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Abstract

The cable suspended bridges have been used woldwide
to connect two remote points, separated usually by water.
These bridges may be largely affected by wind because of
the sites where they are erected, being usually near
estuaries, their large proportions and their particularly
flexible design because of the cables involvement in the
overall stiffness of the bridge.

In the present work a parametric analysis is carried
out of the basic structural properties of the cable
suspended bridge and the effects of these properties on
the flutter stability of the bridge are investigated. In
the present work two numerical approaches were used being
available with the computer program 'ANSUSP'.

The natural modes were firstly computed for a cable
suspended bridge with the Severn bridge nominal
structural properties and for each modified bridge
configuration and an effort was made to explain the
effects of the alteration of the structural properties on
the aero-elastic behaviour of the bridge.

Modal analysis method was used for a wide variety of
bridge structural properties and critical windspeeds were
predicted.

Secondly the time history method was used only for
some selected bridge structural properties, being the
more time consuming method of the two and flutter speeds

were predicted. The results of the two methods are
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presented in graphs and are compared between each other
and also with the results of Selberg's semi-empirical

equation.
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Chapter 1

Introduction

1.1 Suspension bridge history

Among the earliest examples of structures of this
kind (Fig.l), is the rope suspended bridge over the Indus
river near Swat [2] and the Iron chain bridge over the
Pan-Po river in China, believed by tradition to have been
erected in A.D.65, [2]. These structures have evolved
from the simple idea of bridging two points with ropes.
The lower ones could support the dead weight and 1live
loading, which was applied on girders, positioned
transversely. The upper cables where connected to the
lower through vertical ropes (hangers) and were carrying
part of the loads. Another utility of the upper ropes was
the role of a handle for the people who used the passage
since the structure was too flexible and oscillated
wildly under dynamic loading of steps. Later stiffening
girders positioned longitudinally helped redistribute the
forces to more hangers and the bridges grew more stable
and more practical.

The substitution of natural ropes by metal chains
brought a big advance in suspension bridge design and
construction and enabled the construction of larger span.
bridges. These innovations started in China (eg. Hwa
Kiang river bridge of 200ft span, 1632). In the western
world suspension bridges gained popularity in the early

years of the éighteenth century (eg. Tees river bridge



near Middleton of 70ft span, 1741, Lahn Bridge in Germany
of 98ft span, 1785, Uniontown bridge in Pennsylvania,
USA, of 70ft span, 1796). By the end of 19th century,
wire cables were used instead of chains and the whole
layout had been modified, (Fig.2).

The suspension bridge profits considerably from the
advances of theoretical engineering, during the beginning
of the 19th century. By then the main three simple cable
shapes, simple catenary, catenary of uniform strength and
parabola were fully studied mathematically. In 1823
Navier [1] presented his work on elastic theory. Later
Clericetti [26] and Melan,J. [3] on deflection theory and
even later Timoshenko [25], on energy methods and
Castigliano's strain energy work and its application on
arches were developed, the cable suspended bridge being
practically an 'inverted' arch with tension instead of
compression, without the disadvantage of local buckling
of the arches and so providing a more effective use of
the material.

In the early third of 20th century, the expansion of
the cable suspended bridges was immense especially in the
U.S.A where a series of such bridges were built. The
length of the main span reached 4200ft in the Golden Gate
bridge at San Francisco, 1937. Simultaneously the demand
for more aesthetically acceptable structures as well as
more economical and 1lighter ones highlighted the
requirement for more slender bridges. One example is the
Tacoma Narrows bridge in Washington of 2800ft span, 1940.

The deck section was constructed from two plate girders



of 8ft deep each, (Fig.3) giving to it a slender side
profile. The structure was in service only for a few
months when it started oscillating vertically in a wind
of approximately 40mph. The oscillations developed in a
combination of flexural and torsional galloping motion
and after a slight increase of the windspeed the bridge
collapsed.

The bridges which followed since are tested in wind
tunnels extensively in order to ascertain that they are
aerodynamically stable.

After the Tacoma Narrows collapse, engineers turned
to open lattice stiffening girders (second Tacoma Narrows
bridge, Forth Road bridge in Scotland of 3240ft span,
1964, Verrazano Narrows bridge of 4200ft, 1965, Tagus
river bridge in Portugal of 3300ft span, 1966).

The Severn bridge of 3400ft span linking England and
Wales was completed in 1966. It's deck is 10ft deep with
the cross section shaped| as a closed box (Fig.4), with a
streamlined shape not unlike an aircraft wing. The
closed box section provided a high torsional deck
stiffness. This innovative desién was studied in wind
tunnels for aerodynamic stability and behaved very
satisfactorily, providing 1low drag and reduced flow
separation. Other features included the employment of
inclined hangers, instead of vertical, in order to
increase structural damping. This was the first design of
this kind and was adopted in later structures. Many of
the long span bridges which have been built éince have

similar features. Some examples are the Bosporus bridges



in Turkey [24], the Lillebaelt bridge in Denmark, Burrard

Inlet, Humber, etc.

1.2 Suspension bridge failures due to wind.

The first failures of suspeqsion bridges are
reported back in 19th century. The Tweed river bridge in
Berwick, Scotland, 1817, [28], the Tweed river Union
bridge at Nordham Ford, 1820, which collapsed after six
months only in operation.

Damage was reported in 1836 on the Brighton Chain
Pier bridge with four spans of 255ft, suspended by four
chains. Built in 1823, it collapsed in a storm in 1833,
when one span was destroyed. After three years the same
span collapsed again. The motion mechanism that was
involved in the «collapse of the structure has been
compared to that of the Tacoma Narrows bridge and was
very similar.

The Telford bridge over the Menai Straits was built
in 1826, with a main span of 580ft. It was damaged three
times; twice in 1836, the central span collapsed and
later on in 1839 the same span collapsed again. Finally
alterations to its deck structure improved its behaviour
in wind.

Other examples of collapses include Nassau bridge
over the Lahn River in Germany, built in 1830 with a main
span of 245ft, and Wheeling bridge in West Virginia in
USA with a main span of 1010ft, built in 1848. By then

the stiffening trusses were becoming increasingly deep



with each new structure, affecting as a result the weight
of the deck. The extreme was reached in 1903 with the
Wiliamsburgh bridge in U.S.A with stiffening trusses
reaching 40ft deep. After this structure the trusses
started to give way to plate girders. This trend led to
shallower, more slender structures, reaching an extreme
in 1940 with the construction of Tacoma Narrows bridge.
This was a perfectly safe structure for the static weight
and static wind loads and live loading it was designed to
carry, however as no precautions had been taken against
potential dynamic wind loads or aeroelastic instability,
the strong tendency it for flexural and
torsional oscillations resulted in its collapse.

The development of vertical oscillations during its
erection caused some extra measures to be taken. This
included installation of hydraulic buffers at the towers,
diagonal cable ties at the centre of the main span and
tie-down cables installed at the side spans anchored
firmly to the ground, restricting their movements. These
efforts though were unable to prevent the vibration of
the main span. In November on 1940, in a wind of 38mph
the bridge started oscillating in a vertical flexural
mode with small amplitude. After a few hours the wind
speed reached 42mph and the mode of oscillation changed
todcombination of vertical and torsional modes with large
amplitudes, leading to the collapse of the bridge
approximately 75 minutes later.

Eventhough the wind sensitivity of cable suspended

bridges was known from previous occasions, it was always



related to the static wind forces [4]. Only after the
destruction of the first Tacoma Narrows bridge did the
engineering community realise the importance of the

dynamic wind loading on those structures.

1.3 Suspension bridge aeroelastic problems.

Cable suspended bridges are subjected to aerodynamic
instabilities. Some of the most important ones are
described in the following:

Divergence is a phenomenon of static instability.
The air flow induces a static force on the side of the
deck, essentially reducing the torsional stiffness of the
deck. When this force overlaps the critical one, the deck
inclines. The angle of attack then produces higher 1lift
forces which lead to increased moments applied to the
deck which inclines more and finally flips over. The
critical force 1is applied to the structure at the
critical windspeed. If this 1is not reached the deck
maintains its position. This phenomenon, once critical
windspeed is reached, cannot be reversed at any higher
than the critical windspeed. Therefore it has only a
lower bound windspeed.

Classical flutter, torsional divergence, vortex
shedding, buffeting and galloping are the most important
aerodynamic instabilities, [4]. They are all dynamic

instabilities. The former is the most dangerous of all



for the modern streamlined deck cross sections and will
be discussed in detail in a later chapter.

Vortex shedding is a phenomenon affecting bluff
bodies as wide H-type deck sections. The boundary layer
alternately detaches from and re-attaches to the body.
Depending on the value of the Reynold's number and the
type of <cross section, this may become periodical,
creating turbulence across the leeward side of the deck
leading to alternating forces. These forces are directed
across-wind and vertically to the bridge deck and
generate a dynamic excitation. If a natural frequency of
the bridge is similar to |one half of the vortex shedding
frequency, resonance may occur where the oscillations
tend to increase to large values.

Buffeting is due to the sudden variation of
intensity of the air-flow caused by the turbulent texture
of atmospheric wind. Usually its frequency is too low to
exert some kind of resonance, but the variation of wind
force intensity applied to different parts of the span in
some organised pattern could initiate oscillations.

Galloping, finally, is a phenomenon affecting cross
sections with non circular shapes. As the wind direction
fluctuates around a mean direction, forces are applied on
the section, asymmetrically, causing a periodical
oscillation. It usually affects electric conductors when

subjected to ice accretion.



1.4 Static analysis of suspension bridges.

The examination of cable suspended bridges is still
continuing even though many long-span suspension bridges
have been designed and constructed successfully, many of
which in the first half of the century. The simplicity of
the design and the redundancy it provides, made it a very
versatile and adaptable structure. A structure, with the
shape of an inverted arch, relying on tensile instead of
compressive forces carrying the deck beam and all its
loads. The shape is either second order or catenary or
even catenary of uniform strength, formed by the cable
freely under the 1loading, and has the freedom to
transform under live loads. Usually it has the shape of
the second order curve as the moment diagram of a beam
loaded with continuously distributed loads. The hangers
support the deck and transfer dead and live loads to the
main support element which is the cable. Finally the
cables are suspended from the towers, transferring to
them all their vertical loads.

/ Studies on suspension bridge static forces go
back as far as 1888 with deflection theory by Melan,[4].
In the first half of 20th century through advances in
deflection theory raised hopes for the solution of the
cable equilibrium. A big advance was the introduction of
the theories on energy and potential energy which were
initiated by Timoshenko [25] and later by F. Bleich [29]
using trigonometric series for the approximate

representation of deflections. On the same principles was



based the work of Bowen and Charlton [46] , and later Van
der Woude [30].

The analytical solution for the cable and cable mesh
was solved by Panagiotopoulos [18]. Even though cable
finite elements have appeared, they are still in
experimental level and have not been introduced yet for
the study of cable suspended bridges.

A method which was developed in 1976 [13] was the
employment of a step-by-step numerical integration of the
equations of motion of a heavily damped dynamic model of
the bridge. Given an initial condition of displacements
and velocities of the structure in each degree of
freedom, the structure oscillates freely with a very high
damping ratio. After a few oscillation cycles the

structure comes to rest at its equilibrium position.

1.5 Dynamic analysis of suspension bridges.

The first large steps in aerodynamic instabilities
were achieved by Frazer and Duncan [37] in 1928. They
developed the model of the flutter mechanism of a wing.
The equations of motion were solved by the test functions
of Frazer. Theodorsen's [45] paper on the incompressible
flow flutter was published in 1935.

Later on, in 1948 Bleich [28] published a paper
applying the flutter theory as used in aircraft designing
to suspension bridge decks. He developed the equations of

motion for a suspension bridge deck represented as a flat
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plate, with vertical flexural and torsional d.o.f.s using
Theodorsen's aerodynamic forces.

Farquharson (38] worked experimentally on the
original Tacoma Narrows Bridge and on various proposed
designs for the second Tacoma Narrows bridge.

Steinman [39] introduced into the designs,
additional damping devices in order to increase the
resistance of bridges to flutter. Most of these have been
adopted in later designs.

Selberg [40], after working on wind tunnel tests
experimentally, produced a very simple formula for the
prediction of flutter windspeeds.

Smith [41] investigated in 1964 the Severn bridge
proposed designs. His aim was to detect aerodynamic
instabilities in the erection stages. When deck sections
of a bridge are raised into place and before they are
fully connected, the deck has minimal torsional stiffness
and so is very susceptible to flutter. This conclusion
opposed the previously accepted conception that the fully
connected sections would provide a longer plate to the
wind-stream than the unconnected sections and hence would be
more susceptible to flutter than the unconnected deck
sections.

Sabzevari et al [42], [43) worked with a
combination of analytical and experimental approaches.
They used experimentally derived results to evaluate the
air forces which are then used in the analytical
formulations. In this way the shape of the cross section

of the deck can be taken into account during the
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investigations of the stability of the bridge in flutter.

Recently, Chaudhury [33] analysed the vertical
bending vibrations by using his own numerical integration
method, to integrate the Newtonian equations of motion
and obtain the dynamic response of the bridge with time.

Allman [34] developed a relaxation method. According
to this method the restraint forces are gradually relaxed
when the correct solution for the acceleration is
reached.

Bell and Brotton [36] developed a numerical
integration method for the determination of the flutter
windspeed of a structural system. Calculating damping for
different windspeeds, he finally finds the flutter

windspeed of the bridge, when the damping of the motion

is zero.
Iwegbue [13], followed on these principles, and
presented his work on time-step analysis, for

representation of the bridge reaction to Theodorsen's
wind forces.

Today the dynamic analysis of structures is founded
on the implementation of discretized mass and stiffness
properties. According to| this, the mass of the system is
often assumed to be concentrated at discrete points, so
that their displacements can be described by a finite
number of coordinates. The equilibrium conditions may be
expressed by a number of ordinary differential equations
rather than partial ones which would be more adequate for
the description of the original system of continuous mass

distribution. The simultaneous differential equations can
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be formulated as matrix equations. From this point on,
two different approaches <can be followed for the
solution; the modal analysis methods and the time history
integration methods.

The modal analysis method leads to the solution of
the eigenvalue problem, extracting the natural
frequencies of the bridge, when it oscillates freely, and
the characteristic shapes of the system (natural modes).
The forced motion problem leads also to the eigenvalue-
eigenvector problem with the real part of the eigenvalues
being the logarithmic damping of the system.

The advantage of this method lies in the fact that
the response of most systems which concern engineers is
dominated by a few modes of vibration. The oscillation of
the structure is assumed to be a combination of a very
few natural modes of the structure. It also gives an
estimate of the behaviour of the structure with 1low
computational cost.

On the other hand this method is based on the
assumption that the structure behaves linearly which may
be untrue in situations where cable bridges undergo large
deflections and there may be significant geometrical non-
linear effects.

The time-history analysis is capable of reproducing
the non-linear behaviour of the structure and record its
time history of oscillations, enabling the study of the
amplitudes of displacements of the structure, and also

the forces which have been developed in each element. A
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more detailed description of both methods will follow in

a later chapter.

1.6 Scope of present work.

The present work is based on the use of the computer
program ANSUSP, enabling the study of a cable suspended
bridge, for static and dynamic 1loading, focusing on
flutter instability and the structural factors that
affect its onset.

The aim is to achieve a better understanding of the
role of different factors which affect the aeroelastic
stability ofﬂ conventional 2-cable 3-span suspended
bridge configuration.

For dynamic wind loads, éhe two most important
methods are implemented. The modal analysis method, [31]
and the time history method, [13].

A series of variables are examined in order to
predict the 1limits of aeroelastic stability, and the
influence of these variables, structural, geometrical or
aerodynamical on flutter windspeeds.

The structural model used in the present project is
a three dimensional finite element idealization of a
bridge subjected to aerodynamic forces.

In the time history method, the model oscillates
under the influence of wind forces, resulting in a
detailed representation of the behaviour of the original

structure. The results can include the stress history of
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the structure, during oscillations, revealing momentary
stresses in excess of the strength of construction
materials, or even need for alterations of the design.
However the main goal here is the flutter windspeed
prediction of each particular configuration, when some
properties of the bridge are altered.

; The modal analysis has been shown [15] to give good

;estimates of the behaviour of the structure 1likely to

occur in flutter windspeeds using much smaller amount of

;CPU, than the time step analysis so the later method was

|
éused to focus on the more interesting parameters. In
I

iconclusion the use of a combination of both methods
fproves more efficient and more reliable than the use of
;

feach one of the two, alone. Finally comparative
]

;diagrams follow with the results of the two methods and
3

;Selberg's [40] semi-empirical one, in order to provide a

|

visual comparison.

The contents of the present thesis are organized
under the following headings:

Major categories of aerodynamic instabilities where

|
‘
|
|
|

the main aeroelastic phenomena are described and flutter
éis described in more detail being the main theme of this
:thesis. Also methods which have been developed for the

;study of aeroelastic phenomena and application of special

Y
!

devices on bridges which have been constructed during the
'last forty years will be mentioned, followed by the
mathematical models of the aerodynamic forces, used in

this project and the equations of motion of the
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structure. All these will be included in the second
chapter.

The third chapter will contain a review of previous

work on the problem of flutter instability and the| progress

which 'has been achieved during the 1last twenty years,
including the experimentally established methods and
prepositions for aerodynamic devices, in the attempt to
improve the performance of these wind sensitive
structures. Finally a short quotation on the ANSUSP work,
introducing the 3-D modelling of the bridge, and the
evolution of full bridge modelling will be included.

The ANSUSP program described in chapter 4, contains
both modal analysis and time history method, enabling the
comparison and combination of the two methods. A full
description of both and their implementation in the
program follows.

The parametric study which constitutes the backbone
of the present project is described in chapter 5. The
parameters which were investigated are geometrical,
elastic, inertial and aerodynamic. The first category
includes cables' sag and horizontal cable separation. In
the second category are included vertical and torsional
deck stiffness, stiffness of cable and tower
and also cable and deck mass and torsional deck
inertia. Finally in the third category aerodynamic width
and air-density are included. The results, including the
display of the critical curves and the comparison of the

two methods are outlined in this chapter.
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Results and conclusions aref discussed witﬂfi
view to the possibility of future study. The demand for
accurate solutions, the availability of powerful
computational devices, the need for quickly and
economically raised structures and the introduction of
new materials in the construction industry, place new
challenges which must be met and investigated in future

research work.



(Fig. 1) Primitive rope suspended bridge.

I

(Fig. 2) Typical layout of cable suspended bridge.

’_’—J.__.L_ 1 il L :1.
adh— sracing

-— - 11.90m

(Fig. 3) Cross section of First Tacoma Narrows bridge.
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Chapter 2
2.1 Review of aerodynamic instabilities

As the range of materials used in human structures
widened, stronger and 1lighter construction materials
became available, which enabled engineers to create the
large scale structures needed by the continuously growing
demands of the increasing urban populations. In these
massive structures wind forces became of paramount
importance along with the effects of gravity loads.
Collapses have occurred involving silos, huge storage
bunkers, telescope reflectors, cable net roofs for
stadiums and airports, factory chimneys, power station
cooling towers, skyscrapers, antenna towers and long
bridges, due to wind effects.

In these structures, the combination of wind forces,
elastic and inertial forces, acted together creating de-
stabilizing effects. These effects can be divided in two
major categories: static and dynamic instabilities.

Static instabilities include those where wind forces
are acting effectively as static external forces.

The static instability of divergence appears when
the wind force acts on a long flat plate. The initial
angle of the plate with the direction of the wind
produces moments. The plate rotates as a result and| the
angle of attack increases. The moments increase
accordingly and so on. As a result, the torsional

stiffness of the structure essentially decreases. When
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she wind speed is sufficiently high, the result is a zero
torsional stiffness, and the structure suddenly deflects
borsionally. This phenomenon is similar to that of
structural buckling. The necessary study must be based on
tfind tunnel tests; however divergence 1s a phenomenon
/ery unlikely to affect cable suspended Dbridges in
practice.

Dynamic instabilities are more important for the
sable suspended structures. Here are included vortex
shedding, galloping, buffeting, separate flow torsional
(or stall) flutter and classical flutter.

a) Vortex shedding occurs whenever a Dbluff or
rounded body is positioned in a wind flow. Vortices are
shed alternately with time from the opposite sides of the
body (Fig.5) thus producing alternating transverse forces
Fn it.

The stronger forces act transversely to the air-flow
[tfith frequency = S = Strouhal number, while some in line
with the flow are of secondary importance with frequency
= 2S5. When the frequency of vortex shedding approaches a
structural natural frequency, the body starts to
oscillate and resonant oscillations can occur. The vortex
shedding frequency depends on the windspeed, so at the
point where the oscillations start to develop, the
critical windspeed for vortex shedding has been reached,
in this case the wake wvortices are influenced more
strongly from the body motion frequency than from the

latural Strouhal number.
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The resonant condition is usually restricted to a
narrow range of windspeeds, normal to the body. Out of
this range, the structure returns to aerodynamic
stability. The phenomenon is also self-limiting in
amplitude. The entrance windspeed into lock-on conditions
when windspeed is increasing is quite different from the
escape windspeed from it, when windspeed is decreasing
from the critical windspeed% \ It is by nature a non-
linear phenomenon.

At Tacoma Narrows, vortex shedding was involved in
the initiation of the vertical motion and sustained it
but was not the reason for the final catastrophic motion,
(4] -

b) Separated flow torsional (or stall) flutter is a
non-linear wind excited phenomenon, leading to periodical
detachment and reattachment of the flow, around a body
moving with predominantly one degree of freedom in
torsion (Fig. 6). It can affect either ‘'laerofoils! in a
large angle of attack or bluff bodies, such as
rectangular prisms or flat H-sections, like the Tacoma
Narrows deck section, truss stiffened deck structures or
even electric power-transmission cables, subjected to
ice-accretion.

The body subjected to an air-flow, develops an
increasing angle of attack, caused by the wind forces,
which become stronger as its inclination increases, until
it reaches a point where the boundary layer detaches from

the body, stall follows, the 1lift at the leading edge

decreases and so does the angle of attack. Subsequently
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the body moves to its equilibrium position, the wind-flow
reattaches to the body and the motion repeats itself in
the opposite transverse direction. The frequency of the
motion depends on the velocity of the air-flow. As the
windspeed increases, the motion frequency may approach a
structural natural frequency and then the phenomenon will
develop to a strongly destabilizing situation. If the
windspeed continues to increase, the intensity of the
motion will also increase and could lead to catastrophic
effects since this condition has no upper windspeed
limit. In the past this has been the main cause of bridge
failures due to wind. Torsional flutter usually drives
also the participation of vertical modes in a coupled
motion, called classical flutter.

c) Classical flutter is a phenomenon affecting
particularly streamlined 'faired' sections (Fig. 7). The
airflow around the body remains attached. The phenomenon
involves the coupling of vertical and torsional
oscillation occurring together in common frequency with a
phase difference, in a motion that extracts energy from
the wind stream and feeds it into the structure
increasing its amplitude of motion.

d) Galloping is the result of asymmetric aerodynamic

forces associated with the cross flow (Fig. 8). It is a

large amplitude oscillation, affecting mainly iced
electric conductor cables or 'bundled conductor'
configurations.

The fluid forces change fast around 'mean' values.

The latter however vary much more slowly. Under these
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conditions the slowly changing drag and 1lift forces
induce to the body a low frequency oscillation with large
amplitudes.

e) Buffeting 1is the result of the action of
turbulence, created from the wake of a body upstream, or
because of natural turbulence in the flow, [4], (Fig. 9).
The oscillations are largest if the frequency of
buffeting 1is close to a natural frequency of the

structure.

2.2 Classical flutter theory.

Classical flutter is a self excited oscillation. The
cycle of oscillation can be described as follows
(Fig.10).

When the vertical displacement is near the
equilibrium position, the torsional one takes its maximum
value. As a result, the 1lift force takes its highest
value and so the body moves vertically. When the vertical
oscillation takes maximum value, the torsional one has
decreased, so the combination of structural and gravity
forces force the deck back to its equilibrium position.
After it reaches that point, the phenomenon is repeated
in the opposite direction and so one cycle is completed.
The damping which is provided by the structure and wind-
flow restrict the motion wuntil flutter windspeed 1is
reached. As the windspeed increases, the damping reduces,

eventually becomes 2zero and the structure oscillates
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violently with constant amplitude. Further increase of
the wind will lead to the aerodynamic forces introducing
negative damping where the oscillations will increase
their amplitudes even more.

This phenomenon has been extensively studied in
relation to cable suspended bridges, since it was found
to endanger the stability of these structures.

According to some authors (Scanlan [4], {(21],
Hjorth-Hansen), exact correlation of faired deck sections
with thin airfoil theory must be implemented cautiously
‘because it is proved from experimental analysis that the
zaerodynamic forces expressed as functions of
;experimentally measured factors are quite different
gaccording to the section types used for the deck. However

]

the deck sections used in the last twenty years and some

!proposed future structures are similar to the flat plate
:shape, thus substantiating the wuse of thin airfoil

!
exXxpressions for the aerodynamic forces, expressed by

' Theodorsen in 1935 [45].

2.3 Significance of natural frequencies.

As has been mentioned earlier, the natural
frequencies of the structure play a very important role
in all aerodynamic phenomena. The excitation of the
structure by the wind initiates a motion which quickly
develops to an oscillation, combining some of the first

natural modes. If the windspeed is adequately high, the
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vortex discharge frequency coincides with one of the
first natural modes. The result is a feedback situation
and increased shedding of vortices. Since the natural
frequencies depend on inertial and elastic
characteristics of the deck's cross section, it |is
essential that it | is be designed in such a way that it
will not facilitate resonance between aerodynamic forces

and natural frequencies.

2.4 Wind tunnel tests

Wind tunnel test are commonly used in cable
suspended bridge studies for measuring the 1lift, drag and
moment coefficients of different deck cross sections and
constitute the mean or time average of fluctuating
values. This is because some fluid-structure interaction
phenomena cannot be modelled analytically with enough
accuracy so mean values are used to measure motion-
dependent or time-dependent aerodynamic coefficients.
These measurements are carried out in wind tunnels which
have been used extensively for either scaled full-span
models [4],([5],[9], of the whole structure or sectional
models, when a section of the structure is tested and
some particular properties are studied. Both model types
are used 1in the experimental study of cable suspended
bridges.

The full-span models are exact geometric copies of

the original structures. They reproduce the exact mass,
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stiffness and damping distribution, density ratio values,
stiffness and structural damping under the scale they
were assembled. In some studies, the characteristics of
atmospheric wind were also reproduced in wind tunnels
with the greatest possible accuracy, modelling densely
built areas and hills which influence the wind flow
vorticity and could affect its texture. Reynold's number,
intensity of turbulence and wind speed variation with
height are also characteristics which should be modelled
appropriately. These models could reproduce the natural
modes, frequencies amplitudes and <critical flutter
windspeeds. The frequency scale should be described by
special scale parameters. The same will be necessary for
the wind speeds and oscillation amplitudes of the
original structure. However, there are difficulties in
achieving the correct Reynold's number and structure of
natural winds with turbulence texture. Other difficulties
emerge from the restrictions on the size of the models,
because of the restricted width of wind-tunnels and of
the nature of such tests being very costly and time
consuming to prepare and execute, especially if
variations of the initial configuration need to be
tested.

Linear-mode models are widely used to test specific
sections of the structure under wind forces. The most
usual section of cable bridges, which 1is extensively
tested 1is the deck. Linear-mode models are geometric
copies of the complete prototype, but rigid, mounted on

gimbals to allow linear bending displacements (Fig.11).
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They reproduce the elastic as well as aerodynamic
properties of a section of the deck. However they are
less complicated to construct, than full span models.
They can also reproduce the first few natural frequencies
of the structure and are used in the testing of several
configurations of cross sections [5] and experimentation
with aerodynamic stabilizers which can improve the
behaviour of the bridge in wind [ Long Creek bridge].

Another type of wind tunnel test is carried out on
sectional models (Fig.12). They are geometric copies of a
typical length of the original substructure, usually deck
section, and reproduce its elastic properties by
supporting the models on springs that represent the
stiffness properties. They are commonly used for initial
research models and are expected to supply some general
information for the aerodynamic characteristics of the
specific section and in particular here the cross section
of the deck.

However these tests are 2D assuming the whole deck
oscillates in phase along the span, which may not be
true, since in real 3D conditions, displacements may
vary from position to position along the span. These give
rise to different wind forces and effectively lead to
more complicated motion patterns than the 2D modelling

can reproduce.
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2.5 Empirical approach

Different approaches have been used in the past,
concentrating on different aspects of the structure. The
majority of studies were focused on the deck cross
section, the aerodynamic aspects and vertical and
torsional stiffness properties. The use of flat H plate
girder section (Fig.13) was abandoned after the disaster
of Tacoma Narrows bridge. Testing of different 'faired'
cross sections was carried out in order to form a
qualitative opinion on which section shapes \were
appropriate to be used in future designs [6]. Aerodynamic
devices were tested, aiming to reduce the vertical
vibrations of decks [8],[10] in order to establish some
reference for following designers. A mono-cable bridge
was designed, showing increased torsional stability in
high wind speeds, postponing the onset of flutter [16].
Damping ratios of existing bridges were measured [19].
Closed box sections were introduced, providing low drag
and lift forces and also high torsional stiffness. Side
fairings helping in keeping the air-flow attached to the
deck [10], and openings on the upper and lower surfaces,
have shown to be necessary for bridges located in very

high windspeed sites [12].
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2.6 Equations of aerodynamic forces.

The main research on aerodynamic forces was
introduced by Theodorsen and much work has been based on
his analytical equations [13]. Later on, experimental
results were published by Smith, Selberg and others [40],
[41].

Theodorsen equations are based on the assumption
that in a wind stream, a very thin flat plate is
suspended, having only two degrees of freedom: one
vertical and one torsional as shown in (Fig.14). This is
true for the deck of a cable suspended bridge. The other
assumption is that the air-flow is 2D and that the bridge
oscillates in both vertical and torsional dof in a common
frequency. The latter implies the deck is long enough in
order to be free of any influence of end conditions and
also that it moves as a rigid body. The 1length of the
bridge is adequate to support the former assumption, but
the deck does not necessarily oscillate as a rigid body.
Concluding, these equations cannot be applied directly to
the whole of the bridge, without considerable error. It
should also be mentioned that air force expressions were
derived for small amplitude harmonic oscillations, so
they apply solely to a narrow band of trahsition from
stable to unstable conditions. The rest of the resulting
forces, out of these narrow bands of application have
only qualitative wvalue, and should be handled with

extreme precaution. However this fact is not considered
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restrictive, since our aim is to locate this narrow band
and work in that space.

The explicit form of Theodorsen aerodynamic
expressions calculate the wind forces, 1lift forces and

moments which apply on an oscillating flat plate section.

b
L, =-Smpb? (V+¥)-2SmpbVC(K) [Vo+y + — &
2

(1)

Vb . b2 e . b .

M =-Smpb? | — & + —f|+SmpbZVC (k) |Vo+y+ -8

2 8 2
wb
where k = reduced frequency k= —
)

b being the half width of the deck,
S = span of section,

c (k)

Theodorsen circulation function = F(k) + iG(k)
F (k) and G(k) being expressed in terms of Bessel

functions of the first and second kind:

J; (9, +Y,)+Y, (Y, -d,)
(J;+Y9)2+(Y, -J,)?

F(k)=

(2)
Y, Yo+, d,

G(k)=-
(J,4Yy)2+(Y,-d5)?

Bessel functions J,, J;, Y,, Y;, are functions of k of the

first and second order.
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F(k) and G(k) can be plotted against k in (Fig.15).

The motion of the system at flutter speed is assumed
to be simple harmonic and undamped, the displacements
being expressed:

-jwt
Yoe  =Yyplcos(wt)+isin(wt)]

(3)
jwt
y=yp,e =y,[cos(wt)-isin(wt)]
So finally by substitution :
1 2C(k) i i 2
L, =Sw|mpb® | = -i—— |y-mpb®| =+ | = + - |C(k)|6
b bk k k k@
(4)
iC(k) i i 1 i

Ma=Sw? | mpb*

y-mpb| — + = |C(k)+| -+ - |6
bk 2k k2 b 2k
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2.7 General equations of motion at flutter.
2.7.1 Equations of motion in a 2 dof systemn.

In a system with two degrees of freedom and in
particular a flat plate with vertical and torsional
degrees of motion uncoupled, the equations which describe

the motion are as follows:

mh+c, h+k, =A, +B, h

8a+c, a+Ja=Aa+B,a

the

These have been derived from (4) wherek}ift force
has been transformed to Ah+&ﬁ and aerodynamic moment has

been transformed to As«+B,a.

¢, = damping in the vertical motion

Cc, = damping in the torsional motion
m = vertical inertia of the system

® = torsional inertia of the system
k, = vertical stiffness

J = torsional stiffness
Bringing the right parts to the 1left side and
braking up the aerodynamic forces as factors of

displacements velocities and acceleration :

mh+(c, -B, )h+(k, -A, )=0
(5)
Ba+(c,-B,)a+(J,-A,)=0
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For sinusoidal, motion the following solutions can

be used:

h=h,e**, h=Ah,e*t, h=)Zh e**

a=a e t, a=kaye*t, a=k’ey et

Substituting the latter in equation (5) :

mAZhy+(c, -B, )X, o+ (K-A, Yh,=0

k% @y +(c, -B, Y ray+(J-A, ) e, =0

¢, -By, k-A,
A2h0+[ - }kho+[—;—— he=0

) ¢,-B, J-A,
K°ay+|—— Koy +|——| ;=0
8 8

¢, -B k-A
[ - “]xho+[———ﬁ]ho=-xzho
m m

c,-B, J-A,
Koy +|——|a,=-k%ay
e 8
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In matrix form :

cy, -By, k-Ah
o o Ah,
m m
1 @ & @ h,
%} ] ¢, -8B, J-A,
Ka,
6 ¢}
@ @ @ @ %
hY Ah,
Y ho
K Ko,
i K ] _ao_

2.7.2 Multi degree of freedom system.

The cable suspended bridge will be modelled with
finite elements. Assuming that the inertia properties of
each element are concentrated at its nodes, the model of.
the structure can be reduced from a system of infinite
number of masses to one of finite number. Structural

damping is assumed to be zero.
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Implementing the previous expressions for the wind
forces we obtain:
MX+KX = Al(k)X+A2(k)X (6)
where :

n*n mass matrix

=
il

K = n*n structural stiffness matrix

A, A,, are n*n aerodynamic damping and stiffness
matrices respectively, derived from the aeroelastic force
expressions.

X = n*l vector of displacements

When all the prerequisite factors are present and

flutter occurs, the oscillation is pure harmonic motion:
X = X,e = X;(coswt+isinwt) (7)
By substitution of (7) in (6) we conclude:

-wPMX + KX = w?WX (8)

here W is a n*n matrix of the aerodynanic
coefficients in (4). Further on we transform (8) in the

eigenvalue form:

[ MK‘1+WK'1]X ==, X (9)

>

with solutions w = g + 1. If we
substitute these in (7) we obtain damped sinusoidal
motion with circular frequency 4 and logarithmic damping

-\.
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Therefore we conclude that for a given frequency U
we can find the corresponding critical wind speed which

causes flutter:

bu
k== — , testing p and V we obtain k and ).
v
When X equals zero, instability occurs. The lowest

value of V for which X takes negative values 1is the

critical windspeed.

2.8 Flutter instability of Suspension bridges.

The beginning of theoretical work on flutter reaches
back to Frazer and Duncan [37] when they published their

fundamental paper in 1928. Their topic was the flutter

I
phenomenon | of aircraft | wings under sharp angles of

|
attack. They formulated the equations of motion using the
test functions by Frazer. In 1935, the first major step
was taken by Theodorsen [45] and his paper on
incompressible flow flutter.

After the 1940 first Tacoma Narrows bridge collapse,
the engineering world involved in bridge designs became
interested in aerodynamic effects and aeroelastic
interaction, [17]. Bleich [28] in 1948 published his
work, applying the flutter theory for airfoils in the
designing of the second Tacoma Narrows bridge.

Experimental work continued and in 1966 Sir Gilbert

Roberts [47] first introduced the ''closed box'' deck
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section with fairings in the Severn bridge (Fig.16),
which was the first bridge built with a deck shaped so
similar to an airfoil. The new shape being adopted by
most engineers in their 1later structures, confirms the
appropriateness of the thin plate flutter theory.

During the next twenty years, all cable suspended
bridges with long spans were tested in wind tunnels in
order to prevent aerodynamic instabilities.

In 1961, Selberg established a simple formula, which
takes into account all the significant factors of the
inertial and elastic properties of the bridge and
produces a critical flutter windspeed, which can estimate
fairly well the critical windspeed region for a given

bridge configuration, [40]:

NV W,
V,=0.880, | — [1[
p o,

)]

(10)

2r? 2mpb?
where y=—— | p=
b? m
w, = 1st’vertical natural frequency
wt = 1st torsional rr tr
r = mass radius of gyration

p = density of air

3
I

1/2 mass of bridge cross section / unit length
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Later, Chaudhury and Brotton working on numerical

methods, presented in 1966 their work, based on

Theodorsen's aerodynamic force equations and on the same

lines as Bleich, tackling also the partly built
construction stages in a complete investigation of all
the situations which can appear in the building process.

Wardlaw also worked in the same direction, [5],
concluding the advantages of faired shaped sections in
aerodynamic stability.

Another aspect of the shape investigation was
covered by Ishiro Konishi et al [8] and Masara Matsumoto
[48]. They experimented with the shapes of the kerbs and
also attachments to them (Fig.17) in order to avoid the
separation of the boundary layer and the generation of
vortices from the leading edge. Their experiments with
various fairing configurations revealed the influence of
such stabilizers in the behaviour of the deck in high
windspeeds and in air-flow inclined to the horizontal
level. Some configurations showed a considerable
reduction of vertical amplitudes of the deck.

A very daring step was taken by Leonhardt, [16]. His
work on mono-cable suspended bridges, (Fig.18), is still
unique. The deck is suspended by a single cable and forms
a triangle with the hangers and the very thin and
streamlined deck. Experiments with this type of bridge
showed very good aerodynamic behaviour in high wind
speeds. However the experimental study showed a tendency

of some hangers to go slack, under heavy partial loading.
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Because of that and in combination with the novelty of
the design such a design has never been constructed.

In 1976 another major step in numerical approach was
taken by Iwegbue in [13], who introduced the time step
method in order to solve the static equilibrium position
and forces, the dynamic response and to enable the
evaluation of the flutter windspeed of a given bridge. He
also included erection stages of the structure. However
it must be commented that in his work he used the half
spén and the one cable only, exploiting the symmetry of
the structure and reducing the high computational cost.

Finally mention should be madelof the findings of
the project undertaken by Simpson et al., for Tsing-Ma
bridge in Hong-Kong [12], [23]. The region\ is often
subjected to typhoon windspeeds. Experimgntal study in
wind tunnels clearly indicated the 1limitations of the
closed-box faired sections. They showed a tendency for
coupled oscillations vertical and in torsion leading to
classical flutter, in high windspeeds, which can be
postponed if some gaps are left on the upper and lower
surfaces of the deck, (Fig.19). These give rise to some
oscillations, caused by vortex shedding, of somewhat
minor importance, while guarantee stability, at a
windspeed region where closed box sections would have
been oscillating with flutter instability. The final
design included a double carriageway on the upper deck,
with a narrow gap in the middle, between the two

\
directions and a lower deck with a single carriageway

;l with a railway line each side of it (Fig.20). Between the
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rails and the road lanes a narrow gap was introduced at
each side. This configuration provides protection to the
inner traffic even at high windspeeds| which exploits to a
larger extent the carrying surfaces of the deck. This
design was based in the previous experience of gains in
stability for truss stiffened decks with perforations at

their upper surface.

In 1981, Agar [49] published his work on the
implementation in a program called ANSUSP of all the
previously expressed ideas by Iwegbue [21],[31] et al. In
this package alternative methods can be used for
analysing flutter behaviour of suspension bridges.

The assumption that the deck is a thin flat plate,
enables the wuse of Theodorsen circulation functions, for
the wind forces. Alternatively, experimental coefficients
can be used in order to find the aerodynamic forces,
applied on the structure.

Using the modal analysis we calculate the natural
frequencies of the structure. The wind forces are assumed
to be linear | functions of displacements and their
derivatives, allowing the formulation of an eigenvalue
eigenvector problem. The results are the contribution of
each mode in the final oscillations and the amount of
damping of each mode. Here we neglect the non-linearities
involved in the wind forces expressions and in the
restoring forces.

When a satisfactory configuration is found, the time

step method can be used to provide more accurate
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information on what is happeningito the structure, its
flutter behaviour and even the stress history of the
elements.

The advantage of this program is that it can provide
an estimate of the influence of all the elements that
don't wusually take part in the sectional experimental
tests which are the most commonly used ones|, for example
investigations of the influence of the distance between
the cables, the sag of the <cables, the different
configurations of the connections between the deck and
the towers, etc.

At a final stage, analysis of the behaviour for the
incomplete structure in various erection stages, can be
carried out to detect any unsafe conditions which need to
be addressed.

Some comments on the characteristics of the
different computational techniques will follow.

When the deck is represented by one element of its
deck, the method is two dimensional (Fig.21). This model
assumes that the whole length of the deck oscillates in
the same manner as one rigid section with two degrees of
freedom and with the same amplitude in vertical
displacement and torsional displacement. However when the
whole structure is subjected to wind, there is no reason
to assume that the vertical displacements and torsional
displacements will be constant along the span. In fact
the boundary conditions at the ends of the span preclude
this. Models that really fulfil all these requirements

are 3D models. They represent more accurately the real
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behaviour of the bridge, taking into account the adjacent
bridge elements and the different wind force values,
across the span, due to different displacements. The
interaction of motion between the main span and the side
spans 1is also included.

Of course the computational cost of the time history
analysis of a 3-D model is much larger, but the rewards
may well be significant. The 3D modelling is preferable
and highly recommended for the specific type of study and
since it can be handled by the computational efficiency

of modern ComPUterSIEit should be used
‘ L]



(Fig. 5) Vortex formation in a wind flow behind a
circular obstacle.

(Fig. 6) Flow pattern around a section similar to the
First Tacoma Narrows cross section.



(Fig. 8) Model of a rectangular cross section subjected
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to wind flow producing galloping.
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(Fig. 9) Variation of wind speed due to natural

turbulence in atmospheric wind.
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(Fig.13) Cross section of First Tacoma Narrow

(Fig. 14) Simplified 2 degree of freedom model of a thin
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Chapter 3

3.1 The Computer Program ''A N S U S p'!

The present project is based on the use of a program
able to perform both the modal analysis and the

time history method.

The numerical dynanic analysis solves the
differential equations of motion for the modelled
structure (Fig.22), where the inertial properties of the
members are assumed to be concentrated at discrete
points on the geometry of the structure. These lumped
masses are assumed to be connected by members without
mass, which have elastic properties reflecting the
stiffness of the original structural elements. This
discretization helps to reduce the infinitely 1large
number of degrees of freedom of the prototype to a finite
number and enables the handling of the dynamic analysis
by the solution of a system of simultaneous ordinary
differential equations. The number of these simultaneous
equations 1is equal to the number of degrees of
freedom of the model, the lumped masses being on the
nodes of the FEM model. Alternatively, more nodes can be
used as for example higher order elements or finer
discretization, in order to increase accuracy if higher
modes of oscillation are considered, in which case the

mass distribution may have a substantial influence.
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After the discretization of the structure, we

proceed to the formation of the equations of motion:

MU+ cl+xRU="P (11)

M = diagonal matrix containing the mass attributed
to each D.O.F.

C = diagonal damping matrix of structural damping

= structural stiffness matrix

vector of forces at the nodes

< w9 R
Il

= square symmetric matrix of nodal displacements.

3.2 3-D modelling

When the whole structure is subjected to wind and
all influences between the members of the structure are
considered, a three-dimensional model is wused. The
aerodynamic equations which are wused in the present
analysis are derived for a thin flat plate and can be
applied only approximately to faired closed box sections
with a good degree of accuracy. These formulae (1) hold
only at the region of windspeeds where the coupling
between the vertical and torsional oscillation occurr
producing an oscillation at a common frequency.

A bridge with a flat-plate deck is subjected to a
smooth horizontal air-flow. The deck can oscillate in
vertical and torsional motion. The first vertical and

torsional mode shapes are plotted in (Fig.23). When the
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two oscillations are coupled, their mode shapes and their
frequencies are common; under these conditions the forces
acting on the deck are 1lift L, and moment M,, while the
common frequency of oscillation is w. The expressions of
the aerodynamic forces per unit length are given by the

following expressions:

Lh=Sw2[ﬂpb3[ é —iggéfl]y-ﬂpbs[ i +[ & + EZ]C(k)]]

(12)

Ma=Sw2[npb4[ iiik)]y+npb4[[ %; + i;]C(k)+[ é - %k]]]

where k = reduced frequency —

b = the half width of the deck (Fig.24),

the bar over a symbol denotes a complex

quantity,
S = span of section,
C(k) = Theodorsen circulation function = F(k) +iG(k)

F(k) and G(k) being expressed in terms of
Bessel functions of the first and

second kind:
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Jy (J,+Y,)+Y, (Y, -dy)

F(k)=
(3, +Y5 )2+ (Y, -J, )2

(13)
Y, Yo+, J,

G(k)=-
(0, +Y9)2+(Y, -J,)?

In the previous formulae J,, J, and Y,, Y, are Bessel
circulation functions of the first and second kind
respectively.

An alternative way could also be used if the deck
section differs considerably from the flat plate section,
(511, [52], [53].

The following expressions are based on
experimentally extracted parameters which describe the
aerodynamic behaviour of the particular deck sections:

]. 2 *h *bd 2 *
L,= —pV°(2B) |KH,— +KH,— + K°H
h ) 1V 2 v 3

(14)

1 h ba .
M,= —pVZ (2B%) [KA = +KA,— +K%A,a
2 v v

* * , wB
where H; , A; are functions of K = —
v

B= full aerodynamic width of the deck.
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These expressions for 1lift and moment depend

linearly on the displacements and velocities in each

degree of freedom and according to Scanlan and Tomko,

[18], they were proved to hold for small displacements.

3.3 Structural model

In the ANSUSP program, a suspension bridge is
idealized as a three dimensional structure (Fig.22),
based on the two dimensional modelling by Iwegbue et al
[21].

The two cables are represented by parabolic curves,
spanning between the tops of the towers, capable of
carrying only tensile forces and modelled by |bar
elements.

The hangers are suspended vertically from the cable
nodes, capable of carrying only tensile forces and are
represented by bar elements. Their 1lower ends are
connected to horizontal rigid arms, extending
transversely from the centreline of the deck.

The deck is modelled by simple beam elements, with
bending stiffness in both vertical and lateral directions
and also torsional stiffness. They are positioned in the
centreline of the original deck and carry their own dead
load. They are connected to the hangers with horizontal
rigid arms (EI=w), at the joints.

Each tower is idealized by one beam element,

vertically positioned and fixed at their foundations;
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their tops are connected to the two cables with
horizontal rigid arms. The towers provide bending
stiffness in both longitudinal and lateral directions to
the bridge and also torsional stiffness. Second order
phenomena are not included.

In the original structure, the degrees of freedom of
the nodes are generally as follows (Fig.24):

The cable nodes, have the ability +to move
longitudinally, vertically and laterally.

The deck nodes can move vertically, laterally and
torsionally.

The tower top nodes can move longitudinally,
laterally and torsionally.

However, since the flutter phenomenon involves
predominantly vertical and torsional deck motions, the
lateral displacements of the bridge nodes are not
considered to be significant and will be ignored in any
further discussion.

The elements' inertia 1is always represented by
lumped masses at the nodes, enabling the solution of
equation (11) for U since M is diagonal.

In ANSUSP the basic geometry characteristics are
given as the cable sag, the tower height, the deck shape
(straight or circular curve) and the span lengths. Also
the cross section areas of different elements, their
moment of inertia and their Young modulus and material

densities.
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The operation of ANSUSP initiates with the mesh
generator forming the dead load geometry of the structure
and its mass matrix.

For the dead load geometry, the cable deforms under
thel self weight . When the cable and hanger forces
aré calculated, they are applied to the undeformed
structure as internal forces. Equilibrium has to be
restored before the cable and the deck resume their final
dead load geometry.

The next step is to find the natural modes of the

structure.
MU + clU + KU = 0 : (15)
C = 0 because of the uncertainties in the damping
factor:

Substituting for : U = e%*, U = gse’*, U = g% e%*
MS? e5* + KeS* = 0 => (MS? )e’* = (-K)e’* => (16)

s? = -M! K

where M and K are matrices and U vector

|
This is the usual eigenvalue problem.

The eigenvalues are complex quantities representing
the natural frequencies (imaginary part) and the
logarithmic damping (real part) of the system, while the
eigenvectors enable us to describe the mode shapes as

symmetric or antisymmetric, torsional or vertical.
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The great importance of the natural frequencies
cannot be over-emphasized since they give basic
information on the behaviour of the structure revealing
the tendency of the configuration to inflict instability
in symmetric or antisymmetric motion, in lower or higher
windspeeds.

Since flutter instability involves <coupling of
vertical and torsional modes of oscillation, it is
essential to know how close are natural frequencies of
similar mode shapes (torsional and vertical, both
symmetric or antisymmetric).

From this point on, we will follow explicitly the
procedure of solving the dynamic equations of motion with

the modal analysis and the Newmark—-8 time-history methods.



(Fig. 21) Simplified 2 degree of freedom model of a thin
plate subjected to air-flow.

b

Deck beam elements

Rigid arm Jinks

(Fig. 22) Suspension bridge idealization by ANSUSP.
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(Fig. 24) Degrees of freedom of the joints of a cable

suspended bridge.
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Chapter 4
4.1 Modal flutter analysis

This method is based on the following assumptions:

a) The wind forces acting at the deck near flutter
windspeeds can be expressed as factors directly related
by coefficients to deck displacements and velocities as
in equation (1). These coefficients also depend however
on the frequency of vibration through the coefficient
(-

\Y

b) The structure has a linear force-displacement
behaviour which is true only for small diéplacements. The
effect of 1large deflections causing geometrically non-
linear effects is ignored.

c) The oscillation of the structure in the region of
flutter occurring is assumed to be a composition of a
number of the 1lower natural mode shapes including
vertical modes and torsional modes in a resulting
sinusoidal motion.

In the following the formulations of forced motion

are presented:
Piero = AU + BU (17)
where A and B are common Tmultipliers of

displacements and velocities, arising from the

. . 1
expressions for the wind force54 Paero
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We now transform the initial equations:

MU+ cU + KU =Paeyo = AU + BU => (18)
|

Substituting for: U = e**, U = xe**, U = A% &
MAZ e + (c-B)re** + (K-A)er* = 0 => (19)
=> A\ e** + M!(c-B)re** + M1 (K-A)e** = 0 =>

=e* M +CA+K) =0 =>

which is an eigenvalue-eigenvector problemn.
The A are the eigenvalues which in general take

complex values and can be written as:
A= 4+ iw  , A=4 - iw

The X are the eigenvectors, which also take complex

values of the kind:

X=p+ iq , X =p - iq

The response of the system can be written:

U= e*t[(p+q)sinwt + (g-p)cosut] (20)
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The characteristics of the resulting motion at a particular
windspeed are obtained by the solution of the previous eigenvalue
problem. These characteristics are monitored for increasing
windspeeds, until overall damping is assessed as zero or negative.

The condition for dynamic stability is to ensure
that the real parts g of all eigenvalues are negative,
since this means that the amplitude of any motion
gradually decreases, eventually being damped out.

The flutter windspeed isithe lowest windspeedi
which gives zero or positive Qalue to u.

However we must note here that since the wind-forces
are dependent on the frequency of motion (1), an
interactive loop must renew continuously the frequency
which is used in Theodorsen expressions, until it agrees
with one of the imaginary parts of the eigenvalues.

It is not clear though from the beginning which of
the response frequency values is going to create
instability and which one to use as a value for w.
However it was discovered that following the response
frequency with the lowest damping g = 0 is always leading
to the flutter windspeed with convergence between o,
and W..,.+ A simplified form of ANSUSP named ANSUSP2DE
was used at the initial stage of familiarizing with the
modal analysis. ANSUSP2DE calculates the response of a
flat plate suspended in wind flow with 2 degrees of
freedom (Fig.21). Using ANSUSP2DE the frequency of
torsional oscillation could be plotted against
corresponding damping for increasing windspeeds as shown

in (Fig.25.a). When the damping crosses the axis of zero
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damping the system oscillates under flutter conditions.
The same operation has been followed for the full

structure model in (Fig.25.b).

4.2 Time step analysis

This is more time consuming than the previous
procedure, [49], having the advantage of being more
reliable, because it enhances the versatility to include
the geometric non-linearity.

In this method a pattern of initial nodal velocities
is applied on the structure at zero time, to set the
system in motion. The response is determined for a period
of time and the logarithmic damping ratio is calculated.
The results including corresponding frequencies are
calculated and displacements in vertical and torsional
motion can be plotted against time. A simplified version
of ANSUSP, the ANSUSP2D was used to -calculate the
displacements and decay of a 2degree of freedom system.
The displacements are plotted in (Fig.26.a,b,c,d). 1In
this figure the smaller amplitude oscillation represents
the torsional motion of the system. The diagrams
presented in (Fig.26) correspond to windspeeds of 28, 33,
35, and 65m/sec and show the different pattern of
oscillations, which is not always sinusoidal when the
system oscillates in windspeeds significantly lower from
the critical speed (Fig.26.a,b,c). Once the vertical and

torsional motion oscillate coupled in a common frequency
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(Fig.26d), the oscillation 1is apparently sinusoidal
complying with one of Theodorsen assumptions.

At 65m/sec the 2dof model is almost at flutter
motion. The amplitudes are very large and the slight
decreasing trend is barely noticeable. Phase difference
has not yet reached 90, but is near 130. The period of
motion is clearly constant and the oscillation
sinusoidal.

The previous procedure can be repeated for
increasing windspeeds until the 1logarithmic damping
becomes zero or takes positive values. In this way, the
corresponding frequencies and. damping can be plotted
against windspeed (Fig.27) and critical windspeed can be
found.

The nodal displacements and velocities after time At

has elapsed are calculated with Newmark-g equations:

Upar = Ut+(1-7)AtUt+'yAtUt+At ,

(21)

1
Uprar = U, A0, + E - B|(At)%0, +B8(At)2U,,,,

B and 7 are free dimensionless parameters of the
quadrature.
The accelerations are determined from the equations

of motion (18). The values of f=1/6 and y=1/2 are used
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here because the accelerations are assumed to vary
linearly for every new time interval At.

The time step method is described in details in the
following (Fig.28) : .

i) In order to start the operation of the Newmark-B
method we use 1initial values for displacements and
velocities, usually in a pattern similar to the mode
shapes. Estimated values for the oscillation frequency of
the coupled motion are also necessary.

ii) The initial displacements and velocities are
inserted in the aerodynamic equations (18) and nodal
accelerations are calculated.

iii) The acceleration is used in special formulae

which do not use Ut+At given below:

eeat = Uy + AL 0,

(0, +Urpe )
2

(22)

and values for displacements U, ,, and velocities

U;4,+ are calculated, after time At has elapsed.

iv) The resulting displacements and velocities are
inserted again in the dynamic equations (18), and new
values for acceleration m+At are calculated. These values
of UH_At are characterised as assumed since they are based
on displacements and velocities extracted from

approximation formulas.
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v) The assumed values of UHmt and the values of U,
are inserted in Newmark-f formulas (21) and values for
Uy 4ot and Uyy,, are calculated.

vi) The new values of displacements and acceleration
are used in aerodynamic equations (18) and the
accelerations which are calculated are characterised as
calculated.

vii) The older values of the acceleration U,;,, and
the new ones Ut+At are compared and if they do not satisfy
the convergence criterion which has been set the
calculations continue from step v) and onwards, using the
last values for displacements, velocities and
acceleration.

If convergence criterion is satisfied, displacements
and velocities are substituted with their 1last values
Ut+At, Ui4,: and the procedure continues from step ii) and
onwards for the next time step.

In this approach to the problem, the formation of
the stiffness matrix has been avoided, since it would
have to be transformed each time the displacements
change, because it is displacement dependent. This is a
big advantage of this technique, because large
deformations of the structure are expected and
particularly of the cables which are going to alter the
geometric stiffness of the structure considerably.

The previous procedure is being followed for each
wind speed for time-steps summing up to 30secs which is
adequate, [47], [54] in order to include more than 10

periods' time of the fundamental mode. This is because
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some time is needed for the bridge to Dbuild up any
oscillation to a sinusoidal pattern. This period is also
used 1in statistical studies, leading to the windspeed
/hich must be designed for in practice.

The main disadvantage of this method is the
computational cost ) so it is advisable to have previously
estimated the windspeed range whereinstability is
expected Dby other methods, so that Ilessanalysis time
is spent in this very costly procedure.

The advantages of this method include the
Dossibility to plot the movements of some dofs of
specific nodes and inspect closely the oscillations when
reaching resonance conditions between vertical and
:orsional motions, the phase difference between them and
ilso the maximum forces reached in all the elements
uring oscillations at the onset of flutter instability.

For a given windspeed, an initial pattern of nodal

relocities is used to set the system in motion. An
istimate of the wvalue for the circular frequency of the
tructure is also used as the frequency of vibration is
Iso needed in the equations of the aerodynamic forces,
"ne results include the corresponding vertical frequency
f oscillation uv, torsional frequency wt and logarithmic
amping ratio for the vertical and torsional oscillation,
f we follow this process for different windspeeds, we
an plot the results as shown in (Fig.27).

For a given windspeed we can find the vertical and

:orsional displacements of the centrespan. If we plot
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them against time, we get a plot similar to
(Fig.26).
For the present analysis we will use the

geometrical data of the Severn bridge, as given 1in

(Fig.29).
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(Fig. 25.a) Argrand diagram of frequency vs damping of the
torsional degree of freedom of a flat plate with 2 degrees of
freedom plotted for different windspeeds calculated by ANSUSP2DE.
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28m/sec predicted by ANSUSP2D with the time history method.
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(Fig. 28) Flow chart of the time history method as used in ANSUSP.
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Chapter 5

Parametric study using ANSUSP.

A  parametric analysis is presented  There, the
objective being to gain insight into the behaviour of a
cable suspended bridge under flutter conditions. Various
structural properties of a typical modern suspension
bridge are modified and the effect of the modification on
the flutter windspeed 1is examined. It 1is assumed for all
the present parametric studies that the deck behaves
aerodynamically as a flat plate so that equations (1) can
be applied.

In most of the analysis only as many modes are used
as are necessary to include the first two torsional modes

a symmetric and an antisymmetric mode. In the
following, only symmetric modes are included when trying
to find the symmetric flutter windspeed or alternatively
antisymmetric modes when examining the antisymmetric
flutter windspeed, ignoring the rest and keeping the
workload to a minimum.

The analysis through different windspeeds does not
start from zero values, since this was found to be
unnecessary, but an analysis should always start at a
windspeed where the previous tests were indicating
instability should be expected. This was found useful
enabling shorter computing times.

The parameters which have been modified can be
divided into four major categories which are outlined

Delow.
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GEOMETRICAL PROPERTIES: These include the modification of

cable sag to span ratio which in design practice usually
takes a value between 1/10 to 1/14 [47]. This ratio gives
a measure of gravity stiffness of the bridge in the
vertical direction. Another factor included in this group
is the horizontal separation of the suspension cables.
This in combination with the deck torsional stiffness
affects the torsional stiffness of the structure [47].
EILASTIC PROPERTIES: These include variations of deck
vertical and torsional stiffness and the cable Young's
Modulus These factors strongly influence the vertical or
torsional frequencies of the bridge and hence the
behaviour of the bridge in its dynamic response.
INERTIAL PROPERTIES: The deck's vertical inertia (mass)
and torsional inertia and cable inertia have been
modified. These affect the values of the vertical and
torsional natural frequencies respectively.
AERODYNAMIC PROPERTIES: Alterationsf to the aerodynamic
width of the deck and the density of the air have been
carried out. In this category the modifications do not
alter the natural frequencies of the structure, but
clearly can influence the magnitude of the aerodynamic
forces which ultimately drive the flutter conditions.
Initially numerical tests were carried out using the
ANSUSP modal analysis method. This enables a reasonably
quick calculation of predictions. A comparison with
Selberg's formula is also included where applicable.

Having established the most important factors, ANSUSP
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time integration method has been used to check the

accuracy of the modal analysis results.

5.1 Modal flutter analysis by ANSUSP.

5.1.1 The effect of cable sag [all other bridge
properties as nominal (Fig.29)].

Investigation of the effect of cable sag has been

carried out for two slightly different types of
configurations as indicated in (Fig.30) and (Fig.31).
In the first configuration the distance between cable and
deck at the bridge midspan has been kept constant, with
the tower height h having to accommodate the variations
made in sag. In the second configuration tower height has
been held constant while the cable to deck clearance at
midspan has been varied to accommodate the variations
made in sag.

The variation of natural frequencies caused by
varying sag/span ratio between 1/10 and 1/14 for the two
above described configurations are shown in Graphl and
Graph3 respectively. Comparison of these graphs indicates
an insignificant difference in predictions so that the
choice of configuration (between Fig.30 and Fig.31) is
unimportant. The lower natural mode shapes in vertical
flexure and torsion for the nominal bridge properties are
shown in (Fig.32). Mode shapes also show no significant
change from those corresponding to the nominal
properties, over the full range of variation of sag/span

ratio considered.
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Considering Graphl and Graph3 in detail it is noted

that there 1is a trend for all the antisymmetric
frequencies to slightly reduce, with increasing sag/span
ratio. This can be explained as follows:
As sag/span ratio increases the cable length and hence
cable mass increases. Also, the antisymmetric vibration
modes involve displacements of the cable which is
primarily a change in geometry rather than developing an
increase in internal cable tension. As such the cable
becomes less stiff with increasing sag/span for this type
of antisymmetric motion. The increased cable mass and its
reduced stiffness compound with each other to reduce the
antisymmetric frequencies with increasing sag/span. This
is true not only for the vertical frequencies, but also
for the fundamental torsional antisymmetric frequency
which involves antisymmetric vertical cable motion.

Considering the symmetric frequencies, it can be
seen that the two lowest (1-S-F and 2-S-F) also reduce
slightly with increasing sag/span, while the 3rd (3-S-F)
and the fundamental torsional increase. The mode shapes
for 1-S-F and 2-S-F indicate 1longitudinal tower top
motion to accommodate the opposing sense vertical deck
displacements in the centre and side spans. This leads
primarily to a change in the geometry of the cable rather
than increase in internal cable tension. Consequently the
effect for the symmetric modes is similar to the effect
for the antisymmetric vertical modes.

However it can be seen from the 3-S~F and 1-S-T mode

shapes, which involve little or no longitudinal tower top
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displacement (cable displacements of the same sense in
the centre and side spans), that the cable displacement
involves primarily stretching to develop additional
internal tensions. The consequence is that the cable is
relatively much stiffer than for the previous cases and
so the result is an increase in natural frequencies.
Considering now how these changes in natural
frequencies affect flutter speed, it would be expected
that symmetric mode flutter speed would follow the trend
in fundamental torsional frequency i.e. increase with
increasing sag/span ratio. This is seen to be predicted
in Graph2 with the prediction being significantly larger
than the semi-empirical Selberg prediction. The opposite
effect would be expected for flutter speed for
antisymmetric flutter mode, i.e. reducing flutter wind
speed with increasing sag/span. This trend has been
produced by the ANSUSP médal predictions. However because
the predictions ( ranging from 114-128m/sec ) are outwith
the normal design criteria, the results have not been

presented in Graph2.

5.1.2 _The effect of cable sag ( with deck torsional

stiffness reduced to 7% of its nominal value ).

Here an investigation similar to the one presented
above is repeated on the influence of the sag variation
when a major part of the torsional stiffness comes from
the cables, the deck torsional stiffness being reduced to
7% of its nominal value. This deck torsional stiffness

was chosen so that the fundamental antisymmetric
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torsional natural frequency would be 1lower than the
symmetric torsional natural frequency in order to examine
if the antisymmetric flutter speed would follow the same
pattern as for the natural torsional frequencies and
become lower than the symmetric flutter speed.

With a torsionally flexible deck, as cable sag
increases, the first torsional symmetric frequency
slightly increases following the same trend as in section
5.1.1. In the same way as in the previous analysis the
first torsional unsymmetrical frequency slightly reduces.
However the flexural natural frequency curves are
unchanged in Graphl and Graph4 since the torsional
stiffness of the deck does not affect the vertical
oscillations.

The critical windspeeds have decreased considerably
with the torsionally flexible deck and so symmetrical and
antisymmetric flutter windspeeds are of comparable
magnitudes as expected (Graph5). For sag/span ratio equal
to 1/12 (as in the original Severn bridge) antisymmetric
flutter speed is approximately the same as the symmetric
flutter speed. This shows clearly the way in which the
natural torsional frequencies affect the oscillation
pattern (symmetric or antisymmetric) when flutter occurs.

With reducing sag, antisymmetric flutter windspeed
increases marginally, following the same trend as in
section 5.1.1, because the térsional antisymmetric
natural frequency increases and also Dbecause the

difference between it and the fundamental antisymmetric
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flexural frequency increases. In contrast symmetric

flutter windspeed reduces marginally as in section 5.1.1.

5.1.3 The effect of horizontal separation