
i

A thesis submitted for the degree of 

Master of Science

A STUDY OF STRUCTURAL PARAMETERS 
AFFECTING FLUTTER STABILITY 

OF SUSPENSION BRIDGES

by
GEORGE FRANGOPOULOS

Department of Civil Engineering 

University of Glasgow

©
Copyright G. Frangopoulos 

June 1992



ProQuest Number: 13815387

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13815387

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



GLASGOW
UNTVE F. Gi x V 
UBRaay



ii

Acknowledgements

The work described herein was carried out in the 
Department of Civil Engineering at the University of 
Glasgow with the supervision of Doctor Alan Agar.

I wish to express my thanks to my supervisor for the 
provision of the program ANSUSP and for his close 
guidance and great patience throughout the progress of 
the present work.

Thanks are due to Mrs Janet Sutherland for her 
guidance in my introduction to the various software 
facilities of the department and also to Ian Dickson and 
Ken Ryan for their valuable help.

I wish to express my gratitude to my friends and 
eolleagues Emanuel Awoleye, Zhang Binsheng and for their 
help to my adaptation to the working environment of the 
University. I also want to thank Manuel Lorena, Saleh 
Gaderbouh, Giovanni Scilipoti, Libor Jendele, Suhol Bu 
and Waseem Khalifa for their friendly support during my 
work in the University. Thanks are also due to Olubyo 
Famiyensin, Mohamed Abdel-Kader and Bensalem Abdelmadjid 
for their interesting spiritual discussions.

I wish also to express my thanks to John Fisher for 
helping me with the English at the final stages of this 
thesis.

Finally I wish to express my special thanks to my 
family for their continual support and encouragement 
throughout the years.



iii

Abstract

The cable suspended bridges have been used woldwide 
to connect two remote points, separated usually by water. 
These bridges may be largely affected by wind because of 
the sites where they are erected, being usually near 
estuaries, their large proportions and their particularly 
flexible design because of the cables involvement in the 
overall stiffness of the bridge.

In the present work a parametric analysis is carried 
out of the basic structural properties of the cable 
suspended bridge and the effects of these properties on 
the flutter stability of the bridge are investigated. In 
the present work two numerical approaches were used being 
available with the computer program 'ANSUSP'.

The natural modes were firstly computed for a cable 
suspended bridge with the Severn bridge nominal 
structural properties and for each modified bridge 
configuration and an effort was made to explain the 
effects of the alteration of the structural properties on 
the aero-elastic behaviour of the bridge.

Modal analysis method was used for a wide variety of 
bridge structural properties and critical windspeeds were 
predicted.

Secondly the time history method was used only for 
some selected bridge structural properties, being the 
more time consuming method of the two and flutter speeds 
were predicted. The results of the two methods are



presented in graphs and are compared between each other 
and also with the results of Selberg's semi-empirical 
equation.
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Chapter 1 
Introduction

1.1 Suspension bridge history

Among the earliest examples of structures of this 
kind (Fig.l), is the rope suspended bridge over the Indus 
river near Swat [2] and the Iron chain bridge over the 
Pan-Po river in China, believed by tradition to have been 
erected in A.D.65, [2]. These structures have evolved
from the simple idea of bridging two points with ropes. 
The lower ones could support the dead weight and live 
loading, which was applied on girders, positioned 
transversely. The upper cables where connected to the 
lower through vertical ropes (hangers) and were carrying 
part of the loads. Another utility of the upper ropes was 
the role of a handle for the people who used the passage 
since the structure was too flexible and oscillated 
wildly under dynamic loading of steps. Later stiffening 
girders positioned longitudinally helped redistribute the 
forces to more hangers and the bridges grew more stable 
and more practical.

The substitution of natural ropes by metal chains 
brought a big advance in suspension bridge design and 
construction and enabled the construction of larger span 
bridges. These innovations started in China (eg. Hwa 
Kiang river bridge of 200ft span, 1632). In the western 
world suspension bridges gained popularity in the early 
years of the eighteenth century (eg. Tees river bridge



2

near Middleton of 70ft span, 1741, Lahn Bridge in Germany 
of 98ft span, 1785, Uniontown bridge in Pennsylvania, 
USA, of 70ft span, 1796) . By the end of 19th century, 
wire cables were used instead of chains and the whole 
layout had been modified, (Fig.2).

The suspension bridge profits considerably from the 
advances of theoretical engineering, during the beginning 
of the 19th century. By then the main three simple cable 
shapes, simple catenary, catenary of uniform strength and 
parabola were fully studied mathematically. In 1823 
Navier [1] presented his work on elastic theory. Later 
Clericetti [26] and Melan,J. [3] on deflection theory and 
even later Timoshenko [25], on energy methods and 
Castigliano's strain energy work and its application on 
arches were developed, the cable suspended bridge being 
practically an 'inverted' arch with tension instead of 
compression, without the disadvantage of local buckling 
of the arches and so providing a more effective use of 
the material.

In the early third of 20th century, the expansion of 
the cable suspended bridges was immense especially in the 
U.S. A where a series of such bridges were built. The 
length of the main span reached 4200ft in the Golden Gate 
bridge at San Francisco, 1937. Simultaneously the demand 
for more aesthetically acceptable structures as well as 
more economical and lighter ones highlighted the 
requirement for more slender bridges. One example is the 
Tacoma Narrows bridge in Washington of 2800ft span, 1940. 
The deck section was constructed from two plate girders
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of 8ft deep each, (Fig. 3) giving to it a slender side
profile. The structure was in service only for a few 
months when it started oscillating vertically in a wind 
of approximately 4 0mph. The oscillations developed in a 
combination of flexural and torsional galloping motion 
and after a slight increase of the windspeed the bridge 
collapsed.

The bridges which followed since are tested in wind 
tunnels extensively in order to ascertain that they are 
aerodynamically stable.

After the Tacoma Narrows collapse, engineers turned 
to open lattice stiffening girders (second Tacoma Narrows 
bridge, Forth Road bridge in Scotland of 3240ft span, 
1964, Verrazano Narrows bridge of 4200ft, 1965, Tagus
river bridge in Portugal of 3300ft span, 1966).

The Severn bridge of 3400ft span linking England and 
Wales was completed in 1966. It's deck is 10ft deep with 
the cross section shaped as a closed box (Fig.4), with a 
streamlined shape not unlike an aircraft wing. The 
closed box section provided a high torsional deck 
stiffness. This innovative design was studied in wind 
tunnels for aerodynamic stability and behaved very
satisfactorily, providing low drag and reduced flow
separation. Other features included the employment of 
inclined hangers, instead of vertical, in order to 
increase structural damping. This was the first design of 
this kind and was adopted in later structures. Many of 
the long span bridges which have been built since have 
similar features. Some examples are the Bosporus bridges
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in Turkey [24], the Lillebaelt bridge in Denmark, Burrard 
Inlet, Humber, etc.

1.2 Suspension bridge failures due to wind.

The first failures of suspension bridges are 
reported back in 19th century. The Tweed river bridge in 
Berwick, Scotland, 1817, [28], the Tweed river Union
bridge at Nordham Ford, 1820, which collapsed after six 
months only in operation.

Damage was reported in 183 6 on the Brighton Chain 
Pier bridge with four spans of 255ft, suspended by four 
chains. Built in 1823, it collapsed in a storm in 1833, 
when one span was destroyed. After three years the same 
span collapsed again. The motion mechanism that was 
involved in the collapse of the structure has been 
compared to that of the Tacoma Narrows bridge and was 
very similar.

The Telford bridge over the Menai Straits was built 
in 182 6, with a main span of 580ft. It was damaged three 
times; twice in 183 6, the central span collapsed and 
later on in 1839 the same span collapsed again. Finally 
alterations to its deck structure improved its behaviour 
in wind.

Other examples of collapses include Nassau bridge 
over the Lahn River in Germany, built in 18 3 0 with a main 
span of 245ft, and Wheeling bridge in West Virginia in 
USA with a main span of 1010ft, built in 1848. By then 
the stiffening trusses were becoming increasingly deep
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with each new structure, affecting as a result the weight 
of the deck. The extreme was reached in 1903 with the 
Wiliamsburgh bridge in U.S.A with stiffening trusses 
reaching 4 0ft deep. After this structure the trusses 
started to give way to plate girders. This trend led to 
shallower, more slender structures, reaching an extreme 
in 1940 with the construction of Tacoma Narrows bridge. 
This was a perfectly safe structure for the static weight 
and static wind loads and live loading it was designed to 
carry, however as no precautions had been taken against 
potential dynamic wind loads or aeroelastic instability, 
the strong tendency it | for flexural and
torsional oscillations resulted in its collapse.

The development of vertical oscillations during its 
erection caused some extra measures to be taken. This
included installation of hydraulic buffers at the towers, 
diagonal cable ties at the centre of the main span and 
tie-down cables installed at the side spans anchored 
firmly to the ground, restricting their movements. These 
efforts though were unable to prevent the vibration of
the main span. In November on 1940, in a wind of 38mph
the bridge started oscillating in a vertical flexural 
mode with small amplitude. After a few hours the wind
speed reached 42mph and the mode of oscillation changed 
toScombination of vertical and torsional modes with large 
amplitudes, leading to the collapse of the bridge 
approximately 75 minutes later.

Eventhough the wind sensitivity of cable suspended 
bridges was known from previous occasions, it was always
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related to the static wind forces [4]. Only after the 
destruction of the first Tacoma Narrows bridge did the 
engineering community realise the importance of the 
dynamic wind loading on those structures.

1.3 Suspension bridge aeroelastic problems.

Cable suspended bridges are subjected to aerodynamic 
instabilities. Some of the most important ones are 
described in the following:

Divergence is a phenomenon of static instability. 
The air flow induces a static force on the side of the 
deck, essentially reducing the torsional stiffness of the 
deck. When this force overlaps the critical one, the deck 
inclines. The angle of attack then produces higher lift 
forces which lead to increased moments applied to the 
deck which inclines more and finally flips over. The 
critical force is applied to the structure at the 
critical windspeed. If this is not reached the deck 
maintains its position. This phenomenon, once critical 
windspeed is reached, cannot be reversed at any higher 
than the critical windspeed. Therefore it has only a 
lower bound windspeed.

Classical flutter, torsional divergence, vortex 
shedding, buffeting and galloping are the most important 
aerodynamic instabilities, [4]. They are all dynamic 
instabilities. The former is the most dangerous of all
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for the modern streamlined deck cross sections and will 
be discussed in detail in a later chapter.

Vortex shedding is a phenomenon affecting bluff 
bodies as wide H-type deck sections. The boundary layer 
alternately detaches from and re-attaches to the body. 
Depending on the value of the Reynold's number and the 
type of cross section, this may become periodical, 
creating turbulence across the leeward side of the deck 
leading to alternating forces. These forces are directed 
across-wind and vertically to the bridge deck and 
generate a dynamic excitation. If a natural frequency of 
the bridge is similar to one half of the vortex shedding 
frequency, resonance may occur where the oscillations 
tend to increase to large values.

Buffeting is due to the sudden variation of 
intensity of the air-flow caused by the turbulent texture 
of atmospheric wind. Usually its frequency is too low to 
exert some kind of resonance, but the variation of wind 
force intensity applied to different parts of the span in 
some organised pattern could initiate oscillations.

Galloping, finally, is a phenomenon affecting cross 
sections with non circular shapes. As the wind direction 
fluctuates around a mean direction, forces are applied on 
the section, asymmetrically, causing a periodical 
oscillation. It usually affects electric conductors when 
subjected to ice accretion.
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1.4 Static analysis of suspension bridges.

The examination of cable suspended bridges is still 
continuing even though many long-span suspension bridges 
have been designed and constructed successfully, many of 
which in the first half of the century. The simplicity of 
the design and the redundancy it provides, made it a very 
versatile and adaptable structure. A structure, with the 
shape of an inverted arch, relying on tensile instead of 
compressive forces carrying the deck beam and all its
loads. The shape is either second order or catenary or 
even catenary of uniform strength, formed by the cable 
freely under the loading, and has the freedom to
transform under live loads. Usually it has the shape of 
the second order curve as the moment diagram of a beam 
loaded with continuously distributed loads. The hangers 
support the deck and transfer dead and live loads to the 
main support element which is the cable. Finally the
cables are suspended from the towers, transferring to
them all their vertical loads.
I Studies on suspension bridge static forces go

back as far as 1888 with deflection theory by Melan,[4]. 
In the first half of 20th century through advances in
deflection theory raised hopes for the solution of the 
cable equilibrium. A big advance was the introduction of 
the theories on energy and potential energy which were
initiated by Timoshenko [25] and later by F. Bleich [29]
using trigonometric series for the approximate
representation of deflections. On the same principles was
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based the work of Bowen and Charlton [46] , and later Van
der Woude [30].

The analytical solution for the cable and cable mesh 
was solved by Panagiotopoulos [18]. Even though cable 
finite elements have appeared, they are still in 
experimental level and have not been introduced yet for 
the study of cable suspended bridges.

A method which was developed in 1976 [13] was the
employment of a step-by-step numerical integration of the 
equations of motion of a heavily damped dynamic model of 
the bridge. Given an initial condition of displacements 
and velocities of the structure in each degree of 
freedom, the structure oscillates freely with a very high 
damping ratio. After a few oscillation cycles the 
structure comes to rest at its equilibrium position.

1.5 Dynamic analysis of suspension bridges.

The first large steps in aerodynamic instabilities 
were achieved by Frazer and Duncan [37] in 1928. They 
developed the model of the flutter mechanism of a wing. 
The equations of motion were solved by the test functions 
of Frazer. Theodorsen's [45] paper on the incompressible 
flow flutter was published in 1935.

Later on, in 1948 Bleich [28] published a paper 
applying the flutter theory as used in aircraft designing 
to suspension bridge decks. He developed the equations of 
motion for a suspension bridge deck represented as a flat
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plate, with vertical flexural and torsional d.o.f.s using 
Theodorsen's aerodynamic forces.

Farquharson [38] worked experimentally on the 
original Tacoma Narrows Bridge and on various proposed 
designs for the second Tacoma Narrows bridge.

Steinman [39] introduced into the designs, 
additional damping devices in order to increase the 
resistance of bridges to flutter. Most of these have been 
adopted in later designs.

Selberg [40], after working on wind tunnel tests 
experimentally, produced a very simple formula for the 
prediction of flutter windspeeds.

Smith [41] investigated in 1964 the Severn bridge 
proposed designs. His aim was to detect aerodynamic 
instabilities in the erection stages. When deck sections 
of a bridge are raised into place and before they are 
fully connected, the deck has minimal torsional stiffness 
and so is very susceptible to flutter. This conclusion 
opposed the previously accepted conception that the fully 
connected sections would provide a longer plate to the 
wind-stream than the unconnected sections and hence would be 
more susceptible to flutter than the unconnected deck 
sections.

Sabzevari et al [42], [43] worked with a
combination of analytical and experimental approaches. 
They used experimentally derived results to evaluate the 
air forces which are then used in the analytical 
formulations. In this way the shape of the cross section 
of the deck can be taken into account during the
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investigations of the stability of the bridge in flutter.
Recently, Chaudhury [33] analysed the vertical 

bending vibrations by using his own numerical integration 
method, to integrate the Newtonian equations of motion 
and obtain the dynamic response of the bridge with time.

Allman [34] developed a relaxation method. According 
to this method the restraint forces are gradually relaxed 
when the correct solution for the acceleration is 
reached.

Bell and Brotton [36] developed a numerical 
integration method for the determination of the flutter 
windspeed of a structural system. Calculating damping for 
different windspeeds, he finally finds the flutter 
windspeed of the bridge, when the damping of the motion 
is zero.

Iwegbue [13], followed on these principles, and 
presented his work on time-step analysis, for 
representation of the bridge reaction to Theodorsen's 
wind forces.

Today the dynamic analysis of structures is founded 
on the implementation of discretized mass and stiffness 
properties. According to | this, the mass of the system is 
often assumed to be concentrated at discrete points, so 
that their displacements can be described by a finite 
number of coordinates. The equilibrium conditions may be 
expressed by a number of ordinary differential equations 
rather than partial ones which would be more adequate for 
the description of the original system of continuous mass 
distribution. The simultaneous differential equations can
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be formulated as matrix equations. From this point on, 
two different approaches can be followed for the 
solution; the modal analysis methods and the time history 
integration methods.

The modal analysis method leads to the solution of 
the eigenvalue problem, extracting the natural 
frequencies of the bridge, when it oscillates freely, and 
the characteristic shapes of the system (natural modes). 
The forced motion problem leads also to the eigenvalue- 
eigenvector problem with the real part of the eigenvalues 
being the logarithmic damping of the system.

The advantage of this method lies in the fact that 
the response of most systems which concern engineers is
dominated by a few modes of vibration. The oscillation of
the structure is assumed to be a combination of a very 
few natural modes of the structure. It also gives an
estimate of the behaviour of the structure with low 
computational cost.

On the other hand this method is based on the
assumption that the structure behaves linearly which may 
be untrue in situations where cable bridges undergo large 
deflections and there may be significant geometrical non­
linear effects.

The time-history analysis is capable of reproducing 
the non-linear behaviour of the structure and record its 
time history of oscillations, enabling the study of the 
amplitudes of displacements of the structure, and also 
the forces which have been developed in each element. A



13

more detailed description of both methods will follow in 
a later chapter.

1.6 Scope of present work.

The present work is based on the use of the computer 
program ANSUSP, enabling the study of a cable suspended 
bridge, for static and dynamic loading, focusing on 
flutter instability and the structural factors that 
affect its onset.

The aim is to achieve a better understanding of the 
role of different factors which affect the aeroelastic 
stability of j conventional 2-cable 3-span suspended
bridge configuration.

For dynamic wind loads, the two most important 
methods are implemented. The modal analysis method, [31] 
and the time history method, [13].

A series of variables are examined in order to 
predict the limits of aeroelastic stability, and the 
influence of these variables, structural, geometrical or 
aerodynamical on flutter windspeeds.

The structural model used in the present project is 
a three dimensional finite element idealization of a 
bridge subjected to aerodynamic forces.

In the time history method, the model oscillates 
under the influence of wind forces, resulting in a 
detailed representation of the behaviour of the original 
structure. The results can include the stress history of
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the structure, during oscillations, revealing momentary 
stresses in excess of the strength of construction 
materials, or even need for alterations of the design. 
However the main goal here is the flutter windspeed 
prediction of each particular configuration, when some 
properties of the bridge are altered.

The modal analysis has been shown [15] to give good
iestimates of the behaviour of the structure likely to 
occur in flutter windspeeds using much smaller amount of 
CPU, than the time step analysis so the later method wasI
used to focus on the more interesting parameters. In

j
conclusion the use of a combination of both methodsI

I

proves more efficient and more reliable than the use ofj
each one of the two, alone. Finally comparative

if
diagrams follow with the results of the two methods and|
Selberg's [40] semi-empirical one, in order to provide a

ivisual comparison.
The contents of the present thesis are organized 

under the following headings:
Major categories of aerodynamic instabilities where 

the main aeroelastic phenomena are described and flutter
r

| is described in more detail being the main theme of this
[

thesis. Also methods which have been developed for the 
study of aeroelastic phenomena and application of special 
devices on bridges which have been constructed during the 
last forty years will be mentioned, followed by the 
mathematical models of the aerodynamic forces, used in 
this project and the equations of motion of the
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structure. All these will be included in the second 
chapter.

The third chapter will contain a review of previous
work on the problem of flutter instability and the progress
which | has been achieved during the last twenty years, 
including the experimentally established methods and 
prepositions for aerodynamic devices, in the attempt to 
improve the performance of these wind sensitive 
structures. Finally a short quotation on the ANSUSP work, 
introducing the 3-D modelling of the bridge, and the 
evolution of full bridge modelling will be included.

The ANSUSP program described in chapter 4, contains 
both modal analysis and time history method, enabling the 
comparison and combination of the two methods. A full 
description of both and their implementation in the 
program follows.

The parametric study which constitutes the backbone 
of the present project is described in chapter 5. The 
parameters which were investigated are geometrical, 
elastic, inertial and aerodynamic. The first category 
includes cables' sag and horizontal cable separation. In 
the second category are included vertical and torsional 
deck stiffness, stiffness of cable and tower 
and also cable and deck mass and torsional deck 
inertia. Finally in the third category aerodynamic width 
and air-density are included. The results, including the 
display of the critical curves and the comparison of the 
two methods are outlined in this chapter.
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Results and conclusions arej discussed with! a
view to the possibility of future study. The demand for 
accurate solutions, the availability of powerful 
computational devices, the need for quickly and 
economically raised structures and the introduction of 
new materials in the construction industry, place new 
challenges which must be met and investigated in future 
research work.
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(Fig. 1) Primitive rope suspended bridge

(Fig. 2) Typical layout of cable suspended bridge
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(Fig. 3) Cross section of First Tacoma Narrows bridge,
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Chapter 2

2.1 Review of aerodynamic instabilities

As the range of materials used in human structures 
widened, stronger and lighter construction materials 
became available, which enabled engineers to create the 
large scale structures needed by the continuously growing 
demands of the increasing urban populations. In these 
massive structures wind forces became of paramount 
importance along with the effects of gravity loads. 
Collapses have occurred involving silos, huge storage 
bunkers, telescope reflectors, cable net roofs for 
stadiums and airports, factory chimneys, power station 
cooling towers, skyscrapers, antenna towers and long 
bridges, due to wind effects.

In these structures, the combination of wind forces, 
elastic and inertial forces, acted together creating de­
stabilizing effects. These effects can be divided in two 
major categories: static and dynamic instabilities.

Static instabilities include those where wind forces 
are acting effectively as static external forces.

The static instability of divergence appears when 
the wind force acts on a long flat plate. The initial 
angle of the plate with the direction of the wind 
produces moments. The plate rotates as a result andjthe 
angle of attack increases. The moments increase 
accordingly and so on. As a result, the torsional 
stiffness of the structure essentially decreases. When
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she wind speed is sufficiently high, the result is a zero 
torsional stiffness, and the structure suddenly deflects 
borsionally. This phenomenon is similar to that of 
structural buckling. The necessary study must be based on 
tfind tunnel tests; however divergence is a phenomenon 
/ery unlikely to affect cable suspended bridges in 
practice.

Dynamic instabilities are more important for the 
sable suspended structures. Here are included vortex 
shedding, galloping, buffeting, separate flow torsional 
(or stall) flutter and classical flutter.

a) Vortex shedding occurs whenever a bluff or 
rounded body is positioned in a wind flow. Vortices are 
shed alternately with time from the opposite sides of the 
body (Fig.5) thus producing alternating transverse forces
bn it.|

The stronger forces act transversely to the air-flow 
|tfith frequency = S = Strouhal number, while some in line 
with the flow are of secondary importance with frequency 
= 2S. When the frequency of vortex shedding approaches a 
structural natural frequency, the body starts to 
oscillate and resonant oscillations can occur. The vortex 
shedding frequency depends on the windspeed, so at the 
point where the oscillations start to develop, the 
critical windspeed for vortex shedding has been reached, 
in this case the wake vortices are influenced more 
strongly from the body motion frequency than from the 
latural Strouhal number.
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The resonant condition is usually restricted to a
narrow range of windspeeds, normal to the body. Out of
this range, the structure returns to aerodynamic 
stability. The phenomenon is also self-limiting in
amplitude. The entrance windspeed into lock-on conditions 
when windspeed is increasing is quite different from the 
escape windspeed from it, when windspeed is decreasing 
from the critical windspeed. j It is by nature a non­
linear phenomenon.

At Tacoma Narrows, vortex shedding was involved in 
the initiation of the vertical motion and sustained it 
but was not the reason for the final catastrophic motion, 
[4] •

b) Separated flow torsional (or stall) flutter is a 
non-linear wind excited phenomenon, leading to periodical 
detachment and reattachment of the flow, around a body 
moving with predominantly one degree of freedom in 
torsion (Fig. 6). It can affect either 'aerofoils* in a 
large angle of attack or bluff bodies, such as 
rectangular prisms or flat H-sections, like the Tacoma 
Narrows deck section, truss stiffened deck structures or 
even electric power-transmission cables, subjected to 
ice-accretion.

The body subjected to an air-flow, develops an 
increasing angle of attack, caused by the wind forces, 
which become stronger as its inclination increases, until 
it reaches a point where the boundary layer detaches from 
the body, stall follows, the lift at the leading edge 
decreases and so does the angle of attack. Subsequently
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the body moves to its equilibrium position, the wind-flow 
reattaches to the body and the motion repeats itself in 
the opposite transverse direction. The frequency of the 
motion depends on the velocity of the air-flow. As the 
windspeed increases, the motion frequency may approach a 
structural natural frequency and then the phenomenon will 
develop to a strongly destabilizing situation. If the 
windspeed continues to increase, the intensity of the 
motion will also increase and could lead to catastrophic 
effects since this condition has no upper windspeed 
limit. In the past this has been the main cause of bridge 
failures due to wind. Torsional flutter usually drives 
also the participation of vertical modes in a coupled 
motion, called classical flutter.

c) Classical flutter is a phenomenon affecting 
particularly streamlined 'faired' sections (Fig. 7). The 
airflow around the body remains attached. The phenomenon 
involves the coupling of vertical and torsional 
oscillation occurring together in common frequency with a 
phase difference, in a motion that extracts energy from 
the wind stream and feeds it into the structure 
increasing its amplitude of motion.

d) Galloping is the result of asymmetric aerodynamic 
forces associated with the cross flow (Fig. 8) . It is a 
large amplitude oscillation, affecting mainly iced 
electric conductor cables or 'bundled conductor' 
configurations.

The fluid forces change fast around 'mean' values. 
The latter however vary much more slowly. Under these
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conditions the slowly changing drag and lift forces 
induce to the body a low frequency oscillation with large 
amplitudes.

e) Buffeting is the result of the action of 
turbulence, created from the wake of a body upstream, or 
because of natural turbulence in the flow, [4], (Fig. 9). 
The oscillations are largest if the frequency of 
buffeting is close to a natural frequency of the 
structure.

2.2 Classical flutter theory.

Classical flutter is a self excited oscillation. The 
cycle of oscillation can be described as follows 
(Fig.10).

When the vertical displacement is near the 
equilibrium position, the torsional one takes its maximum 
value. As a result, the lift force takes its highest 
value and so the body moves vertically. When the vertical 
oscillation takes maximum value, the torsional one has 
decreased, so the combination of structural and gravity 
forces force the deck back to its equilibrium position. 
After it reaches that point, the phenomenon is repeated 
in the opposite direction and so one cycle is completed. 
The damping which is provided by the structure and wind- 
flow restrict the motion until flutter windspeed is 
reached. As the windspeed increases, the damping reduces, 
eventually becomes zero and the structure oscillates
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violently with constant amplitude. Further increase of 
the wind will lead to the aerodynamic forces introducing 
negative damping where the oscillations will increase 
their amplitudes even more.

This phenomenon has been extensively studied in 
relation to cable suspended bridges, since it was found 
to endanger the stability of these structures.

According to some authors (Scanlan [4], [21],
Hjorth-Hansen), exact correlation of faired deck sections 
with thin airfoil theory must be implemented cautiously 
because it is proved from experimental analysis that the

|aerodynamic forces expressed as functions of
experimentally measured factors are quite differentI

f according to the section types used for the deck. However|
! the deck sections used in the last twenty years and some
|
proposed future structures are similar to the flat plate 
shape, thus substantiating the use of thin airfoil 
| expressions for the aerodynamic forces, expressed by
jTheodorsen in 1935 [45].

2.3 Significance of natural frequencies.
r
i
iI As has been mentioned earlier, the natural1tfrequencies of the structure play a very important role 
in all aerodynamic phenomena. The excitation of the 
structure by the wind initiates a motion which quickly 
jdevelops to an oscillation, combining some of the first 
natural modes. If the windspeed is adequately high, the
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vortex discharge frequency coincides with one of the 
first natural modes. The result is a feedback situation 
and increased shedding of vortices. Since the natural 
frequencies depend on inertial and elastic 
characteristics of the deck's cross section, it is 
essential that it is be designed in such a way that it 
will not facilitate resonance between aerodynamic forces 
and natural frequencies.

2.4 Wind tunnel tests

Wind tunnel test are commonly used in cable 
suspended bridge studies for measuring the lift, drag and 
moment coefficients of different deck cross sections and 
constitute the mean or time average of fluctuating 
values. This is because some fluid-structure interaction 
phenomena cannot be modelled analytically with enough 
accuracy so mean values are used to measure motion- 
dependent or time-dependent aerodynamic coefficients. 
These measurements are carried out in wind tunnels which 
have been used extensively for either scaled full-span 
models [4],[5],[9], of the whole structure or sectional 
models, when a section of the structure is tested and 
some particular properties are studied. Both model types 
are used in the experimental study of cable suspended 
bridges.

The full-span models are exact geometric copies of 
the original structures. They reproduce the exact mass,



24

stiffness and damping distribution, density ratio values, 
stiffness and structural damping under the scale they 
were assembled. In some studies, the characteristics of 
atmospheric wind were also reproduced in wind tunnels 
with the greatest possible accuracy, modelling densely 
built areas and hills which influence the wind flow 
vorticity and could affect its texture. Reynold's number, 
intensity of turbulence and wind speed variation with 
height are also characteristics which should be modelled 
appropriately. These models could reproduce the natural 
modes, frequencies amplitudes and critical flutter 
windspeeds. The frequency scale should be described by 
special scale parameters. The same will be necessary for 
the wind speeds and oscillation amplitudes of the 
original structure. However, there are difficulties in 
achieving the correct Reynold's number and structure of 
natural winds with turbulence texture. Other difficulties 
emerge from the restrictions on the size of the models, 
because of the restricted width of wind-tunnels and of 
the nature of such tests being very costly and time 
consuming to prepare and execute, especially if 
variations of the initial configuration need to be 
tested.

Linear-mode models are widely used to test specific 
sections of the structure under wind forces. The most 
usual section of cable bridges, which is extensively 
tested is the deck. Linear-mode models are geometric 
copies of the complete prototype, but rigid, mounted on 
gimbals to allow linear bending displacements (Fig.11).
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They reproduce the elastic as well as aerodynamic 
properties of a section of the deck. However they are 
less complicated to construct, than full span models. 
They can also reproduce the first few natural frequencies 
of the structure and are used in the testing of several 
configurations of cross sections [5] and experimentation 
with aerodynamic stabilizers which can improve the 
behaviour of the bridge in wind [ Long Creek bridge].

Another type of wind tunnel test is carried out on 
sectional models (Fig.12). They are geometric copies of a 
typical length of the original substructure, usually deck 
section, and reproduce its elastic properties by 
supporting the models on springs that represent the 
stiffness properties. They are commonly used for initial 
research models and are expected to supply some general 
information for the aerodynamic characteristics of the 
specific section and in particular here the cross section 
of the deck.

However these tests are 2D assuming the whole deck 
oscillates in phase along the span, which may not be 
true, since in real 3D conditions, displacements may 
vary from position to position along the span. These give 
rise to different wind forces and effectively lead to 
more complicated motion patterns than the 2D modelling 
can reproduce.
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2.5 Empirical approach

Different approaches have been used in the past, 
concentrating on different aspects of the structure. The 
majority of studies were focused on the deck cross 
section, the aerodynamic aspects and vertical and 
torsional stiffness properties. The use of flat H plate 
girder section (Fig.13) was abandoned after the disaster 
of Tacoma Narrows bridge. Testing of different 'faired' 
cross sections was carried out in order to form a 
qualitative opinion on which section shapes were 
appropriate to be used in future designs [6]. Aerodynamic 
devices were tested, aiming to reduce the vertical 
vibrations of decks [8],[10] in order to establish some 
reference for following designers. A mono-cable bridge 
was designed, showing increased torsional stability in 
high wind speeds, postponing the onset of flutter [16]. 
Damping ratios of existing bridges were measured [19]. 
Closed box sections were introduced, providing low drag 
and lift forces and also high torsional stiffness. Side 
fairings helping in keeping the air-flow attached to the 
deck [10], and openings on the upper and lower surfaces, 
have shown to be necessary for bridges located in very 
high windspeed sites [12].
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2.6 Equations of aerodynamic forces.

The main research on aerodynamic forces was 
introduced by Theodorsen and much work has been based on 
his analytical equations [13]. Later on, experimental 
results were published by Smith, Selberg and others [40],
[41] .

Theodorsen equations are based on the assumption 
that in a wind stream, a very thin flat plate is 
suspended, having only two degrees of freedom: one
vertical and one torsional as shown in (Fig.14). This is 
true for the deck of a cable suspended bridge. The other 
assumption is that the air-flow is 2D and that the bridge 
oscillates in both vertical and torsional dof in a common 
frequency. The latter implies the deck is long enough in 
order to be free of any influence of end conditions and 
also that it moves as a rigid body. The length of the 
bridge is adequate to support the former assumption, but 
the deck does not necessarily oscillate as a rigid body. 
Concluding, these equations cannot be applied directly to 
the whole of the bridge, without considerable error. It 
should also be mentioned that air force expressions were 
derived for small amplitude harmonic oscillations, so 
they apply solely to a narrow band of transition from 
stable to unstable conditions. The rest of the resulting 
forces, out of these narrow bands of application have 
only qualitative value, and should be handled with 
extreme precaution. However this fact is not considered
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restrictive, since our aim is to locate this narrow band 
and work in that space.

The explicit form of Theodorsen aerodynamic 
expressions calculate the wind forces, lift forces and 
moments which apply on an oscillating flat plate section.

Lh = -S7rpb2 (V0+y)-2S7rpbVC(k) V0+y + -  9 
2

(1)

Ma =-S7rpb‘
Vb b2 b
—  8 +  —  i +S7rpb2 VC(k) V^ + y +  - 9

t--
---

-- ro 00
V

2

wh e r e  k = reduced freque ncy
wb 

k= —  
V

b being the half width of the deck,
S = span of section,

C(k) = Theodorsen circulation function = F(k) + iG(k)
F(k) and G(k) being expressed in terms of Bessel 
functions of the first and second kind:

Ji (Ji+Y0)+Y1 (Y^Jo)F(k)= - - - - - - - - - - - - - - - - -
(J,+y0)2+ ( v j 0)2

(2)
Vo+JiJ0 G ( k )- - - - - - - - - - — - - - - -(Ji+Yo)2+(YrJo)2

Bessel functions J Q , , Y 0 , Y 1 , are functions of k  of the
first and second order.
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F(k) and G(k) can be plotted against k in (Fig.15).
The motion of the system at flutter speed is assumed 

to be simple harmonic and undamped, the displacements 
being expressed:

-iwt
y 0 e = y 0 [cos(w t)+isin(wt)]

(3)
iw t

y=y0e =y0 [cos(u t)-isin(ut)]

So f inall y by substi tution :

1 2C(k) i
/■* *s

i 2
Scj 7rpb3 -i y-7 rpb 3 -  + -  + - C(k) 6

b bk k M

(4)

iC(k)
* * 
i i

^ * 
1 i

7rpb4 y-7rpb4 —  + — C(k)+ -  + - e
bk 2k k2 b 2k
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2.7 General equations of motion at flutter.

2.7.1 Equations of motion in a 2 dof system.

In a system with two degrees of freedom and in 
particular a flat plate with vertical and torsional 
degrees of motion uncoupled, the equations which describe 
the motion are as follows:

mfi+chh+kh=Ah+Bhh 

0a+c a+Ja=Ao:+Brt aa a

■Hie.
These have been derived from (4) where j^lift force 

has been transformed to Ah +Bhh and aerodynamic moment has 
been transformed to Aa+Baa.

ch = damping in the vertical motion 
ca = damping in the torsional motion 
m = vertical inertia of the system 
9 = torsional inertia of the system
kh = vertical stiffness 
J = torsional stiffness
Bringing the right parts to the left side and 

braking up the aerodynamic forces as factors of 
displacements velocities and acceleration :

mh+ (eh - Bh) fi+ (kh -Ah )=°

e“+ (c«-Ba )tt+(Ja-Aa)*0

(5)



For sinusoidal, motion the following solutions 
be used:

h=h0eA t , h=Xh0eA t , H=A2h0eAt

a=a0e'c t , a=/ca0e'c t , a=/c2 a0 eK 1

Substituting the latter in equation (5) : 

mA hQ+ ( c h -Bh )Ah0+ (k - A h )h 0=0

0K2“o + (c£.-BJ'cao + (J-Ao)“o=0
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In m a t r i x  form :

Ch'̂ h k-Ah

0 0

0 0

0

0

C -Ba a

0

0

0
0

Ah,

KOtr

OCr

*

Ah0

^0

K°t0

ao

2.7.2 Multi degree of freedom system.

The cable suspended bridge will be modelled with 
finite elements. Assuming that the inertia properties of 
each element are concentrated at its nodes, the model of
the structure can be reduced from a system of infinite
number of masses to one of finite number. Structural
damping is assumed to be zero.
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Implementing the previous expressions for the wind
forces we obtain:

MX+KX = A j ( k ) X + A 2 (k)X (6)
where :

M = n*n mass matrix
K = n*n structural stiffness matrix
Aj ; A2 , are n*n aerodynamic damping and stiffness

matrices respectively, derived from the aeroelastic force
expressions.

X = n*l vector of displacements

When all the prerequisite factors are present and 
flutter occurs, the oscillation is pure harmonic motion:

iwt
X = X 0 e = X 0 (coswt+isinwt) (7)

By substitution of (7) in (6) we conclude:

V M X  + KX - <i>2WX (8)

here W is a n*n matrix of the aerodynamic 
coefficients in (4) . Further on we transform (8) in the 
eigenvalue form:

M K " 1+ W K " 1
1

X - -  X
u2 (9)

with solutions w = /j + i\. If we
substitute these in (7) we obtain damped sinusoidal 
motion with circular frequency /x and logarithmic damping 
-X.
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Therefore we conclude that for a given frequency jLt 
we can find the corresponding critical wind speed which 
causes flutter:

bĵ
k= —  , testing and V we obtain k and A.

V

When \ equals zero, instability occurs. The lowest 
value of V for which \ takes negative values is the 
critical windspeed.

2.8 Flutter instability of Suspension bridges.

The beginning of theoretical work on flutter reaches 
back to Frazer and Duncan [37] when they published their 
fundamental paper in 1928. Their topic was the flutteriI 1phenomenon j  of aircraft wings under sharp angles of 
attack. They formulated the equations of motion using the 
test functions by Frazer. In 1935, the first major step 
was taken by Theodorsen [45] and his paper on 
incompressible flow flutter.

After the 1940 first Tacoma Narrows bridge collapse, 
tthe engineering world involved in bridge designs became 
interested in aerodynamic effects and aeroelastic 
interaction, [17]. Bleich [28] in 1948 published his 
work, applying the flutter theory for airfoils in the 
designing of the second Tacoma Narrows bridge.

Experimental work continued and in 1966 Sir Gilbert 
Roberts [47] first introduced the 1'closed box' 1 deck
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section with fairings in the Severn bridge (Fig.16),
which was the first bridge built with a deck shaped so
similar to an airfoil. The new shape being adopted by
most engineers in their later structures, confirms the 
appropriateness of the thin plate flutter theory.

During the next twenty years, all cable suspended 
bridges with long spans were tested in wind tunnels in 
order to prevent aerodynamic instabilities.

In 1961, Selberg established a simple formula, which 
takes into account all the significant factors of the 
inertial and elastic properties of the bridge and
produces a critical flutter windspeed, which can estimate 
fairly well the critical windspeed region for a given 
bridge configuration, [40]:

2r2 Z n p b2
(10)

where v- > M- m

wv = 1st vertical natural frequency
wt = ls*- torsional ft r r
r = mass radius of gyration 
p = density of air
m = 1/2 mass of bridge cross section / unit length
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Later, Chaudhury and Brotton working on numerical 
methods, presented in 1966 their work, based on 
Theodorsen's aerodynamic force equations and on the same 
lines as Bleich, tackling also the partly built

construction stages in a complete investigation of all 
the situations which can appear in the building process.

Wardlaw also worked in the same direction, [5], 
concluding the advantages of faired shaped sections in 
aerodynamic stability.

Another aspect of the shape investigation was 
covered by Ishiro Konishi et al [8] and Masara Matsumoto 
[48]. They experimented with the shapes of the kerbs and 
also attachments to them (Fig. 17) in order to avoid the 
separation of the boundary layer and the generation of 
vortices from the leading edge. Their experiments with 
various fairing configurations revealed the influence of 
such stabilizers in the behaviour of the deck in high 
windspeeds and in air-flow inclined to the horizontal 
level. Some configurations showed a considerable 
reduction of vertical amplitudes of the deck.

A very daring step was taken by Leonhardt, [16]. His 
work on mono-cable suspended bridges, (Fig.18), is still 
unique. The deck is suspended by a single cable and forms 
a triangle with the hangers and the very thin and 
streamlined deck. Experiments with this type of bridge 
showed very good aerodynamic behaviour in high wind 
speeds. However the experimental study showed a tendency 
of some hangers to go slack, under heavy partial loading.
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Because of that and in combination with the novelty of 
the design such a design has never been constructed.

In 197 6 another major step in numerical approach was 
taken by Iwegbue in [13], who introduced the time step 
method in order to solve the static equilibrium position 
and forces, the dynamic response and to enable the 
evaluation of the flutter windspeed of a given bridge. He 
also included erection stages of the structure. However 
it must be commented that in his work he used the half 
span and the one cable only, exploiting the symmetry of 
the structure and reducing the high computational cost.

Finally mention should be made of the findings of 
the project undertaken by Simpson et al., for Tsing-Ma 
bridge in Hong-Kong [12], [23]. The regionj is often
subjected to typhoon windspeeds. Experimental study in 
wind tunnels clearly indicated the limitations of the 
closed-box faired sections. They showed a tendency for 
coupled oscillations vertical and in torsion leading to 
classical flutter, in high windspeeds, which can be 
postponed if some gaps are left on the upper and lower 
surfaces of the deck, (Fig. 19). These give rise to some 
oscillations, caused by vortex shedding, of somewhat
minor importance, while guarantee stability, at a 
windspeed region where closed box sections would have 
been oscillating with flutter instability. The final 
design included a double carriageway on the upper deck, 
with a narrow gap in the middle, between the two
directions and a lower deck with a single carriageway| 
with a railway line each side of it (Fig. 20). Between the
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rails and the road lanes a narrow gap was introduced at 
each side. This configuration provides protection to the 
inner traffic even at high windspeedsj which exploits to a 
larger extent the carrying surfaces of the deck. This 
design was based in the previous experience of gains in 
stability for truss stiffened decks with perforations at 
their upper surface.

In 1981, Agar [49] published his work on the 
implementation in a program called ANSUSP of all the 
previously expressed ideas by Iwegbue [21],[31] et al. In 
this package alternative methods can be used for 
analysing flutter behaviour of suspension bridges.

The assumption that the deck is a thin flat plate, 
enables the use of Theodorsen circulation functions, for 
the wind forces. Alternatively, experimental coefficients 
can be used in order to find the aerodynamic forces, 
applied on the structure.

Using the modal analysis we calculate the natural 
frequencies of the structure. The wind forces are assumed 
to be linear functions of displacements and their 
derivatives, allowing the formulation of an eigenvalue 
eigenvector problem. The results are the contribution of 
each mode in the final oscillations and the amount of 
damping of each mode. Here we neglect the non-linearities 
involved in the wind forces expressions and in the 
restoring forces.

When a satisfactory configuration is found, the time 
step method can be used to provide more accurate
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information on what is happening! to the structure, its
i

flutter behaviour and even the stress history of the 
elements.

The advantage of this program is that it can provide 
an estimate of the influence of all the elements that 
don't usually take part in the sectional experimental 
tests which are the most commonly used ones, for example 
investigations of the influence of the distance between 
the cables, the sag of the cables, the different 
configurations of the connections between the deck and 
the towers, etc.

At a final stage, analysis of the behaviour for the 
incomplete structure in various erection stages, can be 
carried out to detect any unsafe conditions which need to 
be addressed.

Some comments on the characteristics of the 
different computational technigues will follow.

When the deck is represented by one element of its 
deck, the method is two dimensional (Fig.21). This model 
assumes that the whole length of the deck oscillates in 
the same manner as one rigid section with two degrees of 
freedom and with the same amplitude in vertical 
displacement and torsional displacement. However when the 
whole structure is subjected to wind, there is no reason 
to assume that the vertical displacements and torsional 
displacements will be constant along the span. In fact 
the boundary conditions at the ends of the span preclude 
this. Models that really fulfil all these requirements 
are 3D models. They represent more accurately the real



behaviour of the bridge, taking into account the adjacent 
bridge elements and the different wind force values, 
across the span, due to different displacements. The 
interaction of motion between the main span and the side 
spans is also included.

Of course the computational cost of the time history 
analysis of a 3-D model is much larger, but the rewards 
may well be significant. The 3D modelling is preferable 
and highly recommended for the specific type of study and 
since it can be handled by the computational efficiency 
of modern computers,1; it should be used.
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Chapter 3

3.1 The Computer Program 1'A N S U S P'1

The present project is based on the use of. a program 
able to perform both the modal analysis and the 

time history method.

The numerical dynamic analysis solves the 
differential equations of motion for the modelled 
structure (Fig.22), where the inertial properties of the 
members are assumed to be concentrated at discrete 
points on the geometry of the structure. These lumped 
masses are assumed to be connected by members without 
mass, which have elastic properties reflecting the 
stiffness of the original structural elements. This 
discretization helps to reduce the infinitely large 
number of degrees of freedom of the prototype to a finite 
number and enables the handling of the dynamic analysis 
by the solution of a system of simultaneous ordinary 
differential equations. The number of these simultaneous 
equations is equal to the number of degrees of
freedom of the model, the lumped masses being on the 
nodes of the FEM model. Alternatively, more nodes can be 
used as for example higher order elements or finer 
discretization, in order to increase accuracy if higher 
modes of oscillation are considered, in which case the 
mass distribution may have a substantial influence.
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After the discretization of the structure, we 
proceed to the formation of the equations of motion:

MU + CU + KU = P (11)

M = diagonal matrix containing the mass attributed
to each D.O.F.
C = diagonal damping matrix of structural damping
K = structural stiffness matrix
P = vector of forces at the nodes
U = square symmetric matrix of nodal displacements.

3.2 3-D modelling

When the whole structure is subjected to wind and 
all influences between the members of the structure are 
considered, a three-dimensional model is used. The 
aerodynamic equations which are used in the present 
analysis are derived for a thin flat plate and can be 
applied only approximately to faired closed box sections 
with a good degree of accuracy. These formulae (1) hold 
only at the region of windspeeds where the coupling 
between the vertical and torsional oscillation occurr 
producing an oscillation at a common frequency.

A bridge with a flat-plate deck is subjected to a 
smooth horizontal air-flow. The deck can oscillate in 
vertical and torsional motion. The first vertical and 
torsional mode shapes are plotted in (Fig.23). When the
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two oscillations are coupled, their mode shapes and their 
frequencies are common? under these conditions the forces 
acting on the deck are lift Lh and moment Ma , while the 
common frequency of oscillation is w. The expressions of 
the aerodynamic forces per unit length are given by the 
following expressions:

Lh =S^
r r 1 2 C ( k h • i r i 2
7rpb3 - i y-7rpb3 -  + +- 1 b bk J L k k k2j

C(k)]]

(12)

r r i C ( k h , [  r 1 i 1S w 2 7T/)b4 y+fipb —  + — C(k) +
- ' bk - ^  2k k2j I1'1]]]b 2kJJJ

wbwhere k = reduced frequency —
V

b = the half width of the deck (Fig.24), 
the bar over a symbol denotes a complex 
quantity,

S = span of section,
C(k) = Theodorsen circulation function = F(k) +iG(k) 

F(k) and G(k) being expressed in terms of 
Bessel functions of the first and 
second kind:

i
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F (k )«

G ( k ) ~

■ M W + M V J q)
(Ji+Yo)a+(Y,-J0)2

V o+JiJq
( + Y0 )2 + (Yj -J0 ):

(13)

In the previous formulae J 0 , Jj and Y 0 , Y 1 are Bessel 
circulation functions of the first and second kind 
respectively.

An alternative way could also be used if the deck 
section differs considerably from the flat plate section, 
[51], [52], [53].

The following expressions are based on 
experimentally extracted parameters which describe the 
aerodynamic behaviour of the particular deck sections:

1
Lh = - p V 2 (2B)

* b * bar 
KH, -  + K H ?—  + K 2 H,a 

V V

(14)

1
M„ = - p V 2 ( 2B 2 ) 2

* b * boi * 
K A , -  +KA,—  + K 2A , a  

V V

* * wB
where H i , A i a r e  f u n c t i o n s  o f  K = —

V
B= full aerodynamic width of the deck.
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These expressions for lift and moment depend 
linearly on the displacements and velocities in each 
degree of freedom and according to Scanlan and Tornko, 
[18], they were proved to hold for small displacements.

3.3 Structural model

In the ANSUSP program, a suspension bridge is 
idealized as a three dimensional structure (Fig.22), 
based on the two dimensional modelling by Iwegbue et al
[21] .

The two cables are represented by parabolic curves, 
spanning between the tops of the towers, capable of 
carrying only tensile forces and modelled by bar 
elements.

The hangers are suspended vertically from the cable 
nodes, capable of carrying only tensile forces and are 
represented by bar elements. Their lower ends are 
connected to horizontal rigid arms, extending 
transversely from the centreline of the deck.

The deck is modelled by simple beam elements, with 
bending stiffness in both vertical and lateral directions 
and also torsional stiffness. They are positioned in the 
centreline of the original deck and carry their own dead 
load. They are connected to the hangers with horizontal 
rigid arms (EI=°°), at the joints.

Each tower is idealized by one beam element, 
vertically positioned and fixed at their foundations?
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their tops are connected to the two cables with 
horizontal rigid arms. The towers provide bending 
stiffness in both longitudinal and lateral directions to 
the bridge and also torsional stiffness. Second order 
phenomena are not included.

In the original structure, the degrees of freedom of 
the nodes are generally as follows (Fig.24):

The cable nodes, have the ability to move 
longitudinally, vertically and laterally.

The deck nodes can move vertically, laterally and 
torsionally.

The tower top nodes can move longitudinally, 
laterally and torsionally.

However, since the flutter phenomenon involves 
predominantly vertical and torsional deck motions, the 
lateral displacements of the bridge nodes are not 
considered to be significant and will be ignored in any 
further discussion.

The elements' inertia is always represented by 
lumped masses at the nodes, enabling the solution of 
equation (11) for U since M is diagonal.

In ANSUSP the basic geometry characteristics are 
given as the cable sag, the tower height, the deck shape 
(straight or circular curve) and the span lengths. Also 
the cross section areas of different elements, their 
moment of inertia and their Young modulus and material 
densities.
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The operation of ANSUSP initiates with the mesh 
generator forming the dead load geometry of the structure 
and its mass matrix.

For the dead load geometry, the cable deforms under 
the self weight . When the cable and hanger forces 
are calculated, they are applied to the undeformed 
structure as internal forces. Equilibrium has to be 
restored before the cable and the deck resume their final 
dead load geometry.

The next step is to find the natural modes of the 
structure.

MU + CU + KU = 0 (15)

C = 0  because of the uncertainties in the damping 
factor:

Substituting for : U = esx, U = Sesx , U = S2 esx
MS2 esx + Kesx = o => (MS2 )esx = (-K)esx => (16)
S2 = -M"1 K ’
where M and K are matrices and U vector

This is the usual eigenvalue problem.

The eigenvalues are complex quantities representing 
the natural frequencies (imaginary part) and the 
logarithmic damping (real part) of the system, while the 
eigenvectors enable us to describe the mode shapes as 
symmetric or antisymmetric, torsional or vertical.
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The great importance of the natural frequencies 
cannot be over-emphasized since they give basic 
information on the behaviour of the structure revealing 
the tendency of the configuration to inflict instability 
in symmetric or antisymmetric motion, in lower or higher 
windspeeds.

Since flutter instability involves coupling of 
vertical and torsional modes of oscillation, it is 
essential to know how close are natural frequencies of 
similar mode shapes (torsional and vertical, both 
symmetric or antisymmetric) .

From this point on, we will follow explicitly the 
procedure of solving the dynamic equations of motion with 
the modal analysis and the Newmark-^ time-history methods.
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(Fig. 22) Suspension bridge idealization by ANSUSP.
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Chapter 4

4.1 Modal flutter analysis

This method is based on the following assumptions:
a) The wind forces acting at the deck near flutter 

windspeeds can be expressed as factors directly related 
by coefficients to deck displacements and velocities as 
in equation (1). These coefficients also depend however
on the frequency of vibration through the coefficient

wb
K = ----- .

V
b) The structure has a linear force-displacement 

behaviour which is true only for small displacements. The 
effect of large deflections causing geometrically non­
linear effects is ignored.

c) The oscillation of the structure in the region of 
flutter occurring is assumed to be a composition of a 
number of the lower natural mode shapes including 
vertical modes and torsional modes in a resulting 
sinusoidal motion.

In the following the formulations of forced motion 
are presented:

paero = AU + BU (17)

where A and B are common multipliers of 
displacements and velocities, arising from the 
expressions for the wind forcesj paero.
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We now transform the initial equations: 

m U+ CU + KU = | P a e r o  = AU + BU => (18)

Substituting for: U = eAx , 0 = XeAx , U = X2 eAx

Ml2 eAx + (c-B)XeAx + (K-A)eAx = o => (19)

=> X2 eAx + M_1(OB)XeAx + M_1(K-A)eAx = 0 =>

= >  eAx (X2 +  C*X +  K * ) =  0 = >
I

*

1

■Ko1
1 1--Xx
■

XII

11 H—
1

o
1

---
1

X
1

which is an eigenvalue-eigenvector problem.
The X are the eigenvalues which in general take 

complex values and can be written as:

X= ii + iw , X= fi - iw

The X are the eigenvectors, which also take complex 
values of the kind:

X = p + iq , X = p - iq 

The response of the system can be written:

U = [(p+q)sinut + (q-p)coswt] (20)
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The ch a r a c t e r i s t i c s  of the result ing m o t i o n  at a p a r t i c u l a r  
w i n d s p e e d  are o b tain ed by the solution of the previo us e i g e n v a l u e 
problem. T h e s e  chara c t e r i s t i c s  are m o n i t o r e d  for increasing 
w i n d sp eeds, until overall dampin g is assessed as zero or negative.

The condition for dynamic stability is to ensure 
that the real parts n of all eigenvalues are negative, 
since this means that the amplitude of any motion 
gradually decreases, eventually being damped out.

iThe flutter windspeed is the lowest windspeed I 
which gives zero or positive value to /i.

However we must note here that since the wind-forces 
are dependent on the frequency of motion (1) , an 
interactive loop must renew continuously the frequency w
which is used in Theodorsen expressions, until it agrees
with one of the imaginary parts of the eigenvalues.

It is not clear though from the beginning which of 
the response frequency values is going to create
instability and which one to use as a value for w.
However it was discovered that following the response
frequency with the lowest damping /x 0 is always leading 
to the flutter windspeed with convergence between wtrial 
and wresult. A simplified form of ANSUSP named ANSUSP2DE 
was used at the initial stage of familiarizing with the 
modal analysis. ANSUSP2DE calculates the response of a
flat plate suspended in wind flow with 2 degrees of
freedom (Fig.21). Using ANSUSP2DE the frequency of
torsional oscillation could be plotted against 
corresponding damping for increasing windspeeds as shown 
in (Fig.25.a). When the damping crosses the axis of zero
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damping the system oscillates under flutter conditions. 
The same operation has been followed for the full 
structure model in (Fig.25.b).

4.2 Time step analysis

This is more time consuming than the previous 
procedure, [49], having the advantage of being more 
reliable, because it enhances the versatility to include 
the geometric non-linearity.

In this method a pattern of initial nodal velocities 
is applied on the structure at zero time, to set the 
system in motion. The response is determined for a period 
of time and the logarithmic damping ratio is calculated. 
The results including corresponding frequencies are 
calculated and displacements in vertical and torsional 
motion can be plotted against time. A simplified version 
of ANSUSP, the ANSUSP2D was used to calculate the 
displacements and decay of a 2degree of freedom system. 
The displacements are plotted in (Fig.26.a,b,c,d). In 
this figure the smaller amplitude oscillation represents 
the torsional motion of the system. The diagrams 
presented in (Fig.26) correspond to windspeeds of 28, 33, 
35, and 65m/sec and show the different pattern of 
oscillations, which is not always sinusoidal when the 
system oscillates in windspeeds significantly lower from 
the critical speed (Fig.26.a,b,c) . Once the vertical and 
torsional motion oscillate coupled in a common frequency
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(Fig.26d), the oscillation is apparently sinusoidal 
complying with one of Theodorsen assumptions.

At 65m/sec the 2dof model is almost at flutter 
motion. The amplitudes are very large and the slight 
decreasing trend is barely noticeable. Phase difference 
has not yet reached 90, but is near 13 0. The period of 
motion is clearly constant and the oscillation 
sinusoidal.

The previous procedure can be repeated for 
increasing windspeeds until the logarithmic damping 
becomes zero or takes positive values. In this way, the 
corresponding frequencies and damping can be plotted 
against windspeed (Fig.27) and critical windspeed can be 
found.

The nodal displacements and velocities after time At 
has elapsed are calculated with Newmark-0 equations:

0 and 7 are free dimensionless parameters of the 
quadrature.

The accelerations are determined from the equations 
of motion (18) . The values of /J=l/6 and 7=1/2 are used

=■ 0t + (l-7)At0t+TfAt0t+At ,

(21)

Ut + AtClt +
1

-  -  P 2 ( A t ) 2l)t  + 0 ( A t ) 2Ut * 4t
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here because the accelerations are assumed to vary 
linearly for every new time interval At.

The time step method is described in details in the 
following (Fig.28) :

i) In order to start the operation of the Newmark-0 
method we use initial values for displacements and 
velocities, usually in a pattern similar to the mode 
shapes. Estimated values for the oscillation frequency of 
the coupled motion are also necessary.

ii) The initial displacements and velocities are 
inserted in the aerodynamic equations (18) and nodal 
accelerations are calculated.

iii) The acceleration is used in special formulae 
which do not use Ut + At given below:

0t+4l - 0t + At ot (22)

t̂+At + ^
( ut + Ut + At )

and values for displacements Ut+At and velocities 
0t+At are calculated, after time At has elapsed.

iv) The resulting displacements and velocities are 
inserted again in the dynamic equations (18), and new 
values for acceleration Ut+At are calculated. These values 
°f Ut+4t are characterised as assumed since they are based 
on displacements and velocities extracted from 
approximation formulas.
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v) The assumed values of Ut+At and the values of Ut 
are inserted in Newmark-0 formulas (21) and values for 
t̂+At an<* ut4At are calculated.

vi) The new values of displacements and acceleration 
are used in aerodynamic equations (18) and the 
accelerations which are calculated are characterised as 
calculated.

vii) The older values of the acceleration Ut_j_At and 
the new ones Ut+At are compared and if they do not satisfy 
the convergence criterion which has been set the 
calculations continue from step v) and onwards, using the 
last values for displacements, velocities and 
acceleration.

If convergence criterion is satisfied, displacements 
and velocities are substituted with their last values 
t̂-f-At • Ut+At anc* ^ e  procedure continues from step ii) and 
onwards for the next time step.

In this approach to the problem, the formation of 
the stiffness matrix has been avoided, since it would 
have to be transformed each time the displacements 
change, because it is displacement dependent. This is a 
big advantage of this technique, because large 
deformations of the structure are expected and 
particularly of the cables which are going to alter the 
geometric stiffness of the structure considerably.

The previous procedure is being followed for each 
wind speed for time-steps summing up to 30secs which is 
adequate, [47], [54] in order to include more than 10
periods1 time of the fundamental mode. This is because
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some time is needed for the bridge to build up any 
oscillation to a sinusoidal pattern. This period is also 
used in statistical studies, leading to the windspeed 
/hich must be designed for in practice.

The main disadvantage of this method is the 
computational cost ) so it is advisable to have previously 
estimated the windspeed range where instability is
expected by other methods, so that less analysis time
is spent in this very costly procedure.

The advantages of this method include the
Dossibility to plot the movements of some dofs of 
specific nodes and inspect closely the oscillations when 
reaching resonance conditions between vertical and
:orsional motions, the phase difference between them and 
i 1 so the maximum forces reached in all the elements 
uring oscillations at the onset of flutter instability.

For a given windspeed, an initial pattern of nodal 
relocities is used to set the system in motion. An 
istimate of the value for the circular frequency of the 
tructure is also used as the frequency of vibration is 
Iso needed in the equations of the aerodynamic forces, 
"he results include the corresponding vertical frequency 
f oscillation uv , torsional frequency wt and logarithmic 
amping ratio for the vertical and torsional oscillation, 
f we follow this process for different windspeeds, we 
an plot the results as shown in (Fig.27).

For a given windspeed we can find the vertical and 
:orsional displacements of the centrespan. If we plot
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them against time, we get a plot similar to 
(Fig.26).

For the present analysis we will use
geometrical data of the Severn bridge, as given 
(Fig.29).

the
in
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28) Flow chart of the time history method as used in ANSUSP.
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(Fig. 29) Nominal properties, geometrical and elastic of
the Severn bridge.[14]
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Chapter 5 
Parametric study using ANSUSP.

A parametric analysis is presented here, the 
objective being to gain insight into the behaviour of a 
cable suspended bridge under flutter conditions. Various 
structural properties of a typical modern suspension 
bridge are modified and the effect of the modification on 
the flutter windspeed is examined. It is assumed for all
the present parametric studies that the deck behaves
aerodynamically as a flat plate so that equations (1) can 
be applied.

In most of the analysis only as many modes are used 
as are necessary to include the first two torsional modes 

a symmetric and an antisymmetric mode. In the 
following, only symmetric modes are included when trying 
to find the symmetric flutter windspeed or alternatively 
antisymmetric modes when examining the antisymmetric 
flutter windspeed, ignoring the rest and keeping the 
workload to a minimum.

The analysis through different windspeeds does not 
start from zero values, since this was found to be
unnecessary, but an analysis should always start at a 
windspeed where the previous tests were indicating 
instability should be expected. This was found useful
enabling shorter computing times.

The parameters which have been modified can be 
divided into four major categories which are outlined 
Delow.
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GEOMETRICAL PROPERTIES: These include the modification of 
cable sag to span ratio which in design practice usually 
takes a value between 1/10 to 1/14 [47]. This ratio gives 
a measure of gravity stiffness of the bridge in the 
vertical direction. Another factor included in this group 
is the horizontal separation of the suspension cables. 
This in combination with the deck torsional stiffness 
affects the torsional stiffness of the structure [47]. 
ELASTIC PROPERTIES; These include variations of deck 
vertical and torsional stiffness and the cable Young's 
Modulus These factors strongly influence the vertical or 
torsional frequencies of the bridge and | hence the 
behaviour of the bridge in its dynamic response.
INERTIAL PROPERTIES: The deck's vertical inertia (mass)
and torsional inertia and cable inertia have been 
modified. These affect the values of the vertical and 
torsional natural frequencies respectively.
AERODYNAMIC PROPERTIES: Alterationsj to the aerodynamic
width of the deck and the density of the air have been 
carried out. In this category the modifications do not 
alter the natural frequencies of the structure, but 
clearly can influence the magnitude of the aerodynamic 
forces which ultimately drive the flutter conditions.

Initially numerical tests were carried out using the 
ANSUSP modal analysis method. This enables a reasonably 
quick calculation of predictions. A comparison with 
Selberg's formula is also included where applicable. 
Having established the most important factors, ANSUSP
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time integration method has been used to check the
accuracy of the modal analysis results.

5.1 Modal flutter analysis by ANSUSP.

5.1.1 The effect of cable sag fall other bridge 
properties as nominal (Fig.29)1.

Investigation of the effect of cable sag has been 
carried out for two slightly different types of
configurations as indicated in (Fig.30) and (Fig.31).
In the first configuration the distance between cable and 
deck at the bridge midspan has been kept constant, with 
the tower height h having to accommodate the variations 
made in sag. In the second configuration tower height has 
been held constant while the cable to deck clearance at 
midspan has been varied to accommodate the variations 
made in sag.

The variation of natural frequencies caused by
varying sag/span ratio between 1/10 and 1/14 for the two 
above described configurations are shown in Graphl and 
Graph3 respectively. Comparison of these graphs indicates 
an insignificant difference in predictions so that the 
choice of configuration (between Fig.30 and Fig.31) is
unimportant. The lower natural mode shapes in vertical 
flexure and torsion for the nominal bridge properties are 
shown in (Fig.32). Mode shapes also show no significant 
change from those corresponding to the nominal 
properties, over the full range of variation of sag/span 
ratio considered.
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Considering Graphl and Graph3 in detail it is noted 
that there is a trend for all the antisymmetric 
frequencies to slightly reduce, with increasing sag/span 
ratio. This can be explained as follows:
As sag/span ratio increases the cable length and hence 
cable mass increases. Also, the antisymmetric vibration 
modes involve displacements of the cable which is 
primarily a change in geometry rather than developing an 
increase in internal cable tension. As such the cable 
becomes less stiff with increasing sag/span for this type 
of antisymmetric motion. The increased cable mass and its 
reduced stiffness compound with each other to reduce the 
antisymmetric frequencies with increasing sag/span. This 
is true not only for the vertical frequencies, but also 
for the fundamental torsional antisymmetric frequency 
which involves antisymmetric vertical cable motion.

Considering the symmetric frequencies, it can be 
seen that the two lowest (1-S-F and 2-S-F) also reduce 
slightly with increasing sag/span, while the 3rd (3-S-F) 
and the fundamental torsional increase. The mode shapes 
for 1-S-F and 2-S-F indicate longitudinal tower top 
motion to accommodate the opposing sense vertical deck 
displacements in the centre and side spans. This leads 
primarily to a change in the geometry of the cable rather 
than increase in internal cable tension. Consequently the 
effect for the symmetric modes is similar to the effect 
for the antisymmetric vertical modes.

However it can be seen from the 3-S-F and 1-S-T mode 
shapes, which involve little or no longitudinal tower top
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displacement (cable displacements of the same sense in 
the centre and side spans), that the cable displacement 
involves primarily stretching to develop additional 
internal tensions. The consequence is that the cable is 
relatively much stiffer than for the previous cases and 
so the result is an increase in natural frequencies.

Considering now how these changes in natural 
frequencies affect flutter speed, it would be expected 
that symmetric mode flutter speed would follow the trend 
in fundamental torsional frequency i.e. increase with 
increasing sag/span ratio. This is seen to be predicted 
in Graph2 with the prediction being significantly larger 
than the semi-empirical Selberg prediction. The opposite 
effect would be expected for flutter speed for 
antisymmetric flutter mode, i.e. reducing flutter wind 
speed with increasing sag/span. This trend has been 
produced by the ANSUSP modal predictions. However because 
the predictions ( ranging from 114-128m/sec ) are outwith 
the normal design criteria, the results have not been 
presented in Graph2.

5.1.2 The effect of cable sag ( with deck torsional 
stiffness reduced to 7% of its nominal value ).

Here an investigation similar to the one presented 
above is repeated on the influence of the sag variation 
when a major part of the torsional stiffness comes from 
the cables, the deck torsional stiffness being reduced to 
7% of its nominal value. This deck torsional stiffness 
was chosen so that the fundamental antisymmetric
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torsional natural frequency would be lower than the 
symmetric torsional natural frequency in order to examine 
if the antisymmetric flutter speed would follow the same 
pattern as for the natural torsional frequencies and 
become lower than the symmetric flutter speed.

With a torsionally flexible deck, as cable sag
increases, the first torsional symmetric frequency 
slightly increases following the same trend as in section 
5.1.1. In the same way as in the previous analysis the 
first torsional unsymmetrical frequency slightly reduces. 
However the flexural natural frequency curves are
unchanged in Graphl and Graph4 since the torsional
stiffness of the deck does not affect the vertical 
oscillations.

The critical windspeeds have decreased considerably 
with the torsionally flexible deck and so symmetrical and 
antisymmetric flutter windspeeds are of comparable
magnitudes as expected (Graphs). For sag/span ratio equal 
to 1/12 (as in the original Severn bridge) antisymmetric 
flutter speed is approximately the same as the symmetric 
flutter speed. This shows clearly the way in which the 
natural torsional frequencies affect the oscillation 
pattern (symmetric or antisymmetric) when flutter occurs.

With reducing sag, antisymmetric flutter windspeed 
increases marginally, following the same trend as in 
section 5.1.1, because the torsional antisymmetric 
natural frequency increases and also because the 
difference between it and the fundamental antisymmetric



flexural frequency increases. In contrast symmetric 
flutter windspeed reduces marginally as in section 5.1.1.

5.1.3 The effect of horizontal separation of the 
cables.

The horizontal separation of the cables is a feature 
| which will affect the torsional stiffness of the bridge,i
! whereas the vertical natural frequencies are not affectediI
iby cable spacing.
i As the cables are positioned further apart from each 
other, for a unit of deck torsional deflection the cables 
have to undergo larger vertical displacements since they 
iwill be positioned further from the centre of rotation.I
| This will result in an increase of torsional stiffness of
; the bridge when the structure oscillates in modes that|
j involve cable stretching. However the increased 
jhorizontal separation of the cables increases the 
torsional inertia of the bridge also. These two effects 
| combine to affect the torsional natural frequencies of 
| the bridge. Considering (Fig.32) we notice that the 
j cables will not have to stretch significantly for 
|torsional antisymmetric oscillations. Consequently the 
I inertial effect is the only factor to affect the 
antisymmetric torsional frequency. It is therefore

tfexpected that the antisymmetric natural frequency will 
reduce considerably as cable separation increases.

A detailed examination of the effects of the 
increasing cable separation is presented below:
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K
M

2mb 2
K = --  , M =

2 4

Therefore u) = kb 2

22mb

where
K = generalized stiffness 
M = generalized mass 
w = circular torsional frequency 
b = separation of the cables
k = spring stiffness representing cable vertical 

stiffness

shows a dependence of the cable torsional stiffening 
effect being proportional to the square of the cable 
separation (Fig. 33) . Considering that the stiffening 
effect occurs only in symmetrical modes, at least when 
the deck is considerably stiffer in rotation it would be 
expected that increasing cable separation will have much 
less influence on the torsional symmetric natural 
frequencies than on the antisymmetric natural frequency.

This agrees with the results of the analysis 
presented in Graph6. The antisymmetric torsional 
frequency reduces significantly as the horizontal
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separation of the cables increases, while the symmetric 
torsional frequency remains at a constant value.

The flutter windspeed of the antisymmetric motion is 
not presented in Graph7 since it is not the critical 
curve for this analysis. However it is noted that its 
trend is decreasing as horizontal separation between 
cables increases. The symmetric flutter speed versus 
cable separation curve is the critical curve in the 
present case and shows an interesting trend increasing 
initially, but then achieving a constant value. There is 
a noticeable decrease of the slope of the curve in Graph7 
representing a region where the influence of increasing 
horizontal separation of the cables is limited.

5.1.4 The effect of horizontal separation of the 
cables (with deck torsional stiffness reduced to 4% of 
its nominal value).

In this case the same variation of cable separation 
has been applied to a bridge with reduced deck torsional 
stiffness of 4% of the nominal value. This reduction of 
the torsional deck rigidity will be accompanied by 
reduction of total torsional stiffness of the bridge. The 
vertical stiffness should not be affected at all and 
neither will vertical inertia. Therefore we expect the 
flexural natural frequencies to be constant and to accord 
with those in section 5.1.3. From (Fig.34) examining 
closely the 1-S-T and 1-A-T torsional mode shapes, we 
notice the symmetric mode showing a deformation of both 
central and side spans indicating a lateral deformation
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of the tower tops. The antisymmetric torsional mode shape 
shows no deformation of the deck at the side spans which 
implies that the deformation of the deck is accommodated 
in the main span without any influence at the side spans 
and so without any need for the tower tops to deflect 
significantly. Hence the cable does not have to stretch. 
Considering also a deck with zero torsional stiffness, it 
can be concluded that when the deck is flexible enough 
the torsional symmetric natural frequency will become 
higher than the antisymmetric torsional frequency. 
Extending this argument it can be said that it is 
possible to control, (by means of altering the torsional 
stiffness of the deck), which natural torsional frequency 
(symmetric or antisymmetric) is the lower. For the 
present case torsional rigidity of the deck was chosen 
such that the symmetric torsional natural frequency is 
higher than the antisymmetric torsional natural 
frequency.

As the horizontal separation between the cables 
increases, the two effects referred earlier in section 
5.1.3 will be involved here. The inertia influence of the 
cables will increase with the square of their distance 
apart and the displacements imposed on the cables due to 
deck rotation will also increase with the square of the 
distance from the torsional centre. Hence it would be 
expected that as the horizontal separation of the cables 
increases, symmetric natural frequency should also 
increase because symmetrical torsional stiffness is 
relying to a greater extent on cable contribution, since
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torsional deck stiffness is greatly reduced. This is 
apparent in Graphs. Inertial effects are of lower 
importance for lower cable separation but start to 
influence the symmetric torsional frequency more as the 
distance of the cables increases. Antisymmetric torsional 
natural frequency is not related to tower top 
deformations but only to cable change of geometry. 
However the further apart the cables are positioned, the 
larger vertical deformations they will have to undergo, 
and some stretching of the cables will be needed 
particularly at the centre of the centre-span. So an 
increase in torsional antisymmetric natural frequency 
will be expected, even though the inertial effects of the 
positioning of the cable mass further apart is bound to 
become apparent after a certain value. In Graphs we 
notice the antisymmetric natural torsional frequency 
increasing but with reducing slope as cable separation 
increases.

Flutter speeds are expected to follow the same trend 
as the torsional natural frequencies. Increase of 
horizontal cable separation is expected to increase 
symmetrical flutter speed. A similar pattern is expected 
for the antisymmetrical flutter speed. Antisymmetrical 
flutter speed is lower than the symmetrical corresponding 
closely with the way torsional natural frequencies relate 
to each other, with the difference between the two 
natural frequencies increasing as cables are positioned 
further apart. This indicates that antisymmetrical 
torsional frequencies are more sensitive to increase in
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torsional inertia than the symmetrical torsional 
frequencies.

5.1.5 The effect of horizontal separation of the 
cables with tower stiffness increased to 10 times the 
nominal value.

This case was included in the analysis to clarify 
the influence of the torsional stiffness of the deck in 
the overall torsional stiffness of the bridge. Increasing 
torsional deck stiffness by a factor of ten (within 
reasonable limits) is going to affect the torsional 
natural frequencies, without any effect on flexural 
natural frequencies. Therefore it is expected that the 
flexural natural frequencies are going to be held exactly 
the same as in Graph6 where deck torsional stiffness was 
the nominal value (section 5.1.3),

Considering torsional natural frequencies the 
contribution of the deck torsional rigidity is expected 
to affect the torsional rigidity of the whole bridge and 
in effect to increase the natural torsional symmetric 
frequency. The antisymmetric natural torsional frequency 
is also expected to increase in comparison to section 
5.1.3. However comparing GraphlO with Graph6 it is 
interesting to note that only symmetric torsional 
frequency has increased while antisymmetric torsional 
frequency is very much the same.

As horizontal separation of the cables is 
increased/ we expect an increase in torsional stiffness 

coming from the cables j At the same time, the torsional
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inertia will affect also the torsional natural 
frequencies with opposite action. Therefore similar 
values are expected as in the case with nominal deck 
rigidity in Graph6 (section 5.1.3). The antisymmetric 
torsional natural frequency will be reducing for 
increasing horizontal separation of cables, due to the 
increase of the torsional inertia of the bridge, being 
less affected by the increasing cable-related torsional 
stiffness.

According to the torsional natural frequencies it 
can be expected that as the horizontal separation of the 
cables increases, the flutter speed will follow the same 
trend as for the nominal values for deck stiffness in 
Graph7, though in this case flutter speeds for 
symmetrical oscillation should be generally higher than 
in section 5.1.3. This is predicted in Graphll. 
Antisymmetrical flutter speeds are expected to be much 
the same for this case considering the small changes of 
the antisymmetric torsional frequencies. This also agrees 
with the results of the flutter analysis in antisymmetric 
oscillation (110-128m/sec).

5.1.6 The effect of horizontal separation of the 
cables with tower torsional and flexural stiffness 
increased to 10.000 times the nominal value.

In this case the stiffness of the towers has been 
increased by a factor of 10,000 to model the effect of 
essentially fixing the cables at the tower tops. With the 
tower tops prevented from moving significantly the cable
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will have to develop internal tension or undergo change 
of geometry in order to accommodate the oscillations that 
were previously undertaken by the towers (mode 1-S-F in 
natural tower properties and in the present case). 
Therefore it is expected that especially the symmetrical 
frequencies, which correspond to mode shapes that involve 
cable stretching, will increase in accordance with the 
symmetrical torsional frequencies.

Considering closely the natural frequency values in 
the present case and also in the case with nominal tower 
stiffness and their corresponding mode shapes (Fig.35), 
it is noticed some increase has occurred in some vertical 
natural frequencies Graphl3 in comparison with the towers 
with nominal properties. The frequency corresponding to 
mode 1-A-F is identical with both tower properties since 
little if any tower deformation is involved in this mode 
and so the corresponding frequency is not affected at 
all. On the contrary the 1-S-F frequency has increased by 
15% with rigid towers since the cable has had to develop 
some stretching. The 2-S-F mode has become similar to the 
3-S-F mode for the nominal geometry and has also 
increased since the small deformations that were 
performed by the towers in (Fig.32) are suppressed in the 
present case (Fig.35). The 2-A-F mode in the present case 
corresponds to 3-A-F in the nominal geometry case Graphs 
and the corresponding natural frequency has decreased 
considerably. Mode 3-A-F is similar to mode 2-A-F for 
nominal values and its corresponding frequency has 
increased slightly.
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The torsional frequencies are also expected to 
change. The 1-S-T frequency is expected to increase since 
the cable will not have any freedom of movement at the 
tower top, while 1-A-T natural frequency will not be 
affected by the more rigid towers because the mode shape 
it develops does not involve any cable stretching.

Increasing the horizontal separation of the cables 
is not expected to affect in any way the flexural natural 
frequencies, since it will not bring any elastic or 
inertial change in the vertical sense. However it is to 
be expected that the torsional frequencies will be 
affected and particularly 1-S-T frequency will increase 
more sharply than in the case of Graph6 since the 
stiffening effect of the cables, being positioned further 
apart are forced to undergo more stretching even than 
with nominal tower properties. Hence the cable torsional 
stiffness contribution is relatively more important in 
this case than with nominal tower properties will. In
contrast the 1-A-T frequency being affected by the 
increasing torsional inertia, decreases for increasing 
horizontal separation of the cables. Hence it is expected
that the symmetric flutter speed will show a clear
increase for increasing separation of the cables and this 
is demonstrated in Graphl3. For the antisymmetrical
flutter, a sharp decrease is expected as the horizontal 
separation of the cables increases as the 1-A-T frequency 
reduces substantially with increasing cable separation.
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5.1.7 The effect of cables1 mass per unit length.
The inertia of the cables has shown in previous 

sections (5.1.3, 5.1.4, 5.1.5) to play an important role 
in the dynamic response of the bridge. In the present 
section an ivestigation of the effects of the cable mass 
will be carried out. The present analysis is expected to 
complement the investigation of the effects of changing 
the material used for the cables.

Altering the mass of the cables per unit length is 
expected to affect the contribution of the cables in 
vertical and rotational inertia. It will also affect the 
tensile forces in the cables, because of variations in 
overall weight. The vertical natural frequencies both
symmetrical and antisymmetrical are not expected to be 
significantly affected because with increasing cable mass 
the gravity stiffness increases in parallel with the 
inertia in vertical motion which are two effects with
opposite results. However the torsional frequencies are 
expected to decrease with increasing cable mass because 
the increase in rotational inertia will be relatively 
more important than the increase in gravity stiffness. 
The vertical symmetrical natural frequencies are shown in 
Graphl4 to decrease slightly (10-15% reduction) for a
cable mass increase by a factor of 10. However the
antisymmetrical natural frequencies are only marginally 
reduced. The symmetrical and antisymmetrical torsional 
frequencies both decrease as cable mass increases by a 
factor of 10 with the antisymmetrical frequency being
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more affected by mass increase than symmetrical 
frequency.

Consequently, in Graphl5 the flutter speed 
predictions calculated by ANSUSP show the expected 
reductions with increasing mass and accord with the 
previous comments. In this graph the results by the 
Selberg semi-empirical method are included and can be 
seen to be generally conservative predictions of the 
flutter speed.

5.1.8 The effect of rotational inertia of the deck*
Study of the variation of deck rotational inertia 

will supplement the investigation of the effects of 
rotational inertia caused by different structural 
elements of the bridge. The rotational deck inertia 
depends on the cross-sectional distribution of the mass 
of the deck. As such it can be significantly altered by 
small changes in mass distribution at the outer 
transverse edges of the cross section.

The effects are expected to affect only the 
torsional natural frequencies of the bridge, with the 
vertical frequencies unaffected. As the rotational 
inertia of the deck increases both symmetrical and 
antisymmetrical torsional natural frequencies are 
expected to decrease considerably in a similar fashion to 
section 5.1.7 above. The predictions plotted in Graphl6 
again show sharp reductions in torsional frequencies with 
increase of rotational inertia by an order of magnitude. 
Considering the effects the torsional natural frequencies
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have on flutter speeds the latter are expected to reduce 
in the same fashion as the torsional frequencies. Similar 
trends to section 5.1.7 above in the reduction of flutter 
speed with increasing deck rotational inertia are evident 
from Graphl7 where sharp reduction of flutter speed 
occurred. Here the predictions by Selberg are in very 
close agreement with the predictions by ANSUSP modal 
analysis.

5.1.9 The effect of deck mass (vertical inertia).
Deck mass is a parameter dependant on the detailed 

construction of the deck including the type and form of 
construction and also other non-structural components 
such as surfacing and finishes. Changing the mass of the 
deck not only alters the vertical inertia, but also 
subjects the cables to different vertical static loads 
which modify the cable tensile forces which influence 
their gravity stiffness. As the deck mass increases, both 
the symmetrical and antisymmetrical vertical natural 
frequencies are expected to reduce slightly because of 
increase in inertia. Increasing deck mass is expected to 
affect the tensile forces in the cables and consequently 
their contribution to the torsional stiffness of the 
bridge. As a result higher torsional frequencies are to 
be expected.

According to ANSUSP results shown in GraphlS all 
vertical symmetrical flexural frequencies reduce with 
increasing deck mass. The 1-A-F frequency alone is 
constant for deck mass varying in the range of 0.1 to a

i
i

II
i.
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factor of 10 times the nominal deck mass while the 
natural frequencies 2-A-F and 3-A-F reduce for increasing 
deck mass. Natural frequency 3-S-F reduces sharply as 
deck mass increases because in this mode of oscillation 
all three spans of the deck oscillate in the same sense. 
Both symmetrical and antisymmetrical torsional natural 
frequencies increase considerably with increasing deck 
mass.

Flutter speeds are expected to follow the trend 
indicated by the torsional natural frequencies. Both 
symmetrical and antisymmetrical flutter speeds should 
increase considerably for increasing deck mass. This is 
expected because with increasing deck mass torsional 
frequencies increase while flexural frequencies decrease. 
In Graphl9 ANSUSP flutter speeds and Selberg predictions 
are included. Their comparison shows considerable 
disagreement between the two methods. The predictions by 
Selberg's semi-empirical formula are in line with the 
alterations of the natural frequencies. It can be 
concluded that Selberg*s predictions rely very much on 
the vertical to torsional frequency ratio. When this 
ratio decreases, Selberg's predictions decrease 
accordingly.

5.1.10 The effect of the deck torsional stiffness.
Tests including the modification of the deck 

torsional stiffness, have been already carried out in 
combination with other parameters (cable separation, 
cable sag). In this section the torsional stiffness of
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the deck has been altered while all other parameters have 
been held constant so that the importance of this factor 
on the wind stability of the cable suspended bridge can 
be measured. According to section 5.1.4 and 5.1.6 it is 
expected that for increasing deck torsional stiffness the 
natural torsional frequencies, both symmetrical and 
antisymmetrical, should increase sharply. The vertical 
natural frequencies should not change since neither cable 
stiffness nor inertia in vertical motion will be 
affected.

In Graphl9 can be seen that the symmetrical and 
antisymmetrical torsional frequencies increase with 
increasing rate as deck torsional stiffness increases 
from the nominal value while they alsc!| move further apart 
from each other with the antisymmetrical flutter 
frequency being the lower of the fundamental torsional 
cases. For decreasing deck rotational stiffness, 
antisymmetric torsional natural frequency becomes equal 
with the symmetrical when the torsional stiffness has a 
factor of 0.07 times the nominal deck torsional stiffness 
with the rest properties being the same as for the 
nominal bridge (Fig.29). For a deck torsional stiffness 
multiplied by a factor of 0.1 to 0.7 the antisymmetric 
torsional fundamental frequency is lower than the 
symmetrical torsional frequency. It should be emphasised 
that the natural frequencies become less affected by the 
deck torsional stiffness when this takes very small 

| values. This happens because the contribution of the
irI
i
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cables as part of the bridge torsional stiffness 
increases as the torsional deck stiffness is reduced.

Considering the flutter speeds, they are expected to 
follow the same trend with the torsional frequencies 
increasing with increasing torsional deck stiffness. 
Flutter speeds illustrated in Graph2|l show that with 
increasing torsional deck stiffness both symmetrical and 
antisymmetrical flutter speeds increase sharply with the 
symmetric flutter being the critical case. With reducing 
deck torsional stiffness antisymmetrical flutter speed 
becomes the critical flutter case. It can be seen that 
the Selberg predictions and the ANSUSP predictions are in 
close accordance.

5.1.11 The effect of deck vertical stiffness.
The effect of deck vertical stiffness has often been 

investigated in the study of cable suspended bridges as 
reported in [28]. Deep truss girders where commonly used, 
in order to suppress excessive oscillation amplitudes. 
The increase of the vertical stiffness of the deck is 
expected to affect all the vertical modes/frequencies but 
not the torsional ones. The vertical natural frequencies 
should increase as deck vertical rigidity increases, 
approaching the torsional natural frequencies, which are 
expected to remain unchanged. In Graph22 the natural 
frequencies are plotted against deck vertical stiffness 
where vertical frequencies are seen to increase with 
increase in deck stiffness. As vertical deck stiffness 
increases from the nominal value the flexural natural
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frequencies are seen to increase with increasing rate 
with the higher frequencies increasing with higher rate. 
This is because the higher frequencies are more affected 
by higher deck flexural stiffness. Only the 3-S-F 
increases less sharply. Close observation of the mode 
shapes shows that the 3-S-F mode involves smaller 
deflections of the deck than the rest modes and so is 
less affected by increase in vertical deck stiffness.

Considering the flutter windspeeds, both symmetrical 
and antisymmetrical are expected to decrease with deck 
vertical stiffness increase since as the vertical 
frequencies approach the torsional so aerodynamic
coupling between them becomes easier. However in Graph23 
only the symmetrical flutter speeds show a significant 
reduction as deck vertical stiffness increases.
Antisymmetric flutter speeds are affected only very
slightly. The predictions by ANSUSP and Selberg*s formula 
are included in Graph23. The symmetrical flutter speed 
curve by Selberg shows a slight reduction for increasing 
vertical deck stiffness, which does not agree with the 
results by ANSUSP. The predictions for antisymmetrical 
flutter speeds though by ANSUSP and Selberg's equation 
agree quite closely.

5.1.12 The effect of the Young's Modulus of the 
cables .

In this section the possible effects of using
different materials for the cables are examined. Such 
materials might be in practise be kevlar fibres, graphite
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fibres or carbon fibres in the composition of the main 
suspension cables.

The use of stiffer material for the cables is 
expected to affect the natural frequencies of the bridge 
depending on the type of mode of oscillation involved in 
the motion. In general the frequencies that correspond to 
modes which involve cable stretching are expected to 
increase. Examining closely the symmetrical vertical mode 
shapes of the bridge (Fig. 32), it is noticed that the 1- 
S-F mode involves some cable stretching and therefore 1- 
S-F frequency is expected to increase with increasing 
cable Young's modulus. Mode 3-S-F is the mode which 
involves more cable stretching than any other mode 
consequently cable Young's modulus is expected to affect 
the 3-S-F frequency considerably. The antisymmetric 
vertical modes involve mostly geometrical changes in 
cable shape rather than changes in internal cable force. 
Consequently no effect would be expected on these natural 
frequencies by increasing the Young's modulus of the 
cables, but is expected to reduce as Ecable is reduced by 
a factor of approximately 10 from its nominal (steel) 
value. For the same reasons, the 1-S-T frequency is 
expected to increase considerably, since its mode 
involves similar cable stretching as the 1-S-F mode while 
1-A-T frequency is not affected. Those effects are 
presented in Graph24. The predictions by ANSUSP are in 
accordance with the previous comments as can be seen in 
Graph2 4.
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Flutter windspeeds are expected to follow a similar 
pattern to that of torsional natural frequencies. 
Symmetrical flutter speed should increase considerably as 
cable Young's modulus increases. Antisymmetrical flutter 
speed is also expected to be affected, reducing slightly. 
Graph25 includes the flutter speeds predicted by ANSUSP 
and those predicted by Selberg. The curve for symmetrical 
flutter is increasing as cable Young's modulus increases 
in the same fashion with Selberg results. Antisymmetrical 
flutter speeds are also agreeing closely to the results 
by Selberg, except for a small spectrum of very low 
values of Young's modulus.

5.1.13 Effects of air density.
Environmental conditions could play some part in the 

stability of the bridge. Th factor p which symbolises for 
air density relates to temperature and humidity 
conditions and is included in the aerodynamic force 
expressions as a multiplication factor. The values of air 
density ranging from 1.029kg/m3 to 1.779kg/m3 are related 
to temperatures of -70°C to +70°C respectively. Therefore 
the aerodynamic forces are related to the environmental 
conditions. Thus it is expected that flutter windspeeds 
will relate to air-density in both symmetric and 
antisymmetric modes. As the air density increases the 
wind induced forces increase in direct proportion to the 
factor p and so the flutter windspeed might be expected 
to decrease.
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Graph2 6 with the ANSUSP prediction show the 
reductions expected with increasing p. Close agreement in 
trend is observed between Selberg and the ANSUSP results.

5.1.14 The effect of full aerodynamic width.
The aerodynamic width of the deck is a factor

included in Theodorsen's aerodynamic expressions. As the
deck aerodynamic width increases (Fig.36), the
aerodynamic forces (1) change significantly since in the
expressions for lift force and moment they appear as
and B4 respectively. Changing B also changes reduced 

wb
frequency k = ---- . Here it should be emphasized that

V
the aerodynamic forces include also the aerodynamic 
damping so the response of the system is expected to be 
complicated. In Graph27 as aerodynamic width B increases 
from the nominal value (31.87m) the symmetric flutter 
windspeed initially decreases reaching to a minimum value 
for approximately 40m width. For every further increase 
of aerodynamic width symmetrical flutter speed increases.

5.2 3-D Time-history method.

So far modal analysis has been used to provide an 
insight into how some of the most important factors 
influence the aerodynamic flutter behaviour of the cable 
suspended bridge. The results already reported in section
5.1 above using modal analysis will now be compared with 
predictions produced by the time history method in
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ANSUSP. A comparison of predictions by time history and 
modal analysis methods will hopefully result in the 
enhancement of confidence of numerical methods. However 
it should be noted that there is a large difference in 
the computation required for each of these two methods. 
The modal analysis method requires significantly less 
computations than the time history method; speaking in 
terms of overall operation time this refers to a factor 
of 60.

Because of the large amount of computation involved, 
not all the studies using modal analysis have been 
repeated using the time history method? only a selection 
of the more interesting trends have been investigated and 
only for the critical symmetrical oscillation case and 
the results are reported below.

5.2.1 The effect of horizontal separation of the
cables.

Following the same procedures as in section 5.1.5,
the cables have been positioned at various separation 
distances. The two ANSUSP numerical results for flutter 
speed agree very closely, as shown in Graph28 indicating 
that the much faster modal method produces results
consistent with the full non-linear treatment but at a 
much reduced computational cost.

While these two methods are in good agreement, there 
is a sizeable discrepancy (approximately 15%) for a wide 
range of aerodynamic widths in the flutter speed
predictions obtained by Selberg's formula.
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5.2.2 The effect of deck mass factor.
The mass of the deck is altered following a similar 

procedure to this of section 5.2.11. As the mass of the 
deck increases the symmetrical natural flexural 
frequencies in general decrease while the symmetrical 
torsional frequencies increase (Graphl8). Since the 
symmetrical flexural and torsional frequencies become 
more separated with increasing deck mass, it is expected 
that flutter speed will increase. In Graph29 flutter 
speed initially decreases slightly as deck mass 
increases, but for the deck mass factor range in the 
range between 2 and 10 flutter speed increases very 
slightly. The time history method results are in line 
with the modal analysis method.

The results acquired with Selberg's formula show a 
significant disagreement in fashion and in values. For 
the nominal Severn value of deck mass the disagreement is 
very small but as deck mass increases by a factor of 3 
the difference between ANSUSP and Selberg results grows 
rapidly. For decreasing deck mass from the nominal Severn 
value the disagreement of ANSUSP and Selberg also 
increases.

5.2.3 The effect of deck torsional stiffness.
The deck torsional stiffness is one of the most 

important properties of the bridge for dynamic 
oscillations affecting significantly the aerodynamic
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behaviour of the bridge. As deck torsional stiffness 
increases torsional natural frequencies increase both 
symmetrical and antisymmetrical. Considering the relation 
between torsional frequency and flutter speed, it is 
expected that as torsional deck stiffness increases 
symmetrical flutter speeds will increase also in the same 
fashion as the symmetric torsional natural frequency. The 
steep slope of the flutter windspeed curve acquired by 
modal analysis is closely followed by the results of time 
step analysis with increasing deck torsional stiffness 
from the nominal value. The slope of the flutter speed 
reduces as deck torsional stiffness reduces from the 
nominal value. The results show close agreement between 
the two numerical methods as is displayed in Graph30. The 
results by Selberg1s method show reasonably close 
agreement with the numerical results by ANSUSP.

5.2.4 The effect of full aerodynamic width of the
deck.

The aerodynamic forces are related to the 
aerodynamic width of the deck. Therefore it is expected 
that the flutter speeds will be largely affected with 
increasing aerodynamic width. The results by time step 
analysis lay in a slight curve with a local minimum. The 
results by the two numerical methods used in ANSUSP 
agree closely with each other. A similar pattern to this 
of section 5.2.2 indicates a spectrum of values of 
aerodynamic width which correspond to particularly low 
symmetrical flutter speed (Graph3 0). Selberg predictions



86

are significantly lower from the ANSUSP results by 12-13% 
for aerodynamic width values lower than the nominal 
Severn value. For aerodynamic width larger than the 
nominal Severn value Selberg flutter speed predictions 
continue to reduce and their difference from ANSUSP 
results increases.



span

(Fig. 30) Alteration of the cable sag modifying the tower
height.

i

span

(Fig. 31) Alteration of the cable sag without modifying
the tower height.
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(Fig. 32.a) Natural mode shapes of the bridge numerical model with
Severn nominal values.
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H
o

ri
/ 

n
p

fj
o

c 
R

pr
l*

' 
n

n
rl

p



creoc"3*ĉTOOn
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*ig. 35.a) Natural mode shapes of the bridge numerical model with 
tower stiffness (both in bending and in torsion) increased by a

factor of 10,000.
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Fig. 35. b) Natural mode shapes of the bridge numerical model with 
tower stiffness (both in bending and in torsion) increased by a

factor of 10,000.

Dec
k 

nod
e



j*:C_J
CDC2

Fig. 35.c) Natural mode shapes of the 
tower stiffness (both in bending and

factor of 10,000
bridge numerical model with 
in torsion) increased by a

Dec
k 

nod
e



Q
constant

O

Baero

constant

Baero

(Fig. 36) Altering aerodynamic width of the deck Baero.



CD
CL)■oO
CDCDCD

CO
CDTDO
DZC\j (_)
CDCD

o ID IDC3 O id ido o idid oo

(Fig. 37.a) Natural mode shapes of the bridge numerical model with
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Chapter 6 
Discussion of results

The previous work was carried out with ANSUSP, on 
the Severn Bridge geometrical and structural properties. 
This structure was chosen because it incorporates the 
characteristics of a modern cable suspended bridge and is 
a typical bridge which satisfies the conditions under 
which ANSUSP can produce reliable results. The comparison 
of the results by modal analysis with the results by time 
step analysis and also by Selberg's semi-empirical 
formula have led us to the following observations. The 
percentages quoted below are based on variations from 
the values corresponding to the nominal properties 
associated with the Severn Bridge structure as in Fig.29.

6.1 The sag/span ratio of the bridge which 
is a measure of the bridge gravity stiffness 

plays a significant role (up to 13%) in determining the 
flutter speed of the bridge when the sag/span ratio
varies within the usual spectrum of design values between 
1/14 and 1/10. The effects of changing cable sag/span 
ratio on symmetric and antisymmetric frequencies are 
opposite in nature. For symmetric vibration motion the 
torsional stiffness provided by the cable/hanger system 
increases with increasing cable sag while the
corresponding antisymmetric stiffness decreases thus
effecting maximum changes of +10% and -22% in these
natural frequencies respectively.
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6.2 Horizontal separation of the cables can 
slightly affect the symmetrical flutter speed by up to 9% 
approximately. However when combined with towers that are 
10,000 times stiffer than the nominal tower properties, 
increasing horizontal cable separation by a factor of 1.2 
can affect the behaviour of the bridge in symmetrical 
flutter significantly by increasing it by 3 0%. For the 
case of a reduced deck torsional stiffness by a factor of 
0.04 times, the nominal Severn values the flutter speed 
variation is 60% of the flutter speed for the nominal 
cable separation.

6.3 Cable mass affects the overall bridge 
rotational inertia considerably since it is positioned 
towards the outer edges of the deck. The other major part 
of torsional inertia is due to the deck rotational 
inertia. Consequently the critical flutter speeds of the 
bridge are affected by both those factors. The 
characteristics of the bridge improve by up to 10% with 
cable mass decreasing by a factor of 10 and also improve 
by up to 7% by decreasing deck rotational inertia by a 
factor of 10.

6.4 The deck mass affects the gravity cable 
stiffness modifying the symmetric flutter speed by only 
8% for a 10 fold increase in deck mass, but has a much 
larger effect on the antisymmetric flutter speed by 
almost doubling it.
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6.5 Deck torsional stiffness affects the behaviour 
of the bridge in flutter according to the proportion of 
the overall torsional stiffness that it provides since 
the cables contribute the other major part. The higher 
the deck torsional stiffness the larger the role it plays 
in the behaviour of the bridge in flutter increasing the 
symmetric flutter speed by 130% for a 10 fold increase of 
deck torsional stiffness.

6.6 Deck vertical stiffness plays a small role in 
the behaviour of the bridge in flutter. It is interesting 
to mention that increasing the vertical stiffness of the 
deck by a factor of 10 reduces the critical windspeed of 
the bridge in flutter by 5%.

6.7 The Young's Modulus of the cables (jEcable) 
significantly affects the flutter characteristics of the 
bridge if the cables provide a considerable proportion of 
the total bridge torsional stiffness in comparison to the 
deck torsional stiffness. Consequently the larger the 
contribution of the cables to the overall bridge 
torsional stiffness the more important is the cable 
Young's modulus in changing flutter speeds. Particularly 
when ECable smaller than 50% the nominal Severn Bridge 
values the symmetric flutter speeds are unaffected. When 
Ecable increases by 10 fold compared with the nominal 
Severn value symmetric flutter speed increases by 55%.

6.8 The effect of the air density on the flutter 
speed of the bridge is to increase the flutter speed
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by as much as 15% of the original Severn bridge flutter 
speed if the air density varies from the lowest possible 
value (1.029kg/m3) for very thin air (in temperature of 
+70°C) to the highest possible value (1.779kg/m3) for the 
thickest possible value (corresponding to -70° C) . In more 
realistic terms the variation in flutter speed is more 
likely to vary by approximately 9% for atmospheric
conditions where very high windspeeds are expected to
occur.

6.9 Aerodynamic width affects the aerodynamic
behaviour of the bridge by up to 2 0% for widths which 
correspond to between 2 and 6 lane carriageways. The
results though indicate there are no constant trends for 
the flutter speed when altering aerodynamic width 
particularly for the symmetric oscillation flutter.
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Chapter 7 
Conclusions

The work presented in this thesis represents an 
effort to gain some insight into the aerodynamic 
characteristic behaviour of flat-plate deck suspension 
bridge models, which satisfactorily simulate modern 
faired box deck cross sections.

By changing the numerical model of the original 
Severn bridge and altering factors which were assumed to 
be significant for its aerodynamic behaviour, the
following conclusions have been reached on the importance 
of these various factors that affect the flutter
stability of this type of bridge.

Some of the parameters examined in the present 
analysis using ANSUSP produced predictions which were the 
straight consequence of changes in the bridge stiffness 
or the bridge inertial properties. Other parameters 
tested produced results which were not easily predictable 
or explained. This was the case particularly when
changing these parameters affected both inertia and 
stiffness properties. In these cases a succession of 
decreasing and increasing flutter wind speed trends was 
shown when these parameters increase.

The coupling effect being essential for the flutter 
phenomenon relies on the torsional and vertical 
frequencies and how close together their values are. It 
was observed that when a bridge property was changed and 
the vertical frequencies are affected if their values
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approach torsional frequencies, or vice versa, flutter 
windspeeds usually tend to decrease, the coupling of the 
two motions being facilitate. On the contrary, when the 
difference of vertical and torsional frequencies was 
increased flutter windspeeds were in most cases 
increasing.

In the following, some general qualitative 
conclusions will be presented based on observations on 
the flutter behaviour of cable suspended bridges as some 
of their properties are modified.

The distribution of mass of a bridge cross section 
has a large effect on the flutter speed of the bridge. 
The torsional frequency increases with decreasing deck 
rotational inertia while the fundamental vertical 
frequencies, symmetric and antisymmetric remain 
unaffected and so the coupling effect between vertical 
and torsional natural frequencies occurs when higher wind 
speeds are reached.

The torsional stiffness of the deck is one of the 
most significant factors of the bridge and when it 
increases, the flutter windspeeds increase accordingly. 
However, the other large part of the bridge overall 
torsional stiffness is provided by the cables. 
Consequently the effects of the deck torsional stiffness 
are more significant the higher proportion of the overall
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torsional stiffness of the bridge is provided by the 
deck.

The horizontal separation of the main suspension 
cables affects the part the cables play in the overall 
torsional stiffness of the bridge and simultaneously the 
proportion they contribute to the overall rotational 
inertia. The other contributions to the overall torsional 
stiffness and vertical inertia is provided by the deck. 
It has been found that increasing cable separation 
(increasing torsional stiffness and also rotational 
inertia provided by the cables) results in increasing 
flutter speed up to a limit after which the flutter speed 
is essentially constant. These unexpected effects on 
flutter speeds are of medium importance. The effects of 
the cable separation on bridge torsional stiffness is 
larger if the tower stiffness (both in bending and in
torsion) increases very significantly (10,000 fold) and 
in this case flutter speeds generally increase with
increasing cable separation.

The material of the cables can have a large effect
on the flutter windspeed of the bridge. When the Young's
modulus of the cables increases, the role of the cables 
in the overall bridge torsional stiffness increases, 
increasing flutter speeds. Antisymmetric flutter speeds 
initially decrease up to a point with increasing Ecable 
and for any further increase remain the same.
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Antisymmetric flutter becomes the critical case for a 
Young's modulus 10 times the nominal Severn value.

Increase of vertical deck stiffness in bending has 
only a minor effect on aerodynamic stability reducing the 
flutter speed by up to 5% within the range of the 
parameters tested. The introduction of deep truss 
stiffening girders in some bridges in the past as 
referred to in [17] did not necessarily improve the 
flutter characteristics of these structures except if it 
also increased the bridge torsional stiffness.

The deck mass is a factor which brings rather 
unpredictable effects of minor importance. When deck mass 
increases although the flutter windspeed increase and 
vertical frequencies reduce the symmetric flutter 
windspeed remains relatively constant with only an 8% 
difference from the flutter speed for the Severn bridge 
nominal properties. The antisymmetric flutter speed is 
affected somewhat more than the symmetric flutter speed, 
increasing by 40% for a 10-fold increase in deck mass.

Aerodynamic width is a factor which affects the 
aerodynamic forces and results in unpredictable effects 
of medium significance. Within the range of aerodynamic 
width values tested with ANSUSP a variation on flutter 
speeds of up to 13% from the flutter speed for nominal 
Severn properties was observed. Although initially the 
flutter speed as expected reduced with increasing 
aerodynamic width, a point was reached where further
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increase in aerodynamic width produced increase in 
flutter speeds. This is true for both symmetric and 
antisymmetric modes.

The behaviour of the bridge in different air-density 
conditions was predictable, showing an almost linear 
proportional relationship of the flutter windspeed with 
air-density. The higher air density could be the result 
of low temperatures occurring in reality.

Here it should be emphasized that these conclusions 
refer to a bridge where symmetric flutter is critical. It 
is possible when symmetric flutter speed increases 
because of alterations to the bridge properties and the 
antisymmetric flutter becomes the prominent case, 
relative adaptations on the conclusions should be made 
regarding the structure's critical flutter mode.

The comparison of the results of the two numerical 
methods (modal and time history) show the modal analysis 
to produce satisfactorily accurate results with a much 
lower cost than the time history method. This justifies 
it as a useful tool for initial understanding of the 
behaviour of a cable suspended bridge of a flat or & 
similarly shaped deck. The computing time saved by using 
a combination of the two numerical methods was shown to 
be significant when compared with the use of the time 
history method alone.



One of the major difficulties, during the present 
study was encountering incontinuity in trend for flutter 
speed both in the time history method and in modal 
analysis predictions. In the time history method there 
were cases where the damping would not become zero no 
matter how high the windspeed. In modal analysis two 
kinds of discontinuity were encountered. In some cases 
the response frequency corresponding to the lower 
damping, when inserted in the formulas for the 
aerodynamic forces resulted in a significantly different 
response frequency. In other cases damping was high no 
matter how high was the wind speed. This could be due to 
instabilities in the algorithm. A further investigation, 
including theoretical proof of the existence or lack of 
continuity of solutions, would support the validity of 
the present study.
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Chapter 8 
Further work proposals

So far the cable suspended bridge has been assessed 
only for the complete structure. In an incomplete bridge 
the response of the structure subjected in wind flow may 
differ significantly from the response of the complete 
structure. Thus the results of the present analysis 
carried out for the complete bridge does not apply to the 
construction stages, and consequently a full flutter 
analysis of the various construction stages of the bridge 
will also be required in practise.

As the flutter windspeed during construction may 
often be lower than for the completed bridge condition it 
may also be of some importance to investigate the effects 
of modifying the basic bridge geometric and structural 
properties for the erection conditions.

The parametric analysis presented in this thesis 
could also be applied on cable stayed bridges. These 
structures even though they retain some similarities with 
the cable suspended bridges as for example their 
susceptibility to wind effects, are in other aspects 
quite different structures. The construction of cable 
stayed bridges all over the world is presently expanding 
as they are more rigid structures than the cable 
suspended bridges.

Cable elements have lately appeared modelling the 
non-linear behaviour of cables, [18]. The introduction of 
those elements in the modelling of cable suspended
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bridges in both numerical methods, modal and time step 
could improve the accuracy of the results produced by 
ANSUSP.
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