
D epartm ent of
C om puting Science

UNIVERSITY
of

GLASGOW

Granularity in Large-Scale Parallel
Functional Program m ing

Hans Wolfgang Loidl

A thesis submitted fo r a Doctor of Philosophy Degree in
Computing Science at the University of Glasgow

March 1998

© Hans Wolfgang Loidl 1998

ProQuest Number: 13815404

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13815404

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

GLASGOW UNIVERSITY
LIBRARY

H U t (c o (^ l)

Abstract
This thesis demonstrates how to reduce the runtime of large non-strict functional
programs using parallel evaluation. The parallelisation of several programs shows
the importance of granularity, i.e. the computation costs of program expressions.
The aspect of granularity is studied both on a practical level, by presenting and
measuring runtime granularity improvement mechanisms, and at a more formal level,
by devising a static granularity analysis.

By parallelising several large functional programs this thesis demonstrates for the first
time the advantages of combining lazy and parallel evaluation on a large scale: laziness
aids modularity, while parallelism reduces runtime. One of the parallel programs is
the Lolita system which, with more than 47,000 lines of code, is the largest existing
parallel non-strict functional program. A new mechanism for parallel programming,
evaluation strategies, to which this thesis contributes, is shown to be useful in this
parallelisation. Evaluation strategies simplify parallel programming by separating
algorithmic code from code specifying dynamic behaviour. For large programs the
abstraction provided by functions is maintained by using a data-oriented style of
parallelism, which defines parallelism over intermediate data structures rather than
inside the functions.

A highly parameterised simulator, G r a n S im , has been constructed collaboratively
and is discussed in detail in this thesis. G r a n S im is a tool for architecture-independent
parallelisation and a testbed for implementing runtime-system features of the paral
lel graph reduction model. By providing an idealised as well as an accurate model
of the underlying parallel machine, G r a n S im has proven to be an essential part of
an integrated parallel software engineering environment. Several parallel runtime-
system features, such as granularity improvement mechanisms, have been tested via
G r a n S im . It is publicly available and in active use at several universities worldwide.

In order to provide granularity information this thesis presents an inference-based
static granularity analysis. This analysis combines two existing analyses, one for
cost and one for size information. It determines an upper bound for the computation
costs of evaluating an expression in a simple strict higher-order language. By exposing
recurrences during cost reconstruction and using a library of recurrences and their
closed forms, it is possible to infer the costs for some recursive functions. The possible
performance improvements are assessed by measuring the parallel performance of a
hand-analysed and annotated program.

iv

Contents

A bstract ii

1 Introduction 1

1.1 Parallel Lazy Functional P ro g ram m in g ... 2

1.1.1 Parallel Programming .. 3

1.1.2 Functional Program m ing.. 4

1.1.3 Lazy P rogram m ing.. 5

1.1.4 Relationship to Other Approaches for Parallel Programming . 6

1.2 The Dynamic Behaviour of Parallel P ro g ra m s 7

1.3 Static Information about Dynamic Behaviour 9

1.4 C on tribu tions... 11

1.5 Thesis S tructure... 13

2 The Parallel Im plem entation o f Functional Languages 15

2.1 In troduction .. 16

2.2 Principles of Parallel Functional Languages... 16

2.2.1 Why are Functional Languages Good for Parallelism ?............ 17

2.2.2 The Role of S tr ic tn e s s ... 18

2.2.3 Language Support for Parallel P rogram m ing............................. 21

2.3 Implementation of Functional L anguages.. 26

2.3.1 The Graph Reduction M odel.. 27

2.3.2 The Dataflow M o d e l .. 29

v

Contents vi

2.3.3 Other M o d e ls ... 32

2.4 Runtime-System Is su e s .. 33

2.4.1 Evaluation M o d e ls ... 34

2.4.2 Storage Management M odels... 41

2.4.3 Communication Models ... 45

2.4.4 Load D istribution.. 48

2.5 Our M odel.. 50

2.6 S u m m a ry .. 52

3 GranSim— A Sim ulator for Parallel Haskell 53

3.1 In troduction ... 54

3.2 Structure of G ranSi m .. 56

3.3 Characteristics of GranSi m .. 59

3.3.1 F lex ib ility ... 60

3.3.2 Accuracy ... 66

3.3.3 Visualisation ... 67

3.3.4 E ffic ien cy ... 75

3.3.5 Integration into G H C .. 78

3.3.6 Robustness .. 78

3.4 GRANSiM-Light... 79

3.5 Shortcomings of G ranS i m ... 81

3.6 Validation of Simulation R esu lts .. 83

3.6.1 GranSim versus H B C P P .. 83

3.6.2 GranSim versus G R I P ... 83

3.6.3 GranSim versus GUM ... 85

3.7 S u m m a ry .. 86

Contents vii

4 L arge-Scale P aralle l F unctional P rogram m in g 88

4.1 In troduction ... 89

4.2 Problems with Parallel Programming in -th e - la rg e 91

4.2.1 A Simple E x a m p le .. 91

4.2.2 Data-Oriented P ara lle lism ... 92

4.2.3 Dynamic Behaviour.. 93

4.3 Evaluation S tra teg ies ... 94

4.3.1 Evaluation S tra teg ies .. 94

4.3.2 Strategies Controlling Evaluation D eg ree 94

4.3.3 Combining S trateg ies.. 95

4.3.4 Data-Oriented P ara lle lism ... 96

4.3.5 Control-Oriented Parallelism ... 97

4.3.6 Additional Dynamic B e h a v io u r ... 98

4.3.7 Strategic Function Application.. 100

4.4 Alpha-Beta S e a r c h .. 103

4.4.1 Simple A lgorithm ... 104

4.4.2 Pruning A lg o rith m .. 109

4.5 L o l i t a ... 113

4.5.1 A lgo rithm .. 113

4.5.2 Sequential P rofiling... 114

4.5.3 Top Level P ip e l in e ... 114

4.5.4 Parallel P a rs in g .. 115

4.5.5 Parallel Semantic A nalysis .. 119

4.5.6 Overall Parallel Structure .. 120

4.5.7 Sun SPARCserver Implementation .. 121

4.6 LinSolv ... 123

4.6.1 The Sequential A lg o r ith m .. 124

4.6.2 Naive Parallel A lgorithm .. 127

Contents viii

4.6.3 Improved V ersion ... 131

4.6.4 Parallelism over the Homomorphic Im a g e s 132

4.6.5 S u m m a ry .. 134

4.7 Comparison with Parallel Imperative P rog ram m ing 138

4.7.1 LinSolv ... 138

4.7.2 Parallel Resultant C om pu ta tion ... 140

4.7.3 Parallel P-Adic Computation on Rational N u m b ers 141

4.8 A Methodology for Parallel Non-Strict Functional Programming . . . 142

4.9 Related W o r k ... 144

4.9.1 Evaluation S tra teg ies.. 144

4.9.2 Large-Scale Parallel Functional P ro g ram m in g 151

4.10 D iscussion... 154

5 G ranularity in P aralle l Functional P rogram s 156

5.1 In troduction .. 157

5.2 Dynamic Control of P ara lle lism .. 158

5.3 Importance of G ran u la rity .. 161

5.4 The Relationship between Granularity and the Evaluation Model . . 163

5.4.1 Granularity with eager-thread-creation....................................... 163

5.4.2 Granularity with evaluate-and-die... 165

5.5 Granularity Improvement Mechanisms ... 167

5.5.1 Explicit T h re s h o ld ... 167

5.5.2 Priority S p a rk in g .. 169

5.5.3 Priority Scheduling... 170

5.6 Using Granularity Improvement M echanism s... 170

5.6.1 Divide-and-Conquer P rogram s... 171

5.6.2 Larger Parallel P rogram s... 174

5.7 Related W o r k .. 175

Contents ix

5.7.1 Runtime M ethods... 176

5.7.2 Programmer Annotation A pp ro ach es ... 181

5.7.3 Profiling M ethods... 182

5.8 D iscussion.. 184

6 Granularity A nalysis 185

6.1 In troduction... 186

6.2 Design Philosophy ... 187

6.3 Syntax of £ .. 189

6.4 A Static Cost Semantics for £ ... 191

6.4.1 A Sized Time System for £ ... 191

6.4.2 From Cost-Expressions to Cost-Functions.................................... 195

6.5 Cost Inference.. 197

6.5.1 Structure of the Inference .. 198

6.5.2 A Size and Cost Reconstruction A lgorithm 201

6.5.3 Simplifying C onstraints... 210

6.5.4 Solving Recurrence Relations .. 211

6.5.5 Correctness Issues... 212

6.6 E xam ple ... 214

6.6.1 Cost and Size A n aly sis ... 215

6.6.2 A nnotations.. 218

6.6.3 M easurem ents... 219

6.7 Comparison with Other W o r k ... 220

6.7.1 Complexity A n a ly s is .. 220

6.7.2 Cost Analysis for Strict L a n g u a g e s .. 222

6.7.3 Demand A nalysis ... 223

6.7.4 Cost Analysis of Lazy L a n g u ag es .. 225

6.7.5 Logic Languages ... 225

6.8 D iscussion.. 226

Contents x

7 Conclusions 228

7.1 S u m m a ry ... 228

7.2 C o n trib u tio n s .. 231

7.3 Further work .. 234

Bibliography 239

List of tables

3.1 Simulation times (in seconds) of G ranS im and H B C P P 77

4.1 Measurements of the simple and the pruning Alpha-Beta search algorithm 107

4.2 Measurements of all versions of L inSolv.. 136

List of figures

1.1 Possible structure of a parallelising co m p ile r 10

2.1 The principle of parallel graph re d u c tio n .. 28

2.2 The principle of the dataflow m o d e l.. 31

2.3 Locking of closures and generation of waiting l i s t s 38

3.1 Global structure of G r a n S i m .. 57

3.2 The bulk fetching mechanism (with 3 thunks per p a c k e t) 62

3.3 A comparison of packing and rescheduling schemes 63

3.4 Overall activity profile (original in colour) ... 70

3.5 Per-processor activity profile (original in c o lo u r) 71

3.6 Per-thread activity p r o f i le .. 73

3.7 Bucket statistics of thread runtime and heap allocations....................... 74

3.8 Global structure of GRANSiM -Light.. 80

3.9 Activity profiles from G r a n S im and H B C P P 83

3.10 G r a n S im and G R IP activity profiles of LinSolv 84

3.11 G ranSim (top) and G R IP (bottom) granularity profiles of a ray tracer 86

3.12 G ranS im and GUM activity profiles of a determinant computation . 87

4.1 Structure of sum-of-squares .. 102

4.2 Top level structure of choosing the best next m ove.......................... 105

4.3 Data parallel combination function in the simple Alpha-Beta search
a lg o r ith m .. 106

List of figures xiii

4.4 Pruning subtrees in the optimised Alpha-Beta search algorithm . . . 109

4.5 Pruning version of the Alpha-Beta sea rch ... 110

4.6 Strategy for a parallel pruning version with a static force length . . . I l l

4.7 Speedup with varying force length (G ranS im) .. 112

4.8 Data parallel versions with static force lengths of 0 and 4 112

4.9 Overall pipeline structure of L o l i t a .. 114

4.10 The top level function of L o l i t a ... 116

4.11 A granularity control strategy used in the parsing s ta g e 117

4.12 Activity profiles of Lolita with span thresholds of 50% and 90% . . . 119

4.13 Granularity profiles of Lolita with span thresholds of 50% and 90% . 119

4.14 Detailed structure of Lolita .. 121

4.15 Activity profile of Lolita run under GUM with 2 p ro c e sso rs 122

4.16 Structure of the LinSolv algorithm .. 124

4.17 Top level code of the sequential LinSolv a lgo rithm 128

4.18 Naive parallel pre-strategy c o d e ... 129

4.19 Strategy version of a naive parallel LinSolv a lg o rith m 130

4.20 Activity profile of pre-strategy and strategic naive L in S o lv 131

4.21 Strategy version of an improved parallel LinSolv a lg o rith m 132

4.22 Activity profiles of pre-strategy and strategic improved LinSolv . . . 132

4.23 Strategy of the final parallel LinSolv algorithm 133

4.24 Activity profiles of pre-strategy and strategic final L in S o lv 133

4.25 A tree CRA used in the pre-strategy v e rs io n .. 135

4.26 Activity profile of LinSolv in a 3 processor GUM s e tu p 137

4.27 PACLIB code of generating and synchronising processes in LinSolv . 139

4.28 Per-thread activity profiles for imperative LinSolv and parallel p-adic
com putation... 140

5.1 Runtime and parallelism overhead with varying thread granularity . . 160

5.2 Speedups and number of threads of p a r fa c t with eager-thread-creation 164

List of figures xiv

5.3 Speedups and number of threads of par f a c t with evaluate-and-die . 165

5.4 Speedup of p a rf a c t (under GUM) on a workstation network and a
shared-memory m a c h in e ... 166

5.5 Unbalanced divide-and-conquer tree generated by unbal 171

5.6 Speedup of unbal with varying cut-off values.................................... 172

5.7 Relative runtimes and speedups of unbal with priority sparking and
scheduling ... 173

5.8 Relative runtimes and speedups of queens with priority sparking and
scheduling ... 174

5.9 Relative runtimes with variants of priority sparking and scheduling . 175

6.1 A sized time system for £ .. 193

6.2 Subtyping relation for £ .. 195

6.3 Overall structure of the an a ly s is ... 200

6.4 An algebraic unification algorithm on sized types 204

6.5 A size and cost reconstruction algorithm for £ 205

6.6 A size and cost reconstruction algorithm for £ (co n tin u ed).......... 206

6.7 Definition of size s tr ip p in g .. 207

6.8 Inference for l e n g t h .. 209

6.9 Matching of cost expressions... 212

6.10 £ code for c o i n s ... 214

6.11 A part of the inference of d e l .. 215

6.12 Recurrences and their closed f o r m s .. 218

6.13 Annotated £ code for c o i n s ... 219

6.14 Granularity with varying cut-off values (eager and lazy thread creation) 220

Acknowledgements

First and foremost I would like to thank my supervisors, Kevin Hammond and Phil
Trinder, for guiding my research over the course of my PhD and for helping me in
avoiding the pitfalls on the way to obtaining a PhD degree. In particular, I am
very grateful for initially getting the opportunity of doing research in Glasgow And I
am indebted to both of my supervisors for the hand-holding done in the notoriously
difficult writing-up stage.

I would like to thank the members of my viva panel, Greg Michaelson, John O ’Donnell
and David Watt, for the very constructive comments on how to improve my thesis.

I am indebted to members at the RISC-Linz institute, in particular to Bruno Buch-
berger, Hoon Hong and Wolfgang Schreiner, for giving me a great start into the
academic world. And I am grateful to the Ministry of Science and Research, of the
Republic of Austria for funding part of my PhD.

Finally my thanks to the whole functional programming group in Glasgow for pro
viding such an active and stimulating environment.

List of figures xvii

Declaration

I hereby declare that this thesis has been composed by myself, that the work herein
is my own except where otherwise stated, and that the work presented has not been
presented for any university degree before.

Sections 4.2 and 4.3 are revised versions of material published in (Trinder et al. 1998).
Sections 4.4, 4.5 and 4.9.1 cover material to be published in (Loidl k Trinder 1997)
and (Loidl et al. 1997), respectively. Section 4.6 is a revised version of material sub
mitted for publication in (Loidl 1997). An earlier version of the material in Chapter 6
was published in (Loidl & Hammond 1996 a).

• Trinder, P., Hammond, K., Loidl, H.-W. k Peyton Jones, S. (1998), Algorithm
+ Strategy = Parallelism, Journal of Functional Programming 8(1).

• Loidl, H.-W. & Trinder, P. (1997), Engineering Large Parallel Functional Pro
grams, in IFL’97 — International Workshop on the Implementation of Func
tional Languages, University of St. Andrews, Scotland, UK, September 10-12.
To appear in LNCS.

• Loidl, H.-W., Morgan, R., Trinder, P., Poria, S., Cooper, C., Peyton Jones, S. k
Garigliano, R. (1997), Parallelising a Large Functional Program; Or: Keeping
LOLITA Busy, in IFL’97 — International Workshop on the Implementation
of Functional Languages, University of St. Andrews, Scotland, UK, September
10-12. To appear in LNCS.

• Loidl, H.-W. (1997), LinSolv: A Case Study in Strategic Parallelism, in Glasgow
Workshop on Functional Programming, Ullapool, Scotland, UK, September 15-
17. Submitted for publication.

• Loidl, H.-W. k Hammond, K. (1996a), A Sized Time System for a Parallel Func
tional Language, in Glasgow Workshop on Functional Programming, Ullapool,
Scotland, UK, July 8-10.

Hans Wolfgang Loidl

Chapter 1

Introduction

After decades of claiming that functional programming languages are well suited for
implicitly-parallel execution, only a few systems have demonstrated this on a large
scale. The research towards efficient implementations has revealed many problems
in designing a parallel runtime-system that efficiently manages the generated paral
lelism without overwhelming the machine with bookkeeping overhead. The limited
information provided by the programmer about the parallel execution of the program
necessitates very sophisticated, and very general, runtime-system techniques.

One of the major strengths of functional languages is their clear and simple declarative
semantics. From a compiler-design point of view this makes it possible to put theory to
some practical use. For example static analyses are easily developed, which provide,
at compile time, information about some runtime properties of the program. In
the maturing sequential compiler technology for functional languages these analyses
provide crucial information for program transformation steps, which represent the
backbone of compiler optimisations. For the parallel execution of functional languages
they can provide information to enable the runtime-system to manage the parallelism
more efficiently.

This thesis investigates how to statically extract information about the granularity of
potential parallel threads, i.e. the computation costs of these threads, and how to use
this information in the runtime-system. In evaluating the importance of granularity
for the efficiency of parallel program execution a set of large functional programs
is studied. It transpires that a combinator-oriented approach towards exposing po
tential parallelism in the program leads to rather obfuscated code with intertwined
behavioural and algorithmic code. To remedy this shortcoming this thesis contributes

1

1.1. Parallel Lazy Functional Programming 2

to a programming technique for separating these two kinds of code. This technique
is used in the parallelisation of several programs, the largest of which consists of
more than 47,000 lines of Haskell, making it the largest existing parallel non-strict
functional program.

1.1 Parallel Lazy Functional Programming

Parallel computation offers an enticing picture of the performance that can be achieved
by the next generation of computers: no longer is the program required to run on only
one processor but it becomes possible to execute parts of the program on different
processors. This enables the programmer to reduce the runtime of a program further
by decomposing it into parallel components, either automatically or by hand. Poten
tially, it offers scalability in the performance of multiprocessors: in order to speed-up
a machine it is only necessary to add new processors.

However, with most existing parallel programming models it is necessary to specify
explicitly the decomposition of the program into parallel threads, the order of thread
creation, the synchronisation, the communication between threads etc. In practice
this often requires significant restructuring or even recoding of a sequential program.
The root of this complication is the specification of an algorithm as a sequence of
operations performed on a global store in an imperative programming model. In
contrast, a declarative program does not specify such a sequence of operations. The
compiler and the runtime-system are free to choose different orders of operations, or
evaluation order, provided the semantics of the language is preserved. This opens up
the possibility for an implicitly parallel execution of a declarative program where the
programmer does not have to specify anything more than is needed for the sequential
execution anyway.

Our programming model is therefore a combination of three models:

• parallel programming to reduce runtime by executing a program on several pro
cessors,

• functional programming to achieve a higher level of programming by abstracting
over operational aspects,

1.1. Parallel Lazy Functional Programming 3

• non-strict programming to increase modularity by decoupling control and defi
nition.

The implementation model used in this thesis is parallel graph reduction. Section 2.3.1
discusses this model in more detail.

1.1.1 Parallel Programming

A parallel program reduces runtime by sharing the work to be done amongst many
processors. To achieve such a reduction in runtime several threads, independent
units of computation, are executed on different processors1. Introducing the concept
of threads means that mechanisms for generating threads, synchronising threads,
communicating data between threads, and terminating threads have to be established.
We term these aspects of the program execution the dynamic behaviour of a parallel
program. Clearly, the dynamic behaviour of a parallel program is significantly more
complex than that of a sequential program.

Many existing parallel programming languages require the programmer to explicitly
specify these aspects of parallel program execution. Objects specific to parallel exe
cution, like semaphores and monitors, are used to describe synchronisation between
threads. Managing these new objects, however, adds a new dimension of complex
ity to program development, for example the results of the parallel program might
become non-deterministic, and especially the design of robust large-scale parallel sys
tems becomes a daunting challenge.

The approach towards parallel computation advocated in this thesis is to let most of
these resources be managed by the runtime-system in order to avoid the additional
complexity for the programmer to handle these resources explicitly. All the pro
grammer has to do is to expose parallelism, i.e. to identify parts of the program that
may be usefully evaluated in parallel. This model is therefore termed one of semi
explicit parallelism. Ideally a compiler should automatically partition the program
into parallel threads. If accurate strictness information is present this could be done
by generating a parallel thread for every strict argument of an expression. However,
the effects of different decompositions, or partitions, of the program into sequential

1We do not distinguish between complete heavy-weight threads, sometimes called tasks, and
light-weight threads that can only exist within a task.

1.1. Parallel Lazy Functional Programming 4

components are of special importance for the work presented in this thesis. Therefore
the programmer is required to expose the potential parallelism in the program. In
summary, our model offers the possibility of reducing the runtime by only exposing
potential parallelism and without explicitly managing the parallel threads.

1.1.2 Functional Programming

Functional languages, as well as other declarative languages, describe what to com
pute without specifying the order in which to compute it. The exact evaluation order
is only loosely defined by the data dependencies between expressions in the program.
The compiler can choose any evaluation order of independent expressions. In par
ticular, they can be evaluated in parallel. The semantic property that allows such a
flexibility in the evaluation order is referential transparency, stating that the result
of an expression does not change if a subexpression is replaced by another expression
with the same result. For formal reasoning this allows to use the technique of replac
ing equals for equals. In the context of parallel computation this allows the compiler,
or the runtime-system, to choose various orders of evaluation and to change them
dynamically.

Based on this property of functional languages it is easy to implement a naive au
tomatically parallelising compiler. For example, all strict arguments of a function
call as well as the function body itself can be evaluated in parallel. However, the
problem with this approach is the management overhead related to the vast amount
of parallelism generated. Often the generated threads are too short to warrant an
execution by a parallel thread altogether. Therefore, much effort has been put into
increasing the length of these threads, which increases their granularity because each
thread performs more computation.

This thesis studies how to increase the granularity of the generated threads and
thereby improve the performance of the parallel program. A compile-time approach
is taken, in which information about the granularity of potential parallel tasks is
inferred at compile-time and forwarded, via automatically inserted annotations, to the
runtime-system, which then uses this information in order to decide whether a parallel
thread should be generated. This design naturally splits into one static component
for inferring computation costs, a granularity analysis, and one dynamic component
for using this information, granularity improvement mechanisms. It should be noted

1.1. Parallel Lazy Functional Programming 5

that the use of compile-time information from a static analysis does not amount to
a static partitioning of the program. In our model the runtime-system is free to
ignore parallelism. Thus, it is possible that different pieces of code that have been
marked for parallel execution are actually merged into one thread by the runtime-
system. In summary, we focus on functional languages because the lack of an explicit
evaluation order specified in a program gives the compiler and the runtime-system a
high degree of freedom in choosing a specific evaluation order. Although the use of
implicit parallelism is not the immediate goal, this work makes some progress towards
this long term goal.

1.1.3 Lazy Programming

An algorithm in a declarative language describes a property rather than a procedure.
Executing the algorithm amounts to finding a solution for the property specified. This
approach can be taken further to the level where values are bound to variables. The
operational meaning of such a binding is to evaluate the expression. The declarative
meaning, however, only identifies a variable with a value.

The idea of lazy evaluation, or more precisely of non-strict languages, is to decouple
denotational definition from operational control. Defining the value of a variable does
not mean that the definition has to be evaluated immediately. The definition only
describes a property between a variable and a value in the program. The evaluation
degree and the evaluation order are defined by the data dependencies in the program.
This enables the reuse of the same variable in many different contexts, which examine
different parts of the value. Thus, abstracting this control aspect out of the algorithm
increases the modularity of programs.

There is an obvious tension between the goal of lazy evaluation, to abstract over
control aspects of the code, and parallel computation, to enforce a parallel control
structure of the code. Lazy evaluation tries to evaluate as small a portion of the result
as possible, whereas parallel computation aims at generating independent threads of
some minimal size. In order to achieve good parallel performance this means that
at some places it may be necessary to specify how far a data structure should be
evaluated, i.e. to specify its evaluation degree. Still, lazy evaluation is valuable for
modular program design because this evaluation degree can be specified separately
from the definition of the data structure itself. This encourages a data-oriented style of

1.1. Parallel Lazy Functional Programming 6

parallel programming, i.e. a style where the parallelism is specified over intermediate
data structures rather than in the modules that generate these data structures. In the
programming technique the parallel programming group at Glasgow has developed,
evaluation strategies, this style of programming has proven to be extremely useful for
large parallel programs.

The high degree of modularity provided by lazy languages is particularly important
for the design of large programs. Furthermore, extremely time consuming programs,
which would profit most from a reduction in runtime provided by parallel compu
tation, are typically very large. Therefore, it is important that the language for
parallelising the program supports modularity. Otherwise the gain in performance
would have been bought with a loss in maintainability. In summary, the use of lazy
evaluation decouples definition from control. This aides modularity and code re-use
in a sequential model of computation. In a parallel model it also aides top down
parallelisation of big programs by using data-oriented parallelism over intermediate
data structures.

1.1.4 Relationship to Other Approaches for Parallel Pro
gramming

The approach towards parallelism taken by functional languages is in stark contrast
to that taken by High Performance Fortran (HPF) (Rice 1993) and other parallel
extensions of imperative languages. In parallel functional programming the program
ming language itself is unchanged. However, at certain points additional information
is added to the program and used by the parallel runtime-system. This additional
information only represents hints to the runtime-system that may be ignored rather
than directives that must be obeyed. Therefore, the annotations do not change the
semantics of the program. These annotations are in some sense analogous to regis
ter declarations in imperative languages that allow the programmer to add valuable
operational information to the program but can be ignored by the compiler. It is inter
esting to note that many of these annotations, like register declarations, are nowadays
rarely used and that most of the time automatic register allocation performed by the
compiler is perfectly satisfactory for the programmer. Clearly, this state has not yet
been achieved with parallelism annotations for functional languages. But the distinc
tion between functional language features and operational annotations for parallelism

1.2. The Dynamic Behaviour of Parallel Programs 7

enables a similar approach.

In contrast, parallel programs written in HPF-like languages aim at a near optimal
usage of parallel machine resources. In doing so, they reveal low-level machine details
and allow the program to specify details of the program execution leading to highly
machine specific programs. As a result abstractions over primitive low-level constructs
are evolving in the same way as high-level programming language constructs evolved
out of common patterns of low-level instructions.

Based on these differences in the language design we consider parallel functional lan
guages to be most useful for achieving moderate speed-up with only minimal changes
in the code. Hopefully the necessary changes in the code that are still needed today
can be reduced to zero with further progress towards implicit parallelism. HPF-like
languages are more appropriate for applications in the supercomputing area where it
is feasible to spend large programmer effort in restructuring code in order to get near
optimal performance. However, we believe that the programming techniques used in
our model, like data-oriented parallelism via non-strict data structures, can also be
applied for this kind of languages in order to build high-level abstractions for certain
kinds of parallelism.

1.2 The Dynam ic Behaviour of Parallel Programs

The main reason for the complexity of writing parallel programs is the complex dy
namic behaviour generated by a set of cooperating threads. In addition to the cor
rectness of the sequential pieces of computation the timing of communication has to
be considered in order to avoid deadlock situations and to guarantee both correct
ness and termination of the parallel program. Furthermore, the performance tuning
of a parallel program requires a fine balance between several competing goals like
creating many threads to use idle time of processors during the computation and
limiting the number of generated threads to limit the bookkeeping overhead for the
runtime-system.

Many parallel languages allow the programmer to control all these aspects of the
dynamic behaviour. In our model, however, almost all of these details are hidden by
the runtime-system. This design decision is based on the observation that the pro
grammer is often overwhelmed with the complexity of writing a parallel program and

1.2. The Dynamic Behaviour of Parallel Programs 8

explicitly managing the dynamic behaviour. In order to make such an semi-explicit
approach feasible, the runtime-system has to make sophisticated decisions on how to
manage the parallelism. For example, in our model the creation of parallel threads
is based, to some extent, on the current load of a processor. The communication
between threads is implicitly performed via reading and writing shared structures.
The only extension necessary for specifying the parallelism in the program is a com-
binator that exposes parallelism called par. However, in order to get a more detailed
control over the partitioning of the program into parallel threads it is often neces
sary to specify the evaluation order in an expression. This is done via adding seq
combinators. Ideally, both kinds of combinators could be inserted into the program
by an automatically parallelising compiler. However, first efficient runtime-system
techniques to manage the parallelism have to be devised. The long term goal of this
work is to automate this process of adding annotations describing the parallelism in
the program.

One of the aspects of the dynamic behaviour is the granularity of a computation. By
the granularity of a program expression we mean the computation costs of evaluating
this expression. The inefficiency of fine-grained threads lies in the fact that they spend
most of their computation on parallelism overhead like generating the thread or com
municating with other threads. Historically, this has proven to be a severe problem
for machines like ALICE (Darlington k Reeve 1981) and runtime-systems based on
both graph-reduction (Hammond k Peyton Jones 1992, Hammond et al. 1994) and
dataflow (Arvind k Nikhil 1990, Shaw et al. 1996). In order to mitigate this prob
lem the programmer often tries to increase the granularity of the generated threads
in the performance tuning stage of parallel program development. One goal of this
thesis is to investigate how this process can be automated using statically-extracted
information about the granularity of the generated threads. This information is used
in the runtime-system to improve the performance of the parallel program without
further information provided by the user.

This thesis studies granularity as one of the most important aspects of the dynamic
behaviour of parallel program execution. However, it is, of course, not the sole impor
tant aspect of the dynamic behaviour. For example, the communication behaviour of
the runtime-system determines the size of the graph structures that are sent within
one unit of communication, determining the granularity of the communication. We
have previously studied different fetching schemes in order to reduce the total commu

1.3. Static Information about Dynamic Behaviour 9

nication overhead (Loidl & Hammond 19966). Similarly, the scheduling mechanism
is important to hide latency in a system involving a lot of communication. The data
locality is an important property, which deserves further study, too.

1.3 Static Information about Dynam ic Behaviour

One of the attractive features of functional languages for compiler optimisations is
the fact that due to their clear semantic properties a lot of information about the
program’s dynamic behaviour can be inferred statically. The most important example
of such a static analysis is strictness analysis, which detects expressions in a non-strict
program that can be evaluated eagerly, and therefore more cheaply, without violating
the semantics of the program. State-of-the-art compilers for non-strict functional
languages like the Glasgow Haskell Compiler (GHC) (Peyton Jones et al. 1993, Peyton
Jones 1996) heavily rely on the information provided by these analyses to perform a
sequence of meaning preserving program transformations that improve the efficiency
of the program.

Such statically-inferred information can also be exploited for parallel computation.
However, because of the different dynamic behaviour of a parallel program additional
information about the program execution is required. This thesis focuses on the
aspect of granularity and presents a static granularity analysis, which is able to give an
estimation of the computation costs of evaluating program expressions. Providing this
additional information to the parallel runtime-system is an important step towards
truly implicit parallelism for functional languages.

One important difference to classical analyses like strictness analysis, however, is the
fact that granularity analysis has to infer information about an intensional prop
erty of the program execution. It can therefore be only correct with respect to an
instrumented semantics, which itself models the property of interest. In this case
computation costs are modelled as computation steps and inferred as an estimate for
an upper bound. This indirect way of extracting information affects the quality of the
result. However, in contrast to strictness analysis wrong granularity information will
not affect the semantics of the generated program but only its performance. Therefore
it is possible to design an analysis that sometimes makes guesses about computation
costs.

1.3. Static Information about Dynamic Behaviour 10

L program

Other Analyses

Thread PoolSpark Pool

L program

Runtim e

SystemParallel executable

Code
Generation

Granularity Analysis

Program

Transformations

Compiler

Front End

Granularity Analysis Compilation Granularity Improvement

Figure 1.1 Possible structure of a parallelising compiler

Figure 1.1 summarises a possible overall structure of a parallelising compiler. The
front end of the compiler translates the input program into an intermediate language,
called C. This language is designed to be simple in order to ease later analysis and
program transformation stages, operating on this language. The program transfor
mation stages, which present the main part of the compiler, perform program optimi
sations and make use of the information provided by various static analyses such as
granularity analysis to obtain information about the evaluation costs of program ex
pressions. In the programming model used in this thesis parallelism annotations have
to be present in the input program already. The program transformations can then
add further information to the existing annotations. However, at this stage enough
information is available to automatically insert parallelism annotations, if the goal
is implicit parallelism. Finally, the code generation stage of the compiler produces
a parallel executable. In the setup used in this thesis the parallel executable will

1.4. Contributions 11

be machine independent by using a runtime-system that hides details of the parallel
architecture. As a further optimisation it would be possible to generate specialised
code for particular parallel machines. The granularity improvement mechanisms that
are developed in this thesis then make use of the additional granularity information
attached to sparks and threads to make better scheduling decisions based on this
additional information.

In summary, this thesis focuses on the parallel execution of non-strict functional
programs that are annotated in order to expose potential parallelism. A parallel
graph reduction model is used to implement the parallel execution of the program.
In particular, this thesis tackles two parts in the structure shown in Figure 1.1: the
granularity analysis and the granularity improvement mechanisms.

1.4 Contributions

This section gives a list of research contributions made in this thesis. A more detailed
discussion of the contents of the contributions with a separation of the authorship of
parts in the contributions is given at the end of the thesis in Section 7.2.

1. Parallelisation of large lazy functional programs (Loidl Sz Trinder 1997): This
thesis demonstrates how to combine the advantages of lazy evaluation, in par
ticular modularity, and of parallel evaluation, namely reduced runtime, on a
large scale. In the parallelisation of a set of large algorithms the modularity
provided by lazy evaluation helps to minimise the code changes required to im
prove the parallel performance of the program. The implementation includes
both the design of parallel functional algorithms, such as LinSolv, as well as par
allelising existing code, such as Lolita. With more than 47,000 lines of Haskell
code Lolita is the largest existing parallel non-strict functional program. The
programs demonstrate a crucially important aspect of strategic programming
in the large, namely the separation of behavioural from algorithmic code.

2. Highly parameterised, accurate simulator (GranS im) (Hammond et al. 1995):
The collaboratively developed G ranSim simulator is of use for architecture-in-
dependent parallelisation as well as a testbed for the implementation of specific
runtime-system features. Its robustness has been tested with large parallel ap
plications. By being highly parameterised it is very flexible in the parallelisation

1.4. Contributions 12

and tuning of functional programs. By being accurate and closely related to
the parallel GUM runtime-system it encourages prototype implementations of
specific runtime-system features. G ranS im has been integrated into an engi
neering environment for parallel program development in order to facilitate the
development and performance tuning of large programs. A set of visualisation
tools has proven crucial for understanding the dynamic behaviour of G ranSim
and GUM programs. Primary contributions to G ranSim made in this the
sis include the design of the communication system, the implementation of an
idealised simulation, and the integration of G ranS im into GHC.

3. Use and refinement of evaluation strategies (Trinder et al. 1998): This thesis
contributes to evaluation strategies by adding strategic function application and
by providing some of the first uses of strategies. The latter in part drove the
design of the current version of strategies. Strategic function application has
proven very useful in large parallel applications such as Lolita. In particular,
it supports data-oriented parallelisation, which achieves high modularity by
decoupling the definition of a function from the specification of its parallelism.

4. A static granularity analysis (Loidl & Hammond 1996a): A granularity anal
ysis for inferring upper bounds of computation costs in a simple strict higher-
order language, based on existing analyses (Hughes et al. 1996, Reistad &;
Gifford 1994), is presented. The analysis is formulated as a subtype inference
system. A detailed outline of an implementation is given and an extended cost
reconstruction algorithm is developed. The analysis has not been implemented
but measurements with a hand analysed program allow some assessment of the
importance of the inferred information.

5. Implementation and measurement of runtime-system features to improve paral
lel performance: (Loidl & Hammond 1995): This thesis discusses several gran
ularity improvement mechanisms the author has implemented in G ranSim.
Measurements studying their impact on the parallel performance of a set of test
programs are provided. As a result moderate improvements in performance have
been achieved for programs that are annotated with granularity information.

In addition to the major contributions above this thesis also makes less significant con
tributions towards a comparison of imperative and functional parallel programming by

1.5. Thesis Structure 13

presenting results from parallel imperative implementations of three computer alge
bra algorithms in Section 4.7. Chapter 2 gives a detailed survey of several techniques
for the parallel implementation of functional languages, going beyond the issues ad
dressed in the main part of the thesis, and Sections 5.7 and 6.7 survey alternative
approaches for improving granularity and for designing analyses extracting granularity
information, respectively. In the examination of large programs other runtime-system
aspects of the parallel execution of lazy functional programs have proven important.
Different packing and rescheduling schemes have been implemented in G ranS im, ad
dressing the issue of efficient communication in a parallel graph reduction system (see
Section 3.3.1). Details of the implementation and various measurements are presented
elsewhere (Loidl & Hammond 19966).

1.5 Thesis Structure

The structure of this thesis is as follows.

C h a p te r 2 gives a survey of various approaches towards a parallel implementation
of functional languages. In particular, this chapter describes details of the parallel
graph reduction model that is used in this thesis and its relationship to other execution
models. The discussion distinguishes key runtime-system issues for parallel program
execution: the evaluation model, the storage management model, the communication
model, and the load distribution mechanism.

C h a p te r 3 gives a detailed description of the G ranS im simulator that is developed
in this thesis. G ranS im is a flexible and accurate simulator for the parallel execu
tion of Haskell programs. It supports both an idealised simulation and an accurate
simulation modelling the characteristics of a particular architecture. In parallelising
a set of large Haskell programs G ranSim has been extensively used for developing
and tuning the parallel code. In later chapters G ranS im will be used as the platform
for measurements on granularity.

C h a p te r 4 discusses the parallelisation of several large lazy functional programs.
This chapter first presents evaluation strategies, which have been developed in a group
effort. Then three programs are discussed in detail: a parallel Alpha-Beta search
algorithm, highlighting the interplay between lazy and parallel evaluation, LinSolv,
a symbolic computation algorithm using infinite intermediate data structures, and

1.5. Thesis Structure 14

Lolita, a large natural language engineering system.

C h a p te r 5 focuses on the aspect of granularity for the dynamics of parallel program
execution. For a set of programs the granularity of the generated threads is measured.
It is shown that by increasing the granularity the performance of the programs can
be improved. Three different granularity improvement mechanisms are discussed and
measured: explicit thresholding, priority sparking, and priority scheduling.

C h a p te r 6 presents a static granularity analysis for a simple strict functional lan
guage. This analysis infers an upper bound for the number of computation steps
needed to evaluate a program expression. The analysis is developed as an inference
system together with an analysis for the size of program values. A detailed out
line of a possible implementation is given, combining two existing analyses. Finally, a
small test program is hand-analysed and the resulting annotated program is measured
showing some performance improvements.

C h a p te r 7 draws conclusions from the presented approach towards improving the
performance of parallel lazy functional programs. It evaluates the importance of a
structured approach towards program parallelisation, in particular for the perfor
mance tuning stage of parallel program development. And it identifies areas of future
work, in particular for achieving the long term goal of truly implicitly parallel execu
tion of functional programs.

Chapter 2

The Parallel Im plem entation of
Functional Languages

Capsule

This chapter discusses several approaches towards a parallel implementa
tion of functional languages. It starts with motivating the use of functional
languages for parallel programming. Then it presents the basic ideas of pop
ular models for the implementation of functional languages and evaluates how
easily parallel evaluation can be expressed in these models. The main part
of this chapter focuses on critical runtime-system issues and outlines several
efficient implementation techniques. The following runtime-system issues are
examined:

• the evaluation model,

• the storage management,

• the communication model, and

• load distribution.

In this thesis a parallel graph reduction model is used. The mechanisms for
implementing the above runtime-system issues in this model axe compared with
possible alternatives. The overall discussion is based on an implementation on
stock hardware rather than specialised hardware for functional programming.

15

2.1. Introduction 16

2.1 Introduction

In assessing the quality of various kinds of programming languages the requirement
of parallel execution usually complicates the language and therefore diminishes its
value for large-scale program design. Not so with functional languages! The higher
level of abstraction, compared to imperative languages, decouples the semantics of
the language from operational considerations such as sequential or parallel evaluation.
In particular the referentially transparent nature of functional languages allows var
ious different ways of evaluating an expression. However, implementing an efficient
system for parallel functional programming, consisting of an optimising compiler and
a flexible runtime-system, has proven to be quite difficult.

Functional languages and their implementation have a rather long history. Whereas
early models for implementing functional languages were defined on a rather low
level, e.g. the SECD machine (Landin 1964), more recent models such as the graph
reduction and the dataflow models present a far higher level of abstraction, allowing
parallelism to be expressed naturally in this framework. However, when implementing
such a model many runtime-system issues have to be tackled. The core of this chap
ter deals with the efficient implementation of these runtime-system issues on stock
hardware. We do not consider special purpose hardware since the development on
parallel hardware during the last years has shown a clear focus on general purpose
machines.

The structure of this chapter is as follows. Section 2.2 discusses how functional
languages can express parallelism in general, and which kind of model is used in this
thesis. Section 2.3 outlines several models for implementing functional languages and
evaluates how easily parallel evaluation can be expressed in these models. Section 2.4
focuses on key issues of the runtime-system for the efficient parallel implementation.
Section 2.5 puts our model into the context developed thus far. Finally, Section 2.6
summarises aspects of our implementation model that have to be addressed in order
to construct an efficient parallel evaluation of functional languages.

2.2 Principles of Parallel Functional Languages

This section discusses why functional languages are a good vehicle for writing parallel
programs. It discusses some semantic issues that have an important impact on the

2.2. Principles of Parallel Functional Languages 17

parallel behaviour of the program, and connects them with runtime-system issues
discussed in more detail in subsequent sections.

2.2.1 W hy are Functional Languages Good for Parallelism?

With the advent of parallel machine architectures and their promise of far higher
performance than it is possible for conventional architectures, the design of languages
for parallel computation has become an important research topic. A key aspect in the
design of parallel languages is the way that the parallel execution is described. Im
perative languages traditionally extend the sequential model with explicitly handled
threads to describe independent pieces of computation and messages to communicate
data between these threads. If these notions remain visible to the programmer he
has to cope with issues like possible deadlocks in the computation, the partitioning
of the computation into components, and the placement of these computations onto
the processors of the parallel machine. This adds a new dimension of complexity to
the design of a parallel algorithm and distracts from the mathematical properties of
the algorithm like its correctness.

Another approach, which restricts the generality of this message passing style of com
putation, has recently become extremely popular: synchronous parallel computing.
The two best known models in this class are BSP (McColl 1996) and SPMD (Smirni
et al. 1995). The idea in these models is to synchronise all communication in the sys
tem by either alternating between supersteps of computation and communication, or
by using an implicit barrier for finishing all communication. This restriction enforces a
certain structure of the parallel program. However, it also facilitates the performance
evaluation of the program. Furthermore, the basic communication operation in these
models, namely broadcast, can be implemented very efficiently on the latest parallel
hardware. Here hardware realisation and programming model go hand in hand, simi
lar to the success of RISC machines for sequential computation. However, usually the
programmer still has to handle explicit threads and messages, which complicates the
parallel program significantly compared to the sequential model. This thesis focuses
on a higher-level approach of parallel programming, hiding most of these aspects in
the runtime-system. It is, however, still possible to re-use existing lower-level code
for specialised tasks.

In contrast, functional languages provide a higher level of abstraction by only speci

2.2. Principles of Parallel Functional Languages 18

fying what to compute without specifying a sequence of instructions describing how
to compute the result. As a result functional languages are referentially transparent,
which implies that independent parts of the program can be evaluated in parallel.
Thus, the language does not necessarily need to be extended to deal with parallel
evaluation. In principle, the problem of parallelising an algorithm can be reduced to
the problem of reducing data dependencies in the program — something that can be
done via source-to-source program transformations in much the same way as program
optimisations in sequential compilers. Reasoning about the correctness of such trans
formations is no more difficult than for standard transformations used in sequential
optimising compilers. Furthermore, parallelism based on functional languages yields
a deterministic result, and it is guaranteed to be the same result as in the sequential
execution. There is no danger for deadlock in such a model, unless a program runs
out of resources.

Of course, the higher level of abstraction also imposes some overhead on the execution.
Therefore, an optimised parallel algorithm using lower level features like an imperative
computation model and message passing for communication will usually result in a
better performance of the algorithm. However, especially for large programs it is
extremely difficult to work at such a low level of abstraction.

2.2.2 The Role of Strictness

This section discusses fundamental semantic properties of functional programming
languages and their impact on the sequential and parallel evaluation of such languages.
It focuses on strictness as the most important of these properties.

D efin ition o f S trictn ess

One important semantic property of a programming language is the strictness of
user defined functions. A function is strict if its result is undefined, whenever the its
argument is undefined. A non-strict language is a language that permits the definition
of non-strict functions. More formally, a function / is strict if and only if

/ - L = _ L

2.2. Principles of Parallel Functional Languages 19

where ± represents an undefined result (e.g. caused by a failing or non-terminating
computation). A discussion of strictness is given for example in (Field & Harrison
1988) [Chapter 4].

One important advantage of non-strict over strict parallel languages is the ease of
expressing producer/consumer parallelism in the former. In particular the coroutine
nature of lazy evaluation avoids a barrier synchronisation between the producer and
the consumer process. Following the terminology of Goldberg (1988a) this means,
it is easy to express vertical parallelism, i.e. parallelism between a function and its
argument, in a non-strict language. In contrast, strict languages tend to rely more on
horizontal parallelism, parallelism between different arguments, which evaluates the
arguments of a function in parallel. It should be noted that this form of parallelism
can also be used in non-strict languages, namely for those argument positions in
which the function is strict. A separate strictness analysis is needed to determine
which arguments can be safely evaluated before the function itself is called.

In order to use a parallel function application, strictness information on user defined
functions is needed, which ensures that creating parallel threads for each argument
satisfies the non-strict semantics of the program. The resulting parallelism is called
conservative parallelism, i.e. the values of all parallel threads are known to be needed
in the computation. If non-strict arguments are evaluated in parallel, too, specula
tive parallelism is generated. Dealing with this kind of parallelism complicates the
underlying evaluation model because it must be ensured that no process consumes
all available resources and it should be possible to terminate processes. However, if
this is guaranteed on runtime-system level then the parallel evaluation of all argu
ments in a function call satisfies the non-strict semantics, too. Although speculative
parallelism is an important issue for parallel functional languages, it is not directly
related to the main runtime-system aspect this thesis is investigating: granularity.
Therefore, this thesis does not give an exhaustive survey of this particular branch of
the field.

E valuation M echanism s

This section briefly discusses possible evaluation mechanisms for functional languages.
These definitions build on top of the notion of reduction in the lambda-calculus
(Church 1941) and delta-reduction for built-in rules like basic arithmetic. The termi

2.2. Principles of Parallel Functional Languages 20

nology of this chapter follows (Field & Harrison 1988) [Chapter 6].

D efin ition 1 (red ex) A redex (reducible expression) is an expression that can be
reduced according to the rules of lambda-calculus or delta-reduction.

Intuitively, a redex is an expression that can be immediately evaluated. To be more
precise about the degree of evaluation several different normal forms can be distin
guished.

D efin ition 2 (w eak head norm al form) An expression is in weak head normal
form (WHNF) if, and only if, it is a constant or if it is of the form

f ei . . . en, for some 0 < n < arity of f

where f is either a data constructor or function (primitive or user defined).

Intuitively, evaluating an expression to weak head normal form means evaluating only
the top level constructor. The expressions e\ . . . en may still contain redexes.

D efin ition 3 (norm al form) An expression is in normal form if it does not contain
any redexes.

An expression in normal form matches the intuitive notion of a value in the language.
In an expression, which is not in normal form, the leftmost redex is the redex textually
left to all other redexes and the outermost redex is the redex not contained in another
redex. Based on these definitions and the two normal forms above it is possible to
specify the reduction order yielding the two main evaluation mechanisms used in this
thesis.

D efin ition 4 (eager evaluation , ca ll-by-value) An eager evaluation mechanism
chooses in every reduction step the leftmost innermost redex and reduces it to weak
head normal form.

D efin ition 5 (lazy eva luation , ca ll-b y-need) A lazy evaluation mechanism chooses
in every reduction step the leftmost outermost redex and reduces it to weak head nor
mal form. When substituting expressions for arguments no expression is duplicated,
but they are shared in the reduced expression.

2.2. Principles of Parallel Functional Languages 21

The evaluation transformer (Burn 1987, Burn 19916) approach for automatic par
allelisation defines a whole set of such evaluation mechanisms, which are tuned to
the strictness of the result that should be computed in the given context. It uses
detailed strictness information obtained by a sophisticated strictness analysis to de
termine, given the demand on an expression, how far the components of the expres
sion have to be evaluated. Thus, all components can be safely evaluated in parallel
to the degree determined by the evaluation transformer. However, this requires the
generation of several variants of the code for each function, specialised to the partic
ular context in which it is used. This approach has been used by Burn (1991a), in
the distributed-memory HDG machine (Kingdon et al. 1991), in the PAM machine
(Loogen et al. 1989), in RushalPs parallel implementation of the Spineless G-machine
on top of a virtual shared-memory KSR1 machine (Rushall 1995), and in the shared-
memory EQUALS system (Kaser et al. 1997).

B eyon d S trictn ess

In order to preserve the semantics of the program, strictness information is needed
for implicit parallelisation in order to decide which arguments can be safely evaluated
in parallel. However, more information about dynamic properties of the program is
useful in order to extract efficient parallelism. In particular, granularity informa
tion, i.e. information about the size of a computation, is needed in order to decide
whether it is worth paying thread creation and synchronisation overhead for comput
ing an expression in parallel. This question is discussed in detail in later chapters.
Chapter 5 shows that too fine granularity can deteriorate parallel performance and
develops runtime-system mechanisms to increase granularity. Chapter 6 presents a
granularity analysis for a simple strict, higher-order language to estimate the costs of
an evaluation.

2.2.3 Language Support for Parallel Programming

The previous section has shown that it is possible to automatically parallelise a func
tional program by executing all strict arguments of a function call in parallel. Shar
ing and granularity information, if available, can be used to determine whether it is
worthwhile creating a thread for a computation.

2.2. Principles of Parallel Functional Languages 22

However, developing these analyses is a non-trivial problem. In fact, part of this
thesis is devoted to the development of a simple granularity analysis for a small strict
functional language. In the absence of a compiler that can automatically detect
parallelism it is useful to make the information about potential parallelism and the
size of the computation explicit in the language. In contrast to models of explicit
parallelism, the sparking model used in this thesis only needs constructs for exposing
parallelism. Creation of threads, synchronisation, and communication are all implicit
in this model. Therefore, we call this a model of semi-explicit parallelism.

This section first discusses some features of lazy functional languages, which are of
importance for the rest of this thesis. Then the basic constructs for parallelism in
this language are described. Finally, a comparison with other approaches towards
language support for parallel computation is given.

Lazy F unctional P rogram m in g

This section highlights the most important features of lazy functional languages that
are of relevance for this thesis. An excellent general discussion of lazy functional
programming is given in Bird & Wadler (1988).

A lazy evaluation mechanism, as defined in the previous section, will only evaluate an
expression, if its value is required in the computation. This results in a demand-driven
order of evaluation. An obvious advantage of this mechanism is that no unnecessary
expressions will be evaluated. Another, even more important, aspect is the fact that
the definition of a result is separated from its evaluation. Thus, it becomes possible
to describe details of the evaluation, such as parallelism, without modifying the code
that defines the result. This feature plays a crucial role in our technique for large-scale
parallel programming and will be elaborated in detail in Section 4.3.

A very powerful feature provided by most functional languages is the availability of
higher-order functions, i.e. functions that take other functions as arguments or that
return a function as a result. Such higher-order functions can be used to express com
mon patterns of computation. For example the Haskell prelude function map performs
the same operation, given as a first argument, to every element of a list, given as the
second argument. In the context of parallel computation, higher-order functions are
a natural choice for expressing parallel behaviour. Indeed, our parallel programming
technique makes heavy use of higher-order functions. However, in contrast to related

2.2. Principles of Parallel Functional Languages 23

approaches such as skeletons (Cole 1989), the parallelism is not restricted to a fixed
set of higher-order functions.

Functional languages offer powerful constructs operating on algebraic data types. This
encourages the construction of elaborate data structures such as lists or trees, which
are best fit for expressing a certain algorithm. This facility is of particular impor
tance in the area of symbolic computation where the data is typically non-numeric
and highly-structured. With algebraic data types pattern matching is often used to
simultaneously check the structure of a data item and to bind components to names.

For example the aforementioned map function is defined as follows in Haskell 1.2:

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x :xs) = f x : map f xs

The first line specifies the type of the function, which is useful for documentation of
the code and as additional information for the compiler. In this case type variables
a and b are used, to express that map is a polymorphic function, which can operate
on any list provided the domain of the function f has the same type as the elements
of the list provided as second argument. The result type will be a list with elements
of the same type as the codomain of the function f . Note that all type variables are
universally quantified to achieve this kind of polymorphism.

The next two lines perform pattern matching on the list argument. If this argument
is non-empty it is constructed via the : operator with the arguments x and xs, which
are used on the right hand side of the definition. Note that, because f is a function,
map is a higher-order function. With this definition map can be used to translate all
characters in a string into upper case characters via map toUpper "h e llo " . Being
polymorphic it can be also used to, e.g. count the elements of all sub-lists in a given
list of lists via map len g th [[1] , [1,2] , [1 ,2 ,3]] .

The above examples used Haskell prelude functions such as toUpper c for translating
the character c into an upper case character and leng th xs, for computing the length
of the list xs. Some other basic prelude functions that will be used in this thesis are
take n xs for returning the first n elements of the list xs, f i l t e r p xs for returning
a list of all elements of xs for which the predicate p evaluates to true, and f o ld l f z

2.2. Principles of Parallel Functional Languages 24

xs for combining, from left to right, all list elements of xs with the binary operator
f , using z as the start value. The construct x s ! !n extracts the n-th element from the
list xs, and f $x applies the function f to the argument x (this construct is useful in
a sequence of nested function applications in order to avoid nested parenthesis).

G p H

This thesis uses G p H as a parallel functional programming language. G p H is an
extension of the non-strict, purely functional programming language Haskell (Peterson
et al. 1996). It is augmented with sequential and parallel combinators.

Sequential C om binator: The seq operator specifies the order of evaluating two
expressions. The operational semantics of the expression e l ‘ seq ‘ e2 is as follows:
first evaluate the expression e l then the expression e2. Both are evaluated to WHNF.
It is an asymmetric combinator of type seq : : a -> b -> b, which returns the
second argument as a result, i.e. the denotational semantics of seq is

seq _L e2 = -L
seq ei e2 = e2 i f e i / _L

Parallel C om binator: The par operator introduces parallelism in the language.
It also has the type par : : a -> b -> b. The operational semantics of the expres
sion e l ‘par* e2 is as follows: first record that e l can be evaluated in parallel then
evaluate e2. We christen the operation of recording the possibility of parallel evalu
ation to spark an expression. It is important to note that this is very different from
creating a thread for evaluating the expression. Sparking an expression can be done
very cheaply. In our model a pointer to an unevaluated expression is put into a spark
pool, a special data structure maintained by the runtime-system. Furthermore, the
sparking model defers the decision whether to create a thread or not to a later time.
Details of these runtime-system issues are discussed in detail in Section 2.4. The
denotational semantics of par is

par e\ e2 = e2

Note that seq is strict in its first argument, whereas par is non-strict in both argu
ments.

2.2. Principles of Parallel Functional Languages 25

E xten sion s o f G p H

One important aspect of the work in this thesis is to propagate information about
the program’s behaviour to the runtime-system. The par construct can be seen as a
way to propagate information about potential parallelism to the runtime-system. To
give the programmer the possibility of specifying additional information about the
parallel processes, several lower level constructs are provided. They take additional
arguments and propagate this information to the runtime-system. The denotational
semantics of these constructs is the same as for par.

G lobal P ara lle lism : The additional arguments in a parG lobal n g s p x y ex
pression have the following meaning: n is the name of the spark, g represents the
granularity of the computation, s represents the size of the result and p represents
the degree of parallelism created during the evaluation of the expression. The latter
is an estimate on the number of sparks generated in the expression x. All of these
arguments are integers.

The G ranSim simulator discussed in Chapter 3 currently only uses the information
in the n and g fields. The former helps to distinguish sparks from different static spark
sites. The latter is the main piece of information that is exploited via the granularity
control mechanisms described in Section 5.5.

Local P ara lle lism : The parLocal construct, which takes the same arguments as
parG lobal, enforces that the thread for the sparked expression, if it is created, will
be started on the same processor where it was created. However, since the runtime-
system may use thread migration, this does not mean that the thread has to remain
on that processor throughout its computation. The main purpose of this construct is
to improve data-locality between sparks that operate on the same data.

T h re ad P lacem en t: The parAt construct is a generalisation of parLocal. It re
quires the thread to be generated on a specific processor, specified by an integer value.
This assumes that the names of all processors form a sequence from 0 to some integer
value n. This is an experimental feature that has been used in one parallel algorithm
so far.

2.3. Implementation of Functional Languages 26

O ther A pproaches

The semi-explicit approach for describing parallelism, which is used in this thesis,
defers most of the control of the parallelism to the runtime-system. On the language
level it is only necessary to provide constructs that expose parallelism. In the range
from implicit to explicit models of parallel computation our model is therefore close
to the implicit end. The following discussion locates the models that are discussed in
more detail in this chapter on this range from implicit to explicit parallelism.

Some examples of fully implicit models are dataflow languages such as Id (Nikhil
1989), pH (Aditya et al. 1995) and SISAL (Bohm et al. 1991), evaluation transform
ers (Burn 1987), and data parallel languages such as NESL (Blelloch 1996). Algo
rithmic skeletons (Cole 1989) provide a set of higher-order functions with built-in
parallelism. Therefore, the parallelism, although not explicitly specified, depends on
the use of these skeletons in the program. A very powerful concept for describing
parallelism is provided by process control languages. Most closely related to our par
allel programming technique discussed in Section 4.3 are Caliban (Kelly 1989) and
first-class schedules (Mirani & Hudak 1995). Both systems provide separate control
languages that can use functional expressions in specifying a structure of parallel pro
cesses. These systems will be discussed in more detail in Section 4.9.1. On the side
of explicit parallelism, extensions to Lisp, such as MultiLisp (Halstead, Jr. 1985) and
Mul-T (Kranz et al. 1989), have to be mentioned. The basic construct used in these
languages, a future, is closely related to the p ar in G p H. Section 5.7.1 discusses
this relationship in more detail. Other systems that provide explicit annotations
for controlling parallelism are Concurrent Clean (Nocker, Smetsers, van Eekelen &;
Plasmeijer 1991), Hope+ (Kewley & Glynn 1989), and the system proposed by Burton
(1984).

2.3 Im plementation of Functional Languages

This section discusses different approaches to the implementation of functional lan
guages. The discussion focuses on the graph reduction and the dataflow models. They
present a high level of abstraction and thereby incorporate parallel execution in a very
natural way. Hammond (1994) presents a detailed discussion of different models for
the parallel implementation of functional languages. Schreiner’s annotated bibliogra

2.3. Implementation of Functional Languages 27

phy (Schreiner 1993) gives a comprehensive survey of the parallel implementation of
functional languages.

Historically, the first implementations of functional languages used a stack-based
approach such as the SECD machine (Landin 1964), which has been extended to
lazy languages by Burge (1975) and Davie &; McNally (1990). The SECD-M ma
chine adds concurrent threads and non-determinism to the basic design (Abramski k
Sykes 1985). Both the eager and the lazy SECD machine are described in detail in
Field & Harrison (1988) [Chapter 10].

Another approach is to use a fixed set of combinators, such as SK combinators known
from combinatory logic (Curry k, Feys 1958), as the abstract machine language. The
implementation of SASL was based on this design (Turner 1979). Later this approach
was extended to use program dependent super-combinators (Hughes 1984). A super-
combinator is obtained from a function body by lifting maximal free expressions, i.e.
the largest sub-expressions which contain free variables. This transformation main
tains the full laziness property that no expression will be evaluated twice, and differs
in this aspect from the more basic A-lifting transformation (Johnsson 1985). The cat
egorical abstract machine (Curien 1986) combines the environment-based approach of
the SECD machine, which is defined via state transitions, with the idea of using basic
variable-free combinators out of combinatory logic as the abstract machine language.

2.3.1 The Graph Reduction M odel

The graph reduction model is based on the idea of representing the program as a graph
structure and defining evaluation as rewriting this graph (Wadsworth 1971, Peyton
Jones 1987). Figure 2.1 shows the lazy evaluation process of the expression square
(1+2*3) where square x = x*x. Note that in the first step two redexes can be
reduced in parallel: the definition of square can be applied and the expression 2*3
can be reduced. The latter is possible because square, multiplication, and addition
are strict. This example also shows how several instances of the parameter x are
shared when applying square to a concrete argument. This avoids duplication of
work.

This approach has several advantages:

• It is easy to express sharing of program expressions by sharing in the graph;

2.3. Implementation of Functional Languages 28

• a call-by-need evaluation can be easily implemented by overwriting the reduced
node with its result;

• independent parts of the graph can be evaluated in parallel.

square

square:

*

F igure 2.1 The principle of parallel graph reduction

Because of the first two advantages most modern non-strict languages are imple
mented using graph-reduction. However, this pure graph reduction model is very
high-level, and a straightforward implementation is rather inefficient. For example,
the reduction process described in Figure 2.1 suggests an interpretive implementa
tion, solely operating on graph structures. In comparison most modern abstract
machines use an approach of compiled graph reduction. Rather than using a top
level interpreter, each node in the graph, a “closure” , contains code for perform
ing a reduction. In particular, user defined functions are compiled into code that
simulates the construction of a graph structure. The generated code typically uses
an evaluation stack to perform built-in operations, such as basic arithmetic, more

2.3. Implementation of Functional Languages 29

efficiently, without the need to allocate heap objects in this case. The G-machine
(Johnsson 1987, Augustsson 1987) was the first machine that used compiled graph
reduction, eliminating most of the interpretive overhead in the execution of non-strict
LML programs. Many later abstract machines were based on the G-machine, e.g. the
Spineless G-machine (Burn et al. 1988), the Spineless Tagless G-machine (Peyton
Jones 1992) etc. Peyton Jones (1987) [Chapter 20] gives a good overview of different
optimisations of the basic graph reduction mechanism.

From this thesis’ point of view the most important advantage of the graph reduction
model is the ease of expressing parallel computation in this model. A parallel graph
reduction model can be very naturally expressed as a spark pool, i.e. a pool consisting
of pointers to unevaluated expressions (“thunks”), and a set of processors that take
sparks out of this pool and execute them by creating a thread, an independent process
performing standard graph reduction. These threads are kept and maintained in a
separate thread pool. In our model adding a new spark to a spark pool is performed
by a par combinator. Mutual exclusion between threads trying to reduce the same
piece of graph has to be guaranteed, this will be discussed in Section 2.4.1. Peyton
Jones (1989) discusses parallel graph reduction in detail.

2.3.2 The Dataflow M odel

Another high-level computation model that does not require a sequential evaluation
mechanism is the dataflow-model (Dennis 1974). The idea in this model is to represent
operations as nodes in a graph and to represent data as tokens passed between the
nodes. Evaluation is governed by the “firing rule”: a node with tokens on every input
arc consumes these tokens, applies its function to their values, and sends a result
token with this value to its output arc. In short, the node “fires” .

T he P rin cip le o f th e D ataflow M odel

In contrast to the demand-driven graph reduction model, the dataflow model is data-
driven. The evaluation of operations is determined by the availability of data rather
than by the demand on a result. Thus, a natural evaluation mechanism is based
on eager evaluation. This aims at exposing a maximal amount of parallelism in the
system, even if some of the parallelism is speculative.

2.3. Implementation of Functional Languages 30

It is important to distinguish the operational aspect of the evaluation model from
the semantic aspect of strictness. Although parallel eager evaluation is safe in a
strict language, e.g. SISAL (Bohm et al. 1991), modern dataflow language such as Id
(Nikhil 1989) and pH (Aditya et al. 1995) are non-strict in order to minimise data
dependencies in the program. The runtime-system guarantees that the failure of one
evaluation does not necessarily result in a failure of the overall computation.

Figure 2.2 demonstrates the execution of the expression square (1+2*3) where
square x = x*x in the dataflow model. Here the nodes in the graph are opera
tors and the arcs represent data dependencies. The graph is unchanged throughout
the computation. In the first step the * operator can fire because both arguments
are available, whereas the + operator has to wait for its second argument. Within the
square function the result token from the previous computation (7) is duplicated,
corresponding to sharing the result of an expression in the dataflow model.

O ptim isation s in th e D ataflow M od el

The dataflow model aims at exposing a maximal amount of parallelism. Historically,
it was mainly used as a concrete machine model for special purpose dataflow machines
with special hardware support for the basic machine operations, e.g. the Tagged-Token
Dataflow Architecture (Arvind & Nikhil 1990), the Manchester Dataflow machine
(Gurd et al. 1985), the Monsoon machine (Papadopoulos & Culler 1990), Sigma-1
(Shimada 1986), PIM-D (Ito et al. 1986) etc. More recent abstract dataflow machines
significantly depart from the pure dataflow model and use a control-flow language
as machine independent intermediate language, e.g. the TAM machine (Culler et al.
1993) and *T(Chiou et al. 1995). However, an implementation on stock hardware still
faces serious efficiency problems and to overcome these problems many optimisations
to the basic model are performed.

One of the major inefficiencies of the dataflow model is the extremely fine-grained
parallelism. Every primitive operation can be implemented as one node in the
dataflow graph. This yields a high overhead in the parallel execution of the pro
gram. Therefore, special compile time methods for partitioning the dataflow graphs
and merging the partitions into “macro dataflow nodes” have been developed (Sarkar
& Hennessy 1986). For example, the Id90 compiler for the TAM machine (Culler
et al. 1993) iteratively computes dependence and demand sets between nodes in the

2.3. Im plementation of Functional Languages 31

1 2 3 1

square \square \ square ✓ "

square ✓ " ’i" "■S

49

square

F igure 2.2 The principle of the dataflow model

dataflow graph merging independent nodes into macro nodes. Each of these nodes
is then realised as a thread in the abstract machine. This analysis can also be done
globally as is shown in Traub et al. (1992). Furthermore, TAM distinguishes be
tween coarse-grained frames, which are the units of computation and are allocated
to processors, and these more fine-grained threads operating within a certain frame.

2.3. Implementation of Functional Languages 32

Having many threads within a frame guarantees latency tolerance in a multi-threaded
scheduling environment.

As further optimisations several mechanisms from the compilation of imperative lan
guages are integrated into the dataflow model:

• Activation Frames: Machines like Monsoon use bits in an activation frame to
indicate availability of a result. In older dataflow architectures an expensive
associative store was used.

• Memory: Constructs like I-structures (Arvind et al. 1989), single assignment
variables, and M-structures (Barth et al. 1991), mutual exclusion variables, are
used for storing and retrieving values. In contrast, the pure dataflow model has
no store.

• Split Phase Operations: Access to I-structures and M-structures is performed
via split phase operations, i.e. after executing the operation the thread will
be automatically descheduled. This is done to overlap communication with
computation via variable access.

• No explicit dataflow graph: The latest compilation model for pH avoids the use
of dataflow graphs as an intermediate language (Arvind et al. 1996). Instead it
uses a sugared version of a call-by-need A-calculus, the A^-calculus, with letrec to
express sharing, with barriers for explicit synchronisation, and I-/M-structures.

In summary, these optimisations in the dataflow model, as well as the optimisations
in the graph reduction model discussed in detail in Section 2.4 show a convergence
towards adopting efficient techniques developed for parallel imperative languages.

2.3.3 Other M odels

Although the SECD, graph reduction and dataflow models are the best known mod
els for parallel functional programming, many other approaches towards a parallel
implementation have been suggested. This section discusses some of these models.

The Gamma model (Banatre &; Le Metayer 1990) uses the metaphor of chemical
reactions to describe parallel evaluation. In this model an evaluation step resembles

2.4. Runtim e-System Issues 33

the chemical reaction in a pool, a multiset, of atoms: first a matching group of objects
in an object pool is selected, then an operation on these objects is performed and
these objects are replaced with result objects. This “rewriting” is repeated until no
more matching objects can be found. In this model a program is specified by the
functions for matching and evaluation. This model facilitates a high level program
derivation approach as well as parallel computation because reactions on disjoint sets
of atoms can be performed in parallel. However, an implementation faces problems
of efficiently matching objects, similar to the problems met in token-based dataflow
implementations. Gladitz &; Kuchen (1996) describe a parallel implementation of this
model on a shared memory multi-processor.

The NESL system (Blelloch 1996) uses a model of nested data parallelism. It is
programmed in an SML-like, strict, higher-order language. Parallelism can only be
expressed implicitly via using sequence operations, similar to Haskell’s list compre
hensions, and via higher-order functions that process sequences in a data-parallel
fashion. Again this restriction facilitates an efficient implementation of the language.
It is mainly used for running numerical algorithms on supercomputers such as CRAY
Y-MP, Connection Machine CM-2, and Encore Multimax.

Finally, several models have been designed for the efficient execution of specific par
allel programming paradigms. The idea here is to gain improved efficiency for a
restricted but important set of programs. One example of such a machine is ZAPP
(Burton & Sleep 1981, Goldsmith et al. 1993), which has been designed for the efficient
parallel execution of divide-and-conquer programs. It performs parallel computation
on a virtual tree of processors. Communication is performed by message passing.
No global heap is implemented in this system. Experiments on a transputer based
implementation of this machine reported nearly optimal speedups for some divide-
and-conquer programs like n-queens (McBurney & Sleep 1987).

2.4 Runtim e-System Issues

This section discusses key aspects of the runtime-system in a parallel functional lan
guage that are crucial to the performance of parallel programs. This discussion will
focus on a model of parallel graph reduction. However, most of these aspects are
central to any implementation of a parallel functional language.

2.4. Runtim e-System Issues 34

Many of the issues discussed in this section can be hidden behind a distributed, or vir
tual shared memory implementation and lightweight threads. This has been done for
SISAL (Freeh & Andrews 1995, Haines & Bohm 1992) and in Rushall’s implementa
tion of lazy task creation on top of a Spineless G-machine (Rushall 1995). However, in
this approach the possibility of directly influencing low-level issues, via the compiler,
and optimising the system for a particular computational model like graph reduction
are lost. Therefore, such an approach is usually just used for prototyping rather than
for optimised parallel machines. This approach will not be discussed in greater detail.

2.4.1 Evaluation M odels

A major issue in the evaluation model is

How are the parallel threads created and synchronised?

In a parallel implementation it can, and probably will, happen that two parallel
threads try to evaluate the same expression. The evaluation model specifies

• how and when parallel threads are generated (sparking),

• how to prevent the threads from evaluating expressions already under evaluation
(locking) and

• how to keep track of and ensure data transfer to threads that need the result
of an ongoing computation (waiting list).

These three issues describe the interaction between parallel threads and the conceptu
ally shared heap. Another issue that is discussed in this section is the synchronisation
mechanism between the parallel threads. In particular the following models can be
used:

• a notification model,

• a fork-and-join model,

• and an evaluate-and-die model.

2.4. Runtim e-System Issues 35

Spark ing : The most commonly used mechanism for generating threads in the graph
reduction model is a sparking mechanism (Clack &, Peyton Jones 1986). This mecha
nism assumes that all parallelism has been exposed on the abstract machine language
level. This can be achieved via annotations either in the source code or at some stage
in the intermediate or abstract machine code. When such a parallelism annotation is
encountered in the code, a spark, usually a pointer to a thunk, is created (see Page 24
for a discussion of the parallelism annotations).

There are at least two ways to interpret these sparks. They can be either ignorable,
in which case they represent potential parallelism but the runtime-system is free
to discard sparks, e.g. when the load of the machine is too high; or they may be
mandatory, in which case a thread has to be created for this spark eventually. The
latter variant is more sensitive towards fine-grained parallelism whereas a model of
ignorable sparks yields a high flexibility in the amount of parallelism that is created,
by dynamically combining threads. These benefits of ignorable sparks come for the
price of increased overhead in maintaining a pool of available sparks. Ignorable sparks
are used in many designs such as GRIP (Peyton Jones et al. 1987), GUM (Trinder,
Hammond, Mattson Jr., Partridge & Peyton Jones 1996), (is, G?)-machine (Augustsson
& Johnsson 1989), PABC machine (Nocker, Plasmeijer & Smetsers 1991). Some
machines like the HDG machine (Kingdon et al. 1991), and the v — STG -machine
(Hwang & Rushall 1992) use both versions of sparks.

Another way of exposing parallelism during the execution of the program is based
on the idea of just seeding enough information in the runtime stack to allow the
extraction of parallelism later on. The motivation of this approach is to further reduce
the overhead of managing parallelism in the case of sequential execution. The price
that has to be paid is additional overhead for extracting parallelism out of the seeded
stack. Rushall (1995) presents an implementation of this idea on top of the Spineless
G-machine, implemented on a KSR1 multi-processor. Goldstein et al. (1996) have
implemented a similar scheme in the context of the TAM machine, which is based
on dataflow inspired compilation. He reports significant runtime improvements for
rather large programs on a CM-5. A more detailed discussion of these mechanisms is
given in Section 5.7.1.

Locking: The standard way to implement synchronisation between threads that
try to evaluate the same thunk is via locking the node as soon as evaluation starts. If

2.4. Runtim e-System Issues 36

a thread encounters a locked node it joins a waiting list attached to the locked node.
When the node is updated with the result of the evaluation, all threads in the waiting
list have to be reawakened. This is the basic mechanism used in GUM(Trinder, Ham
mond, Mattson Jr., Partridge & Peyton Jones 1996), the (is, G)-machine (Augustsson
& Johnsson 1989), the PABC machine (Nocker, Plasmeijer &; Smetsers 1991), GAML
(Maranget 1991), EQUALS (Kaser et al. 1997), in fact in most parallel graph reduc
tion machines.

It is critical for the performance of the parallel machine to have efficient locking of
nodes as well as enqueuing and awakening of threads, because evaluating a node and
updating it with its result are very common operations in a graph reduction system.
Therefore, many optimisations to this basic scheme have been studied.

For example, locking a node may be a rather expensive operation requiring atomicity.
To reduce these costs the GAML system distinguishes on language level between
application nodes that might be shared and those that are known not to be shared.
No locking is required for the latter. In general a sharing analysis, e.g. (Jones &
Le Metayer 1989), would be useful to determine whether a node may be shared. If
the intermediate language uses a special le tp a r construct for binding expressions
that may be evaluated in parallel, locking is only necessary for such letpar-bound
variables (Hogen &; Loogen 1994). However, it is unclear whether this optimisation
is desirable in all cases. For example the STG-machine uses a locking mechanism,
“black holing”, even in a sequential setup. This has two important advantages: a
cycle in the program can be easily detected because the enter code of a black hole
produces an error message, and by overwriting the thunk with a black hole heap
space for the arguments can be freed before the thunk is updated, which helps to
avoid space leaks. Giving up these advantages is probably only reasonable for an
optimising compilation.

In order to implement locking efficiently, some machines like the (v, G)-machine, the
HDG machine, the EQUALS, and the GAML system use a bit in the node to mark
it as being under evaluation. Other machines like the GUM or the PABC machine,
which are based on a tagless design, change the code pointer of the node such that
entering the node causes the thread to be suspended and added to the waiting list.
This approach saves a test operation on entering a node.

2.4. Runtime-System Issues 37

W aitin g L ist: In order to record, which threads are waiting for the result of a
computation, waiting lists are usually used. In the graph reduction model, where the
result overwrites the original node, the waiting list is usually attached to the locked
node. This mechanism makes use of the fact that the descriptors for thieads are
heap allocated and can be referred to by closures without any modification to the
evaluation model.

All stages from locking, enqueuing a competing thread into the waiting list, updating,
and reawakening the thread are depicted in Figure 2.3. In this case thread A starts
evaluating the depicted graph structure and locks the root closure upon entry. When
thread B tries to access the root it finds the closure locked and B is added tn the, so
far empty, waiting list of the root closure. Finally, A finishes evaluating the giaph and
updates the root closure with the result. Upon updating the waiting list, containing
B, is reawakened and B can continue with its evaluation.

In order to minimise the heap usage of the program many abstract machines reuse
parts of the node for the root of the waiting list: GUM uses the first two words of
the closure, the (i/, G)-machine uses the back-link in the graph structure. The key
observation, which allows such reuse of parts of a node, is that a waiting list will only
exist when the node is locked. In this case, only two operations can be performed on
the node: adding a thread to the waiting list and updating the node with the result.
In both cases, no direct access to the data stored in the closure is necessary.

The PABC machine reserves space for the root of a waiting list in every node. This
reduces the overhead of locking a node but increases the heap usage. Hcwever, the
optimisation of the PABC machine described in Kesseler’s transputer implementation
(Kesseler 1996) also stores the root of the waiting list in the argument fields of the
locked node.

An simpler alternative to using a waiting list is polling: a thread that reaches a
node under evaluation is not removed from the list of runnable threads and it tests
whether the node has been overwritten to normal form whenever it is rescheduled.
This eliminates the waiting list overhead but imposes a high load in the presence of
fine-grained parallelism. A polling mechanism has been implemented and assessed
in the Concurrent Clean system (van Groningen 1992). The results show that even
with optimisations to this basic mechanism it is more expensive than a wailing list
mechanism if the program is fine-grained.

2.4. Runtim e-System Issues 38

B
waiinglist

locked

reawaken

F igure 2.3 Locking of closures and generation of waiting lists

The pure dataflow model achieves synchronisation between processes by passing to
kens. However, on conventional hardware such an approach has proven to be too
inefficient. Instead, I-structures (Arvind et al. 1989) are commonly used as the cen
tral means of synchronisation between threads. The behaviour of I-structures is very
similar to those of waiting lists. Initially, these single-assignment variables are empty
and a read access is deferred. Since all memory access operations are split-phase op
erations, a deferred read causes an implicit suspension of the reading thread. A list of
deferred read requests has to be maintained for each I-structure cell. When a value is
written into the I-structure the read requests can be satisfied by sending messages to
the requesting processes. An arrival of such a message will reawaken the suspended
process. This mechanism of synchronisation is used in the Monsoon (Papadopoulos
& Culler 1990) and *T architectures (Chiou et al. 1995), in the TAM mackim (Culler
et al. 1993) and in the pHluid system (Flanagan & Nikhil 1996).

The evaluation model of Alfalfa (Goldberg 19886) is one of heterogemous graph
reduction. In general, this is realised via standard locking of nodes and enqueuing of
tasks as described above, but all sparks are mandatory. However, in order to optimise
the execution of sequential components within the program, a stack-based execution
model is provided, too. The stack-based model does not have to deal with parallelism
issues because each thread performs sequential execution without being interrupted.

2.4. Runtim e-System Issues 39

A distinction between such sequential threads and general parallel threads is made
in the intermediate language. This uses information automatically infeired by the
compiler.

T h e N o tifica tion M od el

In the notification model every child thread is required to notify its paient thread
upon finishing its computation. The parent thread is blocked until all of its children
have finished. Usually, this is implemented via a pending counter and an associated
pending list, the same as a waiting list, of all threads that need the result of this
evaluation.

One of the first machines that used such a kind of synchronisation mechanism was AL
ICE (Darlington & Reeve 1981), which influenced the design of many later machines
such as Flagship (Keane 1994), which uses a data-driven rather than a demand-driven
model, PAM (Loogen et al. 1989), the HDG machine (Kingdon et al. 1991) etc. These
more recent machines use compiled rather than interpreted graph reduction, thereby
gaining far higher sequential performance.

The larger-grain graph reduction model (LAGER) (Watson 1988) uses a notification
model of synchronisation between parallel threads. However, this model uses seeding
rather than sparking in order to expose parallelism. By default, the code is executed
in a sequential manner, in order to use optimised sequential code most of the time.
At statically determined points, code for generating parallel threads is planted.

The evaluation model in the dataflow-oriented TAM machine (Culler et al. 1993) also
uses explicit synchronisation counters, similar to pending counters, for synchronisa
tion across threads. In TAM a thread is a linear sequence of instructions without
branching or creating parallelism, somewhat similar to a basic block. A hierarchy
of controlflow units is defined, from fine-grained, cheap operations, e.g. inlets for
handling messages, to coarse-grained operations with a comparatively expensive syn
chronisation mechanism. An important difference to the notification model is the
fact that synchronisation is performed via data-structures, as in the evalua:e-and-die
model (see Section 2.4.1), rather than directly between threads.

2.4. Runtime-System Issues 40

T h e Fork-and-Join M od el

The fork-and-join model is a special version of the notification model, which implies
symmetric parallelism. A thread that creates other threads becomes a parent process
waiting for the results of the children. Thus, synchronisation is performed directly be
tween threads. The fork-and-join model generates a strict hierarchy of threads where
a parent can only continue after all children have completed. This restriction allows
to use efficient mechanisms for load balancing. However, a fundamental problem of
this model is that the usually small computation in the join phase tends to form a
parallelism bottleneck.

The Dutch Parallel Reduction Machine (DPRM) (Barendregt et al. 1987) uses such
a fork-and-join model. A special “sandwich” annotation has to be used to generate
child threads. This annotation has been designed for divide-and-conquer parallelism:
it specifies a list of sub-computations that should be done in parallel, and a com
bination function. The characteristic feature of this annotation is the reduction of
all arguments of the sub-computations to normal form before generating parallelism.
This avoids bottlenecks of sharing data structures between different threads because
data in normal form can be safely copied. It is up to the programmer to use this
annotation on expressions of appropriate size in order to generate coarse granularity.
However, special mechanisms are necessary to improve the granularity in particular
to avoid harmful thread migration in the join phase (Hofman et al. 1992).

T he E valuate-and-D ie M odel

In contrast to the previous models, the evaluate-and-die model (Peyton Jones et al.
1987) generates asymmetric parallelism. A thread that creates (potential) parallelism
does not have to synchronise with the generated child thread, i.e. it forgets about all
generated work. The only means of synchronisation is via the graph structure the
threads are working on. In particular, if a thread requires the result of a potentially
parallel sub-expression, it will start to evaluate that expression itself, thereby sub
suming the computation of another spark. In contrast, the notification model would
cause the thread to block on the thread evaluating the sub-expression. In the case of
a high load, i.e. many runnable threads, such subsumption of sparks automatically in
creases the granularity of the threads and reduces the number of parallel threads that
are generated. However, this mechanism only works for certain, hierarchic structures

2.4. Runtime-System Issues 41

of computation such as divide-and-conquer. In his thesis Roe (1991) [Section 6.5]
shows that evaluate-and-die cannot improve the granularity for some data-parallel
programs, which typically exhibit a flat structure of sparks.

GUM(Trinder, Hammond, Mattson Jr., Partridge k Peyton Jones 1996) uses an
evaluate-and-die model with ignorable sparks and waiting lists. The (^, G)-machine
(Augustsson k Johnsson 1989) uses similar techniques, however, it has been designed
for shared memory systems and therefore it splits the heap in chunks to be more
flexible in managing the heap sizes of the individual processors. The HDG machine
(Kingdon et al. 1991) uses an evaluate-and-die model with tags in each closure indi
cating whether a task for evaluating this closure has been created and whether the
evaluation of the expression has already begun. It uses both ignorable and mandatory
sparks assigning them different priorities in a transputer based implementation.

2.4.2 Storage M anagement M odels

In a general model of distributed memory an important question is:

How is the heap distributed between processors?

One possibility to model the distributed nature of the heap in a parallel system is to
add a new type of closure: a FetchMe, or global indirection, closure. It points to a
graph structure on a remote processor. When a thread tries to evaluate a FetchMe
closure, a fetch request for this graph structure is sent to the remote processor. The
thread gets blocked on the FetchMe closure and will be reawakened upon arrival of the
graph structure. The same mechanism as for blocking on a closure under evaluation
can be used in this scheme. If the remote graph structure is itself under evaluation
the fetch request will block on the locked closure. The reply will be sent only after
having evaluated the graph structure. This means that the perceived latency in the
system is unbounded as it depends on the computations being performed on other
processors. It is therefore important to provide latency hiding mechanisms that allow
to overlap the communication with useful computation.

The unbounded perceived latency also underlines the importance of data locality in
order to avoid communication. By data locality we mean the distance between data
structures required within one thread of computation, where the unit of distance is

2.4. Runtime-System Issues 42

one processor. The goal is to keep all required data on the same processor, avoid
ing communication and thereby improving parallel performance. In sequential im
plementations a stack ensures data-locality and the efficient use of storage. The
importance of using a stack-oriented evaluation in order to maintain data-locality
has already been shown in the implementation of heterogeneous graph reduction
(Goldberg 1988a, Goldberg 19886) for lazy functional languages. In Goldberg’s model
a stack-based model is used in the sequential parts of the computation in order to
achieve high sequential performance and only for the parallel components a packet
based model of graph reduction is used.

In a parallel system conceptually each thread needs its own stack. Because the cre
ation structure of threads is a tree the stack becomes a cactus stack, with thread
creation causing a new branch in this stack. The portion of the stack generated be
fore thread creation is shared between child and parent thread. In subsequent sections
the following possible implementations of a cactus stack are discussed:

1. a linked list of packets;

2. a linked list of stack segments;

3. a contiguous stack that is reallocated when needed; or

4. a meshed stack.

An area related to the storage management model in a parallel system is parallel,
or more general distributed, garbage collection. However, it is not directly relevant
to the issues studied in this thesis and will not be discussed in detail. Plainfosse &
Shapiro (1995) give an excellent survey of distributed garbage collection techniques.

Packet-based M od els

The first designs of parallel graph reduction machines, such as ALICE (Darlington
k Reeve 1981, Harrison k Reeve 1986), used a packet-based reduction method: con
ceptually variable size packets are used to hold the arguments to the code as well as
local variables needed during the execution of the code. These packets, or frames, are
linked together during runtime thereby creating a cactus stack structure with each
packet playing the role of an activation frame. Such a packet-based model does not

2.4. Runtime-System Issues 43

have an runtime allocation overhead because the allocation is done at compile time
when generating the closure. However, it uses much more heap space and the danger
of space leaks is much higher because if a closure is still live so are all local variables in
its frame. In essence, some of the allocation overhead has been moved to the garbage
collector.

The HDG machine (Kingdon et al. 1991) uses such a packet-oriented approach. It uses
a special “stacklessness analysis” (Lester 1989) to determine the size of the activation
record needed to evaluate a node. With this information it is possible to allocate all
the required stack space in the node itself. No explicit checks for stack overflow are
required at runtime. In contrast, the (is, Gr)-machine (Augustsson & Johnsson 1989)
and the PAM machine (Loogen et al. 1989) may have to extend the space allocated
for one packet if a generic function application, which does not contain information
about the arity of the function, is used.

Segm ented Stack M odel

In this model the stack is allocated in the heap but separated from closures in the
graph. By splitting the stack into segments this model can efficiently handle small
threads without wasting space on a large stack. For large threads it must be possible
for the stack to grow by allocating new segments. In contrast to the packet-based
model, these segments are separate from activation frames and changing the size of
the stack segments can be a useful tool in the performance tuning stage of parallel
program development.

Of course, the increased flexibility imposes some runtime overhead when allocating
new stack segments. However, in practice segment sizes are chosen high enough to
avoid the creation of long lists of stack segments even if this leads to some waste
in heap space. One particular danger of this model is “stack thrashing” : if the
stack grows and shrinks rapidly across segment boundaries many segments have to
be allocated. Additionally, to increasing the runtime overhead this creates a lot of
garbage stack segments, which increases the garbage collection rate, unless garbage
stack segments are kept on a special list for further reuse. Therefore, it might be
better to leave some headroom in each stack segment that can be used upon returning
from a discarded stack segment. The GRIP (Peyton Jones et al. 1987) and GUM
(TYinder, Hammond, Mattson Jr., Partridge & Peyton Jones 1996) machines use

2.4. Runtime-System Issues 44

such a segmented stack model.

C ontiguous Stack M odel

In this model each thread uses a monolithic block of heap space as its own stack. This
achieves good data locality, similar to the sequential evaluation. If the stack runs out
of space it has to be enlarged using standard re-allocation. However, this is a rather
expensive operation and should be avoided whenever possible. Therefore, in practice
rather big stacks are used.

The main disadvantage of this scheme is the huge waste of heap space if many threads
do not require a lot of stack. This model is far less suited to dealing with threads of
different sizes compared to the previous two approaches. The PABC machine (Nocker,
Plasmeijer & Smetsers 1991) uses this kind of stack model.

M eshed Stack M odels

The meshed stack technique eliminates a parallelism overhead in case of sequential
computation by interleaving all local stacks into a single stack. This avoids the
necessity of allocating the stack in the heap. This concept was first introduced under
the name of spaghetti stack by Bobrow & Wegbreit (1973). The main idea is to mark
activation frames that are not on top of the stack as garbage and to run a special
compacting garbage collector on the meshed stack if it runs out of space.

This mechanism drastically reduces the overhead when sequential execution is per
formed because there is no need for allocating new stack segments. It also achieves
very good data locality because data is not attached to closures in the heap. However,
since the single meshed stack is a centralised resource, it is very hard to implement
thread migration on top of this stack model. The meshed stack model has been in
troduced for the PASTEL machine (Hogen & Loogen 1994) and was inspired by the
handling of backtracking in the Warren Abstract Machine (WAM) for implementing
logic languages (Warren 1983). Measurements comparing this model with a packet-
based model using an interpreter on a transputer system show that the amount of
heap allocations is reduced up to a factor of two and the runtime improves by about
20% (Hogen & Loogen 1995).

2.4. Runtime-System Issues 45

2.4.3 Communication M odels

This section tackles the following question:

How is data exchanged between processors?

One of the main sources of overhead in a parallel system is communication. In
most parallel architectures communication is much more expensive than computa
tion. Therefore, it is very important to provide good data locality in order to avoid
communication.

To this end, it is useful to distinguish several aspects of the communication model:

1. Data placement: Is data moved to a thread or vice versa?

2. Latency hiding: Can the communication be overlapped with useful computa
tion?

3. Packing: How much data should be sent in one packet?

An important issue for hiding communication costs is multi-threading, i.e. a schedul
ing method that allows the interleaved execution of several threads of computation.
In particular, it is possible to deschedule a thread waiting for data and to sched
ule another thread, which can perform computation in the meantime. This section
discusses details of this method.

D a ta P lacem en t

One important issue for the data locality in the system is data placement, which
describes how to handle the distribution of data during the execution of the program.
Whenever the result of a remote thunk is required by a local thread there are two
possibilities of communication:

• Send the thunk to the demanding process, evaluate it locally by this process and
replace it with a global indirection on the remote processor (local evaluation).

2.4. Runtim e-System Issues 46

• Start a thread on the remote processor to evaluate the thunk and then send the
result to the demanding process (remote evaluation).

The advantage of the local evaluation scheme is that it minimises the delay in ob
taining the result. Furthermore, parallelism is only created via picking a spark from
a spark pool, not as a side effect from receiving a message. This simplifies load
management. The local evaluation model is used in Flagship (Keane 1994), GRIP
(Peyton Jones et al. 1987), and GUM (Trinder, Hammond, Mattson Jr., Partridge
&; Peyton Jones 1996). The remote evaluation scheme, however, might increase data
locality by avoiding a distribution of subgraph structures. Because of the poten
tially high hidden latency imposed by performing the evaluation on the remote pro
cessor, an effective latency hiding mechanism is required. There is a higher dan
ger of a severe load imbalance attached to this scheme if no thread migration is
provided because some processors may become hot-spots of computation. The re
mote evaluation scheme is used for example in the PABC machine (Nocker, Plasmei-
jer k Smetsers 1991, Kesseler 1996), in the proposed v — STG -machine (Hwang k
Rushall 1992), in PAM (Loogen et al. 1989), and in the related PASTEL (Hogen k
Loogen 1994) machine. Alfalfa combines the remote evaluation scheme with an active
work distribution scheme which sends available work to idle processors, rather than
have idle processors ask for work.

L atency H id in g

The latency in a parallel machine is the time required to send one piece of data
between two processors. In practice, latency often varies between pairs of processors
and also depends on the network traffic. One way of reducing the impact of the
communication costs on the performance of the system is latency hiding. The idea
of this scheme is to overlap the communication with some useful computation on the
local processor. In general, when a thread requests remote data the processor can
either:

• block while waiting for the data (synchronous communication) or

• execute another thread (asynchronous communication).

The second option imposes some overhead on the runtime-system because it has
to support multi-threaded scheduling on each processor. However, as a result it is

2.4. Runtime-System Issues 47

possible to hide the latency in the system if at every point when data is requested
enough parallelism is available to perform useful computation.

In a model of synchronous communication a processor is blocked if a thread requests
remote data. This kind of communication only makes sense if the ratio of latency to
the time needed for scheduling is very small. In such a case it is more efficient for the
processor to block on a thread that is waiting for remote data, rather than deschedule
it and look for another thread to run.

In contrast, asynchronous communication, allows other threads to run while one
thread waits for the arrival of remote data. This behaviour allows the overlapping
of communication and computation and is essential for latency hiding. It is worth
noting, that machines based on the dataflow model, which usually generate a huge
number of fine-grained threads, put a specific emphasis on latency hiding, e.g. TAM
(Culler et al. 1993), *T (Chiou et al. 1995), pHluid (Flanagan & Nikhil 1996). In these
models certain instructions like accessing an I-structure or writing to it, cause an au
tomatic descheduling of the current thread. Therefore, these split-phase instructions
implicitly define the length of one sequential thread of computation.

Packing

Finally, the aspect of packing has to be considered. The question here is how much
data to pack into one packet when transferring data. By developing a pre-fetching
packing scheme a graph reduction system can realise a caching scheme that exploits
the structural information of the program, which is encoded in the graph. The goal of
such a scheme is to reduce the total communication cost by increasing the granularity
of the communication. However, if the packing scheme also pre-fetches thunks, which
represent work, it may lead to a very uneven load balance and even deteriorate data
locality.

In the context of the PABC machine (Kesseler 1996) examines different “copying
strategies” for the Concurrent Clean system on a transputer network. Finally, he
develops a lazy normal formal copying strategy, which copies normal form closures
and only those non normal form closures that are specially annotated in the program.
We have implemented several “packing schemes” in the G ranSim simulator. In mea
surements of these schemes, a scheme that packs a full-subgraph generally performed
best. However, for some communication-intensive programs a scheme that only packs

2.4. Runtime-System Issues 48

normal forms performed better. These packing schemes are discussed in detail in
Section 3.3.1.

2.4.4 Load Distribution

The question that is examined in this section is dual to the question how the heap is
distributed over all processors:

How is work distributed and balanced between processors?

From a global point of view it is useful to distinguish two approaches toward load
distribution:

• Passive load distribution where idle processors have to explicitly ask for work,
and

• active load distribution where new threads are sent to remote processors.

Passive load distribution, which is sometimes called work stealing, tries to minimise
the overhead during periods in which all processors are busy anyway. However, this
may yield an uneven load distribution if few threads are creating a lot of parallelism.
In contrast, active load distribution sends, by default, a new thread to a remote
processor for execution. Although this gives a more even load distribution it may
yield a deterioration in the data locality of the system. In both cases, however, it is
desirable to have load information about other processors available. Obtaining such
information may require significant communication and therefore all machines have
to find a compromise between the competing goals of an even load distribution and a
minimal amount of communication. As a result, many implementations use a random
allocation mechanism, e.g. ALICE (Harrison & Reeve 1986).

For example, GUM (Trinder, Hammond, Mattson Jr., Partridge & Peyton Jones
1996), a system of passive load distribution, uses a “fishing” mechanism, where re
quests are sent to random processors. Some delay is added to avoid flooding the
system with work requests, a problem observed on ALICE (Harrison & Reeve 1986),
and allowing just one outstanding fish per processor. Because GUM packs more than
one thunk into a packet, some pre-fetching of work is performed. The HDG machine

2.4. Runtime-System Issues 49

(Kingdon et al. 1991) sends requests only to neighbouring processors. They return
work if they have at least two tasks where one of them has not been started, yet.
This is similar to the strategy used in ZAPP (McBurney & Sleep 1987). On ZAPP
and GRIP experiments have been performed with pre-fetching work, i.e. asking for
work when the local pool of work falls below a certain threshold. However, this did
not in general yield better performance. The PAM (Loogen et al. 1989) system reg
ularly exchanges information about the workload of neighbouring processors in order
to improve the load balance. It uses passive load distribution and exploits the load
information in order to decide which processor to ask for work.

In contrast, the Alfalfa machine is based on active load distribution. Extensive studies
of various different load balancing schemes (Goldberg 19886) have been performed on
this distributed memory architecture. As a result, diffusion scheduling with a simple
load balancing heuristic performed best. The idea of diffusion scheduling is to send
work only to neighbouring processors and to pick the least loaded processor. Thus,
only load informations from the neighbours is required. However, this method may
react rather slowly to rapidly changing load situation and to hot-spots in the system.
On Alfalfa it showed satisfying results, even though no task migration is supported
in this implementation.

Issues closely related to load balancing are load bounding and throttling, which aim
at avoiding an excessive amount of parallelism in the system. It is important not to
prohibit a large amount of parallelism by design because this would diminish its scal
ability. However, typically functional languages exhibit an abundance of parallelism,
which requires some techniques aiming at limiting the total number of generated
threads. Problems with load bounding have been observed on ALICE (Harrison &
Reeve 1986), ZAPP (McBurney & Sleep 1987), on PAM (Loogen et al. 1989), and
on many dataflow machines. This problem is related to the fine granularity of the
threads that are normally created.

A simple but quite effective mechanism for load bounding has been developed on
ZAPP (McBurney &; Sleep 1987): when the load of the machine is low the runnable
queue is treated as a FIFO queue, favouring threads near the root of the divide-and-
conquer tree. However, when the load drops below a certain threshold a LIFO mech
anism is used. A similar mechanism has been adapted on the Manchester Dataflow
machine (Gurd et al. 1985), where a hardware throttle examines the length of the to
ken queue to decide whether a new thread should be generated or whether it should

2.5. Our M odel 50

be suspended. In the latter cases it may be reactivated at some later time when
the load drops below the threshold (Ruggiero & Sargeant 1987). Similar techniques
have been used in the LAGER model (Watson 1988), in the STARiDUST machine
(Ostheimer 1991), and in the 7r-RED+-machine (Biilck et al. 1994) via a limited supply
of tickets.

2.5 Our M odel

This section locates the model of G ranS im and GUM in the design space outlined in
the previous sections. The detailed discussion of G ranS im in the following chapter
will show that both models are almost identical.

In short, the characteristics of the G ranS im/G U M model can be specified as follows:

• Implementation model: parallel graph reduction

• Evaluation model: evaluate-and-die

• Thread placement: local evaluation

• Communication: message passing

• Storage management: segmented stack

• Load distribution: passive

• Scheduling: multi-threading, unfair

The choice of this particular model has been motivated by experiences from parallel
functional programming on the G R IP machine (Hammond & Peyton Jones 1992,
Hammond et al. 1994), which uses parallel graph reduction, an evaluate-and-die model
of computation and passive load distribution. In order to support general parallel
architectures message-passing is used for communication. In order to support higher
latency systems multi-threading has been added as a means of hiding latency.

2.5. Our M odel 51

Im p lem en ta tio n m odel: The implementation model is an extension of the Spine
less Tagless G-machine (Peyton Jones 1992). In the parallel system new types of clo
sures such as FetchMe closures (see Section 2.4.2) and waiting lists (see Section 2.4.1)
have to be added. Furthermore, the notion of a global address has to be introduced
to uniquely identify closures on different processors. Threads and stacks are modelled
as special closures.

E va lua tion m odel: Our model uses an evaluate-and-die model as described in
Section 2.4.1. This model was very successful on G R IP. One of its most important
features is the possibility to dynamically increase the granularity of threads. An
explicit, distributed spark pool is used for maintaining sparks. One difference between
GUM and G r a nSim is that the latter can use an infinite spark pool.

D a ta p lacem en t: In our model we use local evaluation of data that is needed by
a thread. In this approach the delay in obtaining a result does not dependent on the
load of a remote processor. Therefore, the perceived latency is reduced. In general,
however, it is not clear whether local or remote evaluation will yield better results.
It is an interesting topic for future work.

C om m unication : The communication is modelled via message passing between
different processors. This yields a very portable implementation. By using packing
routines that are tailored to graph reduction it is possible to exploit the information
contained in the structure of a graph to be sent.

S torage m an ag em en t: Our model uses a segmented stack storage management
model. This minimises the waste due to too large stacks, and increases the data local
ity compared to packet based approaches. GUM uses a weighted reference counting
mechanism for performing distributed garbage collection (Bevan 1987). However, we
will not explore issues related to garbage collection in more detail here.

Load d is tr ib u tio n : GUM uses a passive model of work distribution by imple
menting a work stealing mechanism. This mechanism tries to minimise the number
of messages required for load distribution, but may produce a rather uneven load

2.6. Summary 52

balance. G ranS im simulates this model but offers more flexibility, for example al
lowing several steal requests per processor at the same time. No load information is
exchanged between the processors.

Scheduling: Our model uses multi-threaded scheduling, which is essential to hide
latency. In GRIP (Peyton Jones et al. 1987) synchronous communication was used
and therefore multi-threading was not necessary.

2.6 Summary

This chapter has shown that parallel graph reduction is a very natural model for
expressing parallel execution. In common parallel machines its rather high level de
scription of computation requires an efficient mapping of basic operations like locking
closures and handling waiting lists onto standard hardware. This is a similar situation
as in the dataflow community where the current trend is to depart significantly from
the core model, using a few selected standard synchronisation constructs to imple
ment a functional language. One main source of cross-fertilisation in this area has
been in adopting an aggressive multi-threading approach within a graph reduction
framework.

Two aspects of the dynamic behaviour in a parallel graph reduction system require
special attention: data locality and granularity. The former is crucial to avoid unnec
essary communication, the latter is essential for minimising the overhead for parallel
computation. Chapter 5 will focus on mechanisms for improving granularity. How
ever, before focusing on the issue of granularity the following chapter will describe the
underlying parallel machine and its simulator, G ranS im , in more detail. In doing
so, variants in implementing crucial runtime-system operations, as outlined in this
chapter, will be discussed.

Chapter 3

GranSim— A Simulator for
Parallel Haskell

Capsule

The main m otivation for sim ulating the parallel execution of a functional

program is to abstract from machine specific details and from the often non-
deterministic behaviour o f a com plex parallel system . Such an abstraction

enables the programmer to focus on the parallelism inherent in an algorithm,

taking an algorithm-oriented view of parallel execution. In order to support

such a view a very simple simulator is sufficient. For example, communication

costs are often ignored in order to expose the maxim al amount o f parallelism

in the program. The GRANSlM-Light setup of the simulator presented in this

chapter supports this view by modelling an idealised machine w ith zero com

munication costs and an infinite number o f processors.

For the subsequent studies on granularity, however, such an approach is not
sufficient. For studies on this level of detail, involving aspects of the underly
ing runtime-system, a more detailed system-oriented view of parallel execution
is taken. For this approach it is crucial to accurately model a wide range of
parallel machines that differ in the implementation of basic operations like inter-
processor communication. Therefore, flexibility and accuracy are two equally
important, though competing, aspects in the design of G r a n S im . For the over
all accuracy of the simulation it is important to achieve a balance between the
accuracy of the compilation (to avoid naive generation of inefficient sequential
code), of the computation, and of the communication during the simulation.
In order to meet these requirements of flexibility and accuracy G r a n S im has
the following crucial features:

53

3.1. Introduction 54

• It offers different variants for many basic runtime-system operations like
communication.

• It uses a state-of-the-art optimising compiler (GHC) for generating graph
reduction code.

• It measures computation time in machine cycles rather than reduction
steps.

• It accurately models the communication in a parallel system.

• It offers granularity improvement mechanisms to improve the performance
of parallel programs.

GranSim has been used in the parallelisation of several large programs. In
this process, it has proven to be robust and to be an important component of
the parallel engineering environment. This is being underlined by its current
use at several universities worldwide.

3.1 Introduction

In the parallel functional programming community simulators are very popular, e.g.
(Runciman & Wakeling 1993, Roe 1991, Deschner 1989, Joy &; Axford 1992). They al
low the programmer to take a very abstract view of parallelism, matching the rather
abstract view of computation that is supported especially by lazy functional lan
guages, where definition is cleanly separated from control. However, when running
the program on a real machine low-level details of the execution can no longer be
ignored. These details may very well be the reason for not obtaining the parallelism
that is present on a more abstract level. At this stage the development of a parallel
algorithm or the parallelisation of an existing algorithm turns into the performance
tuning for a specific parallel machine. Although simulators for exactly modelling
such machine details exist (Bennett 1993, Hofman 1994, van Groningen 1992, Keller
& Lin 1984, Morais 1986, Watson 1989), they usually lack the ability to model a wide
range of parallel architectures.

G r a n S im , a simulator for the parallel execution of Glasgow Parallel Haskell (GpH)
(see Section 2.2.3), helps the programmer in both stages. Different setups of the
simulator reflect different views of the parallel execution: an algorithm-oriented view
is supported by the G r a n S IM-Light setup, whereas a less abstract system-oriented

3.1. Introduction 55

view is supported by the standard setup of G r a n S im . In the latter setup G r a n S im

can simulate most MIMD machines by tuning the available parameters specifying the
characteristics of the parallel machine. The limits of such a simulation are discussed
in Section 3.5.

G r a n S im uses a parallel graph reduction model of computation as discussed in Sec
tion 2.3.1. The particular implementation is based on the Spineless Tagless G-machine
(STGM) (Peyton Jones 1992), with the parallelism annotations par and seq, which
have been discussed in Section 2.2.3. The STGM has been chosen as the underly
ing abstract machine, because it is used in the Glasgow Haskell Compiler (GHC).
Therefore, G r a n S im can make use of GHC for performing the compilation. The
GUM system, a portable parallel runtime-system for Haskell (Trinder, Hammond,
Mattson Jr., Partridge & Peyton Jones 1996), uses the same abstract machine and
a subset of the same annotations as G r a n S im . For realising the communication be
tween the processors, GUM uses the PVM communication harness. Thereby, GUM
achieves a high level of portability and it has been used on shared-memory machines,
distributed-memory machines and workstation networks already. The development of
G r a n S im and GUM was independent, but in several cases influential. As a result of
using the same abstract machine, G r a n S im can be parameterised to closely resem
ble the GUM system. However, as will become clear from this chapter, G r a n S im is
much more flexible than just simulating the GUM system.

The two main topics studied in this thesis are large-scale parallel programming and
granularity. The first topic requires an algorithm-oriented view in developing and
tuning a parallel program. A more detailed system-oriented view is needed in order
to run it on a particular parallel machine. The study of granularity also requires a
system-oriented view in order to model and study different runtime-system features.
In particular for the latter view the flexibility and the accuracy of the simulator are
of special interest. These issues will be emphasised in the following discussion.

The core system of G r a n S im has been developed jointly with Dr. Kevin Hammond
and Dr. Andrew Partridge. This initial version includes the basic design of the dis
tributed heap, of spark pools, and of thread pools. This design was based on the
runtime-system of GRIP for PVM (Hammond 1993) and GRAPH for PVM (Loidl &
Hammond 1994), two versions of a port of the GRIP runtime system using PVM to
perform communication. The latter added multi-threading and asynchronous commu
nication to the original GRIP runtime-system. Part of the support for multi-threading

3 .2 . S tru c tu re o f G r a n S im 56

in G r a n S im is based on the existing implementation of the GHC runtime-system for
Concurrent Haskell (Peyton Jones et al. 1996). The extensions developed in this
thesis on top of the core version of G r a n S im include the design and extension of
the communications system with asynchronous communication, several variants of
rescheduling, bulk fetching with several variants of packing graph structures (see
Section 3.3.1). An extension of the work request mechanism, several granularity im
provement mechanisms, and the idealised GRANSiM-Light setup (see Section 3.4)
have been implemented. These extensions are necessary to study a variety of ar
chitectures and to specifically focus on granularity aspects of the parallel execution.
Finally, G r a n S im has been integrated into GHC and is now publicly available from
the GHC web page (GranSim 1998) for both Haskell 1.2 and 1.4.

The structure of this chapter is as follows. Section 3.2 presents the global structure
of the simulator. Section 3.3 discusses its main characteristics, distinguishing it from
other simulators. Section 3.4 focuses on the GRANSiM-Light setup. Section 3.5
addresses shortcomings of the current version of the simulator. Section 3.6 validates
the results obtained from G r a n S im by comparing them with results from H B C PP,
G R IP and GUM. Finally, Section 3.7 summarises.

3 . 2 S t r u c t u r e o f G r a n S i m

Figure 3.1 shows the global structure of G r a n S im . In the standard setup G r a n S im

simulates a finite number of processors. The GRANSiM-Light setup drops this re
striction in order to provide an algorithm-oriented view of computation that exposes
the total amount of parallelism available in a program. GRANSiM-Light is discussed
in more detail in Section 3.4.

Each of the simulated processors has its own spark pool and thread pool as well
as its own clock. Clock synchronisation is performed via accessing the global event
queue, which is sorted by the time stamps of the entries in this queue. The spark
and thread pools are physically distributed but logically shared. Explicit messages
between processors have to be simulated in order to transfer sparks and threads
between processors.

The simulation is event driven with events representing actions related to the par
allel nature of the program execution like thread creation, communication etc. The

3 .2 . Structure o f G ranSim 57

TYPE
TSOWHEN

PE
----5»" Statistics Buffer

Global Event Queue
Spark Pool Thread Pool

Proc 1 Proc 2 Proc n

F igure 3.1 Global structure of G r a n S im

events in the global event queue contain information about the type of the event, a
time-stamp, the processor where it is happening and a link to the thread state object
(TSO), a descriptor of the thread affected by the event. The statistics buffer accu
mulates important information such as the runtime, fetchtime, blocktime, amount of
heap allocations etc.

From the presentation of the principles of parallel graph reduction in Section 2.3.1
it should be clear that the management of the spark and thread pools is fundamen
tal for the behaviour of a parallel graph reducer such as G r a n S im . Therefore, we
concentrate on the discussion of these two issues.

Spark M anagem ent: The spark pool holds sparks generated by threads on this
processor as well as those obtained from other processors. By default it is managed as
a first-in first-out (FIFO) queue. This means that older sparks appear earlier in the
spark queue. Although this mechanism is likely to pick larger pieces of work first if
the program has a divide-and-conquer structure, this is not necessarily the best way
to manage the spark pool. Alternatives will be discussed in Section 5.5. In contrast
to recent work on lazy threads (Goldstein et al. 1996), which tries to eliminate a

3 .2 . S tru ctu re o f G r a n S im 58

separate spark pool altogether (see Section 5.7.1), such an explicit spark pool gives
the runtime-system a handle to control the behaviour of the parallel program on a
rather low-level, e.g. by attaching granularity information to individual sparks.

From the user’s point of view two aspects of sparks deserve special attention. First
of all, G r a n S im uses an evaluate-and-die model of computation, as discussed in
Section 2.4.1. This means that one parallel thread may perform a reduction, for
which another spark has been created. In short, sparks may be subsumed (Peyton
Jones et al. 1987). This mechanism improves the granularity of the program to some
degree. This issue is studied in greater depth in Chapter 5. Another important
aspect of sparks is the fact that they may be discarded by the runtime-system. This
is done for example when the closure, which should be evaluated, is already in weak
head normal form (WHNF). It might also happen during garbage collection. For
the programmer this means that he cannot rely on all sparks actually being turned
into threads. This might be a problem if a spark is discarded although it drives the
parallelism by generating many more sparks.

T h read M anagem ent: Each processor maintains a pool of runnable threads. Like
the spark pool, the thread pool is implemented as a FIFO queue. The default schedul
ing algorithm for the threads is unfair: the currently running thread will only be
descheduled if it demands a closure that is under evaluation by another thread or if it
has to fetch remote data and asynchronous communication is enabled. If synchronous
communication is turned on, the whole processor will be blocked while the data is
fetched. In a previous version of G r a n S im a fair round robin scheduling mechanism
was implemented. However, comparing simulations with these two variants of the
scheduling mechanism showed only minor differences in the overall behaviour whilst
increasing the simulation time significantly. The same unfair scheduling algorithm is
also used in GUM.

A potential problem with unfair scheduling is that a single thread may exhaust all
system resources. However, so far only the largest of our example programs, Lolita,
causes such resource problems. Even in this case simulation time is a more serious
limiting factor than resource exhaustion.

3 .3 . C h a r a c te r is t ic s o f G r a n S im 59

3.3 Characteristics of GranSim

This section discusses the main characteristics of G ranS im, showing that the level
of detail presented by the simulation supports a system-oriented view of parallel
computation. In particular, the flexibility and the accuracy of the simulation will
be discussed. Furthermore, a set of visualisation tools that have been implemented
while developing G ranS im proved to be crucial for a detailed analysis of the dynamic
behaviour of the parallel programs.

The main characteristics of G ranS im are

1. Support for different levels of abstraction;

2. Flexibility in simulating different parallel machines and different features of the
runtime-system;

3. Accuracy of the simulation;

4. Visualisation of the dynamic behaviour and of the granularity of the program;

5. Efficiency of the simulation;

6. Integration of G ranS im into a state-of-the-art optimising compiler (GHC);

7. Robustness of G ranS im;

8. Using Granularity Information in the runtime-system.

Different levels of abstraction are provided by supporting both a G ranS IM-Light
and a standard G ranS im setup. In the latter configuration it is possible to abstract
from certain aspects of the parallel execution, such as the communication latency, by
setting the corresponding parameter to zero. This will become clear when discussing
the simulation parameters in the following section. The GranSim User’s Guide (Loidl
1996) contains a complete presentation of these parameters. A detailed discussion of
the granularity improvement mechanisms in particular is given in Chapter 5.

3 .3 . C h a r a c ter istic s o f G r a n S im 60

3.3.1 Flexibility

G r a n S im enables the programmer to model a wide range of parallel architectures.
This is possible by tuning many of the low-level characteristics of the parallel machine.
For example the communication behaviour of a machine can be modelled by specifying
several parameters like communication costs such as latency, message pack time etc,
and the strategy that is used for packing a graph, such as incremental packing or bulk
packing. The overhead imposed by the simulated runtime-system can be specified by
setting costs for thread creation, context switch, etc. The specifics of the underlying
processor can be changed, too (see Section 3.3.2).

Crucial for the flexibility of the simulator is its ability to simulate several different
variants of important operations of the runtime-system. Variants of the most impor
tant operations in G r a n S im are:

• Bulk fetching versus incremental fetching: different packing schemes specify how
much of a graph to pack into one packet.

• Synchronous versus asynchronous communication: different rescheduling schemes
specify what to do while waiting for remote data.

• Migration: is a toggle indicating whether a runnable, but not running, thread
may be moved (“migrated”) to another processor. Experiments on GRIP have
shown that migration, although very expensive, is essential for the performance
of some programs (Hammond & Peyton Jones 1990). Migration is not imple
mented in GUM.

• Some of the more experimental features implemented in G r a n S im are: throt
tling communication by bounding the number of outstanding fetch requests,
prefer stealing of threads over sparks, and prefer sparks of local closures over
remote closures, to improve data locality.

The simulator is based on experiences from real parallel systems (G R IP, GUM) and
therefore accurate in modelling aspects of the runtime-system. In fact, to a large
extent G r a n S im shares the same code with GUM.

This close relationship between G r a n S im and GUM encourages the prototype imple
mentation of runtime-system features not yet available in GUM. The author has used

3 .3 . C h a r a c ter is t ic s o f G r a n S im 61

this possibility in implementing and measuring various packing schemes and various
rescheduling schemes in G r a n S i m (Loidl & Hammond 19966), which are discussed
in the following sections.

P a c k i n g S c h e m e s

A packing scheme prescribes how much of the graph to transfer to a processor that
sends a fetch request for one closure. For example, an incremental fetching scheme
only sends the closure that is immediately requested. This scheme aims to minimise
the total number of closures that are sent during the execution of the program. This
is achieved by fetching closures lazily when they are known to be required. However,
this means that the requesting thread has to block for every remote closure, involving
some delay determined by the latency of the machine. Such an incremental scheme
has been used in the low-latency G R IP system.

In contrast, a bulk fetching scheme transfers a group of related closures in a single
packet. The per-packet overhead is higher because packet construction and decon
struction are much more complicated. The gain is in reduced perceived latency per
closure, because many nodes will be transferred in a single packet, and so will not
need to be transferred individually if they are needed. As a refinement of this mech
anism G r a n S i m offers the possibility to specify a bound on the packet size or on
the number of thunks that can be packed into a single packet. If neither limit is
specified, all the graph that is reachable from the requested node will be packed into
the packet. Note that packing multiple thunks into one packet essentially amounts
to eager work distribution. The GUM implementation currently uses a full-subgraph
packing scheme but imposes a limit on the packet size.

Figure 3.2 depicts the bulk fetching mechanism in action on a simple graph that
involves sharing. The left hand side shows the graph before packing takes place,
the right hand side shows the graph as it has been updated following packing. The
centre of the diagram shows the packet that is constructed to transmit the graph.
Shading is used to depict thunks, normal form closures are left unshaded. The packing
algorithm traverses the graph structure in a breadth-first fashion. Each closure is
given a global address which is used to preserve sharing both across the system and
within the packet. When packing a thunk the original closure is overwritten with a
FetchMe closure (lightly shaded), which acts as a global indirection to remote data

3 .3 . C h a r a c te r is t ic s o f G r a n S im 62

//iii 2 GA9 3

r
GAl FM

GA2 FM

Packet
Header

GAl

GA2

GA9

GA4

PTR

GA5 FM

GA9 FM

GA4 4 GAS sT

F ig u re 3.2 The bulk fetching mechanism (with 3 thunks per packet)

(see Section 2.4.2). In contrast, normal form closures are duplicated by copying them
into the communication packet.

The example in Figure 3.2 shows a packing scheme that packs a maximum of 3
thunks into a packet. Therefore one thunk is left behind on the original processor
and is referenced by a FetchMe closure in the packet. A particularly useful version
of this scheme is a normal-form-only packing scheme, which does not pack a thunk
except for the root of the graph but it includes all normal forms before the first thunk
because they can copied without duplicating work. The GUM system currently packs
a full subgraph until one communication packet is filled.

R escheduling Schem es

A rescheduling scheme prescribes what the processor should do after having sent
a fetch request to another processor. Two basic rescheduling schemes realise syn
chronous communication, where the processor waits for the remote data, and asyn
chronous communication, where another piece of computation is done in the interim.
The latter amounts to latency hiding, since useful work can be performed until the
requested data arrives.

3 .3 . Characteristics o f G ranSim 63

Four different levels of rescheduling schemes specify how aggressive a processor will
be in trying to obtain work:

1. only execute another runnable thread;

2. turn a spark into a thread if no runnable threads are available;

3. try to acquire a remote spark if the processor has no local sparks;

4. try to migrate another runnable thread if no remote sparks can be found.

These schemes are cumulative, so that thread migration will only be attempted if
the three previous schemes have failed, etc. Note that the third and fourth ‘global’
rescheduling schemes will involve communication in order to obtain new work. In
particular, the fourth scheme may introduce gratuitous thread migration towards
the end of the computation, when the system load is low. The G R IP system uses
synchronous communication and the GUM system currently tries to obtain remote
sparks if no local work is available, corresponding to the third scheme in the list
above.

A n E valua tion of P ack ing an d R eschedu ling Schem es

l i n s o l v l i n s o l v
140

a) 12 0 e
•H
XJc
3 100 il
a)
>

■H - R esch ed Schem e: 1 —1
R esch ed Schem e: 2 —
R esch ed Schem e: 3 —
R esch ed Schem e: 4 —

80

I—IQ)
os 60

40

120
In cr Synchr F e tch in g -------
Bulk Synchr F e tch in g —«—

In cr Asynchr F e tch in g
Bulk Asynchr F e tch in g —■—

11 0
<u

100
X)

90u
<D
>

•H4J 80

I—Ia)OS 70

60

50
100 1000 10000 100000 1000000 100 1000 10000 100000 10 0 0000

L atency (in c y c le s) L a te n c y (in c y c l e s)

F igure 3.3 A comparison of packing and rescheduling schemes

Figure 3.3 shows two of the measurements presented in Loidl & Hammond (19966).
The test program is the LinSolv algorithm discussed in Section 4.6. The left hand

3 .3 . C h a r a c te r is t ic s o f G r a n S im 64

graph compares different packing schemes in combination with synchronous and asyn
chronous communication. The graph shows relative runtimes (in percent) with an in
cremental synchronous fetching scheme as the baseline. The best results are achieved
when using a bulk fetching scheme with asynchronous communication. We observe
a reduction of the total runtime of 17% and 28% for latencies between 1,000 and
50,000 cycles and a reduction of 50% at a latency of 260,000 cycles. The relative
improvement in runtime increases for higher latencies. The graph also shows that
bulk fetching should not be combined with synchronous communication because this
would prevent the processor from performing useful work while waiting for the data.

The right hand graph of Figure 3.3 compares different rescheduling schemes with
varying latencies. The baseline in this case is Scheme 3, which is used in GUM. This
graph demonstrates that the best choice of a rescheduling scheme depends on the
latency of the machine. For low latencies the more aggressive global schemes perform
best since there is little cost associated with fetching work from remote processors.
The improved load distribution outweighs the increased communication caused by a
deteriorated data locality. However, for high latencies the dominant cost becomes
that of moving data between processors. In this case, data locality is more important
than an even load distribution. Therefore, the local rescheduling schemes usually
perform better than the more aggressive schemes.

More detailed measurements with all different variants are presented and assessed in
Loidl & Hammond (19966). Several medium-scale programs have been used to test
different packing and rescheduling schemes in setups with varying latencies. From
these measurements the following conclusions can be drawn:

• Rescheduling schemes: For low latencies, where an even load distribution is
more important than high data locality, aggressive rescheduling schemes deliver
good work distribution and therefore good performance. For high latencies,
however, the improved load distribution does not compensate for reduced data
locality. The crossover point usually lies between 15,000 and 30,000 cycles, i.e.
loosely-coupled multiprocessors.

• Packing schemes: In general, full-subgraph packing proves to be the best pack
ing scheme. In practice, there is little danger that such a packing scheme will
cause a disastrously uneven load distribution.

3 .3 . C h a r a c ter istic s o f G r a n S im 65

• Thunk stealing: Occasionally the full-subgraph packing scheme causes thunk
stealing: the gratuitous offloading of thunks that will be needed later. This
increases communication costs and hence reduces performance. We believe that
thunk stealing is the reason for full-subgraph packing sometimes being worse
than those schemes that pack a limited number of thunks per packet. This does
not happen very frequently, however.

• Bulk versus incremental fetching: For low latencies (up to about 100 cycles)
there is no difference in the performance of bulk and incremental fetching. Es
pecially for very high latencies (more than about 50,000 cycles) bulk fetching
achieves significant runtime improvements compared to incremental fetching
even when using asynchronous communication for latency hiding.

• Bounded packet size: The average packet size is in general very small, even for
full-subgraph packing (usually smaller than 15 closures). Therefore, changing
the packet size, as has been previously suggested for improving communication
performance, has hardly any effect on the runtime of the program.

As a result of the measurements in Loidl k Hammond (19966) the following concrete
suggestions for improving the GUM runtime-system can be made:

• For programs with a high degree of communication a normal-form-only pack
ing scheme should be used in order to minimise a gratuitous transfer of work
together with data (“thunk stealing”), which has been observed in G r a n S im

measurements. It is probably not worthwhile implementing a more general
scheme that allows the user to specify the number of thunks per packet because
good values for such a parameter are very hard to predict.

• When running on a high-latency system of more than about 15,000 cycles a less
aggressive rescheduling scheme should be used in order to maintain good data
locality.

• In contrast to previous suggestions (Trinder, Hammond, Mattson Jr., Partridge
k Peyton Jones 1996), we found that choosing a small packet size is not an
effective means of tuning the granularity of the communication. This is due to
the small average number of closures per packet in most programs.

3 .3 . Characteristics o f G ranSim 66

3.3.2 Accuracy

To evaluate the accuracy of the simulation it is necessary to examine the accuracy of
several key steps in the compilation and execution of a program. G r a n S im manages
to achieve a balance in the accuracy of the following key steps:

• the compilation of the program;

• the simulation of the computation;

• the simulation of the communication.

C om pilation : A prerequisite for achieving a high accuracy of the simulation is a
compilation of the functional program, which avoids inefficiencies of a naive imple
mentation of graph reduction. A naive compilation would distort every simulation
because the compiled code, which is the input to the simulator, would differ signifi
cantly to code produced by an optimising compiler. Therefore the results even of an
idealised simulation would have only a very limited relevance. G r a n S im is built on
top of, and therefore makes use of, a state-of-the-art optimising compiler for Haskell
(GHC). As a result the generated code is almost identical to the code used for se
quential execution. The only difference is an instrumentation of the generated code
on basic block level.

C o m p u ta tio n : In order to assign computation costs to the basic blocks in the pro
gram an instruction count function is applied in an intermediate representation of the
optimised program. This intermediate code bears a strong resemblance to low-level
C without loops. At this level the operations in the program closely correspond to
machine operations, which permits an exact modelling of the cost of computation.
The instruction count function has been carefully tuned by analysing the assembler
code generated by GHC and the results have been compared with the number of in
structions executed in real Haskell programs. These comparisons have shown that the
instruction count of the simulation lies within 10% for arithmetic operations, within
2% for load, store operations, within 20% for branch instructions and within 14%
for floating point instructions of the real values (Hammond et al. 1995). Overall, it
has to be emphasised that G r a n S im does not measure the computation in reduction

3 .3 . Characteristics o f G r a n S im 67

steps, as it is often done in idealised simulators, but in machine cycles for a specific
processor.

To permit different kinds of architectures to be modelled the instructions have been
split into five classes, with different weights. The default weights in the following
list model a SPARC processor and have been verified with Haskell programs in the
sequential NoFib suite (Partain 1992), which is used to tune the Glasgow Haskell
Compiler and which is publicly available (NoFib 1998). These weights are tunable in
order to simulate other kinds of processors:

• arithmetic operations (default: 1 cycle),

• floating point operations (default: 1 cycle),

• load operations (default: 4 cycles),

• store operations (default: 4 cycles) and

• branch instructions (default: 2 cycles).

C om m unication : The basic communication parameters of a parallel machine such
as latency, message creation costs, etc are parameters to the runtime-system. In total,
G r a nS im offers 6 different parameters to describe the communication behaviour of
a machine thus giving the user a high degree of flexibility in describing the character
istics of the machine being modelled. The accuracy of the modelled communication
depends on the accuracy of the parameters provided by the user. One aspect of the
communication that is not covered by G r a n S im is the topology of the parallel ma
chine: in G r a n S im the latency between any two processors is the same. The latency
also does not change with increasing network traffic. These shortcomings will be
discussed in more detail in Section 3.5.

3.3.3 Visualisation

Together with the G r a n Sim simulator a set of visualisation tools has been developed.
Two kinds of profiles are generated: activity profiles and granularity profiles. This
section discusses both kinds of profiles. These visualisation tools have proven indis
pensable in the parallelisation and optimisation of programs such as a linear system

3 .3 . Characteristics o f G r a n S im 68

solver. Based on the group’s experience from implementing several large programs
(see Chapter 4), such tools are essential when working with a lazy language, in which
the order of evaluation is not at all obvious from the program source.

All visualisation tools take a G r a n S im or a GUM profile, a log-file of the program
execution, as input and generate a PostScript file as output. The format of this log-file
is discussed in the GranSim User’s Guide (Loidl 1996). Producing individual graphs
can be seen as a form of static visualisation. Other packages such as the VISTA
package (Halstead Jr. 1995) allow the user to step through the parallel execution
based on the information available in the provided log file. This dynamic visualisation
obviously can expose more information about the exact behaviour of the program.
However, our experiences show that already static activity profiles with different levels
of detail provide valuable information in order to tune the performance even of large
parallel programs.

A promising direction of ongoing work is the use of cost centres, as developed for
sequential profiling of Haskell (Sansom &; Peyton Jones 1995), to connect points in
the activity profiles with expressions in the source code. A prototype of combining
G r a n S im with cost centre profiling, G r a n CC, to whose development the author
has contributed, is already available (Hammond et al. 1997). Several projects for
improving parallel profiling are aiming at increasing the information contained in
these profiles, developing a self-describing log-file format that can be used for both
sequential and parallel profiling, and developing graphical user-interfaces that provide
a dynamic visualisation of the program behaviour. Research groups at the Universities
of Glasgow, St. Andrews, York, the Open University and the Parallel Application
Centre of the University of Oxford are collaborating in this effort.

A ctiv ity Profiles

The aim of the activity profiles is to summarise the activity of the machine during
the computation in one graph. In order to give the programmer the possibility of
examining the program execution in more detail, three different levels of detail are
supported. Furthermore, it is possible to focus only on parts of the execution, like
examining only one processor, by first applying a filter on the generated G r a n S im

profile.

The activity profiles show the activity of the machine in three levels of detail:

3 .3 . Characteristics o f G r a n S im 69

• Overall activity of the whole machine;

• Per-processor activity of the individual processors;

• Per-thread activity of the individual threads.

The following subsections discuss each of these profiles and give examples.

O verall ac tiv ity : The idea of the overall activity profile is to present a global
picture of the computation. In particular, it should show the utilisation of the machine
at each point. A drop in utilisation might reflect a performance bottleneck in the
algorithm. This profile can be regarded as an “algorithm focusing” profile and is
particularly important for an algorithm-oriented view of parallelism. The overall
activity profile separates the threads into five different classes:

• running threads, i.e. threads that are currently performing a reduction, which
are shown as a green area in the graph,

• runnable threads, i.e. threads that could be executed but that have not found
an idle processor, which are shown as an amber area in the graph,

• blocked threads, i.e. threads that wait for a result that is being computed by
another thread, which are shown as a red area in the graph,

• fetching threads, i.e. threads that are currently fetching data from a remote
processor, which are shown as a light blue area in the graph,

• migrating threads, i.e. threads that are currently being transferred from a busy
processor to an idle processor, which are shown as a dark blue area in the graph.

The overall activity profile in Figure 3.4 shows the number of threads in each class
for each point in time. The example program in this case is a word search program,
described originally in the FLARE book (Runciman & Wakeling 1995). It has a
bottleneck at about 110k cycles. In the given setup, asynchronous communication
with incremental fetching and a latency of 400 cycles, this results in a drop down to
only one running thread for some time. As thread migration is enabled we observe
several runnable threads being transfered to another processor immediately before
that point. Overall this program suffers from a lack of parallelism, which can be

3.3. C h a ra cter ist ic s o f G r a nS im 70

(soda_m g +RTS -bP -bp32 -bM -b-G -by1 -b!400 A verage Parallelism = 14 .8)

B running □ runnable B fetching B blocked B migrating Runtime = 493.2 k cycles)

F ig u re 3.4 Overall activity profile (original in colour)

seen from the low number of runnable threads although the machine rarely is fully
utilised. The sequential tail of the program is due to the collection and the printing of
the result. G r a n S im measures the costs of all Haskell input/output routines, which
are written in a monadic style (Peyton Jones & Wadler 1993).

P er-p rocesso r ac tiv ity : The idea of the per-processor activity profile is to show
the most important pieces of information about each processor in one graph. There
fore it is easy to compare the behaviour of the different processors and to spot imbal
ances in the computation. This profile is often used to study runtime-system issues
like the load balance in the system and is therefore most useful in a system-oriented
view of parallelism. This profile can be regarded as a “load focusing” profile.

The per-processor activity profile shows one strip for each of the simulated processors.
Each of these strips encodes three pieces of information:

• Is the processor active at a certain point? If it is active the strip appears in

3.3 . C h a ra cter is t ic s o f G r a n S im 71

some shade of green (gray in the monochrome version). If it is idle it appears
in red (white in the monochrome version).

• How high is the load of the processor? The load is measured by the number of
runnable threads on this processor. A high load is shown by a dark shade of
green (or grey).

• How many blocked threads are on the processor? This information is shown by
the thickness of a blue (black) bar at the bottom of each strip. This bar may
cover up to 80% of the strip. Thus, the load information is always visible “in
the background” .

30
29
28
27

24

■B1IIIIU— IB M — W ill I I H U I U I H M M I
IIIUJiL JlfJ UL-I
I I I ~ "

HHM UIUM UW J■mumin ■■— mu
i u i i i i i i i u u i u b u m
K M I i l _ l . l l .

UUUMUIu u n i i iu i
I U I I I U 1

IVIBII
IIIUI

lllllll

IIIIM K M ■ ! ■ ■ ■■■■■■

miuuuiuiiiiiiiiuMii

i h i u i h i i i i n
I I M M W I M I I M M M

■ i i u iIIWUI

n i u ■ i i i i i i b u u i u i i i in n urnpilBMIllLllllMIII p i U M ia i i iw u i m K B B i H I H I I I Iiim u iii— u —
1 I M 1MLIHm um — w u i i t i i i i i — i m m u H i m i i h

IIUI11111

i n i U M B M I B I I

■ ■ I l l U l i m
■IIIIIBIM BBII

lllllll

■1IIIUUluniuu

mu mini
■U1IIBU
IIIH H IIIU I
■ ■ H IM

Lil
■ i l l

illlMUU
l l l l l l l

I III II

IIU I

IIIW1I1IIIIIII11IIH ■ .

IIU

soda_m g +RTS -bP -bp32 -bM -b-G -by1 -bl400 Mon Oct 21 22:59 19961

F igure 3.5 Per-processor activity profile (original in colour)

The per-processor activity profile in Figure 3.5 uses the same example as in the
previous section. The drop in utilisation at about 110k cycles is reflected by a rather
large red area. The distribution of work at the beginning of the computation starts
with low-numbered processors. Therefore, these processors have bigger pieces of work.

3 .3 . Characteristics o f G r a n S im 72

The distribution of work is quite even, which is represented as the same shade of green
on all processors. The number of blocked threads is very small in general. Thread
migration causes the main thread to be moved to processor 25, which is the processor
that collects the final result.

Apart from showing the load of the processors, this kind of graph can also be used
to show two additional pieces of information:

• Migration: This variant of the graph, a “migration” graph, shows arrows be
tween processors indicating the migration of a thread from one processor to
another. Load and blocking information are suppressed in this variant.

• Sparking: This variant of the graph, a “spark” graph, shows information about
the number of sparks on a processor in the same way as the number of runnable
threads, i.e. by shading. This graph is useful to highlight hotspots of spark
creation.

P e r- th re a d ac tiv ity : The idea of the per-thread activity profile is to show the
activity of all generated threads. For each thread a horizontal line is shown. The
line starts when the thread is created and ends when it is terminated. The thickness
of the line indicates the state of the thread. The possible states correspond to the
groups shown in the overall activity profile. This profile can be regarded as a “thread
focusing” profile.

The states of the threads are encoded in the following way:

• A running thread is shown as a thick green (gray) line.

• A runnable thread is shown as a medium red (black) line.

• A fetching or migrating thread is shown as a thin blue (black) line.

• A blocked thread is shown as a gap in the line.

This profile gives the most accurate kind of information. Although it is a static profile
the information is so detailed that it is possible to “step through” the computation
by relating events on different processors with each other. For example the typical
pattern at the beginning of the computation is a running period for starting the thread

3 .3 . Characteristics o f G r a n S im 73

GrAnSim soda_mg +RTS -bP -bp32 -bM -b-G -by1 -b!400

36

Mon Oct 21 22:59 1996]

27 .

24

21 .

18 .

15 .

12

9

6

3

F ig u re 3.6 Per-thread activity profile

followed by fetching remote data. After that the thread may become runnable, rather
than running, if another thread has been started on that processor in the meantime.

The per-thread activity profile in Figure 3.6 only shows the threads that were executed
on processor 0. As it is often done in practice, a filter has been used in order to obtain
this kind of partial information. Usually this kind of profile is only used for focusing
on a specific part of the execution or for a program with a rather small number of
threads. The profile in Figure 3.6 shows the main thread, which is running most of
the time. Occasionally it has to fetch data, shown as a thin line, or it is suspended
because another thread is running on the processor, shown as a medium line.

G ran u la rity Profiles

The tools for generating granularity profiles aim at showing the total execution times
of the generated threads. Of particular interest is the number of tiny threads, for
which the overhead of thread creation is relatively high.

3 .3 . Characteristics o f G r a n S im 74

In order to show granularity information, i.e. information about the runtime of
threads, two basic kinds of graphs can be generated:

• A bucket statistics, which collects threads with similar runtime in the same
“bucket” and shows the number of threads in each bucket.

• A cumulative statistics, which shows how many threads have a runtime below
a certain value. This graph gives more detailed information but is usually
not necessary. Examples of using these graphs can be found in (Hammond
et al. 1995).

B ucket S ta tis tic s : A bucket statistics partitions the x-axis, which represents thread
execution times, into intervals and records the number of threads whose execution
time lies in a specific interval. Thus, this statistics transforms continuous informa
tion, the runtime of a thread, into discrete information, the number of threads in a
bucket. Standard methods for representing and processing of discrete data can be
used on this data. For example, the number of threads in each interval is shown as a
histogram. In order to show a wide range of possible values the y-axis is often shown
in a log scale.

1000 10000 100000
Granularity (pure exec, time)

10 100 1000
Heap Allocations (words)

F ig u re 3.7 Bucket statistics of thread runtime and heap allocations

Usually such a bucket statistics is used to analyse the distribution of the execution
times of threads, giving a granularity profile. However, as can be seen in Figure 3.7

3 .3 . Characteristics o f G r a n S im 75

the same kind of statistics can be used in order to analyse different aspects of the
execution such as the total amount of heap allocated by a thread. The similar profiles
for both kinds of statistics in Figure 3.7 is typical for a range of programs we have
studied. This reveals a non-obvious close relationship between the execution time and
the number of closures allocated by a thread. Because the graph reduction model is
centred around operations on the heap, it rarely happens that a time consuming
thread performs very little allocation, even if the generated code has been optimised.
As a m atter of fact, our studies in (Hammond et al. 1995) show a more than 90%
correlation between these two aspects for several example programs. The example
program used in Figure 3.7 is again the word search algorithm.

C u m u la tiv e S ta tis tics : One problem with the bucket statistics is that the result
ing profile depends to some degree on the choice of the intervals. With an unlucky
choice different results may show a similar profile. To avoid this problem, the visu
alisation tools can also generate cumulative statistics. In a cumulative granularity
statistic a point (x , y) in a graph indicates that y threads have a runtime of at most
x cycles. Thus, the graph cumulates the number of threads and will show the to
tal number of threads generated at the right end of the x-axis. This graph can be
produced with either the absolute number of threads or the percentage of threads on
the y-axis. Again the same kind of graph can be used to show aspects other than
execution time.

3.3.4 Efficiency

The two most important features of G r a n S im for supporting a system-oriented view
of the computation are its flexibility and accuracy (see Section 3.6 for a compari
son with results from GUM). However, a high degree of accuracy also imposes a
high bookkeeping overhead on the simulation. The three main factors governing the
efficiency of the simulation are:

• the degree of communication in the program;

• the number of threads that are created; and

• the frequency of blocking a thread on a closure that is under evaluation.

3 .3 . C h a r a c te r is t ic s o f G r a n S im 76

The exact modelling of communication in G r a n S im is rather expensive, because each
simulated communication causes a rather expensive context switch in the simulator.
Such a context switch requires the current state of the simulator to be saved and
restored. Furthermore, a “runtime-system call” has to be performed, interrupting
the normal reduction process. This slows down the simulation especially of machines
with low latency where much communication is performed.

Switching to another thread is also rather expensive. As a consequence, the total
number of threads that are created affects the efficiency of the simulation in a crucial
way. The influence of the number of threads on the performance of the simulation can
be reduced by increasing the time slice given to each thread. This will result in a faster
but less accurate simulation, because a thread may run ahead in the computation,
ignoring communication events.

Another problem caused by a large number of threads is their heap consumption.
W ith 30 words per thread, plus the size of the initial stack object, the heap used
directly by the thread is not critical. However, because each thread holds on to a
piece of graph, the total amount of live data can increase drastically. This causes more
frequent garbage collections, which in turn increases the runtime of the simulation
compared with an optimised sequential version. This point currently poses a problem
for using the GRANSiM-Light setup in very large programs like Lolita.

In order to get an idea of the simulation costs Table 3.1 shows the simulation times,
i.e. the time needed to run the simulation, of several programs run on G r a n S im and
GRANSiM-Light with that on H B C PP (Runciman & Wakeling 1993), an idealised
simulator for the same source language. As example programs a set of non-trivial
programs from the emerging parallel NoFib suite has been used: a ray tracer, Ray,
the same word search program, Soda, that has been used as an example for the
visualisation tools, a linear system solver, LinSolv, discussed in detail in Section 4.6, a
determinant computation, Determinant, used as a part of the linear system solver, and
a matrix multiplication, MatMult. Two values are given for the G r a n S im simulation
times: the first value uses the default time slice given to every thread; the value in
parentheses uses a very small time slice for a more accurate but slower simulation.
The difference from the first value gives an idea how much the simulation time can
be tuned by choosing a different time-slice.

In three cases, Ray, LinSolv, and MatMult the GRANSiM-Light setup shows a signif
icant higher runtime compared to the standard G r a n S im setup. This is mainly due

3 .3 . C h a r a c te r is t ic s o f G r a n S im 77

T able 3.1 Simulation times (in seconds) of G r a n S im and H B C P P
Program G r a n S im

default short
time slice time slice

GRANSiM -
Light

H B C P P optimised
GHC

Ray 70.7 198.9 141.3 73.2 11.1
Soda 2.4 5.5 1.5 0.8 0.1
LinSolv 75.9 96.8 334.0 — 0.1
Determinant 7.9 8.4 4.3 4.1 1.7
MatMult 22.3 26.9 65.9 26.9 0.4

to the large number of threads that are created in the idealised simulation, causing a
large number of context switches. This aspect is elaborated further in Section 3.4. It
should be noted that faster simulation time is not the main goal of GRANSiM-Light.
Often it generates a faster simulation but the main purpose is to simulate an idealised
machine, reflecting an algorithm-oriented view of parallelism.

Usually, G r a n S im is between 1.5 and 2.5 slower than H B C P P , the factor would
probably be larger for l in s o lv but this program did not compile successfully under
H B C PP. Considering the additional information produced in the standard G r a nS im
setup this can be regarded as an acceptable factor. In the case of MatMult and
for some very small example programs it occasionally even manages to outperform
H B C PP. One reason for the reduced simulation time might be the improved code
generation. Because G r a n S im is integrated in GHC we can profit from the ongoing
tuning of the compiler itself (see the following section for details).

Compared to an optimised sequential version the simulation shows a slow-down of a
factor of 4.6 to 759. Again the worst case is generated by l in s o lv with an abundance
of parallel threads and a lot of communication in the program. Most of the simulations
exhibit a slow-down of 10 to 15. Considering that GHC produces the fastest code of
all available Haskell compilers (Hartel 1995), these factors still render the simulator
useful for large programs and this has been proven for programs such as LinSolv
(Section 4.6) and Lolita (Section 4.5).

3 .3 . C h a r a cter istic s o f G r a n S im 78

3.3.5 Integration into GHC

G r a nS im is built on top of the Glasgow Haskell Compiler (GHC), a state-of-the-art
optimising compiler for Haskell. This means that the execution of sequential code in
the simulator is realistic. In fact, the code generated by G r a n S im is almost identical
to the sequential code generated by GHC. The only difference are macros that check
for the existence of a closure on a processor, at the beginning of every basic block,
and another macro for adding the execution time of the basic block to the local clock,
at the end of this basic block.

It is possible to use all the features of a normal GHC compilation in G r a n S im , too.
For example, the c c a l l mechanism can be used to call C functions in a parallel pro
gram. This feature is essential for the parallelisation of Lolita(see Section 4.5). With
this mechanism optimised sequential, possibly even imperative, code in libraries can
be called from a parallel lazy functional program. This feature has been exploited in
an experimental implementation of a parallel resultant algorithm using basic polyno
mial operations of a sequential computer algebra library.

One of the main features of GHC is the use of many program transformations in
order to optimise the sequential code. This covers well-established optimisations
such as inlining and the use of strictness information as well as rather new optimi
sations such as let-floating and deforestation. The influence of these new sequential
optimisations on the parallel execution of a program is an interesting but largely
unstudied area. For example deforestation might eliminate intermediate lists that
are crucial for the parallel execution of the program. Indeed Santos reports that in
one example program (Fast Fourier Transformation) the full laziness transformation
creates a sequential bottleneck, which slows down the computation by a factor of 6
to 10 (Santos 1995, Section 5.2.2). G r a n S im would seem to be the ideal basis for
studying these interactions in more detail.

3.3.6 Robustness

The robustness of G r a nS im has been proven by using it in the parallelisation and
performance tuning of a set of large Haskell programs. Some of these programs are
discussed in more detail in Chapter 4. Most of the parallelisation of the Lolita natural
language engineering system has been done by using G r a n S im . Other scientists have

3 .4 . GRANSiM-Light 79

used G r a n S im to parallelise substantial pieces of Haskell code such as a program that
determines accident blackspots based on a large database of traffic accident reports
(Wu & Harbird 1996, Trinder et al. 1998) and Naira, a parallelising compiler for a
subset of Haskell (Junaidu 1998).

W ithout a simulator it would be much more difficult to parallelise such large programs
because of system issues, e.g. integrating foreign language calls, and “external” aspects
of the execution, e.g. system load, cannot be easily eliminated. The separation into
G r a n S im and GRANSiM-Light configurations encourages the parallel program to
be developed in two stages: first the parallel algorithm is developed in a machine
independent setting; then it is optimised for a specific machine. In particular, the
parallelisation of Lolita showed the importance of having a simulator that is integrated
in a state-of-the-art-compiler with all its tools: it was crucial to have a profiler for the
sequential version of the program. Based on these experiences of using both G r a n S im
and GUM in the parallelisation of several programs the parallel programming group
at Glasgow has developed a parallelisation methodology, with G r a n S im as one of its
major components (see Section 4.8).

3 . 4 G R A N S i M - L i g h t

One main purpose of G r a n S im is to provide a testbed for variations of the runtime-
system. This requires a very accurate simulation that is flexible enough to model
different kinds of parallel architectures. However, in early stages of the development
of a parallel algorithm a more abstract view of parallel computation is advantageous.
This different attitude requires slightly different characteristics of the simulator.

The GRANSiM-Light setup has been designed to satisfy such an algorithm-oriented
view of parallelism. Therefore, GRANSiM-Light models an idealised machine with

• an infinite number of processors and

• zero communication costs.

This difference in modelling the parallel execution of a program requires changes in
the structure of the simulator. Most importantly, the spark and thread pools are not

3 .4 . GRANSiM-Light 80

TYPE
TSOWHEN

PE

, — ------
----5» Statistics Buffer

Global Event Queue

Global Spark Pool Global Thread Pool
F ___ Global Clock ___

F igure 3.8 Global structure of GRANSiM-Light

distributed in this setup. Figure 3.8 shows the global structure of the GRANSiM-Light
setup.

This setup exposes all parallelism in the algorithm and allows the programmer to
tune the performance of the algorithm before studying its dynamic behaviour on a
specific parallel machine. Although such a simulation gives a less accurate picture of
the parallel behaviour on a concrete machine, it has proven to be an important step
in the methodology for parallelising large lazy functional programs (see Section 4.8).

The GRANSiM-Light setup is very close to the H B C P P simulator (Runciman &
Wakeling 1993). In Section 3.6 we compare the results of some simulations under
both simulators. Table 3.1 has already shown that the simulation time in G ranS im
is comparable to that in H B C PP. GRANSiM-Light sometimes manages to be as fast
as H B C P P and is within a factor of 2.5 for the remaining programs.

One problem with GRANSiM-Light, however, is the fact that its performance de
pends very much on the number of generated threads. The idealised simulation of
GRANSiM-Light usually creates a much larger number of threads than the standard
simulation because in the latter case the evaluate-and-die mechanism manages to sub

3 .5 . S h o rtco m in g s o f G r a n S im 81

sume potential parallel threads. Clearly, the evaluate-and-die mechanism cannot be
effective in a setup where every spark is immediately turned into a thread. We have
seen this behaviour when comparing simulation times in Table 3.1. For some exam
ple programs in these measurements the GRANSiM-Light simulation is significantly
slower than the standard setup of G r a n S im . The main reason for this slow-down
is the large number of context switches necessary to simulate the graph reduction of
and the interaction between so many threads.

3 . 5 S h o r t c o m i n g s o f G r a n S i m

Despite the high degree of parameterisation of G r a n S im , there are certain aspects
of a parallel machine that are not modelled. This section comments on these short
comings and their impact on the development of parallel algorithms.

C o m p u ta tio n : G r a n S im models an execution on a homogeneous MIMD multi
processor. This model does not include the concept of clusters of processors, with
cheap local communication. Nor does this model encompass SIMD machines, which
operate with only a single instruction stream. However, this model corresponds to
the underlying computation model of GUM.

C om m unication : Two of the most important aspects of a parallel machine that
are not covered by G r a n S im relate to the communication behaviour of the machine:
the bandwidth of the communication and the topology of the underlying machine.
G r a n S im assumes that the latency between two processors is independent of the
communication traffic. In reality, however, “contention” will occur at some point,
drastically degrading the performance of the communication. However, this usually
only happens with an excessive amount of communication and should therefore be no
problem for normal executions. Another simplifying assumption is that the distance
between any two processors in the system is the same. This fixes the simulation to one
special topology, a fully-connected graph. However, experiences with modern parallel
machines show that the topology has a rather small influence on the communication
speed.

3 .5 . S h o rtco m in g s o f G r a n S im 82

M em ory M anagem ent: One important aspect in the execution of a parallel pro
gram is the data locality. In the computation model used by G r a n S im as well as
GUM there is only very limited support for studying this aspect. An experimental
feature in G r a n S im allows absolute placement of a process on a specific processor,
but the data will always travel to the thread never vice versa. A useful extension of
G r a n S im would be the implementation of “sticky closures” that have to be evaluated
on the processor on which they have been created. The idea of such an implementa
tion would be to automatically create a spark for a sticky closure when it is demanded.
The usual runtime-system mechanisms can then be used to turn the closure into a
thread and to evaluate it. This evaluation must be on the specified processor but the
runtime-system still has the choice to discard the spark.

G r a nS im does not provide any modelling of garbage collection in the parallel system.
The main motivation for this design decision is that the choice of one particular
mechanism would likely have global effects in the execution, e.g. reference counting
garbage collection introduces an overhead when copying any closure in the system.
Thus, all results would be biased towards the chosen form of garbage collection.

E xtensions o f G r a n S im : One important shortcoming is the lack of a parallel
profiling mechanism. When parallelising big programs it would be very important to
mark certain threads that are of special interest and to focus on these threads with
the visualisation tools. So far, only a rudimentary thread marking mechanism has
been implemented. It propagates a thread name to all children and makes it possible
to change the name during execution. In order to use this information special filter
programs have to be applied to the G r a n S im profile. In the meantime, a parallel
profiler, G r a nCC, has been constructed by merging G r a n S im with sequential cost
centre profiling (Hammond et al. 1997). Initial results of this research effort, to which
the author is contributing, show valuable additional information. An alternative
approach is to dynamically mark evaluation strategies (see Section 4.3) in the code
to provide information about which threads have been generated by which strategy.
This approach is currently pursued by a research group at The Open University.

3.6. V alidation of S im ulation R esu lts 83

3.6 V a lid a tio n of S im u la tio n R esu lts

This section gives a validation of some simulation results by comparing profiles ob

tained from G r a n S im with those from H B C PP, G R IP , and GUM. This compari

son shows th a t G r a n S im yields a realistic picture of a program ’s parallel behaviour,

provided th a t the G r a n S im param eters are set to model the underlying hardware

architecture.

3.6.1 G r a n S im versus H B C P P

(GrAnSIm queens_mg 8 +RTS -bP -b. -o200 -H6M -be -sslden H B C PP yqu&enshbcpp

F igure 3.9 Activity profiles from G r a n S im and H B C PP

Figure 3.9 compares the overall activity profiles for the queens program generated by
G r a n S im and H B C PP. The activity profile produced by the G r a n S im execution
is significantly more detailed, which results in a more fine-grained picture. It also
manages to exhibit stages of blocking that are too short to be detected in H B C PP.
Most importantly, the overall pattern of the computation is the same.

3.6.2 G r a n S im versus GRIP

Section 4.6 discusses three variants of a symbolic algorithm for solving a system of
linear equations, LinSolv. Starting with a rather inefficient algorithm the perfor

3.6. V alidation of S im ulation R esu lts 84

mance of this algorithm is tuned and sequential bottlenecks are eliminated. The
final algorithm has also been executed on the G R IP multi-processor. Figure 3.10

presents a comparison of the activity profiles generated by G r a n S im and G R IP.
The G r a n S im version uses a setup with 16 processors and a latency of 400 cycles,
matching the G R IP configuration. In the G R IP profile no runnable threads are
shown because this kind of information is not collected. The shape of both profiles is
very similar. Both profiles show a small peak of parallelism at the end of the compu
tation. Comparing the raw numbers we observe an average parallelism of 15 under
G r a n S im , whereas the average parallelism on G R IP is 14.5. The speedup obtained
under G r a n S im , 11.92, is slightly below the speedup on G R IP, 13.58.

The most pronounced difference is the larger number of blocked threads in G r a n S im .

This is probably due to the use of local sparking in G R IP , which is not simulated in
G r a n S im . Local sparking distinguishes between local spark pools for each processor
and one shared global spark pool. In order to improve data locality local sparks are
preferred. Only in the case of a global shortage of sparks are the local sparks moved
into the global spark pool. In this example the G r a n S im graph shows that there are
runnable threads through most of the computation. Therefore, the G R IP version will
rarely have to move sparks into the global spark pool, where they can be picked up
by other idle processors. In total this leads to a smaller number of generated threads.

0 blocked■ running[■ running □ runnable 0 Mocked Speedup = 11.92

Average Parallelism = 14.5)[GrAnSim UnSotv (final): 16 Processors. 400 Cycle Latency_______________________Average Parallelism = 15 0 .

F igure 3.10 G r a n S im and G R IP activity profiles of LinSolv

3.6. Validation of Simulation Results 85

One of our example programs that shows a very interesting granularity profile is a
parallel ray tracer. This program has been developed by Kelly in his thesis (Kelly
1989).

Hammond et al. (1994) study the granularity of this algorithm on the G R IP multi
processor, deriving granularity profiles for each of the programs. The author used the
same code of the ray tracer under G r a n S i m to analyse the granularity of the gener
ated threads. Figure 3.11 compares these profiles in a bucket statistics. In both cases
a log scale is used to show even small buckets. G r a n S i m measures time in machine
cycles, whereas in the G R IP measurements the granularity is measured in terms of
the number of heap allocations. The previously mentioned high correlation between
execution time and heap allocations justifies this approximation of execution time.
This program shows two main clusters of threads with respect to their runtimes: two
clusters of short threads and a cluster of large threads. The short threads represent
processes that “drive the parallelism” in the program, generating many sub-threads.
The large threads are performing the actual computation. Because of the different
measure of execution time, concrete x-values cannot be directly compared. However,
the granularity profile in both cases is the same.

3.6.3 G r a n S im versus GUM

Figure 3.12 gives a comparison of a parallel determinant computation executed under
G r a n S i m , left hand side, and on a Sun SPARCserver shared memory machine with
four processors under GUM , right hand side. The overall shape of both profiles
exhibits a very similar overall behaviour of the program. The G r a n S i m version
underestimates the number of blocked threads and especially the number of fetching
threads. The latter is a general trend, which can also be observed in the Lolita system
(see Section 4.5). Although the overhead for creating a communication packet has
been increased in this simulation it does not model all of the software overhead in
PVM, which is in part data dependent. The regular, short drops in the utilisation of
the GUM profile may in part be caused by operating system interference, because
the 4 processor machine used in this experiment has a significant load of users.

3.7. Summary 86

1 0 0 0

wTJ
(Uus:jj

1 0 0 :

o

1 0 0 0 0 1 0 0 0 0 02 0 0 1000
Granularity (pure exec, time)

10000 -

C3H

0)Xi
S3
z

16 PEs

1 f

/ll/ . 4

Granularity

F ig u re 3.11 G r a n S im (top) and G R IP (bottom) granularity profiles of a ray tracer

3.7 Summary

A simulator for the parallel execution of functional programs may be of use for either
the programmer, who wants to study the parallel behaviour of a certain algorithm,
or the compiler designer, who wants to study the effectiveness of certain mechanisms
in the runtime-system. This chapter has shown that G r a n S im is a useful tool for
both groups by supporting a high-level algorithm-oriented view as well as a low-
level system-oriented view. In the latter view the focus might be on an extremely
accurate simulation of a specific machine or on a flexible simulation of a wide range
of parallel architectures. G r a n S im supports the approach of a flexible simulation by
being highly parameterised without losing accuracy on the compilation level. Only
certain very low-level machine characteristics are not captured in the simulation.
Taking such a system-oriented view, G r a n S im measurements with implementations

3.7. S u m m ary 87

(GrAnSim lestMal_rog 9 +RTS -bP -bp4 -b-M -bG -bQO -by3 -b>64 bmSOO -br5Q0 Average Parallelism = 3 ^]

H running □ runnable □ latching ■ blocked □ migrating Runtime - 150 2 M cycles) ■ blocked

F igure 3.12 G r a n S im and GUM activity profiles of a determinant computation

of alternative packing and rescheduling schemes have led to concrete suggestions for
improving the GUM runtime-system for specific architectures, e.g. by packing smaller
graph structures in highly-communicating programs or by using a less aggressive
rescheduling scheme in high-latency systems.

In the following chapter G r a n S im will be used in the parallelisation and performance
tuning of a set of large functional programs. This will demonstrate its practical
usefulness beyond its original design as a testbed for implementing variants in the
parallel runtime-system. The integration of G r a n S im into a parallel engineering
environment together with the GUM parallel runtime-system, and the availability
of visualisation tools in both systems are crucial in the development of large parallel
programs.

Chapter 4

Large-Scale Parallel Functional
P r ogr amming

Capsule

The superior computational power of parallel machines is most likely to be
used in time consuming programs. Such programs are typically large. During
the performance tuning of the parallel code it is often necessary to restructure
parts of the code. For these reasons, a modular design is even more important
for parallel programs than for sequential programs. Lazy functional languages
offer a high level of modularity via higher-order functions and a non-strict
semantics. This chapter focuses on the question how to specify parallelism in
a lazy functional language without sacrificing modularity.

Previous experiences with writing medium-scale parallel programs have
shown that the undisciplined use of par and seq annotations in the program
can yield opaque code. This observation has led to the development of evalua
tion strategies based on laziness, overloading, polymorphism, and higher-order
functions. This chapter presents evaluation strategies, which have been devel
oped in a group effort, and contributes to the design of strategies by augmenting
the core module with a construct for strategic function application. The re
sulting module has been used in parallelising several large programs including
LinSolv, a linear system solver, an Alpha-Beta search algorithm, and Lolita,
a natural language engineering system consisting of more than 47,000 lines of
Haskell. These programs show that with only a few localised changes in the
code good parallel performance can be achieved in programs that have not
necessarily been written with parallel execution in mind. The laziness of the

88

4.1. Introduction 89

language favours a data-oriented style of parallel programming, where the par
allelism is defined on intermediate data structures rather than within specific
modules of the program. This facilitates top-level parallelisation and restricts
the contextual knowledge the programmer has to have about the program.

4.1 Introduction

Although the advantages of the high level of abstraction in functional languages
mainly show up in big programs there is a daunting shortage of such programs. In the
context of parallel processing this is even more critical since realistic time-consuming
programs, which should be executed in parallel, are often large. Obtaining a parallel
version that exhibits a reasonable parallel performance without spending a lot of
effort in modifying the code is therefore of utmost importance.

This thesis focuses on symbolic computation as main application area. By and large,
programs in this area use the major advantages of functional languages such as higher-
order functions and algebraic data-types much more heavily than numerical compu
tation programs. Thus they are a natural application for functional languages. For
programs with these characteristics it is possible to make use of parallel computation
without a vast effort in recoding the program, even if that results in the loss of some
parallelism. Again this is in contrast to the approach towards parallel computation
usually taken for numerical applications, where it is feasible to invest a lot of time in
parallelising one particular program. In contrast, the parallelisation of the programs
in this chapter takes an approach of “acceptable gain for low pain” .

In order to cope with large programs the parallel programming group at Glasgow has
developed evaluation strategies, a new programming technique based on lazy evalu
ation, overloading, polymorphism, and higher-order functions. Evaluation strategies
allow a clean separation of algorithmic code from an operational description of the
parallel program behaviour. This chapter discusses the author’s contribution to the
development of strategies and his parallelisation and performance tuning of several
large functional programs. This presentation shows that the parallel program devel
opment is much easier when using strategies, in particular because of better support
for modularity, and that most of the complexity of parallel program development for
imperative languages is absent in this model, because synchronisation and communi
cation are managed entirely by the runtime-system.

4.1. Introduction 90

The parallel programming group at Glasgow has studied about 8 medium to large
parallel functional programs. This chapter describes the following three programs:

• LinSolv, a program for finding an exact solution of a system of linear equations.
It is interesting for its use of an approach typical to many algorithms in computer
algebra.

• Alpha-Beta search, a program for performing a heuristic search in a tree struc
ture, usually used in game programming. It is a typical program for AI appli
cations.

• Lolita, a large natural language engineering system. It is a very general system
and can be used for extracting semantics from newspaper articles, translate text
between languages, or for interactive language tutoring.

The contributions of this thesis to the work described here are as follows. The au
thor’s experience with parallelising LinSolv has initiated the development of evalua
tion strategies in a group effort led by Dr. Phil Trinder. The author’s main indepen
dent contribution to the design of strategies is the development of strategic function
application as a convenient way to express pipeline parallelism and to combine it
with other forms of parallelism via function composition. The modified strategies
module has been used in the author’s parallelisation of LinSolv, strategy version, and
of Alpha-Beta search, based on the sequential algorithm by Hughes (1989). These
experiences have led to changes in the core design of evaluation strategies. The
parallelisation of Lolita has been done in collaboration with the Natural Language
Engineering Group at the University of Durham. Sections 4.2, 4.3, and 4.9.1, describ
ing evaluation strategies, are revised versions of material published in Trinder et al.
(1998). Sections 4.4 and 4.5 cover material published in Loidl & Trinder (1997) and
Loidl et al. (1997), respectively. Section 4.6 is a revised version of material submitted
for publication in Loidl (1997).

The structure of this chapter is as follows. Section 4.2 discusses problems when us
ing annotations in order to describe parallel program behaviour for large programs.
Section 4.3 introduces evaluation strategies and presents simple generic strategies
demonstrating the flexibility of this approach. The following three sections present
case studies of using strategies on several large programs: an Alpha-Beta search algo
rithm in Section 4.4, Lolita, a natural language engineering system in Section 4.5, and

4.2. Problems with Parallel Programming in-the-large 91

LinSolv, a linear equation solver in Section 4.6. Section 4.7 compares the style of par
allel programming in a lazy functional with a strict imperative language. Section 4.8
outlines a methodology for parallelising large lazy programs based on the acquired
experiences with parallelising several large applications. Finally, Section 4.10 con
cludes.

4.2 Problem s with Parallel Programming in-the-
large

The big advantage of functional programming languages is the fact that they avoid
overspecification by only defining the result without specifying an exact order of
evaluation steps. More informally, they specify what to compute without fixing how
to compute it. However, when writing an explicitly parallel program it is necessary
to specify some aspects of the dynamic behaviour of the program. In the model used
in this thesis this means exposing parallelism by marking expressions that might be
evaluated in parallel. Since the basic execution model is a lazy one, the programmer
may also want to specify the evaluation degree in the program in order to guarantee a
certain amount of evaluation without relying on the quality of the strictness analyser.

This approach abstracts from details about thread creation, thread placement, syn
chronisation, data transfer, and many other aspects that often have to be explicitly
handled in a parallel language by the programmer. However, even just describing
potential parallelism together with evaluation degree may lead to a program that is
cluttered with behavioural code. The undisciplined use of annotations in the paral
lelisation of several programs, such as a linear system solver, has generated opaque
parallel code. The comparison of a straightforward parallelisation of LinSolv with
a version using strategies in Section 4.6 shows the practical advantages of a more
structured approach towards exposing parallelism.

4.2.1 A Simple Example

As a simple example demonstrating the problem mentioned above, let us consider
parallel quicksort. A naive version of a parallel function might be written as follows.

4.2. Problems with Parallel Programming in-the-large 92

q u i c k s o r t N ; ; (Ord a) => [a] -> [a]
q u i c k s o r t N [] = []
q u i c k s o r t N [x] = [x]
q u i c k s o r t N (x : x s) = l o s o r t 'par'

h i s o r t 'par'
l o s o r t ++ (x : h i s o r t)
where

l o s o r t = q u i c k s o r t N [y | y < - x s , y < x]
h i s o r t = q u i c k s o r t N [y j y < - x s , y >= x]

The intention is that two threads are created to sort the lower and higher halves of
the list in parallel with combining the results. Unfortunately quicksortN has almost
no parallelism because threads in G p H terminate when the sparked expression is in
weak head normal form (WHNF). In consequence, all of the threads that are sparked
to construct lo s o r t and h is o r t do very little useful work, terminating after creating
the first cons cell. To make the threads perform useful work a “forcing” function,
such as f o rc eL is t below, can be used. The resulting program has the desired parallel
behaviour, yielding a parallel divide-and-conquer structure. However, the definition
of qu ickso rtF is cluttered with behavioural code, namely the forcing functions.

f o r c e L i s t ; ; [a] -> ()
f o r c e L i s t [] = ()
f o r c e L i s t (x : x s) = x 'eeq' f o r c e L i s t x s

q u i c k s o r t F [] = []
q u i c k s o r t F [x] = [x]
q u i c k s o r t F (x : x s) = (f o r c e L i s t l o s o r t) 'par'

(f o r c e L i s t h i s o r t) 'par'
l o s o r t ++ (x : h i s o r t)
where

l o s o r t = q u i c k s o r t F [y | y < - x s , y < x]
h i s o r t = q u i c k s o r t F [y j y < - x s , y >= x]

4.2.2 Data-Oriented Parallelism

Quicksort is an example of (divide-and-conquer) control-oriented parallelism where
subexpressions of a function are identified for parallel evaluation. Data-oriented par
allelism is an alternative approach where elements of a data structure are evaluated in
parallel. A parallel map is a useful example of data-oriented parallelism; for example
the parMap function defined below applies its function argument to every element of
a list in parallel.

4.2. Problems with Parallel Programming in-the-large 93

p a r M a p ; ; (a -> b) -> [a] -> [b]
p a r M a p f [] = []
p a r M a p f (x : x s) = f x ’par’ f x s 'seq' (f x : f x s)

where
f x = f x
f x s = p a r M a p f x s

The definition above works as follows: fx is sparked, before recursing down the list
(fxs), only returning the first constructor of the result list after every element has
been sparked. Note that if the function argument supplied to parMap constructs a
data structure, it must be composed with a forcing function in order to ensure that
the data structure is constructed in parallel.

4.2.3 Dynam ic Behaviour

As the examples above show, a parallel function must describe not only the algorithm,
but also some important aspects of how the parallel machine should organise the
computation, i.e. the function’s dynamic behaviour. In G p H, there are several aspects
of dynamic behaviour:

• Parallelism control, which specifies what threads should be created, and in what
order, using par and seq.

• Evaluation degree, which specifies how much evaluation each thread should per
form. In the examples above, forcing functions were used to describe the eval
uation degree.

• Thread granularity: it is important to spark only those expressions where the
cost of evaluation greatly exceeds the thread creation overheads.

• Locality: part of the cost of evaluating a thread is the time required to com
municate its result and the data it requires, and in consequence it may only
be worth creating a thread if its data is local. Because GpH does not contain
explicit placement information, locality has to be controlled indirectly, e.g. by
constructing data structures that contain all data that should be kept local.

Evaluation degree is closely related to strictness and defined over the same partially
ordered, lifted domain of values. If the evaluation degree of a value in a function is

4.3. Evaluation Strategies 94

less than the program’s strictness in that value, i.e. its value in the semantic domain
is smaller than that defined by its strictness property, then the parallelism is con
servative, i.e. no expression is reduced in the parallel program that is not reduced in
its lazy counterpart. In several programs we have found it useful to evaluate some
values speculatively, i.e. the evaluation-degree may usefully be more strict than the
lazy function. Although this runs the risk of performing unnecessary computation it
allows the programmer to specify parallelism that is useful most of the time.

4.3 Evaluation Strategies

4.3.1 Evaluation Strategies

In the examples above, the code describing the algorithm and dynamic behaviour
are intertwined, and as a consequence both have become rather opaque. In larger
programs, and with carefully-tuned parallelism, the problem is far worse. This section
describes evaluation strategies, a solution to this dilemma. The driving philosophy
behind evaluation strategies is that it should be possible to understand the semantics
of a function without considering its dynamic behaviour.

An evaluation strategy is a function that specifies the dynamic behaviour required
when computing a value of a given type. A strategy makes no contribution towards the
value being computed by the algorithmic component of the function: it is evaluated
purely for effect, and hence it returns just the nullary tuple ().

type S t r a t e g y a = a - > ()

4.3.2 Strategies Controlling Evaluation Degree

The simplest strategies introduce no parallelism: they specify only the evaluation
degree. The simplest strategy is termed rO and performs no reduction at all. Perhaps
surprisingly, this strategy proves very useful, e.g. when evaluating a pair we may want
to evaluate only the first element but not the second.

4.3. Evaluation Strategies 95

rO :: Strategy a
rO _ = ()

Because reduction to WHNF is the default evaluation degree in G p H, a strategy to
reduce a value of any type to WHNF is easily defined:

rwhnf :: Strategy a
rwhnf x = x 1seq' ()

Many expressions can also be reduced to normal form (NF), i.e. a form that contains
no redexes, by the rn f strategy. The rn f strategy can be defined over built-in or
datatypes, but not over function types or any type incorporating a function type as
few reduction engines support the reduction of inner redexes within functions. Rather
than defining a new rn f X strategy for each data type X, it is better to have a single
overloaded rn f strategy that works on any data type. The obvious solution is to use
a Haskell type class, NFData, to overload the rn f operation. Because NF and WHNF
coincide for built-in types such as integers and booleans, the default method for rn f
is rwhnf.

c l a s s N F D a t a a w h e r e
r s f ; ; Strategy a
rnf = rwhnf

For each data type an instance of NFData must be declared that specifies how to
reduce a value of that type to normal form. Such an instance relies on its element
types, if any, being in class NFData. Consider lists and pairs for example.

i n s t a n c e N F D a t a a => N F D a t a [a] w h e r e
m f [] = ()
rnf (x:xs) = rnf x 'seq' rnf xs

i n s t a n c e (N F D a t a a , N F D a t a b) => N F D a t a (a , b) w h e r e
rnf (x,y) = rnf x 'seq' rnf y

4.3.3 Combining Strategies

Because evaluation strategies are just normal higher-order functions, they can be com
bined using the full power of the language, e.g. passed as parameters or composed

4.3. Evaluation Strategies 96

using the function composition operator. Elements of a strategy are combined by se
quential or parallel composition (seq or par). Many useful strategies are higher-order,
for example, seqL ist below is a strategy that sequentially applies a strategy to every
element of a list, in essence mapping a strategy and then folding the seq combinator
over the list. For example, the strategy seqList rO evaluates just the spine of a list,
and seqList rwhnf evaluates every element of a list to WHNF. There are analo
gous functions for every datatype, indeed in Haskell 1.3 and later versions (Peterson
et al. 1996) constructor classes can be defined that work on arbitrary datatypes.
The strategic examples in this thesis are presented in Haskell 1.2 for pragmatic rea
sons: they are extracted from programs run on our efficient parallel implementation
of Haskell 1.2 (Trinder, Hammond, Mattson Jr., Partridge & Peyton Jones 1996).
However, the current version of the strategies module does support Haskell 1.4, too.

seqList :: Strategy a -> Strategy [a]
seqList s t r a t [] = ()
seqList s t r a t (x : x s) = s t r a t x 'seq' (seqList s t r a t x s)

4.3.4 Data-Oriented Parallelism

A strategy can specify parallelism and sequencing as well as evaluation degree. Strate
gies specifying data-oriented parallelism describe the dynamic behaviour in terms of
some data structure. For example parList is similar to seqList, except that it
applies the strategy to every element of a list in parallel.

parList :: Strategy a -> Strategy [a]
parList s t r a t [] = 0
parList s t r a t (x : x s) = s t r a t x 'par' (parList s t r a t x s)

Data-oriented strategies are applied by the using function which applies the strategy
to the data structure x before returning it. The expression x ' u sing ' s is a projection
on x, i.e. it is both a retraction (x ‘u s in g ' s is less defined than x) and idempotent
((x ‘u s in g ' s) 'u s in g ' s = x 'u s in g ' s). The using function is defined to have
a lower precedence than any other operator because it acts as a separator between
algorithmic and behavioural code.

using :: a -> Strategy a -> a
using x s = s x 'seq' x

4.3. Evaluation Strategies 97

A strategic version of the parallel map encountered in Section 4.2.2 can be written
as follows. Note how the algorithmic code map f xs is cleanly separated from the
strategy. The s t r a t parameter determines the dynamic behaviour of each element of
the result list, and hence parMap is parametric in some of its dynamic behaviour.

p a r M a p ; ; Strategy b -> (a -> b) -> [a] -> [b]
p a r M a p s t r a t f x s = m ap f x s 'using' parList s t r a t

4.3.5 Control-Oriented Parallelism

Control-oriented parallelism is typically expressed by a sequence of strategy applica
tions composed with p ar and seq that specifies which subexpressions of a function
are to be evaluated in parallel, and in what order. The sequence is loosely termed
a strategy, and is invoked by either the demanding or the spark ing function. The
Haskell f l i p function simply reorders a binary function’s parameters.

demanding, sparking :: a -> () -> a

demanding = f l i p seq
sparking = f l i p par

The control-oriented parallelism of pf ib can be expressed as follows using demanding.
The LinSolv and Lolita programs in Sections 4.6 and 4.5 contain more elaborate
examples of using sparking.

p f i b n
| n <= 1 = 1
I o t h e r w i s e = (n l + n 2 + l) ’demanding' s t r a t e g y

w h e r e
n l = p f i b (n - 1)
n 2 = p f i b (n - 2)
s t r a t e g y = rnf n l 'par' rnf n 2

The control-oriented parallelism of quicksort can be expressed with the following
strategy, selecting lo s o r t and h is o r t for parallel evaluation.

4.3. Evaluation Strategies 98

q u i c k s o r t s (x : x s) = l o s o r t ++ (x r h i s o r t) 'using' s t r a t e g y
w h e r e

l o s o r t = q u i c k s o r t s [y | y < - x s , y < x]
h i s o r t = q u i c k s o r t s [y | y < - x s , y >= x]
s t r a t e g y r e s u l t = rnf l o s o r t ’p a r '

rnf h i s o r t 'par'
rnf r e s u l t

4.3.6 A dditional Dynam ic Behaviour

Strategies can control other aspects of dynamic behaviour, thereby avoiding cluttering
the algorithmic code with them. A particularly important example for the scope of
this thesis is a thresholding mechanism that controls thread granularity. In p f ib for
example, granularity is improved for many machines if threads are not created when
the argument is small. The use of thresholding in Lolita is discussed in Section 4.5.

p f i b T n
| n <= 1 = 1
| o t h e r w i s e = (n l + n 2 + l) 'demanding' s t r a t e g y

w h e r e
n l = p f i b T (n - 1)
n 2 = p f i b T (n - 2)
s t r a t e g y = i f n > 1 0

t h e n rnf n l 'par' rnf n 2
e l s e ()

Another example of a generic strategy that affects granularity, i.e. the computation
costs of potentially parallel threads, is the parG ranList strategy below. This strategy
uses a granularity estimate function and creates the parallelism in an order of decreas
ing granularity. This strategy has been developed by the author during the perfor
mance tuning of a very coarse-grained parallel bowing algorithm (Hall et al. 1997).

4.3. Evaluation Strategies 99

p a r G r a n L i s t ; ; Strategy a -> (a -> Int) -> [a] -> Strategy [a]
p a r G r a n L i s t s g r a n _ e s t i m l _ i n = \ l _ o u t - >

p a r L i s t B y l d x s l _ o u t $
s o r t e d l d x g r a n _ l i s t (s o r t L e (\ (i , _) (j , _) - > i > j) g r a n _ l i s t)
where

- - spark list elems of 1 in the order specified by (i:idxs)
p a r L i s t B y l d x s i [] = ()
p a r L i s t B y l d x s 1 (i : i d x s) = p a r L i s t B y l d x s 1 i d x s 1sparking1 s (l ! ! i)
- - get the index of y in the list
i d x y [] = e r r o r " i d x : x n o t i n 1"
i d x y ((x , _) : x s) | y = = x = 0

j o t h e r w i s e = (i d x y x s) + l
- - the 'schedule' for sparking: list of indices of sorted input list
s o r t e d l d x 1 i d x s = [i d x x 1 | (x , _) < - i d x s]
- - add granularity info to elems of the input list
g r a n _ l i s t = m ap (\ 1 - > (g r a n _ e s t i m 1 , 1)) l _ i n

The purpose of the parG ranL ist strategy is to spark all elements in the list l_out
in an order of decreasing granularity. The function g ran .es tim provides an estimate
of the granularity. Note that this estimate has to be applied to the input list l . i n
determining the order of the sparks in the output list. Thus, this strategy abstracts
over the concrete definition of how to compute the results in the output list. The
strategy proceeds in four steps:

1. First granularity estimates are added to each list element yielding g r a n .l i s t .
The construct \ 1 -> . . . represents a lambda expression in Haskell, i.e. an
anonymous function with the argument 1 and the body . . .

2. Then the resulting list is sorted by these estimates using the library function
sortLe, which takes a predicate, the less-than-or-equal function to be used for
sorting, as the first argument.

3. In order to obtain a “schedule” for the order in which the list elements should
be sparked, a list of indices of the sorted list is computed using so rted ldx .

4. Finally, the index-list is used as the schedule for the parL istB yldx strategy,
which introduces parallelism via a spark ing clause. The 1! ! i construct is used
to extract the i-th element from the list 1.

For clarity, the current version separates the sorting of the list from obtaining the list
of indices, yielding a quadratic algorithm. This could be improved further by merging
both steps.

4.3. Evaluation Strategies 100

Clearly, this strategy encodes a deeper insight into the parallel behaviour of the pro
gram than previous strategies. The original motivation for designing this strategy
came from the observation that in a coarse-grained program, with largely varying
computation times, it is crucial to generate the largest thread first in order to min
imise a sequential tail with only the largest thread executing. In a typical process of
developing a parallel algorithm the programmer starts with examining the types on
the most important data structures and uses pre-defined parallel strategies on these
types, e.g. p a rL is t over list structures. Then, in the performance tuning stage, the
programmer might try to improve the behaviour by encoding a particular parallel
behaviour in the algorithm as it has been done with the parG ranL ist strategy above.
The discussion of the LinSolv algorithm in Section 4.6 elaborates this tuning process
further.

4.3.7 Strategic Function Application

This section discusses one of the author’s contributions to the latest version of eval
uation strategies as part of his parallelisation of Lolita. The initial version of parallel
Lolita was written with using-based pipelines. Introducing the notion of strategic
function application and rewriting the code in this style simplified the overall struc
ture significantly.

In pipelined parallelism a sequence of stream-processing functions are composed to
gether, each consuming the stream of values constructed by the previous stage and
producing a new stream. This kind of parallelism is easily expressed in a non-strict
language by function composition. The non-strict semantics ensures that no barrier
synchronisation is required between the different stages.

When using strategies to describe this kind of parallelism a function composition is
needed, which applies a strategy to the intermediate value. Based on this observation
strategic function application and strategic function composition are introduced. The
new operators correspond to function application $ and function composition . de
fined in the Haskell prelude. The strategic function application takes one additional
argument, a strategy s, which is applied to the argument. The parallel version of the
operator, $ I I, applies the strategy and the function in parallel, thereby overlapping
two stages in the pipeline. The sequential version of this operator, $ I, first applies
the strategy and then the function to the argument. This introduces a synchroni-

4.3. Evaluation Strategies 101

sation barrier and may be used to define evaluation order. However, the strategy
may itself define parallelism, e.g. over the structure of the argument. The . I I and
. I operators define the same behaviour for function compositions. The definition of
these operators in G p H is given below.

infixl 6 $/, $11 - - strategic function application
infixl 9 • / / • / / - - strategic function composition

($1), ($11) :: (a - > b) -> Strategy a -> a -> b
(* /) # (• / /) :: (b -> c) -> Strategy b -> (a -> b) -> (a -> c)

($1) f s x = f x 1demanding* s x
($11) f s x = f x 1sparking1 s x

(. /) f s g = \ x - > l e t g x = g x
in f g x 1demanding1 s g x

(•II) f s g = \ x - > l e t g x = g x
in f g x *sparking' s g x

An often used example of the modularity of functional languages is the definition of
the sum-of-squares function for computing the sum of the first n integer values via the
composition of three separate functions. With the new construct of strategic function
application we can define a parallel behaviour of the same definition in a very natural
way without obscuring the original algorithmic code:

s u m _ o f _ s q u a r e s ; ; Int -> Int
s u m _ o f _ s q u a r e s n = su m $ / / parList rnf $ - - [Int]

m ap (A2) $1/ rnf $ - - [Int]
en u m F ro m T o 1 n

The functions are applied via the parallel $ I I operator to obtain a parallel pipeline
structure. Furthermore, the types of the intermediate lists, [I n t] , already suggest
a strategy for exposing additional data parallelism in the code: p a rL is t rn f. How
ever, in this case we have chosen not to use the parallelism over the list generated
by the enumFromTo library function, because it contains too little computation for
each of the list elements. As a result, this function defines a pipeline strategy with
data parallelism over one of the two intermediate list structures (see Figure 4.1). It is
easy to experiment with the parallelism in the code, e.g. by merging pipeline stages,
which amounts to replacing $ I I with a $ I operator. The data parallelism over the
intermediate data structures can be simply modified by choosing different strategies
as arguments to the $ I I operator. Because none of these changes require to exam
ine the code for the function sum, map, and enumFromTo, this example shows how
the modularity, obtained in functional languages via non-strict data structures and

4.3. Evaluation Strategies 102

n

F ig u re 4.1 Structure of sum-of-squares

function composition, carries over to the definition of the parallel behaviour of the
code.

As a comparison of two versions of a more sophisticated strategy we now discuss the
back end in the Lolita system, which interprets semantic information obtained in a
previous analysis in the system. This comparison illustrates that keeping intermediate
values anonymous increases the readability of the program significantly. A using-
based version of the back end in Lolita can be written as follows. Details of the code
will be discussed in Section 4.5.

b a c k _ e n d i n p o p t s
= r 8 'demanding' s t r a t

w h e r e
r l = u n p a c k T r e e s i n p
r 2 = u n i f y S a m e E v e n t s o p t s r l
r 3 = s t o r e C a t e g o r i s e l n f o r m a t i o n r 2
r 4 = u n i f y B y S u r f a c e S t r i n g r3
r 5 = a d d T i t l e T e x t r e f s r 4
r 6 = t r a c e S e m W h o le r 5
r 7 = o p t Q u e r y R e s p o n s e o p t s r 6
r 8 = m k W h o l e T e x t A n a l y s i s r 7
s t r a t = (parPair rwhnf (parList rwhnf)) i n p

(parPair rwhnf (parList (parPair rwhnf rwhnf))) r l
rnf r 2
rnf r 3
rnf r 4
rnf r 5
rnf r 6
(parTriple rwhnf (parList rwhnf) rwhnf) r 7
0

By using strategic function application the same code can be written more succinctly
as follows. The separation of algorithmic and behavioural code is maintained by
allowing strategies only as arguments to the strategic function application.

'aeg'
'seq'
'par'
'par'
'par'
'par'
'par'
'seq'

lenumFromTo 1 sum

4.4. Alpha-Beta Search 103

b a c k _ e n d i n p o p t s =
m k W h o l e T e x t A n a l y s i s $ parTriple rwhnf (parList rwhnf) rwhnf $
o p t Q u e r y R e s p o n s e o p t s $ 1 rnf $
t r a c e S e m W h o l e $ 1 rnf $
a d d T i t l e T e x t r e f s $ 1 m f $
u n i f y B y S u r f a c e S t r i n g $ 1 m f $
s t o r e C a t e g o r i s e l n f $ I rnf $
u n i f y S a m e E v e n t s o p t s $ parPair rwhnf (parList (parPair rwhnf rwhnf))
u n p a c k T r e e s $ parPair rwhnf (parList rwhnf) $
inp

Strategic function application has proven useful in particular for the parallelisation of
Lolita (see Section 4.5.3). The Alpha-Beta search algorithm described in Section 4.4
has a top-level pipeline structure. However, in this case there is far less potential
parallelism in the pipeline structure.

The importance of strategic function application and composition for parallel pro
gramming is underlined by the fact that function composition is considered the basic
building block for constructing large programs from independent modules (Hughes
1989). The software engineering advantages, such as improved modularity, for sequen
tial program development are well known. In the parallel setting strategic function
composition also facilitates a data-oriented approach to parallelisation, making use
of the modularity provided by lazy languages.

4.4 A lpha-Beta Search

The first example program is the Alpha-Beta search algorithm, typical of artificial
intelligence applications. It is mainly used for game-playing programs to find the best
next move by generating all possible moves up to a certain depth, applying a static
evaluation function to each of the leaves in this search tree, and combining the result
by picking the best move for the player assuming that the opponent picks the worst
move for the player. In a more general setting this algorithm can be used for heuristic
search. The idea of the heuristics is that the quality of the result depends on the static
evaluation function as well as on the search depth. If the latter is sufficiently high a
very simple static evaluation function can be used.

This section discusses two versions of the Alpha-Beta search algorithm: a simple ver
sion, and a pruning version. Both versions are based on the Miranda1 code presented

1 Miranda is a trademark of Research Software Ltd.

4.4. Alpha-Beta Search 104

by Hughes (1989) in order to demonstrate the strengths of lazy functional languages.
Based on the generic Alpha-Beta search algorithm two simple games (tic-tac-toe and
escape) have been implemented. An interesting aspect of this algorithm is the fact
that the pruning version relies on laziness to prune the search tree based on interme
diate results of the computation. This behaviour is crucial for the efficiency of the
sequential algorithm, and has to be preserved in the parallel algorithm.

This section presents both parallel versions and studies their parallel runtime be
haviours. The parallel algorithms show how the use of strategies allows the program
mer to develop an efficient parallel algorithm without sacrificing the advantages of the
original lazy algorithm, namely its modularity and efficiency. A description of both
algorithms and a comparison of the parallelisation with that of other applications is
given in Loidl k Trinder (1997).

4.4.1 Simple Algorithm

In the simple algorithm each possible next move is evaluated independently yielding
a divide-and-conquer structure of the algorithm. The result is either the maximum,
player’s move, or the minimum, opponent’s move, of the evaluations of these positions.
As discussed by Hughes (1989) this algorithm can be very naturally derived as a
sequence of function compositions (see Figure 4.2). The stages in the pipeline perform
the following tasks:

1. Construct a tree with positions as nodes and all possible next moves as subtrees.
This is done by repeatedly applying a newPosition function to the nodes in
the tree, alternating between the functions for the two players, repTree.

2. Prune the tree, which might be infinite at this stage, to a fixed depth to bound
the search via prune. The search depth is an argument to the algorithm.

3. Map a static evaluation function over all nodes of the tree via mapTree.

4. Crop off subtrees from winning or losing positions via cropTree. If such a
position is found it is not necessary to search deeper in a subtree.

5. Finally, pick the maximum, or minimum, of the resulting evaluations in order
to determine the value of the current position via mise f g. The functions f

4.4. Alpha-Beta Search 105

b e s t M o v e ; ; Int -> Piece -> Player -> Player -> Board -> Evaluation
b e s t M o v e d e p t h p f g = (m i s e f g) .

c r o p T r e e .
(m a p T r e e (s t a t i c p)) .
(p r u n e d e p t h) .
r e p T r e e (n e w P o s i t i o n s p)

(n e w P o s i t i o n s (o p p o s i t e p))

F ig u re 4.2 Top level structure of choosing the best next move

and g represent the combination functions for the two players, maximum or
minimum respectively, and alternate when traversing the tree.

D ynam ic B eh av io u r

The fact that the results in all subtrees can be computed independently makes par
allelisation rather easy. For both versions of the algorithm the following four sources
of parallelism can be used.

Top Level P ip e lin e . An obvious approach to parallelise this algorithm is to use
pipeline parallelism between the stages of the pipeline. However, it is crucial not to
force the intermediate values too far. In particular, the result of the repTree stage
might be an infinite tree.

P a ra lle l S ta tic E v a lu a tio n F unction . The idea of a parallel static evaluation
function is to reduce the costs of the function, which will be mapped over the leaves
of the pruned search tree. This only makes sense for a rather time consuming static
evaluation function, otherwise it creates a lot of fine-grained parallelism. However, an
underlying assumption of the Alpha-Beta search algorithm is that the static evalua
tion function can be very simple when using a tree search structure to determine the
best value. In the example implementations, the static evaluation function computes
the distance of the current position to a set of known winning positions. The parallel
version computes all distances in parallel.

4.4. Alpha-Beta Search 106

P a ra lle l H ig h er-O rd er F unctions over Trees. Parallelising the definitions of
some higher-order functions is a bottom-up approach. It can be used for the par
allelisation of many functional programs. In this case a parallel version of a map
function over search trees, mapTree, is used. However, the measurements in Table 4.1
show, that without any knowledge about the context in which these higher-order
functions are used a lot of redundant work may be generated resulting in extremely
poor parallelism.

D a ta P ara lle lism over all P ossib le N ex t M oves. In a data parallel approach
the goal is to evaluate all possible next moves in parallel. It is a top-down approach
and turns out to be the best source of parallelism in particular for an algorithm with no
dependencies between the evaluations of the subtrees. A simple parMap rn f strategy
can be used to capture the dynamic behaviour of this function. The only necessary
change in the algorithm affects the mise function in Stage 5 of the algorithm, shown
in Figure 4.3. This function takes the two combination functions, either the binary
max or min function, and a tree of static evaluations of positions in the game, as
arguments. It then recursively maps the mise function over all subtrees, switching
the functions f and g to record the switch of turns. Finally, the combination function
at the current level, f , is folded to obtain the score of the current position.

- - This does simple minimaxing without pruning subtrees based on
-- intermediate evaluations (i.e. purely compositional)
m i s e ; ; Player -> Player -> (Tree Evaluation) -> Evaluation
m i s e f g (B r a n c h a []) = a
m i s e f g (B r a n c h _ 1) = f o l d r f (g OWin XWin) (parM ap m f (m i s e g f) 1)

F ig u re 4.3 Data parallel combination function in the simple Alpha-Beta search
algorithm

P erfo rm an ce M easu rem en ts

The measurements of both versions of the algorithm under the G ranSim simulator
are summarised in Table 4.1. The setup used in these measurements models a shared
memory machine with 32 processors, a latency of 64 machine cycles, and bulk fetching.
The first four data columns of this table show the results of the simple algorithm

4.4. Alpha-Beta Search 107

T able 4.1 Measurements of the simple and the pruning Alpha-Beta search algorithm
Simple Algorithm

Runtime Avg Total
(kcycles) Pax Work SpdUp

Pruning Algorithm
Runtime Avg Total
(kcycles) Par Work SpdUp

Position I (standard)
Sequential 60,297 34,363 (1.75)
Par Pipeline 60,297 1.0 100% 1.00 34,370 1.0 100% 0.99
Par Static Eval 21,091 3.1 108% 2.85 12,099 3.1 109% 2.84
Data Par 3,503 26.4 153% 17.21 2,265 23.7 156% 15.17
Par h.o. fcts 4,954 20.9 172% 12.16 4,248 24.2 299% 8.08
Par Static Eval &
Data Par 3,507 28.5 166% 17.19 2,156 27.6 173% 15.93
Par h.o. fcts &
Data Par 3,701 28.2 173% 16.29 3,683 28.3 303% 9.32
Position II (early solution)
Sequential 4,427 4,703 (0.94)
Par Pipeline 4,427 1.0 100% 1.00 4,706 1.0 100% 0.99
Par Static Eval 1,772 2.9 116% 2.49 1,898 2.9 117% 2.47
Data Par 1,152 13.9 362% 3.84 1,075 13.1 299% 4.37
Pax h.o. fcts 759 9.6 165% 5.83 811 9.0 155% 5.79
Par Static Eval &
Data Par 775 23.2 406% 5.71 779 20.4 338% 6.03
Par h.o. fcts &;
Data Par 919 20.4 424% 4.81 1,001 18.9 403% 4.69
Position III (large search tree)
Sequential 145,720 90,377 (1.61)
Pax Pipeline 145,720 1.0 100% 1.00 90,385 1.0 100% 0.99
Par Static Eval 48,808 3.3 111% 2.98 29,891 3.3 109% 3.02
Data Par 6,621 29.1 132% 22.00 7,699 16.2 138% 11.73
Par h.o. fcts 9,345 21.4 137% 15.59 8,093 24.6 220% 11.16
Par Static Eval &
Data Par 7,083 29.3 142% 20.57 5,210 25.7 148% 17.34
Par h.o. fcts &
Data Par 6,882 29.3 138% 21.17 6,802 29.6 223% 13.28

when using the different sources of parallelism. All runtimes are given in machine-
independent kilocycles. The total work column measures the total work compared
to a sequential run and is therefore a measure of the redundant work, in particular
of speculative parallelism. The three horizontal sections in the table represent three
different positions that have been analysed: a standard opening position (I) with
a sequential runtime of 60,297 kilocycles; a winning position (II) with a sequential

4.4. Alpha-Beta Search 108

runtime of 4,427 kilocycles; and a position generating a large search tree (III) with a
sequential runtime of 145,720 kilocycles.

The parallel pipeline version creates hardly any parallelism at all. This is due to the
fact that it is not possible to force the search tree before pruning it without generating
a huge amount of redundant work. This result differs significantly from the results
with programs like Lolita, where the top-level structure of the whole algorithm is a
parallel pipeline. The parallel static evaluation function generates conservative par
allelism shown by the small amount of total work performed. However, the degree
of parallelism is rather small: in this example program the distance of the current
position to a small set of winning positions is computed in a data parallel fashion.
Another disadvantage is the fine-grained nature of the parallelism, i.e. each of the
generated threads performs very little computation. The data parallelism over all
next positions proves to be the best source of parallelism. The simple algorithm will
only cut-off subtrees if it finds a winning position in one of the subtrees. Therefore,
this data parallelism is conservative except for the case where a winning position is
found as in Position II. Note that in the latter case the simple sequential algorithm
performs even better than the pruning algorithm indicated by the algorithm speedup
of 0.94, in brackets, in the last column. Finally, the higher-order functions approach
generates the largest amount of redundant work shown by the high total work per
centage. Here a parallel tree map of the static evaluation function is used. However,
this also maps the evaluation function on nodes that are actually pruned in the se
quential algorithm. Combining data parallelism with parallel static evaluation does
not improve the performance in general. Although the average parallelism increases,
the speedup actually drops for Positions I and III because the additional parallelism
is very fine-grained.

For the simple Alpha-Beta algorithm using only data parallelism gives an almost
perfect utilisation of the machine, provided that the search space is large enough. If
a solution is found early on then the speedup will naturally drop (see Position II in
Table 4.1). However, for more realistic games than tic-tac-toe the search space should
easily be large enough because of the exponential growth of the search tree.

4.4. Alpha-Beta Search 109

m a x

[0,..][3,1]

minm m

0 ?3 1

F ig u re 4.4 Pruning subtrees in the optimised Alpha-Beta search algorithm

4.4.2 Pruning Algorithm

The simple algorithm described in the previous section lacks one crucial optimisation
of the Alpha-Beta search: the pruning of subtrees based on intermediate results. The
pruning algorithm returns an increasing list (player’s move) of approximations with
the exact value as last list element rather than a single value. The main pruning
function, minleq, has to test whether the opponent’s move from a subtree can be
ignored (see Figure 4.4). This is the case if the worst result of the decreasing list
Z, i.e. its minimum, is no better, i.e. less than or equal to, the intermediate result
x. Or more formally: minimum I < x m inleq I x. Since m inleq works on
decreasing lists it can stop examining the list as soon as it finds a value less than x.
Thus, laziness is used to ignore parts of the list of approximations, which amounts
to pruning subtrees in the search tree. A complete description of this lazy functional
pruning algorithm can be found in Hughes (1989).

In the sequential code in Figure 4.5 the prelude functions min and max from the simple
algorithm are replaced with functions min * and max *, respectively. The new functions
operate over lists of approximations. In implementing the behaviour described in the
previous paragraph the b e tte r th a n function will stop examining list elements of
next when it is clear that the final result will not be better than the value a found so
far. Figure 4.4 illustrates this behaviour. After having determined the value of the
left subtree and the value 0 in the right subtree it is not necessary to examine the

4.4. Alpha-Beta Search 110

-- A pruning version of alpha-beta search
m i s e ; ; Player -> Player -> (Tree Evaluation) -> [Evaluation]
m i s e f g (B r a n c h a []) = [a]
m i s e f g (B r a n c h _ 1) = f (map (m i s e g f) 1)

b e t t e r t h a n ; ; (Evaluation -> [Evaluation] -> Bool) -> -- maxleq or minleq
((E v a l u a t i o n] - > E v a l u a t i o n) - > - - max' or min'

E v a l u a t i o n - > - - Score to compare
[[E v a l u a t i o n]] - > - - list of approxs
[E v a l u a t i o n]

b e t t e r t h a n _ _ _ [] = []
b e t t e r t h a n b e t t e r _ t h a n _ w o r s t w o r s t a (n e x t : r e s t)

| a ' b e t t e r _ t h a n _ w o r s t ' n e x t = b e t t e r t h a n b e t t e r _ t h a n _ w o r s t w o r s t a r e s t
| o t h e r w i s e = m : b e t t e r t h a n b e t t e r _ t h a n _ w o r s t w o r s t m r e s t

w h e r e m = w o r s t n e x t

- - minleq y 1 <=> minimum 1 <= y
m i n l e q Evaluation -> [Evaluation] -> Bool
m i n l e q y [] = F a l s e
m i n l e q y (x : x s)

| x <= y = T r u e - - throws away the rest of the list!
| o t h e r w i s e = m i n l e q y x s

- - used as argument to mise
m ax ' : : [[Evaluation]] -> [Evaluation]
m a x ' (f i r s t : r e s t) = m : b e t t e r t h a n m i n l e q m in im u m m r e s t

w h e r e m = m in im um f i r s t - - strict in first

F ig u re 4.5 Pruning version of the Alpha-Beta search

rightmost leaf. The overall maximum is guaranteed to be at least 1.

D yn am ic B eh aviour

Unfortunately, the pruning version seriously complicates the parallelisation of the
algorithm. We have already seen in the simple algorithm that the most promising
source of parallelism is the parallel evaluation of all next positions. However, using
a simple p a rL is t rn f strategy over all next positions is no longer advisable, since
this might result in a lot of redundant work, if many subtrees can be pruned. The
measurements of the data parallel strategy on the pruning algorithm in Table 4.1
show a rather high degree of redundant work. In fact, in the data parallel strategy
on Position III the parallel simple version is even faster than the highly speculative
parallel pruning version of the algorithm!

A better approach for parallelisation is to force only an initial segment in the list of

4.4. Alpha-Beta Search 111

- - Parallel version of the pruning version
m i s e ; ; Player -> Player -> (Tree Evaluation) -> [Evaluation]
m i s e f g (B r a n c h a []) = [a]
m i s e f g (B r a n c h _ 1) =

f
- - force the first n elements of the result list
((m a p (m i s e g f) 1)
'using' \ x s - > i f f o r c e _ l e n = = - l - - infinity

t h e n parList m f x s 'par' ()
e l s e parList m f (t a k e f o r c e _ l e n x s) 'par'

parList rwhnf (d r o p f o r c e _ l e n x s) 'par'
0

)

F ig u re 4.6 Strategy for a parallel pruning version with a static force length

possible next positions. We call the length of this segment the “force length” . We
have experimented with static force lengths as well as dynamic force lengths that
depend on the level in the search tree. To date the best results have been obtained
from using a static force length as shown in the parallel code for mise in Figure 4.6.
The algorithmic code for mise is unchanged compared to the sequential version. The
strategy uses a global constant f o rce .len to determine how much of the list xs should
be evaluated. Because strategies are simply Haskell functions, the prelude functions
tak e and drop can be used for that purpose. Note that the force length represents a
trade-off between increasing the degree of parallelism and reducing the total amount
of work being done.

P erfo rm an ce M easu rem en ts

Figure 4.7 compares the speedups of the pruning version of Alpha-Beta search un
der G r a n S im , using the same setup as in the previous measurements. The x-axis
shows the static force length, the y-axis the speedup. The left hand graph uses a
program implementing tic-tac-toe, the right hand graph uses an implementation of a
similar game, escape, with a search space of comparable size but asymmetric winning
conditions.

The left hand graph shows for the data parallel strategy a large improvement when
increasing the force length, in particular for Position III. A purely conservative data
parallel strategy (i.e. the force length is 0) achieves a speedup of only 8.58 because the
amount of available parallelism drops early on in the computation (see Figure 4.8).

4.4. A lp h a -B e ta Search 112

tic-tac-toe

Pruning (data par) (I)
Pruning (data par) (II)

Pruning (data par) (III)
Pruning (data par & par static eval) (I)

Pruning (data par & par static eval) (II)
3runing (data par & par static eval) (III)

force length

Pruning (data par) (I)
Pruning (data par & par static.jeval) (I)

12a
3
V01
& 10
in

0 1 2 3
force length

4 5

F ig u re 4.7 Speedup with varying force length (G r a n S i m)

fGrAnSlm mntmax_mg 3 +RTS -bP -bp32 -bK>4 -b-G -toy2 -be -H 1 0 M _____________Average ParaHetiiwn = 10 [G rAnSirn minmax_mg 3 +RTS -bP -bp32 -b«64 -b-G -by2 be -H10M Average Paraletem = 29 9)

[B running □ runnable B totchmg B blocked □ migrating Runtime » 11 4M cycles') [B running □ runnable B t etching B blocked □ migraling RurHime» 6 2 M cycles

F igu re 4.8 Data parallel versions with static force lengths of 0 and 4

In contrast, with a force length of 4 the speedup is 15.71. After that the percentage
of redundant work done in the parallel algorithm increases too much to achieve a
further improvement. For Position II, which finds a winning position early on in the
search, parallelism can achieve hardly any improvement because almost all potential
parallelism in the algorithm is pruned. The versions additionally using a parallel
static evaluation function usually outperform the versions with data parallelism alone,
because the small amount of conservative parallelism in the static evaluation can make
use of idle time on the machine. This is in contrast to the simple algorithm, where the
data parallel evaluation function generates enough parallelism to keep the machine
busy. This can be seen in Table 4.1, comparing the speedups of the lines for data
parallelism and data parallelism together with a parallel static evaluation function.

4.5. Lolita 113

4.5 Lolita

4.5.1 Algorithm

The Lolita natural language engineering system (Morgan et al. 1994) has been de
veloped at the University of Durham over several years. It has not originally been
written with a parallel execution of the code in mind. The team’s interest in paral
lelism is partly as a means of reducing runtime, and partly also as a means to increase
functionality within an acceptable response-time. The overall structure of the pro
gram bears some resemblance to that of a compiler, being formed from the following
large stages:

• Morphology (combining symbols into tokens; similar to lexical analysis);

• Syntactic Parsing (similar to parsing in a compiler);

• Normalisation (to bring sentences into some kind of normal form);

• Semantic Analysis (compositional analysis of meaning);

• Pragmatic Analysis (using contextual information from previous sentences).

These stages form the core of Lolita. Depending on how Lolita is to be used, a final
additional stage may perform a discourse analysis, the generation of text (e.g. in a
translation system), or it may perform inference on the text to answer queries. This
design of the system yields a very flexible and modular structure. A more detailed
discussion of the Lolita system and of its parallelisation is given in Loidl et al. (1997).
The parallelisation has been done as joint work with the group at the University of
Durham.

Central to Lolita’s flexibility is the semantic network, a graph based knowledge rep
resentation used in the core of Lolita. In the semantic network concepts and relation
ships are represented by nodes and arcs respectively, with knowledge being extracted
by graph traversal. The task of the analysis stages is to transform the possibly
ambiguous input into a sub-graph of the semantic network. Application-dependent
backend stages can then extract pieces of the semantic network and present it in the
required form.

4.5. Lolita 114

4.5.2 Sequential Profiling

As a preparation for parallelising such a large program the author has performed
sequential profiling of the code. This did not reveal a particular hotspot in the
program although the syntactic parsing stage is the biggest component in the top-
level structure with about 20% of the execution time. However, this stage makes
heavy use of C-functions, called from within Haskell, to optimise the time consuming
parsing process. This complicates a parallelisation of the parsing stage. The Haskell
part of the parsing, however, can be parallelised without major recoding.

4.5.3 Top Level Pipeline

W ithout a clear hotspot in the sequential execution of the program a pipeline ap
proach is a promising way to achieve enough parallelism for a four processor shared-
memory machine such as a Sun SPARCserver. The structure of a pipeline parallel
version is shown in Figure 4.9. Each stage listed above is executed by a separate
thread, which are linked to form a pipeline. Note that in order to make use of the
multi-threaded runtime-system, which overlaps computation and communication, the
parallel algorithm should contain more threads than there are processors available.
The key step in parallelising the system is to define strategies on the complex in
termediate data structures, e.g. parse trees, that are used to communicate between
these stages. This data-oriented approach simplifies the top-down parallelisation of
this very large system, since it is possible to define the parallelism over parts of a data
structure without considering the algorithms that produce that data structure. This
approach hides unnecessary information about the generation of the data structure
and is in the spirit of functional programming, which tries to achieve modularity by
composing flexible, possibly higher-order, functions.

Semantic An.Morpholgy) Synt. Parsing Normalisation Pragmatic An;

F ig u re 4.9 Overall pipeline structure of Lolita

The code of the top-level function wholeTextAnalysis in Figure 4.10 uses strategic
function application as the basic operator to introduce parallelism (see Section 4.3.7).

4.5. Lolita 115

The algorithm is separated from the dynamic behaviour in each stage by using the
$ I I operator. In a first parallel version the same separation has been achieved with
an explicit pipeline strategy. However, this required to name every intermediate value
in the pipeline. As a result many additional variables had to be added to the code,
obscuring the algorithmic part of the code. This experience was the main motivation
for developing the strategic function application operator.

Note that this code uses a p a rL is t strategy in the definition of raw ParseForest
in the parsing stage to describe data parallelism over the whole input by processing
sentences in the input text in parallel. In the current version of the system it is not
possible to use this source of parallelism because the C code in this stage is not re
entrant. Changing the C code to exploit this form of parallelism is ongoing work. The
strategies in the individual stages of Figure 4.10 will be discussed in the subsequent
sections.

The semantic and pragmatic analysis stages are wrapped into a timeout function in
order to guarantee a worst case response time of the system. This indicates that
these stages can be very computationally intensive. Therefore, both analyses are
kept rather simple in the sequential system. By providing the strategy evalScores,
in parse2prag, speculative parallelism is defined, which allows the system to perform
a more sophisticated analysis by examining several possible parse trees. The goal of
this strategy is therefore to improve the quality of the result. Section 4.5.5 discusses
this issue in more detail. In general, it would be very desirable to improve the quality
of semantic and pragmatic analysis in the system. Parallelism inside these stages
could be used to maintain good performance despite the increased complexity of the
system.

4.5.4 Parallel Parsing

One major source of parallelism in the time consuming syntactic parsing stage is the
merging of possible parse trees in order to build a parse tree for a whole sentence.
One complication in the parsing of natural languages is their ambiguity. Because of
this ambiguity the parsing stage produces not just one but a list of possible parse
trees. Internally, however, the result is represented as a single tree, which at some
points contains alternatives (“or-nodes”) representing different possible parses of the
subtrees. A lazy function is used to convert this single tree into a list of possible parse

4.5. Lolita 116

wholeTextAnalysis opts inp global =
result
where

- - (1) M o r p h o l o g y
(g2, sgml) = prepareSGML inp global
sentences = selectEntitiesToAnalyse global sgml
- - (2) P a r s i n g
rawParseForest = map (heuristic_parse global) sentences

'using* parList rnf

- - (3) - (5) A n a l y s i s
anlys = stateMap_TimeOut (parse2prag opts) rawParseForest global2
- - (6) B a c k E n d
result = back_end anlys opts

- - P i c k t h e p a r s e t r e e w i t h t h e b e s t s c o r e f r o m t h e r e s u l t s o f
- - t h e s e m a n t i c a n d p r a g m a t i c a n a l y s i s . T h i s i s d o n e s p e c u l a t i v e l y !

parse2prag opts parse_forest global =
pickBestAnalysis global $u evalScores $
take (getParsesToAnalyse global) $
map analyse parse_forest
where

analyse pt = mergePragSentences opts $ evalAnalysis
evalAnalysis = stateMap_TimeOut analyseSemPrag pt global
evalScores = parList (parPair rwhnf (parTriple rnf rwhnf rwhnf))

- - P i p e l i n e t h e s e m a n t i c a n d p r a g m a t i c a n a l y s e s
analyseSemPrag parse global =
prag_transform $n rnf $
pragm $n rnf $
sem_transform $ii rnf $
sem (g,[]) $n rnf $
addTextrefs global $i rwhnf $
subtrTrace global parse

back_end inp opts =
mkWholeTextAnalysis $
optQueryResponse opts $
traceSemWhole $
addTitleTextrefs $
unifyBySurfaceString $
storeCategoriselnf $
unifySameEvents opts $
unpackTrees $
inp

F ig u re 4.10 The top level function of Lolita

trees. In each or-node the parser, which returns a list of parse trees, must merge the
lists of parse trees produced by the recursive calls. In merging these lists the possible
parse trees have to be sorted based on some simple syntactic criteria representing the
likelihood of a parse, and the laziness of Haskell is crucial. In order to produce one
parse tree in an or-node it is only necessary to evaluate the first element in the lists

parTriple rwhnf (parList rwhnf) rwhnf $
I m f $
I m f $
I m f $
I m f $
I m f $
parPair rwhnf (parList (parPair rwhnf rwhnf)) $
parPair rwhnf (parList rwhnf) $

4 .5 . L o lita 117

m e r g e s t r a t e g y ; ; (NFData a, NFData b) =>
(P a r s e F o r e s t , F e a t u r e F o r e s t s) - > S p a n - > M e r g e S t r a t e g y a b

m e r g e S t r a t e g y (p f , f f) s p a n
| t o t a l S p a n = = 0 = M S t r a t s e r i a l M e r g e
I p e r c e n t S p a n n e d >= m in S p a n = M S t r a t p a r a l l e l M e r g e
| o t h e r w i s e = M S t r a t s e r i a l M e r g e
where

p e r c e n t S p a n n e d = (s p a n * 1 0 0) ' d i v ' t o t a l S p a n
t o t a l S p a n = f o r e s t S p a n p f
m in S p a n = g e t P a r s i n g P a r P e r c e n t (f o r e s t G l o b a l p f)

p a r a l l e l M e r g e ; ; (NFData a, NFData b) =>
[(a , b)] - > [(a , b)] - > S t r a t e g y [(a , b)]

p a r a l l e l M e r g e a s b s _
= f s t P a i r F s t L i s t b s ’p a r *

f s t P a i r F s t L i s t a s ’segr’
0

fstPairFstList :: (NFData a, NFData b) => Strategy [(a,b)]
fstPairFstList = seqLiatN 1 (aeqPair rwhnf rO)

serialMerge ;; (NFData a, NFData b) =>
[(a,b)] -> [(a,b)] -> Strategy [(a,b)]

serialMerge as bs
= rO

Figure 4.11 A granularity control strategy used in the parsing stage

produced by all alternatives.

From a parallelism point of view this behaviour explains why it is not possible to
force the evaluation of parts of the parse forest without risking to introduce a high
degree of redundant work. Within the parsing process the merging of lists triggers the
evaluation of sublists, in particular the evaluation of the quality of possible parses.
Although the merging itself is very cheap it triggers work that can be usefully done
in parallel.

In order to improve the granularity of the threads produced by the parallel tree
traversal in the parsing stage, we apply a thresholding strategy, shown in Figure 4.11,
to the “span” in the tree. The span value, which is attached to each node in the tree,
specifies the number of leaves in the current subtree. The threshold for generating
a parallel process in order to merge all possible subtrees is specified as a percentage
of leaves that can be reached from the current node, and this percentage is part
of the global system environment. Checking the threshold is very cheap because it
only involves the comparison of the span argument, as a percentage, with a system

4.5. Lolita 118

parameter assigned to minSpan.

The two parallel calls to fstP a irF stL ist in parallelMerge define parallelism in
this stage. Only the first element of the pair is evaluated because it contains the
value determining the quality of the resulting parse tree. Thus, the fstP a irF stL ist
strategy specifies an evaluation degree that is sufficient to select the tree to return as
the result of the syntactic parsing stage but without evaluating the tree itself more
than necessary.

One strength of strategies is their reusability for different algorithmic code that has the
same dynamic behaviour. We were able to exploit this feature with mergeStrategy
in Figure 4.11 by applying the same polymorphic thresholding strategy to two lists of
different types within the syntactic parsing stage. This reuse is highlighted by the pa-
rameterisation of the MergeStrategy datatype over the two possible types in the list.
Both instances of applying mergeStrategy are in sub-functions of heuristic_parse
in Figure 4.10.

The measurements discussed in this section have been performed with G r a n S im in
a setup that models the four processor shared-memory Sun SPARCServer available
at Durham. The goal of these measurements is to determine the best value for the
span in the mergeStrategy. Figure 4.12 shows the activity profiles for Lolita using
a span threshold of 50%, left hand graph, and 90%, right hand graph. Both profiles
show a good utilisation of the system during the syntactic parsing stage. However,
in the left hand graph almost 100 blocked threads and a high number of runnable
threads are generated, too. These impose significant runtime overhead in the system.
The granularity profile at the left hand side of Figure 4.13 reveals that most of the
threads are very fine-grained: 3,422 of the 5,122 threads (67%) are shorter than 2,000
cycles. This leads to a bad ratio of computation versus parallelism overhead.

In comparison, when increasing the span threshold to 90% the number of blocked
and runnable threads is reduced significantly (at most 36), and the number of small
threads drops drastically, as shown in the right hand graph of Figure 4.12 (note the
different scaling in both graphs). Now, only 67 of the 165 threads are shorter than
2,000 cycles (40%). Corresponding to this drop in the total number of threads, espe
cially fine-grained threads, the runtime drops from 754,687 kilocycles in the previous
version to 526,842 kilocycles in this version. As a result of these measurements and
considering the low amount of parallelism that is required to fully utilise the four
processor shared-memory machine, span thresholds around 90% are used for GUM

4 .5 . L o lita 119

GrA nSim k>l»a_mg t-RTS -bP -bp4 -b-Q -by 1 -be -b<64 -bmSOO -brSOO -SstdefT -H48M Average Parallelism = 2.8]

I blocked

(GrA nSim tolna_mg »RTS -bP -bp4 -b-G -byl -be -b!64 -bm5Q0 -bfSOO Sstdea -H48M Averape Paralelism = 22]

Runtime = 526 8 Mcydes)

F igure 4.12 Activity profiles of Lolita with span thresholds of 50% and 90%

2 0 0 0

1 5 0 0 -

x:XJ
1 0 0 0o

QJ

1
2

5 0 0 -

1000 10000 100000
Granularity (pure exec, time)

w

5 0

o
4)

3 0
9
2

20

1000 1 0 0 0 0 010000
Granularity (pure exec, time)

F igu re 4.13 Granularity profiles of Lolita with span thresholds of 50% and 90%

executions of Lolita.

4.5.5 Parallel Sem antic A nalysis

Another source of parallelism can be used to improve the quality of the analysis by
applying the semantic and pragmatic analyses in a data-parallel fashion on different
possible parse trees for the same sentence. Because of the complexity of these analyses,
the sequential system always picks the first parse tree, which may cause the analysis

4.5. Lolita 120

to fail, although it would succeed for a different parse tree. In this case the system
cannot produce a result for the current sentence in a sequential setup. Therefore,
parallelism in this stage would not reduce the runtime of the system, but might
improve the quality of the result.

This additional data parallelism is defined by the strategy evalScores in the function
parse2prag (see Figure 4.10). The parse forest rawParseForest contains all possible
parses of a sentence. The semantic and pragmatic analyses are then applied to a
predefined number, specified in global, of these parses. The data parallel strategy
evalScores is applied to the list of these results and demands only the score of each
analysis, the first element in the triple, in order to avoid unnecessary computation at
this stage. This score is used in pickBestAnalysis to decide which of the parses to
choose as the result of the whole text analysis.

The improvements in the quality of the result by analysing several possible parse trees
have not been systematically measured, yet. However, considering that about 70%
of all sentences that are analysed have several possible parse trees, the possibility
to analyse several of them without large additional costs is very attractive from a
natural language engineering point of view.

4.5.6 Overall Parallel Structure

Figure 4.14 summarises the overall parallel structure arising when all of the sources of
parallelism described above are used. The possible data parallelism over the input is
depicted by analysing three sentences in parallel in this picture. Note that the number
of possible parse trees for the input sentences varies. The syntactic parsing stage
is internally parallelised using the granularity control strategy shown in Figure 4.11.
Note that the analyses may add nodes to the semantic net. This creates an additional
dependence between different instances of the analysis, which is indicated as vertical
arcs. Lazy evaluation ensures that this does not completely sequentialise the analyses,
however.

It should be emphasised that specifying the strategies that describe this parallel
behaviour entailed understanding and modifying only two of about three hundred
modules in Lolita and three of the thirty six functions in that module. Apart from
the top level function, the only sub-module that has been parallelised is the syn
tactic parsing stage. If it proves necessary to expose more parallelism it would be

4.5. Lolita 121

SGML Tree Parse TreeParse Forest

-^-/(Pragmatic AriLSemantic An.Noimalisation

Morpholgv Synt. Parsing

^-(Sem antic An. ■^-‘Q’ragmatic AiNormalisation

Sentence 1

^ -(Sem antic An. V-;— ^ '(P ragm atic AnLSentence Normalisation
Text

^Morpholgv, Back EndSynt. Parsingstream

■^-‘Q’ragmatic AtNormalisation

Sentence 3

-=► (Pragmatic AiMorpholgy, Synt. Parsing Normalisation

F ig u re 4.14 Detailed structure of Lolita

possible to parallelise other sub-algorithms such as the graph algorithms operating
on the semantic net. In fact, the most tedious part of the code changes was adding
instances of NFData for intermediate data structures, which are spread over several
dozen modules. However, in the meantime this process has been partially automated
(Winstanley 1997).

4.5.7 Sun SPARCserver Implementation

This section discusses early performance measurements of Lolita on the Sun SPARC-
Server. A realistic simulation showed an average parallelism between 2.5 and 3.1,
using just the pipeline parallelism and parallel parsing. The actual speedup, how
ever, does not exceed 2.4. Measurements with varying span values indicate that this
is partly caused by fine-grained parallelism in the parsing stage. One obvious bottle
neck in the computation is the sequential front end of about 10-15% caused by the
C part of the syntactic parsing stage.

However, the wall-clock speedups obtained to date do not quite match the simulation
results. As shown in Figure 4.15 a two processor execution on small inputs achieves
an average parallelism of 1.4. A high span value is used to bound the amount of

4.5. L olita 122

Average Parallelism = 1.4)lolita.exec +RTS -N2 -q -H48M -I48M

Runtime = 101123 ms)[I runnable I I fetching blockedrunning

F igu re 4.15 Activity profile of Lolita run under GUM with 2 processors

parallelism in the parsing phase. This also bounds the total heap residency in the
system, which proves to be very important. With more processors the available
physical memory is insufficient and heavy swapping causes a drastic degradation
in performance. The reason for this behaviour is that GUM, which is designed
to support distributed-memory architectures uniformly, loads a copy of the entire
code, and a separate local heap, onto each processor. Lolita is a very large program,
incorporating large static data segments (totalling 16Mb), and requires 100Mb of
virtual memory in total in its sequential incarnation.

One difference of the GUM activity profile in Figure 4.15 to the G r a n S im results
is a larger degree of fetching in the former. This is probably caused by the rather
expensive but generic communication routines used by PVM, on which GUM is
based. In contrast, G r a n S im measures mainly the hardware costs for performing
communication. Together with the fine granularity of the generated threads this
increased overhead leads to a significantly smaller utilisation in the parsing stage.
However, the later pipeline stages in the computation are still an effective source of
parallelism.

4.6. LinSolv 123

4.6 LinSolv

The linear system solver discussed in this section uses an approach that is very com
mon in the area of computer algebra: a multiple homomorphic images approach
(Lauer 1982). This approach consists of the following three stages:

1. map the input data into several homomorphic images,

2. compute the solution in each of these images, and

3. combine the results of all images to a result in the original domain.

Since computer algebra algorithms aim at finding exact solutions to mathematical
problems, unbounded data types like arbitrary precision integers are frequently used.
In algorithms operating on arbitrary precision integers the original domain is typically
Z, the set of all integer values, and the homomorphic images are Z modulo p, written
Zp, with p being a prime number. The advantage of this approach becomes clear
when the input numbers are very big and each prime number is small enough to fit
into one machine word. In this case the basic arithmetic in the homomorphic images
is ordinary fixed precision arithmetic with the results never exceeding one machine
word. No additional cost for handling arbitrary precision integers has to be paid.
Only in the combination phase will the big numbers appear again. In the case of Z as
original domain the well-studied Chinese Remainder Algorithm (CRA) can be used
in the combine step (Lipson 1971).

The linear system solver (LinSolv) discussed in this section uses such a multiple ho
momorphic images approach. Thus, it must be emphasised that this algorithm is not
meant to represent a highly-tuned numerical algorithm for finding just an approxi
mation of a solution, but a typical symbolic algorithm for finding an exact solution,
which represents a wide class of computer algebra algorithms. Other algorithms with
the same basic structure will be discussed in Section 4.7.

It is obvious that this approach lends itself to parallel processing: all solutions in
the homomorphic images can be computed independently. An obvious bottleneck
is the final combination stage. The following sections first discuss the structure of
the sequential algorithm. Then a straightforward, parallel version is developed and
improved by eliminating the two main sequential bottlenecks.

4.6. LinSolv 124

4.6.1 The Sequential Algorithm

Forward Mapping

Cramer’s Rule

F ig u re 4.16 Structure of the LinSolv algorithm

This section describes the basic structure of the sequential LinSolv algorithm. For a
given matrix a and vector 6, both ranging over integers, this algorithm finds a solution
x to the equation ax = b. More formally, this problem can be specified as follows:

In p u t: a, b where a G Znxn, detn / 0, b G Zn
O u tp u t: s ,t, x where a(jx) = b,

s ,t G Z, i G Z n
gcd(s, t) = 1, gcdi=lj n Xi = 1

where Z denotes the set of all integers; for a domain D and an integer n, D™ denotes
the set of all vectors of length n with components from D; and EDnxn denotes the set
of all 2-dimensional square matrices of size n over D. For an integer n, Zn denotes
the set of integers { 0 ,. . . , n — 1} (the homomorphic image of Z with base n). Note

4.6. LinSolv 125

that we are computing a vector x of integer values and factor out the rational part of
the solution into | . This is convenient when using the result in a bigger application
because later stages can avoid most of the expensive rational number arithmetic on
the result vector.

A particularly important aspect of the algorithm we are designing is that it has
to compute an exact solution over integers of arbitrary size. Therefore, the main
questions to be considered for the efficiency of the sequential algorithm are:

1. How big are the intermediate values in the computation?

2. How high is the overhead associated with using rationals instead of integers?

3. Are there inherently sequential parts in the algorithm?

The first question is directly addressed by using a multiple homomorphic images
approach, which bounds every value by the base of the image. The next two questions
are crucial in picking a concrete algorithm for the solution phase. The following
paragraphs discuss the individual stages of the algorithm with the paragraph on the
solution phase discussing the advantages and disadvantages of three alternatives with
respect to the questions raised above. Figure 4.16 summarises the overall structure
of the algorithm.

F orw ard m app ing : This stage is trivial: for a given prime number p the function
‘mod* p is mapped over all elements of a and b. This stage is easily parallelised.

H om om orph ic so lu tions: We have investigated several candidates for computing
the homomorphic solutions, which have the following characteristics:

• Gaussian Elimination: This is a very efficient algorithm often used for solv
ing linear systems of equations. However, since it works over rational numbers
the basic arithmetic operations are much more expensive than those over fixed
precision integers. An alternative to the classical algorithm would be to intro
duce rational numbers only in the back-substitution phase by using for example
Bareiss’ variant of the algorithm. However, this variant requires 0 (n 3) addi
tional integer divisions, so it is not clear whether it gives an improved perfor
mance in practice.

4.6. LinSolv 126

• LU-Decomposition: The LU-Decomposition method has very strong data depen
dencies and yields an inherently sequential algorithm. An initial parallelisation
of LU-Decompostion achieved only a speedup of 3.8 on an idealised machine.
Some significant restructuring would be necessary to obtain an efficient parallel
algorithm.

• Cramer’s Rule: Although this algorithm is less efficient in the sequential case, it
is very attractive because of its high potential of parallelism. In this algorithm
the result is computed by evaluating n + 1 independent determinants. The main
structure of this algorithm is described below.

Iterative algorithms often used in numerical applications have not been considered
because the goal here is to find an exact solution. Furthermore, LinSolv should
use a parallel algorithm for computing a homomorphic solution in order to maintain
scalability of the overall algorithm for cases where the number of available processors
is higher than the number of homomorphic images used by the algorithm. Using
an efficient sequential algorithm might achieve better results for small number of
processors but is inherently limited in its parallelism.

The method used in LinSolv is based on Cramer’s rule. This rule states that the
solution of the equation ax = b can be computed as a vector, with ratios of two
determinants as components. In each component the denominator is the determinant
of the original matrix a. The numerator of the j -th component is the determinant
of the matrix obtained from a by replacing the j -th column with the vector b. More
formally, let aPi, bPi be the homomorphic images of a and b w.r.t. the prime number
Pi. Then the solution xPi = [xPil, . . . ,x Pin] can be computed by:

det ap..

Xpij det aPi

where ap., is aPi with the j -th column replaced with bPi.

When applying the above formula in a homomorphic domain ZPi, the determinant
det aPi might become 0. Obviously, no solution can be computed in such a domain.
Prime numbers pi which result in de taPi being 0 are termed unlucky and must be
filtered from the list of prime numbers which are used as bases for the homomorphic
domains.

4.6. LinSolv 127

C om b in atio n : The final stage of the algorithm consist of combining the homomor
phic solutions to a solution in the original domain Z (‘lifting’). This combination
can be done by using the Chinese Remainder Algorithm (CRA) (Lipson 1971). This
algorithm finds the “original” of two images i.e. a value r, which maps to the given
values r 1,7*2 in the images generated by the prime numbers p i,p 2, respectively. More
formally the algorithm can be specified as follows:

In p u t: 7*!, 7*2,Pi,P2 where p i,p 2 prime, rq £ ZPl, r 2 £ ZP2
O u tp u t: r where r £ ZPlP2, rq = r mod pi, r2 = r mod p2

Although the CRA operation is associative, for two lists it is most efficient to use
a left associative fold operation over the binary version above (Garner’s algorithm
(Knuth 1981, p.274)). The reason for this is that all computations in the binary CRA
operate in the domain ZP2, which can be chosen to be a fixed precision domain in
each stage. Hence, the large accumulated input values p\ and rq in the folding process
are mapped to small numbers, making the binary CRA almost equally cheap in every
step of the folding. Unfortunately, this is also an obvious sequential bottleneck.

Figure 4.17 shows the top level of the algorithm based on Cramer’s rule. Note
that x L is t is an infinite list of solutions in homomorphic images corresponding to
prime numbers in the infinite list primes. The CRA computation itself is hidden in
l is t_ c ra , which basically performs a left associative fold operation, accumulating the
product of all prime numbers met so far until this product becomes larger than snd
(n is the size of the matrix a and s is the maximal element in a and b). The gen_xList
function has to check whether the modular determinant is 0 in order to avoid pick
ing unlucky prime numbers. The strategy s t r a t in the body of the let construct
describes the dynamic behaviour of the code separately from the algorithmic code.
For the sequential version the default strategy rwhnf can be used. Figures 4.19, 4.21,
and 4.23, which are discussed in the subsequent sections, give different definitions of
s t r a t for parallel execution without changing the code in Figure 4.17 at all.

4.6.2 Naive Parallel Algorithm

Figure 4.18 shows a naive parallel version of LinSolv, written without strategies by
parallelising gen_xList, which implements the forward mapping and solution phases.
The idea of this code is to create a single parallel thread to evaluate both the forward

4.6. LinSolv 128

l i n S o l v a b =
let

{- forward mapping and solution via Cramer's rule -}

x L i s t ; ; [[Integer]] -- infinite list of solutions in horn images
x L i s t = g e n _ x L i s t p r i m e s

g e n _ x L i s t (p : p s) =
let

m o d D e t = to H o m p (d e t e r m i n a n t (to H o m p a))
pm x = [to H o m p (d e t e r m i n a n t (r e p l a c e C o l u m n j (t o H o m p a)

(t o H o m p b)))
| j < - [j L o . . j H i]]

((i L o , j L o) , (i H i , j H i)) = b o u n d s a
in
if m o d D e t / = 0

then (p : m o d D e t : pm x) : g e n _ x L i s t p s
else g e n _ x L i s t p s

[- combination via CRA -}

d e t L i s t = p r o j e c t i o n 1 x L i s t

d e t = l i s t _ c r a p B o u n d p r i m e s d e t L i s t d e t L i s t
x _ i i = l i s t _ c r a p B o u n d p r i m e s x _ i _ L i s t d e t L i s t

where x _ i _ L i s t = p r o j e c t i o n (i + 2) x L i s t

x = m ap x _ i [0 . . n - l]
in
x 'using' s t r a t

F ig u re 4.17 Top level code of the sequential LinSolv algorithm

mapping (via toHom) and the determinant computations for each prime pi. To achieve
this behaviour a parmap function is used in the definition of a homomorphic solution
pmx, and a par combinator is used in the body of the l e t construct to evaluate every
homomorphic image in parallel. However, the actual dynamic behaviour is quite dif
ferent: the thread sparked for homsol will only evaluate the top-level cons cell, which
does not trigger the computation of the actual homomorphic solution (pmx) at all.
Only when the result is required in the combination stage the parmap will be trig
gered, creating parallelism within a homomorphic image but sequentialising all stages.
The combination stage is basically a fo ld operation. This causes a sequentialisation
of the homomorphic images.

The resulting activity profile at the left hand side of Figure 4.20 reveals two stages

4.6. LinSolv 129

l i n S o l v a b =
l e t

{- forward mapping and solution via Cramer's rule -}

x L i s t [[Integer]] -- infinite list of solutions in horn images
x L i s t = g e n _ x L i s t p r i m e s

g e n _ x L i s t (p : p s) =
l e t

h o m S o l = (p : m o d D e t : pmx)
p m x = parmap (\ j —> - - parallelism within each horn im

l e t a l = r e p l a c e C o l u m n j aO bO
in modHom p (d e t e r m i n a n t a l))

[j L o . . j H i]
((i L o , j L o) , (i H i , j H i)) = m a t B o u n d s a

r e s t L i s t = g e n _ x L i s t p s
in
if m o d D e t == 0

then g e n _ x L i s t p s
else par h o m S o l (h o m S o l : r e s t L i s t) - - p a r between horn ims

{- combination via CRA -}
d e t L i s t = p r o j e c t i o n 1 x L i s t

d e t = l i s t _ c r a p B o u n d p r i m e s d e t L i s t d e t L i s t
x _ i i = l i s t _ c r a p B o u n d p r i m e s x _ i _ L i s t d e t L i s t

where x _ i _ L i s t = p r o j e c t i o n (i + 2) x L i s t

x = m ap x _ i [0 . . n - l]
in
x

Figure 4.18 Naive parallel pre-strategy code

in the computation:

• In the first stage, up to approximately one third of the total execution time, the
overall determinant det a is computed using the same structure as for the overall
computation. This causes a sequence of computations in the homomorphic
domains, which is visualised as a sequence of small peaks.

• In the second stage, the solution is computed in each homomorphic image. All
components of the solution are evaluated in parallel using a parallel determinant
computation in each case. This yields a higher degree of parallelism within each

4.6. LinSolv 130

m f d e t 'seq'
s e q L i s t A c c u m 1 s e q _ s o l _ s t r a t x L i s t 'par'
parList rnf x
where

s e q L i s t A c c u m ; ; Integer -> Strategy [Integer] -> Strategy [[Integer]]
s e q L i s t A c c u m a c c u m s =

\ (x s : x s s) - > i f a c c u m > p B o u n d
then ()
else s x s 'seq'

s e q L i s t A c c u m (a c c u m * (h e a d x s)) s x s s

s e q _ s o l _ s t r a t ; ; Strategy [Integer]
s e q _ s o l _ s t r a t = \ (p :m o d D e t : pm x) - > rnf m o d D e t 'seqr ’

i f m o d D e t / = 0
then seqList rnf pmx
else ()

F igure 4.19 Strategy version of a naive parallel LinSolv algorithm

stage.

Note that the number of parallel peaks in both stages is determined by the number
of homomorphic images necessary to construct the result in the original domain (13
in this case).

The dynamic behaviour of this code becomes much clearer when reformulating the
code with strategies. Figure 4.19 shows the definition of s t r a t in the body of the
lin S o lv function in Figure 4.17. Note that in contrast to the pre-strategy version
the algorithmic code is unchanged. In the strategic version of the code it becomes
clear that two nested strategies are used:

• the outer strategy, seqListAccum in this case, traverses the infinite list of solu
tions (xL ist), and

• the inner strategy, seq _ so l_ stra t in this case, traverses the homomorphic so
lutions (pmx).

Each of these strategies can be done either sequentially or in parallel. From the above
description of the dynamic behaviour of the naive parallel code it should be clear that
both dimensions are done sequentially. The outer seqListAccum strategy encodes
the dynamic behaviour of the algorithm when traversing xL ist: it accumulates the

4.6. L inSolv 131

(GrAnSim LmSoK' (stratghrtodvard) 32 Processors. 400 Cyde Latency Average Parallelism = 21.8) Average Parallelism - 20.6]GrAnSim lesllS_mg 2 *RTS -bP -bp32 -bUOO -bG -bOO -by2 -be -H32M

B blocked Runtime = 4.948 M cydes)B3 running

F ig u re 4.20 Activity profile of pre-strategy and strategic naive LinSolv

product of all prime numbers in order to decide how many homomorphic solutions to
generate. The explicit use of s e q in se qL is tA c c um reflects the evaluation order, which
is implicit in the pre-strategy code. The inner s e q _ s o l _ s t r a t strategy describes a
dependency between the modDet component of the homomorphic solution and the
rest. Although the parmap construct in Figure 4.18 specifies parallelism over the
elements of the homomorphic solution, it is hidden by the first two elements of the
result list in s o l , which are demanded first when computing the overall determinant
d e t . Figure 4.20 shows that the dynamic behaviours of the pre-strategy and the
strategic version are almost identical.

4 .6 .3 Im proved V ersion

Reflecting the performance tuning in the pre-strategy version of the code the strategy
in Figure 4.21 shows two changes compared to the previous strategy: it does not force
the computation of the determinant as a first step and it computes all components of
the homomorphic solution in parallel using the p a r _ s o l _ s t r a t strategy. This avoids
the delay in generating parallel processes for performing the most time consuming
computations in the solution phase.

The activity profiles in Figure 4.22 show that the first stage of peaks has been merged
with the second stage. The data dependency between the overall CRA and the ho
momorphic solutions has disappeared. However, by using the s e qL is tA c c um strategy
over x L i s t the combination stage is still sequential leading to regular drops in utili-

4.6. L inSolv 132

seqListAccum 1 par_sol_strat xList ' p a r *
parList rnf xs
w h e r e

seqListAccum Integer -> Strategy [Integer] -> Strategy [[Integer]]
seqListAccum accum s =

\ (xs:xss) -> i f accum>pBound
t h e n ()
e l s e s xs 'seq'

seqListAccum (accum*(head xs)) s xss

par_sol_strat ;; Strategy [Integer]
par_sol_strat = \ (p:modDet:pmx) -> rnf modDet 'seq'

i f modDet /= 0
t h e n parList rnf pmx
e l s e ()

F igu re 4.21 Strategy version of an improved parallel LinSolv algorithm

GrA nSim LinSolv {improved) 32 Processors. 400 Cyde Latency

■ blocked

•bG -tOO -by2 -be -H32M

S3 running

F igu re 4.22 Activity profiles of pre-strategy and strategic improved LinSolv

sation. In the pre-strategy code this corresponds to the dynamic behaviour generated

by the list_CRA function.

4 .6 .4 P arallelism over th e H om om orph ic Im ages

The strategy in Figure 4.23 eliminates the sequential traversal of x L i s t by guessing
the number of primes needed to compute the overall result and using a p a r L i s t N

strategy to generate data parallelism over that segment of x L i s t . Using p a r L i s t

inside the p a r _ s o l _ s t r a t strategy causes each component of the result to be evaluated

4.6. L inSolv 133

rnf noOfPrimes 1seq'
parListN noOfPrimes par_sol_strat xList ’p a r 1
parList rnf xs
w h e r e

par_sol_strat :; Strategy [Integer]
par_sol_strat = \ (p:modDet:pmx) -> rnf modDet ' s e g '

i f modDet /= 0
t h e n parList rnf pmx
e l s e ()

F ig u re 4.23 Strategy of the final parallel LinSolv algorithm

GrAnSim LinSotv (final): 32 Processors; 400 Cycte Latency GrAnSlm testLS_mg 2 ̂RTS -bP -bp32 -Ml00 bG -bQO -by2 be H32M Avei 0ge PaicJelism - 25 G,

F igu re 4.24 Activity profiles of pre-strategy and strategic final LinSolv

in parallel. However, we still need the check for zero in order to avoid redundant
computation. In order to minimise data dependencies in the algorithm we do not
already check for unlucky prime numbers when computing noOf Primes. If some prime
numbers turn out to be unlucky the l i s t_ c ra will evaluate more results by demanding
a so far unevaluated list element. The final strategy application p a rL is t rn f x
specifies that all elements of the result should be combined in parallel. Without this
component there would be a sequence of combination steps at the end of the execution,
one for each element in the result vector. In the activity profiles of Figure 4.24 the
individual peaks have been merged into a period of consistently high utilisation.

This final version of LinSolv exhibits the highest average parallelism and lowest run
time of all strategic versions, reflecting the improved dynamic behaviour. Comparing
the pre-strategy with the strategic versions in the activity profiles of Figures 4.20, 4.22,
and 4.24, however, shows a slightly reduced average parallelism. This is due to small

4.6. LinSolv 134

differences in the dynamic behaviour of both versions, in particular at the beginning
and the end of the computation. More importantly, the main part of the computation
shows the same dynamic behaviour in both versions. Based on previous measurements
in assessing the overhead related to the use of evaluation strategies, it is unlikely that
the lower average parallelism in the strategy version is due to this overhead.

4.6.5 Summary

Historically, the development and performance tuning of LinSolv predated the devel
opment of evaluation strategies. In hindsight the lack of separation between algo
rithmic and behavioural code severely complicated the program development. The
most striking example is the tree.CRA algorithm we used in the pre-strategy version
in order to guarantee parallelism between the homomorphic images. In order to han
dle an infinite list of solutions based on a guess how many solutions are needed, the
tree.CRA algorithm keeps track of the number of unlucky primes and uses a “fail
handler” in order to compute more results if necessary. This leads to the rather
complicated algorithm in Figure 4.25, which combines the computation of the result
with a specific dynamic behaviour suitable for parallelism. In contrast, the strategic
version uses a much simpler sequential code, which is basically a fold operation which
also tests for unlucky primes and accumulates the product of all lucky prime numbers.
To add parallelism it is sufficient to change the seqListAccum in Figure 4.19 into a
parListN in Figure 4.23. Again the different dynamic behaviour can be described by
the top-level strategy.

It turns out that the additional parallelism of the combinations in tree_CRA does not
improve the performance at all because combining two large values (in the nodes of
the tree) is far less efficient than combining a large with a small value, which is done
in each step of the list.CRA. Thus, although the tree_CRA generates parallelism at
the end of the computation the total runtime actually increases. This can be seen
in Table 4.2 where adding a tree CRA to the basic version of the algorithm, with
a parallel determinant computation, does not further improve the efficiency of the
algorithm. It only increases the total amount of work compared to a sequential version
that uses a list_CRA. This behaviour of LinSolv corresponds to our experience with
a parallel resultant algorithm using a similar multiple homomorphic images structure
(see Section 4.7.2). However, this example shows that the use of strategies allows the

4.6. LinSolv 135

- - n . . . g u e s s o n h o w m a n y horn s o l s n e e d e d
- - m s . . . i n f i n i t e l i s t o f m o d u l e s
- - a s . . . i n f i n i t e l i s t o f v a l u e s
- - d s . . . i n f i n i t e l i s t o f h o m o m o r p h i c d e t e r m i n a n t s
tree_CRA ;; I n t e g e r -> [I n t e g e r] -> [I n t e g e r] -> [I n t e g e r] ->

(Integer, Integer)
tree_CRA n ms as ds =
let
res@(m, a, fails) = tree_CRA' ms' as' ds'

w here ms ' = take n ms
as' = take n as
ds' = take n ds

handle_fails :: I n t e g e r - > I n t e g e r - > I n t e g e r ->
[Integer] -> [Integer] -> [Integer] -> (Integer, Integer)

handle_fails n m a (ml:ms) (al:as) (dl:ds)
| n == 0 = (m, a)
j dl == 0 = handle_fails n m a ms as ds
j otherwise = handle_fails (n-1) m' a' ms as ds

w here
m' = m * ml
a' = par_binCRA m ml inv a al -- NB: p a r a l l e l v e r s i o n
inv = modlnv ml m

i n
handle_fails fails m a ms as ds

- - h e r e a l l l i s t s a r e f i n i t e
tree_CRA' :: [I n t e g e r] -> [I n t e g e r] -> [I n t e g e r] ->

(Integer, Integer, Integer)
tree_CRA' [p] [a] [0] = (1, 1, 1) -- u n l u c k y p r i m e
tree_CRA' [p] [a] [_] = (p, a, 0) -- n o r m a l c a s e
tree_CRA' ps as ds =

let
n = length ps
(left_ps, right_ps) = splitAt (n 'div' 2) ps
(left_as, right_as) = splitAt (n 'div' 2) as
(left_ds, right_ds) = splitAt (n 'div' 2) ds
left@(left_P, left_CRA, left_fails) =

tree_CRA' left_ps left_as left_ds
right@(right_P, right_CRA, right_fails) =

tree_CRA' right_ps right_as right_ds
inv = modlnv right_P left_P
era = par_binCRA left_P right_P

inv left_CRA right_CRA
i n

left ’par’ right ’par1 inv ’par* (
era ’seg’ — f o r c e c o m p u t a t i o n o f e r a f i r s t

(left_P * right_P,
era,
left_fails + right_fails))

F igu re 4.25 A tree CRA used in the pre-strategy version

4.6. LinSolv 136

programmer to explore different variants of the parallel code without performing a
major restructuring of the algorithm.

Table 4.2 compares the runtimes (in kilocycles), average parallelism, total amount
of work (as percentage compared to the work in the sequential setup), and speedups
for the three versions discussed above with different setup variants. Although this
table only records the results from the strategic versions, it reflects the pre-strategy
versions as well, because they show corresponding runtime behaviour as demonstrated
in Figures 4.20, 4.22 and 4.24. Overall the three stages of the parallelisation, from
a naive to the final version, show an increasing average parallelism and speedup.
The percentage of total work is roughly unchanged, indicating that no speculative
parallelism is added during the performance tuning. In each of the three stages
the best results are obtained from a setup using a parallel determinant computation
in the solution stage. However, the parallel determinant computation performs some
redundant work shown by the constantly high percentage of total work. This is mainly
due to repeated traversals of data structures when constructing the sub-matrices
defined in Cramer’s Rule.

T able 4.2 Measurements of all versions of LinSolv

Setup
Runtime Average Total

(kilocycles) Parallelism Work Speedup

Sequential
Par Determinant (default)
Par Determinant & Tree CRA

Naive parallel algorithm
78,651
4,948 20.6 130% 15.9
5,509 20.6 144% 14.3

Sequential
Par Determinant (default)
Par Determinant & Tree CRA

Improved algorithm
78,651
4,488 22.6 129% 17.5
5,675 20.0 144% 13.9

Sequential
Par Determinant (default)
Par Determinant & Tree CRA

Parallelism over homomorphic images
78,651
4,323 25.6 141% 18.2
5,130 22.1 144% 15.3

As further work it would be interesting to compare this LinSolv version with one
using a Gaussian elimination algorithm in the solution phase. Such an implementa
tion would use rational arithmetic rather than integer arithmetic. The tighter data
dependencies would probably reduce the parallelism inside the solution stage. How-

4.6. L inSolv 137

Average Parallelism = 2.2)testLS_mp 5 +RTS -q -H48M

_______ E l i running______1 I runnable [I fetching_____ — blocked__________ Runtime = 82549 nris~]

F ig u re 4.26 Activity profile of LinSolv in a 3 processor GUM setup

ever, the overall structure of the parallelism generated by the multiple homomorphic
images approach should be unchanged. Therefore, the final strategy developed in this
section can be re-used.

Additionally to the these measurements under G r a n S im , the final version of LinSolv
has been run under GUM 011 a 4 processor SUN shared-memory machine. Because
of competing processes on that machine, only up to 3 processors have been used in
the timings. As a result we obtained relative speedups, i.e. speedups of the parallel
execution compared to a 1 processor GUM execution, of 1.67 on 2 processors and
2.10 on 3 processors. For this program the single processor efficiency is 78%, i.e. the
optimised sequential version finished within 78% of the runtime for the 1 processor
GUM version. This matches with previous experiences that report an efficiency
of around 80% for most GUM programs. The absolute speedups for LinSolv, i.e.
the speedups of the parallel execution compared to an optimised single processor
execution, are 1.30 011 2 processors and 1.66 on 3 processors. Figure 4.26 shows
an activity profile of running LinSolv in a 3 processor setup on the shared-memory
machine.

4.7. Comparison with Parallel Imperative Programming 138

4.7 Comparison with Parallel Imperative Program
ming

This section gives a comparison of the programming style in parallel imperative pro
gramming with a style of strategic parallelism as elaborated in this chapter. All of
the algorithms in this section are computer algebra algorithms implemented in the
P aclib system. This system combines a kernel for handling light-weight threads
with a runtime system for garbage collected memory management and a library for
basic computer algebra operations (Hong et al. 1992), all written in C. It has been
implemented on a Sequent Symmetry shared memory system based on Intel i386
processors. All of the measurements have been performed on 16 processors.

4.7.1 LinSolv

Before attem pting a functional solution to LinSolv, the author has previously im
plemented both sequential and parallel imperative solutions in C (Loidl 1993). The
parallel version required significant restructuring, in order to eliminate sequential
control dependencies. As an example, Figure 4.27 shows the code for managing
the parallelism in the forward mapping and solution stages of LinSolv. The primi
tives pacStart and pacWaitListRm are used for starting and synchronising threads,
respectively. The function Solve computes a homomorphic solution. Note the de
structive use of the list-processing functions COMP (cons), ADV (tail) etc, to create
a list of tasks, which must be explicitly manipulated by the programmer. Results
are extracted non-deterministically from this list and combined in later stages of the
algorithm.

Using G p H and G r a n S im , the code in Figure 4.27 could be written much more
simply as:

(xList, pList) = unzip (parMap rnf (solve a b detA n) primeList)

The strategic code avoids explicitly specifying when to create threads and when to
synchronise them. These decisions are made by the runtime-system. Of course, this
straightforward translation of the imperative code does not enforce the sophisticated
order of evaluation produced by the strategy in Figure 4.23. However, the same order

4.7. Comparison with Parallel Imperative Programming 139

Step2:
/* Forward mapping and solution in homomorphic images * /

taskList = NIL;
while (!ISNIL(primeList)) {

/* Extract the next prime from primeList */
ADV(primeList,&p,&primeList);

/* Create a task to solve each p in parallel * /
t = pacStart(Solve,5,A,B,detA,n,p);
taskList = COMP(t,taskList);

>

/* Collect the results */
X = NIL; pList = NIL; xList = NIL;
while (!ISNIL(taskList)) {

/* Wait for the first task to complete */
r = pacWaitListRm(fetaskList);

/ * Deconstruct the result tuple * /
p = FIRST(r); X = SECOND(r);

/ * xList is the list of result vectors */
xList = C0MP(X, xList);

/* pList is the list of primes which were used */
pList = C0MP(p, pList);

>

Figure 4.27 PACLIB code of generating and synchronising processes in LinSolv

of evaluation has to be coded into the imperative algorithm, in the function Solve,
too.

Important differences in the parallel structure of the Haskell and the C versions of the
code are caused by the different semantics of both languages and by the level of detail
that has to be specified for describing a parallel algorithm. The C version required
more restructuring in order to avoid synchronisation barriers between the stages of
the algorithm. In the C version several variants of the parallel CRA have been
implemented. In particular, these changes were much simpler in the functional code.
This observation suggests to use strategies and a functional language to prototype

4.7. Comparison with Parallel Imperative Programming 140

runtime 1317ms runtime 4695ms

F ig u re 4.28 Per-thread activity profiles for imperative LinSolv and parallel p-adic
computation

parallel algorithms, which might then the translated back into an imperative language
if necessary. We have taken this approach of parallel prototyping for example in Hall
et al. (1997).

Figure 4.28 shows, on the left hand side, the per-thread activity profile for the imper
ative version of LinSolv on a 16-processor Sequent Symmetry. These should not be
seen as direct comparisons with the graphs in Section 4.6 since they are based on a
naive implementation. Furthermore, the C version has a much coarser, hand-tuned,
granularity than the functional code discussed in Section 4.6. However, it is inter
esting to observe the barrier between the bulk of the parallel computation and the
fine-grained back-end of the computation. In contrast, the Haskell version achieves
some pipeline parallelism between these stages for free, i.e. without restructuring of
the code.

4.7.2 Parallel Resultant Computation

In Hong & Loidl (1994) the author has contributed to the implementation and mea
surement of five versions of a parallel resultant algorithm. A resultant of two r variate
polynomials is the determinant of a special matrix constructed out of the coefficients

4.7. Comparison with Parallel Imperative Programming 141

of these polynomials, a so-called “Sylvester matrix” . The entries in the matrix are
r — 1 variate polynomials and so will be the overall determinant.

The algorithm itself has a multiple homomorphic images structure, but in contrast to
LinSolv it works over multivariate polynomials. In this case, each r-variate polynomial
is mapped into an r — 1 variate polynomial by evaluating the main variable at a given
point, which acts as the basis for the homomorphic image. In the combination phase,
an interpolation algorithm with a structure similar to the CRA algorithm has to be
used.

The different variants of the parallel resultant algorithm show typical characteristics
of algorithms with a multiple homomorphic images structure:

1. In Variant 1 a tree-based interpolation gives poor results, compared to a list-
based version, because of the additional complexity of this operation.

2. In Variant 2 a different computation structure has been used, involving a very
time consuming matrix inversion. In this version a global synchronisation on
the strict data structure is necessary before the list-structured interpolation can
commence. This causes a sequential barrier in the evaluation.

3. In Variant 3 an explicit threshold is used in the parallel list-structured interpo
lation algorithm in order to avoid the generation of too fine-grained threads in
the combination stage.

As a result of our performance measurements the rather fine-grained Variant 3, with
an experimentally tuned threshold value proved to be the most efficient version.

4.7.3 Parallel P-A dic Com putation on Rational Numbers

The goal of p-adic computation is to speed-up basic arithmetic on e.g. rational num
bers by using an alternate representation of these numbers, namely a “Hensel code” ,
and by defining the basic arithmetic over Hensel codes. A Hensel code is a truncated
power series with a prime number p as base and a fixed length r. The Extended
Euclidean Algorithm (EEA) can be used for the forward mapping stage. A p-adic
computation then uses the multiple homomorphic images approach by choosing sev
eral Hensel codes with varying prime numbers p , using the redefined basic arithmetic

4.8. A M ethodology for Parallel Non-Strict Functional Programming.42

in each image to compute a solution, and by combining Hensel codes into a rational
number again by using the CRA and a translation algorithm from Hensel codes into
rational numbers.

In joint work the author has implemented translations of rational numbers to and
from Hensel codes, and basic arithmetic operations over Hensel codes. In Limongelli
& Loidl (1993) we have measured the efficiency of basic operations over rational
numbers using this p-adic approach. Two versions of the combination step have been
tested: SCA, which applies the CRA to every digit of the resulting Hensel codes,
yielding a Hensel code representing the result which is then translated into a rational
number; and PCA, which first translates the Hensel codes into rational numbers and
then applies the CRA to these rational numbers. Note, that the structure of SCA is
the same as the combination stage of LinSolv in Figure 4.17, where a list-structured
CRA is applied to projections onto the list of result vectors.

The measurements with these algorithms have shown that PCA, which only requires
global synchronisation once at the end of the CRA is more efficient than SCA, which
requires a global synchronisation for every digit of the Hensel code. Again, this is
in part due to the strict data structures used in the computation, which prohibit a
straightforward pipelining of these stages. The right hand side of Figure 4.28 shows
a per-thread activity profile of PCA.

4.8 A M ethodology for Parallel Non-Strict Func
tional Programming

Based on the experiences in parallelising the programs discussed in this chapter and
more programs discussed in Trinder et al. (1998) and Hall et al. (1997), an emerging
methodology for parallelising large non-strict functional programs is outlined below.
In the meantime, this methodology has also been used by other researchers for ex
ample in the parallelisation of the parallelising compiler Naira (Junaidu 1998) The
approach is top-down, starting with the top-level pipeline, and then parallelising suc
cessive components of the program. The first five stages are machine-independent.
This approach uses several ancillary tools, including time profiling (Sansom & Peyton
Jones 1995) and the G r a n S im simulator (Hammond et al. 1995). Several stages use
G r a n S i m , which is fully integrated with the GUM parallel runtime system (Trinder,

4.8. A M ethodology for Parallel Non-Strict Functional Programming.43

Hammond, Mattson Jr., Partridge & Peyton Jones 1996). A crucial property of
G r a n S im is that it can be parameterised to simulate both real architectures and an
idealised machine with, for example, zero-cost communication and an infinite number
of processors.

The stages in this methodology, whose overall structure is similar to others used for
large-scale parallel functional programming (Hartel et al. 1995), are as follows.

1. S eq u en tia l im p lem en ta tio n . Start with a correct implementation of an
inherently-parallel algorithm or algorithms.

2. P ara lle lise Top-Level P ip e lin e . Most non-trivial programs have a number
of stages, e.g. lex, parse and typecheck in a compiler. Pipelining the output of
each stage into the next is very easy to specify, and often gains some parallelism
for minimal change.

3. T im e P ro file the sequential application to discover the “big eaters” , i.e. the
computationally intensive pipeline stages.

4. P ara lle lise B ig E a te rs using evaluation strategies. It is sometimes possible to
introduce adequate parallelism without changing the algorithm; otherwise the
algorithm may need to be revised to introduce an appropriate form of paral
lelism, e.g. divide-and-conquer or data-parallelism.

5. Id ealised S im ulation . Simulate the parallel execution of the program on
an idealised execution model, i.e. with an infinite number of processors, no
communication latency, no thread-creation costs etc. This is a “proving” step:
if the program is not parallel on an idealised machine it will not be on a real
machine. We now use GranSim, but have previously used H B C PP. A simulator
is often easier to use, more heavily instrumented, and can be run in a more
convenient environment, e.g. a workstation.

6. R ea lis tic S im ulation . GranSim can be parameterised to closely resemble the
GUM runtime system for a particular machine, forming a bridge between the
idealised and real machines. A major concern at this stage is to improve thread
granularity so as to offset communication and thread-creation costs.

4.9. Related Work 144

7. R ea l M ach ine . The GUM runtime system supports some of the GranSim
performance visualisation tools. This seamless integration helps understand
real parallel performance.

4.9 R elated Work

4.9.1 Evaluation Strategies

This section discusses the relationship of evaluation strategies to similar programming
techniques proposed in the literature.

A lg o rith m ic Skeletons

A skeleton (Cole 1989) is a higher-order function that is parameterised with sequential
sub-programs and that specifies a certain commonly encountered parallel structure.
The most commonly encountered skeletons are pipelines and variants of the common
list-processing functions such as map, scan and fo ld . A general treatment has been
provided by Rabhi, who has related algorithmic skeletons to a number of parallel
paradigms (Rabhi 1995).

Since a skeleton is simply a parallel higher-order function, it is straightforward to
write skeletons using strategies. For example the parMap function in Section 4.3.4
is a skeleton. A more elaborate divide-and-conquer skeleton, based on a Concurrent
Clean function (Nocker, Smetsers, van Eekelen & Plasmeijer 1991) can be written
as follows. It should be noted that all of these strategic skeletons are much higher-
level than the skeletons used in practice, which have a careful implementation giving
good data distribution, communication and synchronisation. As mentioned before,
the aspect of data distribution is currently not directly controlled by strategies. The
explicit function application operator $, although not absolutely necessary, is used to
make the application of a strategy explicit in the code.

4.9. Related Work 145

d i v C o n q ; ; (a -> b) -> a -> (a -> Bool) ->
(b - > b - > b) - > (a - > B o o l) - > (a - > (a , a)) - > b

d i v C o n q f a r g t h r e s h o l d c o n q u e r d i v i s i b l e d i v i d e
| n o t (d i v i s i b l e a r g) = f a r g
| o t h e r w i s e = c o n q u e r l e f t r i g h t 'demanding' s t r a t e g y
where

(l t , r t) = d i v i d e a r g
l e f t = d i v C o n q f I t t h r e s h o l d c o n q u e r d i v i s i b l e d i v i d e
r i g h t = d i v C o n q f r t t h r e s h o l d c o n q u e r d i v i s i b l e d i v i d e
s t r a t e g y = i f t h r e s h o l d a r g

then (seqPair rwhnf rwhnf) $ (l e f t , r i g h t)
else (parPair rwhnf rwhnf) $ (l e f t , r i g h t)

Many strategic functions take the opposite approach to skeletons: a skeleton param-
eterises the control function over the algorithm, i.e., it takes sequential sub-programs
as arguments. However, a strategic function may instead specify the algorithm and
parameterise the control information, i.e. take a strategy as a parameter.

It is also possible to combine skeletons with imperative approaches. For example, the
Skil (Botorog & Kuchen 1996) compiler integrates algorithmic skeletons into a subset
of C (C-). The performance of the resulting program is close to that of a hand-crafted
C- application.

C oord in ation Languages

Coordination languages build parallel programs from two components: the computa
tion model and the coordination model (Gelernter & Carriero 1992). Like evaluation
strategies, programs have both an algorithmic and a behavioural aspect. It is not
necessary for the two computation models to be the same paradigm, and in fact the
computation model is often imperative, while the coordination language may be more
declarative in nature. It is sometimes useful to distinguish two kinds of coordination
languages. Embedded coordination languages, such as Linda, perform coordination via
calling certain coordination primitives from within the computational code. In con
trast, embedding coordination languages specify a parallel framework of the program
execution with sequential sub-algorithms. As the development of the algorithms in
this chapter shows, strategies can be used in both styles but they suggest a top-down
parallelisation corresponding to the use of an embedding coordination language. The
original model of directly using seq and par in GpH is, in contrast, closer to an
embedded language, with constructs for parallelism scattered throughout the code.

PCN (Foster &; Taylor 1994) composes tasks by connecting pairs of communication

4.9. Related Work 146

ports, using three primitive composition operators: sequential composition, parallel
composition and choice composition. It is possible to construct more sophisticated
parallel structures such as divide-and-conquer, and these can be combined into li
braries of reusable templates. This approach is much more explicit than evaluation
strategies, and, similarly to the other systems described here, it is possible to intro
duce deadlock.

Linda (Gelernter & Carriero 1992) is built on a logically shared-memory structure.
Objects (or tuples) are held in a shared area: the Linda tuple space. Linda processes
manipulate these objects, passing values to the sequential computation language. In
the most common Linda binding, C-Linda, this is C. Sequential evaluation is therefore
performed using normal C functions.

Darlington et al. (1995) integrate the coordination language approach with the skele
ton approach, providing a system for composing skeletons, SCL. SCL is basically a
data-parallel language, with distributed arrays used to capture not only the initial
data distribution, but also subsequent dynamic redistributions. SCL introduces three
kinds of skeleton: configuration, elementary and computational skeletons. Configura
tion skeletons specify data distribution characteristics, elementary skeletons capture
the basic data parallel operations as the familiar higher-order functions map, fo ld ,
scan etc. Finally, computational skeletons add control parallel structures such as
farms, SPMD and iteration. It is possible to write higher-order operations to trans
form configurations as well as manipulate computational structures etc.

Based on the same concept, P 3L (Pelagatti 1993) defines a set of parallel constructs,
each of which abstracts a specific form of commonly used parallelism. P3L integrates
the concept of skeletons and the PCN model. The latter is used for describing details
of the parallel execution of the skeletons.

P arallel L anguage E x ten sion s

Rather than providing completely separate languages for coordination and computa
tion, several researchers have instead extended a functional language with a small,
but distinct, process control language. This can be simply a set of annotations as
it is used by Burton (1984), in Hope+ (Kewley & Glynn 1989) and in Concurrent
Clean (Nocker, Smetsers, van Eekelen & Plasmeijer 1991). Most closely related to

4.9. Related Work 147

strategies, and therefore discussed in more detail here, are Caliban (Kelly 1989) and
first-class schedules (Mirani & Hudak 1995).

C aliban . The Caliban system developed by Kelly (1989) bears a strong resemblance
to evaluation strategies in its separation of algorithm and parallelism. Corresponding
to the using construct in strategies, Caliban introduces a moreover construct to de
scribe the parallel control component of a program. Frequently higher-order functions
are used to structure the process network, corresponding to higher-order strategies
such as p a rL is t.

One fundamental difference to strategies is that constructs in the moreover clause
represent a separate language to the computation language. In particular, all values
in such a clause must be resolved at compile time, thus representing a static descrip
tion of the parallel structure. The values in a moreover clause are explicit process
names. In a strategy, however, variable names, representing thunks in the program
execution, can be used to avoid introducing additional names that are not necessary
for understanding the structure of the program. Similarly to PCN, Caliban gives ex
plicit description of the connections between the processes. Thereby, it can construct
complex networks of processes but it may also introduce deadlock.

For example, the following function defines a pipeline. The □ syntax is used to create
an anonymous process which simply applies the function it labels to some argument.
The arc constructs indicates a wiring connection between two processes. The chain
construct creates a chain of wiring connections between elements of a list. The result
of the pipeline function for a concrete list of functions and some argument is thus the
composition of all the functions in turn to the initial value. Moreover, each function
application is created as a separate process.

p ip e lin e f s x = r e s u l t
where r e s u l t = (fo ld r (.) id f s) x
moreover (chain arc (map (□) f s))

/ \ (arc D d a s t f s) x)
/ \ (arc D(head f s) r e s u l t)

P a ra -F u n c tio n a l P ro g ram m in g . Para-functional programming (Hudak 1986) is
an extension to the functional programming paradigm that allows to express oper
ational details like scheduling or mapping by annotating program expressions with

4.9. Related Work 148

constructs of a separate process control language. The latter specifies the scheduling
and the mapping of parallel processes. One important advantage of this approach
is that it can be used with any functional language. The following description uses
Hudak’s syntax for para-functional programming in Haskell (Hudak 1991).

W ith the annotations provided by a para-functional programming system it is possible
to specify

• an evaluation order of the program and

• a mapping of a program to a machine.

Controlling Evaluation Order. The default evaluation order is lazy evaluation. How
ever, this can be changed for any expression in the program by using a scheduled
expression of the following form:

exp sched sched-exp

where exp is a program expression and sched-exp is a schedule. Note that a subex
pression in exp can be labelled by using a labelled expression of the form lab®exp.

A schedule defines the evaluation order and the parallelism obtained when evaluating
the expression. To this end, three kinds of primitive schedules are defined for a
labelled expression:

• The demand for the evaluation of exp, denoted by D lab,

• the start of the evaluation of exp, denoted by ~lab,

• the end of the evaluation of exp, denoted by lab''.

Note that a value can be demanded several times, but it can only be evaluated once.
The following operations can be used to combine schedules:

• s i . s2 denotes the concatenation of the schedules s i and s2 (sequential compo
sition) ;

• s l | s 2 denotes the concurrence of the schedules s i and s2 (parallel composi
tion).

4.9. Related Work 149

The following examples of scheduled expressions describe their operational behaviour
in more detail:

• (eO m@el n@e2) sched DmlDn. This expression specifies a parallel demand for
the evaluations of the expressions e l and e2. Because it is not guaranteed
that these values will be needed in the evaluation of eO, this schedule denotes
speculative parallelism.

• o@(l@eO m@el n@e2) sched l .m.n.o. This expression specifies a left-to-right
call-by-value semantics. Note that in this expression the schedule lab is the ab
breviation for D lab .lab ''. However, this schedule does not prohibit parallelism
inside eO, e l or e2.

Mapping an Expression to a Machine. In order to specify a mapping of the evaluation
of expressions to processors mapped expressions of the following form is used:

exp on pid

where exp is a program expression and pid is the identifier of the processor on which
the expression will be evaluated.

Such an expression can be used for example to evaluate the two components of an
addition on two different processors:

(f x on 0) + (g y on 1)

With this expression the function call f x will be evaluated on processor 0 and the
function call g y will be evaluated on processor 1. Note, that since + is a strict oper
ation, both function calls will be evaluated in parallel due to the default evaluation
strategy of lazy evaluation.

It is also possible to use functions in computing the processor identifier. Thereby, a
mapping that is relative to the current processor can be realised. For that purpose
the predefined identifier s e lf always contains the identifier of the current processor.

4.9. Related Work 150

F irs t-C lass Schedules. First-Class schedules (Mirani & Hudak 1995) combine
para-functional programming with a monadic approach. Where para-functional sched
ules and mapped expressions are separate language constructs, first-class schedules
are fully integrated into Haskell. This integration allows schedules to be manipulated
as normal Haskell monadic values.

The primitive schedule constructs and combining forms are similar to those provided
by para-functional programming. The schedule d exp demands the value of expression
exp, returning immediately, while r exp suspends the current schedule until exp has
been evaluated. Both these constructs have type a - > OS S c h e d . Similarly, both the
sequential and parallel composition operations have type OS S c h e d - > OS S c h e d - >

OS S c h e d . The monadic type OS is used to indicate that schedules may interact in a
side-effecting way with the operating system.

Rather than using a language construct to attach schedules to expressions, Mirani and
Hudak instead provide a function s c h e d , whose type is s c h e d : : a - > OS S c h e d - >

a , and which is equivalent to the u s i n g function in evaluation strategies. The s c h e d

function takes an expression exp and a schedule sched, and executes the schedule. If
the schedule terminates, then the value of exp is returned, otherwise the value of the
sched application is _L. There are also constructs to deal with task placement and
dynamic load information which have no equivalent strategic formulation.

In evaluation strategy terms, both the d and r schedules can be replaced by calls to
rwhnf without affecting the semantics of those para-functional programs that termi
nate. Unlike evaluation strategies, however, with first-class schedules it is also possi
ble to suspend on a value without ever evaluating it. Thus, para-functional schedules
can give rise to deadlock in situations which cannot be expressed with evaluation
strategies. A trivial example might be:

f x y = (x , y) ‘ s c h e d f r x . d y l r y . d x

Compared with evaluation strategies, it is not possible to take as much direct ad
vantage of the type system: all schedules have type OS S c h e d rather than being
parameterised on the type of the value(s) they are scheduling.

There can also be a loss of referential transparency when using schedules, since ex
pressions involving sched may sometimes evaluate to ± , and other times to a non-_L

4.9. Related Work 151

value. This can happen both through careless use of demand and wait, as in the
deadlock-inducing example above, and conceivably if dynamic load information is
used to demand an otherwise unneeded value. If the program terminates (yields a
non-_L value), however, it will always yield the same value.

4.9.2 Large-Scale Parallel Functional Programming

N o n -S tr ic t Languages

Previous experience with parallelising large non-strict functional programs using an
annotation based approach has shown that efficient parallel execution without ex
plicit control of parallelism is possible. In particular the FLARE project (Runciman
& Wakeling 1995) studied several large parallel applications. For example the par-
allelisation of a computational fluid dynamics simulation (Grant et al. 1995) demon
strated the ease of parallelisation compared to an imperative version of the program.
The necessary changes were localised in a few functions. However, these functions
did not appear in top-level modules, but were part of crucial sub-modules. There
fore, a deeper understanding of the code and its dynamic behaviour was necessary.
This case study also emphasised the importance of a sophisticated parallel engineer
ing environment. In the meantime the development of G r a n S im , GUM, and a set
of visualisation tools has significantly improved this environment. Corresponding to
other experiences with parallelising large programs in non-strict languages the heap
consumption turned out to be one of the biggest problems for the efficiency of the
program.

The toolkit for parallel functional programming discussed in Hartel et al. (1995) is
very similar to our parallel programming methodology (see Section 4.8). It uses both
an interpreter and a compiler for sequential debugging. A simulator supports parallel
simulation in three levels of detail. A compiler produces platform independent parallel
code. However, our system differs in the following aspects. The compilation of G p H
programs is performed by GHC, a state-of-the-art optimising compiler rather than a
prototype compiler with limited support for code optimisation. Furthermore, GHC
provides the innovative cost-centre technology of profiling sequential lazy code, which
has proven to be essential to understand the performance of the sequential program.
Rather than using an annotation based approach, strategies support a top-down par
allelisation of the code and since strategies are Haskell functions they can use the full

4.9. Related Work 152

power of the language, such as higher-order functions and polymorphism. Finally, the
use of a sandwich annotation in Hartel et al. (1995), which fully evaluates two argu
ments in parallel before they are combined, favours divide-and-conquer parallelism.
Pipeline parallelism, which naturally arises in a lazy language, has to be transformed
via a set of semi-automatic transformations. As an example of parallelising a large
program, Hartel et al. (1995) discuss a tidal prediction program. This program is
an application from the area of numerical scientific computation. In the parallelisa-
tion of the program a new “communication lifting” transformation is used in order
to exploit wavefront parallelism in a grid performing computational fluid dynamics
operations (solving partial differential equations). Thus, the overall parallel structure
is a pipeline of iteration steps with massive data parallelism within each step.

Shaw et al. (1996) discuss the performance tuning of a global ocean circulation model
implemented in Id. In contrast to the previously discussed languages, Id uses parallel
eager computation to exploit parallelism. In practice this approach exposes more
parallelism and reduces the heap consumption of the program. However, it often
creates speculative computation, which might waste a significant amount of resources.
This program, which has originally been written in FORTRAN and executed on a
CM-5, has a regular control structure but an irregular data structure. This is in
contrast to our applications, which come from the symbolic computation area and
typically have a less regular control structure. The performance tuning process of this
algorithm uses explicit compiler pragmas to force loop unrolling. In order to modify
the granularity of the generated parallelism k-bounded loops are used. However, with
this construct it is necessary to consider all k-bounds in the program in order to
obtain a good parallel behaviour. Clearly, this behaviour poses problems for modular
parallel program development.

Sur & Bohm (1994a) show that the non-strict semantics of Id allows a very natural
formulation of producer-consumer parallelism in two central stages of the Dongarra-
Sorensen Eigensolver. In previous papers, this kind of parallelism has been reported
difficult to achieve for imperative languages. This reflects our observation that non-
strict languages suggest the use of pipeline parallelism, because of the lack of a barrier
synchronisation between the pipeline stages.

Several case studies for parallelising non-strict functional programs reported problems
with excessive heap consumption. Sometimes running the parallel program on the
full input was not possible (Blelloch h Narlikar 1997). In several cases impure fea

4.9. Related Work 153

tures have been used to reduce the heap consumption e.g. Sur & Bohm (19946) and
Hammes et al. (1995). We have observed similar problems of resource consumption,
in particular heap consumption, in the parallelisation of Lolita (see Section 4.5).

S trict L anguages

Michaelson & Scaife (1995) describe the implementation of several components in
a parallel vision system to recognise 3D objects in a 2D scene from intensity data.
The parallel algorithms, which are finally executed as Occam2 programs on a Meiko
multi-processor, are prototyped in SML. Special emphasis is put on combining several
components into a large-scale system and analysing the resulting performance out of
this combination. The parallelisation uses skeletons in particular a farm skeleton to
realise a parallel map. The main data structure in this case is a nested list, and data-
oriented parallelism is used. In the SML prototype some form of pre-loading data
onto a processor is achieved by using partial applications consisting of the function
to be computed and the data to be pre-loaded. No explicit locality information has
to be added. An interesting observation made in Michaelson &; Scaife (1995) is that
if computation dominates communication the load balance becomes more important.
This directly corresponds to our experience with rescheduling schemes discussed in
Section 3.3.1: for low-latency systems, where the communication is rather cheap
and the computation comparatively expensive, the load balance is more important
than the data locality in the system. The overall parallel structure of the parallel
vision system is a pipeline with processor farms, representing data parallelism, in
each component.

Skeleton-based approaches (Darlington et al. 1995) often suffer from problems of com-
positionality similar to the k-bounded loops approach discussed above: it is hard to
construct an efficient parallel program out of efficient parallel components. The root
of the problem is that although individual skeletons represent optimised parallel code,
the composition of several skeletons it not necessarily optimal, due to the reorder
ing of data, which might be necessary. As a result composition languages such as
SCL and P 3L have been developed. These languages provide not only computation
skeletons but also configuration skeletons specifying a particular data distribution.

As part of the NESL project a number of irregular algorithms have been implemented
and their performance has been evaluated on machines such as a Cray-90 and a

4.10. Discussion 154

CM-5. The largest of these algorithms are three versions of the n-body problem
(Blelloch & Narlikar 1997), including the classical Barnes-Hut and the more recent
Greengard algorithm, and a new parallel preconditioned conjugate gradient method
for solving sparse linear systems of equations (Gremban et al. 1994). A set of parallel
graph algorithms has been studied by Greiner (1994). All these examples use only
data parallelism, which is supported in NESL via constructs similar to Haskell list
comprehensions.

The Impala suite (Shaw 1998) is a collection of parallel programs mostly written in
Id and SISAL. It is one of few publicly available packages of large parallel functional
programs. Some performance results of the execution on parallel architectures such
as Monsoon are included in the documentation of these programs.

4.10 Discussion

This chapter discussed an approach towards large-scale parallel lazy functional pro
gramming, which is based on a separation between algorithmic and behavioural code
via evaluation strategies. With this technique Trinder et al. (1998) have gained wall-
clock speedups for realistic programs over the most efficient sequential version of the
program. Furthermore, the case studies in this chapter have demonstrated that the
parallelisation and the performance tuning of a parallel program can often be done
on top level, only changing the strategic part of the code and without the need to
examine sub-modules in the code.

Evaluation strategies make heavy use of higher-order functions, polymorphism, lazi
ness, and overloading. These features are very useful for achieving a high degree of
modularity in sequential programs. They are of particular importance in the per
formance tuning of a parallel program where the evaluation degree may be specified
in more detail in order to obtain good parallel performance. The examples in this
chapter show that such tuning can be done in a data-oriented fashion, defining paral
lelism on intermediate data structures rather than in the modules and functions that
create these data structures. This approach avoids breaking the abstraction provided
by modules and functions and therefore enhances the modularity of the parallel pro
gram. This is demonstrated by the parallelisation of Lolita, which required changes
in only two out of about three hundred modules to achieve a moderate amount of

4.10. Discussion 155

parallelism. The comparison of a pre-strategy version with a strategic version of Lin
Solv shows that the performance tuning of the parallel program is greatly facilitated
by the modularity in the strategic parallel code. These examples show that lazy eval
uation and parallel computation do not necessarily represent competing evaluation
mechanisms but can be combined by explicitly defining parallelism, evaluation order,
and evaluation degree on crucial data-structures in the program.

The comparison of the parallel functional programs with three parallel imperative
programs, written in C, in Section 4.7 highlighted several important differences. In
the imperative programs the lack of any separation between algorithmic and be
havioural code required significant restructuring of the parallel algorithms to achieve
good parallel performance. The lack of higher-order constructs did not allow the pro
grammer to abstract commonly occurring patterns of computation in the same way
as in functional languages. In particular, the parallelisation of LinSolv has shown the
importance of parameterising strategies on complex data structures with strategies
that should be applied to components of this data structure. Finally, the lack of
algebraic data types in these languages resulted in rather clumsy code in processing
the data and in handling the parallelism.

The performance tuning of the parallel programs discussed in this chapter emphasised
the importance of several aspects of the dynamic behaviour of parallel programs. One
of these aspects is the granularity of the program. The tuning of the Lolita system has
shown that it can be useful to restrict the total amount of parallelism in the system
in order avoid excessive use of resources. This has been done by using strategies to
control the behaviour of the parallel program. The following chapters will discuss
the aspect of granularity in more detail. This discussion aims at the development of
runtime-system mechanisms that improve parallel performance by using granularity
information.

Chapter 5

Granularity in Parallel Functional

The model of computation that is used in this thesis is explicit in exposing
parallelism but implicit in controlling parallelism. A parallel program therefore
describes what expressions may be evaluated in parallel and delegates decisions
about how to coordinate the parallelism to the runtime-system. This can be
seen as an intermediate step towards achieving fully implicit parallelism.

In controlling the parallelism in a parallel program many aspects have to be
addressed: the synchronisation mechanism, the communication mechanism, the
data locality during the computation, and the granularity of the computation.
Intuitively granularity represents the amount of work that is available for each
thread. Historically, many declarative languages that perform a naive implicit
parallelisation, suffer from an extremely fine granularity. This increases total
bookkeeping overheads such as thread creation time. The aim of a granularity
control mechanism must therefore be to create only as many threads as are
necessary to keep the machine utilised throughout the whole computation.

This chapter first discusses the problem of granularity in declarative lan
guages in general. Then it proposes three concrete granularity improvement
mechanisms. These mechanisms have been implemented in GranSim and an
evaluation of their effectiveness is given. The chapter concludes by giving a
comparison of these methods with other approaches for granularity improve
ment suggested in the literature.

Capsule

156

5.1. Introduction 157

5.1 Introduction

Extracting parallelism from a functional program is easy. In fact, it is so easy that
even a compiler can do it. For example, strict arguments to a function can always be
executed in parallel without changing the semantics of the program. Only the data
dependencies in the program limit the degree of parallelism. However, this naive
approach of parallelising a program is likely to achieve poor speedups because of the
small number of computations in each parallel thread compared to a fixed overhead
for starting the thread. The author’s initial motivation for studying granularity came
from experiences with an automatically parallelising compiler for a simple higher-
order functional language, based on the dataflow model of computation (Loidl 1992).
In this model every primitive operation is performed independently, imposing a huge
synchronisation and thread creation overhead.

Over the years several approaches for improving the granularity in parallel func
tional languages have been proposed (Section 5.7 gives a detailed survey of these
approaches). Most of these approaches are purely runtime-system based without
any additional information about the program. Only rarely have concrete implemen
tations with state-of-the-art optimising compilation used more than rather simple
heuristics to achieve this goal. The approach advocated in this thesis is to combine
a compile-time granularity analysis with runtime methods that use granularity infor
mation provided by the analysis to improve performance. This chapter concentrates
on the runtime component of this system.

The structure of this chapter is as follows. Section 5.1 gives a general introduction and
motivates the study of granularity. Section 5.2 discusses the control of parallelism in
the runtime-system. Section 5.3 surveys the literature for studies on the importance
of granularity. Section 5.4 analyses the impact of granularity on the performance of
parallel programs in the eager-thread-creation and the evaluate-and-die model of eval
uation. Section 5.5 proposes three granularity improvement mechanism. Section 5.6
presents measurements on parallel programs when using the granularity improvement
mechanisms. Section 5.7 discusses related work and Section 5.8 summarises.

5.2. Dynamic Control of Parallelism 158

5.2 Dynam ic Control of Parallelism

The art of constructing an efficient parallel program requires skills on many different
levels. From a very abstract point of view one can distinguish between two different
stages:

• exposing parallelism; and

• controlling parallelism.

In a parallel program written in G p H the potential parallelism is exposed via the
placement of parallelism constructs by the programmer or by a system of automatic
parallelisation. The previous chapter has shown how the parallelism can be explicitly
controlled to some degree by using evaluation strategies. Typically, this more detailed
description of the parallel program behaviour is added during the performance tuning
of a parallel algorithm.

This chapter concentrates on runtime-system techniques for controlling parallelism.
These techniques have the advantage of hiding low-level details of the parallel program
behaviour from the programmer. In an idealised setting the runtime-system could
make all low-level decisions. However, this requires a very flexible runtime-system,
which can adapt to the characteristics of many different structures of parallelism.
The studies in this chapter lead to the development of mechanisms that improve the
flexibility of the runtime-system.

The classification of systems for parallel computation proposed by Sarkar (1989) dis
tinguishes between the following major aspects of the language and the runtime-
system:

1. exposing parallelism;

2. partitioning the program into threads, i.e. specifying sequential units of com
putation;

3. scheduling the threads on processors, i.e. specifying the mapping of parallel
computations onto processors; and

4. communicating data.

5.2. Dynamic Control of Parallelism 159

In this classification, the model used in this thesis is one of explicit parallelism,
implicit partitioning, implicit scheduling, and shared-memory communication. The
first aspect of exposing parallelism has been discussed in detail in the previous chapter.
Aspects 3 and 4 in this list are related to the notion of locality of threads and of data,
which is hidden in the runtime-system. These issues of locality are important for
an efficient parallel execution, but they are not the main topic of this thesis. This
chapter focuses on the second aspect of the parallel execution, the partitioning of the
program. In the model that is used in this thesis the partitioning of the program
is performed dynamically. This chapter will study the effects of different evaluation
models, eager-thread-creation and evaluate-and-die, on the dynamic partitioning of
the parallel program. Based on these observations several mechanisms for reducing
the overhead imposed by the parallel evaluation will be discussed. Finally, several
measurements will assess the effectiveness of these mechanisms.

This notion of partitioning the program leads to the following notion of the granularity
of the program.

D efin ition 6 (g ran u la rity) The granularity of a parallel program is the average
computation cost of a sequential unit of computation in the program.

By this definition of granularity a parallel program is called fine-grained, if it consists
of threads with only small pieces of computation compared to the total amount of
computation. More informally the computation cost of a thread is sometimes called
the “size” of the thread. Note that this definition based on computation cost excludes
the overhead that is specific to the runtime system.

The creation and the management of parallel threads impose further costs on the
execution of a program. For example, the creation of a thread requires operations like
the allocation of a stack. In order to minimise this overhead it would be necessary to
create only one thread — the program is executed sequentially. However, in order to
achieve a good parallel performance a certain level of parallelism has to be maintained
throughout the computation in order to make use of all available processors and to
provide the possibility of overlapping computation and communication.

This tension between reducing parallelism overhead and maintaining a high degree of
parallelism is illustrated by the graphs in Figure 5.1. The graph on the left hand side
shows the total runtime of the program. The graph on the right hand side shows the
parallelism overhead when executing the program. In both cases the x-axis represents

5.2. Dynamic Control of Parallelism 160

parfib (eager thread creation) parfib (eager thread creation
8000k

Latency: 64
Latency: 400

Latency: 4096
Latency: 32768

7000k

6000k

5000k

4000k

3000k

2000k

1000k

Granularity

“ 3000k'

£ 2000k

> 1500ko
e“ 1000k

Latency: 64
Latency: 400

Latency: 4096
Latency: 32768

6 8 10 12 14
Granularity

F ig u re 5.1 Runtime and parallelism overhead with varying thread granularity

an increasing granularity of the program. In particular for a high latency setting the
runtime drops together with a reduction in the parallelism overhead caused by a
coarser granularity of the program. However, with increasing granularity the number
of threads drops, too. The increase in runtime for coarse granularity is therefore
caused by a lack of parallelism at some points during the computation (“starvation”).
For decreasing latency the profiles of the runtime graph come closer to the idealised
case where the shortest runtimes are achieved for extremely fine-grained programs
consisting of a large number of threads.

Rather than showing the predicted behaviour of a parallel execution the graphs in Fig
ure 5.1 have been obtained by running a parallel version of nf ib under the G r a n S im

simulator. Since nf ib generates two threads in each recursive call it is a good, simple
test case for studying the performance problems caused by massive parallelism with
very small pieces of useful computation. Thus, runtime and latency are both mea
sured in machine cycles. These measurements use a realistic setting for parallelism
overhead and communication costs as it is imposed by the GUM system. The vary
ing latency in the graphs represents a range of parallel machines from shared-memory
machines, with low latency, to networks of workstations, with very high latency. The
increase in granularity is obtained via a thresholding mechanism as it will be described
in Section 5.5.1.

Concentrating on critical aspects of any parallel execution model it is possible to
distinguish the following sources of parallelism overhead:

5.3. Importance of Granularity 161

• Thread creation: this includes overhead for creating a thread descriptor and a
stack for the thread;

• Synchronisation: in a shared-memory model this requires a check whether a
closure has already been evaluated;

• Scheduling: thread descriptors have to be moved from the runnable queue to
blocking queues and vice versa;

• Thread termination: usually old stacks are recycled, which bears some overhead
but reduces thread creation overhead;

• Thread placement: if a thread is migrated to another processor the thread
descriptor and the stack, or a part thereof, have to be sent to the new processor;

• Data placement: ideally, logically related pieces of data, such as the elements
of a list, should be stored close to each other to avoid communication and make
better use of the processor’s cache.

One of the most important sources of parallelism overhead is the cost related to the
creation of a new task. This requires the generation of a structure, a thread descrip
tor, that can hold the information about the current state of a task (in particular,
the current register values) as well as the initialisation of a stack. One immediate
consequence of this overhead is that the total time spent evaluating an expression
should not be smaller than the cost of creating a thread because the latter is the
minimum overhead attached to evaluating an expression in parallel.

5.3 Importance of Granularity

In the literature on runtime-systems for parallel functional programming several au
thors have examined the importance of granularity. This section gives a short survey,
focusing on closely related work based on parallel graph reduction. A more detailed
discussion, covering alternative approaches such as profiling and programmer anno
tations, can be found in Section 5.7.

Hammond et al. (1994) examine in detail the impact of different sparking strategies
on the granularity and the runtime of a ray-tracer on the GRIP multi-processor.

5.3. Importance of Granularity 162

Although, the emphasis is on data locality by avoiding to export a spark unless the
global spark pool is low on work, the conclusions also highlight the importance of
granularity in general. Among the three parallel versions that are studied the one
with the coarsest granularity clearly performs best: in a 16 processor setup it is 8
times faster than a setup producing only small threads.

In his PhD thesis Goldberg (1988 a) studies the efficiency of different strategies for
creating parallel threads for arguments in a function application. He mainly consid
ers the overhead for task creation, communication, on both ends, and cleaning up
completed threads. He gives the outline of an exact, but infeasible, analysis of com
putation costs. Based on this analysis he develops a simple heuristics for estimating
the computation costs of non-recursive program expressions. This information is used
to partition a program into serial combinators. The program contains explicit con
structs for creating and synchronising the execution of tasks. The body of each serial
combinator is executed sequentially. Thus, the granularity of the program is directly
expressed via the size of the serial combinators.

Goldberg observes that the optimal granularity depends on the architecture of the
machine, especially its latency. In particular for high latency machines his results
show that a coarse-grained computation performs better. His measurements also
show that for shared memory machines the granularity of the threads is not very im
portant. However, for distributed memory machines it is important, but the heuristics
he gives are not generally strong enough to yield big improvements in performance.
In particular, assigning infinite costs to all recursive functions loses too much infor
mation.

Maheshwari (1995) shows in the framework of the LAGER project (LArger Grain
Graph Reduction) (Watson 1988) how the results of an asymptotic complexity anal
ysis, although notoriously inaccurate, can still be used to improve the performance
of a strict functional parallel program. Including the communication costs into the
performance prediction proves to be an important issue. The main improvement in
this work comes from determining an optimal schedule for generating parallel sub
processes based on user supplied cost information. The runtime-system methods used
in this work rely on relative cost information in the form of priorities, which is some
what similar to our priority mechanisms (see Section 5.5.2). However, in contrast to
the work presented in this thesis, the LAGER project does not use an evaluate-and-
die model of computation which dynamically increases granularity. This work does

5.4. The Relationship between Granularity and the Evaluation Moddl63

not address the question how to derive the cost information.

In summary, these methods emphasise the runtime aspect of improving the granularity
of a parallel program. Heuristics for estimating computation costs have proven useful
in increasing the granularity of parallel functional programs on real parallel machines.
However, these methods are limited because they cannot derive the costs of recursive
functions. The approach taken in this thesis, however, aims at a balance between a
static granularity analysis that derives information automatically and runtime-system
mechanisms that make use of this information.

5.4 The Relationship between Granularity and the
Evaluation M odel

The granularity of the program is of different importance for the different evaluation
models discussed in Section 2.4.1. This section presents measurements that assess the
importance of granularity in an eager-thread-creation model and an evaluate-and-die
model.

5.4.1 Granularity with eager-thread-creation

In an eager-thread-creation model each potentially parallel expression is immediately
turned into a thread. This simplest form of generating parallelism commits a thread
to the evaluation of every expression that is annotated with a par construct. By
making this choice very early no overhead for maintaining a spark pool is generated.
However, this variant lacks the flexibility of dynamically increasing the granularity
of a thread as it can be done in the evaluate-and-die mechanism. For this reason
it is particularly important to avoid the generation of small threads in a model of
eager-thread-creation.

Figure 5.2 illustrates the impact of the thread granularity on the speedup and the total
number of threads for the p a rf ac t program. This simple divide-and-conquer program
computes the sum of all integer values in a given interval by bisecting the interval
in each stage. It is a very fine-grained program and is therefore a good test case for
studying possible performance improvements with increasing granularity. In these

5.4. The Relationship between Granularity and the Evaluation Moddl64

parfact parfact
45 Latency: 400 -•—

Latency: 4096 —
Latency: 3276840

35
30
25
20

15
10

84 86 88 90 92 94 96 98 100

10000
Latency: 400 -•—

Latency: 4096
Latency: 32768 -B—

1000CIl■Oid0)MA
.u

1 00

01

10z

84 86 88 90 92 94 96 98 100
Granularity Granularity

F ig u re 5.2 Speedups and number of threads of p a r fa c t with eager-thread-creation

measurements the size of a thread is represented by the recursion depth in which it is
generated. The root of the divide-and-conquer tree has level 100, the highest value,
and this value is decremented in every recursive call. A granularity of e.g. 90 in the
graphs in Figure 5.2 means that all sparks generated after more than 10 recursive calls
are eliminated. This approximation of granularity aims at defining a simple relative
ordering on the sizes of the generated threads, rather than representing an exact model
of the computation costs for each of the threads. The measurements in this section
have been obtained via G r a n S im using a realistic modelling of communication on a
64 processor machine.

The three graphs in Figure 5.2 represent a low, medium and high latency system.
Even for very low latencies of 400 cycles a significant improvement in speedup with
increasing granularity can be observed. In this case the speedup increases from 24.3
to 43.8, a factor of 1.8. For high latencies the absolute speedup is naturally smaller.
The relative improvement in speedup, however, shows an even higher factor than for
low latencies: from 3.3 to 9.3, a factor of 2.8.

The graph on the right hand side of Figure 5.2 shows the reduction in the number
of threads with increasing granularity. Note that due to the use of a logarithmic
scale this reduction is actually exponential. The small number of threads for very
high granularities explains the drop in the speedup. For granularities higher than 95,
which means that only the first 5 levels of recursion are used to generate parallelism,
the total number of threads is smaller than the total number of processors in this

5.4. The Relationship between Granularity and the Evaluation Moddl65

parfact parfact
45 10000

Latency: 400
Latency: 4096 ~>-

Latency: 32768 --»■

™ 1 0 0 0 TJ

100

10

Latency: 400 -•—
Latency: 4096 -1—

Latency: 32768

1
84 86 88 90 92 94 96 98 100

Granularity
84 86 88 90 92 94 96 98 100

Granularity

F ig u re 5.3 Speedups and number of threads of p a r fa c t with evaluate-and-die

setup and starvation occurs.

5.4.2 Granularity w ith evaluate-and-die

In contrast to the eager-thread-creation mechanism in the previous section the evaluate-
and-die mechanism dynamically increases the granularity in the system, similar to
lazy task creation (Mohr et al. 1990). As discussed in Section 2.4.1 the evaluate-
and-die model can subsume potential parallelism by allowing a thread to perform
computations for which a spark has been created already. This requires the explicit
management of a spark pool. In particular, in a divide-and-conquer structure it is
possible that threads subsume sparks which represent child nodes in the computation
tree.

Figure 5.3 shows the graphs for the same measurements as in Figure 5.2, this time
using an evaluate-and-die evaluation mechanism. The direct comparison shows that
the evaluate-and-die mechanism performs much better for small granularities: the
finest-grained setup shows a speedup of 35.8 compared to 24.3 in the previous graph.
This directly corresponds to a smaller number of threads generated with the evaluate-
and-die mechanism: whereas the eager-thread-creation mechanism generates up to
8,245 threads, the evaluate-and-die mechanism does not create more than 310 threads.
The overhead for managing these threads drops accordingly.

As a result of this better behaviour the performance improvement due to increased

5.4. The Relationship between Granularity and the Evaluation Moddl66

parfact (GUM; workstation network; 8 PEs)8
Experiment 1 ---
Experiment 2 ---
Experiment 3 ...7

6
5

4

3

2
1

1000 1000001 0 0 1 0 0 0 0
Cutoff

parfact (GUM; shared-memory; 4 PEs)
4

Experiment 1 ---
Experiment 2 ---
Experiment 3 ...3.5

3

2.5

2

1.5

1
Cutoff

F igu re 5.4 Speedup of p a rfa c t (under GUM) on a workstation network and a
shared-memory machine

granularity is far less pronounced for the evaluate-and-die mechanism. For a latency
of 400 cycles the speedup increases from 35.8 to 43.1, a factor of 1.2. For a high
latency of 32,768 cycles the speedup increases from 4.3 to 9.4, a factor of 2.2. It is
interesting to note, however, that the speedup of the eager-thread-creation mecha
nism with optimal granularity is slightly higher than the best speedup obtained from
an execution with an evaluate-and-die mechanism. This indicates that an eager-
thread-creation mechanism can still outperform the evaluate-and-die mechanism, if
it provides accurate granularity information to the runtime-system.

In order to relate these simulation results to the behaviour of p a rfa c t on a real
parallel machine we have used GUM to run it on two parallel machines: a workstation
network of 8 Suns 4/25 connected via ethernet with a rather high latency of circa
4 milliseconds for sending a packet of minimal size; and on a four processor SUN
shared-memory machine. Figure 5.4 shows the speedups for 3 different experiments,
with the workstation network results in the left hand graph and the shared-memory
results in the right hand graph. Due to competing processes and general network
traffic, these experiments show significant variations. However, the overall trend
reflects the behaviour shown in the G r a n S im measurements. The improvements
with increasing cut-off values are higher for the workstation network, in the best case
the speedup increases from 3.64 to 6.26, a factor of 1.7. In comparison the shared-
memory setup shows rather small and inconsistent improvements, in the best case the

5.5. Granularity Improvement Mechanisms 167

speedup increases from 2.53 to 3.20, a factor of 1.26. Overall, these results correspond

to the G r a n S im results for a high latency and a low latency setup, respectively.

5.5 Granularity Improvement Mechanisms

This section discusses granularity improvement mechanisms (GIMs) that have been
implemented in G r a nS im . Measurements for each of these mechanisms are given
in the following section showing they can indeed improve the performance of some
parallel programs.

In G r a n S im three granularity improvement mechanisms are available:

1. Explicit threshold: No spark whose priority is smaller than a given threshold
will be turned into a thread. For this mechanism the user has to provide an
explicit threshold value.

2. Priority sparking: The spark pool is treated as a priority queue with granularity
information representing the priorities. This guarantees that the highest priority
spark is turned into a thread. Priorities are not maintained for threads.

3. Priority scheduling: The thread pool is is treated as a priority queue with gran
ularity information representing the priorities. This guarantees that the biggest
available thread is scheduled next. This imposes a higher runtime overhead.

The motivation for investigating a threshold mechanism comes from the observation
that such a mechanism is often used explicitly in the parallel code in order to increase
the granularity of the generated threads. For example the m ergeStrategy in Lolita
(see Figure 4.11) encodes such a mechanism. Priority mechanisms, on the other hand,
have proven useful in many applications in the area of operating systems. They
provide a cheap way of accessing the best of a set of possible elements. By using
such a generic data structure it is possible to profit from the research performed on
optimising the operations on this data structure.

5.5.1 Explicit Threshold

The idea of this mechanism is to cut-off all sparks below a certain threshold. If the
granularity information provided via the parG lobal or parLocal annotation is below

5.5. Granularity Improvement Mechanisms 168

a user supplied threshold level the spark will not be created at all. This represents the
same kind of mechanism that is often used on a program level to control granularity.
A typical idiom is

i f arg < threshold
then sequential code

e ls e parallel code

This style of programming has several drawbacks. The most important of these is the
code duplication necessary to avoid repeated checks for the threshold. In contrast to
the style advocated by evaluation strategies in Section 4.3, this code combines the
algorithmic with the behavioural code. Therefore, the code becomes cluttered with
conditionals that do not contribute to the definition of a value.

The explicit threshold mechanism provides runtime support for this style of pro
gramming. This means that the programmer does not have to plant a conditional
statement into the code. Instead he can use the following piece of code:

parGlobal <name> <gran info> <size> <parallelism>
parallel code

continuation

The granularity information in this code is encoded via an integer value to minimise
the overhead attached to it. It is used to provide information about the amount
of computation required to evaluate the parallel code. This can be measured in
evaluation steps or more abstractly by using this field as a priority. It is up to the
programmer to take care that the computational complexity of evaluating the <gran
info> field does not dominate the overall computation, which might outweigh the
gain from avoiding the creation of many fine-grained threads.

The actual threshold value has to be provided as a parameter to the runtime-system.
All potential sparks with a granularity information smaller than this value will not be
created. This mechanism has been used in the measurements in the previous section
to increase the granularity of the program.

5.5. Granularity Improvement Mechanisms 169

5.5.2 Priority Sparking

When using a priority sparking mechanism the spark pool is treated as a priority
queue with granularity information as priorities. This guarantees that the highest
priority spark, i.e. the spark representing the largest piece of available work, is turned
into a thread. Because small sparks remain in the spark pool for a long time, many
of these sparks will be subsumed by other threads, increasing the total granularity
of the program. In contrast to a priority scheduling mechanism priorities are not
maintained for threads.

Priority queues are a fundamental data type with many applications in the areas of
operating systems and parallel computation. The primary goal of this data structure
is to provide cheap access to the “best” of a set of elements. To this end, the set
is organised as a sorted sequence of elements. The key, by which the sequence is
sorted, is called the priority. Typically, the following four operations are supported
on priority queues:

• findMin, finding the minimum element of the queue;

• insert, inserting an element to the queue;

• deleteMin, discard the minimum element of the queue;

• meld, merging two priority queues;

For the G r a n S im runtime-system only the first three operations are needed. The
implementation of priority queues exploits recent results of Brodal (1996) and Brodal
& Okasaki (1996), which describe how to implement findMin, insert and meld in
0 (1) and deleteMin in O(logn) time. The former algorithm is imperative, the latter
is purely functional. These complexity functions are used in G r a n S im to simulate
the costs of maintaining the priority queue.

One aspect specific to the use of queues in the G r a n S im runtime-system is the fact
that sparks may be pruned. As soon as a closure has been evaluated, all sparks that
have been generated for this closure may be pruned. In practice the pruning is not
combined with an update because this would increase the costs in a common case
in order to reduce costs for parallelism. However, sparks are pruned during garbage
collection because the list of sparks has to be treated as a list of roots for the garbage
collector and therefore has to be traversed anyway.

5.6. Using Granularity Improvement Mechanisms 170

5.5.3 Priority Scheduling

When using a priority scheduling mechanism the thread pool is treated as a priority
queue with granularity information as priorities. This guarantees that the biggest
available thread is scheduled next. Maintaining granularity information on thread
level imposes a higher runtime overhead. However, it allows the runtime-system
to make better use of the available information. It also offers the possibility to
dynamically adjust the priority of a thread based on other aspects of the dynamic
behaviour. For example, in order to make use of good data locality, the priority of
threads that rarely perform communication might be increased during the execution.
Although, we have not studied mechanisms that dynamically change the priority of
threads, it is an interesting possibility for extending this mechanism beyond the use
of granularity information alone.

The handling of the priority queue for threads is the same as for sparks. In particular
the same complexity functions for determining the costs of basic operations on the
priority queue are used.

The effectiveness of any priority mechanism clearly depends on the number of ele
ments from which the best element is chosen. Therefore, it should be noted that in
combination with an evaluate-and-die model of computation the thread pools will be
much smaller than the spark pools, because sparks are only turned into threads if
there are no other runnable threads available on the current processor. On the other
hand, the thread pool is updated very frequently, with every scheduling or deschedul
ing of a thread. Therefore, compared to a priority sparking mechanism, a priority
scheduling mechanism will more frequently choose from a smaller set of elements.
The following measurements will assess whether the improved scheduling is worth
the additional overhead imposed by this mechanism.

5.6 Using Granularity Improvement Mechanisms

This section focuses on possible improvements of the runtime when using the gran
ularity improvement mechanisms discussed in the previous section. In general the
priority mechanisms are more flexible than a simple thresholding mechanism because
they retain granularity information rather than using it only to decide whether a
spark should be generated or not. However, they also add additional overhead to the

5.6. Using Granularity Improvement Mechanisms 171

F ig u re 5.5 Unbalanced divide-and-conquer tree generated by unbal

runtime-system as discussed in Section 5.5. All measurements in this section use an
evaluate-and-die mechanism.

5.6.1 Divide-and-Conquer Programs

The unbal function shown below is a simple divide-and-conquer program that serves
as an example of a computation where explicit granularity information can be used
to improve the behaviour even with an evaluate-and-die mechanism. The function
parmap in this code is a pre-strategy version of parMap r n f . Additionally, parmap
takes as a first argument a cost function that computes a granularity estimate of
applying the second function to a list element. In this case, the cost function returns
the value 3 for all inputs resulting in a cheap computation. Otherwise the cost function
returns the length of l i s t as an approximation of the granularity.

The dynamic behaviour of this program can be represented as an unbalanced compu
tation tree with decreasing sizes of computation. This structure is shown in Figure 5.5.
Since the evaluate-and-die model only allows to subsume sparks generated for sub
trees in such a structure, it cannot subsume all tiny threads in the tree, which might
occur already as leaves close to the root of the tree.

unbal 0 = 1
unbal n

I one_of_many n = n — le a f case
I one_of_few n = maximum l i s t — node case

where l i s t = parmap co s tfn unbal [0 . .n - l]

5.6. Using Granularity Improvement Mechanisms 172

u n b a l - - 32 p r o c e s s o r s

30 L a t e n c y : 4 - 1
L a t e n c y : 1 2 8 —
L a t e n c y : 5 1 2 ~{

L a t e n c y : 1 0 2 4 ->2 5

20

15

10

0 10 455 15 20 2 5 30 35 40
C u t - o f f

F ig u re 5.6 Speedup of unbal with varying cut-off values

c o s tfn i = i f one_of_many i then 3 e lse i
one_of_few x = x ‘rem* diverge_every == 0
one_of_many = not . one_of_few

diverge_every = 5

Figure 5.6 shows the speedup improvements when using a thresholding mechanism.
The cut-off values are multiples of 5 because only every fifth node in the tree gen
erates a large piece of computation (specified by d iverge .every in the code above).
Because of the unbalanced nature of the tree, which limits the effectiveness of spark
subsumption, the improvements are much higher than the improvements shown in
Section 5.4.2 for a balanced divide-and-conquer program.

The measurements in Figure 5.7 compare the relative runtimes and the absolute
speedups of the program when using a priority sparking mechanism and a priority
scheduling mechanism. The left hand graph graph shows the runtime relative to
the runtime in a setup with no granularity improvement mechanisms (in percent).
The priority mechanisms show a clear improvement for all latencies. However, the

5.6. Using Granularity Improvement Mechanisms 173

120
None -

Priority Sparking -
Priority Scheduling -

110
100

90
80
70
60
50
40
30

10 100 1000 1 0 0 0 0 1 0 0 0 0 0

20
None

Priority Sparking
.Priority Scheduling

18
16
14
12

10

8

6

4
2

0
100 1 0000 10000010 1 0 0 0

Latency (in cycles) Latency (in cycles)

F igu re 5.7 Relative runtimes and speedups of unbal with priority sparking and
scheduling

priority scheduling mechanism does not improve the runtime more than the priority
sparking mechanism does. The main improvement comes from avoiding to generate
tiny threads in the first place.

A more detailed assessment of the priority sparking and scheduling mechanisms for
various divide-and-conquer programs is given in Loidl & Hammond (1995). In this
paper it is shown that the improvement in runtime caused by these mechanisms
directly corresponds to the average spark and thread queue lengths. For the priority
queue mechanisms to be effective the dynamic behaviour of the program has to be
such that these queues contain many elements to choose from. For example in the
case of the unbal program with the measurements in Figure 5.7 the average spark
queue length is 28 for latencies up to 256 cycles at the point of the best speedup. For
programs with shorter average spark queue length the improvements in speedup are
far less pronounced.

As a more realistic example program Figure 5.8 uses queens. This program finds all
possibilities of placing 8 queens on a chess board without putting one of the queens
in check. For most latencies the priority mechanisms yield a significant reduction in
runtime. However, in a few cases the total runtime actually increases. This is to be
expected, though, because the granularity information provided to the runtime system
is not perfect. In this case the size of the board is used as a rough approximation to
the granularity of the thread. With more accurate information generated by a static

5.6. Using Granularity Improvement Mechanisms 174

1 2 0
None ...

Priority Sparking ---
Priority Scheduling —115

110

105

1 0 0

95

90

85

80
10 100 1 0 0 0 1 0 0 0 0 100000

10
None -

Priority Sparking --
Priority Scheduling

9
8

7
6

5
4
3
2

1
0

10 100 1000 10000 100000
Latency (in cycles) Latency (in cycles)

Figure 5.8
scheduling

Relative runtimes and speedups of queens with priority sparking and

analysis this information could be significantly improved. A more general problem
is the lack of any information about the degree of parallelism in a thread. Without
this information it may happen that a small thread that generates a lot of parallelism
remains at the end of a long queue causing periods of low machine utilisation.

5.6.2 Larger Parallel Programs

Figure 5.9 studies the granularity of the parallel determinant computation with vary
ing latencies using the priority queue mechanisms. For most latencies both a priority
sparking and a priority scheduling mechanism manage to reduce the runtime com
pared to an ordinary parallel execution. The inverse priority sparking mechanism
shown in the left hand graph represents the worst case scenario where the granularity
information provided to the runtime-system is exactly inverse to the real computa
tion costs. As a result the runtime may increase significantly in this setup. This
behaviour indicates the danger of consistently providing wrong granularity informa
tion. Although the scheduling is hardly affected by occasional errors of the granularity
information, consistent errors may lead to a serious degradation of the performance.
The right hand side of this figure shows a clear reduction in parallelism overhead
caused by thread creation and blocking threads when increasing the cut-off value in
a thresholding mechanism.

5.7. Related Work 175

determinant determinant
150

None ---
Priority Sparking ---

Inverse Pri Sparking ...
Priority Scheduling -»—

140

130

120

110

100

90

80

70
10 100 1000

Latency (in cycles)
10000

)

1 0 0 0 0 0

~ 250000
Latency: 64 -•—

Latency: 400
Latency: 4096 -b—-

Latency: 32768 -*•—u 200000

'2 150000

6 100000

a> 50000

0 10 20 30
Cutoff

40 50 60

F igure 5.9 Relative runtimes with variants of priority sparking and scheduling

The measurements in this chapter show that granularity improvement mechanisms
can improve the efficiency of small parallel programs. This, of course, does not give
clear evidence about possible improvements for large programs. However, in the per
formance tuning of the programs discussed in Chapter 4 it has been demonstrated
that improving the granularity for large programs can be an important step in in
creasing the parallel performance. In particular, the final version of Lolita used an
explicit thresholding strategy, discussed in Section 4.5. Similarly, we have used a
generic granularity improvement strategy parG ranL ist, discussed in Section 4.3.6, in
the tuning of the bowing algorithm discussed in Hall et al. (1997). The main reason
for not using the granularity improvement mechanisms developed in this chapter is
the fact that they are currently only available in G r a n S im not in GUM. It would be
natural to use a thresholding mechanism in the case of Lolita, and a priority sparking
mechanism in the case of the bowing algorithm.

5.7 Related Work

Due to the importance of granularity for the efficient execution of parallel declarative
languages, many attem pts have been made to improve the granularity of the generated
threads. This section gives a survey of the methods that focus on runtime control.
Compile-time approaches for granularity improvement are discussed in Chapter 6.

5.7. Related Work 176

Described on a more theoretical level than the work below, the controlled granularity
algorithm of Aharoni et al. (1992) assumes that no knowledge of the size of a thread
is available when deciding whether to create it. The main idea of this algorithm
is that every thread performs an amount of work equal to the costs for creating a
thread before itself creating another thread. This guarantees that in the worst case
the parallel algorithm takes twice as long as a sequential algorithm. In contrast, the
work presented in this chapter aims at improving the parallel runtime for different
kinds of parallel programs rather than guaranteeing a certain worst case performance.

5.7.1 Runtim e M ethods

This section surveys runtime methods for increasing the granularity of functional
programs. Additionally to the work that is discussed here in more detail several
general systems have been designed to deal with fine-grained threads in an efficient
way, e.g. the Cilk runtime system (Blumofe et al. 1995), the Cid system (Nikhil 1994,
Nikhil 1995), StackThreads (Taura et al. 1994), and the filaments system (Lowenthal
et al. 1996). Relationships to these approaches are outlined where appropriate.

Load B ased Inlin ing

One of the simplest methods for avoiding an abundance of parallel tasks is load-
based inlining. In this approach the load of the machine is tested in order to decide
whether a potentially parallel thread should be created or inlined, i.e. executed by
the current task. The compiler has to generate two versions of the code: one for
sequential and one for parallel execution. Load based inlining is used for example
in the LAGER (Watson 1990) model, in the EQUALS system (Kaser et al. 1992),
in GAML (Maranget 1991), in the Flagship machine (Keane 1994), and in the Cid
(Nikhil 1994) parallel runtime system for symbolic computation. Although this model
limits the total amount of parallelism, it has several severe problems:

• It is not possible to adapt to rapidly changing workload. Once a decision of
creating or ignoring a spark has been made it cannot be rescinded even if the
workload has changed in the meantime. This highlights the importance of
delaying the decision whether to create or ignore a spark as long as possible.
This fact has been observed by Sargeant (1991).

5.7. Related Work 177

• If a child task is inlined and then blocks parallelism may be lost because the
parent task is not necessarily blocked (“parent-child welding”). As Mohr et al.
(1990) show for a simple prime number generator, inlining can even cause dead
lock if one task blocks on another task that has been inlined by the same
processor.

• Load-based inlining gives poor results for unbalanced computation trees and
is ineffective for fine-grained linear recursions. However, Kranz et al. (1989)
report good results for balanced trees.

• It is non-trivial to give a good threshold value for the workload of the machine
that determines whether a task should be inlined.

Lazy Task C rea tio n

One of the most successful runtime approaches for improving granularity in a parallel
system is lazy task creation (Mohr et al. 1990). The main idea in this approach is
to create tasks only retroactively as processing resources become available. Thus, by
default every task is inlined provisionally, but enough information is kept to selectively
“un-inline” tasks. The programmer has to expose the parallelism in the program,
e.g. with a fu tu re in Mul-T (Kranz et al. 1989). Overall the lazy task creation
mechanism limits the total amount of parallelism that is generated. Starting from
this idea, several variants of the basic mechanism have been studied:

C o n tin u a tio n stea ling . This method was the first one used by Mohr et al. (1990)
with lazy task creation. The basic idea is to distribute work by stealing continuations
from the stack. To make this possible a “future queue” of pointers is maintained.
Each entry in this queue points to a continuation in the stack. When stealing work
the queue is traversed in a FIFO manner and, if available, a piece of work is stolen by
copying the lower portion of the stack starting with that continuation, which will be
turned into a parallel task. This method is almost identical to the sparking mechanism
used in this thesis together with an evaluate-and-die model of computation. The
main difference is that sparks are pointers to closures into the heap whereas the
future queue contains pointers to the stack. The latter approach has slightly less
bookkeeping overhead but the presence of an explicit spark pool makes it easier to
attach additional information, such as granularity information, to a spark.

5.7. Related Work 178

The main disadvantage of this approach is the runtime overhead that has to be paid:

• An explicit future queue has to be maintained. This has to be done even for a
purely sequential execution to enable parallelism in later stages.

• When stealing work an unbounded portion of the stack has to be copied. This
may cause a high amount of communication and the loss of data locality in the
program.

Lazy T h read s . In his thesis Rushall (1995) develops a new variant of lazy-task
creation aiming at eliminating any bookkeeping overhead that is required during se
quential execution to expose parallelism in later stages. The basic idea is to traverse
the stack when stealing work and to make use of the continuation information avail
able on the stack. This traversal of the stack is similar to the one required by a
stop-and-copy garbage collector. It is very expensive but has to be done only when
new work is needed, which means the overall system load is rather low.

In summary, Rushall’s version of lazy-task creation, which is implemented on top
of the G-machine using Haskell Core as the programming language, retrospectively
transforms code

case (f x) of v l -> case (g v l) of v2 -> . . .

into

l e t z = g v l in case (f x) of v l -> case z of v2 -> . . .

which means that a parallel thread can be generated for z. Note that in Haskell
Core, a desugared version of Haskell that is used in GHC, the case expression forces
the evaluation of the head expression. Therefore, nested case expressions enforce a
specific evaluation order.

The stack is traversed in a FIFO order in the hope that older pieces of code represent
larger evaluations. This is usually the case in balanced divide-and-conquer algorithms.
Therefore, this model is particularly suited for this kind of algorithms. However, in the
general case it cannot make use of granularity information because this information
is not present any more when the parallelism is exposed. It would be possible to
extend the model by inserting this kind of information on the stack, but this would

5.7. Related Work 179

add overhead in the common case and defeat the main advantage of this variant of
lazy task creation.

Experiments with this form of lazy-task creation, implemented on a virtual shared-
memory KSR1 machine, show that it is superior to sparking, as it used in this thesis,
for very simple programs like nf ib, where no closure has to be created in the sequential
evaluation model but one is needed in order to create a spark. For bigger example
programs, however, the difference is rather small. Lazy-task creation usually out
performs load-based inlining, although not consistently. In one example program,
iqueens+, the sparking model gives better results because the lazy-task creation loses
too much parallelism. In summary, for “well-behaved” divide-and-conquer programs
the new lazy-task creation variant usually performs better than load-based inlining,
but it is not a clear winner. For real applications the gap between the sparking model
and the lazy-task creation model is rather small.

A similar approach is taken by Goldstein et al. (1996) in their work on lazy threads.
They define a control hierarchy with varying overheads (sequential call, fork, and
remote fork) and a storage hierarchy (stack, stacklet, and heap). This enables the
compiler to pick the least expensive form of a function call and stack representation
for a particular function call. An implementation of lazy threads in the Id90 compiler
for the TAM machine achieves speedups of up to two over previous approaches of
thread creation (Goldstein et al. 1996). It successfully uses fine-grained parallelism
on a CM-5 distributed memory machine.

In his thesis Goldstein (1997) investigates the efficiency of different points in the
control and storage hierarchies as well as different possibilities of thread representation
and disconnection. The goal is to reduce the costs for thread creation and termination
to little more than the costs of a sequential call and return. Disconnection decouples
a lazy thread (spark) that has been turned into an independent thread from its
parent thread. An eager disconnect scheme allows the parent to invoke children on
its stack in exactly the same way as before, but bears a rather high overhead by
copying a portion of the stack. In contrast, in a lazy disconnect scheme the child
steals the stack from the parent and forces the parent to allocate new children on a
new stack. This version avoids copying an activation frame even if a stack storage
model is used. Two representations of potential parallelism, both planted in the
stack, are investigated: continuations, as discussed above, and thread seeds. Thread
seeds are basically pointers to code segments. They can be planted into the stack

5.7. Related Work 180

when a parallel ready sequential call is performed (implicit queueing), or the may be
managed as an explicit queue similar to the future queue mentioned before.

The results of comparing different versions of thread representation (continuations
and thread seeds) together with eager and lazy disconnection show that thread seeds
with lazy disconnection perform best. Implicit queueing proves to be too expensive
in creating a new parallel thread (a stack traversal is required). As a compromise a
lazy queue is used, which starts as an implicit queue in the stack but is made explicit
after the first steal request arrives. Goldstein concludes that “the performance is best
in implementations that strike a balance between preparation before the potentially
parallel call and extra work when parallelism is actually needed”.

O ther R u n tim e M eth od s

In the framework of the Dutch Parallel Machine project (Barendregt et al. 1987), Hof-
man (1994) has developed runtime-system mechanisms for improving the granularity
in the fork-and-join model of computation. In this project, a “sandwich” annotation
is used to express parallelism: two phases of sequential strict evaluation flank one
phase of parallel lazy evaluation. One problem in such a model of symmetric paral
lelism is potential gratuitous thread migration at the end of the computation, after
merging the two parallel branches. The mechanisms developed by Hofman prevent
threads to be moved to other processors after the join phase. This is based on the
assumption that the amount of work after the join operation is rather small. This
approach to parallelism is fundamentally different from the asymmetric parallelism
obtained via the evaluate-and-die model: no synchronisation between child and par
ent task is enforced if the child finishes before the parent requires its result. Therefore
the problem of a bottleneck at the end of the computation is less severe.

In the ZAPP project Burton & Sleep (1981) have developed an adaptive mechanism
for throttling the parallelism in the system. Near the root of the computation tree a
FIFO strategy (breadth first traversal) is used to create a high amount of parallelism.
If the machine is sufficiently loaded a LIFO strategy (depth first traversal) is used
to avoid excessive space consumption as well as creation of parallelism. This model
has also been used as means of throttling the parallelism in the Manchester Dataflow
machine (Ruggiero & Sargeant 1987).

^-bounded loops (Arvind & Nikhil 1990) in Id are used to limit the number of parallel

5.7. Related Work 181

threads, but the size of the threads is not automatically increased. The idea is to limit
the number of loop bodies that may be executed in parallel to k. The main purpose
is to reduce storage requirements. It has been shown that choosing the right k value
for /^-bounded loops can improve performance dramatically (Culler 1990). However,
so far no compiler controlled mechanism for finding good k values has been developed
and finding such values has proven to be quite hard in big applications such as an
ocean modelling program (Shaw et al. 1996).

Rabhi &; Manson (1990) present a hybrid method for improving task granularity in
a parallel functional programming system. At compile time the parallel and the se
quential complexity of a function are analysed. This information is used at run time
to decide whether a computation is coarse-grained enough to be performed by a par
allel task. In this paper especially divide-and-conquer programs are examined. This
follows the approach of trying to detect common patterns in (recursive) cost expres
sions of function bodies in order to infer closed cost expressions. Some experimental
results of that approach, mainly for divide-and-conquer programs, are presented in
(Rabhi 1992).

5.7.2 Programmer A nnotation Approaches

The most prominent work using this approach is Hudak’s para-functional program
ming approach (Hudak 1986, Hudak 1991). This approach defines a set of annotations
that control the creation and location of parallel tasks. The language issues have al
ready been discussed in Section 4.9.1. The following discussion focuses on granularity
issues.

The para-functional programming approach allows the programmer to have more or
less direct control over the runtime system and thereby affect the granularity of the
parallel tasks. For example the basic constructs in this approach make it possible to
define serial combinators (Hudak & Goldberg 1985), which perform purely sequential
computation without the need to synchronise. Therefore, the size of these combinators
determines the granularity of the program and can be manipulated by the compiler.
The most recent work in this area uses monads for obtaining system information,
such as machine load, in a referentially transparent way (Mirani & Hudak 1995). The
resulting language for scheduling and mapping computations is very flexible and close
to evaluation strategies (Trinder et al. 1998) as discussed in Section 4.3. In particular

5.7. Related Work 182

functions can be parameterised with schedules describing their dynamic behaviour.
This makes good use of the abstraction and the overloading mechanism in Haskell.
Furthermore, stateful computation via monads is used to extract system information
and to specify operational aspects used in the schedule for a parallel program. This
system has been implemented on a Silicon Graphics 16 processor machine.

The Concurrent Clean system (Nocker, Smetsers, van Eekelen & Plasmeijer 1991) also
uses this approach. It defines a rich set of annotations that allows the programmer to
change the reduction strategy of the system (van Eekelen & Plasmeijer 1993). By de
fault it uses a lazy evaluation scheme. Two kinds of annotations are available: strict
annotations, that locally force the use of eager evaluation, and process annotations,
that determine the creation and placement of parallel tasks. The latter set of anno
tations is used for choosing the right level of granularity. Additionally, annotations
for specifying graph sharing and copying are provided (Achten 1991).

Another parallel functional programming system that provides a rich set of annota
tions is the Hope+ system for programming the Flagship parallel machine (Kewley
& Glynn 1989). The strictness annotations enable the programmer to choose specific
evaluators for expressions in the program. Dependency annotations control the eval
uation order by describing how far a parameter in an expression has to be evaluated
before starting the evaluation of the expression itself.

5.7.3 Profiling M ethods

An alternative approach for extracting information about the granularity of gener
ated tasks out of a program is to execute the program with some sample input and to
generate profiling information. This information is then fed back into the compilation
process and can be used to generate better (often coarser-grained) code. Sargeant
obtained promising results using this approach on a virtually shared memory ma
chine (Sargeant 1993). Sodan & Bock (1995) used this approach to obtain useful
information specifically for granularity control on large programs. However, the main
problem with this approach is the dependence on the choice of the initial, small input
set. If the runtime behaviour of the program does not vary much between different
inputs, then this approach will provide very good results without a large compile-time
overhead. In general, however, the choice of good sample input is critical in this ap
proach and it is not obvious, which metric to use to assess the quality of some input

5.7. Related Work 183

in this context.

This strategy can be very effective in combination with a skeleton-based approach to
express parallelism. Algorithmic skeletons (Cole 1989) define the parallel behaviour
of a set of higher-order functions, representing commonly occurring patterns of com
putation. By using a fixed set of well-studied functions it is easier to make statements
about the dependence of the runtime behaviour on slightly different inputs. Busvine
(1993) uses this approach in his implementation of the PUFF compiler. In a first
step a the compiler exposes all parallelism down to the level of function calls via the
insertion of p ar annotations. Then the program is run on one or more sets of data,
collecting statistics about computation costs and execution frequencies. This infor
mation is used to transform the program into a parallel version that has increased
granularity. A wide range of parallel programs generated with the PUFF compiler
achieved good speedups on a distributed memory machine. In his PhD thesis Bratvold
(1994) gives an overview of using skeletons for parallel programming. His results of
combining a skeletons approach with profiling to gain information on granularity show
good results on a distributed memory architecture. In particular he reports that the
errors of profiling based performance prediction rarely exceed 20%. In contrast to
Bratvold’s system, which is specific to one parallel machine, Michaelson et al. (1997)
present the design of an architecture-independent parallelising compiler for SML. It
uses the same approach of structural operational semantics based instrumentation of
the code in order to obtain granularity information via profiling. However, these costs
are parameterised over machine specific parameters. Instantiating these parameters
and combining the profiling information with expressions derived from the underlying
cost model for skeletons should give accurate granularity information.

Darlington et al. (1995) have designed a structured coordination language SCL based
on skeletons. In combination with Fortran as a computation language they report
speedups of up to 70 on 100 processors on a distributed memory machine for a parallel
matrix multiplication. A general treatment of the skeletons based approach has been
provided by Rabhi (1995), who has related algorithmic skeletons to a number of
parallel paradigms in designing a paradigm-oriented approach towards parallelism.

5.8. Discussion 184

5.8 Discussion

This chapter has introduced the notion of granularity in parallel programs and moti
vated the importance of studying this particular aspect of parallel program behaviour.
It has been demonstrated that granularity is more important for the performance
of programs using an eager-thread-creation model. For a simple test program the
speedup could be increased by a factor of 1.8 for low latency machines and by a fac
tor of 2.8 for high latency machines. However, even for divide-and-conquer programs
with an evaluate-and-die model it is possible to achieve performance improvements of
a factor of 2.2 on high latency parallel machines. This has been shown via G r a n S im
and GUM measurements. For unbalanced divide-and-conquer programs the possible
performance improvement is even higher because the evaluate-and-die model is not
able to subsume the same amount of gratuitous parallelism.

This chapter has presented three granularity improvement mechanisms:

• an explicit threshold mechanism,

• a priority sparking mechanism, and

• a priority scheduling mechanism.

In the measurements presented in this chapter the best results have been obtained
with an explicit threshold mechanism. However, this mechanism assumes absolute
granularity information. Such information is in general more expensive to produce
than relative granularity information i.e. information that only allows to compare the
granularities of two expressions in the program. Such relative granularity information
is sufficient for the priority mechanisms. On the other hand, the priority mechanisms
generate additional runtime overhead via the management of priority queues. Since
the optimal cut-off value, which has to be provided explicitly to the runtime-system,
is in general machine dependent it is not clear which mechanism will perform best for
larger applications. However, having several such mechanisms available as part of the
runtime-system gives the programmer additional flexibility in the performance tuning
of a parallel program. Furthermore, the choice of the runtime-system mechanism for
granularity improvement will in the end depend on the amount of information that
can be automatically derived from the program. The next chapter will discuss this
question by presenting a static granularity analysis for determining upper bounds of
computation costs.

Chapter 6

Granularity Analysis

Capsule

Several examples in Chapter 5 have shown that information about the gran
ularity of program expressions can be used by the parallel runtime-system to
improve the performance of the program. This chapter discusses a granularity
analysis for inferring an upper bound of the computational costs of an expres
sion at compile-time. This analysis is a combination of two existing analyses,
one for size and one for cost information. The granularity analysis is specified
as an inference system for a strict higher-order language C.

The inference system can only derive costs for non-recursive expressions.
However, an extended cost reconstruction algorithm for this inference system
is presented, which exposes recurrences over cost expressions in order to han
dle recursive functions. Thereby, the analysis can be combined with a library
of recurrence relations and their known closed forms in order to generate a
cost expression in closed form that depends only on the size of its input argu
ments. The chapter outlines an algorithm for a granularity analysis handling
user defined recursion, based on the reconstruction algorithm presented here.

One of the major advantages of the chosen formulation of the granularity
analysis as a type inference process over alternatives like abstract interpretation
is its modularity. All relevant cost and size information of a function is attached
to its type. Since all interface information required by the analysis is contained
in the type, separate compilation and separate inference are possible. Finally,
this chapter presents experimental results obtained from executing a program
with attached granularity information. The cost inference has been done by
hand in this case. The measurements show an improvement in speedup of more
than 25% for eager-thread-creation and approximately 6% for evaluate-and-die.

185

6.1. Introduction 186

6.1 Introduction

This chapter describes a granularity analysis for the simple strict higher-order func
tional language £ . The purpose of this analysis is to statically derive information
about computation costs that can be used by the parallel runtime-system to improve
performance, as discussed in Chapter 5.

The granularity analysis is presented as a type inference system. It derives information
about the upper bounds of the size of data structures and the computation costs of
expressions, provided the evaluation of the expression terminates. This analysis can
be either seen as a part of a system for automatic parallelisation or as an off-line tool
for the programmer to obtain additional information about the program’s dynamic
behaviour. However, the particular efficiency constraints of an on-line analysis and
the details of its integration into the compiler are not discussed in detail here. The
emphasis of this chapter lies on outlining an algorithm for performing the inference
rather than proving its correctness.

The sized time system presented in this chapter is a combination of the inference
system developed by Reistad & Gifford (1994) and sized types developed by Hughes
et al. (1996). In particular, it also uses latent costs, which are attached to function
types, in order to propagate cost information from function definitions to function
applications in a higher-order language. Whereas the cost reconstruction algorithm
by Reistad & Gifford (1994) only handles non-recursive expressions, our algorithm
exposes cost and size recurrences from user defined recursive functions. This makes
it possible to use a library of recurrences together with their closed forms in order to
obtain cost information for some recursive functions. Such an approach has already
been successfully used by Rosendahl (1986). The exact design of the library and the
concrete formulation of the matching algorithm are further work.

The structure of this chapter is as follows. Section 6.2 discusses the main require
ments for the analysis and the intended use of the derived information. Section 6.3
defines a small strict higher-order language C. Section 6.4 presents the analysis as
a sized time system. Section 6.5 describes the inference process including a size and
cost reconstruction algorithm. This section also discusses how user-defined recursive
functions are handled. Section 6.6 gives an example of an inference. A comparison of
the presented approach with related work is given in Section 6.7. Finally, Section 6.8
summarises.

6.2. Design Philosophy 187

6.2 Design Philosophy

Before selecting a certain approach for performing a granularity analysis several design
decisions have to be made. In particular, we have to address the following questions.

How detailed does the cost information need to be? This question has to be answered
with respect to the runtime-system and its ability to use cost information. The mea
surements in Chapter 5 show that by using a thresholding mechanism, eliminating all
small threads, significant performance improvements can be achieved. However, this
mechanism requires absolute cost information. As an alternative to a thresholding
mechanism a priority mechanism can be used. This requires only a relative ordering
of threads, i.e. relative cost information. In order to make the usage of all granular
ity improvement mechanisms possible the presented analysis generates absolute cost
information.

How accurate does the information need to be? An important observation about a
granularity analysis is that the information can be wrong without causing error in
computation. It is only used for optimisation without changing the semantics of the
program. It can, however, cause an increase in runtime if wrong decisions are made
very frequently. This has been shown by one of the measurements in Section 5.6.2.
Note the difference to strictness analysis in which case wrong information can cause
the program to fail where it should succeed.

Should the analysis produce a lower or upper bound? Lacking perfect information
about runtime data, the analysis has to give an approximation of the real costs.
Two possible choices are to infer a lower or an upper bound. Since the runtime-
system uses granularity information to eliminate small threads, a lower bound seems
to be the natural choice. However, this leads to inaccuracy when handling recursive
functions since the lower bound would normally reflect only the base case. Previous
measurements, however, have shown that treating all recursive functions equally does
not yield satisfactory information (Goldberg 1988a). In order to avoid inaccuracy in
the important case of recursive functions, the analysis presented here yields upper
bounds. Furthermore, since the pure computation costs of evaluating an expression
lazily are less than or equal to an evaluation in a strict language, the results of the
analysis can also be used as an upper bound for the analysis of a lazy language. An
alternative to this choice might be to devise a separate analysis that tries to infer
information about the values in the head of a conditional. This could be used for

6.2. Design Philosophy 188

common patterns of recursive functions, e.g. in testing whether the length of a list is
zero.

What kind of analysis technique should be used for the static analysis? The main
alternatives are abstract interpretation (Cousot & Cousot 1977) and type inference
(Kuo & Mishra 1989). Abstract interpretation is well-studied and offers optimisations
to make it more efficient. However, it has severe efficiency problems for higher-order
functions. Thus, the motivation for choosing an inference based approach over an
abstract interpretation based approach can be summarised as follows:

• Using type inference achieves modularity by attaching all relevant information
of the analysis to the type of an expression. This fits naturally with separate
compilation. In contrast, abstract interpretation always assumes a global view
of the entire program, which clearly is problematic for large applications.

• It is hard to argue about the quality of a result obtained via abstract interpreta
tion (Aiken et al. 1994). Choosing a more intuitive representation of terms over
the abstract domain and using term rewriting to compute results may alleviate
this problem (Seward 1995).

• By using a library of recurrences for eliminating derived recurrences in the do
main equations it is possible to tune the accuracy of the results. Since granular
ity information is mainly of interest for optimisation and wrong information will
never invalidate the semantics of the program, this is a very desirable feature
in practice.

• Type inference, in contrast to abstract interpretation, does not require the ab
stract domain to be of finite height. Therefore it is possible to use positive
integer values for costs and sizes.

Is the information gained from the analysis of a strict language useful for a lazy
language? Clearly, the cost of evaluating an expression in a lazy language depends
heavily on the demand on that expression. Therefore, a granularity analysis of a strict
language will yield an upper bound for the cost of evaluating the same expression in a
lazy language. Note that we only consider computation costs, but not the bookkeeping
overhead related to eager or lazy evaluation. However, granularity information is
mainly useful for rather small threads in an automatically parallelising system. Such

6.3. Syntax of C 189

a system needs strictness information in order to automatically expose parallelism
over strict arguments. Therefore, the analysis would be only used on provably strict
expressions, which justifies the design of an analysis for a strict language.

6.3 Syntax of C

The language C is a very simple functional language, intended solely as a vehicle to
explore static analysis for parallelism. C is strict, polymorphic, and higher-order with
lists as its only compound data type.

The abstract syntax of C is given below. To simplify the presentation it is assumed
that variables (v G Var) and constants (k G Const) are disjoint and that variable
names in the program are unique. This avoids complications in the treatment of the
assumption sets in the sized time system.

e v | k | Av . e | ex e2 | cons ei e2 | n u l l e | hd e | t l e |
l e t r e c v = ei in e2 | i f ei then e2 e lse e3

Overall, the structure of C expressions is similar to that of Lisp in that it focuses on
lists as the only compound datatype. Local bindings via le t r e c are recursive. Since
the entire C program is an C expression, nested l e t r e c expressions have to be used
to define auxiliary functions.

C uses sized types (Hughes et al. 1996): each type, except for the function type, has a
component specifying an upper bound for its size. The type Int contains only positive
integer numbers. Another extension to a conventional Hindley-Milner type system
is the use of a cost expression in the function type, the latent cost, to propagate
cost information from the function definition to its usage. The second annotation
in the function type, / , represents a symbolic size function and is only needed for
analysing recursive functions (see Figure 6.8). Finally, the construct /?c, a size pattern,
represents a sized type with an upper bound of c, whose type component is unknown.
Again, this construct is needed in the inference process to derive explicit recurrences
for user defined recursive functions. In the following syntax of type expressions, a
represents a sized type variable.

6.3. Syntax of C 190

Both cost and size expressions are specified by c-expressions. Therefore, cost expres
sions can contain variables representing the size of a data structure. It is important
to note that c-expressions are linear, i.e. there can be no expression of the form
Vi * V2 where Vi,V2 are variables. This property plays an important role in the
implementation outlined in Section 6.5.

c ::= / | u; | n | Ci + C2 | Ci — C2 | n * c | max Ci C2 | / Ci . . . cn | sizeOf r

In these c-expressions n is an integer constant and I is a c-variable. The u symbol
is used to express an unbounded cost/size. For sizes less than u the operators +, —,
* and max behave as usual over integer values. When one of the operands is u the
result is u, too, with the exception of x — u which is 0 for x / u and u otherwise. The
< relation, which will be introduced later, is defined as over integer values with x < u
for all x. In order to handle recursive programs symbolic cost functions / have to be
introduced. The arguments cx. . . cn represent the sizes of the argument expressions
in the program. The sizeOf construct is an auxiliary construct used to strip the size
information from a sized type. Again, this is only necessary when deriving explicit
recurrences describing cost and size for recursive functions (see Section 6.5.2).

Polymorphism is achieved in the usual way by quantifying over free variables of a
le trec-bound expression. The use of sized types requires quantification over size as
well as type variables. In the following x is used to represent either a type or size
variable. The general structure of type schemes is therefore:

a ::= 'ix.a | r

Note that sizes constitute parts of types in C. This gives a convenient way to describe
the size of sub-components of a data structure as well as the size of the structure itself,
e.g.

List5 In t10

denotes a list whose length is at most 5 with integer numbers no larger than 10 as
elements. As an example of a type scheme, the type of the builtin constant n i l is

Va. List0 a

6.4. A Static Cost Semantics for £ 191

6.4 A Static Cost Semantics for C

This section develops a static cost semantics for £. In order to statically estimate
an upper bound for the cost of evaluating an expression, information about the size
of values in the program is required. Therefore, a size analysis will be developed as
well as a cost analysis. Both analyses are interwoven with a standard polymorphic
type system to give a sized time system for £ . Because the size analysis and the
cost analysis are presented in the same formal framework, this combination yields a
concise description of the inference without repeating the same structure. However,
it should be emphasised that this does not force an implementation of the analyses
to use the same interwoven structure. The details of a possible implementation are
discussed in Section 6.5.

6.4.1 A Sized Tim e System for C

The inference rules of the sized time system in this section represent an extension
to the standard type inference rules for £ , additionally inferring size and cost infor
mation. These extensions capture size and cost in a slightly different way. The size
information represents a static property of a £ expression and is therefore attached
to its type. The cost information, however, represents a dynamic property of a £
expression. It is therefore not attached to the type but inferred together with the size
information. Cost inference uses size information but not vice versa.

The costs of higher-order functions are modelled by attaching latent costs (Reistad
& Gifford 1994) to function types. These latent costs usually contain free variables
representing the size of the arguments. This is illustrated by the following example.
In order to derive the type for the expression A f . A x . f (x+1) assume that the
function f has type a j3. Here c represents the latent costs of evaluating f . The
annotation / in the type can be ignored for this example. Then the type of the whole
expression will be

(Intn+1 H oc) °4 Intn c+-¥ " a

Thus, the cost of evaluating this abstraction is 2 steps plus the cost of evaluating
the function f . In the system presented here costs are counted as steps. In order to
improve the accuracy of the resulting cost expression it would be easy to use constants

6.4. A Static Cost Semantics for C 192

for basic operations like function expressions. However, we avoid such constants to
make the structure of the inference clearer. In the above example, the costs are
counted as one step for the + operation and one step for the function application.
In general, the derived cost expression will depend on size variables in the argument
types such as n. As a more detailed example, Section 6.4.2 gives the type of the
function leng th .

Choosing step counts as computation costs also has the advantage of being high-level
enough to abstract over the concrete computation model used in the implementation
of the language. Thus, the analysis developed in this chapter is not tied to graph
reduction. In order to tune the analysis to a specific model it would be necessary
to assign basic costs for machine operations such as updating a closure in a graph
reduction model or binding a value to a variable in an environment based model.

Figure 6.1 shows the extended type system. The c-expression in the superscript of a
type is an upper bound for the size of the object. A judgement T h e : r z $ c reads
as follows: “Under the type assumptions T the expression e has type r (with size z)
and a cost bound of c” . The expression after $ in a judgement is a c-expression that
represents the cost for performing the corresponding computation. The assumption
set T contains bindings of variables, of constants, and of primitive operations to type
schemes (of the form x : a). Since all variable names are unique, assumption sets can
be combined by using set union. The construct r[x'/x] is used to denote a substitution
of all free occurrences of x in r by x ' . It extends to vectors, written as yi, by performing
all substitutions simultaneously. The overall structure of the system uses inference
rules resembling a Plotkin style structural operational semantics (Plotkin 1981) in a
similar way to Tofte (1988).

The (Var) rule performs an instantiation of the abstracted size and type variables
Xi by substituting all free occurrences with fresh variables yi in the body of the
type t . The F V function computes the set of free variables in a type expression
or an assumption set. For the inference of a program it is assumed that the initial
environment contains mappings of variables representing basic operations like +, * to
their sized types. This avoids the necessity for an explicit rule on primitive operations.

The (Weak) rule allows to weaken, i.e. to relax, upper bounds for size and cost. It
makes use of the subtyping relation < defined in Figure 6.2. Note that with this
definition of <, the relation T\ < r<i alone does not imply that List01 t\ < List02 72,
i.e. the subtype system is not structural. Because no subtype relations are defined

6.4. A Static Cost Semantics for C 193

(I n t) p (_ n . j ntn j q (Bool) p H b . Boo[$ q

(V a r) _________________________________ T' = Tf c / X"il
V ; ru{v: Vfj.r} I- v : r' $ 0 y* £ F V (t) U FV(r)

r b e : t ' $ c' t ' < r d < c
{Weak) T h e : r $ c

{ s \ F u {v:ri} b e : r2 $ c(Abstr) ---------------- 7~r-------r b Av . e : r\ -4 T2 $ 0

(App) r ei : ri ^ T2 $ ci T b e2 : ri $ c2
T b ei e2 : r2 $ 1 + c\ + c2 + c

, _ x r b ei : r $ c\ T b e2 : Listc r $ C2
(G o n s) -- -TXi---------------------------------r b cons ei e2 : List + r $ 1 + c\ + C2

, , T ii\ r b e : Listc' r S c {Null) r b null e : Bool $ 1 + c

(xja\ T b e : List0' r S c , ^ T b e : r $ c ,{Ha) —z— ------------------— c > 1 (T /) ---------------------------- -7—;---- --------- c > 1T b hd e : r $ 1 + c T b t l e : r S 1 + c

, _ . T b ei : Z?oo/ $ ci T b e2 : r $ C2 T b e3 : r $ C3

T b if ei then e 2 else e3 : r $ 1 + Ci + (m a x C2 C3)

(T . r u { v : r i } b et : n $ cx ru {v :V ^ .r i} b e2 : t 2 $ c2 Xj = FF(ri)\
6 r r b letrec v = ei in e2 : T2 $ ci + C2 FV{T)

F ig u re 6.1 A sized time system for C

between basic types, this relation defines a set of inequalities over c-expressions alone.

The (Abstr) rule infers the cost of evaluating the body of a lambda-abstraction, and
attaches this cost to the type of the lambda-abstraction as a latent cost The latent
cost usually contains a free variable for the size of the argument x. The symbolic size
function / , which is attached to the function type, is only needed when a recursive
function is defined. The handling of recursive functions is discussed in the reconstruc
tion algorithm in Section 6.5.2. It is currently not reflected in the sized time system

6.4. A Static Cost Semantics for C 194

itself.

In the (App) rule the type of the function’s domain must exactly match the type of
the argument. Since types can be weakened by relaxing their size bounds this means
that the size bound of the argument must be no greater than the size given in the
type of the function’s domain. The function application itself is counted as one step.
Note that the latent cost c of the function is added to the cost of the whole expression.
In the case of a recursive function call, however, c will be undefined at this point.
Because the undefined c will depend on the size of the argument e2 , an explicit name
/ is needed for the size function of ei. At the end of the inference, the cost expression
for the recursive function will contain an application of the size function / to the size
of e2 . Figure 6.8 shows the inference of the recursive function len g th as an example.

The rules for (Cons), (Null), (Hd), (Tl) show how size bounds are derived for list con
structors and selectors. This system models a step counting semantics and therefore
the application of a constructor to all of its arguments counts as one step. To increase
accuracy it would be possible to add constants for the cost of these operations.

In general both branches of a conditional will have different sizes. The example below
illustrates how the (Weak) rule is used to ensure that the types of both branches match
as is required by the (Cond) rule. The cost bound of the conditional is the maximum
of the costs of both branches plus the cost of the head of the conditional plus one
step for performing the branch. In Section 6.5 we suggest some practical techniques
for improving this cost bound.

The (Letrec) rule realises letrec-polym orphism as in the Hindley-Milner type sys
tem (Milner 1978). In the inference of a type for e2 the variable v is bound to a type
scheme, which abstracts over type and size variables. Note that in the environment
for typing et we do not use a type scheme for v, as in the Milner-Mycroft type sys
tem (Mycroft 1984), because this would make even plain type inference without sizes
or costs undecidable, as shown by Henglein (1993). An instantiation of type schemes
is performed as part of the (Var) rule. It is worth noting that the (Letrec) rule used
by Hughes et al. (1996) is significantly more complicated because it has to propagate
size information for algebraic data types from one recursion level to the next. In C
this size propagation is encoded in the rules operating on lists. An extension of C to
algebraic data types would have to add a size variable as an explicit iteration variable.

The reflexive and transitive subtyping relation in Figure 6.2 formalises the idea that

6.4. A Static Cost Semantics for C 195

__________ T \ < T 2 T2 < 7 3

T < T T \ < T3

Cl < C2 Cl < C2 Tj < r 2 Tj < t [t '2 < T2 cf < C

In tCl < In tc2 List01 t \ < List02 t 2 T' °-4 T'2 < n c-4 72

F ig u re 6.2 Subtyping relation for £

the size component in a sized type specifies an upper bound. Therefore, it should
always be possible to weaken this size bound. Similarly, the latent cost in a function
type is an upper bound for the cost of evaluating the function. The need for such a
subtyping relation can be motivated by an analysis of the following expression.

i f (n u ll xs) then 1 e lse 2

In this expression the then branch has a sized type of In t1 but the e ls e branch
has the type In t2. Only because of the subtyping relationship between these types
In t1 < In t2 is the above expression type correct. In the inference of this expression
the (Weak) rule has to be applied to the then branch. The need for weakening latent
costs can be motivated by observing that both sides of the conditional may yield a
function type.

6.4.2 From Cost-Expressions to Cost-Functions

The sized time system in Figure 6.1 is a high-level description of how to infer costs
and sizes of an expression. When deriving the cost of a function application the cost
expression representing the latent cost for the function has to be used. However, if the
function is recursive this approach will fail to yield a cost expressions in closed form
because it has to refer to its own cost. Therefore, explicit names for unknown cost
functions, symbolic cost functions, are needed. One symbolic cost function is needed
for each recursive function in the program. In general the result of performing cost
inference will be a set of recurrences that has to be solved separately. Section 6.5.4
discusses how this can be done.

The (Letrec) rule in the sized time system shows that the type schemes for le tre c -
bound functions in general contain universally quantified size variables. These vari

6.4. A Static Cost Semantics for C 196

ables are arguments to the cost function described by the inferred cost expression. In
general we define for every function definition

f x l . . . xm = e

a cost function

fc 1̂ • • • ln — c

and a size function

f z l\ • • - In — %

where c is the cost and z is the size expression derived from e, the body of the
function. The variables l \ .. . ln represent the size variables in the argument types
of f . Note that n depends on the type of the arguments to f because an argument
of e.g. type Listk In t1 will be translated into two size arguments k and /. The cost
reconstruction algorithm in Section 6.5.2 applies the function sizeOf on top-level in
order to strip the size expressions from the resulting type.

One characteristic of the cost reconstruction algorithm discussed in Section 6.5.2 is
the use of curried function application. This results in the introduction of separate
cost functions in each function application. In order to obtain one cost function for the
user defined function, as outlined above, it is necessary to merge these intermediate
cost functions. This should be done in a separate simplification stage after cost
reconstruction. The example in Section 6.6 discusses this point in more detail.

In summary, the sized time system assigns the following type to the polymorphic
length function (Figure 6.8 describes the main steps of the inference, which is discussed
in Section 6.5.2):

length : Vo:. Vl.List1 a

In the following sections we use as a special notation lengthz for describing the cor
responding size function (length z 1 = 1 in this case) and lengthc for describing the
corresponding cost function (lengthc I = 4 * Z + 2 in this case).

6.5. Cost Inference 197

6.5 Cost Inference

This section presents the outline of an algorithm for inferring upper bounds of size
and cost in the presence of user defined recursive functions. In the case of non
recursive expression the sized time system presented in the previous section can be
directly implemented using the same approach as Reistad & Gifford (1994). In order
to handle user defined recursive functions, recurrences over an integer domain have to
be constructed and solved. This section gives a reconstruction algorithm for exposing
recurrences and proposes a general approach for solving the recurrences via a library.

An important feature of our subtype system is that all constraints range only over
c-expressions rather than types in general. This can be seen from Figure 6.2, which
defines < by adding only inequalities over c-expressions, but not over primitive types.
In other words, from T\ < r2 it follows that the Hindley-Milner types of t\ and r2 are
the same, and this might subsequently be proved. Informally this can be shown by
observing that omitting size and cost information from the sized time system yields
the Hindley-Milner type system with additional rules for the basic list operations.
The symbol \~h m is used to represent standard Hindley-Milner type inference.

C o n jec tu re 1 Let e1; e2 be C expressions and T b ei : T\, T h e2 : t 2;
T b hm ©i : f i , T \~hm : T2 - Then

T\ < t 2 implies f \ = r2

It is important to note that no general subtype inference based on set inclusion is
required, as it is done by Aiken et al. (1994) and Marlow & Wadler (1997). Instead,
it suffices to solve inequality constraints over c-expressions, which range over integer
values including infinity. Standard software packages exist for performing this test
and the outlined inference algorithm uses such a package.

The structure of this section is as follows. Section 6.5.1 presents the overall struc
ture of the inference process. Section 6.5.2 presents a size and cost reconstruction
algorithm. This algorithm specifies a proof strategy for the sized time system, deter
mining where to apply weakening and how to collect constraints. The result of the
cost reconstruction algorithm is a sized type, a bound on the cost for evaluating the
expression, and a constraint set of inequalities over c-expressions. The latter has to be
solved separately. Section 6.5.3 defines a normal form on c-expressions. Section 6.5.4

6.5. Cost Inference 198

addresses the question how to derive explicit symbolic cost functions for user defined
functions and how to resolve a set of common recurrences. Finally, Section 6.5.5
addresses correctness issues of the presented inference.

6.5.1 Structure of the Inference

A cost checking algorithm for the sized time system is no more complicated than the
existing size checking algorithm for sized types (Hughes et al. 1996). This algorithm
uses the mandatory type declarations for all le trec-bound variables to compare the
declared sizes with the sizes that are inferred from the body of the definition. This
yields a set of inequalities over c-expressions in closed form.

Hughes’ algorithm performs two separate passes for performing Hindley-Milner type
inference and size inference, respectively. In maintaining this structure an additional
pass for cost inference can be added. This pass would add inequalities over cost
variables to the constraint set. Since both costs and sizes are represented via c-
expressions, the same algorithm for collecting all inequalities can be used.

The satisfiability of the resulting constraint set can be checked by performing the
Omega test (Pugh 1992). The Omega test is a state-of-the-art implementation of
a decision test for the existence of integer solutions to affine constraints, which are
a superset of the linear constraints as used in this thesis. If no solution exists the
expression is ill-typed. Recursive functions do not pose any additional complication
since their type has to be explicitly given. Such a checking algorithm could be used
to confirm that a cost expression provided by the user, e.g. by hand analysing a
function’s complexity, is indeed an upper bound for the cost of the function.

When the checking algorithm is extended to cost inference a cost and size recon
struction algorithm has to handle functions of unknown type. This requires to add
symbolic cost functions to the definition of c-expressions. These symbolic cost func
tions represent so far unknown cost functions applied to known size expressions. The
reconstruction algorithm presented here will therefore extend the one developed by
Reistad & Gifford (1994) by capturing the argument size of a function of unknown
type in the (App) rule.

In order to solve the recurrences exposed by the reconstruction algorithm a “library”
of recurrence relations with their closed form can be used. This is similar to the

6.5. Cost Inference 199

approach used by Rosendahl (1986). One basic difference is that the latter uses
a sequence of source-to-source transformations in order to translate recursive step
counting programs into non-recursive ones. In contrast, providing a library decouples
the main part of the analysis from the recurrence elimination. Thus, the programmer
has the possibility of adding recurrences to the library in order to improve the result
of the analysis. In contrast to an abstract interpretation approach, this approach
avoids the complexity of solving the resulting set of equations iteratively.

An open problem with an inference algorithm of this kind is how to find a minimal
solution of the constraints that are derived. Since the plain type of the inference will
be the same as the Hindley-Milner type, the plain type will be principal. However,
if the “library” of recurrences contains approximations of closed forms the solution
for costs and sizes will not be minimal. Adding such approximations has the benefit
that unsolvable recurrences can be dealt with. Because the goal of the analysis is
to derive some upper bound for the computation costs a minimal solution for the
size component is not absolutely necessary in order to extract useful information out
of the analysis. This agrees with observations by Reistad & Gifford (1994) on the
quality of statically determined cost estimates.

In summary, the inference algorithm has the following global structure (see also Fig
ure 6.3):

1. collect constraints, inequalities over c-expressions, while traversing the proof
tree (see the cost reconstruction algorithm in Section 6.5.2);

2. simplify the set of inequalities, containing symbolic functions, by reducing c-
expressions to a normal form (see Section 6.5.3);

3. spot common patterns of recurrences and replace them with closed forms, using
a “library” of recurrences; if no matching recurrence is found the symbolic
function is defined to yield u for every input (see Section 6.5.4);

4. replace non-linear c-expressions with uj\ this step is needed as preparation for
solving the constraint system using the Omega test;

5. eliminate trivial constraints containing u;

6. solve the resulting constraint system using the Omega test (Pugh 1992);

6.5. Cost Inference 200

L program

Cost/Size Fcts (rec) type correct Y/N

C/S Fcts (non-rec)

Cost/Size Fcts (rec) C/S Fcts (closed form)

of Recurrences

Elimination

Omega test &

Simplification

Simplification

of c-expressions

Linearisation

of c-expressionsReconstruction

Size and Cost

Recurrences

Library

F ig u re 6.3 Overall structure of the analysis

7. simplify the result further.

The main source of inaccuracy for the derived cost bounds in the sized time system
presented here is the (Cond) rule. This might prove to be a problem if a costly branch
is rarely executed, for example if the base case of a recursive function is much more
expensive than the normal recursive case. Although this seems unlikely to be a major
issue, one way to alleviate this particular problem would be to add special cases to
the “library” of recurrences to avoid counting the base case several times. A variant
of the max operator could then be used to indicate that the conditional is on the
critical path of a recursion.

Another approach would be to extend the type system further by adding conditional

6.5. Cost Inference 201

types. Such types use runtime information to specify the type of an expression. In
such a type system it is possible to formalise a dependence between the head and the
branches of a conditional. For example, it is possible to type the expression

i f (n u ll xs)
then 1
e ls e 1+length xs

as (In t1?List0 a)U (In t1+n?Listn a). The conditional type constructor Ti?72 reads as
“t i if t2”, incorporating runtime information into the type system without resorting
to a safe approximation like the maximum of both sizes. Conditional types have
proven useful in the optimisation of Lisp programs, where the aim is to avoid runtime
type checking. Aiken et al. (1994) present a type system with union, intersection,
and conditional types. A type inference algorithm has been implemented for FL and
measurements on programs with several hundred lines of code show that typically
no more than 10% of the compilation time is spent in the inference process. This
shows that although conditional types require an extension to general intersection
and union types, the resulting inference algorithm can still be fast enough to be
usable in practice.

Another alternative for obtaining more accurate cost information for conditional ex
pressions would be to use profiling information as additional input to the static anal
ysis. Similarly to general profiling approaches discussed in Section 5.7.3, the program
would be executed on a small sample input set before the static analysis is performed.
The profiling stage would only have to collect data on the probability of taking each
branch in the conditionals of the program. These probabilities could then be used
in the static analysis as weights to the costs for both branches. This hybrid scheme
would have the potential of combining the accuracy of a static analysis with the
efficiency and additional runtime information of a profiling approach.

6.5.2 A Size and Cost Reconstruction Algorithm

The first phase in inferring computation costs is to reconstruct cost expressions from
the program expressions. This frees the programmer of the burden of adding explicit
types specifying size and cost bounds. Cost reconstruction requires a traversal of the

6.5. Cost Inference 202

inference tree and a bottom-up construction of costs. Since the sized time system uses
subtyping the result is not only a sized type and a cost but also a set of constraints
on size and cost variables.

A P r o o f S tra teg y

A key question in designing a type reconstruction algorithm is where to apply the
weakening rule. All other rules are structural and exhaustive. One possibility (Mitchell
1991) is to apply the weakening rule only at the leaves of the proof tree, i.e. immedi
ately before a (Var) or one of the constant rules, (Int) and (Bool) in our case. The
alternative, which is used by the cost reconstruction algorithm presented here, is to
use the weakening rule only at the application rule (Hughes et al. 1996), in order to
match the type of the argument with the type of the domain of the function, and at
the conditional rule, in order to find a supertype of both branches.

A lgebraic U n ifica tion

In contrast to classical inference algorithms the unification algorithm used in this
reconstruction algorithm returns a constraint set as well as a substitution. The syn
tactic structure of substitutions (9) and constraint sets (C) is as follows:

9 ::= ff | ffO C ::= C' \ C'C
O' ::= r / a \ c /z C' ::= C\ < C2 \ C\ — C2

Note that substitutions are performed on types and sizes, whereas constraints only
affect sizes (c-expressions contain only size but no type variables). The algebraic
unification algorithm used in the following reconstruction algorithm is shown in Fig
ure 6.4. It is inspired by the usage of algebraic unification in effect systems (Jouvelot &;
Gifford 1991). It implicitly applies the weakening rule wherever necessary by directly
implementing the subtyping relation in Figure 6.2. It will, however, immediately fail
if the shape of the two types is different. Because the constraint sets do not involve
type variables this unification algorithm specialises to the Robinson’s unification al
gorithm (Robinson 1965) if the size and type annotations are erased from all types.
In this case the first component of the result, restricted to type expressions, is the
substitution on plain types.

6.5. Cost Inference 203

In Figure 6.4 z, zi, z2 denote c-variables, a denotes a type variable, (3 denotes a type
pattern, which ranges over a different name space than type variables, c, Ci,C2 are
c-expressions, and t , t i ,T 2 are type expressions. The cases for type variables, a,
and the type Bool are trivial. In the other cases the algebraic unification algorithm
implements the subtyping relation by choosing upper bounds of the size annotations
attached to the types. In the cases for Int and List the fresh size variable z is defined
to be an upper bound of z\ and z2. These relations are captured via inequalities
in the constraint set, and therefore the algebraic unification algorithm has to return
a constraint set as well as a substitution. In the case of function types an explicit
substitution is used to guarantee that the names of the symbolic size functions are
the same. As with standard unification the substitutions of nested types have to be
composed. Additionally, the union of the constraint sets from the nested types has
to be constructed, applying substitutions to propagate renamings into the constraint
sets.

The unification on size patterns in the lower half of Figure 6.4 shows how size infor
mation is propagated even in the absence of plain type information by choosing an
upper bound of the size expressions in the unified type expressions. Otherwise size
patterns behave exactly like type variables. When unifying a function type with a
size pattern (last but one rule) the size information has to be propagated through
curried function application by choosing an upper bound for the sizes of both size
patterns. Otherwise the size pattern behaves like a type variable. This case will be
explained in more detail together with the (App) rule in Figure 6.5.

T he R eco n stru ctio n A lgorith m

Figures 6.5 and 6.6 specify a size and cost reconstruction algorithm in the same
inference style that has been used for the cost semantics of C. For inferring the
plain types the algorithm directly implements Milner’s algorithm as presented in
Field & Harrison (1988)[Chapter 7]. The additional rules for list operations are
straightforward specialisations of the general application rule. The arguments to the
algorithm are a type environment T and the expression to be analysed. The result
of the algorithm is a tuple (r, 0, c, C), where r is the sized type of the expression, 0
is a substitution, c is the cost of evaluating the expression, and C is the constraint
set, i.e. a set of inequalities over c-expressions. The constraint set plays the same role
for size and cost variables as the substitution does for type variables. In the rules of

6.5. Cost Inference 204

Uv. t ^ t ^ { 9 , c)

U{a,r) = ([T/a],{}) {F V (r)\a)
U{Bool, Bool) = ([],{})
U (In tZl , I n tZ2) = ([z/zi, z / z 2], z fresh

\ z Y < z , z 2 < z})
U {List21 Ti, List22 r2) = {[z/zi, z/z^O, afresh

C U {z1 < z, z2 < z}) (0,C) = U (tu t 2)
U (ti z±4 t 2, = ([z / z h z /z 'v f / f ' fa O i , z fresh

T, A£ / \ 6>2C i U C2 U { zi < z, z[< z}) (Oi,Ci) = U (t i , t [)

1 2 ; (0 2 , c2) = U (6 \ t 2, 61T2)

U{*,(32) = ([/3Z/<*],{})
U(Pi 2l, / V 2) = ([(32 / I 3 i , z / z i , z / z 2] , z fresh

{zi < z , z 2 < z})
U{Bool, (3Z) = {[Bool/(5), {})
U{IntZl, (3Z2) — { [In t /P ,z /z i ,z / z 2], 2 fresh

{zi < z ,z 2 < z})
U{ListZl t , (3Z2) = {[List2 t / / 3], z fresh

{zi < z , z 2 < z})
U{n H PiZl,(32Z2) = {[n H Piz/P2], z fresh

{zi < z, z2 < z})
U { t x H t 2, P Zi) = ([n H r 2 / / ?] , { })

The symmetric cases for size patterns and size variables are omitted

Figure 6.4 An algebraic unification algorithm on sized types

the reconstruction algorithm 2 , 1 denote c-variables, where I is used to represent the
length of lists, a denotes a type variable, j3 denotes a size pattern. / c, f z denote a
symbolic cost and size functions.

The proposed algorithm is based on the one developed by Reistad & Gifford (1994) for
the cost reconstruction of FX programs. This algorithm traverses a given program
expression and reconstructs its type, cost, substitution, and a constraint set over
size and cost variables. This is the same quadrupel the algorithm in Figures 6.5
and 6.6 is using, and thus the combination of constraint sets and the composition of

6.5. Cost Inference 205

r h n : (Intz , 0 , 0 , {z = n }) * f r e s h (-Bool'> r I- b : (Bool, 0 , 0 , { })

(V a r) _____________________________ W fresh
r U { v : Vxi.(T,C)} b v : (0 r , [], 0 , 0 (7) 0 = [yi/xi]

T U { v : a } b e : (r , 0 , c , C)
(Abstr) - Y1- a i / > z f r e s hr b A v . e : (0 a 4 t , 0 , O , C U { z = c})

r b e i : (n ,01, C l , C l) 0i r b e 2 : (r 2, 0 2, c 2 , C2)
________________ (e , c) = u (e 2TU T2 /?*)________________

r b ei e2 : (0/3Zl, fof z iPi
(App) 0020l5 z , z i , z 2

0(1 + 020z 2 + 02C l + c 2) , f r e s h
0 (0 2 C i U C 2 U C U

{ ^ l = (/ z z) , z2 = (f c z) , z = s i z e O f (0 r 2) }))

F ig u re 6.5 A size and cost reconstruction algorithm for C

substitutions are very similar. In contrast to the sized time system, however, the type
system for FX does not use a separate weakening rule. Instead, the subtyping relation,
which corresponds to the < relation in Figure 6.2, is combined with the remaining
rules. Furthermore, the cost reconstruction algorithm in Reistad & Gifford (1994)
uses a simpler unification algorithm, which only unifies annotated types producing
a substitution but no constraint set. Instead, the reconstruction algorithm for FX
adds inequality constraints on costs and sizes in the leaves of the inference tree. The
algorithm in Reistad & Gifford (1994) is based on reconstruction algorithms in effect
systems (Lucassen & Gifford 1988, Talpin & Jouvelot 1992, Debbabi et al. 1997),
which extend type systems in order to capture information about side-effects in impure
functional programs.

The algorithm presented here extends the cost reconstruction algorithm for FX by
exposing recurrences over c-expressions describing cost and size of user defined recur
sive functions. This is done by attaching symbolic size functions to the function type
and stripping the size information from an inferred type via the sizeOf function in the
(App) rule. A size pattern of the form (5° propagates information about the size of the
argument through a function application even if the type of the result is unknown.
W ithout this construct recursive functions would generate recurrences like z = z - 1-1

6.5. Cost Inference 206

r I- ei : {t i ,Qu ci , C i) 6iT h e2 : (t2,02,C2,C,2)
________________ (e,c) = u(T2, L i s t ‘ f t - n) ________________

(Cons) r h c o n s eie2 : ZJ fresh

0(1 + 02ci + c2),
0(02Ci u c 2) u c u {z = ei + 1})

(Null) T h e : (r,0,c,C) (0 , 0 =U(T,Lis1> a)
{DIUU) r h n u n e ; ^ o o /> ^ > 1 + 0 /Cj0/(nrU (nr/) <*,<*16811

T h e : (r , 0 , c , C) (O',C') = U(r, List1 a)
1 } r h h d e : (0'a, 0'0,1 + 0'c,0'(C U {/ > 1}) U C') ’

, . T h e : (t , 0 , c , C) (0', C") = W(r, List1 a) z ,a , l
1 j r h tie : (List2 0'a, 0'0,1 + 0'c, 0'(C U {7 > 1}) U C" U {z = Q'l — 1}) fresh

r h ei : (n,0 1,Cl,Cl)
0iT I- e2 : (t 2 , 0 2 , c 2 , C 2) 020iT h e3 : (r 3 ,0 3 , C3, C 3)

________ (0, C) = U(eze2ru Bool) (0', C') = U(eezr2, 0r3)________
(Cond) T h if ei then e2 else e3 : (0/0r3,

0'003020i,
0'0(1 + 0 3 0 2c i + m a x (0 3 c 2) C3),

0'0(0302Ci U 03C 2 U C 3U C ' U C))

r U {v : a} h ei : (n ^ c u C ,) . =“(̂ j
(Letrec) ________0if U {v : Ci)} h e2 : (r2,02, c2, C2)________ * u p y i Q \\

T h letrec v = et in e2 : (r2, 020i, 02^1+c2, 02Ci U C2) \FV($ iT)

F ig u re 6.6 A size and cost reconstruction algorithm for C (continued)

over c-variables because the information about the size of the argument in a recursive
call is lost. The only solution to this equation is a;, which would assign infinite costs
to all recursive expressions. In the inference of leng th in Figure 6.8 this can be ob
served in branch © , where the size of the expressions t l xs, namely Listl~l a ', has
to be propagated through the so far unknown type of the function length . In simple
Hindley-Milner type inference no such information has to be propagated, because the
Hindley-Milner types of xs and t l xs are the same.

As the (Int) case indicates, the algorithm maintains the invariant that size annotations
in sized types are always variables. Thus, an explicit constraint z = n has to be added

6.5. Cost Inference 207

sizeOf :: r —> [c]

sizeOf(a) = []
size0f(/?2) — 0

sizeOf (Bool) = I !
sizeOf (In tz) — 2

sizeOf {List2 r) = z
sizeOf(ri 72) = f

F igu re 6.7 Definition of size stripping

to the constraint set in the (Int) case rather than just using In t71 as in the sized time
system. This invariant simplifies the algebraic unification algorithm.

The (Abstr) rule adds fresh variables for the cost and the size function attached to
the derived function type. The constraint set captures the costs of evaluating the
body of the function.

The (App) rule shows how the size information is propagated through a function
application. The unification of the type of e l5 T\, with an explicit function type
is standard. However, rather than choosing a type variable in the codomain a size
pattern (Iz is used. Together with the algebraic unification algorithm this guarantees
that the size information is not lost if the plain type of the result is unknown. Note
that size patterns are only introduced in the codomain of function types. In the case of
curried function applications, yielding size patterns, the result of the first application
will be unified with another function type. The rule for unifying function types with
size patterns in Figure 6.4 ensures that the size on the final result is an upper bound
over all collected size information. The size component in the size pattern has the
form f z sizeOf(0T2). The sizeOf function is used to strip size information from the
sized type and to make it explicit in the application of the size function Jz. Figure 6.7
shows the definition of sizeOf, which will be applied at top-level when generating cost
and size functions from the generated cost and size expressions. The result of applying
sizeOf is a list of cost expressions similar to the shape vectors used by Skillicorn &
Cai (1993) in their cost model for the Bird-Meertens formalism.

The rules on lists, (Cons), (Null), (Hd), (Tl), all have to unify one subexpression
with a list type, introducing fresh type and size variables. The side condition that

6.5. Cost Inference 208

hd and t l can only be applied to lists with at least one element is captured in the
constraint set. Thus, our type system can detect some cases of applying hd or t l
to n i l , which has size 0. The propagation of size information is also encoded via
equality constraints in the constraint set.

In the (Cond) rule the maximum of both branches has to be used in order to obtain
an upper bound of the costs of the expression. A bound on the size of the result will
be added to the constraint set by applying the unification algorithm.

The (Letrec) case of the algorithm exhibits an extension of the format of type schemes.
Since type schemes propagate generic type information from the le t r e c head into
the le t r e c body, they also have to propagate the constraints collected while inferring
the type of e^ Together with a generic type variable this constraint set is added to
the result type of a le t r e c bound variable via the (Var) rule.

A n E xam ple

Figure 6. 8 presents a size and cost inference based on the above cost reconstruction
algorithm by showing the main steps in an inference of the function length:

len g th = \ xs . i f n u ll xs
then 0

e lse 1 + len g th (t l xs)

The example inference for leng th avoids the use of intermediate variables as they
would be generated in an actual implementation. Instead we directly insert the values
of variables for which equality constraints are generated, e.g. In t1 is used instead of
In tx with {x = 1}. The inference is therefore best read from the leaves of the tree.
The sized type and the cost are also directly inserted in every step, although the
algorithm synthesises them in a bottom-up fashion when traversing the tree.

The most important parts in the inference are summarised as follows. The (Null) rule
in branch © unifies the type of xs in the assumption set T' , a', with a polymorphic
list of unknown size, L ist1 7 . The (App) rule in branch © uses fresh symbolic size and
cost functions, / and / ' , to describe size and cost of the result. These are attached to
the type of len g th via the unification of a with the function type L ist1' -1 7 H Pz-
j3z is a fresh size pattern, which propagates the size of the argument, t l xs, through

6.5. Cost Inference 209

Z, 7 fresh
.(Var)

r h xs : L ist 7 $ 0 r ' h 0 : In t° $ 0
.(Null)

.(Int)

T' h n u l l xs : Bool $ 1 ©
©

T' h xs : L ist1 7 $ 0
.(Var) ________________________ (Tl)

.(App)
T' h length : a $ 0 T' h tl xs : L ist 7 $ 1

r h length (tl xs) : /3f size° f *W _ 1 7) $ / ' sizeOf (L ist1-1 7) + 2

--- (App)
r h 1 + length (tl xs) : I n t1+f $/'(/ — 1) + 3

©
© © © T' = T U {length : a, xs : a '} a , a' fresh

___ (Cond)
T h if null xs ... : I n t1+f (*_1) $ 2 + max 0 (/' (/ - 1) + 4)

___ (Abstr)

T U {length : a } h Axs... : L ist1 7 2+m“ ° 0 1+' ('-1) $ 0

Figure 6.8 Inference for length

the function application. Therefore, z is of the form sizeOf (L ist1-1 7). In this
inference we apply the sizeOf function as early as possible to improve readability. In
the inference algorithm this step would be performed at the root of the inference tree.
Via the (Cond) rule the maximum over the costs of both branches in the conditional
is constructed. In the size component of the result type the constraint set captures
the fact that the size of the result is an upper bound for the size of both branches. As
this information is captured via inequalities in the constraint set, the exact expression
depends on the solution of the constraint set. Here we assume that it will yield a
max expression. Finally, the (Abstr) rule builds the function type for the body of
leng th , attaching the derived costs, 2 + max 0 (/ ' (/ — 1) + 4), to this type. Thus,
the reconstruction algorithm has exposed the recurrence for specifying the costs of
computing this function with the size variables occurring in the argument types as

6.5. Cost Inference 210

free variables in the cost expression.

In order to obtain a closed form for the cost function of length , the cost expression
has to be simplified and then matched against a library of recurrences. The details of
these steps in general are discussed in the following two sections. In this case we have
to use the fact that 0 is the neutral element for max and then use the first recurrence
in Figure 6 .1 2 to obtain the following closed form:

lengthc I = 4 * I + 2

6.5.3 Simplifying Constraints

In order to define the simplification of constraints a normal form has to be defined on c-
expressions. One natural choice would be to choose a sum-of-products representation
as normal form. Assuming an ordering on size variables, an ordering on c-expressions
can be defined by defining cost functions to be smaller and max expressions to be
larger than cost expressions of a different shape. A simplification function would have
to use rules like distributivity as well as basic arithmetic rules to bring c-expressions
into normal form. This is a standard exercise in term rewriting and therefore not
discussed in more detail.

From the presentation of the algebraic unification algorithm in Figure 6.4 it can
be seen that many constraints will be added to the constraint set while traversing
the inference tree. For a practical implementation it will therefore be important
to simplify the constraint set when adding new constraints in order to avoid the
generation of huge constraint sets. This also opens up the possibility to report type
errors early if the check, when adding a constraint to the set, yields an error.

One important task of the simplification algorithm is to merge intermediate symbolic
cost and size functions that are generated via the (App) rule. For symbolic cost
functions this means generating one function which is the sum of all intermediate
functions. In the case of symbolic size functions this means combining the upper
bounds of the intermediate functions, which are present in the constraint set, into
one symbolic size functions. The example in Section 6 .6 discusses this aspect in more
detail.

6.5. Cost Inference 211

6.5.4 Solving Recurrence Relations

Recurrence relations are solved by matching the simplified c-expressions obtained
from the cost reconstruction algorithm with a library of recurrence relations. If this
match is successful the recurrence can be replaced with the known closed form. If it
fails the cost expression has to be replaced with u.

This approach has the advantage of being tunable by adding more recurrence rela
tions to the library. Thereby, it is possible to trade accuracy for speed in the analysis.
Another important aspect is that the library only has to contain upper bounds rather
than exact solutions to the recurrences. Thereby unsolvable recurrences can be dealt
with, by choosing an approximation, possibly using a table hypergeometric functions,
which is a standard technique in combinatorics. Keeping the recurrence solver sepa
rate from the derivation of the constraint set adds flexibility to the system.

A first version of a matching procedure is given in Figure 6.9. This version shows
that in principle the matching procedure corresponds to a unification of c-expressions.
All constants have to match exactly. C-expressions are substituted for c-variables.
In compound expressions the result is the composition of all substitutions resulting
from unifying the components. If this algorithm succeeds in unifying the derived c-
expression with the body of a function in the library, then the resulting substitution
has to be applied to the recorded closed form for this recurrence in order to eliminate
the recurrence in the derived cost expression.

The correspondence of the matching algorithm to a unification algorithm also indi
cates that the cost for finding a closed form should not dominate the analysis. In total
this cost will depend on the number of entries in the library. However, by sharing
common structures in the representation of the recurrences it should be possible to
devise a matching algorithm whose cost does not increase linearly with the number
of entries. Refinements of fast string matching algorithms should be applicable here.

An alternative approach for eliminating recurrences at this stage would be to use a
general recurrence solver over integer values. Such algorithms are available in com
puter algebra systems such as Maple (Char et al. 1991) and Mathematica (Wolfram
1988). This would extend the approach of using the Omega test for checking sat
isfiability of a constraint set to using more powerful, but more expensive, computer
algebra algorithms for finding a solution for a system of recurrences. However, with
the current state-of-the-art it is only possible to find closed forms for linear recur-

6.5. Cost Inference 212

Uc c —y c —y 9

Uc n n = []
Uc uj u = []
Uc I c = m
Uc c I = m
Uc (ci + C2) (c[+ d2) = 6'6 9 = UC ci ci

9' = Uc 0c2 9d2
Uc (ci - c2) (ci - c'2) = e'e 9 = Uc ci ci

9' = Uc 0 c2 9d2
Uc (n * c) (n * c') = Uc c d
Uc (max Ci c2) (max ci c'2) = 66' 9 = Uc ci ci

9' = Uc 0c2 9d2
Uc (/ Cl . . . cn) (/ ' ci . . . c'n) = [f / m - " 0 i 0i = Uc ci c-

9n Uc (01 ’ ’ ’ @n—\C-n)
(0 i - - - 0 „ - i d n)

F ig u re 6.9 Matching of cost expressions

rences with polynomial coefficients, certain non-linear first-order recurrences, and
certain divide-and-conquer recurrences (Petkovsek 1990). A good starting point for
such an implementation would be the algorithm by Petkovsek k Salvy (1993) for
finding all hypergeometric solutions of linear recurrences. Hypergeometric sequences
are such that the quotient of two successive terms is a fixed rational function of the
index.

6.5.5 Correctness Issues

This section presents a list of conjectures characterising some crucial correctness issues
of the cost reconstruction algorithm. Proving these conjectures would lead most of
the way towards proving the correctness of the algorithm. No formal correctness proof
will be given here. However, because the algorithm is based on the reconstruction
algorithm by Reistad k Gifford (1994), and similar reconstruction algorithms for
effect systems such as Talpin k Jouvelot (1992), most rules follow from their system.
The main difference is the (App) rule, which propagates size information.

6.5. Cost Inference 213

In order to formalise the notion of solving a set of constraints the notion of a model
has to be introduced. In this definition we assume the standard definitions of = and
< on integer values with x < u for all integer values x.

D efin ition 7 (so lu tio n , m odel) A mapping ip from c-variables to c-expressions is
a solution of a constraint set C (written ip \= C) iff for all elements c\ R C2 of C,
ipc\ R xpC2 where R G {= ><}•

Based on this definition several conjectures over models for composed constraint sets
such as the following can be formalised.

C o n jec tu re 2 Let C i,C 2 be constraint sets. Then

ip \= Ci U C2 implies ip \= Ci and ip \= C2

This formalises the intuition that a solution of a composed constraint set must be a
solution of every component.

The soundness of the cost reconstruction algorithm with respect to the inference
system can be formalised as follows. The symbol b is used to represent the sized time
inference system in Figure 6.1 and b fl̂ is used to represent the cost reconstruction
algorithm in Figures 6.5 and 6 .6 .

C o n jec tu re 3 (soundness of cost reco n stru c tio n) Let e be a C expression and
T the initial assumption set for type inference. Then

T b aig e : (r, 0, c, C) and ip \= C implies ipOT b e : ipOr % ipOd

where ipQc' < ipQc.

The inequality in this conjecture is caused by the possibility of deriving finite upper
bounds for recursive functions if ip contains finite solutions to the symbolic cost
functions in C. If ip maps all symbolic cost functions to u or if e is a non-recursive
expression this inequality can be tightened to an equality. Currently, this is not
expressed in the sized time system.

The structure of the proof has to be as follows. The proof performs a case analysis over
the C expressions and, in each branch of the case analysis, a structural induction of
the inference/algorithm tree. The induction assumption is the soundness conjecture

6.6. Example 214

p a y _ j ? r i c e = \ p r i c e c o i n s .
if (p r i c e = = 0) then 1
else
letrec c o i n _ v a l u e s = n u b (d r o p W h i l e (\ x . x > p r i c e) c o i n s)
in
par c o i n _ v a l u e s

(s u m (m ap (c h o o s e p r i c e c o i n s) c o i n _ v a l u e s))

c h o o s e = \ p r i c e c o i n s c .
letrec n e w _ c o i n s ' = d r o p W h i l e (\ x . x > c) c o i n s

n e w _ c o i n s = d e l n e w _ c o i n s ' c
in
par n e w _ c o i n s

(p a y _ _ p r i c e (p r i c e - c) n e w _ c o i n s)

Figure 6 . 1 0 C code for coins

for all subexpressions. It uses several conjectures on substitutions and models stated
above. The structure of the proof is similar to a proof for the soundness of effect
system as given in Talpin &, Jouvelot (1992). The main difference to this system is
the use of algebraic unification in the system presented here.

6.6 Example

This section gives an abridged size and cost inference, performed by hand, for one
function in the simple but non-trivial C program, coins. The inference shows how
to infer size and cost information by using the sized time system. Since the goal is to
generate information that can be used in the runtime-system to improve performance,
this inference focuses on the size and cost bounds that can be derived without giving
all details of the inference process and how the constraints are collected. Finally, this
section concludes with giving performance measurements of the program annotated
with the derived cost information.

The coins program takes a price and a list representing a set of coins, and determines
how many different combinations of coins could be used to pay for an object at the
given price. The full code of the program is given in Figure 6.10. The code exposes
parallelism via the p a r annotation. The goal of the granularity analysis is to infer cost
and size expression, which can then be added to the p a r annotations. Figure 6.13 will
present the annotated version of the code that makes use of the derived information.

6.6. Example 215

_________________(Var) ________________________ (Var)
T" h del : a $ 0 V b zs : L istl~l 7 $ 0

___(App) (Var)
r" b del zs : size0f (W ' ‘ 7) $ 1 + f c sizeOf (L is t1' 1 7) T" b x : 7 $ 0

--- (App)
T" h del zs x : (52z' $ 2 + f c (I - 1) + / '

___ (Cons)
T" h cons z (del zs x) : L ist1+Z> 7 $ 2 + / c (/ — 1) + /^

__(Cond)
T" I- i f ... : L is tl+Z' 7 $ 2 + max 0 (2 + f c (I — 1) + / ')

© T" = {z : 7 , zs : L ist1 1 7 , xs : L ist1 7 , d e l : a}

F igu re 6 . 1 1 A part of the inference of del

In order to focus the presentation, this section will only discuss the inference of one
sub-function, del. This function takes a list and a value and deletes the value from
the list. If the value is not in the list an error value is returned. The definition of de l
in C is as follows.

d e l = \ x s x . if (n u l l x s) then e r r o r
else letrec z = h d x s

z s = t l x s
in
if (z = = x) then z s else c o n s z (d e l z s x)

The de l function deletes the first instance of x from xs. The special value e r ro r
(of the polymorphic type V/?./?-1) is used to indicate that x did not occur in xs (an
error). Its size has to be smaller than any list size.

6.6.1 Cost and Size Analysis

This section highlights the main points in each of the steps for performing the cost
and size inference as presented in Section 6.5.1. This example will also discuss limits
of this inference and requirements for the simplification algorithm that has to be used
after performing cost and size reconstruction.

6.6. Example 216

In ference a n d S im plification . In this step the inference tree is generated and
traversed. During the tree traversal constraints on c-expressions are collected. The
most important part in this traversal is the inference of the inner conditional. This
part of the inference tree is shown as branch @ in Figure 6.11. Before reaching
branch @ the analysis of n u ll xs in the head of the outer conditional adds the
following binding to the assumption set: xs : L ist1 7 . Furthermore, in the analysis
of the le t r e c construct zs is defined to be t l xs and therefore its type is L ist1-1 7 .
Similarly, the type of z is 7 . In branch Q the head of the inner conditional unifies
the type 7 with the type of x. In the two application rules the size information of
the concrete arguments is added to the size pattern representing the result type. The
result of applying the sizeOf function represents the change in size for the arguments
of the recursive function call:

sizeOf(L ist'~ l 7) = [I — 1]
sizeOf (7) = []

The information from the first application is propagated to the second application
via unifying the size pattern with a function type containing fresh symbolic size and
cost functions, / ' , f'c:

H ^ S z sizeOf (L i s t 1- 1 7) ?7 fLjz sizeOf 7)

In this case, the unification algorithm will choose an upper bound for the size in both
size patterns, z \ and use it as the size of the result. The constraint set will therefore
contain the following inequalities

{ f z (I - 1) < f z < z ' }

and the result type of d e l zs x is the size pattern f y i • This example shows that the
reconstruction algorithm adds fresh size functions in each curried function application.
In order to obtain just one size function over all size arguments these functions have
to be merged. This should be done by the simplification algorithm when generating
a size function from the size expression for the body of the function definition. The
same merging has to be done for cost functions. However, in this case all symbolic
cost functions, f c and f c in this case, occur explicitly in the resulting sum.

The (Cons) rule unifies the size pattern to the list type L istl+Z>. Then the (Cond)
rule constructs the maximum of the size of both branches, with —1 as the size for

6.6. Example 217

the then branch. Collecting all size and cost information in the inference tree the
following two recurrences are exposed on top-level:

delz I = max (—1) (1 -f delz (I — 1))
dele I = 2 + max 0 (4 + max 0 (2 + dele {I ~ 1)))

In these cost expressions the occurrences of max reflect the two nested conditionals
in the code. In this case the base case for the recurrence can be obtained by reinter
preting the max operator as a minimum and choosing the minimum size as argument.
In the general case, however, this would require a more sophisticated analysis of the
head of conditionals. In particular, the semantics of n u ll should be used together
with the available size information. One promising approach to achieve this would
be the use of conditional types as outlined in Section 6.5.1.

After simplification, this stage of the inference yields the following recurrences:

delz 0 ~ —1

delz I ~~ 1 “I- delz (Z — 1)

dele 0 = 2
dele I — 8 + dele (I — 1)

R eso lv in g R ecurrences. The goal of this step is to bring all symbolic cost func
tions (like dele) into closed form in order to substitute the functions with the expres
sions in the constraint set. This will eliminate all symbolic cost functions introduced
by the reconstruction algorithm. By using a library of known recurrences the recursive
size and cost functions above can be replaced by the following closed forms:

delz I = I — 1

dele I = 8 * Z + 2

It is important to note that all recurrences in the analysis of these functions are
linear, first-order recurrences since the functions iterate over lists. Figure 6.12 shows
the entire library of closed forms for recurrences that has been used in the analysis
of coins and its subfunctions.

Solving th e C onstraint S et. The final step has to check whether a solution for
the constraint set exists. In this case the program is well typed and for each function

6.6. Example 218

/ 0 =
f n =
f 0 -
f n =

F igure 6 . 1 2 Recurrences and their closed forms

a corresponding size and cost function has been inferred. Since the constraint set
does not contain symbolic cost functions any more at this stage the Omega test can
be used for performing this check. An analysis of the expressions in coins that are
annotated with par and should be evaluated in parallel (coin_values and new.coins)
yields the following cost expressions that are used to annotate the program:

coin.valuesc = 9 * n 2 + 1 4 * n + 5
new-coinsc = 16 * n + 4

6.6.2 Annotations

The cost information derived in the previous section can be used to transform the
parallel program by adding cost information to the spark sites:

1. For each argument add an extra argument representing its size.

2. Use the derived size functions to propagate size information.

3. Add the derived cost expressions to the parG lobal annotations.

This transformation applied to the input program shown in Figure 6.10 gives the
annotated parallel program shown in Figure 6.13. Note that the new variables m and
n represent the size of p r ic e and of coins, respectively.

The first argument of parG lobal represents a cost or granularity measure. The
parmap function is a parallel implementation of map that takes granularity information
for each application of the mapped function as its first argument. The special value
in f ty represents w as a bound on computation cost.

O i £ i l .
u , t (i \ = > / n = a + 0 * nb + f { n ~ 1)
® £ i l i c*n*(n+ l)i . . t(^ f n = a + b * n -\------ ^-L-Lb + c * n + f (n — 1) 2

6.6. Example 219

p a y _ j ? r i c e = \ m n p r i c e c o i n s .
if (p r i c e = = 0) then 1
else
letrec c o i n _ v a l u e s = n u b (d r o p W h i l e (\ x . x > p r i c e) c o i n s)
in
parGlobal (9 * n " ' 2 + 1 4 * n + 5) c o i n _ v a l u e s

(s u m (parmap i n f t y (c h o o s e m n p r i c e c o i n s) c o i n _ v a l u e s))

c h o o s e = \ m n p r i c e c o i n s c .
letrec n e w _ c o i n s ' = d r o p W h i l e (\ x . x > c) c o i n s

n e w _ c o i n s = d e l n e w _ c o i n s ' c
in
parGlobal (1 6 * n + 4) n e w _ c o i n s

(p a y _ p r i c e m (n - 1) (p r i c e - c) n e w _ c o i n s)

Figure 6.13 Annotated C code for coins

6.6.3 M easurements

This section presents results on running the annotated program under the G r a n S im
simulator in two different set-ups: with eager-thread-creation and with evaluate-and-
die. Figure 6.14 compares the granularities over varying cut-off values when using
a thresholding granularity improvement mechanism. The cut-off value is measured
as recursion depth starting with 100 at the root of the divide-and-conquer tree. In
both cases the results for several different latencies are plotted. In the case of eager-
thread-creation (left hand graph) the granularity increases gradually with increasing
cut-off values. In the case of high latency (4,096 cycles) the granularity turns out to
be rather good already. The graph on the right hand side shows a similar, continuous
improvement of the granularity. Only at a few points a reduction of granularity is
observed. This corresponds to the mismatch between upper bounds of computation
costs and the real costs.

The improvements in speed-up are smaller but still significant. In the case of eager-
thread-creation the speed-up increases from 14.3 to 18.4 for a latency of 64 cycles.
For higher latencies the improvement is smaller but still measurable. In the case of an
evaluate-and-die model, however, only very small improvements can be observed. The
right hand graph in Figure 6.14 already shows a high granularity for low cut-off values.
Only for a latency of 4,096 cycles there is clear improvement in speed-up from 24.7 to
26.1. The main reason for this behaviour is spark subsumption in the evaluate-and-die
model. Whereas eager-thread-creation without thresholding creates more than 10,000

6.7. Comparison with Other Work 220

Coins — 32 processors Coins — 32 processors
160000

Latency: 64
Latency: 400 —

Latency: 4096 -a "140000

o 100000

80000

3 60000

40000

20000
50 55 60 65 70 75 80 85 90 95 100

Cutoff

12000
Latency: 64 -•—

Latency: 400 -•—
Latency: 4096 --o—■

11000

100000)
N 9000■H

8000
7000
6000(UOl<0

cu
><

5000
4000
3000
2 0 0 0

1 0 0 0
50 55 60 65 70 75 80 85 90 95 100

Cutoff

F igu re 6.14 Granularity with varying cut-off values (eager and lazy thread creation)

threads, the evaluate-and-die model only creates circa 1,000 threads. These results
of granularity being important in particular for high-latency machines, correspond to
the results of measurements on the distributed memory Alfalfa architecture reported
by Goldberg (1988a).

In evaluating the performance improvement by adding granularity information it has
to be emphasised that this program contains only two main spark sites. This severely
limits the amount of runtime improvement that can be expected by adding granularity
information. Granularity control mechanisms mainly aim at improving programs with
a large number of spark sites generating tasks whose granularities vary significantly
(see Chapter 5). This is, for example, the case for naive methods of generating
implicit parallelism in a functional program. Another result of these measurements is
the observation that it is possible to achieve runtime improvements for a wide range
of latencies representing different kinds of parallel architectures.

6 . 7 C o m p a r i s o n w i t h O t h e r W o r k

6.7.1 Com plexity Analysis

Pioneering work on automatic complexity analysis has been done by Wegbreit in
developing a system METRIC for deriving closed form expressions for the time com
plexity of a first-order subset of Lisp (Wegbreit 1975). The structure of his analysis

6.7. Comparison with Other Work 221

is somewhat similar to the proposed cost inference algorithm discussed in this thesis
(see Section 6.5):

1. Local cost assignment translating a program into a set of cost expressions.

2. Recursion analysis determining how the parameters to a recursive function
change from one call to another.

3. Solution of difference equations using standard methods like direct summation
and differentiation of generating functions.

In his concluding remarks Wegbreit points out how a sophisticated algebraic ma
nipulation subsystem and an enhanced difference equation solver could dramatically
improve the quality of the results produced by the system. This would be equally true
for the granularity analysis of functional languages using a general recurrence solver
because the differences to imperative languages treated by Wegbreit only complicates
the generation but not the manipulation of cost expressions.

Wegbreit’s work has been extended by Hickey & Cohen (1988), who focus on the
oretical foundations of a performance compiler capable of automatically generating
functions describing average-case performance. The systems Complexa (Zimmermann
1990) and ATfl (Flajolet et al. 1991) build on METRIC and extend it for the average-
case complexity analysis of algorithms. Skillicorn & Cai (1993) as well as Rangaswami
(1996) use cost models based on the Bird-Meertens calculus in order to obtain infor
mation about the runtime of parallel programs. In a similar spirit Jay et al. (1997)
develop and implement a monadic cost calculus for a higher-order functional lan
guage. This language is restricted in away that makes it possible to derive the shape
of the result of an expression based on the shape of its inputs. Thus, shape infor
mation is available for all program expressions. This corresponds to our use of sized
types but shape information is more accurate because the size annotations in the
type system for C are only upper bounds. In Jay et al. (1997) programmer estimates
on the number of unfoldings for recursive functions are required to obtain accurate
costs. It is demonstrated that with this information the implemented calculus au
tomatically derives parallel execution times for programs like matrix multiplication.
One technical difference to the monadic cost calculus is that the sized time system,
inspired by effect systems, uses an extended type system to propagate information
about sizes and costs, whereas Jay et al. (1997) use a monad for this purpose. The

6.7. Comparison with Other Work 222

close relationship between effect systems and monads has been recently elaborated
by Wadler (1998).

6.7.2 Cost Analysis for Strict Languages

Huelsbergen et al. (1994) introduce the technique of a dynamic granularity estimation
for strict, list-based, higher-order languages. This technique consists of two compo
nents:

• A compile-time (static) component, based on abstract interpretation to identify
components whose complexity depends on the size of a data structure.

• A run-time (dynamic) component, for approximating sizes of the data structures
at run-time.

Based on the results of the static component, the compiler inserts code for checking the
size of parameters at certain points. At runtime the result of these checks determine
whether a parallel task is created or not. The static component of this system has not
been implemented. The dynamic component is implemented on a Sequent Symmetry
on top of a parallel SML/NJ implementation. It is stated that the runtime overhead
for keeping track of approximations (one additional word per cons cell) is very low.
For the quicksort example an efficiency improvement of 23% has been reported.

Dornic (1993) describes a practical time system for inferring a function’s complexity
using an algorithm similar to the cost reconstruction algorithm presented in this
thesis. In Dornic’s time system, however, recursive functions are assigned infinite
costs as an upper bound for the total computation time. In part based on Dornic’s
work, Reistad & Gifford (1994) define the notion of static dependent costs for the
analysis of a strict higher-order language. These costs describe the execution time
of a function in terms of its input. The relationship of our sized time system to
to the work on static dependent costs has been discussed in detail in Sections 6.4.1
and 6.5.2. Runtime measurements of the system show that their cost estimates are
usually within a factor of two of the real costs. Using this information for a parallel
map operation achieved a speedup of more than two compared to a naive version of
a parallel map on a four processor SGI for the game of life program.

6.7. Comparison with Other Work 223

Rosendahl (1989) deals with a complexity analysis of a first-order subset of Lisp. His
work builds on a partial evaluation machinery and uses abstract interpretation in
order to derive upper bounds for the complexity of first-order Lisp functions. The
analysis has three phases: constructing a step-counting version of the given program;
perform abstract interpretation on the step-counting version of the program and gen
erate a time bound function; finally, simplify the resulting time bound function. The
latter includes a component for solving finite-difference equations (Rosendahl 1986),
which is similar to our approach of using a library of recurrences.

In all of the above analyses user defined recursive functions are assigned infinite costs,
except for Rosendahl (1989) where simple recursive patterns can be eliminated. More
recently, Hughes et al. (1996) have developed a sized type system for a simple higher-
order, lazy functional language. This type system allows to infer upper bounds for the
size of algebraic data types. In the mentioned paper this is used to prove termination
and liveness of reactive system. However, this thesis demonstrates that a sized type
system can also be used to analyse the costs of user-defined recursive functions.

The ACE system of Le Metayer (1988) transforms an FP program with call-by-name
semantics into a program with call-by-value semantics. The main part of the system
is the transformation of recursive complexity functions into non-recursive ones. In
contrast to the approaches mentioned above, this system performs a macro-analysis,
that is, it measures the time in the number of applications of the dominant operation
which is used in the program.

6.7.3 Dem and Analysis

The purpose of a demand analysis is to determine the order in which parts of an
expression are needed and the degree to which the result has to be evaluated. In
a lazy language this information is required to determine the computation costs of
an expression. Demand analysis is similar to strictness analysis but it provides more
detailed information. In fact, strictness information can be extracted as a special case
from the information provided by demand analysis.

In the context of a cost analysis it is important to know the order-of-demand as well
as the degree of the evaluation of a complex data structure. Several approaches have
been proposed to perform both kinds of analysis:

6.7. Comparison with Other Work 224

A b strac tio n s o f se ts o f con tinuations: Both Hughes (1987) and Bloss (1989)
define a collecting non-standard semantics of all possible continuations (or paths)
in a program. An order-of-evaluation analysis is developed by defining an abstract
interpretation over this semantics. The main disadvantage of this approach is that
the resulting terms in the abstract interpretation are very big, and hence algebraic
simplification is necessary to derive normal forms for these terms. Exact simplification
is not always possible and heuristics have to be applied at certain points. In contrast,
the inference based analysis presented in Draghicescu & Purushothaman (1990) does
not try to enumerate all possible paths and is more efficient in practice. Similar order-
of-demand analyses have been developed by Park & Goldberg (1992) and Gomard &
Sestoft (1991).

M any-valued ev alu a tio n degrees: In the framework of Martin-Lof type theory
Bjerner (1989) develops many-valued evaluation degrees, which are used to give an
operational model of contexts. This approach usually gives very accurate results
but it is less general than the projections approach. Many-valued evaluation degrees
have been developed specifically for time analysis. Because they do not contain more
information than absolutely necessary for a time analysis symbolic derivations are
easier.

P ro jec tio n s : The property it C ID of a projection 7r can be read as it performs an
evaluation of a degree less than or equal to that of reduction to normal form. Based
on this observations Wadler & Hughes (1987) developed a strictness analysis, which
uses projections to model demand. Projection transformers are used to determine
the demand on an argument in a function application, given the demand on the
whole function application. This corresponds to the way that evaluation transformers
(Burn 1991a) determine the degree of evaluation in a parallel environment. The
compilation rules developed by Burn (1990) show how the information provided by
projections can be exploited in both sequential and parallel implementations.

The most promising approach is the use of projections, which have recently attracted
a lot of attention for static analysis in general (Davis 1994). This is underlined by
recent work on the theoretical foundations of projections (Launchbury Sz Baraki 1996)
as well as the use of projections in the implementation of a strictness analyser in the
Glasgow Haskell Compiler (Kubiak et al. 1991). An implementation of a demand

6.7. Comparison with Other Work 225

analysis could reuse a lot of this work. However, it is an open question whether
the concrete set of projections used in this implementation is strong enough to allow
satisfactory cost information to be inferred.

6.7.4 Cost Analysis of Lazy Languages

Based on the modelling of demand via many-valued evaluation degrees in Bjerner’s
PhD thesis (Bjerner 1989), Bjerner k Holmstrom (1989) develop a cost analysis for
lazy higher-order languages. A separate demand analysis is used to derive information
on the evaluation degree.

In his PhD thesis Sands (1990a) uses projections in order to develop a cost calculus
for a lazy, higher-order language. He specifies cost calculi for inferring a lower bound,
necessary time, and an upper bound, sufficient time, of the cost for evaluating an
expression. This work is partly based on Wadler’s use of projections for the time
analysis of lazy programs (Wadler 1988). Being calculi rather than static analyses
both approaches assume knowledge about exact values e.g. in the head of conditionals.
To date Sands’ cost calculus seems to be the most promising basis for a concrete
implementation of a cost analysis for lazy languages.

6.7.5 Logic Languages

In the area of logic programming languages some attempts have been made to com
bine a cost analysis (Debray et al. 1990, Debray et al. 1994, Tick k Zhong 1993) with
runtime mechanisms for improving the granularity of the generated threads (Lopez
Garcia et al. 1994, Lopez Garcia et al. 1995). The cost analysis of logic languages is
complicated by the fact that a relation can have several solutions. Thus, a separate
number-of-solutions analysis has to be developed to infer this information (Debray
k Lin 1993). The structure of the program transformations using cost information
is similar to those in functional languages: add the cost functions derived at compile
time to the code; generate a parallel as well as sequential version of the code; add
conditionals for deciding whether to use the sequential or the parallel code. Several
optimisations to minimise the runtime overhead of these methods have been devel
oped. The most important optimisation is to simplify the size expressions that are

6.8. Discussion 226

generated (Hermenegildo & Lopez Garcia 1995). However, some overhead is inherent
in such a hybrid approach and there is still the danger of code explosion.

6.8 Discussion

This chapter has shown how to infer upper bounds for the size of the result and the
computation cost of evaluating an expression in the simple strict higher-order func
tional language C. The sized time system has not yet been implemented. However,
based on the results by Hughes et al. (1996) the implementation of a time checking
algorithm should be a straightforward extension of their sized type checking algo
rithm. In order to extend this algorithm to time inference, the analysis has to solve
recurrence equations over an integer domain. The cost reconstruction algorithm in
Section 6.5.2 shows how to expose recurrences for recursive functions. These re
currences can then be solved by matching them with a library of known recurrence
relations and (an approximation of) their closed forms. An algorithm for combining
the cost reconstruction algorithm with such a library has been outlined and open
problems have been discussed. The library approach makes it possible to derive costs
for many user-defined recursive functions, which goes beyond the analysis presented
by Reistad & Gifford (1994) for Lisp. A similar approach by Rosendahl (1986) shows
that many common patterns of computation can be analysed with a rather small set
of recurrences. In the context of parallel computation it is important to obtain exact
information for small functions that usually generate simple recurrences. Therefore,
a small library should be sufficient to yield useful information.

Several stages in the inference algorithm outlined in Section 6.5.1 need refinement in
order to implement the full algorithm. In particular, the simplification algorithm has
to merge symbolic cost and size functions, and determining the costs for the base case
of a recursion requires in general a more sophisticated analysis. These issues will be
discussed further in the context of future work in Section 7.3.

Although the derived cost is only an upper bound for the real cost, the initial mea
surements indicate that it can provide enough information for the runtime-system to
achieve a performance improvement of parallel programs. This is quite remarkable
because the analysis was performed for a strict language and is therefore overesti
mating the evaluation degree in the presented measurements. This seems to give

6.8. Discussion 227

evidence that at least for strict functions in a lazy language the results of a strict
analysis, such as the sized time system, can provide useful information. However,
before making conclusions on this issue more measurements of analysed programs,
especially large-scale programs, are required.

From the measurements in Chapter 5 it is unclear whether relative cost information
between threads is sufficient to achieve performance improvements. Therefore, the
presented analysis yields absolute cost information. In the measurements for a hand
analysed program the use of absolute cost information via a thresholding mechanism
achieved the best results. The accuracy of the analysis could be improved, however, by
adding constants for certain operations rather than performing step counting alone.

The presented analysis is based on type inference rather than abstract interpretation,
which is often used for this kind of static analysis. The main advantages offered by an
inference-based analysis are its modularity, by propagating all relevant information
via the type of an expression, and its tunability, in particular when using a library
approach in order to eliminate recurrences. Both issues are particularly important
for the analysis of large programs. Therefore, the algorithm outlined in this chapter
should be a good basis for a practical implementation.

Chapter 7

Conclusions

7.1 Summary

To develop a system of implicit parallelism for lazy functional languages a sophis
ticated runtime-system has to be built. It must achieve good parallel performance
without a detailed description of the parallel program execution from the program
mer. It must be flexible enough to deal with programs of very different structure, but
should also be able to make use of certain important characteristics of the program.
This thesis focuses on one of these characteristics, the granularity of the generated
threads in a parallel system, and it furthers this effort by developing and measur
ing granularity improvement mechanisms for the runtime-system, and developing a
static granularity analysis, based on sized types (Hughes et al. 1996) and a time sys
tem (Reistad & Gifford 1994), for inferring an upper bound of the computational costs
of evaluating a program expression. This thesis also contributes to the development
of a systematic programming technique for parallel lazy functional programming,
evaluation strategies, which achieves a clean separation between algorithmic and be
havioural code. The main contribution of this thesis to this part, strategic function
application, has proven useful for several large application programs, in particular in
the top-level parallelisation of Lolita. The programming style used in the parallelisa-
tion, data-oriented parallelism, makes use of laziness in order to specify the parallelism
over a data structure independently from its definition and thus facilitates a top-level
approach towards parallelisation, in which the parallelism is specified at the top-level
without having to change individual components of the program.

One of the fundamental questions addressed by this thesis is: can the parallel perfor

228

7.1. Summary 229

mance of functional programs with sequential lazy evaluation and a parallel evaluate-
and-die model of computation be improved when adding granularity information?
From the discussion in Chapter 5 this seems to be true for a class of parallel pro
grams where the granularity of generated sparks does not monotonically decrease
during the program execution. For simple divide-and-conquer examples this mono
tonicity means that the FIFO management of the spark pool is sufficient to achieve
good granularity in practice. However, for unbalanced divide-and-conquer problems
an explicit thresholding mechanism or a priority based management of the spark pool
can achieve better performance. In the experiments presented here it is shown that
the elimination of small threads via a simple thresholding mechanism achieves the
biggest improvement of about a factor of two in speedup.

The presented granularity improvement mechanisms should also be useful to improve
the parallel behaviour on massively parallel systems with thousands of processors. In
these systems it is unlikely that an evaluate-and-die mechanism can subsume many
sparks, because the ratio of generated sparks to runnable threads will be much smaller.
This increases the probability of a spark being picked up by an idle processor before its
work is subsumed by another thread. But it would still be advantageous to eliminate
tiny threads whose creation cost is higher than their total computation. We have
not been able to investigate this aspect of scalability, however, because the system-
oriented view of G ra n S im is currently limited to 64 processors.

As a test platform for the granularity improvement mechanisms G r a n S im has been
developed. G r a n S im is a highly parameterised and accurate simulator for the paral
lel execution of GpH programs. It combines lazy evaluation with an evaluate-and-die
model of parallelism. It is integrated into a state-of-the-art compiler forming an im
portant component of an engineering environment for parallel program development.
It provides setups for both idealised simulation and realistic simulation with a de
tailed modelling of communication. G r a n S im is also highly parameterised to model
a variety of parallel machine architectures and this has proven very important for the
performance tuning of parallel programs.

The combination of all these features makes G r a n S im unique. Most existing simu
lators only count reduction steps rather than machine instructions executed by op
timised compiled code. Also the parameterised modelling of communication costs is
unusual for simulators. With the availability of all GHC optimisations it is possible
to investigate the influence of the latest sequential optimisations on the parallelism

7.1. Summary 230

in the program.

A complementary step in devising a system that makes automatic use of granularity
information is to derive this information and to make it available to the runtime-
system. Several methods to do this have been suggested in the literature: profiling
approaches, ad-hoc heuristics etc. In this thesis a static analysis is used in order to
minimise the overhead for the runtime-system. The granularity analysis that has been
presented in Chapter 6 builds on top of existing analyses and derives an upper bound
for the computation costs measured as abstract computation steps. As a refinement
of the analysis it would be possible to model concrete costs of the computation model
and of the parallel machine via constants that can be added to the analysis. Although
not all parts of the inference have been rigorously specified, a detailed outline of the
inference algorithm has been given. The experimental results with hand-analysed
programs show that this can provide useful information for the runtime-system.

One of the main limitations of a static analysis for extracting granularity information
is its inability to make use of concrete runtime data. In particular it is not possible
to make some kind of branch prediction for conditional constructs. However, the
presented analysis could be extended in several ways in order to alleviate this prob
lem. One possibility would be to extend the type system further to capture runtime
information via conditional types. Thereby, the type would encode the relationship
between the head of the conditional and the branches. An alternative would be to rely
on profiling data in order to obtain information on the probabilities of the branches.
This information could then be used as weights for the costs of the branches. Finally,
the granularity analysis could be augmented with a separate analysis that tries to ex
tract boolean values out of program expressions, using the available size information.
For example such an analysis could determine the value of calls to the n u ll function,
which only needs information on the size of the list. If exact size information is avail
able at compile time, the computation path through conditionals depending on n u ll
could be predicted.

In parallelising a set of large functional programs a purely annotation based approach
proved to be not entirely satisfactory. This has led to the development of evaluation
strategies, in a group effort, and of strategic function application, in particular. In
order to describe the dynamic behaviour of a function call, strategic function applica
tion parameterises normal function application with a strategy specifying evaluation
degree and parallelism. The resulting data-oriented style of programming achieves

7.2. Contributions 231

a modularity of program components and a separation between algorithmic and be
havioural code not usually found in strict languages. This is mainly due to the
decoupling of the data structure’s generation and the specification of its parallelism,
which helps to maintain the abstraction provided by modules and functions. In con
trast, strict languages tie the evaluation of an expression to the point of its definition.
Therefore, it is much harder to separate the definition of a value from the parallelism
in computing this value. A comparison of several versions of a parallel linear system
solver, LinSolv, has demonstrated that a data-oriented parallel programming style is
superior to the naive use of parallelism combinators. The use of evaluation strategies
in the parallelisation of programs as large as Lolita showed that the additional code
for parallelisation can be localised to a high degree, in this case to only two out of
circa three hundred modules.

Studying large, lazy, parallel programs is rarely done but in creating a powerful
engineering environment for parallel programming it is important in order to evaluate:

1. The suitability of evaluation strategies to realistic functional programs. While
working on the parallelisation of Lolita the repetition of some clumsy constructs
in an initial version was the main motivation for introducing strategic function
application.

2. The impact of laziness on parallel programming. Laziness favours a top-down
approach for parallelisation, in particular data-oriented parallelism. This aspect
is demonstrated in the parallelisation of Lolita in Section 4.5. However, although
it is easy to add parallelism it is often hard to predict the effects for complex
parallel programs.

3. The completeness of the existing set of visualisation tools for performance tun
ing i.e. whether the tools provide sufficient information to the programmer for
tuning the performance of a parallel program. The importance of the visualisa
tion tools has been shown in the discussion of LinSolv in Section 4.6.

7.2 Contributions

This section discusses the contributions of the thesis in more detail and points out
research that has been undertaken jointly with other researchers. The concrete con

7.2. Contributions 232

tributions of this thesis are as follows.

1. Parallelisation of large lazy functional programs (Loidl & Trinder 1997): In
the parallelisation of several large functional programs this thesis has combined
the advantages of lazy and of parallel evaluation, achieving a modular parallel
programming style. A set of large algorithms has been parallelised and their
performance has been tuned. These programs typify application areas such as
symbolic computation and artificial intelligence. In particular, this thesis has
developed a parallel imperative, a parallel pre-strategy, and a parallel strategic
version of LinSolv (see Section 4.6). A comparison of both functional versions
showed that the performance tuning process is significantly simplified by using
strategies. This is supported by several other medium-sized strategy programs
like a parallel Alpha-Beta search algorithm. The latter program demonstrates,
for the first time, how strategies can express complex dynamic behaviour in
programs that crucially rely on laziness. The parallelisation of Lolita in Sec
tion 4.5, the largest existing parallel non-strict functional program, showed the
advantages of data-oriented parallelisation for large systems in order to paral
lelise code without breaking the abstraction of modules. The parallelisation of
Lolita has been done in cooperation with the Computer Science Department at
the University of Durham.

2 . Highly parameterised, accurate simulator (G r a n S im) (Hammond et al. 1995):
The G r a n S im simulator (see Chapter 3), which has been developed in joint
work by the author in this thesis, provides, unlike most other simulators, both
an idealised and an accurate modelling of a parallel machine. It is highly pa
rameterised in order to model a wide range of parallel architectures. In using
G r a n S im on large programs, such as Lolita, it has proven to be robust and an
essential component in the parallel engineering environment built on top of the
Glasgow Haskell Compiler (GHC). It closely models the features of GUM , the
portable runtime-system for Haskell, which is also part of the parallel engineer
ing environment. G r a n S im is publicly available and currently being used at
other universities worldwide for both program parallelisation and prototyping
of runtime-system features.

The original prototype, which has been designed and implemented in cooper
ation with Dr. Kevin Hammond and Dr. Andrew Partridge, provided the core
functionality of simulating a distributed heap, maintaining thread and spark

7.2. Contributions 233

pools, and instrumenting the code generated by GHC. The setup in this proto
type used synchronous communication and single closure fetching. The major
enhancements performed independently include the implementation of the ide
alised GRANSiM-Light setup, the design and several extensions of the communi
cation system including the implementation of several variants of asynchronous
communication, and of packing graph structures (Loidl & Hammond 19966).
The latter is based on the author’s implementation of bulk fetching in GRAPH
for PVM (Loidl & Hammond 1994). A large set of visualisation tools, show
ing activity and granularity at several levels of detail, has been developed for
G r a n S im . Furthermore, G r a n S im has been integrated into GHC and is now
available for both Haskell 1.2 and 1.4.

3. Use and refinement of evaluation strategies (Trinder et al. 1998): The author’s
implementation of several lazy parallel algorithms in part motivated and guided
the initial design of evaluation strategies. Recoding the LinSolv algorithm us
ing strategies contributed to the refinement of strategies. Experience with pro
grams such as Lolita was very important for making basic design decisions. The
parallelisation of several medium-sized programs produced strategies that have
proven to be of general use. This thesis in particular contributed to evaluation
strategies by adding strategic function application (see Section 4.3.7) to the ini
tial version of strategies. Strategic function application parameterises function
application with a strategy describing the parallelism and the evaluation degree
on the function argument. The resulting programming style, data-oriented par
allelism, for the first time combines the main advantages of lazy evaluation, in
particular modularity, and parallel computation, reduced runtime, on a large
scale. Evaluation strategies have been developed in a group effort with Dr. Phil
Trinder, Dr. Kevin Hammond and Prof. Simon Peyton Jones.

4. Static granularity analysis (Loidl & Hammond 1996a): The thesis presented
a static analysis for inferring upper bounds of computation costs of program
expressions in a simple strict functional language (see Chapter 6). This work
is based on sized types (Hughes et al. 1996) and a time system for a Lisp-like
language (Reistad & Gifford 1994). However, the analysis makes it possible to
handle some user defined recursive functions by exposing recurrences in the cost
reconstruction algorithm and then matching these functions with a library of
recurrences and their known closed forms. Although this analysis has not been

7.3. Further work 234

implemented, a detailed outline of a possible implementation, in particular of a
cost reconstruction algorithm, is given.

5. Implementation and measurement of runtime-system features to improve paral
lel performance (Loidl & Hammond 1995): This thesis discussed several gran
ularity improvement mechanisms that have been implemented and measured
in the context of both an evaluate-and-die and an eager-thread-creation model
of parallelism (see Section 5.5): priority sparking, priority scheduling and an
explicit threshold mechanism. All mechanisms make use of granularity infor
mation in the source code via program annotations. They have been measured
for several hand-annotated programs. As a result moderate improvements in
performance have been observed especially when eliminating all small threads
with a threshold mechanism.

7.3 Further work

Strategies

The results of using evaluation strategies in the parallelisation of several lazy programs
have been very encouraging. It would be interesting to use the same technique for the
parallelisation of strict programs. We hope to achieve a clearer program structure and
higher modularity by the clean separation between algorithmic and behavioural code.
There are two possible ways for applying the same techniques to strict languages:

• Use Haskell with evaluation strategies as an embedding coordination language.
The top-level parallelism is specified in Haskell, the sequential components are
written in a strict language. Although one of the main advantages of evaluation
strategies over other coordination languages is the use of the same language for
describing computation and coordination, a separation may be worthwhile for
parallelising large programs written in a strict language.

• Implement a strategies module in the strict language based on non-strict data
structures, which can be modelled in the strict language. These non-strict
data structures can then be used in combining the parallel components of the
code, leaving most of the code unchanged. This approach requires that all
synchronisation is performed via non-strict data structures.

7.3. Further work 235

Although our visualisation tools provide important information about the parallel
program behaviour we have noticed several shortcomings when using them on large
programs. Most importantly it is not possible to link points in the activity profile
to expressions or strategies in the source code. Therefore, it is sometimes hard to
interpret an activity profile of a complex program. This observation has recently led
to new research on parallel cost centre profiling (Hammond et al. 1997), to which the
author is contributing. The idea here is to use cost centres as they have been devel
oped for sequential profiling (Sansom & Peyton Jones 1995) and combine them with
the G r a n S im simulator, yielding the G r a n CC parallel profiler. It is then possible
to distinguish between threads that are currently evaluating expressions attached to
different cost centres. Initial results with a first implementation have already pro
vided further insights into the behaviour of some of our programs like Alpha-Beta
search. Currently research is undertaken in order to augment the initial version of
G r a n CC with a variant that links points in the activity profile with points in the
behavioural rather than the algorithmic code. This would provide information about
the parallelism generated by a certain strategy.

Runtim e-system

The granularity improvement mechanisms presented in Section 5.5 represent just a
few possibilities how to exploit granularity information. More variants could be imple
mented, possibly providing different alternatives as options to the programmer. From
the measurements presented in Section 5.6, mechanisms with a low overhead seem to
be advantageous even if they do not make optimal use of the available information.

Other improvements and extensions could be made to the parallel runtime-system:

• Implementations of more runtime-system methods for improving granularity
would be interesting. For example Aharoni et al. (1992) present a scheduling
algorithm that guarantees that the parallel code performs no more than twice as
many computations in total than the sequential code. This is done by enforcing
a lower limit on the amount of computation that has to be performed by a
thread before it is allowed to create other parallel threads. Using this idea in a
production runtime-system rather than a prototype implementation would help
to assess the practical usefulness of this algorithm.

7.3. Further work 236

• Based on the experiences with parallelising Lolita it would be useful to have
a dynamically growable heap when running GUM, in particular on a shared
memory machine. In the current version the heaps on all processors have to have
the same size. This does not account for possible imbalance in heap usage. An
implementation of dynamically growable heaps could use heap chunks similar
to the currently used stack chunks, which are maintained as a list. The (v, G)-
machine, which has been designed for shared memory machines, uses a similar
technique (Augustsson & Johnsson 1989).

Some experiments presented in this thesis also indicate that an important area for
the efficient execution of parallel programs is the data locality in the program. In
joint work the author has studied this issue in a comparison of various packing and
rescheduling schemes in (Loidl Sz Hammond 19966). However, this area clearly needs
more work. In particular it might be advantageous to have annotations for explicit
data placement or for transferring a data structure in its unevaluated form even
if it already has been evaluated. In general it is not clear whether local or remote
evaluation is better. A decision on a case by case basis, either via program annotations
or inside the runtime-system, would be worth investigating.

Recent work on lazy threads (Goldstein et al. 1996) has achieved promising results
in reducing the overhead attached to the bookkeeping of potential parallelism. In
particular, measurements of a dataflow-based implementation on a CM-5 distributed
memory machine showed significant speedups compared to a model that is closer
related to the sparking model used in this thesis. Therefore, it would be interesting
to study these techniques in the context of parallel graph reduction. The detailed
measurements performed by Goldstein (1997) would be a good starting point for these
evaluations.

Analysis

The most immediate goal in extending the presented work should be an implementa
tion of the static granularity analysis. For a more detailed evaluation of the quality
of the analysis it would be necessary to apply it to a set of larger test programs.
Starting from the detailed outline of an inference algorithm in Chapter 6, which is
based on an existing implementation of sized types, a concrete implementation of the

7.3. Further work 237

analysis for non-recursive expression should be straightforward. It would be close to
the cost analysis for FX programs.

Several stages in the inference algorithm outlined in Section 6.5.1 need refinement
in order to implement the full algorithm. The simplification algorithm has to merge
symbolic cost and size functions in order to generate just one cost and size function
for each user defined recursive function. Determining the costs for the base case of
a recursive function requires in general a more sophisticated analysis of the head of
conditionals in order to distinguish the recursion branch from the base case. Sec
tion 6.5.4 has given a first version of an algorithm for matching c-expressions with
a library of recurrences, which is based on an unification approach. This algorithm
most likely has to be refined in a concrete implementation. The specification of the
library itself should mainly be a m atter of tuning. From experiences of hand analysing
programs and based on previous work, a small library should already capture a large
class of recurrences. The final steps of the complete inference algorithm only perform
syntactic checks on the structure of c-expression and define an interface to the Omega
test, which is already provided by the existing implementation of type checking for
sized types.

The most promising direction for extending the granularity analysis to lazy languages
would be to develop a projections-based demand analysis, similar to the strictness
analysis in Kubiak et al. (1991), and to use the derived information in order to extend
the sized time system to lazy languages. This work could build on top of the cost
calculus for lazy languages developed by Sands (19906), which also uses projections.
In this approach projection transformers have to be defined via a backward analysis
in order to propagate demand through user defined functions. Only if the propagated
projection requires the evaluation of an expression is the cost for the evaluation added
to the total costs. Compared to the analysis of a strict language, the result is a weaker
upper bound. Furthermore, it could be improved by having sharing information
available. Therefore, an integration of strictness, sharing, and granularity analysis
would be an interesting avenue of further work.

Another interesting piece of future work would be to study whether the library ap
proach of Chapter 6 could be reused for other analyses. In general it should be
possible to use it for any analysis over an integer domain. In fact in the sized time
system the same machinery is used for performing size and cost analysis. The advan
tages of this approach, such as tunability via the size of the library and no restriction

7.3. Further work 238

on the height of the domain, might make this an interesting alternative to abstract
interpretation in general.

Replacing the library approach with a general recurrence solver probably yields a too
expensive on-line analysis. However, for an off-line approach, where the granularity
analysis is not part of the compilation process but only done rarely for optimising the
parallel code, this approach might be feasible. Based on existing recurrence solvers
in computer algebra systems it should be possible to implement an algorithm that
covers most cases without being prohibitively expensive.

This thesis only outlines the structure of a soundness proof of the size and cost
reconstruction algorithm. In order to assure that no wrong information is passed to
the runtime-system a rigorous proof would be necessary. Furthermore, a dynamic
semantics of C should be given in order to formalise the notion of computation steps
and to show that the inference system describes theses costs.

As a simplified version of the granularity analysis discussed in Chapter 6 another
analysis for inferring monotonicity information could be useful. The idea of such
an analysis is to infer whether the cost function associated to a user defined func
tion is monotonically increasing, decreasing, or neither. Based on the result and on
knowledge about relative sizes of values it would be possible to infer relative costs
between different calls to the same function. Although this yields only a partial order
of costs the resulting information might be sufficient to yield some improvement in
the performance of the program.

The ultimate goal of the work presented in this thesis is entirely implicit parallelism
for G p H. In order to drive further research in this direction it is necessary to combine
existing strictness, sharing and granularity analyses to obtain a system with genuine
implicit parallelism. Probably this would reveal the necessity of further improvements
in the runtime-system and of more accurate information provided by the analyses.
As the experience from sequential compiler optimisations shows, an integration of all
analyses and runtime-system methods into one system is essential to study interac
tions between the different improvements.

Bibliography

Abramski, S. & Sykes, R. (1985), Secd-m: A Virtual Machine for Applicative
Programming, in FPCA’85 — Conference on Functional Programming Lan
guages and Computer Architecture, LNCS 201, Springer-Verlag, Nancy, France,
September 16-19, pp. 81-98. (p 27)

Achten, P. (1991), Annotations for Load Distribution, in IFL’91 — International
Workshop on the Parallel Implementation of Functional Languages, Technical
Report CSTR 91-07, University of Southampton, UK, June 5-7. (p 182)

Aditya, S., Arvind Sz Maessen, J.-W. (1995), Semantics of pH: A Parallel Dialect
of Haskell, CSG Memo 377-1, Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, USA. (pp. 26, 30)
U R L : ftp://csg-ftp.lcs.mit.edu/pub/papers/csgmemo/memo-377-1 .ps.gz

Aharoni, G., Feitelson, D. Sz Barak, A. (1992), A Run-Time Algorithm for Man
aging the Granularity of Parallel Functional Programs, Journal of Functional
Programming 2(4), 387-405. (pp. 176, 235)

Aiken, A., Wimmers, E. Sz Lakshman, T. (1994), Soft Typing with Conditional Types,
in POPL’94 — Symposium on Principles of Programming Languages, Orlando,
FL, USA, January 10-13. (pp. 188, 197, 201)
U R L : http: //http. cs. berkeley. edu/~aiken/ftp/popl94. ps

Arvind, Caro, A., Maessen, J.-W. & Aditya, S. (1996), A Multithreaded Substrate
and Compilation Model for the Implicitly Parallel Language pH, in LCPC-96.
Also: CSG Memo 382. (p 32)
U R L : ftp: //csg-ftp. lcs .mit. edu/pub /paper s/csgmemo /memo-382. ps. gz

Arvind, Nikhil, R. h Pingali, K. (1989), I-structures: Data Structures for Paral
lel Computing, ACM Transactions on Programming Languages and Systems
1 1 (4) , 598-632. (p p . 32, 38)

Arvind & Nikhil, R. (1990), Executing a Program on the MIT Tagged-Token Dataflow
Architecture, IEEE Transactions on Computers 3 9 (3) . (pp. 8, 30, 180)

239

ftp://csg-ftp.lcs.mit.edu/pub/papers/csgmemo/memo-377-1

Bibliography 240

Augustsson, L. k Johnsson, T. (1989), Parallel Graph Reduction with the (v,G)~
machine, in FPCA’89 — Conference on Functional Programming Languages and
Computer Architecture, ACM Press, Imperial College, London, UK, September
11-13, pp. 202-213. (pp. 35, 36, 41, 43, 236)
U R L : ftp: //ftp. cs. chalmers. se/pub/cs-reports/papers/nu-G.ps. Z

Augustsson, L. (1987), Compiling Lazy Functional Languages, Part II, PhD the
sis, Department of Computer Sciences, Chalmers University of Technology,
Goteborg, Sweden. (p 29)

Banatre, J.-P. k Le Metayer, D. (1990), The Gamma Model and its Discipline of
Programming, Science of Programming 15(1), 55-77. (p 32)

Barendregt, H., van Eekelen, M., Hartel, P., Hertzberger, L., Plasmeijer, M. k Vree,
W. (1987), The Dutch Parallel Reduction Machine Project, Future Generation
Computer Systems 3, 261-270. (pp. 40, 180)
U R L : ftp: //ftp. cs. kun. nl/pub/CSI/Sof twEng. FunctLang/papers/-
barh87-PRMproj ekt.ps.gz

Barth, P., Nikhil, R. k Arvind (1991), M-Structures: Extending a Parallel, Non-strict,
Functional Language with State, in FPCA’91 — Conference on Functional Pro
gramming Languages and Computer Architectures, LNCS 523, Springer-Verlag,
Harvard, MA, USA, pp. 538-568. (p 32)

Bennett, A. (1993), Parallel Graph Reduction for Shared-Memory Architectures, PhD
thesis, Department of Computing, Imperial College, London. (p 54)

Bevan, D. (1987), Distributed Garbage Collection Using Reference Counting,
in PARLE’87 — Parallel Architectures and Languages Europe, LNCS 259,
Springer-Verlag, Eindhoven, The Netherlands, June 12-16, pp. 176-187. (p 51)

Bird, R. k Wadler, P. (1988), Introduction to Functional Programming, Prentice Hall.
(P 22)

Bjerner, B. k Holmstrom, S. (1989), A Compositional Approach to Time Analy
sis of First Order Lazy Functional Programs, in FPCA’89 — Conference on
Functional Programming Languages and Computer Architecture, ACM Press,
Imperial College, London, UK, September 11-13, pp. 157-165. (p 225)

Bjerner, B. (1989), Time Complexity of Programs in Type Theory, PhD thesis, De
partment of Computer Sciences, University of Goteborg. (pp. 224, 225)

Blelloch, G. k Narlikar, G. (1994), A Practical Comparison of iV-Body Algorithms,
in Parallel Algorithms, American Mathematical Society. (pp. 152, 154)
U R L : http: //www. cs. emu. edu/af s/cs. emu. edu/proj ect/scandal/public/-
papers/dimacs-nbody.ps.gz

Bibliography 241

Blelloch, G. (1996), Programming Parallel Algorithms, Communications of the ACM
39(3), 85-97. (pp. 26, 33)
U RL: h t tp : //www. c s . emu. edu/~scandal/cacm.html

Bloss, A. (1989), Path Analysis and the Optimization of Non-strict Functional Lan
guages, Research report YALEU/DCS/RR-704, Department of Computer Sci
ence, Yale University. (p 224)

Blumofe, R., Joerg, C., Kuszmaul, B., Leiserson, C., Randall, K. & Zhou, Y. (1995),
Cilk: An Efficient Multithreaded Runtime System, in PPoPP’95 — Symposium
on Principles and Practice of Parallel Programming, Santa Barbara, CA, USA,
July 19-21, pp. 207-216. (p 176)
U RL: f t p : / / th e o ry . lc s .m it. edu/pub/cilk/PPoPP95 .ps .Z

Bobrow, D. Sz Wegbreit, B. (1973), A Model and Stack Implementation of Multiple
Environments, Communications of the ACM 1 6 , 591-602. (p 44)

Bohm, A., Cann, D., Feo, J. & Oldehoeft, R. (1991), SISAL 2.0 Reference Man
ual, Technical Report CS-91-118, Computer Science Department, Colorado State
University. (pp. 26, 30)

Botorog, G. & Kuchen, H. (1996), Skil: An Imperative Language with Algorithmic
Skeletons for Efficient Distributed Programming, in HPDC’96 — International
Symposium on High Performance Distributed Computing, IEEE Computer
Society Press, pp. 243-252. (p 145)
U RL: h t tp : //www-i2. in f ormat i k . rwth-aachen. de/botorog/Papers/-
hpdc96.ps.gz

Bratvold, T. (1994), Skeleton-Based Parallelisation of Functional Programs, PhD
thesis, Department of Computing and Electrical Engineering, Heriot-Watt Uni
versity, Edinburgh. (p 183)
U RL: f t p : / / f t p . cee.hw. a c . uk/pub/funcprog/tab. phd.p s . Z

Brodal, G. & Okasaki, C. (1996), Optimal Purely Functional Priority Queues, Journal
of Functional Programming 6(6), 839-857. (p 169)
U R L: h t tp : / / foxnet. c s . emu. edu /people/cokasak i/p rio rity . ps

Brodal, G. (1996), Worst-Case Priority Queues, in SODA’96 — Symposium on Dis
crete Algorithms, ACM SIAM, pp. 52-58. (p 169)
U RL: h t tp : / / www.mpi-sb.mpg. de/~brodal/Papers/soda96.p s . gz

Biilck, T., Held, A., Kluge, W., Pantke, S., Rathsack, A., Scholz, S.-B. & Schroder, R.
(1994), Experience with the Implementation of a Concurrent Graph Reduction
System on an nCube/2 Platform, in CONPAR’94 — Conference on Algorithms
and Hardware for Parallel Processing, LNCS 854, Springer-Verlag, Linz, Austria,
September 6-8, pp. 497-508. (p 50)

http://www.mpi-sb.mpg

Bibliography 242

Burge, W. H. (1975), Recursive Programming Techniques, Addison-Wesley, Reading,
MA, USA. (p 27)

Burn, G., Peyton Jones, S. & Robson, J. (1988), The Spineless G-machine, m L F P ’88
— Conference on Lisp and Functional Programming, Salt Lake City, UT, USA,
pp. 244-258. (p 29)

Burn, G. (1987), Evaluation Transformers — A Model for the Parallel Evaluation
of Functional Languages (Extended Abstract), in FPCA’87 — Conference on
Functional Programming Languages and Computer Architecture, LNCS 274,
Springer-Verlag, Portland, OR, USA, September 14-16, pp. 446-470. (pp. 21,
26)

Burn, G. (1990), Using Projection Analysis in Compiling Lazy Functional Programs,
in LFP’90 — Conference on Lisp and Functional Programming, ACM Press,
Nice, France, June 27-29, pp. 227-241. (p 224)

Burn, G. (1991a), Implementing the Evaluation Transformer Model of Reduction on
Parallel Machines, Journal of Functional Programming 1(3), 329-366. (pp. 21,
224)
U R L : http: //theory. doc. ic. ac. uk/tf m/papers/BurnGL/-
JnlFP.Implement at ion. ps. gz

Burn, G. (19916), Lazy Functional Languages: Abstract Interpretation and Compi
lation, Research Monographs in Parallel and Distributed Computing, Pitman.
(P 21)

Burton, F. & Sleep, M. (1981), Executing Functional Programs on a Virtual Tree of
Processors, in FPCA’81 — Conference on Functional Programming Languages
and Computer Architecture, Portsmouth, NH, USA, pp. 187-194. (pp. 33, 180)

Burton, F. (1984), Annotations to Control Parallelism and Reduction Order in the
Distributed Evaluation of Functional Programs, ACM Transactions on Program
ming Languages and Systems 6(2), 159-174. (pp. 26, 146)

Busvine, D. (1993), Detecting Parallel Structures in Functional Programs, PhD thesis,
Department of Computing and Electrical Engineering, Heriot-Watt University,
Edinburgh. (p 183)
U R L : ftp: //ftp. cee. hw. ac. uk/pub/funcprog/djb. phd. tar. Z

Char, B., Geddes, K., Gonnet, G., Leong, B., Monagan, M. & Watt, S. (1991), Maple
V — Library Reference Manual, Springer-Verlag. (p 211)

Chiou, D., Ang, B. A., Beckerle, M., Boughton, G., Greiner, R., Hicks, J. & Hoe,
J. (1995), StarT-NG: Delivering Seamless Parallel Computing, in EuroPar’95

Bibliography 243

— European Conference on Parallel Processing, LNCS 966, Springer-Verlag,
Stockholm, Sweden, August 29-31, pp. 101-116. (pp. 30, 38, 47)

Church, A. (1941), The Calculi of Lambda Conversion, Princeton University Press.
(P 19)

Clack, C. & Peyton Jones, S. (1986), The Four-Stroke Reduction Engine, in LFP’86
— Conference on Lisp and Functional Programming, ACM Press, Cambridge,
MA, USA, August 4-6, pp. 220-232. (p 35)

Cole, M. (1989), Algorithmic Skeletons: Structured Management of Parallel Compu
tation, MIT Press. (pp. 23, 26, 144, 183)

Cousot, P. & Cousot, R. (1977), Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints, in
POPL’77 — Symposium on Principles of Programming Languages, Los Angeles,
CA, USA, pp. 238-252. (p 188)

Culler, D., Goldstein, S., Schauser, K. h von Eicken, T. (1993), TAM — A Com
piler Controlled Threaded Abstract Machine, Journal of Parallel and Distributed
Computing 18, 347-370. (pp. 30, 38, 39, 47)
U R L : http://www.cs.ucsb.edu/~schauser/papers/93-jpdc-tr.ps

Culler, D. (1990), Managing Parallelism and Resources in Scientific Dataflow Pro
grams, PhD thesis, Laboratory for Computer Science, Massachusetts Institute
of Technology, Cambridge, MA, USA. (p 181)

Curien, P.-L. (1986), Categorical Combinators, Sequential Algorithms and Functional
Programming, Pitman. (p 27)

Curry, H. & Feys, R. (1958), Combinatory Logic, Vol. 1, North Holland. (p 27)

Darlington, J., Guo, Y., To, H. & Yang, J. (1995), Functional Skeletons for Parallel
Coordination, in EuroPar’95 — European Conference on Parallel Processing,
LNCS 966, Springer-Verlag, Stockholm, Sweden, August 29-31. (pp. 146, 153,
183)
U R L : http: //www-ala. doc. ic. ac. uk/papers/Y. Guo/europar.ps. Z

Darlington, J. & Reeve, M. (1981), ALICE — A Multi-Processor Reduction Machine
for the Parallel Evaluation of Applicative Languages, in FPCA ’81 — Conference
on Functional Programming Languages and Computer Architecture, ACM Press,
Boston, MA, USA, pp. 65-74. (pp. 8, 39, 42)

Davie, A. & McNally, D. (1990), CASE - A Lazy Version of an SECD Machine with
a Flat Environment, Technical Report CS/90/19, University of St Andrews.
(P 27)
U R L : ftp: //ftp.dcs. st-and. ac.uk/pub/staple/CASE.ps. Z

http://www.cs.ucsb.edu/~schauser/papers/93-jpdc-tr.ps
ftp://ftp.dcs

Bibliography 244

Davis, K. (1994), Projection-based Program Analysis, PhD thesis, Department of
Computing Science, University of Glasgow. (p 224)

Debbabi, M., Ai'doud, Z. k Faour, A. (1997), On the Inference of Structured Re
cursive Effects with Subtyping, Journal of Functional and Logic Programming
1997(5). (p 205)
U R L : http: //www. cs. tu-berlin. de/j ournal/j f lp/art icles/1997/A97-05/-
JFLP-A97-05.ps.gz

Debray, S., Lin, N.-W. k Hermenegildo, M. (1990), Task Granularity Analysis in
Logic Programs, in PLDI’90 — Programming Languages Design and Implemen
tation, Vol. 25(6) of SIGPLAN Notices, ACM Press, White Plains, NY, USA,
June 20-22, pp. 174-188. (p 225)

Debray, S. k Lin, N.-W. (1993), Cost Analysis of Logic Programs, ACM Transactions
on Programming Languages and Systems 15(5), 826-875. (p 225)

Debray, S., Lopez Garcia, P., Hermenegildo, M. k Lin, N.-W. (1994), Estimating the
Computational Costs of Logic Programs, in SAS’94 — Static Analysis Sympo
sium, LNCS 864, Springer-Verlag, Namur, Belgium, pp. 255-265. (p 225)

Dennis, J. (1974), First Version of a Data Flow Procedure Language, in Programming
Symposium, LNCS 19, Springer-Verlag, Paris. (p 29)

Deschner, J. (1989), Simulating Multiprocessor Architectures for Compiled Graph-
Reduction, in Glasgow Workshop on Functional Programming, Workshops
in Computing, Springer-Verlag, Fraserburgh, Scotland, UK, August 21-23,
pp. 225-237. (p 54)

Dornic, V. (1993), Ordering Times, Research Report YALEU/DCS/RR-956, Depart
ment of Computer Science, Yale University. (p 222)

Draghicescu, M. k Purushothaman, S. (1990), A Compositional Analysis of Evalua
tion Order and its Applications, in LFP’90 — Conference on Lisp and Functional
Programming, ACM Press, Nice, France, June 27-29, pp. 242-250. (p 224)

Field, A. k Harrison, P. (1988), Functional Programming, Addison-Wesley, (pp. 19,
20, 27, 203)

Flajolet, P., Salvy, B. k Zimmermann, P. (1991), Automatic Average-Case Analysis
of Algorithms, Theoretical Computer Science 79, 37-109. (p 221)

Flanagan, C. k Nikhil, R. (1996), pHluid: The Design of a Parallel Functional Lan
guage Implementation on Workstations, in ICFP’96 — International Conference
on Functional Programming, ACM Press, Philadelphia, PA, USA, May 24-26,
pp. 169-179. (pp. 38, 47)

Bibliography 245

Foster, I. & Taylor, S. (1994), A Compiler Approach to Scalable Concurrent-Program
Design, ACM Transactions on Programming Languages and Systems 16(3), 577-
604. (p 145)

Freeh, V. & Andrews, G. (1995), fsc : A Sisal Compiler for Both Distributed- and
Shared-Memory Machines, in HPFC’95 — High Performance Functional Com
puting, Denver, CO, USA, April 10-12. (p 34)
U R L : f t p : / / s i s a l . l l n l .gov/pub/hpfc/papers95/paper20.ps

Gelernter, D. & Carriero, N. (1992), Coordination Languages and Their Significance,
Communications of the ACM 32(2), 97-107. (pp. 145, 146)

Gladitz, K. & Kuchen, H. (1996), Shared Memory Implementation of the Gamma-
Operation, Journal of Symbolic Computation 21, 577-591. (p 33)
U R L : h t tp : //www-i2. inform atik . rwth-aachen. de/~herbert/j sc95.ps

Goldberg, B. (1988a), Multiprocessor Execution of Functional Programs, PhD thesis,
Department of Computer Science, Yale University. (pp. 19, 42, 162, 187, 220)

Goldberg, B. (19886), Multiprocessor Execution of Functional Programs, Interna
tional Journal of Parallel Programming 17(5), 425-473. (pp. 38, 42, 49)

Goldsmith, R., McBurney, D. & Sleep, M. (1993), Term Graph Rewriting: Theory and
Practice, John Wiley & Sons, chapter Parallel Execution of Concurrent Clean
on ZAPP. (p 33)

Goldstein, S., Schauser, K. & Culler, D. (1996), Lazy Threads: Implementing a
Fast Parallel Call, Journal of Parallel and Distributed Computing 37(1), 5-20.
(pp. 35, 57, 179, 236)
U R L : h t tp : / /h t tp .c s .berkeley .edu/~sethg/papers/jpdc.ps. Z

Goldstein, S. (1997), Lazy Threads: Compiler and Runtime Structures for Fine-
Grained Parallel Programming, PhD thesis, University of California, Berkeley,
(pp. 179, 236)

Gomard, C. K. h Sestoft, P. (1991), Evaluation Order Analysis for Lazy Data Struc
tures, in Glasgow Workshop on Functional Programming, Workshops in Com
puting, Springer-Verlag, Isle of Skye, Scotland, UK, August 13-15, pp. 112-127.
(P 224)

Grant, P., Sharp, J., Webster, M. & Zhang, X. (1995), Experiences of Parallelizing
Finite-Element Problems in a Functional Style, Software - Practice and Experi
ence 25(9), 947-974. (p 151)

GranSim (1998), GranSim Home Page, WWW page. (p 56)
U R L : h t tp : //www. dcs. glasgow. ac .uk/fp /softw are/gransim /defau lt. html

http://http.cs.berkeley.edu/~sethg/papers/jpdc.ps

Bibliography 246

Greiner, J. (1994), A Comparison of Data-Parallel Algorithms for Connected Com
ponents, in SPAA’94 — Symposium on Parallel Algorithms and Architectures,
Cape May, NJ, USA., pp. 16-25. Also: Technical Report CMU-CS-93-191.
(P 154)
U R L: h t tp : //www. c s . emu. edu/af s /c s . emu. edu/pro je c t/sc a n d a l/p u b lic /-
papers/concomp-spaa94.p s .gz

Gremban, K., Miller, G. k Zagha, M. (1994), Performance Evaluation of a New
Parallel Preconditioner, Technical Report CMU-CS-94-205, School of Computer
Science, Carnegie Mellon University. (p 154)
U RL: h t tp : //www. c s . emu. edu/af s /c s . emu. edu/pro j ec t/scan d a l/p u b lic /-
papers/CMU-CS-94-205.p s .gz

Gurd, J., Kirkham, C. k Watson, I. (1985), The Manchester Prototype Dataflow
Computer, Communications of the ACM 28(1), 34-52. (pp. 30, 49)

Haines, M. &; Bohm, W. (1992), Software Multithreading in a Conventional Dis
tributed Memory Multiprocessor, Technical Report CS-92-126, Colorado State
University. (p 34)

Hall, C., Loidl, H.-W., Trinder, P., Hammond, K. k O’Donnell, J. (1997), Refining
a Parallel Algorithm for Calculating Bowings, in Glasgow Workshop on Func
tional Programming, Ullapool, Scotland, UK, September 15-17. Submitted for
publication. (pp. 98, 140, 142, 175)

Halstead, Jr., R. (1985), Multilisp: A Language for Concurrent Symbolic Computa
tion, ACM Transactions on Programming Languages and Systems 7(4), 501-538.
(P 26)

Halstead Jr., R. (1995), Understanding the Performance of Parallel Symbolic Pro
grams, in PSLS’95 — International Workshop on Parallel Symbolic Languages
and Systems, LNCS 1068, Springer-Verlag, Beaune, France, pp. 81-107. (p 68)

Hammes, J., Lubeck, O. k Bohm, W. (1995), Comparing Id and Haskell in a Monte
Carlo photon transport code, Journal of Functional Programming 5(3), 283-316.
(p 153)
U R L: h t tp ://www. c s . c o lo s ta te .edu/~hammes/documents/f i n a l l .p s .Z

Hammond, K., Loidl, H.-W. k Partridge, A. (1995), Visualising Granularity in Paral
lel Programs: A Graphical Winnowing System for Haskell, in HPFC’95 — High
Performance Functional Computing, Denver, CO, USA, April 10-12, pp. 208-
221. (pp. 11, 66, 74, 75, 142, 232)
U RL: h t tp : / / www.dcs. s t-an d . ac .uk/~kh/papers/hpfc95/hpf c95.html

http://www
http://www.dcs

Bibliography 247

Hammond, K., Loidl, H.-W. & Trinder, P. (1997), Parallel Cost Centre Profiling,
in Glasgow Workshop on Functional Programming, Ullapool, Scotland, UK,
September 15-17. Submitted for publication. (pp. 68, 82, 235)

Hammond, K., Mattson Jr., J. & Peyton Jones, S. (1994), Automatic Spark Strategies
and Granularity for a Parallel Functional Language Reducer, in CONPAR’94
— Conference on Algorithms and Hardware for Parallel Processing, LNCS 854,
Springer-Verlag, Linz, Austria, September 6-8, pp. 521-532. (pp. 8, 50, 85,
161)
U RL: f t p : / / f t p . dcs. glasgow. ac . uk/pub/glasgow-fp/papers/-
sp ark -stra teg ies-an d -g ran u la rity .p s .Z

Hammond, K. & Peyton Jones, S. (1990), Some Early Experiments on the GRIP Par
allel Reducer, in IFL’90 — International Workshop on the Parallel Implementa
tion of Functional Languages, Nijmegen, The Netherlands, pp. 51-72. (p 60)

Hammond, K. &; Peyton Jones, S. (1992), Profiling Scheduling Strategies on the
GRIP Multiprocessor, in IFL’92 — International Workshop on the Parallel
Implementation of Functional Languages, RWTH Aachen, Germany, September
28-30, pp. 73-98. (pp. 8, 50)
U RL: f t p : / / f t p . dcs. g la . ac . uk/pub/glasgow-fp/papers/-
grip-scheduling .p s .gz

Hammond, K. (1993), Getting a GRIP, in IFL’93 — International Workshop on the
Parallel Implementation of Functional Languages, Nijmegen, The Netherlands,
(p 55)
U RL: f t p : / / f t p . dcs. g la . a c . uk/pub/glasgow-f p/author s/Kevin Jlammond/-
Ge t t ing jl.GRIP. p s . Z

Hammond, K. (1994), Parallel Functional Programming: An Introduction, in
PASCO’94 — International Symposium on Parallel Symbolic Computation,
World Scientific, Hagenberg/Linz, Austria, September 26-28, pp. 181-193.
(P 26)
U RL: h t tp ://www.dcs.st-and.ac.uk/~kh/papers/pasco94/pasco94.htm l

Harrison, P. & Reeve, M. (1986), The Parallel Graph Reduction Machine, ALICE,
in Workshop on Graph Reduction, LNCS 279, Springer-Verlag, Santa Fe, NM,
USA, pp. 181-202. (pp. 42, 48, 49)

Hartel, P., Hofman, R., Langendoen, K., Muller, H., Vree, W. & Hertzberger,
L. (1995), A Toolkit for Parallel Functional Programming, Concurrency —
Practice and Experience 7(8), 765-793. (pp. 143, 151, 152)
U RL: f t p : / / f t p . f wi. uva. n l/pub/com puter-system s/functional/reports/-
CPE.toolkit.p s .Z

http://www.dcs.st-and.ac.uk/~kh/papers/pasco94/pasco94.html

Bibliography 248

Hartel, P. (1995), Benchmarking Implementations of Functional Languages II —
Two Years Later, in IFL’95 — International Workshop on the Implementation
of Functional Languages, Bastad, Sweden, pp. 63-68. (p 77)
U R L : ftp: //ftp. f wi. uva. nl/pub/computer-systems/functional/reports/-
benchmarklI.ps.Z

Henglein, F. (1993), Type Inference with Polymorphic Recursion, ACM Transactions
on Programming Languages and Systems 15(2), pp. 253-289. (p 194)

Hermenegildo, M. & Lopez Garcia, P. (1995), Efficient Term Size Computation for
Granularity Control, in International Conference on Logic Programming, MIT
Press, pp. 647-661. (p 226)

Hickey, T. & Cohen, J. (1988), Automating Program Analysis, Journal of the ACM
35(1), 185-220. (p 221)

Hofman, R., Langendoen, K. & Vree, W. (1992), Scheduling Consequences of Keeping
Parents at Home, in ICPADS’92 — Parallel and Distributed Systems, National
Tsing Hwa University, Taiwan, pp. 580-588. (p 40)

Hofman, R. (1994), Scheduling and Grain Size Control, PhD thesis, Department of
Computer Systems, University of Amsterdam. (pp. 54, 180)
U R L : ftp: //ftp. f wi. uva. nl/pub/computer-systems/functional/reports/-
thesis_Hofman.ps .Z

Hogen, G. & Loogen, R. (1994), Efficient Organization of Control Structures in
Distributed Implementations, in CC’94 — International Conference on Compiler
Construction, LNCS 786, Springer-Verlag, pp. 98-112. (pp. 36, 44, 46)
U R L : http: //www-i2. inf ormat ik. rwth-aachen. de/OldStaf f /hogen/-
PUBLICATI0NS/cc94.ps.gz

Hogen, G. & Loogen, R. (1995), Parallel Functional Implementations: Graphbased
vs. Stackbased Reduction, in Fuji International Workshop on Functional and
Logic Programming, World Scientific. (p 44)
U R L : ftp: //ftp. inf ormat ik. rwth-aachen. de/pub/report s/1994/94-18 .ps. gz

Hong, H. & Loidl, H.-W. (1994), Parallel Computation of Modular Multivariate Poly
nomial Resultants on a Shared Memory Machine, in CONPAR’94 — Conference
on Parallel and Vector Processing, LNCS 854, Linz, Austria, September 6-8,
pp. 325-336. (p 140)
U R L : http: //www. dcs. gla. ac. uk/~hwloidl/publications/resultant. ps. gz

Hong, H., Schreiner, W., Neubacher, A., Siegl, K., Loidl, H.-W., Jebelean, T. &
Zettler, P. (1992), PACLIB User Manual, Technical Report 92-32, RISC-Linz,
Johannes Kepler University, Linz, Austria. (p 138)

Bibliography 249

Hudak, P. & Goldberg, B. (1985), Serial Combinators: Optimal Grains of Paral
lelism, in FPCA’85 — Conference on Functional Programming Languages and
Computer Architecture, LNCS 201, Springer-Verlag, Nancy, France, September
16-19, pp. 382-388. (p 181)

Hudak, P. (1986), Para-Functional Programming, IEEE Computer 19(8), 60-70.
(pp. 147, 181)

Hudak, P. (1991), Para-Functional Programming in Haskell, in B. Szymanski, ed.,
Parallel Functional Languages and Compilers, ACM Press and Addison-Wesley,
(pp. 148, 181)

Huelsbergen, L., Larus, J. & Aiken, A. (1994), Using Run-Time List Sizes to Guide
Parallel Thread Creation, in LFP’94 — Conference on Lisp and Functional Pro
gramming, ACM Press, Orlando, FL, USA, June 27-29, pp. 79-90. (p 222)

Hughes, R., Pareto, L. & Sabry, A. (1996), Proving the Correctness of Reactive Sys
tems Using Sized Types, in POPL’96 — Symposium on Principles of Program
ming Languages, ACM Press, St Petersburg, FL, USA, January 21-24. (pp. 12,
186, 189, 194, 198, 202, 223, 226, 228, 233)
U R L : http: //www. cs. Chalmers. se/~rjmh/Papers/popl-96. ps

Hughes, R. (1984), The Design and Implementation of Programming Languages, PhD
thesis, Programming Research Group, University of Oxford. (p 27)

Hughes, R. (1987), Analysing Strictness by Abstract Interpretation of Continuations,
in S. Abramsky & C. Hankin, eds, Abstract Interpretation of Declarative Lan
guages, Ellis Horwood, pp. 63-102. (p 224)

Hughes, R. (1989), Why Functional Programming Matters, The Computer Journal
32(2), 98-107. (pp. 90, 103, 104, 109)
U R L : http://www.cs.chalmers.se/~rjmh/Papers/whyfp.ps

Hwang, S. & Rushall, D. (1992), The u-STG machine: A Parallelized Spineless Tag-
less Graph Reduction Machine in a Distributed Memory Architecture (Draft
Version), in IFL’92 — International Workshop on the Parallel Implementation
of Functional Languages, RWTH Aachen, Germany, September 28-30. (pp. 35,
46)

Ito, N., Sato, M., Kishi, A., Kuno, E. &; Rokusawa, K. (1986), The Architecture and
Preliminary Evaluation Results of the Experimental Parallel Inference Machine
PIM-D , in ISCA’86 — International Symposium on Computer Architecture,
IEEE Computer Society, Tokyo, Japan, June 2-5, pp. 149-156. (p 30)

http://www.cs.chalmers.se/~rjmh/Papers/whyfp.ps

Bibliography 250

Jay, C., Cole, M., Sekanina, M. & Steckler, P. (1997), A Monadic Calculus for Parallel
Costing of a Functional Language of Arrays, in EuroPar’97 — European Con
ference on Parallel Processing, LNCS 1300, Springer-Verlag, Passau, Germany,
pp. 650-661. (p 221)

Johnsson, T. (1985), Lambda Lifting: Transforming Programs to Recursive Equa
tions, in FPCA’85 — Conference on Functional Programming Languages and
Computer Architecture, LNCS 201, Springer-Verlag, Nancy, France, September
16-19, pp. 190-203. (p 27)

Johnsson, T. (1987), Compiling Lazy Functional Languages, Part I, PhD thesis, De
partment of Computer Sciences, Chalmers University of Technology, Goteborg,
Sweden. (p 29)

Jones, S. & Le Metayer, D. (1989), Compile-Time Garbage Collection by Sharing
Analysis, in FPCA’89 — Conference on Functional Programming Languages and
Computer Architecture, ACM Press, Imperial College, London, UK, September
11-13, pp. 54-74. (p 36)

Jouvelot, P. & Gifford, D. (1991), Algebraic Reconstruction of Types and Effects, in
POPL’91 — Symposium on Principles of Programming Languages, ACM Press,
pp. 303-310. (p 202)
U R L : http: //www .psrg. lcs .mit. edu/f tpdir/papers/popl91. dvi

Joy, M. & Axford, T. (1992), A Parallel Graph Reduction Machine, in IFL’92 —
International Workshop on the Parallel Implementation of Functional Languages,
RWTH Aachen, Germany, September 28-30. (p 54)

Junaidu, S. (1998), A Parallel Functional Language Compiler for Message Passing
Multicomputers, PhD thesis, School of Mathematical and Computational Sci
ences, University of St. Andrews. (pp. 79, 142)

Kaser, O., Pawagi, S., Ramakrishnan, C., Ramakrishnan, I. & Sekar, R. (1992), Fast
Parallel Implementation of Lazy Languages — The EQUALS Experience, in
LFP’92 — Conference on Lisp and Functional Programming, ACM Press, San
Francisco, CA, USA, June 22-24, pp. 335-344. (p 176)

Kaser, O., Pawagi, S., Ramakrishnan, C., Ramakrishnan, I. & Sekar, R. (1997),
EQUALS — a Fast Parallel Implementation of a Lazy Language, Journal of
Functional Programming 7(2), 183-217. (pp. 21, 36)

Keane, J. (1994), An Overview of the Flagship System, Journal of Functional Pro
gramming 4(1), 19-45. (pp. 39, 46, 176)

Keller, R. & Lin, F. (1984), Simulated Performance of a Reduction-Based Multipro
cessor, IEEE Computer 17(7), 70-82. (p 54)

Bibliography 251

Kelly, P. (1989), Functional Programming for Loosely-Coupled Multiprocessors, Re
search Monographs in Parallel and Distributed Computing, MIT Press, (pp. 26,
85, 147)

Kesseler, M. (1996), The Implementation of Functional Languages on Parallel Ma
chines with Distributed Memory, PhD thesis, University of Nijmegen. (pp. 37,
46, 47)

Kewley, J. & Glynn, K. (1989), Evaluation Annotations for Hope+, in Glasgow Work
shop on Functional Programming, Workshops in Computing, Springer-Verlag,
Fraserburgh, Scotland, UK, August 21-23, pp. 329-337. (pp. 26, 146, 182)

Kingdon, H., Lester, D. & Burn, G. (1991), The HDG-machine: a Highly Distributed
Graph-Reducer for a Transputer Network, The Computer Journal 34(4), 290-
301. (pp. 21, 35, 39, 41, 43, 49)
U R L : http://theory.doc. ic.ac .uk/tfm/papers/BurnGL/HDGmachine .ps.gz

Knuth, D. (1981), The Art of Computer Programming, Vol. II: Seminumerical Algo
rithms, 2nd edition, Addison-Wesley. (p 127)

Kranz, D., Halstead Jr., R. & Mohr, E. (1989), Mul-T: A High-Performance Parallel
Lisp, in PLDI’91 — Programming Languages Design and Implementation, Vol.
24(7) of SIGPLAN Notices, Portland, OR, USA, June 21-23, pp. 81-90. (pp. 26,
177)

Kubiak, R., Hughes, R. & Launchbury, J. (1991), Implementing Projection Based
Strictness Analysis, in Glasgow Workshop on Functional Programming, Work
shops in Computing, Springer-Verlag, Isle of Skye, Scotland, UK, August 13-15,
pp. 207-224. (pp. 224, 237)
U R L : http: //www. cse. ogi. edu/~j 1/Papers/implementing.ps

Kuo, T.-M. & Mishra, P. (1989), Strictness Analysis: a New Perspective Based on
Type Inference, in FPCA’89 — Conference on Functional Programming Lan
guages and Computer Architecture, ACM Press, Imperial College, London, UK,
September 11-13, pp. 260-272. (p 188)

Landin, P. J. (1964), The Mechanical Evaluation of Expressions, The Computer Jour
nal 6, 308-320. (pp. 16, 27)

Lauer, M. (1982), Computing by Homomorphic Images, in B. Buchberger, G. Collins,
R. Loos & R. Albrecht, eds, Computer Algebra — Symbolic and Algebraic Com
putation, Springer-Verlag, pp. 139-168. (p 123)

Launchbury, J. & Baraki, G. (1996), Representing Demand by Partial Projections,
Journal of Functional Programming 6(4), 563-585. (p 224)

http://theory.doc

Bibliography 252

Lester, D. (1989), Stacklessness: Compiling Recursion for a Distributed Architec
ture, in FPCA’89 — Conference on Functional Programming Languages and
Computer Architecture, ACM Press, Imperial College, London, UK, September
11-13, pp. 116-128. (p 43)

Le Metayer, D. (1988), ACE: An Automatic Complexity Evaluator, ACM Transac
tions on Programming Languages and Systems 10(2), 248-266. (p 223)

Limongelli, C. & Loidl, H.-W. (1993), Rational Number Arithmetic by Parallel P-adic
Algorithms, in ACPC’93 — Parallel Computation — International ACPC Con
ference, LNCS 734, Springer-Verlag, Gmunden, Austria, October 4-6, pp. 72-86.
(P 142)
U R L : http://w w w .dcs .g la .a c .u k /~ h w lo id l/p u b lica tion s/p -ad ic .ps .gz

Lipson, J. D. (1971), Chinese Remainder and Interpolation Algorithms, in SYM-
SAM’71 — Symposium on Symbolic and Algebraic Manipulation, Academic
Press, pp. 372-391. (pp. 123, 127)

Loidl, H.-W. & Hammond, K. (1994), GRAPH for PVM: Graph Reduction for Dis
tributed Hardware, in IFL’94 — International Workshop on the Implementation
of Functional Languages, University of East Anglia, Norwich, UK, September
7 -9 . (pp. 55, 233)
U R L : http://www.dcs.gla.ac.uk/~hwloidl/publications/IFL94.ps.gz

Loidl, H.-W. Sz Hammond, K. (1995), On the Granularity of Divide-and-Conquer
Parallelism, in Glasgow Workshop on Functional Programming, Workshops in
Computing, Springer-Verlag, Ullapool, Scotland, UK, July 8-10. (pp. 12, 173,
234)
U R L : http: //www.dcs.gla. ac.uk/~hwloidl/publications/GlaFp95.ps.gz

Loidl, H.-W. & Hammond, K. (1996a), A Sized Time System for a Parallel Func
tional Language, in Glasgow Workshop on Functional Programming, Ullapool,
Scotland, UK, July 8-10. (pp. xvii, 12, 233)
U R L : http: //www. dcs. glasgow. ac.uk/fp/workshops/fpw96/Loidl. ps. gz

Loidl, H.-W. & Hammond, K. (19966), Making a Packet: Cost-Effective Communi
cation for a Parallel Graph Reducer, in IFL’96 — International Workshop on
the Implementation of Functional Languages, LNCS 1268, Springer-Verlag, Bad
Godesberg, Germany, pp. 184-199. (pp. 9, 13, 61, 63, 64, 65, 233, 236)
U R L : http: //www. dcs. gla. ac. uk/~hwloidl/publications/IFL96. ps. gz

Loidl, H.-W., Morgan, R., Trinder, P., Poria, S., Cooper, C., Peyton Jones, S. &
Garigliano, R. (1997), Parallelising a Large Functional Program; Or: Keeping
LOLITA Busy, in IFL’97 — International Workshop on the Implementation of

http://www.dcs
http://www.dcs.gla.ac.uk/~hwloidl/publications/IFL94.ps.gz
http://www.dcs.gla

Bibliography 253

Functional Languages, University of St. Andrews, Scotland, UK, September 10-
12. To appear in LNCS. (pp. xvii, 90, 113)
U R L : http: //www.dcs.gla. ac.uk/~hwloidl/publications/Lolita.ps.gz

Loidl, H.-W. & Trinder, P. (1997), Engineering Large Parallel Functional Programs,
in IFL’97 — International Workshop on the Implementation of Functional Lan
guages, University of St. Andrews, Scotland, UK, September 10-12. To appear
in LNCS. (pp. xvii, 11, 90, 104, 232)
U R L : http: //www. dcs. gla. ac.uk/~hwloidl/publications/IFL97.ps. gz

Loidl, H.-W. (1992), A Parallelizing Compiler for the Functional Programming Lan
guage EVE, Master’s thesis, RISC-Linz, Johannes Kepler University, Linz, Aus
tria. (p 157)

Loidl, H.-W. (1993), Solving a System of Linear Equations by Using a Modular
Method, Technical Report 93-69, RISC-Linz, Johannes Kepler University, Linz,
Austria. (p 138)

Loidl, H.-W. (1996), GranSim User’s Guide, 0.03 edition, Department of Computing
Science, University of Glasgow. (pp. 59, 68)
U R L : http://www.dcs.glasgow.ac.uk/fp/software/gramsim/user_toc.html

Loidl, H.-W. (1997), LinSolv: a Case Study in Strategic Parallelism, in Glasgow
Workshop on Functional Programming, Ullapool, Scotland, UK, September 15-
17. Submitted for publication. (pp. xvii, 90)
U R L : http: //www.dcs.gla. ac.uk/~hwloidl/publications/LinSolv.ps.gz

Loogen, R., Kuchen, H. k Indermark, K. (1989), Distributed Implementation of
Programmed Graph Reduction, in PARLE’89 — Conference on Parallel Archi
tectures and Languages Europe, LNCS 365, Springer-Verlag, Eindhoven, The
Netherlands, pp. 136-157. (pp. 21, 39, 43, 46, 49)

Lopez Garcia, P., Hermenegildo, M. k Debray, S. (1994), Towards Granularity Based
Control of Parallelism in Logic Programs, in World Scientific, Hagenberg/Linz,
Austria, 26-28 September, pp. 133-144. (p 225)
U R L : ftp://clip.dia.fi.upm.es/pub/papers/graiiul_control94.ps.Z

Lopez Garcia, P., Hermenegildo, M. k Debray, S. (1995), A Methodology for Gran
ularity Based Control of Parallelism in Logic Programs, Journal of Symbolic
Computation 22, 715-734. (p 225)

Lowenthal, D., Freeh, V. k Andrews, G. (1996), Using Fine-Grain Threads and
Run-Time Decision-Making in Parallel Computing, Journal of Parallel and Dis
tributed Computing 37(1), 41-54. (p 176)
U R L : ftp://ftp.es.arizona.edu/reports/1996/TR96-01 .ps

http://www.dcs.gla
http://www.dcs.glasgow.ac.uk/fp/software/gramsim/user_toc.html
http://www.dcs.gla
ftp://clip.dia.fi.upm.es/pub/papers/graiiul_control94.ps.Z
ftp://ftp.es.arizona.edu/reports/1996/TR96-01

Bibliography 254

Lucassen, J. & Gifford, D. (1988), Polymorphic Effect Systems, in POPL’88 — Sym
posium on Principles of Programming Languages, ACM, San Diego, CA, USA,
pp. 47-57. (p 205)

Maheshwari, P. (1995), Partitioning and Scheduling of Parallel Functional Programs
for Larger Grain Execution, Journal of Parallel and Distributed Computing
26(2), 151-165. (p 162)

Maranget, L. (1991), GAML: a Parallel Implementation of Lazy ML, in FPCA’91 —
Conference on Functional Programming Languages and Computer Architectures,
LNCS 523, Springer-Verlag, Harvard, MA, USA, pp. 102-123. (pp. 36, 176)

Marlow, S. k Wadler, P. (1997), A Practical Subtyping System for Erlang, in
ICFP’97 — International Conference on Functional Programming, ACM Press,
June 9-11, Amsterdam, The Netherlands, pp. 136-149. (p 197)
U R L : ftp: //ftp. dcs. gla. ac. uk/pub/glasgow-f p/author s/Simon_Marlow/-
erltc.ps

McBurney, A. k Sleep, M. (1987), Transputer Based Experiments with the ZAPP
Architecture, in PARLE’87 — Parallel Architectures and Languages Europe,
LNCS 258, Springer-Verlag, Eindhoven, The Netherlands, June 12-16, pp. 242-
259. (pp. 33, 49)

McColl, W. (1996), Scalability, Portability and Predictability: The BSP Approach
to Parallel Programming, Future Generation Computer Systems 12(4), 265-272.
(P 17)

Michaelson, G., Ireland, A. k King, P. (1997), Towards a Skeleton Based Parallelising
Compiler for SML, in IFL’97 — International Workshop on the Implementation
of Functional Languages, University of St. Andrews, Scotland, UK, September
10-12. (p 183)
U R L : ftp: //ftp. cee. hw. ac. uk/pub/funcprog/mik. if 197.ps. Z

Michaelson, G. k Scaife, N. (1995), Prototyping a Parallel Vision System in Standard
ML, Journal of Functional Programming 5(3), 345-382. (p 153)
U R L : ftp: //ftp. cee. hw. ac.uk/pub/funcprog/ms. jfp95.ps. Z

Milner, R. (1978), A Theory of Type Polymorphism in Programming Languages,
Journal of Computer and System Sciences 17, 348-375. (p 194)

Mirani, R. k Hudak, P. (1995), First-Class Schedules and Virtual Maps, in FPCA’95
— Conference on Functional Programming Languages and Computer Architec
ture, ACM Press, La Jolla, CA, USA, June 26-28, pp. 78-85. (pp. 26, 147, 150,
181)

Bibliography 255

Mitchell, J. (1991), Type Inference with Simple Subtypes, Journal of Functional
Programming 1(3), 245-285. (p 202)

Mohr, E., Kranz, D. & Halstead Jr., R. (1990), Lazy Task Creation: A Technique
for Increasing the Granularity of Parallel Programs, in LFP’90 — Conference
on Lisp and Functional Programming, Nice, France, June 27-29, pp. 185-197.
(pp. 165, 177)
U R L : ftp://crl.dec.com/pub/DEC/CRL/tech-reports/90.7.ps.Z

Morais, D. (1986), Id World: An Environment for the Development of Dataflow Pro
grams Written in Id, Technical Report MIT-LCS-TR-365, Laboratory of Com
puter Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
(P 54)

Morgan, R., Smith, M. & Short, S. (1994), Translation by Meaning and Style in
Lolita, in International BCS Conference — Machine Translation Ten Years On,
Cranfield University. (p 113)

Mycroft, A. (1984), Polymorphic Type Schemes and Recursive Definitions, in Inter
national Conference on Programming, LNCS 167, Springer-Verlag. (p 194)

Nikhil, R. (1989), The Parallel Programming Language Id and its Compilation for
Parallel Machines, in Workshop on Massive Parallelism: Hardware, Program
ming and Applications, Amalfi, Italy. CSG Memo 313. (pp. 26, 30)

Nikhil, R. (1994), Cid: A Parallel “Shared-memory” C for Distributed Memory Ma
chines, in Workshop on Languages and Compilers for Parallel Computing, LNCS
892, Springer-Verlag, Ithaca, NY, USA, August 1994, pp. 376-390. (p 176)
U R L : http: //www. research. digital. com/CRL/personal/nikhil/cid/cid.ps. Z

Nikhil, R. (1995), Parallel Symbolic Computing in Cid, in PSLS’95 — Workshop
on Parallel Symbolic Computing, LNCS 1068, Springer-Verlag, Beaune, France,
October 2-4, pp. 217-242. (p 176)
U R L : http: //www. research. digital. com/CRL/personal/nikhil/cid/-
cid_symbolic .ps .Z

Nocker, E., Plasmeijer, R. & Smetsers, S. (1991), The Parallel ABC Machine, in
IFL’91 — International Workshop on the Parallel Implementation of Functional
Languages, Technical Report CSTR 91-07, University of Southampton, UK, June
5-7, pp. 351-381. (pp. 35, 36, 44, 46)

Nocker, E., Smetsers, J., van Eekelen, M. &; Plasmeijer, M. (1991), Concurrent
Clean, in PARLE’91 — Parallel Architectures and Languages Europe, LNCS
505, Springer-Verlag, Eindhoven, The Netherlands, pp. 202-219. (pp. 26, 144,
146, 182)

ftp://crl.dec.com/pub/DEC/CRL/tech-reports/90.7.ps.Z

Bibliography 256

U R L : ftp: //ftp. cs. kun. nl/pub/CSI/Sof twEng. FunctLang/papers/-
noce91-concurrentclean.ps.gz

NoFib (1998), The NoFib Benchmark Suite, WWW page. (p 67)
U R L : http: //www. dcs. gla. ac.uk/fp/software/ghc/nofib. html

Ostheimer, G. (1991), Parallel Functional Computation on STARrDUST, in IFL’91
— International Workshop on the Parallel Implementation of Functional Lan
guages, Technical Report CSTR 91-07, University of Southampton, UK, June
5-7, pp. 393-407. (p 50)
U R L : ftp: //ftp. dcs. st-and. ac.uk/pub/staple/stardust.ps. Z

Papadopoulos, G. & Culler, D. (1990), Monsoon: An Explicit Token-Store Architec
ture, in ISCA’90 — International Symposium on Computer Architecture, Vol.
18(2) of ACM SIGARCH Computer Architecture News, Seattle, WA, USA, May
28-31, pp. 82-91. (pp. 30, 38)

Park, Y. & Goldberg, B. (1992), Order-of-Demand Analysis for Lazy Languages, in
WSA’92 — Analyse Statique, Bordeaux, France, September 23-25, pp. 91-101.
(P 224)

Partain, W. (1992), The NoFib Benchmark Suite of Haskell Programs, in Glasgow
Workshop on Functional Programming, Workshops in Computing, Springer-
Verlag, Ayr, Scotland, UK, pp. 195-202. (p 67)

Pelagatti, S. (1993), A Methodology for the Development and the Support of Mas
sively Parallel Programs, PhD thesis, Universita Delgi Studi Di Pisa. (p 146)

Peterson, J., Hammond, K. et al. (1996), Haskell 1.3 — A Non-Strict, Purely Func
tional Language. (pp. 24, 96)
U R L : http: //haskell. org/report/index.html

Petkovsek, M. & Salvy, B. (1993), Finding All Hypergeometric Solutions of Linear
Differential Equations, in ISSAC’93 — International Symposium on Symbolic
and Algebraic Computation, ACM Press, Kiev, Ukraine, July 6-8, pp. 27-33.
(p 212)

Petkovsek, M. (1990), Finding Closed-Form Solutions of Difference Equations by
Symbolic Methods, PhD thesis, School of Computer Science, Carnegie Mellon
University. CMU-CS-91-103. (p 212)

Peyton Jones, S., Clack, C., Salkild, J. & Hardie, M. (1987), GRIP — a High-
Performance Architecture for Parallel Graph Reduction, in FPCA’87 — Con
ference on Functional Programming Languages and Computer Architecture,
LNCS 274, Springer-Verlag, Portland, OR, USA, September 14-16, pp. 98-112.
(pp. 35, 40, 43, 46, 52, 58)

Bibliography 257

Peyton Jones, S., Gordon, A. & Finne, S. (1996), Concurrent Haskell, in POPL’96
— Symposium on Principles of Programming Languages, ACM Press, St
Petersburg, FL, USA, January 21-24, pp. 295-308. (p 56)
U R L: h t tp : //www. dcs. g la . a c . uk/f p/authors/Simon_Peyton_Jones/-
concurren t-haskell.p s .gz

Peyton Jones, S., Hall, C., Hammond, K., Partain, W. & Wadler, P. (1993), The
Glasgow Haskell Compiler: a Technical Overview, in Joint Framework for Infor
mation Technology Technical Conference, Keele, UK, pp. 249-257. (p 9)
U R L : h t t p : //www. dc s . g la . a c . uk/f p/paper s /g rasp -j f i t . p s . Z

Peyton Jones, S. & Wadler, P. (1993), Imperative Functional Programming, in
POPL’93 — Symposium on Principles of Programming Languages, ACM Press,
Charlotte, NC, USA, pp. 71-84. (p 70)
U R L: h t tp : //cm. b e l l - la b s . com/cm/cs/who/wadler/papers/imperative/-
im perative.p s .gz

Peyton Jones, S. (1987), The Implementation of Functional Programming Languages,
Prentice-Hall. (pp. 27, 29)

Peyton Jones, S. (1989), Parallel Implementations of Functional Programming Lan
guages, The Computer Journal 32(2), 175-186. (p 29)

Peyton Jones, S. (1992), Implementing Lazy Functional Languages on Stock Hard
ware: the Spineless Tagless G-machine, Journal of Functional Programming
2(2), 127-202. (pp. 29, 51, 55)
U RL: f t p : / / f t p . dcs. g la . a c . uk/pub/glasgow-fp/papers/-
spineless-tag less-gm achine.ps.Z

Peyton Jones, S. (1996), Compiling Haskell by Program Transformation: a Report
from the Trenches, in ESOP’96 — European Symposium on Programming,
LNCS 1058, Springer-Verlag, Linkoping, Sweden, April 22-24, pp. 18-44. (p 9)
U RL: h t tp : //www. d cs . g la . a c . uk/f p/authors/Simon_Peyton_Jones/-
comp-by-trans.p s .gz

Plainfosse, D. &; Shapiro, M. (1995), A Survey of Distributed Garbage Collection
Techniques, in IWMM’95 — International Workshop on Memory Management,
Kinross, Scotland, UK. (p 42)
U RL: f t p : / / f t p . i n r i a . fr/INRIA/Proj ects/SOR/SDGC_iwmm95. p s . gz

Plotkin, G. (1981), A Structural Approach to Operational Semantics, Technical Re
port DAIMI-FN-19, Computer Science Department, Aarhus University, (p 192)

Pugh, W. (1992), The Omega Test: A Fast and Practical Integer Programming
Algorithm for Dependence Analysis, Communications of the ACM 8, 102-114.

Bibliography 258

(pp. 198, 199)
U R L : ftp: //ftp. cs .umd.edu/pub/omega/techReports/non-TRs/omega/-
omega.ps.Z

Rabhi, F. & Manson, G. (1990), Using Complexity Functions to Control Parallelism
in Functional Programs, Technical Report CS-90-1, Department of Computer
Science, University of Sheffield. (p 181)

Rabhi, F. (1992), Run-Time Control of the Granularity in Functional Languages,
in European Workshop on Parallel Computing, IOS Press, Barcelona, Spain,
pp. 356-359. (p 181)

Rabhi, F. (1995), A Parallel Programming Methodology Based on Paradigms, in
Transputer and Occam Developments, IOS Press, pp. 239-252. (pp. 144, 183)
U R L : http: //www. enc. hull. ac. uk/~far/methodology. ps. gz

Rangaswami, R. (1996), A Cost Analysis for a Higher-order Parallel Programming
Model, PhD thesis, Department of Computer Science, University of Edinburgh.
(p 221)
U R L : http: //www.dcs. ed. ac.uk/home/ror/THESIS/thesis.ps.gz

Reistad, B. & Gifford, D. (1994), Static Dependent Costs for Estimating Execution
Time, in LFP’94 — Conference on Lisp and Functional Programming, ACM
Press, Orlando, FL, USA, June 27-29, pp. 65-78. (pp. 12, 186, 191, 197, 198,
199, 204, 205, 212, 222, 226, 228, 233)
U R L : http://www-psrg.lcs.mit.edu/ftpdir/pub/reistad/lfp94.ps

Rice (1993), High Performance Fortran Language Specification, 1.1 edition. (p 6)
U R L : http://www.erc .msstate .edu/hpff/hpf-report-ps/hpf-vll .ps

Robinson, J. (1965), A Machine Oriented Logic Based on the Resolution Principle,
Communications of the ACM 12(1), 23-41. (p 202)

Roe, P. (1991), Parallel Programming Using Functional Languages, PhD thesis, De
partment of Computing Science, University of Glasgow. (pp. 41, 54)

Rosendahl, M. (1986), Automatic Program Analysis, Master’s thesis, DIKU, Univer
sity of Copenhagen. (pp. 186, 199, 223, 226)

Rosendahl, M. (1989), Automatic Complexity Analysis, in FPCA’89 — Conference
on Functional Programming Languages and Computer Architecture, ACM Press,
Imperial College, London, UK, September 11-13, pp. 144-156. (pp. 222, 223)
U R L : ftp: //ftp. diku. dk/diku/semantics/papers/D-36. dvi. Z

http://www.dcs
http://www-psrg.lcs.mit.edu/ftpdir/pub/reistad/lfp94.ps
http://www.erc

Bibliography 259

Ruggiero, C. & Sargeant, J. (1987), Control of Parallelism in the Manchester Dataflow
Machine, in FPCA’87 — Conference on Functional Programming Languages
and Computer Architecture, LNCS 274, Springer-Verlag, Portland, OR, USA,
September 14-16, pp. 1-15. (pp. 50, 180)

Runciman, C. & Wakeling, D. (1993), Profiling Parallel Functional Computations
(without Parallel Machines), in Glasgow Workshop on Functional Program
ming, Workshops in Computing, Springer-Verlag, Ayr, Scotland, UK, July 5-7,
pp. 203-214. (pp. 54, 76, 80)

Runciman, C. &; Wakeling, D. (1995), Applications of Functional Programming, UCL
Press. (pp. 69, 151)

Rushall, D. (1995), Task Exposure in the Parallel Implementation of Functional Pro
gramming Languages, PhD thesis, Department of Computer Science, University
of Manchester. (pp. 21, 34, 35, 178)

Sands, D. (1990a), Calculi for Time Analysis of Functional Programs, PhD thesis,
Imperial College, University of London. (p 225)

Sands, D. (19906), Complexity Analysis for a Lazy Higher-Order Language, in
ESOP’90 — European Symposium on Programming, LNCS 432, Springer-
Verlag, Copenhagen, Denmark, May 15-18, pp. 361-376. (p 237)

Sansom, P. & Peyton Jones, S. (1995), Time and Space Profiling for Non-Strict
Higher-Order Functional Languages, in POPL’95 — Symposium on Principles
of Programming Languages, ACM Press, San Francisco, CA, USA. (pp. 68,
142, 235)
U R L : ftp://ftp.dcs.glasgow.ac.uk/pub/glasgow-fp/papers/profiling.ps.Z

Santos, A. (1995), Compilation by Transformation in Non-Strict Functional Lan
guages, PhD thesis, Department of Computing Science, University of Glasgow.
(P 78)

Sargeant, J. (1991), Use of Lazy Task Creation in Dynamic Computations, Internal
EDS report EDS.RD.3I.M017, Department of Computer Science, University of
Manchester. (p 176)

Sargeant, J. (1993), Improving Compilation of Implicit Parallel Programs by Using
Runtime Information, in Workshop on the Compilation of Symbolic Languages
for Parallel Computers, Technical Report ANL-91/34, Argonne National Labo
ratory, pp. 129-148. (p 182)

Sarkar, V. & Hennessy, J. (1986), Partitioning Parallel Programs for Macro-Dataflow,
in LFP’86 — Conference on Lisp and Functional Programming, ACM Press,
Cambridge, MA, USA, August 4-6, pp. 202-211. (p 30)

ftp://ftp.dcs.glasgow.ac.uk/pub/glasgow-fp/papers/profiling.ps.Z

Bibliography 260

Sarkar, V. (1989), Partitioning and Scheduling Parallel Programs for Multiproces
sors, Research Monographs in Parallel and Distributed Computing, MIT Press,
(p 158)

Schreiner, W. (1993), Parallel Functional Programming (An Annotated Bibliogra
phy), Technical Report 93-24, RISC-Linz, Johannes Kepler University, Linz,
(p 27)
U R L : ftp: //ftp. rise.uni-linz. ac. at/pub/techreports/1993/93-24.ps. gz

Seward, J. (1995), Abstract Interpretation of Functional Languages: A Quantita
tive Assessment, PhD thesis, Department of Computer Science, University of
Manchester. (p 188)

Shaw, A., Arvind & Johnson, R. (1996), Performance Tuning Scientific Codes for
Dataflow Execution, in PACT’96 — International Conference on Parallel Archi
tecture and Compilation Techniques. (pp. 8, 152, 181)
U R L : ftp://csg-ftp.les.mit.edu/pub/papers/csgmemo/memo-381 .ps

Shaw, A. (1998), Impala Application Suite, WWW page. (p 154)
U R L : http: //www. csg. les .mit.edu:8001/impala/

Shimada, T., Hiraki, K., Nishida, K. & Sekigushi, S. (1986), Evaluation of a Prototype
Data Flow Processor of the Sigma-1 for Scientific Computations, in ISCA’86 —
International Symposium on Computer Architecture, IEEE Computer Society,
Tokyo, Japan, June 2-5, pp. 226-234. (p 30)

Skillicorn, D. & Cai, W. (1993), A Cost Calculus for Parallel Functional Program
ming, Technical Report, Queens University, Kingston, Canada. (pp. 207, 221)
U R L : ftp://ftp.qucis.queensu.ca/pub/skill/costcalculusll.ps.Z

Smirni, E., Merlo, A., Tessera, D., Haring, G. & Kotsis, G. (1995), Modelling Speedup
of SPMD Applications on the Intel Paragon: a Case Study, in HPCN’95 — High
Performance Computing and Networking, LNCS 919, Springer-Verlag, Milan,
Italy, pp. 94-101. (p 17)

Sodan, A. & Bock, H. (1995), Extracting Characteristics from Functional Programs
for Mapping to Massively Parallel Machines, in HPFC’95 — High Performance
Functional Computing, Denver, CO, USA, April 10-12, pp. 134-148. (p 182)
U R L : ftp: //sisal. llnl. gov/pub/hpfc/papers95/paper 14. ps

Sur, S. & Bohm, W. (1994a), Analysis of Non-Strict Functional Implementations of
the Dongarra-Sorensen Eigensolver, in ICS’94 — International Conference on
Supercomputing, Manchester, UK. (p 152)
U R L : http://www.cs.colostate.edu/~dataflow/papers/ics94b.ps.gz

ftp://csg-ftp.les.mit.edu/pub/papers/csgmemo/memo-381
ftp://ftp.qucis.queensu.ca/pub/skill/costcalculusll.ps.Z
http://www.cs.colostate.edu/~dataflow/papers/ics94b.ps.gz

Bibliography 261

Sur, S. & Bohm, W. (19946), Functional, I-Structure, and M-Structure Implemen
tations of NAS Benchmark FT, in PACT’94 — International Conference on
Parallel Architecture and Compilation Techniques, Montreal, Canada, pp. 47-
56. (p 153)
U RL: h t tp : //www. c s . c o lo s ta te .edu/~dataflow/papers/pact94b.p s .gz

Talpin, J.-P. & Jouvelot, P. (1992), Polymorphic Type, Region and Effect Inference,
Journal of Functional Programming 2 (3) , 245-271. (pp. 205, 212, 214)

Taura, K., Matsuoka, S. & Yonezawa, A. (1994), StackThreads: An Abstract
Machine for Scheduling Fine-Grain Threads on Stock Cpus, in Workshop on
Theory and Practice of Parallel Programming, LNCS 907, Springer-Verlag,
pp. 121-136. (p 176)
U RL: f t p : / / f t p . y l . i s . s . u-tokyo. a c . jp /pub /papers/-
j spp94-stackthreads-a4.p s .gz

Tick, E. & Zhong, X. (1993), A Compile-Time Granularity Analysis Algorithm and its
Performance Evaluation, New Generation Computing 11(3-4), 271-295. (p 225)

Tofte, M. (1988), Operational Semantics and Polymorphic Type Inference, PhD the
sis, University of Edinburgh. (p 192)
U RL: h t tp : //www. d iku. d k /u se rs /to f te /p u b l/th e s is -p a rtla n d 2 .ps

Traub, K., Culler, D. Sz Schauser, K. (1992), Global Analysis for Partitioning Non-
Strict Programs into Sequential Threads, in LFP’92 — Conference on LISP and
Functional Programming, San Francisco, CA, USA. (p 31)

Trinder, P., Hammond, K., Loidl, H.-W. h Peyton Jones, S. (1998), Algorithm +
Strategy = Parallelism, Journal of Functional Programming 8(1). (pp. xvii, 12,
90, 181, 233)
U RL: http://www.dcs .g la .ac .uk /~ hw lo id l/pub lica tions/stra teg ies .ps .gz

Trinder, P., Hammond, K., Loidl, H.-W., Peyton Jones, S. & Wu, J. (1998), Go-
faster Haskell; Or: Data-intensive Programming in Parallel Haskell, in IC FP’98
— International Conference on Functional Programming, Baltimore, MD, USA,
September 27-29. Submitted for publication. (pp. 79, 142, 154)

Trinder, P., Hammond, K., Mattson Jr., J., Partridge, A. &; Peyton Jones, S.
(1996), GUM: a Portable Parallel Implementation of Haskell, in PLDI’96 —
Programming Languages Design and Implementation, Philadelphia, PA, USA,
pp. 79-88. (pp. 35, 36, 41, 43, 46, 48, 55, 65, 96, 142)
U R L: f t p : / / f t p . d cs . glasgow. ac .uk/pub/glasgow -fp/authors/Philip_Trinder/-
gumFinal.p s .Z

Turner, D. (1979), A New Implementation Technique for Applicative Languages,
Software - Practice and Experience 9, 31-49. (p 27)

http://www.dcs

Bibliography 262

van Eekelen, M. & Plasmeijer, M. (1993), Process Annotations and Process Types,
in Term Graph Rewriting — Theory and Practice, John Wiley & Sons,
pp. 347-3(62. (p 182)
U R L : f t p : / / f t p . c s . kun. n l/pub/C SI/Sof twEng. FunctLang/papers/-
eekm93-Pi"ocesses&Types .ps .gz

van Groningen, J. (1992), Some Implementation Aspects of Concurrent Clean on
D istributed Memory Architectures, in IFL’92 — International Workshop on the
Parallel Implementation of Functional Languages, RWTH Aachen, Germany,
September 28-30. (pp. 37, 54)

Wadler, P. Sz Hughes, R. (1987), Projections for Strictness Analysis, in FPCA’87 —
Conference on Functional Programming Languages and Computer Architecture,
LNCS 2:74, Springer-Verlag, Portland, OR, USA, September 14-16, pp. 385-407.
(P 224)
U R L : h ttp: / / www.dcs .glasgow .ac .u k /~ w a d ler /p a p ers /s tr ic tp ro jec t/-
context. .p s

Wadler, P. (19»8S), Strictness Analysis Aids Time Analysis, in PO PL’88 — Sympo
sium on Principles of Programming Languages, ACM Press, San Diego, CA,
USA. (p 225)
U R L : fitp : / / f t p . d c s . g la . ac . uk/pub/glasgow -fp/authors/Philip_W adler/-
s tr ic t t i im e . dvi

Wadler, P. (19'98), The Marriage of Effects and Monads, Draft paper. (p 222)
U R L : h t tp : / /c m .b e l l- la b s . com /cm /cs/w ho/w adler/papers/effects/-
e f f e c t s .p s -gz

Wadsworth, C. (1971), Semantics and Pragmatics of the Lambda Calculus, PhD
thesis, Umiversity of Oxford. (p 27)

Warren, D. (1198-3), An Abstract Prolog Instruction Set, Technical report 309, SRI
International. (p 44)

Watson, I. (1988), A LAGER Execution Mechanism and Store Model, Internal Report
Version 2„ Department of Computer Science, University of Manchester, (pp. 39,
50, 162)

Watson, I. (1989), Simulation of a Physical EDS Machine Architecture, Technical
report, D epartm ent of Computer Science, University of Manchester. (p 54)

Watson, I. (1990), C-LAGER Definition, Internal Document EDS.UD.3I.M0004, Uni-
» versity of Manchester. (p 176)

Wegbreit, B. ((1975), Mechanical Program Analysis, Communications of the ACM
18(9), 528 -5 3 9 . (p 220)

http://www.dcs
http://cm.bell-labs

Bibliography 263

Winstanley, N. (1997), A Type-Sensitive Preprocessor for Haskell, in Glasgow Work
shop on Functional Programming, Ullapool, Scotland, UK, September 15-17.
Submitted for publication. (p 121)
U R L : http: //www.dcs.gla.ac.uk/~nww/Papers/GlaFP.ps. Z

Wolfram, S. (1988), Mathematica — A System for Doing Mathematics by Computer,
Addison-Wesley. (p 211)

Wu, J. & Harbird, L. (1996), A Functional Database System for Road Accident
Analysis, Advances in Engineering Software 26(1), 29-43. (p 79)

Zimmermann, W. (1990), Automatische Komplexitatsanalyse von funktionalen Pro-
grammen (Automatic Complexity Analysis of Functional Programs) (in Ger
man), PhD thesis, University of Karlsruhe. (p 221)

http://www.dcs.gla.ac.uk/~nww/Papers/GlaFP.ps

