NON-LINEAR TIME DOMAIN SIMULATION OF MOORED FLOATING
SYSTEMS

Oguz Ydmaz, B Sc

Thesis submitted for the Degree of Doctor of Philosophy

Department of Naval Architecture and Ocean Engineering

University of Glasgow

October 1992

© Oguz Yilmaz 1992



ProQuest Number: 13815386

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 13815386

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346






CONTENTS

Contents

List of Figures

List of Tables
Acknowledgements
Dedication
Declaration
Summary

CHAPTER 1 INTRODUCTION
1.1 Single Point Mooring Systems
1.2 Summary of Previous Work
1.3 Objectives of Study

1.4 Structure of Thesis

CHAPTER 2 MOTION RESPONSE SIMULATION
OF MOORED BUOYS
2.1 Introduction
2.2 Environmental Loading on Buoys
2.2.1 Evaluation of Wave Forces Acting on Buoys
2.2.2 Effect of Current and Wind
2.3 Evaluation of Mooring Forces
2.4 Motion Responses of the Buoy Under
Wave Excitation in Frequency Domain
2.5 Time Domain Analysis of Motion Responses
of Moored Buoys Under Wave Excitation
2.6 Applications and Comparisons

2.7 Conclusions

Page
iv

Xy

xvi

Xix

AN W W =

11
11
12
12
18
20

23

29

34
37



CHAPTER 3 HYDRODYNAMIC FORCES ON TANKERS 62

3.1 Introduction 62
3.2 Formulation of the Diffraction Problem 63
3.3 Velocity Potential of Plane and Scattered Waves 67
3.4 Wave Forces and Moments 69
3.5 Formulation of the Radiation Problem 71
3.6 Calculation of Added Mass and Damping Coefficients 74
3.7 Second Order Mean Forces Acting on the Tanker 76
3.8 Numerical Aspects and Results 78
3.9 Conclusions 80
CHAPTER 4 TIME DOMAIN SIMULATION OF A

TANKER-BUOY COUPLED SYSTEM 120
4.1 Introduction 120
4.2 Dynamic Wind Loading and Response 121
4.3 Current Forces 124

4.4 Slowly Varying and Mean Wave Dirift Forces in Irregular Waves 129
4.5 Motion Equations of the Tanker-Buoy

System in Time and Frequency Domain 133

4.6 Numerical Aspects and Results 138

4.7 Conclusions 140
CHAPTER 5 PARAMETRIC STUDIES 158
5.1 Introduction . 158

5.2 Parametric Studies and Discussion of Results 158

5.3 Numerical Aspects 162
CHAPTER 6 EXPERIMENTAL WORK 185
6.1 Introduction 185

6.2 Moored Buoy Tests in Calm Water and in Regular Waves 186

6.2.1 Description of Calibration Procedures 186

i



6.2.2 Analysis and Comparison of the Measurements
6.3 Single Point Moored Tanker-Buoy Experiments

6.3.1 Description of Calibration Procedures

6.3.2 Analysis and Comparison of the Measurements

6.3.3 Observations and Experience from Model Tests

6.4 Conclusions

CHAPTER 7 CONCLUSIONS
7.1 General Conclusions of Thesis

7.2 Recommendations for Future Work

APPENDIX A Evaluation of Mooring Forces
APPENDIX B Elliptical Coordinate System
APPENDIX C Some Properties of Mathieu Functions
APPENDIX D Derivation of the Incident Wave
Potential for the Elliptical Cylinder
APPENDIX E Blanch's Definition for Radial Functions

REFERENCES

iii

187
192
192
193
194
194

237
237
242

243

248

249

252
255

257



LIST OF FIGURES Page

CHAPTER 1
Fig. 1.1 CALM System 8
Fig. 1.2 ELSBM System 8
Fig. 1.3 SPAR 9
Fig. 1.4 SALM 9
Fig. 1.5 Fixed Mooring Tower 10
Fig. 1.6 Articulated Mooring Tower 10
CHAPTER 2
Fig. 2.1 Co-ordinate Systems and Cylindrical and

Conical Buoy Geometries 41
Fig. 2.2 A Typical Differential Cable Element 42
Fig. 2.3 Definition of Cable Parameters 42
Fig. 2.4 Horizontal Displacement-Horizontal Displacement 43
Fig. 2.5 Horizontal Displacement-Vertital Displacement 43
Fig. 2.6 Vertical Displacement-Horizontal Displacement 43
Fig. 2.7 Vertical Displacement-Vertical Displacement 43
Fig. 2.8 Top View of a Multi-Cable System 44
Fig. 2.9 Multi-Cable Systems 44

Fig. 2.10 Wave Induced Forces and Resulting
Responses of the Cylindrical Buoy 45
Fig. 2.11 Wave Induced Forces and Resulting

Responses of the Conical Buoy 46
Fig. 2.12 Motion Response Predictions of the Cylindrical Buoy 47
Fig. 2.13 Motion Response Predictions of the Conical Buoy 48
Fig. 2.14 Stiffness Curves for Linear and Non-linear Cables 49

iv



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

2.15

2.15a

2.16

2.16a

2.17

2.17a

2.18

2.18a

2.19

2.19a

2.20

2.20a

Motion Response Simulation of a Circular

Buoy with Non-linear Cables

Wave Height=4 m, Wave Frequency=0.04 rad/sec
Fast Fourier Transformations of the

Time Histories Shown in Fig. 2.15

Motion Response Simulation of a Circular

Buoy with Linear Cables

Wave Height=4 m, Wave Frequency=0.04 rad/sec
Fast Fourier Transformations of the

Time Histories Shown in Fig. 2.16

Motion Response Simulation of a Circular

Buoy with Non-linear Cables

Wave Height=4 m, Wave Frequency=0.1 rad/sec
Fast Fourier Transformations of the

Time Histories Shown in Fig. 2.17

Motion Response Simulation of a Circular

Buoy with Non-linear Cables |
Wave Height=4 m, Wave Frequency=0.3 rad/sec
Fast Fourier Transformations of the

Time Histories Shown in Fig. 2.18

Motion Response Simulation of a Circular

Buoy with Non-linear Cables

Wave Height=4 m, Wave Frequency=0.5 rad/sec
Fast Fourier Transformations of the

Time Histories Shown in Fig. 2.19

Motion Response Simulation of a Circular

Buoy with Non-linear Cables

Wave Height=4 m, Wave Frequency=0.9 rad/sec
Fast Fourier Transformations of the

Time Histories Shown in Fig. 2.20

50

51

52

53

54

55

56

57

58

59

60

61



CHAPTER 3

Fig. 3.1

Fig. 3.2

Fig. 3.3

Fig. 3.4

Fig. 3.5

Fig. 3.6

Fig. 3.7

Fig. 3.8

Fig. 3.9

Fig. 3.10

Fig. 3.11

Fig. 3.12

Fig. 3.13

Fig. 3.14

Fig. 3.15

Elliptical Cylinder and Real Tanker Hull Comparison
Elliptical Coordinates
Non-dimensionalised Surge Force
Ship Breadth/Ship Length=0.995
Non-dimensionalised Surge Force
Ship Breadth/Ship Length=0.7
Non-dimensionalised Surge Force
Ship Breadth/Ship Length=0.5
Non-dimensionalised Surge Force
Ship Breadth/Ship Length=0.3
Non-dimensionalised Surge Force
Ship Breadth/Ship Length=0.2
Non-dimensionalised Surge Force
Ship Breadth/Ship Length=0.15
Non-dimensionalised Surge Force
Ship Breadth/Ship Length=0.1
Non-dimensionalised Surge Force
Ship Breadth/Ship Length=0.05
Non-dimensionalised Sway Force
Ship Breadth/Ship Length=0.995
Non-dimensionalised Sway Force
Ship Breadth/Ship Length=0.7
Non-dimensionalised Sway Force
Ship Breadth/Ship Length=0.5
Non-dimensionalised Sway Force
Ship Breadth/Ship Length=0.3
Non-dimensionalised Sway Force
Ship Breadth/Ship Length=0.2

vi

82
82

83

84

85

86

87

88

89

91

92

93

94

95



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

Non-dimensionalised Sway Force
Ship Breadth/Ship Length=0.15
Non-dimensionalised Sway Force
Ship Breadth/Ship Length=0.1
Non-dimensionalised Sway Force
Ship Breadth/Ship Length=0.05
Non-dimensionalised Yaw Moment
Ship Breadth/Ship Length=0.999
Non-dimensionalised Yaw Moment
Ship Breadth/Ship Length=0.995
Non-dimensionalised Yaw Moment
Ship Breadth/Ship Length=0.7
Non-dimensionalised Yaw Moment
Ship Breadth/Ship Length=0.5
Non-dimensionalised Yaw Moment
Ship Breadth/Ship Length=0.3
Non-dimensionalised Yaw Moment
Ship Breadth/Ship Length=0.2
Non-dimensionalised Yaw Moment
Ship Breadth/Ship Length=0.15
Non-dimensionalised Yaw Moment
Ship Breadth/Ship Length=0.1
Non-dimensionalised Yaw Moment
Ship Breadth/Ship Length=0.05
Sway Force

Angle of Incidence=225 Degree
Sway Force

Angle of Incidence=270 Degree
Yaw Moment

Angle of Incidence=225 Degree

vii

96

98

99

100

101

102

103

104

105

106

107

108

108

109



Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig._

Fig.

3.31

3.32

3.33

3.34

3.35

3.36

3.37

3.38

3.39

3.40

3.41

3.42

3.43

3.44

3.45

Surge Force

Angle of Incidence=225 Degree

Surge Force

Angle of Incidence=180 Degree

Comparison of Surge Force Acting on a Cylinder
Ship Breadth/Ship Length=0.995

Comparison of Added Mass Coefficient in Surge
all'=al1/(RO*PI*a*b*draught)

Comparison of Added Mass Coefficient in Sway
a22'=a22/(RO*PI*a*b*draught)

Comparison of Added Mass Coefficient in Yaw
a66'=a66/(RO*PI*a*b*draught*4*a*a)
Comparison of Damping Coefficient in Surge
b11'=b11/(RO*PI*a*b*draught*(g/a)*0.5)
Comparison of Damping Coefficient in Sway
b22'=b22/(RO*PI*a*b*draught*(g/a)*0.5)
Comparison of Damping Coefficient in Yaw
b66'=b66/(RO*PI*a*b*draught*(g/a)*0.5*4*a*a)
Comparison of Added Mass Coefficient in Surge
all'=al1/(RO*PI*a*b*draught)

Comparison of Added Mass Coefficient in Sway
a22'=a22/(RO*PI*a*b*draught)

Comparison of Added Mass Coefficient in Yaw
a66'=a66/(RO*PI*a*b*draught*4*a*a)
Comparison of Damping Coefficient in Surge
b11'=b11/(RO*PI*a*b*draught*(g/a)*0.5)
Comparison of Damping Coefficient in Sway
b22'=b22/(RO*PI*a*b*draught*(g/a)*0.5)
Comparison of Damping Coefficient in Yaw
b66'=b66/(RO*PI*a*b*draught*(g/a)*0.5*4*a*a)

viii

109

110

111

112

112

112

113

113

113

114

114

114

115

115

115



Fig. 3.46

Fig. 3.47

Fig. 3.48

Fig. 3.49

Fig. 3.50

Fig. 3.51

Fig. 3.52

Fig. 3.53

Fig. 3.54

CHAPTER 4

Fig. 4.1

Fig. 4.2

Fig. 4.3

Fig. 4.4

Surge Response

Angle of Incidence=180 Degree

Surge Response

Angle of Incidence=225 Degree

Sway Response

Angle of Incidence=225 Degree

Sway Response

Angle of Incidence=270 Degree

Yaw Response

Angle of Incidence=225 Degree

Mean Surge Drift Force

Angle of Incidence=45 Degree

Mean Sway Drift Force

Angle of Incidence=45 Degree

Mean Surge Drift Force

Angle of Incidence=0 Degree

Mean Dirift Force Acting on a Circular Cylinder
Extending from Free Surface to Sea Bottom

Wind Spectrums

Mean Wind Speed=22 m/sec

Wind Force Spectrum

Projected Area=472 m"2, Mean Wind Speed=22m/sec

Linear Response Spectrum

Stiffness Coe.=1200 kN/m, Mass+Added Mass=173154 Ton.

Damping Ratio=0.05
Wind Velocity Time History
Mean Wind Speed=22 m/sec

1x

116

116

116

117

117

118

118

118

119

141

142

143

144



Fig.

Fig.

Fig.
Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

4.5

4.6

4.7
4.8

4.9
4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

Jonswap Wave Spectrum and Slowly Varying Force Spectrum
Significant Wave Height=10 m, Zero Crossing Period=12 sec

Linear Response Spectrum

Stiffness Coe.=1200 kN/m, Damping Ratio=0.05

Time History of Slowly Varying Forces in Irregular Waves
Wave Dirift Forces for Different Forward Speeds

Angle of Incidence=0 Degree

Frequency Domain Modelling of the Tanker-Buoy System
Experiment Set-up of the Tanker-Buoy System

Co-linear Environmental Forces

Surge Motion of the Tanker

Co-linear Environmental Forces

Surge Motion of the Buoy

Co-linear Environmental Forces

Surge Response of the Tanker

Wave Height=8 m, Wind Velocity=20 m/sec

Current Velocity=1.5 m/sec

Surge Response of the Buoy

Wave Height=8 m, Wind Velocity=20 m/sec

Current Velocity=1.5 m/sec

Approximation to the Retardation Function

by Chebyshev Polynoms

Approximation to the Retardation Function

by Chebyshev Polynoms

Approximation to the Retardation Function

by Chebyshev Polynoms

Comparison Between Static and Dynamic Wind

Mean Wind Speed=22 m/sec, Current Speed=1.5 m/sec
Co-linear Environmental Forces, Ochi-Shin Wind Spectrum
Motion Response and Hawser Tension Predictions

Mean Wind Speed=22 m/sec, Current Speed=1.5 m/sec

145

146
147

148
149

150

151

151

152

152

153

154

155

156



CHAPTER 5

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

5.1
52

5.3

54

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

Significant Wave Height=10 m, Ochi-Shin Wind Spectrum

Co-linear Environmental Forces

Coupled Buoy-Ship System

Time Domain Simulation of the Tanker-Buoy System

Pierson Moskowitz Spectrum, Mean Wind Speed=10.3 m/sec
Time Domain Simulation of the Tanker-Buoy System

Pierson Moskowitz Spectrum, Mean Wind Speed=20.6 m/sec
Time Domain Simulation of the Tanker-Buoy System

Pierson Moskowitz Spectrum, Mean Wind Speed=25.8 m/sec
Time Domain Simulation of the Tanker-Buoy System
Ochi-Shin Wind Spectrum, Mean Wind Speed=22 m/sec
Time Domain Simulation of the Tanker-Buoy System
Davenport Wind Spectrum, Mean Wind Speed=22 m/sec
Time Domain Simulation of the Tanker-Buoy System

Harris Wind Spectrum, Mean Wind Speed=22 m/sec

Time Domain Simulation of the Tanker-Buoy System

4 Legged CALM System

Time Domain Simulation of the Tanker-Buoy System

Hawser Length=40 m

Time Domain Simulation of the Tanker-Buoy System
Thruster Force=250 kN

Time Domain Simulation of the Tanker-Buoy System
Thruster Force=500 kN

Time Domain Simulation of the Tanker-Buoy System
Thruster Force=750 kN

Time Domain Simulation of the Tanker-Buoy System
Diameter of the Buoy=20 m, Draft of the Buoy=20 m

X1

157

172

173

174

175

176

177

178

179

180

181

182

183

184



CHAPTER 6

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

6.1

6.2
6.3
6.4
6.5
6.6

6.7
6.8
6.9

6.10

6.11

6.12

6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21

Motion Response and Cable Tension

Measurements of the Conical Buoy

Experiment Test Set-up (Mooring Configuration A)
Geometrical Characteristics of Conical and Cylindrical Buoys
Experimental Set-up for the Coupled Buoy-Ship System
Coupled Tanker-Buoy System

Experimental Set-up of the Tanker-Buoy System

Wave and Current Acting in Different Directions

Stiffness Characteristics of Mooring Lines

Stiffness Characteristics of Hawser

Motion Response Measurements of the Moored Conical Buoy
Wave Height=6 m, Wave Frequency=0.702 rad/sec

(All values are in full scale)

Fast Fourier Transformations of the

Time Histories Shown in Fig. 6.9

Motion Response Measurements of the Moored Conical Buoy
Wave Height=8.84 m, Wave Frequency=0.45 rad/sec

(All values are in full scale)

Fast Fourier Transformations of the

Time Histories Shown in Fig. 6.11

Heave Response Measurements of the Moored Conical Buoy
Surge Response Measurements of the Moored Conical Buoy
Pitch Response Measurements of the Moored Conical Buoy

197
198
199
200
201

201

202

202

203

204

205

206
207
207
207

Heave Response Measurements of the Moored Cylindrical Buoy208
Surge Response Measurements of the Moored Cylindrical Buoy 208
Pitch Response Measurements of the Moored Cylindrical Buoy 208

Heave Response Predictions of the Conical Buoy
Heave Response Predictions of the Cylindrical Buoy
Surge Response Predictions of the Conical Buoy

xii

209
210
209



Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

6.22
6.23
6.24
6.25

6.26
6.27

6.28

6.29
6.30

6.31

6.32

6.33

6.34

6.35
6.36

6.37

6.38

6.39

6.40
6.41

Surge Response Predictions of the Cylindrical Buoy
Pitch Response Predictions of the Conical Buoy
Pitch Response Predictions of the Cylindrical Buoy
Second-order Surge Response

Measurements of the Conical Buoy

Steady Surge Response Measurements of the Conical Buoy

Second-order Surge Response

Measurements of the Cylindrical Buoy

210
209
210

211
211

212

Steady Surge Response Measurements of the Cylindrical Buoy 212
Surge Stiffness of the Cylindrical Buoy due to the Surge Motion213

Natural Frequency Test of the Moored Conical Buoy in Waves

Wave Frequency=0.4 rad/sec, Wave Height=5 m
(All values are in full scale)

Experiment Test Set-up (Mooring Configuration A)
Surge Response Measurements of the Conical Buoy
Wave Height=5m

Heave Response Measurements of the Conical Buoy
Wave Height=5m

Pitch Response Measurements of the Conical Buoy
Wave Height=5m

Motion Response Predictions of the Conical Buoy
Second-order Surge Measurements of the Conical Buoy
Wave Height=5m

Steady Surge Measurements of the Conical Buoy
Wave Height=5m

Calculation of Damping Coefficient from

the Rate of Decaying Oscillations

Damping Coefficients of the Conical Buoy
(Mooring Configuration B)

214
215

216

216

216
217

218

218

219

220

Current Effect on the Motion Responses of the Cylindrical Buoy221

Experimental Test Set-up A

Xiii

222



Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49

6.50

6.51

6.52

6.53

6.54
6.55
6.56
6.57
6.58

Experimental Test Set-up B

222

Natural Frequency Test of the Conical Buoy with Linear Springs223

Damping Coefficients of the Conical Buoy (Test Set-up A)
Damping Coefficients of the Conical Buoy (Test Set-up B)

Instrumentation

Surge Motion of the Buoy, Co-linear Environmental Forces

Surge Motion of the Tanker, Co-linear Environmental Forces

Motion Response and Hawser Tension
Measurements in Co-linear Current and Wave
Wave Frequency=0.4 Hz, Wave Height=4.10 cm
Current Force=6 gr

Motion Response and Hawser Tension
Measurements in Co-linear Current and Wave
Wave Frequency=0.5 Hz, Wave Height=3.70 cm
Current Force=6 gr

Motion Response and Hawser Tension
Measurements in Co-linear Current and Wave
Wave Frequency=1.4 Hz, Wave Height=3.50 cm
Current Force=6 gr

Motion Response and Hawser Tension
Measurements in Co-linear Current and Wave
Wave Frequency=0.8 Hz, Wave Height=5.57 cm
Current Force=6 gr

Natural Frequency Test of the Tanker-Buoy System'in Current

Current Force=26 gr

Oblique Angle Tests of the Tanker Buoy System
Oblique Angle Test, Run No. 11

Oblique Angle Test, Run No. 12

Oblique Angle Test, Run No. 13

Oblique Angle Test, Run No. 14

Xiv

224
224
225
226
226

227

228

229

230

231
232
233
234
235
236



APPENDICES

Fig. A-1 Definition of Cable Parameters 243

LIST OF TABLES

Table 2.1 Comparison of the Motion Responses of a Moored Cylindrical
Buoy with Linear and Non-linear Modelling of Mooring
Lines in Regular Waves. Wave Height=4 m 39
Table 2.2 Comparison of the Motion Responses of a Moored Cylindrical
Buoy with Linear and Non-linear Modelling of Mooring

Lines in Regular Waves. Wave Height=12 m 40
Table 5.1 Effect of Wave Direction 163
Table 5.2 Effect of Wind Direction 163
Table 5.3 Effect of Current Direction 164
Table 5.4 Effect of Current Velocity 164
Table 5.5 Effect of Wind Velocity 165
Table 5.6 Effect of Wave Height 165
Table 5.7 Effect of Sea State 166
Table 5.8 Effect of Wind Spectrum 167
Table 5.9 Effect of Mooring Legs 168
Table 5.10  Effect of Hawser Length 169
Table 5.11  Effect of Thrusters 170
Table 5.12  Effect of Buoy Geometry 171

Table 6.1 Oblique Wave and Current Loading Test Conditions and Results 196

Xy



ACKNOWLEDGEMENTS

The author is grateful for the help of the members of the Department of Naval
Architecture and Ocean Engineering at the University of Glasgow during the research
study reported in the thesis.

The author would like to thank the following;

Professor D. Faulkner, Head of Department, for allowing him to carry out this

study and for his continuous encouragement.

Dr. A. Incecik, Superintendent of the Hydrodynamics Laboratory, for

supervising this research and for his tireless assistance and encouragement.
Dr. LLH. Helvacioglu for his stimulating discussions and valuable assistance.

Dr. M. Soylemez for his contribution to the time domain techniques used in the

thesis.

Dr. H.S. Chan for allowing him to use his program and for his instructive

discussions.

Mr. D. Percival for his assistance during the development of the computer

programs.

Mr. R.B. Christison and the staff at the Hydrodynamics Laboratory for their

help during the experiments.

Finally, the financial support from the Turkish Ministry of Education is
gratefully acknowledged.

Xvi



DEDICATED TO MY PARENTS

Xvii



DECLARATION

Except where reference is made to the work of others,

this thesis is believed to be original

XViii



SUMMARY

This thesis describes the environmental loading and motion response prediction

methods of mooring systems.

The first chapter presents existing Single Point Mooring Terminals and gives a
summary of previous studies carried out on this subject. The main objectives of the study
are also explained. Finally the structure of the thesis is given.

The second chapter is concerned with the motion response prediction of moored
buoys. Wave forces acting on the buoy are calculated using Morison's Equation.
Catenary equations are utilized to derive cable forces. Two different buoy geometries,
cylindrical and conical, are considered in the study. Experimental measurements are
compared with time and frequency domain modellings.

In the third chapter, diffraction theory used to derive the wave forces is explained.
The tanker is modelled as a vertical elliptical cylinder with a finite draught. Calculated
wave forces are compared with Oortmerssen's experiments and with the results of a 3-D
program developed by Chan. The water depth effect on wave forces is investigated.
Program results for various angles of incidence and for different elliptic cylinders are
presented. The second order mean force is calculated using the far-field approach,
introduced by Maruo. Also the radiation problem of the tanker which is modelled as an
elliptical cylinder is solved. Program results are compared with Oortmerssen's
experiments and with Chan's 3-D program results. Program results for different cylinders
and for different water depth/draught ratios are presented.

Chapter 4 describes a time domain model used to predict the motion responses of
a tanker-buoy system under wave, wind and current loading. Motion equations of the
tanker-buoy system are derived by using Cummins' method. Frequency-independent
hydrodynamic coefficients and time histories of wave forces in irregular seas are
calculated. Experimental measurements are compared with the time domain simulation
results.

Chapter 5 presents the results of a series of parametric studies. A computer

program developed to predict the motion responses of the coupled tanker-buoy system is
run for different parameters, such as; wave, wind and current angle of attacks, wind and

Xix



current speed, elasticity of the mooring lines and the hawser line, buoy and tanker
geometry, water depth, draught of the ship. Numerical aspects of the program, such as
the solution of the differential equations and the evaluation of the convolution integral are
discussed.

In chapter 6 a description of model tests performed in regular waves is presented.
Two sets of experiments are conducted. The first set of experiments aims to predict the
motion responses of conical and cylindrical buoys, the second to predict the motion
responses of the tanker-buoy system and the hawser line forces.

In the final chapter general conclusions are drawn and some recommendations for
future work are made.
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CHAPTER 1
INTRODUCTION

1.1 SINGLE POINT MOORING SYSTEMS

A large number of Single Point Mooring (SPM) systems have been installed in
various parts of the world over the past 30 years. As North Sea oil production moves
towards a greater dependence on smaller reservoirs, not only in comparatively shallow
water on the continental shelf, but also in deeper water off it, there will be a
correspondingly greater role for floating production facilities. An example of such a
facility is a large tanker moored to a single point. A single point moored tanker
weathervanes according to the prevailing weather conditions thus staying on location with
a minimum of mooring loads. Single point mooring systems have been installed in
various parts of the world and depending on the weather conditions they vary from
chain/turret systems to rigid-articulated systems and hybrid-type structures. Economic
viability is one reason for this tendency towards SPM systems as they have become
alternatives to fixed platforms and subsea pipelines for transportation of oil and gas which
becomes an important part of the oil-field development as offshore production activities
move into deeper waters. Another noticeable distinction of such systems is that they can
endure severe sea and weather conditions. As a result they experience numerous
combinations of wave, wind and current. Therefore dynamic analysis of such systems is

essential to ensure satisfactory overall performance of these systems.

As single-point mooring systems have increased in size and complexity, a
pressing need has arisen for a method of objectively assessing competing designs. A
computer-based mathematical model would provide a quick and cost effective means for
design assessment. The programs would also provide an independent check on physical

model tests of the final design, which would be of use to manufacturers, designers and



certifying authorities. Prediction of the motion responses of moored buoys and mooring
forces should be the first step towards the understanding of the dynamic behaviour of the
single-point mooring systems under environmental conditions.
Several types of Single Point Mooring systems exist:
1. CALM (Catenary Ahchor Leg Mooring)
2. ELSBM (Exposed Location Single Buoy Mooring)
3. SPAR
4, SALM (Single Anchor Leg Mooring)
5. Fixed Mooring Tower
6. Articulated Mooring Tower
7. Yoke Moored Storage

The idea of SPMs is to moor a vessel to a single point and allow it to weathervane

under environmental forces to take up the position with minimum mooring loads. All of

the SPMs mentioned abo@e have the means to transfer oil to (or from) the tanker through
pipelines. Some of the SPM systems are shown in Figs. 1.1-1.6. CALM is the original
and the most common system in operation which represents about 80 % of all the existing
SPMs. It consists of a simple cylindrical buoy which is designed with a rotating deck and
an underwater hose connection for the pipelines. ELSBM is an improved design of
CALM systems which solves the fatigue problem of the hoses by increasing the
submerged volume of the buoy, thus minimising heaving forces. Another aspect of the
ELSBM s is that the loading lines between the buoy and the tanker are raised above the
waves to minimise the wave loading. Another version of CALM systems is the SPAR
design. The SPAR design has oil storage capacity, unlike other CALM systems. In
SALM systems the buoy is moored to a base at the sea bottom by a single anchor leg.
There are some advantages of SALM systems over CALM systems; firstly the fluid
swivel system is independent of the buoy, thus the hoses attached to the leg are not liable
to the forces exerted by the buoy motions, secondly the cargo transfer system of the
SALMs is less likely to be affected by collisions. The idea behind the Fixed Mooring
Tower is that cargo can be transferred by pipelines thus eliminating the problems related
to the loading hoses. Articulated Mooring Towers are preferable to fixed mooring towers



because the structural loads on the articulated tower are much less than the structural load

on fixed tower.

1.2 SUMMARY OF PREVIOUS WORK

Several researchers have studied the dynamic response of SPM systems under
wave, wind and current loading using numerical simulation and measurement techniques.
Haring [1.1] in his paper summarises the full scale measurements which were recorded
aboard the 45000 DWT tanker Theotokos at Ekofisk in the North Sea. He concluded in
his paper that the maximum tension in the bow hawser was primarily a function of the
wave height; that mooring force predictions based on model test data would overestimate
full scale measurements under stormy conditions and that measured long period yaw
cycles exceeded in magnitude those observed in model tests. Wichers [1.2] studied the
dynamic stability and the natural frequencies of the modes of motions of the tanker in the
horizontal plane in steady current and wind. It is concluded in the paper that a ship
moored to an SPM system can undergo low frequency oscillations in the horizontal plane
in wind and current only when the equilibrium position of the ship is unstable. Owen and
Linfoot [1.3, 1.4] have presented a mathematical model describing the low frequency
motion of an SPM system. It was discussed in the paper that differential equations of
motion of SPM systems were mathematically "stiff" and required special treatment. Muga
and Freeman [1.5] used an Impulse Response Function technique to model the motions
of a single point moored ship in steady wind and current. Wichers [1.6] formulated the
motion equations of a Single Point Moored tanker in three degrees of freedom in wind
and current. He derived two sets of motion equations, one of them uses the impulse
response function technique of Cummins [1.31] to determine the hydrodynamic
coefficients while the other one uses constant added mass and damping coefficients. It
was concluded in the paper that when there are no sudden changes in motions of tanker
both of the motion equations give very close results. Oortmerseen [1.7] studied the time
domain analysis of a single point moored ship by using the Impulse Response Function
technique. In 1979 Faltinsen et al [1.8] and [1.9] applied seven degrees of freedom linear

stability equations to study the slow motions of a tanker moored to a buoy. It was



recommended in the paper that cross mooring between the ship and the buoy and
thrusters be used to increase the stability of the system. It was also suggested that
transverse current force and yaw moment on the ship for small angles of attack could be
obtained by lifting-line theory and Munk moment. Another mathematical model of a ship
at a single point mooring was developed by Ractliffe and Clarke {1.10]. In the paper the
effect of different parameters on the motions of the tanker are discussed. Selection and
design methods of SPM terminals were discussed by Bliault and Stewart [1.11]. In their
paper they highlighted the importance of model tests and mathematical models when
selecting a SPM terminal. A stability analysis of tankers in single point moorings was
carried out by Sgrheim [1.12]. Sgrheim stated that some general patterns of ship stability
in SPM terminals could be given by a single formula assuming zero damping and small
motion amplitudes. Molin and Bureau [1.13] presented a simulation model for the
dynamic behaviour of single point moored tankers in waves, wind and current. Their
model differs from Wichers' [1.6] in the ideal fluid-current force calculation. The "wave
damping” was introduced by Wichers [1.14] in formulating the motion equation of a
moored tanker in irregular head waves. Wichers stated that the motion equation with low
frequency still water damping coefficient overestimated the experimental measurements
whereas the inclusion of the wave damping in the motion equation provided a better
correlation with the measurements. Wichers and van den Boom [1.15] presented a time
domain modelling of combined high and low frequency motions of single point moored
tankers. In the paper fluid reactive forces were taken into account by convolution integrals
and first and second order wave forces were evaluated using impulse response
techniques. Low frequency fluid reactive forces were experimentally determined in the
paper for a range of relative current speeds, yaw velocities, loading conditions and water
depths, then results were expressed in terms of Fourier series. Their formulations were
also compared with the formulations given by Gerritsma et al [1.16], which consider
three contributions to the overall flow: 1) ideal flow forces 2) forces due to viscous cross
flow 3) lift forces generated by viscosity. A model to account for hull-propeller-rudder
interactions was introduced by Oltmann and Sharma [1.17]. Later the same model was
used by Jiang and Schellin [1.18], [1.19], [1.20] and [1.21] to carry out the stability

analysis and motion simulation of a single point moored tanker. The stability of SPM



systems was also studied by Papoulias [1.22] and Bernitsas [1.23] and [1.24]. Wichers
[1.25] and [1.26] presented recent developments in computer simulations of single point
moored vessels. He carried out simulation calculations for two models. The first model
was based on a 1-DOF system in which wave drift damping and viscous surge damping
were examined in current and still water. The second model was on a 3-DOF system
when Wichers compared his formulations of equations of motion with those given by
Molin [1.13] and Obokata [1.27]. A semi empirical method with the use of experimental
data to calculate the wave drift and viscous damping forces was also presented by
Wichers [1.28]. Aghamohammadi and Thompson [1.29] carried out some experiments to
investigate the large amplitude fish-tailing instabilities of a single point moored tanker.
Effects of dynamic wind, current and waves on the stability of a single point moored

tanker were investigated by de Kat and Wichers [1.30].

1.3 OBJECTIVES OF STUDY

As explained in the first section dynamic analysis of Single Point Mooring

systems is necessary at the initial design stage of these systems.

The overall aim of this research is to study the environmental loading and motion
response of moored objects such as moored buoys and Single Point Mooring Systems
and to provide the designer with the tools that could be used at the design of these
systems. In analysing the moored systems particular attention is given to the time domain
simulation techniques. Wave forces acting on moored buoys are derived by using
Morison's equation and time and frequency domain simulation techniques are utilized to
analyse the motion characteristics of moored buoys. A vertical cylinder of elliptical cross
sections is used to model the tanker in a CALM system. Hydrodynamic coefficients and
wave forces obtained from the solution of diffraction and radiation problems of the
elliptical cylinder are used in the time domain simulations. By modelling the tanker as an
elliptical cylinder it is also possible to produce the wave forces at each time step without
the need of creating a database since the wave forces on an elliptical cylinder is obtained

semi analytically by using the Mathieu functions. Effect of dynamic wind and random



waves are also incorporated in the study. At each stage of the study prediction methods
are validated by experiments.

1.4 STRUCTURE OF THESIS

The study starts with the motion response simulation of moored buoys. Chapter 2
is thus devoted to the motion response prediction of moored buoys. Wave forces acting
on the buoy are calculated using Morison's Equation. Catenary equations are utilized to
derive cable forces. Two different buoy geometries, cylindrical and conical, are
considered in the study. Experimental measurements are compared with time and
frequency domain modellings. In chapter 3, diffraction theory used to derive the wave
forces is explained. The tanker is modelled as a vertical elliptical cylinder with a finite
draught. Calculated wave forces are compared with Oortmerssen's experiments and with
the results of a 3-D program developed by Chan. The water depth effect on wave forces
is investigated. Program results for various angles of incidence and for different elliptic
cylinders are presented. The second order mean force is calculated using the far-field
approach, introduced by Maruo. Also the radiation problem of the tanker which is
modelled as an elliptical cylinder is solved. Program results are compared with
Oortmerssen's experiments and with Chan's 3-D program results. Program results for
different cylinders and for different water depth/draught ratiou are presented. Chapter 4
describes a time domain model used to predict the motion responses of a tanker-buoy
system under wave, wind and current loading. Motion equations of the tanker-buoy
system are derived by using Cummins' method. Frequency-independent hydrodynamic
coefficients and time histories of wave forces in irregular seas are calculated.
Experimental measurements are compared with the time domain simulation results. In
Chapter 5 the results of a series of parametric studies are presented. A computer program
developed to predict the motion responses of the coupled tanker-buoy system is run for
different parameters, such as; wave, wind and current angle of attacks, wind and current
speed, elasticity of the mooring lines and the hawser line, buoy's and tanker's geometry,
water depth, draught of the ship. Numerical aspects of the program, such as; solution of

the differential equations, evaluation of the convolution integral are discussed. Chapter 6



describes the model tests performed in regular waves. Two sets of experiments are
conducted. The first set of experiments aims to predict the motion responses of conical
and cylindrical buoys, the second to predict the motion responses of the tanker-buoy

system and the hawser line forces. Finally some conclusions are drawn in Chapter 7.
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CHAPTER 2
MOTION RESPONSE SIMULATION OF MOORED BUOYS

2.1 INTRODUCTION

In this chapter the motion response of moored buoys under environmental loading
is predicted through time and frequency domain modelling and model tests. In the
following sections of the chapter firstly wave forces acting on the buoy are predicted
using Morison's Equation, secondly mooring forces are evaluated by making use of the
catenary equations, lastly frequency and time domain simulation techniques are presented
and compared with measurements. In the study two different buoy geometries, a circular

cylinder and a right truncated circular cone (frustum), are considered.

The motion response prediction of moored buoys has been the subject of several
investigations. Berteaux in his book entitled Buoy Engineering {2.1], presented a detailed
study of the dynamics of buoys and mooring lines. Remery and Kokkeel {2.2] presented
approximate methods to calculate the hydrodynamic loads acting on a cylindrical buoy
and compared the estimated results with the results of exact computer calculations and
with the results of model tests. It is claimed in the paper that approximations are accurate
enough for comparison of the behaviour of different buoys. Arai and his colleagues
[2.3], studied the motion of a CALM system. In their paper a design method for the
mooring systems is given. In his paper (1977), Koterayama [2.4] carried out theoretical
and experimental studies of a moored floating cylinder and dynamic tension of mooring
lines in waves. He proposed an approximate method to calculate the dynamic tensions, in
which inertia and hydrodynamic forces acting on the chain are taken into account.
Harichandran [2.5] developed a tangent stiffness technique for the static analysis of a
multi leg cable buoy system, in which an approximate method of accounting for the

current drag forces is presented. In his thesis (1982), Tsinipizoglou [2.6] derived a time
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domain model for moored buoys and applied cable mass modelling to the dynamic
analysis of mooring lines. Nakajima [2.7], in his paper (1986), introduced a time domain
simulation technique for moored buoys and also discussed numerical simulations of deep

sea mooring lines. The lumped mass method was used in the paper for the dynamic

~ analysis of mooring lines. In the present study time and frequency domain modelling of

the motion responses of conical and cylindrical buoys will be presented. The equations in
this chapter later will be used in formulating the motion equations of the tanker-buoy
coupled system which features in chapter 5.

2.2 ENVIRONMENTAL LOADING ON BUOYS
2.2.1 Evaluation of Wave Forces Acting on the Buoy

In formulating the forces actin g on a buoy placed in a wave field of
monochromatic regular waves , the potential flow and Airy small amplitude wave theories
are used. In formulating the motion equations of the moored buoy in frequency domain,
buoy motion responses are assumed to be small enough so that the equations of motion of
the buoy are linear. Morison's equation [2.8] is utilized in deriving the wave forces acting
on the buoy. It has been proved by many researchers that Morison's equation is adequate
for the calculation of wave forces on relatively small diameter cylinders provided that the
diameter of the cylinder is less than one-fifth of the wave length [2.9]. As an alternative to

‘'the circular cylinder buoy geometry, a truncated circular cone (frustum) buoy form is

considered to derive wave excitation forces and moments. In formulating the vertical
forces, both dynamic pressure and wave acceleration induced forces acting on the bottom
of the cylindrical and the conical buoy as well as the vertical component of the dynamic
pressure and wave acceleration forces acting on the sides of the conical buoy are taken
into account. In formulating the wave forces acting on the buoy a 2-Dimensional model
was used. In the following, heave and surgé forces and pitchixig moment formulations are

derived for the conical buoy geometry.
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Reference Systems

In formulating the wave induced fo‘rce and moment equations, two right-handed

uuuuuuuuuuuuu

referred to as the wave reference system [Oxyz] , was used to define wave kinematic
equations , i.e. wave particular velocity and accelerations and dynamic wave pressure.
The second co-ordinate system which is referred to as the structure co-ordinate system
[GXYZ] was chosen to calculate wave excitation forces and moments as well as non-
linear hydrostatic and mooring forces. The centre of gravity of the buoy was selected as
the origin of the structure co-ordinate system which oscillates as the buoy moves in

waves. The definition of the reference systems is illustrated in Fig. 2.1.
ave F

The dynaﬁxic wave pressure and wave particle accelerations give rise to the major
part of the heave force. In the following, vertical pressure and acceleration forces are
calculated on a frustum geometry which is examined as an alternative configuration for
the design of mooring buoys. |

Total Heave Force:
Fry = Fap+Fpp + Fpsy 2.1)

where F,; is the acceleration force at the bottom of the frustum.

Fpg and Fps; are the pressure forces at the bottom and the side of the frustum respectively.

Pressure force at the bottom of the frustum:
'dFm =0. 5p gH,, e»xp>(—»Hk)cros(-kl"{ cos0 - O)E)rdrde |

2xR

Fp = 0.5pgH,, exp(~Hk) [ [ cos(kR cos@ - at)rdrdo 2.2)
00 '
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where k is the wave number
p is the water density
g is the gravity acceleration
H,, is the wave height
H is the draft of the frustum
R is the largest radius of the frustum
 is the wave frequency

t is the time
Acceleration force at the bottom of the frustum:
_4 5 2 _
Fg= 3 pR*(-0.5H, o" cosmt exp(—Hk)) (2.3)

where %pR3 is added mass coefficient (k)

Additional forces due to dynamic wave pressure acting on the side of the frustum
are also included in the heave force calculations. The side forces act in opposite direction
to the forces at the bottom of the frustum and have a reducing effect on the total heave

force.

Pressure force acting on the side of the frustum in y direction:

0 2xr
Fpsy =0.5p gH,,sin¢ | [expkzcos(kR(z)cos0 - wt)R(z)d0dz  (2.4)
’ - -HO
R-r
R(Z) =r- H z (25)

~where R(z) is the geometric definition of the frustumslope . - . - -
r is the radius of the frustum on the water surface

The pressure and acceleration force equations can be expressed by taking into

account the motions of the frustum as follows:
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2xR

Fp =0.5p gH, [ [exp[k(-B,rcos0-ByZ +x, ~H+Z)]
00
cos[k(B1 li' cos0+B,,Z; +Xx,)— mt]rdrd(-) (2.6)

E, = %p £(~0.5H, 0 explk(Br(~Zo) + x, ~ H+ Z,)))

cos| k(B sZ +x,) - ot] Q.7
Zg 2n
Fpsy =0.5pgH,sing [  [exp[k(-B3R(Z)cos® - ByZ +x, - H+Zg)|
-H+Zg O
| cos[k(By,R(Z)cos8+By;Z +x,) - t|R(Z)d0dZ (2.8)

where X, is the heave motion, X, is the surge motion

Surge Forces

The pressure, acceleration and drift components of the surge force are calculated
as follows:

Total Surge Force:

Frs = Fp + Fop + Fon 2.9

Acceleration force:

0 2n

FAH=pkMI jAsu;dOdz L (210)
-HO

where ky is added mass coefficient
A, =R(z)d0dz
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0 2xr
Fay =0.5pky H, 0 | [expkzsin(-0t)R(z)d0dz
-HO

where A, is the projection area

u; is the acceleration of the water particle in the x direction
Drift force acting in x direction:

0
Fore =0.5p [ Cou,Ju,|2R(z)dz
-H

0 .
Fou =0.5pCy (0.5H,, 0)’ cos(~at)fcos(-at)| [ 2exp(2kz) R(z)dz
-H

4

where C;, is the drag coefﬁclent
u, is the velocity of the water particle in the x direction

Pressure force acting in x direction:

0 2r
Fpy =0.5p gH,, cos¢ I Iexpkzcos(kR(z)cosO - wt)R(z)d0dz
-HO

(2.11)

(2.12)

(2.13)

(2.14)

The surge force expression written above can also be expressed by taking into

account the motions of the frustum as follows:

Zg
FAH =0.5 pkM HW(DZ chp[k(—B”Z -H+ ZG + X1 )]
~-(H-Zg)

sin[k(B,,Z +x,) - 0t|R(Z)*ndZ

16
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z
l a
Foy = chn (Hw(’))2 I R(Z)CXP[zk(-ﬂ”Z —H+Z; +x )]

—-(H-Zg4)

cos[k(B,,Z +x,) - at] |[cosk(B,,Z + x,) - wt]|dZ (2.16)

Pitch moments due to Heave forces

Pitch moment due to pressure force acting at the bottom of the frustum:

lever= Rcos©

2xR

M,; =0.5pgH, ”exp(—Burcose —ByZs+x,~H+Zg)
00
cos[k(ﬂ”r cosB+B,Zg +x,) - (ot]r cosOrdrd@ .17)

Pitch moment due to pressure force acting on the side of the frustum:

lever = R(z)cos®

Zg 2x

M, =sin(9)0.5pgH, [ [exp[k(-BuR(Z)cos8—ByZ+x, ~H+Z)]

H-Zg 0
cos|k(B,R(Z)cos0 +B,,Z +x,) — wt|R(Z)cos® R(Z)dOAZ  (2.18)

Pitch moment due to Surge forces

Pitch moment due to the wave acceleration force:

lever= Z; +x,

2o
M, =0.5pcos’ ¢ H, 0 [explk(-BnZ—H+Z +x,)]

-(H-Zg) ‘

sin[k(B,,Z + x,) - 0t](Zg +x,)R*(Z) ndZ (2.19)

Pitch moment due to the drift force:

lever= 7
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Zg
M, = %pCD(H,(o)z [R@)exp[2K(~BZ - H+Z; +x,)]

-(H-Z4)

cos[k(BwZ +x,)- mt] cos[k(BnZ +x,)- (ot]ZdZ (2.20)

Pitch moment due to pressure force acting on the side of the frustum is calculated as
follows:

lever=Z
Moesy = [ [ FuZ ' 2.21)

2.2.2 Effect of Current and Wind
2.2.2.1 Current Forces

Currents often have a velocity profile that decays very slowly with depth. Current
can be expected to have an influence over the whole immersed length of the structure. The
presence of current has several effects that need to be taken into account in force

calculations.

Firstly, current affects the water particle velocities of the surface waves. The drag
force on a member is proportional to the square of wave particle velocities, and current
with a low velocity may have a significant effect, particularly at large depths. This effect
is very important for slender members, since the Morison equation used to calculate the
forces on such members is modified both through the velocities and the coefficient Cy,.
The inertia force is not modified in this way, as it is assumed to be proportional to the
water particle accelerations.

3
F, =—pCpA,(V,+V, cosot)[(Vl +V, cosoc)2 +V 2 sin® a]" (2.22)

1
2

where C,, is the drag coefficient
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V, is the water particle velocity due to waves in the x direction
V. is the steady uniform horizontal current velocity
o is the angle between the direction of current and x direction

A, is the projection area

Secondly, current will also modify the surface wave field by altering the wave

amplitude, the velocity of wave propagation and the wave length.

o' =0-V_ kcosa (2.23)

where @’ is the modified frequency
o is the frequency due to waves
k is the wave number, equal to 21t/ A

A is the wave length
The effects of vortex shedding will not be considered here.
2.2.2.2 Wind Forces

Calculation of wind forces on structures is a very difficult task so empirical
formulas have to be used. The wind flow is largely determined by the Reynolds number
and the wind forces are calculated using a Morison type equation. Only the drag term of
the Morison equation is important, because of the relatively low density and high
compressibility of the air. Vortex shedding may occur causing vibration transverse to the

flow direction. We may write the wind pressure at a point as:

1 )
P(t)==p, C,V
(1=>p,C V2 (V) 028

where P(t) is the time-dependent pressure

P. is the density of air

C, is a drag coefficient that depends on the geometrical shape
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V(t) is the time-dependent wind velocity

Mean pressure is obtained by neglecting the fluctuating component of the velocity
and pressure,

P=1p.c,V

1
2 : (2.25)

where V is the mean velocity
and the wind force is expressed as:

F..

wind

_1 T2
=P CaV7A, (2.26)

where A is the projected area of the buoy, exposed to the wind

2.3 EVALUATION OF MOORING FORCES

The mooring line is required to provide a holding force and at the same time it is
subjected to environmental excitation. As a result the mooring line assumes various
configurations changing with time. Since the cable cannot handle compression and , as
explained below, a negative tension usually results in unsatisfactory mooring behaviour ,

a successful design must guarantee positive tensions at all times.

In order to guarantee positive tensions sufficiently large mean forces must be
applied which in turn imply larger cable diameter and high cost. It must be noted that
mooring lines are used to offset steady forces, while oscillatory forces usually deteriorate
their performance especially when they are close to the natural frequencies of the line.
Since most oscillatory forces are caused by the waves one must make sure that the
floating vessel and mooring system will perform satisfactorily given the specific

environmental conditions.
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In most cases a mooring line assumes a slowly changing mean position around
which it performs oscillations. A significant simplification results since we can separate a
static solution referring to the slowly changing position, and a dynamic solution referring
to the deviations from the static solution. As mentioned above the static solution is of
primary interest since it provides the holding forces. The dynamics of a mooring line are
mathematically a very difficult problem and computer solutions using some numerical
scheme are not trivial. The numerical stability of the solution is not guaranteed and

usually depends on the parameters of the system.

Catenary Solution: In the case of a heavy chain with significant sag, the effects of
extensibility are negligible and the weight is the principal load, if the current has a small to

moderate velocity.

A typical differential cable element is shown in the Fig.2.2. The static equilibrium

equations are:
,_dy . LI h™(tan®
y _-&—sm ?o+sm tan ‘) (2.27)
1=To| ginh 2% +sinh™(tan8, ) |- tan@
= w S To a a (228)
y= %[cosh(% +sinh™(tan®, )) —cosh(sinh ™ (tan®, ))] (2.29)
If 6, =0 then;
b QY _ o WX
Y= = sinh( To) (2.30)
= Lo | Ginn(¥X
1= - [smh( T, )] (2.31)
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0

T
y= i[cosh(%) ~ 1] 2.32)

and the vertical tension on the line is,

T, =wl (2.33)

In Appendix A, a solution algorithm based on the method by Orgill et al [2.10] is
given. However, the formulas could be used in a more practical way. From Fig. 2.3 the

horizontal distance X, between the anchor and the attachment point of the mooring line

on the vessel could be written as follows,
XT =l-—1.+x, (2'34)

By using Equation (2.31) and (2.32) the following relation between h and 1, can

be written,

— 12
12 =h?+2ha (2.35)

By using Equation (2.35) to express 1, and Equation (2.32) to express x, the

relation between X and T, can be written as,

1
_ as a4, N
X —l—h(l+2-}-l-)2 +acosh (1+;) (2.36)
where
- TO
a= 2 2.37)
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By using Equation (2.36) and (2.33) horizontal force-horizontal displacement and
vertical force-horizontal displacement are plotted in Figs. 2.4 and 2.5. Also horizontal
force-vertical displacement and vertical force-vertical displacement are calculated by

keeping X, constant in Equation (2.36) (Figs. 2.6 and 2.7).

The procedure outlined for one cable could be generalized for multi-cable systems
(Fig. 2.8 and 2.9). Horizontal and vertical forces and yaw and pitch moments can be

written as follows,

' = iTm cos ¢,

i=l

FzM = i Tzi

i=1 (2.38)

F:l = zTOi(xi sin¢; —y;cos9;)
i=1

M= Z(Tmzi +T,x,)

i=l

2.4. MOTION RESPONSES OF THE BUOY UNDER WAVE
EXCITATION IN FREQUENCY DOMAIN

Heave, surge and pitch motion equations of the cylindrical and conical buoy were

solved in the frequency domain.

Heave Response of the cylindrical buoy: A differential equation representing the heave

motion of the cylindrical buoy can be written as:
Ai+c,z+k,z=F, (2.39)

where A, =Mass + Added mass in heave
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4
=pgR2H+§pR3 (240)

¢, is the damping coefficient

k, is the restoring term

=pgA,+k, =pgrnR’+k_ (2.41)
F, is the vertical force and consists of in-phase out-phase components.

F, = Asinot + Bcoswt (2.42)

Where A=0, B=0.5pgH, e ™ tR? +4pR*(-0.5H, w’e™™)+
p P

0 2x
+0.5pgH, [ [e"cos(kR(z)-wt)R(z)dBdz

-HO
Solution of the differential equation will be in the following form,
z=7sinwt+Z, coswt (2.43)
If Equation (2.43) is substituted in (2.39), coefficients of the solution are obtained

_A(0,’-0")+280, 0B’ _ B0, -0*)+2fw 0A’
(@2 - 0*) +(280,0)’ and 2 (@,% - 0% + (20, 0)’

(2.44)

Z,

where A’=A/A,,B’=B/A,, 0> =k,/A, and 28w, =c, /A,
, is the natural frequency of the system

€ is a dimensionless quantity called viscous damping factor
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c
E=_* (2.45)
. .. . . 2k
where C., is the critical damping coefficient ¢, =2A,0, = ° z
Heave Response of the conical buoy: A differential equation representing the heave

motion of the frustum will be similar to Equation (2.39). However, the added mass of the
frustum will be calculated as follows:

A, = %nH(rz +R+RY)+ %pR3 +§pR53sin2 a (2.46)
S
Rg = T (2.47)

where S is the lateral surface area of the frustum.

S=n(r+R)}WH> +(R-r1) (2.48)
sinq = R-r
J(R — r)2 + H2 (2.49)

Due to the geometrical configuration of the frustum, stiffness term in the motion
equation will be non-linear. However In order to solve the differential equation in the
frequency domain, we assume that the stiffness term linearly changes with the heave
motion. The solution of the differential equation will be equal to the expressions (2.43)
and (2.44) except for the added mass term.
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Surge Response of the cylindrical buoy: It is represented by a differential equation as

follows:
Ax+cx+kx=F (2.50)

where A, =Mass + Added mass for surge
1 2
= ZCMpuD H (2.51)

D is the diameter of the cylinder
c, is the damping coefficient
k, is the restoring term due to the mooring lines

E; is the horizontal force consisting in-phase and out-phase components

Fy = Asinot + Bcosmt (2.52)

A and B in Equation 2.52 are as follows:

0 2x
A =0.5pkH, o’ j [e"R(z)d0dz

-H 0

0
B =0.5pCp (0.5H,, 0)? [cos(t)] [2¢”R(z)dz+

-H
0 2n

+0.5pgH, cos¢ [ [e”R(z)d0dz
-HO

cos(ot)|cos(wt)| term in the above equation can be linearized by representing this term in
Fourier series. If the first term of the Fourier series only is taken into account, then the

nonlinear term can be expressed as follows:

cos(mt)|cos(wmt)| = %cos((ot)
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The solution of the differential Equation (2.50) is similar to the solution of
Equation (2.39).

Surge Response of the conical buoy: A differential equation representing the surge motion
of the frustum will be similar to the Equation (2.50). However, the added mass of the

frustum will be calculated as follows:

A, =-;-1chM (r’ +1R+R?) (2.53)

Solution of the differential equation will be equal to the expressions (2.43) and (2.44)

except for the added mass term.

Pitch Response of the cylindrical buoy: A differential equation representing the heave

motion of the cylindrical buoy can be written as:
10+c8+k0=M, (2.54)

wﬁcre IP= Moment of Inertia of mass and added mass

L=, +L,,
I =L m@+3R?) (2.55)
12
H-Z4
I.= [TR?pz’dz (2.56)
_Zo

=%npR2[(H—ZG)3+ZG3]

1, =ém(12+3R2)+%npR2[(H-ZG)a+ZGSJ (2.57)
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C, is the damping coefficient
k, is the restoring term

M, is the pitching moment

k, =pgmGM (2.58)

where m is the mass of the cylinder

GM is the metacentric height

Differential equation (2.54) could be solved in a similar way to the others.

Pitch Response of the conical buoy: A differential equation representing the pitch motion
of the frustum will be similar to Equation (2.54). However, the moment of inertia and

added mass, and restoring term of the frustum will be calculated as follows.

Moment of inertia of mass and added mass will be calculated first,

2
I, = -l—m[9(R2 +12) +-&72:—H(R2 +4Rr+ r2)]
r

36 ) (2.59)
m=prt(R+0[* +(R -1’ (2.60)
I is the whole height of the frustum
t is the thickness
H-Z4
L= [puR*(Z)7dz 2.61)
~-Zg

_ 3 3 _ _ 4 4
o (M2 7)o Roxf (-2 7,
3 3 H 4 4
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—r)2 - 3 5
N ((H 5ZG) Wz )] 2.62)

Restoring force due to the under water geometry is calculated as follows:

k, = pgVGM 2.63)
where GM is the metacentric height = KB + BM - KG
_H(R+2r)
3(R + I') (2.64)
_I(R+2r)
3Rar) (2.65)
r’ is the smallest radius of the frustum
r2
BM=H— (2.66)

2.5 TIME DOMAIN ANALYSIS OF MOTION RESPONSES OF MOORED

BUOYS UNDER WAVE EXCITATION

In this section coupled heave, surge and pitch motion equations are derived and
solved in the time domain. Nonlinear restoring terms due to variations in the under water
geometry of the buoy and due to variations in the geometry of cables are introduced. All
differential equations are derived and solved for the conical buoy. In order to simulate the

motion of the cylindrical buoy, maximum and minimum diameters of the conical buoy are

chosen equal to each other.
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Heave Response : A differential equation representing the heave motion of the buoy can

be written as:

Lo 1 " n(R-rY n( , R-r
Alz+buz+-£pCDyA'z]z]+pg3—( q )z’+pg3-(-3r H )Zz+

3 =
pg 3 (3r )z +F,(z,x) =F,(z,x,0) (2.67)

Firstly, the heave restoring force due to variation in the under water geometry will
be introduced. Let us assume that the frustum is displaced upwards from its stable
position in calm water. The volume emerged from the water will give rise to the restoring

force.

Vol = -1:-;'-2[(&5)2 zl - 3r5}-;—rz + 3r2]

H (2.68)

n
Force= P8

2
3 (_R_:_r_) 2 +pg (—31'-13—-:—1‘-)z2 +pg§(3r2)z (2.69)

H 3 H

Secondly, restoring forces due to changes in the geometry of cables will be
introduced. Mooring forces were calculated in section 2.3. The vertical mooring force
will be the restoring force for the buoy in heave motions and it depends on both the
vertical and horizontal motions of the buoy. In order to express the relation between
vertical mooring force and vertical(horizontal) displacement, a curve fitting method
(weighted least-squares polynomials ) was used. This method determines least-squares
polynomial approximations of degrees 0,1,...,K to the set of data points with weights.
Each polynomial is represented in Chebyshev-series form with normalized argument.
This argument lies in the range -1 to +1 and is related to the original variable by the linear
transformation. This curve-fitting routine ,E02ADF, can be found in the NAG Fortran
library, Mark 12. In order to use the vertical mooring forces in time domain simulation,
depending on both vertical and horizontal displacement of the buoy, a set of data was

created by using the least-squares polynomial(Chebyshev-series form) approximations.
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Thirdly, potential damping will be introduced. it will be observed that the
damping causes a loss of kinetic energy of the structure's motion that corresponds to the
energy of the outgoing waves. This consideration has led to the idea that the damping due
to outgoing waves should be related to the excitation force on the structure due to

incoming waves [2.11].

2

- F,(w)
ba(@)=2me| T~ (2.70)
2
. = @’ cosh’ (kh)
f 4npg3khtanh(kh[l+sm(2kh)]) (2.71)
2kh

where k is the wave number and h is the water depth
Lastly, viscous damping is calculated as follows:

1 s
¢, = -2—pCD¢ Aw ZIZ' » (2‘72)

where A, is the waterplane area A, = %1’
C,, is the drag coefficient in heave

E, (z,x) is the restoring force due to the cables in heave motion
Mass and added mass term, A,, will be calculated according to expression (2.46)

Surge Response : A differential equation representing the surge motion of the buoy can be

written as:

A k+b x+c, +F,(z,x)=F(z,x,0) (2.73)
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Mass and added mass term ,A,, will be equal to expression (2.53). Viscous
damping in surge is calculated as follows:

H-Z4

c. =%pcDx [2r(@)(x + Z8)x + Z8]az 2.74)

-zo

where § is the angular velocity for pitch motion
X is the velocity in the horizontal direction

Cp, is the drag coefficient in surge

In order to calculate the mooring stiffness due to the horizontal excursion of the
buoy , firstly a force-excursion curve is obtained for one cable by Chebyshev curve-
fitting approximation. These results are, then extended for all mooring lines. In the last
step data for force-excursion curves for all mooring lines and for different drafts are
generated. F,; (2.X) is the restoring force due to the cables for surge.

Potential damping coefficient for surge is calculated as follows,

bu(@) = ne|
> 2.75)

Pitch Response: A differential equation representing the pitch motion of the buoy can be

written as:

(, +1,,.)0+ M0 + b6 + mGMsinB+k , =M (2.76)

P

The moment of inertia of mass and added mass are equal to expressions (2.59)

and (2.60) respectively and viscous damping is calculated as follows:

1
dM, = EPCD‘(OO)Z)Z zZA, (2.77)
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where A, is the projected area, A = R(z)dz

H-Z,4 1 R-r
M= | EpCDszcozz32(r— Oz (2.78)
y==Zq

M, =pC,, 6’ @ [i((H -Zg) -Z5)

R-r s
5H (-2,) +Z°5)]. (2.79)

Potential damping is calculated as follows:

2

beo (@) = Tc, Hﬁé‘_"_)

—21 , (2.80)

Restoring force due to the under water geometry is equal to expression (2.63).
GM is the metacentric height =KB+BM-KG. KB, KG and BM are equal to
expressions (2.64), (2.65) and (2.66) respectively.

Solution of the motion equations: In order to solve heave, surge and pitch motion

equations, a variable-order variable-step Adams differential equation solver was used.
This method integrates a system of first-order ordinary differential equations over a range
with suitable initial conditions. Firstly, this system of ordinary differential equations was
written in first-order form. Therefore instead of having three second-order differential
equations, we have six first-order differential equations. Starting from initial values of the
dependent variables (solution) at a given point, the numerical solution is obtained by a
step-by-step calculation which gives approximate values of the variables at finite intervals
over the required range. The system adjusts the step-length automatically to meet
specified accuracy tolerances. This routine ,D02CBF, can be found in NAG Fortran
Library, Mark 12.
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2.6 APPLICATIONS AND COMPARISONS

In order to solve the motion equations for cylindrical buoy in the frequency
domain, a program ,HYD, was written. This program calculates wave excitation forces
and motion equations in heave, surge and pitch. Dimensions of cylinder, wave height,
damping coefficient, drag coefficient, mass coefficient, density of sea water, gravity
acceleration and frequency (independent variable) are the input data for this program.
Another program ,HYDCON, performs the same calculations for a conical buoy. The
only differences in the input data are the dimensions of the conical buoy. In order to
calculate the pressure force on the side of the frustum, a two dimensional integral was
evaluated by using an adaptive deterministic routine ,DO1FCF, NAG Fortran
Library,Mark 12. HYDCON also uses a function subroutine ,FS, in which the integrand

has been written.

HYDCOT9 and HYDCOT 10 were written to calculate the motion responses in the
time domain for a frustum and a cylinder respectively. These programs calculate wave
excitation forces and motion equations in heave, surge and pitch. In addition to the data
used in the frequency domain calculations, metacentric height, vertical distance between
the centre of gravity and the reference system and mooring forces as a function of both
vertical and horizontal excursion of the upper end of the cable are the input data for these
programs. In order to calculate the two and one dimensional integrals in force and
moment calculations, NAG Fortran Library routines DO1FCF and DO1DAF were used
respectively. Some function subroutines, FS1, FS, FS2, FS3, FSTS, FS1P, FSP,
FS2P, FST, FSPD, were used to supply the integrands for integral evaluating routines.
Subroutine FCN was used to evaluate the first-order differential equations. Subroutine
OUT was used to obtain access to intermediate values of the computed solution, at
successive points. Functions CXX, XYH]1, SINT, YY, CXY, XYH2, IUOK, PMDS
were used to interpolate the mooring forces in the intermediate points, regarding both

horizontal and vertical excursions of the attachment point.

34



STIFF9 was written to produce the force-excursion data to be used in the program
HYDCOT9 and HYDCOT10. This program firstly produces the force-excursion data for
one cable and then computes weighted least-squares polynomial approximations to this
set of data. In order to perform this curve-fitting ,the routine ,E02ADF-NAG Fortran
Library-Mark12, was used. Secondly, force-excursion data were produced for all cables

and different positions of the buoy.

Programs HYD and HYDCON were run to produce wave exciting forces and
moments and motion responses for the cylinder and the frustum. Wave exciting forces
and moments and the resulting responses for the cylinder and the frustum are shown in

Figs. 2.10 and 2.11 respectively.

In order to investigate the effects of non-linearities and of coupling between the
different modes of motion, motion equations were solved in the frequency domain by
calculating wave and rigid-body motion induced forces and moments on the buoys at the
still water level and thus ignoring the non-linearities and coupling. Comparisons between
the results obtained from the time domain simulations and those obtained from the

frequency domain are shown in Figs. 2.12 and 2.13.

The heave response curves given in Figs 2.12 and 2.13 show that non-linear time
domain predictions correlate better with measurements than linear frequency domain
predictions. This may be explained by the fact that the non-linear time domain approach
models the stiffness characteristics due to hydrostatic and mooring lines more accurately
and therefore a significant difference occurs between the results obtained from the two
methods in the frequency region where motion responses are controlled by the restoring

forces.

Surge response curves show a significant shift at the maximum response values
corresponding to the natural surge frequency region. This can be attributed to the different
surge stiffness modelling employed in the linear frequency as against the non-linear time

domain prediction method. However both prediction methods yield significantly higher
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results than experimental measurements. This may be due to the inertia coefficients used
in the wave force formulations being higher than they actually should be.

As with surge responses, predicted pitch response values are higher than the
measured experimental pitch responses and the difference may also be due to the high

wave force coefficients used in the predictions.

In order to investigate the effect of the linear and nonlinear modelling of the
mooring lines and the effect of the wave height on motion responses of a moored buoy,
computer program 'HYDCOT9' which simulates motions of a moored buoy was used.
Catenary equations were used in modelling the nonlinear cables (Fig. 2.14). Table 2.1
shows a comparison of linear and nonlinear cables. It is clearly seen from the table that
the motion equations with nonlinear cable modelling give bigger motion response values
than the linear cable modelling. The difference is especially clear around the natural
frequency region of surge and pitch motions. Another noticeable difference between the
models is that the surge natural frequency of the nonlinear cable modelling is higher than
the linear cable modelling. The reason for this is that the equation of motion for nonlinear
modelling resembles Duffing's equation in which the stiffness term consists of a linear
and a cubic term. It is the presence of the cubic term that causes the increase in natural

frequency (Sincock [2.13]).

With an increase in the wave height from 4 m to 12 m the difference in motion
responses between the linear and nonlinear cable modellings widens (Table 2.1 and 2.2)
(from %5 to %10). Examples of simulations and a corresponding F.F.T. analysis are
presented in Figs. 2.15-2.20. As is seen from a comparison of Figs. 2.15 and 2.16, the
nonlinear cable simulation includes superharmonic motion together with the usual,
dominant oscillations at wave frequency. Superharmonic response occur at 0.095 rad/sec
which is the natural frequency of the surge motion. Pitch response in Fig. 2.17 exhibits
superharmonic response at a frequency of 0.31, very close to the pitch natural frequency,
0.27. Surge response in the same figure is increasing steadily up to 300 secs. It is

interesting to note that in Figs. 2.18, 2.19 and 2.20 there are superharmonics in heave
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and surge responses at twice the wave frequency. Subharmonic responses are also
noticeable in high frequencies (Figs. 2.19 and 2.20). Some of these subharmonics
correspond to the natural frequencies of heave, surge and pitch motions and occur at
fractions of the wave frequency. This behaviour with sub and superharmonics is a

characteristic of nonlinear systems which are distinct from the response of linear systems.

2.7 CONCLUSIONS

A calculation procedure to predict the non-linear coupled large amplitude motions
of a conical and a cylindrical buoy was presented. Comparisons of the motion response

predictions with measurements show an acceptable degree of correlation.

The formulations which took into account the non-linearities in hydrodynamic and
restoring forces gave larger response values than those derived in the frequency domain

with linearity assumptions.

Comparisons between the motion performance of the conical buoy and that of the
cylindrical buoy indicate that the heave and pitch motions of the conical buoy are
significantly less than those of the cylindrical buoy. Although the heave response
amplitude values are similar to each other for conical and cylindrical buoy forms since the
heave response amplitude curve of the cylindrical buoy has a wider band than that of the
conical form spectral analysis gives much more significant motion response values for the
cylindrical buoy. When a Pierson-Moskowitz spectrum with the wind speed of 22 m/sec
was applied to predict the heave and pitch motion response values of the conical and
cylindrical buoys, significant heave motion response amplitudes of 4.13 and 4.09 m and
pitch response values of 8.37 and 2.42 degree were obtained for the cylinder and frustum
forms respectively. It may therefore be concluded that a conical form gives a better

motion performance than does a cylindrical buoy.
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Simulation with the nonlinear cable modelling gives bigger motion response
values than the simulation with linear cable modelling. Also the natural frequencies of the
buoy shift towards higher frequencies with nonlinear cable modelling.

As wave height increases, the difference in motion responses between linear and
nonlinear cable modelling widens (from %35 to 10%). After the F.F.T. analysis of the
motion responses obtained from the nonlinear time domain predictions were carried out,
together with the oscillations at wave frequency, some superharmonic motions at twice

the wave frequency and subharmonics at fractions of the wave frequency were detected.
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Fig. 2.1 Co-ordinate Systems and Cylindrical
and Conical Buoy Geometries
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Fig. 2.2 A Typical Differential Cable Element

Fig. 2.3 Definition of Cable Parameters
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Fig. 2.8 Top View of a Multi-Cable System

Mooring Lines

Fig. 2.9 Multi-Cable Systems
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Cylindrical Buoy Geometry is shown in Fig. 6.3
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Fig. 2.13 Motion Response Predictions of the Conical Buoy
Conical Buoy Geometry is shown in Fig. 6.3
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Fig. 2.18 Motion Response Simulation of a Circular
Buoy with Non-linear Cables
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CHAPTER 3
HYDRODYNAMIC FORCES ON TANKERS

3.1 INTRODUCTION

The interaction of gravity waves and structures is rather complicated in many
aspects: such as the non-linear effects of waves, viscous and turbulent effects on the
drag, irregular geometry of structures, large amplitude motions of the structures,...etc.
This chapter describes a theoretical method for predicting the wave and motion induced
forces on a large tanker by modelling the tanker as a prismatic elliptic cylinder. The
prismatic elliptic cylinder form is not a common shape for the tankers but it is a fairly
good approximation for tankers utilised as offshore production and storage platforms
(Fig. 3.1). Although it is always possible to solve the problem by using one of the
commercial programs which utilize the Green's function method, this requires a powerful

computer, skilful and experienced users and involves a high cost.

Diffracted wave potential from an infinite cylinder of elliptic cross section was
solved by McLachlan (1951) [3.1] for sound waves. Later the same method was applied
to the problem of diffraction of water waves about a stationary ship by Goda and
Yoshimura (1972) [3.2] and Muga and Fong (1976) [3.3]. Chen and Mei (1973) [3.4]
solved the problem in shallow water of constant depth.

The mathematical solution of the problem follows the usual pattern of separation

of variables in elliptical coordinates, which leads to the Mathieu equation [3.5]. Although

- this problem of elliptic cylinders has been well-known for many decades, understanding

of numerical aspects has been rather limited due to the lack of sufficient tables and due to

the complexities of the Mathieu functions. In 1969 a complete algorithm was published
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by Clemm [3.6] for all coefficients, characteristic values and various solutions and their

first derivatives of both the Mathieu functions and the Modified Mathieu functions.

In this chapter wave forces and added mass and damping coefficients are
calculated by using the elliptical cylinder approach and compared with Oortmerssen's
experiments [3.7] and with the results of a computer program based on three-dimensional
source distribution technique and developed by Chan [3.8]. Water depth effect on the
wave forces is also investigated. Program results for various angles of incidence and for
different elliptic cylinders are presented. In the last section of the chapter second order
mean forces acting on the elliptical cylinder are evaluated by using the far-field approach,

introduced by Maruo [3.9].

Second order mean forces acting on the floating bodies have attracted considerable
attention for the last 30 years due to their role in causing large amplitude slowly varying
oscillations on moored floating structures. There are two methods to predict the drift
forces; the near field method developed by Pinkster [3.10] and the far field method
developed by Maruo. In this study, the far field (wave momentum) method which uses
momentum relations to express the drift forces and moment in terms of the far field
disturbance of the ship is employed to predict the drift forces because with this method it
is possible to obtain the drift forces in a more compact form than with the near field
equations. Moreover the near field method requires rigourous calculations around the
body surface. Since diffraction and radiation potentials are already known, it seems
logical to employ the far field method to obtain analytical expressions for the drift forces.
Maruo in 1960 originated this method. Later Newman [3.11] developed the method to
predict the drift moment about the vertical axis.

3.2 FORMULATION OF THE DIFFRACTION PROBLEM

The geometry is depicted in Fig. 3.2 The fluid is assumed inviscid,

incompressible and the motion is irrotational, thus a velocity potential may be introduced,
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¢(X, y.z)= d(x, y. z)'mci(hm + ¢(X, y. z)mnﬂed 3.1

The fluid motion is governed by the Laplace equation,

2, 324 32
9“9  0°¢ a¢0

Fw ayz 322 (3.2)
The boundary conditions are:
§ )z_ at water surface (3.3)
€= (aq,cm* —=—);=0 at water surface (3.4)
(84) = )z=-4 =0 at sea floor 3.5)
(= ¢)s =0 at hull surface (3.6)
é—>o at infinity 3.7

where d is the water depth
g is the free surface elevation

By using the linear shallow water theory, velocity potential can be rewritten as follows:

0(x,y,2)e'™ = ¢(x,y)coshk(d +z) (3.8)
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The dispersion relation exists between the values @, k and h,

0)2 = gk tanh kh (39)

where k is the wave number
A is the wave length
o is the wave frequency

T is the wave period

By the substitution of Eq. (3.7) into Eq. (3.2), the Helmotz equation can be written as
follows:
0% 9%

o oy T (3.10)

The Helmotz equation in elliptical coordinates is written as follows,

%0 9%

—— —— 2 -
J(at? +8n2)+k =0 (3.11)

where J is the jacobian of the coordinate transformation from cartesian to elliptical

coordinate systems and is given by:

J= 3 8
(2h)“(cosh2{ — cos2m)

(3.12)

(€, ) is the elliptical coordinate system

h is the interfocal distance of the ellipse

Transformation between the elliptical and rectangular coordinates is given in Appendix B.
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By using Equation (3.11), Equation (3.10) can be rewritten as follows:

%0 9% 2 —
a—c7+gf+2k 1(cosh2{ — cos2n)¢ = 0 (3.13)

where k; is the combined parameter of elliptic interfocal distance and wave number

Separation of variables could be used to solve Equation (3.12),

¢(@G.m) =ROQAM) (3.14)

when the separation of variables is applied, Equation (3.12) becomes:

5°R 52Q

—— 42k, cosh2l = ———% +2kZcos2n = A 3.15

where A is the separation constant from which the following two equations can be

obtained:
2
gan- +(A-2k?cos2m)Q =0 (3.16)
2
%&—l;-+(A—2kf cosh20)R =0 (3.17)

Equations (3.15) and (3.16) are known as the Mathieu and the Modified Mathieu
differential equation respectively. These equations have been solved by Mclachlan [3.1]
for incident and scattered waves. We will follow this solution, leaving the details to

Appendix D.
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3.3 VELOCITY POTENTIAL OF PLANE AND SCATTERED WAVES

When the plane waves approach the elliptic cylinder as shown in Fig. 3.2, the

velocity potential of waves is represented by,

61 =299 e ¢y (3.18)

- gH;, cosh(k(d + z))

% =% cosh(kd) (3.19)

where Hy, is the wave height

01= 3 [——Cepn(©) cepn (M) cesn(6) +
n=0 Y2n

Sean+2(0) se2n+2(M) s€2,42(0) +
$2n+2

) 1
1{ Cepn41(6) cepny (M) cenp s (B) +
P2n+1

1

$2n+1

SCZn+](C)Se2n+l(n)Sc2n+l(e)}] (3.20)

The ce (1) and se ,(N) are the solutions of Equation (3.16) and are known as
even and odd radial functions, respectively. The functions Ce ,({) and Se ,(C) are the

solutions of Equation (3.17) and correspond to ce (1) and se,(M) respectively.

Detailed information about Mathieu functions is given in Appendix C. The terms p, and

Sn are constants expressible in terms of Mathieu functions and are given in Appendix D.

For the scattered wave,

0, = 0o 0p (3.21)
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Lp = 2 [Cy MeGC) oo (M) co 5 (9) +

C2n+{Me§211)+1 (©) ceaps1(N) ceap1(0) +

S2n+1NER),1 (€) 565041 (M) 5€2041 (O) +

SansaNES, 5 (§) se3042 (M) 5€5042(0)] (3.22)

. 2
The functions Me P’€) and NeX€) are the other solutions of Equation (3.17) and
correspond to the second kind of Hankel functions. The constants C,, and S, are
determined by applying the boundary condition on the elliptical cylinder. This boundary

condition implies that the sum of the normal velocities of the incident and scattered waves
shall vanish at the boundary of the elliptical cylinder. If u n1 is the normal velocity of the

incident wave and u n2 that of the scattered wave, we have

dd; 9
Yo+ Yoz = _( 8?11 * ;;12 )g L =0 (3.23)
= 0 :

n indicating the direction of the normal. Since dn =108 (1, is given in Appendix B),

the boundary condition may be written as
9y , 99, ) :
—+—== =0
( 3" 3 oy,

Using this condition and equating the sum of the derivatives of functions of the same kind

and order to zero, for { = we have

. =290 Ce2n(Co) Conat = 2i 9o Ceé;ﬂ(Co)
n 4 n 7
pan MeZ (Go) Pans1 ML), Co)
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2i ¢y Seégtl(co) 2 ¢9 Sednsa (QO)
S2n+1 Ne(2n)+l Co) Smv2 = —52n+2 Neg,);z(go) |

Sons1=-

Total potential is obtained from Equations (3.18) and (3.21)
0=0,+9,

= %o c_imt z[—z_ceh(n) CCan (6)(C32n (C) - Me(2)(c)_c_e(22n)(Co) )4—
n=0 P2n a (Co)

’ 3\
se2n+2() $e2042 (9)[S€2n+2(C) ~Ne ‘zihz(o—————s"%;;? o)

2n+2(z;0))

+
Son+2

\
$€20+1(M) S°2n+1(9)(362n+l(C) Ne(zzn)ﬂ(C)—Scfg;l(CO)

i 2
2n+1 (CO))

$2n+1

cean+1(M) CEop 41 (9)((:62" ROk Me(22n)+ {© Ce%g;l(@o)

1
2n+1(§0)) (3.24)

P2n+1

3.4 WAVE FORCES AND MOMENTS

Wave forces are obtained by integrating the pressure around the cylinder. The
pressure on the cylinder is derived from Bernoulli's equation. Since we are considering

only the linearized problem the pressure becomes,

)
P= 30 (3.25)

Surge, sway forces and yaw moment can be obtained by integrating the pressure

over the surface. If the elliptic coordinates are used,

2r 0
F,=-| [Phsinhg, cosndzdn

S % (3.26)
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2n 0
_ gH. ot coshk(d +z)
= _m_._‘i e J. I -— 7 dz

0 6 coshkd

> Cezn (Co)
[golp—z;cezn(ﬂ) ceyp, (6)(Ce:2n ©-MeP () —=2nG0) v (22) : Coo )J N

se2n+2(M) Sczn+2(0)(Se2n+2 ©) - Ne$, 2(:;)5_6%;;_;(50_)_J +

“2n+2 €3n+2(Co)
i{ $€20+1(M) $€2041 (9)[Se2n RO Nc(22n)+l(z;)s_c%%ri€_olJ +
2n+t €3n+1(Co)
11D CC2ant “”(Cezm ©-Mef2u®) Ce—%z“’f’—(@}n
Pan+t Me§3)\1 (Co)
hsinh{, cosndn a2

If this integral is calculated and simplified, we have

sinhkd - sinh k(d — §)
coshkd

F, = %pgn ¢ H, hsinh{,

- |1 Ce;
—— A" Veeyy (BN Cennar (Go) - M°(22n)+1(‘:o)_—“‘%3)tl(co‘)']
=0 P2n+1 Me;iiGo) (3.28)

where d is the draft of the ship
Anm’ Br:n are the coefficients used in the calculation of Mathieu functions

P m is the Mathieu constant coefficient

Sway force and yaw moment are calculated in a similar way
2n 0

F, =-] [Phcoshy sinndzdn
0-9%
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sinh kd - sinhk(d - 8)
coshkd

1 _:
F, =pere ' H,, hcosh{,

3, 2 B Vs, 1 O0SernitCo) - Ne2iy Go) 2 2gH o)
2=0 S2n+1 Ne$,1 o) (3.29)

Yaw moment can be written as follows,

2 O

M, = -j IP [h?sinncosm (sinh {3 + cosh{3)1dn dz
0-%

M, = —lpgne iot H,, 12 sinh kd - sinh k(d — d)
k coshkd

- |1

L B sty OSerneaCo) ~ NefDy G0 o2 S0,
n=0 S2n+2 NefRi2Co)” (3,30

Integrations used in calculating the wave forces are given in Appendix C.
3.5 FORMULATION OF THE RADIATION PROBLEM
The geometry is depicted in Fig. 3.2. The fluid is assumed inviscid,

incompressible and the motion is irrotational. The fluid motion is governed by the Laplace

equation,

dox + g , 9%0r =0

x oyt | o (3.31)
The boundary conditions are:

% a¢R )

ot 2=0 at water surface (3.32)

71



d ()

%} -—¢r =0, z=0 at water surface (3.33)
d

(%)F_d =0 at sea floor (3.34)

dp =0 as & o oo at infinity (3.35)

Solution of Equation (3.31) in elliptical coordinates together with the boundary

conditions gives the radiation potential.

cosh k(d +12) «

coshkd 2[ 2nMC(3)(C) CCrn (n) +

Or =

ConttMch,1 (§) ceppir (M) +

S2n41M5541 () 562041 (M) +

S2042MS5012(0) s€2042(M) ] (3.36)
where Mc , and Ms; are radial Mathieu functions.

Constant coefficients ¢ m and Sm are determined using the boundary conditions

on the body.

The body boundary conditions:
a¢RI _ .
o€ . = Vx hsinh&q cosm in the surge direction (3.37)
0
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ad :
aJé-L =V, hcosh Eosinm in the sway direction (3.38)
0

g| h. .
?&&L‘, = -Z-Qz sin2n in the yaw direction (3.39)

where h is the interfocal distance of the ellipse: h = /a2 - b’

Vx and V, are the velocities in the surge and sway directions. Q, is the

angular velocity in the yaw direction.

In order to obtain the coefficients ¢, and Snp , boundary conditions (3.37),

(3.38) and (3.39) are applied to Eq. 3.36 in tum. Then we obtain the coefficients

C2n=0 (3.40)

hsinhEy A(2*D
N Mc%' 2& > Ichoshk(z+d)dz (3.41)
k 2n+1\50>4/ _§

Con+1 =

(2n+l) O
_ heoshbo By IVy coshk(z + d)dz (3.42)

N Msh), B0 q) 2

S2n+1

Son+2 = ; Q._coshk(z+d)dz 3.43
" N M G G4

_ Sinh2kd + 6 _sinh(2k(d - 3))

Ny
4k 2 4k
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3.6 CALCULATION OF ADDED MASS AND DAMPING

COEFFICIENTS

Added mass and damping coefficients are determined by integrating the radiation

potential around the cylinder.

my; = pIRe[(pJ]n,dA
A

cij = QPJM[¢J]ﬂldA
A

Damping coefficient in the surge direction is calculated as follows:

0 2x

ci1 =op | [1m{g;hsinhEqcosndndz
-60

2
¢ =2p? (:2/ 131) (sinhkd — sinh k(d - 8))?

k

i ( A§2n+l))2
S M, (E0.9)* + Mc$D,, (E.9))>

Damping coefficient in the sway direction:

0 2n

cn =0p [ [Im(o;lhcoshEqsinndndz
-850

2
@72)" (Ginhkd ~ sinh k(d - 8))?

Cyy =2 ®?
2==P k2N,

hnd (B§2n+l))2
Eo MsD' (&, @))% + Ms2),, (E0,Q))°
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(3.45)
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Damping coefficient in the yaw direction:

02n

ces =wp | [ImipgIh? cosnsinndndz
-80

(smh kd - sinh k(d — 8))?

o (2n+2)2
¥ . By )
S (Mshy 5 (E0.)* +(MsP), (80,9))° (3.48)

Added mass coefficient in the surge direction:

0 2xn

my;=p | [Ref9,] hsinh&qcosn dndz
-850

(b/2)>? . 2
my; =pn T(Slnhkd —sinh k(d -8))

i (A@+Dy2 Mcl) | (§o)Mlczn+1(§o) + Mcznzﬂ(io)MCznﬂ(E,o)
n=0 Mch), 1 (Eo))” + (McS2, ,(Eo)) (3.49)

Added mass coefficient in the sway direction:

0 2xr
my, =p j jRe[¢3] hcosh&qsinn dndz
-850
my, =pT (;/ 2’ (sinhkd - sinh k(d — §))2

2 (B{2m+Dy? MsS). | (Eo)Ms 5134,1(502)"’Ms(zzn)+1(§o)M82n+1(§o)
2 (Ms9), (Eo))? + (MsP), (Eo))* (3.50)
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Added mass coefficient in the yaw direction:

3.7

02n

mgs =p [ [Rel9g]h cosnsinn dndz
-850

1/2n* . . 2
Mgg =PT —k-2—N— (smh kd —sinh k(d - 8))
k

i BE)? Msf247Go)Msh,» Bo) + MS(22n)+2(§o)Mszn+z(§o)
e (Msh),2Bo))” +(Ms52,2(E0)) (3.51)

SECOND ORDER MEAN FORCES ACTING ON THE TANKER

According to Newman [3.11]}, the Kochin function is expressed as follows,

K(e) II (Q¢_B _ ) (kz+1kxcosB+|kysm9)dS (3.52)

where 9B = Diffraction+Radiation potential

SB= Wetted surface area of the ship
0 = Polar angle

Surge and sway forces and yaw moment are derived by using the kochin

function,
pk2 2 2
=t £|K(6)| (cos8+ cos;)do (3.53)
pk2 2n 5 . )
F = o I [K(8)|"(sinB +sin6})dO (3.54)

0
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2x
M. =-PX (k" 0K 03— - '
= {K (8)K (0)d0- > -pwA; ReK (. +6;) (3.55)

where 9 is the wave incidence
k is the wave number
A is the wave amplitude
K is the derivative of the Kochin function

K’ is the conjugate of the Kochin function

Diffraction potential for an elliptical cylinder is written as follows [3.12];

¢p = %e‘“ > (D™ 230 Moz, Q)] cezq (M) cerq (8) +
n=0

i (32041 MC2041 D (€)] c2041 (M) cE2041() +

i[byp41 M52n+1(3)(C)] $€2n4+1(M) 5€2,41(0) -

[b2n+2 MS204 2B (©)] 560042 (1) s€2442(0)) (3.56)
where
~ MW (&) _ MsV'(&)
a,(Ep)= -IW_C(EE)_ bn (o) = Msfﬁ)'(!‘,o)

The Kochin function for the elliptical cylinder is derived by substituting ¢p in Eq.
3.1,

4i A - -
K()= f-(—;g(l - e 2K0) Y [-a5,ce0, (0)0€2, (B1) — byny25€2042 (0)5€5,,2(B))
n=0

+827416€2041(0)C€2041(01) + b2 415€2441(0)s€2,,11(OD]  (3.57)
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Krokstad tried to tackle the same problem [3.13]. But his work contained some

errors. His expression for the kochin function is as follows,

K(8) = ;13 Y [2,0¢0 (8)ce0 (8) + by 415604 1(0)5€041 (O] 3.58)
n=0

By substituting Eq. 3.58 into Egs. 3.53, 3.54 and 3.55 wave forces and moments
could be integrated numerically.

3.8 NUMERICAL ASPECTS AND RESULTS

The Theoretical solution of a problem is not sufficient for most engineering

requirements. Quantativc results are needed.

Tabulated values for periodic Mathieu functions by Ince [3.14] and radial Mathieu
functions by Blanch and Clemm [3.15] are insufficient for the calculations needed for the
solution of this problem. Published algorithm by Clemm [3.6] has been used to carry out
the calculations. Tolerance used in this algorithm was 1.0e-14. Higher tolerances cause
divergence in the solutions. The calculation of Mathieu functions for very high
frequencies is difficult because of the very large parametric value, q. For instance, for 5
rad/sec the parametric value becomes 38078,56. Results of the algorithm have been
checked with Ince's tabulated values and they agree well with each other. However, in
this algorithm a different kind of definition for radial Mathieu functions was used. So all
the force terms derived in the previous section were expressed again using the new
definitions. These new definitions and force terms are given in Appendix E. Ince's
normalization has been used in the calculations. The series used in the force calculations

converge very fast even for high q values.
Non-dimensionalised surge and sway forces and yaw moment for shiplike bodies

with beam-to-length ratio (b/a) ranging from 0.005 to 0.995 and with angle of incidence
ranging from 0 to 90 degrees are presented in Figs. 3.3 to 3.27. In these graphs, a/l in the
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horizontal axes correspond to the ship length/wave length ratio. Results of the elliptical
cylinder approach are compared with Oortmerssen’s experimental results [3.7] which

have been performed for a tanker whose dimensions are 310 x 47.2 x 189 m.

The results given in Figs. 3.28 and 3.29 show good agreement for the sway
forces as the waves approach with angles of incidence of 225 and 270 degrees . Fig. 3.30
show a good agreement between the predictions and measurements for the wave
incidence angle of 225 degrees. Fig. 3.31 shows also a good correlation between the
measurements and predictions for the wave incidence of angle 225. Agreement is not so
good in the surge force with the angle of incidence 180 degrees (Fig. 3.32). One possible
reason for that is the aft-forward symmetry exhibited by the elliptic cylinder.
Comparisons show that the method described in this report for the calculation of wave
forces and moments is capable of handling the shallow water effect since in the

Oortmerssen's experiments water depth/draft ratio was 1.2.

The limiting geometry of the elliptical cylinder is a circular cylinder when
length/beam ratio approaches unity. This provides an excellent check on the correctness
of the programming. Results for the circular cylinder obtained from the limiting case of
the elliptic cylinder are compared with the results obtained from the exact formula for
circular cylinders [3.16, 3.17 and 3.18]. This comparison shows excellent agreement

(See Fig. 3.33). The exact formula used for the cylinder is taken from Ref. 3.18.

0
2pgH,, e cos(wt — 0)
F, = J‘ Pg

5k Y1I2aR)+ Y R)

dy

Y, (kR)
= _1_—
where 0 arctan[ J; (kR))

Ry 3o Ry
and J1(kR)=Jo(kR) (kR)Jl(kR)
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*(kR) = 1
Y/0R) = Yo(kR) - 5 Vi (KR)

J 2 (kR) and Y ,(kR) are the Bessel functions of the first and second kinds.

Non-dimensionalised hydrodynamics coefficients are also compared with
Oortmerssen's experimental data (Figs. 3.34-3.39). Comparisons show reasonable
agreement except the surge damping coefficient (Fig. 3.37). The discrepancy in Fig. 3.37
may be due to the very small values of surge damping which are very difficult to
measure. The difference between the tanker form and the elliptical cylinder form may be
a reason for the discrepancies seen in the low frequencies in the comparisons. The results
of the elliptical approach are also compared with a 3-D program based on oscillating
source distribution technique [3.8] (Figs 3.40-3.45). Agreement is generally good.
Discrepancies in the low frequencies are due to the fact that the elliptical approach does

not take into account the effect of underwater clearance.

Motion transfer functions for surge, sway and yaw motions are compared with
Oortmerssen's experimental results (Figs. 3.46-3.50). Agreement is generally good
except the yaw motion response (Fig. 3.50). The discrepancy shown in the yaw motion
comparison is due to the discrepancies in the yaw added mass and damping predictions
(Figs. 3.36 and 3.39). |

3.9 CONCLUSIONS

The theory described to calculate the wave and motion induced forces on tankers
provides an alternative method of predicting the wave forces and moments on tankers.
CPU time for the calculation of wave forces is about 15 minutes for three angles of wave
incidence and for 80 wave frequencies at each wave incidence angle in VAX. It is quite
fast compared to the programs which utilize the Green's function method. The
combination of reasonable accuracy and low computational cost makes it a good
alternative to other numerical methods. This method could be used for the time domain

analysis of the tankers and single-point moored systems.
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Mean drift forces acting on the elliptical cylinder are compared with Chan's 3-D
program (Fig. 3.51, 3.52 and 3.53). There are large discrepancies between the elliptical
cylinder approach and the 3-D program. This is because the flow under the cylinder was
not modelled in the theory. Results of the elliptical cylinder approach are also compared
with the Havelock's method [3.19] for the limiting case of circular cylinder extending

from sea surface to sea bottom and agreement is quite good (Fig. 3.54).
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Tanker Hull Water line

Tanker Hull Base Line

Fig. 3.1 Elliptical Cylinder and Real Tanker Hull Comparison
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Fig. 3.2 Elliptical Co-ordinates
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SWAY FORCE [KN/M]

SWAY FORCE [KN/M]
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Fig. 3.28 Sway Force
Angle of Incidence=225 Degree
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Fig. 3.29 Sway Force
Angle of Incidence=270Degree
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YAW MOMENT [KN*M/M]

SURGE FORCE [KN/M]
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Fig. 3.30 Yaw Moment
Angle of Incidence=225 Degree
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Fig. 3.31 Surge Force
Angle of Incidence=225 Degree
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SURGE FORCE [KN/M]
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Fig. 3.32 Surge Force
Angle of Incidence=180 Degree
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Fig. 3.46 Surge Response
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Fig. 3.48 Sway Response
Angle of Incidence=225 Degree
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Fig. 3.49 Sway Response
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Fig. 3.50 Yaw Response
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CHAPTER 4
TIME DOMAIN SIMULATION OF A TANKER-BUOY COUPLED
SYSTEM

4.1 INTRODUCTION

In this chapter a time domain model is used to predict the motion responses of a
tanker-buoy system under wave, wind and current loading. Motion equations of the
tanker-buoy system are derived by using Cummins' method. Frequency-independent
hydrodynamic coefficients and time histories of wave forces in irregular seas are
calculated. Experimental measurements are compared with the time domain simulation

results. Effects of random waves and gusting wind are also included in this chapter.

When a floating structure is moored to a single point, be it fixed, floating or an
anchor, the vessel exhibits motions due to steady wave, wind and current forces as well
as first and second-order wave, dynamic wind and variable current forces. The
development of prediction methods for first-order wave excitation forces and resulting
motions of floating structures have been the subject of several investigations over the last
two decades. The prediction methods developed provide a good degree of accuracy for
floating vessel motions [4.1, 4.2 and 4.3]. Prediction methods for second-order wave
drift forces and moments and resulting slowly varying motion responses of floating
structures have also been successfully developed in Refs. 4.4, 4.5 and 4.6. In Reference
4.7, de Kat and Wichers have illustrated through numerical simulations the dynamic
behaviour of a ballasted and fully loaded tanker due to unsteady current loading.
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4.2 DYNAMIC WIND LOADING AND RESPONSE

Calculation of wind forces is a difficult task. Most of the time experimental data

and/or empirical formulas have to be used.

Wind is usually treated as a time invariant environmental effect. But fluctuations of
the wind velocity acting on the superstructures may have a large effect on the response of
the offshore structures. Wind velocity is expressed by the following formula in which

wind shear is characterised by a power law expression [4.9],

Vinao) T 0 4.1

where -\-’_t(z) is wind speed at z at an averaged t seconds

vlh(lO) is wind speed at 10 m at an averaged 1 hour
« is the gust factor (=1)

B is the power law exponent(=0.16 suggested by Davenport [4.10]. )

Drag force due to wind loading is expressed by the following formula;

Fo () = $p,CpA, V2 (1) @.2)

where Pa is air density (= 0.0012t/ m®), Cp is drag coefficient
A, is projection area, V(t) is time dependent wind velocity

By writing V(t) =V +v(t), mean and dynamic wind forces are obtained as

follows,

Ey' (1) =1p,CpA,V? 4.3)

Fa (1) = p,CpA, V V(D) (4.4)
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Fluctuations in wind velocity could be modelled by a spectrum. Three of the most

commonly used spectrums are as follows;
Harris Spectrum [4.11] is described by

4xfV3
£(2+£2)°/

Sw(f)=
where  =1200f / Vjy; f is frequency; K is drag coefficient (=0.005)

Davenport spectral formulation [4.12] is given by

4xf V5

Sv()=———=77
W( ) f(2+f2)4/3

Ochi and Shin [4.13] suggested a spectral formulation based on wind speed

measurements carried out at sea. It has the following formulation,

583f. for 0<f. <0.003

420 £,070

S(ﬁt)=ﬁa—t-_‘o3-—5—)l—l—5' for 0.003<f. <0.1

838 f.
W for f. 20.1

where f« is dimensionless frequency

S(£.) is dimensionless spectral density

S(f.) = £ S(f) / va?
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f is frequency in cps; z is height above sea level in metres; V, is mean wind
speed at height z in m/sec; S(f) is spectral density function in m? /sec; Ve is shear

velocity in m/sec.

Mean wind speed ,V,, and friction velocity, Vs , are defined in the following

formulas,
V, =V +2.5v4+In(z/10) (4.10)
Va = \/CIO VlO : (4. 1 l)

where Vio = mean wind speed at 10 m height in m/sec,
Cio=surface drag coefficient [4.13].

For the sake of comparison the Harris, Davenport and Ochi-Shin spectra are

plotted in Fig.4.1.

The wind force spectrum is given by

Swt(f) =S, () H A2 (4.12)
where A, is aerodynamic admittance function

—4
A, =1/(1+(f[A,) V) (4.13)
A} is projection area

H is wind force transfer function and given by
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Fo
" v(t) (4.14)

The response spectrum of a linear system to wind loading is
Sur(£) =S (DQ? / K2 (4.15)
where k is stiffness coefficient; Q is magnification factor given by

1 ®
\/(l_r2)2 +(2cr)2 and r= 5: (4.16)

€ is damping ratio and @, is natural frequency

Wind force and linear response spectra are produced for a ship whose dimensions
are 310.0x47.2x14.0 (Figs. 4.2 and 4.3).

Time dependent wind velocity is obtained by the sum of sines approach with a

random phase distribution (Fig. 4.4),

V) =V+ E&m cos(@yt +£,) 4.17)

4.3 CURRENT FORCES

As with the wind forces, empirical formulas have to be used in calculating the

current forces.

resistance formula as follows;

124



0.075
FS=[
(log ch -2)

2]%pS(Vccos a—V,x)|(Vccos a- st)l (4.18)

where S is the wetted surface area of the ship, V. is the current velocity, VY sxship
velocity in the x direction at the centre of the gravity of the ship, « is the instantaneous

angle between the current direction and the x-axis of the ship and

_ [(Vecos a -V lL,

Re )

where v is the kinematic viscosity coefficient for sea water

The transverse current force and current yaw moment are formulated following
the cross-flow principle as given in Faltinsen et al in Ref. 4.14. According to the cross
flow principle the flow separates due to cross flow past the ship, the longitudinal current
components do not influence the transverse forces on a cross section, and the transverse
force on a cross section is due mainly to separated flow effects on the pressure

distribution around the ship.
F§ = 29 [ Co)T(0) Ve [V reldx
y=3P)%p RCl RCI 4.19)
Fs =4p [ Cp(x) T(x) Ve [Vre|xdx +§ V.2 (az —a,1)sin2( - 0)  (4.20)

where C;(X) is the drag coefficient for cross-flow past an infinitely long cylinder with a

cross sectional area equal to the sum of the ship cross section at longitudinal coordinate x
and its image above the free surface; 311, 322 are added mass coefficients in surge and

sway respectively ; T(x) is the sectional draught and

.

Vec=Vesina-Vgo -6 @2 .
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where V,y is the ship velocity in the y direction at the centre of gravity of the ship, 0 is

the rotational velocity of the ship about the z axis and X is the x coordinate of any point
along the ship length.

Last term in eq. 4.20 is known as Munk moment and can be derived from non-
separated potential theory [4.14].

Current and ideal fluid forces could be expressed in another way, as was adopted
by Wichers [4.6], Molin[4.15]. In this approach current forces and moments are
represented as a combination of the ideal fluid forces and "real” forces based on semi-
emprical mathematical models including quasi-steady and dynamic current components.

Ideal flow forces are given by Norbinn [4.16] as follows,

_ . . "2
ind =-—a,u + ayyve + ayee

Fyia =—a,,V —a,,u8-ao0 (4.22)

Fgiqa = —aeeé —-(ayy - Ay, UV — ayg v+ ué)

and the relative velocity components are given as follows
u=x-V,cos(a—-0)

(4.23)
v=y—-V,sin(a—0)

The relative acceleration components are
1 =% - V_0sin(a - 0)
4.24)
v =%+ V_Hcos(a —0)
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If equations 4.23 and 4.24 are substituted into equation 4.22, we obtain
Frid = ~8xcX — (8yy —a5,) Ve sin(@ —0) 8 +a,, 50 + a,¢6°

Fig = —ay,§ —(ayy —a,,) V. cos(a - ) 0-a,, x0- ayeé

4.25)

Feid = —aeeé - (ayy —ayy Juv - aeyxe - aeyy

According to Wichers, Munk moment in equation 4.25 can be replaced by the steady
current moment components and the equation can be rewritten as follows to include the

viscous forces,
ind = -—auii + ayyye + Fxstat + deyn

Fig = —y,§ — 260 = 2,0+ Fjgpy + Fpgen

yi (4.26)
Foia = ~6g0 — 29, + Fogtar + Foayn

where
Fa =0.5pL, TC, (a)V,,>
Fystat = 0.5pL TCyc (0 ) Ve @4.27)

Fograr = 0.5p L2 TCye (Ogp ) V2

F, is the quasi-steady current force and moment components according to the relative

7 currem CODCCPL

where C, is the resistance coefficient in longitudinal direction

Cy. is the resistance coefficient in transverse direction
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Ce. is the resistance coefficient in transverse direction
Vo =2 +v)%

o, =arctan(-v/-u)

Dynamic current force and moment components are expressed as follows,

Frayn = —(ayy — 2,V sin(a - 0)0+Fy
Fyayn = —(8yy —a5,) Ve cos(@— )8+ F 4 (4.28)
Fden =F 6d

Viscous part of the dynamic load contribution represents the effects of the yaw motion in
the relative velocity field and based on the local cross flow principle. Accoring to

Wichers, viscous part of the dynamic current load can be approximated as follows,

Fua =0.5(a,y —a,,)V, sin(a - 6)6

FP
Fyg =0.5pTC,o(90°) [[(v, - Dlv, — 1] - vlv[idl
AP 4.29)

FP
Fog =0.5pT [[Cye(@e DIV — O1)? — 0.2} — Cye (0, )Vir 211l
AP

where u, =-u

Ve ==V

0, (1) = arctan((v, - 61) / u,)
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4.4 SLOWLY VARYING AND MEAN WAVE DRIFT FORCES IN
IRREGULAR WAVES

In irregular seas drift forces are time dependent. These low frequency drift forces
are small in magnitude but may cause large, low frequency oscillations of the single point

moored vessel if the vessel's natural frequency is excited.

In irregular waves the wave elevation on a point is written as

N
gty =Y. &; cos(o;t +€;)

i=1

(4.30)

The drift force is related to the square of the wave amplitude and the square of the

wave envelope is

N N
Cz (t)= ZZ%QCJ COS((l)it + Ei)COS(O)jt + 8_])

i=1 j=1 (4.31)
and the low frequency second order wave drift force is written as follows,
) N N
FO@) =Y, Y (4P cosl(; - o)t + (€ —€;)}
i=1 j=1
N N
+§J_§C£JQ“SH}{(@1 ""(Dj)t+(€i -'ﬁj)} (4.32)
P and Q represent symmetric and asymmetric matrices respectively:
P =P Quu = Qum 433y
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If s;is the wave spectrum then, according to Pinkster [4.17], the second order

force spectrum is

o (2)
Sp@)=8 £ 5 (®) sg(m'+co)[§—c—<m,w+co>12dw @30

where FP(0,0+0") = \} Pij2 + Qij2

and mean wave drift force is

@)
F=2 j S (@) e (o.o]do

e} (4.35)

where F(Z)(o), ) is mean wave drift force in regular waves

An approximate method is suggested by Newman [4.18] and Pinkster [4.17], in
which the low frequency forces are derived from mean drift forces in regular waves. This
method can be used only when wave diffraction effects are dominant because it does not
take account of the forces related to the second order horizontal pressure gradient.

According to this method,

O + 0y Oy +m,,)

P(®w,,0,)=P
(O ) =B 2 2 (4.36)

Qy,.0,)=0

A spectral form of this formula is devised by Pinkster,

o o,
gz @rlde 4.37)
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0)0
where F? (0 + 7) is mean wave drift force in regular waves

Response spectrum of a vessel due to the slowly varying wave forces in irregular

waves is given as follows:

Sur (@) = Sp(®)Q? / k2 (4.38)
where k is the linear stiffness coefficient of a tanker which is moored to a fixed point.
A slowly varying force and response spectrum is obtained for the vessel whose main

dimensions are given in section 4.2 and plotted in Figs. 4.5 and 4.6.

A time history of slowly varying wave forces in irregular waves could be obtained
by using the sum of sines approach with a random phase distribution but this approach
leads to a Gaussian distribution of the slowly varying forces. Pinkster [4.5] states that an
exponential distribution of slowly varying forces is more realistic. Therefore Pinkster
devised a method to generate an exponentially distributed force record [4.19, 4.20].
According to this method,

E2(0,,t) =-F2©,)A +1)+F2(,)

F2(0,,0=-F2 @, A+)+E?@,) (4.39)

E§?(0,.t) = —F§3) (6, )Asign(md(b) - 0.5) + F{? ;)

where A =In[md(a)]
md(a), md(b) = uniformly distributed number between 0 and 1

A =1n[rnd(a)] has an exponential distribution with average -1 and standard

deviation 1. The inclusion of rmd(b) in the yaw moment assures that Féz)(er,t)_ hasa

symmetrical distribution, which is coupled to E2(8;) and F;,z) (©;) in amplitude but not

in phase.
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FQ (9,),F§i) (6;) and F{¥(8,) are determined using the derived spectral density
$&)(0). The variance of F{3(8,) is given by

(Opm e ) = EIED®,))°1-E'[FX®,)) = (FR(6,)” 4.40)

A similar expression can be derived for F,(,zA)(er). Taking a sampling frequency of every
Vt, the maximum frequency in the wave drift force is ®/ Vt. Applying a random white

. . 2) . . . .
noise process and assuming that S%n) is frequency independent during the Vt variance can

be written as [4.7]

("F?’(a,))2 =Sg0p,) ™/ Vi = (F26,))
(Op g ) =S n/Vi=(F3(0,))

F2e,) = SED08,) yA Fr 4.41)
Orwie,) = Se0p,™/ 7t =2 FR 6

An estimate for Vt could be derived from eq. 4.41. Time histories of the slowly
varying forces are derived by using eq. 4.39, 4.40 and 4.41 for the ship and plotted in
Fig. 4.7. These block functions are stored in the files and used in the time domain

simulations.

Another component of wave drift forces is wave drift damping caused by the low
frequency motions of the vessel. Wave drift damping can be evaluated by the gradient
method [4.6] as follows:

2
F(2) = aF}E ) %) S
v k) 7 (4.42)
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Wave drift damping is calculated for different speeds and frequencies and plotted in Fig.
4.8.

4.5 MOTION EQUATIONS OF THE TANKER-BUOY SYSTEM IN
TIME AND FREQUENCY DOMAIN

In order to predict the motion response and mooring force values of the coupled
buoy and ship system coupled surge, sway and yaw motion equations were formulated in
terms of forcing functions which are defined as a function of the relative angle between
the direction of forces and the ship's instantaneous position. The ship was modelled as an
elliptical cylinder form whose length, draught and volume were equivalent to those of the
tanker. This elliptical cylinder form approximation made it possible to formulate wave
and motion induced hydrodynamic forces using Mathieu functions. Since the non-linear
behaviour of the coupled buoy and ship system was studied using a time domain
simulation technique, the reason behind the choice of elliptical cylinder approximation
using the Mathieu functions was to obtain a feasible alternative to Green's function
techniques to calculate the wave excitation forces with high a degree of accuracy and less

computational time.

In formulating the motion equations of the coupled system non-linear stiffness
characteristics of the catenary mooring lines and of the hawser were taken into account.
The non-linear, coupled motion equations were solved simultaneously in the time-domain
using a numerical integration technique. The technique adopted was Adam's variable
order variable step differential solver algorithm. In the time domain solutions of the
motion equations, variable coefficients on the left hand side of these equations as well as
the forcing functions on the right hand-side of equations were re-calculated thus taking

into account the displaced positions of the buoy and tanker.

Refs 4.21 and 4.22 srurhmrarirseé the results of some of the numerical >prAedi'cti.on-s

carried out using the formulations described in this chapter.
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In this section time domain equations which relate the instantaneous values of
forces to rigid body motions will be derived. Motion equations are usually written as

follows,

(m+ a(®) X +b(w)x +c(W) x= F sin (ot +¢€)

As Cummins [4.23], Ogilvie [4.24], Oortmerssen [4.25] and Muga [4.26] pointed out
this is not a real equation of motion since the hydrodynamic coefficients depend on the
frequency of the motion. Some simplifications, such as linearization of the mooring
system, assuming that forcing function is purely sinusoidal or an assumption that
hydrodynamic coefficients are constant, are sometimes made to the above equation to
retain the model. But these assumptions cannot be justified except in very few cases. In
order to relate the instantaneous values of forces to motions Cummins' method [4.23]

will be followed.

For any linear system if the response R(t) to a unit impulse is known, then the

response of the system to an arbitrary force F(t) is

t
x(t) = jK(t - f(1)dt (4.43)

Using the Impulse response function we can write the real time domain equations

5 t
M +m )% + ~J;Kji(t ~DX(DdT+Cx 1=F (1) (4.44)

i=1
i=1..6

where M i is the mass matrix, m ji i the constant added mass matrix, C,; hydrostatic

restoring force coefficients
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The impulse response function is

2 o0
Ky(®) = ;jbij(m) cosot do (4.45)
0

5
wtKij(t) ' ;I bj;(@) CQS ot qmicpendent added mass coefficient

Frequency independent constant added mass coefficient is expressed as follows

N L TR0 sine’

where © is an arbitrarily chosen value of ®.

Motion Equations of the Tanker-Buoy System in Regular Waves, Steady Wind and
Current:

In the tanker-buoy system we will consider surge, sway and yaw motions of the

tanker and surge and sway motions of the buoy only (See also Fig. 4.9). Hence 5

degrees of freedom system can be written as follows;

t
B B . B .
(M + My kg + [K3t-miy(di+kxy=Fp +F  (447)

t
B B - B . B
M®+ My )ig+ IKy(t—t)yB(t)dt+kyyB=FEy +Fp,  (4.48)

t
M5 (ks — ¥30)+ Mivpm ks + | KR (t-DXs(1)dt = B —Fyy (4.49)
. t
M3 (§s + %) + Maya, s + J K3 (t-ys(r)dt=F - Fy, (4.50)
t
- . s
(C+15, )0+ [Kot-DO(DdT=F}, ~Fp, @.51)
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where

M3 is the mass of the buoy

M3 is the mass of the ship

IS is the moment of inertia of mass of the ship in the yaw direction

MRVM,x , MRVM,y : Constant added mass of the buoy in the surge and sway directions
respectively.

M?\VM,x , MiVM.y : Constant added mass of the tanker in the surge and sway directions
respectively.

If\VM,G is the moment of inertia of added mass of the ship in the yaw direction.

lea , K? * Retardation functions of the buoy in the surge and sway directions
respectively

Ki ’ K;S; ) Kg - Retardation functions of the tanker in the surge, sway and yaw
directions respectively.

ky, Ky Mooring stiffness of the buoy in the surge and sway directions respectively.
Fl?x ) ng * Wave, wind and current forces acting on the buoy in surge and sway
directions respectively.

ng ’ ng J Fi—:Se: Wave, wind and current forces acting on the tanker in surge, sway and
yaw directions respectively.

Frx » Fry » Fro * Hawser line forces in the surge, sway and yaw directions respectively.

Motion Equations of the Tanker-Buoy System in Irregular Waves, Dynamic Wind and

Current:

Wind forces and slowly varying forces in irregular waves have been formulated in
the time domain in sections 4.2 and 4.4. First order wave forces can also be formulated in
the time domain by applying the sum of sines approach with random phase distribution
which was used to obtain the wind velocity time history in sec. 4.2. All these forces
obtained in the time domain are used in the time domain simulation of the tanker-buoy

system as block functions. Motion equations of the tanker-buoy system in irregular
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waves, dynamic wind and current are similar to Eqs. 4.47-4.51 with the exception that

environmental forces will include slowly varying wave and wind forces as well.
Motion Equations in Frequency Domain

Motion Equations can be solved in the frequency domain in regular head waves.
In this model the stiffness values for the hawser and mooring lines are taken as constant at
the value corresponding to the static current and wave drift loading, and the variations in
the wave and hydrodynamic induced forces as the system oscillates at the wave frequency
are not taken into account. The surge equation of motions describing the behaviour of the

system in the frequency domain is given as follows:

MB 0 XB + BB 0 XB + kM+kH -kH XB _ FB
0 MS )“(s 0 BS XS -kH kH XS B FS (452)

Bg : Surge damping of the buoy

B : Surge damping of the ship

Fg : Wave induced surge forces on the buoy
Fs : Wave induced surge forces on the ship
kg : Mooring stiffness

ky : Hawser stiffness

Mjp : Mass and surge added-mass of the buoy
M;s : Mass and surge added-mass of the barge

The results of time and frequency domain calculations and experimental
measurements for the surge motions of the ship are shown in Fig. 4.11. Fig. 4.11 shows
that there is good agreement between the time- and frequency domain predictions and that
predictions agree well with the measurements. However the correlation between the surge
motion predictions of the buoy and the measurements are not so satisfactory as can be

seen from Fig. 4.12. This may be attributed to the unstable rigid-body motions of the
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buoy observed during the experiments as well as to the linear spring modelling of the

hawser. Fig. 4.10 shows the experimental set-up.

Time and frequency domain programs were also run for the configuration shown
in Fig. 4.9. Comparisons of surge displacements obtained from frequency and time
domain calculations are shown in Figs. 4.13 and 4.14. Whilst the surge motion
amplitudes of the ship obtained from frequency and time domain simulations correlate
well with each other there are significant differences between the surge motion amplitudes
of the buoy as obtained from the frequency and time domain simulations in the wave
frequency range between 0.15 and 0.3 rad./sec. This difference may be attributed to the

effects of non-linearities in hawser forces.
4.6 NUMERICAL ASPECTS AND RESULTS

In order to calculate the retardation functions given in Eq. 4.45, the frequency
dependent damping coefficient should be known up to infinite frequencies. This
numerical difficulty could be overcome by making use of the asymptotic behaviour of the
damping coefficient in high frequencies. In the high frequencies damping values of surge,
sway and yaw motions are approximated by the following equation,

C.
b; = 5‘5 (4.53)

This approximation was first suggested by Newman [4.27]. If the damping is known up

to a certain value @, then the Cy value can be calculated from Eq. 4.44 and the

retardation function given in Eq. 4.45 can be rewritten as follows,

2 27 C
K;= ; _([bﬁ (®) cosmt do + ; f 65— cost dw (4.54)

@y

The second integral in Eq. 4.54 could be evaluated up to very high frequencies. Cy

values were calculated for the surge, sway and yaw damping values given in Figs. 3.34,
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3.35 and 3.36 and found to be 0.1386, 2.9 and 0.46355 respectively. Retardation
functions for surge, sway and yaw motions given in Eq. 4.54 were presented in Figs.
4.15, 4.16 and 4.17. Calculations were carried out for very high frequencies up to 5
rad/sec and the convergence of the functions is quite good for the chosen 25 sec.
calculation limit. Retardation functions given in Figs. 4.15-4.17 are approximated by
chebyshev polynomials in order to make effective use of them in the time domain
simulations. Constant added mass coefficients expressed in Eq. 4.46 were evaluated for 5
different frequencies. Due to approximations made in the calculations the computations
did not give exactly the same values. Average values of these calculations, 0.027 for
surge, 0.592 for sway and 0.079 for yaw, are in good agreement with Oortmerssen's
calculations which are 0.033, 0.505 and 0.045 respectively. Differences between the
results could be attributed to the geometrical difference between the tanker and the

elliptical cylinder. There is one other way to obtain the constant added mass coefficients,

that is to use the limit value of a;;(®) as my; at infinite frequency. Because it is obvious
from Eq. 4.46 that when ® approaches infinity, 2;;(®) takes the value of mjj . Therefore
one should like to derive the asymptotic values of 2;;(®) at infinity. However there is
one obstacle, namely that it is very difficult to calculate the Mathieu functions at very high
frequencies because of the very large parametric value, q. For instance, for 5 rad/sec the

parametric value becomes 38078.56.

In order to solve the differential equations an algorithm written by Gear [4.28] is
used. The algorithm which is either a form of the Adams methods or a method for stiff
equations has several features such as the automatic selection of step size and order for
the method used. In order to avoid shock response of the system due to external forces an
exponantial ramp function which ensures the gradually increase of the external force for a

certain period at the beginning of the simulation is used.
The effect of dynamic wind and irregular waves is shown in Figs. 4.18 and 4.19.

It can be easily concluded from the graphs that dynamic environment is causing peak

loads on the hawser and slowly varying oscillations of the system.
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4.7 CONCLUSIONS

A time-domain simulation procedure to predict the motion response values and
mooring forces of a CALM system was described and the results obtained from the time
domain simulations were validated by model test measurements. The results of the time
domain simulations were also correlated with frequency domain calculations. Whilst the
surge motion amplitudes of the ship obtained from the frequency and time domain
simulations correlate well with each other and agree with the results of measurements,
there are some differences between the surge motion amplitudes of the buoy as obtained
from the frequency and time domain simulations and the experimental measurements.
These discrepancies may be attributed to the effects of non-linearities in hawser restoring
forces and to the unstable behaviour of the buoy model due to its light weight in waves

during the experiments.

The results of motion response and mooring force predictions based on non-linear
time domain simulations revealed that the unstabilising Munk moment causes unstable
large amplitude motions of the buoy and the ship in the horizontal plane yielding mooring
line and hawser forces which are about 2-3 times larger than the maximum forces

obtained when the effects of Munk moment are not considered.

The results of oblique wave tests revealed that as the current and the wave forces
become more orthogonal to each other the magnitude of steady sway and yaw
displacements of the ship increases and that the increase in current load, generally yields

an increase in the surge, sway and yaw oscillation amplitudes of the ship.
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CHAPTER 5§
PARAMETRIC STUDIES

5.1 INTRODUCTION

In this chapter the results of a series of parametric studies are presented to
illustrate the effects of environmental and geometrical characteristics on the dynamic
response and mooring forces of the tanker-buoy system. The parametric studies were
carried out considering the tanker-buoy system described in Fig. 4.9. During the
parametric studies wave, wind and current angle of attacks, wind and current speed,
elasticity of the mooﬁné lines and the hawser line, buoy's geometry, sea state, wind
spectrum, the number of mooring lines of the buoy ,the hawser length and thruster
capacity were varied to study the effect of variations on dynamic response and mooring
forces of the system. Numerical aspects of the program, such as; simulation time and
integration step are discussed. |

5.2 PARAMETRIC STUDIES AND DISCUSSION OF RESULTS

Two sets of parametric studies were carried out. First one investigated the effects
of different wave, wind and current force magnitudes and directions on the steady and
oscillatory motions and mooring forces of the tanker-buoy system. A second parametric
study determined the sensitivity of slowly varying motions and hawser forces to changes
in wave and wind spectrums, number of the mooring lines of the buoy, hawser length
and thruster capaéity. The first parametric study was carried out in regular waves with
steady wind and current present while the second one in irregular waves with dynamic

wind and current present.
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In the first set of parametric studies, six groups of simulation studies were carried
out using the non-linear time domain simulation computer program based on the
prediction method described in the previous chapters. At the begining of each simulation
the tanker was placed along the x axis with zero yaw angle and the hawser was
unstretched. Results 6f the parametric study are tabulated by using the steady and
oscillatory motion responses of the buoy and the tanker, which were obtained through a
FE.E.T analysis of the time domain simulations. During the first three groups of studies the
effects of directionality of wave, wind and current force were investigated and the results
of these simulations are given in Tables 5.1-5.3. During the remaining three sets of
simulations the effects of variations in wave, wind and current force magnitudes were
investigated and the results of these studies are given in Tables 5.4-5.6. The results given
in Table 5.1 indicate that maximum steady and oscillatory sway and yaw motions occur
When wave and current forces make a 90 degree angle with the wind forces. Similarly
maximum sway motionsl of the buoy occur when wave and current forces make a 90
degree angle with the wind forces. The results given in Table 5.2 indicate that wind
direction does not affect the motions significantly. It could be concluded from Table 5.3
that mean sway displacement and yaw angle increase as the current direction changes
from O to 90 degrees. However maximum oscillatory sway motion of the buoy occurs

when wave force direction makes a 0 degree and wind and current directions make a 45

“degree angle with the horizontal axis. Maximum steady and oscillatory surge motions of

the buoy and ship occur when wave, wind and current forces act co-linearly. Tables 5.4
and 5.5 show that the mean mooring line forces are generally not very sensitive to the

changes in current and wind loading since the dominant load on the system is due to wave

" induced oscillatory and steady forces. Table 5.6 shows that there is no linear relationship

between the wave height and the motion response or the mooring force values of the

CALM system. This indicates that such systems must be analysed in the time domain

‘'using nonlinear analysis tools.

A Second set of parametric studies was carried out to determine the sensitivity of
slowly varying motions and hawser forces to changes in the environment, the number of

mooring lines of the buoy, hawser length and thruster capacity for the CALM system
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illustrated in Fig. 5.1. In the simulations the tanker was given an initial 7.5 deg yaw angle
with respect to the current angle, and bow hawser was unstretched and was parallel to the

current. During these simulations first order wave forces were neglected.

During the simulations of the tanker-buoy system, the following parameters were
varied:
1. Sea state; Pierson Moskowitz spectrum with different wind speeds
2. Wind spectrum formulation; Ochi-Shin, Davenport and Harris.
3. Number of mooring legs of the buoy; 8 and 4 legs.
4. Hawser length: 80 m and 40 m.
5. Thruster capacity (250, 500 and 750 kN)
6. Displaced volume of the buoy (785 and 3534 m3)

Fig. 5.2, 5.3 and 5.4 show the simulations for different sea states with Pierson-
Moskowitz spectrum and with mean wind speeds of 10.3, 20.6 and 25.75 m/sec
respectively. It can be concluded from the comparison of simulations that an increase in
wind speed results in an increase in mean displacements of the system and the mean
tension of the hawser. The same trend can also be observed for oscillatory yaw motion of
the tanker and sway motion of the buoy. Simulation 1, which is the lowest sea state
chosen, gives the biggest motion response values for surge motion of the buoy and sway
motion of the tanker. A summary of the results is given in Table 5.7. Frequencies at
which the buoy and the tanker oscillate in simulation 1 ,found through a spectral analysis,
are 0.013, 0.025, 0.038 and 0.05 rad/sec. Among these frequencies 0.013 is the
dominant frequency for all motions except for the surge motion of the buoy and the tanker
whose dominant frequency are 0.025 rad/sec. Dominant frequency for hawser tension
oscillations is also 0.025 rad/sec. Dominant frequencies change slightly with increasing
wind speed: 0.014 and 0.029 rad/sec for simulation 2 and 0.016 and 0.031 rad/sec for

simulation 3.

Simulations with the Ochi-Shin, Davenport and Harris wind spectrums are

compared in Figures 5.5, 5.6 and 5.7. Mean wind speed during the simulations was 22
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m/sec. Simulation with the Davenport spectrum gives the largest motion response values
(0.1-4% higher than the others). Results are summarised at Table 5.8.

Effect of mooring legs on the motion response and hawser tension values is
shown in Figures 5.5 and 5.8 and at Table 5.9. As the number of mooring legs is
reduced from 8 to 4, dominant (natural) frequencies of the system shift towards lower
frequencies taking the values 0.014, 0.028, 0.041 and 0.057 rad/sec compared with the
frequencies of 0.015, 0.029, 0.044 and 0.059 rad/sec of the 8 legged system. There is
also an increase of 40-145% in the mean and oscillatory motion response values of the
tanker and the buoy. This increase in the motions increases the hawser tension by 25%.
This is because with fewer mooring legs, the system becomes less stiff, the bow hawser
stays slack for a longer time and the sudden acceleration of the buoy and/or the tanker

creates larger tensions in the hawser.

A change in hawser length not only changes the motion response values but also
the natural frequencies of the system. As it is seen from Figures 5.5 and 5.9 and Table
5.10 that as the hawser length reduces from 80 m to 40 m, 0.019 rad/sec becomes the
dominant frequency for sway and yaw motions of the tanker and sway motion of the
buoy, 0.038 rad/sec for the surge motion of the buoy and the tanker and the hawser
tension. Another conclusion which could be drawn from the simulation is that the
motions of the tanker and the buoy are more stable and hawser loads decrease by 6% as

the hawser length is reduced (Fig. 5.9).

Slackening of the hawser which is the reason for peak loads is avoided by the use
of thrusters. Tanker and buoy motions also become more stable (Fig. 5.5, 5.10, 5.11 and
5.12). But with the use of thrusters the hawser remains stretched with a high mean
tension during the simulation, which may not be desirable and the use of thrusters could

be expensive. Results are tabulated in Table 5.11.
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An increase in displaced volume of the buoy results in more stable motions of
tanker and buoy (Figs. 5.5 and 5.13, Table 5.2). This effect is quite similiar to the effect
of thrusters.

5.3 NUMERICAL ASPECTS

In order to obtain enough cycles of motion for analysis and to avoid the statistical
variance of the results [5.1], simulation time was chosen to be sufficiently long, 7000
seconds. Time step used for the integration of the differential equations was 0.05
seconds, maximum time step which could be used by the algorithm [5.2] for stable
solutions was (.2 seconds and minimum time step was 1.E-07 seconds. Tolerance was
chosen to be 10E-03. For higher tolerances the algorithm requires much smaller time

steps.
Analysis of the simulations was carried out using Fast Fourier Transformations

[5.3]. Results of the F.F.T. analysis ,frequencies and corresponding amplitudes, were

tabulated.
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Fig. 5.2 Time Domain Simulation of the Tanker-Buoy System
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Fig. 5.3 Time Domain Simulation of the Tanker-Buoy System
Pierson Moskowitz Wave Spectrum
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Fig. 5.4 Time Domain Simulation of the Tanker-Buoy System
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Fig. 5.5 Time Domain Simulation of the Tanker-Buoy System
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Fig. 5.6 Time Domain Simulation of the Tanker-Buoy System
Davenport Wind Spectrum, Mean Wind Speed=22 m/sec
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Fig. 5.8 Time Domain Simulation of the Tanker-Buoy System
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Fig. 5.10 Time Domain Simulation of the Tanker-Buoy System
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Fig. 5.11 Time Domain Simulation of the Tanker-Buoy System
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Fig. 5.12 Time Domain Simulation of the Tanker-Buoy System
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CHAPTER 6
EXPERIMENTAL WORK

6.1 INTRODUCTION

In this chapter a description of model tests performed in regular waves is
presented. Two sets of experiments were conducted, first set of experiments aimed to
predict the motion responses of conical and cylindrical buoys, the second was performed

to predict the motion responses of the tanker-buoy system and the hawser line forces.

In order to validate the numerical method, which was developed to calculate the
motion responses of moored conical and cylindrical buoys, conical and cylindrical buoy
models were tested in regular waves over a frequency range of 0.4 to 1.4 Hz at intervals
of 0.04,, 0.09, 0.18 and a wave height range of 2 to 14 cm (See Fig. 6.1). The sampling
of the signals was set at 40 samples per second per channel over a period of 64 seconds
for each wave frequency and wave height. The number of channels used was 10 without
load cells, 14 with load cells. Three L.E.D.s were used to measure the heave, surge and
pitch modes of motion. The signals collected by the L.E.D.s were amplified, digitised
and stored in a file in the computer during tests. In order to analyze the experimental data
stored in digital form on computer, a program called ATTEMPT was written, which

performs Fast Fourier Transformations of experimental data.

The second set of tests was conducted to determine the motion characteristics of a
Tanker-Buoy system under wave and current loading. In this system a cylindrical buoy is
moored to the tank bottom by means of cables and an elliptical tanker is moored to the
buoy by a hawser. Main dimensions of the system are given in Fig. 6.2 and 6.3. The
tests were conducted in regular waves over a frequency range of 0.4 to 1.4 Hz at intervals

of 0.1 and a wave height range of 4 to 6 cm at the towing/wave tank of the
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Hydrodynamics Laboratory at the University of Glasgow, which is 77 m long. 4.6 m
wide and 2.7 m deep. The sampling of the signals was set at 100 samples per second per
channel over a period of 120 seconds for each wave frequency and wave height. The
number of channels used was 16. The signals collected by L.E.D.s and load cell were
amplified, digitised and stored in a file in the computer during tests.

During the first part of the second set of experiments a model of a coupled ship-
buoy system shown in Fig. 6.4 and 6.5 was tested under co-linear wave and current
loading. In the second part the current load was applied at an oblique angle to the
direction of waves and the current load was simulated through a weight-pulley
mechanism (Fig. 6.6). The ship model which comprised an elliptical cylindrical form was
connected to a circular cylindrical buoy by means of a hawser and the buoy was
connected to the tank bottom by a series of moén'ng lines. The stiffness characteristics of

the mooring lines and hawser are given in Figs. 6.7 and 6.8 respectively.

The tank has a plunger type wave maker at one end, a wave absorber beach at the
other. The regular waves were created by a plunger type wave maker driven by an
electronically controlled hydraulic pump. The wave heights were measured by three
resistance type wave probes. They were placed between the wave maker and the model.
These probes induced an electrical signal whose strength changed as the waves passed the
probes.

6.2 MOORED BUQY TESTS IN CALM WATER AND IN REGULAR
WAVES

6.2.1 Description of Calibration Procedures

L.E.D.s (Light Emitting Devices) placed on the buoy were calibrated by shifting

the camera horizontally for 10 cm and recording the subsequent voltage difference.
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All wave probes were calibrated when they were submerged 10 cm into the tank
while the water was calm and zero readings on the wave probe amplifiers were taken by
marking the pen's position on the chart recorder ( All calibration values were also
recorded and stored in a computer file). Then wave probes were raised 10 cm and the

new position was recorded in the computer as well as on the chart recorder.
6.2.2 Analysis and Comparison of the Measurements

The experiments could be divided into 7 parts:
1. Motion response measurements with the moored conical buoy
2. Motion response measurements with the moored cylindrical buoy
3. Motion response and mooring force measurements with the moored conical buoy.
4. Motion response and mooring force measurements with the moored cylindrical buoy.
5. Surge natural frequency tests in waves with the moored conical buoy
6. Motion response measurements with the moored conical buoy with relatively low
initial tension.

7. Natural frequency test of the conical buby with linear springs

Conical and cylindrical buoys used in the tests are depicted in Fig 6.3. Fig 6.2

shows the experimental set-up.

The first four sets of experiments were performed in order to compare the motion
performances of the conical and cylindrical buoys and to validate the computer
simulations. Three L.E.D.s were used to measure the heave, surge and pitch modes of
motion. First-order, steady and second order motions were measured by applying Fast
Fourier Transformations to the experimental data. Some examples of the experimental
data and F.F.T analysis are shown in Figs. 6.9, 6.10, 6.11 and 6.12. These
measurements are plotted in the frequency domain. First-order heave, surge and pitch
measurements with the conical and cylindrical buoys are shown in Figs. 6.13-6.18.
Normalized values of the first-order motion measurements are compared with time and

frequency domain predictions [6.1]. Fig. 6.19 and 6.20 show that the non-linear time
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domain predictions correlate better with measurements than the linear frequency domain
predictions. This may be explained by the fact that the non-linear time domain approach
models the stiffness characteristics due to hydrostatic and mooring lines more accurately
and therefore a significant difference occurs between the results obtained from the two
methods in the frequency region where motion responses are controlled by the restoring

forces.

Surge response curves (Figs 6.21 and 6.22) show a significant shift at the
maximum response values corresponding to the natural surge frequency region. This can
be attributed to the different surge stiffness modelling employed in the linear frequency
domain formulation as against the non-linear time domain formulation. However both
prediction methods yield significantly higher results than experimental measurements.
This may be due to the inertia coefficients used in the wave force formulations being
higher than they actually should be.

As with the surge responses, predicted pitch response values are higher than the
measured experimental pitch responses and the difference may, again, be due to the high

wave force coefficients used in the predictions (Figs. 6.23 and 6.24).

Comparisons between the motion performance of the conical buoy and that of the
cylindrical buoy indicate that the heave and pitch motions of the conical buoy are
significantly less than those of the cylindrical buoy. Although the heave response
amplitude values are similar to each other for conical and cylindrical buoy forms since the
heave response amplitude curve of the cylindrical buoy has a wider band than that of the
conical form spectral analysis gives much more significant motion response values for the
cylindrical buoy. It may therefore be concluded that a conical form gives a better motion

performance than does a cylindrical buoy.
The second order slowly varying and steady surge responses of the conical and

cylindrical buoys are shown in Figs. 6.25, 6.26, 6.27 and 6.28. In order to obtain the

horizontal stiffness characteristics of the mooring lines another experimental set-up was
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used. In this test the buoy's horizontal displacements against applied horizontal forces
were recorded and plotted in Fig. 6.29.

m h ristic v the coni in full
Heave natural frequency= 0.448 rad/sec
Surge natural frequency= 0.095 rad/sec
Pitch natural frequency= 0.373 rad/sec
Damping coefficient for heave (Y )= 0.075
Damping coefficient for surge (Y )= 0.098
Damping coefficient for pitch (Y)= 0.134

Metacentric height=4.784 m

Some characteristic values of the cylindrical buoy (in full scale):
Heave natural frequency = 0.560 rad/sec

Surge natural frequency= 0.141 rad/sec
Pitch natural frequency= 0.410 rad/sec
Damping coefficient for heave (Y )= 0.120
Damping coefficient for surge (Y)= 0.112
Damping coefficient for pitch (Y)= 0.127

Metacentric height=4.585 m

In the calculation of surge damping coefficients mooring stiffness in surge

direction is assumed to be constant (Fig. 6.29).

In the last two sets of experiments the surge natural frequency of the moored
conical buoy in waves, the viscous damping of the moored conical buoy in waves and the
effect of initial cable tension on the motion behaviour of the buoy were investigated. A
surge natural frequency test was performed for two different mooring configurations. The
first configuration was the original one (Mooring Configuration A) which was used for
the first four sets of experiments (Fig. 6.2), but the result was not very successful.

Because of the high initial tension on the cables the amplitude reduced to small values
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rather quickly (Fig. 6.30). Then moorings were modified in order to have low initial
tension on the cables (Fig. 6.31) (Mooring Configuration B).

Comparisons between the first-order motions of the conical buoy with two
different mooring configurations are presented in Figs. 6.32, 6.33 and 6.34. In the case
of low initial tension on the cables, a decrease in the first-order surge and pitch motion
responses was observed (Figs. 6.32 and 6.34). It was also observed that initial tension
on the cables had no significant effect on the heave motion of the conical buoy (Fig.
6.33). The same conclusion was reached after carrying a series of parametric studies
performed using the time domain program called HYDCOT (Fig. 6.35). In the case of
low initial tension on the cables, an increase in the steady and second-order surge motion
responses was observed (Fig. 6.36 and 6.37). Surge natural frequency in waves was
measured for two different mooring arrangements; 0.481 rad/sec for the Mooring
configuration B (low initial tension on the cables), 1.789 rad/sec for the Mooring

configuration A.

The damping coefficients were computed from the examination of the rate of
decaying oscillations (Fig. 6.38) [6.2]. The surge signal was numerically filtered with a
2.24 rad/sec (0.2 rad/sec in full scale) low pass filter to isolate the low frequency
response of the system. A sample of the data is presented in Fig 6.30. The damping
coefficients are plotted in the frequency domain in Fig. 6.39. it may be generally

concluded that the damping coefficients increase as wave height increases.

The equation of motion for the damped free oscillation of the conical moored buoy

in surge is given by

mx +cx+ kx=0 6.1
and natural frequency
= _|X

@0 +/Tm (6.2)
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Y is the damping coefficient and could be found from the logarithmic decrement

A, 2yn=n

log ===
AL :;1—72 6.3)

A | is the amplitude of the oscillation at t; and A ., isthe amplitudeat t__ .

Added mass coefficient could be computed from the measured natural frequency,

the spring constant and the buoy's mass

k 7 = m) / m
o, (6.4)

In the last set of experiments the conical buoy was moored to the carriage with
linear springs which were pretensioned and which never became slack during the
experiments (Figs. 6.41, 6.42 and 6.43). Two loadcells were used to measure the forces
on the springs and one L.E.D. was used to measure the surge response. As a double
check, surge response was also calculated by using the forces on the springs. This
method also eliminates the contamination to surge response from other modes of motion.
The unstretched length of the springs was 31 cm. Before the experiments they were
stretched to 40 cm. Spring coefficients of the springs were measured and were found to
be 7.85 kg/m. Damping and added mass coefficients of the conical buoy were calculated
using equations (6.3) and (6.4). The added mass coefficient of the conical buoy was
found to be 1.734. Damping coefficients for two experimental test set-ups were plotted in
Fig. 6.44 and 6.45. It can be concluded from the graphs that the damping coefficient in
waves is higher than the damping coefficient in still water. Damping coefficients obtained
using test set-up A are higher than the coefficients obtained using test set-up B. This can

be attributed to the higher friction in test set-up A, which is caused by the pulley system .
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Some difficulties have been encountered during the experiments; In the second set
of the experiments at the frequencies of 0.80 and 0.89 Hz yaw motions were observed.
In the sixth set of the experiments at the frequency of 1.40 Hz sway motion was

observed. This strange phenomenon is believed to be caused by 'wall effect’ [6.3].

A parametric study was performed to determine the effect of the current on the
motion responses of the moored buoys (Fig. 6.40). It showed that the current increases
amplitude of the first-order motions and that the natural frequency region moves towards

higher frequencies in the presence of current.

6.3 SINGLE POINT MOORED TANKER-BUOY EXPERIMENTS

6.3.1 Description of Calibration Procedures

Instrumentation of the L.E.D.s, load cells and cameras are shown in Fig. 6.46.
Eight L.E.D.s were used to measure the motions of the tanker and the buoy; six on the
tanker, two on the buoy. Signals from L.E.D. 1,2,3 and 4 were detected by a camera
placed at the top of the carriage and signals from L.E.D.s 5 and 6 were detected by a
camera placed at the side of the tank. Another camera was placed at the top of the carriage
to detect signals from the L.E.D.s on the buoy. While L.E.D.s nos. 2, 4, 5 and 6 were
used for measuring, nos. 1 and 3 were used for calibration purposes only. So L.E.D.s 2
and 4 were calibrated by using 1 and 3 and L.E.D.s 5 and 6 by the use of 2 and 4. the
L.E.D. on the buoy was calibrated by shifting the camera horizontally. One load cell was
also used to measure the forces on the hawser. All wave probes were calibrated when
they were submerged 10 cm into the tank while the water was calm and zero readings on
the wave probe amplifiers were taken by marking the pen's position on the chart recorder
( All calibration values were also recorded and stored in a computer file). Then wave
probes were raised by 10 cm and the new position was recorded in the computer as well

as on the chart recorder.
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6.3.2 Analysis and Comparison of the Measurements

First, the system was tested in co-linearly acting wave and current loading.
Current force was simulated by a single force applied to the system along the x-axis by a
pulley system. During the tests wave frequency was varied from 0.4 Hz (2.51 rad/sec) to
1.4 Hz (8.8 rad/sec) and the current force acting on the system was 6 gr (0.059 N).
Oscillatory surge motion of the tanker and the buoy were compared with the time and
frequency domain simulations in Figs. 6.47 and 6.48. Agreement was very good for the
tanker. But there were some discrepancies in the buoy's surge motion. During the
experiments it was observed that the buoy's motion was not so stable and it involved
some unexpected yaw and sway motion due to the very light buoy model used in the
experiments. Some examples of these runs are presented in Figs. 6.49-6.51. Then natural
frequency of the system was determined under wave loading and under current loading
(single applied force). Under wave loading it was found to be between 0.15 and 0.38
rad/sec (0.024 and 0.060 Hz), under current loading it was between 0.27 and 0.61
rad/sec (0.043 and 0.097 Hz). One example of these tests is given in Figs. 6.52 and
6.53.

In the second set of the tests, the system was tested in oblique angles i.e. current
was acting in oblique angles (See Fig. 6.54) and the initial position of the tanker was
different from the head-sea tests ( See Fig. 6.6). In these tests finer and lighter cables
were used to reduce the effect of the cables on the motions. But buoy motions again were
not stable due to the very light buoy model. Results of these tests are presented in table
6.1. Wave frequency in the tests was varied from 0.9 Hz to 1.3 Hz. Tests were not
performed at the frequencies lower than 0.9 Hz because the wave drift force is almost
zero at these frequencies. It is easily seen from the table that with the increase in the
current load, an increase in the oscillatory motions of the tanker is obtained. Oblique
angle tests are presented in Figures 6.55-6.58. In run 22 (Fig. 6.58) unstable tanker

motion was observed.
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In order to analyze the experimental data stored in digital form on computer, a
program called TIME_EXPE was written, which performs Fast Fourier Transformations
of the experimental data. ‘

6.3.3 Observations and Experience from Model Tests

During the experiments it was observed that the tanker-buoy system was too light
and so, too sensitive to external loads. The L.E.D. and load cell cables were applying
load to the system. This problem was partially solved in the second set of experiments by
using fine, lighter cables.

Another problem observed during the experiments was that the L.E.D.s were
going out of range of the cameras. This was especially a problem in oblique angle tests
because the position of tlie cameras has to be changed when the current angle of attack or

the initial position of the tanker changes.

6.4 CONCLUSIONS

The theoretical work on the motion response predictidns of the moored buoys has
been validated by experiments. Comparisons between the predictions and the
measurements reveal that the predictions are rather conservative in surge and pitch
motions but give reasonably good correlations with measurements in all modes of

motion.

Another conclusion that could be drawn from the experiments is that the conical

btioy performs better than the cylindrical one under wave, wind and current forces.

Second-order surge motions were observed in regular waves. This was quite a

surprise since second order motions are originally thought to be caused by irregular

waves. One possible reason for this is the non-linearities exhibited by the mooring cables.

194



The theoretical work on the motion response predictions of the tanker-buoy
system has been validated by experiments. Comparisons between predictions and
measurements reveal that the predictions agree very well with the measurements for surge
motion of the tanker. However the comparison is not so good for surge motion of the
buoy. One possible reason fof this is the unstable motion of the buoy observed during the

experiments.

It can be concluded from oblique angle tests that an increase in the current load
usually results in an increase in the oscillatory motions of the tanker and that the system

does not always reach a steady state position under wave and current loading (Fig. 6.58).
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Run | Current | Current| Wave Wave SHIP  MOTIONS
" No [Direction| 'Force [Frequency Height |-~ SURGE(cm) | '~ SWAY(cm) " YAW(deg)- |-
(Deg.) (gr) (Hz) {cm) | Steady| Oscill. | Steady | Oscill. | Steady| Oscill.
1 213.00 7.00 0.90 4.70 153.90f] 0.47 | -0.60 | 0.30 | -8.27 | 0.58
2 213.00 7.00 0.90 4.45 157.60] 0.44 | -1.22 | 0.23 | -9.85 | 0.40
3 206.50 | 10.00 0.90 5.32 151.20] 0.54 }|-37.00f 0.26 |-38.12] 1.52
4 212.00 7.00 1.00 4.69 156.50] 0.13 2.00 0.13 | -8.00 { 0.62
5 206.50 | 10.00 1.00 4.31 157.701 0.13 }-24.50] 0.07 |-41.00] 0.73
6 207.50 | 17.00 1.00 4.55 165.00] 0.16 |-20.00] 0.19 }|-45.00] 1.09
7 200.00 | 20.00 1.00 5.09 147.00] 0.17 |-32.00] 0.24 |-45.49{ 1.58
8 209.00 27.00 1.10 3.50 158.87] 0.28 [-19.10] 0.09 }|-33.60| 0.62
9 213.00 | 55.00 1.10 4.44 156.20f§ 0.35 [|-25.004 0.12 |-40.00¢{ 1.15
10 202.50 65.00 1.10 4.39 146.90] 0.41 {-40.10] 0.12 |-60.47| 1.72
11 201.00 | 65.00 1.10 4.36 153.80] 0.37 |-34.97| 0.12 |-46.70| 1.50
12 | 200.50 | 70.00 1.10 5.11 1567.70] 0.39 |-46.42| 0.23 |-44.31| 1.78
13, | 200.00 | 80.00 1.10 4.99 149.84] 0.39 |-51.80f 0.23 | -46.54]| 1.84
14 | 217.00 { 30.00 1.20 4.47 155.00f 0.40 | 30.60| 0.15 {-28.70] 0.54
15 216.00 37.00 1.20 4.35 157.70] 0.41 21.03 | 0.14 |-33.14] 0.55
16 | 208.00 { 80.00 1.20 4.93 158.60] 0.47 ]|-31.60] 0.20 }-39.05] 1.11
17 219.50 47.00 1.30 4.45 156.08] 0.18 | 41.90 | 0.56 |-29.90] 0.19
18 | 219.50 | 67.00 1.30 3.95 150.22] 0.18 | 29.22 | 0.37 }-33.80] 0.08
19 | 221.00 | 87.00 1.30 4.75 155.00] 0.18 | 34.00 | 0.64 }-33.49] 0.15
20 | 222.00 | 97.00 1.30 5.09 148.90| 0.19 ]| 26.20 | 0.55 | -37.40] 0.16
21 215.50 | 100.00 1.30 4.64 159.40f 0.31 |-15.02| 0.34 | 33.97 | 0.83
22 | 224.50 | 107.00 1.30 5.09 150.31} 0.18 | 35.50 { 0.53 ] -37.42} 0.16
23 215.00 { 120.00 1.30 5.90 148.10| 0.40 |-12.50f 0.31 {-26.80§ 0.81
24 | 214.00 | 137.00 1.30 4.61 146.91] 0.27 | -1.80 | 0.54 {-12.51]| 0.45
25 | 213.00 | 147.00 1.30 5.09 147.10f 0.33 | -2.43 | 0.50 {-15.68} 0.55
Table 6.1 Oblique Wave and Current Loading Test Conditions and Results
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Fig. 6.1 Motion Response and Cable Tension
Measurements of the Conical Buoy
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Fig 6.3 Geometrical characteristics of Conical and Cylindrical Buoys
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Fig. 6.5 Coupled Tanker-Buoy System

Current

Waves
Tanker

Buoy

Fig 6.6 Experiment set-up of the Tanker-Buoy system
Wave and current acting in different directions
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Fig. 6.7 Stiffness Characteristics of Mooring Lines
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Fig. 6.42 Experimental Test Set-up B
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Fig 6 43 Natural Frequency Test of the
meal Buoy with Linear Springs
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Angle Tests of the Tanker-Buoy System
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CHAPTER 7
CONCLUSIONS

7.1 GENERAL CONCLUSIONS OF THESIS

The aim of this study was to investigate the environmental loading and motion
response of moored objects such as moored buoys and Single Point Mooring Systems
and to provide the designer with tools that can be used for the analysis of these systems in
design. In developing the prediction methods for moored systems particular attention was
given to the time domain simulation techniques because the nonlinearities involved in the
system, due to the nonlinear mooring forces and the random nature of the environmental
forces, can be best treated by time domain prediction techniques. At each stage of the

study prediction methods were validated by experiments.

A calculation procedure to predict the non-linear coupled large amplitude motions
of a conical or a cylindrical buoy was presented in the second chapter. Comparisons of
the motion response predictions with measurements show an acceptable degree of
correlation. Comparisons between the motion performance of the conical buoy and that of
the cylindrical buoy indicate that the heave and pitch motions of the conical buoy are
significantly less than those of the cylindrical buoy (1% reduction in heave and 70%
reduction in pitch were predicted). Effects of nonlinear stiffness due to mooring lines and
wave height were also investigated. Simulations with nonlinear cable modelling give
bigger motion response values than simulation with linear cable modelling. Also the
natural frequencies of the buoy shift towards higher frequencies with nonlinear cable
modelling. As the wave height increases, the difference in motion responses between the
linear and nonlinear cable modellings widens (For an increase in wave height from 4m to
8m, difference in motion responses increase from 5% to 10%). After the F.F.T. analysis

of the motion responses obtained from the nonlinear time domain predictions were carried
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out, together with the oscillations at wave frequency, some superharmonic motions at
twice the wave frequency and subharmonics at fractions of the wave frequency were

detected.

The theoretical work on the motion response predictions of the moored buoys was
validated by experiments. Comparisons between the predictions and the measurements
reveal that the predictions are rather conservative in surge and pitch motions but give
reasonably good correlations with measurements in all modes of motion. Second-order
surge motions were observed in regular waves. This was quite a surprise since second
order motions are generally thought to be caused by irregular waves. One possible reason

for this is the non-linearities exhibited by the mooring cables.

The theory to calculate the wave and motion induced forces on tankers described
in Chapter 3 provides an alternative method of predicting the wave forces and moments
on tankers. CPU time for the calculation of wave forces is about 15 minutes for three
angles of wave incidence and for 80 wave frequencies at each wave incidence angle in
VAX. It is quite fast compared to the programs which utilize the Green's function
method. The combination of reasonable accuracy and low computational cost makes it a

good alternative to other numerical methods.

Mean drift forces acting on the elliptical cylinder were compared with a 3-D
source distribution program [3.8]. There are large discrepancies between the elliptical
cylinder approach and the 3-D program (Figs. 3.51, 3.52 and 3.53). This is because the
flow under the cylinder was not modelled in the theory. Results of the elliptical cylinder
approach were also compared with the Havelock's method [3.19] for the limiting case of
a circular cylinder extending from sea surface to sea bottom and the agreement is quite

good (Fig. 3.54).

A time-domain simulation procedure to predict the motion response values and
mooring forces of a CALM system was described and the results obtained from the time

domain simulations were validated by model test measurements. The results of the time
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domain simulations were also correlated with frequency domain calculations. Whilst the
surge motion amplitudes of the ship obtained from the frequency and time domain
simulations correlate well with each other and agree with the results of measurements,
there are some differences between the surge motion amplitudes of the buoy as obtained
from the frequency and time domain simulations and the experimental measurements
(Figs. 4.11-4.14). These discrepancies may be attributed to the effects of non-linearities
in hawser restoring forces and to the unstable behaviour of the buoy model due to its light

weight in waves during the experiments.

The theoretical work on the motion response predictions of the tanker-buoy
system was validated by experiments. Comparisons between predictions and
measurements reveal that the predictions agree very well with the measurements for surge
motion of the tanker. However the comparison is not so good for surge motion of the
buoy. One possible reason for this is the unstable motion of the buoy observed during the

experiments.

The results of oblique wave tests performed for the tanker-buoy system revealed
that as the current and the wave forces become more orthogonal to each other the
magnitude of steady sway and yaw displacements of the ship increases, and that the
increase in current load generally yields an increase in the surge, sway and yaw

oscillation amplitudes of the ship.

Two sets of parametric studies were presented in Chapter 6. In the first set, six
groups of simulation studies were carried out using the non-linear time domain simulation
computer program based on the prediction method described in this thesis. During the
first three groups of studies the effects of directionality of wave, wind and current force
were investigated. During the remaining three sets of simulations the effects of variations
in wave, wind and current force magnitudes were investigated. Results are listed as

follows,
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1. Maximum steady and oscillatory sway and yaw motions occur when wave and current
forces make a 90 degree angle with the wind forces. Similarly maximum sway motions of
the buoy occur when wave and current forces make a 90 degree angle with the wind

forces.

2. Wind direction does not affect the motions significantly.

3. Mean sway displacement and yaw angle increase as the current direction changes from
0 to 90 degrees. However maximum oscillatory sway motion of the buoy occurs when
wave force direction makes a 0 degree and wind and current directions make a 45 degree
angle with the horizontal axis. Maximum steady and oscillatory surge motions of the buoy

and ship occur when wave, wind and current forces act co-linearly.

4. Mean mooring line forces are generally not very sensitive to the changes in current and
wind loading since the dominant load on the system is due to wave induced oscillatory

and steady forces.

S. There is no linear relationship between the wave height and the motion response or the
mooring force values of the CALM system. This indicates that such systems must be

analysed in the time domain using nonlinear analysis tools.

A second set of parametric studies was carried out to determine the sensitivity of
slowly varying motions and hawser forces to changes in the environment, the number of
mooring lines of the buoy, hawser length and thruster capacity for the CALM system.

Results of the parametric studies are as follows,

1. An increase in wind speed (sea state) results in an increase in mean displacements
of the system and the mean tension of the hawser (Table 5.7). The same trend can also be
observed for oscillatory yaw motion of the tanker and sway motion of the buoy.
Simulation 1, which is the lowest sea state chosen, gives the biggest motion response

values for surge motion of the buoy and sway motion of the tanker. Frequencies at which
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the buoy and the tanker oscillate in simulation 1 ,found through a spectral analysis, are
0.013, 0.025, 0.038 and 0.05 rad/sec. Among these frequencies 0.013 is the dominant
frequency for all motions except for the surge motion of the buoy and the tanker whose
dominant frequency are 0.025 rad/sec. Dominant frequency for hawser tension
oscillations is also 0.025 rad/sec. Dominant frequencies change slightly with increasing
wind speed: 0.014 and 0.029 rad/sec for simulation 2 and 0.016 and 0.031 rad/sec for

simulation 3.

2. Simulation with the Davenport spectrum gives the largest motion response values

(0.1-4% higher than the others). (Table 5.8)

3. As the number of mooring legs is reduced from 8 to 4, dominant (natural)
frequencies of the system shift towards lower frequencies taking the values 0.014, 0.028,
0.041 and 0.057 rad/sec compared with the frequencies of 0.015, 0.029, 0.044 and
0.059 rad/sec of the 8 legged system (Table 5.9). There is also an increase of 40-145% in
oscillatory motion response values of the tanker and the buoy. This increase in the
motions increases the hawser tension by 25%. This is because with fewer mooring legs,
the system becomes less stiff, the bow hawser stays slack for a longer time and the

sudden acceleration of the buoy and/or the tanker creates larger tensions in the hawser.

4, A change in hawser length not only changes the motion response values but also
the natural frequencies of the system. As the hawser length reduces from 80 m to 40 m,
0.019 rad/sec becomes the dominant frequency for sway and yaw motions of the tanker
and sway motion of the buoy, 0.038 rad/sec for the surge motion of the buoy and the
tanker and the hawser tension (Table 5.10). Another conclusion which could be drawn
from the simulation is that the motions of the tanker and the buoy are more stable and

hawser load at the dominant frequency decrease by 6% as the hawser length is reduced.

5. Slackening of the hawser which is the reason for peak loads is avoided by the use

of thrusters. Tanker and buoy motions also become more stable (Table 5.11). But with
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the use of thrusters the hawser remains stretched with a high mean tension during the

simulation, which may not be desirable and the use of thrusters could be expensive.

6. An increase in displaced volume of the buoy results in more stable motions of

tanker and buoy (Table 5.12). This effect is quite similar to the effect of thrusters.

7.2 RECOMMENDATIONS FOR FUTURE WORK

1. The diffraction problem of the vertical ellipse with finite draft could be solved in six
degrees of freedom and then, mean drift forces acting on the cylinder can be obtained
following the method described in Chapter 3.

2. Current and wind forces acting on tankers are usually calculated using semi empirical
formulas together with experimental data. More experimental and theoretical investigation

of this topic is needed to improve the present formulations.

3. Motion stability of the tanker-buoy system can be investigated under wave, wind and

current loading by using the linearized equations of motion.
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APPENDIX A

EVALUATION OF MOORING FORCES

lution Algorithm due to the horizontal excursion of the r end of the cable

In the following an algorithm is given to determine cable forces due to the

horizontal displacements of the upper end of the cable. (See Fig. A-1)

Fig. A~ 1Definition of Cable Parameters

Input data:

w is the submerged unit weight of the cable element.

h is the water depth.

1 is the total cable length.

0. is the angle of the upper end of the cable with the horizontal at the beginning of the
motion.

Tomax is the maximum tension of the cable.

N is the number of cables.
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The calculation steps:

1. Assume an initial value of T,

2. Calculate 9

T, .
a x from232) x = cosh ™41
w T,

1 _Tp . bl ¥
b. 1, from (2.31) Tt B

0

c. d=1-1, +x, (A-1)

af o[ wx,
d. 0 from (2.30) 6 =tan {Smh( = D

0

3. Compare § with 0,

@l <0.001

(A-2)
4, If Step3 is not satisfied and Ty 2 Ty, , stop solution.
5. If Step3 is not satisfied and T, < T, , increment T, and goto step(2)

6. When Step3 is satisfied;

7. Assume an initial value of T,
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8.  x =Tcosh (W41
w T,

1, = sinh(X2e)
w T,
d=1-1 +x,

= tan~! (sinh(>
0 = tan™ (sinh( T, )

q, =T, tan® (A-3)
4,0-0
= tan W(——s
v ( ; ) (Ad)
Xy =htanw (A"S)

9. If T, > Tyae » Stop solution.

10. If T, £T,,, , increment T, and goto step(8)

11. Plot X, — T, ; find the interpolation function

12. Plot X, —q, ; find the interpolation function
These single cable results are used to calculate the total loads q, and q, for N
cables in a symmetric array , Where each cable has a twin diametrically opposite. The

procedure for computing q, and q, is as follows:

1. Assume an initial value of Y =0
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1
2. 6, () = Y [q,(0C\) = q,(-vCYICy | (q, = T,) (A-6)

n=0

I
q,(v) = Y [q,(vCy) +q,(-vCy)] (A-T)

n=0
v = htanY (horizontal displacement at the point of cable attachment)
Cy =|cos(B,)] and B, =0, I=(N-2)/2 (A-8)
3. If Y 2 Y, , table is complete
4. If Y< Y, ,increment Y and return to step 2
5. Plot v—q,(v)

6. Plot v—-q,(v)

7. Change the water depth to take into account the influence of heave motion on the

horizontal cable stiffness , return to step 7 in which we calculate the single cable

horizontal stiffness.

Solution Algorithm due to the vertical motion of the upper end of the cable

The procedure to find the initial geometric conditions of the cable is the same as

in the first solution algorithm (first 6 steps).

1. Calculate the initial unsupported weight of the cable. We had calculated the 1,. the

initial unsupported length of the cable. Wl,. gives us the initial unsupported weight.

T,

i = WIse
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2. To =T, / tan(0,)
3. Enter an initial value of X,

4. Find the Xs from the below equation by iteration.

8, = Lsinh(T2) - I, +x,

5. Calculate the vertical displacement.

y= Iwi(cosh(wxs )- 1)— H
To

6.  0=tan"!(sinh(2xs))
To

7. Calculate the vertical tension of the cable

T, =4(w-T,)

8. If y is less than 10 m , increment T; return to step 3.

9. Plot y versus T,, find the interpolation function.

10. Plot ¥ versus T, find the interpolation function.
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APPENDIX B
ELLIPTICAL COORDINATE SYSTEM

Coordinate transformations between the rectangular and elliptic coordinates (See

Fig. 3.2) are written as follows:

x=hcosh { cos n y =h sinh {sin (B-1)

At the extremities of the major and minor axes of any confocal ellipse, we find the

following relations:
a=hcosh { b=hsinh {
hi=a2-b° (B-2)
The line element along the ellipse is as follows:

ds2=lldn

1, = hfcosh 2 { sin 21 + sinh 2 { cos? n]’ = —-t-’?(cosh 2L - cos 2n)r

‘/-
(B-3)

The distance of any point from the origin is,

2

r= (x2 + y2)7 = h{cosh 2 £ cos ? T + sinh 2 € sin 2 ul (B-4)

248



APPENDIX C
SOME PROPERTIES OF MATHIEU FUNCTIONS

Fourier expansions for the even periodic Mathieu function is as follows:

ce (z,9 = kEOA 2k + p €08 2k +p)z (C-1)

associated with a,(q) and the odd periodic solution is,

se (z,q) = kZOB 2k +p sin (2k + p)z (C-2)

associated with b (q). The order, r, is of the form 2n +p. The n is a nonnegative

integer while p=0 or 1 indicates the solution is of period T or 2x.

Radial Mathieu function associated with a,(q)and b,(q) are as follows:

Mg =Y (-1)"**A

o 2k + p[Fk+ Gk]/A2s+pezs+p (C-3)

n+k

Ms@z,q) = 3 (- 1)"**B

& 2c+plFk “Gid/ Boy (C-4)

if m#0, €,=1but €,=2. Coefficients A and B can be generated from a

derived set of recursion relationships in Eqgs. 3.16 and 3.17.
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Orthogonality of Mathieu functions:

2n
Ice 2m+a(z‘q)°°2n+g(z'®dz= nsmnaaﬂ (C-5
0
2r
Ioe 2m+a(2,q)oczn+l+3(z,q)dz=0 (C-6)
0
2n
J-SC 2m+1+a(z’q)°ezn+1+g(z’ qQ)dz = namnsaﬁ C-7
0

Some integrations appear in the study are as follows:

2n 2n :
| ce2a(n,q) cosndn = [ se,,(n,q) cosndn=0 (C-8)
0 0
2n
| ce2ni1(m @) cosndn == AP™D (C-9)
0
2 2n
[ cem,@)simdn = | sesq,,(n,q) sinn dn =0 (C-10)
0 0
2%
[ seznu(m,q) sinn dn == BE™D (C-11)
0
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2n 2

f ¢y (N.q) sinncosndn = f s€25+1(M,q) sinm cosndn =0 (C-12)
0 0
2n
[ seza42(n,) sim cosn dn =z BE™ (C-13)
0
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APPENDIX D
DERIVATION OF THE INCIDENT WAVE POTENTIAL FOR THE
ELLIPTICAL CYLINDER

If we assume that

cos[zcos(B-a)] =

D IC, MCe, ©ce,,0)+S, . ,MSe, &) se, 6]
0

ms=

(D-1)

If both sides are multiplied by se , (8), integrate from 0 to 27 and use the

orthogonality we obtain,
C,,(M=2ce, (M/p,, (D-2)
If both sides of (D-1) are multiplied by se an+ 2(6) we have,
San+2M =255, (W /59,5 (D-3)
Substituting (D-3) and (D-2) into (D-1) gives the expansion,

cos[2k(cosh { cos ncos O + sinh {sin nsin 0] =

) ii Ce, © oepzin) ce, (6) s Se, @ se 822,,: +;,_511) €y, 2(G)]

©-4)
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Similarly we find that

sin [2k(cosh { cos M cos 8 + sinh { sin N sin 0] =

n= Pon+1 San+1

and we obtain the incident wave potential

cizeos(e—a) = cik(xcose+ysin9) =
cos[k(x cos O+ y sin 0)] +isin[k(xcos © +y sin )] =

2 got-p—lz—nCe 2@ e 5 (Mee, (8) +

1
S2n+zse2n+2(C)se2n+2(m062n+2(9)+

. 1
Hp, T 1Ce2n 41000 5, (Wee,, ,(O) +

msc2n +1(C) €20+ 1(“)‘3 2n+ 1(9) H

Coefficients p, and s, are given by McLachlan [3.1]

(2n)
P2n=CC(0, q)w2ﬂ(1t /2,Q)/Ao

. (2n+1)
Pons1= "%, (0D (/2,9 /KA,

' (2n+1)
Son+17 € 2n+l(0’q)se2n+l(n/2’q)/kB1
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5 ilcczu1(§)°°2n+1m)°czn+1(e) N S€q 410565, (Wse,  ,(0)

(D-5)

(D-6)

©-7

D-8)

J



' . 2_(2n
S2ns2=5¢ 20,20, Dse’y, 5 (®/2,0) /KB,
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APPENDIX E
BLANCH'S DEFINITION FOR RADIAL FUNCTIONS

The radial solutions given by Blanch are M.:(,i,) (z,q) and Ms(g (z,q i=1,2,3,4
and correspond to Ce ,(z,q) and Se ,(z,q), Fey ,(z,q) and Gey ,(z,q) and
Me (,;,) (z,q) and Nc(,,in) (z, @), i=1,2. This notation is used because the computer program
,which is used in evaluating the Mathieu functions uses this notation. The relationships

are [3.20],

e, (3,9) ce x09 X
Ce, (z,q) = — )(z.q) )
2rzq) (—l)fo)r q (El)

n
¢ 13D ey, ,0,0) o .
1 2r + 1 M 2r+1 -
(- D" fq A

Ce e 1(z0) =

0 'y
Se, (o) = 20D F Dy, E-3)
("' 1) qu

, .1!
5¢ 4 (0D 5€ 5 (72 D) Ms®

Se 41z = (z,9) (E-4)
2r+1 T 2r+1 S2r+1
(- 1) of0B;
ce 5, (5. ce, 0,9)
Fey , (2,q) = = Mc 2 X(z, @) E-5)

T ,2r
(- D' Ay
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and

’ , i
s€,,0.0)s¢, (7.0 (5

Gey, (z,9) = Ms., (z,q)
2r ( _ l)r qBi";-r 2r
s€ , . 0,9 se, . (%q)
2r+1 2r+1\2 2
Gey ., (2.q) = === ——Ms's, (2, Q)

(_l)rmzlr+l

3) (1) (2)

M, (z,99=M, (z,9 + M, (z,q)
(4) (1) (2)

Mr (Z,Q)=M; (Z’q)—Mr (Z,Q)

MP(z,9) =Mc? or Ms®
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