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Abstract
This thesis demonstrates how to reduce the runtime of large non-strict functional 
programs using parallel evaluation. The parallelisation of several programs shows 
the importance of granularity, i.e. the computation costs of program expressions. 
The aspect of granularity is studied both on a practical level, by presenting and 
measuring runtime granularity improvement mechanisms, and at a more formal level, 
by devising a static granularity analysis.

By parallelising several large functional programs this thesis demonstrates for the first 
time the advantages of combining lazy and parallel evaluation on a large scale: laziness 
aids modularity, while parallelism reduces runtime. One of the parallel programs is 
the Lolita system which, with more than 47,000 lines of code, is the largest existing 
parallel non-strict functional program. A new mechanism for parallel programming, 
evaluation strategies, to which this thesis contributes, is shown to be useful in this 
parallelisation. Evaluation strategies simplify parallel programming by separating 
algorithmic code from code specifying dynamic behaviour. For large programs the 
abstraction provided by functions is maintained by using a data-oriented style of 
parallelism, which defines parallelism over intermediate data structures rather than 
inside the functions.

A  highly parameterised simulator, G r a n S im , has been constructed collaboratively 
and is discussed in detail in this thesis. G r a n S im  is a tool for architecture-independent 
parallelisation and a testbed for implementing runtime-system features of the paral
lel graph reduction model. By providing an idealised as well as an accurate model 
of the underlying parallel machine, G r a n S im  has proven to be an essential part of 
an integrated parallel software engineering environment. Several parallel runtime- 
system features, such as granularity improvement mechanisms, have been tested via 
G r a n S im . It is publicly available and in active use at several universities worldwide.

In order to provide granularity information this thesis presents an inference-based 
static granularity analysis. This analysis combines two existing analyses, one for 
cost and one for size information. It determines an upper bound for the computation 
costs of evaluating an expression in a simple strict higher-order language. By exposing 
recurrences during cost reconstruction and using a library of recurrences and their 
closed forms, it is possible to infer the costs for some recursive functions. The possible 
performance improvements are assessed by measuring the parallel performance of a 
hand-analysed and annotated program.
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Chapter 1

Introduction

After decades of claiming that functional programming languages are well suited for 
implicitly-parallel execution, only a few systems have demonstrated this on a large 
scale. The research towards efficient implementations has revealed many problems 
in designing a parallel runtime-system that efficiently manages the generated paral
lelism without overwhelming the machine with bookkeeping overhead. The limited 
information provided by the programmer about the parallel execution of the program 
necessitates very sophisticated, and very general, runtime-system techniques.

One of the major strengths of functional languages is their clear and simple declarative 
semantics. From a compiler-design point of view this makes it possible to put theory to 
some practical use. For example static analyses are easily developed, which provide, 
at compile time, information about some runtime properties of the program. In 
the maturing sequential compiler technology for functional languages these analyses 
provide crucial information for program transformation steps, which represent the 
backbone of compiler optimisations. For the parallel execution of functional languages 
they can provide information to enable the runtime-system to manage the parallelism 
more efficiently.

This thesis investigates how to statically extract information about the granularity of 
potential parallel threads, i.e. the computation costs of these threads, and how to use 
this information in the runtime-system. In evaluating the importance of granularity 
for the efficiency of parallel program execution a set of large functional programs 
is studied. It transpires that a combinator-oriented approach towards exposing po
tential parallelism in the program leads to rather obfuscated code with intertwined 
behavioural and algorithmic code. To remedy this shortcoming this thesis contributes

1



1.1. Parallel Lazy Functional Programming 2

to a programming technique for separating these two kinds of code. This technique 
is used in the parallelisation of several programs, the largest of which consists of 
more than 47,000 lines of Haskell, making it the largest existing parallel non-strict 
functional program.

1.1 Parallel Lazy Functional Programming

Parallel computation offers an enticing picture of the performance that can be achieved 
by the next generation of computers: no longer is the program required to run on only 
one processor but it becomes possible to execute parts of the program on different 
processors. This enables the programmer to reduce the runtime of a program further 
by decomposing it into parallel components, either automatically or by hand. Poten
tially, it offers scalability in the performance of multiprocessors: in order to speed-up 
a machine it is only necessary to add new processors.

However, with most existing parallel programming models it is necessary to specify 
explicitly the decomposition of the program into parallel threads, the order of thread 
creation, the synchronisation, the communication between threads etc. In practice 
this often requires significant restructuring or even recoding of a sequential program. 
The root of this complication is the specification of an algorithm as a sequence of 
operations performed on a global store in an imperative programming model. In 
contrast, a declarative program does not specify such a sequence of operations. The 
compiler and the runtime-system are free to choose different orders of operations, or 
evaluation order, provided the semantics of the language is preserved. This opens up 
the possibility for an implicitly parallel execution of a declarative program where the 
programmer does not have to specify anything more than is needed for the sequential 
execution anyway.

Our programming model is therefore a combination of three models:

•  parallel programming to reduce runtime by executing a program on several pro
cessors,

• functional programming to achieve a higher level of programming by abstracting 
over operational aspects,
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•  non-strict programming to increase modularity by decoupling control and defi
nition.

The implementation model used in this thesis is parallel graph reduction. Section 2.3.1 
discusses this model in more detail.

1.1.1 Parallel Programming

A parallel program reduces runtime by sharing the work to be done amongst many 
processors. To achieve such a reduction in runtime several threads, independent 
units of computation, are executed on different processors1. Introducing the concept 
of threads means that mechanisms for generating threads, synchronising threads, 
communicating data between threads, and terminating threads have to be established. 
We term these aspects of the program execution the dynamic behaviour of a parallel 
program. Clearly, the dynamic behaviour of a parallel program is significantly more 
complex than that of a sequential program.

Many existing parallel programming languages require the programmer to explicitly 
specify these aspects of parallel program execution. Objects specific to parallel exe
cution, like semaphores and monitors, are used to describe synchronisation between 
threads. Managing these new objects, however, adds a new dimension of complex
ity to program development, for example the results of the parallel program might 
become non-deterministic, and especially the design of robust large-scale parallel sys
tems becomes a daunting challenge.

The approach towards parallel computation advocated in this thesis is to let most of 
these resources be managed by the runtime-system in order to avoid the additional 
complexity for the programmer to handle these resources explicitly. All the pro
grammer has to do is to expose parallelism, i.e. to identify parts of the program that 
may be usefully evaluated in parallel. This model is therefore termed one of semi
explicit parallelism. Ideally a compiler should automatically partition the program 
into parallel threads. If accurate strictness information is present this could be done 
by generating a parallel thread for every strict argument of an expression. However, 
the effects of different decompositions, or partitions, of the program into sequential

1We do not distinguish between complete heavy-weight threads, sometimes called tasks, and 
light-weight threads that can only exist within a task.
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components are of special importance for the work presented in this thesis. Therefore 
the programmer is required to expose the potential parallelism in the program. In 
summary, our model offers the possibility of reducing the runtime by only exposing 
potential parallelism and without explicitly managing the parallel threads.

1.1.2 Functional Programming

Functional languages, as well as other declarative languages, describe what to com
pute without specifying the order in which to compute it. The exact evaluation order 
is only loosely defined by the data dependencies between expressions in the program. 
The compiler can choose any evaluation order of independent expressions. In par
ticular, they can be evaluated in parallel. The semantic property that allows such a 
flexibility in the evaluation order is referential transparency, stating that the result 
of an expression does not change if a subexpression is replaced by another expression 
with the same result. For formal reasoning this allows to use the technique of replac
ing equals for equals. In the context of parallel computation this allows the compiler, 
or the runtime-system, to choose various orders of evaluation and to change them 
dynamically.

Based on this property of functional languages it is easy to implement a naive au
tomatically parallelising compiler. For example, all strict arguments of a function 
call as well as the function body itself can be evaluated in parallel. However, the 
problem with this approach is the management overhead related to the vast amount 
of parallelism generated. Often the generated threads are too short to warrant an 
execution by a parallel thread altogether. Therefore, much effort has been put into 
increasing the length of these threads, which increases their granularity because each 
thread performs more computation.

This thesis studies how to increase the granularity of the generated threads and 
thereby improve the performance of the parallel program. A compile-time approach 
is taken, in which information about the granularity of potential parallel tasks is 
inferred at compile-time and forwarded, via automatically inserted annotations, to the 
runtime-system, which then uses this information in order to decide whether a parallel 
thread should be generated. This design naturally splits into one static component 
for inferring computation costs, a granularity analysis, and one dynamic component 
for using this information, granularity improvement mechanisms. It should be noted
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that the use of compile-time information from a static analysis does not amount to 
a static partitioning of the program. In our model the runtime-system is free to 
ignore parallelism. Thus, it is possible that different pieces of code that have been 
marked for parallel execution are actually merged into one thread by the runtime- 
system. In summary, we focus on functional languages because the lack of an explicit 
evaluation order specified in a program gives the compiler and the runtime-system a 
high degree of freedom in choosing a specific evaluation order. Although the use of 
implicit parallelism is not the immediate goal, this work makes some progress towards 
this long term goal.

1.1.3 Lazy Programming

An algorithm in a declarative language describes a property rather than a procedure. 
Executing the algorithm amounts to finding a solution for the property specified. This 
approach can be taken further to the level where values are bound to variables. The 
operational meaning of such a binding is to evaluate the expression. The declarative 
meaning, however, only identifies a variable with a value.

The idea of lazy evaluation, or more precisely of non-strict languages, is to decouple 
denotational definition from operational control. Defining the value of a variable does 
not mean that the definition has to be evaluated immediately. The definition only 
describes a property between a variable and a value in the program. The evaluation 
degree and the evaluation order are defined by the data dependencies in the program. 
This enables the reuse of the same variable in many different contexts, which examine 
different parts of the value. Thus, abstracting this control aspect out of the algorithm 
increases the modularity of programs.

There is an obvious tension between the goal of lazy evaluation, to abstract over 
control aspects of the code, and parallel computation, to enforce a parallel control 
structure of the code. Lazy evaluation tries to evaluate as small a portion of the result 
as possible, whereas parallel computation aims at generating independent threads of 
some minimal size. In order to achieve good parallel performance this means that 
at some places it may be necessary to specify how far a data structure should be 
evaluated, i.e. to specify its evaluation degree. Still, lazy evaluation is valuable for 
modular program design because this evaluation degree can be specified separately 
from the definition of the data structure itself. This encourages a data-oriented style of
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parallel programming, i.e. a style where the parallelism is specified over intermediate 
data structures rather than in the modules that generate these data structures. In the 
programming technique the parallel programming group at Glasgow has developed, 
evaluation strategies, this style of programming has proven to be extremely useful for 
large parallel programs.

The high degree of modularity provided by lazy languages is particularly important 
for the design of large programs. Furthermore, extremely time consuming programs, 
which would profit most from a reduction in runtime provided by parallel compu
tation, are typically very large. Therefore, it is important that the language for 
parallelising the program supports modularity. Otherwise the gain in performance 
would have been bought with a loss in maintainability. In summary, the use of lazy 
evaluation decouples definition from control. This aides modularity and code re-use 
in a sequential model of computation. In a parallel model it also aides top down 
parallelisation of big programs by using data-oriented parallelism over intermediate 
data structures.

1.1.4 Relationship to Other Approaches for Parallel Pro
gramming

The approach towards parallelism taken by functional languages is in stark contrast 
to that taken by High Performance Fortran (HPF) (Rice 1993) and other parallel 
extensions of imperative languages. In parallel functional programming the program
ming language itself is unchanged. However, at certain points additional information 
is added to the program and used by the parallel runtime-system. This additional 
information only represents hints to the runtime-system that may be ignored rather 
than directives that must be obeyed. Therefore, the annotations do not change the 
semantics of the program. These annotations are in some sense analogous to regis
ter declarations in imperative languages that allow the programmer to add valuable 
operational information to the program but can be ignored by the compiler. It is inter
esting to note that many of these annotations, like register declarations, are nowadays 
rarely used and that most of the time automatic register allocation performed by the 
compiler is perfectly satisfactory for the programmer. Clearly, this state has not yet 
been achieved with parallelism annotations for functional languages. But the distinc
tion between functional language features and operational annotations for parallelism
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enables a similar approach.

In contrast, parallel programs written in HPF-like languages aim at a near optimal 
usage of parallel machine resources. In doing so, they reveal low-level machine details 
and allow the program to specify details of the program execution leading to highly 
machine specific programs. As a result abstractions over primitive low-level constructs 
are evolving in the same way as high-level programming language constructs evolved 
out of common patterns of low-level instructions.

Based on these differences in the language design we consider parallel functional lan
guages to be most useful for achieving moderate speed-up with only minimal changes 
in the code. Hopefully the necessary changes in the code that are still needed today 
can be reduced to zero with further progress towards implicit parallelism. HPF-like 
languages are more appropriate for applications in the supercomputing area where it 
is feasible to spend large programmer effort in restructuring code in order to get near 
optimal performance. However, we believe that the programming techniques used in 
our model, like data-oriented parallelism via non-strict data structures, can also be 
applied for this kind of languages in order to build high-level abstractions for certain 
kinds of parallelism.

1.2 The Dynam ic Behaviour of Parallel Programs

The main reason for the complexity of writing parallel programs is the complex dy
namic behaviour generated by a set of cooperating threads. In addition to the cor
rectness of the sequential pieces of computation the timing of communication has to 
be considered in order to avoid deadlock situations and to guarantee both correct
ness and termination of the parallel program. Furthermore, the performance tuning 
of a parallel program requires a fine balance between several competing goals like 
creating many threads to use idle time of processors during the computation and 
limiting the number of generated threads to limit the bookkeeping overhead for the 
runtime-system.

Many parallel languages allow the programmer to control all these aspects of the 
dynamic behaviour. In our model, however, almost all of these details are hidden by 
the runtime-system. This design decision is based on the observation that the pro
grammer is often overwhelmed with the complexity of writing a parallel program and
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explicitly managing the dynamic behaviour. In order to make such an semi-explicit 
approach feasible, the runtime-system has to make sophisticated decisions on how to 
manage the parallelism. For example, in our model the creation of parallel threads 
is based, to some extent, on the current load of a processor. The communication 
between threads is implicitly performed via reading and writing shared structures. 
The only extension necessary for specifying the parallelism in the program is a com- 
binator that exposes parallelism called par. However, in order to get a more detailed 
control over the partitioning of the program into parallel threads it is often neces
sary to specify the evaluation order in an expression. This is done via adding seq 
combinators. Ideally, both kinds of combinators could be inserted into the program 
by an automatically parallelising compiler. However, first efficient runtime-system 
techniques to manage the parallelism have to be devised. The long term goal of this 
work is to automate this process of adding annotations describing the parallelism in 
the program.

One of the aspects of the dynamic behaviour is the granularity of a computation. By 
the granularity of a program expression we mean the computation costs of evaluating 
this expression. The inefficiency of fine-grained threads lies in the fact that they spend 
most of their computation on parallelism overhead like generating the thread or com
municating with other threads. Historically, this has proven to be a severe problem 
for machines like ALICE (Darlington k  Reeve 1981) and runtime-systems based on 
both graph-reduction (Hammond k  Peyton Jones 1992, Hammond et al. 1994) and 
dataflow (Arvind k  Nikhil 1990, Shaw et al. 1996). In order to mitigate this prob
lem the programmer often tries to increase the granularity of the generated threads 
in the performance tuning stage of parallel program development. One goal of this 
thesis is to investigate how this process can be automated using statically-extracted 
information about the granularity of the generated threads. This information is used 
in the runtime-system to improve the performance of the parallel program without 
further information provided by the user.

This thesis studies granularity as one of the most important aspects of the dynamic 
behaviour of parallel program execution. However, it is, of course, not the sole impor
tant aspect of the dynamic behaviour. For example, the communication behaviour of 
the runtime-system determines the size of the graph structures that are sent within 
one unit of communication, determining the granularity of the communication. We 
have previously studied different fetching schemes in order to reduce the total commu
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nication overhead (Loidl & Hammond 19966). Similarly, the scheduling mechanism 
is important to hide latency in a system involving a lot of communication. The data 
locality is an important property, which deserves further study, too.

1.3 Static Information about Dynam ic Behaviour

One of the attractive features of functional languages for compiler optimisations is 
the fact that due to their clear semantic properties a lot of information about the 
program’s dynamic behaviour can be inferred statically. The most important example 
of such a static analysis is strictness analysis, which detects expressions in a non-strict 
program that can be evaluated eagerly, and therefore more cheaply, without violating 
the semantics of the program. State-of-the-art compilers for non-strict functional 
languages like the Glasgow Haskell Compiler (GHC) (Peyton Jones et al. 1993, Peyton 
Jones 1996) heavily rely on the information provided by these analyses to perform a 
sequence of meaning preserving program transformations that improve the efficiency 
of the program.

Such statically-inferred information can also be exploited for parallel computation. 
However, because of the different dynamic behaviour of a parallel program additional 
information about the program execution is required. This thesis focuses on the 
aspect of granularity and presents a static granularity analysis, which is able to give an 
estimation of the computation costs of evaluating program expressions. Providing this 
additional information to the parallel runtime-system is an important step towards 
truly implicit parallelism for functional languages.

One important difference to classical analyses like strictness analysis, however, is the 
fact that granularity analysis has to infer information about an intensional prop
erty of the program execution. It can therefore be only correct with respect to an 
instrumented semantics, which itself models the property of interest. In this case 
computation costs are modelled as computation steps and inferred as an estimate for 
an upper bound. This indirect way of extracting information affects the quality of the 
result. However, in contrast to strictness analysis wrong granularity information will 
not affect the semantics of the generated program but only its performance. Therefore 
it is possible to design an analysis that sometimes makes guesses about computation 
costs.
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Figure 1.1 Possible structure of a parallelising compiler

Figure 1.1 summarises a possible overall structure of a parallelising compiler. The 
front end of the compiler translates the input program into an intermediate language, 
called C. This language is designed to be simple in order to ease later analysis and 
program transformation stages, operating on this language. The program transfor
mation stages, which present the main part of the compiler, perform program optimi
sations and make use of the information provided by various static analyses such as 
granularity analysis to obtain information about the evaluation costs of program ex
pressions. In the programming model used in this thesis parallelism annotations have 
to be present in the input program already. The program transformations can then 
add further information to the existing annotations. However, at this stage enough 
information is available to automatically insert parallelism annotations, if the goal 
is implicit parallelism. Finally, the code generation stage of the compiler produces 
a parallel executable. In the setup used in this thesis the parallel executable will
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be machine independent by using a runtime-system that hides details of the parallel 
architecture. As a further optimisation it would be possible to generate specialised 
code for particular parallel machines. The granularity improvement mechanisms that 
are developed in this thesis then make use of the additional granularity information 
attached to sparks and threads to make better scheduling decisions based on this 
additional information.

In summary, this thesis focuses on the parallel execution of non-strict functional 
programs that are annotated in order to expose potential parallelism. A parallel 
graph reduction model is used to implement the parallel execution of the program. 
In particular, this thesis tackles two parts in the structure shown in Figure 1.1: the 
granularity analysis and the granularity improvement mechanisms.

1.4 Contributions

This section gives a list of research contributions made in this thesis. A more detailed 
discussion of the contents of the contributions with a separation of the authorship of 
parts in the contributions is given at the end of the thesis in Section 7.2.

1. Parallelisation of large lazy functional programs (Loidl Sz Trinder 1997): This 
thesis demonstrates how to combine the advantages of lazy evaluation, in par
ticular modularity, and of parallel evaluation, namely reduced runtime, on a 
large scale. In the parallelisation of a set of large algorithms the modularity 
provided by lazy evaluation helps to minimise the code changes required to im
prove the parallel performance of the program. The implementation includes 
both the design of parallel functional algorithms, such as LinSolv, as well as par
allelising existing code, such as Lolita. With more than 47,000 lines of Haskell 
code Lolita is the largest existing parallel non-strict functional program. The 
programs demonstrate a crucially important aspect of strategic programming 
in the large, namely the separation of behavioural from algorithmic code.

2. Highly parameterised, accurate simulator (GranS im) (Hammond et al. 1995): 
The collaboratively developed G ranSim simulator is of use for architecture-in- 
dependent parallelisation as well as a testbed for the implementation of specific 
runtime-system features. Its robustness has been tested with large parallel ap
plications. By being highly parameterised it is very flexible in the parallelisation
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and tuning of functional programs. By being accurate and closely related to 
the parallel GUM  runtime-system it encourages prototype implementations of 
specific runtime-system features. G ranS im has been integrated into an engi
neering environment for parallel program development in order to facilitate the 
development and performance tuning of large programs. A set of visualisation 
tools has proven crucial for understanding the dynamic behaviour of G ranSim 
and GUM  programs. Primary contributions to G ranSim made in this the
sis include the design of the communication system, the implementation of an 
idealised simulation, and the integration of G ranS im into GHC.

3. Use and refinement of evaluation strategies (Trinder et al. 1998): This thesis 
contributes to evaluation strategies by adding strategic function application and 
by providing some of the first uses of strategies. The latter in part drove the 
design of the current version of strategies. Strategic function application has 
proven very useful in large parallel applications such as Lolita. In particular, 
it supports data-oriented parallelisation, which achieves high modularity by 
decoupling the definition of a function from the specification of its parallelism.

4. A static granularity analysis (Loidl & Hammond 1996a): A granularity anal
ysis for inferring upper bounds of computation costs in a simple strict higher- 
order language, based on existing analyses (Hughes et al. 1996, Reistad &; 
Gifford 1994), is presented. The analysis is formulated as a subtype inference 
system. A detailed outline of an implementation is given and an extended cost 
reconstruction algorithm is developed. The analysis has not been implemented 
but measurements with a hand analysed program allow some assessment of the 
importance of the inferred information.

5. Implementation and measurement of runtime-system features to improve paral
lel performance: (Loidl & Hammond 1995): This thesis discusses several gran
ularity improvement mechanisms the author has implemented in G ranSim. 
Measurements studying their impact on the parallel performance of a set of test 
programs are provided. As a result moderate improvements in performance have 
been achieved for programs that are annotated with granularity information.

In addition to the major contributions above this thesis also makes less significant con
tributions towards a comparison of imperative and functional parallel programming by
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presenting results from parallel imperative implementations of three computer alge
bra algorithms in Section 4.7. Chapter 2 gives a detailed survey of several techniques 
for the parallel implementation of functional languages, going beyond the issues ad
dressed in the main part of the thesis, and Sections 5.7 and 6.7 survey alternative 
approaches for improving granularity and for designing analyses extracting granularity 
information, respectively. In the examination of large programs other runtime-system 
aspects of the parallel execution of lazy functional programs have proven important. 
Different packing and rescheduling schemes have been implemented in G ranS im, ad
dressing the issue of efficient communication in a parallel graph reduction system (see 
Section 3.3.1). Details of the implementation and various measurements are presented 
elsewhere (Loidl & Hammond 19966).

1.5 Thesis Structure

The structure of this thesis is as follows.

C h a p te r  2 gives a survey of various approaches towards a parallel implementation 
of functional languages. In particular, this chapter describes details of the parallel 
graph reduction model that is used in this thesis and its relationship to other execution 
models. The discussion distinguishes key runtime-system issues for parallel program 
execution: the evaluation model, the storage management model, the communication 
model, and the load distribution mechanism.

C h a p te r  3 gives a detailed description of the G ranS im simulator that is developed 
in this thesis. G ranS im is a flexible and accurate simulator for the parallel execu
tion of Haskell programs. It supports both an idealised simulation and an accurate 
simulation modelling the characteristics of a particular architecture. In parallelising 
a set of large Haskell programs G ranSim has been extensively used for developing 
and tuning the parallel code. In later chapters G ranS im will be used as the platform 
for measurements on granularity.

C h a p te r  4 discusses the parallelisation of several large lazy functional programs. 
This chapter first presents evaluation strategies, which have been developed in a group 
effort. Then three programs are discussed in detail: a parallel Alpha-Beta search 
algorithm, highlighting the interplay between lazy and parallel evaluation, LinSolv, 
a symbolic computation algorithm using infinite intermediate data structures, and
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Lolita, a large natural language engineering system.

C h a p te r  5 focuses on the aspect of granularity for the dynamics of parallel program 
execution. For a set of programs the granularity of the generated threads is measured. 
It is shown that by increasing the granularity the performance of the programs can 
be improved. Three different granularity improvement mechanisms are discussed and 
measured: explicit thresholding, priority sparking, and priority scheduling.

C h a p te r  6 presents a static granularity analysis for a simple strict functional lan
guage. This analysis infers an upper bound for the number of computation steps 
needed to evaluate a program expression. The analysis is developed as an inference 
system together with an analysis for the size of program values. A detailed out
line of a possible implementation is given, combining two existing analyses. Finally, a 
small test program is hand-analysed and the resulting annotated program is measured 
showing some performance improvements.

C h a p te r  7 draws conclusions from the presented approach towards improving the 
performance of parallel lazy functional programs. It evaluates the importance of a 
structured approach towards program parallelisation, in particular for the perfor
mance tuning stage of parallel program development. And it identifies areas of future 
work, in particular for achieving the long term goal of truly implicitly parallel execu
tion of functional programs.



Chapter 2

The Parallel Im plem entation of 
Functional Languages

Capsule

This chapter discusses several approaches towards a parallel implementa
tion of functional languages. It starts with motivating the use of functional 
languages for parallel programming. Then it presents the basic ideas of pop
ular models for the implementation of functional languages and evaluates how 
easily parallel evaluation can be expressed in these models. The main part 
of this chapter focuses on critical runtime-system issues and outlines several 
efficient implementation techniques. The following runtime-system issues are 
examined:

• the evaluation model,

• the storage management,

• the communication model, and

• load distribution.

In this thesis a parallel graph reduction model is used. The mechanisms for 
implementing the above runtime-system issues in this model axe compared with 
possible alternatives. The overall discussion is based on an implementation on 
stock hardware rather than specialised hardware for functional programming.

15
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2.1 Introduction

In assessing the quality of various kinds of programming languages the requirement 
of parallel execution usually complicates the language and therefore diminishes its 
value for large-scale program design. Not so with functional languages! The higher 
level of abstraction, compared to imperative languages, decouples the semantics of 
the language from operational considerations such as sequential or parallel evaluation. 
In particular the referentially transparent nature of functional languages allows var
ious different ways of evaluating an expression. However, implementing an efficient 
system for parallel functional programming, consisting of an optimising compiler and 
a flexible runtime-system, has proven to be quite difficult.

Functional languages and their implementation have a rather long history. Whereas 
early models for implementing functional languages were defined on a rather low 
level, e.g. the SECD machine (Landin 1964), more recent models such as the graph 
reduction and the dataflow models present a far higher level of abstraction, allowing 
parallelism to be expressed naturally in this framework. However, when implementing 
such a model many runtime-system issues have to be tackled. The core of this chap
ter deals with the efficient implementation of these runtime-system issues on stock 
hardware. We do not consider special purpose hardware since the development on 
parallel hardware during the last years has shown a clear focus on general purpose 
machines.

The structure of this chapter is as follows. Section 2.2 discusses how functional 
languages can express parallelism in general, and which kind of model is used in this 
thesis. Section 2.3 outlines several models for implementing functional languages and 
evaluates how easily parallel evaluation can be expressed in these models. Section 2.4 
focuses on key issues of the runtime-system for the efficient parallel implementation. 
Section 2.5 puts our model into the context developed thus far. Finally, Section 2.6 
summarises aspects of our implementation model that have to be addressed in order 
to construct an efficient parallel evaluation of functional languages.

2.2 Principles of Parallel Functional Languages

This section discusses why functional languages are a good vehicle for writing parallel 
programs. It discusses some semantic issues that have an important impact on the
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parallel behaviour of the program, and connects them with runtime-system issues 
discussed in more detail in subsequent sections.

2.2.1 W hy are Functional Languages Good for Parallelism?

With the advent of parallel machine architectures and their promise of far higher 
performance than it is possible for conventional architectures, the design of languages 
for parallel computation has become an important research topic. A key aspect in the 
design of parallel languages is the way that the parallel execution is described. Im 
perative languages traditionally extend the sequential model with explicitly handled 
threads to describe independent pieces of computation and messages to communicate 
data between these threads. If these notions remain visible to the programmer he 
has to cope with issues like possible deadlocks in the computation, the partitioning 
of the computation into components, and the placement of these computations onto 
the processors of the parallel machine. This adds a new dimension of complexity to 
the design of a parallel algorithm and distracts from the mathematical properties of 
the algorithm like its correctness.

Another approach, which restricts the generality of this message passing style of com
putation, has recently become extremely popular: synchronous parallel computing. 
The two best known models in this class are BSP (McColl 1996) and SPMD (Smirni 
et al. 1995). The idea in these models is to synchronise all communication in the sys
tem by either alternating between supersteps of computation and communication, or 
by using an implicit barrier for finishing all communication. This restriction enforces a 
certain structure of the parallel program. However, it also facilitates the performance 
evaluation of the program. Furthermore, the basic communication operation in these 
models, namely broadcast, can be implemented very efficiently on the latest parallel 
hardware. Here hardware realisation and programming model go hand in hand, simi
lar to the success of RISC machines for sequential computation. However, usually the 
programmer still has to handle explicit threads and messages, which complicates the 
parallel program significantly compared to the sequential model. This thesis focuses 
on a higher-level approach of parallel programming, hiding most of these aspects in 
the runtime-system. It is, however, still possible to re-use existing lower-level code 
for specialised tasks.

In contrast, functional languages provide a higher level of abstraction by only speci
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fying what to compute without specifying a sequence of instructions describing how 
to compute the result. As a result functional languages are referentially transparent, 
which implies that independent parts of the program can be evaluated in parallel. 
Thus, the language does not necessarily need to be extended to deal with parallel 
evaluation. In principle, the problem of parallelising an algorithm can be reduced to 
the problem of reducing data dependencies in the program — something that can be 
done via source-to-source program transformations in much the same way as program 
optimisations in sequential compilers. Reasoning about the correctness of such trans
formations is no more difficult than for standard transformations used in sequential 
optimising compilers. Furthermore, parallelism based on functional languages yields 
a deterministic result, and it is guaranteed to be the same result as in the sequential 
execution. There is no danger for deadlock in such a model, unless a program runs 
out of resources.

Of course, the higher level of abstraction also imposes some overhead on the execution. 
Therefore, an optimised parallel algorithm using lower level features like an imperative 
computation model and message passing for communication will usually result in a 
better performance of the algorithm. However, especially for large programs it is 
extremely difficult to work at such a low level of abstraction.

2.2.2 The Role of Strictness

This section discusses fundamental semantic properties of functional programming 
languages and their impact on the sequential and parallel evaluation of such languages. 
It focuses on strictness as the most important of these properties.

D efin ition  o f S trictn ess

One important semantic property of a programming language is the strictness of 
user defined functions. A function is strict if its result is undefined, whenever the its 
argument is undefined. A non-strict language is a language that permits the definition 
of non-strict functions. More formally, a function /  is strict if and only if

/ - L  = _ L
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where ±  represents an undefined result (e.g. caused by a failing or non-terminating 
computation). A discussion of strictness is given for example in (Field & Harrison
1988) [Chapter 4].

One important advantage of non-strict over strict parallel languages is the ease of 
expressing producer/consumer parallelism in the former. In particular the coroutine 
nature of lazy evaluation avoids a barrier synchronisation between the producer and 
the consumer process. Following the terminology of Goldberg (1988a) this means, 
it is easy to express vertical parallelism, i.e. parallelism between a function and its 
argument, in a non-strict language. In contrast, strict languages tend to rely more on 
horizontal parallelism, parallelism between different arguments, which evaluates the 
arguments of a function in parallel. It should be noted that this form of parallelism 
can also be used in non-strict languages, namely for those argument positions in 
which the function is strict. A separate strictness analysis is needed to determine 
which arguments can be safely evaluated before the function itself is called.

In order to use a parallel function application, strictness information on user defined 
functions is needed, which ensures that creating parallel threads for each argument 
satisfies the non-strict semantics of the program. The resulting parallelism is called 
conservative parallelism, i.e. the values of all parallel threads are known to be needed 
in the computation. If non-strict arguments are evaluated in parallel, too, specula
tive parallelism is generated. Dealing with this kind of parallelism complicates the 
underlying evaluation model because it must be ensured that no process consumes 
all available resources and it should be possible to terminate processes. However, if 
this is guaranteed on runtime-system level then the parallel evaluation of all argu
ments in a function call satisfies the non-strict semantics, too. Although speculative 
parallelism is an important issue for parallel functional languages, it is not directly 
related to the main runtime-system aspect this thesis is investigating: granularity. 
Therefore, this thesis does not give an exhaustive survey of this particular branch of 
the field.

E valuation  M echanism s

This section briefly discusses possible evaluation mechanisms for functional languages. 
These definitions build on top of the notion of reduction in the lambda-calculus 
(Church 1941) and delta-reduction for built-in rules like basic arithmetic. The termi
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nology of this chapter follows (Field & Harrison 1988) [Chapter 6].

D efin ition  1 (red ex) A redex (reducible expression) is an expression that can be 
reduced according to the rules of lambda-calculus or delta-reduction.

Intuitively, a redex is an expression that can be immediately evaluated. To be more 
precise about the degree of evaluation several different normal forms can be distin
guished.

D efin ition  2 (w eak head norm al form ) An expression is in weak head normal 
form (WHNF) if, and only if, it is a constant or if  it is of the form

f  ei . . .  en, for some 0 < n < arity of f

where f  is either a data constructor or function (primitive or user defined).

Intuitively, evaluating an expression to weak head normal form means evaluating only 
the top level constructor. The expressions e\ . . .  en may still contain redexes.

D efin ition  3 (norm al form ) An expression is in normal form if  it does not contain 
any redexes.

An expression in normal form matches the intuitive notion of a value in the language.
In an expression, which is not in normal form, the leftmost redex is the redex textually 
left to all other redexes and the outermost redex is the redex not contained in another 
redex. Based on these definitions and the two normal forms above it is possible to 
specify the reduction order yielding the two main evaluation mechanisms used in this 
thesis.

D efin ition  4 (eager evaluation , ca ll-by-value) An  eager evaluation mechanism 
chooses in every reduction step the leftmost innermost redex and reduces it to weak 
head normal form.

D efin ition  5 (lazy  eva luation , ca ll-b y-need ) A lazy evaluation mechanism chooses 
in every reduction step the leftmost outermost redex and reduces it to weak head nor
mal form. When substituting expressions for arguments no expression is duplicated, 
but they are shared in the reduced expression.
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The evaluation transformer (Burn 1987, Burn 19916) approach for automatic par
allelisation defines a whole set of such evaluation mechanisms, which are tuned to 
the strictness of the result that should be computed in the given context. It uses 
detailed strictness information obtained by a sophisticated strictness analysis to de
termine, given the demand on an expression, how far the components of the expres
sion have to be evaluated. Thus, all components can be safely evaluated in parallel 
to the degree determined by the evaluation transformer. However, this requires the 
generation of several variants of the code for each function, specialised to the partic
ular context in which it is used. This approach has been used by Burn (1991a), in 
the distributed-memory HDG machine (Kingdon et al. 1991), in the PAM machine 
(Loogen et al. 1989), in RushalPs parallel implementation of the Spineless G-machine 
on top of a virtual shared-memory KSR1 machine (Rushall 1995), and in the shared- 
memory EQUALS system (Kaser et al. 1997).

B eyon d  S trictn ess

In order to preserve the semantics of the program, strictness information is needed 
for implicit parallelisation in order to decide which arguments can be safely evaluated 
in parallel. However, more information about dynamic properties of the program is 
useful in order to extract efficient parallelism. In particular, granularity informa
tion, i.e. information about the size of a computation, is needed in order to decide 
whether it is worth paying thread creation and synchronisation overhead for comput
ing an expression in parallel. This question is discussed in detail in later chapters. 
Chapter 5 shows that too fine granularity can deteriorate parallel performance and 
develops runtime-system mechanisms to increase granularity. Chapter 6 presents a 
granularity analysis for a simple strict, higher-order language to estimate the costs of 
an evaluation.

2.2.3 Language Support for Parallel Programming

The previous section has shown that it is possible to automatically parallelise a func
tional program by executing all strict arguments of a function call in parallel. Shar
ing and granularity information, if available, can be used to determine whether it is 
worthwhile creating a thread for a computation.
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However, developing these analyses is a non-trivial problem. In fact, part of this 
thesis is devoted to the development of a simple granularity analysis for a small strict 
functional language. In the absence of a compiler that can automatically detect 
parallelism it is useful to make the information about potential parallelism and the 
size of the computation explicit in the language. In contrast to models of explicit 
parallelism, the sparking model used in this thesis only needs constructs for exposing 
parallelism. Creation of threads, synchronisation, and communication are all implicit 
in this model. Therefore, we call this a model of semi-explicit parallelism.

This section first discusses some features of lazy functional languages, which are of 
importance for the rest of this thesis. Then the basic constructs for parallelism in 
this language are described. Finally, a comparison with other approaches towards 
language support for parallel computation is given.

Lazy F unctional P rogram m in g

This section highlights the most important features of lazy functional languages that 
are of relevance for this thesis. An excellent general discussion of lazy functional 
programming is given in Bird & Wadler (1988).

A lazy evaluation mechanism, as defined in the previous section, will only evaluate an 
expression, if its value is required in the computation. This results in a demand-driven 
order of evaluation. An obvious advantage of this mechanism is that no unnecessary 
expressions will be evaluated. Another, even more important, aspect is the fact that 
the definition of a result is separated from its evaluation. Thus, it becomes possible 
to describe details of the evaluation, such as parallelism, without modifying the code 
that defines the result. This feature plays a crucial role in our technique for large-scale 
parallel programming and will be elaborated in detail in Section 4.3.

A very powerful feature provided by most functional languages is the availability of 
higher-order functions, i.e. functions that take other functions as arguments or that 
return a function as a result. Such higher-order functions can be used to express com
mon patterns of computation. For example the Haskell prelude function map performs 
the same operation, given as a first argument, to every element of a list, given as the 
second argument. In the context of parallel computation, higher-order functions are 
a natural choice for expressing parallel behaviour. Indeed, our parallel programming 
technique makes heavy use of higher-order functions. However, in contrast to related
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approaches such as skeletons (Cole 1989), the parallelism is not restricted to a fixed 
set of higher-order functions.

Functional languages offer powerful constructs operating on algebraic data types. This 
encourages the construction of elaborate data structures such as lists or trees, which 
are best fit for expressing a certain algorithm. This facility is of particular impor
tance in the area of symbolic computation where the data is typically non-numeric 
and highly-structured. With algebraic data types pattern matching is often used to 
simultaneously check the structure of a data item and to bind components to names.

For example the aforementioned map function is defined as follows in Haskell 1.2:

map :: (a -> b) -> [a] -> [b]
map f  [] = []
map f  (x :xs) = f  x : map f  xs

The first line specifies the type of the function, which is useful for documentation of 
the code and as additional information for the compiler. In this case type variables 
a and b are used, to express that map is a polymorphic function, which can operate 
on any list provided the domain of the function f  has the same type as the elements 
of the list provided as second argument. The result type will be a list with elements 
of the same type as the codomain of the function f . Note that all type variables are 
universally quantified to achieve this kind of polymorphism.

The next two lines perform pattern matching on the list argument. If this argument 
is non-empty it is constructed via the : operator with the arguments x and xs, which 
are used on the right hand side of the definition. Note that, because f  is a function, 
map is a higher-order function. With this definition map can be used to translate all 
characters in a string into upper case characters via map toUpper "h e llo " . Being 
polymorphic it can be also used to, e.g. count the elements of all sub-lists in a given 
list of lists via map len g th  [[1] , [1,2] , [1 ,2 ,3 ]] .

The above examples used Haskell prelude functions such as toUpper c for translating 
the character c into an upper case character and leng th  xs, for computing the length 
of the list xs. Some other basic prelude functions that will be used in this thesis are 
take n xs for returning the first n elements of the list xs, f i l t e r  p xs for returning 
a list of all elements of xs for which the predicate p evaluates to true, and f  o ld l f  z
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xs for combining, from left to right, all list elements of xs with the binary operator 
f , using z as the start value. The construct x s ! !n extracts the n-th element from the 
list xs, and f  $x applies the function f  to the argument x (this construct is useful in 
a sequence of nested function applications in order to avoid nested parenthesis).

G p H

This thesis uses G p H as a parallel functional programming language. G p H is an 
extension of the non-strict, purely functional programming language Haskell (Peterson 
et al. 1996). It is augmented with sequential and parallel combinators.

Sequential C om binator: The seq operator specifies the order of evaluating two
expressions. The operational semantics of the expression e l  ‘ seq ‘ e2 is as follows: 
first evaluate the expression e l  then the expression e2. Both are evaluated to WHNF. 
It is an asymmetric combinator of type seq : : a -> b -> b, which returns the 
second argument as a result, i.e. the denotational semantics of seq is

seq _L e2 =  -L
seq ei e2 =  e2 i f  e i /  _L

Parallel C om binator: The par operator introduces parallelism in the language.
It also has the type par : : a -> b -> b. The operational semantics of the expres
sion e l  ‘par* e2 is as follows: first record that e l  can be evaluated in parallel then 
evaluate e2. We christen the operation of recording the possibility of parallel evalu
ation to spark an expression. It is important to note that this is very different from 
creating a thread for evaluating the expression. Sparking an expression can be done 
very cheaply. In our model a pointer to an unevaluated expression is put into a spark 
pool, a special data structure maintained by the runtime-system. Furthermore, the 
sparking model defers the decision whether to create a thread or not to a later time. 
Details of these runtime-system issues are discussed in detail in Section 2.4. The 
denotational semantics of par is

par e\ e2 = e2

Note that seq is strict in its first argument, whereas par is non-strict in both argu
ments.
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E xten sion s o f G p H

One important aspect of the work in this thesis is to propagate information about 
the program’s behaviour to the runtime-system. The par construct can be seen as a 
way to propagate information about potential parallelism to the runtime-system. To 
give the programmer the possibility of specifying additional information about the 
parallel processes, several lower level constructs are provided. They take additional 
arguments and propagate this information to the runtime-system. The denotational 
semantics of these constructs is the same as for par.

G lobal P ara lle lism : The additional arguments in a parG lobal n g s p x y ex
pression have the following meaning: n is the name of the spark, g represents the 
granularity of the computation, s represents the size of the result and p represents 
the degree of parallelism created during the evaluation of the expression. The latter 
is an estimate on the number of sparks generated in the expression x. All of these 
arguments are integers.

The G ranSim simulator discussed in Chapter 3 currently only uses the information 
in the n and g fields. The former helps to distinguish sparks from different static spark 
sites. The latter is the main piece of information that is exploited via the granularity 
control mechanisms described in Section 5.5.

Local P ara lle lism : The parLocal construct, which takes the same arguments as 
parG lobal, enforces that the thread for the sparked expression, if it is created, will 
be started on the same processor where it was created. However, since the runtime- 
system may use thread migration, this does not mean that the thread has to remain 
on that processor throughout its computation. The main purpose of this construct is 
to improve data-locality between sparks that operate on the same data.

T h re ad  P lacem en t: The parAt construct is a generalisation of parLocal. It re
quires the thread to be generated on a specific processor, specified by an integer value. 
This assumes that the names of all processors form a sequence from 0 to some integer 
value n. This is an experimental feature that has been used in one parallel algorithm 
so far.
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O ther A pproaches

The semi-explicit approach for describing parallelism, which is used in this thesis, 
defers most of the control of the parallelism to the runtime-system. On the language 
level it is only necessary to provide constructs that expose parallelism. In the range 
from implicit to explicit models of parallel computation our model is therefore close 
to the implicit end. The following discussion locates the models that are discussed in 
more detail in this chapter on this range from implicit to explicit parallelism.

Some examples of fully implicit models are dataflow languages such as Id (Nikhil
1989), pH (Aditya et al. 1995) and SISAL (Bohm et al. 1991), evaluation transform
ers (Burn 1987), and data parallel languages such as NESL (Blelloch 1996). Algo
rithmic skeletons (Cole 1989) provide a set of higher-order functions with built-in 
parallelism. Therefore, the parallelism, although not explicitly specified, depends on 
the use of these skeletons in the program. A very powerful concept for describing 
parallelism is provided by process control languages. Most closely related to our par
allel programming technique discussed in Section 4.3 are Caliban (Kelly 1989) and 
first-class schedules (Mirani & Hudak 1995). Both systems provide separate control 
languages that can use functional expressions in specifying a structure of parallel pro
cesses. These systems will be discussed in more detail in Section 4.9.1. On the side 
of explicit parallelism, extensions to Lisp, such as MultiLisp (Halstead, Jr. 1985) and 
Mul-T (Kranz et al. 1989), have to be mentioned. The basic construct used in these 
languages, a future, is closely related to the p ar in G p H. Section 5.7.1 discusses 
this relationship in more detail. Other systems that provide explicit annotations 
for controlling parallelism are Concurrent Clean (Nocker, Smetsers, van Eekelen &; 
Plasmeijer 1991), Hope+ (Kewley & Glynn 1989), and the system proposed by Burton 
(1984).

2.3 Im plementation of Functional Languages

This section discusses different approaches to the implementation of functional lan
guages. The discussion focuses on the graph reduction and the dataflow models. They 
present a high level of abstraction and thereby incorporate parallel execution in a very 
natural way. Hammond (1994) presents a detailed discussion of different models for 
the parallel implementation of functional languages. Schreiner’s annotated bibliogra
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phy (Schreiner 1993) gives a comprehensive survey of the parallel implementation of 
functional languages.

Historically, the first implementations of functional languages used a stack-based 
approach such as the SECD machine (Landin 1964), which has been extended to 
lazy languages by Burge (1975) and Davie &; McNally (1990). The SECD-M ma
chine adds concurrent threads and non-determinism to the basic design (Abramski k  
Sykes 1985). Both the eager and the lazy SECD machine are described in detail in 
Field & Harrison (1988) [Chapter 10].

Another approach is to use a fixed set of combinators, such as SK combinators known 
from combinatory logic (Curry k, Feys 1958), as the abstract machine language. The 
implementation of SASL was based on this design (Turner 1979). Later this approach 
was extended to use program dependent super-combinators (Hughes 1984). A super- 
combinator is obtained from a function body by lifting maximal free expressions, i.e. 
the largest sub-expressions which contain free variables. This transformation main
tains the full laziness property that no expression will be evaluated twice, and differs 
in this aspect from the more basic A-lifting transformation (Johnsson 1985). The cat
egorical abstract machine (Curien 1986) combines the environment-based approach of 
the SECD machine, which is defined via state transitions, with the idea of using basic 
variable-free combinators out of combinatory logic as the abstract machine language.

2.3.1 The Graph Reduction M odel

The graph reduction model is based on the idea of representing the program as a graph 
structure and defining evaluation as rewriting this graph (Wadsworth 1971, Peyton 
Jones 1987). Figure 2.1 shows the lazy evaluation process of the expression square 
(1+2*3) where square x = x*x. Note that in the first step two redexes can be 
reduced in parallel: the definition of square can be applied and the expression 2*3 
can be reduced. The latter is possible because square, multiplication, and addition 
are strict. This example also shows how several instances of the parameter x are 
shared when applying square to a concrete argument. This avoids duplication of 
work.

This approach has several advantages:

•  It is easy to express sharing of program expressions by sharing in the graph;
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•  a call-by-need evaluation can be easily implemented by overwriting the reduced 
node with its result;

• independent parts of the graph can be evaluated in parallel.

square

square:

*

F igure  2.1 The principle of parallel graph reduction

Because of the first two advantages most modern non-strict languages are imple
mented using graph-reduction. However, this pure graph reduction model is very 
high-level, and a straightforward implementation is rather inefficient. For example, 
the reduction process described in Figure 2.1 suggests an interpretive implementa
tion, solely operating on graph structures. In comparison most modern abstract 
machines use an approach of compiled graph reduction. Rather than using a top 
level interpreter, each node in the graph, a “closure” , contains code for perform
ing a reduction. In particular, user defined functions are compiled into code that 
simulates the construction of a graph structure. The generated code typically uses 
an evaluation stack to perform built-in operations, such as basic arithmetic, more
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efficiently, without the need to allocate heap objects in this case. The G-machine 
(Johnsson 1987, Augustsson 1987) was the first machine that used compiled graph 
reduction, eliminating most of the interpretive overhead in the execution of non-strict 
LML programs. Many later abstract machines were based on the G-machine, e.g. the 
Spineless G-machine (Burn et al. 1988), the Spineless Tagless G-machine (Peyton 
Jones 1992) etc. Peyton Jones (1987) [Chapter 20] gives a good overview of different 
optimisations of the basic graph reduction mechanism.

From this thesis’ point of view the most important advantage of the graph reduction 
model is the ease of expressing parallel computation in this model. A parallel graph 
reduction model can be very naturally expressed as a spark pool, i.e. a pool consisting 
of pointers to unevaluated expressions ( “thunks”), and a set of processors that take 
sparks out of this pool and execute them by creating a thread, an independent process 
performing standard graph reduction. These threads are kept and maintained in a 
separate thread pool. In our model adding a new spark to a spark pool is performed 
by a par combinator. Mutual exclusion between threads trying to reduce the same 
piece of graph has to be guaranteed, this will be discussed in Section 2.4.1. Peyton 
Jones (1989) discusses parallel graph reduction in detail.

2.3.2 The Dataflow M odel

Another high-level computation model that does not require a sequential evaluation 
mechanism is the dataflow-model (Dennis 1974). The idea in this model is to represent 
operations as nodes in a graph and to represent data as tokens passed between the 
nodes. Evaluation is governed by the “firing rule”: a node with tokens on every input 
arc consumes these tokens, applies its function to their values, and sends a result 
token with this value to its output arc. In short, the node “fires” .

T he P rin cip le  o f th e  D ataflow  M odel

In contrast to the demand-driven graph reduction model, the dataflow model is data- 
driven. The evaluation of operations is determined by the availability of data rather 
than by the demand on a result. Thus, a natural evaluation mechanism is based 
on eager evaluation. This aims at exposing a maximal amount of parallelism in the 
system, even if some of the parallelism is speculative.
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It is important to distinguish the operational aspect of the evaluation model from 
the semantic aspect of strictness. Although parallel eager evaluation is safe in a 
strict language, e.g. SISAL (Bohm et al. 1991), modern dataflow language such as Id 
(Nikhil 1989) and pH (Aditya et al. 1995) are non-strict in order to minimise data 
dependencies in the program. The runtime-system guarantees that the failure of one 
evaluation does not necessarily result in a failure of the overall computation.

Figure 2.2 demonstrates the execution of the expression square (1+2*3) where 
square x = x*x in the dataflow model. Here the nodes in the graph are opera
tors and the arcs represent data dependencies. The graph is unchanged throughout 
the computation. In the first step the * operator can fire because both arguments 
are available, whereas the + operator has to wait for its second argument. Within the 
square function the result token from the previous computation (7) is duplicated, 
corresponding to sharing the result of an expression in the dataflow model.

O ptim isation s in th e  D ataflow  M od el

The dataflow model aims at exposing a maximal amount of parallelism. Historically, 
it was mainly used as a concrete machine model for special purpose dataflow machines 
with special hardware support for the basic machine operations, e.g. the Tagged-Token 
Dataflow Architecture (Arvind & Nikhil 1990), the Manchester Dataflow machine 
(Gurd et al. 1985), the Monsoon machine (Papadopoulos & Culler 1990), Sigma-1 
(Shimada 1986), PIM-D (Ito et al. 1986) etc. More recent abstract dataflow machines 
significantly depart from the pure dataflow model and use a control-flow language 
as machine independent intermediate language, e.g. the TAM machine (Culler et al. 
1993) and *T(Chiou et al. 1995). However, an implementation on stock hardware still 
faces serious efficiency problems and to overcome these problems many optimisations 
to the basic model are performed.

One of the major inefficiencies of the dataflow model is the extremely fine-grained 
parallelism. Every primitive operation can be implemented as one node in the 
dataflow graph. This yields a high overhead in the parallel execution of the pro
gram. Therefore, special compile time methods for partitioning the dataflow graphs 
and merging the partitions into “macro dataflow nodes” have been developed (Sarkar 
& Hennessy 1986). For example, the Id90 compiler for the TAM machine (Culler 
et al. 1993) iteratively computes dependence and demand sets between nodes in the
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F igure 2.2 The principle of the dataflow model

dataflow graph merging independent nodes into macro nodes. Each of these nodes 
is then realised as a thread in the abstract machine. This analysis can also be done 
globally as is shown in Traub et al. (1992). Furthermore, TAM distinguishes be
tween coarse-grained frames, which are the units of computation and are allocated 
to processors, and these more fine-grained threads operating within a certain frame.
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Having many threads within a frame guarantees latency tolerance in a multi-threaded 
scheduling environment.

As further optimisations several mechanisms from the compilation of imperative lan
guages are integrated into the dataflow model:

•  Activation Frames: Machines like Monsoon use bits in an activation frame to 
indicate availability of a result. In older dataflow architectures an expensive 
associative store was used.

• Memory: Constructs like I-structures (Arvind et al. 1989), single assignment 
variables, and M-structures (Barth et al. 1991), mutual exclusion variables, are 
used for storing and retrieving values. In contrast, the pure dataflow model has 
no store.

• Split Phase Operations: Access to I-structures and M-structures is performed 
via split phase operations, i.e. after executing the operation the thread will 
be automatically descheduled. This is done to overlap communication with 
computation via variable access.

• No explicit dataflow graph: The latest compilation model for pH avoids the use 
of dataflow graphs as an intermediate language (Arvind et al. 1996). Instead it 
uses a sugared version of a call-by-need A-calculus, the A^-calculus, with letrec to 
express sharing, with barriers for explicit synchronisation, and I-/M-structures.

In summary, these optimisations in the dataflow model, as well as the optimisations 
in the graph reduction model discussed in detail in Section 2.4 show a convergence 
towards adopting efficient techniques developed for parallel imperative languages.

2.3.3 Other M odels

Although the SECD, graph reduction and dataflow models are the best known mod
els for parallel functional programming, many other approaches towards a parallel 
implementation have been suggested. This section discusses some of these models.

The Gamma model (Banatre &; Le Metayer 1990) uses the metaphor of chemical 
reactions to describe parallel evaluation. In this model an evaluation step resembles
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the chemical reaction in a pool, a multiset, of atoms: first a matching group of objects 
in an object pool is selected, then an operation on these objects is performed and 
these objects are replaced with result objects. This “rewriting” is repeated until no 
more matching objects can be found. In this model a program is specified by the 
functions for matching and evaluation. This model facilitates a high level program 
derivation approach as well as parallel computation because reactions on disjoint sets 
of atoms can be performed in parallel. However, an implementation faces problems 
of efficiently matching objects, similar to the problems met in token-based dataflow 
implementations. Gladitz &; Kuchen (1996) describe a parallel implementation of this 
model on a shared memory multi-processor.

The NESL system (Blelloch 1996) uses a model of nested data parallelism. It is 
programmed in an SML-like, strict, higher-order language. Parallelism can only be 
expressed implicitly via using sequence operations, similar to Haskell’s list compre
hensions, and via higher-order functions that process sequences in a data-parallel 
fashion. Again this restriction facilitates an efficient implementation of the language. 
It is mainly used for running numerical algorithms on supercomputers such as CRAY 
Y-MP, Connection Machine CM-2, and Encore Multimax.

Finally, several models have been designed for the efficient execution of specific par
allel programming paradigms. The idea here is to gain improved efficiency for a 
restricted but important set of programs. One example of such a machine is ZAPP 
(Burton & Sleep 1981, Goldsmith et al. 1993), which has been designed for the efficient 
parallel execution of divide-and-conquer programs. It performs parallel computation 
on a virtual tree of processors. Communication is performed by message passing. 
No global heap is implemented in this system. Experiments on a transputer based 
implementation of this machine reported nearly optimal speedups for some divide- 
and-conquer programs like n-queens (McBurney & Sleep 1987).

2.4 Runtim e-System  Issues

This section discusses key aspects of the runtime-system in a parallel functional lan
guage that are crucial to the performance of parallel programs. This discussion will 
focus on a model of parallel graph reduction. However, most of these aspects are 
central to any implementation of a parallel functional language.



2.4. Runtim e-System  Issues 34

Many of the issues discussed in this section can be hidden behind a distributed, or vir
tual shared memory implementation and lightweight threads. This has been done for 
SISAL (Freeh & Andrews 1995, Haines & Bohm 1992) and in Rushall’s implementa
tion of lazy task creation on top of a Spineless G-machine (Rushall 1995). However, in 
this approach the possibility of directly influencing low-level issues, via the compiler, 
and optimising the system for a particular computational model like graph reduction 
are lost. Therefore, such an approach is usually just used for prototyping rather than 
for optimised parallel machines. This approach will not be discussed in greater detail.

2.4.1 Evaluation M odels

A major issue in the evaluation model is

How are the parallel threads created and synchronised?

In a parallel implementation it can, and probably will, happen that two parallel 
threads try to evaluate the same expression. The evaluation model specifies

• how and when parallel threads are generated (sparking),

• how to prevent the threads from evaluating expressions already under evaluation 
(locking) and

• how to keep track of and ensure data transfer to threads that need the result 
of an ongoing computation (waiting list).

These three issues describe the interaction between parallel threads and the conceptu
ally shared heap. Another issue that is discussed in this section is the synchronisation 
mechanism between the parallel threads. In particular the following models can be 
used:

• a notification model,

•  a fork-and-join model,

• and an evaluate-and-die model.
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Spark ing : The most commonly used mechanism for generating threads in the graph
reduction model is a sparking mechanism (Clack &, Peyton Jones 1986). This mecha
nism assumes that all parallelism has been exposed on the abstract machine language 
level. This can be achieved via annotations either in the source code or at some stage 
in the intermediate or abstract machine code. When such a parallelism annotation is 
encountered in the code, a spark, usually a pointer to a thunk, is created (see Page 24 
for a discussion of the parallelism annotations).

There are at least two ways to interpret these sparks. They can be either ignorable, 
in which case they represent potential parallelism but the runtime-system is free 
to discard sparks, e.g. when the load of the machine is too high; or they may be 
mandatory, in which case a thread has to be created for this spark eventually. The 
latter variant is more sensitive towards fine-grained parallelism whereas a model of 
ignorable sparks yields a high flexibility in the amount of parallelism that is created, 
by dynamically combining threads. These benefits of ignorable sparks come for the 
price of increased overhead in maintaining a pool of available sparks. Ignorable sparks 
are used in many designs such as GRIP (Peyton Jones et al. 1987), GUM (Trinder, 
Hammond, Mattson Jr., Partridge & Peyton Jones 1996), (is, G?)-machine (Augustsson 
& Johnsson 1989), PABC machine (Nocker, Plasmeijer & Smetsers 1991). Some 
machines like the HDG machine (Kingdon et al. 1991), and the v — STG -machine 
(Hwang & Rushall 1992) use both versions of sparks.

Another way of exposing parallelism during the execution of the program is based 
on the idea of just seeding enough information in the runtime stack to allow the 
extraction of parallelism later on. The motivation of this approach is to further reduce 
the overhead of managing parallelism in the case of sequential execution. The price 
that has to be paid is additional overhead for extracting parallelism out of the seeded 
stack. Rushall (1995) presents an implementation of this idea on top of the Spineless 
G-machine, implemented on a KSR1 multi-processor. Goldstein et al. (1996) have 
implemented a similar scheme in the context of the TAM machine, which is based 
on dataflow inspired compilation. He reports significant runtime improvements for 
rather large programs on a CM-5. A more detailed discussion of these mechanisms is 
given in Section 5.7.1.

Locking: The standard way to implement synchronisation between threads that
try to evaluate the same thunk is via locking the node as soon as evaluation starts. If
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a thread encounters a locked node it joins a waiting list attached to the locked node. 
When the node is updated with the result of the evaluation, all threads in the waiting 
list have to be reawakened. This is the basic mechanism used in GUM(Trinder, Ham
mond, Mattson Jr., Partridge & Peyton Jones 1996), the (is, G)-machine (Augustsson 
& Johnsson 1989), the PABC machine (Nocker, Plasmeijer &; Smetsers 1991), GAML 
(Maranget 1991), EQUALS (Kaser et al. 1997), in fact in most parallel graph reduc
tion machines.

It is critical for the performance of the parallel machine to have efficient locking of 
nodes as well as enqueuing and awakening of threads, because evaluating a node and 
updating it with its result are very common operations in a graph reduction system. 
Therefore, many optimisations to this basic scheme have been studied.

For example, locking a node may be a rather expensive operation requiring atomicity. 
To reduce these costs the GAML system distinguishes on language level between 
application nodes that might be shared and those that are known not to be shared. 
No locking is required for the latter. In general a sharing analysis, e.g. (Jones & 
Le Metayer 1989), would be useful to determine whether a node may be shared. If 
the intermediate language uses a special le tp a r  construct for binding expressions 
that may be evaluated in parallel, locking is only necessary for such letpar-bound 
variables (Hogen &; Loogen 1994). However, it is unclear whether this optimisation 
is desirable in all cases. For example the STG-machine uses a locking mechanism, 
“black holing”, even in a sequential setup. This has two important advantages: a 
cycle in the program can be easily detected because the enter code of a black hole 
produces an error message, and by overwriting the thunk with a black hole heap 
space for the arguments can be freed before the thunk is updated, which helps to 
avoid space leaks. Giving up these advantages is probably only reasonable for an 
optimising compilation.

In order to implement locking efficiently, some machines like the (v, G)-machine, the 
HDG machine, the EQUALS, and the GAML system use a bit in the node to mark 
it as being under evaluation. Other machines like the GUM  or the PABC machine, 
which are based on a tagless design, change the code pointer of the node such that 
entering the node causes the thread to be suspended and added to the waiting list. 
This approach saves a test operation on entering a node.
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W aitin g  L ist: In order to record, which threads are waiting for the result of a
computation, waiting lists are usually used. In the graph reduction model, where the 
result overwrites the original node, the waiting list is usually attached to the locked 
node. This mechanism makes use of the fact that the descriptors for thieads are 
heap allocated and can be referred to by closures without any modification to the 
evaluation model.

All stages from locking, enqueuing a competing thread into the waiting list, updating, 
and reawakening the thread are depicted in Figure 2.3. In this case thread A starts 
evaluating the depicted graph structure and locks the root closure upon entry. When 
thread B tries to access the root it finds the closure locked and B is added tn the, so 
far empty, waiting list of the root closure. Finally, A finishes evaluating the giaph and 
updates the root closure with the result. Upon updating the waiting list, containing 
B, is reawakened and B can continue with its evaluation.

In order to minimise the heap usage of the program many abstract machines reuse 
parts of the node for the root of the waiting list: GUM  uses the first two words of 
the closure, the (i/, G)-machine uses the back-link in the graph structure. The key 
observation, which allows such reuse of parts of a node, is that a waiting list will only 
exist when the node is locked. In this case, only two operations can be performed on 
the node: adding a thread to the waiting list and updating the node with the result. 
In both cases, no direct access to the data stored in the closure is necessary.

The PABC machine reserves space for the root of a waiting list in every node. This 
reduces the overhead of locking a node but increases the heap usage. Hcwever, the 
optimisation of the PABC machine described in Kesseler’s transputer implementation 
(Kesseler 1996) also stores the root of the waiting list in the argument fields of the 
locked node.

An simpler alternative to using a waiting list is polling: a thread that reaches a 
node under evaluation is not removed from the list of runnable threads and it tests 
whether the node has been overwritten to normal form whenever it is rescheduled. 
This eliminates the waiting list overhead but imposes a high load in the presence of 
fine-grained parallelism. A polling mechanism has been implemented and assessed 
in the Concurrent Clean system (van Groningen 1992). The results show that even 
with optimisations to this basic mechanism it is more expensive than a wailing list 
mechanism if the program is fine-grained.



2.4. Runtim e-System  Issues 38

B
waiinglist

locked

reawaken

F igure  2.3 Locking of closures and generation of waiting lists

The pure dataflow model achieves synchronisation between processes by passing to
kens. However, on conventional hardware such an approach has proven to be too 
inefficient. Instead, I-structures (Arvind et al. 1989) are commonly used as the cen
tral means of synchronisation between threads. The behaviour of I-structures is very 
similar to those of waiting lists. Initially, these single-assignment variables are empty 
and a read access is deferred. Since all memory access operations are split-phase op
erations, a deferred read causes an implicit suspension of the reading thread. A list of 
deferred read requests has to be maintained for each I-structure cell. When a value is 
written into the I-structure the read requests can be satisfied by sending messages to 
the requesting processes. An arrival of such a message will reawaken the suspended 
process. This mechanism of synchronisation is used in the Monsoon (Papadopoulos 
& Culler 1990) and *T architectures (Chiou et al. 1995), in the TAM mackim (Culler 
et al. 1993) and in the pHluid system (Flanagan & Nikhil 1996).

The evaluation model of Alfalfa (Goldberg 19886) is one of heterogemous graph 
reduction. In general, this is realised via standard locking of nodes and enqueuing of 
tasks as described above, but all sparks are mandatory. However, in order to optimise 
the execution of sequential components within the program, a stack-based execution 
model is provided, too. The stack-based model does not have to deal with parallelism 
issues because each thread performs sequential execution without being interrupted.
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A distinction between such sequential threads and general parallel threads is made 
in the intermediate language. This uses information automatically infeired by the 
compiler.

T h e N o tifica tion  M od el

In the notification model every child thread is required to notify its paient thread 
upon finishing its computation. The parent thread is blocked until all of its children 
have finished. Usually, this is implemented via a pending counter and an associated 
pending list, the same as a waiting list, of all threads that need the result of this 
evaluation.

One of the first machines that used such a kind of synchronisation mechanism was AL
ICE (Darlington & Reeve 1981), which influenced the design of many later machines 
such as Flagship (Keane 1994), which uses a data-driven rather than a demand-driven 
model, PAM (Loogen et al. 1989), the HDG machine (Kingdon et al. 1991) etc. These 
more recent machines use compiled rather than interpreted graph reduction, thereby 
gaining far higher sequential performance.

The larger-grain graph reduction model (LAGER) (Watson 1988) uses a notification 
model of synchronisation between parallel threads. However, this model uses seeding 
rather than sparking in order to expose parallelism. By default, the code is executed 
in a sequential manner, in order to use optimised sequential code most of the time. 
At statically determined points, code for generating parallel threads is planted.

The evaluation model in the dataflow-oriented TAM machine (Culler et al. 1993) also 
uses explicit synchronisation counters, similar to pending counters, for synchronisa
tion across threads. In TAM a thread is a linear sequence of instructions without 
branching or creating parallelism, somewhat similar to a basic block. A hierarchy 
of controlflow units is defined, from fine-grained, cheap operations, e.g. inlets for 
handling messages, to coarse-grained operations with a comparatively expensive syn
chronisation mechanism. An important difference to the notification model is the 
fact that synchronisation is performed via data-structures, as in the evalua:e-and-die 
model (see Section 2.4.1), rather than directly between threads.
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T h e Fork-and-Join M od el

The fork-and-join model is a special version of the notification model, which implies 
symmetric parallelism. A thread that creates other threads becomes a parent process 
waiting for the results of the children. Thus, synchronisation is performed directly be
tween threads. The fork-and-join model generates a strict hierarchy of threads where 
a parent can only continue after all children have completed. This restriction allows 
to use efficient mechanisms for load balancing. However, a fundamental problem of 
this model is that the usually small computation in the join phase tends to form a 
parallelism bottleneck.

The Dutch Parallel Reduction Machine (DPRM) (Barendregt et al. 1987) uses such 
a fork-and-join model. A special “sandwich” annotation has to be used to generate 
child threads. This annotation has been designed for divide-and-conquer parallelism: 
it specifies a list of sub-computations that should be done in parallel, and a com
bination function. The characteristic feature of this annotation is the reduction of 
all arguments of the sub-computations to normal form before generating parallelism. 
This avoids bottlenecks of sharing data structures between different threads because 
data in normal form can be safely copied. It is up to the programmer to use this 
annotation on expressions of appropriate size in order to generate coarse granularity. 
However, special mechanisms are necessary to improve the granularity in particular 
to avoid harmful thread migration in the join phase (Hofman et al. 1992).

T he E valuate-and-D ie M odel

In contrast to the previous models, the evaluate-and-die model (Peyton Jones et al. 
1987) generates asymmetric parallelism. A thread that creates (potential) parallelism 
does not have to synchronise with the generated child thread, i.e. it forgets about all 
generated work. The only means of synchronisation is via the graph structure the 
threads are working on. In particular, if a thread requires the result of a potentially 
parallel sub-expression, it will start to evaluate that expression itself, thereby sub
suming the computation of another spark. In contrast, the notification model would 
cause the thread to block on the thread evaluating the sub-expression. In the case of 
a high load, i.e. many runnable threads, such subsumption of sparks automatically in
creases the granularity of the threads and reduces the number of parallel threads that 
are generated. However, this mechanism only works for certain, hierarchic structures
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of computation such as divide-and-conquer. In his thesis Roe (1991) [Section 6.5] 
shows that evaluate-and-die cannot improve the granularity for some data-parallel 
programs, which typically exhibit a flat structure of sparks.

GUM(Trinder, Hammond, Mattson Jr., Partridge k  Peyton Jones 1996) uses an 
evaluate-and-die model with ignorable sparks and waiting lists. The (^, G)-machine 
(Augustsson k  Johnsson 1989) uses similar techniques, however, it has been designed 
for shared memory systems and therefore it splits the heap in chunks to be more 
flexible in managing the heap sizes of the individual processors. The HDG machine 
(Kingdon et al. 1991) uses an evaluate-and-die model with tags in each closure indi
cating whether a task for evaluating this closure has been created and whether the 
evaluation of the expression has already begun. It uses both ignorable and mandatory 
sparks assigning them different priorities in a transputer based implementation.

2.4.2 Storage M anagement M odels

In a general model of distributed memory an important question is:

How is the heap distributed between processors?

One possibility to model the distributed nature of the heap in a parallel system is to 
add a new type of closure: a FetchMe, or global indirection, closure. It points to a 
graph structure on a remote processor. When a thread tries to evaluate a FetchMe 
closure, a fetch request for this graph structure is sent to the remote processor. The 
thread gets blocked on the FetchMe closure and will be reawakened upon arrival of the 
graph structure. The same mechanism as for blocking on a closure under evaluation 
can be used in this scheme. If the remote graph structure is itself under evaluation 
the fetch request will block on the locked closure. The reply will be sent only after 
having evaluated the graph structure. This means that the perceived latency in the 
system is unbounded as it depends on the computations being performed on other 
processors. It is therefore important to provide latency hiding mechanisms that allow 
to overlap the communication with useful computation.

The unbounded perceived latency also underlines the importance of data locality in 
order to avoid communication. By data locality we mean the distance between data 
structures required within one thread of computation, where the unit of distance is
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one processor. The goal is to keep all required data on the same processor, avoid
ing communication and thereby improving parallel performance. In sequential im
plementations a stack ensures data-locality and the efficient use of storage. The 
importance of using a stack-oriented evaluation in order to maintain data-locality 
has already been shown in the implementation of heterogeneous graph reduction
(Goldberg 1988a, Goldberg 19886) for lazy functional languages. In Goldberg’s model
a stack-based model is used in the sequential parts of the computation in order to 
achieve high sequential performance and only for the parallel components a packet 
based model of graph reduction is used.

In a parallel system conceptually each thread needs its own stack. Because the cre
ation structure of threads is a tree the stack becomes a cactus stack, with thread 
creation causing a new branch in this stack. The portion of the stack generated be
fore thread creation is shared between child and parent thread. In subsequent sections 
the following possible implementations of a cactus stack are discussed:

1. a linked list of packets;

2. a linked list of stack segments;

3. a contiguous stack that is reallocated when needed; or

4. a meshed stack.

An area related to the storage management model in a parallel system is parallel, 
or more general distributed, garbage collection. However, it is not directly relevant 
to the issues studied in this thesis and will not be discussed in detail. Plainfosse & 
Shapiro (1995) give an excellent survey of distributed garbage collection techniques.

Packet-based M od els

The first designs of parallel graph reduction machines, such as ALICE (Darlington 
k  Reeve 1981, Harrison k  Reeve 1986), used a packet-based reduction method: con
ceptually variable size packets are used to hold the arguments to the code as well as 
local variables needed during the execution of the code. These packets, or frames, are 
linked together during runtime thereby creating a cactus stack structure with each 
packet playing the role of an activation frame. Such a packet-based model does not
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have an runtime allocation overhead because the allocation is done at compile time 
when generating the closure. However, it uses much more heap space and the danger 
of space leaks is much higher because if a closure is still live so are all local variables in 
its frame. In essence, some of the allocation overhead has been moved to the garbage 
collector.

The HDG machine (Kingdon et al. 1991) uses such a packet-oriented approach. It uses 
a special “stacklessness analysis” (Lester 1989) to determine the size of the activation 
record needed to evaluate a node. With this information it is possible to allocate all 
the required stack space in the node itself. No explicit checks for stack overflow are 
required at runtime. In contrast, the (is, Gr)-machine (Augustsson & Johnsson 1989) 
and the PAM machine (Loogen et al. 1989) may have to extend the space allocated 
for one packet if a generic function application, which does not contain information 
about the arity of the function, is used.

Segm ented  Stack M odel

In this model the stack is allocated in the heap but separated from closures in the 
graph. By splitting the stack into segments this model can efficiently handle small 
threads without wasting space on a large stack. For large threads it must be possible 
for the stack to grow by allocating new segments. In contrast to the packet-based 
model, these segments are separate from activation frames and changing the size of 
the stack segments can be a useful tool in the performance tuning stage of parallel 
program development.

Of course, the increased flexibility imposes some runtime overhead when allocating 
new stack segments. However, in practice segment sizes are chosen high enough to 
avoid the creation of long lists of stack segments even if this leads to some waste 
in heap space. One particular danger of this model is “stack thrashing” : if the 
stack grows and shrinks rapidly across segment boundaries many segments have to 
be allocated. Additionally, to increasing the runtime overhead this creates a lot of 
garbage stack segments, which increases the garbage collection rate, unless garbage 
stack segments are kept on a special list for further reuse. Therefore, it might be 
better to leave some headroom in each stack segment that can be used upon returning 
from a discarded stack segment. The GRIP (Peyton Jones et al. 1987) and GUM 
(TYinder, Hammond, Mattson Jr., Partridge & Peyton Jones 1996) machines use
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such a segmented stack model.

C ontiguous Stack M odel

In this model each thread uses a monolithic block of heap space as its own stack. This 
achieves good data locality, similar to the sequential evaluation. If the stack runs out 
of space it has to be enlarged using standard re-allocation. However, this is a rather 
expensive operation and should be avoided whenever possible. Therefore, in practice 
rather big stacks are used.

The main disadvantage of this scheme is the huge waste of heap space if many threads 
do not require a lot of stack. This model is far less suited to dealing with threads of 
different sizes compared to the previous two approaches. The PABC machine (Nocker, 
Plasmeijer & Smetsers 1991) uses this kind of stack model.

M eshed Stack M odels

The meshed stack technique eliminates a parallelism overhead in case of sequential 
computation by interleaving all local stacks into a single stack. This avoids the 
necessity of allocating the stack in the heap. This concept was first introduced under 
the name of spaghetti stack by Bobrow & Wegbreit (1973). The main idea is to mark 
activation frames that are not on top of the stack as garbage and to run a special 
compacting garbage collector on the meshed stack if it runs out of space.

This mechanism drastically reduces the overhead when sequential execution is per
formed because there is no need for allocating new stack segments. It also achieves 
very good data locality because data is not attached to closures in the heap. However, 
since the single meshed stack is a centralised resource, it is very hard to implement 
thread migration on top of this stack model. The meshed stack model has been in
troduced for the PASTEL machine (Hogen & Loogen 1994) and was inspired by the 
handling of backtracking in the Warren Abstract Machine (WAM) for implementing 
logic languages (Warren 1983). Measurements comparing this model with a packet- 
based model using an interpreter on a transputer system show that the amount of 
heap allocations is reduced up to a factor of two and the runtime improves by about 
20% (Hogen & Loogen 1995).



2.4. Runtime-System Issues 45

2.4.3 Communication M odels

This section tackles the following question:

How is data exchanged between processors?

One of the main sources of overhead in a parallel system is communication. In 
most parallel architectures communication is much more expensive than computa
tion. Therefore, it is very important to provide good data locality in order to avoid 
communication.

To this end, it is useful to distinguish several aspects of the communication model:

1. Data placement: Is data moved to a thread or vice versa?

2. Latency hiding: Can the communication be overlapped with useful computa
tion?

3. Packing: How much data should be sent in one packet?

An important issue for hiding communication costs is multi-threading, i.e. a schedul
ing method that allows the interleaved execution of several threads of computation. 
In particular, it is possible to deschedule a thread waiting for data and to sched
ule another thread, which can perform computation in the meantime. This section 
discusses details of this method.

D a ta  P lacem en t

One important issue for the data locality in the system is data placement, which 
describes how to handle the distribution of data during the execution of the program. 
Whenever the result of a remote thunk is required by a local thread there are two 
possibilities of communication:

•  Send the thunk to the demanding process, evaluate it locally by this process and 
replace it with a global indirection on the remote processor (local evaluation).
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• Start a thread on the remote processor to evaluate the thunk and then send the 
result to the demanding process (remote evaluation).

The advantage of the local evaluation scheme is that it minimises the delay in ob
taining the result. Furthermore, parallelism is only created via picking a spark from 
a spark pool, not as a side effect from receiving a message. This simplifies load 
management. The local evaluation model is used in Flagship (Keane 1994), GRIP 
(Peyton Jones et al. 1987), and GUM (Trinder, Hammond, Mattson Jr., Partridge 
&; Peyton Jones 1996). The remote evaluation scheme, however, might increase data 
locality by avoiding a distribution of subgraph structures. Because of the poten
tially high hidden latency imposed by performing the evaluation on the remote pro
cessor, an effective latency hiding mechanism is required. There is a higher dan
ger of a severe load imbalance attached to this scheme if no thread migration is 
provided because some processors may become hot-spots of computation. The re
mote evaluation scheme is used for example in the PABC machine (Nocker, Plasmei- 
jer k  Smetsers 1991, Kesseler 1996), in the proposed v — STG -machine (Hwang k  
Rushall 1992), in PAM (Loogen et al. 1989), and in the related PASTEL (Hogen k  
Loogen 1994) machine. Alfalfa combines the remote evaluation scheme with an active 
work distribution scheme which sends available work to idle processors, rather than 
have idle processors ask for work.

L atency H id in g

The latency in a parallel machine is the time required to send one piece of data 
between two processors. In practice, latency often varies between pairs of processors 
and also depends on the network traffic. One way of reducing the impact of the 
communication costs on the performance of the system is latency hiding. The idea 
of this scheme is to overlap the communication with some useful computation on the 
local processor. In general, when a thread requests remote data the processor can 
either:

• block while waiting for the data (synchronous communication) or

• execute another thread (asynchronous communication).

The second option imposes some overhead on the runtime-system because it has 
to support multi-threaded scheduling on each processor. However, as a result it is



2.4. Runtime-System Issues 47

possible to hide the latency in the system if at every point when data is requested 
enough parallelism is available to perform useful computation.

In a model of synchronous communication a processor is blocked if a thread requests 
remote data. This kind of communication only makes sense if the ratio of latency to 
the time needed for scheduling is very small. In such a case it is more efficient for the 
processor to block on a thread that is waiting for remote data, rather than deschedule 
it and look for another thread to run.

In contrast, asynchronous communication, allows other threads to run while one 
thread waits for the arrival of remote data. This behaviour allows the overlapping 
of communication and computation and is essential for latency hiding. It is worth 
noting, that machines based on the dataflow model, which usually generate a huge 
number of fine-grained threads, put a specific emphasis on latency hiding, e.g. TAM 
(Culler et al. 1993), *T (Chiou et al. 1995), pHluid (Flanagan & Nikhil 1996). In these 
models certain instructions like accessing an I-structure or writing to it, cause an au
tomatic descheduling of the current thread. Therefore, these split-phase instructions 
implicitly define the length of one sequential thread of computation.

Packing

Finally, the aspect of packing has to be considered. The question here is how much 
data to pack into one packet when transferring data. By developing a pre-fetching 
packing scheme a graph reduction system can realise a caching scheme that exploits 
the structural information of the program, which is encoded in the graph. The goal of 
such a scheme is to reduce the total communication cost by increasing the granularity 
of the communication. However, if the packing scheme also pre-fetches thunks, which 
represent work, it may lead to a very uneven load balance and even deteriorate data 
locality.

In the context of the PABC machine (Kesseler 1996) examines different “copying 
strategies” for the Concurrent Clean system on a transputer network. Finally, he 
develops a lazy normal formal copying strategy, which copies normal form closures 
and only those non normal form closures that are specially annotated in the program. 
We have implemented several “packing schemes” in the G ranSim simulator. In mea
surements of these schemes, a scheme that packs a full-subgraph generally performed 
best. However, for some communication-intensive programs a scheme that only packs
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normal forms performed better. These packing schemes are discussed in detail in 
Section 3.3.1.

2.4.4 Load Distribution

The question that is examined in this section is dual to the question how the heap is 
distributed over all processors:

How is work distributed and balanced between processors?

From a global point of view it is useful to distinguish two approaches toward load 
distribution:

• Passive load distribution where idle processors have to explicitly ask for work, 
and

• active load distribution where new threads are sent to remote processors.

Passive load distribution, which is sometimes called work stealing, tries to minimise 
the overhead during periods in which all processors are busy anyway. However, this 
may yield an uneven load distribution if few threads are creating a lot of parallelism. 
In contrast, active load distribution sends, by default, a new thread to a remote 
processor for execution. Although this gives a more even load distribution it may 
yield a deterioration in the data locality of the system. In both cases, however, it is 
desirable to have load information about other processors available. Obtaining such 
information may require significant communication and therefore all machines have 
to find a compromise between the competing goals of an even load distribution and a 
minimal amount of communication. As a result, many implementations use a random 
allocation mechanism, e.g. ALICE (Harrison & Reeve 1986).

For example, GUM (Trinder, Hammond, Mattson Jr., Partridge & Peyton Jones 
1996), a system of passive load distribution, uses a “fishing” mechanism, where re
quests are sent to random processors. Some delay is added to avoid flooding the 
system with work requests, a problem observed on ALICE (Harrison & Reeve 1986), 
and allowing just one outstanding fish per processor. Because GUM packs more than 
one thunk into a packet, some pre-fetching of work is performed. The HDG machine
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(Kingdon et al. 1991) sends requests only to neighbouring processors. They return 
work if they have at least two tasks where one of them has not been started, yet. 
This is similar to the strategy used in ZAPP (McBurney & Sleep 1987). On ZAPP 
and GRIP experiments have been performed with pre-fetching work, i.e. asking for 
work when the local pool of work falls below a certain threshold. However, this did 
not in general yield better performance. The PAM (Loogen et al. 1989) system reg
ularly exchanges information about the workload of neighbouring processors in order 
to improve the load balance. It uses passive load distribution and exploits the load 
information in order to decide which processor to ask for work.

In contrast, the Alfalfa machine is based on active load distribution. Extensive studies 
of various different load balancing schemes (Goldberg 19886) have been performed on 
this distributed memory architecture. As a result, diffusion scheduling with a simple 
load balancing heuristic performed best. The idea of diffusion scheduling is to send 
work only to neighbouring processors and to pick the least loaded processor. Thus, 
only load informations from the neighbours is required. However, this method may 
react rather slowly to rapidly changing load situation and to hot-spots in the system. 
On Alfalfa it showed satisfying results, even though no task migration is supported 
in this implementation.

Issues closely related to load balancing are load bounding and throttling, which aim 
at avoiding an excessive amount of parallelism in the system. It is important not to 
prohibit a large amount of parallelism by design because this would diminish its scal
ability. However, typically functional languages exhibit an abundance of parallelism, 
which requires some techniques aiming at limiting the total number of generated 
threads. Problems with load bounding have been observed on ALICE (Harrison & 
Reeve 1986), ZAPP (McBurney & Sleep 1987), on PAM (Loogen et al. 1989), and 
on many dataflow machines. This problem is related to the fine granularity of the 
threads that are normally created.

A simple but quite effective mechanism for load bounding has been developed on 
ZAPP (McBurney &; Sleep 1987): when the load of the machine is low the runnable 
queue is treated as a FIFO queue, favouring threads near the root of the divide-and- 
conquer tree. However, when the load drops below a certain threshold a LIFO mech
anism is used. A similar mechanism has been adapted on the Manchester Dataflow 
machine (Gurd et al. 1985), where a hardware throttle examines the length of the to
ken queue to decide whether a new thread should be generated or whether it should
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be suspended. In the latter cases it may be reactivated at some later time when 
the load drops below the threshold (Ruggiero & Sargeant 1987). Similar techniques 
have been used in the LAGER model (Watson 1988), in the STARiDUST machine 
(Ostheimer 1991), and in the 7r-RED+-machine (Biilck et al. 1994) via a limited supply 
of tickets.

2.5 Our M odel

This section locates the model of G ranS im and GUM  in the design space outlined in 
the previous sections. The detailed discussion of G ranS im in the following chapter 
will show that both models are almost identical.

In short, the characteristics of the G ranS im/G U M  model can be specified as follows:

• Implementation model: parallel graph reduction

• Evaluation model: evaluate-and-die

• Thread placement: local evaluation

• Communication: message passing

• Storage management: segmented stack

• Load distribution: passive

• Scheduling: multi-threading, unfair

The choice of this particular model has been motivated by experiences from parallel 
functional programming on the G R IP  machine (Hammond & Peyton Jones 1992, 
Hammond et al. 1994), which uses parallel graph reduction, an evaluate-and-die model 
of computation and passive load distribution. In order to support general parallel 
architectures message-passing is used for communication. In order to support higher 
latency systems multi-threading has been added as a means of hiding latency.
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Im p lem en ta tio n  m odel: The implementation model is an extension of the Spine
less Tagless G-machine (Peyton Jones 1992). In the parallel system new types of clo
sures such as FetchMe closures (see Section 2.4.2) and waiting lists (see Section 2.4.1) 
have to be added. Furthermore, the notion of a global address has to be introduced 
to uniquely identify closures on different processors. Threads and stacks are modelled 
as special closures.

E va lua tion  m odel: Our model uses an evaluate-and-die model as described in
Section 2.4.1. This model was very successful on G R IP. One of its most important 
features is the possibility to dynamically increase the granularity of threads. An 
explicit, distributed spark pool is used for maintaining sparks. One difference between 
GUM and G r a nSim is that the latter can use an infinite spark pool.

D a ta  p lacem en t: In our model we use local evaluation of data that is needed by
a thread. In this approach the delay in obtaining a result does not dependent on the 
load of a remote processor. Therefore, the perceived latency is reduced. In general, 
however, it is not clear whether local or remote evaluation will yield better results. 
It is an interesting topic for future work.

C om m unication : The communication is modelled via message passing between
different processors. This yields a very portable implementation. By using packing 
routines that are tailored to graph reduction it is possible to exploit the information 
contained in the structure of a graph to be sent.

S torage m an ag em en t: Our model uses a segmented stack storage management
model. This minimises the waste due to too large stacks, and increases the data local
ity compared to packet based approaches. GUM uses a weighted reference counting 
mechanism for performing distributed garbage collection (Bevan 1987). However, we 
will not explore issues related to garbage collection in more detail here.

Load d is tr ib u tio n : GUM uses a passive model of work distribution by imple
menting a work stealing mechanism. This mechanism tries to minimise the number 
of messages required for load distribution, but may produce a rather uneven load
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balance. G ranS im simulates this model but offers more flexibility, for example al
lowing several steal requests per processor at the same time. No load information is 
exchanged between the processors.

Scheduling: Our model uses multi-threaded scheduling, which is essential to hide
latency. In GRIP (Peyton Jones et al. 1987) synchronous communication was used 
and therefore multi-threading was not necessary.

2.6 Summary

This chapter has shown that parallel graph reduction is a very natural model for 
expressing parallel execution. In common parallel machines its rather high level de
scription of computation requires an efficient mapping of basic operations like locking 
closures and handling waiting lists onto standard hardware. This is a similar situation 
as in the dataflow community where the current trend is to depart significantly from 
the core model, using a few selected standard synchronisation constructs to imple
ment a functional language. One main source of cross-fertilisation in this area has 
been in adopting an aggressive multi-threading approach within a graph reduction 
framework.

Two aspects of the dynamic behaviour in a parallel graph reduction system require 
special attention: data locality and granularity. The former is crucial to avoid unnec
essary communication, the latter is essential for minimising the overhead for parallel 
computation. Chapter 5 will focus on mechanisms for improving granularity. How
ever, before focusing on the issue of granularity the following chapter will describe the 
underlying parallel machine and its simulator, G ranS im , in more detail. In doing 
so, variants in implementing crucial runtime-system operations, as outlined in this 
chapter, will be discussed.



Chapter 3

GranSim—  A Simulator for 
Parallel Haskell

Capsule

The main m otivation for sim ulating the parallel execution of a functional 

program is to abstract from machine specific details and from the often non- 
deterministic behaviour o f a com plex parallel system . Such an abstraction  

enables the programmer to focus on the parallelism inherent in an algorithm, 

taking an algorithm-oriented view of parallel execution. In order to support 

such a view a very simple simulator is sufficient. For example, communication  

costs are often ignored in order to expose the maxim al amount o f parallelism  

in the program. The GRANSlM-Light setup of the simulator presented in this 

chapter supports this view by modelling an idealised machine w ith zero com

munication costs and an infinite number o f processors.

For the subsequent studies on granularity, however, such an approach is not 
sufficient. For studies on this level of detail, involving aspects of the underly
ing runtime-system, a more detailed system-oriented view of parallel execution 
is taken. For this approach it is crucial to accurately model a wide range of 
parallel machines that differ in the implementation of basic operations like inter- 
processor communication. Therefore, flexibility and accuracy are two equally 
important, though competing, aspects in the design of G r a n S im . For the over
all accuracy of the simulation it is important to achieve a balance between the 
accuracy of the compilation (to avoid naive generation of inefficient sequential 
code), of the computation, and of the communication during the simulation. 
In order to meet these requirements of flexibility and accuracy G r a n S im has 
the following crucial features:

53
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• It offers different variants for many basic runtime-system operations like 
communication.

• It uses a state-of-the-art optimising compiler (GHC) for generating graph 
reduction code.

• It measures computation time in machine cycles rather than reduction 
steps.

• It accurately models the communication in a parallel system.

• It offers granularity improvement mechanisms to improve the performance 
of parallel programs.

GranSim has been used in the parallelisation of several large programs. In 
this process, it has proven to be robust and to be an important component of 
the parallel engineering environment. This is being underlined by its current 
use at several universities worldwide.

3.1 Introduction

In the parallel functional programming community simulators are very popular, e.g. 
(Runciman & Wakeling 1993, Roe 1991, Deschner 1989, Joy &; Axford 1992). They al
low the programmer to take a very abstract view of parallelism, matching the rather 
abstract view of computation that is supported especially by lazy functional lan
guages, where definition is cleanly separated from control. However, when running 
the program on a real machine low-level details of the execution can no longer be 
ignored. These details may very well be the reason for not obtaining the parallelism 
that is present on a more abstract level. At this stage the development of a parallel 
algorithm or the parallelisation of an existing algorithm turns into the performance 
tuning for a specific parallel machine. Although simulators for exactly modelling 
such machine details exist (Bennett 1993, Hofman 1994, van Groningen 1992, Keller 
& Lin 1984, Morais 1986, Watson 1989), they usually lack the ability to model a wide 
range of parallel architectures.

G r a n S im , a simulator for the parallel execution of Glasgow Parallel Haskell (GpH)  
(see Section 2.2.3), helps the programmer in both stages. Different setups of the 
simulator reflect different views of the parallel execution: an algorithm-oriented view 
is supported by the G r a n S IM-Light setup, whereas a less abstract system-oriented
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view is supported by the standard setup of G r a n S im . In the latter setup G r a n S im  

can simulate most MIMD machines by tuning the available parameters specifying the 
characteristics of the parallel machine. The limits of such a simulation are discussed 
in Section 3.5.

G r a n S im  uses a parallel graph reduction model of computation as discussed in Sec
tion 2.3.1. The particular implementation is based on the Spineless Tagless G-machine 
(STGM) (Peyton Jones 1992), with the parallelism annotations par and seq, which 
have been discussed in Section 2.2.3. The STGM has been chosen as the underly
ing abstract machine, because it is used in the Glasgow Haskell Compiler (GHC). 
Therefore, G r a n S im  can make use of GHC for performing the compilation. The 
GUM  system, a portable parallel runtime-system for Haskell (Trinder, Hammond, 
Mattson Jr., Partridge & Peyton Jones 1996), uses the same abstract machine and 
a subset of the same annotations as G r a n S im . For realising the communication be
tween the processors, GUM uses the PVM communication harness. Thereby, GUM 
achieves a high level of portability and it has been used on shared-memory machines, 
distributed-memory machines and workstation networks already. The development of 
G r a n S im  and GUM  was independent, but in several cases influential. As a result of 
using the same abstract machine, G r a n S im  can be parameterised to closely resem
ble the GUM  system. However, as will become clear from this chapter, G r a n S im  is 
much more flexible than just simulating the GUM  system.

The two main topics studied in this thesis are large-scale parallel programming and 
granularity. The first topic requires an algorithm-oriented view in developing and 
tuning a parallel program. A more detailed system-oriented view is needed in order 
to run it on a particular parallel machine. The study of granularity also requires a 
system-oriented view in order to model and study different runtime-system features. 
In particular for the latter view the flexibility and the accuracy of the simulator are 
of special interest. These issues will be emphasised in the following discussion.

The core system of G r a n S im  has been developed jointly with Dr. Kevin Hammond 
and Dr. Andrew Partridge. This initial version includes the basic design of the dis
tributed heap, of spark pools, and of thread pools. This design was based on the 
runtime-system of GRIP for PVM (Hammond 1993) and GRAPH for PVM (Loidl & 
Hammond 1994), two versions of a port of the GRIP runtime system using PVM to 
perform communication. The latter added multi-threading and asynchronous commu
nication to the original GRIP runtime-system. Part of the support for multi-threading
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in G r a n S im  is based on the existing implementation of the GHC runtime-system for 
Concurrent Haskell (Peyton Jones et al. 1996). The extensions developed in this 
thesis on top of the core version of G r a n S im  include the design and extension of 
the communications system with asynchronous communication, several variants of 
rescheduling, bulk fetching with several variants of packing graph structures (see 
Section 3.3.1). An extension of the work request mechanism, several granularity im
provement mechanisms, and the idealised GRANSiM-Light setup (see Section 3.4) 
have been implemented. These extensions are necessary to study a variety of ar
chitectures and to specifically focus on granularity aspects of the parallel execution. 
Finally, G r a n S im  has been integrated into GHC and is now publicly available from 
the GHC web page (GranSim 1998) for both Haskell 1.2 and 1.4.

The structure of this chapter is as follows. Section 3.2 presents the global structure 
of the simulator. Section 3.3 discusses its main characteristics, distinguishing it from 
other simulators. Section 3.4 focuses on the GRANSiM-Light setup. Section 3.5 
addresses shortcomings of the current version of the simulator. Section 3.6 validates 
the results obtained from G r a n S im  by comparing them with results from H B C PP, 
G R IP  and GUM. Finally, Section 3.7 summarises.

3 . 2  S t r u c t u r e  o f  G r a n S i m

Figure 3.1 shows the global structure of G r a n S im . In the standard setup G r a n S im  

simulates a finite number of processors. The GRANSiM-Light setup drops this re
striction in order to provide an algorithm-oriented view of computation that exposes 
the total amount of parallelism available in a program. GRANSiM-Light is discussed 
in more detail in Section 3.4.

Each of the simulated processors has its own spark pool and thread pool as well 
as its own clock. Clock synchronisation is performed via accessing the global event 
queue, which is sorted by the time stamps of the entries in this queue. The spark 
and thread pools are physically distributed but logically shared. Explicit messages 
between processors have to be simulated in order to transfer sparks and threads 
between processors.

The simulation is event driven with events representing actions related to the par
allel nature of the program execution like thread creation, communication etc. The
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TYPE
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Global Event Queue
Spark Pool Thread Pool

Proc 1 Proc 2 Proc n

F igure  3.1  Global structure of G r a n S im

events in the global event queue contain information about the type of the event, a 
time-stamp, the processor where it is happening and a link to the thread state object 
(TSO), a descriptor of the thread affected by the event. The statistics buffer accu
mulates important information such as the runtime, fetchtime, blocktime, amount of 
heap allocations etc.

From the presentation of the principles of parallel graph reduction in Section 2.3.1 
it should be clear that the management of the spark and thread pools is fundamen
tal for the behaviour of a parallel graph reducer such as G r a n S im . Therefore, we 
concentrate on the discussion of these two issues.

Spark  M anagem ent: The spark pool holds sparks generated by threads on this
processor as well as those obtained from other processors. By default it is managed as 
a first-in first-out (FIFO) queue. This means that older sparks appear earlier in the 
spark queue. Although this mechanism is likely to pick larger pieces of work first if 
the program has a divide-and-conquer structure, this is not necessarily the best way 
to manage the spark pool. Alternatives will be discussed in Section 5.5. In contrast 
to recent work on lazy threads (Goldstein et al. 1996), which tries to eliminate a



3 .2 . S tru ctu re  o f  G r a n S im 58

separate spark pool altogether (see Section 5.7.1), such an explicit spark pool gives 
the runtime-system a handle to control the behaviour of the parallel program on a 
rather low-level, e.g. by attaching granularity information to individual sparks.

From the user’s point of view two aspects of sparks deserve special attention. First 
of all, G r a n S im  uses an evaluate-and-die model of computation, as discussed in 
Section 2.4.1. This means that one parallel thread may perform a reduction, for 
which another spark has been created. In short, sparks may be subsumed (Peyton 
Jones et al. 1987). This mechanism improves the granularity of the program to some 
degree. This issue is studied in greater depth in Chapter 5. Another important 
aspect of sparks is the fact that they may be discarded by the runtime-system. This 
is done for example when the closure, which should be evaluated, is already in weak 
head normal form (WHNF). It might also happen during garbage collection. For 
the programmer this means that he cannot rely on all sparks actually being turned 
into threads. This might be a problem if a spark is discarded although it drives the 
parallelism by generating many more sparks.

T h read  M anagem ent: Each processor maintains a pool of runnable threads. Like
the spark pool, the thread pool is implemented as a FIFO queue. The default schedul
ing algorithm for the threads is unfair: the currently running thread will only be 
descheduled if it demands a closure that is under evaluation by another thread or if it 
has to fetch remote data and asynchronous communication is enabled. If synchronous 
communication is turned on, the whole processor will be blocked while the data is 
fetched. In a previous version of G r a n S im  a fair round robin scheduling mechanism 
was implemented. However, comparing simulations with these two variants of the 
scheduling mechanism showed only minor differences in the overall behaviour whilst 
increasing the simulation time significantly. The same unfair scheduling algorithm is 
also used in GUM.

A potential problem with unfair scheduling is that a single thread may exhaust all 
system resources. However, so far only the largest of our example programs, Lolita, 
causes such resource problems. Even in this case simulation time is a more serious 
limiting factor than resource exhaustion.
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3.3 Characteristics of GranSim

This section discusses the main characteristics of G ranS im, showing that the level 
of detail presented by the simulation supports a system-oriented view of parallel 
computation. In particular, the flexibility and the accuracy of the simulation will 
be discussed. Furthermore, a set of visualisation tools that have been implemented 
while developing G ranS im proved to be crucial for a detailed analysis of the dynamic 
behaviour of the parallel programs.

The main characteristics of G ranS im are

1. Support for different levels of abstraction;

2. Flexibility in simulating different parallel machines and different features of the 
runtime-system;

3. Accuracy of the simulation;

4. Visualisation of the dynamic behaviour and of the granularity of the program;

5. Efficiency of the simulation;

6. Integration of G ranS im into a state-of-the-art optimising compiler (GHC);

7. Robustness of G ranS im;

8. Using Granularity Information in the runtime-system.

Different levels of abstraction are provided by supporting both a G ranS IM-Light 
and a standard G ranS im setup. In the latter configuration it is possible to abstract 
from certain aspects of the parallel execution, such as the communication latency, by 
setting the corresponding parameter to zero. This will become clear when discussing 
the simulation parameters in the following section. The GranSim User’s Guide (Loidl 
1996) contains a complete presentation of these parameters. A detailed discussion of 
the granularity improvement mechanisms in particular is given in Chapter 5.
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3.3.1 Flexibility

G r a n S im  enables the programmer to model a wide range of parallel architectures. 
This is possible by tuning many of the low-level characteristics of the parallel machine. 
For example the communication behaviour of a machine can be modelled by specifying 
several parameters like communication costs such as latency, message pack time etc, 
and the strategy that is used for packing a graph, such as incremental packing or bulk 
packing. The overhead imposed by the simulated runtime-system can be specified by 
setting costs for thread creation, context switch, etc. The specifics of the underlying 
processor can be changed, too (see Section 3.3.2).

Crucial for the flexibility of the simulator is its ability to simulate several different 
variants of important operations of the runtime-system. Variants of the most impor
tant operations in G r a n S im  are:

• Bulk fetching versus incremental fetching: different packing schemes specify how 
much of a graph to pack into one packet.

•  Synchronous versus asynchronous communication: different rescheduling schemes 
specify what to do while waiting for remote data.

•  Migration: is a toggle indicating whether a runnable, but not running, thread 
may be moved ( “migrated”) to another processor. Experiments on GRIP have 
shown that migration, although very expensive, is essential for the performance 
of some programs (Hammond & Peyton Jones 1990). Migration is not imple
mented in GUM.

• Some of the more experimental features implemented in G r a n S im  are: throt
tling communication by bounding the number of outstanding fetch requests, 
prefer stealing of threads over sparks, and prefer sparks of local closures over 
remote closures, to improve data locality.

The simulator is based on experiences from real parallel systems (G R IP, GUM) and 
therefore accurate in modelling aspects of the runtime-system. In fact, to a large 
extent G r a n S im  shares the same code with GUM.

This close relationship between G r a n S im  and GUM encourages the prototype imple
mentation of runtime-system features not yet available in GUM. The author has used
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this possibility in implementing and measuring various packing schemes and various 
rescheduling schemes in G r a n S i m  (Loidl & Hammond 19966), which are discussed 
in the following sections.

P a c k i n g  S c h e m e s

A packing scheme prescribes how much of the graph to transfer to a processor that 
sends a fetch request for one closure. For example, an incremental fetching scheme 
only sends the closure that is immediately requested. This scheme aims to minimise 
the total number of closures that are sent during the execution of the program. This 
is achieved by fetching closures lazily when they are known to be required. However, 
this means that the requesting thread has to block for every remote closure, involving 
some delay determined by the latency of the machine. Such an incremental scheme 
has been used in the low-latency G R IP  system.

In contrast, a bulk fetching scheme transfers a group of related closures in a single 
packet. The per-packet overhead is higher because packet construction and decon
struction are much more complicated. The gain is in reduced perceived latency per 
closure, because many nodes will be transferred in a single packet, and so will not 
need to be transferred individually if they are needed. As a refinement of this mech
anism G r a n S i m  offers the possibility to specify a bound on the packet size or on 
the number of thunks that can be packed into a single packet. If neither limit is 
specified, all the graph that is reachable from the requested node will be packed into 
the packet. Note that packing multiple thunks into one packet essentially amounts 
to eager work distribution. The GUM  implementation currently uses a full-subgraph 
packing scheme but imposes a limit on the packet size.

Figure 3.2 depicts the bulk fetching mechanism in action on a simple graph that 
involves sharing. The left hand side shows the graph before packing takes place, 
the right hand side shows the graph as it has been updated following packing. The 
centre of the diagram shows the packet that is constructed to transmit the graph. 
Shading is used to depict thunks, normal form closures are left unshaded. The packing 
algorithm traverses the graph structure in a breadth-first fashion. Each closure is 
given a global address which is used to preserve sharing both across the system and 
within the packet. When packing a thunk the original closure is overwritten with a 
FetchMe closure (lightly shaded), which acts as a global indirection to remote data
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F ig u re  3.2 The bulk fetching mechanism (with 3 thunks per packet)

(see Section 2.4.2). In contrast, normal form closures are duplicated by copying them 
into the communication packet.

The example in Figure 3.2 shows a packing scheme that packs a maximum of 3 
thunks into a packet. Therefore one thunk is left behind on the original processor 
and is referenced by a FetchMe closure in the packet. A particularly useful version 
of this scheme is a normal-form-only packing scheme, which does not pack a thunk 
except for the root of the graph but it includes all normal forms before the first thunk 
because they can copied without duplicating work. The GUM system currently packs 
a full subgraph until one communication packet is filled.

R escheduling  Schem es

A rescheduling scheme prescribes what the processor should do after having sent 
a fetch request to another processor. Two basic rescheduling schemes realise syn
chronous communication, where the processor waits for the remote data, and asyn
chronous communication, where another piece of computation is done in the interim. 
The latter amounts to latency hiding, since useful work can be performed until the 
requested data arrives.
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Four different levels of rescheduling schemes specify how aggressive a processor will 
be in trying to obtain work:

1. only execute another runnable thread;

2. turn a spark into a thread if no runnable threads are available;

3. try to acquire a remote spark if the processor has no local sparks;

4. try to migrate another runnable thread if no remote sparks can be found.

These schemes are cumulative, so that thread migration will only be attempted if 
the three previous schemes have failed, etc. Note that the third and fourth ‘global’ 
rescheduling schemes will involve communication in order to obtain new work. In 
particular, the fourth scheme may introduce gratuitous thread migration towards 
the end of the computation, when the system load is low. The G R IP  system uses 
synchronous communication and the GUM  system currently tries to obtain remote 
sparks if no local work is available, corresponding to the third scheme in the list 
above.
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F igure  3.3 A comparison of packing and rescheduling schemes

Figure 3.3 shows two of the measurements presented in Loidl & Hammond (19966). 
The test program is the LinSolv algorithm discussed in Section 4.6. The left hand
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graph compares different packing schemes in combination with synchronous and asyn
chronous communication. The graph shows relative runtimes (in percent) with an in
cremental synchronous fetching scheme as the baseline. The best results are achieved 
when using a bulk fetching scheme with asynchronous communication. We observe 
a reduction of the total runtime of 17% and 28% for latencies between 1,000 and 
50,000 cycles and a reduction of 50% at a latency of 260,000 cycles. The relative 
improvement in runtime increases for higher latencies. The graph also shows that 
bulk fetching should not be combined with synchronous communication because this 
would prevent the processor from performing useful work while waiting for the data.

The right hand graph of Figure 3.3 compares different rescheduling schemes with 
varying latencies. The baseline in this case is Scheme 3, which is used in GUM. This 
graph demonstrates that the best choice of a rescheduling scheme depends on the 
latency of the machine. For low latencies the more aggressive global schemes perform 
best since there is little cost associated with fetching work from remote processors. 
The improved load distribution outweighs the increased communication caused by a 
deteriorated data locality. However, for high latencies the dominant cost becomes 
that of moving data between processors. In this case, data locality is more important 
than an even load distribution. Therefore, the local rescheduling schemes usually 
perform better than the more aggressive schemes.

More detailed measurements with all different variants are presented and assessed in 
Loidl & Hammond (19966). Several medium-scale programs have been used to test 
different packing and rescheduling schemes in setups with varying latencies. From 
these measurements the following conclusions can be drawn:

• Rescheduling schemes: For low latencies, where an even load distribution is 
more important than high data locality, aggressive rescheduling schemes deliver 
good work distribution and therefore good performance. For high latencies, 
however, the improved load distribution does not compensate for reduced data 
locality. The crossover point usually lies between 15,000 and 30,000 cycles, i.e. 
loosely-coupled multiprocessors.

• Packing schemes: In general, full-subgraph packing proves to be the best pack
ing scheme. In practice, there is little danger that such a packing scheme will 
cause a disastrously uneven load distribution.
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• Thunk stealing: Occasionally the full-subgraph packing scheme causes thunk 
stealing: the gratuitous offloading of thunks that will be needed later. This 
increases communication costs and hence reduces performance. We believe that 
thunk stealing is the reason for full-subgraph packing sometimes being worse 
than those schemes that pack a limited number of thunks per packet. This does 
not happen very frequently, however.

• Bulk versus incremental fetching: For low latencies (up to about 100 cycles) 
there is no difference in the performance of bulk and incremental fetching. Es
pecially for very high latencies (more than about 50,000 cycles) bulk fetching 
achieves significant runtime improvements compared to incremental fetching 
even when using asynchronous communication for latency hiding.

•  Bounded packet size: The average packet size is in general very small, even for 
full-subgraph packing (usually smaller than 15 closures). Therefore, changing 
the packet size, as has been previously suggested for improving communication 
performance, has hardly any effect on the runtime of the program.

As a result of the measurements in Loidl k  Hammond (19966) the following concrete 
suggestions for improving the GUM  runtime-system can be made:

• For programs with a high degree of communication a normal-form-only pack
ing scheme should be used in order to minimise a gratuitous transfer of work 
together with data ( “thunk stealing”), which has been observed in G r a n S im  

measurements. It is probably not worthwhile implementing a more general 
scheme that allows the user to specify the number of thunks per packet because 
good values for such a parameter are very hard to predict.

• When running on a high-latency system of more than about 15,000 cycles a less 
aggressive rescheduling scheme should be used in order to maintain good data 
locality.

• In contrast to previous suggestions (Trinder, Hammond, Mattson Jr., Partridge 
k  Peyton Jones 1996), we found that choosing a small packet size is not an 
effective means of tuning the granularity of the communication. This is due to 
the small average number of closures per packet in most programs.
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3.3.2 Accuracy

To evaluate the accuracy of the simulation it is necessary to examine the accuracy of 
several key steps in the compilation and execution of a program. G r a n S im  manages 
to achieve a balance in the accuracy of the following key steps:

•  the compilation of the program;

• the simulation of the computation;

• the simulation of the communication.

C om pilation : A prerequisite for achieving a high accuracy of the simulation is a
compilation of the functional program, which avoids inefficiencies of a naive imple
mentation of graph reduction. A naive compilation would distort every simulation 
because the compiled code, which is the input to the simulator, would differ signifi
cantly to code produced by an optimising compiler. Therefore the results even of an 
idealised simulation would have only a very limited relevance. G r a n S im  is built on 
top of, and therefore makes use of, a state-of-the-art optimising compiler for Haskell 
(GHC). As a result the generated code is almost identical to the code used for se
quential execution. The only difference is an instrumentation of the generated code 
on basic block level.

C o m p u ta tio n : In order to assign computation costs to the basic blocks in the pro
gram an instruction count function is applied in an intermediate representation of the 
optimised program. This intermediate code bears a strong resemblance to low-level 
C without loops. At this level the operations in the program closely correspond to 
machine operations, which permits an exact modelling of the cost of computation. 
The instruction count function has been carefully tuned by analysing the assembler 
code generated by GHC and the results have been compared with the number of in
structions executed in real Haskell programs. These comparisons have shown that the 
instruction count of the simulation lies within 10% for arithmetic operations, within 
2% for load, store operations, within 20% for branch instructions and within 14% 
for floating point instructions of the real values (Hammond et al. 1995). Overall, it 
has to be emphasised that G r a n S im  does not measure the computation in reduction
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steps, as it is often done in idealised simulators, but in machine cycles for a specific 
processor.

To permit different kinds of architectures to be modelled the instructions have been 
split into five classes, with different weights. The default weights in the following 
list model a SPARC processor and have been verified with Haskell programs in the 
sequential NoFib suite (Partain 1992), which is used to tune the Glasgow Haskell 
Compiler and which is publicly available (NoFib 1998). These weights are tunable in 
order to simulate other kinds of processors:

•  arithmetic operations (default: 1 cycle),

•  floating point operations (default: 1 cycle),

•  load operations (default: 4 cycles),

•  store operations (default: 4 cycles) and

• branch instructions (default: 2 cycles).

C om m unication : The basic communication parameters of a parallel machine such
as latency, message creation costs, etc are parameters to the runtime-system. In total, 
G r a nS im offers 6 different parameters to describe the communication behaviour of 
a machine thus giving the user a high degree of flexibility in describing the character
istics of the machine being modelled. The accuracy of the modelled communication 
depends on the accuracy of the parameters provided by the user. One aspect of the 
communication that is not covered by G r a n S im is the topology of the parallel ma
chine: in G r a n S im the latency between any two processors is the same. The latency 
also does not change with increasing network traffic. These shortcomings will be 
discussed in more detail in Section 3.5.

3.3.3 Visualisation

Together with the G r a n Sim simulator a set of visualisation tools has been developed. 
Two kinds of profiles are generated: activity profiles and granularity profiles. This 
section discusses both kinds of profiles. These visualisation tools have proven indis
pensable in the parallelisation and optimisation of programs such as a linear system
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solver. Based on the group’s experience from implementing several large programs 
(see Chapter 4), such tools are essential when working with a lazy language, in which 
the order of evaluation is not at all obvious from the program source.

All visualisation tools take a G r a n S im or a GUM  profile, a log-file of the program 
execution, as input and generate a PostScript file as output. The format of this log-file 
is discussed in the GranSim User’s Guide (Loidl 1996). Producing individual graphs 
can be seen as a form of static visualisation. Other packages such as the VISTA 
package (Halstead Jr. 1995) allow the user to step through the parallel execution 
based on the information available in the provided log file. This dynamic visualisation 
obviously can expose more information about the exact behaviour of the program. 
However, our experiences show that already static activity profiles with different levels 
of detail provide valuable information in order to tune the performance even of large 
parallel programs.

A promising direction of ongoing work is the use of cost centres, as developed for 
sequential profiling of Haskell (Sansom &; Peyton Jones 1995), to connect points in 
the activity profiles with expressions in the source code. A prototype of combining 
G r a n S im with cost centre profiling, G r a n CC, to whose development the author 
has contributed, is already available (Hammond et al. 1997). Several projects for 
improving parallel profiling are aiming at increasing the information contained in 
these profiles, developing a self-describing log-file format that can be used for both 
sequential and parallel profiling, and developing graphical user-interfaces that provide 
a dynamic visualisation of the program behaviour. Research groups at the Universities 
of Glasgow, St. Andrews, York, the Open University and the Parallel Application 
Centre of the University of Oxford are collaborating in this effort.

A ctiv ity  Profiles

The aim of the activity profiles is to summarise the activity of the machine during 
the computation in one graph. In order to give the programmer the possibility of 
examining the program execution in more detail, three different levels of detail are 
supported. Furthermore, it is possible to focus only on parts of the execution, like 
examining only one processor, by first applying a filter on the generated G r a n S im 

profile.

The activity profiles show the activity of the machine in three levels of detail:
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• Overall activity of the whole machine;

• Per-processor activity of the individual processors;

•  Per-thread activity of the individual threads.

The following subsections discuss each of these profiles and give examples.

O verall ac tiv ity : The idea of the overall activity profile is to present a global 
picture of the computation. In particular, it should show the utilisation of the machine 
at each point. A drop in utilisation might reflect a performance bottleneck in the 
algorithm. This profile can be regarded as an “algorithm focusing” profile and is 
particularly important for an algorithm-oriented view of parallelism. The overall 
activity profile separates the threads into five different classes:

• running threads, i.e. threads that are currently performing a reduction, which 
are shown as a green area in the graph,

• runnable threads, i.e. threads that could be executed but that have not found 
an idle processor, which are shown as an amber area in the graph,

• blocked threads, i.e. threads that wait for a result that is being computed by 
another thread, which are shown as a red area in the graph,

• fetching threads, i.e. threads that are currently fetching data from a remote 
processor, which are shown as a light blue area in the graph,

• migrating threads, i.e. threads that are currently being transferred from a busy 
processor to an idle processor, which are shown as a dark blue area in the graph.

The overall activity profile in Figure 3.4 shows the number of threads in each class 
for each point in time. The example program in this case is a word search program, 
described originally in the FLARE book (Runciman & Wakeling 1995). It has a 
bottleneck at about 110k cycles. In the given setup, asynchronous communication 
with incremental fetching and a latency of 400 cycles, this results in a drop down to 
only one running thread for some time. As thread migration is enabled we observe 
several runnable threads being transfered to another processor immediately before 
that point. Overall this program suffers from a lack of parallelism, which can be
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F ig u re  3.4 Overall activity profile (original in colour)

seen from the low number of runnable threads although the machine rarely is fully 
utilised. The sequential tail of the program is due to the collection and the printing of 
the result. G r a n S im measures the costs of all Haskell input/output routines, which 
are written in a monadic style (Peyton Jones & Wadler 1993).

P er-p rocesso r ac tiv ity : The idea of the per-processor activity profile is to show
the most important pieces of information about each processor in one graph. There
fore it is easy to compare the behaviour of the different processors and to spot imbal
ances in the computation. This profile is often used to study runtime-system issues 
like the load balance in the system and is therefore most useful in a system-oriented 
view of parallelism. This profile can be regarded as a “load focusing” profile.

The per-processor activity profile shows one strip for each of the simulated processors. 
Each of these strips encodes three pieces of information:

• Is the processor active at a certain point? If it is active the strip appears in
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some shade of green (gray in the monochrome version). If it is idle it appears 
in red (white in the monochrome version).

• How high is the load of the processor? The load is measured by the number of 
runnable threads on this processor. A high load is shown by a dark shade of 
green (or grey).

• How many blocked threads are on the processor? This information is shown by 
the thickness of a blue (black) bar at the bottom of each strip. This bar may 
cover up to 80% of the strip. Thus, the load information is always visible “in 
the background” .
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F igure  3.5 Per-processor activity profile (original in colour)

The per-processor activity profile in Figure 3.5 uses the same example as in the 
previous section. The drop in utilisation at about 110k cycles is reflected by a rather 
large red area. The distribution of work at the beginning of the computation starts 
with low-numbered processors. Therefore, these processors have bigger pieces of work.
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The distribution of work is quite even, which is represented as the same shade of green 
on all processors. The number of blocked threads is very small in general. Thread 
migration causes the main thread to be moved to processor 25, which is the processor 
that collects the final result.

Apart from showing the load of the processors, this kind of graph can also be used 
to show two additional pieces of information:

•  Migration: This variant of the graph, a “migration” graph, shows arrows be
tween processors indicating the migration of a thread from one processor to 
another. Load and blocking information are suppressed in this variant.

•  Sparking: This variant of the graph, a “spark” graph, shows information about 
the number of sparks on a processor in the same way as the number of runnable 
threads, i.e. by shading. This graph is useful to highlight hotspots of spark 
creation.

P e r- th re a d  ac tiv ity : The idea of the per-thread activity profile is to show the
activity of all generated threads. For each thread a horizontal line is shown. The 
line starts when the thread is created and ends when it is terminated. The thickness 
of the line indicates the state of the thread. The possible states correspond to the 
groups shown in the overall activity profile. This profile can be regarded as a “thread 
focusing” profile.

The states of the threads are encoded in the following way:

• A running thread is shown as a thick green (gray) line.

• A runnable thread is shown as a medium red (black) line.

• A fetching or migrating thread is shown as a thin blue (black) line.

• A blocked thread is shown as a gap in the line.

This profile gives the most accurate kind of information. Although it is a static profile 
the information is so detailed that it is possible to “step through” the computation 
by relating events on different processors with each other. For example the typical 
pattern at the beginning of the computation is a running period for starting the thread
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F ig u re  3.6 Per-thread activity profile

followed by fetching remote data. After that the thread may become runnable, rather 
than running, if another thread has been started on that processor in the meantime.

The per-thread activity profile in Figure 3.6 only shows the threads that were executed 
on processor 0. As it is often done in practice, a filter has been used in order to obtain 
this kind of partial information. Usually this kind of profile is only used for focusing 
on a specific part of the execution or for a program with a rather small number of 
threads. The profile in Figure 3.6 shows the main thread, which is running most of 
the time. Occasionally it has to fetch data, shown as a thin line, or it is suspended 
because another thread is running on the processor, shown as a medium line.

G ran u la rity  Profiles

The tools for generating granularity profiles aim at showing the total execution times 
of the generated threads. Of particular interest is the number of tiny threads, for 
which the overhead of thread creation is relatively high.
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In order to show granularity information, i.e. information about the runtime of 
threads, two basic kinds of graphs can be generated:

• A bucket statistics, which collects threads with similar runtime in the same 
“bucket” and shows the number of threads in each bucket.

•  A cumulative statistics, which shows how many threads have a runtime below 
a certain value. This graph gives more detailed information but is usually 
not necessary. Examples of using these graphs can be found in (Hammond 
et al. 1995).

B ucket S ta tis tic s : A bucket statistics partitions the x-axis, which represents thread
execution times, into intervals and records the number of threads whose execution 
time lies in a specific interval. Thus, this statistics transforms continuous informa
tion, the runtime of a thread, into discrete information, the number of threads in a 
bucket. Standard methods for representing and processing of discrete data can be 
used on this data. For example, the number of threads in each interval is shown as a 
histogram. In order to show a wide range of possible values the y-axis is often shown 
in a log scale.

1000 10000 100000 
Granularity (pure exec, time)

10 100  1000  
Heap Allocations (words)

F ig u re  3.7 Bucket statistics of thread runtime and heap allocations

Usually such a bucket statistics is used to analyse the distribution of the execution 
times of threads, giving a granularity profile. However, as can be seen in Figure 3.7
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the same kind of statistics can be used in order to analyse different aspects of the 
execution such as the total amount of heap allocated by a thread. The similar profiles 
for both kinds of statistics in Figure 3.7 is typical for a range of programs we have 
studied. This reveals a non-obvious close relationship between the execution time and 
the number of closures allocated by a thread. Because the graph reduction model is 
centred around operations on the heap, it rarely happens that a time consuming 
thread performs very little allocation, even if the generated code has been optimised. 
As a m atter of fact, our studies in (Hammond et al. 1995) show a more than 90% 
correlation between these two aspects for several example programs. The example 
program used in Figure 3.7 is again the word search algorithm.

C u m u la tiv e  S ta tis tics : One problem with the bucket statistics is that the result
ing profile depends to some degree on the choice of the intervals. With an unlucky 
choice different results may show a similar profile. To avoid this problem, the visu
alisation tools can also generate cumulative statistics. In a cumulative granularity 
statistic a point (x , y) in a graph indicates that y threads have a runtime of at most 
x cycles. Thus, the graph cumulates the number of threads and will show the to
tal number of threads generated at the right end of the x-axis. This graph can be 
produced with either the absolute number of threads or the percentage of threads on 
the y-axis. Again the same kind of graph can be used to show aspects other than 
execution time.

3.3.4 Efficiency

The two most important features of G r a n S im for supporting a system-oriented view 
of the computation are its flexibility and accuracy (see Section 3.6 for a compari
son with results from GUM). However, a high degree of accuracy also imposes a 
high bookkeeping overhead on the simulation. The three main factors governing the 
efficiency of the simulation are:

•  the degree of communication in the program;

•  the number of threads that are created; and

• the frequency of blocking a thread on a closure that is under evaluation.
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The exact modelling of communication in G r a n S im is rather expensive, because each 
simulated communication causes a rather expensive context switch in the simulator. 
Such a context switch requires the current state of the simulator to be saved and 
restored. Furthermore, a “runtime-system call” has to be performed, interrupting 
the normal reduction process. This slows down the simulation especially of machines 
with low latency where much communication is performed.

Switching to another thread is also rather expensive. As a consequence, the total 
number of threads that are created affects the efficiency of the simulation in a crucial 
way. The influence of the number of threads on the performance of the simulation can 
be reduced by increasing the time slice given to each thread. This will result in a faster 
but less accurate simulation, because a thread may run ahead in the computation, 
ignoring communication events.

Another problem caused by a large number of threads is their heap consumption. 
W ith 30 words per thread, plus the size of the initial stack object, the heap used 
directly by the thread is not critical. However, because each thread holds on to a 
piece of graph, the total amount of live data can increase drastically. This causes more 
frequent garbage collections, which in turn increases the runtime of the simulation 
compared with an optimised sequential version. This point currently poses a problem 
for using the GRANSiM-Light setup in very large programs like Lolita.

In order to get an idea of the simulation costs Table 3.1 shows the simulation times, 
i.e. the time needed to run the simulation, of several programs run on G r a n S im and 
GRANSiM-Light with that on H B C PP (Runciman & Wakeling 1993), an idealised 
simulator for the same source language. As example programs a set of non-trivial 
programs from the emerging parallel NoFib suite has been used: a ray tracer, Ray, 
the same word search program, Soda, that has been used as an example for the 
visualisation tools, a linear system solver, LinSolv, discussed in detail in Section 4.6, a 
determinant computation, Determinant, used as a part of the linear system solver, and 
a matrix multiplication, MatMult. Two values are given for the G r a n S im simulation 
times: the first value uses the default time slice given to every thread; the value in 
parentheses uses a very small time slice for a more accurate but slower simulation. 
The difference from the first value gives an idea how much the simulation time can 
be tuned by choosing a different time-slice.

In three cases, Ray, LinSolv, and MatMult the GRANSiM-Light setup shows a signif
icant higher runtime compared to the standard G r a n S im setup. This is mainly due
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T able 3.1 Simulation times (in seconds) of G r a n S im and H B C P P
Program G r a n S im 

default short 
time slice time slice

GRANSiM -
Light

H B C P P optimised
GHC

Ray 70.7 198.9 141.3 73.2 11.1
Soda 2.4 5.5 1.5 0.8 0.1
LinSolv 75.9 96.8 334.0 — 0.1
Determinant 7.9 8.4 4.3 4.1 1.7
MatMult 22.3 26.9 65.9 26.9 0.4

to the large number of threads that are created in the idealised simulation, causing a 
large number of context switches. This aspect is elaborated further in Section 3.4. It 
should be noted that faster simulation time is not the main goal of GRANSiM-Light. 
Often it generates a faster simulation but the main purpose is to simulate an idealised 
machine, reflecting an algorithm-oriented view of parallelism.

Usually, G r a n S im is between 1.5 and 2.5 slower than H B C P P , the factor would 
probably be larger for l in s o lv  but this program did not compile successfully under 
H B C PP. Considering the additional information produced in the standard G r a nS im 
setup this can be regarded as an acceptable factor. In the case of MatMult and 
for some very small example programs it occasionally even manages to outperform 
H B C PP. One reason for the reduced simulation time might be the improved code 
generation. Because G r a n S im is integrated in GHC we can profit from the ongoing 
tuning of the compiler itself (see the following section for details).

Compared to an optimised sequential version the simulation shows a slow-down of a 
factor of 4.6 to 759. Again the worst case is generated by l in s o lv  with an abundance 
of parallel threads and a lot of communication in the program. Most of the simulations 
exhibit a slow-down of 10 to 15. Considering that GHC produces the fastest code of 
all available Haskell compilers (Hartel 1995), these factors still render the simulator 
useful for large programs and this has been proven for programs such as LinSolv 
(Section 4.6) and Lolita (Section 4.5).
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3.3.5 Integration into GHC

G r a nS im is built on top of the Glasgow Haskell Compiler (GHC), a state-of-the-art 
optimising compiler for Haskell. This means that the execution of sequential code in 
the simulator is realistic. In fact, the code generated by G r a n S im is almost identical 
to the sequential code generated by GHC. The only difference are macros that check 
for the existence of a closure on a processor, at the beginning of every basic block, 
and another macro for adding the execution time of the basic block to the local clock, 
at the end of this basic block.

It is possible to use all the features of a normal GHC compilation in G r a n S im , too. 
For example, the c c a l l  mechanism can be used to call C functions in a parallel pro
gram. This feature is essential for the parallelisation of Lolita(see Section 4.5). With 
this mechanism optimised sequential, possibly even imperative, code in libraries can 
be called from a parallel lazy functional program. This feature has been exploited in 
an experimental implementation of a parallel resultant algorithm using basic polyno
mial operations of a sequential computer algebra library.

One of the main features of GHC is the use of many program transformations in 
order to optimise the sequential code. This covers well-established optimisations 
such as inlining and the use of strictness information as well as rather new optimi
sations such as let-floating and deforestation. The influence of these new sequential 
optimisations on the parallel execution of a program is an interesting but largely 
unstudied area. For example deforestation might eliminate intermediate lists that 
are crucial for the parallel execution of the program. Indeed Santos reports that in 
one example program (Fast Fourier Transformation) the full laziness transformation 
creates a sequential bottleneck, which slows down the computation by a factor of 6 
to 10 (Santos 1995, Section 5.2.2). G r a n S im would seem to be the ideal basis for 
studying these interactions in more detail.

3.3.6 Robustness

The robustness of G r a nS im has been proven by using it in the parallelisation and 
performance tuning of a set of large Haskell programs. Some of these programs are 
discussed in more detail in Chapter 4. Most of the parallelisation of the Lolita natural 
language engineering system has been done by using G r a n S im . Other scientists have
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used G r a n S im to parallelise substantial pieces of Haskell code such as a program that 
determines accident blackspots based on a large database of traffic accident reports 
(Wu & Harbird 1996, Trinder et al. 1998) and Naira, a parallelising compiler for a 
subset of Haskell (Junaidu 1998).

W ithout a simulator it would be much more difficult to parallelise such large programs 
because of system issues, e.g. integrating foreign language calls, and “external” aspects 
of the execution, e.g. system load, cannot be easily eliminated. The separation into 
G r a n S im and GRANSiM-Light configurations encourages the parallel program to 
be developed in two stages: first the parallel algorithm is developed in a machine 
independent setting; then it is optimised for a specific machine. In particular, the 
parallelisation of Lolita showed the importance of having a simulator that is integrated 
in a state-of-the-art-compiler with all its tools: it was crucial to have a profiler for the 
sequential version of the program. Based on these experiences of using both G r a n S im 
and GUM  in the parallelisation of several programs the parallel programming group 
at Glasgow has developed a parallelisation methodology, with G r a n S im as one of its 
major components (see Section 4.8).

3 . 4  G R A N S i M - L i g h t

One main purpose of G r a n S im is to provide a testbed for variations of the runtime- 
system. This requires a very accurate simulation that is flexible enough to model 
different kinds of parallel architectures. However, in early stages of the development 
of a parallel algorithm a more abstract view of parallel computation is advantageous. 
This different attitude requires slightly different characteristics of the simulator.

The GRANSiM-Light setup has been designed to satisfy such an algorithm-oriented 
view of parallelism. Therefore, GRANSiM-Light models an idealised machine with

•  an infinite number of processors and

•  zero communication costs.

This difference in modelling the parallel execution of a program requires changes in 
the structure of the simulator. Most importantly, the spark and thread pools are not
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F igure 3.8 Global structure of GRANSiM-Light

distributed in this setup. Figure 3.8 shows the global structure of the GRANSiM-Light 
setup.

This setup exposes all parallelism in the algorithm and allows the programmer to 
tune the performance of the algorithm before studying its dynamic behaviour on a 
specific parallel machine. Although such a simulation gives a less accurate picture of 
the parallel behaviour on a concrete machine, it has proven to be an important step 
in the methodology for parallelising large lazy functional programs (see Section 4.8).

The GRANSiM-Light setup is very close to the H B C P P  simulator (Runciman & 
Wakeling 1993). In Section 3.6 we compare the results of some simulations under 
both simulators. Table 3.1 has already shown that the simulation time in G ranS im 
is comparable to that in H B C PP. GRANSiM-Light sometimes manages to be as fast 
as H B C P P  and is within a factor of 2.5 for the remaining programs.

One problem with GRANSiM-Light, however, is the fact that its performance de
pends very much on the number of generated threads. The idealised simulation of 
GRANSiM-Light usually creates a much larger number of threads than the standard 
simulation because in the latter case the evaluate-and-die mechanism manages to sub
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sume potential parallel threads. Clearly, the evaluate-and-die mechanism cannot be 
effective in a setup where every spark is immediately turned into a thread. We have 
seen this behaviour when comparing simulation times in Table 3.1. For some exam
ple programs in these measurements the GRANSiM-Light simulation is significantly 
slower than the standard setup of G r a n S im . The main reason for this slow-down 
is the large number of context switches necessary to simulate the graph reduction of 
and the interaction between so many threads.

3 . 5  S h o r t c o m i n g s  o f  G r a n S i m

Despite the high degree of parameterisation of G r a n S im , there are certain aspects 
of a parallel machine that are not modelled. This section comments on these short
comings and their impact on the development of parallel algorithms.

C o m p u ta tio n : G r a n S im models an execution on a homogeneous MIMD multi
processor. This model does not include the concept of clusters of processors, with 
cheap local communication. Nor does this model encompass SIMD machines, which 
operate with only a single instruction stream. However, this model corresponds to 
the underlying computation model of GUM.

C om m unication : Two of the most important aspects of a parallel machine that 
are not covered by G r a n S im relate to the communication behaviour of the machine: 
the bandwidth of the communication and the topology of the underlying machine. 
G r a n S im assumes that the latency between two processors is independent of the 
communication traffic. In reality, however, “contention” will occur at some point, 
drastically degrading the performance of the communication. However, this usually 
only happens with an excessive amount of communication and should therefore be no 
problem for normal executions. Another simplifying assumption is that the distance 
between any two processors in the system is the same. This fixes the simulation to one 
special topology, a fully-connected graph. However, experiences with modern parallel 
machines show that the topology has a rather small influence on the communication 
speed.
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M em ory  M anagem ent: One important aspect in the execution of a parallel pro
gram is the data locality. In the computation model used by G r a n S im as well as 
GUM there is only very limited support for studying this aspect. An experimental 
feature in G r a n S im allows absolute placement of a process on a specific processor, 
but the data will always travel to the thread never vice versa. A useful extension of 
G r a n S im would be the implementation of “sticky closures” that have to be evaluated 
on the processor on which they have been created. The idea of such an implementa
tion would be to automatically create a spark for a sticky closure when it is demanded. 
The usual runtime-system mechanisms can then be used to turn the closure into a 
thread and to evaluate it. This evaluation must be on the specified processor but the 
runtime-system still has the choice to discard the spark.

G r a nS im does not provide any modelling of garbage collection in the parallel system. 
The main motivation for this design decision is that the choice of one particular 
mechanism would likely have global effects in the execution, e.g. reference counting 
garbage collection introduces an overhead when copying any closure in the system. 
Thus, all results would be biased towards the chosen form of garbage collection.

E xtensions o f G r a n S im : One important shortcoming is the lack of a parallel
profiling mechanism. When parallelising big programs it would be very important to 
mark certain threads that are of special interest and to focus on these threads with 
the visualisation tools. So far, only a rudimentary thread marking mechanism has 
been implemented. It propagates a thread name to all children and makes it possible 
to change the name during execution. In order to use this information special filter 
programs have to be applied to the G r a n S im profile. In the meantime, a parallel 
profiler, G r a nCC, has been constructed by merging G r a n S im with sequential cost 
centre profiling (Hammond et al. 1997). Initial results of this research effort, to which 
the author is contributing, show valuable additional information. An alternative 
approach is to dynamically mark evaluation strategies (see Section 4.3) in the code 
to provide information about which threads have been generated by which strategy. 
This approach is currently pursued by a research group at The Open University.
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3.6 V a lid a tio n  of S im u la tio n  R esu lts

This section gives a validation of some simulation results by comparing profiles ob

tained from G r a n S im with those from H B C PP, G R IP , and GUM. This compari

son shows th a t  G r a n S im yields a realistic picture of a program ’s parallel behaviour, 

provided th a t  the G r a n S im param eters are set to model the underlying hardware 

architecture.

3.6.1 G r a n S im  versus H B C P P

( GrAnSIm queens_mg 8 +RTS -bP -b. -o200 -H6M -be -sslden H B C PP yqu&enshbcpp

F igure 3.9 Activity profiles from G r a n S im  and H B C PP

Figure 3.9 compares the overall activity profiles for the queens program generated by 
G r a n S im  and H B C PP. The activity profile produced by the G r a n S im  execution 
is significantly more detailed, which results in a more fine-grained picture. It also 
manages to exhibit stages of blocking that are too short to be detected in H B C PP. 
Most importantly, the overall pattern of the computation is the same.

3.6.2 G r a n S im  versus GRIP

Section 4.6 discusses three variants of a symbolic algorithm for solving a system of 
linear equations, LinSolv. Starting with a rather inefficient algorithm the perfor
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mance of this algorithm is tuned and sequential bottlenecks are eliminated. The 
final algorithm has also been executed on the G R IP  multi-processor. Figure 3.10 

presents a comparison of the activity profiles generated by G r a n S im  and G R IP. 
The G r a n S im  version uses a setup with 16 processors and a latency of 400 cycles, 
matching the G R IP  configuration. In the G R IP  profile no runnable threads are 
shown because this kind of information is not collected. The shape of both profiles is 
very similar. Both profiles show a small peak of parallelism at the end of the compu
tation. Comparing the raw numbers we observe an average parallelism of 15 under 
G r a n S im , whereas the average parallelism on G R IP  is 14.5. The speedup obtained 
under G r a n S im , 11.92, is slightly below the speedup on G R IP, 13.58.

The most pronounced difference is the larger number of blocked threads in G r a n S im . 

This is probably due to the use of local sparking in G R IP , which is not simulated in 
G r a n S im . Local sparking distinguishes between local spark pools for each processor 
and one shared global spark pool. In order to improve data locality local sparks are 
preferred. Only in the case of a global shortage of sparks are the local sparks moved 
into the global spark pool. In this example the G r a n S im graph shows that there are 
runnable threads through most of the computation. Therefore, the G R IP  version will 
rarely have to move sparks into the global spark pool, where they can be picked up 
by other idle processors. In total this leads to a smaller number of generated threads.

0  blocked■  running[ ■  running □  runnable 0  Mocked Speedup = 11.92

Average Parallelism = 14.5)[GrAnSim UnSotv (final): 16 Processors. 400 Cycle Latency_______________________Average Parallelism = 15 0 .

F igure  3.10 G r a n S im  and G R IP  activity profiles of LinSolv
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One of our example programs that shows a very interesting granularity profile is a 
parallel ray tracer. This program has been developed by Kelly in his thesis (Kelly 
1989).

Hammond et al. (1994) study the granularity of this algorithm on the G R IP  multi
processor, deriving granularity profiles for each of the programs. The author used the 
same code of the ray tracer under G r a n S i m  to analyse the granularity of the gener
ated threads. Figure 3.11 compares these profiles in a bucket statistics. In both cases 
a log scale is used to show even small buckets. G r a n S i m  measures time in machine 
cycles, whereas in the G R IP  measurements the granularity is measured in terms of 
the number of heap allocations. The previously mentioned high correlation between 
execution time and heap allocations justifies this approximation of execution time. 
This program shows two main clusters of threads with respect to their runtimes: two 
clusters of short threads and a cluster of large threads. The short threads represent 
processes that “drive the parallelism” in the program, generating many sub-threads. 
The large threads are performing the actual computation. Because of the different 
measure of execution time, concrete x-values cannot be directly compared. However, 
the granularity profile in both cases is the same.

3.6.3 G r a n S im  versus GUM

Figure 3.12 gives a comparison of a parallel determinant computation executed under 
G r a n S i m , left hand side, and on a Sun SPARCserver shared memory machine with 
four processors under GUM , right hand side. The overall shape of both profiles 
exhibits a very similar overall behaviour of the program. The G r a n S i m  version 
underestimates the number of blocked threads and especially the number of fetching 
threads. The latter is a general trend, which can also be observed in the Lolita system 
(see Section 4.5). Although the overhead for creating a communication packet has 
been increased in this simulation it does not model all of the software overhead in 
PVM, which is in part data dependent. The regular, short drops in the utilisation of 
the GUM profile may in part be caused by operating system interference, because 
the 4 processor machine used in this experiment has a significant load of users.
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F ig u re  3.11 G r a n S im  (top) and G R IP (bottom) granularity profiles of a ray tracer

3.7 Summary

A simulator for the parallel execution of functional programs may be of use for either 
the programmer, who wants to study the parallel behaviour of a certain algorithm, 
or the compiler designer, who wants to study the effectiveness of certain mechanisms 
in the runtime-system. This chapter has shown that G r a n S im is a useful tool for 
both groups by supporting a high-level algorithm-oriented view as well as a low- 
level system-oriented view. In the latter view the focus might be on an extremely 
accurate simulation of a specific machine or on a flexible simulation of a wide range 
of parallel architectures. G r a n S im supports the approach of a flexible simulation by 
being highly parameterised without losing accuracy on the compilation level. Only 
certain very low-level machine characteristics are not captured in the simulation. 
Taking such a system-oriented view, G r a n S im measurements with implementations
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F igure  3.12 G r a n S im  and GUM activity profiles of a determinant computation

of alternative packing and rescheduling schemes have led to concrete suggestions for 
improving the GUM  runtime-system for specific architectures, e.g. by packing smaller 
graph structures in highly-communicating programs or by using a less aggressive 
rescheduling scheme in high-latency systems.

In the following chapter G r a n S im will be used in the parallelisation and performance 
tuning of a set of large functional programs. This will demonstrate its practical 
usefulness beyond its original design as a testbed for implementing variants in the 
parallel runtime-system. The integration of G r a n S im into a parallel engineering 
environment together with the GUM parallel runtime-system, and the availability 
of visualisation tools in both systems are crucial in the development of large parallel 
programs.



Chapter 4

Large-Scale Parallel Functional 
P r ogr amming

Capsule

The superior computational power of parallel machines is most likely to be 
used in time consuming programs. Such programs are typically large. During 
the performance tuning of the parallel code it is often necessary to restructure 
parts of the code. For these reasons, a modular design is even more important 
for parallel programs than for sequential programs. Lazy functional languages 
offer a high level of modularity via higher-order functions and a non-strict 
semantics. This chapter focuses on the question how to specify parallelism in 
a lazy functional language without sacrificing modularity.

Previous experiences with writing medium-scale parallel programs have 
shown that the undisciplined use of par and seq annotations in the program 
can yield opaque code. This observation has led to the development of evalua
tion strategies based on laziness, overloading, polymorphism, and higher-order 
functions. This chapter presents evaluation strategies, which have been devel
oped in a group effort, and contributes to the design of strategies by augmenting 
the core module with a construct for strategic function application. The re
sulting module has been used in parallelising several large programs including 
LinSolv, a linear system solver, an Alpha-Beta search algorithm, and Lolita, 
a natural language engineering system consisting of more than 47,000 lines of 
Haskell. These programs show that with only a few localised changes in the 
code good parallel performance can be achieved in programs that have not 
necessarily been written with parallel execution in mind. The laziness of the

88
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language favours a data-oriented style of parallel programming, where the par
allelism is defined on intermediate data structures rather than within specific 
modules of the program. This facilitates top-level parallelisation and restricts 
the contextual knowledge the programmer has to have about the program.

4.1 Introduction

Although the advantages of the high level of abstraction in functional languages 
mainly show up in big programs there is a daunting shortage of such programs. In the 
context of parallel processing this is even more critical since realistic time-consuming 
programs, which should be executed in parallel, are often large. Obtaining a parallel 
version that exhibits a reasonable parallel performance without spending a lot of 
effort in modifying the code is therefore of utmost importance.

This thesis focuses on symbolic computation as main application area. By and large, 
programs in this area use the major advantages of functional languages such as higher- 
order functions and algebraic data-types much more heavily than numerical compu
tation programs. Thus they are a natural application for functional languages. For 
programs with these characteristics it is possible to make use of parallel computation 
without a vast effort in recoding the program, even if that results in the loss of some 
parallelism. Again this is in contrast to the approach towards parallel computation 
usually taken for numerical applications, where it is feasible to invest a lot of time in 
parallelising one particular program. In contrast, the parallelisation of the programs 
in this chapter takes an approach of “acceptable gain for low pain” .

In order to cope with large programs the parallel programming group at Glasgow has 
developed evaluation strategies, a new programming technique based on lazy evalu
ation, overloading, polymorphism, and higher-order functions. Evaluation strategies 
allow a clean separation of algorithmic code from an operational description of the 
parallel program behaviour. This chapter discusses the author’s contribution to the 
development of strategies and his parallelisation and performance tuning of several 
large functional programs. This presentation shows that the parallel program devel
opment is much easier when using strategies, in particular because of better support 
for modularity, and that most of the complexity of parallel program development for 
imperative languages is absent in this model, because synchronisation and communi
cation are managed entirely by the runtime-system.
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The parallel programming group at Glasgow has studied about 8 medium to large 
parallel functional programs. This chapter describes the following three programs:

•  LinSolv, a program for finding an exact solution of a system of linear equations. 
It is interesting for its use of an approach typical to many algorithms in computer 
algebra.

•  Alpha-Beta search, a program for performing a heuristic search in a tree struc
ture, usually used in game programming. It is a typical program for AI appli
cations.

•  Lolita, a large natural language engineering system. It is a very general system 
and can be used for extracting semantics from newspaper articles, translate text 
between languages, or for interactive language tutoring.

The contributions of this thesis to the work described here are as follows. The au
thor’s experience with parallelising LinSolv has initiated the development of evalua
tion strategies in a group effort led by Dr. Phil Trinder. The author’s main indepen
dent contribution to the design of strategies is the development of strategic function 
application as a convenient way to express pipeline parallelism and to combine it 
with other forms of parallelism via function composition. The modified strategies 
module has been used in the author’s parallelisation of LinSolv, strategy version, and 
of Alpha-Beta search, based on the sequential algorithm by Hughes (1989). These 
experiences have led to changes in the core design of evaluation strategies. The 
parallelisation of Lolita has been done in collaboration with the Natural Language 
Engineering Group at the University of Durham. Sections 4.2, 4.3, and 4.9.1, describ
ing evaluation strategies, are revised versions of material published in Trinder et al. 
(1998). Sections 4.4 and 4.5 cover material published in Loidl & Trinder (1997) and 
Loidl et al. (1997), respectively. Section 4.6 is a revised version of material submitted 
for publication in Loidl (1997).

The structure of this chapter is as follows. Section 4.2 discusses problems when us
ing annotations in order to describe parallel program behaviour for large programs. 
Section 4.3 introduces evaluation strategies and presents simple generic strategies 
demonstrating the flexibility of this approach. The following three sections present 
case studies of using strategies on several large programs: an Alpha-Beta search algo
rithm in Section 4.4, Lolita, a natural language engineering system in Section 4.5, and
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LinSolv, a linear equation solver in Section 4.6. Section 4.7 compares the style of par
allel programming in a lazy functional with a strict imperative language. Section 4.8 
outlines a methodology for parallelising large lazy programs based on the acquired 
experiences with parallelising several large applications. Finally, Section 4.10 con
cludes.

4.2 Problem s with Parallel Programming in-the- 
large

The big advantage of functional programming languages is the fact that they avoid 
overspecification by only defining the result without specifying an exact order of 
evaluation steps. More informally, they specify what to compute without fixing how 
to compute it. However, when writing an explicitly parallel program it is necessary 
to specify some aspects of the dynamic behaviour of the program. In the model used 
in this thesis this means exposing parallelism by marking expressions that might be 
evaluated in parallel. Since the basic execution model is a lazy one, the programmer 
may also want to specify the evaluation degree in the program in order to guarantee a 
certain amount of evaluation without relying on the quality of the strictness analyser.

This approach abstracts from details about thread creation, thread placement, syn
chronisation, data transfer, and many other aspects that often have to be explicitly 
handled in a parallel language by the programmer. However, even just describing 
potential parallelism together with evaluation degree may lead to a program that is 
cluttered with behavioural code. The undisciplined use of annotations in the paral
lelisation of several programs, such as a linear system solver, has generated opaque 
parallel code. The comparison of a straightforward parallelisation of LinSolv with 
a version using strategies in Section 4.6 shows the practical advantages of a more 
structured approach towards exposing parallelism.

4.2.1 A Simple Example

As a simple example demonstrating the problem mentioned above, let us consider 
parallel quicksort. A naive version of a parallel function might be written as follows.
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q u i c k s o r t N  ; ;  (Ord a) => [a] -> [a]
q u i c k s o r t N  [ ]  = []
q u i c k s o r t N  [ x ]  = [ x ]
q u i c k s o r t N  ( x : x s )  = l o s o r t  'par'

h i s o r t  'par'
l o s o r t  ++ ( x : h i s o r t )
where

l o s o r t  = q u i c k s o r t N  [ y | y  < -  x s ,  y  < x ]  
h i s o r t  = q u i c k s o r t N  [ y j y  < -  x s ,  y  >= x ]

The intention is that two threads are created to sort the lower and higher halves of 
the list in parallel with combining the results. Unfortunately quicksortN  has almost 
no parallelism because threads in G p H terminate when the sparked expression is in 
weak head normal form (WHNF). In consequence, all of the threads that are sparked 
to construct lo s o r t  and h is o r t  do very little useful work, terminating after creating 
the first cons cell. To make the threads perform useful work a “forcing” function, 
such as f  o rc eL is t below, can be used. The resulting program has the desired parallel 
behaviour, yielding a parallel divide-and-conquer structure. However, the definition 
of qu ickso rtF  is cluttered with behavioural code, namely the forcing functions.

f o r c e L i s t  ; ;  [a] -> () 
f o r c e L i s t  [ ]  = ( )
f o r c e L i s t  ( x : x s )  = x  'eeq' f o r c e L i s t  x s

q u i c k s o r t F  [ ]  = [ ]
q u i c k s o r t F  [ x ]  = [x ]
q u i c k s o r t F  ( x : x s )  = ( f o r c e L i s t  l o s o r t )  'par'

( f o r c e L i s t  h i s o r t )  'par'
l o s o r t  ++ ( x : h i s o r t )  
where

l o s o r t  = q u i c k s o r t F  [ y | y  < -  x s ,  y  < x ]  
h i s o r t  = q u i c k s o r t F  [ y j y  < -  x s ,  y  >= x ]

4.2.2 Data-Oriented Parallelism

Quicksort is an example of (divide-and-conquer) control-oriented parallelism where 
subexpressions of a function are identified for parallel evaluation. Data-oriented par
allelism is an alternative approach where elements of a data structure are evaluated in 
parallel. A parallel map is a useful example of data-oriented parallelism; for example 
the parMap function defined below applies its function argument to every element of 
a list in parallel.
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p a r M a p  ; ;  (a -> b) -> [a] -> [b]
p a r M a p  f  [ ]  = [ ]
p a r M a p  f  ( x : x s )  = f x  ’par’ f x s  'seq' ( f x : f x s )

where
f x  = f  x
f x s  = p a r M a p  f  x s

The definition above works as follows: fx  is sparked, before recursing down the list 
(fxs), only returning the first constructor of the result list after every element has 
been sparked. Note that if the function argument supplied to parMap constructs a 
data structure, it must be composed with a forcing function in order to ensure that 
the data structure is constructed in parallel.

4.2.3 Dynam ic Behaviour

As the examples above show, a parallel function must describe not only the algorithm, 
but also some important aspects of how the parallel machine should organise the 
computation, i.e. the function’s dynamic behaviour. In G p H, there are several aspects 
of dynamic behaviour:

• Parallelism control, which specifies what threads should be created, and in what 
order, using par and seq.

• Evaluation degree, which specifies how much evaluation each thread should per
form. In the examples above, forcing functions were used to describe the eval
uation degree.

• Thread granularity: it is important to spark only those expressions where the 
cost of evaluation greatly exceeds the thread creation overheads.

• Locality: part of the cost of evaluating a thread is the time required to com
municate its result and the data it requires, and in consequence it may only 
be worth creating a thread if its data is local. Because GpH does not contain 
explicit placement information, locality has to be controlled indirectly, e.g. by 
constructing data structures that contain all data that should be kept local.

Evaluation degree is closely related to strictness and defined over the same partially 
ordered, lifted domain of values. If the evaluation degree of a value in a function is
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less than the program’s strictness in that value, i.e. its value in the semantic domain 
is smaller than that defined by its strictness property, then the parallelism is con
servative, i.e. no expression is reduced in the parallel program that is not reduced in 
its lazy counterpart. In several programs we have found it useful to evaluate some 
values speculatively, i.e. the evaluation-degree may usefully be more strict than the 
lazy function. Although this runs the risk of performing unnecessary computation it 
allows the programmer to specify parallelism that is useful most of the time.

4.3 Evaluation Strategies

4.3.1 Evaluation Strategies

In the examples above, the code describing the algorithm and dynamic behaviour 
are intertwined, and as a consequence both have become rather opaque. In larger 
programs, and with carefully-tuned parallelism, the problem is far worse. This section 
describes evaluation strategies, a solution to this dilemma. The driving philosophy 
behind evaluation strategies is that it should be possible to understand the semantics 
of a function without considering its dynamic behaviour.

An evaluation strategy is a function that specifies the dynamic behaviour required 
when computing a value of a given type. A strategy makes no contribution towards the 
value being computed by the algorithmic component of the function: it is evaluated 
purely for effect, and hence it returns just the nullary tuple ().

type S t r a t e g y  a  = a  - >  ()

4.3.2 Strategies Controlling Evaluation Degree

The simplest strategies introduce no parallelism: they specify only the evaluation 
degree. The simplest strategy is termed rO and performs no reduction at all. Perhaps 
surprisingly, this strategy proves very useful, e.g. when evaluating a pair we may want 
to evaluate only the first element but not the second.
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rO :: Strategy a 
rO _ = ()

Because reduction to WHNF is the default evaluation degree in G p H, a strategy to
reduce a value of any type to WHNF is easily defined:

rwhnf :: Strategy a 
rwhnf x = x 1seq' ()

Many expressions can also be reduced to normal form  (NF), i.e. a form that contains 
no redexes, by the rn f  strategy. The rn f  strategy can be defined over built-in or 
datatypes, but not over function types or any type incorporating a function type as 
few reduction engines support the reduction of inner redexes within functions. Rather 
than defining a new rn f  X strategy for each data type X, it is better to have a single 
overloaded rn f  strategy that works on any data type. The obvious solution is to use 
a Haskell type class, NFData, to overload the rn f  operation. Because NF and WHNF 
coincide for built-in types such as integers and booleans, the default method for rn f 
is rwhnf.

c l a s s  N F D a t a  a  w h e r e  
r s f  ; ;  Strategy a 
rnf = rwhnf

For each data type an instance of NFData must be declared that specifies how to 
reduce a value of that type to normal form. Such an instance relies on its element 
types, if any, being in class NFData. Consider lists and pairs for example.

i n s t a n c e  N F D a t a  a  =>  N F D a t a  [ a ]  w h e r e  
m f  [] = ()
rnf (x:xs) = rnf x 'seq' rnf xs

i n s t a n c e  ( N F D a t a  a ,  N F D a t a  b )  => N F D a t a  ( a , b )  w h e r e  
rnf (x,y) = rnf x 'seq' rnf y

4.3.3 Combining Strategies

Because evaluation strategies are just normal higher-order functions, they can be com
bined using the full power of the language, e.g. passed as parameters or composed
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using the function composition operator. Elements of a strategy are combined by se
quential or parallel composition (seq or par). Many useful strategies are higher-order, 
for example, seqL ist below is a strategy that sequentially applies a strategy to every 
element of a list, in essence mapping a strategy and then folding the seq combinator 
over the list. For example, the strategy seqList rO evaluates just the spine of a list, 
and seqList rwhnf evaluates every element of a list to WHNF. There are analo
gous functions for every datatype, indeed in Haskell 1.3 and later versions (Peterson 
et al. 1996) constructor classes can be defined that work on arbitrary datatypes.
The strategic examples in this thesis are presented in Haskell 1.2 for pragmatic rea
sons: they are extracted from programs run on our efficient parallel implementation 
of Haskell 1.2 (Trinder, Hammond, Mattson Jr., Partridge & Peyton Jones 1996). 
However, the current version of the strategies module does support Haskell 1.4, too.

seqList :: Strategy a -> Strategy [a] 
seqList s t r a t  [ ]  = ( )
seqList s t r a t  ( x : x s )  = s t r a t  x  'seq' (seqList s t r a t  x s )

4.3.4 Data-Oriented Parallelism

A strategy can specify parallelism and sequencing as well as evaluation degree. Strate
gies specifying data-oriented parallelism describe the dynamic behaviour in terms of 
some data structure. For example parList is similar to seqList, except that it 
applies the strategy to every element of a list in parallel.

parList :: Strategy a -> Strategy [a] 
parList s t r a t  [ ]  = 0
parList s t r a t  ( x : x s )  = s t r a t  x  'par' (parList s t r a t  x s )

Data-oriented strategies are applied by the using  function which applies the strategy 
to the data structure x before returning it. The expression x ' u sing  ' s is a projection 
on x, i.e. it is both a retraction (x ‘u s in g ' s is less defined than x) and idempotent 
((x ‘u s in g ' s) 'u s in g ' s =  x 'u s in g ' s). The using  function is defined to have 
a lower precedence than any other operator because it acts as a separator between 
algorithmic and behavioural code.

using :: a -> Strategy a -> a 
using x s = s x 'seq' x
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A strategic version of the parallel map encountered in Section 4.2.2 can be written 
as follows. Note how the algorithmic code map f  xs is cleanly separated from the 
strategy. The s t r a t  parameter determines the dynamic behaviour of each element of 
the result list, and hence parMap is parametric in some of its dynamic behaviour.

p a r M a p  ; ;  Strategy b -> (a -> b) -> [a] -> [b] 
p a r M a p  s t r a t  f  x s  = m ap f  x s  'using' parList s t r a t

4.3.5 Control-Oriented Parallelism

Control-oriented parallelism is typically expressed by a sequence of strategy applica
tions composed with p ar and seq that specifies which subexpressions of a function 
are to be evaluated in parallel, and in what order. The sequence is loosely termed 
a strategy, and is invoked by either the demanding or the spark ing  function. The 
Haskell f l i p  function simply reorders a binary function’s parameters.

demanding, sparking :: a -> () -> a

demanding = f l i p  seq 
sparking = f l i p  par

The control-oriented parallelism of pf ib  can be expressed as follows using demanding. 
The LinSolv and Lolita programs in Sections 4.6 and 4.5 contain more elaborate 
examples of using sparking.

p f i b  n
| n  <=  1 = 1
I o t h e r w i s e  = ( n l + n 2 + l )  ’demanding' s t r a t e g y

w h e r e
n l  = p f i b  ( n - 1 )  
n 2  = p f i b  ( n - 2 )
s t r a t e g y  = rnf n l  'par' rnf n 2

The control-oriented parallelism of quicksort can be expressed with the following 
strategy, selecting lo s o r t  and h is o r t  for parallel evaluation.
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q u i c k s o r t s  ( x : x s )  = l o s o r t  ++ ( x r h i s o r t )  'using' s t r a t e g y
w h e r e

l o s o r t  = q u i c k s o r t s  [ y | y  < -  x s ,  y  < x ]  
h i s o r t  = q u i c k s o r t s  [ y | y  < -  x s ,  y  >=  x ]  
s t r a t e g y  r e s u l t  = rnf l o s o r t  ’p a r '  

rnf h i s o r t  'par' 
rnf r e s u l t

4.3.6 A dditional Dynam ic Behaviour

Strategies can control other aspects of dynamic behaviour, thereby avoiding cluttering 
the algorithmic code with them. A particularly important example for the scope of 
this thesis is a thresholding mechanism that controls thread granularity. In p f ib  for 
example, granularity is improved for many machines if threads are not created when 
the argument is small. The use of thresholding in Lolita is discussed in Section 4.5.

p f i b T  n
| n  <=  1 = 1
| o t h e r w i s e  = ( n l + n 2 + l )  'demanding' s t r a t e g y  

w h e r e
n l  = p f i b T  ( n - 1 )  
n 2  = p f i b T  ( n - 2 )  
s t r a t e g y  = i f  n  > 1 0

t h e n  rnf n l  'par' rnf n 2  
e l s e  ()

Another example of a generic strategy that affects granularity, i.e. the computation 
costs of potentially parallel threads, is the parG ranList strategy below. This strategy 
uses a granularity estimate function and creates the parallelism in an order of decreas
ing granularity. This strategy has been developed by the author during the perfor
mance tuning of a very coarse-grained parallel bowing algorithm (Hall et al. 1997).
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p a r G r a n L i s t  ; ;  Strategy a -> (a -> Int) -> [a] -> Strategy [a]
p a r G r a n L i s t  s  g r a n _ e s t i m  l _ i n  = \  l _ o u t  - >

p a r L i s t B y l d x  s  l _ o u t  $
s o r t e d l d x  g r a n _ l i s t  ( s o r t L e  ( \  ( i , _ )  ( j , _ )  - >  i > j ) g r a n _ l i s t )
where

- -  spark list elems of 1 in the order specified by (i:idxs)
p a r L i s t B y l d x  s i  [ ]  = ( )
p a r L i s t B y l d x  s  1 ( i : i d x s )  = p a r L i s t B y l d x  s  1 i d x s  1sparking1 s  ( l ! ! i )
- -  get the index of y in the list
i d x  y  [ ]  = e r r o r  " i d x :  x  n o t  i n  1"
i d x  y  ( ( x , _ )  : x s ) | y = = x  = 0

j o t h e r w i s e  = ( i d x  y  x s ) + l  
- -  the 'schedule' for sparking: list of indices of sorted input list 
s o r t e d l d x  1 i d x s  = [ i d x  x  1 | ( x , _ )  < -  i d x s  ]
- -  add granularity info to elems of the input list 
g r a n _ l i s t  = m ap ( \  1 - >  ( g r a n _ e s t i m  1 ,  1 ) )  l _ i n

The purpose of the parG ranL ist strategy is to spark all elements in the list l_out 
in an order of decreasing granularity. The function g ran .es tim  provides an estimate
of the granularity. Note that this estimate has to be applied to the input list l . i n
determining the order of the sparks in the output list. Thus, this strategy abstracts 
over the concrete definition of how to compute the results in the output list. The 
strategy proceeds in four steps:

1. First granularity estimates are added to each list element yielding g r a n .l i s t .  
The construct \  1 -> . . .  represents a lambda expression in Haskell, i.e. an 
anonymous function with the argument 1 and the body . . .

2. Then the resulting list is sorted by these estimates using the library function 
sortLe, which takes a predicate, the less-than-or-equal function to be used for 
sorting, as the first argument.

3. In order to obtain a “schedule” for the order in which the list elements should 
be sparked, a list of indices of the sorted list is computed using so rted ldx .

4. Finally, the index-list is used as the schedule for the parL istB yldx strategy, 
which introduces parallelism via a spark ing  clause. The 1! ! i  construct is used 
to extract the i-th  element from the list 1.

For clarity, the current version separates the sorting of the list from obtaining the list 
of indices, yielding a quadratic algorithm. This could be improved further by merging 
both steps.
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Clearly, this strategy encodes a deeper insight into the parallel behaviour of the pro
gram than previous strategies. The original motivation for designing this strategy 
came from the observation that in a coarse-grained program, with largely varying 
computation times, it is crucial to generate the largest thread first in order to min
imise a sequential tail with only the largest thread executing. In a typical process of 
developing a parallel algorithm the programmer starts with examining the types on 
the most important data structures and uses pre-defined parallel strategies on these 
types, e.g. p a rL is t over list structures. Then, in the performance tuning stage, the 
programmer might try to improve the behaviour by encoding a particular parallel 
behaviour in the algorithm as it has been done with the parG ranL ist strategy above. 
The discussion of the LinSolv algorithm in Section 4.6 elaborates this tuning process 
further.

4.3.7 Strategic Function Application

This section discusses one of the author’s contributions to the latest version of eval
uation strategies as part of his parallelisation of Lolita. The initial version of parallel 
Lolita was written with using-based pipelines. Introducing the notion of strategic 
function application and rewriting the code in this style simplified the overall struc
ture significantly.

In pipelined parallelism a sequence of stream-processing functions are composed to
gether, each consuming the stream of values constructed by the previous stage and 
producing a new stream. This kind of parallelism is easily expressed in a non-strict 
language by function composition. The non-strict semantics ensures that no barrier 
synchronisation is required between the different stages.

When using strategies to describe this kind of parallelism a function composition is 
needed, which applies a strategy to the intermediate value. Based on this observation 
strategic function application and strategic function composition are introduced. The 
new operators correspond to function application $ and function composition . de
fined in the Haskell prelude. The strategic function application takes one additional 
argument, a strategy s, which is applied to the argument. The parallel version of the 
operator, $ I I, applies the strategy and the function in parallel, thereby overlapping 
two stages in the pipeline. The sequential version of this operator, $ I, first applies 
the strategy and then the function to the argument. This introduces a synchroni-
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sation barrier and may be used to define evaluation order. However, the strategy 
may itself define parallelism, e.g. over the structure of the argument. The . I I and
. I operators define the same behaviour for function compositions. The definition of
these operators in G p H is given below.

infixl 6 $/, $11 - -  strategic function application
infixl 9 • / / • / /  - -  strategic function composition

($1), ($11) :: (a - >  b) -> Strategy a -> a -> b
( * / ) #  ( • / / )  :: (b -> c) -> Strategy b -> (a -> b) -> (a -> c)

($1) f  s  x  = f  x  1demanding* s  x
($11) f  s  x  = f  x  1sparking1 s  x

( . / )  f  s  g  = \  x  - >  l e t  g x  = g  x
in f  g x  1demanding1 s  g x

(•II) f  s  g  = \  x  - >  l e t  g x  = g  x
in f  g x  *sparking' s  g x

An often used example of the modularity of functional languages is the definition of 
the sum-of-squares function for computing the sum of the first n integer values via the 
composition of three separate functions. With the new construct of strategic function 
application we can define a parallel behaviour of the same definition in a very natural 
way without obscuring the original algorithmic code:

s u m _ o f _ s q u a r e s  ; ;  Int -> Int
s u m _ o f _ s q u a r e s  n  = su m  $ / /  parList rnf $ - -  [Int]

m ap ( A2)  $1/ rnf $ - -  [Int]
en u m F ro m T o  1 n

The functions are applied via the parallel $ I I operator to obtain a parallel pipeline
structure. Furthermore, the types of the intermediate lists, [ I n t ] , already suggest
a strategy for exposing additional data parallelism in the code: p a rL is t rn f. How
ever, in this case we have chosen not to use the parallelism over the list generated 
by the enumFromTo library function, because it contains too little computation for 
each of the list elements. As a result, this function defines a pipeline strategy with 
data parallelism over one of the two intermediate list structures (see Figure 4.1). It is 
easy to experiment with the parallelism in the code, e.g. by merging pipeline stages, 
which amounts to replacing $ I I with a $ I operator. The data parallelism over the 
intermediate data structures can be simply modified by choosing different strategies 
as arguments to the $ I I operator. Because none of these changes require to exam
ine the code for the function sum, map, and enumFromTo, this example shows how 
the modularity, obtained in functional languages via non-strict data structures and
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n

F ig u re  4.1 Structure of sum-of-squares

function composition, carries over to the definition of the parallel behaviour of the 
code.

As a comparison of two versions of a more sophisticated strategy we now discuss the 
back end in the Lolita system, which interprets semantic information obtained in a 
previous analysis in the system. This comparison illustrates that keeping intermediate 
values anonymous increases the readability of the program significantly. A using- 
based version of the back end in Lolita can be written as follows. Details of the code 
will be discussed in Section 4.5.

b a c k _ e n d  i n p  o p t s  
= r 8  'demanding' s t r a t  

w h e r e
r l  = u n p a c k T r e e s  i n p  
r 2  = u n i f y S a m e E v e n t s  o p t s  r l  
r 3  = s t o r e C a t e g o r i s e l n f o r m a t i o n  r 2  
r 4  = u n i f y B y S u r f a c e S t r i n g  r3  
r 5  = a d d T i t l e T e x t r e f s  r 4  
r 6  = t r a c e S e m W h o le  r 5  
r 7  = o p t Q u e r y R e s p o n s e  o p t s  r 6  
r 8  = m k W h o l e T e x t A n a l y s i s  r 7
s t r a t  = (parPair rwhnf (parList rwhnf) ) i n p

(parPair rwhnf (parList (parPair rwhnf rwhnf) ) ) r l  
rnf r 2  
rnf r 3  
rnf r 4  
rnf r 5  
rnf r 6
(parTriple rwhnf (parList rwhnf) rwhnf) r 7
0

By using strategic function application the same code can be written more succinctly 
as follows. The separation of algorithmic and behavioural code is maintained by 
allowing strategies only as arguments to the strategic function application.

'aeg' 
'seq' 
'par' 
'par' 
'par' 
'par' 
'par' 
'seq'

lenumFromTo 1 sum
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b a c k _ e n d  i n p  o p t s  =
m k W h o l e T e x t A n a l y s i s $ parTriple rwhnf (parList rwhnf) rwhnf $
o p t Q u e r y R e s p o n s e  o p t s $ 1 rnf $
t r a c e S e m W h o l e $ 1 rnf $
a d d T i t l e T e x t r e f s $ 1 m f  $
u n i f y B y S u r f a c e S t r i n g $ 1 m f  $
s t o r e C a t e g o r i s e l n f $ I rnf $
u n i f y S a m e E v e n t s  o p t s $ parPair rwhnf (parList (parPair rwhnf rwhnf) )
u n p a c k T r e e s $ parPair rwhnf (parList rwhnf) $
inp

Strategic function application has proven useful in particular for the parallelisation of 
Lolita (see Section 4.5.3). The Alpha-Beta search algorithm described in Section 4.4 
has a top-level pipeline structure. However, in this case there is far less potential 
parallelism in the pipeline structure.

The importance of strategic function application and composition for parallel pro
gramming is underlined by the fact that function composition is considered the basic 
building block for constructing large programs from independent modules (Hughes 
1989). The software engineering advantages, such as improved modularity, for sequen
tial program development are well known. In the parallel setting strategic function 
composition also facilitates a data-oriented approach to parallelisation, making use 
of the modularity provided by lazy languages.

4.4 A lpha-Beta Search

The first example program is the Alpha-Beta search algorithm, typical of artificial 
intelligence applications. It is mainly used for game-playing programs to find the best 
next move by generating all possible moves up to a certain depth, applying a static 
evaluation function to each of the leaves in this search tree, and combining the result 
by picking the best move for the player assuming that the opponent picks the worst 
move for the player. In a more general setting this algorithm can be used for heuristic 
search. The idea of the heuristics is that the quality of the result depends on the static 
evaluation function as well as on the search depth. If the latter is sufficiently high a 
very simple static evaluation function can be used.

This section discusses two versions of the Alpha-Beta search algorithm: a simple ver
sion, and a pruning version. Both versions are based on the Miranda1 code presented

1 Miranda is a trademark of Research Software Ltd.
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by Hughes (1989) in order to demonstrate the strengths of lazy functional languages. 
Based on the generic Alpha-Beta search algorithm two simple games (tic-tac-toe and 
escape) have been implemented. An interesting aspect of this algorithm is the fact 
that the pruning version relies on laziness to prune the search tree based on interme
diate results of the computation. This behaviour is crucial for the efficiency of the 
sequential algorithm, and has to be preserved in the parallel algorithm.

This section presents both parallel versions and studies their parallel runtime be
haviours. The parallel algorithms show how the use of strategies allows the program
mer to develop an efficient parallel algorithm without sacrificing the advantages of the 
original lazy algorithm, namely its modularity and efficiency. A description of both 
algorithms and a comparison of the parallelisation with that of other applications is 
given in Loidl k  Trinder (1997).

4.4.1 Simple Algorithm

In the simple algorithm each possible next move is evaluated independently yielding 
a divide-and-conquer structure of the algorithm. The result is either the maximum, 
player’s move, or the minimum, opponent’s move, of the evaluations of these positions. 
As discussed by Hughes (1989) this algorithm can be very naturally derived as a 
sequence of function compositions (see Figure 4.2). The stages in the pipeline perform 
the following tasks:

1. Construct a tree with positions as nodes and all possible next moves as subtrees. 
This is done by repeatedly applying a newPosition function to the nodes in 
the tree, alternating between the functions for the two players, repTree.

2. Prune the tree, which might be infinite at this stage, to a fixed depth to bound 
the search via prune. The search depth is an argument to the algorithm.

3. Map a static evaluation function over all nodes of the tree via mapTree.

4. Crop off subtrees from winning or losing positions via cropTree. If such a 
position is found it is not necessary to search deeper in a subtree.

5. Finally, pick the maximum, or minimum, of the resulting evaluations in order 
to determine the value of the current position via mise f  g. The functions f
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b e s t M o v e  ; ; Int -> Piece -> Player -> Player -> Board -> Evaluation 
b e s t M o v e  d e p t h  p  f  g  = ( m i s e  f  g )  .

c r o p T r e e  .
( m a p T r e e  ( s t a t i c  p ) ) .
( p r u n e  d e p t h )  . 
r e p T r e e  ( n e w P o s i t i o n s  p )

( n e w P o s i t i o n s  ( o p p o s i t e  p ) )

F ig u re  4.2 Top level structure of choosing the best next move

and g represent the combination functions for the two players, maximum or 
minimum respectively, and alternate when traversing the tree.

D ynam ic B eh av io u r

The fact that the results in all subtrees can be computed independently makes par
allelisation rather easy. For both versions of the algorithm the following four sources 
of parallelism can be used.

Top Level P ip e lin e . An obvious approach to parallelise this algorithm is to use 
pipeline parallelism between the stages of the pipeline. However, it is crucial not to 
force the intermediate values too far. In particular, the result of the repTree stage 
might be an infinite tree.

P a ra lle l S ta tic  E v a lu a tio n  F unction . The idea of a parallel static evaluation 
function is to reduce the costs of the function, which will be mapped over the leaves 
of the pruned search tree. This only makes sense for a rather time consuming static 
evaluation function, otherwise it creates a lot of fine-grained parallelism. However, an 
underlying assumption of the Alpha-Beta search algorithm is that the static evalua
tion function can be very simple when using a tree search structure to determine the 
best value. In the example implementations, the static evaluation function computes 
the distance of the current position to a set of known winning positions. The parallel 
version computes all distances in parallel.
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P a ra lle l H ig h er-O rd er F unctions over Trees. Parallelising the definitions of 
some higher-order functions is a bottom-up approach. It can be used for the par
allelisation of many functional programs. In this case a parallel version of a map 
function over search trees, mapTree, is used. However, the measurements in Table 4.1 
show, that without any knowledge about the context in which these higher-order 
functions are used a lot of redundant work may be generated resulting in extremely 
poor parallelism.

D a ta  P ara lle lism  over all P ossib le  N ex t M oves. In a data parallel approach 
the goal is to evaluate all possible next moves in parallel. It is a top-down approach 
and turns out to be the best source of parallelism in particular for an algorithm with no 
dependencies between the evaluations of the subtrees. A simple parMap rn f strategy 
can be used to capture the dynamic behaviour of this function. The only necessary 
change in the algorithm affects the mise function in Stage 5 of the algorithm, shown 
in Figure 4.3. This function takes the two combination functions, either the binary 
max or min function, and a tree of static evaluations of positions in the game, as 
arguments. It then recursively maps the mise function over all subtrees, switching 
the functions f  and g to record the switch of turns. Finally, the combination function 
at the current level, f , is folded to obtain the score of the current position.

- -  This does simple minimaxing without pruning subtrees based on 
-- intermediate evaluations (i.e. purely compositional) 
m i s e  ; ;  Player -> Player -> (Tree Evaluation) -> Evaluation
m i s e  f  g  ( B r a n c h  a  [ ] )  = a
m i s e  f  g  ( B r a n c h  _  1) = f o l d r  f  (g  OWin XWin) (parM ap m f  ( m i s e  g  f )  1)

F ig u re  4.3 Data parallel combination function in the simple Alpha-Beta search
algorithm

P erfo rm an ce  M easu rem en ts

The measurements of both versions of the algorithm under the G ranSim simulator 
are summarised in Table 4.1. The setup used in these measurements models a shared 
memory machine with 32 processors, a latency of 64 machine cycles, and bulk fetching. 
The first four data columns of this table show the results of the simple algorithm
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T able 4.1 Measurements of the simple and the pruning Alpha-Beta search algorithm
Simple Algorithm 

Runtime Avg Total 
(kcycles) Pax Work SpdUp

Pruning Algorithm 
Runtime Avg Total 
(kcycles) Par Work SpdUp

Position I (standard)
Sequential 60,297 34,363 (1.75)
Par Pipeline 60,297 1.0 100% 1.00 34,370 1.0 100% 0.99
Par Static Eval 21,091 3.1 108% 2.85 12,099 3.1 109% 2.84
Data Par 3,503 26.4 153% 17.21 2,265 23.7 156% 15.17
Par h.o. fcts 4,954 20.9 172% 12.16 4,248 24.2 299% 8.08
Par Static Eval &
Data Par 3,507 28.5 166% 17.19 2,156 27.6 173% 15.93
Par h.o. fcts &
Data Par 3,701 28.2 173% 16.29 3,683 28.3 303% 9.32
Position II (early solution)
Sequential 4,427 4,703 (0.94)
Par Pipeline 4,427 1.0 100% 1.00 4,706 1.0 100% 0.99
Par Static Eval 1,772 2.9 116% 2.49 1,898 2.9 117% 2.47
Data Par 1,152 13.9 362% 3.84 1,075 13.1 299% 4.37
Pax h.o. fcts 759 9.6 165% 5.83 811 9.0 155% 5.79
Par Static Eval &
Data Par 775 23.2 406% 5.71 779 20.4 338% 6.03
Par h.o. fcts &;
Data Par 919 20.4 424% 4.81 1,001 18.9 403% 4.69
Position III (large search tree)
Sequential 145,720 90,377 (1.61)
Pax Pipeline 145,720 1.0 100% 1.00 90,385 1.0 100% 0.99
Par Static Eval 48,808 3.3 111% 2.98 29,891 3.3 109% 3.02
Data Par 6,621 29.1 132% 22.00 7,699 16.2 138% 11.73
Par h.o. fcts 9,345 21.4 137% 15.59 8,093 24.6 220% 11.16
Par Static Eval &
Data Par 7,083 29.3 142% 20.57 5,210 25.7 148% 17.34
Par h.o. fcts &
Data Par 6,882 29.3 138% 21.17 6,802 29.6 223% 13.28

when using the different sources of parallelism. All runtimes are given in machine- 
independent kilocycles. The total work column measures the total work compared 
to a sequential run and is therefore a measure of the redundant work, in particular 
of speculative parallelism. The three horizontal sections in the table represent three 
different positions that have been analysed: a standard opening position (I) with 
a sequential runtime of 60,297 kilocycles; a winning position (II) with a sequential
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runtime of 4,427 kilocycles; and a position generating a large search tree (III) with a 
sequential runtime of 145,720 kilocycles.

The parallel pipeline version creates hardly any parallelism at all. This is due to the 
fact that it is not possible to force the search tree before pruning it without generating 
a huge amount of redundant work. This result differs significantly from the results 
with programs like Lolita, where the top-level structure of the whole algorithm is a 
parallel pipeline. The parallel static evaluation function generates conservative par
allelism shown by the small amount of total work performed. However, the degree 
of parallelism is rather small: in this example program the distance of the current 
position to a small set of winning positions is computed in a data parallel fashion. 
Another disadvantage is the fine-grained nature of the parallelism, i.e. each of the 
generated threads performs very little computation. The data parallelism over all 
next positions proves to be the best source of parallelism. The simple algorithm will 
only cut-off subtrees if it finds a winning position in one of the subtrees. Therefore, 
this data parallelism is conservative except for the case where a winning position is 
found as in Position II. Note that in the latter case the simple sequential algorithm 
performs even better than the pruning algorithm indicated by the algorithm speedup 
of 0.94, in brackets, in the last column. Finally, the higher-order functions approach 
generates the largest amount of redundant work shown by the high total work per
centage. Here a parallel tree map of the static evaluation function is used. However, 
this also maps the evaluation function on nodes that are actually pruned in the se
quential algorithm. Combining data parallelism with parallel static evaluation does 
not improve the performance in general. Although the average parallelism increases, 
the speedup actually drops for Positions I and III because the additional parallelism 
is very fine-grained.

For the simple Alpha-Beta algorithm using only data parallelism gives an almost 
perfect utilisation of the machine, provided that the search space is large enough. If 
a solution is found early on then the speedup will naturally drop (see Position II in 
Table 4.1). However, for more realistic games than tic-tac-toe the search space should 
easily be large enough because of the exponential growth of the search tree.
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m a x

[0,..][3,1]

minm m

0 ?3 1

F ig u re  4.4 Pruning subtrees in the optimised Alpha-Beta search algorithm

4.4.2 Pruning Algorithm

The simple algorithm described in the previous section lacks one crucial optimisation 
of the Alpha-Beta search: the pruning of subtrees based on intermediate results. The 
pruning algorithm returns an increasing list (player’s move) of approximations with 
the exact value as last list element rather than a single value. The main pruning 
function, minleq, has to test whether the opponent’s move from a subtree can be 
ignored (see Figure 4.4). This is the case if the worst result of the decreasing list 
Z, i.e. its minimum, is no better, i.e. less than or equal to, the intermediate result 
x. Or more formally: minimum I < x  m inleq I x. Since m inleq works on 
decreasing lists it can stop examining the list as soon as it finds a value less than x. 
Thus, laziness is used to ignore parts of the list of approximations, which amounts 
to pruning subtrees in the search tree. A complete description of this lazy functional 
pruning algorithm can be found in Hughes (1989).

In the sequential code in Figure 4.5 the prelude functions min and max from the simple 
algorithm are replaced with functions min * and max *, respectively. The new functions 
operate over lists of approximations. In implementing the behaviour described in the 
previous paragraph the b e tte r th a n  function will stop examining list elements of 
next when it is clear that the final result will not be better than the value a found so 
far. Figure 4.4 illustrates this behaviour. After having determined the value of the 
left subtree and the value 0 in the right subtree it is not necessary to examine the
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-- A pruning version of alpha-beta search
m i s e  ; ;  Player -> Player -> (Tree Evaluation) -> [Evaluation] 
m i s e  f  g  ( B r a n c h  a  [ ] )  = [a ]
m i s e  f  g  ( B r a n c h  _  1) = f  (map ( m i s e  g  f )  1 )

b e t t e r t h a n  ; ;  (Evaluation -> [Evaluation] -> Bool) -> -- maxleq or minleq
( ( E v a l u a t i o n ]  - >  E v a l u a t i o n )  - >  - -  max' or min'

E v a l u a t i o n  - >  - -  Score to compare
[[ E v a l u a t i o n ] ] - >  - -  list of approxs
[ E v a l u a t i o n ]  

b e t t e r t h a n  _  _  _  []  = []
b e t t e r t h a n  b e t t e r _ t h a n _ w o r s t  w o r s t  a  ( n e x t : r e s t )

| a  ' b e t t e r _ t h a n _ w o r s t ' n e x t  = b e t t e r t h a n  b e t t e r _ t h a n _ w o r s t  w o r s t  a  r e s t
| o t h e r w i s e  = m : b e t t e r t h a n  b e t t e r _ t h a n _ w o r s t  w o r s t  m r e s t

w h e r e  m = w o r s t  n e x t

- -  minleq y 1 <=> minimum 1 <= y 
m i n l e q  Evaluation -> [Evaluation] -> Bool 
m i n l e q  y  []  = F a l s e
m i n l e q  y  ( x : x s )

| x  <= y  = T r u e  - -  throws away the rest of the list!
| o t h e r w i s e  = m i n l e q  y  x s

- -  used as argument to mise
m ax ' : :  [[Evaluation]] -> [Evaluation]
m a x ' ( f i r s t : r e s t )  = m : b e t t e r t h a n  m i n l e q  m in im u m  m r e s t

w h e r e  m = m in im um  f i r s t  - -  strict in first

F ig u re  4.5 Pruning version of the Alpha-Beta search

rightmost leaf. The overall maximum is guaranteed to be at least 1.

D yn am ic B eh aviour

Unfortunately, the pruning version seriously complicates the parallelisation of the 
algorithm. We have already seen in the simple algorithm that the most promising 
source of parallelism is the parallel evaluation of all next positions. However, using 
a simple p a rL is t rn f  strategy over all next positions is no longer advisable, since 
this might result in a lot of redundant work, if many subtrees can be pruned. The 
measurements of the data parallel strategy on the pruning algorithm in Table 4.1 
show a rather high degree of redundant work. In fact, in the data parallel strategy 
on Position III the parallel simple version is even faster than the highly speculative 
parallel pruning version of the algorithm!

A better approach for parallelisation is to force only an initial segment in the list of
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- -  Parallel version of the pruning version
m i s e  ; ;  Player -> Player -> (Tree Evaluation) -> [Evaluation] 
m i s e  f  g  ( B r a n c h  a  [ ] )  = [a ]  
m i s e  f  g  ( B r a n c h  _  1) = 

f
- -  force the first n elements of the result list 
( (m a p  ( m i s e  g  f )  1)
'using' \ x s  - >  i f  f o r c e _ l e n = = - l  - -  infinity 

t h e n  parList m f  x s  'par' ()
e l s e  parList m f  ( t a k e  f o r c e _ l e n  x s )  'par' 

parList rwhnf ( d r o p  f o r c e _ l e n  x s )  'par'
0

)

F ig u re  4.6 Strategy for a parallel pruning version with a static force length

possible next positions. We call the length of this segment the “force length” . We 
have experimented with static force lengths as well as dynamic force lengths that 
depend on the level in the search tree. To date the best results have been obtained 
from using a static force length as shown in the parallel code for mise in Figure 4.6. 
The algorithmic code for mise is unchanged compared to the sequential version. The 
strategy uses a global constant f  o rce .len  to determine how much of the list xs should 
be evaluated. Because strategies are simply Haskell functions, the prelude functions 
tak e  and drop can be used for that purpose. Note that the force length represents a 
trade-off between increasing the degree of parallelism and reducing the total amount 
of work being done.

P erfo rm an ce  M easu rem en ts

Figure 4.7 compares the speedups of the pruning version of Alpha-Beta search un
der G r a n S im , using the same setup as in the previous measurements. The x-axis 
shows the static force length, the y-axis the speedup. The left hand graph uses a 
program implementing tic-tac-toe, the right hand graph uses an implementation of a 
similar game, escape, with a search space of comparable size but asymmetric winning 
conditions.

The left hand graph shows for the data parallel strategy a large improvement when 
increasing the force length, in particular for Position III. A purely conservative data 
parallel strategy (i.e. the force length is 0) achieves a speedup of only 8.58 because the 
amount of available parallelism drops early on in the computation (see Figure 4.8).
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tic-tac-toe

Pruning (data par) (I) 
Pruning (data par) (II) 
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F igu re  4.8 Data parallel versions with static force lengths of 0 and 4

In contrast, with a force length of 4 the speedup is 15.71. After that the percentage 
of redundant work done in the parallel algorithm increases too much to achieve a 
further improvement. For Position II, which finds a winning position early on in the 
search, parallelism can achieve hardly any improvement because almost all potential 
parallelism in the algorithm is pruned. The versions additionally using a parallel 
static evaluation function usually outperform the versions with data parallelism alone, 
because the small amount of conservative parallelism in the static evaluation can make 
use of idle time on the machine. This is in contrast to the simple algorithm, where the 
data parallel evaluation function generates enough parallelism to keep the machine 
busy. This can be seen in Table 4.1, comparing the speedups of the lines for data 
parallelism and data parallelism together with a parallel static evaluation function.
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4.5 Lolita

4.5.1 Algorithm

The Lolita natural language engineering system (Morgan et al. 1994) has been de
veloped at the University of Durham over several years. It has not originally been 
written with a parallel execution of the code in mind. The team’s interest in paral
lelism is partly as a means of reducing runtime, and partly also as a means to increase 
functionality within an acceptable response-time. The overall structure of the pro
gram bears some resemblance to that of a compiler, being formed from the following 
large stages:

• Morphology (combining symbols into tokens; similar to lexical analysis);

•  Syntactic Parsing (similar to parsing in a compiler);

•  Normalisation (to bring sentences into some kind of normal form);

•  Semantic Analysis (compositional analysis of meaning);

•  Pragmatic Analysis (using contextual information from previous sentences).

These stages form the core of Lolita. Depending on how Lolita is to be used, a final 
additional stage may perform a discourse analysis, the generation of text (e.g. in a 
translation system), or it may perform inference on the text to answer queries. This 
design of the system yields a very flexible and modular structure. A more detailed 
discussion of the Lolita system and of its parallelisation is given in Loidl et al. (1997). 
The parallelisation has been done as joint work with the group at the University of 
Durham.

Central to Lolita’s flexibility is the semantic network, a graph based knowledge rep
resentation used in the core of Lolita. In the semantic network concepts and relation
ships are represented by nodes and arcs respectively, with knowledge being extracted 
by graph traversal. The task of the analysis stages is to transform the possibly 
ambiguous input into a sub-graph of the semantic network. Application-dependent 
backend stages can then extract pieces of the semantic network and present it in the 
required form.
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4.5.2 Sequential Profiling

As a preparation for parallelising such a large program the author has performed 
sequential profiling of the code. This did not reveal a particular hotspot in the 
program although the syntactic parsing stage is the biggest component in the top- 
level structure with about 20% of the execution time. However, this stage makes 
heavy use of C-functions, called from within Haskell, to optimise the time consuming 
parsing process. This complicates a parallelisation of the parsing stage. The Haskell 
part of the parsing, however, can be parallelised without major recoding.

4.5.3 Top Level Pipeline

W ithout a clear hotspot in the sequential execution of the program a pipeline ap
proach is a promising way to achieve enough parallelism for a four processor shared- 
memory machine such as a Sun SPARCserver. The structure of a pipeline parallel 
version is shown in Figure 4.9. Each stage listed above is executed by a separate 
thread, which are linked to form a pipeline. Note that in order to make use of the 
multi-threaded runtime-system, which overlaps computation and communication, the 
parallel algorithm should contain more threads than there are processors available. 
The key step in parallelising the system is to define strategies on the complex in
termediate data structures, e.g. parse trees, that are used to communicate between 
these stages. This data-oriented approach simplifies the top-down parallelisation of 
this very large system, since it is possible to define the parallelism over parts of a data 
structure without considering the algorithms that produce that data structure. This 
approach hides unnecessary information about the generation of the data structure 
and is in the spirit of functional programming, which tries to achieve modularity by 
composing flexible, possibly higher-order, functions.

Semantic An.Morpholgy) Synt. Parsing Normalisation Pragmatic An;

F ig u re  4.9 Overall pipeline structure of Lolita

The code of the top-level function wholeTextAnalysis in Figure 4.10 uses strategic 
function application as the basic operator to introduce parallelism (see Section 4.3.7).
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The algorithm is separated from the dynamic behaviour in each stage by using the 
$ I I operator. In a first parallel version the same separation has been achieved with 
an explicit pipeline strategy. However, this required to name every intermediate value 
in the pipeline. As a result many additional variables had to be added to the code, 
obscuring the algorithmic part of the code. This experience was the main motivation 
for developing the strategic function application operator.

Note that this code uses a p a rL is t strategy in the definition of raw ParseForest 
in the parsing stage to describe data parallelism over the whole input by processing 
sentences in the input text in parallel. In the current version of the system it is not 
possible to use this source of parallelism because the C code in this stage is not re
entrant. Changing the C code to exploit this form of parallelism is ongoing work. The 
strategies in the individual stages of Figure 4.10 will be discussed in the subsequent 
sections.

The semantic and pragmatic analysis stages are wrapped into a timeout function in 
order to guarantee a worst case response time of the system. This indicates that 
these stages can be very computationally intensive. Therefore, both analyses are 
kept rather simple in the sequential system. By providing the strategy evalScores, 
in parse2prag, speculative parallelism is defined, which allows the system to perform 
a more sophisticated analysis by examining several possible parse trees. The goal of 
this strategy is therefore to improve the quality of the result. Section 4.5.5 discusses 
this issue in more detail. In general, it would be very desirable to improve the quality 
of semantic and pragmatic analysis in the system. Parallelism inside these stages 
could be used to maintain good performance despite the increased complexity of the 
system.

4.5.4 Parallel Parsing

One major source of parallelism in the time consuming syntactic parsing stage is the 
merging of possible parse trees in order to build a parse tree for a whole sentence. 
One complication in the parsing of natural languages is their ambiguity. Because of 
this ambiguity the parsing stage produces not just one but a list of possible parse 
trees. Internally, however, the result is represented as a single tree, which at some 
points contains alternatives ( “or-nodes”) representing different possible parses of the 
subtrees. A lazy function is used to convert this single tree into a list of possible parse
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wholeTextAnalysis opts inp global = 
result 
where

- -  ( 1 )  M o r p h o l o g y
(g2, sgml) = prepareSGML inp global
sentences = selectEntitiesToAnalyse global sgml
- -  ( 2 )  P a r s i n g
rawParseForest = map (heuristic_parse global) sentences 

'using* parList rnf

- -  ( 3 ) - ( 5 )  A n a l y s i s
anlys = stateMap_TimeOut (parse2prag opts) rawParseForest global2
- -  ( 6 )  B a c k  E n d
result = back_end anlys opts

- -  P i c k  t h e  p a r s e  t r e e  w i t h  t h e  b e s t  s c o r e  f r o m  t h e  r e s u l t s  o f  
- -  t h e  s e m a n t i c  a n d  p r a g m a t i c  a n a l y s i s .  T h i s  i s  d o n e  s p e c u l a t i v e l y !

parse2prag opts parse_forest global = 
pickBestAnalysis global $u evalScores $ 
take (getParsesToAnalyse global) $
map analyse parse_forest 
where

analyse pt = mergePragSentences opts $ evalAnalysis 
evalAnalysis = stateMap_TimeOut analyseSemPrag pt global 
evalScores = parList (parPair rwhnf (parTriple rnf rwhnf rwhnf) )

- -  P i p e l i n e  t h e  s e m a n t i c  a n d  p r a g m a t i c  a n a l y s e s
analyseSemPrag parse global =
prag_transform $n rnf $
pragm $n rnf $
sem_transform $ii rnf $
sem (g,[]) $n rnf $
addTextrefs global $i rwhnf $
subtrTrace global parse

back_end inp opts = 
mkWholeTextAnalysis $ 
optQueryResponse opts $ 
traceSemWhole $
addTitleTextrefs $
unifyBySurfaceString $ 
storeCategoriselnf $ 
unifySameEvents opts $ 
unpackTrees $
inp

F ig u re  4.10 The top level function of Lolita

trees. In each or-node the parser, which returns a list of parse trees, must merge the 
lists of parse trees produced by the recursive calls. In merging these lists the possible 
parse trees have to be sorted based on some simple syntactic criteria representing the 
likelihood of a parse, and the laziness of Haskell is crucial. In order to produce one 
parse tree in an or-node it is only necessary to evaluate the first element in the lists

parTriple rwhnf (parList rwhnf) rwhnf $
I m f  $
I m f  $
I m f  $
I m f  $
I m f  $
parPair rwhnf (parList (parPair rwhnf rwhnf)) $ 
parPair rwhnf (parList rwhnf) $
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m e r g e s t r a t e g y  ; ;  (NFData a, NFData b) =>
( P a r s e F o r e s t , F e a t u r e F o r e s t s )  - >  S p a n  - >  M e r g e S t r a t e g y  a  b

m e r g e S t r a t e g y  ( p f , f f )  s p a n  
| t o t a l S p a n  = = 0  = M S t r a t  s e r i a l M e r g e
I p e r c e n t S p a n n e d  >= m in S p a n  = M S t r a t  p a r a l l e l M e r g e
| o t h e r w i s e  = M S t r a t  s e r i a l M e r g e
where

p e r c e n t S p a n n e d  = ( s p a n  * 1 0 0 )  ' d i v '  t o t a l S p a n  
t o t a l S p a n  = f o r e s t S p a n  p f
m in S p a n  = g e t P a r s i n g P a r P e r c e n t  ( f o r e s t G l o b a l  p f )

p a r a l l e l M e r g e  ; ;  (NFData a, NFData b) =>
[ ( a , b ) ] - >  [ ( a , b ) ]  - >  S t r a t e g y  [ ( a , b ) ]

p a r a l l e l M e r g e  a s  b s  _
= f s t P a i r F s t L i s t  b s  ’p a r *

f s t P a i r F s t L i s t  a s  ’segr’
0

fstPairFstList :: (NFData a, NFData b) => Strategy [(a,b)]
fstPairFstList = seqLiatN 1 (aeqPair rwhnf rO)

serialMerge ;; (NFData a, NFData b) =>
[(a,b)] -> [(a,b)] -> Strategy [(a,b)]

serialMerge as bs 
= rO

Figure 4.11 A granularity control strategy used in the parsing stage

produced by all alternatives.

From a parallelism point of view this behaviour explains why it is not possible to 
force the evaluation of parts of the parse forest without risking to introduce a high 
degree of redundant work. Within the parsing process the merging of lists triggers the 
evaluation of sublists, in particular the evaluation of the quality of possible parses. 
Although the merging itself is very cheap it triggers work that can be usefully done 
in parallel.

In order to improve the granularity of the threads produced by the parallel tree 
traversal in the parsing stage, we apply a thresholding strategy, shown in Figure 4.11, 
to the “span” in the tree. The span value, which is attached to each node in the tree, 
specifies the number of leaves in the current subtree. The threshold for generating 
a parallel process in order to merge all possible subtrees is specified as a percentage 
of leaves that can be reached from the current node, and this percentage is part 
of the global system environment. Checking the threshold is very cheap because it 
only involves the comparison of the span argument, as a percentage, with a system
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parameter assigned to minSpan.

The two parallel calls to fstP a irF stL ist in parallelMerge define parallelism in 
this stage. Only the first element of the pair is evaluated because it contains the 
value determining the quality of the resulting parse tree. Thus, the fstP a irF stL ist  
strategy specifies an evaluation degree that is sufficient to select the tree to return as 
the result of the syntactic parsing stage but without evaluating the tree itself more 
than necessary.

One strength of strategies is their reusability for different algorithmic code that has the 
same dynamic behaviour. We were able to exploit this feature with mergeStrategy 
in Figure 4.11 by applying the same polymorphic thresholding strategy to two lists of 
different types within the syntactic parsing stage. This reuse is highlighted by the pa- 
rameterisation of the MergeStrategy datatype over the two possible types in the list. 
Both instances of applying mergeStrategy are in sub-functions of heuristic_parse  
in Figure 4.10.

The measurements discussed in this section have been performed with G r a n S im in 
a setup that models the four processor shared-memory Sun SPARCServer available 
at Durham. The goal of these measurements is to determine the best value for the 
span in the mergeStrategy. Figure 4.12 shows the activity profiles for Lolita using 
a span threshold of 50%, left hand graph, and 90%, right hand graph. Both profiles 
show a good utilisation of the system during the syntactic parsing stage. However, 
in the left hand graph almost 100 blocked threads and a high number of runnable 
threads are generated, too. These impose significant runtime overhead in the system. 
The granularity profile at the left hand side of Figure 4.13 reveals that most of the 
threads are very fine-grained: 3,422 of the 5,122 threads (67%) are shorter than 2,000 
cycles. This leads to a bad ratio of computation versus parallelism overhead.

In comparison, when increasing the span threshold to 90% the number of blocked 
and runnable threads is reduced significantly (at most 36), and the number of small 
threads drops drastically, as shown in the right hand graph of Figure 4.12 (note the 
different scaling in both graphs). Now, only 67 of the 165 threads are shorter than 
2,000 cycles (40%). Corresponding to this drop in the total number of threads, espe
cially fine-grained threads, the runtime drops from 754,687 kilocycles in the previous 
version to 526,842 kilocycles in this version. As a result of these measurements and 
considering the low amount of parallelism that is required to fully utilise the four 
processor shared-memory machine, span thresholds around 90% are used for GUM
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F igure  4.12 Activity profiles of Lolita with span thresholds of 50% and 90%
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F igu re  4.13 Granularity profiles of Lolita with span thresholds of 50% and 90%

executions of Lolita.

4.5.5 Parallel Sem antic  A nalysis

Another source of parallelism can be used to improve the quality of the analysis by 
applying the semantic and pragmatic analyses in a data-parallel fashion on different 
possible parse trees for the same sentence. Because of the complexity of these analyses, 
the sequential system always picks the first parse tree, which may cause the analysis
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to fail, although it would succeed for a different parse tree. In this case the system 
cannot produce a result for the current sentence in a sequential setup. Therefore, 
parallelism in this stage would not reduce the runtime of the system, but might 
improve the quality of the result.

This additional data parallelism is defined by the strategy evalScores in the function 
parse2prag (see Figure 4.10). The parse forest rawParseForest contains all possible 
parses of a sentence. The semantic and pragmatic analyses are then applied to a 
predefined number, specified in global, of these parses. The data parallel strategy 
evalScores is applied to the list of these results and demands only the score of each 
analysis, the first element in the triple, in order to avoid unnecessary computation at 
this stage. This score is used in pickBestAnalysis to decide which of the parses to 
choose as the result of the whole text analysis.

The improvements in the quality of the result by analysing several possible parse trees 
have not been systematically measured, yet. However, considering that about 70% 
of all sentences that are analysed have several possible parse trees, the possibility 
to analyse several of them without large additional costs is very attractive from a 
natural language engineering point of view.

4.5.6 Overall Parallel Structure

Figure 4.14 summarises the overall parallel structure arising when all of the sources of 
parallelism described above are used. The possible data parallelism over the input is 
depicted by analysing three sentences in parallel in this picture. Note that the number 
of possible parse trees for the input sentences varies. The syntactic parsing stage 
is internally parallelised using the granularity control strategy shown in Figure 4.11. 
Note that the analyses may add nodes to the semantic net. This creates an additional 
dependence between different instances of the analysis, which is indicated as vertical 
arcs. Lazy evaluation ensures that this does not completely sequentialise the analyses, 
however.

It should be emphasised that specifying the strategies that describe this parallel 
behaviour entailed understanding and modifying only two of about three hundred 
modules in Lolita and three of the thirty six functions in that module. Apart from 
the top level function, the only sub-module that has been parallelised is the syn
tactic parsing stage. If it proves necessary to expose more parallelism it would be



4.5. Lolita 121

SGML Tree Parse TreeParse Forest

-^-/(Pragmatic AriLSemantic An.Noimalisation

Morpholgv Synt. Parsing

^-(Sem antic An. ■^-‘Q’ragmatic AiNormalisation

Sentence 1

^ -(Sem antic An. V-;— ^ '(P ragm atic AnLSentence Normalisation
Text

^Morpholgv, Back EndSynt. Parsingstream

■^-‘Q’ragmatic AtNormalisation

Sentence 3

-=► (Pragmatic AiMorpholgy, Synt. Parsing Normalisation

F ig u re  4.14 Detailed structure of Lolita

possible to parallelise other sub-algorithms such as the graph algorithms operating 
on the semantic net. In fact, the most tedious part of the code changes was adding 
instances of NFData for intermediate data structures, which are spread over several 
dozen modules. However, in the meantime this process has been partially automated 
(Winstanley 1997).

4.5.7 Sun SPARCserver Implementation

This section discusses early performance measurements of Lolita on the Sun SPARC- 
Server. A realistic simulation showed an average parallelism between 2.5 and 3.1, 
using just the pipeline parallelism and parallel parsing. The actual speedup, how
ever, does not exceed 2.4. Measurements with varying span values indicate that this 
is partly caused by fine-grained parallelism in the parsing stage. One obvious bottle
neck in the computation is the sequential front end of about 10-15% caused by the 
C part of the syntactic parsing stage.

However, the wall-clock speedups obtained to date do not quite match the simulation 
results. As shown in Figure 4.15 a two processor execution on small inputs achieves 
an average parallelism of 1.4. A high span value is used to bound the amount of
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Average Parallelism = 1.4)lolita.exec +RTS -N2 -q -H48M -I48M
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F igu re  4.15 Activity profile of Lolita run under GUM with 2 processors

parallelism in the parsing phase. This also bounds the total heap residency in the 
system, which proves to be very important. With more processors the available 
physical memory is insufficient and heavy swapping causes a drastic degradation 
in performance. The reason for this behaviour is that GUM, which is designed 
to support distributed-memory architectures uniformly, loads a copy of the entire 
code, and a separate local heap, onto each processor. Lolita is a very large program, 
incorporating large static data segments (totalling 16Mb), and requires 100Mb of 
virtual memory in total in its sequential incarnation.

One difference of the GUM activity profile in Figure 4.15 to the G r a n S im results 
is a larger degree of fetching in the former. This is probably caused by the rather 
expensive but generic communication routines used by PVM, on which GUM is 
based. In contrast, G r a n S im measures mainly the hardware costs for performing 
communication. Together with the fine granularity of the generated threads this 
increased overhead leads to a significantly smaller utilisation in the parsing stage. 
However, the later pipeline stages in the computation are still an effective source of 
parallelism.
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4.6 LinSolv

The linear system solver discussed in this section uses an approach that is very com
mon in the area of computer algebra: a multiple homomorphic images approach 
(Lauer 1982). This approach consists of the following three stages:

1. map the input data into several homomorphic images,

2. compute the solution in each of these images, and

3. combine the results of all images to a result in the original domain.

Since computer algebra algorithms aim at finding exact solutions to mathematical 
problems, unbounded data types like arbitrary precision integers are frequently used. 
In algorithms operating on arbitrary precision integers the original domain is typically 
Z, the set of all integer values, and the homomorphic images are Z modulo p, written 
Zp, with p being a prime number. The advantage of this approach becomes clear 
when the input numbers are very big and each prime number is small enough to fit 
into one machine word. In this case the basic arithmetic in the homomorphic images 
is ordinary fixed precision arithmetic with the results never exceeding one machine 
word. No additional cost for handling arbitrary precision integers has to be paid. 
Only in the combination phase will the big numbers appear again. In the case of Z as 
original domain the well-studied Chinese Remainder Algorithm (CRA) can be used 
in the combine step (Lipson 1971).

The linear system solver (LinSolv) discussed in this section uses such a multiple ho
momorphic images approach. Thus, it must be emphasised that this algorithm is not 
meant to represent a highly-tuned numerical algorithm for finding just an approxi
mation of a solution, but a typical symbolic algorithm for finding an exact solution, 
which represents a wide class of computer algebra algorithms. Other algorithms with 
the same basic structure will be discussed in Section 4.7.

It is obvious that this approach lends itself to parallel processing: all solutions in 
the homomorphic images can be computed independently. An obvious bottleneck 
is the final combination stage. The following sections first discuss the structure of 
the sequential algorithm. Then a straightforward, parallel version is developed and 
improved by eliminating the two main sequential bottlenecks.



4.6. LinSolv 124

4.6.1 The Sequential Algorithm

Forward Mapping

Cramer’s Rule

F ig u re  4.16 Structure of the LinSolv algorithm

This section describes the basic structure of the sequential LinSolv algorithm. For a 
given matrix a and vector 6, both ranging over integers, this algorithm finds a solution 
x  to the equation ax =  b. More formally, this problem can be specified as follows:

In p u t: a, b where a G Znxn, detn  /  0, b G Zn
O u tp u t: s ,t, x  where a(jx) = b,

s ,t  G Z, i G Z n
gcd(s, t) = 1, gcdi=lj n Xi = 1

where Z denotes the set of all integers; for a domain D and an integer n, D™ denotes
the set of all vectors of length n with components from D; and EDnxn denotes the set
of all 2-dimensional square matrices of size n over D. For an integer n, Zn denotes 
the set of integers { 0 ,. . . ,  n — 1} (the homomorphic image of Z with base n). Note
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that we are computing a vector x  of integer values and factor out the rational part of 
the solution into | .  This is convenient when using the result in a bigger application 
because later stages can avoid most of the expensive rational number arithmetic on 
the result vector.

A particularly important aspect of the algorithm we are designing is that it has 
to compute an exact solution over integers of arbitrary size. Therefore, the main 
questions to be considered for the efficiency of the sequential algorithm are:

1. How big are the intermediate values in the computation?

2. How high is the overhead associated with using rationals instead of integers?

3. Are there inherently sequential parts in the algorithm?

The first question is directly addressed by using a multiple homomorphic images 
approach, which bounds every value by the base of the image. The next two questions 
are crucial in picking a concrete algorithm for the solution phase. The following 
paragraphs discuss the individual stages of the algorithm with the paragraph on the 
solution phase discussing the advantages and disadvantages of three alternatives with 
respect to the questions raised above. Figure 4.16 summarises the overall structure 
of the algorithm.

F orw ard  m app ing : This stage is trivial: for a given prime number p the function
‘mod* p is mapped over all elements of a and b. This stage is easily parallelised.

H om om orph ic  so lu tions: We have investigated several candidates for computing
the homomorphic solutions, which have the following characteristics:

•  Gaussian Elimination: This is a very efficient algorithm often used for solv
ing linear systems of equations. However, since it works over rational numbers 
the basic arithmetic operations are much more expensive than those over fixed 
precision integers. An alternative to the classical algorithm would be to intro
duce rational numbers only in the back-substitution phase by using for example 
Bareiss’ variant of the algorithm. However, this variant requires 0 (n 3) addi
tional integer divisions, so it is not clear whether it gives an improved perfor
mance in practice.
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•  LU-Decomposition: The LU-Decomposition method has very strong data depen
dencies and yields an inherently sequential algorithm. An initial parallelisation 
of LU-Decompostion achieved only a speedup of 3.8 on an idealised machine. 
Some significant restructuring would be necessary to obtain an efficient parallel 
algorithm.

• Cramer’s Rule: Although this algorithm is less efficient in the sequential case, it 
is very attractive because of its high potential of parallelism. In this algorithm 
the result is computed by evaluating n + 1 independent determinants. The main 
structure of this algorithm is described below.

Iterative algorithms often used in numerical applications have not been considered 
because the goal here is to find an exact solution. Furthermore, LinSolv should 
use a parallel algorithm for computing a homomorphic solution in order to maintain 
scalability of the overall algorithm for cases where the number of available processors 
is higher than the number of homomorphic images used by the algorithm. Using 
an efficient sequential algorithm might achieve better results for small number of 
processors but is inherently limited in its parallelism.

The method used in LinSolv is based on Cramer’s rule. This rule states that the 
solution of the equation ax = b can be computed as a vector, with ratios of two 
determinants as components. In each component the denominator is the determinant 
of the original matrix a. The numerator of the j -th component is the determinant 
of the matrix obtained from a by replacing the j -th column with the vector b. More 
formally, let aPi, bPi be the homomorphic images of a and b w.r.t. the prime number 
Pi. Then the solution xPi = [xPil, . . .  ,x Pin] can be computed by:

det ap..

Xpij det aPi

where ap., is aPi with the j -th column replaced with bPi.

When applying the above formula in a homomorphic domain ZPi, the determinant 
det aPi might become 0. Obviously, no solution can be computed in such a domain. 
Prime numbers pi which result in de taPi being 0 are termed unlucky and must be 
filtered from the list of prime numbers which are used as bases for the homomorphic 
domains.
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C om b in atio n : The final stage of the algorithm consist of combining the homomor
phic solutions to a solution in the original domain Z (‘lifting’). This combination 
can be done by using the Chinese Remainder Algorithm (CRA) (Lipson 1971). This 
algorithm finds the “original” of two images i.e. a value r, which maps to the given 
values r  1,7*2 in the images generated by the prime numbers p i,p 2, respectively. More 
formally the algorithm can be specified as follows:

In p u t: 7*!, 7*2,Pi,P2 where p i,p 2 prime, rq £ ZPl, r 2 £ ZP2
O u tp u t: r where r £ ZPlP2, rq = r mod pi, r2 = r mod p2

Although the CRA operation is associative, for two lists it is most efficient to use 
a left associative fold operation over the binary version above (Garner’s algorithm 
(Knuth 1981, p.274)). The reason for this is that all computations in the binary CRA 
operate in the domain ZP2, which can be chosen to be a fixed precision domain in 
each stage. Hence, the large accumulated input values p\ and rq in the folding process 
are mapped to small numbers, making the binary CRA almost equally cheap in every 
step of the folding. Unfortunately, this is also an obvious sequential bottleneck.

Figure 4.17 shows the top level of the algorithm based on Cramer’s rule. Note 
that x L is t is an infinite list of solutions in homomorphic images corresponding to 
prime numbers in the infinite list primes. The CRA computation itself is hidden in 
l is t_ c ra , which basically performs a left associative fold operation, accumulating the 
product of all prime numbers met so far until this product becomes larger than snd  
(n is the size of the matrix a and s is the maximal element in a and b). The gen_xList 
function has to check whether the modular determinant is 0 in order to avoid pick
ing unlucky prime numbers. The strategy s t r a t  in the body of the let construct 
describes the dynamic behaviour of the code separately from the algorithmic code. 
For the sequential version the default strategy rwhnf can be used. Figures 4.19, 4.21, 
and 4.23, which are discussed in the subsequent sections, give different definitions of 
s t r a t  for parallel execution without changing the code in Figure 4.17 at all.

4.6.2 Naive Parallel Algorithm

Figure 4.18 shows a naive parallel version of LinSolv, written without strategies by 
parallelising gen_xList, which implements the forward mapping and solution phases. 
The idea of this code is to create a single parallel thread to evaluate both the forward
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l i n S o l v  a  b  = 
let

{- forward mapping and solution via Cramer's rule -}

x L i s t  ; ;  [[Integer]] -- infinite list of solutions in horn images 
x L i s t  = g e n _ x L i s t  p r i m e s

g e n _ x L i s t  ( p : p s )  = 
let

m o d D e t  = to H o m  p  ( d e t e r m i n a n t  ( to H o m  p  a ) )
pm x = [ to H o m  p  ( d e t e r m i n a n t  ( r e p l a c e C o l u m n  j  ( t o H o m  p  a )

( t o H o m  p  b )  ) )
| j  < -  [ j L o . . j H i ] ]

( ( i L o , j L o ) , ( i H i , j H i ) ) = b o u n d s  a
in
if m o d D e t  / =  0

then (p  : m o d D e t  : pm x) : g e n _ x L i s t  p s  
else g e n _ x L i s t  p s

[- combination via CRA -}

d e t L i s t  = p r o j e c t i o n  1 x L i s t

d e t  = l i s t _ c r a  p B o u n d  p r i m e s  d e t L i s t  d e t L i s t  
x _ i  i  = l i s t _ c r a  p B o u n d  p r i m e s  x _ i _ L i s t  d e t L i s t  

where x _ i _ L i s t  = p r o j e c t i o n  ( i + 2 )  x L i s t

x  = m ap x _ i  [ 0 . . n - l ]
in
x  'using' s t r a t

F ig u re  4.17 Top level code of the sequential LinSolv algorithm

mapping (via toHom) and the determinant computations for each prime pi. To achieve 
this behaviour a parmap function is used in the definition of a homomorphic solution 
pmx, and a par combinator is used in the body of the l e t  construct to evaluate every 
homomorphic image in parallel. However, the actual dynamic behaviour is quite dif
ferent: the thread sparked for homsol will only evaluate the top-level cons cell, which 
does not trigger the computation of the actual homomorphic solution (pmx) at all. 
Only when the result is required in the combination stage the parmap will be trig
gered, creating parallelism within a homomorphic image but sequentialising all stages. 
The combination stage is basically a fo ld  operation. This causes a sequentialisation 
of the homomorphic images.

The resulting activity profile at the left hand side of Figure 4.20 reveals two stages
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l i n S o l v  a  b  = 
l e t

{- forward mapping and solution via Cramer's rule -}

x L i s t  [[Integer]] -- infinite list of solutions in horn images
x L i s t  = g e n _ x L i s t  p r i m e s

g e n _ x L i s t  ( p : p s )  = 
l e t

h o m S o l  = (p  : m o d D e t  : pmx)
p m x = parmap ( \  j  —> - -  parallelism within each horn im

l e t  a l  = r e p l a c e C o l u m n  j  aO bO 
in modHom p  ( d e t e r m i n a n t  a l )  )

[ j L o . . j H i ]
( ( i L o , j L o ) , ( i H i , j H i ) ) = m a t B o u n d s  a

r e s t L i s t  = g e n _ x L i s t  p s
in
if m o d D e t  ==  0

then g e n _ x L i s t  p s
else par h o m S o l  ( h o m S o l  : r e s t L i s t )  - -  p a r  between horn ims 

{- combination via CRA -} 
d e t L i s t  = p r o j e c t i o n  1 x L i s t

d e t  = l i s t _ c r a  p B o u n d  p r i m e s  d e t L i s t  d e t L i s t  
x _ i  i  = l i s t _ c r a  p B o u n d  p r i m e s  x _ i _ L i s t  d e t L i s t  

where x _ i _ L i s t  = p r o j e c t i o n  ( i + 2 )  x L i s t

x  = m ap  x _ i  [ 0 . . n - l ]
in
x

Figure 4.18 Naive parallel pre-strategy code

in the computation:

• In the first stage, up to approximately one third of the total execution time, the 
overall determinant det a is computed using the same structure as for the overall 
computation. This causes a sequence of computations in the homomorphic 
domains, which is visualised as a sequence of small peaks.

• In the second stage, the solution is computed in each homomorphic image. All 
components of the solution are evaluated in parallel using a parallel determinant 
computation in each case. This yields a higher degree of parallelism within each
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m f  d e t  'seq'
s e q L i s t A c c u m  1 s e q _ s o l _ s t r a t  x L i s t  'par'
parList rnf x
where

s e q L i s t A c c u m  ; ;  Integer -> Strategy [Integer] -> Strategy [[Integer]] 
s e q L i s t A c c u m  a c c u m  s  =

\  ( x s : x s s )  - >  i f  a c c u m > p B o u n d  
then ()
else s  x s  'seq'

s e q L i s t A c c u m  ( a c c u m * ( h e a d  x s ) ) s  x s s

s e q _ s o l _ s t r a t  ; ;  Strategy [Integer]
s e q _ s o l _ s t r a t  = \  ( p :m o d D e t : pm x) - >  rnf m o d D e t  'seqr ’

i f  m o d D e t  / =  0
then seqList rnf pmx  
else ()

F igure 4.19 Strategy version of a naive parallel LinSolv algorithm

stage.

Note that the number of parallel peaks in both stages is determined by the number 
of homomorphic images necessary to construct the result in the original domain (13 
in this case).

The dynamic behaviour of this code becomes much clearer when reformulating the 
code with strategies. Figure 4.19 shows the definition of s t r a t  in the body of the 
lin S o lv  function in Figure 4.17. Note that in contrast to the pre-strategy version 
the algorithmic code is unchanged. In the strategic version of the code it becomes 
clear that two nested strategies are used:

• the outer strategy, seqListAccum in this case, traverses the infinite list of solu
tions (xL ist), and

•  the inner strategy, seq _ so l_ stra t in this case, traverses the homomorphic so
lutions (pmx).

Each of these strategies can be done either sequentially or in parallel. From the above 
description of the dynamic behaviour of the naive parallel code it should be clear that 
both dimensions are done sequentially. The outer seqListAccum strategy encodes 
the dynamic behaviour of the algorithm when traversing xL ist: it accumulates the
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(GrAnSim LmSoK' (stratghrtodvard) 32 Processors. 400 Cyde Latency Average Parallelism = 21.8) Average Parallelism -  20.6 ]GrAnSim lesllS_mg 2 *RTS -bP -bp32 -bUOO -bG -bOO -by2 -be -H32M

B  blocked Runtime = 4.948 M cydes )B3 running

F ig u re  4.20 Activity profile of pre-strategy and strategic naive LinSolv

product of all prime numbers in order to decide how many homomorphic solutions to 
generate. The explicit use of s e q  in se qL is tA c c um  reflects the evaluation order, which 
is implicit in the pre-strategy code. The inner s e q _ s o l _ s t r a t  strategy describes a 
dependency between the modDet component of the homomorphic solution and the 
rest. Although the parmap construct in Figure 4.18 specifies parallelism over the 
elements of the homomorphic solution, it is hidden by the first two elements of the 
result list in s o l ,  which are demanded first when computing the overall determinant 
d e t .  Figure 4.20 shows that the dynamic behaviours of the pre-strategy and the 
strategic version are almost identical.

4 .6 .3  Im proved  V ersion

Reflecting the performance tuning in the pre-strategy version of the code the strategy 
in Figure 4.21 shows two changes compared to the previous strategy: it does not force 
the computation of the determinant as a first step and it computes all components of 
the homomorphic solution in parallel using the p a r _ s o l _ s t r a t  strategy. This avoids 
the delay in generating parallel processes for performing the most time consuming 
computations in the solution phase.

The activity profiles in Figure 4.22 show that the first stage of peaks has been merged 
with the second stage. The data dependency between the overall CRA and the ho
momorphic solutions has disappeared. However, by using the s e qL is tA c c um  strategy 
over x L i s t  the combination stage is still sequential leading to regular drops in utili-
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seqListAccum 1 par_sol_strat xList ' p a r *
parList rnf xs
w h e r e

seqListAccum Integer -> Strategy [Integer] -> Strategy [[Integer]] 
seqListAccum accum s =

\ (xs:xss) -> i f  accum>pBound 
t h e n  ()
e l s e  s xs 'seq'

seqListAccum (accum*(head xs)) s xss

par_sol_strat ;; Strategy [Integer]
par_sol_strat = \ (p:modDet:pmx) -> rnf modDet 'seq'

i f  modDet /= 0
t h e n  parList rnf pmx 
e l s e  ()

F igu re  4.21 Strategy version of an improved parallel LinSolv algorithm

GrA nSim  LinSolv {improved) 32 Processors. 400 Cyde Latency

■  blocked

•bG -tOO -by2 -be -H32M

S3 running

F igu re  4.22 Activity profiles of pre-strategy and strategic improved LinSolv

sation. In the pre-strategy code this corresponds to the dynamic behaviour generated 

by the list_CRA function.

4 .6 .4  P arallelism  over th e  H om om orph ic Im ages

The strategy in Figure 4.23 eliminates the sequential traversal of x L i s t  by guessing 
the number of primes needed to compute the overall result and using a p a r L i s t N  

strategy to generate data parallelism over that segment of x L i s t .  Using p a r L i s t  

inside the p a r _ s o l _ s t r a t  strategy causes each component of the result to be evaluated
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rnf noOfPrimes 1seq'
parListN noOfPrimes par_sol_strat xList ’p a r 1
parList rnf xs 
w h e r e

par_sol_strat :; Strategy [Integer]
par_sol_strat = \ (p:modDet:pmx) -> rnf modDet ' s e g '

i f  modDet /= 0
t h e n  parList rnf pmx 
e l s e  ()

F ig u re  4.23 Strategy of the final parallel LinSolv algorithm

GrAnSim LinSotv (final): 32 Processors; 400 Cycte Latency GrAnSlm testLS_mg 2  ̂RTS -bP -bp32 -Ml00 bG -bQO -by2 be H32M Avei 0ge PaicJelism -  25 G,

F igu re  4.24 Activity profiles of pre-strategy and strategic final LinSolv

in parallel. However, we still need the check for zero in order to avoid redundant 
computation. In order to minimise data dependencies in the algorithm we do not 
already check for unlucky prime numbers when computing noOf Primes. If some prime 
numbers turn out to be unlucky the l i s t_ c ra  will evaluate more results by demanding 
a so far unevaluated list element. The final strategy application p a rL is t rn f x 
specifies that all elements of the result should be combined in parallel. Without this 
component there would be a sequence of combination steps at the end of the execution, 
one for each element in the result vector. In the activity profiles of Figure 4.24 the 
individual peaks have been merged into a period of consistently high utilisation.

This final version of LinSolv exhibits the highest average parallelism and lowest run
time of all strategic versions, reflecting the improved dynamic behaviour. Comparing 
the pre-strategy with the strategic versions in the activity profiles of Figures 4.20, 4.22, 
and 4.24, however, shows a slightly reduced average parallelism. This is due to small
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differences in the dynamic behaviour of both versions, in particular at the beginning 
and the end of the computation. More importantly, the main part of the computation 
shows the same dynamic behaviour in both versions. Based on previous measurements 
in assessing the overhead related to the use of evaluation strategies, it is unlikely that 
the lower average parallelism in the strategy version is due to this overhead.

4.6.5 Summary

Historically, the development and performance tuning of LinSolv predated the devel
opment of evaluation strategies. In hindsight the lack of separation between algo
rithmic and behavioural code severely complicated the program development. The 
most striking example is the tree.CRA algorithm we used in the pre-strategy version 
in order to guarantee parallelism between the homomorphic images. In order to han
dle an infinite list of solutions based on a guess how many solutions are needed, the 
tree.CRA algorithm keeps track of the number of unlucky primes and uses a “fail 
handler” in order to compute more results if necessary. This leads to the rather 
complicated algorithm in Figure 4.25, which combines the computation of the result 
with a specific dynamic behaviour suitable for parallelism. In contrast, the strategic 
version uses a much simpler sequential code, which is basically a fold operation which 
also tests for unlucky primes and accumulates the product of all lucky prime numbers. 
To add parallelism it is sufficient to change the seqListAccum in Figure 4.19 into a 
parListN in Figure 4.23. Again the different dynamic behaviour can be described by 
the top-level strategy.

It turns out that the additional parallelism of the combinations in tree_CRA does not 
improve the performance at all because combining two large values (in the nodes of 
the tree) is far less efficient than combining a large with a small value, which is done 
in each step of the list.CRA. Thus, although the tree_CRA generates parallelism at 
the end of the computation the total runtime actually increases. This can be seen 
in Table 4.2 where adding a tree CRA to the basic version of the algorithm, with 
a parallel determinant computation, does not further improve the efficiency of the 
algorithm. It only increases the total amount of work compared to a sequential version 
that uses a list_CRA. This behaviour of LinSolv corresponds to our experience with 
a parallel resultant algorithm using a similar multiple homomorphic images structure 
(see Section 4.7.2). However, this example shows that the use of strategies allows the
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- -  n  . . .  g u e s s  o n  h o w  m a n y  horn s o l s  n e e d e d
- -  m s  . . .  i n f i n i t e  l i s t  o f  m o d u l e s
- - a s  . . .  i n f i n i t e  l i s t  o f  v a l u e s
- -  d s  . . .  i n f i n i t e  l i s t  o f  h o m o m o r p h i c  d e t e r m i n a n t s
tree_CRA ;; I n t e g e r  -> [ I n t e g e r ]  -> [ I n t e g e r ]  -> [ I n t e g e r ]  ->

(Integer, Integer) 
tree_CRA n ms as ds = 
let
res@(m, a, fails) = tree_CRA' ms' as' ds'

w here ms ' = take n ms
as' = take n as
ds' = take n ds

handle_fails :: I n t e g e r  - >  I n t e g e r  - >  I n t e g e r  ->
[Integer] -> [Integer] -> [Integer] -> (Integer, Integer) 

handle_fails n m a (ml:ms) (al:as) (dl:ds)
| n == 0 = (m, a)
j dl == 0 = handle_fails n m a ms as ds
j otherwise = handle_fails (n-1) m' a' ms as ds

w here
m' = m * ml
a' = par_binCRA m ml inv a al -- NB:  p a r a l l e l  v e r s i o n  
inv = modlnv ml m

i n
handle_fails fails m a ms as ds 

- -  h e r e  a l l  l i s t s  a r e  f i n i t e
tree_CRA' :: [ I n t e g e r ]  -> [ I n t e g e r ]  -> [ I n t e g e r ]  ->

(Integer, Integer, Integer) 
tree_CRA' [p] [a] [0] = (1, 1, 1) -- u n l u c k y  p r i m e
tree_CRA' [p] [a] [_] = (p, a, 0) -- n o r m a l  c a s e
tree_CRA' ps as ds = 

let
n = length ps
(left_ps, right_ps) = splitAt (n 'div' 2) ps
(left_as, right_as) = splitAt (n 'div' 2) as
(left_ds, right_ds) = splitAt (n 'div' 2) ds
left@(left_P, left_CRA, left_fails) = 

tree_CRA' left_ps left_as left_ds
right@(right_P, right_CRA, right_fails) = 

tree_CRA' right_ps right_as right_ds
inv = modlnv right_P left_P 
era = par_binCRA left_P right_P

inv left_CRA right_CRA
i n

left ’par’ right ’par1 inv ’par* (
era ’seg’ —  f o r c e  c o m p u t a t i o n  o f  e r a  f i r s t

(left_P * right_P, 
era,
left_fails + right_fails) )

F igu re  4.25 A tree CRA used in the pre-strategy version
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programmer to explore different variants of the parallel code without performing a 
major restructuring of the algorithm.

Table 4.2 compares the runtimes (in kilocycles), average parallelism, total amount 
of work (as percentage compared to the work in the sequential setup), and speedups 
for the three versions discussed above with different setup variants. Although this 
table only records the results from the strategic versions, it reflects the pre-strategy 
versions as well, because they show corresponding runtime behaviour as demonstrated 
in Figures 4.20, 4.22 and 4.24. Overall the three stages of the parallelisation, from 
a naive to the final version, show an increasing average parallelism and speedup. 
The percentage of total work is roughly unchanged, indicating that no speculative 
parallelism is added during the performance tuning. In each of the three stages 
the best results are obtained from a setup using a parallel determinant computation 
in the solution stage. However, the parallel determinant computation performs some 
redundant work shown by the constantly high percentage of total work. This is mainly 
due to repeated traversals of data structures when constructing the sub-matrices 
defined in Cramer’s Rule.

T able 4.2 Measurements of all versions of LinSolv

Setup
Runtime Average Total 

(kilocycles) Parallelism Work Speedup

Sequential
Par Determinant (default)
Par Determinant & Tree CRA

Naive parallel algorithm 
78,651
4,948 20.6 130% 15.9 
5,509 20.6 144% 14.3

Sequential
Par Determinant (default)
Par Determinant & Tree CRA

Improved algorithm
78,651
4,488 22.6 129% 17.5 
5,675 20.0 144% 13.9

Sequential
Par Determinant (default)
Par Determinant & Tree CRA

Parallelism over homomorphic images 
78,651
4,323 25.6 141% 18.2 
5,130 22.1 144% 15.3

As further work it would be interesting to compare this LinSolv version with one 
using a Gaussian elimination algorithm in the solution phase. Such an implementa
tion would use rational arithmetic rather than integer arithmetic. The tighter data 
dependencies would probably reduce the parallelism inside the solution stage. How-
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F ig u re  4.26 Activity profile of LinSolv in a 3 processor GUM setup

ever, the overall structure of the parallelism generated by the multiple homomorphic 
images approach should be unchanged. Therefore, the final strategy developed in this 
section can be re-used.

Additionally to the these measurements under G r a n S im , the final version of LinSolv 
has been run under GUM 011 a 4 processor SUN shared-memory machine. Because 
of competing processes on that machine, only up to 3 processors have been used in 
the timings. As a result we obtained relative speedups, i.e. speedups of the parallel 
execution compared to a 1 processor GUM execution, of 1.67 on 2 processors and 
2.10 on 3 processors. For this program the single processor efficiency is 78%, i.e. the 
optimised sequential version finished within 78% of the runtime for the 1 processor 
GUM version. This matches with previous experiences that report an efficiency 
of around 80% for most GUM programs. The absolute speedups for LinSolv, i.e. 
the speedups of the parallel execution compared to an optimised single processor 
execution, are 1.30 011 2 processors and 1.66 on 3 processors. Figure 4.26 shows 
an activity profile of running LinSolv in a 3 processor setup on the shared-memory 
machine.
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4.7 Comparison with Parallel Imperative Program
ming

This section gives a comparison of the programming style in parallel imperative pro
gramming with a style of strategic parallelism as elaborated in this chapter. All of 
the algorithms in this section are computer algebra algorithms implemented in the 
P aclib system. This system combines a kernel for handling light-weight threads 
with a runtime system for garbage collected memory management and a library for 
basic computer algebra operations (Hong et al. 1992), all written in C. It has been 
implemented on a Sequent Symmetry shared memory system based on Intel i386 
processors. All of the measurements have been performed on 16 processors.

4.7.1 LinSolv

Before attem pting a functional solution to LinSolv, the author has previously im
plemented both sequential and parallel imperative solutions in C (Loidl 1993). The 
parallel version required significant restructuring, in order to eliminate sequential 
control dependencies. As an example, Figure 4.27 shows the code for managing 
the parallelism in the forward mapping and solution stages of LinSolv. The primi
tives pacStart and pacWaitListRm are used for starting and synchronising threads, 
respectively. The function Solve computes a homomorphic solution. Note the de
structive use of the list-processing functions COMP (cons), ADV (tail) etc, to create 
a list of tasks, which must be explicitly manipulated by the programmer. Results 
are extracted non-deterministically from this list and combined in later stages of the 
algorithm.

Using G p H and G r a n S im , the code in Figure 4.27 could be written much more 
simply as:

(xList, pList) = unzip (parMap rnf (solve a b detA n) primeList)

The strategic code avoids explicitly specifying when to create threads and when to 
synchronise them. These decisions are made by the runtime-system. Of course, this 
straightforward translation of the imperative code does not enforce the sophisticated 
order of evaluation produced by the strategy in Figure 4.23. However, the same order
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Step2:
/* Forward mapping and solution in homomorphic images * /

taskList = NIL;
while (!ISNIL(primeList)) {

/* Extract the next prime from primeList */
ADV(primeList,&p,&primeList);

/* Create a task to solve each p in parallel * /  
t = pacStart(Solve,5,A,B,detA,n,p); 
taskList = COMP(t,taskList);

>

/* Collect the results */
X = NIL; pList = NIL; xList = NIL; 
while (!ISNIL(taskList)) {

/* Wait for the first task to complete */ 
r = pacWaitListRm(fetaskList);

/ * Deconstruct the result tuple * /  
p = FIRST(r); X = SECOND(r);

/ * xList is the list of result vectors */ 
xList = C0MP( X, xList );

/* pList is the list of primes which were used */ 
pList = C0MP( p, pList );

>

Figure 4.27 PACLIB code of generating and synchronising processes in LinSolv

of evaluation has to be coded into the imperative algorithm, in the function Solve, 
too.

Important differences in the parallel structure of the Haskell and the C versions of the 
code are caused by the different semantics of both languages and by the level of detail 
that has to be specified for describing a parallel algorithm. The C version required 
more restructuring in order to avoid synchronisation barriers between the stages of 
the algorithm. In the C version several variants of the parallel CRA have been 
implemented. In particular, these changes were much simpler in the functional code. 
This observation suggests to use strategies and a functional language to prototype
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runtime 1317ms runtime 4695ms

F ig u re  4.28 Per-thread activity profiles for imperative LinSolv and parallel p-adic 
computation

parallel algorithms, which might then the translated back into an imperative language 
if necessary. We have taken this approach of parallel prototyping for example in Hall 
et al. (1997).

Figure 4.28 shows, on the left hand side, the per-thread activity profile for the imper
ative version of LinSolv on a 16-processor Sequent Symmetry. These should not be 
seen as direct comparisons with the graphs in Section 4.6 since they are based on a 
naive implementation. Furthermore, the C version has a much coarser, hand-tuned, 
granularity than the functional code discussed in Section 4.6. However, it is inter
esting to observe the barrier between the bulk of the parallel computation and the 
fine-grained back-end of the computation. In contrast, the Haskell version achieves 
some pipeline parallelism between these stages for free, i.e. without restructuring of 
the code.

4.7.2 Parallel Resultant Computation

In Hong & Loidl (1994) the author has contributed to the implementation and mea
surement of five versions of a parallel resultant algorithm. A resultant of two r variate 
polynomials is the determinant of a special matrix constructed out of the coefficients
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of these polynomials, a so-called “Sylvester matrix” . The entries in the matrix are 
r — 1 variate polynomials and so will be the overall determinant.

The algorithm itself has a multiple homomorphic images structure, but in contrast to 
LinSolv it works over multivariate polynomials. In this case, each r-variate polynomial 
is mapped into an r — 1 variate polynomial by evaluating the main variable at a given 
point, which acts as the basis for the homomorphic image. In the combination phase, 
an interpolation algorithm with a structure similar to the CRA algorithm has to be 
used.

The different variants of the parallel resultant algorithm show typical characteristics 
of algorithms with a multiple homomorphic images structure:

1. In Variant 1 a tree-based interpolation gives poor results, compared to a list- 
based version, because of the additional complexity of this operation.

2. In Variant 2 a different computation structure has been used, involving a very 
time consuming matrix inversion. In this version a global synchronisation on 
the strict data structure is necessary before the list-structured interpolation can 
commence. This causes a sequential barrier in the evaluation.

3. In Variant 3 an explicit threshold is used in the parallel list-structured interpo
lation algorithm in order to avoid the generation of too fine-grained threads in 
the combination stage.

As a result of our performance measurements the rather fine-grained Variant 3, with 
an experimentally tuned threshold value proved to be the most efficient version.

4.7.3 Parallel P-A dic Com putation on Rational Numbers

The goal of p-adic computation is to speed-up basic arithmetic on e.g. rational num
bers by using an alternate representation of these numbers, namely a “Hensel code” , 
and by defining the basic arithmetic over Hensel codes. A Hensel code is a truncated 
power series with a prime number p as base and a fixed length r. The Extended 
Euclidean Algorithm (EEA) can be used for the forward mapping stage. A p-adic 
computation then uses the multiple homomorphic images approach by choosing sev
eral Hensel codes with varying prime numbers p , using the redefined basic arithmetic
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in each image to compute a solution, and by combining Hensel codes into a rational 
number again by using the CRA and a translation algorithm from Hensel codes into 
rational numbers.

In joint work the author has implemented translations of rational numbers to and 
from Hensel codes, and basic arithmetic operations over Hensel codes. In Limongelli 
& Loidl (1993) we have measured the efficiency of basic operations over rational 
numbers using this p-adic approach. Two versions of the combination step have been 
tested: SCA, which applies the CRA to every digit of the resulting Hensel codes, 
yielding a Hensel code representing the result which is then translated into a rational 
number; and PCA, which first translates the Hensel codes into rational numbers and 
then applies the CRA to these rational numbers. Note, that the structure of SCA is 
the same as the combination stage of LinSolv in Figure 4.17, where a list-structured 
CRA is applied to projections onto the list of result vectors.

The measurements with these algorithms have shown that PCA, which only requires 
global synchronisation once at the end of the CRA is more efficient than SCA, which 
requires a global synchronisation for every digit of the Hensel code. Again, this is 
in part due to the strict data structures used in the computation, which prohibit a 
straightforward pipelining of these stages. The right hand side of Figure 4.28 shows 
a per-thread activity profile of PCA.

4.8 A M ethodology for Parallel Non-Strict Func
tional Programming

Based on the experiences in parallelising the programs discussed in this chapter and 
more programs discussed in Trinder et al. (1998) and Hall et al. (1997), an emerging 
methodology for parallelising large non-strict functional programs is outlined below. 
In the meantime, this methodology has also been used by other researchers for ex
ample in the parallelisation of the parallelising compiler Naira (Junaidu 1998) The 
approach is top-down, starting with the top-level pipeline, and then parallelising suc
cessive components of the program. The first five stages are machine-independent. 
This approach uses several ancillary tools, including time profiling (Sansom & Peyton 
Jones 1995) and the G r a n S im  simulator (Hammond et al. 1995). Several stages use 
G r a n S i m , which is fully integrated with the GUM  parallel runtime system (Trinder,



4.8. A M ethodology for Parallel Non-Strict Functional Programming.43

Hammond, Mattson Jr., Partridge & Peyton Jones 1996). A crucial property of 
G r a n S im  is that it can be parameterised to simulate both real architectures and an 
idealised machine with, for example, zero-cost communication and an infinite number 
of processors.

The stages in this methodology, whose overall structure is similar to others used for 
large-scale parallel functional programming (Hartel et al. 1995), are as follows.

1. S eq u en tia l im p lem en ta tio n . Start with a correct implementation of an 
inherently-parallel algorithm or algorithms.

2. P ara lle lise  Top-Level P ip e lin e . Most non-trivial programs have a number 
of stages, e.g. lex, parse and typecheck in a compiler. Pipelining the output of 
each stage into the next is very easy to specify, and often gains some parallelism 
for minimal change.

3. T im e P ro file  the sequential application to discover the “big eaters” , i.e. the 
computationally intensive pipeline stages.

4. P ara lle lise  B ig E a te rs  using evaluation strategies. It is sometimes possible to 
introduce adequate parallelism without changing the algorithm; otherwise the 
algorithm may need to be revised to introduce an appropriate form of paral
lelism, e.g. divide-and-conquer or data-parallelism.

5. Id ealised  S im ulation . Simulate the parallel execution of the program on 
an idealised execution model, i.e. with an infinite number of processors, no 
communication latency, no thread-creation costs etc. This is a “proving” step: 
if the program is not parallel on an idealised machine it will not be on a real 
machine. We now use GranSim, but have previously used H B C PP. A simulator 
is often easier to use, more heavily instrumented, and can be run in a more 
convenient environment, e.g. a workstation.

6. R ea lis tic  S im ulation . GranSim can be parameterised to closely resemble the 
GUM runtime system for a particular machine, forming a bridge between the 
idealised and real machines. A major concern at this stage is to improve thread 
granularity so as to offset communication and thread-creation costs.
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7. R ea l M ach ine . The GUM runtime system supports some of the GranSim 
performance visualisation tools. This seamless integration helps understand 
real parallel performance.

4.9 R elated Work

4.9.1 Evaluation Strategies

This section discusses the relationship of evaluation strategies to similar programming 
techniques proposed in the literature.

A lg o rith m ic  Skeletons

A skeleton (Cole 1989) is a higher-order function that is parameterised with sequential 
sub-programs and that specifies a certain commonly encountered parallel structure. 
The most commonly encountered skeletons are pipelines and variants of the common 
list-processing functions such as map, scan and fo ld . A general treatment has been 
provided by Rabhi, who has related algorithmic skeletons to a number of parallel 
paradigms (Rabhi 1995).

Since a skeleton is simply a parallel higher-order function, it is straightforward to 
write skeletons using strategies. For example the parMap function in Section 4.3.4 
is a skeleton. A more elaborate divide-and-conquer skeleton, based on a Concurrent 
Clean function (Nocker, Smetsers, van Eekelen & Plasmeijer 1991) can be written 
as follows. It should be noted that all of these strategic skeletons are much higher- 
level than the skeletons used in practice, which have a careful implementation giving 
good data distribution, communication and synchronisation. As mentioned before, 
the aspect of data distribution is currently not directly controlled by strategies. The 
explicit function application operator $, although not absolutely necessary, is used to 
make the application of a strategy explicit in the code.
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d i v C o n q  ; ;  (a -> b) -> a -> (a -> Bool) ->
(b  - >  b  - >  b )  - >  ( a  - >  B o o l )  - >  ( a  - >  ( a , a ) )  - >  b

d i v C o n q  f  a r g  t h r e s h o l d  c o n q u e r  d i v i s i b l e  d i v i d e  
| n o t  ( d i v i s i b l e  a r g )  = f  a r g
| o t h e r w i s e  = c o n q u e r  l e f t  r i g h t  'demanding' s t r a t e g y
where

( l t , r t )  = d i v i d e  a r g
l e f t  = d i v C o n q  f  I t  t h r e s h o l d  c o n q u e r  d i v i s i b l e  d i v i d e
r i g h t  = d i v C o n q  f  r t  t h r e s h o l d  c o n q u e r  d i v i s i b l e  d i v i d e
s t r a t e g y  = i f  t h r e s h o l d  a r g

then (seqPair rwhnf rwhnf) $ ( l e f t , r i g h t )  
else (parPair rwhnf rwhnf) $ ( l e f t , r i g h t )

Many strategic functions take the opposite approach to skeletons: a skeleton param- 
eterises the control function over the algorithm, i.e., it takes sequential sub-programs 
as arguments. However, a strategic function may instead specify the algorithm and 
parameterise the control information, i.e. take a strategy as a parameter.

It is also possible to combine skeletons with imperative approaches. For example, the 
Skil (Botorog & Kuchen 1996) compiler integrates algorithmic skeletons into a subset 
of C (C-). The performance of the resulting program is close to that of a hand-crafted 
C- application.

C oord in ation  Languages

Coordination languages build parallel programs from two components: the computa
tion model and the coordination model (Gelernter & Carriero 1992). Like evaluation 
strategies, programs have both an algorithmic and a behavioural aspect. It is not 
necessary for the two computation models to be the same paradigm, and in fact the 
computation model is often imperative, while the coordination language may be more 
declarative in nature. It is sometimes useful to distinguish two kinds of coordination 
languages. Embedded coordination languages, such as Linda, perform coordination via 
calling certain coordination primitives from within the computational code. In con
trast, embedding coordination languages specify a parallel framework of the program 
execution with sequential sub-algorithms. As the development of the algorithms in 
this chapter shows, strategies can be used in both styles but they suggest a top-down 
parallelisation corresponding to the use of an embedding coordination language. The 
original model of directly using seq and par in GpH is, in contrast, closer to an 
embedded language, with constructs for parallelism scattered throughout the code.

PCN (Foster &; Taylor 1994) composes tasks by connecting pairs of communication
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ports, using three primitive composition operators: sequential composition, parallel 
composition and choice composition. It is possible to construct more sophisticated 
parallel structures such as divide-and-conquer, and these can be combined into li
braries of reusable templates. This approach is much more explicit than evaluation 
strategies, and, similarly to the other systems described here, it is possible to intro
duce deadlock.

Linda (Gelernter & Carriero 1992) is built on a logically shared-memory structure. 
Objects (or tuples) are held in a shared area: the Linda tuple space. Linda processes 
manipulate these objects, passing values to the sequential computation language. In 
the most common Linda binding, C-Linda, this is C. Sequential evaluation is therefore 
performed using normal C functions.

Darlington et al. (1995) integrate the coordination language approach with the skele
ton approach, providing a system for composing skeletons, SCL. SCL is basically a 
data-parallel language, with distributed arrays used to capture not only the initial 
data distribution, but also subsequent dynamic redistributions. SCL introduces three 
kinds of skeleton: configuration, elementary and computational skeletons. Configura
tion skeletons specify data distribution characteristics, elementary skeletons capture 
the basic data parallel operations as the familiar higher-order functions map, fo ld , 
scan etc. Finally, computational skeletons add control parallel structures such as 
farms, SPMD and iteration. It is possible to write higher-order operations to trans
form configurations as well as manipulate computational structures etc.

Based on the same concept, P 3L (Pelagatti 1993) defines a set of parallel constructs, 
each of which abstracts a specific form of commonly used parallelism. P3L integrates 
the concept of skeletons and the PCN model. The latter is used for describing details 
of the parallel execution of the skeletons.

P arallel L anguage E x ten sion s

Rather than providing completely separate languages for coordination and computa
tion, several researchers have instead extended a functional language with a small, 
but distinct, process control language. This can be simply a set of annotations as 
it is used by Burton (1984), in Hope+ (Kewley & Glynn 1989) and in Concurrent 
Clean (Nocker, Smetsers, van Eekelen & Plasmeijer 1991). Most closely related to
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strategies, and therefore discussed in more detail here, are Caliban (Kelly 1989) and 
first-class schedules (Mirani & Hudak 1995).

C aliban . The Caliban system developed by Kelly (1989) bears a strong resemblance 
to evaluation strategies in its separation of algorithm and parallelism. Corresponding 
to the using  construct in strategies, Caliban introduces a moreover construct to de
scribe the parallel control component of a program. Frequently higher-order functions 
are used to structure the process network, corresponding to higher-order strategies 
such as p a rL is t.

One fundamental difference to strategies is that constructs in the moreover clause 
represent a separate language to the computation language. In particular, all values 
in such a clause must be resolved at compile time, thus representing a static descrip
tion of the parallel structure. The values in a moreover clause are explicit process 
names. In a strategy, however, variable names, representing thunks in the program 
execution, can be used to avoid introducing additional names that are not necessary 
for understanding the structure of the program. Similarly to PCN, Caliban gives ex
plicit description of the connections between the processes. Thereby, it can construct 
complex networks of processes but it may also introduce deadlock.

For example, the following function defines a pipeline. The □  syntax is used to create 
an anonymous process which simply applies the function it labels to some argument. 
The arc  constructs indicates a wiring connection between two processes. The chain 
construct creates a chain of wiring connections between elements of a list. The result 
of the pipeline function for a concrete list of functions and some argument is thus the 
composition of all the functions in turn to the initial value. Moreover, each function 
application is created as a separate process.

p ip e lin e  f s  x = r e s u l t
where r e s u l t  = ( fo ld r  ( . )  id  f s )  x
moreover (chain  arc  (map (□ ) f s ) )

/ \  (arc  D d a s t  f s )  x)
/ \  (arc  D(head f s )  r e s u l t )

P a ra -F u n c tio n a l P ro g ram m in g . Para-functional programming (Hudak 1986) is 
an extension to the functional programming paradigm that allows to express oper
ational details like scheduling or mapping by annotating program expressions with
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constructs of a separate process control language. The latter specifies the scheduling 
and the mapping of parallel processes. One important advantage of this approach 
is that it can be used with any functional language. The following description uses 
Hudak’s syntax for para-functional programming in Haskell (Hudak 1991).

W ith the annotations provided by a para-functional programming system it is possible 
to specify

• an evaluation order of the program and

• a mapping of a program to a machine.

Controlling Evaluation Order. The default evaluation order is lazy evaluation. How
ever, this can be changed for any expression in the program by using a scheduled 
expression of the following form:

exp sched sched-exp

where exp is a program expression and sched-exp is a schedule. Note that a subex
pression in exp can be labelled by using a labelled expression of the form lab®exp.

A schedule defines the evaluation order and the parallelism obtained when evaluating 
the expression. To this end, three kinds of primitive schedules are defined for a 
labelled expression:

•  The demand for the evaluation of exp, denoted by D lab,

•  the start of the evaluation of exp, denoted by ~lab,

•  the end of the evaluation of exp, denoted by lab''.

Note that a value can be demanded several times, but it can only be evaluated once. 
The following operations can be used to combine schedules:

• s i . s2 denotes the concatenation of the schedules s i  and s2 (sequential compo
sition) ;

• s l | s 2  denotes the concurrence of the schedules s i  and s2 (parallel composi
tion).
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The following examples of scheduled expressions describe their operational behaviour 
in more detail:

•  (eO m@el n@e2) sched DmlDn. This expression specifies a parallel demand for 
the evaluations of the expressions e l and e2. Because it is not guaranteed 
that these values will be needed in the evaluation of eO, this schedule denotes 
speculative parallelism.

• o@(l@eO m@el n@e2) sched l .m.n.o.  This expression specifies a left-to-right 
call-by-value semantics. Note that in this expression the schedule lab  is the ab
breviation for D lab .lab ''. However, this schedule does not prohibit parallelism 
inside eO, e l  or e2.

Mapping an Expression to a Machine. In order to specify a mapping of the evaluation 
of expressions to processors mapped expressions of the following form is used:

exp on pid

where exp is a program expression and pid is the identifier of the processor on which 
the expression will be evaluated.

Such an expression can be used for example to evaluate the two components of an 
addition on two different processors:

(f x on 0) + (g y on 1)

With this expression the function call f  x will be evaluated on processor 0 and the 
function call g y will be evaluated on processor 1. Note, that since + is a strict oper
ation, both function calls will be evaluated in parallel due to the default evaluation 
strategy of lazy evaluation.

It is also possible to use functions in computing the processor identifier. Thereby, a 
mapping that is relative to the current processor can be realised. For that purpose 
the predefined identifier s e lf  always contains the identifier of the current processor.
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F irs t-C lass  Schedules. First-Class schedules (Mirani & Hudak 1995) combine 
para-functional programming with a monadic approach. Where para-functional sched
ules and mapped expressions are separate language constructs, first-class schedules 
are fully integrated into Haskell. This integration allows schedules to be manipulated 
as normal Haskell monadic values.

The primitive schedule constructs and combining forms are similar to those provided 
by para-functional programming. The schedule d  exp demands the value of expression 
exp, returning immediately, while r  exp suspends the current schedule until exp has 
been evaluated. Both these constructs have type a  - >  OS S c h e d .  Similarly, both the 
sequential and parallel composition operations have type OS S c h e d  - >  OS S c h e d  - >  

OS S c h e d .  The monadic type OS is used to indicate that schedules may interact in a 
side-effecting way with the operating system.

Rather than using a language construct to attach schedules to expressions, Mirani and 
Hudak instead provide a function s c h e d ,  whose type is s c h e d  : : a  - >  OS S c h e d  - >  

a ,  and which is equivalent to the u s i n g  function in evaluation strategies. The s c h e d  

function takes an expression exp and a schedule sched, and executes the schedule. If 
the schedule terminates, then the value of exp is returned, otherwise the value of the 
sched application is _L. There are also constructs to deal with task placement and 
dynamic load information which have no equivalent strategic formulation.

In evaluation strategy terms, both the d and r  schedules can be replaced by calls to 
rwhnf without affecting the semantics of those para-functional programs that termi
nate. Unlike evaluation strategies, however, with first-class schedules it is also possi
ble to suspend on a value without ever evaluating it. Thus, para-functional schedules 
can give rise to deadlock in situations which cannot be expressed with evaluation 
strategies. A trivial example might be:

f  x  y  =  ( x , y )  ‘ s c h e d f r x . d y l r y . d x

Compared with evaluation strategies, it is not possible to take as much direct ad
vantage of the type system: all schedules have type OS S c h e d  rather than being 
parameterised on the type of the value(s) they are scheduling.

There can also be a loss of referential transparency when using schedules, since ex
pressions involving sched may sometimes evaluate to ± , and other times to a non-_L
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value. This can happen both through careless use of demand and wait, as in the
deadlock-inducing example above, and conceivably if dynamic load information is
used to demand an otherwise unneeded value. If the program terminates (yields a 
non-_L value), however, it will always yield the same value.

4.9.2 Large-Scale Parallel Functional Programming 

N o n -S tr ic t Languages

Previous experience with parallelising large non-strict functional programs using an 
annotation based approach has shown that efficient parallel execution without ex
plicit control of parallelism is possible. In particular the FLARE project (Runciman 
& Wakeling 1995) studied several large parallel applications. For example the par- 
allelisation of a computational fluid dynamics simulation (Grant et al. 1995) demon
strated the ease of parallelisation compared to an imperative version of the program. 
The necessary changes were localised in a few functions. However, these functions 
did not appear in top-level modules, but were part of crucial sub-modules. There
fore, a deeper understanding of the code and its dynamic behaviour was necessary. 
This case study also emphasised the importance of a sophisticated parallel engineer
ing environment. In the meantime the development of G r a n S im , GUM, and a set 
of visualisation tools has significantly improved this environment. Corresponding to 
other experiences with parallelising large programs in non-strict languages the heap 
consumption turned out to be one of the biggest problems for the efficiency of the 
program.

The toolkit for parallel functional programming discussed in Hartel et al. (1995) is 
very similar to our parallel programming methodology (see Section 4.8). It uses both 
an interpreter and a compiler for sequential debugging. A simulator supports parallel 
simulation in three levels of detail. A compiler produces platform independent parallel 
code. However, our system differs in the following aspects. The compilation of G p H 
programs is performed by GHC, a state-of-the-art optimising compiler rather than a 
prototype compiler with limited support for code optimisation. Furthermore, GHC 
provides the innovative cost-centre technology of profiling sequential lazy code, which 
has proven to be essential to understand the performance of the sequential program. 
Rather than using an annotation based approach, strategies support a top-down par
allelisation of the code and since strategies are Haskell functions they can use the full
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power of the language, such as higher-order functions and polymorphism. Finally, the 
use of a sandwich annotation in Hartel et al. (1995), which fully evaluates two argu
ments in parallel before they are combined, favours divide-and-conquer parallelism. 
Pipeline parallelism, which naturally arises in a lazy language, has to be transformed 
via a set of semi-automatic transformations. As an example of parallelising a large 
program, Hartel et al. (1995) discuss a tidal prediction program. This program is 
an application from the area of numerical scientific computation. In the parallelisa- 
tion of the program a new “communication lifting” transformation is used in order 
to exploit wavefront parallelism in a grid performing computational fluid dynamics 
operations (solving partial differential equations). Thus, the overall parallel structure 
is a pipeline of iteration steps with massive data parallelism within each step.

Shaw et al. (1996) discuss the performance tuning of a global ocean circulation model 
implemented in Id. In contrast to the previously discussed languages, Id uses parallel 
eager computation to exploit parallelism. In practice this approach exposes more 
parallelism and reduces the heap consumption of the program. However, it often 
creates speculative computation, which might waste a significant amount of resources. 
This program, which has originally been written in FORTRAN and executed on a 
CM-5, has a regular control structure but an irregular data structure. This is in 
contrast to our applications, which come from the symbolic computation area and 
typically have a less regular control structure. The performance tuning process of this 
algorithm uses explicit compiler pragmas to force loop unrolling. In order to modify 
the granularity of the generated parallelism k-bounded loops are used. However, with 
this construct it is necessary to consider all k-bounds in the program in order to 
obtain a good parallel behaviour. Clearly, this behaviour poses problems for modular 
parallel program development.

Sur & Bohm (1994a) show that the non-strict semantics of Id allows a very natural 
formulation of producer-consumer parallelism in two central stages of the Dongarra- 
Sorensen Eigensolver. In previous papers, this kind of parallelism has been reported 
difficult to achieve for imperative languages. This reflects our observation that non- 
strict languages suggest the use of pipeline parallelism, because of the lack of a barrier 
synchronisation between the pipeline stages.

Several case studies for parallelising non-strict functional programs reported problems 
with excessive heap consumption. Sometimes running the parallel program on the 
full input was not possible (Blelloch h  Narlikar 1997). In several cases impure fea
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tures have been used to reduce the heap consumption e.g. Sur & Bohm (19946) and 
Hammes et al. (1995). We have observed similar problems of resource consumption, 
in particular heap consumption, in the parallelisation of Lolita (see Section 4.5).

S trict L anguages

Michaelson & Scaife (1995) describe the implementation of several components in 
a parallel vision system to recognise 3D objects in a 2D scene from intensity data. 
The parallel algorithms, which are finally executed as Occam2 programs on a Meiko 
multi-processor, are prototyped in SML. Special emphasis is put on combining several 
components into a large-scale system and analysing the resulting performance out of 
this combination. The parallelisation uses skeletons in particular a farm skeleton to 
realise a parallel map. The main data structure in this case is a nested list, and data- 
oriented parallelism is used. In the SML prototype some form of pre-loading data 
onto a processor is achieved by using partial applications consisting of the function 
to be computed and the data to be pre-loaded. No explicit locality information has 
to be added. An interesting observation made in Michaelson &; Scaife (1995) is that 
if computation dominates communication the load balance becomes more important. 
This directly corresponds to our experience with rescheduling schemes discussed in 
Section 3.3.1: for low-latency systems, where the communication is rather cheap 
and the computation comparatively expensive, the load balance is more important 
than the data locality in the system. The overall parallel structure of the parallel 
vision system is a pipeline with processor farms, representing data parallelism, in 
each component.

Skeleton-based approaches (Darlington et al. 1995) often suffer from problems of com- 
positionality similar to the k-bounded loops approach discussed above: it is hard to 
construct an efficient parallel program out of efficient parallel components. The root 
of the problem is that although individual skeletons represent optimised parallel code, 
the composition of several skeletons it not necessarily optimal, due to the reorder
ing of data, which might be necessary. As a result composition languages such as 
SCL and P 3L have been developed. These languages provide not only computation 
skeletons but also configuration skeletons specifying a particular data distribution.

As part of the NESL project a number of irregular algorithms have been implemented 
and their performance has been evaluated on machines such as a Cray-90 and a
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CM-5. The largest of these algorithms are three versions of the n-body problem 
(Blelloch & Narlikar 1997), including the classical Barnes-Hut and the more recent 
Greengard algorithm, and a new parallel preconditioned conjugate gradient method 
for solving sparse linear systems of equations (Gremban et al. 1994). A set of parallel 
graph algorithms has been studied by Greiner (1994). All these examples use only 
data parallelism, which is supported in NESL via constructs similar to Haskell list 
comprehensions.

The Impala suite (Shaw 1998) is a collection of parallel programs mostly written in 
Id and SISAL. It is one of few publicly available packages of large parallel functional 
programs. Some performance results of the execution on parallel architectures such 
as Monsoon are included in the documentation of these programs.

4.10 Discussion

This chapter discussed an approach towards large-scale parallel lazy functional pro
gramming, which is based on a separation between algorithmic and behavioural code 
via evaluation strategies. With this technique Trinder et al. (1998) have gained wall- 
clock speedups for realistic programs over the most efficient sequential version of the 
program. Furthermore, the case studies in this chapter have demonstrated that the 
parallelisation and the performance tuning of a parallel program can often be done 
on top level, only changing the strategic part of the code and without the need to 
examine sub-modules in the code.

Evaluation strategies make heavy use of higher-order functions, polymorphism, lazi
ness, and overloading. These features are very useful for achieving a high degree of 
modularity in sequential programs. They are of particular importance in the per
formance tuning of a parallel program where the evaluation degree may be specified 
in more detail in order to obtain good parallel performance. The examples in this 
chapter show that such tuning can be done in a data-oriented fashion, defining paral
lelism on intermediate data structures rather than in the modules and functions that 
create these data structures. This approach avoids breaking the abstraction provided 
by modules and functions and therefore enhances the modularity of the parallel pro
gram. This is demonstrated by the parallelisation of Lolita, which required changes 
in only two out of about three hundred modules to achieve a moderate amount of
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parallelism. The comparison of a pre-strategy version with a strategic version of Lin
Solv shows that the performance tuning of the parallel program is greatly facilitated 
by the modularity in the strategic parallel code. These examples show that lazy eval
uation and parallel computation do not necessarily represent competing evaluation 
mechanisms but can be combined by explicitly defining parallelism, evaluation order, 
and evaluation degree on crucial data-structures in the program.

The comparison of the parallel functional programs with three parallel imperative 
programs, written in C, in Section 4.7 highlighted several important differences. In 
the imperative programs the lack of any separation between algorithmic and be
havioural code required significant restructuring of the parallel algorithms to achieve 
good parallel performance. The lack of higher-order constructs did not allow the pro
grammer to abstract commonly occurring patterns of computation in the same way 
as in functional languages. In particular, the parallelisation of LinSolv has shown the 
importance of parameterising strategies on complex data structures with strategies 
that should be applied to components of this data structure. Finally, the lack of 
algebraic data types in these languages resulted in rather clumsy code in processing 
the data and in handling the parallelism.

The performance tuning of the parallel programs discussed in this chapter emphasised 
the importance of several aspects of the dynamic behaviour of parallel programs. One 
of these aspects is the granularity of the program. The tuning of the Lolita system has 
shown that it can be useful to restrict the total amount of parallelism in the system 
in order avoid excessive use of resources. This has been done by using strategies to 
control the behaviour of the parallel program. The following chapters will discuss 
the aspect of granularity in more detail. This discussion aims at the development of 
runtime-system mechanisms that improve parallel performance by using granularity 
information.



Chapter 5

Granularity in Parallel Functional

The model of computation that is used in this thesis is explicit in exposing 
parallelism but implicit in controlling parallelism. A parallel program therefore 
describes what expressions may be evaluated in parallel and delegates decisions 
about how to coordinate the parallelism to the runtime-system. This can be 
seen as an intermediate step towards achieving fully implicit parallelism.

In controlling the parallelism in a parallel program many aspects have to be 
addressed: the synchronisation mechanism, the communication mechanism, the 
data locality during the computation, and the granularity of the computation. 
Intuitively granularity represents the amount of work that is available for each 
thread. Historically, many declarative languages that perform a naive implicit 
parallelisation, suffer from an extremely fine granularity. This increases total 
bookkeeping overheads such as thread creation time. The aim of a granularity 
control mechanism must therefore be to create only as many threads as are 
necessary to keep the machine utilised throughout the whole computation.

This chapter first discusses the problem of granularity in declarative lan
guages in general. Then it proposes three concrete granularity improvement 
mechanisms. These mechanisms have been implemented in GranSim and an 
evaluation of their effectiveness is given. The chapter concludes by giving a 
comparison of these methods with other approaches for granularity improve
ment suggested in the literature.

Capsule
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5.1 Introduction

Extracting parallelism from a functional program is easy. In fact, it is so easy that 
even a compiler can do it. For example, strict arguments to a function can always be 
executed in parallel without changing the semantics of the program. Only the data 
dependencies in the program limit the degree of parallelism. However, this naive 
approach of parallelising a program is likely to achieve poor speedups because of the 
small number of computations in each parallel thread compared to a fixed overhead 
for starting the thread. The author’s initial motivation for studying granularity came 
from experiences with an automatically parallelising compiler for a simple higher- 
order functional language, based on the dataflow model of computation (Loidl 1992). 
In this model every primitive operation is performed independently, imposing a huge 
synchronisation and thread creation overhead.

Over the years several approaches for improving the granularity in parallel func
tional languages have been proposed (Section 5.7 gives a detailed survey of these 
approaches). Most of these approaches are purely runtime-system based without 
any additional information about the program. Only rarely have concrete implemen
tations with state-of-the-art optimising compilation used more than rather simple 
heuristics to achieve this goal. The approach advocated in this thesis is to combine 
a compile-time granularity analysis with runtime methods that use granularity infor
mation provided by the analysis to improve performance. This chapter concentrates 
on the runtime component of this system.

The structure of this chapter is as follows. Section 5.1 gives a general introduction and 
motivates the study of granularity. Section 5.2 discusses the control of parallelism in 
the runtime-system. Section 5.3 surveys the literature for studies on the importance 
of granularity. Section 5.4 analyses the impact of granularity on the performance of 
parallel programs in the eager-thread-creation and the evaluate-and-die model of eval
uation. Section 5.5 proposes three granularity improvement mechanism. Section 5.6 
presents measurements on parallel programs when using the granularity improvement 
mechanisms. Section 5.7 discusses related work and Section 5.8 summarises.
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5.2 Dynam ic Control of Parallelism

The art of constructing an efficient parallel program requires skills on many different 
levels. From a very abstract point of view one can distinguish between two different 
stages:

• exposing parallelism; and

• controlling parallelism.

In a parallel program written in G p H the potential parallelism is exposed via the 
placement of parallelism constructs by the programmer or by a system of automatic 
parallelisation. The previous chapter has shown how the parallelism can be explicitly 
controlled to some degree by using evaluation strategies. Typically, this more detailed 
description of the parallel program behaviour is added during the performance tuning 
of a parallel algorithm.

This chapter concentrates on runtime-system techniques for controlling parallelism. 
These techniques have the advantage of hiding low-level details of the parallel program 
behaviour from the programmer. In an idealised setting the runtime-system could 
make all low-level decisions. However, this requires a very flexible runtime-system, 
which can adapt to the characteristics of many different structures of parallelism. 
The studies in this chapter lead to the development of mechanisms that improve the 
flexibility of the runtime-system.

The classification of systems for parallel computation proposed by Sarkar (1989) dis
tinguishes between the following major aspects of the language and the runtime- 
system:

1. exposing parallelism;

2. partitioning the program into threads, i.e. specifying sequential units of com
putation;

3. scheduling the threads on processors, i.e. specifying the mapping of parallel 
computations onto processors; and

4. communicating data.
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In this classification, the model used in this thesis is one of explicit parallelism, 
implicit partitioning, implicit scheduling, and shared-memory communication. The 
first aspect of exposing parallelism has been discussed in detail in the previous chapter. 
Aspects 3 and 4 in this list are related to the notion of locality of threads and of data, 
which is hidden in the runtime-system. These issues of locality are important for 
an efficient parallel execution, but they are not the main topic of this thesis. This 
chapter focuses on the second aspect of the parallel execution, the partitioning of the 
program. In the model that is used in this thesis the partitioning of the program 
is performed dynamically. This chapter will study the effects of different evaluation 
models, eager-thread-creation and evaluate-and-die, on the dynamic partitioning of 
the parallel program. Based on these observations several mechanisms for reducing 
the overhead imposed by the parallel evaluation will be discussed. Finally, several 
measurements will assess the effectiveness of these mechanisms.

This notion of partitioning the program leads to the following notion of the granularity 
of the program.

D efin ition  6 (g ran u la rity ) The granularity of a parallel program is the average 
computation cost of a sequential unit of computation in the program.

By this definition of granularity a parallel program is called fine-grained, if it consists 
of threads with only small pieces of computation compared to the total amount of 
computation. More informally the computation cost of a thread is sometimes called 
the “size” of the thread. Note that this definition based on computation cost excludes 
the overhead that is specific to the runtime system.

The creation and the management of parallel threads impose further costs on the 
execution of a program. For example, the creation of a thread requires operations like 
the allocation of a stack. In order to minimise this overhead it would be necessary to 
create only one thread — the program is executed sequentially. However, in order to 
achieve a good parallel performance a certain level of parallelism has to be maintained 
throughout the computation in order to make use of all available processors and to 
provide the possibility of overlapping computation and communication.

This tension between reducing parallelism overhead and maintaining a high degree of 
parallelism is illustrated by the graphs in Figure 5.1. The graph on the left hand side 
shows the total runtime of the program. The graph on the right hand side shows the 
parallelism overhead when executing the program. In both cases the x-axis represents
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an increasing granularity of the program. In particular for a high latency setting the 
runtime drops together with a reduction in the parallelism overhead caused by a 
coarser granularity of the program. However, with increasing granularity the number 
of threads drops, too. The increase in runtime for coarse granularity is therefore 
caused by a lack of parallelism at some points during the computation ( “starvation”). 
For decreasing latency the profiles of the runtime graph come closer to the idealised 
case where the shortest runtimes are achieved for extremely fine-grained programs 
consisting of a large number of threads.

Rather than showing the predicted behaviour of a parallel execution the graphs in Fig
ure 5.1 have been obtained by running a parallel version of nf ib  under the G r a n S im 

simulator. Since nf ib  generates two threads in each recursive call it is a good, simple 
test case for studying the performance problems caused by massive parallelism with 
very small pieces of useful computation. Thus, runtime and latency are both mea
sured in machine cycles. These measurements use a realistic setting for parallelism 
overhead and communication costs as it is imposed by the GUM  system. The vary
ing latency in the graphs represents a range of parallel machines from shared-memory 
machines, with low latency, to networks of workstations, with very high latency. The 
increase in granularity is obtained via a thresholding mechanism as it will be described 
in Section 5.5.1.

Concentrating on critical aspects of any parallel execution model it is possible to 
distinguish the following sources of parallelism overhead:
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• Thread creation: this includes overhead for creating a thread descriptor and a 
stack for the thread;

• Synchronisation: in a shared-memory model this requires a check whether a 
closure has already been evaluated;

• Scheduling: thread descriptors have to be moved from the runnable queue to 
blocking queues and vice versa;

• Thread termination: usually old stacks are recycled, which bears some overhead 
but reduces thread creation overhead;

• Thread placement: if a thread is migrated to another processor the thread 
descriptor and the stack, or a part thereof, have to be sent to the new processor;

•  Data placement: ideally, logically related pieces of data, such as the elements 
of a list, should be stored close to each other to avoid communication and make 
better use of the processor’s cache.

One of the most important sources of parallelism overhead is the cost related to the 
creation of a new task. This requires the generation of a structure, a thread descrip
tor, that can hold the information about the current state of a task (in particular, 
the current register values) as well as the initialisation of a stack. One immediate 
consequence of this overhead is that the total time spent evaluating an expression 
should not be smaller than the cost of creating a thread because the latter is the 
minimum overhead attached to evaluating an expression in parallel.

5.3 Importance of Granularity

In the literature on runtime-systems for parallel functional programming several au
thors have examined the importance of granularity. This section gives a short survey, 
focusing on closely related work based on parallel graph reduction. A more detailed 
discussion, covering alternative approaches such as profiling and programmer anno
tations, can be found in Section 5.7.

Hammond et al. (1994) examine in detail the impact of different sparking strategies 
on the granularity and the runtime of a ray-tracer on the GRIP multi-processor.
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Although, the emphasis is on data locality by avoiding to export a spark unless the 
global spark pool is low on work, the conclusions also highlight the importance of 
granularity in general. Among the three parallel versions that are studied the one 
with the coarsest granularity clearly performs best: in a 16 processor setup it is 8 
times faster than a setup producing only small threads.

In his PhD thesis Goldberg (1988 a) studies the efficiency of different strategies for 
creating parallel threads for arguments in a function application. He mainly consid
ers the overhead for task creation, communication, on both ends, and cleaning up 
completed threads. He gives the outline of an exact, but infeasible, analysis of com
putation costs. Based on this analysis he develops a simple heuristics for estimating 
the computation costs of non-recursive program expressions. This information is used 
to partition a program into serial combinators. The program contains explicit con
structs for creating and synchronising the execution of tasks. The body of each serial 
combinator is executed sequentially. Thus, the granularity of the program is directly 
expressed via the size of the serial combinators.

Goldberg observes that the optimal granularity depends on the architecture of the 
machine, especially its latency. In particular for high latency machines his results 
show that a coarse-grained computation performs better. His measurements also 
show that for shared memory machines the granularity of the threads is not very im
portant. However, for distributed memory machines it is important, but the heuristics 
he gives are not generally strong enough to yield big improvements in performance. 
In particular, assigning infinite costs to all recursive functions loses too much infor
mation.

Maheshwari (1995) shows in the framework of the LAGER project (LArger Grain 
Graph Reduction) (Watson 1988) how the results of an asymptotic complexity anal
ysis, although notoriously inaccurate, can still be used to improve the performance 
of a strict functional parallel program. Including the communication costs into the 
performance prediction proves to be an important issue. The main improvement in 
this work comes from determining an optimal schedule for generating parallel sub
processes based on user supplied cost information. The runtime-system methods used 
in this work rely on relative cost information in the form of priorities, which is some
what similar to our priority mechanisms (see Section 5.5.2). However, in contrast to 
the work presented in this thesis, the LAGER project does not use an evaluate-and- 
die model of computation which dynamically increases granularity. This work does
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not address the question how to derive the cost information.

In summary, these methods emphasise the runtime aspect of improving the granularity 
of a parallel program. Heuristics for estimating computation costs have proven useful 
in increasing the granularity of parallel functional programs on real parallel machines. 
However, these methods are limited because they cannot derive the costs of recursive 
functions. The approach taken in this thesis, however, aims at a balance between a 
static granularity analysis that derives information automatically and runtime-system 
mechanisms that make use of this information.

5.4 The Relationship between Granularity and the 
Evaluation M odel

The granularity of the program is of different importance for the different evaluation 
models discussed in Section 2.4.1. This section presents measurements that assess the 
importance of granularity in an eager-thread-creation model and an evaluate-and-die 
model.

5.4.1 Granularity with eager-thread-creation

In an eager-thread-creation model each potentially parallel expression is immediately 
turned into a thread. This simplest form of generating parallelism commits a thread 
to the evaluation of every expression that is annotated with a par construct. By 
making this choice very early no overhead for maintaining a spark pool is generated. 
However, this variant lacks the flexibility of dynamically increasing the granularity 
of a thread as it can be done in the evaluate-and-die mechanism. For this reason 
it is particularly important to avoid the generation of small threads in a model of 
eager-thread-creation.

Figure 5.2 illustrates the impact of the thread granularity on the speedup and the total 
number of threads for the p a rf  ac t program. This simple divide-and-conquer program 
computes the sum of all integer values in a given interval by bisecting the interval 
in each stage. It is a very fine-grained program and is therefore a good test case for 
studying possible performance improvements with increasing granularity. In these
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measurements the size of a thread is represented by the recursion depth in which it is 
generated. The root of the divide-and-conquer tree has level 100, the highest value, 
and this value is decremented in every recursive call. A granularity of e.g. 90 in the 
graphs in Figure 5.2 means that all sparks generated after more than 10 recursive calls 
are eliminated. This approximation of granularity aims at defining a simple relative 
ordering on the sizes of the generated threads, rather than representing an exact model 
of the computation costs for each of the threads. The measurements in this section 
have been obtained via G r a n S im using a realistic modelling of communication on a 
64 processor machine.

The three graphs in Figure 5.2 represent a low, medium and high latency system. 
Even for very low latencies of 400 cycles a significant improvement in speedup with 
increasing granularity can be observed. In this case the speedup increases from 24.3 
to 43.8, a factor of 1.8. For high latencies the absolute speedup is naturally smaller. 
The relative improvement in speedup, however, shows an even higher factor than for 
low latencies: from 3.3 to 9.3, a factor of 2.8.

The graph on the right hand side of Figure 5.2 shows the reduction in the number 
of threads with increasing granularity. Note that due to the use of a logarithmic 
scale this reduction is actually exponential. The small number of threads for very 
high granularities explains the drop in the speedup. For granularities higher than 95, 
which means that only the first 5 levels of recursion are used to generate parallelism, 
the total number of threads is smaller than the total number of processors in this
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setup and starvation occurs.

5.4.2 Granularity w ith evaluate-and-die

In contrast to the eager-thread-creation mechanism in the previous section the evaluate- 
and-die mechanism dynamically increases the granularity in the system, similar to 
lazy task creation (Mohr et al. 1990). As discussed in Section 2.4.1 the evaluate- 
and-die model can subsume potential parallelism by allowing a thread to perform 
computations for which a spark has been created already. This requires the explicit 
management of a spark pool. In particular, in a divide-and-conquer structure it is 
possible that threads subsume sparks which represent child nodes in the computation 
tree.

Figure 5.3 shows the graphs for the same measurements as in Figure 5.2, this time 
using an evaluate-and-die evaluation mechanism. The direct comparison shows that 
the evaluate-and-die mechanism performs much better for small granularities: the 
finest-grained setup shows a speedup of 35.8 compared to 24.3 in the previous graph. 
This directly corresponds to a smaller number of threads generated with the evaluate- 
and-die mechanism: whereas the eager-thread-creation mechanism generates up to 
8,245 threads, the evaluate-and-die mechanism does not create more than 310 threads. 
The overhead for managing these threads drops accordingly.

As a result of this better behaviour the performance improvement due to increased
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granularity is far less pronounced for the evaluate-and-die mechanism. For a latency 
of 400 cycles the speedup increases from 35.8 to 43.1, a factor of 1.2. For a high 
latency of 32,768 cycles the speedup increases from 4.3 to 9.4, a factor of 2.2. It is 
interesting to note, however, that the speedup of the eager-thread-creation mecha
nism with optimal granularity is slightly higher than the best speedup obtained from 
an execution with an evaluate-and-die mechanism. This indicates that an eager- 
thread-creation mechanism can still outperform the evaluate-and-die mechanism, if 
it provides accurate granularity information to the runtime-system.

In order to relate these simulation results to the behaviour of p a rfa c t on a real 
parallel machine we have used GUM to run it on two parallel machines: a workstation 
network of 8 Suns 4/25 connected via ethernet with a rather high latency of circa 
4 milliseconds for sending a packet of minimal size; and on a four processor SUN 
shared-memory machine. Figure 5.4 shows the speedups for 3 different experiments, 
with the workstation network results in the left hand graph and the shared-memory 
results in the right hand graph. Due to competing processes and general network 
traffic, these experiments show significant variations. However, the overall trend 
reflects the behaviour shown in the G r a n S im measurements. The improvements 
with increasing cut-off values are higher for the workstation network, in the best case 
the speedup increases from 3.64 to 6.26, a factor of 1.7. In comparison the shared- 
memory setup shows rather small and inconsistent improvements, in the best case the
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speedup increases from 2.53 to 3.20, a factor of 1.26. Overall, these results correspond 

to the G r a n S im results for a high latency and a low latency setup, respectively.

5.5 Granularity Improvement Mechanisms

This section discusses granularity improvement mechanisms (GIMs) that have been 
implemented in G r a nS im . Measurements for each of these mechanisms are given 
in the following section showing they can indeed improve the performance of some 
parallel programs.

In G r a n S im three granularity improvement mechanisms are available:

1. Explicit threshold: No spark whose priority is smaller than a given threshold 
will be turned into a thread. For this mechanism the user has to provide an 
explicit threshold value.

2. Priority sparking: The spark pool is treated as a priority queue with granularity 
information representing the priorities. This guarantees that the highest priority 
spark is turned into a thread. Priorities are not maintained for threads.

3. Priority scheduling: The thread pool is is treated as a priority queue with gran
ularity information representing the priorities. This guarantees that the biggest 
available thread is scheduled next. This imposes a higher runtime overhead.

The motivation for investigating a threshold mechanism comes from the observation 
that such a mechanism is often used explicitly in the parallel code in order to increase 
the granularity of the generated threads. For example the m ergeStrategy in Lolita 
(see Figure 4.11) encodes such a mechanism. Priority mechanisms, on the other hand, 
have proven useful in many applications in the area of operating systems. They 
provide a cheap way of accessing the best of a set of possible elements. By using 
such a generic data structure it is possible to profit from the research performed on 
optimising the operations on this data structure.

5.5.1 Explicit Threshold

The idea of this mechanism is to cut-off all sparks below a certain threshold. If the 
granularity information provided via the parG lobal or parLocal annotation is below
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a user supplied threshold level the spark will not be created at all. This represents the 
same kind of mechanism that is often used on a program level to control granularity. 
A typical idiom is

i f  arg < threshold  
then sequential code 

e ls e  parallel code

This style of programming has several drawbacks. The most important of these is the 
code duplication necessary to avoid repeated checks for the threshold. In contrast to 
the style advocated by evaluation strategies in Section 4.3, this code combines the 
algorithmic with the behavioural code. Therefore, the code becomes cluttered with 
conditionals that do not contribute to the definition of a value.

The explicit threshold mechanism provides runtime support for this style of pro
gramming. This means that the programmer does not have to plant a conditional 
statement into the code. Instead he can use the following piece of code:

parGlobal <name> <gran info> <size> <parallelism>
parallel code 

continuation

The granularity information in this code is encoded via an integer value to minimise 
the overhead attached to it. It is used to provide information about the amount 
of computation required to evaluate the parallel code. This can be measured in 
evaluation steps or more abstractly by using this field as a priority. It is up to the 
programmer to take care that the computational complexity of evaluating the <gran 
info> field does not dominate the overall computation, which might outweigh the 
gain from avoiding the creation of many fine-grained threads.

The actual threshold value has to be provided as a parameter to the runtime-system. 
All potential sparks with a granularity information smaller than this value will not be 
created. This mechanism has been used in the measurements in the previous section 
to increase the granularity of the program.
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5.5.2 Priority Sparking

When using a priority sparking mechanism the spark pool is treated as a priority 
queue with granularity information as priorities. This guarantees that the highest 
priority spark, i.e. the spark representing the largest piece of available work, is turned 
into a thread. Because small sparks remain in the spark pool for a long time, many 
of these sparks will be subsumed by other threads, increasing the total granularity 
of the program. In contrast to a priority scheduling mechanism priorities are not 
maintained for threads.

Priority queues are a fundamental data type with many applications in the areas of 
operating systems and parallel computation. The primary goal of this data structure 
is to provide cheap access to the “best” of a set of elements. To this end, the set 
is organised as a sorted sequence of elements. The key, by which the sequence is 
sorted, is called the priority. Typically, the following four operations are supported 
on priority queues:

• findMin, finding the minimum element of the queue;

• insert, inserting an element to the queue;

• deleteMin, discard the minimum element of the queue;

• meld, merging two priority queues;

For the G r a n S im runtime-system only the first three operations are needed. The 
implementation of priority queues exploits recent results of Brodal (1996) and Brodal 
& Okasaki (1996), which describe how to implement findMin, insert and meld in 
0 (1) and deleteMin in O(logn) time. The former algorithm is imperative, the latter 
is purely functional. These complexity functions are used in G r a n S im to simulate 
the costs of maintaining the priority queue.

One aspect specific to the use of queues in the G r a n S im runtime-system is the fact 
that sparks may be pruned. As soon as a closure has been evaluated, all sparks that 
have been generated for this closure may be pruned. In practice the pruning is not 
combined with an update because this would increase the costs in a common case 
in order to reduce costs for parallelism. However, sparks are pruned during garbage 
collection because the list of sparks has to be treated as a list of roots for the garbage 
collector and therefore has to be traversed anyway.
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5.5.3 Priority Scheduling

When using a priority scheduling mechanism the thread pool is treated as a priority 
queue with granularity information as priorities. This guarantees that the biggest 
available thread is scheduled next. Maintaining granularity information on thread 
level imposes a higher runtime overhead. However, it allows the runtime-system 
to make better use of the available information. It also offers the possibility to 
dynamically adjust the priority of a thread based on other aspects of the dynamic 
behaviour. For example, in order to make use of good data locality, the priority of 
threads that rarely perform communication might be increased during the execution. 
Although, we have not studied mechanisms that dynamically change the priority of 
threads, it is an interesting possibility for extending this mechanism beyond the use 
of granularity information alone.

The handling of the priority queue for threads is the same as for sparks. In particular 
the same complexity functions for determining the costs of basic operations on the 
priority queue are used.

The effectiveness of any priority mechanism clearly depends on the number of ele
ments from which the best element is chosen. Therefore, it should be noted that in 
combination with an evaluate-and-die model of computation the thread pools will be 
much smaller than the spark pools, because sparks are only turned into threads if 
there are no other runnable threads available on the current processor. On the other 
hand, the thread pool is updated very frequently, with every scheduling or deschedul
ing of a thread. Therefore, compared to a priority sparking mechanism, a priority 
scheduling mechanism will more frequently choose from a smaller set of elements. 
The following measurements will assess whether the improved scheduling is worth 
the additional overhead imposed by this mechanism.

5.6 Using Granularity Improvement Mechanisms

This section focuses on possible improvements of the runtime when using the gran
ularity improvement mechanisms discussed in the previous section. In general the 
priority mechanisms are more flexible than a simple thresholding mechanism because 
they retain granularity information rather than using it only to decide whether a 
spark should be generated or not. However, they also add additional overhead to the
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F ig u re  5.5 Unbalanced divide-and-conquer tree generated by unbal

runtime-system as discussed in Section 5.5. All measurements in this section use an 
evaluate-and-die mechanism.

5.6.1 Divide-and-Conquer Programs

The unbal function shown below is a simple divide-and-conquer program that serves 
as an example of a computation where explicit granularity information can be used 
to improve the behaviour even with an evaluate-and-die mechanism. The function 
parmap in this code is a pre-strategy version of parMap r n f . Additionally, parmap 
takes as a first argument a cost function that computes a granularity estimate of 
applying the second function to a list element. In this case, the cost function returns 
the value 3 for all inputs resulting in a cheap computation. Otherwise the cost function 
returns the length of l i s t  as an approximation of the granularity.

The dynamic behaviour of this program can be represented as an unbalanced compu
tation tree with decreasing sizes of computation. This structure is shown in Figure 5.5. 
Since the evaluate-and-die model only allows to subsume sparks generated for sub
trees in such a structure, it cannot subsume all tiny threads in the tree, which might 
occur already as leaves close to the root of the tree.

unbal 0 = 1  
unbal n

I one_of_many n = n — le a f  case
I one_of_few n = maximum l i s t  — node case

where l i s t  = parmap co s tfn  unbal [ 0 . .n - l ]



5.6. Using Granularity Improvement Mechanisms 172

u n b a l  - -  32  p r o c e s s o r s

30 L a t e n c y :  4 - 1 
L a t e n c y :  1 2 8  — 
L a t e n c y :  5 1 2  ~{ 

L a t e n c y :  1 0 2 4  ->2 5

20

15

10

0 10 455 15 20 2 5 30 35 40
C u t - o f f

F ig u re  5.6 Speedup of unbal with varying cut-off values

c o s tfn  i  = i f  one_of_many i  then  3 e lse  i  
one_of_few x = x ‘rem* diverge_every == 0 
one_of_many = not . one_of_few

diverge_every = 5

Figure 5.6 shows the speedup improvements when using a thresholding mechanism. 
The cut-off values are multiples of 5 because only every fifth node in the tree gen
erates a large piece of computation (specified by d iverge .every  in the code above). 
Because of the unbalanced nature of the tree, which limits the effectiveness of spark 
subsumption, the improvements are much higher than the improvements shown in 
Section 5.4.2 for a balanced divide-and-conquer program.

The measurements in Figure 5.7 compare the relative runtimes and the absolute 
speedups of the program when using a priority sparking mechanism and a priority 
scheduling mechanism. The left hand graph graph shows the runtime relative to 
the runtime in a setup with no granularity improvement mechanisms (in percent). 
The priority mechanisms show a clear improvement for all latencies. However, the



5.6. Using Granularity Improvement Mechanisms 173

120
None -

Priority Sparking - 
Priority Scheduling -

110
100

90
80
70
60
50
40
30

10 100 1000 1 0 0 0 0 1 0 0 0 0 0

20
None

Priority Sparking 
.Priority Scheduling

18
16
14
12

10

8

6

4
2

0
100 1 0000 10000010 1 0 0 0

Latency (in cycles) Latency (in cycles)

F igu re  5.7 Relative runtimes and speedups of unbal with priority sparking and 
scheduling

priority scheduling mechanism does not improve the runtime more than the priority 
sparking mechanism does. The main improvement comes from avoiding to generate 
tiny threads in the first place.

A more detailed assessment of the priority sparking and scheduling mechanisms for 
various divide-and-conquer programs is given in Loidl & Hammond (1995). In this 
paper it is shown that the improvement in runtime caused by these mechanisms 
directly corresponds to the average spark and thread queue lengths. For the priority 
queue mechanisms to be effective the dynamic behaviour of the program has to be 
such that these queues contain many elements to choose from. For example in the 
case of the unbal program with the measurements in Figure 5.7 the average spark 
queue length is 28 for latencies up to 256 cycles at the point of the best speedup. For 
programs with shorter average spark queue length the improvements in speedup are 
far less pronounced.

As a more realistic example program Figure 5.8 uses queens. This program finds all 
possibilities of placing 8 queens on a chess board without putting one of the queens 
in check. For most latencies the priority mechanisms yield a significant reduction in 
runtime. However, in a few cases the total runtime actually increases. This is to be 
expected, though, because the granularity information provided to the runtime system 
is not perfect. In this case the size of the board is used as a rough approximation to 
the granularity of the thread. With more accurate information generated by a static
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Relative runtimes and speedups of queens with priority sparking and

analysis this information could be significantly improved. A more general problem 
is the lack of any information about the degree of parallelism in a thread. Without 
this information it may happen that a small thread that generates a lot of parallelism 
remains at the end of a long queue causing periods of low machine utilisation.

5.6.2 Larger Parallel Programs

Figure 5.9 studies the granularity of the parallel determinant computation with vary
ing latencies using the priority queue mechanisms. For most latencies both a priority 
sparking and a priority scheduling mechanism manage to reduce the runtime com
pared to an ordinary parallel execution. The inverse priority sparking mechanism 
shown in the left hand graph represents the worst case scenario where the granularity 
information provided to the runtime-system is exactly inverse to the real computa
tion costs. As a result the runtime may increase significantly in this setup. This 
behaviour indicates the danger of consistently providing wrong granularity informa
tion. Although the scheduling is hardly affected by occasional errors of the granularity 
information, consistent errors may lead to a serious degradation of the performance. 
The right hand side of this figure shows a clear reduction in parallelism overhead 
caused by thread creation and blocking threads when increasing the cut-off value in 
a thresholding mechanism.
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The measurements in this chapter show that granularity improvement mechanisms 
can improve the efficiency of small parallel programs. This, of course, does not give 
clear evidence about possible improvements for large programs. However, in the per
formance tuning of the programs discussed in Chapter 4 it has been demonstrated 
that improving the granularity for large programs can be an important step in in
creasing the parallel performance. In particular, the final version of Lolita used an 
explicit thresholding strategy, discussed in Section 4.5. Similarly, we have used a 
generic granularity improvement strategy parG ranL ist, discussed in Section 4.3.6, in 
the tuning of the bowing algorithm discussed in Hall et al. (1997). The main reason 
for not using the granularity improvement mechanisms developed in this chapter is 
the fact that they are currently only available in G r a n S im not in GUM. It would be 
natural to use a thresholding mechanism in the case of Lolita, and a priority sparking 
mechanism in the case of the bowing algorithm.

5.7 Related Work

Due to the importance of granularity for the efficient execution of parallel declarative 
languages, many attem pts have been made to improve the granularity of the generated 
threads. This section gives a survey of the methods that focus on runtime control. 
Compile-time approaches for granularity improvement are discussed in Chapter 6.
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Described on a more theoretical level than the work below, the controlled granularity 
algorithm of Aharoni et al. (1992) assumes that no knowledge of the size of a thread 
is available when deciding whether to create it. The main idea of this algorithm 
is that every thread performs an amount of work equal to the costs for creating a 
thread before itself creating another thread. This guarantees that in the worst case 
the parallel algorithm takes twice as long as a sequential algorithm. In contrast, the 
work presented in this chapter aims at improving the parallel runtime for different 
kinds of parallel programs rather than guaranteeing a certain worst case performance.

5.7.1 Runtim e M ethods

This section surveys runtime methods for increasing the granularity of functional 
programs. Additionally to the work that is discussed here in more detail several 
general systems have been designed to deal with fine-grained threads in an efficient 
way, e.g. the Cilk runtime system (Blumofe et al. 1995), the Cid system (Nikhil 1994, 
Nikhil 1995), StackThreads (Taura et al. 1994), and the filaments system (Lowenthal 
et al. 1996). Relationships to these approaches are outlined where appropriate.

Load B ased  Inlin ing

One of the simplest methods for avoiding an abundance of parallel tasks is load- 
based inlining. In this approach the load of the machine is tested in order to decide 
whether a potentially parallel thread should be created or inlined, i.e. executed by 
the current task. The compiler has to generate two versions of the code: one for 
sequential and one for parallel execution. Load based inlining is used for example 
in the LAGER (Watson 1990) model, in the EQUALS system (Kaser et al. 1992), 
in GAML (Maranget 1991), in the Flagship machine (Keane 1994), and in the Cid 
(Nikhil 1994) parallel runtime system for symbolic computation. Although this model 
limits the total amount of parallelism, it has several severe problems:

• It is not possible to adapt to rapidly changing workload. Once a decision of 
creating or ignoring a spark has been made it cannot be rescinded even if the 
workload has changed in the meantime. This highlights the importance of 
delaying the decision whether to create or ignore a spark as long as possible. 
This fact has been observed by Sargeant (1991).



5.7. Related Work 177

• If a child task is inlined and then blocks parallelism may be lost because the 
parent task is not necessarily blocked ( “parent-child welding”). As Mohr et al. 
(1990) show for a simple prime number generator, inlining can even cause dead
lock if one task blocks on another task that has been inlined by the same 
processor.

•  Load-based inlining gives poor results for unbalanced computation trees and 
is ineffective for fine-grained linear recursions. However, Kranz et al. (1989) 
report good results for balanced trees.

•  It is non-trivial to give a good threshold value for the workload of the machine 
that determines whether a task should be inlined.

Lazy Task C rea tio n

One of the most successful runtime approaches for improving granularity in a parallel 
system is lazy task creation (Mohr et al. 1990). The main idea in this approach is 
to create tasks only retroactively as processing resources become available. Thus, by 
default every task is inlined provisionally, but enough information is kept to selectively 
“un-inline” tasks. The programmer has to expose the parallelism in the program, 
e.g. with a fu tu re  in Mul-T (Kranz et al. 1989). Overall the lazy task creation 
mechanism limits the total amount of parallelism that is generated. Starting from 
this idea, several variants of the basic mechanism have been studied:

C o n tin u a tio n  stea ling . This method was the first one used by Mohr et al. (1990) 
with lazy task creation. The basic idea is to distribute work by stealing continuations 
from the stack. To make this possible a “future queue” of pointers is maintained. 
Each entry in this queue points to a continuation in the stack. When stealing work 
the queue is traversed in a FIFO manner and, if available, a piece of work is stolen by 
copying the lower portion of the stack starting with that continuation, which will be 
turned into a parallel task. This method is almost identical to the sparking mechanism 
used in this thesis together with an evaluate-and-die model of computation. The 
main difference is that sparks are pointers to closures into the heap whereas the 
future queue contains pointers to the stack. The latter approach has slightly less 
bookkeeping overhead but the presence of an explicit spark pool makes it easier to 
attach additional information, such as granularity information, to a spark.
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The main disadvantage of this approach is the runtime overhead that has to be paid:

• An explicit future queue has to be maintained. This has to be done even for a 
purely sequential execution to enable parallelism in later stages.

•  When stealing work an unbounded portion of the stack has to be copied. This 
may cause a high amount of communication and the loss of data locality in the 
program.

Lazy T h read s . In his thesis Rushall (1995) develops a new variant of lazy-task 
creation aiming at eliminating any bookkeeping overhead that is required during se
quential execution to expose parallelism in later stages. The basic idea is to traverse 
the stack when stealing work and to make use of the continuation information avail
able on the stack. This traversal of the stack is similar to the one required by a 
stop-and-copy garbage collector. It is very expensive but has to be done only when 
new work is needed, which means the overall system load is rather low.

In summary, Rushall’s version of lazy-task creation, which is implemented on top 
of the G-machine using Haskell Core as the programming language, retrospectively 
transforms code

case (f  x) of v l -> case (g v l)  of v2 -> . . .

into

l e t  z = g v l in  case (f  x) of v l -> case z of v2 -> . . .

which means that a parallel thread can be generated for z. Note that in Haskell 
Core, a desugared version of Haskell that is used in GHC, the case expression forces 
the evaluation of the head expression. Therefore, nested case expressions enforce a 
specific evaluation order.

The stack is traversed in a FIFO order in the hope that older pieces of code represent 
larger evaluations. This is usually the case in balanced divide-and-conquer algorithms. 
Therefore, this model is particularly suited for this kind of algorithms. However, in the 
general case it cannot make use of granularity information because this information 
is not present any more when the parallelism is exposed. It would be possible to 
extend the model by inserting this kind of information on the stack, but this would
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add overhead in the common case and defeat the main advantage of this variant of 
lazy task creation.

Experiments with this form of lazy-task creation, implemented on a virtual shared- 
memory KSR1 machine, show that it is superior to sparking, as it used in this thesis, 
for very simple programs like nf ib, where no closure has to be created in the sequential 
evaluation model but one is needed in order to create a spark. For bigger example 
programs, however, the difference is rather small. Lazy-task creation usually out
performs load-based inlining, although not consistently. In one example program, 
iqueens+, the sparking model gives better results because the lazy-task creation loses 
too much parallelism. In summary, for “well-behaved” divide-and-conquer programs 
the new lazy-task creation variant usually performs better than load-based inlining, 
but it is not a clear winner. For real applications the gap between the sparking model 
and the lazy-task creation model is rather small.

A similar approach is taken by Goldstein et al. (1996) in their work on lazy threads. 
They define a control hierarchy with varying overheads (sequential call, fork, and 
remote fork) and a storage hierarchy (stack, stacklet, and heap). This enables the 
compiler to pick the least expensive form of a function call and stack representation 
for a particular function call. An implementation of lazy threads in the Id90 compiler 
for the TAM machine achieves speedups of up to two over previous approaches of 
thread creation (Goldstein et al. 1996). It successfully uses fine-grained parallelism 
on a CM-5 distributed memory machine.

In his thesis Goldstein (1997) investigates the efficiency of different points in the 
control and storage hierarchies as well as different possibilities of thread representation 
and disconnection. The goal is to reduce the costs for thread creation and termination 
to little more than the costs of a sequential call and return. Disconnection decouples 
a lazy thread (spark) that has been turned into an independent thread from its 
parent thread. An eager disconnect scheme allows the parent to invoke children on 
its stack in exactly the same way as before, but bears a rather high overhead by 
copying a portion of the stack. In contrast, in a lazy disconnect scheme the child 
steals the stack from the parent and forces the parent to allocate new children on a 
new stack. This version avoids copying an activation frame even if a stack storage 
model is used. Two representations of potential parallelism, both planted in the 
stack, are investigated: continuations, as discussed above, and thread seeds. Thread 
seeds are basically pointers to code segments. They can be planted into the stack
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when a parallel ready sequential call is performed (implicit queueing), or the may be 
managed as an explicit queue similar to the future queue mentioned before.

The results of comparing different versions of thread representation (continuations 
and thread seeds) together with eager and lazy disconnection show that thread seeds 
with lazy disconnection perform best. Implicit queueing proves to be too expensive 
in creating a new parallel thread (a stack traversal is required). As a compromise a 
lazy queue is used, which starts as an implicit queue in the stack but is made explicit 
after the first steal request arrives. Goldstein concludes that “the performance is best 
in implementations that strike a balance between preparation before the potentially 
parallel call and extra work when parallelism is actually needed”.

O ther R u n tim e M eth od s

In the framework of the Dutch Parallel Machine project (Barendregt et al. 1987), Hof- 
man (1994) has developed runtime-system mechanisms for improving the granularity 
in the fork-and-join model of computation. In this project, a “sandwich” annotation 
is used to express parallelism: two phases of sequential strict evaluation flank one 
phase of parallel lazy evaluation. One problem in such a model of symmetric paral
lelism is potential gratuitous thread migration at the end of the computation, after 
merging the two parallel branches. The mechanisms developed by Hofman prevent 
threads to be moved to other processors after the join phase. This is based on the 
assumption that the amount of work after the join operation is rather small. This 
approach to parallelism is fundamentally different from the asymmetric parallelism 
obtained via the evaluate-and-die model: no synchronisation between child and par
ent task is enforced if the child finishes before the parent requires its result. Therefore 
the problem of a bottleneck at the end of the computation is less severe.

In the ZAPP project Burton & Sleep (1981) have developed an adaptive mechanism 
for throttling the parallelism in the system. Near the root of the computation tree a 
FIFO strategy (breadth first traversal) is used to create a high amount of parallelism. 
If the machine is sufficiently loaded a LIFO strategy (depth first traversal) is used 
to avoid excessive space consumption as well as creation of parallelism. This model 
has also been used as means of throttling the parallelism in the Manchester Dataflow 
machine (Ruggiero & Sargeant 1987).

^-bounded loops (Arvind & Nikhil 1990) in Id are used to limit the number of parallel



5.7. Related Work 181

threads, but the size of the threads is not automatically increased. The idea is to limit 
the number of loop bodies that may be executed in parallel to k. The main purpose 
is to reduce storage requirements. It has been shown that choosing the right k value 
for /^-bounded loops can improve performance dramatically (Culler 1990). However, 
so far no compiler controlled mechanism for finding good k values has been developed 
and finding such values has proven to be quite hard in big applications such as an 
ocean modelling program (Shaw et al. 1996).

Rabhi &; Manson (1990) present a hybrid method for improving task granularity in 
a parallel functional programming system. At compile time the parallel and the se
quential complexity of a function are analysed. This information is used at run time 
to decide whether a computation is coarse-grained enough to be performed by a par
allel task. In this paper especially divide-and-conquer programs are examined. This 
follows the approach of trying to detect common patterns in (recursive) cost expres
sions of function bodies in order to infer closed cost expressions. Some experimental 
results of that approach, mainly for divide-and-conquer programs, are presented in 
(Rabhi 1992).

5.7.2 Programmer A nnotation Approaches

The most prominent work using this approach is Hudak’s para-functional program
ming approach (Hudak 1986, Hudak 1991). This approach defines a set of annotations 
that control the creation and location of parallel tasks. The language issues have al
ready been discussed in Section 4.9.1. The following discussion focuses on granularity 
issues.

The para-functional programming approach allows the programmer to have more or 
less direct control over the runtime system and thereby affect the granularity of the 
parallel tasks. For example the basic constructs in this approach make it possible to 
define serial combinators (Hudak & Goldberg 1985), which perform purely sequential 
computation without the need to synchronise. Therefore, the size of these combinators 
determines the granularity of the program and can be manipulated by the compiler. 
The most recent work in this area uses monads for obtaining system information, 
such as machine load, in a referentially transparent way (Mirani & Hudak 1995). The 
resulting language for scheduling and mapping computations is very flexible and close 
to evaluation strategies (Trinder et al. 1998) as discussed in Section 4.3. In particular
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functions can be parameterised with schedules describing their dynamic behaviour. 
This makes good use of the abstraction and the overloading mechanism in Haskell. 
Furthermore, stateful computation via monads is used to extract system information 
and to specify operational aspects used in the schedule for a parallel program. This 
system has been implemented on a Silicon Graphics 16 processor machine.

The Concurrent Clean system (Nocker, Smetsers, van Eekelen & Plasmeijer 1991) also 
uses this approach. It defines a rich set of annotations that allows the programmer to 
change the reduction strategy of the system (van Eekelen & Plasmeijer 1993). By de
fault it uses a lazy evaluation scheme. Two kinds of annotations are available: strict 
annotations, that locally force the use of eager evaluation, and process annotations, 
that determine the creation and placement of parallel tasks. The latter set of anno
tations is used for choosing the right level of granularity. Additionally, annotations 
for specifying graph sharing and copying are provided (Achten 1991).

Another parallel functional programming system that provides a rich set of annota
tions is the Hope+ system for programming the Flagship parallel machine (Kewley 
& Glynn 1989). The strictness annotations enable the programmer to choose specific 
evaluators for expressions in the program. Dependency annotations control the eval
uation order by describing how far a parameter in an expression has to be evaluated 
before starting the evaluation of the expression itself.

5.7.3 Profiling M ethods

An alternative approach for extracting information about the granularity of gener
ated tasks out of a program is to execute the program with some sample input and to 
generate profiling information. This information is then fed back into the compilation 
process and can be used to generate better (often coarser-grained) code. Sargeant 
obtained promising results using this approach on a virtually shared memory ma
chine (Sargeant 1993). Sodan & Bock (1995) used this approach to obtain useful 
information specifically for granularity control on large programs. However, the main 
problem with this approach is the dependence on the choice of the initial, small input 
set. If the runtime behaviour of the program does not vary much between different 
inputs, then this approach will provide very good results without a large compile-time 
overhead. In general, however, the choice of good sample input is critical in this ap
proach and it is not obvious, which metric to use to assess the quality of some input
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in this context.

This strategy can be very effective in combination with a skeleton-based approach to 
express parallelism. Algorithmic skeletons (Cole 1989) define the parallel behaviour 
of a set of higher-order functions, representing commonly occurring patterns of com
putation. By using a fixed set of well-studied functions it is easier to make statements 
about the dependence of the runtime behaviour on slightly different inputs. Busvine
(1993) uses this approach in his implementation of the PUFF compiler. In a first 
step a the compiler exposes all parallelism down to the level of function calls via the 
insertion of p ar annotations. Then the program is run on one or more sets of data, 
collecting statistics about computation costs and execution frequencies. This infor
mation is used to transform the program into a parallel version that has increased 
granularity. A wide range of parallel programs generated with the PUFF compiler 
achieved good speedups on a distributed memory machine. In his PhD thesis Bratvold
(1994) gives an overview of using skeletons for parallel programming. His results of 
combining a skeletons approach with profiling to gain information on granularity show 
good results on a distributed memory architecture. In particular he reports that the 
errors of profiling based performance prediction rarely exceed 20%. In contrast to 
Bratvold’s system, which is specific to one parallel machine, Michaelson et al. (1997) 
present the design of an architecture-independent parallelising compiler for SML. It 
uses the same approach of structural operational semantics based instrumentation of 
the code in order to obtain granularity information via profiling. However, these costs 
are parameterised over machine specific parameters. Instantiating these parameters 
and combining the profiling information with expressions derived from the underlying 
cost model for skeletons should give accurate granularity information.

Darlington et al. (1995) have designed a structured coordination language SCL based 
on skeletons. In combination with Fortran as a computation language they report 
speedups of up to 70 on 100 processors on a distributed memory machine for a parallel 
matrix multiplication. A general treatment of the skeletons based approach has been 
provided by Rabhi (1995), who has related algorithmic skeletons to a number of 
parallel paradigms in designing a paradigm-oriented approach towards parallelism.
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5.8 Discussion

This chapter has introduced the notion of granularity in parallel programs and moti
vated the importance of studying this particular aspect of parallel program behaviour. 
It has been demonstrated that granularity is more important for the performance 
of programs using an eager-thread-creation model. For a simple test program the 
speedup could be increased by a factor of 1.8 for low latency machines and by a fac
tor of 2.8 for high latency machines. However, even for divide-and-conquer programs 
with an evaluate-and-die model it is possible to achieve performance improvements of 
a factor of 2.2 on high latency parallel machines. This has been shown via G r a n S im 
and GUM  measurements. For unbalanced divide-and-conquer programs the possible 
performance improvement is even higher because the evaluate-and-die model is not 
able to subsume the same amount of gratuitous parallelism.

This chapter has presented three granularity improvement mechanisms:

• an explicit threshold mechanism,

• a priority sparking mechanism, and

• a priority scheduling mechanism.

In the measurements presented in this chapter the best results have been obtained 
with an explicit threshold mechanism. However, this mechanism assumes absolute 
granularity information. Such information is in general more expensive to produce 
than relative granularity information i.e. information that only allows to compare the 
granularities of two expressions in the program. Such relative granularity information 
is sufficient for the priority mechanisms. On the other hand, the priority mechanisms 
generate additional runtime overhead via the management of priority queues. Since 
the optimal cut-off value, which has to be provided explicitly to the runtime-system, 
is in general machine dependent it is not clear which mechanism will perform best for 
larger applications. However, having several such mechanisms available as part of the 
runtime-system gives the programmer additional flexibility in the performance tuning 
of a parallel program. Furthermore, the choice of the runtime-system mechanism for 
granularity improvement will in the end depend on the amount of information that 
can be automatically derived from the program. The next chapter will discuss this 
question by presenting a static granularity analysis for determining upper bounds of 
computation costs.



Chapter 6

Granularity Analysis

Capsule

Several examples in Chapter 5 have shown that information about the gran
ularity of program expressions can be used by the parallel runtime-system to 
improve the performance of the program. This chapter discusses a granularity 
analysis for inferring an upper bound of the computational costs of an expres
sion at compile-time. This analysis is a combination of two existing analyses, 
one for size and one for cost information. The granularity analysis is specified 
as an inference system for a strict higher-order language C.

The inference system can only derive costs for non-recursive expressions. 
However, an extended cost reconstruction algorithm for this inference system 
is presented, which exposes recurrences over cost expressions in order to han
dle recursive functions. Thereby, the analysis can be combined with a library 
of recurrence relations and their known closed forms in order to generate a 
cost expression in closed form that depends only on the size of its input argu
ments. The chapter outlines an algorithm for a granularity analysis handling 
user defined recursion, based on the reconstruction algorithm presented here.

One of the major advantages of the chosen formulation of the granularity 
analysis as a type inference process over alternatives like abstract interpretation 
is its modularity. All relevant cost and size information of a function is attached 
to its type. Since all interface information required by the analysis is contained 
in the type, separate compilation and separate inference are possible. Finally, 
this chapter presents experimental results obtained from executing a program 
with attached granularity information. The cost inference has been done by 
hand in this case. The measurements show an improvement in speedup of more 
than 25% for eager-thread-creation and approximately 6% for evaluate-and-die.

185
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6.1 Introduction

This chapter describes a granularity analysis for the simple strict higher-order func
tional language £ . The purpose of this analysis is to statically derive information 
about computation costs that can be used by the parallel runtime-system to improve 
performance, as discussed in Chapter 5.

The granularity analysis is presented as a type inference system. It derives information 
about the upper bounds of the size of data structures and the computation costs of 
expressions, provided the evaluation of the expression terminates. This analysis can 
be either seen as a part of a system for automatic parallelisation or as an off-line tool 
for the programmer to obtain additional information about the program’s dynamic 
behaviour. However, the particular efficiency constraints of an on-line analysis and 
the details of its integration into the compiler are not discussed in detail here. The 
emphasis of this chapter lies on outlining an algorithm for performing the inference 
rather than proving its correctness.

The sized time system presented in this chapter is a combination of the inference 
system developed by Reistad & Gifford (1994) and sized types developed by Hughes 
et al. (1996). In particular, it also uses latent costs, which are attached to function 
types, in order to propagate cost information from function definitions to function 
applications in a higher-order language. Whereas the cost reconstruction algorithm 
by Reistad & Gifford (1994) only handles non-recursive expressions, our algorithm 
exposes cost and size recurrences from user defined recursive functions. This makes 
it possible to use a library of recurrences together with their closed forms in order to 
obtain cost information for some recursive functions. Such an approach has already 
been successfully used by Rosendahl (1986). The exact design of the library and the 
concrete formulation of the matching algorithm are further work.

The structure of this chapter is as follows. Section 6.2 discusses the main require
ments for the analysis and the intended use of the derived information. Section 6.3 
defines a small strict higher-order language C. Section 6.4 presents the analysis as 
a sized time system. Section 6.5 describes the inference process including a size and 
cost reconstruction algorithm. This section also discusses how user-defined recursive 
functions are handled. Section 6.6 gives an example of an inference. A comparison of 
the presented approach with related work is given in Section 6.7. Finally, Section 6.8 
summarises.
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6.2 Design Philosophy

Before selecting a certain approach for performing a granularity analysis several design 
decisions have to be made. In particular, we have to address the following questions.

How detailed does the cost information need to be? This question has to be answered 
with respect to the runtime-system and its ability to use cost information. The mea
surements in Chapter 5 show that by using a thresholding mechanism, eliminating all 
small threads, significant performance improvements can be achieved. However, this 
mechanism requires absolute cost information. As an alternative to a thresholding 
mechanism a priority mechanism can be used. This requires only a relative ordering 
of threads, i.e. relative cost information. In order to make the usage of all granular
ity improvement mechanisms possible the presented analysis generates absolute cost 
information.

How accurate does the information need to be? An important observation about a 
granularity analysis is that the information can be wrong without causing error in 
computation. It is only used for optimisation without changing the semantics of the 
program. It can, however, cause an increase in runtime if wrong decisions are made 
very frequently. This has been shown by one of the measurements in Section 5.6.2. 
Note the difference to strictness analysis in which case wrong information can cause 
the program to fail where it should succeed.

Should the analysis produce a lower or upper bound? Lacking perfect information 
about runtime data, the analysis has to give an approximation of the real costs. 
Two possible choices are to infer a lower or an upper bound. Since the runtime- 
system uses granularity information to eliminate small threads, a lower bound seems 
to be the natural choice. However, this leads to inaccuracy when handling recursive 
functions since the lower bound would normally reflect only the base case. Previous 
measurements, however, have shown that treating all recursive functions equally does 
not yield satisfactory information (Goldberg 1988a). In order to avoid inaccuracy in 
the important case of recursive functions, the analysis presented here yields upper 
bounds. Furthermore, since the pure computation costs of evaluating an expression 
lazily are less than or equal to an evaluation in a strict language, the results of the 
analysis can also be used as an upper bound for the analysis of a lazy language. An 
alternative to this choice might be to devise a separate analysis that tries to infer 
information about the values in the head of a conditional. This could be used for
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common patterns of recursive functions, e.g. in testing whether the length of a list is 
zero.

What kind of analysis technique should be used for the static analysis? The main 
alternatives are abstract interpretation (Cousot & Cousot 1977) and type inference 
(Kuo & Mishra 1989). Abstract interpretation is well-studied and offers optimisations 
to make it more efficient. However, it has severe efficiency problems for higher-order 
functions. Thus, the motivation for choosing an inference based approach over an 
abstract interpretation based approach can be summarised as follows:

• Using type inference achieves modularity by attaching all relevant information 
of the analysis to the type of an expression. This fits naturally with separate 
compilation. In contrast, abstract interpretation always assumes a global view 
of the entire program, which clearly is problematic for large applications.

• It is hard to argue about the quality of a result obtained via abstract interpreta
tion (Aiken et al. 1994). Choosing a more intuitive representation of terms over 
the abstract domain and using term rewriting to compute results may alleviate 
this problem (Seward 1995).

•  By using a library of recurrences for eliminating derived recurrences in the do
main equations it is possible to tune the accuracy of the results. Since granular
ity information is mainly of interest for optimisation and wrong information will 
never invalidate the semantics of the program, this is a very desirable feature 
in practice.

•  Type inference, in contrast to abstract interpretation, does not require the ab
stract domain to be of finite height. Therefore it is possible to use positive 
integer values for costs and sizes.

Is the information gained from the analysis of a strict language useful for a lazy 
language? Clearly, the cost of evaluating an expression in a lazy language depends 
heavily on the demand on that expression. Therefore, a granularity analysis of a strict 
language will yield an upper bound for the cost of evaluating the same expression in a 
lazy language. Note that we only consider computation costs, but not the bookkeeping 
overhead related to eager or lazy evaluation. However, granularity information is 
mainly useful for rather small threads in an automatically parallelising system. Such
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a system needs strictness information in order to automatically expose parallelism 
over strict arguments. Therefore, the analysis would be only used on provably strict 
expressions, which justifies the design of an analysis for a strict language.

6.3 Syntax of C

The language C is a very simple functional language, intended solely as a vehicle to 
explore static analysis for parallelism. C is strict, polymorphic, and higher-order with 
lists as its only compound data type.

The abstract syntax of C is given below. To simplify the presentation it is assumed 
that variables (v G Var) and constants (k G Const) are disjoint and that variable 
names in the program are unique. This avoids complications in the treatment of the
assumption sets in the sized time system.

e v | k | Av . e | ex e2 | cons ei e2 | n u l l  e | hd e | t l  e |
l e t r e c  v =  ei in  e2 | i f  ei then  e2 e lse  e3

Overall, the structure of C expressions is similar to that of Lisp in that it focuses on 
lists as the only compound datatype. Local bindings via le t r e c  are recursive. Since 
the entire C program is an C expression, nested l e t r e c  expressions have to be used 
to define auxiliary functions.

C uses sized types (Hughes et al. 1996): each type, except for the function type, has a 
component specifying an upper bound for its size. The type Int contains only positive 
integer numbers. Another extension to a conventional Hindley-Milner type system 
is the use of a cost expression in the function type, the latent cost, to propagate 
cost information from the function definition to its usage. The second annotation 
in the function type, / ,  represents a symbolic size function and is only needed for 
analysing recursive functions (see Figure 6.8). Finally, the construct /?c, a size pattern, 
represents a sized type with an upper bound of c, whose type component is unknown. 
Again, this construct is needed in the inference process to derive explicit recurrences 
for user defined recursive functions. In the following syntax of type expressions, a  
represents a sized type variable.
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Both cost and size expressions are specified by c-expressions. Therefore, cost expres
sions can contain variables representing the size of a data structure. It is important 
to note that c-expressions are linear, i.e. there can be no expression of the form 
Vi * V2 where Vi,V2 are variables. This property plays an important role in the 
implementation outlined in Section 6.5.

c ::= / | u; | n | Ci +  C2 | Ci — C2 | n * c | max Ci C2 | /  Ci . . .  cn | sizeOf r

In these c-expressions n is an integer constant and I is a c-variable. The u  symbol 
is used to express an unbounded cost/size. For sizes less than u  the operators +, —, 
* and max behave as usual over integer values. When one of the operands is u  the 
result is u, too, with the exception of x  — u  which is 0 for x  /  u  and u  otherwise. The 
< relation, which will be introduced later, is defined as over integer values with x < u  
for all x. In order to handle recursive programs symbolic cost functions /  have to be 
introduced. The arguments cx. . .  cn represent the sizes of the argument expressions 
in the program. The sizeOf construct is an auxiliary construct used to strip the size 
information from a sized type. Again, this is only necessary when deriving explicit 
recurrences describing cost and size for recursive functions (see Section 6.5.2).

Polymorphism is achieved in the usual way by quantifying over free variables of a 
le trec-bound  expression. The use of sized types requires quantification over size as 
well as type variables. In the following x  is used to represent either a type or size 
variable. The general structure of type schemes is therefore:

a ::= 'ix.a  | r

Note that sizes constitute parts of types in C. This gives a convenient way to describe 
the size of sub-components of a data structure as well as the size of the structure itself, 
e.g.

List5 In t10

denotes a list whose length is at most 5 with integer numbers no larger than 10 as 
elements. As an example of a type scheme, the type of the builtin constant n i l  is

Va. List0 a
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6.4 A Static Cost Semantics for C

This section develops a static cost semantics for £. In order to statically estimate 
an upper bound for the cost of evaluating an expression, information about the size 
of values in the program is required. Therefore, a size analysis will be developed as 
well as a cost analysis. Both analyses are interwoven with a standard polymorphic 
type system to give a sized time system for £ . Because the size analysis and the 
cost analysis are presented in the same formal framework, this combination yields a 
concise description of the inference without repeating the same structure. However, 
it should be emphasised that this does not force an implementation of the analyses 
to use the same interwoven structure. The details of a possible implementation are 
discussed in Section 6.5.

6.4.1 A Sized Tim e System  for C

The inference rules of the sized time system in this section represent an extension 
to the standard type inference rules for £ , additionally inferring size and cost infor
mation. These extensions capture size and cost in a slightly different way. The size 
information represents a static property of a £  expression and is therefore attached 
to its type. The cost information, however, represents a dynamic property of a £  
expression. It is therefore not attached to the type but inferred together with the size 
information. Cost inference uses size information but not vice versa.

The costs of higher-order functions are modelled by attaching latent costs (Reistad 
& Gifford 1994) to function types. These latent costs usually contain free variables 
representing the size of the arguments. This is illustrated by the following example. 
In order to derive the type for the expression A f  . A x . f  (x+1) assume that the 
function f  has type a j3. Here c represents the latent costs of evaluating f . The 
annotation /  in the type can be ignored for this example. Then the type of the whole 
expression will be

(Intn+1 H  oc) °4  Intn c+-¥ "  a

Thus, the cost of evaluating this abstraction is 2 steps plus the cost of evaluating 
the function f . In the system presented here costs are counted as steps. In order to 
improve the accuracy of the resulting cost expression it would be easy to use constants
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for basic operations like function expressions. However, we avoid such constants to 
make the structure of the inference clearer. In the above example, the costs are 
counted as one step for the +  operation and one step for the function application. 
In general, the derived cost expression will depend on size variables in the argument 
types such as n. As a more detailed example, Section 6.4.2 gives the type of the 
function leng th .

Choosing step counts as computation costs also has the advantage of being high-level 
enough to abstract over the concrete computation model used in the implementation 
of the language. Thus, the analysis developed in this chapter is not tied to graph 
reduction. In order to tune the analysis to a specific model it would be necessary 
to assign basic costs for machine operations such as updating a closure in a graph 
reduction model or binding a value to a variable in an environment based model.

Figure 6.1 shows the extended type system. The c-expression in the superscript of a 
type is an upper bound for the size of the object. A judgement T h e  : r z $ c reads 
as follows: “Under the type assumptions T the expression e  has type r  (with size z ) 
and a cost bound of c” . The expression after $ in a judgement is a c-expression that 
represents the cost for performing the corresponding computation. The assumption 
set T contains bindings of variables, of constants, and of primitive operations to type 
schemes (of the form x  : a). Since all variable names are unique, assumption sets can 
be combined by using set union. The construct r[x'/x] is used to denote a substitution 
of all free occurrences of x  in r  by x ' . It extends to vectors, written as yi, by performing 
all substitutions simultaneously. The overall structure of the system uses inference 
rules resembling a Plotkin style structural operational semantics (Plotkin 1981) in a 
similar way to Tofte (1988).

The (Var) rule performs an instantiation of the abstracted size and type variables 
Xi by substituting all free occurrences with fresh variables yi in the body of the 
type t . The F V  function computes the set of free variables in a type expression 
or an assumption set. For the inference of a program it is assumed that the initial 
environment contains mappings of variables representing basic operations like +, * to 
their sized types. This avoids the necessity for an explicit rule on primitive operations.

The (Weak) rule allows to weaken, i.e. to relax, upper bounds for size and cost. It 
makes use of the subtyping relation < defined in Figure 6.2. Note that with this 
definition of <, the relation T\ < r<i alone does not imply that List01 t\ <  List02 72,
i.e. the subtype system is not structural. Because no subtype relations are defined
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(I n t ) p (_ n . j ntn j  q (Bool) p H b . Boo[ $ q

( V a r ) _________________________________ T' =  Tf c / X"il
V ; ru{v: Vfj.r} I- v : r' $ 0 y* £ F V ( t ) U FV(r) 

r b e : t ' $ c' t ' <  r  d  < c
{Weak) T h e : r $ c

{ s \ F u {v:ri} b e : r2 $ c(Abstr ) ---------------- 7~r-------r b Av . e : r\ -4 T2 $ 0

(App) r ei : ri ^  T2 $ ci T b e2 : ri $ c2
T b ei e2 : r2 $ 1 + c\ + c2 + c

, _ x r b ei : r $ c\ T b e2 : Listc r  $  C2
( G  o n s ) ------------------------------------------------------ -TXi---------------------------------r b cons ei e2 : List + r $ 1 +  c\ + C2

, , T ii\ r b e : Listc' r S c {Null) r b null e : Bool $ 1 + c

( xja\ T b e : List0' r S c , ^ T b e :  r $ c ,{Ha) —z— ------------------—   c > 1 (T /) ---------------------------- -7—;---- ---------  c > 1T b hd e : r $ 1 +  c T b t l e :  r S 1 + c

, _ . T b ei : Z?oo/ $ ci T b e2 : r $ C2 T b e3 : r $ C3

T b if ei then e 2  else e3 : r  $  1 +  Ci +  ( m a x  C2 C3)

(T . r u { v : r i }  b et : n  $ cx ru {v :V ^ .r i}  b e2 : t 2  $ c2 Xj =  FF(ri)\ 
6 r r  b letrec v = ei in e2 : T2 $ ci + C2 FV{T)

F ig u re  6.1 A sized time system for C

between basic types, this relation defines a set of inequalities over c-expressions alone.

The (Abstr) rule infers the cost of evaluating the body of a lambda-abstraction, and 
attaches this cost to the type of the lambda-abstraction as a latent cost The latent 
cost usually contains a free variable for the size of the argument x. The symbolic size 
function / ,  which is attached to the function type, is only needed when a recursive 
function is defined. The handling of recursive functions is discussed in the reconstruc
tion algorithm in Section 6.5.2. It is currently not reflected in the sized time system
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itself.

In the (App) rule the type of the function’s domain must exactly match the type of 
the argument. Since types can be weakened by relaxing their size bounds this means 
that the size bound of the argument must be no greater than the size given in the 
type of the function’s domain. The function application itself is counted as one step. 
Note that the latent cost c of the function is added to the cost of the whole expression. 
In the case of a recursive function call, however, c will be undefined at this point. 
Because the undefined c will depend on the size of the argument e2 , an explicit name 
/  is needed for the size function of ei. At the end of the inference, the cost expression 
for the recursive function will contain an application of the size function /  to the size 
of e2 . Figure 6.8 shows the inference of the recursive function len g th  as an example.

The rules for (Cons), (Null), (Hd), (Tl) show how size bounds are derived for list con
structors and selectors. This system models a step counting semantics and therefore 
the application of a constructor to all of its arguments counts as one step. To increase 
accuracy it would be possible to add constants for the cost of these operations.

In general both branches of a conditional will have different sizes. The example below 
illustrates how the (Weak) rule is used to ensure that the types of both branches match 
as is required by the (Cond) rule. The cost bound of the conditional is the maximum 
of the costs of both branches plus the cost of the head of the conditional plus one 
step for performing the branch. In Section 6.5 we suggest some practical techniques 
for improving this cost bound.

The (Letrec) rule realises letrec-polym orphism  as in the Hindley-Milner type sys
tem (Milner 1978). In the inference of a type for e2 the variable v is bound to a type 
scheme, which abstracts over type and size variables. Note that in the environment 
for typing et we do not use a type scheme for v, as in the Milner-Mycroft type sys
tem (Mycroft 1984), because this would make even plain type inference without sizes 
or costs undecidable, as shown by Henglein (1993). An instantiation of type schemes 
is performed as part of the (Var) rule. It is worth noting that the (Letrec) rule used 
by Hughes et al. (1996) is significantly more complicated because it has to propagate 
size information for algebraic data types from one recursion level to the next. In C 
this size propagation is encoded in the rules operating on lists. An extension of C to 
algebraic data types would have to add a size variable as an explicit iteration variable.

The reflexive and transitive subtyping relation in Figure 6.2 formalises the idea that
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__________  T \ < T 2 T2 <  7 3

T  <  T  T \  <  T3

Cl <  C2 Cl  <  C2 Tj <  r 2 Tj <  t [  t '2 <  T2 cf  <  C

In tCl < In tc2 List01 t \  < List02 t 2 T' °-4 T'2 < n  c-4 72

F ig u re  6.2 Subtyping relation for £

the size component in a sized type specifies an upper bound. Therefore, it should 
always be possible to weaken this size bound. Similarly, the latent cost in a function 
type is an upper bound for the cost of evaluating the function. The need for such a 
subtyping relation can be motivated by an analysis of the following expression.

i f  (n u ll  xs) then  1 e lse  2

In this expression the then  branch has a sized type of In t1 but the e ls e  branch 
has the type In t2. Only because of the subtyping relationship between these types 
In t1 < In t2 is the above expression type correct. In the inference of this expression 
the (Weak) rule has to be applied to the then  branch. The need for weakening latent 
costs can be motivated by observing that both sides of the conditional may yield a 
function type.

6.4.2 From Cost-Expressions to Cost-Functions

The sized time system in Figure 6.1 is a high-level description of how to infer costs 
and sizes of an expression. When deriving the cost of a function application the cost 
expression representing the latent cost for the function has to be used. However, if the 
function is recursive this approach will fail to yield a cost expressions in closed form 
because it has to refer to its own cost. Therefore, explicit names for unknown cost 
functions, symbolic cost functions, are needed. One symbolic cost function is needed 
for each recursive function in the program. In general the result of performing cost 
inference will be a set of recurrences that has to be solved separately. Section 6.5.4 
discusses how this can be done.

The (Letrec) rule in the sized time system shows that the type schemes for le tre c -  
bound functions in general contain universally quantified size variables. These vari
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ables are arguments to the cost function described by the inferred cost expression. In 
general we define for every function definition

f  x l . . .  xm = e

a cost function

fc 1̂ • • • ln — c 

and a size function 

f z  l\ • • - In — %

where c is the cost and z is the size expression derived from e, the body of the 
function. The variables l \ .. . ln represent the size variables in the argument types 
of f . Note that n depends on the type of the arguments to f  because an argument 
of e.g. type Listk In t1 will be translated into two size arguments k and /. The cost 
reconstruction algorithm in Section 6.5.2 applies the function sizeOf on top-level in 
order to strip the size expressions from the resulting type.

One characteristic of the cost reconstruction algorithm discussed in Section 6.5.2 is 
the use of curried function application. This results in the introduction of separate 
cost functions in each function application. In order to obtain one cost function for the 
user defined function, as outlined above, it is necessary to merge these intermediate 
cost functions. This should be done in a separate simplification stage after cost 
reconstruction. The example in Section 6.6 discusses this point in more detail.

In summary, the sized time system assigns the following type to the polymorphic 
length function (Figure 6.8 describes the main steps of the inference, which is discussed 
in Section 6.5.2):

length : Vo:. Vl.List1 a

In the following sections we use as a special notation lengthz  for describing the cor
responding size function (length z  1 = 1 in this case) and lengthc for describing the 
corresponding cost function (lengthc I = 4 * Z +  2 in this case).
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6.5 Cost Inference

This section presents the outline of an algorithm for inferring upper bounds of size 
and cost in the presence of user defined recursive functions. In the case of non
recursive expression the sized time system presented in the previous section can be 
directly implemented using the same approach as Reistad & Gifford (1994). In order 
to handle user defined recursive functions, recurrences over an integer domain have to 
be constructed and solved. This section gives a reconstruction algorithm for exposing 
recurrences and proposes a general approach for solving the recurrences via a library.

An important feature of our subtype system is that all constraints range only over 
c-expressions rather than types in general. This can be seen from Figure 6.2, which 
defines <  by adding only inequalities over c-expressions, but not over primitive types. 
In other words, from T\ < r2 it follows that the Hindley-Milner types of t\  and r2 are 
the same, and this might subsequently be proved. Informally this can be shown by 
observing that omitting size and cost information from the sized time system yields 
the Hindley-Milner type system with additional rules for the basic list operations. 
The symbol \~h m  is used to represent standard Hindley-Milner type inference.

C o n jec tu re  1 Let e1; e2 be C expressions and T b ei : T\, T h e2 : t 2; 
T b hm  ©i : f i ,  T \~hm : T2 - Then

T\ <  t 2 implies f \  =  r2

It is important to note that no general subtype inference based on set inclusion is 
required, as it is done by Aiken et al. (1994) and Marlow & Wadler (1997). Instead, 
it suffices to solve inequality constraints over c-expressions, which range over integer 
values including infinity. Standard software packages exist for performing this test 
and the outlined inference algorithm uses such a package.

The structure of this section is as follows. Section 6.5.1 presents the overall struc
ture of the inference process. Section 6.5.2 presents a size and cost reconstruction 
algorithm. This algorithm specifies a proof strategy for the sized time system, deter
mining where to apply weakening and how to collect constraints. The result of the 
cost reconstruction algorithm is a sized type, a bound on the cost for evaluating the 
expression, and a constraint set of inequalities over c-expressions. The latter has to be 
solved separately. Section 6.5.3 defines a normal form on c-expressions. Section 6.5.4
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addresses the question how to derive explicit symbolic cost functions for user defined 
functions and how to resolve a set of common recurrences. Finally, Section 6.5.5 
addresses correctness issues of the presented inference.

6.5.1 Structure of the Inference

A cost checking algorithm for the sized time system is no more complicated than the 
existing size checking algorithm for sized types (Hughes et al. 1996). This algorithm 
uses the mandatory type declarations for all le trec-bound  variables to compare the 
declared sizes with the sizes that are inferred from the body of the definition. This 
yields a set of inequalities over c-expressions in closed form.

Hughes’ algorithm performs two separate passes for performing Hindley-Milner type 
inference and size inference, respectively. In maintaining this structure an additional 
pass for cost inference can be added. This pass would add inequalities over cost 
variables to the constraint set. Since both costs and sizes are represented via c- 
expressions, the same algorithm for collecting all inequalities can be used.

The satisfiability of the resulting constraint set can be checked by performing the 
Omega test (Pugh 1992). The Omega test is a state-of-the-art implementation of 
a decision test for the existence of integer solutions to affine constraints, which are 
a superset of the linear constraints as used in this thesis. If no solution exists the 
expression is ill-typed. Recursive functions do not pose any additional complication 
since their type has to be explicitly given. Such a checking algorithm could be used 
to confirm that a cost expression provided by the user, e.g. by hand analysing a 
function’s complexity, is indeed an upper bound for the cost of the function.

When the checking algorithm is extended to cost inference a cost and size recon
struction algorithm has to handle functions of unknown type. This requires to add 
symbolic cost functions to the definition of c-expressions. These symbolic cost func
tions represent so far unknown cost functions applied to known size expressions. The 
reconstruction algorithm presented here will therefore extend the one developed by 
Reistad & Gifford (1994) by capturing the argument size of a function of unknown 
type in the (App) rule.

In order to solve the recurrences exposed by the reconstruction algorithm a “library” 
of recurrence relations with their closed form can be used. This is similar to the
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approach used by Rosendahl (1986). One basic difference is that the latter uses 
a sequence of source-to-source transformations in order to translate recursive step 
counting programs into non-recursive ones. In contrast, providing a library decouples 
the main part of the analysis from the recurrence elimination. Thus, the programmer 
has the possibility of adding recurrences to the library in order to improve the result 
of the analysis. In contrast to an abstract interpretation approach, this approach 
avoids the complexity of solving the resulting set of equations iteratively.

An open problem with an inference algorithm of this kind is how to find a minimal 
solution of the constraints that are derived. Since the plain type of the inference will 
be the same as the Hindley-Milner type, the plain type will be principal. However, 
if the “library” of recurrences contains approximations of closed forms the solution 
for costs and sizes will not be minimal. Adding such approximations has the benefit 
that unsolvable recurrences can be dealt with. Because the goal of the analysis is 
to derive some upper bound for the computation costs a minimal solution for the 
size component is not absolutely necessary in order to extract useful information out 
of the analysis. This agrees with observations by Reistad & Gifford (1994) on the 
quality of statically determined cost estimates.

In summary, the inference algorithm has the following global structure (see also Fig
ure 6.3):

1. collect constraints, inequalities over c-expressions, while traversing the proof 
tree (see the cost reconstruction algorithm in Section 6.5.2);

2. simplify the set of inequalities, containing symbolic functions, by reducing c- 
expressions to a normal form (see Section 6.5.3);

3. spot common patterns of recurrences and replace them with closed forms, using 
a “library” of recurrences; if no matching recurrence is found the symbolic 
function is defined to yield u  for every input (see Section 6.5.4);

4. replace non-linear c-expressions with uj\ this step is needed as preparation for 
solving the constraint system using the Omega test;

5. eliminate trivial constraints containing u;

6. solve the resulting constraint system using the Omega test (Pugh 1992);
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L program

Cost/Size Fcts (rec) type correct Y/N

C/S Fcts (non-rec)

Cost/Size Fcts (rec) C/S Fcts (closed form)

of Recurrences

Elimination

Omega test & 

Simplification
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of c-expressions

Linearisation 

of c-expressionsReconstruction

Size and Cost

Recurrences

Library

F ig u re  6.3 Overall structure of the analysis

7. simplify the result further.

The main source of inaccuracy for the derived cost bounds in the sized time system 
presented here is the (Cond) rule. This might prove to be a problem if a costly branch 
is rarely executed, for example if the base case of a recursive function is much more 
expensive than the normal recursive case. Although this seems unlikely to be a major 
issue, one way to alleviate this particular problem would be to add special cases to 
the “library” of recurrences to avoid counting the base case several times. A variant 
of the max operator could then be used to indicate that the conditional is on the 
critical path of a recursion.

Another approach would be to extend the type system further by adding conditional
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types. Such types use runtime information to specify the type of an expression. In 
such a type system it is possible to formalise a dependence between the head and the 
branches of a conditional. For example, it is possible to type the expression

i f  (n u ll xs)
then 1
e ls e  1+length xs

as ( In t1?List0 a )U ( In t1+n?Listn a). The conditional type constructor Ti?72 reads as 
“t i  if t2”, incorporating runtime information into the type system without resorting 
to a safe approximation like the maximum of both sizes. Conditional types have 
proven useful in the optimisation of Lisp programs, where the aim is to avoid runtime 
type checking. Aiken et al. (1994) present a type system with union, intersection, 
and conditional types. A type inference algorithm has been implemented for FL and 
measurements on programs with several hundred lines of code show that typically 
no more than 10% of the compilation time is spent in the inference process. This 
shows that although conditional types require an extension to general intersection 
and union types, the resulting inference algorithm can still be fast enough to be 
usable in practice.

Another alternative for obtaining more accurate cost information for conditional ex
pressions would be to use profiling information as additional input to the static anal
ysis. Similarly to general profiling approaches discussed in Section 5.7.3, the program 
would be executed on a small sample input set before the static analysis is performed. 
The profiling stage would only have to collect data on the probability of taking each 
branch in the conditionals of the program. These probabilities could then be used 
in the static analysis as weights to the costs for both branches. This hybrid scheme 
would have the potential of combining the accuracy of a static analysis with the 
efficiency and additional runtime information of a profiling approach.

6.5.2 A Size and Cost Reconstruction Algorithm

The first phase in inferring computation costs is to reconstruct cost expressions from 
the program expressions. This frees the programmer of the burden of adding explicit 
types specifying size and cost bounds. Cost reconstruction requires a traversal of the
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inference tree and a bottom-up construction of costs. Since the sized time system uses 
subtyping the result is not only a sized type and a cost but also a set of constraints 
on size and cost variables.

A  P r o o f S tra teg y

A key question in designing a type reconstruction algorithm is where to apply the 
weakening rule. All other rules are structural and exhaustive. One possibility (Mitchell 
1991) is to apply the weakening rule only at the leaves of the proof tree, i.e. immedi
ately before a (Var) or one of the constant rules, (Int) and (Bool) in our case. The 
alternative, which is used by the cost reconstruction algorithm presented here, is to 
use the weakening rule only at the application rule (Hughes et al. 1996), in order to 
match the type of the argument with the type of the domain of the function, and at 
the conditional rule, in order to find a supertype of both branches.

A lgebraic U n ifica tion

In contrast to classical inference algorithms the unification algorithm used in this 
reconstruction algorithm returns a constraint set as well as a substitution. The syn
tactic structure of substitutions (9) and constraint sets (C ) is as follows:

9 ::= ff | ffO C  ::= C' \ C'C
O' ::= r / a  \ c /z  C' ::= C\ < C2 \ C\ — C2

Note that substitutions are performed on types and sizes, whereas constraints only 
affect sizes (c-expressions contain only size but no type variables). The algebraic 
unification algorithm used in the following reconstruction algorithm is shown in Fig
ure 6.4. It is inspired by the usage of algebraic unification in effect systems (Jouvelot &; 
Gifford 1991). It implicitly applies the weakening rule wherever necessary by directly 
implementing the subtyping relation in Figure 6.2. It will, however, immediately fail 
if the shape of the two types is different. Because the constraint sets do not involve 
type variables this unification algorithm specialises to the Robinson’s unification al
gorithm (Robinson 1965) if the size and type annotations are erased from all types. 
In this case the first component of the result, restricted to type expressions, is the 
substitution on plain types.
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In Figure 6.4 z, zi, z2 denote c-variables, a  denotes a type variable, (3 denotes a type 
pattern, which ranges over a different name space than type variables, c, Ci,C2 are 
c-expressions, and t , t i ,T 2 are type expressions. The cases for type variables, a, 
and the type Bool are trivial. In the other cases the algebraic unification algorithm 
implements the subtyping relation by choosing upper bounds of the size annotations 
attached to the types. In the cases for Int and List the fresh size variable z is defined 
to be an upper bound of z\ and z2. These relations are captured via inequalities 
in the constraint set, and therefore the algebraic unification algorithm has to return 
a constraint set as well as a substitution. In the case of function types an explicit 
substitution is used to guarantee that the names of the symbolic size functions are 
the same. As with standard unification the substitutions of nested types have to be 
composed. Additionally, the union of the constraint sets from the nested types has 
to be constructed, applying substitutions to propagate renamings into the constraint 
sets.

The unification on size patterns in the lower half of Figure 6.4 shows how size infor
mation is propagated even in the absence of plain type information by choosing an 
upper bound of the size expressions in the unified type expressions. Otherwise size 
patterns behave exactly like type variables. When unifying a function type with a 
size pattern (last but one rule) the size information has to be propagated through 
curried function application by choosing an upper bound for the sizes of both size 
patterns. Otherwise the size pattern behaves like a type variable. This case will be 
explained in more detail together with the (App) rule in Figure 6.5.

T he R eco n stru ctio n  A lgorith m

Figures 6.5 and 6.6 specify a size and cost reconstruction algorithm in the same 
inference style that has been used for the cost semantics of C. For inferring the 
plain types the algorithm directly implements Milner’s algorithm as presented in 
Field & Harrison (1988)[Chapter 7]. The additional rules for list operations are 
straightforward specialisations of the general application rule. The arguments to the 
algorithm are a type environment T and the expression to be analysed. The result 
of the algorithm is a tuple (r, 0, c, C), where r  is the sized type of the expression, 0 
is a substitution, c is the cost of evaluating the expression, and C  is the constraint 
set, i.e. a set of inequalities over c-expressions. The constraint set plays the same role 
for size and cost variables as the substitution does for type variables. In the rules of
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Uv. t ^ t ^ { 9 , c )

U{a,r)  =  ([T/a],{}) {F V (r)\a )
U{Bool, Bool) =  ([],{})
U (In tZl , I n tZ2) = ([z/zi, z / z 2], z fresh

\ z Y < z , z 2 < z})
U {List21 Ti, List22 r2) =  {[z/zi, z/z^O, afresh

C  U  {z1 < z, z2 < z}) (0,C) = U (tu t 2)
U (ti z±4 t 2, =  ( [ z / z h z /z 'v f / f ' fa O i ,  z fresh

T, A£  / \  6>2C i  U  C2 U  { zi < z, z[ < z}) (Oi,Ci) = U ( t i , t [ )

1 2 ;  (0 2 , c2) =  U ( 6 \ t 2, 61T2)

U{*,(32) =  ([/3Z/<*],{})
U(Pi 2l, / V 2) =  ( [ (32 / I 3 i , z / z i , z / z 2 ] ,  z fresh

{zi < z , z 2 < z})
U{Bool, (3Z) = {[Bool/(5), {})
U{IntZl, (3Z2) — { [ In t /P ,z /z i ,z / z 2], 2 fresh

{zi < z ,z 2 < z})
U{ListZl t ,  (3Z2) = {[List2 t / / 3], z  fresh

{zi < z , z 2 < z})
U{n H  PiZl,(32Z2) =  {[n H  Piz/P2], z fresh

{zi < z, z2 < z})
U { t x H  t 2, P Zi ) =  ( [ n  H  r 2 / / ? ] , { } )

The symmetric cases for size patterns and size variables are omitted 

Figure 6.4 An algebraic unification algorithm on sized types

the reconstruction algorithm 2 , 1 denote c-variables, where I is used to represent the 
length of lists, a  denotes a type variable, j3 denotes a size pattern. / c, f z denote a 
symbolic cost and size functions.

The proposed algorithm is based on the one developed by Reistad & Gifford (1994) for 
the cost reconstruction of FX programs. This algorithm traverses a given program 
expression and reconstructs its type, cost, substitution, and a constraint set over 
size and cost variables. This is the same quadrupel the algorithm in Figures 6.5 
and 6.6 is using, and thus the combination of constraint sets and the composition of
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r h n :  (Intz , 0 , 0 ,  {z  =  n } )  *  f r e s h  (-Bool'> r  I- b  : (Bool,  0 , 0 ,  { } )

( V a r ) _____________________________  W fresh
r  U  { v  : Vxi.(T,C)}  b  v  : ( 0 r ,  [], 0 , 0 ( 7 )  0  =  [yi/xi]

T  U  { v  : a }  b  e  : ( r ,  0 ,  c ,  C)
(Abstr)  - - - - - - - - - - - - - - - - - - - - - - - Y1- - - - - - - - - - - - - - - - - - - - - - - - -  a i / > z  f r e s hr  b  A v . e  : ( 0 a  4  t , 0 , O , C U  { z =  c})

r  b  e i  : ( n ,01, C l , C l )  0i r  b  e 2 : ( r 2, 0 2, c 2 , C2)
________________ ( e , c ) = u ( e 2TU T2 /?*)________________

r  b  ei e2 : ( 0/3Zl, fof z iPi
(App) 0020l5 z , z i , z 2

0(1 +  020z 2 +  02C l + c 2 ) ,  f r e s h
0 ( 0 2 C i  U C 2 U  C U

{ ^ l  =  ( / z  z ) , z2 =  (f c z ) , z  =  s i z e O f ( 0 r 2 ) } ) )

F ig u re  6.5 A size and cost reconstruction algorithm for C

substitutions are very similar. In contrast to the sized time system, however, the type 
system for FX does not use a separate weakening rule. Instead, the subtyping relation, 
which corresponds to the <  relation in Figure 6.2, is combined with the remaining 
rules. Furthermore, the cost reconstruction algorithm in Reistad & Gifford (1994) 
uses a simpler unification algorithm, which only unifies annotated types producing 
a substitution but no constraint set. Instead, the reconstruction algorithm for FX 
adds inequality constraints on costs and sizes in the leaves of the inference tree. The 
algorithm in Reistad & Gifford (1994) is based on reconstruction algorithms in effect 
systems (Lucassen & Gifford 1988, Talpin & Jouvelot 1992, Debbabi et al. 1997), 
which extend type systems in order to capture information about side-effects in impure 
functional programs.

The algorithm presented here extends the cost reconstruction algorithm for FX by 
exposing recurrences over c-expressions describing cost and size of user defined recur
sive functions. This is done by attaching symbolic size functions to the function type 
and stripping the size information from an inferred type via the sizeOf function in the 
(App) rule. A size pattern of the form (5° propagates information about the size of the 
argument through a function application even if the type of the result is unknown. 
W ithout this construct recursive functions would generate recurrences like z = z - 1-1
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r I- ei : {t i ,Qu ci , C i ) 6iT h e2 : (t2,02,C2,C,2)
________________ (e,c) =  u(T2, L i s t ‘ f t - n ) ________________

(Cons) r h c o n s eie2 : ZJ  fresh

0(1 + 02ci + c2),
0(02Ci u c 2) u c  u {z =  ei + 1})

(Null) T h e :  (r,0,c,C) ( 0 , 0  =U(T,Lis1> a)
{DIUU)  r  h  n u n e  ; ^ o o /> ^ > 1 + 0 /Cj0/(nrU ( nr/) <*,<*16811

T h e :  (r ,  0 , c , C) (O',C') = U(r, List1 a)
1 } r h h d e :  (0'a, 0'0,1 + 0'c,0'(C U {/ > 1}) U C') ’

, . T h e :  ( t , 0 , c , C )  (0', C") =  W(r, List1 a) z ,a , l
1 j r h tie : (List2 0'a, 0'0,1 + 0'c, 0'(C U {7 > 1}) U C" U {z = Q'l — 1}) fresh

r h ei : (n,0 1,Cl,Cl)
0iT I- e2 : ( t 2 , 0 2 , c 2 , C 2) 020iT h e3 : ( r 3 ,0 3 ,  C3, C 3)

________ (0, C) = U(eze2ru Bool) (0', C') = U(eezr2, 0r3)________
(Cond) T h if ei then e2 else e3 : ( 0/0r3,

0'003020i,
0'0(1 +  0 3 0 2c i  +  m a x  (0 3 c 2 ) C3),

0'0(0302Ci U 03C 2 U C 3U C ' U  C))

r U {v : a} h ei : ( n ^ c u C , )  . =“(̂  j
(Letrec) ________0if U {v : Ci)} h e2 : (r2,02, c2, C2)________  * u p y i Q  \\

T h letrec v = et in e2 : (r2, 020i, 02^1+c2, 02Ci U C2) \FV($ iT)

F ig u re  6.6 A size and cost reconstruction algorithm for C (continued)

over c-variables because the information about the size of the argument in a recursive 
call is lost. The only solution to this equation is a;, which would assign infinite costs 
to all recursive expressions. In the inference of leng th  in Figure 6.8 this can be ob
served in branch © , where the size of the expressions t l  xs, namely Listl~l a ', has 
to be propagated through the so far unknown type of the function length . In simple 
Hindley-Milner type inference no such information has to be propagated, because the 
Hindley-Milner types of xs and t l  xs are the same.

As the (Int) case indicates, the algorithm maintains the invariant that size annotations 
in sized types are always variables. Thus, an explicit constraint z = n  has to be added
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sizeOf :: r  —> [c]

sizeOf(a) =  [ ]
size0f(/?2) —  0

sizeOf (Bool) =  I !
sizeOf (In tz) —  2

sizeOf {List2 r) =  z
sizeOf(ri 72) = f

F igu re  6.7 Definition of size stripping

to the constraint set in the (Int) case rather than just using In t71 as in the sized time 
system. This invariant simplifies the algebraic unification algorithm.

The (Abstr) rule adds fresh variables for the cost and the size function attached to 
the derived function type. The constraint set captures the costs of evaluating the 
body of the function.

The (App) rule shows how the size information is propagated through a function 
application. The unification of the type of e l5 T\, with an explicit function type 
is standard. However, rather than choosing a type variable in the codomain a size 
pattern (Iz is used. Together with the algebraic unification algorithm this guarantees 
that the size information is not lost if the plain type of the result is unknown. Note 
that size patterns are only introduced in the codomain of function types. In the case of 
curried function applications, yielding size patterns, the result of the first application 
will be unified with another function type. The rule for unifying function types with 
size patterns in Figure 6.4 ensures that the size on the final result is an upper bound 
over all collected size information. The size component in the size pattern has the 
form f z sizeOf(0T2). The sizeOf function is used to strip size information from the 
sized type and to make it explicit in the application of the size function Jz. Figure 6.7 
shows the definition of sizeOf, which will be applied at top-level when generating cost 
and size functions from the generated cost and size expressions. The result of applying 
sizeOf is a list of cost expressions similar to the shape vectors used by Skillicorn & 
Cai (1993) in their cost model for the Bird-Meertens formalism.

The rules on lists, (Cons), (Null), (Hd), (Tl), all have to unify one subexpression 
with a list type, introducing fresh type and size variables. The side condition that
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hd and t l  can only be applied to lists with at least one element is captured in the 
constraint set. Thus, our type system can detect some cases of applying hd or t l  
to n i l ,  which has size 0. The propagation of size information is also encoded via 
equality constraints in the constraint set.

In the (Cond) rule the maximum of both branches has to be used in order to obtain 
an upper bound of the costs of the expression. A bound on the size of the result will 
be added to the constraint set by applying the unification algorithm.

The (Letrec) case of the algorithm exhibits an extension of the format of type schemes. 
Since type schemes propagate generic type information from the le t r e c  head into 
the le t r e c  body, they also have to propagate the constraints collected while inferring 
the type of e^  Together with a generic type variable this constraint set is added to 
the result type of a le t r e c  bound variable via the (Var) rule.

A n E xam ple

Figure 6. 8  presents a size and cost inference based on the above cost reconstruction 
algorithm by showing the main steps in an inference of the function length:

len g th  = \  xs . i f  n u ll  xs
then  0

e lse  1 + len g th  ( t l  xs)

The example inference for leng th  avoids the use of intermediate variables as they 
would be generated in an actual implementation. Instead we directly insert the values 
of variables for which equality constraints are generated, e.g. In t1 is used instead of 
In tx with {x  =  1}. The inference is therefore best read from the leaves of the tree. 
The sized type and the cost are also directly inserted in every step, although the 
algorithm synthesises them in a bottom-up fashion when traversing the tree.

The most important parts in the inference are summarised as follows. The (Null) rule 
in branch ©  unifies the type of xs in the assumption set T' , a', with a polymorphic 
list of unknown size, L ist1 7 . The (App) rule in branch ©  uses fresh symbolic size and 
cost functions, /  and / ' ,  to describe size and cost of the result. These are attached to 
the type of len g th  via the unification of a  with the function type L ist1' -1 7  H  Pz- 
j3z is a fresh size pattern, which propagates the size of the argument, t l  xs, through
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Z, 7  fresh
.(Var)

r  h xs : L ist 7 $ 0  r '  h 0 : In t°  $ 0
.(Null)

.(Int)

T' h n u l l  xs : Bool $ 1 ©
©

T' h xs : L ist1 7  $ 0 
.(Var) ________________________ (Tl)

.(App)
T' h length : a  $ 0 T' h tl xs : L ist 7  $ 1

r  h length (tl xs) : /3f  size° f *W _ 1  7) $ / '  sizeOf (L ist1-1 7 ) +  2

----------------------------------------------------------------------------------------- (App)
r  h 1 +  length (tl xs) : I n t1+f  $/'(/ — 1) +  3

©
©  ©  ©  T' =  T U {length : a, xs : a '} a , a' fresh

___________________________________________________________________ (Cond)
T  h if null xs ... : I n t1+f (*_1) $ 2 +  max 0 (/' (/ - 1) +  4) 

___________________________________________________________________ (Abstr)

T U {length  : a }  h Axs... : L ist1 7  2+m“  ° 0 1+'  ('-1) $ 0

Figure 6.8 Inference for length

the function application. Therefore, z is of the form sizeOf (L ist1-1 7 ). In this 
inference we apply the sizeOf function as early as possible to improve readability. In 
the inference algorithm this step would be performed at the root of the inference tree. 
Via the (Cond) rule the maximum over the costs of both branches in the conditional 
is constructed. In the size component of the result type the constraint set captures 
the fact that the size of the result is an upper bound for the size of both branches. As 
this information is captured via inequalities in the constraint set, the exact expression 
depends on the solution of the constraint set. Here we assume that it will yield a 
max expression. Finally, the (Abstr) rule builds the function type for the body of 
leng th , attaching the derived costs, 2 +  max 0 ( / ' (/ — 1) +  4), to this type. Thus, 
the reconstruction algorithm has exposed the recurrence for specifying the costs of 
computing this function with the size variables occurring in the argument types as
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free variables in the cost expression.

In order to obtain a closed form for the cost function of length , the cost expression 
has to be simplified and then matched against a library of recurrences. The details of 
these steps in general are discussed in the following two sections. In this case we have 
to use the fact that 0  is the neutral element for max and then use the first recurrence 
in Figure 6 .1 2  to obtain the following closed form:

lengthc I = 4 * I +  2

6.5.3 Simplifying Constraints

In order to define the simplification of constraints a normal form has to be defined on c- 
expressions. One natural choice would be to choose a sum-of-products representation 
as normal form. Assuming an ordering on size variables, an ordering on c-expressions 
can be defined by defining cost functions to be smaller and max expressions to be 
larger than cost expressions of a different shape. A simplification function would have 
to use rules like distributivity as well as basic arithmetic rules to bring c-expressions 
into normal form. This is a standard exercise in term rewriting and therefore not 
discussed in more detail.

From the presentation of the algebraic unification algorithm in Figure 6.4 it can 
be seen that many constraints will be added to the constraint set while traversing 
the inference tree. For a practical implementation it will therefore be important 
to simplify the constraint set when adding new constraints in order to avoid the 
generation of huge constraint sets. This also opens up the possibility to report type 
errors early if the check, when adding a constraint to the set, yields an error.

One important task of the simplification algorithm is to merge intermediate symbolic 
cost and size functions that are generated via the (App) rule. For symbolic cost 
functions this means generating one function which is the sum of all intermediate 
functions. In the case of symbolic size functions this means combining the upper 
bounds of the intermediate functions, which are present in the constraint set, into 
one symbolic size functions. The example in Section 6 .6  discusses this aspect in more 
detail.
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6.5.4 Solving Recurrence Relations

Recurrence relations are solved by matching the simplified c-expressions obtained 
from the cost reconstruction algorithm with a library of recurrence relations. If this 
match is successful the recurrence can be replaced with the known closed form. If it 
fails the cost expression has to be replaced with u.

This approach has the advantage of being tunable by adding more recurrence rela
tions to the library. Thereby, it is possible to trade accuracy for speed in the analysis. 
Another important aspect is that the library only has to contain upper bounds rather 
than exact solutions to the recurrences. Thereby unsolvable recurrences can be dealt 
with, by choosing an approximation, possibly using a table hypergeometric functions, 
which is a standard technique in combinatorics. Keeping the recurrence solver sepa
rate from the derivation of the constraint set adds flexibility to the system.

A first version of a matching procedure is given in Figure 6.9. This version shows 
that in principle the matching procedure corresponds to a unification of c-expressions. 
All constants have to match exactly. C-expressions are substituted for c-variables. 
In compound expressions the result is the composition of all substitutions resulting 
from unifying the components. If this algorithm succeeds in unifying the derived c- 
expression with the body of a function in the library, then the resulting substitution 
has to be applied to the recorded closed form for this recurrence in order to eliminate 
the recurrence in the derived cost expression.

The correspondence of the matching algorithm to a unification algorithm also indi
cates that the cost for finding a closed form should not dominate the analysis. In total 
this cost will depend on the number of entries in the library. However, by sharing 
common structures in the representation of the recurrences it should be possible to 
devise a matching algorithm whose cost does not increase linearly with the number 
of entries. Refinements of fast string matching algorithms should be applicable here.

An alternative approach for eliminating recurrences at this stage would be to use a 
general recurrence solver over integer values. Such algorithms are available in com
puter algebra systems such as Maple (Char et al. 1991) and Mathematica (Wolfram 
1988). This would extend the approach of using the Omega test for checking sat
isfiability of a constraint set to using more powerful, but more expensive, computer 
algebra algorithms for finding a solution for a system of recurrences. However, with 
the current state-of-the-art it is only possible to find closed forms for linear recur-
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Uc c —y c —y 9

Uc n n = []
Uc uj u =  []
Uc I c =  m
Uc c I =  m
Uc (ci +  C2) (c[ +  d2) = 6'6 9 = UC ci ci 

9' =  Uc 0c2 9d2
Uc (ci -  c2) (ci -  c'2) = e'e 9 = Uc ci ci 

9' =  Uc 0 c2 9d2
Uc (n * c) (n * c') = Uc c d
Uc (max Ci c2) (max ci c'2) = 66' 9 = Uc ci ci 

9' = Uc 0c2 9d2
Uc ( /  Cl . . .  cn) ( / '  ci . . .  c'n) = [ f / m - " 0 i  0i =  Uc ci c-

9n Uc (01 ’ ’ ’ @n—\C-n) 
( 0 i - - - 0 „ - i  d n )

F ig u re  6.9 Matching of cost expressions

rences with polynomial coefficients, certain non-linear first-order recurrences, and 
certain divide-and-conquer recurrences (Petkovsek 1990). A good starting point for 
such an implementation would be the algorithm by Petkovsek k  Salvy (1993) for 
finding all hypergeometric solutions of linear recurrences. Hypergeometric sequences 
are such that the quotient of two successive terms is a fixed rational function of the 
index.

6.5.5 Correctness Issues

This section presents a list of conjectures characterising some crucial correctness issues 
of the cost reconstruction algorithm. Proving these conjectures would lead most of 
the way towards proving the correctness of the algorithm. No formal correctness proof 
will be given here. However, because the algorithm is based on the reconstruction 
algorithm by Reistad k  Gifford (1994), and similar reconstruction algorithms for 
effect systems such as Talpin k  Jouvelot (1992), most rules follow from their system. 
The main difference is the (App) rule, which propagates size information.
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In order to formalise the notion of solving a set of constraints the notion of a model 
has to be introduced. In this definition we assume the standard definitions of =  and 
< on integer values with x < u  for all integer values x.

D efin ition  7 (so lu tio n , m odel) A mapping ip from c-variables to c-expressions is 
a solution of a constraint set C (written ip \= C) iff for all elements c\ R  C2 of C, 
ipc\ R  xpC2 where R  G {= ><}•

Based on this definition several conjectures over models for composed constraint sets 
such as the following can be formalised.

C o n jec tu re  2  Let C i,C 2 be constraint sets. Then

ip \= Ci U C2 implies ip \= Ci and ip \= C2

This formalises the intuition that a solution of a composed constraint set must be a
solution of every component.

The soundness of the cost reconstruction algorithm with respect to the inference 
system can be formalised as follows. The symbol b is used to represent the sized time 
inference system in Figure 6.1 and b fl̂  is used to represent the cost reconstruction 
algorithm in Figures 6.5 and 6 .6 .

C o n jec tu re  3 (soundness of cost reco n stru c tio n ) Let e be a C expression and 
T the initial assumption set for type inference. Then

T b aig e : (r, 0, c, C) and ip \= C  implies ipOT b e : ipOr % ipOd

where ipQc' < ipQc.

The inequality in this conjecture is caused by the possibility of deriving finite upper 
bounds for recursive functions if ip contains finite solutions to the symbolic cost 
functions in C. If ip maps all symbolic cost functions to u  or if e is a non-recursive 
expression this inequality can be tightened to an equality. Currently, this is not 
expressed in the sized time system.

The structure of the proof has to be as follows. The proof performs a case analysis over 
the C expressions and, in each branch of the case analysis, a structural induction of 
the inference/algorithm tree. The induction assumption is the soundness conjecture
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p a y _ j ? r i c e  = \  p r i c e  c o i n s  . 
if ( p r i c e = = 0 )  then 1 
else
letrec c o i n _ v a l u e s  = n u b  ( d r o p W h i l e  ( \  x  . x > p r i c e )  c o i n s )  
in
par c o i n _ v a l u e s

( s u m  (m ap ( c h o o s e  p r i c e  c o i n s )  c o i n _ v a l u e s ) )

c h o o s e  = \  p r i c e  c o i n s  c  .
letrec n e w _ c o i n s ' = d r o p W h i l e  ( \  x  . x > c )  c o i n s

n e w _ c o i n s  = d e l  n e w _ c o i n s ' c
in
par n e w _ c o i n s

( p a y _ _ p r i c e  ( p r i c e - c )  n e w _ c o i n s )

Figure 6 . 1 0  C code for coins

for all subexpressions. It uses several conjectures on substitutions and models stated 
above. The structure of the proof is similar to a proof for the soundness of effect
system as given in Talpin &, Jouvelot (1992). The main difference to this system is
the use of algebraic unification in the system presented here.

6.6 Example

This section gives an abridged size and cost inference, performed by hand, for one 
function in the simple but non-trivial C program, coins. The inference shows how 
to infer size and cost information by using the sized time system. Since the goal is to 
generate information that can be used in the runtime-system to improve performance, 
this inference focuses on the size and cost bounds that can be derived without giving 
all details of the inference process and how the constraints are collected. Finally, this 
section concludes with giving performance measurements of the program annotated 
with the derived cost information.

The coins program takes a price and a list representing a set of coins, and determines 
how many different combinations of coins could be used to pay for an object at the 
given price. The full code of the program is given in Figure 6.10. The code exposes 
parallelism via the p a r  annotation. The goal of the granularity analysis is to infer cost 
and size expression, which can then be added to the p a r  annotations. Figure 6.13 will 
present the annotated version of the code that makes use of the derived information.
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_________________(Var) ________________________ (Var)
T" h del : a  $ 0 V  b zs : L istl~l 7  $ 0

_____________________________________________________(App)  (Var)
r" b del zs : size0f ( W ' ‘ 7) $ 1 +  f c sizeOf (L is t1' 1 7 ) T" b x : 7  $ 0

----------------------------------------------------------------------------------------- (App)
T" h del zs x : (52z' $ 2  +  f c (I -  1 ) +  / '

_________________________________________________ (Cons)
T" h cons z (del zs x) : L ist1+Z> 7  $ 2  +  / c (/ — 1 ) +  /^

________________________________________________________________(Cond)
T" I- i f  ... : L is tl+Z' 7  $ 2 +  max 0 (2 +  f c (I — 1) +  / ')

©  T" =  {z : 7 , zs : L ist1 1 7 , xs : L ist1 7 , d e l : a} 

F igu re  6 . 1 1  A part of the inference of del

In order to focus the presentation, this section will only discuss the inference of one 
sub-function, del. This function takes a list and a value and deletes the value from 
the list. If the value is not in the list an error value is returned. The definition of de l 
in C is as follows.

d e l  = \  x s  x  . if ( n u l l  x s )  then e r r o r
else letrec z = h d  x s

z s  = t l  x s
in
if ( z = = x )  then z s  else c o n s  z  ( d e l  z s  x )

The de l function deletes the first instance of x from xs. The special value e r ro r  
(of the polymorphic type V/?./?-1) is used to indicate that x did not occur in xs (an 
error). Its size has to be smaller than any list size.

6.6.1 Cost and Size Analysis

This section highlights the main points in each of the steps for performing the cost 
and size inference as presented in Section 6.5.1. This example will also discuss limits 
of this inference and requirements for the simplification algorithm that has to be used 
after performing cost and size reconstruction.
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In ference a n d  S im plification . In this step the inference tree is generated and 
traversed. During the tree traversal constraints on c-expressions are collected. The 
most important part in this traversal is the inference of the inner conditional. This 
part of the inference tree is shown as branch @ in Figure 6.11. Before reaching 
branch @ the analysis of n u ll  xs in the head of the outer conditional adds the 
following binding to the assumption set: xs : L ist1 7 . Furthermore, in the analysis 
of the le t r e c  construct zs is defined to be t l  xs and therefore its type is L ist1-1 7 . 
Similarly, the type of z is 7 . In branch Q  the head of the inner conditional unifies 
the type 7  with the type of x. In the two application rules the size information of 
the concrete arguments is added to the size pattern representing the result type. The 
result of applying the sizeOf function represents the change in size for the arguments 
of the recursive function call:

sizeOf(L ist'~ l 7 ) =  [I — 1] 
sizeOf (7 ) =  []

The information from the first application is propagated to the second application 
via unifying the size pattern with a function type containing fresh symbolic size and 
cost functions, / ' ,  f'c:

H ^ S z  sizeOf ( L i s t 1- 1 7) ?7  fLjz sizeOf 7)

In this case, the unification algorithm will choose an upper bound for the size in both 
size patterns, z \  and use it as the size of the result. The constraint set will therefore 
contain the following inequalities

{ f z  (I -  1) <  f z <  z ' }

and the result type of d e l zs x is the size pattern f y i • This example shows that the 
reconstruction algorithm adds fresh size functions in each curried function application. 
In order to obtain just one size function over all size arguments these functions have 
to be merged. This should be done by the simplification algorithm when generating 
a size function from the size expression for the body of the function definition. The 
same merging has to be done for cost functions. However, in this case all symbolic 
cost functions, f c and f c in this case, occur explicitly in the resulting sum.

The (Cons) rule unifies the size pattern to the list type L istl+Z>. Then the (Cond) 
rule constructs the maximum of the size of both branches, with —1 as the size for
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the then  branch. Collecting all size and cost information in the inference tree the 
following two recurrences are exposed on top-level:

delz I =  max (—1) (1 -f delz (I — 1))
dele I = 2 +  max 0 (4 +  max 0 (2 +  dele {I ~  1)))

In these cost expressions the occurrences of max reflect the two nested conditionals 
in the code. In this case the base case for the recurrence can be obtained by reinter
preting the max operator as a minimum and choosing the minimum size as argument. 
In the general case, however, this would require a more sophisticated analysis of the 
head of conditionals. In particular, the semantics of n u ll  should be used together 
with the available size information. One promising approach to achieve this would 
be the use of conditional types as outlined in Section 6.5.1.

After simplification, this stage of the inference yields the following recurrences:

delz 0  ~  —1

delz I ~~ 1 “I- delz (Z — 1)

dele 0  =  2
dele I — 8 +  dele (I — 1)

R eso lv in g  R ecurrences. The goal of this step is to bring all symbolic cost func
tions (like dele) into closed form in order to substitute the functions with the expres
sions in the constraint set. This will eliminate all symbolic cost functions introduced 
by the reconstruction algorithm. By using a library of known recurrences the recursive 
size and cost functions above can be replaced by the following closed forms:

delz I = I — 1 

dele I = 8 * Z +  2

It is important to note that all recurrences in the analysis of these functions are 
linear, first-order recurrences since the functions iterate over lists. Figure 6.12 shows 
the entire library of closed forms for recurrences that has been used in the analysis 
of coins and its subfunctions.

Solving th e  C onstraint S et. The final step has to check whether a solution for 
the constraint set exists. In this case the program is well typed and for each function
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/  0 = 
f n  =
f  0 -
f  n =

F igure  6 . 1 2  Recurrences and their closed forms

a corresponding size and cost function has been inferred. Since the constraint set 
does not contain symbolic cost functions any more at this stage the Omega test can 
be used for performing this check. An analysis of the expressions in coins that are 
annotated with par and should be evaluated in parallel (coin_values and new.coins) 
yields the following cost expressions that are used to annotate the program:

coin.valuesc = 9 * n 2 +  1 4 * n  +  5 
new-coinsc =  16 * n +  4

6.6.2 Annotations

The cost information derived in the previous section can be used to transform the 
parallel program by adding cost information to the spark sites:

1. For each argument add an extra argument representing its size.

2. Use the derived size functions to propagate size information.

3. Add the derived cost expressions to the parG lobal annotations.

This transformation applied to the input program shown in Figure 6.10 gives the 
annotated parallel program shown in Figure 6.13. Note that the new variables m and 
n represent the size of p r ic e  and of coins, respectively.

The first argument of parG lobal represents a cost or granularity measure. The 
parmap function is a parallel implementation of map that takes granularity information 
for each application of the mapped function as its first argument. The special value 
in f ty  represents w as a bound on computation cost.

O i £  i l .
u , t (  i \  = > / n = a  +  0 * nb + f { n ~  1 )
® £  i l  i c*n*(n+ l)i . . t( ^  f  n = a + b * n -\------ ^-L-Lb +  c * n +  f ( n  — 1) 2
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p a y _ j ? r i c e  = \  m n  p r i c e  c o i n s  . 
if ( p r  i c e = = 0 ) then 1 
else
letrec c o i n _ v a l u e s  = n u b  ( d r o p W h i l e  ( \  x  . x > p r i c e )  c o i n s )  
in
parGlobal ( 9 * n " ' 2 + 1 4 * n + 5 )  c o i n _ v a l u e s

( s u m  (parmap i n f t y  ( c h o o s e  m n  p r i c e  c o i n s )  c o i n _ v a l u e s ) )

c h o o s e  = \  m n  p r i c e  c o i n s  c  .
letrec n e w _ c o i n s '  = d r o p W h i l e  ( \  x  . x > c )  c o i n s  

n e w _ c o i n s  = d e l  n e w _ c o i n s ' c
in
parGlobal ( 1 6 * n + 4 )  n e w _ c o i n s

( p a y _ p r i c e  m ( n - 1 )  ( p r i c e - c )  n e w _ c o i n s )

Figure 6.13 Annotated C code for coins

6.6.3 M easurements

This section presents results on running the annotated program under the G r a n S im 
simulator in two different set-ups: with eager-thread-creation and with evaluate-and- 
die. Figure 6.14 compares the granularities over varying cut-off values when using 
a thresholding granularity improvement mechanism. The cut-off value is measured 
as recursion depth starting with 100 at the root of the divide-and-conquer tree. In 
both cases the results for several different latencies are plotted. In the case of eager- 
thread-creation (left hand graph) the granularity increases gradually with increasing 
cut-off values. In the case of high latency (4,096 cycles) the granularity turns out to 
be rather good already. The graph on the right hand side shows a similar, continuous 
improvement of the granularity. Only at a few points a reduction of granularity is 
observed. This corresponds to the mismatch between upper bounds of computation 
costs and the real costs.

The improvements in speed-up are smaller but still significant. In the case of eager- 
thread-creation the speed-up increases from 14.3 to 18.4 for a latency of 64 cycles. 
For higher latencies the improvement is smaller but still measurable. In the case of an 
evaluate-and-die model, however, only very small improvements can be observed. The 
right hand graph in Figure 6.14 already shows a high granularity for low cut-off values. 
Only for a latency of 4,096 cycles there is clear improvement in speed-up from 24.7 to 
26.1. The main reason for this behaviour is spark subsumption in the evaluate-and-die 
model. Whereas eager-thread-creation without thresholding creates more than 10,000
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Coins —  32 processors Coins —  32 processors
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F igu re  6.14 Granularity with varying cut-off values (eager and lazy thread creation)

threads, the evaluate-and-die model only creates circa 1,000 threads. These results 
of granularity being important in particular for high-latency machines, correspond to 
the results of measurements on the distributed memory Alfalfa architecture reported 
by Goldberg (1988a).

In evaluating the performance improvement by adding granularity information it has 
to be emphasised that this program contains only two main spark sites. This severely 
limits the amount of runtime improvement that can be expected by adding granularity 
information. Granularity control mechanisms mainly aim at improving programs with 
a large number of spark sites generating tasks whose granularities vary significantly 
(see Chapter 5). This is, for example, the case for naive methods of generating 
implicit parallelism in a functional program. Another result of these measurements is 
the observation that it is possible to achieve runtime improvements for a wide range 
of latencies representing different kinds of parallel architectures.

6 . 7  C o m p a r i s o n  w i t h  O t h e r  W o r k

6.7.1 Com plexity Analysis

Pioneering work on automatic complexity analysis has been done by Wegbreit in 
developing a system METRIC for deriving closed form expressions for the time com
plexity of a first-order subset of Lisp (Wegbreit 1975). The structure of his analysis
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is somewhat similar to the proposed cost inference algorithm discussed in this thesis 
(see Section 6.5):

1. Local cost assignment translating a program into a set of cost expressions.

2. Recursion analysis determining how the parameters to a recursive function 
change from one call to another.

3. Solution of difference equations using standard methods like direct summation 
and differentiation of generating functions.

In his concluding remarks Wegbreit points out how a sophisticated algebraic ma
nipulation subsystem and an enhanced difference equation solver could dramatically 
improve the quality of the results produced by the system. This would be equally true 
for the granularity analysis of functional languages using a general recurrence solver 
because the differences to imperative languages treated by Wegbreit only complicates 
the generation but not the manipulation of cost expressions.

Wegbreit’s work has been extended by Hickey & Cohen (1988), who focus on the
oretical foundations of a performance compiler capable of automatically generating 
functions describing average-case performance. The systems Complexa (Zimmermann 
1990) and ATfl (Flajolet et al. 1991) build on METRIC and extend it for the average- 
case complexity analysis of algorithms. Skillicorn & Cai (1993) as well as Rangaswami 
(1996) use cost models based on the Bird-Meertens calculus in order to obtain infor
mation about the runtime of parallel programs. In a similar spirit Jay et al. (1997) 
develop and implement a monadic cost calculus for a higher-order functional lan
guage. This language is restricted in away that makes it possible to derive the shape 
of the result of an expression based on the shape of its inputs. Thus, shape infor
mation is available for all program expressions. This corresponds to our use of sized 
types but shape information is more accurate because the size annotations in the 
type system for C are only upper bounds. In Jay et al. (1997) programmer estimates 
on the number of unfoldings for recursive functions are required to obtain accurate 
costs. It is demonstrated that with this information the implemented calculus au
tomatically derives parallel execution times for programs like matrix multiplication. 
One technical difference to the monadic cost calculus is that the sized time system, 
inspired by effect systems, uses an extended type system to propagate information 
about sizes and costs, whereas Jay et al. (1997) use a monad for this purpose. The
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close relationship between effect systems and monads has been recently elaborated 
by Wadler (1998).

6.7.2 Cost Analysis for Strict Languages

Huelsbergen et al. (1994) introduce the technique of a dynamic granularity estimation 
for strict, list-based, higher-order languages. This technique consists of two compo
nents:

• A compile-time (static) component, based on abstract interpretation to identify 
components whose complexity depends on the size of a data structure.

• A run-time (dynamic) component, for approximating sizes of the data structures 
at run-time.

Based on the results of the static component, the compiler inserts code for checking the 
size of parameters at certain points. At runtime the result of these checks determine 
whether a parallel task is created or not. The static component of this system has not 
been implemented. The dynamic component is implemented on a Sequent Symmetry 
on top of a parallel SML/NJ implementation. It is stated that the runtime overhead 
for keeping track of approximations (one additional word per cons cell) is very low. 
For the quicksort example an efficiency improvement of 23% has been reported.

Dornic (1993) describes a practical time system for inferring a function’s complexity 
using an algorithm similar to the cost reconstruction algorithm presented in this 
thesis. In Dornic’s time system, however, recursive functions are assigned infinite 
costs as an upper bound for the total computation time. In part based on Dornic’s 
work, Reistad & Gifford (1994) define the notion of static dependent costs for the 
analysis of a strict higher-order language. These costs describe the execution time 
of a function in terms of its input. The relationship of our sized time system to 
to the work on static dependent costs has been discussed in detail in Sections 6.4.1 
and 6.5.2. Runtime measurements of the system show that their cost estimates are 
usually within a factor of two of the real costs. Using this information for a parallel 
map operation achieved a speedup of more than two compared to a naive version of 
a parallel map on a four processor SGI for the game of life program.
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Rosendahl (1989) deals with a complexity analysis of a first-order subset of Lisp. His 
work builds on a partial evaluation machinery and uses abstract interpretation in 
order to derive upper bounds for the complexity of first-order Lisp functions. The 
analysis has three phases: constructing a step-counting version of the given program; 
perform abstract interpretation on the step-counting version of the program and gen
erate a time bound function; finally, simplify the resulting time bound function. The 
latter includes a component for solving finite-difference equations (Rosendahl 1986), 
which is similar to our approach of using a library of recurrences.

In all of the above analyses user defined recursive functions are assigned infinite costs, 
except for Rosendahl (1989) where simple recursive patterns can be eliminated. More 
recently, Hughes et al. (1996) have developed a sized type system for a simple higher- 
order, lazy functional language. This type system allows to infer upper bounds for the 
size of algebraic data types. In the mentioned paper this is used to prove termination 
and liveness of reactive system. However, this thesis demonstrates that a sized type 
system can also be used to analyse the costs of user-defined recursive functions.

The ACE system of Le Metayer (1988) transforms an FP program with call-by-name 
semantics into a program with call-by-value semantics. The main part of the system 
is the transformation of recursive complexity functions into non-recursive ones. In 
contrast to the approaches mentioned above, this system performs a macro-analysis, 
that is, it measures the time in the number of applications of the dominant operation 
which is used in the program.

6.7.3 Dem and Analysis

The purpose of a demand analysis is to determine the order in which parts of an 
expression are needed and the degree to which the result has to be evaluated. In 
a lazy language this information is required to determine the computation costs of 
an expression. Demand analysis is similar to strictness analysis but it provides more 
detailed information. In fact, strictness information can be extracted as a special case 
from the information provided by demand analysis.

In the context of a cost analysis it is important to know the order-of-demand as well 
as the degree of the evaluation of a complex data structure. Several approaches have 
been proposed to perform both kinds of analysis:
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A b strac tio n s  o f se ts  o f con tinuations: Both Hughes (1987) and Bloss (1989) 
define a collecting non-standard semantics of all possible continuations (or paths) 
in a program. An order-of-evaluation analysis is developed by defining an abstract 
interpretation over this semantics. The main disadvantage of this approach is that 
the resulting terms in the abstract interpretation are very big, and hence algebraic 
simplification is necessary to derive normal forms for these terms. Exact simplification 
is not always possible and heuristics have to be applied at certain points. In contrast, 
the inference based analysis presented in Draghicescu & Purushothaman (1990) does 
not try to enumerate all possible paths and is more efficient in practice. Similar order- 
of-demand analyses have been developed by Park & Goldberg (1992) and Gomard & 
Sestoft (1991).

M any-valued  ev alu a tio n  degrees: In the framework of Martin-Lof type theory
Bjerner (1989) develops many-valued evaluation degrees, which are used to give an 
operational model of contexts. This approach usually gives very accurate results 
but it is less general than the projections approach. Many-valued evaluation degrees 
have been developed specifically for time analysis. Because they do not contain more 
information than absolutely necessary for a time analysis symbolic derivations are 
easier.

P ro jec tio n s : The property it C ID of a projection 7r can be read as it performs an
evaluation of a degree less than or equal to that of reduction to normal form. Based 
on this observations Wadler & Hughes (1987) developed a strictness analysis, which 
uses projections to model demand. Projection transformers are used to determine 
the demand on an argument in a function application, given the demand on the 
whole function application. This corresponds to the way that evaluation transformers 
(Burn 1991a) determine the degree of evaluation in a parallel environment. The 
compilation rules developed by Burn (1990) show how the information provided by 
projections can be exploited in both sequential and parallel implementations.

The most promising approach is the use of projections, which have recently attracted 
a lot of attention for static analysis in general (Davis 1994). This is underlined by 
recent work on the theoretical foundations of projections (Launchbury Sz Baraki 1996) 
as well as the use of projections in the implementation of a strictness analyser in the 
Glasgow Haskell Compiler (Kubiak et al. 1991). An implementation of a demand
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analysis could reuse a lot of this work. However, it is an open question whether 
the concrete set of projections used in this implementation is strong enough to allow 
satisfactory cost information to be inferred.

6.7.4 Cost Analysis of Lazy Languages

Based on the modelling of demand via many-valued evaluation degrees in Bjerner’s 
PhD thesis (Bjerner 1989), Bjerner k  Holmstrom (1989) develop a cost analysis for 
lazy higher-order languages. A separate demand analysis is used to derive information 
on the evaluation degree.

In his PhD thesis Sands (1990a) uses projections in order to develop a cost calculus 
for a lazy, higher-order language. He specifies cost calculi for inferring a lower bound, 
necessary time, and an upper bound, sufficient time, of the cost for evaluating an 
expression. This work is partly based on Wadler’s use of projections for the time 
analysis of lazy programs (Wadler 1988). Being calculi rather than static analyses 
both approaches assume knowledge about exact values e.g. in the head of conditionals. 
To date Sands’ cost calculus seems to be the most promising basis for a concrete 
implementation of a cost analysis for lazy languages.

6.7.5 Logic Languages

In the area of logic programming languages some attempts have been made to com
bine a cost analysis (Debray et al. 1990, Debray et al. 1994, Tick k  Zhong 1993) with 
runtime mechanisms for improving the granularity of the generated threads (Lopez 
Garcia et al. 1994, Lopez Garcia et al. 1995). The cost analysis of logic languages is 
complicated by the fact that a relation can have several solutions. Thus, a separate 
number-of-solutions analysis has to be developed to infer this information (Debray 
k  Lin 1993). The structure of the program transformations using cost information 
is similar to those in functional languages: add the cost functions derived at compile 
time to the code; generate a parallel as well as sequential version of the code; add 
conditionals for deciding whether to use the sequential or the parallel code. Several 
optimisations to minimise the runtime overhead of these methods have been devel
oped. The most important optimisation is to simplify the size expressions that are
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generated (Hermenegildo & Lopez Garcia 1995). However, some overhead is inherent 
in such a hybrid approach and there is still the danger of code explosion.

6.8 Discussion

This chapter has shown how to infer upper bounds for the size of the result and the 
computation cost of evaluating an expression in the simple strict higher-order func
tional language C. The sized time system has not yet been implemented. However, 
based on the results by Hughes et al. (1996) the implementation of a time checking 
algorithm should be a straightforward extension of their sized type checking algo
rithm. In order to extend this algorithm to time inference, the analysis has to solve 
recurrence equations over an integer domain. The cost reconstruction algorithm in 
Section 6.5.2 shows how to expose recurrences for recursive functions. These re
currences can then be solved by matching them with a library of known recurrence 
relations and (an approximation of) their closed forms. An algorithm for combining 
the cost reconstruction algorithm with such a library has been outlined and open 
problems have been discussed. The library approach makes it possible to derive costs 
for many user-defined recursive functions, which goes beyond the analysis presented 
by Reistad & Gifford (1994) for Lisp. A similar approach by Rosendahl (1986) shows 
that many common patterns of computation can be analysed with a rather small set 
of recurrences. In the context of parallel computation it is important to obtain exact 
information for small functions that usually generate simple recurrences. Therefore, 
a small library should be sufficient to yield useful information.

Several stages in the inference algorithm outlined in Section 6.5.1 need refinement in 
order to implement the full algorithm. In particular, the simplification algorithm has 
to merge symbolic cost and size functions, and determining the costs for the base case 
of a recursion requires in general a more sophisticated analysis. These issues will be 
discussed further in the context of future work in Section 7.3.

Although the derived cost is only an upper bound for the real cost, the initial mea
surements indicate that it can provide enough information for the runtime-system to 
achieve a performance improvement of parallel programs. This is quite remarkable 
because the analysis was performed for a strict language and is therefore overesti
mating the evaluation degree in the presented measurements. This seems to give
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evidence that at least for strict functions in a lazy language the results of a strict 
analysis, such as the sized time system, can provide useful information. However, 
before making conclusions on this issue more measurements of analysed programs, 
especially large-scale programs, are required.

From the measurements in Chapter 5 it is unclear whether relative cost information 
between threads is sufficient to achieve performance improvements. Therefore, the 
presented analysis yields absolute cost information. In the measurements for a hand 
analysed program the use of absolute cost information via a thresholding mechanism 
achieved the best results. The accuracy of the analysis could be improved, however, by 
adding constants for certain operations rather than performing step counting alone.

The presented analysis is based on type inference rather than abstract interpretation, 
which is often used for this kind of static analysis. The main advantages offered by an 
inference-based analysis are its modularity, by propagating all relevant information 
via the type of an expression, and its tunability, in particular when using a library 
approach in order to eliminate recurrences. Both issues are particularly important 
for the analysis of large programs. Therefore, the algorithm outlined in this chapter 
should be a good basis for a practical implementation.



Chapter 7

Conclusions

7.1 Summary

To develop a system of implicit parallelism for lazy functional languages a sophis
ticated runtime-system has to be built. It must achieve good parallel performance 
without a detailed description of the parallel program execution from the program
mer. It must be flexible enough to deal with programs of very different structure, but 
should also be able to make use of certain important characteristics of the program. 
This thesis focuses on one of these characteristics, the granularity of the generated 
threads in a parallel system, and it furthers this effort by developing and measur
ing granularity improvement mechanisms for the runtime-system, and developing a 
static granularity analysis, based on sized types (Hughes et al. 1996) and a time sys
tem (Reistad & Gifford 1994), for inferring an upper bound of the computational costs 
of evaluating a program expression. This thesis also contributes to the development 
of a systematic programming technique for parallel lazy functional programming, 
evaluation strategies, which achieves a clean separation between algorithmic and be
havioural code. The main contribution of this thesis to this part, strategic function 
application, has proven useful for several large application programs, in particular in 
the top-level parallelisation of Lolita. The programming style used in the parallelisa- 
tion, data-oriented parallelism, makes use of laziness in order to specify the parallelism 
over a data structure independently from its definition and thus facilitates a top-level 
approach towards parallelisation, in which the parallelism is specified at the top-level 
without having to change individual components of the program.

One of the fundamental questions addressed by this thesis is: can the parallel perfor

228
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mance of functional programs with sequential lazy evaluation and a parallel evaluate- 
and-die model of computation be improved when adding granularity information? 
From the discussion in Chapter 5 this seems to be true for a class of parallel pro
grams where the granularity of generated sparks does not monotonically decrease 
during the program execution. For simple divide-and-conquer examples this mono
tonicity means that the FIFO management of the spark pool is sufficient to achieve 
good granularity in practice. However, for unbalanced divide-and-conquer problems 
an explicit thresholding mechanism or a priority based management of the spark pool 
can achieve better performance. In the experiments presented here it is shown that 
the elimination of small threads via a simple thresholding mechanism achieves the 
biggest improvement of about a factor of two in speedup.

The presented granularity improvement mechanisms should also be useful to improve 
the parallel behaviour on massively parallel systems with thousands of processors. In 
these systems it is unlikely that an evaluate-and-die mechanism can subsume many 
sparks, because the ratio of generated sparks to runnable threads will be much smaller. 
This increases the probability of a spark being picked up by an idle processor before its 
work is subsumed by another thread. But it would still be advantageous to eliminate 
tiny threads whose creation cost is higher than their total computation. We have 
not been able to investigate this aspect of scalability, however, because the system- 
oriented view of G ra n S im is currently limited to 64 processors.

As a test platform for the granularity improvement mechanisms G r a n S im has been 
developed. G r a n S im is a highly parameterised and accurate simulator for the paral
lel execution of GpH programs. It combines lazy evaluation with an evaluate-and-die 
model of parallelism. It is integrated into a state-of-the-art compiler forming an im
portant component of an engineering environment for parallel program development. 
It provides setups for both idealised simulation and realistic simulation with a de
tailed modelling of communication. G r a n S im is also highly parameterised to model 
a variety of parallel machine architectures and this has proven very important for the 
performance tuning of parallel programs.

The combination of all these features makes G r a n S im unique. Most existing simu
lators only count reduction steps rather than machine instructions executed by op
timised compiled code. Also the parameterised modelling of communication costs is 
unusual for simulators. With the availability of all GHC optimisations it is possible 
to investigate the influence of the latest sequential optimisations on the parallelism
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in the program.

A complementary step in devising a system that makes automatic use of granularity 
information is to derive this information and to make it available to the runtime- 
system. Several methods to do this have been suggested in the literature: profiling 
approaches, ad-hoc heuristics etc. In this thesis a static analysis is used in order to 
minimise the overhead for the runtime-system. The granularity analysis that has been 
presented in Chapter 6 builds on top of existing analyses and derives an upper bound 
for the computation costs measured as abstract computation steps. As a refinement 
of the analysis it would be possible to model concrete costs of the computation model 
and of the parallel machine via constants that can be added to the analysis. Although 
not all parts of the inference have been rigorously specified, a detailed outline of the 
inference algorithm has been given. The experimental results with hand-analysed 
programs show that this can provide useful information for the runtime-system.

One of the main limitations of a static analysis for extracting granularity information 
is its inability to make use of concrete runtime data. In particular it is not possible 
to make some kind of branch prediction for conditional constructs. However, the 
presented analysis could be extended in several ways in order to alleviate this prob
lem. One possibility would be to extend the type system further to capture runtime 
information via conditional types. Thereby, the type would encode the relationship 
between the head of the conditional and the branches. An alternative would be to rely 
on profiling data in order to obtain information on the probabilities of the branches. 
This information could then be used as weights for the costs of the branches. Finally, 
the granularity analysis could be augmented with a separate analysis that tries to ex
tract boolean values out of program expressions, using the available size information. 
For example such an analysis could determine the value of calls to the n u ll  function, 
which only needs information on the size of the list. If exact size information is avail
able at compile time, the computation path through conditionals depending on n u ll  
could be predicted.

In parallelising a set of large functional programs a purely annotation based approach 
proved to be not entirely satisfactory. This has led to the development of evaluation 
strategies, in a group effort, and of strategic function application, in particular. In 
order to describe the dynamic behaviour of a function call, strategic function applica
tion parameterises normal function application with a strategy specifying evaluation 
degree and parallelism. The resulting data-oriented style of programming achieves
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a modularity of program components and a separation between algorithmic and be
havioural code not usually found in strict languages. This is mainly due to the 
decoupling of the data structure’s generation and the specification of its parallelism, 
which helps to maintain the abstraction provided by modules and functions. In con
trast, strict languages tie the evaluation of an expression to the point of its definition. 
Therefore, it is much harder to separate the definition of a value from the parallelism 
in computing this value. A comparison of several versions of a parallel linear system 
solver, LinSolv, has demonstrated that a data-oriented parallel programming style is 
superior to the naive use of parallelism combinators. The use of evaluation strategies 
in the parallelisation of programs as large as Lolita showed that the additional code 
for parallelisation can be localised to a high degree, in this case to only two out of 
circa three hundred modules.

Studying large, lazy, parallel programs is rarely done but in creating a powerful 
engineering environment for parallel programming it is important in order to evaluate:

1. The suitability of evaluation strategies to realistic functional programs. While 
working on the parallelisation of Lolita the repetition of some clumsy constructs 
in an initial version was the main motivation for introducing strategic function 
application.

2. The impact of laziness on parallel programming. Laziness favours a top-down 
approach for parallelisation, in particular data-oriented parallelism. This aspect 
is demonstrated in the parallelisation of Lolita in Section 4.5. However, although 
it is easy to add parallelism it is often hard to predict the effects for complex 
parallel programs.

3. The completeness of the existing set of visualisation tools for performance tun
ing i.e. whether the tools provide sufficient information to the programmer for 
tuning the performance of a parallel program. The importance of the visualisa
tion tools has been shown in the discussion of LinSolv in Section 4.6.

7.2 Contributions

This section discusses the contributions of the thesis in more detail and points out 
research that has been undertaken jointly with other researchers. The concrete con
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tributions of this thesis are as follows.

1. Parallelisation of large lazy functional programs (Loidl & Trinder 1997): In 
the parallelisation of several large functional programs this thesis has combined 
the advantages of lazy and of parallel evaluation, achieving a modular parallel 
programming style. A set of large algorithms has been parallelised and their 
performance has been tuned. These programs typify application areas such as 
symbolic computation and artificial intelligence. In particular, this thesis has 
developed a parallel imperative, a parallel pre-strategy, and a parallel strategic 
version of LinSolv (see Section 4.6). A comparison of both functional versions 
showed that the performance tuning process is significantly simplified by using 
strategies. This is supported by several other medium-sized strategy programs 
like a parallel Alpha-Beta search algorithm. The latter program demonstrates, 
for the first time, how strategies can express complex dynamic behaviour in 
programs that crucially rely on laziness. The parallelisation of Lolita in Sec
tion 4.5, the largest existing parallel non-strict functional program, showed the 
advantages of data-oriented parallelisation for large systems in order to paral
lelise code without breaking the abstraction of modules. The parallelisation of 
Lolita has been done in cooperation with the Computer Science Department at 
the University of Durham.

2 . Highly parameterised, accurate simulator (G r a n S im) (Hammond et al. 1995): 
The G r a n S im simulator (see Chapter 3), which has been developed in joint 
work by the author in this thesis, provides, unlike most other simulators, both 
an idealised and an accurate modelling of a parallel machine. It is highly pa
rameterised in order to model a wide range of parallel architectures. In using 
G r a n S im on large programs, such as Lolita, it has proven to be robust and an 
essential component in the parallel engineering environment built on top of the 
Glasgow Haskell Compiler (GHC). It closely models the features of GUM , the 
portable runtime-system for Haskell, which is also part of the parallel engineer
ing environment. G r a n S im is publicly available and currently being used at 
other universities worldwide for both program parallelisation and prototyping 
of runtime-system features.

The original prototype, which has been designed and implemented in cooper
ation with Dr. Kevin Hammond and Dr. Andrew Partridge, provided the core 
functionality of simulating a distributed heap, maintaining thread and spark
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pools, and instrumenting the code generated by GHC. The setup in this proto
type used synchronous communication and single closure fetching. The major 
enhancements performed independently include the implementation of the ide
alised GRANSiM-Light setup, the design and several extensions of the communi
cation system including the implementation of several variants of asynchronous 
communication, and of packing graph structures (Loidl & Hammond 19966). 
The latter is based on the author’s implementation of bulk fetching in GRAPH 
for PVM (Loidl & Hammond 1994). A large set of visualisation tools, show
ing activity and granularity at several levels of detail, has been developed for 
G r a n S im . Furthermore, G r a n S im has been integrated into GHC and is now 
available for both Haskell 1.2 and 1.4.

3. Use and refinement of evaluation strategies (Trinder et al. 1998): The author’s 
implementation of several lazy parallel algorithms in part motivated and guided 
the initial design of evaluation strategies. Recoding the LinSolv algorithm us
ing strategies contributed to the refinement of strategies. Experience with pro
grams such as Lolita was very important for making basic design decisions. The 
parallelisation of several medium-sized programs produced strategies that have 
proven to be of general use. This thesis in particular contributed to evaluation 
strategies by adding strategic function application (see Section 4.3.7) to the ini
tial version of strategies. Strategic function application parameterises function 
application with a strategy describing the parallelism and the evaluation degree 
on the function argument. The resulting programming style, data-oriented par
allelism, for the first time combines the main advantages of lazy evaluation, in 
particular modularity, and parallel computation, reduced runtime, on a large 
scale. Evaluation strategies have been developed in a group effort with Dr. Phil 
Trinder, Dr. Kevin Hammond and Prof. Simon Peyton Jones.

4. Static granularity analysis (Loidl & Hammond 1996a): The thesis presented 
a static analysis for inferring upper bounds of computation costs of program 
expressions in a simple strict functional language (see Chapter 6 ). This work 
is based on sized types (Hughes et al. 1996) and a time system for a Lisp-like 
language (Reistad & Gifford 1994). However, the analysis makes it possible to 
handle some user defined recursive functions by exposing recurrences in the cost 
reconstruction algorithm and then matching these functions with a library of 
recurrences and their known closed forms. Although this analysis has not been
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implemented, a detailed outline of a possible implementation, in particular of a 
cost reconstruction algorithm, is given.

5. Implementation and measurement of runtime-system features to improve paral
lel performance (Loidl & Hammond 1995): This thesis discussed several gran
ularity improvement mechanisms that have been implemented and measured 
in the context of both an evaluate-and-die and an eager-thread-creation model 
of parallelism (see Section 5.5): priority sparking, priority scheduling and an 
explicit threshold mechanism. All mechanisms make use of granularity infor
mation in the source code via program annotations. They have been measured 
for several hand-annotated programs. As a result moderate improvements in 
performance have been observed especially when eliminating all small threads 
with a threshold mechanism.

7.3 Further work

Strategies

The results of using evaluation strategies in the parallelisation of several lazy programs 
have been very encouraging. It would be interesting to use the same technique for the 
parallelisation of strict programs. We hope to achieve a clearer program structure and 
higher modularity by the clean separation between algorithmic and behavioural code. 
There are two possible ways for applying the same techniques to strict languages:

• Use Haskell with evaluation strategies as an embedding coordination language. 
The top-level parallelism is specified in Haskell, the sequential components are 
written in a strict language. Although one of the main advantages of evaluation 
strategies over other coordination languages is the use of the same language for 
describing computation and coordination, a separation may be worthwhile for 
parallelising large programs written in a strict language.

• Implement a strategies module in the strict language based on non-strict data 
structures, which can be modelled in the strict language. These non-strict 
data structures can then be used in combining the parallel components of the 
code, leaving most of the code unchanged. This approach requires that all 
synchronisation is performed via non-strict data structures.
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Although our visualisation tools provide important information about the parallel 
program behaviour we have noticed several shortcomings when using them on large 
programs. Most importantly it is not possible to link points in the activity profile 
to expressions or strategies in the source code. Therefore, it is sometimes hard to 
interpret an activity profile of a complex program. This observation has recently led 
to new research on parallel cost centre profiling (Hammond et al. 1997), to which the 
author is contributing. The idea here is to use cost centres as they have been devel
oped for sequential profiling (Sansom & Peyton Jones 1995) and combine them with 
the G r a n S im simulator, yielding the G r a n CC parallel profiler. It is then possible 
to distinguish between threads that are currently evaluating expressions attached to 
different cost centres. Initial results with a first implementation have already pro
vided further insights into the behaviour of some of our programs like Alpha-Beta 
search. Currently research is undertaken in order to augment the initial version of 
G r a n CC with a variant that links points in the activity profile with points in the 
behavioural rather than the algorithmic code. This would provide information about 
the parallelism generated by a certain strategy.

Runtim e-system

The granularity improvement mechanisms presented in Section 5.5 represent just a 
few possibilities how to exploit granularity information. More variants could be imple
mented, possibly providing different alternatives as options to the programmer. From 
the measurements presented in Section 5.6, mechanisms with a low overhead seem to 
be advantageous even if they do not make optimal use of the available information.

Other improvements and extensions could be made to the parallel runtime-system:

• Implementations of more runtime-system methods for improving granularity 
would be interesting. For example Aharoni et al. (1992) present a scheduling 
algorithm that guarantees that the parallel code performs no more than twice as 
many computations in total than the sequential code. This is done by enforcing 
a lower limit on the amount of computation that has to be performed by a 
thread before it is allowed to create other parallel threads. Using this idea in a 
production runtime-system rather than a prototype implementation would help 
to assess the practical usefulness of this algorithm.
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• Based on the experiences with parallelising Lolita it would be useful to have 
a dynamically growable heap when running GUM, in particular on a shared 
memory machine. In the current version the heaps on all processors have to have 
the same size. This does not account for possible imbalance in heap usage. An 
implementation of dynamically growable heaps could use heap chunks similar 
to the currently used stack chunks, which are maintained as a list. The (v, G)- 
machine, which has been designed for shared memory machines, uses a similar 
technique (Augustsson & Johnsson 1989).

Some experiments presented in this thesis also indicate that an important area for 
the efficient execution of parallel programs is the data locality in the program. In 
joint work the author has studied this issue in a comparison of various packing and 
rescheduling schemes in (Loidl Sz Hammond 19966). However, this area clearly needs 
more work. In particular it might be advantageous to have annotations for explicit 
data placement or for transferring a data structure in its unevaluated form even 
if it already has been evaluated. In general it is not clear whether local or remote 
evaluation is better. A decision on a case by case basis, either via program annotations 
or inside the runtime-system, would be worth investigating.

Recent work on lazy threads (Goldstein et al. 1996) has achieved promising results 
in reducing the overhead attached to the bookkeeping of potential parallelism. In 
particular, measurements of a dataflow-based implementation on a CM-5 distributed 
memory machine showed significant speedups compared to a model that is closer 
related to the sparking model used in this thesis. Therefore, it would be interesting 
to study these techniques in the context of parallel graph reduction. The detailed 
measurements performed by Goldstein (1997) would be a good starting point for these 
evaluations.

Analysis

The most immediate goal in extending the presented work should be an implementa
tion of the static granularity analysis. For a more detailed evaluation of the quality 
of the analysis it would be necessary to apply it to a set of larger test programs. 
Starting from the detailed outline of an inference algorithm in Chapter 6, which is 
based on an existing implementation of sized types, a concrete implementation of the



7.3. Further work 237

analysis for non-recursive expression should be straightforward. It would be close to 
the cost analysis for FX programs.

Several stages in the inference algorithm outlined in Section 6.5.1 need refinement 
in order to implement the full algorithm. The simplification algorithm has to merge 
symbolic cost and size functions in order to generate just one cost and size function 
for each user defined recursive function. Determining the costs for the base case of 
a recursive function requires in general a more sophisticated analysis of the head of 
conditionals in order to distinguish the recursion branch from the base case. Sec
tion 6.5.4 has given a first version of an algorithm for matching c-expressions with 
a library of recurrences, which is based on an unification approach. This algorithm 
most likely has to be refined in a concrete implementation. The specification of the 
library itself should mainly be a m atter of tuning. From experiences of hand analysing 
programs and based on previous work, a small library should already capture a large 
class of recurrences. The final steps of the complete inference algorithm only perform 
syntactic checks on the structure of c-expression and define an interface to the Omega 
test, which is already provided by the existing implementation of type checking for 
sized types.

The most promising direction for extending the granularity analysis to lazy languages 
would be to develop a projections-based demand analysis, similar to the strictness 
analysis in Kubiak et al. (1991), and to use the derived information in order to extend 
the sized time system to lazy languages. This work could build on top of the cost 
calculus for lazy languages developed by Sands (19906), which also uses projections. 
In this approach projection transformers have to be defined via a backward analysis 
in order to propagate demand through user defined functions. Only if the propagated 
projection requires the evaluation of an expression is the cost for the evaluation added 
to the total costs. Compared to the analysis of a strict language, the result is a weaker 
upper bound. Furthermore, it could be improved by having sharing information 
available. Therefore, an integration of strictness, sharing, and granularity analysis 
would be an interesting avenue of further work.

Another interesting piece of future work would be to study whether the library ap
proach of Chapter 6 could be reused for other analyses. In general it should be 
possible to use it for any analysis over an integer domain. In fact in the sized time 
system the same machinery is used for performing size and cost analysis. The advan
tages of this approach, such as tunability via the size of the library and no restriction
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on the height of the domain, might make this an interesting alternative to abstract 
interpretation in general.

Replacing the library approach with a general recurrence solver probably yields a too 
expensive on-line analysis. However, for an off-line approach, where the granularity 
analysis is not part of the compilation process but only done rarely for optimising the 
parallel code, this approach might be feasible. Based on existing recurrence solvers 
in computer algebra systems it should be possible to implement an algorithm that 
covers most cases without being prohibitively expensive.

This thesis only outlines the structure of a soundness proof of the size and cost 
reconstruction algorithm. In order to assure that no wrong information is passed to 
the runtime-system a rigorous proof would be necessary. Furthermore, a dynamic 
semantics of C should be given in order to formalise the notion of computation steps 
and to show that the inference system describes theses costs.

As a simplified version of the granularity analysis discussed in Chapter 6 another 
analysis for inferring monotonicity information could be useful. The idea of such 
an analysis is to infer whether the cost function associated to a user defined func
tion is monotonically increasing, decreasing, or neither. Based on the result and on 
knowledge about relative sizes of values it would be possible to infer relative costs 
between different calls to the same function. Although this yields only a partial order 
of costs the resulting information might be sufficient to yield some improvement in 
the performance of the program.

The ultimate goal of the work presented in this thesis is entirely implicit parallelism 
for G p H. In order to drive further research in this direction it is necessary to combine 
existing strictness, sharing and granularity analyses to obtain a system with genuine 
implicit parallelism. Probably this would reveal the necessity of further improvements 
in the runtime-system and of more accurate information provided by the analyses. 
As the experience from sequential compiler optimisations shows, an integration of all 
analyses and runtime-system methods into one system is essential to study interac
tions between the different improvements.
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