1-1.6. CALM is the original 

and the most common system in operation which represents about 80 % of all the existing 

SPMs. It consists of a simple cylindrical buoy which is designed with a rotating deck and 

an underwater hose connection for the pipelines. ELSBM is an improved design of 

CALM systems which solves the fatigue problem of the hoses by increasing the 

submerged volume of the buoy, thus minimising heaving forces. Another aspect of the 

ELSBMs is that the loading lines between the buoy and the tanker are raised above the 

waves to minimise the wave loading. Another version of CALM systems is the SPAR 

design. The SPAR design has oil storage capacity, unlike other CALM systems. In 

SALM systems the buoy is moored to a base at the sea bottom by a single anchor leg. 

There are some advantages of SALM systems over CALM systems; firstly the fluid 

swivel system is independent of the buoy, thus the hoses attached to the leg are not liable 

to the forces exerted by the buoy motions, secondly the cargo transfer system of the 

SALMs is less likely to be affected by collisions. The idea behind the Fixed Mooring 

Tower is that cargo can be transferred by pipelines thus eliminating the problems related 

to the loading hoses. Articulated Mooring Towers are preferable to fixed mooring towers
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because the structural loads on the articulated tower are much less than the structural load 

on fixed tower.

1.2 SUMMARY OF PREVIOUS WORK

Several researchers have studied the dynamic response of SPM systems under 

wave, wind and current loading using numerical simulation and measurement techniques. 

Haring [1.1] in his paper summarises the full scale measurements which were recorded 

aboard the 45000 DWT tanker Theotokos at Ekofisk in the North Sea. He concluded in 

his paper that the maximum tension in the bow hawser was primarily a function of the 

wave height; that mooring force predictions based on model test data would overestimate 

full scale measurements under stormy conditions and that measured long period yaw 

cycles exceeded in magnitude those observed in model tests. Wichers [1.2] studied the 

dynamic stability and the natural frequencies of the modes of motions of the tanker in the 

horizontal plane in steady current and wind. It is concluded in the paper that a ship 

moored to an SPM system can undergo low frequency oscillations in the horizontal plane 

in wind and current only when the equilibrium position of the ship is unstable. Owen and 

Linfoot [1.3, 1.4] have presented a mathematical model describing the low frequency 

motion of an SPM system. It was discussed in the paper that differential equations of 

motion of SPM systems were mathematically "stiff1 and required special treatment Muga 

and Freeman [1.5] used an Impulse Response Function technique to model the motions 

of a single point moored ship in steady wind and current. Wichers [1.6] formulated the 

motion equations of a Single Point Moored tanker in three degrees of freedom in wind 

and current. He derived two sets of motion equations, one of them uses the impulse 

response function technique of Cummins [1.31] to determine the hydrodynamic 

coefficients while the other one uses constant added mass and damping coefficients. It 

was concluded in the paper that when there are no sudden changes in motions of tanker 

both of the motion equations give very close results. Oortmerseen [1.7] studied the time 

domain analysis of a single point moored ship by using the Impulse Response Function 

technique. In 1979 Faltinsen et al [1.8] and [1.9] applied seven degrees of freedom linear 

stability equations to study the slow motions of a tanker moored to a buoy. It was
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recommended in the paper that cross mooring between the ship and the buoy and 

thrusters be used to increase the stability of the system. It was also suggested that 

transverse current force and yaw moment on the ship for small angles of attack could be 

obtained by lifting-line theory and Munk moment Another mathematical model of a ship 

at a single point mooring was developed by Ractliffe and Clarke [1.10]. In the paper the 

effect of different parameters on the motions of the tanker are discussed. Selection and 

design methods of SPM terminals were discussed by Bliault and Stewart [1.11]. In their 

paper they highlighted the importance of model tests and mathematical models when 

selecting a SPM terminal. A stability analysis of tankers in single point moorings was 

carried out by S0rheim [1.12]. S0rheim stated that some general patterns of ship stability 

in SPM terminals could be given by a single formula assuming zero damping and small 

motion amplitudes. Molin and Bureau [1.13] presented a simulation model for the 

dynamic behaviour of single point moored tankers in waves, wind and current. Their 

model differs from Wichers' [1.6] in the ideal fluid-current force calculation. The "wave 

damping" was introduced by Wichers [1.14] in formulating the motion equation of a 

moored tanker in irregular head waves. Wichers stated that the motion equation with low 

frequency still water damping coefficient overestimated the experimental measurements 

whereas the inclusion of the wave damping in the motion equation provided a better 

correlation with the measurements. Wichers and van den Boom [1.15] presented a time 

domain modelling of combined high and low frequency motions of single point moored 

tankers. In the paper fluid reactive forces were taken into account by convolution integrals 

and first and second order wave forces were evaluated using impulse response 

techniques. Low frequency fluid reactive forces were experimentally determined in the 

paper for a range of relative current speeds, yaw velocities, loading conditions and water 

depths, then results were expressed in terms of Fourier series. Their formulations were 

also compared with the formulations given by Genitsma et al [1.16], which consider 

three contributions to the overall flow: 1) ideal flow forces 2) forces due to viscous cross 

flow 3) lift forces generated by viscosity. A model to account for hull-propeller-rudder 

interactions was introduced by Oltmann and Sharma [1.17]. Later the same model was 

used by Jiang and Schellin [1.18], [1.19], [1.20] and [1.21] to carry out the stability 

analysis and motion simulation of a single point moored tanker. The stability of SPM
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systems was also studied by Papoulias [1.22] and Bemitsas [1.23] and [1.24]. Wichers 

[1.25] and [1.26] presented recent developments in computer simulations of single point 

moored vessels. He carried out simulation calculations for two models. The first model 

was based on a 1-DOF system in which wave drift damping and viscous surge damping 

were examined in current and still water. The second model was on a 3-DOF system 

when Wichers compared his formulations of equations of motion with those given by 

Molin [1.13] and Obokata [1.27]. A semi empirical method with the use of experimental 

data to calculate the wave drift and viscous damping forces was also presented by 

Wichers [1.28]. Aghamohammadi and Thompson [1.29] carried out some experiments to 

investigate the large amplitude fish-tailing instabilities of a single point moored tanker. 

Effects of dynamic wind, current and waves on the stability of a single point moored 

tanker were investigated by de Kat and Wichers [ 1.30].

1.3 OBJECTIVES OF STUDY

As explained in the first section dynamic analysis of Single Point Mooring 

systems is necessary at the initial design stage of these systems.

The overall aim of this research is to study the environmental loading and motion 

response of moored objects such as moored buoys and Single Point Mooring Systems 

and to provide the designer with the tools that could be used at the design of these 

systems. In analysing the moored systems particular attention is given to the time domain 

simulation techniques. Wave forces acting on moored buoys are derived by using 

Morison's equation and time and frequency domain simulation techniques are utilized to 

analyse the motion characteristics of moored buoys. A vertical cylinder of elliptical cross 

sections is used to model the tanker in a CALM system. Hydrodynamic coefficients and 

wave forces obtained from the solution of diffraction and radiation problems of the 

elliptical cylinder are used in the time domain simulations. By modelling the tanker as an 

elliptical cylinder it is also possible to produce the wave forces at each time step without 

the need of creating a database since the wave forces on an elliptical cylinder is obtained 

semi analytically by using the Mathieu functions. Effect of dynamic wind and random
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waves are also incorporated in the study. At each stage of the study prediction methods 

are validated by experiments.

1.4 STRUCTURE OF THESIS

The study starts with the motion response simulation of moored buoys. Chapter 2 

is thus devoted to the motion response prediction of moored buoys. Wave forces acting 

on the buoy are calculated using Morison's Equation. Catenary equations are utilized to 

derive cable forces. Two different buoy geometries, cylindrical and conical, are 

considered in the study. Experimental measurements are compared with time and 

frequency domain modellings. In chapter 3, diffraction theory used to derive the wave 

forces is explained. The tanker is modelled as a vertical elliptical cylinder with a finite 

draught Calculated wave forces are compared with Oortmerssen's experiments and with 

the results of a 3-D program developed by Chan. The water depth effect on wave forces 

is investigated. Program results for various angles of incidence and for different elliptic 

cylinders are presented. The second order mean force is calculated using the far-field 

approach, introduced by Maruo. Also the radiation problem of the tanker which is 

modelled as an elliptical cylinder is solved. Program results are compared with 

Oortmerssen’s experiments and with Chan's 3-D program results. Program results for 

different cylinders and for different water depth/draught ratiou are presented. Chapter 4 

describes a time domain model used to predict the motion responses of a tanker-buoy 

system under wave, wind and current loading. Motion equations of the tanker-buoy 

system are derived by using Cummins’ method. Frequency-independent hydrodynamic 

coefficients and time histories of wave forces in irregular seas are calculated. 

Experimental measurements are compared with the time domain simulation results. In 

Chapter 5 the results of a series of parametric studies arc presented. A computer program 

developed to predict the motion responses of the coupled tanker-buoy system is run for 

different parameters, such as; wave, wind and current angle of attacks, wind and current 

speed, elasticity of the mooring lines and the hawser line, buoy’s and tanker's geometry, 

water depth, draught of the ship. Numerical aspects of the program, such as; solution of 

the differential equations, evaluation of the convolution integral are discussed. Chapter 6
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describes the model tests performed in regular waves. Two sets of experiments are 

conducted. The first set of experiments aims to predict the motion responses of conical 

and cylindrical buoys, the second to predict the motion responses of the tanker-buoy 

system and the hawser line forces. Finally some conclusions are drawn in Chapter 7.
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CHAPTER 2

MOTION RESPONSE SIMULATION OF MOORED BUOYS

2.1 INTRODUCTION

In this chapter the motion response of moored buoys under environmental loading 

is predicted through time and frequency domain modelling and model tests. In the 

following sections of the chapter firstly wave forces acting on the buoy are predicted 

using Morison's Equation, secondly mooring forces are evaluated by making use of the 

catenary equations, lastly frequency and time domain simulation techniques are presented 

and compared with measurements. In the study two different buoy geometries, a circular 

cylinder and a right truncated circular cone (frustum), are considered.

The motion response prediction of moored buoys has been the subject of several 

investigations. Berteaux in his book entitled Buoy Engineering [2.1], presented a detailed 

study of the dynamics of buoys and mooring lines. Remery and Kokkeel [2.2] presented 

approximate methods to calculate the hydrodynamic loads acting on a cylindrical buoy 

and compared the estimated results with the results of exact computer calculations and 

with the results of model tests. It is claimed in the paper that approximations are accurate 

enough for comparison of the behaviour of different buoys. Arai and his colleagues 

[2.3], studied the motion of a CALM system. In their paper a design method for the 

mooring systems is given. In his paper (1977), Koterayama [2.4] carried out theoretical 

and experimental studies of a moored floating cylinder and dynamic tension of mooring 

lines in waves. He proposed an approximate method to calculate the dynamic tensions, in 

which inertia and hydrodynamic forces acting on the chain are taken into account. 

Harichandran [2.5] developed a tangent stiffness technique for the static analysis of a 

multi leg cable buoy system, in which an approximate method of accounting for the 

current drag forces is presented. In his thesis (1982), Tsinipizoglou [2.6] derived a time
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domain model for moored buoys and applied cable mass modelling to the dynamic 

analysis of mooring lines. Nakajima [2.7], in his paper (1986), introduced a time domain 

simulation technique for moored buoys and also discussed numerical simulations of deep 

sea mooring lines. The lumped mass method was used in the paper for the dynamic 

analysis of mooring lines. In the present study time and frequency domain modelling of 

the motion responses of conical and cylindrical buoys will be presented. The equations in 

this chapter later will be used in formulating the motion equations of the tanker-buoy 

coupled system which features in chapter 5.

2.2 ENVIRONMENTAL LOADING ON BUOYS

2 .2 .1  Evaluation of Wave Forces Acting on the Buoy

In formulating the forces acting on a buoy placed in a wave field of 

monochromatic regular waves, the potential flow and Airy small amplitude wave theories 

are used. In formulating the motion equations of the moored buoy in frequency domain, 

buoy motion responses are assumed to be small enough so that the equations of motion of 

the buoy are linear. Morison's equation [2.8] is utilized in deriving the wave forces acting 

on the buoy. It has been proved by many researchers that Morison's equation is adequate 

for the calculation of wave forces on relatively small diameter cylinders provided that the 

diameter of the cylinder is less than one-fifth of the wave length [2.9]. As an alternative to 

the circular cylinder buoy geometry, a truncated circular cone (frustum) buoy form is 

considered to derive wave excitation forces and moments. In formulating the vertical 

forces, both dynamic pressure and wave acceleration induced forces acting on the bottom 

of the cylindrical and the conical buoy as well as the vertical component of the dynamic 

pressure and wave acceleration forces acting on the sides of the conical buoy are taken 

into account In formulating the wave forces acting on the buoy a 2-Dimensional model 

was used. In the following, heave and surge forces and pitching moment formulations are 

derived for the conical buoy geometry.
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Reference Systems

In formulating the wave induced force and moment equations, two right-handed 

rectangular co-ordinate systems were chosen. The first co-ordinate system which is 

referred to as the wave reference system [Oxyz], was used to define wave kinematic 

equations, i.e. wave particular velocity and accelerations and dynamic wave pressure. 

The second co-ordinate system which is referred to as the structure co-ordinate system 

[GXYZ] was chosen to calculate wave excitation forces and moments as well as non­

linear hydrostatic and mooring forces. The centre of gravity of the buoy was selected as 

the origin of the structure co-ordinate system which oscillates as the buoy moves in 

waves. The definition of the reference systems is illustrated in Fig. 2.1.

Heave Forces

The dynamic wave pressure and wave particle accelerations give rise to the major 

part of the heave force. In the following, vertical pressure and acceleration forces are 

calculated on a frustum geometry which is examined as an alternative configuration for 

the design of mooring buoys.

Total Heave Force:

Fm  = Fab+ I^b + ̂ Sy (2.1)

where Fab is the acceleration force at the bottom of the frustum.

Fpe and Fpsy are the pressure forces at the bottom and the side of the frustum respectively. 

Pressure force at the bottom of the frustum:

dFpe = 0.5pgHw exp(-Hk)cos(kRcos0 -  cot)rdrd0

2xR

FPB = 0.5pgH w exp(-Hk) J  J  cos(kR cos 0 -  cot)rdrd0 (2.2)
0 0
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where k is the wave number 

p is the water density 

g is the gravity acceleration 

Hw is the wave height 

H is the draft of the frustum 

R is the largest radius of the frustum 

co is the wave frequency 

t is the time

Acceleration force at the bottom of the frustum:

Fab = -jpR3(-0-5Hwco2 cosoot exp(-Hk)) ^  3)

4 a
where — pR is added mass coefficient (kM)

Additional forces due to dynamic wave pressure acting on the side of the frustum 

are also included in the heave force calculations. The side forces act in opposite direction 

to the forces at the bottom of the frustum and have a reducing effect on the total heave 

force.

Pressure force acting on the side of the frustum in y direction:

0 in
FpSy = 0.5 p g Hw sin<|> J  Jexpkzcos(kR(z)cos6 -  cot)R(z)dOdz (2.4)

-H 0

R(z) =  r - ^ p z  (2.5)

where R(z) is the geometric definition of the frustum slope 

r is the radius of the frustum on the water surface

The pressure and acceleration force equations can be expressed by taking into 

account the motions of the frustum as follows:
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2xR
Fra = 0.5 p g Hw J  J  exp[k(-P31rcos0 -  P33Z0 + xl - H  + Z0)]

0 0

cos[k(Pnr cos0+ P13Z0 + x2) -  cot]rdrd0 (2.6)

F a b  = | p r 3(-0 .5 H,<0Jexp[k(P33(-Z o)+ x 1 - H + Z 0)])

cos[k(p13ZG + x2)-cot] (2.7)

Zq 2n
FpSy = 0.5 p g Hw sin <|) J  J  exp[k(-P31R(Z)cos0 -  p33Z + xA -  H + ZG)]

-H+zo o

j cos[k(pnR(Z)cos0+ p13Z + x2) -  cot]R(Z)d0dZ (2.8)

where is the heave motion, x2 is the surge motion 

Surge Forces

The pressure, acceleration and drift components of the surge force are calculated 

as follows:

Total Surge Force:

F-rs — Fah + Fdh + Fpjj (2.9)

Acceleration force:

o 2 n
FAH = P kM J jAjUjdOdz (2.10)

-H 0

where kM is added mass coefficient 

A, = R(z)d0dz
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0 2ic
Fah = 5 p kM Hw ( o2 J  J  exp kz sin(-cot) R(z) d0 dz (2.11)

-H o

where A, is the projection area

u' is the acceleration of the water particle in the x direction

Drift force acting in x direction: 

o
FDH=0.5pJC DuI|uj2R(z)dz (212)

- H

0
Fdh = 0* 5 p CD (0.5 H w co)2 cos(-cot) |cos(-cot)| J  2 exp(2kz) R(z)dz (2.13)

- H

✓

where CD is the drag coefficient

ux is the velocity of the water particle in the x direction

Pressure force acting in x direction:

o 2 n
Î >H = 0.5 p gH wcos<|> J  J expkzcos(kR(z)cos9 - cot)R(z)d0dz (2.14)

-H o

The surge force expression written above can also be expressed by taking into 

account the motions of the frustum as follows:

Z G

?ah  = 0-5 pkM Hwco2 J  exp[k(-(533Z -  H + ZG + x3)]
-(H-Zq)

sin[k(p,3Z + x2) -  cot] R(Z)2 it dZ (2.15)
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1 z°
FDH= ^ p C D (H.co)2 J  R (Z )exp[2k(-M  -  H + Z0 + x,)]

4  - (H -Z 0 )

COS [k(pI3Z + X j)-a)t]| cos[k(P13Z + x2) -  cot]|dZ 

Pitch moments due to Heave forces

Pitch moment due to pressure force acting at the bottom of the frustum: 

lever= RcosG

2*R

Mpb =0 .5pgH w JJexp(-P31rcos0 - p 33ZG + xt -H  + ZG)
o o

cos[k(pnrcos0 + P13ZG + x2) -  O)t]rcos0rdrd0

Pitch moment due to pressure force acting on the side of the frustum: 

lever = R(z)cos0

Z0 2*

Mps = sin(<I>)0.5pgHw J Jexp[k(~P31R(Z)cos0 - p 33Z + x1- H  +
H -Z 0 0

cos[k(p! jR(Z) cos 0 + P13Z + x2) -  cot] R(Z) cos0 R(Z) d0 dZ

Pitch moment due to Surge forces

Pitch moment due to the wave acceleration force: 

lever= ZG + xL

Zo

MAS = 0.5 p cos2 <|> Hw co2 Jexp[k(-p33Z -  H + ZG + xl)]
- (H -Z 0 )

sin[k(p13Z + x2) -  cot] (ZG + Xj) R2 (Z) n dZ

Pitch moment due to the drift force: 

lever= Z

(2.16)

(2.17)

Zo)]

(2-18)

(2.19)
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1 z°
Mbs = 7 pCD(H.co)2 J R ^ e x p ^ - P a Z  -  H + Z„ + x,)]

4  -< H -Z 0 )

cos[k(PI3Z + x2) -  cot] cos[k(p13Z + x2) -  cotJzdZ (2.20)

Pitch moment due to pressure force acting on the side of the frustum is calculated as

follows:

lever= Z

2 .2 .2  Effect of Current and Wind

2.2.2.1 Current Forces

Currents often have a velocity profile that decays very slowly with depth. Current 

can be expected to have an influence over the whole immersed length of the structure. The 

presence of current has several effects that need to be taken into account in force 

calculations.

Firstly, current affects the water particle velocities of the surface waves. The drag 

force on a member is proportional to the square of wave particle velocities, and current 

with a low velocity may have a significant effect, particularly at large depths. This effect 

is very important for slender members, since the Morison equation used to calculate the 

forces on such members is modified both through the velocities and the coefficient CD. 

The inertia force is not modified in this way, as it is assumed to be proportional to the 

water particle accelerations.

(2.21)

Fd = |p C D A„ (V, + Vc cos<x)[(V, + Vc cosa)2 + Vc2 sin2 a]*

where CD is the drag coefficient
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vx is the water particle velocity due to waves in the x direction 

Ys is the steady uniform horizontal current velocity 

a  is the angle between the direction of current and x direction 

Ap is the projection area

Secondly, current will also modify the surface wave field by altering the wave 

amplitude, the velocity of wave propagation and the wave length.

G)/ = co-Vckcosa (2 23)

where co' is the modified frequency

CD is the frequency due to waves 

k is the wave number, equal to 2n /  X 

X is the wave length

The effects of vortex shedding will not be considered here.

2.2.2.2 Wind Forces

Calculation of wind forces on structures is a very difficult task so empirical 

formulas have to be used. The wind flow is largely determined by the Reynolds number 

and the wind forces are calculated using a Morison type equation. Only the drag term of 

the Morison equation is important, because of the relatively low density and high 

compressibility of the air. Vortex shedding may occur causing vibration transverse to the 

flow direction. We may write the wind pressure at a point as:

P(t) = ip ,C „ V 2(t)
2 (2.24)

where P(t) is the time-dependent pressure 

P, is the density of air

Cd is a drag coefficient that depends on the geometrical shape
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V(t) is the time-dependent wind velocity

Mean pressure is obtained by neglecting the fluctuating component of the velocity 

and pressure,

P = -P .C dV2
2 (2.25)

where V is the mean velocity 

and the wind force is expressed as:

F»““i = - p . C<1 V A» (2.26)

where Ap is the projected area of the buoy, exposed to the wind

2.3 EVALUATION OF MOORING FORCES

The mooring line is required to provide a holding force and at the same time it is 

subjected to environmental excitation. As a result the mooring line assumes various 

configurations changing with time. Since the cable cannot handle compression and , as 

explained below, a negative tension usually results in unsatisfactory mooring behaviour, 

a successful design must guarantee positive tensions at all times.

In order to guarantee positive tensions sufficiently large mean forces must be 

applied which in turn imply larger cable diameter and high cost. It must be noted that 

mooring lines are used to offset steady forces, while oscillatory forces usually deteriorate 

their performance especially when they are close to the natural frequencies of the line. 

Since most oscillatory forces are caused by the waves one must make sure that the 

floating vessel and mooring system will perform satisfactorily given the specific 

environmental conditions.
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In most cases a mooring line assumes a slowly changing mean position around 

which it performs oscillations. A significant simplification results since we can separate a 

static solution referring to the slowly changing position, and a dynamic solution referring

primary interest since it provides the holding forces. The dynamics of a mooring line are 

mathematically a very difficult problem and computer solutions using some numerical 

scheme are not trivial. The numerical stability of the solution is not guaranteed and 

usually depends on the parameters of the system.

Catenary Solution: In the case of a heavy chain with significant sag, the effects of 

extensibility are negligible and the weight is the principal load, if the current has a small to 

moderate velocity.

A typical differential cable element is shown in the Fig.2.2. The static equilibrium 

equations are:

to the deviations from the static solution. As mentioned above the static solution is of

y' = —  = sinh —  + sinh-1 (tan 0 ) 
J dx _T0 (2.27)

(2.28)

m ’ ’
y = — cosh —  + sinh-1 (tan 0,) -cosh(sinh-1(tan0a)) 

w Tn\ lo
{2.29)

If 0, = 0 then ;

(2.30)

(2.31)
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and the vertical tension on the line is,

T. =wl (2.33)

In Appendix A, a solution algorithm based on the method by Orgill et al [2.10] is 

given. However, the formulas could be used in a more practical way. From Fig. 2.3 the 

horizontal distance Xx between the anchor and the attachment point of the mooring line 

on the vessel could be written as follows,

Xx = l - l , + x s (2.34)

By using Equation (2.31) and (2.32) the following relation between h and 18 can 

be written,

l,2 - h J + 2ha (2.35)

By using Equation (2.35) to express 1, and Equation (2.32) to express xg the 

relation between XT and T0 can be written as,

a !  h
Xx = 1 -  h(l + 2^ )2 + a cosh-1 (1 + ̂ )  (2.36)

where



By using Equation (2.36) and (2.33) horizontal force-horizontal displacement and 

vertical force-horizontal displacement are plotted in Figs. 2.4 and 2.5. Also horizontal 

force-vertical displacement and vertical force-vertical displacement are calculated by 

keeping XT constant in Equation (2.36) (Figs. 2.6 and 2.7).

The procedure outlined for one cable could be generalized for multi-cable systems 

(Fig. 2.8 and 2.9). Horizontal and vertical forces and yaw and pitch moments can be 

written as follows,

F,M= l T 0ic o s f
i=l

(2.38)

F”  = X Toi(x,sin<t>;-y, cos<J>()
i=l

F” = X (T 01zi +T!ixi)
i=l

f m _ y T
Z  ^  Z1

i=l

2 .4 .  M OTION RESPONSES OF THE BUOY UNDER WAVE 

EXCITATION IN FREQUENCY DOMAIN

Heave, surge and pitch motion equations of the cylindrical and conical buoy were 

solved in the frequency domain.

Heave Response of the cylindrical buoy; A differential equation representing the heave 

motion of the cylindrical buoy can be written as:

AIz + cIz + k,z = F, (2.39)

where Az = Mass + Added mass in heave
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= pgR2H + |p R 5 (2.40)

Cz is the damping coefficient 

kz is the restoring term

= PgA . + km = pg]tR2 + km (2.41)

Fv is the vertical force and consists of in-phase out-phase components.

Fv = A sin cot + Bcoscot (2.42)

Where A = 0 ,B  = 0.5pgHwe 'HkitR2 + 4pR3(-0.5Hw(o V Hk) +

0 2 k

-K).5pgHw J  Je l“ cos(kR(z)-cot)R(z)d0dz
-H  0

Solution of the differential equation will be in the following form, 

z = Zj sin cot + Z2 cos cot (2.43)

If Equation (2.43) is substituted in (2.39), coefficients of the solution are obtained

as:

A'(<pn2 - ( P 2) + 2fron(0B/ B ^ - c p ^ - H ^ f l a . c p A ^  ( 2 U )
(con2 -co2)2 + (2£conco)2 ^  2 (C0n2 -C02)2 + (2̂ CDnCD)2

where A ' = A / Az, B' = B / Az, G)n2 = k2 / Az and 2£con = cz /  Az 

con is the natural frequency of the system 

£ is a dimensionless quantity called viscous damping factor
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5 = (2.45)

2kwhere cCT is the critical damping coefficient cCT = 2Azcon = — -
COn

Heave Response of the conical buoy: A differential equation representing the heave 

motion of the frustum will be similar to Equation (2.39). However, the added mass of the 

frustum will be calculated as follows:

A, = ijiH (r2 + rR + R2) + ̂ pR 3 + |p R E3 sin2 a (2.46)

R, (2.47)

where S is the lateral surface area of the frustum.

S = Jl(r + R)VH2+ ( R - r )2 (2 4g)

R - rSin (X —  i "  I— in m
V (R -r )2 + H2 (2.49)

Due to the geometrical configuration of the frustum, stiffness term in the motion 

equation will be non-linear. However In order to solve the differential equation in the 

frequency domain, we assume that the stiffness term linearly changes with the heave 

motion. The solution of the differential equation will be equal to the expressions (2.43) 

and (2.44) except for the added mass term.
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Surge Response of the cylindrical buov: It is represented by a differential equation as 

follows:

Axx + cxx + kxx = FH (2.50)

where Ax = Mass + Added mass for surge

= ^ C MpjtDJH (2.51)

D is the diameter of the cylinder

cx is the damping coefficient

kx is the restoring term due to the mooring lines

Fh is the horizontal force consisting in-phase and out-phase components

Fh = Asincot + Bcoscot q 52)

A and B in Equation 2.52 are as follows:

0  2 k

A =0.5pkH„co2 J Jel“R(z)d0dz
-H  0

B = 0.5pCD (0.5HW (of |cos(cot)| J  2e2kz R(z)dz
-H

0  271

0.5pgHwcos<|> J JekzR(z)d0dz
-H o

cos(cot)|cos(cot)| term in the above equation can be linearized by representing this term in 

Fourier series. If the first term of the Fourier series only is taken into account, then the 

nonlinear term can be expressed as follows:

cos(cot)|cos(cot)| » ^cos(cot)

2 6



The solution of the differential Equation (2.50) is similar to the solution of 

Equation (2.39).

Surge Response of the conical buov: A differential equation representing the surge motion 

of the frustum will be similar to the Equation (2.50). However, the added mass of the 

frustum will be calculated as follows:

Solution of the differential equation will be equal to the expressions (2.43) and (2.44) 

except for the added mass term.

Pitch Response of the cylindrical buov: A differential equation representing the heave 

motion of the cylindrical buoy can be written as:

where Ip= Moment of Inertia of mass and added mass

A, =-^JtHCM(rJ + rR + R 2) (2.53)

I = 1 + Ip v avm

I, = — m(l2 +3R2) (2.55)

H -Z „

(2.56)

Ip = ^ m ( l 2 + 3r2) + ̂ pR2 [(H- ZG)3 + ZG3] (2.57)
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Cp is the damping coefficient 

kp is the restoring term 

Mp is the pitching moment

kp = pgmGM (2.58)

where m is the mass of the cylinder 

GM is the metacentric height

Differential equation (2.54) could be solved in a similar way to the others.

Pitch Response of the conical buov: A differential equation representing the pitch motion 

of the frustum will be similar to Equation (2.54). However, the moment of inertia and 

added mass, and restoring term of the frustum will be calculated as follows.

Moment of inertia of mass and added mass will be calculated first,

I , = — m 9(R2 + r2) + , 21 .  . (R2 + 4Rr + r2)
v 36 (R + r ) (2.59)

m = pjtt(R + r)[l2 + ( R - r )2]* (2.60)

1 is the whole height of the frustum 

t is the thickness



, (R - r )2f (H -Z 0)5 , ZG5 
H2 I 5 5

(2.62)

Restoring force due to the under water geometry is calculated as follows:

kp = pgVGM (2.63)

where GM is the metacentric height = KB + BM -  KG

H(R + 2r)
3(R + r) (264>

l(R + 2r')
3(R + r') (2-65>

KG =

r ' is the smallest radius of the frustum

bm  = h 7  (2.66)

2.5 TIME DOMAIN ANALYSIS OF MOTION RESPONSES OF MOORED 

BUOYS UNDER WAVE EXCITATION

In this section coupled heave, surge and pitch motion equations are derived and 

solved in the time domain. Nonlinear restoring terms due to variations in the under water 

geometry of the buoy and due to variations in the geometry of cables are introduced. All 

differential equations are derived and solved for the conical buoy. In order to simulate the 

motion of the cylindrical buoy, maximum and minimum diameters of the conical buoy are 

chosen equal to each other.
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Heave Response : A differential equation representing the heave motion of the buoy can 

be written as:

Pg j ( 3 r 2)z + Flv(z,x) = Fv(z,x,0)
(2.67)

Firstly, the heave restoring force due to variation in the under water geometry will 

be introduced. Let us assume that the frustum is displaced upwards from its stable 

position in calm water. The volume emerged from the water will give rise to the restoring 

force.

Secondly, restoring forces due to changes in the geometry of cables will be 

introduced. Mooring forces were calculated in section 2.3. The vertical mooring force 

will be the restoring force for the buoy in heave motions and it depends on both the 

vertical and horizontal motions of the buoy. In order to express the relation between 

vertical mooring force and vertical(horizontal) displacement, a curve fitting method 

(weighted least-squares polynomials ) was used. This method determines least-squares 

polynomial approximations of degrees 0,1,...,K to the set of data points with weights. 

Each polynomial is represented in Chebyshev-series form with normalized argument. 

This argument lies in the range -1 to +1 and is related to the original variable by the linear 

transformation. This curve-fitting routine ,E02ADF, can be found in the NAG Fortran 

library, Mark 12. In order to use the vertical mooring forces in time domain simulation, 

depending on both vertical and horizontal displacement of the buoy, a set of data was 

created by using the least-squares polynomial(Chebyshev-series form) approximations.

(2.68)

Jl
Force= Pg*j

R - r
H

jz 2+ p g j(3 r2)z (2.69)
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Thirdly, potential damping will be introduced, it will be observed that the 

damping causes a loss of kinetic energy of the structure's motion that corresponds to the 

energy of the outgoing waves. This consideration has led to the idea that the damping due 

to outgoing waves should be related to the excitation force on the structure due to 

incoming waves [2.11].

is the drag coefficient in heave 

(z,x) is the restoring force due to the cables in heave motion

Mass and added mass term, Az, will be calculated according to expression (2.46)

Surge Response : A differential equation representing the surge motion of the buoy can be 

written as:

(2.70)

c
co3 cosh2(kh)

sin(2kh)4jcpg3khtanh (2.71)

where k is the wave number and h is the water depth

Lastly, viscous damping is calculated as follows:

c ,= ^ p C niAwz|z| (2.72)

2
where Aw is the waterplanc area Aw = Ttr

Axx + bxxx + cx + Fth(z,x) = Fh(z,x,0) (2.73)

3 1



Mass and added mass term ,AX, will be equal to expression (2.53). Viscous 

damping in surge is calculated as follows:

c, = —pCo, j2R(Z)(x + Ze)|x + Ze|dZ 
2

H -Z 0

(2.74)

where 0 is the angular velocity for pitch motion 

x is the velocity in the horizontal direction 

Cd, is the drag coefficient in surge

In order to calculate the mooring stiffness due to the horizontal excursion of the 

buoy , firstly a force-excursion curve is obtained for one cable by Chebyshev curve- 

fitting approximation. These results are, then extended for all mooring lines. In the last 

step data for force-excursion curves for all mooring lines and for different drafts are 

generated. Psh(z»x) is the restoring force due to the cables for surge.

Potential damping coefficient for surge is calculated as follows,

Pitch Response: A differential equation representing the pitch motion of the buoy can be 

written as:

The moment of inertia of mass and added mass are equal to expressions (2.59) 

and (2.60) respectively and viscous damping is calculated as follows:

( \2

(2.75)
K 2 J

(!y + I.v J0 + MDe + beeG + mGMsinG + = Mp (2.76)

dMD= ip C Dx(0coz)2zAp (2.77)

3 2



where A is the projected area, A = R(z)dz

H_?° i R — r
m d =  J - p C ^ e W z ^ r — (2.78)

y*-z0

Md = pC Die2a>2r^ ((H -Z 0)4 - Z 04)

~ ~ ( ( H  -  Z0)5 + Z05)j (2.79)

Potential clamping is calculated as follows:

^ee(®) ~ TCCf
Mp(o>)

H .
2 .

(2.80)

Restoring force due to the under water geometry is equal to expression (2.63). 

GM is the metacentric height = KB + B M -K G . KB, KG and BM are equal to 

expressions (2.64), (2.65) and (2.66) respectively.

Solution of the motion equations: In order to solve heave, surge and pitch motion 

equations, a variable-order variable-step Adams differential equation solver was used. 

This method integrates a system of first-order ordinary differential equations over a range 

with suitable initial conditions. Firstly, this system of ordinary differential equations was 

written in first-order form. Therefore instead of having three second-order differential 

equations, we have six first-order differential equations. Starting from initial values of the 

dependent variables (solution) at a given point, the numerical solution is obtained by a 

step-by-step calculation which gives approximate values of the variables at finite intervals 

over the required range. The system adjusts the step-length automatically to meet 

specified accuracy tolerances. This routine ,D02CBF, can be found in NAG Fortran 

Library, Mark 12.
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2.6 APPLICATIONS AND COMPARISONS

In order to solve the motion equations for cylindrical buoy in the frequency 

domain, a program ,HYD, was written. This program calculates wave excitation forces 

and motion equations in heave, surge and pitch. Dimensions of cylinder, wave height, 

damping coefficient, drag coefficient, mass coefficient, density of sea water, gravity 

acceleration and frequency (independent variable) are the input data for this program. 

Another program ,HYDCON, performs the same calculations for a conical buoy. The 

only differences in the input data are the dimensions of the conical buoy. In order to 

calculate the pressure force on the side of the frustum, a two dimensional integral was 

evaluated by using an adaptive deterministic routine ,D01FCF, NAG Fortran 

Library,Mark 12. HYDCON also uses a function subroutine ,FS, in which the integrand 

has been written.

HYDCOT9 and HYDCOTIO were written to calculate the motion responses in the 

time domain for a frustum and a cylinder respectively. These programs calculate wave 

excitation forces and motion equations in heave, surge and pitch. In addition to the data 

used in the frequency domain calculations, metacentric height, vertical distance between 

the centre of gravity and the reference system and mooring forces as a function of both 

vertical and horizontal excursion of the upper end of the cable are the input data for these 

programs. In order to calculate the two and one dimensional integrals in force and 

moment calculations, NAG Fortran Library routines D01FCF and D01DAF were used 

respectively. Some function subroutines, FS1, FS, FS2, FS3, FSTS, FS1P, FSP, 

FS2P, FST, FSPD, were used to supply the integrands for integral evaluating routines. 

Subroutine FCN was used to evaluate the first-order differential equations. Subroutine 

OUT was used to obtain access to intermediate values of the computed solution, at 

successive points. Functions CXX, XYH1, SINT, YY, CXY, XYH2, IUOK, PMDS 

were used to interpolate the mooring forces in the intermediate points, regarding both 

horizontal and vertical excursions of the attachment point.
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STTFF9 was written to produce the force-excursion data to be used in the program 

HYDCOT9 and HYDCOTIO. This program firstly produces the force-excursion data for 

one cable and then computes weighted least-squares polynomial approximations to this 

set of data. In order to perform this curve-fitting ,the routine ,E02ADF-NAG Fortran 

Library-Markl2, was used. Secondly, force-excursion data were produced for all cables 

and different positions of the buoy.

Programs HYD and HYDCON were run to produce wave exciting forces and 

moments and motion responses for the cylinder and the frustum. Wave exciting forces 

and moments and the resulting responses for the cylinder and the frustum are shown in 

Figs. 2.10 and 2.11 respectively.

In order to investigate the effects of non-linearities and of coupling between the 

different modes of motion, motion equations were solved in the frequency domain by 

calculating wave and rigid-body motion induced forces and moments on the buoys at the 

still water level and thus ignoring the non-linearities and coupling. Comparisons between 

the results obtained from the time domain simulations and those obtained from the 

frequency domain are shown in Figs. 2.12 and 2.13.

The heave response curves given in Figs 2.12 and 2.13 show that non-linear time 

domain predictions correlate better with measurements than linear frequency domain 

predictions. This may be explained by the fact that the non-linear time domain approach 

models the stiffness characteristics due to hydrostatic and mooring lines more accurately 

and therefore a significant difference occurs between the results obtained from the two 

methods in the frequency region where motion responses are controlled by the restoring 

forces.

Surge response curves show a significant shift at the maximum response values 

corresponding to the natural surge frequency region. This can be attributed to the different 

surge stiffness modelling employed in the linear frequency as against the non-linear time 

domain prediction method. However both prediction methods yield significantly higher
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results than experimental measurements. This may be due to the inertia coefficients used 

in the wave force formulations being higher than they actually should be.

As with surge responses, predicted pitch response values are higher than the 

measured experimental pitch responses and the difference may also be due to the high 

wave force coefficients used in the predictions.

In order to investigate the effect of the linear and nonlinear modelling of the 

mooring lines and the effect of the wave height on motion responses of a moored buoy, 

computer program 'HYDCOT9' which simulates motions of a moored buoy was used. 

Catenary equations were used in modelling the nonlinear cables (Fig. 2.14). Table 2.1 

shows a comparison of linear and nonlinear cables. It is clearly seen from the table that 

the motion equations with nonlinear cable modelling give bigger motion response values 

than the linear cable modelling. The difference is especially clear around the natural 

frequency region of surge and pitch motions. Another noticeable difference between the 

models is that the surge natural frequency of the nonlinear cable modelling is higher than 

the linear cable modelling. The reason for this is that the equation of motion for nonlinear 

modelling resembles Duffing's equation in which the stiffness term consists of a linear 

and a cubic term. It is the presence of the cubic term that causes the increase in natural 

frequency (Sincock [2.13]).

With an increase in the wave height from 4 m to 12 m the difference in motion 

responses between the linear and nonlinear cable modellings widens (Table 2.1 and 2.2) 

(from %5 to %10). Examples of simulations and a corresponding F.F.T. analysis are 

presented in Figs. 2.15-2.20. As is seen from a comparison of Figs. 2.15 and 2.16, the 

nonlinear cable simulation includes superharmonic motion together with the usual, 

dominant oscillations at wave frequency. Superharmonic response occur at 0.095 rad/sec 

which is the natural frequency of the surge motion. Pitch response in Fig. 2.17 exhibits 

superharmonic response at a frequency of 0.31, very close to the pitch natural frequency, 

0.27. Surge response in the same figure is increasing steadily up to 300 secs. It is 

interesting to note that in Figs. 2.18, 2.19 and 2.20 there are superharmonics in heave
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and surge responses at twice the wave frequency. Subharmonic responses are also 

noticeable in high frequencies (Figs. 2.19 and 2.20). Some of these subharmonics 

correspond to the natural frequencies of heave, surge and pitch motions and occur at 

fractions of the wave frequency. This behaviour with sub and superharmonics is a 

characteristic of nonlinear systems which are distinct from the response of linear systems.

2.7 CONCLUSIONS

A calculation procedure to predict the non-linear coupled large amplitude motions 

of a conical and a cylindrical buoy was presented. Comparisons of the motion response 

predictions with measurements show an acceptable degree of correlation.

The formulations which took into account the non-linearities in hydrodynamic and 

restoring forces gave larger response values than those derived in the frequency domain 

with linearity assumptions.

Comparisons between the motion performance of the conical buoy and that of the 

cylindrical buoy indicate that the heave and pitch motions of the conical buoy are 

significantly less than those of the cylindrical buoy. Although the heave response 

amplitude values are similar to each other for conical and cylindrical buoy forms since the 

heave response amplitude curve of the cylindrical buoy has a wider band than that of the 

conical form spectral analysis gives much more significant motion response values for the 

cylindrical buoy. When a Pierson-Moskowitz spectrum with the wind speed of 22 m/sec 

was applied to predict the heave and pitch motion response values of the conical and 

cylindrical buoys, significant heave motion response amplitudes of 4.13 and 4.09 m and 

pitch response values of 8.37 and 2.42 degree were obtained for the cylinder and frustum 

forms respectively. It may therefore be concluded that a conical form gives a better 

motion performance than does a cylindrical buoy.
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Simulation with the nonlinear cable modelling gives bigger motion response 

values than the simulation with linear cable modelling. Also the natural frequencies of the 

buoy shift towards higher frequencies with nonlinear cable modelling.

As wave height increases, the difference in motion responses between linear and 

nonlinear cable modelling widens (from %5 to 10%). After the F.F.T. analysis of the 

motion responses obtained from the nonlinear time domain predictions were carried out, 

together with the oscillations at wave frequency, some superharmonic motions at twice 

the wave frequency and subharmonics at fractions of the wave frequency were detected.
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W a v e  d i r e c t i o n

JC " Pi P 2 Ps ~X~ p q
y — P21 P22 P23 Y + Yg
1 m .Pi  P 2 P i. Z ZG.

i
I
I = cos( Xg) , Pi2 =- sin(x6) , P,3 = 0\

p2j = sin(x6) , p22=cos(x6) , p23 = 0

P31 ~ 0 * P32 = 0 * P33 = 1

I
I

! .
II

II

Fig. 2.1 Co-ordinate Systems and Cylindrical 
and Conical Buoy Geometries
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j

| Fig. 2 .2  A Typical  Differential  Cable Element

x
T

Fig. 2 .3  D ef in it ion  of  Cable Param eters
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Fig. 2.8 Top View of a Multi-Cable System
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CHAPTER 3 

HYDRODYNAMIC FORCES ON TANKERS

3 .1  INTRODUCTION

The interaction of gravity waves and structures is rather complicated in many 

aspects: such as the non-linear effects of waves, viscous and turbulent effects on the 

drag, irregular geometry of structures, large amplitude motions of the structures,...etc. 

This chapter describes a theoretical method for predicting the wave and motion induced 

forces on a large tanker by modelling the tanker as a prismatic elliptic cylinder. The 

prismatic elliptic cylinder form is not a common shape for the tankers but it is a fairly 

good approximation for tankers utilised as offshore production and storage platforms 

(Fig. 3.1). Although it is always possible to solve the problem by using one of the 

commercial programs which utilize the Green's function method, this requires a powerful 

computer, skilful and experienced users and involves a high cost.

Diffracted wave potential from an infinite cylinder of elliptic cross section was 

solved by McLachlan (1951) [3.1] for sound waves. Later the same method was applied 

to the problem of diffraction of water waves about a stationary ship by Goda and 

Yoshimura (1972) [3.2] and Muga and Fong (1976) [3.3]. Chen and Mei (1973) [3.4] 

solved the problem in shallow water of constant depth.

The mathematical solution of the problem follows the usual pattern of separation 

of variables in elliptical coordinates, which leads to the Mathieu equation [3.5]. Although 

this problem of elliptic cylinders has been well-known for many decades, understanding 

of numerical aspects has been rather limited due to the lack of sufficient tables and due to 

the complexities of the Mathieu functions. In 1969 a complete algorithm was published
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by Clemm [3.6] for all coefficients, characteristic values and various solutions and their 

first derivatives of both the Mathieu functions and the Modified Mathieu functions.

In this chapter wave forces and added mass and damping coefficients are 

calculated by using the elliptical cylinder approach and compared with Oortmerssen's 

experiments [3.7] and with the results of a computer program based on three-dimensional 

source distribution technique and developed by Chan [3.8]. Water depth effect on the 

wave forces is also investigated. Program results for various angles of incidence and for 

different elliptic cylinders are presented. In the last section of the chapter second order 

mean forces acting on the elliptical cylinder are evaluated by using the far-field approach, 

introduced by Maruo [3.9].

ii[
i Second order mean forces acting on the floating bodies have attracted considerable
|
! attention for the last 30 years due to their role in causing large amplitude slowly varying
i

j oscillations on moored floating structures. There are two methods to predict the drift

| forces; the near field method developed by Pinkster [3.10] and the far field methodi
I developed by Maruo. In this study, the far field (wave momentum) method which uses
i
| momentum relations to express the drift forces and moment in terms of the far field
I
I disturbance of the ship is employed to predict the drift forces because with this method it
i

is possible to obtain the drift forces in a more compact form than with the near field 

equations. Moreover the near field method requires rigourous calculations around the 

body surface. Since diffraction and radiation potentials are already known, it seems 

logical to employ the far field method to obtain analytical expressions for the drift forces. 

Maruo in 1960 originated this method. Later Newman [3.11] developed the method to 

predict the drift moment about the vertical axis.

3 .2  FORMULATION OF THE DIFFRACTION PROBLEM

The geometry is depicted in Fig. 3.2 The fluid is assumed inviscid, 

incompressible and the motion is irrotational, thus a velocity potential may be introduced,
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4>(x.y.z) = <Kx,y,z)incident+ ♦(x,y,z)5catteted (3.1)

The fluid motion is governed by the Laplace equation,

d2<f> d2<|> 92<}) n

( 3 2 )

The boundary conditions are:

~ at water surface (3.3)

* i
* —3t— 0 at water SUÎ ace (3*4)

d<h
(^■)z=-d= 0 at sea floor (3.5)

d(b
(^r)s =0 at hull surface (3.6)

({> —> o at infinity (3.7)

where d is the water depth

£ is the free surface elevation

By using the linear shallow water theory, velocity potential can be rewritten as follows: 

<|>(x,y,z)e10* = <|>(x,y)coshk(d + z) (3.8)



The dispersion relation exists between the values co, k and h,

co2 = gk tanh kh (3 9)

where k is the wave number 

A, is the wave length 

co is the wave frequency 

T is the wave period

By the substitution of Eq. (3.7) into Eq. (3.2), the Helmotz equation can be written as 

follows:

where J is the jacobian of the coordinate transformation from cartesian to elliptical 

coordinate systems and is given by:

(C,t|) is the elliptical coordinate system

h is the interfocal distance of the ellipse

Transformation between the elliptical and rectangular coordinates is given in Appendix B.

(3.10)

The Helmotz equation in elliptical coordinates is written as follows,

(3.11)

J =
8

(2h)2(cosh2£ -  cos2t|) (3.12)
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By using Equation (3.11), Equation (3.10) can be rewritten as follows:

32d) 02(b  ̂ „
•rpr + t ~ t  + 2k i (cosh 2^ -  cos2q)<|> = 0 (3.13)

dn

where kx is the combined parameter of elliptic interfocal distance and wave number

Separation of variables could be used to solve Equation (3.12),

<KC,tD = R© Q (ti) (3.14)

when the separation of variables is applied, Equation (3.12) becomes:

2 2
+ 2k[ cosh 2^ = —-r^j- + 2kj cos2t) = A (3.15)

R8£2 Q5t)‘

where A is the separation constant from which the following two equations can be 

obtained:

2
r  + (A -  2kf cos2ti)Q = 0 (3.16)

op

82R

SC
£• + (A -  2k2 cosh 2£)R = 0 (3.17)

Equations (3.15) and (3.16) are known as the Mathieu and the Modified Mathieu 

differential equation respectively. These equations have been solved by Mclachlan [3.1] 

for incident and scattered waves. We will follow this solution, leaving the details to 

Appendix D.
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3 .3  VELOCITY POTENTIAL OF PLANE AND SCATTERED WAVES

When the plane waves approach the elliptic cylinder as shown in Fig. 3.2, the 

velocity potential of waves is represented by,

fa = 2 to  e - ®  fa (3.18)

_ gHin cosh(k(d + z))
2co cosh(kd) (3.19)

where is the wave height

OO j

fa = X l -----Ce2n ( 0  ce2n (T|) ce2„ (0)+
n=0 P2n

—— Se2n+2(0 se2n+2(Tl) Se2n+2W + 
s2n+2

i] — Ce2n+1( 0  ce2n+1(n) ce2o+1(0)+ 
I P2n+1

— —̂ Se2n+I©  se2n+1(r0 se2n+1(0)
s2n+l (3.20)

The ce n(r|) and se n (tj) are the solutions of Equation (3.16) and are known as 

even and odd radial functions, respectively. The functions Ce n(£) and Se n(£) are the 

solutions of Equation (3.17) and correspond to ce n(ri) and sen(r[) respectively. 

Detailed information about Mathieu functions is given in Appendix C. The terms p n and 

sn are constants expressible in terms of Mathieu functions and are given in Appendix D.

For the scattered wave,

(3.21)
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• • * D  -  £ tC2„Me2„)(C) «  2„ffl> ce 2n0) +n= 0

^2n+l  ̂ e 2 n + l©  ce 2n+lOl) c e 2n+l(®) +

S2n+1 N e2n+i( 0  se2n+i(n) se2n+1(0)+

^2n+2 Nc£ + 2©  se2n+2Cn) se2n+2(0)] (3.22)

The functions Me^*(£) and Ne^(C) are the other solutions of Equation (3.17) and

correspond to the second kind of Hankel functions. The constants C n and S n are 

determined by applying the boundary condition on the elliptical cylinder. This boundary 

condition implies that the sum of the normal velocities of the incident and scattered waves 
shall vanish at the boundary of the elliptical cylinder. If u x is the normal velocity of the 

incident wave and u 2 that of the scattered wave, we have

n indicating the direction of the normal. Since 3n = Ij3£ (lj is given in Appendix B), 

the boundary condition may be written as

Using this condition and equating the sum of the derivatives of functions of the same kind 

and order to zero, for £ = ^ Q we have

(3.23)

U  + s ; J K . " ”

r3i|)i | 9<|i2n

6 8



Total potential is obtained from Equations (3.18) and (3.21)

0 - 01+02

= fo e"0* £ [ ^ e 2n(Ti) ce2n(e)[ Ce2n© -
n=0 P2n V ®2n (?0 ) j

s2n+2
se2n+2(TDse2n+2(0) c<, t f \  _  Mo(2) / r \  ^^2n+2(Co)Se2n+2©  Ne2n+2© Ne(2);

s2n+l
se2n+l(t|)se2n+1(e) Se2n+1©  -  Ne^V,© Se?"!l(^o) 

2" '  N e ® , ^ )

P2n+1
ce2n+i(Tl)ce2n+i(0) Ce2n+1© - Megtl©g M &

M e2n+1 © )
)]

(3.24)

3.4 WAVE FORCES AND MOMENTS

Wave forces are obtained by integrating the pressure around the cylinder. The 

pressure on the cylinder is derived from Bernoulli's equation. Since we are considering 

only the linearized problem the pressure becomes,

Surge, sway forces and yaw moment can be obtained by integrating the pressure 

over the surface. If the elliptic coordinates are used,

2 n 0
Fx = - J  Jphsinh^0 cosr|dzdr| 

0 -8
(3.26)



F, = - ip o ^ B -  e_i“’2f f coshk(d + z) dz 
2co i  J coshkdo -8

[ £[^-ce2n(ii) ce2n(e)[ Ce2n© - M e f t >  © - £ & & !

n=0 P2n V ^ e 2n (Co)

s2n+2
SC2n+2(T0 se2n+2(e) Se2n+2© -N e< 2n>+2© f ^ a i

Ne2n+2(?0)

2
i{ se2n+1(T|) se2n+1(0)

s2n+l

P2n+1
ce2n+i(ri)ce2n+i(e) Ce2„+i ©  -  Me<2„>+1 M4n+l(Co) )]]

hsinh^0 cosTidrj (3 .27)

If this integral is calculated and simplified, we have

i- 1 -icot tt • ur sinhkd-sinhk(d-8)
PX = -rpg* e Hta hsinh^o------- — r  ------k cosh kd

X  T~— A<2n+1>ce2n+1(eXCe2n+1(C0) - Me<2>+1© ) X % l ^
n=0 P2n+1 M e2n+i(Co) (3 .28)

where 8 is the draft of the ship
A 11 T 5nA m» a  m are the coefficients used in the calculation of Mathieu functions 

Pm is the Mathieu constant coefficient

Sway force and yaw moment are calculated in a similar way

2 n 0
Fy = - J  JPhcosh^o sinr|dzdr|

0 -5

7 0



1 -iax tt i  sinhkd-sinhk(d-S)Fy = -p g *  e -  Hm hcoshC„ goshk/

I  —  B(12n+1>se2n+1(eXSe2n+1(Co) -  n4 2„+i(Co)
n=0 2n+l We2n+lVS0) (3.29)

Yaw moment can be written as follows,

2n 0
Mz = -  J  J P[h2 sin r| cos t] (sinh + cosh ̂ o)]dr|dz

o -5

i  -icot „  u 2 sinh kd — sinh k(d — 8)MZ = - —pg^ce H ^ h  --------------— --------
k coshkd

£  _ L _  B(22n+2)se2n+2(0XSe2n+2(^o)-
n=0 2n+2 Ne'2n'+2( ^ )  (3 30)

Integrations used in calculating the wave forces are given in Appendix C.

3 .5  F O R M U L A T IO N  O F  T H E  R A D IA T IO N  P R O B L E M

The geometry is depicted in Fig. 3.2. The fluid is assumed inviscid, 

incompressible and the motion is inotadonal. The fluid motion is governed by the Laplace 

equation,

d2<t>R , d 2<t>R 3 2<|>r  _  n
1 ? "  I F *  (3 .31)

The boundary conditions are:

v dz ' z-° at water surface (3.32)

7 1



36r co2 . n n
— “ yr “ 0* at water surface (3.33)

(“^ ■ )z= -d -^  at sea floor (3.34)

<t>R -> 0 as £ -» 00 at infinity (3.35)

Solution of Equation (3.31) in elliptical coordinates together with the boundary 

conditions gives the radiation potential.

C2n+lM 4 n + l ©  ce2n+l<Tl) +

S 2 n + lM 4 3n)+ l ( 0  s e 2 n + l 0 l )  +

s2n+2M s2n+ 2©  se2n+2(Tl) ] (3.36)

where Me m and Ms m are radial Mathieu functions.

Constant coefficients c m and s m are determined using the boundary conditions 

on the body.

The body boundary conditions:

3<j>R

a ;
Vx h sinh cos T| in the surge direction (3.37)

So
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Vy hcosh^osinrj in the sway direction (3.38)

2 s*n ̂  in the yaw direction (3.39)

where h is the interfocal distance of the ellipse: h = ->/a2 -  b2

V* and Vy are the velocities in the surge and sway directions. is the

angular velocity in the yaw direction.

In order to obtain the coefficients c m and s m boundary conditions (3.37), 

(3.38) and (3.39) are applied to Eq. 3.36 in turn. Then we obtain the coefficients

c 2n=0 (3.40)

hsinh^0 A(2n+1) ?
°2n+1 ~ Mc^+tC^o.q) jg ( 3 ' 4 1 )

Sjn+i = hC°Sh^ B'  f Vv coshk(z + d)dz (3.42)
N|[ M s2„+i(4o>q) _g y ( }

l / 2 h 2 B̂ 2n+2) uw
S2n+2 = Nk M s ^ o . q ) , r C°Shk(Z + d ) d Z  ( 3 ' 4 3 )

XT _ sinh 2kd t 8 sinh(2k(d -  8))Nfc. —----------- H-----------------------
k 4k 2 4k
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3 .6  CALCULATION OF ADDED MASS AND DAMPING 

COEFFICIENTS

Added mass and damping coefficients are determined by integrating the radiation 

potential around the cylinder.

mij = pjRe[<l)j]nidA 
A

Cy =copJlm[<J>j]nidA 
A

Damping coefficient in the surge direction is calculated as follows: 

o 2 n
cn = (o p J  Jlm tyjhsinh£0cosT]dr|dz

Cj j = 2 p co2 ^

(Apn+1))2

- 5  0

2 ( a / 2 )" Sxx2c22 = 2po)z -v̂ -" -(sinh kd -  sinh k(d -  5))

(2n+l)\2(Bj ;)

(M sZ iM f  + (M sg^G c.q))2 (3.47)

7 4

(3.44)

(3.45)

„=o (Mc^'+,(40.q»2 + (Mc<2n>;,(^0,q))2 (3.46)

Damping coefficient in the sway direction: 

o 2n
c22 =C0P J J Im[<()2]hcosh£osinTjdrjdz



Damping coefficient in the yaw direction:

o 2ti
c 6 6 = c o p J  Jlm[<j>6]h2cosT|sinT|dT]dz 

-5 o

2 1 / 2 h . . . . .  r , .2c66 = 2pco  ̂ (sinh kd -  sinh k(d -  8))

(2n+2)\2(B2 Q
to (Ms^^o.q))2 + (Ms(22n>;2(̂ o,q)):

Added mass coefficient in the surge direction:

0 2n
m n  = P J J Re[<t>2] h s i n h cost] dr^dz

m n = p 7 t (sinh kd -  sinh k(d -  5))2

Y  (A (2n+ l ) ,2  Mc<1>+1( ^ o ) M 4 1>;i ( ^ q )  + Mc<2n>+1(40)M c^;,(4o)

Added mass coefficient in the sway direction:

0 2n

m22 = P J J R®1$3 ] h cos^ So sinT] dtjdz

2
m22 ~PK ^2 — -(sinhkd -  sinh k(d -  5))2 

k Nk

(2n+lK2 M s< ‘L ,  f e ) M s g ; ,  ) +  Ms<&, ) M s ^ > ;, & ,)
v2

n=0      "  '(Ms(2n+1(^0))2 + (M sg + j^ ))2

(3 .48)

(3 .49)

(3 .50 )
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Added mass coefficient in the yaw direction: 

o 2 n
m66 = p J J Re[<J>6] h2 cosiisinTi drjdz 

-8  o

m66 =p7C — ■ (sinhkd -  sinh k(d -  5))2 
k Nlr

V  /T\(2n+2K2 MsS , 7(40)Ms<1>;,(^o) +
S o  2 (M s(2̂ 2( Q )2 M M S<2n>+2( ^ ) ) 2 (1 5 1 )

3 .7  SECOND ORDER MEAN FORCES ACTING ON THE TANKER

According to Newman [3.11], the Kochin function is expressed as follows,

K (6) = ^ B (^ -< |,B | ^ )e(,C2+taC“ e+ikySin9)dS (3 5 2 )

where = Diffraction+Radiation potential 

$B= Wetted surface area of the ship 

8 = Polar angle

Surge and sway forces and yaw moment are derived by using the kochin 

function,

-  n k 2 2n
Fx = ||K (0)f(cos0+ cos6,)de (3 53)

i,2 2n
Fy = ^ -  J|K(0)|2(sine + s in e ^ e  (3 54)
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V2n 1
Mz = J  K*(9)K (6)d0- ptoAj ReK(ji +0 ,)

8 * J  21c 1 1 (3.55)

where 61 is the wave incidence 

k is the wave number

Ai is the wave amplitude
?

K is the derivative of the Kochin function 
*

K is the conjugate of the Kochin function 

Diffraction potential for an elliptical cylinder is written as follows [3.12];

♦d = ^ e "2 X  ( - l )n+1 {[a2n Mc2n<3>©] ce2n (rj) ce2„ (8) +
“  „=o

»fa2„+iMc2n+1<3>(0 ] ce2n+1(ri) ce2n+1(0) +

i [b2n+1Ms2n+1<3)(Q] se2n+1(T|) se2n+1(0) -

[b2n+2 Ms2n+2(3)(Q] se2n+2 (11) se2n+2 (0)( (3 56)

where

lm
(t X M c j^ o )  b (l , -  M f f f o )  

~ M cj^ (£0) MsjjJ* (£0)

The Kochin function for the elliptical cylinder is derived by substituting <{>d  in Eq.

3.1, 

K(e) = ^ ^ ( l - e - 2k5)X [ -a 2nce2n(e)ce2n(eI) - b 2n+2se2n+2(e)se2n+2(0I) 
k <■>

+a2n+ice2„+i(e)ce2n+1(eI) + b2n+1se2n+1(e)se2n+1(eI)] (3 57)
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Krokstad tried to tackle the same problem [3.13]. But his work contained some 

errors. His expression for the kochin function is as follows,

K (9 ) =  ^  B a nc e n (© )<*„(«,) +  (e ) s e n+1(e ,) ]  (3 .5 8 )
n = 0

By substituting Eq. 3.58 into Eqs. 3.53, 3.54 and 3.55 wave forces and moments 

could be integrated numerically.

3 . 8  N U M E R IC A L  A S P E C T S  AN D R E S U L T S

The Theoretical solution of a problem is not sufficient for most engineering 

requirements. Quantative results are needed.

Tabulated values for periodic Mathieu functions by Ince [3.14] and radial Mathieu 

functions by Blanch and Clemm [3.15] are insufficient for the calculations needed for the 

solution of this problem. Published algorithm by Clemm [3.6] has been used to carry out 

the calculations. Tolerance used in this algorithm was 1.0e-14. Higher tolerances cause 

divergence in the solutions. The calculation of Mathieu functions for very high 

frequencies is difficult because of the very large parametric value, q. For instance, for 5 

rad/sec the parametric value becomes 38078,56. Results of the algorithm have been 

checked with Ince's tabulated values and they agree well with each other. However, in 

this algorithm a different kind of definition for radial Mathieu functions was used. So all 

the force terms derived in the previous section were expressed again using the new 

definitions. These new definitions and force terms are given in Appendix E. Ince’s 

normalization has been used in the calculations. The series used in the force calculations 

converge very fast even for high q values.

Non-dimensionalised surge and sway forces and yaw moment for shiplike bodies 

with beam-to-length ratio (b/a) ranging from 0.005 to 0.995 and with angle of incidence 

ranging from 0 to 90 degrees are presented in Figs. 3.3 to 3.27. In these graphs, a/1 in the
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horizontal axes correspond to the ship length/wave length ratio. Results of the elliptical 

cylinder approach are compared with Oortmerssen's experimental results [3.7] which 

have been performed for a tanker whose dimensions are 310 x 47.2 x 18.9 m.

The results given in Figs. 3.28 and 3.29 show good agreement for the sway 

forces as the waves approach with angles of incidence of 225 and 270 degrees. Fig. 3.30 

show a good agreement between the predictions and measurements for the wave 

incidence angle of 225 degrees. Fig. 3.31 shows also a good correlation between the 

measurements and predictions for the wave incidence of angle 225. Agreement is not so 

good in the surge force with the angle of incidence 180 degrees (Fig. 3.32). One possible 

reason for that is the aft-forward symmetry exhibited by the elliptic cylinder. 

Comparisons show that the method described in this report for the calculation of wave 

forces and moments is capable of handling the shallow water effect since in the 

Oortmerssen’s experiments water depth/draft ratio was 1.2.

The limiting geometry of the elliptical cylinder is a circular cylinder when 

length/beam ratio approaches unity. This provides an excellent check on the correctness 

of the programming. Results for the circular cylinder obtained from the limiting case of 

the elliptic cylinder are compared with the results obtained from the exact formula for 

circular cylinders [3.16, 3.17 and 3.18]. This comparison shows excellent agreement 

(See Fig. 3.33). The exact formula used for the cylinder is taken from Ref. 3.18.

dy

where 0 = arctan

and JJ(kR) = J0( k R ) - - ^ - J 1(kR)
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Y,'(kR) = Y0(kR) -  -1 -Y ,(k R )

J m(kR) and Y m(kR) are the Bessel functions of the first and second kinds.

Non-dimensionalised hydrodynamics coefficients are also compared with 

Oortmerssen's experimental data (Figs. 3.34-3.39). Comparisons show reasonable 

agreement except the surge damping coefficient (Fig. 3.37). The discrepancy in Fig. 3.37 

may be due to the very small values of surge damping which are very difficult to 

measure. The difference between the tanker form and the elliptical cylinder form may be 

a reason for the discrepancies seen in the low frequencies in the comparisons. The results 

of the elliptical approach are also compared with a 3-D program based on oscillating 

source distribution technique [3.8] (Figs 3.40-3.45). Agreement is generally good. 

Discrepancies in the low frequencies are due to the fact that the elliptical approach does 

not take into account the effect of underwater clearance.

Motion transfer functions for surge, sway and yaw motions are compared with 

Oortmerssen's experimental results (Figs. 3.46-3.50). Agreement is generally good 

except the yaw motion response (Fig. 3.50). The discrepancy shown in the yaw motion 

comparison is due to the discrepancies in the yaw added mass and damping predictions 

(Figs. 3.36 and 3.39).

3 . 9  C O N C L U S IO N S

The theory described to calculate the wave and motion induced forces on tankers 

provides an alternative method of predicting the wave forces and moments on tankers. 

CPU time for the calculation of wave forces is about 15 minutes for three angles of wave 

incidence and for 80 wave frequencies at each wave incidence angle in VAX. It is quite 

fast compared to the programs which utilize the Green's function method. The 

combination of reasonable accuracy and low computational cost makes it a good 

alternative to other numerical methods. This method could be used for the time domain 

analysis of the tankers and single-point moored systems.

8 0



Mean drift forces acting on the elliptical cylinder are compared with Chan's 3-D 

program (Fig. 3.51, 3.52 and 3.53). There are large discrepancies between the elliptical 

cylinder approach and the 3-D program. This is because the flow under the cylinder was 

not modelled in the theory. Results of the elliptical cylinder approach are also compared 

with the Havelock's method [3.19] for the limiting case of circular cylinder extending 

from sea surface to sea bottom and agreement is quite good (Fig. 3.54).
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CHAPTER 4
TIME DOMAIN SIMULATION OF A TANKER-BUOY COUPLED

SYSTEM

4.1 INTRODUCTION

In this chapter a time domain model is used to predict the motion responses of a 

tanker-buoy system under wave, wind and current loading. Motion equations of the 

tanker-buoy system are derived by using Cummins' method. Frequency-independent 

hydrodynamic coefficients and time histories of wave forces in irregular seas are 

calculated. Experimental measurements are compared with the time domain simulation 

results. Effects of random waves and gusting wind are also included in this chapter.

When a floating structure is moored to a single point, be it fixed, floating or an 

anchor, the vessel exhibits motions due to steady wave, wind and current forces as well 

as first and second-order wave, dynamic wind and variable current forces. The 

development of prediction methods for first-order wave excitation forces and resulting 

motions of floating structures have been the subject of several investigations over the last 

two decades. The prediction methods developed provide a good degree of accuracy for 

floating vessel motions [4.1, 4.2 and 4.3]. Prediction methods for second-order wave 

drift forces and moments and resulting slowly varying motion responses of floating 

structures have also been successfully developed in Refs. 4.4,4.5 and 4.6. In Reference 

4.7, de Kat and Wichers have illustrated through numerical simulations the dynamic 

behaviour of a ballasted and fully loaded tanker due to unsteady current loading.
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4 .2  DYNAMIC WIND LOADING AND RESPONSE

Calculation of wind forces is a difficult task. Most of the time experimental data 

and/or empirical formulas have to be used.

Wind is usually treated as a time invariant environmental effect. But fluctuations of 

the wind velocity acting on the superstructures may have a large effect on the response of 

the offshore structures. Wind velocity is expressed by the following formula in which 

wind shear is characterised by a power law expression [4.9],

Vih(io) 10 (4.1)

where Vt(Z) is wind speed at z at an averaged t seconds

Vih(iO) is wind speed at 10 m at an averaged 1 hour 

ol is the gust factor (=1)

P is the power law exponent(=0.16 suggested by Davenport [4.10].)

Drag force due to wind loading is expressed by the following formula;

Fw(t) = ip ,C DApV2(t) (42)

where Pa is air density (= 0.0012t /  m3), CD is drag coefficient

Ap is projection area, V(t) is time dependent wind velocity

By writing V(t) = V + v(t), mean and dynamic wind forces are obtained as 

follows,

Fw(t) = |p ,C DApV2 (4.3)

Fw (t) = PaCDApV v(t) (4 4)
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Fluctuations in wind velocity could be modelled by a spectrum. Three of the most 

commonly used spectrams are as follows;

Harris Spectrum [4.11] is described by

where f = 1200f / V10; f is frequency; k is drag coefficient (=0.005)

Davenport spectral formulation [4.12] is given by

Ochi and Shin [4.13] suggested a spectral formulation based on wind speed 

measurements carried out at sea. It has the following formulation,

4icfVi
(4.6)

583 f* for 0<f* <0.003

for 0.003 <£*£0.1

838 U 
( l+ f ,035)11-5

f, S 0.1
(4.7)

where f* is dimensionless frequency

f* = f z/ Vz (4.8)

S(f*) is dimensionless spectral density 

S(f*) = f S(f)/ v*2
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f is frequency in cps; z is height above sea level in metres; Vz is mean wind 

speed at height z in m/sec; S(f) is spectral density function in m2 / sec; v* is shear 

velocity in m/sec.

Mean wind speed ,VZ, and friction velocity, v* , are defined in the following 

formulas,

where Yu) = mean wind speed at 10 m height in m/sec,

Qo= surface drag coefficient [4.13],

For the sake of comparison the Harris, Davenport and Ochi-Shin spectra are 

plotted in Fig.4.1.

The wind force spectrum is given by

Vz = V10 + 2.5v*ln(z/10) (4.10)

V* -  VQo V10 (4.11)

Swf(f) = Sw(f)H 2 A.2 (4.12)

where Aa is aerodynamic admittance function

A, = 1/ + (4.13)

Ap is projection area

H is wind force transfer function and given by



The response spectrum of a linear system to wind loading is

Swr(f) = Swf(f)Q2 / k 2 (4.15)

where k is stiffness coefficient; Q is magnification factor given by

Q =
1 co

(4.16)

C is damping ratio and wn is natural frequency

Wind force and linear response spectra are produced for a ship whose dimensions 

are 310.0x47.2x14.0 (Figs. 4.2 and 4.3).

Time dependent wind velocity is obtained by the sum of sines approach with a 

random phase distribution (Fig. 4.4),

4 .3  CURRENT FORCES

As with the wind forces, empirical formulas have to be used in calculating the 

current forces.

The longitudinal current force is formulated according to the ITTC friction 

resistance formula as follows;

(4.17)n=0



Fo = [------ 0,075-----_J 1  pS(VcC0S 0 _ V b ) | (VcC0S a _  v „ ) | ( 4  1 8 )

(log 10Re -  2)

where S is the wetted surface area of the ship, V c is the current velocity, V Sxship 

velocity in the x direction at the centre of the gravity of the ship, a  is the instantaneous 

angle between the current direction and the x-axis of the ship and

„  |(V cc o s a - V j |L .
Re -  u

where x> is the kinematic viscosity coefficient for sea water

The transverse current force and current yaw moment are formulated following 

the cross-flow principle as given in Faltinsen et al in Ref. 4.14. According to the cross 

flow principle the flow separates due to cross flow past the ship, the longitudinal current 

components do not influence the transverse forces on a cross section, and the transverse 

force on a cross section is due mainly to separated flow effects on the pressure 

distribution around the ship.

pcy =  j p J c D( * ) T ( x ) V R C | v RC|d x  ( 4 1 9 )

^8 = TpJ Ci)(x)T(x)VRC|VRC|xdx-l-jVc2(a22 - a 11)s in 2 (a -0 )  (4.20)

where C D(x) is the drag coefficient for cross-flow past an infinitely long cylinder with a 

cross sectional area equal to the sum of the ship cross section at longitudinal coordinate x 

and its image above the free surface; an» a22 are added mass coefficients in surge and 

sway respectively; T(x) is the sectional draught and

V r c  = v c s i n  a - V s y - 0 x  ( 4  2 1 )
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where Vgy is the ship velocity in the y direction at the centre of gravity of the ship, 0 is 

the rotational velocity of the ship about the z axis and x is the x coordinate of any point 

along the ship length.

Last term in eq. 4.20 is known as Munk moment and can be derived from non­

separated potential theory [4.14].

Current and ideal fluid forces could be expressed in another way, as was adopted 

by Wichers [4.6], Molin[4.15]. In this approach current forces and moments are 

represented as a combination of the ideal fluid forces and "real" forces based on semi- 

emprical mathematical models including quasi-steady and dynamic current components. 

Ideal flow forces are given by Norbinn [4.16] as follows,

P iid = -aMU + ayyv0 + aye®2

Fyid “  ayy  ̂ axxu® ay0® (4.22)

F0id = _aee^ -  ( a y y  -  a x x ) u v  -  ay0(v + u0)

and the relative velocity components are given as follows 

u = x -  Vc cos(a -  0) 

v = y -  Vc sin(a -  0)

The relative acceleration components are 

u = x -  Vc0sin(a -  0) 

v = x + Vc0cos(a -  0)

(4.23)

(4.24)
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If equations 4.23 and 4.24 are substituted into equation 4.22, we obtain

p » d  “  a xx^ (a yy 0 ) 0  +  ayyy0 +  ayg0

Fyid a yy Y (ayy axx )Yc COS((X 0 ) 0  dMX0  ayg0  ^  2 ^^

F0id =  - a00® -  (ayy -  axx >uv -  a9yi 0  “  a 9y9

According to Wichers, Munk moment in equation 4.25 can be replaced by the steady 

current moment components and the equation can be rewritten as follows to include the 

viscous forces,

Fxid — “ a xx^ ay y ^  Fxstat Fxdyn

Fyid ”  ay0® “  a xx*® Fystat Fydyn ^4 2 6 )

Feid =  - a ee® ~  a eyy +  Festat +  Fedyn

where

Festat = 0- 5 p Ls T Cxc (a CT) VCT2

Fystat = 0- 5 p Ls T CyC (otCT ) VCT (4.27)

Festat=O.5pLs2TC0c(acr)Vcr2

Fstat is the quasi-steady current force and moment components according to the relative 

current concept

where Cxc is the resistance coefficient in longitudinal direction 

Cyc is the resistance coefficient in transverse direction
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Cfe is the resistance coefficient in transverse direction 

Vcr=(u2 + v2)0-3
a CT = arctan(-v /  -u )

Dynamic current force and moment components are expressed as follows,

Fxdyn = - ( a „  “  a„)V c sin(a -  0)0 + Fxd

Pydyn = - (a y y -a xx)Vccos(a-0 )0  + Fyd (4 28)

p0dyn “  F0d

Viscous part of the dynamic load contribution represents the effects of the yaw motion in 

the relative velocity field and based on the local cross flow principle. Accoring to 

Wichers, viscous part of the dynamic current load can be approximated as follows,

Fxd = 0.5(ayy -  a„)V C sin(a -  0)0

FP
Fyd =0.5pTCyc(90°) J[(vc -01)|vc - 0 l | - v c|vc|]dl

AP (4 .2 9 )

FP
Fw = 0.5pT J  [Cyc(acr(l))((vc -  01)2 -  uc2) -  C y ^ a ^ ^ ^ l d l  

AP

where uc = -u  

vc = -v

a CT (1) = arctan((vc -  01) / uc)
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4 .4  SLOWLY VARYING AND MEAN WAVE DRIFT FORCES IN 

IRREGULAR WAVES

In irregular seas drift forces are time dependent. These low frequency drift forces 

are small in magnitude but may cause large, low frequency oscillations of the single point 

moored vessel if the vessel's natural frequency is excited.

In irregular waves the wave elevation on a point is written as

The drift force is related to the square of the wave amplitude and the square of the 

wave envelope is

N

C(t) = X S iC0S(Wit+ e i) (4.30)i=l

N N
c2(t) = X X i^jC O ^C O .l + Ci) C0S(0)j t + £j ) 

i=lj=l (4.31)

and the low frequency second order wave drift force is written as follows,

N N
F(2)(t) = P,j C0s((0)j -  tDj)t + (6; -  Ej)}

N N
+£XC£jQijSin((Wi -® j)t + (£j -£ j) l 

i=lj=l (4.32)

P and Q represent symmetric and asymmetric matrices respectively:

(4.33)
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If is the wave spectrum then, according to Pinkster [4.17], the second order 

force spectrum is

p(2)

SF(w') = 8 f S. (co) Sr (<a'+a>X77-(G>,a>+ w')]2da>
J  s  s C1C2 (4 .34)

where F (2)(cd,{0 + g>') = -^Py2 + Q y 2 

and mean wave drift force is

F = 2J s ; (w)[^ (£ o ,o > )]da> (435)

where F^(co,co) is mean wave drift force in regular waves

An approximate method is suggested by Newman [4.18] and Pinkster [4.17], in 

which the low frequency forces are derived from mean drift forces in regular waves. This 

method can be used only when wave diffraction effects are dominant because it does not 

take account of the forces related to the second order horizontal pressure gradient. 

According to this method,

P(CDm,COn) * P(® n L ^ ,® m ± ® n  )
2 ? (4.36)

Q(GVG>n)~ 0

A spectral form of this formula is devised by Pinkster,

SF(co') = 8 j S (̂co) (co*+co)[~“ 2" (fl) + ^-)]2dcof<2> / ®\i2—~-((0 + —) Gwi
C. 2 J‘ (4.37)
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where F^(<d + is mean wave drift force in regular waves

Response spectrum of a vessel due to the slowly varying wave forces in irregular 

waves is given as follows:

S<dr(®) = Sp(G>)Q2 /  k2 (4.38)

where k is the linear stiffness coefficient of a tanker which is moored to a fixed point 

A slowly varying force and response spectrum is obtained for the vessel whose main 

dimensions are given in section 4.2 and plotted in Figs. 4.5 and 4.6.

A time history of slowly varying wave forces in irregular waves could be obtained 

by using the sum of sines approach with a random phase distribution but this approach 

leads to a Gaussian distribution of the slowly varying forces. Pinkster [4.5] states that an 

exponential distribution of slowly varying forces is more realistic. Therefore Pinkster 

devised a method to generate an exponentially distributed force record [4.19, 4.20]. 

According to this method,

F<2)(6r, t)  = - F ^ ( 6 rXA +1) + F<2>(6r)

F<2)(er, t ) = - E $ ( e r)(A+ 1)+ if> (e r) (4 39)

Fe2)(6r. t ) = - p0A (6r) A sign(md(b) -  0 .5)+F^2)(0r)

where A = ln[md(a)]

md(a), md(b) = uniformly distributed number between 0 and 1

A = ln[md(a)] has an exponential distribution with average -1 and standard 

deviation 1. The inclusion of md(b) in the yaw moment assures that Fjg2^(0r,t) has a

symmetrical distribution, which is coupled to ^ 2*(0r) and fy2*(&r) in amplitude but not

in phase.
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®xA(®r)»FyA(®r) and Foa (®r) are determined using the derived spectral density 

Sp2^(0). The variance of F*a (0r) is given by

(V )(er))2 = E[(F-2)(0r ))2]"  E2[Fx2)(0r)l = (F$ ( 0r» 2 (4.40)

(2)
A similar expression can be derived for FyA (®r). Taking a sampling frequency of every

Vt, the maximum frequency in the wave drift force is re / Vt. Applying a random white
(2)

noise process and assuming that ^Fn is frequency independent during the Vt variance can 

be written as [4.7]

(V > (er)>2 = SF«»(0,et)’t ' Vt = (pxA (fir))2

â F'2>(9r)) =SF<2)(o,er)’t/V t = ^yÂ 0r^  ^  4 1 J

( V ’(0, ))2 = V (O.e,),c/Vt = 2(F^ ,(e ') )2

An estimate for Vt could be derived from eq. 4.41. Time histories of the slowly 

varying forces are derived by using eq. 4.39, 4.40 and 4.41 for the ship and plotted in 

Fig. 4.7. These block functions are stored in the files and used in the time domain 

simulations.

Another component of wave drift forces is wave drift damping caused by the low 

frequency motions of the vessel. Wave drift damping can be evaluated by the gradient 

method [4.6] as follows:

p(2) _ } ■ (2)
wd dx<2) x (4.42)
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Wave drift damping is calculated for different speeds and frequencies and plotted in Fig. 

4.8.

4 .5  MOTION EQUATIONS OF THE TANKER-BUOY SYSTEM IN

TIME AND FREQUENCY DOMAIN

In order to predict the motion response and mooring force values of the coupled 

buoy and ship system coupled surge, sway and yaw motion equations were formulated in 

terms of forcing functions which are defined as a function of the relative angle between 

the direction of forces and the ship's instantaneous position. The ship was modelled as an 

elliptical cylinder form whose length, draught and volume were equivalent to those of the 

tanker. This elliptical cylinder form approximation made it possible to formulate wave 

and motion induced hydrodynamic forces using Mathieu functions. Since the non-linear 

behaviour of the coupled buoy and ship system was studied using a time domain 

simulation technique, the reason behind the choice of elliptical cylinder approximation 

using the Mathieu functions was to obtain a feasible alternative to Green’s function 

techniques to calculate the wave excitation forces with high a degree of accuracy and less 

computational time.

In formulating the motion equations of the coupled system non-linear stiffness 

characteristics of the catenary mooring lines and of the hawser were taken into account. 

The non-linear, coupled motion equations were solved simultaneously in the time-domain 

using a numerical integration technique. The technique adopted was Adam's variable 

order variable step differential solver algorithm. In the time domain solutions of the 

motion equations, variable coefficients on the left hand side of these equations as well as 

the forcing functions on the right hand-side of equations were re-calculated thus taking 

into account the displaced positions of the buoy and tanker.

Refs 4.21 and 4.22 summarises the results of some of the numerical predictions 

carried out using the formulations described in this chapter.
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In this section time domain equations which relate the instantaneous values of

forces to rigid body motions will be derived. Motion equations are usually written as 

follows,

(m + a(co)) x + b(co) x + c(co) x = FQ sin (cot + e)

As Cummins [4.23], Ogilvie [4.24], Oortmerssen [4.25] and Muga [4.26] pointed out 

this is not a real equation of motion since the hydrodynamic coefficients depend on the 

frequency of the motion. Some simplifications, such as linearization of the mooring 

system, assuming that forcing function is purely sinusoidal or an assumption that 

I hydrodynamic coefficients are constant, are sometimes made to the above equation to

| retain the model. But these assumptions cannot be justified except in very few cases. In
I

order to relate the instantaneous values of forces to motions Cummins' method [4.23]

! will be followed.
i
i

For any linear system if the response R(t) to a unit impulse is known, then the
[

response of the system to an arbitrary force F (0  is
I
i
!

t

x (t)=  jK ( t-x )f (x )d x  (443)
— oo

Using the Impulse response function we can write the real time domain equations

5 t
£  [(Mji + m p  x. + J K ^ t -  x) x.(x)dz + C.*.] = ¥ .(t) (4.44)
i = 1 -  oo

j = 6

where M .̂ is the mass matrix, m „ is the constant added mass matrix, C^ hydrostatic 

restoring force coefficients
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The impulse response function is

2
Kjj(t) = — J bij(co) coscot dco

7C A0
(4.45)

where by(co) is the frequency-dependent added mass coefficient 

Frequency independent constant added mass coefficient is expressed as follows

sinco't dt (4.46)

where c°/ is an arbitrarily chosen value of ©.

Motion Equations of the Tanker-Buoy System in Regular Waves. Steady Wind and 

Current:

In the tanker-buoy system we will consider surge, sway and yaw motions of the 

tanker and surge and sway motions of the buoy only (See also Fig. 4.9). Hence 5 

degrees of freedom system can be written as follows;

(MB+ M®vM.y) y B + J Ky(t -  x) y B(t)dx  + k yy B = F ^y + FRy (4.48)

Ms(x s-y se ) + M iVM,xxs + j  K j(t -  x)xs (x)dx -  Ffx -  FRx (4.49)

MS(ys + Xs®) + ̂  AVMyYs + J K®(t -  x)ys (x)dx -  I*fy -  FRy (4.50)

+ 1AVM , A  + 1 Ke<1 -  » S « d t = FE8 -  F R8 (4.51)
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where

Mb is the mass of the buoy
j

M is the mass of the ship
C

I is the moment of inertia of mass of the ship in the yaw direction 
B B

Mavm,* , MAVM,y : Constant added mass of the buoy in the surge and sway directions

respectively.
s s

Mavm,x , MAvM,y : Constant added mass of the tanker in the surge and sway directions

respectively.
tS
aavm ,0  is the moment of inertia of added mass of the ship in the yaw direction, 
y  B TT B .

x * '^y * Retardation functions of the buoy in the surge and sway directions

respectively 
s s sKx , Ky , K0 : Retardation functions of the tanker in the surge, sway and yaw 

directions respectively.

^x » ky : Mooring stiffness of the buoy in the surge and sway directions respectively. 
t tB  p B
^Ex ’ ^Ey : Wave, wind and current forces acting on the buoy in surge and sway 

directions respectively.

p|x > ^Ey » Pe8: Wave, wind and current forces acting on the tanker in surge, sway and 

yaw directions respectively.

Frx » ^Ry » Fr0 : Hawser line forces in the surge, sway and yaw directions respectively.

Motion Equations of the Tanker-Buov System in Irregular Waves. Dynamic Wind and 

£mx£Qti

Wind forces and slowly varying forces in irregular waves have been formulated in 

the time domain in sections 4.2 and 4.4. First order wave forces can also be formulated in 

the time domain by applying the sum of sines approach with random phase distribution 

which was used to obtain the wind velocity time history in sec. 4.2. All these forces 

obtained in the time domain are used in the time domain simulation of the tanker-buoy 

system as block functions. Motion equations of the tanker-buoy system in irregular
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waves, dynamic wind and current are similar to Eqs. 4.47-4.51 with the exception that 

environmental forces will include slowly varying wave and wind forces as well.

Motion Equations in Frequency Domain

Motion Equations can be solved in the frequency domain in regular head waves. 

In this model the stiffness values for the hawser and mooring lines are taken as constant at 

the value corresponding to the static current and wave drift loading, and the variations in 

the wave and hydrodynamic induced forces as the system oscillates at the wave frequency 

are not taken into account. The surge equation of motions describing the behaviour of the 

system in the frequency domain is given as follows:

Mb 0 
0 Ms LXS

Bb O ' x B* kM + kH - k H 'x B‘ ■Bb'
0 Bs_ X s .

+
.  ~kH kH x s Bs

(4.52)

where

b b Surge damping of the buoy

BS Surge damping of the ship

Bb Wave induced surge forces on the buoy

Bs Wave induced surge forces on the ship

k M Mooring stiffness

kH Hawser stiffness

Mb Mass and surge added-mass of the buoy

Ms Mass and surge added-mass of the barge

The results of time and frequency domain calculations and experimental 

measurements for the surge motions of the ship are shown in Fig. 4.11. Fig. 4.11 shows 

that there is good agreement between the time- and frequency domain predictions and that 

predictions agree well with the measurements. However the correlation between the surge 

motion predictions of the buoy and the measurements are not so satisfactory as can be 

seen from Fig. 4.12. This may be attributed to the unstable rigid-body motions of the
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buoy observed during the experiments as well as to the linear spring modelling of the 

hawser. Fig. 4.10 shows the experimental set-up.

Time and frequency domain programs were also run for the configuration shown 

in Fig. 4.9. Comparisons of surge displacements obtained from frequency and time 

domain calculations are shown in Figs. 4.13 and 4.14. Whilst the surge motion 

amplitudes of the ship obtained from frequency and time domain simulations correlate 

well with each other there are significant differences between the surge motion amplitudes 

of the buoy as obtained from the frequency and time domain simulations in the wave 

frequency range between 0.15 and 0.3 rad./sec. This difference may be attributed to the 

effects of non-linearities in hawser forces.

4 .6  NUMERICAL ASPECTS AND RESULTS

In order to calculate the retardation functions given in Eq. 4.45, the frequency 

dependent damping coefficient should be known up to infinite frequencies. This 

numerical difficulty could be overcome by making use of the asymptotic behaviour of the 

damping coefficient in high frequencies. In the high frequencies damping values of surge, 

sway and yaw motions are approximated by the following equation,

This approximation was first suggested by Newman [4.27]. If the damping is known up 

to a certain value then the Ck value can be calculated from Eq. 4.44 and the 

retardation function given in Eq. 4.45 can be rewritten as follows,

The second integral in Eq. 4.54 could be evaluated up to very high frequencies. Ck 

values were calculated for the surge, sway and yaw damping values given in Figs. 3.34,

(4.53)

2 2
Kii(t) = — f b;; (oo) COS (Qt d(D H—  f

n  n 710  0)n

coscot dco
'0

(4.54)
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3.35 and 3.36 and found to be 0.1386, 2.9 and 0.46355 respectively. Retardation 

functions for surge, sway and yaw motions given in Eq. 4.54 were presented in Figs. 

4.15, 4.16 and 4.17. Calculations were carried out for very high frequencies up to 5 

rad/sec and the convergence of the functions is quite good for the chosen 25 sec. 

calculation limit. Retardation functions given in Figs. 4.15-4.17 are approximated by 

chebyshev polynomials in order to make effective use of them in the time domain 

simulations. Constant added mass coefficients expressed in Eq. 4.46 were evaluated for 5 

different frequencies. Due to approximations made in the calculations the computations 

did not give exactly the same values. Average values of these calculations, 0.027 for 

surge, 0.592 for sway and 0.079 for yaw, are in good agreement with Oortmerssen's 

calculations which are 0.033, 0.505 and 0.045 respectively. Differences between the 

results could be attributed to the geometrical difference between the tanker and the 

elliptical cylinder. There is one other way to obtain the constant added mass coefficients, 

that is to use the limit value of a^co) as m^ at infinite frequency. Because it is obvious 

from Eq. 4.46 that when co approaches infinity, aij(co) takes the value of m^ . Therefore 

one should like to derive the asymptotic values of ajj(©) at infinity. However there is 

one obstacle, namely that it is very difficult to calculate the Mathieu functions at very high 

frequencies because of the very large parametric value, q. For instance, for 5 rad/sec the 

parametric value becomes 38078.56.

In order to solve the differential equations an algorithm written by Gear [4.28] is 

used. The algorithm which is either a form of the Adams methods or a method for stiff 

equations has several features such as the automatic selection of step size and order for 

the method used. In order to avoid shock response of the system due to external forces an 

exponantial ramp function which ensures the gradually increase of the external force for a 

certain period at the beginning of the simulation is used.

The effect of dynamic wind and irregular waves is shown in Figs. 4.18 and 4.19. 

It can be easily concluded from the graphs that dynamic environment is causing peak 

loads on the hawser and slowly varying oscillations of the system.
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4 .7  CONCLUSIONS

A time-domain simulation procedure to predict the motion response values and 

mooring forces of a CALM system was described and the results obtained from the time 

domain simulations were validated by model test measurements. The results of the time 

domain simulations were also correlated with frequency domain calculations. Whilst the 

surge motion amplitudes of the ship obtained from the frequency and time domain 

simulations correlate well with each other and agree with the results of measurements,

I there are some differences between the surge motion amplitudes of the buoy as obtained 

| from the frequency and time domain simulations and the experimental measurements.

| These discrepancies may be attributed to the effects of non-linearities in hawser restoring

| forces and to the unstable behaviour of the buoy model due to its light weight in waves

| during the experiments.

I
| The results of motion response and mooring force predictions based on non-linear
I

time domain simulations revealed that the unstabilising Munk moment causes unstable
f

large amplitude motions of the buoy and the ship in the horizontal plane yielding mooring 

line and hawser forces which are about 2-3 times larger than the maximum forces 

obtained when the effects of Munk moment are not considered.

The results of oblique wave tests revealed that as the current and the wave forces 

become more orthogonal to each other the magnitude of steady sway and yaw 

displacements of the ship increases and that the increase in current load, generally yields 

an increase in the surge, sway and yaw oscillation amplitudes of the ship.
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Fig. 4.19 Motion Response and Hawser Tension Predictions
Mean Wind Speed-22 m/sec, Current Speed-1.5 m/sec 
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CHAPTER 5 

PARAMETRIC STUDIES

5.1 INTRODUCTION

In this chapter the results of a series of parametric studies are presented to 

illustrate the effects of environmental and geometrical characteristics on the dynamic 

response and mooring forces of the tanker-buoy system. The parametric studies were 

carried out considering the tanker-buoy system described in Fig. 4.9. During the 

parametric studies wave, wind and current angle of attacks, wind and current speed, 

elasticity of the mooring lines and the hawser line, buoy's geometry, sea state, wind 

spectrum, the number of mooring lines of the buoy ,the hawser length and thruster 

capacity were varied to study the effect of variations on dynamic response and mooring 

forces of the system. Numerical aspects of the program, such as; simulation time and 

integration step are discussed.

5.2 PARAMETRIC STUDIES AND DISCUSSION OF RESULTS

Two sets of parametric studies were carried out First one investigated the effects 

of different wave, wind and current force magnitudes and directions on the steady and 

oscillatory motions and mooring forces of the tanker-buoy system. A second parametric 

study determined the sensitivity of slowly varying motions and hawser forces to changes 

in wave and wind spectrums, number of the mooring lines of the buoy, hawser length 

and thruster capacity. The first parametric study was carried out in regular waves with 

steady wind and current present while the second one in irregular waves with dynamic 

wind and current present.

158



In the first set of parametric studies, six groups of simulation studies were carried 

out using the non-linear time domain simulation computer program based on the 

prediction method described in the previous chapters. At the begining of each simulation 

the tanker was placed along the x axis with zero yaw angle and the hawser was 

unstretched. Results of the parametric study are tabulated by using the steady and 

oscillatory motion responses of the buoy and the tanker, which were obtained through a 

F.F.T analysis of the time domain simulations. During the first three groups of studies the 

effects of directionality of wave, wind and current force were investigated and the results 

of these simulations are given in Tables 5.1-5.3. During the remaining three sets of 

simulations the effects of variations in wave, wind and current force magnitudes were 

investigated and the results of these studies are given in Tables 5.4-5.6. The results given 

in Table 5.1 indicate that maximum steady and oscillatory sway and yaw motions occur 

when wave and current forces make a 90 degree angle with the wind forces. Similarly 

maximum sway motions of the buoy occur when wave and current forces make a 90 

degree angle with the wind forces. The results given in Table 5.2 indicate that wind 

direction does not affect the motions significantly. It could be concluded from Table 5.3 

that mean sway displacement and yaw angle increase as the current direction changes 

from 0 to 90 degrees. However maximum oscillatory sway motion of the buoy occurs 

when wave force direction makes a 0 degree and wind and current directions make a 45 

degree angle with the horizontal axis. Maximum steady and oscillatory surge motions of 

the buoy and ship occur when wave, wind and current forces act co-linearly. Tables 5.4 

and 5.5 show that the mean mooring line forces are generally not very sensitive to the 

changes in current and wind loading since the dominant load on the system is due to wave 

x induced oscillatory and steady forces. Table 5.6 shows that there is no linear relationship 

between the wave height and the motion response or the mooring force values of the 

CALM system. This indicates that such systems must be analysed in the time domain 

using nonlinear analysis tools.

A Second set of parametric studies was carried out to determine the sensitivity of 

slowly varying motions and hawser forces to changes in the environment, the number of 

mooring lines of the buoy, hawser length and thruster capacity for the CALM system
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illustrated in Fig. 5.1. In the simulations the tanker was given an initial 7.5 deg yaw angle 

with respect to the current angle, and bow hawser was unstretched and was parallel to the 

current During these simulations first order wave forces were neglected.

During the simulations of the tanker-buoy system, the following parameters were

varied:

1. Sea state; Pierson Moskowitz spectrum with different wind speeds

2. Wind spectrum formulation; Ochi-Shin, Davenport and Harris.

3. Number of mooring legs of the buoy; 8 and 4 legs.

4. Hawser length: 80 m and 40 m.

5. Thruster capacity (250,500 and 750 kN)

6. Displaced volume of the buoy (785 and 3534 m3)
i
|
| Fig. 5.2, 5.3 and 5.4 show the simulations for different sea states with Pierson-!
| Moskowitz spectrum and with mean wind speeds of 10.3, 20.6 and 25.75 m/sec
t
| respectively. It can be concluded from the comparison of simulations that an increase in

| wind speed results in an increase in mean displacements of the system and the mean

| tension of the hawser. The same trend can also be observed for oscillatory yaw motion of

the tanker and sway motion of the buoy. Simulation 1, which is the lowest sea state 

chosen, gives the biggest motion response values for surge motion of the buoy and sway 

motion of the tanker. A summary of the results is given in Table 5.7. Frequencies at 

which the buoy and the tanker oscillate in simulation 1 .found through a spectral analysis, 

are 0.013, 0.025, 0.038 and 0.05 rad/sec. Among these frequencies 0.013 is the 

dominant frequency for all motions except for the surge motion of the buoy and the tanker 

whose dominant frequency are 0.025 rad/sec. Dominant frequency for hawser tension 

oscillations is also 0.025 rad/sec. Dominant frequencies change slightly with increasing 

wind speed: 0.014 and 0.029 rad/sec for simulation 2 and 0.016 and 0.031 rad/sec for 

simulation 3.

Simulations with the Ochi-Shin, Davenport and Harris wind spectrums are 

compared in Figures 5.5, 5.6 and 5.7. Mean wind speed during the simulations was 22
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m/sec. Simulation with the Davenport spectrum gives the largest motion response values 

(0.1-4% higher than the others). Results are summarised at Table 5.8.

Effect of mooring legs on the motion response and hawser tension values is 

shown in Figures 5.5 and 5.8 and at Table 5.9. As the number of mooring legs is 

reduced from 8 to 4, dominant (natural) frequencies of the system shift towards lower 

frequencies taking the values 0.014, 0.028,0.041 and 0.057 rad/sec compared with the 

frequencies of 0.015, 0.029, 0.044 and 0.059 rad/sec of the 8 legged system. There is 

also an increase of 40-145% in the mean and oscillatory motion response values of the 

tanker and the buoy. This increase in the motions increases the hawser tension by 25%. 

This is because with fewer mooring legs, the system becomes less stiff, the bow hawser 

stays slack for a longer time and the sudden acceleration of the buoy and/or the tanker 

creates larger tensions in the hawser.

A change in hawser length not only changes the motion response values but also 

the natural frequencies of the system. As it is seen from Figures 5.5 and 5.9 and Table 

5.10 that as the hawser length reduces from 80 m to 40 m, 0.019 rad/sec becomes the 

dominant frequency for sway and yaw motions of the tanker and sway motion of the 

buoy, 0.038 rad/sec for the surge motion of the buoy and the tanker and the hawser 

tension. Another conclusion which could be drawn from the simulation is that the 

motions of the tanker and the buoy are more stable and hawser loads decrease by 6% as 

the hawser length is reduced (Fig. 5.9).

Slackening of the hawser which is the reason for peak loads is avoided by the use 

of thrusters. Tanker and buoy motions also become more stable (Fig. 5.5, 5.10,5.11 and 

5.12). But with the use of thrusters the hawser remains stretched with a high mean 

tension during the simulation, which may not be desirable and the use of thrusters could 

be expensive. Results are tabulated in Table 5.11.
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An increase in displaced volume of the buoy results in more stable motions of 

tanker and buoy (Figs. 5.5 and 5.13, Table 5.2). This effect is quite similiar to the effect 

of thrusters.

5.3 NUMERICAL ASPECTS

In order to obtain enough cycles of motion for analysis and to avoid the statistical 

variance of the results [5.1], simulation time was chosen to be sufficiently long, 7000 

seconds. Time step used for the integration of the differential equations was 0.05 

seconds, maximum time step which could be used by the algorithm [5.2] for stable 

solutions was 0.2 seconds and minimum time step was l.E-07 seconds. Tolerance was 

chosen to be 10E-03. For higher tolerances the algorithm requires much smaller time 

steps.

Analysis of the simulations was carried out using Fast Fourier Transformations 

[5.3]. Results of the F.F.T. analysis .frequencies and corresponding amplitudes, were 

tabulated.
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Fig. 5.2 Time Domain Simulation of the Tanker-Buoy System
Pierson Moskowitz Wave Spectrum

Mean Wind Speed=10.3 m/sec
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CHAPTER 6 

EXPERIMENTAL WORK

6.1 INTRODUCTION

In this chapter a description of model tests performed in regular waves is 

presented. Two sets of experiments were conducted, first set of experiments aimed to 

predict the motion responses of conical and cylindrical buoys, the second was performed 

to predict the motion responses of the tanker-buoy system and the hawser line forces.

In order to validate the numerical method, which was developed to calculate the 

motion responses of moored conical and cylindrical buoys, conical and cylindrical buoy 

models were tested in regular waves over a frequency range of 0.4 to 1.4 Hz at intervals 

of 0.04,, 0.09 ,0.18 and a wave height range of 2 to 14 cm (See Fig. 6.1). The sampling 

of the signals was set at 40 samples per second per channel over a period of 64 seconds 

for each wave frequency and wave height. The number of channels used was 10 without 

load cells, 14 with load cells. Three L.E.D.s were used to measure the heave, surge and 

pitch modes of motion. The signals collected by the L.E.D.s were amplified, digitised 

and stored in a file in the computer during tests. In order to analyze the experimental data 

stored in digital form on computer, a program called ATTEMPT was written, which 

performs Fast Fourier Transformations of experimental data.

The second set of tests was conducted to determine the motion characteristics of a 

Tanker-Buoy system under wave and current loading. In this system a cylindrical buoy is 

moored to the tank bottom by means of cables and an elliptical tanker is moored to the 

buoy by a hawser. Main dimensions of the system are given in Fig. 6.2 and 6.3. The 

tests were conducted in regular waves over a frequency range of 0.4 to 1.4 Hz at intervals 

of 0.1 and a wave height range of 4 to 6 cm at the towing/wave tank of the
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Hydrodynamics Laboratory at the University of Glasgow, which is 77 m long. 4.6 m 

wide and 2.7 m deep. The sampling of the signals was set at 100 samples per second per 

channel over a period of 120 seconds for each wave frequency and wave height. The 

number of channels used was 16. The signals collected by L.E.D.s and load cell were 

amplified, digitised and stored in a tile in the computer during tests.

During the first part of the second set of experiments a model of a coupled ship- 

buoy system shown in Fig. 6.4 and 6.5 was tested under co-linear wave and current 

loading. In the second part the current load was applied at an oblique angle to the 

direction of waves and the current load was simulated through a weight-pulley 

mechanism (Fig. 6.6). The ship model which comprised an elliptical cylindrical form was 

connected to a circular cylindrical buoy by means of a hawser and the buoy was 

connected to the tank bottom by a series of mooring lines. The stiffness characteristics of 

the mooring lines and hawser are given in Figs. 6.7 and 6.8 respectively.

The tank has a plunger type wave maker at one end, a wave absorber beach at the 

other. The regular waves were created by a plunger type wave maker driven by an 

electronically controlled hydraulic pump. The wave heights were measured by three 

resistance type wave probes. They were placed between the wave maker and the model. 

These probes induced an electrical signal whose strength changed as the waves passed the 

probes.

6.2 MOORED BUOY TESTS IN CALM WATER AND IN REGULAR 

WAVES

6 .2 .1  Description of Calibration Procedures

L.E.D.s (Light Emitting Devices) placed on the buoy were calibrated by shifting 

the camera horizontally for 10 cm and recording the subsequent voltage difference.
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All wave probes were calibrated when they were submerged 10 cm into the tank 

while the water was calm and zero readings on the wave probe amplifiers were taken by 

marking the pen's position on the chart recorder ( All calibration values were also 

recorded and stored in a computer file). Then wave probes were raised 10 cm and the 

new position was recorded in the computer as well as on the chart recorder.

6 .2 .2  Analysis and Comparison of the Measurements

The experiments could be divided into 7 parts:

1. Motion response measurements with the moored conical buoy

2. Motion response measurements with the moored cylindrical buoy

3. Motion response and mooring force measurements with the moored conical buoy.

4. Motion response and mooring force measurements with the moored cylindrical buoy.

5. Surge natural frequency tests in waves with the moored conical buoy

6. Motion response measurements with the moored conical buoy with relatively low 

initial tension.

7. Natural frequency test of the conical buoy with linear springs

Conical and cylindrical buoys used in the tests are depicted in Fig 6.3. Fig 6.2 

shows the experimental set-up.

The first four sets of experiments were performed in order to compare the motion 

performances of the conical and cylindrical buoys and to validate the computer 

simulations. Three L.E.D.s were used to measure the heave, surge and pitch modes of 

motion. First-order, steady and second order motions were measured by applying Fast 

Fourier Transformations to the experimental data. Some examples of the experimental 

data and F.F.T analysis are shown in Figs. 6.9, 6.10, 6.11 and 6.12. These 

measurements are plotted in the frequency domain. First-order heave, surge and pitch 

measurements with the conical and cylindrical buoys are shown in Figs. 6.13-6.18. 

Normalized values of the first-order motion measurements are compared with time and 

frequency domain predictions [6.1]. Fig. 6.19 and 6.20 show that the non-linear time
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domain predictions correlate better with measurements than the linear frequency domain 

predictions. This may be explained by the fact that the non-linear time domain approach 

models the stiffness characteristics due to hydrostatic and mooring lines more accurately 

and therefore a significant difference occurs between the results obtained from the two 

methods in the frequency region where motion responses are controlled by the restoring 

forces.

Surge response curves (Figs 6.21 and 6.22) show a significant shift at the 

maximum response values corresponding to the natural surge frequency region. This can 

be attributed to the different surge stiffness modelling employed in the linear frequency 

| domain formulation as against the non-linear time domain formulation. However both

I prediction methods yield significantly higher results than experimental measurements.

This may be due to the inertia coefficients used in the wave force formulations being 

higher than they actually should be.
i|
I[i

As with the surge responses, predicted pitch response values are higher than the 

| measured experimental pitch responses and the difference may, again, be due to the high

wave force coefficients used in the predictions (Figs. 6.23 and 6.24).

Comparisons between the motion performance of the conical buoy and that of the 

cylindrical buoy indicate that the heave and pitch motions of the conical buoy are 

~ significantly less than those of the cylindrical buoy. Although the heave response 

amplitude values are similar to each other for conical and cylindrical buoy forms since the 

heave response amplitude curve of the cylindrical buoy has a wider band than that of the 

conical form spectral analysis gives much more significant motion response values for the 

cylindrical buoy. It may therefore be concluded that a conical form gives a better motion 

performance than does a cylindrical buoy.

The second order slowly varying and steady surge responses of the conical and 

cylindrical buoys are shown in Figs. 6.25, 6.26, 6.27 and 6.28. In order to obtain the 

horizontal stiffness characteristics of the mooring lines another experimental set-up was
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used. In this test the buoy's horizontal displacements against applied horizontal forces 

were recorded and plotted in Fig. 6.29.

Some measured characteristic values of the conical buov (in full scale):

Heave natural frequency= 0.448 rad/sec 

Surge natural frequency= 0.095 rad/sec 

Pitch natural frequency= 0.373 rad/sec 

Damping coefficient for heave ( Y)= 0.075 

Damping coefficient for surge ( Y)= 0.098 

Damping coefficient for pitch ( Y)= 0.134 

Metacentric height= 4.784 m

Some characteristic values of the cylindrical buoy (in full scaled:

Heave natural frequency = 0.560 rad/sec 

Surge natural frequency= 0.141 rad/sec 

Pitch natural frequency= 0.410 rad/sec 

Damping coefficient for heave ( Y)= 0.120 

Damping coefficient for surge ( Y)= 0.112 

Damping coefficient for pitch ( Y)= 0.127 

Metacentric height= 4.585 m

In the calculation of surge damping coefficients mooring stiffness in surge 

direction is assumed to be constant (Fig. 6.29).

In the last two sets of experiments the surge natural frequency of the moored 

conical buoy in waves, the viscous damping of the moored conical buoy in waves and the 

effect of initial cable tension on the motion behaviour of the buoy were investigated. A 

surge natural frequency test was performed for two different mooring configurations. The 

first configuration was the original one (Mooring Configuration A) which was used for 

the first four sets of experiments (Fig. 6.2), but the result was not very successful. 

Because of the high initial tension on the cables the amplitude reduced to small values

189



rather quickly (Fig. 6.30). Then moorings were modified in order to have low initial 

tension on the cables (Fig. 6.31) (Mooring Configuration B).

Comparisons between the first-order motions of the conical buoy with two 

different mooring configurations are presented in Figs. 6.32, 6.33 and 6.34. In the case 

of low initial tension on the cables, a decrease in the first-order surge and pitch motion 

responses was observed (Figs. 6.32 and 6.34). It was also observed that initial tension 

on the cables had no significant effect on the heave motion of the conical buoy (Fig. 

6.33). The same conclusion was reached after carrying a series of parametric studies 

performed using the time domain program called HYDCOT (Fig. 6.35). In the case of 

low initial tension on the cables, an increase in the steady and second-order surge motion 

responses was observed (Fig. 6.36 and 6.37). Surge natural frequency in waves was 

measured for two different mooring arrangements; 0.481 rad/sec for the Mooring 

configuration B (low initial tension on the cables), 1.789 rad/sec for the Mooring 

configuration A.

The damping coefficients were computed from the examination of the rate of 

decaying oscillations (Fig. 6.38) [6.2]. The surge signal was numerically filtered with a 

2.24 rad/sec (0.2 rad/sec in full scale) low pass filter to isolate the low frequency 

response of the system. A sample of the data is presented in Fig 6.30. The damping 

coefficients are plotted in the frequency domain in Fig. 6.39. it may be generally 

concluded that the damping coefficients increase as wave height increases.

The equation of motion for the damped free oscillation of the conical moored buoy 

in surge is given by

mx + cx + kx = 0 (6.1)

and natural frequency
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y is the damping coefficient and could be found from the logarithmic decrement

Aj 2 y n n

1° 8 - ~ ‘ : 7 r 7  <6.3)

A j is the amplitude of the oscillation at t { and A n + { is the amplitude at + t .

Added mass coefficient could be computed from the measured natural frequency, 

the spring constant and the buoy's mass

C a = (— -  m) / m
con (6 .4)

In the last set of experiments the conical buoy was moored to the carriage with 

linear springs which were pretensioned and which never became slack during the 

experiments (Figs. 6.41, 6.42 and 6.43). Two loadcells were used to measure the forces 

on the springs and one L.E.D. was used to measure the surge response. As a double 

check, surge response was also calculated by using the forces on the springs. This 

method also eliminates the contamination to surge response from other modes of motion. 

The unstretched length of the springs was 31 cm. Before the experiments they were 

stretched to 40 cm. Spring coefficients of the springs were measured and were found to 

be 7.85 kg/m. Damping and added mass coefficients of the conical buoy were calculated 

using equations (6.3) and (6.4). The added mass coefficient of the conical buoy was 

found to be 1.734. Damping coefficients for two experimental test set-ups were plotted in 

Fig. 6 .44  and 6.45. It can be concluded from the graphs that the damping coefficient in 

waves is higher than the damping coefficient in still water. Damping coefficients obtained 

using test set-up A are higher than the coefficients obtained using test set-up B. This can 

be attributed to the higher friction in test set-up A, which is caused by the pulley system.
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Some difficulties have been encountered during the experiments; In the second set 

of the experiments at the frequencies of 0.80 and 0.89 Hz yaw motions were observed. 

In the sixth set of the experiments at the frequency of 1.40 Hz sway motion was 

observed. This strange phenomenon is believed to be caused by 'wall effect' [6.3].

A parametric study was performed to determine the effect of the current on the 

motion responses of the moored buoys (Fig. 6.40). It showed that the current increases 

amplitude of the first-order motions and that the natural frequency region moves towards 

higher frequencies in the presence of current

6.3 SINGLE POINT MOORED TANKER-BUOY EXPERIMENTS

I

6 .3 .1  Description of Calibration ProceduresI
Ii

Instrumentation of the L.E.D.s, load cells and cameras are shown in Fig. 6.46.

| Eight L.E.D.s were used to measure the motions of the tanker and the buoy; six on the

tanker, two on the buoy. Signals from L.E.D. 1,2,3 and 4 were detected by a camera
t
I placed at the top of the carriage and signals from L.E.D.s 5 and 6 were detected by al

camera placed at the side of the tank. Another camera was placed at the top of the carriage 

to detect signals from the L.E.D.S on the buoy. While L.E.D.S nos. 2, 4, 5 and 6 were 

used for measuring, nos. 1 and 3 were used for calibration purposes only. So L.E.D.S 2 

and 4 were calibrated by using 1 and 3 and L.E.D.s 5 and 6 by the use of 2 and 4. the 

L.E.D. on the buoy was calibrated by shifting the camera horizontally. One load cell was 

also used to measure the forces on the hawser. All wave probes were calibrated when 

they were submerged 10 cm into the tank while the water was calm and zero readings on 

the wave probe amplifiers were taken by marking the pen’s position on the chart recorder 

( All calibration values were also recorded and stored in a computer file). Then wave 

probes were raised by 10 cm and the new position was recorded in the computer as well 

as on the chart recorder.
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6 .3 . 2  Analysis and Comparison of the Measurements

First, the system was tested in co-linearly acting wave and current loading. 

Current force was simulated by a single force applied to the system along the x-axis by a 

pulley system. During the tests wave frequency was varied from 0.4 Hz (2.51 rad/sec) to

1.4 Hz (8.8 rad/sec) and the current force acting on the system was 6 gr (0.059 N). 

Oscillatory surge motion of the tanker and the buoy were compared with the time and 

frequency domain simulations in Figs. 6.47 and 6.48. Agreement was very good for the 

tanker. But there were some discrepancies in the buoy's surge motion. During the 

experiments it was observed that the buoy's motion was not so stable and it involved 

some unexpected yaw and sway motion due to the very light buoy model used in the 

experiments. Some examples of these runs are presented in Figs. 6.49-6.51. Then natural 

frequency of the system was determined under wave loading and under current loading 

(single applied force). Under wave loading it was found to be between 0.15 and 0.38 

rad/sec (0.024 and 0.060 Hz), under current loading it was between 0.27 and 0.61 

rad/sec (0.043 and 0.097 Hz). One example of these tests is given in Figs. 6.52 and 

6.53.

In the second set of the tests, the system was tested in oblique angles i.e. current 

was acting in oblique angles (See Fig. 6.54) and the initial position of the tanker was 

different from the head-sea tests ( See Fig. 6.6). In these tests finer and lighter cables 

were used to reduce the effect of the cables on the motions. But buoy motions again were 

not stable due to the very light buoy model. Results of these tests are presented in table 

6.1. Wave frequency in the tests was varied from 0.9 Hz to 1.3 Hz. Tests were not 

performed at the frequencies lower than 0.9 Hz because the wave drift force is almost 

zero at these frequencies. It is easily seen from the table that with the increase in the 

current load, an increase in the oscillatory motions of the tanker is obtained. Oblique 

angle tests are presented in Figures 6.55-6.58. In run 22 (Fig. 6.58) unstable tanker 

motion was observed.
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In order to analyze the experimental data stored in digital form on computer, a 

program called TIME_EXPE was written, which performs Fast Fourier Transformations 

of the experimental data.

6 .3 .3  Observations and Experience from Model Tests

During the experiments it was observed that the tanker-buoy system was too light 

and so, too sensitive to external loads. The L.E.D. and load cell cables were applying 

load to the system. This problem was partially solved in the second set of experiments by 

using fine, lighter cables.

Another problem observed during the experiments was that the L.E.D.s were 

going out of range of the cameras. This was especially a problem in oblique angle tests 

because the position of the cameras has to be changed when the current angle of attack or 

the initial position of the tanker changes.

6.4 CONCLUSIONS

The theoretical work on the motion response predictions of the moored buoys has 

been validated by experiments. Comparisons between the predictions and the 

measurements reveal that the predictions are rather conservative in surge and pitch 

motions but give reasonably good correlations with measurements in all modes of 

motion.

Another conclusion that could be drawn from the experiments is that the conical 

buoy performs better than the cylindrical one under wave, wind and current forces.

Second-order surge motions were observed in regular waves. This was quite a 

surprise since second order motions are originally thought to be caused by irregular 

waves. One possible reason for this is the non-linearities exhibited by the mooring cables.
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The theoretical work on the motion response predictions of the tanker-buoy 

system has been validated by experiments. Comparisons between predictions and 

measurements reveal that the predictions agree very well with the measurements For surg;e 

motion of the tanker. However the comparison is not so good for surge motion of the 

buoy. One possible reason for this is the unstable motion of the buoy observed during the 

experiments.

It can be concluded from oblique angle tests that an increase in the current load 

usually results in an increase in the oscillatory motions of the tanker and that the system 

does not always reach a steady state position under wave and current loading (Fig. 6.58).
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Run
No

Current
Direction

(Dog.)

Current
’ Force 

(gr)

Wave
Frequency

(Hz)

Wave
Height'
(cm)

SHIP MOTIONS
• SURGE(cm) ' SWAY(cm) YAW (deq)
Steady Oscill. Steady Oscill. Steady Oscill.

1 213.00 7.00 0.90 4.70 153.90 0.47 -0.60 0.30 -8.27 0.58
2 213.00 7.00 0.90 4.45 157.60 0.44 -1.22 0.23 -9.85 0.40
3 206.50 10.00 0.90 5.32 151.20 0.54 -37.00 0.26 -38.12 1.52
4 212.00 7.00 1.00 4.69 156.50 0.13 2.00 0.13 -8.00 0.62
5 206.50 10.00 1.00 4.31 157.70 0.13 -24.50 0.07 -41.00 0.73
6 207.50 17.00 1.00 4.55 155.00 0.16 -20.00 0.19 -45.00 1.09
7 200.00 20.00 1.00 5.09 147.00 0.17 -32.00 0.24 -45.49 1.58
8 209.00 27.00 1.10 3.50 158.87 0.28 -19.10 0.09 -33.60 0.62
9 213.00 55.00 1.10 4.44 156.20 0.35 -25.00 0.12 -40.00 1.15

10 202.50 65.00 1.10 4.39 146.90 0.41 -40.10 0.12 -60.47 1.72
11 201.00 65.00 1.10 4.36 153.80 0.37 -34.97 0.12 -46.70 1.50
12 200.50 70.00 1.10 5.11 157.70 0.39 -46.42 0.23 -44.31 1.78
13, 200.00 80.00 1.10 4.99 149.84 0.39 -51.80 0.23 -46.54 1.84
14 217.00 30.00 1.20 4.47 155.00 0.40 30.60 0.15 -28.70 0.54
15 216.00 37.00 1.20 4.35 157.70 0.41 21.03 0.14 -33.14 0.55
16 208.00 80.00 1.20 4.93 158.60 0.47 -31.60 0.20 -39.05 1.11
17 219.50 47.00 1.30 4.45 156.08 0.18 41.90 0.56 -29.90 0.19
18 219.50 67.00 1.30 3.95 150.22 0.18 29.22 0.37 -33.80 0.08
19 221.00 87.00 1.30 4.75 155.00 0.18 34.00 0.64 -33.49 0.15
20 222.00 97.00 1.30 5.09 148.90 0.19 26.20 0.55 -37.40 0.16
21 215.50 100.00 1.30 4.64 159.40 0.31 -15.02 0.34 33.97 0.83
22 224.50 107.00 1.30 5.09 150.31 0.18 35.50 0.53 -37.42 0.16
23 215.00 120.00 1.30 5.90 148.10 0.40 -12.50 0.31 -26.80 0.81
24 214.00 137.00 1.30 4.61 146.91 0.27 -1.80 0.54 -12.51 0.45
25 213.00 147.00 1.30 5.09 147.10 0.33 -2.43 0.50 -15.68 0.55

T ab le  6.1 O blique W ave and  C urrent Loading T es t C onditions an d  R esu lts



Fig. 6.1 Motion Response and Cable Tension 
Measurements of the Conical Buoy
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Fig 6.3 Geometrical characteristics of Conical and Cylindrical Buoys
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Fig. 6.5 Coupled Tanker-Buoy System

Current

Waves
Tanker

Buoy

Fig 6.6 Experiment set-up of the Tanker-Buoy system 
Wave and current acting in different directions
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Fig 6 43 Natural Frequency Test of the
meal Buoy with Linear Springs
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Angle Tests of the Tanker-Buoy System

232



H. 2 .286846  u<3

-2 .2 8 6 8 4 6

26 .58665

£  17.72443

O
m 8.86222'

40 80 120
TIME [SEC]

5  166.47026

159.81144

153.15263

TIME SEC]

TIME [SEC]
120 .

5  -3 2 .1 2 1 1 8 '

TIME [SEC]
12a

0 W
£  -1 8 .4 '
<Sh1a .
”  -3 6 .8

Fig. 6.55 Oblique Angle Test, Run No. 11



5 .1 5 4 8 8

e : i

«  - S .  15488'

17.10239"

xu
XiIXo3CQ 26.66111 53.32222 79.98333

TIME [SEC]

II[

1 6 5 .9 '

i  1 5 7 .6

149 .31
79.9833326.66111 53.32222

TIME [SEC]

TIME [SEC]
53.32222. 79.98333,

3  -3 6 .5 1 7 1 8 '

-4 5 .6 4 6 4 6 '

-54.77576"

TIME [SEC]
26.66111, 53.32222, 79.98333,

WWVWVWWVVV^

Fig. 6.56 Oblique Angle Test. Run No. 12



SH
IP

-Y
AW

(D
EG

) 
SH

IP
-S

W
AY

[C
M

] 
BU

OY
-S

W
AY

[C
M

)

xu
£  5 .1 1 7
8
2i>>o2o

26.66111 53.32222 9.98333
TIME [SEC]

-5 .1 1 7

10 .91058 '
TIME [SEC]
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CHAPTER 7

CONCLUSIONS

7 .1  GENERAL CONCLUSIONS OF THESIS

The aim of this study was to investigate the environmental loading and motion 

response of moored objects such as moored buoys and Single Point Mooring Systems 

and to provide the designer with tools that can be used for the analysis of these systems in 

design. In developing the prediction methods for moored systems particular attention was 

given to the time domain simulation techniques because the nonlinearities involved in the 

system, due to the nonlinear mooring forces and the random nature of the environmental 

forces, can be best treated by time domain prediction techniques. At each stage of the 

study prediction methods were validated by experiments.

A calculation procedure to predict the non-linear coupled large amplitude motions 

of a conical or a cylindrical buoy was presented in the second chapter. Comparisons of 

the motion response predictions with measurements show an acceptable degree of 

correlation. Comparisons between the motion performance of the conical buoy and that of 

the cylindrical buoy indicate that the heave and pitch motions of the conical buoy are 

significantly less than those of the cylindrical buoy (1% reduction in heave and 70% 

reduction in pitch were predicted). Effects of nonlinear stiffness due to mooring lines and 

wave height were also investigated. Simulations with nonlinear cable modelling give 

bigger motion response values than simulation with linear cable modelling. Also the 

natural frequencies of the buoy shift towards higher frequencies with nonlinear cable 

modelling. As the wave height increases, the difference in motion responses between the 

linear and nonlinear cable modellings widens (For an increase in wave height from 4m to 

8m, difference in motion responses increase from 5% to 10%). After the F.F.T. analysis 

of the motion responses obtained from the nonlinear time domain predictions were carried

2 3 7



out, together with the oscillations at wave frequency, some superharmonic motions at 

twice the wave frequency and subharmonics at fractions of the wave frequency were 

detected

The theoretical work on the motion response predictions of the moored buoys was 

validated by experiments. Comparisons between the predictions and the measurements 

reveal that the predictions are rather conservative in surge and pitch motions but give 

reasonably good correlations with measurements in all modes of motion. Second-order 

surge motions were observed in regular waves. This was quite a surprise since second 

order motions are generally thought to be caused by irregular waves. One possible reason 

for this is the non-linearities exhibited by the mooring cables.

The theory to calculate the wave and motion induced forces on tankers described 

in Chapter 3 provides an alternative method of predicting the wave forces and moments 

on tankers. CPU time for the calculation of wave forces is about 15 minutes for three 

angles of wave incidence and for 80 wave frequencies at each wave incidence angle in 

VAX. It is quite fast compared to the programs which utilize the Green's function 

method. The combination of reasonable accuracy and low computational cost makes it a 

good alternative to other numerical methods.

Mean drift forces acting on the elliptical cylinder were compared with a 3-D 

source distribution program [3.8]. There are large discrepancies between the elliptical 

cylinder approach and the 3-D program (Figs. 3.51, 3.52 and 3.53). This is because the 

flow under the cylinder was not modelled in the theory. Results of the elliptical cylinder 

approach were also compared with the Havelock’s method [3.19] for the limiting case of 

a circular cylinder extending from sea surface to sea bottom and the agreement is quite 

good (Fig. 3.54).

A time-domain simulation procedure to predict the motion response values and 

mooring forces of a CALM system was described and the results obtained from the time 

domain simulations were validated by model test measurements. The results of the time
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domain simulations were also correlated with frequency domain calculations. Whilst the 

surge motion amplitudes of the ship obtained from the frequency and time domain 

simulations correlate well with each other and agree with the results of measurements, 

there are some differences between the surge motion amplitudes of the buoy as obtained 

from the frequency and time domain simulations and the experimental measurements 

(Figs. 4.11-4.14). These discrepancies may be attributed to the effects of non-linearities 

in hawser restoring forces and to the unstable behaviour of the buoy model due to its light 

weight in waves during the experiments.

The theoretical work on the motion response predictions of the tanker-buoy 

system was validated by experiments. Comparisons between predictions and 

measurements reveal that the predictions agree very well with the measurements for surge 

motion of the tanker. However the comparison is not so good for surge motion of the 

buoy. One possible reason for this is the unstable motion of the buoy observed during the 

experiments.

The results of oblique wave tests performed for the tanker-buoy system revealed 

that as the current and the wave forces become more orthogonal to each other the 

magnitude of steady sway and yaw displacements of the ship increases, and that the 

increase in current load generally yields an increase in the surge, sway and yaw 

oscillation amplitudes of the ship.

Two sets of parametric studies were presented in Chapter 6. In the first set, six 

groups of simulation studies were carried out using the non-linear time domain simulation 

computer program based on the prediction method described in this thesis. During the 

first three groups of studies the effects of directionality of wave, wind and current force 

were investigated. During the remaining three sets of simulations the effects of variations 

in wave, wind and current force magnitudes were investigated. Results are listed as 

follows,
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1. Maximum steady and oscillatory sway and yaw motions occur when wave and current 

forces make a 90 degree angle with the wind forces. Similarly maximum sway motions of 

the buoy occur when wave and current forces make a 90 degree angle with the wind 

forces.

2. Wind direction does not affect the motions significantly.

3. Mean sway displacement and yaw angle increase as the current direction changes from 

0 to 90 degrees. However maximum oscillatory sway motion of the buoy occurs when 

wave force direction makes a 0 degree and wind and current directions make a 45 degree 

angle with the horizontal axis. Maximum steady and oscillatory surge motions of the buoy 

and ship occur when wave, wind and current forces act co-linearly.

4. Mean mooring line forces are generally not very sensitive to the changes in current and 

wind loading since the dominant load on the system is due to wave induced oscillatory 

and steady forces.

5. There is no linear relationship between the wave height and the motion response or the 

mooring force values of the CALM system. This indicates that such systems must be 

analysed in the time domain using nonlinear analysis tools.

A second set of parametric studies was carried out to determine the sensitivity of 

slowly varying motions and hawser forces to changes in the environment, the number of 

mooring lines of the buoy, hawser length and thruster capacity for the CALM system. 

Results of the parametric studies are as follows,

1. An increase in wind speed (sea state) results in an increase in mean displacements 

of the system and the mean tension of the hawser (Table 5.7). The same trend can also be 

observed for oscillatory yaw motion of the tanker and sway motion of the buoy. 

Simulation 1, which is the lowest sea state chosen, gives the biggest motion response 

values for surge motion of the buoy and sway motion of the tanker. Frequencies at which
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the buoy and the tanker oscillate in simulation 1 ,found through a spectral analysis, are

0.013, 0.025, 0.038 and 0.05 rad/sec. Among these frequencies 0.013 is the dominant 

frequency for all motions except for the surge motion of the buoy and the tanker whose 

dominant frequency are 0.025 rad/sec. Dominant frequency for hawser tension 

oscillations is also 0.025 rad/sec. Dominant frequencies change slightly with increasing 

wind speed: 0.014 and 0.029 rad/sec for simulation 2 and 0.016 and 0.031 rad/sec for 

simulation 3.

2. Simulation with the Davenport spectrum gives the largest motion response values 

(0.1-4% higher than the others). (Table 5.8)

3. As the number of mooring legs is reduced from 8 to 4, dominant (natural) 

frequencies of the system shift towards lower frequencies taking the values 0.014,0.028,

0.041 and 0.057 rad/sec compared with the frequencies of 0.015, 0.029, 0.044 and

0.059 rad/sec of the 8 legged system (Table 5.9). There is also an increase of 40-145% in 

oscillatory motion response values of the tanker and the buoy. This increase in the 

motions increases the hawser tension by 25%. This is because with fewer mooring legs, 

the system becomes less stiff, the bow hawser stays slack for a longer time and the 

sudden acceleration of the buoy and/or the tanker creates larger tensions in the hawser.

4. A change in hawser length not only changes the motion response values but also 

the natural frequencies of the system. As the hawser length reduces from 80 m to 40 m,

0.019 rad/sec becomes the dominant frequency for sway and yaw motions of the tanker 

and sway motion of the buoy, 0.038 rad/sec for the surge motion of the buoy and the 

tanker and the hawser tension (Table 5.10). Another conclusion which could be drawn 

from the simulation is that the motions of the tanker and the buoy are more stable and 

hawser load at the dominant frequency decrease by 6% as the hawser length is reduced.

5. Slackening of the hawser which is the reason for peak loads is avoided by the use 

of thrusters. Tanker and buoy motions also become more stable (Table 5.11). But with
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the use of thrusters the hawser remains stretched with a high mean tension during the 

simulation, which may not be desirable and the use of thrusters could be expensive.

6. An increase in displaced volume of the buoy results in more stable motions of 

tanker and buoy (Table 5.12). This effect is quite similar to the effect of thrusters.

7 .2  RECOMMENDATIONS FOR FUTURE WORK

1. The diffraction problem of the vertical ellipse with finite draft could be solved in six 

degrees of freedom and then, mean drift forces acting on the cylinder can be obtained 

following the method described in Chapter 3.

2. Current and wind forces acting on tankers are usually calculated using semi empirical 

formulas together with experimental data. More experimental and theoretical investigation 

of this topic is needed to improve the present formulations.

3. Motion stability of the tanker-buoy system can be investigated under wave, wind and 

cuiTent loading by using the linearized equations of motion.
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APPENDIX A 

EVALUATION OF MOORING FORCES

Solution Algorithm due to the horizontal excursion of the upper end of the cable

In the following an algorithm is given to determine cable forces due to the 

horizontal displacements of the upper end of the cable. (See Fig. A-l)

Fig. A - 1 Definit ion of Cable Param eters

Input data:

w is the submerged unit weight of the cable element 

h is the water depth.

1 is the total cable length.

Be is the angle of the upper end of the cable with the horizontal at the beginning of the 

motion.

Tom« is the maximum tension of the cable.

N is the number of cables.
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The calculation steps:

1. Assume an initial value of Tn

2. Calculate 0

a. xg from (2.32)
T0 , _i. hw x = — cosh (—  + 1)
w

T
b. 1, from (2.31) '■ = ^ sinh

( \ wx
Tv *o y

c. 6 = 1-1 +x.

d. 0 from (2.30) 0 = tan~‘ sinh
f wx

3. Compare 0 with 0e

-0 .
0

^ < 0.001

4. If Step3 is not satisfied and T0 > T0mix , stop solution.

5. If Step3 is not satisfied and T0 < T0max, increment T0 and goto step(2)

6. When Step3 is satisfied;

l s c = l s x* = *, : d, = d

7. Assume an initial value of T0
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8. x =^-cosh*‘(— + 1) 
w T„

1 t = i sinh(^ )
w T0

5 = 1-1, + x,

8 = tan-‘( s in h (^ ) )  
*o

<l . =T»tan0 (A-3)

_ i  .5 —5 .V = tan '(—— ’'-)
h (A-4)

xb = htany (A.5)

9. If T0 > T0imx t stop solution.

10. If T0 < T0mtx , increment T0 and goto step(8)

11. Plot Xb -  T0 ; find the interpolation function

12. Plot Xb -  qv ; find the interpolation function

These single cable results are used to calculate the total loads qx and qz for N 

cables in a symmetric array , Where each cable has a twin diametrically opposite. The 

procedure for computing qx and qz is as follows:

1. Assume an initial value of Y = 0
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2. <L(^)— <lh( ^CN)]CN , (qh = T0) (A-6)

q*W  = S h v (v C N) + q.C-'uCN)]
(A-7)

\> = h tan Y (horizontal displacement at the point of cable attachment)

CN = |cos(pn )| and B0 = 0 , 1 = (N -  2) / 2 (A-8)

3. If Y > Ymax , table is complete

4. If Y < Ymax , increment Y and return to step 2

5. Plot ,o - q 1(‘o)

6. Plot t ) - q z(\))

7. Change the water depth to take into account the influence of heave motion on the

horizontal cable stiffness , return to step 7 in which we calculate the single cable

horizontal stiffness.

Solution Algorithm due to the vertical motion of the upper end of the cable

The procedure to find the initial geometric conditions of the cable is the same as 

in the first solution algorithm (first 6 steps).

1. Calculate the initial unsupported weight of the cable. We had calculated the !«* tthe 

initial unsupported length of the cable, wl^ gives us the initial unsupported weight.

T  • =  wl *zi W1se
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2. T o = T ji/ ta n (e e)

3. Enter an initial value of x,

4. Find the xs from the below equation by iteration.

8e = ^ s i n h ( ^ - ) - I s + xs

5. Calculate the vertical displacement

C O S h ( ^ ) - l  
[0 )

- H

6. 0 =  tan ^ s i n h O ^ 1))
To

7. Calculate the vertical tension of the cable

Tz = 4 (lw -T zi)

8. If y is less than 10 m , increment T0 return to step 3.

9. Plot y versus Tz, find the interpolation function.

10. Plot y versus T0> find the interpolation function.

(A-9)

(A-10)

(A-11)
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APPENDIX B 

ELLIPTICAL COORDINATE SYSTEM

Coordinate transformations between the rectangular and elliptic coordinates (See 

Fig. 3.2) are written as follows:

x = h cosh £ cos T| y = h sinh ^ sin q (B-l)

At the extremities of the major and minor axes of any confocal ellipse, we find the 

following relations:

a = h cosh £ b = h sinh £

h2 = a 2 - b 2 (B-2)

The line element along the ellipse is as follows:

ds 2 = 1 j dn

1 - *

1. = h[cosh £ sin 2 q + sinh £ cos2 T|] = —— (cosh 2£ -  cos 2r|)
V 2

(B-3)

The distance of any point from the origin is,

i ^
r = (x2 + y2) 2 = h[cosh 2 £ cos 2 T| + sinh £ sin 2 T|]2 (B-4)
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APPENDIX C 

SOME PROPERTIES OF MATHIEU FUNCTIONS

Fourier expansions for the even periodic Mathieu function is as follows:

oo

ce r(z,q) = X  A 2k + p cos(2k + p)z

associated with a r(q) and the odd periodic solution is,

oo

se r(z,q) = X B 2k+P sin(2k + p)z (C-2)
k = 0

associated with b r(q). The order, r, is of the form 2n + p . The n is a nonnegative 

integer while p=0 or 1 indicates the solution is of period rc or 2 k .

Radial Mathieu function associated with a r(q)and b r(q) are as follows:

Mc<j)(z,q) = X ( - l ) "  + kA2k + p[Fk + Gk] / A 2 e (C-3)
k =0

Ms®(z.q) = I ( - D n + kB 2k + p[Fk - G k] / B 2s (C 4)
k =0

if m ^ O ,  e m = l b u t e 0 = 2. Coefficients A and B can be generated from a 

derived set of recursion relationships in Eqs. 3.16 and 3.17.
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af*

Orthogonality of Mathieu functions:

271

2m + «<Z' ^  0,5 2n + B*2’ 9> ^  *  5 m»8

271

J ° e 2m + a ( z ' (5 ) c e 2 n + l + B( z ’ <l ) d Z = 0

271

J se 2m + 1 + “  2„ + 1+ B<Z’ $  *  =  * 5 mn8

Some integrations appear in the study are as follows:

2tj 27t
J  ce2nCn,q) cosqdq = J sem(q,q)cosqdq = 0

2ti
J ce2n+1(q,q)cosqdq = 7t Apn+1)

<xp

271 271

J
0
J  cem (q,q) sinq dq = J se2n+2(q,q) sinq dq = 0

2ti

J
0
j se2n+i(T l,q) s inq  d q  =  rc B(12n+1)

2 5 0

(C-5)

(C-6)

(C-7)

(C-8)

(C-9)

(C-10)

(C -ll)



2 n in

j  c e m (ii,q )s in T i co s  11(111= J  se2n+i(T i,q )s im ico s ild T i =  0  
o o

2 n

J sinTl C0ST1 dTl = ^ B̂ 2n+2)
o

(C-12)

(C -13)
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APPENDIX D

DERIVATION OF THE INCIDENT WAVE POTENTIAL FOR THE

ELLIPTICAL CYLINDER

If we assume that 

cos[z cos(0 -  a )]  =

If both sides are multiplied by se 2n(0)» integrate from 0 to 2n and use the 

orthogonality we obtain,

m = 0

(0 -1)

C 2n(n)=2 Ce2n(Tl)/P2n (0 -2)

If both sides of (D-l) are multiplied by se 2n 2(0) we have,

^ 2n + 2 ^  ”  2 X  2n + 2 ^   ̂S 2n + 2 (0-3)

Substituting (D-3) and (D-2) into (D-l) gives the expansion,

cos[2k(cosh £ cos rj cos 0 + sinh £ sin tj sin 0] =

s
2n + 2 ^  Se2n+2^)
2n + 2

(0-4)
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Similarly we find that

sin [2k(cosh £ cos T| cos 0 + sinh £ sin r\ sin 0] =

2 I
n = C

<̂ e 2 n +  l ^ ) <* 2 n + l ^ CC2 n + l ^  +  ^  2n + 1 ®  Se2n+ Se
P 2n + 1 s 2n +1

and we obtain the incident wave potential

izcos(G-a) _  ik(xcos0+ysin0) _  
C “  C ■"

cos[k(x cos 0 + y sin 0)] + i sin [k(x cos 0 + y sin 0)] =

2 Xfpt7Ce2„©oe2n(ri)ce2n(e) +
n = 0 2n

On 4. 0 n J. 'j ( ^ )  +Sjn  + 2 2 n + 2 2n + 2 2 n + 2

i{ P ^ 0 6  2" * 1(? )  06 2„ + 1̂ ) «  2n + 1<0 > +

1
S2 „ + 1 S e 2n + 1®  s e 2 n + i W «  2n + 1<0> »

Coefficients p n and sn are given by McLachlan [3.1]

(2n)
P 2n = ce(0. q) ce 2 (it /  2,q) /  AQ

(2n + l )
P2n + I := "  *  2n + l'<°* 4 1K 2 . + 1( ”  > 2 '' ^  ^  1

(2n + 1)
S2n + 1= S e 2 » + 1<°* (l ) Se 2n+ 1<* 1 2 > 0  '  “  1
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S2 n + 2 “ *  2n + 2^ ,C^ SC 2n + 2^ / 2 , q ) / k  B 2 (£)_9)
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APPENDIX E

BLANCH'S DEFINITION FOR RADIAL FUNCTIONS

The radial solutions given by Blanch are Mc^(z ,q) and Ms^Cz, q) i=l,2,3,4 

and correspond to Cem(z,q) and Sem(z,q), Fey m(z, q) and Geym(z,q) and 

Me (z» q) and Ne^(z» q )»i=l,2. This notation is used because the computer program 

,which is used in evaluating the Mathieu functions uses this notation. The relationships 

are [3.20],

Ce 2r(z, q) =
ce2r( y , q ) c e Jr(0,q)

Tt q) (E-l)

Cer2 r + l ( f ’ Cl ) C e 2r+ l ( 0 - <l ) „ . ( l )
2r  + “  ,  . u + 1  /— . i r + 1  C 2r + 1 ^ *  ^

( - D ^ ‘V q Ai
(E-2)

S e2r(z,q) =
se '2r(0,q) se'2r(7-, q) 

( -  1 /q B 2;
M s ^ z ,  q) (E-3)

S e2r + ,(z,q) =
Se2r + l(T-q)

5TTT
( -  i) rv p > r

M s (l)
2r + 1(z.q) (E-4)

Fey2r(z,q) = °e 2r<T’ q) ** 2r(0’ q) (2)

( - l ) r A o r

Me 2r (z, q) (E-5)
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 ̂ + (2) ,
Fey 2r + j(z,q) = +1 - * , +  ! Mc 2r+ (z.q)

( - 1 )  V q A j

G ey 2 r(z . ^  =
se'2r(0 ,q ) se'2r(y ,q )  

( -  l ) rqB2r
M s ^ z ,  q)

„  ,  „ Se 2 r + l ( ° ’ tl^ Se 2 r + l ( “ (l \ i  (2)  „Gey 2r + (z.q )  ------   ,+l------ M s2r (z, q)
( - 1 )  ^ q B j

and

(3) (1) (2)
M r (z,q) = M r (z,q) + iMr (z,q)

(4) (1) (2)
M r (z,q) = M r ( z , q ) - i M r (z,q)

M j \ z ,q )  = Mc(r̂  or Ms(r̂

(E-6)

(E-7)

(H-8)
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