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Abstract

This thesis demonstrates how to reduce the runtime of large non-strict functional
programs using parallel evaluation. The parallelisation of several programs shows
the importance of granularity, i.e. the computation costs of program expressions.
The aspect of granularity is studied both on a practical level, by presenting and
measuring runtime granularity improvement mechanisms, and at a more formal level,

by devising a static granularity analysis.

By parallelising several large functional programs this thesis demonstrates for the first
time the advantages of combining lazy and parallel evaluation on a large scale: laziness
aids modularity, while parallelism reduces runtime. One of the parallel programs is
the Lolita system which, with more than 47,000 lines of code, is the largest existing
parallel non-strict functional program. A new mechanism for parallel programming,
evaluation strategies, to which this thesis contributes, is shown to be useful in this
parallelisation. Evaluation strategies simplify parallel programming by separating
algorithmic code from code specifying dynamic behaviour. For large programs the
abstraction provided by functions is maintained by using a data-oriented style of
parallelism, which defines parallelism over intermediate data structures rather than

inside the functions.

A highly parameterised simulator, GRANSIM, has been constructed collaboratively
and is discussed in detail in this thesis. GRANSIM is a tool for architecture-independent
parallelisation and a testbed for implementing runtime-system features of the paral-
lel graph reduction model. By providing an idealised as well as an accurate model
of the underlying parallel machine, GRANSIM has proven to be an essential part of
an integrated parallel software engineering environment. Several parallel runtime-
system features, such as granularity improvement mechanisms, have been tested via
GRANSIM. It is publicly available and in active use at several universities worldwide.

In order to provide granularity information this thesis presents an inference-based
static granularity analysis. This analysis combines two existing analyses, one for
cost and one for size information. It determines an upper bound for the computation
costs of evaluating an expression in a simple strict higher-order language. By exposing
recurrences during cost reconstruction and using a library of recurrences and their
closed forms, it is possible to infer the costs for some recursive functions. The possible
performance improvements are assessed by measuring the parallel performance of a
hand-analysed and annotated program.
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Chapter 1
Introduction

After decades of claiming that functional programming languages are well suited for
implicitly-parallel execution, only a few systems have demonstrated this on a large
scale. The research towards efficient implementations has revealed many problems
in designing a parallel runtime-system that efficiently manages the generated paral-
lelism without overwhelming the machine with bookkeeping overhead. The limited
information provided by the programmer about the parallel execution of the program
necessitates very sophisticated, and very general, runtime-system techniques.

One of the major strengths of functional languages is their clear and simple declarative
semantics. From a compiler-design point of view this makes it possible to put theory to
some practical use. For example static analyses are easily developed, which provide,
at compile time, information about some runtime properties of the program. In
the maturing sequential compiler technology for functional languages these analyses
provide crucial information for program transformation steps, which represent the
backbone of compiler optimisations. For the parallel execution of functional languages
they can provide information to enable the runtime-system to manage the parallelism

more efficiently.

This thesis investigates how to statically extract information about the granularity of
potential parallel threads, i.e. the computation costs of these threads, and how to use
this information in the runtime-system. In evaluating the importance of granularity
for the efficiency of parallel program execution a set of large functional programs
is studied. It transpires that a combinator-oriented approach towards exposing po-
tential parallelism in the program leads to rather obfuscated code with intertwined
behavioural and algorithmic code. To remedy this shortcoming this thesis contributes
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to a programming technique for separating these two kinds of code. This technique
is used in the parallelisation of several programs, the largest of which consists of
more than 47,000 lines of Haskell, making it the largest existing parallel non-strict

functional program.

1.1 Parallel Lazy Functional Programming

Parallel computation offers an enticing picture of the performance that can be achieved
by the next generation of computers: no longer is the program required to run on only
one processor but it becomes possible to execute parts of the program on different
processors. This enables the programmer to reduce the runtime of a program further
by decomposing it into parallel components, either automatically or by hand. Poten-
tially, it offers scalability in the performance of multiprocessors: in order to speed-up

a machine it is only necessary to add new processors.

However, with most existing parallel programming models it is necessary to specify
explicitly the decomposition of the program into parallel threads, the order of thread
creation, the synchronisation, the communication between threads etc. In practice
this often requires significant restructuring or even recoding of a sequential program.
The root of this complication is the specification of an algorithm as a sequence of
operations performed on a global store in an imperative programming model. In
contrast, a declarative program does not specify such a sequence of operations. The
compiler and the runtime-system are free to choose different orders of operations, or
evaluation order, provided the semantics of the language is preserved. This opens up
the possibility for an implicitly parallel execution of a declarative program where the
programmer does not have to specify anything more than is needed for the sequential

execution anyway.
Our programming model is therefore a combination of three models:
e parallel programming to reduce runtime by executing a program on several pro-
cessors,

o functional programming to achieve a higher level of programming by abstracting

over operational aspects,
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e non-strict programming to increase modularity by decoupling control and defi-

nition.

The implementation model used in this thesis is parallel graph reduction. Section 2.3.1
discusses this model in more detail.

1.1.1 Parallel Programming

A parallel program reduces runtime by sharing the work to be done amongst many
processors. To achieve such a reduction in runtime several threads, independent
units of computation, are executed on different processors!. Introducing the concept
of threads means that mechanisms for generating threads, synchronising threads,
communicating data between threads, and terminating threads have to be established.
We term these aspects of the program execution the dynamic behaviour of a parallel
program. Clearly, the dynamic behaviour of a parallel program is significantly more
complex than that of a sequential program.

Many existing parallel programming languages require the programmer to explicitly
specify these aspects of parallel program execution. Objects specific to parallel exe-
cution, like semaphores and monitors, are used to describe synchronisation between
threads. Managing these new objects, however, adds a new dimension of complex-
ity to program development, for example the results of the parallel program might
become non-deterministic, and especially the design of robust large-scale parallel sys-
tems becomes a daunting challenge.

The approach towards parallel computation advocated in this thesis is to let most of
these resources be managed by the runtime-system in order to avoid the additional
complexity for the programmer to handle these resources explicitly. All the pro-
grammer has to do is to expose parallelism, i.e. to identify parts of the program that
may be usefully evaluated in parallel. This model is therefore termed one of semi-
explicit parallelism. Ideally a compiler should automatically partition the program
into parallel threads. If accurate strictness information is present this could be done
by generating a parallel thread for every strict argument of an expression. However,
the effects of different decompositions, or partitions, of the program into sequential

!We do not distinguish between complete heavy-weight threads, sometimes called tasks, and
light-weight threads that can only exist within a task.
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components are of special importance for the work presented in this thesis. Therefore
the programmer is required to expose the potential parallelism in the program. In
summary, our model offers the possibility of reducing the runtime by only exposing
potential parallelism and without explicitly managing the parallel threads.

1.1.2 Functional Programming

Functional languages, as well as other declarative languages, describe what to com-
pute without specifying the order in which to compute it. The exact evaluation order
is only loosely defined by the data dependencies between expressions in the program.
The compiler can choose any evaluation order of independent expressions. In par-
ticular, they can be evaluated in parallel. The semantic property that allows such a
flexibility in the evaluation order is referential transparency, stating that the result
of an expression does not change if a subexpression is replaced by another expression
with the same result. For formal reasoning this allows to use the technique of replac-
ing equals for equals. In the context of parallel computation this allows the compiler,
or the runtime-system, to choose various orders of evaluation and to change them

dynamically.

Based on this property of functional languages it is easy to implement a naive au-
tomatically parallelising compiler. For example, all strict arguments of a function
call as well as the function body itself can be evaluated in parallel. However, the
problem with this approach is the management overhead related to the vast amount
of parallelism generated. Often the generated threads are too short to warrant an
execution by a parallel thread altogether. Therefore, much effort has been put into
increasing the length of these threads, which increases their granularity because each

thread performs more computation.

This thesis studies how to increase the granularity of the generated threads and
thereby improve the performance of the parallel program. A compile-time approach
is taken, in which information about the granularity of potential parallel tasks is
inferred at compile-time and forwarded, via automatically inserted annotations, to the
runtime-system, which then uses this information in order to decide whether a parallel
thread should be generated. This design naturally splits into one static component
for inferring computation costs, a granularity analysis, and one dynamic component
for using this information, granularity improvement mechanisms. It should be noted
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that the use of compile-time information from a static analysis does not amount to
a static partitioning of the program. In our model the runtime-system is free to
ignore parallelism. Thus, it is possible that different pieces of code that have been
marked for parallel execution are actually merged into one thread by the runtime-
system. In summary, we focus on functional languages because the lack of an explicit
evaluation order specified in a program gives the compiler and the runtime-system a
high degree of freedom in choosing a specific evaluation order. Although the use of
implicit parallelism is not the immediate goal, this work makes some progress towards
this long term goal.

1.1.3 Lazy Programming

An algorithm in a declarative language describes a property rather than a procedure.
Executing the algorithm amounts to finding a solution for the property specified. This
approach can be taken further to the level where values are bound to variables. The
operational meaning of such a binding is to evaluate the expression. The declarative

meaning, however, only identifies a variable with a value.

The idea of lazy evaluation, or more precisely of non-strict languages, is to decouple
denotational definition from operational control. Defining the value of a variable does
not mean that the definition has to be evaluated immediately. The definition only
describes a property between a variable and a value in the program. The evaluation
degree and the evaluation order are defined by the data dependencies in the program.
This enables the reuse of the same variable in many different contexts, which examine
different parts of the value. Thus, abstracting this control aspect out of the algorithm

increases the modularity of programs.

There is an obvious tension between the goal of lazy evaluation, to abstract over
control aspects of the code, and parallel computation, to enforce a parallel control
structure of the code. Lazy evaluation tries to evaluate as small a portion of the result
as possible, whereas parallel computation aims at generating independent threads of
some minimal size. In order to achieve good parallel performance this means that
at some places it may be necessary to specify how far a data structure should be
evaluated, i.e. to specify its evaluation degree. Still, lazy evaluation is valuable for
modular program design because this evaluation degree can be specified separately
from the definition of the data structure itself. This encourages a data-oriented style of
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parallel programming, i.e. a style where the parallelism is specified over intermediate
data structures rather than in the modules that generate these data structures. In the
programming technique the parallel programming group at Glasgow has developed,
evaluation strategies, this style of programming has proven to be extremely useful for

large parallel programs.

The high degree of modularity provided by lazy languages is particularly important
for the design of large programs. Furthermore, extremely time consuming programs,
which would profit most from a reduction in runtime provided by parallel compu-
tation, are typically very large. Therefore, it is important that the language for
parallelising the program supports modularity. Otherwise the gain in performance
would have been bought with a loss in maintainability. In summary, the use of lazy
evaluation decouples definition from control. This aides modularity and code re-use
in a sequential model of computation. In a parallel model it also aides top down
parallelisation of big programs by using data-oriented parallelism over intermediate
data structures.

1.1.4 Relationship to Other Approaches for Parallel Pro-

gramming

The approach towards parallelism taken by functional languages is in stark contrast
to that taken by High Performance Fortran (HPF) (Rice 1993) and other parallel
extensions of imperative languages. In parallel functional programming the program-
ming language itself is unchanged. However, at certain points additional information
is added to the program and used by the parallel runtime-system. This additional
information only represents hints to the runtime-system that may be ignored rather
than directives that must be obeyed. Therefore, the annotations do not change the
semantics of the program. These annotations are in some sense analogous to regis-
ter declarations in imperative languages that allow the programmer to add valuable
operational information to the program but can be ignored by the compiler. It is inter-
esting to note that many of these annotations, like register declarations, are nowadays
rarely used and that most of the time automatic register allocation performed by the
compiler is perfectly satisfactory for the programmer. Clearly, this state has not yet
been achieved with parallelism annotations for functional languages. But the distinc-
tion between functional language features and operational annotations for parallelism
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enables a similar approach.

In contrast, parallel programs written in HPF-like languages aim at a near optimal
usage of parallel machine resources. In doing so, they reveal low-level machine details
and allow the program to specify details of the program execution leading to highly
machine specific programs. As a result abstractions over primitive low-level constructs
are evolving in the same way as high-level programming language constructs evolved

out of common patterns of low-level instructions.

Based on these differences in the language design we consider parallel functional lan-
guages to be most useful for achieving moderate speed-up with only minimal changes
in the code. Hopefully the necessary changes in the code that are still needed today
can be reduced to zero with further progress towards implicit parallelism. HPF-like
languages are more appropriate for applications in the supercomputing area where it
is feasible to spend large programmer effort in restructuring code in order to get near
optimal performance. However, we believe that the programming techniques used in
our model, like data-oriented parallelism via non-strict data structures, can also be
applied for this kind of languages in order to build high-level abstractions for certain

kinds of parallelism.

1.2 The Dynamic Behaviour of Parallel Programs

The main reason for the complexity of writing parallel programs is the complex dy-
namic behaviour generated by a set of cooperating threads. In addition to the cor-
rectness of the sequential pieces of computation the timing of communication has to
be considered in order to avoid deadlock situations and to guarantee both correct-
ness and termination of the parallel program. Furthermore, the performance tuning
of a parallel program requires a fine balance between several competing goals like
creating many threads to use idle time of processors during the computation and
limiting the number of generated threads to limit the bookkeeping overhead for the

runtime-system.

Many parallel languages allow the programmer to control all these aspects of the
dynamic behaviour. In our model, however, almost all of these details are hidden by
the runtime-system. This design decision is based on the observation that the pro-

grammer is often overwhelmed with the complexity of writing a parallel program and
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explicitly managing the dynamic behaviour. In order to make such an semi-explicit
approach feasible, the runtime-system has to make sophisticated decisions on how to
manage the parallelism. For example, in our model the creation of parallel threads
is based, to some extent, on the current load of a processor. The communication
between threads is implicitly performed via reading and writing shared structures.
The only extension necessary for specifying the parallelism in the program is a com-
binator that ezposes parallelism called par. However, in order to get a more detailed
control over the partitioning of the program into parallel threads it is often neces-
sary to specify the evaluation order in an expression. This is done via adding seq
combinators. Ideally, both kinds of combinators could be inserted into the program
by an automatically parallelising compiler. However, first efficient runtime-system
techniques to manage the parallelism have to be devised. The long term goal of this
work is to automate this process of adding annotations describing the parallelism in
the program.

One of the aspects of the dynamic behaviour is the granularity of a computation. By
the granularity of a program expression we mean the computation costs of evaluating
this expression. The inefficiency of fine-grained threads lies in the fact that they spend
most of their computation on parallelism overhead like generating the thread or com-
municating with other threads. Historically, this has proven to be a severe problem
for machines like ALICE (Darlington & Reeve 1981) and runtime-systems based on
both graph-reduction (Hammond & Peyton Jones 1992, Hammond et al. 1994) and
dataflow (Arvind & Nikhil 1990, Shaw et al. 1996). In order to mitigate this prob-
lem the programmer often tries to increase the granularity of the generated threads
in the performance tuning stage of parallel program development. One goal of this
thesis is to investigate how this process can be automated using statically-extracted
information about the granularity of the generated threads. This information is used
in the runtime-system to improve the performance of the parallel program without
further information provided by the user.

This thesis studies granularity as one of the most important aspects of the dynamic
behaviour of parallel program execution. However, it is, of course, not the sole impor-
tant aspect of the dynamic behaviour. For example, the communication behaviour of
the runtime-system determines the size of the graph structures that are sent within
one unit of communication, determining the granularity of the communication. We
have previously studied different fetching schemes in order to reduce the total commu-
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nication overhead (Loidl & Hammond 19965). Similarly, the scheduling mechanism
is important to hide latency in a system involving a lot of communication. The data
locality is an important property, which deserves further study, too.

1.3 Static Information about Dynamic Behaviour

One of the attractive features of functional languages for compiler optimisations is
the fact that due to their clear semantic properties a lot of information about the
program’s dynamic behaviour can be inferred statically. The most important example
of such a static analysis is strictness analysis, which detects expressions in a non-strict
program that can be evaluated eagerly, and therefore more cheaply, without violating
the semantics of the program. State-of-the-art compilers for non-strict functional
languages like the Glasgow Haskell Compiler (GHC) (Peyton Jones et al. 1993, Peyton
Jones 1996) heavily rely on the information provided by these analyses to perform a
sequence of meaning preserving program transformations that improve the efficiency
of the program.

Such statically-inferred information can also be exploited for parallel computation.
However, because of the different dynamic behaviour of a parallel program additional
information about the program execution is required. This thesis focuses on the
aspect of granularity and presents a static granularity analysis, which is able to give an
estimation of the computation costs of evaluating program expressions. Providing this
additional information to the parallel runtime-system is an important step towards
truly implicit parallelism for functional languages.

One important difference to classical analyses like strictness analysis, however, is the
fact that granularity analysis has to infer information about an intensional prop-
erty of the program execution. It can therefore be only correct with respect to an
instrumented semantics, which itself models the property of interest. In this case
computation costs are modelled as computation steps and inferred as an estimate for
an upper bound. This indirect way of extracting information affects the quality of the
result. However, in contrast to strictness analysis wrong granularity information will
not affect the semantics of the generated program but only its performance. Therefore
it is possible to design an analysis that sometimes makes guesses about computation
costs.
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Figure 1.1 Possible structure of a parallelising compiler

Figure 1.1 summarises a possible overall structure of a parallelising compiler. The
front end of the compiler translates the input program into an intermediate language,
called £. This language is designed to be simple in order to ease later analysis and
program transformation stages, operating on this language. The program transfor-
mation stages, which present the main part of the compiler, perform program optimi-
sations and make use of the information provided by various static analyses such as
granularity analysis to obtain information about the evaluation costs of program ex-
pressions. In the programming model used in this thesis parallelism annotations have
to be present in the input program already. The program transformations can then
add further information to the existing annotations. However, at this stage enough
information is available to automatically insert parallelism annotations, if the goal
is implicit parallelism. Finally, the code generation stage of the compiler produces
a parallel executable. In the setup used in this thesis the parallel executable will
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be machine independent by using a runtime-system that hides details of the parallel
architecture. As a further optimisation it would be possible to generate specialised
code for particular parallel machines. The granularity improvement mechanisms that
are developed in this thesis then make use of the additional granularity information
attached to sparks and threads to make better scheduling decisions based on this

additional information.

In summary, this thesis focuses on the parallel execution of non-strict functional
programs that are annotated in order to expose potential parallelism. A parallel
graph reduction model is used to implement the parallel execution of the program.
In particular, this thesis tackles two parts in the structure shown in Figure 1.1: the

granularity analysis and the granularity improvement mechanisms.

1.4 Contributions

This section gives a list of research contributions made in this thesis. A more detailed
discussion of the contents of the contributions with a separation of the authorship of

parts in the contributions is given at the end of the thesis in Section 7.2.

1. Parallelisation of large lazy functional programs (Loidl & Trinder 1997): This
thesis demonstrates how to combine the advantages of lazy evaluation, in par-
ticular modularity, and of parallel evaluation, namely reduced runtime, on a
large scale. In the parallelisation of a set of large algorithms the modularity
provided by lazy evaluation helps to minimise the code changes required to im-
prove the parallel performance of the program. The implementation includes
both the design of parallel functional algorithms, such as LinSolv, as well as par-
allelising existing code, such as Lolita. With more than 47,000 lines of Haskell
code Lolita is the largest existing parallel non-strict functional program. The
programs demonstrate a crucially important aspect of strategic programming
in the large, namely the separation of behavioural from algorithmic code.

2. Highly parameterised, accurate simulator (GRANSIM) (Hammond et al. 1995):
The collaboratively developed GRANSIM simulator is of use for architecture-in-
dependent parallelisation as well as a testbed for the implementation of specific
runtime-system features. Its robustness has been tested with large parallel ap-
plications. By being highly parameterised it is very flexible in the parallelisation
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and tuning of functional programs. By being accurate and closely related to
the parallel GUM runtime-system it encourages prototype implementations of
specific runtime-system features. GRANSIM has been integrated into an engi-
neering environment for parallel program development in order to facilitate the
development and performance tuning of large programs. A set of visualisation
tools has proven crucial for understanding the dynamic behaviour of GRANSIM
and GUM programs. Primary contributions to GRANSIM made in this the-
sis include the design of the communication system, the implementation of an
idealised simulation, and the integration of GRANSIM into GHC.

Use and refinement of evaluation strategies (Trinder et al. 1998): This thesis
contributes to evaluation strategies by adding strategic function application and
by providing some of the first uses of strategies. The latter in part drove the
design of the current version of strategies. Strategic function application has
proven very useful in large parallel applications such as Lolita. In particular,
it supports data-oriented parallelisation, which achieves high modularity by
decoupling the definition of a function from the specification of its parallelism.

A static granularity analysis (Loidl & Hammond 1996a): A granularity anal-
ysis for inferring upper bounds of computation costs in a simple strict higher-
order language, based on existing analyses (Hughes et al. 1996, Reistad &
Gifford 1994), is presented. The analysis is formulated as a subtype inference
system. A detailed outline of an implementation is given and an extended cost
reconstruction algorithm is developed. The analysis has not been implemented
but measurements with a hand analysed program allow some assessment of the
importance of the inferred information.

Implementation and measurement of runtime-system features to improve paral-
lel performance: (Loidl & Hammond 1995): This thesis discusses several gran-
ularity improvement mechanisms the author has implemented in GRANSIM.
Measurements studying their impact on the parallel performance of a set of test
programs are provided. As a result moderate improvements in performance have
been achieved for programs that are annotated with granularity information.

In addition to the major contributions above this thesis also makes less significant con-

tributions towards a comparison of imperative and functional parallel programming by
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presenting results from parallel imperative implementations of three computer alge-
bra algorithms in Section 4.7. Chapter 2 gives a detailed survey of several techniques
for the parallel implementation of functional languages, going beyond the issues ad-
dressed in the main part of the thesis, and Sections 5.7 and 6.7 survey alternative
approaches for improving granularity and for designing analyses extracting granularity
information, respectively. In the examination of large programs other runtime-system
aspects of the parallel execution of lazy functional programs have proven important.
Different packing and rescheduling schemes have been implemented in GRANSIM, ad-
dressing the issue of efficient communication in a parallel graph reduction system (see
Section 3.3.1). Details of the implementation and various measurements are presented
elsewhere (Loidl & Hammond 1996b).

1.5 Thesis Structure

The structure of this thesis is as follows.

Chapter 2 gives a survey of various approaches towards a parallel implementation
of functional languages. In particular, this chapter describes details of the parallel
graph reduction model that is used in this thesis and its relationship to other execution
models. The discussion distinguishes key runtime-system issues for parallel program
execution: the evaluation model, the storage management model, the communication
model, and the load distribution mechanism.

Chapter 3 gives a detailed description of the GRANSIM simulator that is developed
in this thesis. GRANSIM is a flexible and accurate simulator for the parallel execu-
tion of Haskell programs. It supports both an idealised simulation and an accurate
simulation modelling the characteristics of a particular architecture. In parallelising
a set of large Haskell programs GRANSIM has been extensively used for developing
and tuning the parallel code. In later chapters GRANSIM will be used as the platform
for measurements on granularity.

Chapter 4 discusses the parallelisation of several large lazy functional programs.
This chapter first presents evaluation strategies, which have been developed in a group
effort. Then three programs are discussed in detail: a parallel Alpha-Beta search
algorithm, highlighting the interplay between lazy and parallel evaluation, LinSolv,
a symbolic computation algorithm using infinite intermediate data structures, and
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Lolita, a large natural language engineering system.

Chapter 5 focuses on the aspect of granularity for the dynamics of parallel program
execution. For a set of programs the granularity of the generated threads is measured.
It is shown that by increasing the granularity the performance of the programs can
be improved. Three different granularity improvement mechanisms are discussed and
measured: explicit thresholding, priority sparking, and priority scheduling.

Chapter 6 presents a static granularity analysis for a simple strict functional lan-
guage. This analysis infers an upper bound for the number of computation steps
needed to evaluate a program expression. The analysis is developed as an inference
system together with an analysis for the size of program values. A detailed out-
line of a possible implementation is given, combining two existing analyses. Finally, a
small test program is hand-analysed and the resulting annotated program is measured
showing some performance improvements.

Chapter 7 draws conclusions from the presented approach towards improving the
performance of parallel lazy functional programs. It evaluates the importance of a
structured approach towards program parallelisation, in particular for the perfor-
mance tuning stage of parallel program development. And it identifies areas of future
work, in particular for achieving the long term goal of truly implicitly parallel execu-

tion of functional programs.



Chapter 2

The Parallel Implementation of

Functional Languages

Capsule

This chapter discusses several approaches towards a parallel implementa-
tion of functional languages. It starts with motivating the use of functional
languages for parallel programming. Then it presents the basic ideas of pop-
ular models for the implementation of functional languages and evaluates how
easily parallel evaluation can be expressed in these models. The main part
of this chapter focuses on critical runtime-system issues and outlines several
efficient implementation techniques. The following runtime-system issues are
examined:

e the evaluation model,
e the storage management,
e the communication model, and

load distribution.

In this thesis a parallel graph reduction model is used. The mechanisms for
implementing the above runtime-system issues in this model are compared with
possible alternatives. The overall discussion is based on an implementation on

stock hardware rather than specialised hardware for functional programming.

15
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2.1 Introduction

In assessing the quality of various kinds of programming languages the requirement
of parallel execution usually complicates the language and therefore diminishes its
value for large-scale program design. Not so with functional languages! The higher
level of abstraction, compared to imperative languages, decouples the semantics of
the language from operational considerations such as sequential or parallel evaluation.
In particular the referentially transparent nature of functional languages allows var-
ious different ways of evaluating an expression. However, implementing an efficient
system for parallel functional programming, consisting of an optimising compiler and

a flexible runtime-system, has proven to be quite difficult.

Functional languages and their implementation have a rather long history. Whereas
early models for implementing functional languages were defined on a rather low
level, e.g. the SECD machine (Landin 1964), more recent models such as the graph
reduction and the dataflow models present a far higher level of abstraction, allowing
parallelism to be expressed naturally in this framework. However, when implementing
such a model many runtime-system issues have to be tackled. The core of this chap-
ter deals with the efficient implementation of these runtime-system issues on stock
hardware. We do not consider special purpose hardware since the development on
parallel hardware during the last years has shown a clear focus on general purpose

machines.

The structure of this chapter is as follows. Section 2.2 discusses how functional
languages can express parallelism in general, and which kind of model is used in this
thesis. Section 2.3 outlines several models for implementing functional languages and
evaluates how easily parallel evaluation can be expressed in these models. Section 2.4
focuses on key issues of the runtime-system for the efficient parallel implementation.
Section 2.5 puts our model into the context developed thus far. Finally, Section 2.6
summarises aspects of our implementation model that have to be addressed in order
to construct an efficient parallel evaluation of functional languages.

2.2 Principles of Parallel Functional Languages

This section discusses why functional languages are a good vehicle for writing parallel
programs. It discusses some semantic issues that have an important impact on the
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parallel behaviour of the program, and connects them with runtime-system issues

discussed in more detail in subsequent sections.

2.2.1 Why are Functional Languages Good for Parallelism?

With the advent of parallel machine architectures and their promise of far higher
performance than it is possible for conventional architectures, the design of languages
for parallel computation has become an important research topic. A key aspect in the
design of parallel languages is the way that the parallel execution is described. Im-
perative languages traditionally extend the sequential model with explicitly handled
threads to describe independent pieces of computation and messages to communicate
data between these threads. If these notions remain visible to the programmer he
has to cope with issues like possible deadlocks in the computation, the partitioning
of the computation into components, and the placement of these computations onto
the processors of the parallel machine. This adds a new dimension of complexity to
the design of a parallel algorithm and distracts from the mathematical properties of
the algorithm like its correctness.

Another approach, which restricts the generality of this message passing style of com-
putation, has recently become extremely popular: synchronous parallel computing.
The two best known models in this class are BSP (McColl 1996) and SPMD (Smirni
et al. 1995). The idea in these models is to synchronise all communication in the sys-
tem by either alternating between supersteps of computation and communication, or
by using an implicit barrier for finishing all communication. This restriction enforces a
certain structure of the parallel program. However, it also facilitates the performance
evaluation of the program. Furthermore, the basic communication operation in these
models, namely broadcast, can be implemented very efficiently on the latest parallel
hardware. Here hardware realisation and programming model go hand in hand, simi-
lar to the success of RISC machines for sequential computation. However, usually the
programmer still has to handle explicit threads and messages, which complicates the
parallel program significantly compared to the sequential model. This thesis focuses
on a higher-level approach of parallel programming, hiding most of these aspects in
the runtime-system. It is, however, still possible to re-use existing lower-level code

for specialised tasks.

In contrast, functional languages provide a higher level of abstraction by only speci-
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fying what to compute without specifying a sequence of instructions describing how
to compute the result. As a result functional languages are referentially transparent,
which implies that independent parts of the program can be evaluated in parallel.
Thus, the language does not necessarily need to be extended to deal with parallel
evaluation. In principle, the problem of parallelising an algorithm can be reduced to
the problem of reducing data dependencies in the program — something that can be
done via source-to-source program transformations in much the same way as program
optimisations in sequential compilers. Reasoning about the correctness of such trans-
formations is no more difficult than for standard transformations used in sequential
optimising compilers. Furthermore, parallelism based on functional languages yields
a deterministic result, and it is guaranteed to be the same result as in the sequential
execution. There is no danger for deadlock in such a model, unless a program runs

out of resources.

Of course, the higher level of abstraction also imposes some overhead on the execution.
Therefore, an optimised parallel algorithm using lower level features like an imperative
computation model and message passing for communication will usually result in a
better performance of the algorithm. However, especially for large programs it is

extremely difficult to work at such a low level of abstraction.

2.2.2 The Role of Strictness

This section discusses fundamental semantic properties of functional programming
languages and their impact on the sequential and parallel evaluation of such languages.
It focuses on strictness as the most important of these properties.

Definition of Strictness

One important semantic property of a programming language is the strictness of
user defined functions. A function is strict if its result is undefined, whenever the its
argument is undefined. A non-strict language is a language that permits the definition
of non-strict functions. More formally, a function f is strict if and only if

FlL =1
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where L represents an undefined result (e.g. caused by a failing or non-terminating
computation). A discussion of strictness is given for example in (Field & Harrison
1988)[Chapter 4].

One important advantage of non-strict over strict parallel languages is the ease of
expressing producer/consumer parallelism in the former. In particular the coroutine
nature of lazy evaluation avoids a barrier synchronisation between the producer and
the consumer process. Following the terminology of Goldberg (1988a) this means,
it is easy to express wvertical parallelism, i.e. parallelism between a function and its
argument, in a non-strict language. In contrast, strict languages tend to rely more on
horizontal parallelism, parallelism between different arguments, which evaluates the
arguments of a function in parallel. It should be noted that this form of parallelism
can also be used in non-strict languages, namely for those argument positions in
which the function is strict. A separate strictness analysis is needed to determine
which arguments can be safely evaluated before the function itself is called.

In order to use a parallel function application, strictness information on user defined
functions is needed, which ensures that creating parallel threads for each argument
satisfies the non-strict semantics of the program. The resulting parallelism is called
conservative parallelism, i.e. the values of all parallel threads are known to be needed
in the computation. If non-strict arguments are evaluated in parallel, too, specula-
tive parallelism is generated. Dealing with this kind of parallelism complicates the
underlying evaluation model because it must be ensured that no process consumes
all available resources and it should be possible to terminate processes. However, if
this is guaranteed on runtime-system level then the parallel evaluation of all argu-
ments in a function call satisfies the non-strict semantics, too. Although speculative
parallelism is an important issue for parallel functional languages, it is not directly
related to the main runtime-system aspect this thesis is investigating: granularity.
Therefore, this thesis does not give an exhaustive survey of this particular branch of
the field.

Evaluation Mechanisms

This section briefly discusses possible evaluation mechanisms for functional languages.
These definitions build on top of the notion of reduction in the lambda-calculus
(Church 1941) and delta-reduction for built-in rules like basic arithmetic. The termi-
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nology of this chapter follows (Field & Harrison 1988)[Chapter 6].

Definition 1 (redex) A redex (reducible ezpression) is an expression that can be
reduced according to the rules of lambda-calculus or delta-reduction.

Intuitively, a redex is an expression that can be immediately evaluated. To be more
precise about the degree of evaluation several different normal forms can be distin-
guished.

Definition 2 (weak head normal form) An ezpression is in weak head normal
form (WHNF) if, and only if, it is a constant or if it is of the form

fe ... e forsome0<n<arity of f

where f is either a data constructor or function (primitive or user defined).

Intuitively, evaluating an expression to weak head normal form means evaluating only
the top level constructor. The expressions e; ... e, may still contain redexes.

Definition 3 (normal form) An ezpression is in normal form if it does not contain

any redezes.

An expression in normal form matches the intuitive notion of a value in the language.
In an expression, which is not in normal form, the leftmost redex is the redex textually
left to all other redexes and the outermost redex is the redex not contained in another
redex. Based on these definitions and the two normal forms above it is possible to
specify the reduction order yielding the two main evaluation mechanisms used in this
thesis.

Definition 4 (eager evaluation, call-by-value) An eager evaluation mechanism
chooses in every reduction step the leftmost innermost redex and reduces it to weak
head normal form.

Definition 5 (lazy evaluation, call-by-need) A lazy evaluation mechanism chooses
in every reduction step the leftmost outermost redex and reduces it to weak head nor-
mal form. When substituting ezpressions for arguments no ezpression is duplicated,

but they are shared in the reduced expression.
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The evaluation transformer (Burn 1987, Burn 1991b) approach for automatic par-
allelisation defines a whole set of such evaluation mechanisms, which are tuned to
the strictness of the result that should be computed in the given context. It uses
detailed strictness information obtained by a sophisticated strictness analysis to de-
termine, given the demand on an expression, how far the components of the expres-
sion have to be evaluated. Thus, all components can be safely evaluated in parallel
to the degree determined by the evaluation transformer. However, this requires the
generation of several variants of the code for each function, specialised to the partic-
ular context in which it is used. This approach has been used by Burn (1991a), in
the distributed-memory HDG machine (Kingdon et al. 1991), in the PAM machine
(Loogen et al. 1989), in Rushall’s parallel implementation of the Spineless G-machine
on top of a virtual shared-memory KSR1 machine (Rushall 1995), and in the shared-
memory EQUALS system (Kaser et al. 1997).

Beyond Strictness

In order to preserve the semantics of the program, strictness information is needed
for implicit parallelisation in order to decide which arguments can be safely evaluated
in parallel. However, more information about dynamic properties of the program is
useful in order to extract efficient parallelism. In particular, granularity informa-
tion, i.e. information about the size of a computation, is needed in order to decide
whether it is worth paying thread creation and synchronisation overhead for comput-
ing an expression in parallel. This question is discussed in detail in later chapters.
Chapter 5 shows that too fine granularity can deteriorate parallel performance and
develops runtime-system mechanisms to increase granularity. Chapter 6 presents a
granularity analysis for a simple strict, higher-order language to estimate the costs of

an evaluation.

2.2.3 Language Support for Parallel Programming

The previous section has shown that it is possible to automatically parallelise a func-
tional program by executing all strict arguments of a function call in parallel. Shar-
ing and granularity information, if available, can be used to determine whether it is

worthwhile creating a thread for a computation.
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However, developing these analyses is a non-trivial problem. In fact, part of this
thesis is devoted to the development of a simple granularity analysis for a small strict
functional language. In the absence of a compiler that can automatically detect
parallelism it is useful to make the information about potential parallelism and the
size of the computation explicit in the language. In contrast to models of explicit
parallelism, the sparking model used in this thesis only needs constructs for ezposing
parallelism. Creation of threads, synchronisation, and communication are all implicit
in this model. Therefore, we call this a model of semi-explicit parallelism.

This section first discusses some features of lazy functional languages, which are of
importance for the rest of this thesis. Then the basic constructs for parallelism in
this language are described. Finally, a comparison with other approaches towards
language support for parallel computation is given.

Lazy Functional Programming

This section highlights the most important features of lazy functional languages that
are of relevance for this thesis. An excellent general discussion of lazy functional

programming is given in Bird & Wadler (1988).

A lazy evaluation mechanism, as defined in the previous section, will only evaluate an
expression, if its value is required in the computation. This results in a demand-driven
order of evaluation. An obvious advantage of this mechanism is that no unnecessary
expressions will be evaluated. Another, even more important, aspect is the fact that
the definition of a result is separated from its evaluation. Thus, it becomes possible
to describe details of the evaluation, such as parallelism, without modifying the code
that defines the result. This feature plays a crucial role in our technique for large-scale
parallel programming and will be elaborated in detail in Section 4.3.

A very powerful feature provided by most functional languages is the availability of
higher-order functions, i.e. functions that take other functions as arguments or that
return a function as a result. Such higher-order functions can be used to express com-
mon patterns of computation. For example the Haskell prelude function map performs
the same operation, given as a first argument, to every element of a list, given as the
second argument. In the context of parallel computation, higher-order functions are
a natural choice for expressing parallel behaviour. Indeed, our parallel programming
technique makes heavy use of higher-order functions. However, in contrast to related
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approaches such as skeletons (Cole 1989), the parallelism is not restricted to a fixed
set of higher-order functions.

Functional languages offer powerful constructs operating on algebraic data types. This
encourages the construction of elaborate data structures such as lists or trees, which
are best fit for expressing a certain algorithm. This facility is of particular impor-
tance in the area of symbolic computation where the data is typically non-numeric
and highly-structured. With algebraic data types pattern matching is often used to
simultaneously check the structure of a data item and to bind components to names.

For example the aforementioned map function is defined as follows in Haskell 1.2:

map i1 (@ => b) > [a] -> [b]
map f [] =[]
f x : map f xs

map f (x:xs)

The first line specifies the type of the function, which is useful for documentation of
the code and as additional information for the compiler. In this case type variables
a and b are used, to express that map is a polymorphic function, which can operate
on any list provided the domain of the function f has the same type as the elements
of the list provided as second argument. The result type will be a list with elements
of the same type as the codomain of the function f. Note that all type variables are
universally quantified to achieve this kind of polymorphism.

The next two lines perform pattern matching on the list argument. If this argument
is non-empty it is constructed via the : operator with the arguments x and xs, which
are used on the right hand side of the definition. Note that, because £ is a function,
map is a higher-order function. With this definition map can be used to translate all
characters in a string into upper case characters via map toUpper '"hello". Being
polymorphic it can be also used to, e.g. count the elements of all sub-lists in a given
list of lists via map length [[1],[1,2],[1,2,3]].

The above examples used Haskell prelude functions such as toUpper c for translating
the character c into an upper case character and length xs, for computing the length
of the list xs. Some other basic prelude functions that will be used in this thesis are
take n xs for returning the first n elements of the list xs, filter p xs for returning
a list of all elements of xs for which the predicate p evaluates to true, and foldl f z
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xs for combining, from left to right, all list elements of xs with the binary operator
f, using z as the start value. The construct xs!!n extracts the n-th element from the
list xs, and £$x applies the function f to the argument x (this construct is useful in
a sequence of nested function applications in order to avoid nested parenthesis).

GrH

This thesis uses GPH as a parallel functional programming language. GPH is an
extension of the non-strict, purely functional programming language Haskell (Peterson
et al. 1996). It is augmented with sequential and parallel combinators.

Sequential Combinator: The seq operator specifies the order of evaluating two
expressions. The operational semantics of the expression el ‘seq‘ e2 is as follows:
first evaluate the expression el then the expression e2. Both are evaluated to WHNF.
It is an asymmetric combinator of type seq :: a -> b -> b, which returns the
second argument as a result, i.e. the denotational semantics of seq is

seq Ll e = L
seqe; e = ey if eg# L

Parallel Combinator: The par operator introduces parallelism in the language.
It also has the type par :: a -> b -> b. The operational semantics of the expres-
sion el ‘par‘ e2is as follows: first record that el can be evaluated in parallel then
evaluate e2. We christen the operation of recording the possibility of parallel evalu-
ation to spark an expression. It is important to note that this is very different from
creating a thread for evaluating the expression. Sparking an expression can be done
very cheaply. In our model a pointer to an unevaluated expression is put into a spark
pool, a special data structure maintained by the runtime-system. Furthermore, the
sparking model defers the decision whether to create a thread or not to a later time.
Details of these runtime-system issues are discussed in detail in Section 2.4. The
denotational semantics of par is

par e; e; = e

Note that seq is strict in its first argument, whereas par is non-strict in both argu-

ments.
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Extensions of GPH

One important aspect of the work in this thesis is to propagate information about
the program’s behaviour to the runtime-system. The par construct can be seen as a
way to propagate information about potential parallelism to the runtime-system. To
give the programmer the possibility of specifying additional information about the
parallel processes, several lower level constructs are provided. They take additional
arguments and propagate this information to the runtime-system. The denotational
semantics of these constructs is the same as for par.

Global Parallelism: The additional arguments in a parGlobal n g s p x y ex-
pression have the following meaning: n is the name of the spark, g represents the
granularity of the computation, s represents the size of the result and p represents
the degree of parallelism created during the evaluation of the expression. The latter
is an estimate on the number of sparks generated in the expression x. All of these

arguments are integers.

The GRANSIM simulator discussed in Chapter 3 currently only uses the information
in the n and g fields. The former helps to distinguish sparks from different static spark
sites. The latter is the main piece of information that is exploited via the granularity
control mechanisms described in Section 5.5.

Local Parallelism: The parLocal construct, which takes the same arguments as
parGlobal, enforces that the thread for the sparked expression, if it is created, will
be started on the same processor where it was created. However, since the runtime-
system may use thread migration, this does not mean that the thread has to remain
on that processor throughout its computation. The main purpose of this construct is
to improve data-locality between sparks that operate on the same data.

Thread Placement: The parAt construct is a generalisation of parLocal. It re-
quires the thread to be generated on a specific processor, specified by an integer value.
This assumes that the names of all processors form a sequence from 0 to some integer
value n. This is an experimental feature that has been used in one parallel algorithm

so far.
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Other Approaches

The semi-explicit approach for describing parallelism, which is used in this thesis,
defers most of the control of the parallelism to the runtime-system. On the language
level it is only necessary to provide constructs that expose parallelism. In the range
from implicit to explicit models of parallel computation our model is therefore close
to the implicit end. The following discussion locates the models that are discussed in
more detail in this chapter on this range from implicit to explicit parallelism.

Some examples of fully implicit models are dataflow languages such as Id (Nikhil
1989), pH (Aditya et al. 1995) and SISAL (B6hm et al. 1991), evaluation transform-
ers (Burn 1987), and data parallel languages such as NESL (Blelloch 1996). Algo-
rithmic skeletons (Cole 1989) provide a set of higher-order functions with built-in
parallelism. Therefore, the parallelism, although not explicitly specified, depends on
the use of these skeletons in the program. A very powerful concept for describing
parallelism is provided by process control languages. Most closely related to our par-
allel programming technique discussed in Section 4.3 are Caliban (Kelly 1989) and
first-class schedules (Mirani & Hudak 1995). Both systems provide separate control
languages that can use functional expressions in specifying a structure of parallel pro-
cesses. These systems will be discussed in more detail in Section 4.9.1. On the side
of explicit parallelism, extensions to Lisp, such as MultiLisp (Halstead, Jr. 1985) and
Mul-T (Kranz et al. 1989), have to be mentioned. The basic construct used in these
languages, a future, is closely related to the par in GPH. Section 5.7.1 discusses
this relationship in more detail. Other systems that provide explicit annotations
for controlling parallelism are Concurrent Clean (No6cker, Smetsers, van Eekelen &
Plasmeijer 1991), Hope* (Kewley & Glynn 1989), and the system proposed by Burton
(1984).

2.3 Implementation of Functional Languages

This section discusses different approaches to the implementation of functional lan-
guages. The discussion focuses on the graph reduction and the dataflow models. They
present a high level of abstraction and thereby incorporate parallel execution in a very
natural way. Hammond (1994) presents a detailed discussion of different models for
the parallel implementation of functional languages. Schreiner’s annotated bibliogra-



2.3. Implementation of Functional Languages 27

phy (Schreiner 1993) gives a comprehensive survey of the parallel implementation of

functional languages.

Historically, the first implementations of functional languages used a stack-based
approach such as the SECD machine (Landin 1964), which has been extended to
lazy languages by Burge (1975) and Davie & McNally (1990). The SECD-M ma-
chine adds concurrent threads and non-determinism to the basic design (Abramski &
Sykes 1985). Both the eager and the lazy SECD machine are described in detail in
Field & Harrison (1988)[Chapter 10].

Another approach is to use a fixed set of combinators, such as SK combinators known
from combinatory logic (Curry & Feys 1958), as the abstract machine language. The
implementation of SASL was based on this design (Turner 1979). Later this approach
was extended to use program dependent super-combinators (Hughes 1984). A super-
combinator is obtained from a function body by lifting maximal free expressions, i.e.
the largest sub-expressions which contain free variables. This transformation main-
tains the full laziness property that no expression will be evaluated twice, and differs
in this aspect from the more basic A-lifting transformation (Johnsson 1985). The cat-
egorical abstract machine (Curien 1986) combines the environment-based approach of
the SECD machine, which is defined via state transitions, with the idea of using basic
variable-free combinators out of combinatory logic as the abstract machine language.

2.3.1 The Graph Reduction Model

The graph reduction model is based on the idea of representing the program as a graph
structure and defining evaluation as rewriting this graph (Wadsworth 1971, Peyton
Jones 1987). Figure 2.1 shows the lazy evaluation process of the expression square
(1+2*3) where square x = x*x. Note that in the first step two redexes can be
reduced in parallel: the definition of square can be applied and the expression 2*3
can be reduced. The latter is possible because square, multiplication, and addition
are strict. This example also shows how several instances of the parameter x are
shared when applying square to a concrete argument. This avoids duplication of

work.

This approach has several advantages:

e It is easy to express sharing of program expressions by sharing in the graph;
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e 3 call-by-need evaluation can be easily implemented by overwriting the reduced

node with its result;

e independent parts of the graph can be evaluated in parallel.
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Figure 2.1 The principle of parallel graph reduction

Because of the first two advantages most modern non-strict languages are imple-
mented using graph-reduction. However, this pure graph reduction model is very
high-level, and a straightforward implementation is rather inefficient. For example,
the reduction process described in Figure 2.1 suggests an interpretive implementa-
tion, solely operating on graph structures. In comparison most modern abstract
machines use an approach of compiled graph reduction. Rather than using a top
level interpreter, each node in the graph, a “closure”, contains code for perform-
ing a reduction. In particular, user defined functions are compiled into code that
simulates the construction of a graph structure. The generated code typically uses
an evaluation stack to perform built-in operations, such as basic arithmetic, more
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efficiently, without the need to allocate heap objects in this case. The G-machine
(Johnsson 1987, Augustsson 1987) was the first machine that used compiled graph
reduction, eliminating most of the interpretive overhead in the execution of non-strict
LML programs. Many later abstract machines were based on the G-machine, e.g. the
Spineless G-machine (Burn et al. 1988), the Spineless Tagless G-machine (Peyton
Jones 1992) etc. Peyton Jones (1987)[Chapter 20] gives a good overview of different
optimisations of the basic graph reduction mechanism.

From this thesis’ point of view the most important advantage of the graph reduction
model is the ease of expressing parallel computation in this model. A parallel graph
reduction model can be very naturally expressed as a spark pool, i.e. a pool consisting
of pointers to unevaluated expressions (“thunks”), and a set of processors that take
sparks out of this pool and execute them by creating a thread, an independent process
performing standard graph reduction. These threads are kept and maintained in a
separate thread pool. In our model adding a new spark to a spark pool is performed
by a par combinator. Mutual exclusion between threads trying to reduce the same
piece of graph has to be guaranteed, this will be discussed in Section 2.4.1. Peyton
Jones (1989) discusses parallel graph reduction in detail.

2.3.2 The Dataflow Model

Another high-level computation model that does not require a sequential evaluation
mechanism is the dataflow-model (Dennis 1974). The idea in this model is to represent
operations as nodes in a graph and to represent data as tokens passed between the
nodes. Evaluation is governed by the “firing rule”: a node with tokens on every input
arc consumes these tokens, applies its function to their values, and sends a result
token with this value to its output arc. In short, the node “fires”.

The Principle of the Dataflow Model

In contrast to the demand-driven graph reduction model, the dataflow model is data-
driven. The evaluation of operations is determined by the availability of data rather
than by the demand on a result. Thus, a natural evaluation mechanism is based
on eager evaluation. This aims at exposing a maximal amount of parallelism in the
system, even if some of the parallelism is speculative.
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It is important to distinguish the operational aspect of the evaluation model from
the semantic aspect of strictness. Although parallel eager evaluation is safe in a
strict language, e.g. SISAL (B6hm et al. 1991), modern dataflow language such as Id
(Nikhil 1989) and pH (Aditya et al. 1995) are non-strict in order to minimise data
dependencies in the program. The runtime-system guarantees that the failure of one
evaluation does not necessarily result in a failure of the overall computation.

Figure 2.2 demonstrates the execution of the expression square (1+2*3) where
square x = x*x in the dataflow model. Here the nodes in the graph are opera-
tors and the arcs represent data dependencies. The graph is unchanged throughout
the computation. In the first step the * operator can fire because both arguments
are available, whereas the + operator has to wait for its second argument. Within the
square function the result token from the previous computation (7) is duplicated,
corresponding to sharing the result of an expression in the dataflow model.

Optimisations in the Dataflow Model

The dataflow model aims at exposing a maximal amount of parallelism. Historically,
it was mainly used as a concrete machine model for special purpose dataflow machines
with special hardware support for the basic machine operations, e.g. the Tagged-Token
Dataflow Architecture (Arvind & Nikhil 1990), the Manchester Dataflow machine
(Gurd et al. 1985), the Monsoon machine (Papadopoulos & Culler 1990), Sigma-1
(Shimada 1986), PIM-D (Ito et al. 1986) etc. More recent abstract dataflow machines
significantly depart from the pure dataflow model and use a control-flow language
as machine independent intermediate language, e.g. the TAM machine (Culler et al.
1993) and *T(Chiou et al. 1995). However, an implementation on stock hardware still
faces serious efficiency problems and to overcome these problems many optimisations
to the basic model are performed.

One of the major inefficiencies of the dataflow model is the extremely fine-grained
parallelism. Every primitive operation can be implemented as one node in the
dataflow graph. This yields a high overhead in the parallel execution of the pro-
gram. Therefore, special compile time methods for partitioning the dataflow graphs
and merging the partitions into “macro dataflow nodes” have been developed (Sarkar
& Hennessy 1986). For example, the Id90 compiler for the TAM machine (Culler
et al. 1993) iteratively computes dependence and demand sets between nodes in the
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Figure 2.2 The principle of the dataflow model
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dataflow graph merging independent nodes into macro nodes. Each of these nodes
is then realised as a thread in the abstract machine. This analysis can also be done
globally as is shown in Traub et al. (1992). Furthermore, TAM distinguishes be-
tween coarse-grained frames, which are the units of computation and are allocated
to processors, and these more fine-grained threads operating within a certain frame.
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Having many threads within a frame guarantees latency tolerance in a multi-threaded
scheduling environment.

As further optimisations several mechanisms from the compilation of imperative lan-
guages are integrated into the dataflow model:

e Activation Frames: Machines like Monsoon use bits in an activation frame to
indicate availability of a result. In older dataflow architectures an expensive

associative store was used.

e Memory: Constructs like I-structures (Arvind et al. 1989), single assignment
variables, and M-structures (Barth et al. 1991), mutual exclusion variables, are
used for storing and retrieving values. In contrast, the pure dataflow model has

no store.

e Split Phase Operations: Access to I-structures and M-structures is performed
via split phase operations, i.e. after executing the operation the thread will
be automatically descheduled. This is done to overlap communication with
computation via variable access.

e No explicit dataflow graph: The latest compilation model for pH avoids the use
of dataflow graphs as an intermediate language (Arvind et al. 1996). Instead it
uses a sugared version of a call-by-need A-calculus, the Ag-calculus, with letrec to
express sharing, with barriers for explicit synchronisation, and I-/M-structures.

In summary, these optimisations in the dataflow model, as well as the optimisations
in the graph reduction model discussed in detail in Section 2.4 show a convergence
towards adopting efficient techniques developed for parallel imperative languages.

2.3.3 Other Models

Although the SECD, graph reduction and dataflow models are the best known mod-
els for parallel functional programming, many other approaches towards a parallel
implementation have been suggested. This section discusses some of these models.

The Gamma model (Banatre & Le Métayer 1990) uses the metaphor of chemical
reactions to describe parallel evaluation. In this model an evaluation step resembles
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the chemical reaction in a pool, a multiset, of atoms: first a matching group of objects
in an object pool is selected, then an operation on these objects is performed and
these objects are replaced with result objects. This “rewriting” is repeated until no
more matching objects can be found. In this model a program is specified by the
functions for matching and evaluation. This model facilitates a high level program
derivation approach as well as parallel computation because reactions on disjoint sets
of atoms can be performed in parallel. However, an implementation faces problems
of efficiently matching objects, similar to the problems met in token-based dataflow
implementations. Gladitz & Kuchen (1996) describe a parallel implementation of this

model on a shared memory multi-processor.

The NESL system (Blelloch 1996) uses a model of nested data parallelism. It is
programmed in an SML-like, strict, higher-order language. Parallelism can only be
expressed implicitly via using sequence operations, similar to Haskell’s list compre-
hensions, and via higher-order functions that process sequences in a data-parallel
fashion. Again this restriction facilitates an efficient implementation of the language.
It is mainly used for running numerical algorithms on supercomputers such as CRAY
Y-MP, Connection Machine CM-2, and Encore Multimax.

Finally, several models have been designed for the efficient execution of specific par-
allel programming paradigms. The idea here is to gain improved efficiency for a
restricted but important set of programs. One example of such a machine is ZAPP
(Burton & Sleep 1981, Goldsmith et al. 1993), which has been designed for the efficient
parallel execution of divide-and-conquer programs. It performs parallel computation
on a virtual tree of processors. Communication is performed by message passing.
No global heap is implemented in this system. Experiments on a transputer based
implementation of this machine reported nearly optimal speedups for some divide-
and-conquer programs like n-queens (McBurney & Sleep 1987).

2.4 Runtime-System Issues

This section discusses key aspects of the runtime-system in a parallel functional lan-
guage that are crucial to the performance of parallel programs. This discussion will
focus on a model of parallel graph reduction. However, most of these aspects are
central to any implementation of a parallel functional language.
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Many of the issues discussed in this section can be hidden behind a distributed, or vir-
tual shared memory implementation and lightweight threads. This has been done for
SISAL (Freeh & Andrews 1995, Haines & Bohm 1992) and in Rushall’s implementa-
tion of lazy task creation on top of a Spineless G-machine (Rushall 1995). However, in
this approach the possibility of directly influencing low-level issues, via the compiler,
and optimising the system for a particular computational model like graph reduction
are lost. Therefore, such an approach is usually just used for prototyping rather than
for optimised parallel machines. This approach will not be discussed in greater detail.

2.4.1 Evaluation Models

A major issue in the evaluation model is
How are the parallel threads created and synchronised?

In a parallel implementation it can, and probably will, happen that two parallel
threads try to evaluate the same expression. The evaluation model specifies

e how and when parallel threads are generated (sparking),

e how to prevent the threads from evaluating expressions already under evaluation
(locking) and

e how to keep track of and ensure data transfer to threads that need the result

of an ongoing computation (waiting list).

These three issues describe the interaction between parallel threads and the conceptu-
ally shared heap. Another issue that is discussed in this section is the synchronisation
mechanism between the parallel threads. In particular the following models can be
used:

e a notification model,
e a fork-and-join model,

e and an evaluate-and-die model.
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Sparking: The most commonly used mechanism for generating threads in the graph
reduction model is a sparking mechanism (Clack & Peyton Jones 1986). This mecha-
nism assumes that all parallelism has been exposed on the abstract machine language
level. This can be achieved via annotations either in the source code or at some stage
in the intermediate or abstract machine code. When such a parallelism annotation is
encountered in the code, a spark, usually a pointer to a thunk, is created (see Page 24
for a discussion of the parallelism annotations).

There are at least two ways to interpret these sparks. They can be either ignorable,
in which case they represent potential parallelism but the runtime-system is free
to discard sparks, e.g. when the load of the machine is too high; or they may be
mandatory, in which case a thread has to be created for this spark eventually. The
latter variant is more sensitive towards fine-grained parallelism whereas a model of
ignorable sparks yields a high flexibility in the amount of parallelism that is created,
by dynamically combining threads. These benefits of ignorable sparks come for the
price of increased overhead in maintaining a pool of available sparks. Ignorable sparks
are used in many designs such as GRIP (Peyton Jones et al. 1987), GUM (Trinder,
Hammond, Mattson Jr., Partridge & Peyton Jones 1996), (v, G)-machine (Augustsson
& Johnsson 1989), PABC machine (Nocker, Plasmeijer & Smetsers 1991). Some
machines like the HDG machine (Kingdon et al. 1991), and the v — STG-machine
(Hwang & Rushall 1992) use both versions of sparks.

Another way of exposing parallelism during the execution of the program is based
on the idea of just seeding enough information in the runtime stack to allow the
extraction of parallelism later on. The motivation of this approach is to further reduce
the overhead of managing parallelism in the case of sequential execution. The price
that has to be paid is additional overhead for extracting parallelism out of the seeded
stack. Rushall (1995) presents an implementation of this idea on top of the Spineless
G-machine, implemented on a KSR1 multi-processor. Goldstein et al. (1996) have
implemented a similar scheme in the context of the TAM machine, which is based
on dataflow inspired compilation. He reports significant runtime improvements for
rather large programs on a CM-5. A more detailed discussion of these mechanisms is
given in Section 5.7.1.

Locking: The standard way to implement synchronisation between threads that
try to evaluate the same thunk is via locking the node as soon as evaluation starts. If
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a thread encounters a locked node it joins a waiting list attached to the locked node.
When the node is updated with the result of the evaluation, all threads in the waiting
list have to be reawakened. This is the basic mechanism used in GUM/(Trinder, Ham-
mond, Mattson Jr., Partridge & Peyton Jones 1996), the (v, G)-machine (Augustsson
& Johnsson 1989), the PABC machine (N6cker, Plasmeijer & Smetsers 1991), GAML
(Maranget 1991), EQUALS (Kaser et al. 1997), in fact in most parallel graph reduc-

tion machines.

It is critical for the performance of the parallel machine to have efficient locking of
nodes as well as enqueuing and awakening of threads, because evaluating a node and
updating it with its result are very common operations in a graph reduction system.
Therefore, many optimisations to this basic scheme have been studied.

For example, locking a node may be a rather expensive operation requiring atomicity.
To reduce these costs the GAML system distinguishes on language level between
application nodes that might be shared and those that are known not to be shared.
No locking is required for the latter. In general a sharing analysis, e.g. (Jones &
Le Métayer 1989), would be useful to determine whether a node may be shared. If
the intermediate language uses a special letpar construct for binding expressions
that may be evaluated in parallel, locking is only necessary for such letpar-bound
variables (Hogen & Loogen 1994). However, it is unclear whether this optimisation
is desirable in all cases. For example the STG-machine uses a locking mechanism,
“black holing”, even in a sequential setup. This has two important advantages: a
cycle in the program can be easily detected because the enter code of a black hole
produces an error message, and by overwriting the thunk with a black hole heap
space for the arguments can be freed before the thunk is updated, which helps to
avoid space leaks. Giving up these advantages is probably only reasonable for an

optimising compilation.

In order to implement locking efficiently, some machines like the (v, G)-machine, the
HDG machine, the EQUALS, and the GAML system use a bit in the node to mark
it as being under evaluation. Other machines like the GUM or the PABC machine,
which are based on a tagless design, change the code pointer of the node such that
entering the node causes the thread to be suspended and added to the waiting list.
This approach saves a test operation on entering a node.
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Waiting List: In order to record, which threads are waiting for the result of a
computation, waiting lists are usually used. In the graph reduction mode!, vhere the
result overwrites the original node, the waiting list is usually attached to the locked
node. This mechanism makes use of the fact that the descriptors for threads are
heap allocated and can be referred to by closures without any modificaticn to the
evaluation model.

All stages from locking, enqueuing a competing thread into the waiting list, updating,
and reawakening the thread are depicted in Figure 2.3. In this case thread A starts
evaluating the depicted graph structure and locks the root closure upon entry. When
thread B tries to access the root it finds the closure locked and B is added t> the, so
far empty, waiting list of the root closure. Finally, A finishes evaluating the graph and
updates the root closure with the result. Upon updating the waiting list, containing
B, is reawakened and B can continue with its evaluation.

In order to minimise the heap usage of the program many abstract machires reuse
parts of the node for the root of the waiting list: GUM uses the first two words of
the closure, the (v, G)-machine uses the back-link in the graph structure. The key
observation, which allows such reuse of parts of a node, is that a waiting list will only
exist when the node is locked. In this case, only two operations can be pe-formed on
the node: adding a thread to the waiting list and updating the node with the result.
In both cases, no direct access to the data stored in the closure is necessary.

The PABC machine reserves space for the root of a waiting list in every node. This
reduces the overhead of locking a node but increases the heap usage. Hcwever, the
optimisation of the PABC machine described in Kesseler’s transputer implementation
(Kesseler 1996) also stores the root of the waiting list in the argument fizlds of the
locked node.

An simpler alternative to using a waiting list is polling: a thread that reaches a
node under evaluation is not removed from the list of runnable threads and it tests
whether the node has been overwritten to normal form whenever it is resckeduled.
This eliminates the waiting list overhead but imposes a high load in the presence of
fine-grained parallelism. A polling mechanism has been implemented and assessed
in the Concurrent Clean system (van Groningen 1992). The results show that even
with optimisations to this basic mechanism it is more expensive than a waiting list
mechanism if the program is fine-grained.
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Figure 2.3 Locking of closures and generation of waiting lists

The pure dataflow model achieves synchronisation between processes by péssing to-
kens. However, on conventional hardware such an approach has provex to be too
inefficient. Instead, I-structures (Arvind et al. 1989) are commonly used as the cen-
tral means of synchronisation between threads. The behaviour of I-structures is very
similar to those of waiting lists. Initially, these single-assignment variables are empty
and a read access is deferred. Since all memory access operations are split-phase op-
erations, a deferred read causes an implicit suspension of the reading thread. A list of
deferred read requests has to be maintained for each I-structure cell. When a value is
written into the I-structure the read requests can be satisfied by sending messages to
the requesting processes. An arrival of such a message will reawaken the suspended
process. This mechanism of synchronisation is used in the Monsoon (Papadopoulos
& Culler 1990) and *T architectures (Chiou et al. 1995), in the TAM mackinz (Culler
et al. 1993) and in the pHluid system (Flanagan & Nikhil 1996).

The evaluation model of Alfalfa (Goldberg 1988b) is one of heterogenzous graph
reduction. In general, this is realised via standard locking of nodes and erqueuing of
tasks as described above, but all sparks are mandatory. However, in order to >ptimise
the execution of sequential components within the program, a stack-based execution
model is provided, too. The stack-based model does not have to deal with pa-allelism
issues because each thread performs sequential execution without being interrupted.
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A distinction between such sequential threads and general parallel threads is made
in the intermediate language. This uses information automatically inferred by the
compiler.

The Notification Model

In the notification model every child thread is required to notify its paient thread
upon finishing its computation. The parent thread is blocked until all of its children
have finished. Usually, this is implemented via a pending counter and an associated
pending list, the same as a waiting list, of all threads that need the result of this
evaluation.

One of the first machines that used such a kind of synchronisation mechanism was AL-
ICE (Darlington & Reeve 1981), which influenced the design of many later machines
such as Flagship (Keane 1994), which uses a data-driven rather than a demand-driven
model, PAM (Loogen et al. 1989), the HDG machine (Kingdon et al. 1991) etc. These
more recent machines use compiled rather than interpreted graph reducticn, thereby
gaining far higher sequential performance.

The larger-grain graph reduction model (LAGER) (Watson 1988) uses a rotification
model of synchronisation between parallel threads. However, this model uses seeding
rather than sparking in order to expose parallelism. By default, the code is executed
in a sequential manner, in order to use optimised sequential code most of the time.
At statically determined points, code for generating parallel threads is planted.

The evaluation model in the dataflow-oriented TAM machine (Culler et al. 1993) also
uses explicit synchronisation counters, similar to pending counters, for syachronisa-
tion across threads. In TAM a thread is a linear sequence of instructiors without
branching or creating parallelism, somewhat similar to a basic block. A hierarchy
of controlflow units is defined, from fine-grained, cheap operations, e.g. inlets for
handling messages, to coarse-grained operations with a comparatively expensive syn-
chronisation mechanism. An important difference to the notification model is the
fact that synchronisation is performed via data-structures, as in the evaluae-and-die
model (see Section 2.4.1), rather than directly between threads.
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The Fork-and-Join Model

The fork-and-join model is a special version of the notification model, which implies
symmetric parallelism. A thread that creates other threads becomes a parent process
waiting for the results of the children. Thus, synchronisation is performed directly be-
tween threads. The fork-and-join model generates a strict hierarchy of threads where
a parent can only continue after all children have completed. This restriction allows
to use efficient mechanisms for load balancing. However, a fundamental problem of
this model is that the usually small computation in the join phase tends to form a

parallelism bottleneck.

The Dutch Parallel Reduction Machine (DPRM) (Barendregt et al. 1987) uses such
a fork-and-join model. A special “sandwich” annotation has to be used to generate
child threads. This annotation has been designed for divide-and-conquer parallelism:
it specifies a list of sub-computations that should be done in parallel, and a com-
bination function. The characteristic feature of this annotation is the reduction of
all arguments of the sub-computations to normal form before generating parallelism.
This avoids bottlenecks of sharing data structures between different threads because
data in normal form can be safely copied. It is up to the programmer to use this
annotation on expressions of appropriate size in order to generate coarse granularity.
However, special mechanisms are necessary to improve the granularity in particular
to avoid harmful thread migration in the join phase (Hofman et al. 1992).

The Evaluate-and-Die Model

In contrast to the previous models, the evaluate-and-die model (Peyton Jones et al.
1987) generates asymmetric parallelism. A thread that creates (potential) parallelism
does not have to synchronise with the generated child thread, i.e. it forgets about all
generated work. The only means of synchronisation is via the graph structure the
threads are working on. In particular, if a thread requires the result of a potentially
parallel sub-expression, it will start to evaluate that expression itself, thereby sub-
suming the computation of another spark. In contrast, the notification model would
cause the thread to block on the thread evaluating the sub-expression. In the case of
a high load, i.e. many runnable threads, such subsumption of sparks automatically in-
creases the granularity of the threads and reduces the number of parallel threads that
are generated. However, this mechanism only works for certain, hierarchic structures
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of computation such as divide-and-conquer. In his thesis Roe (1991)[Section 6.5]
shows that evaluate-and-die cannot improve the granularity for some data-parallel
programs, which typically exhibit a flat structure of sparks.

GUM (Trinder, Hammond, Mattson Jr., Partridge & Peyton Jones 1996) uses an
evaluate-and-die model with ignorable sparks and waiting lists. The (v, G)-machine
(Augustsson & Johnsson 1989) uses similar techniques, however, it has been designed
for shared memory systems and therefore it splits the heap in chunks to be more
flexible in managing the heap sizes of the individual processors. The HDG machine
(Kingdon et al. 1991) uses an evaluate-and-die model with tags in each closure indi-
cating whether a task for evaluating this closure has been created and whether the
evaluation of the expression has already begun. It uses both ignorable and mandatory
sparks assigning them different priorities in a transputer based implementation.

2.4.2 Storage Management Models

In a general model of distributed memory an important question is:
How is the heap distributed between processors?

One possibility to model the distributed nature of the heap in a parallel system is to
add a new type of closure: a FetchMe, or global indirection, closure. It points to a
graph structure on a remote processor. When a thread tries to evaluate a FetchMe
closure, a fetch request for this graph structure is sent to the remote processor. The
thread gets blocked on the FetchMe closure and will be reawakened upon arrival of the
graph structure. The same mechanism as for blocking on a closure under evaluation
can be used in this scheme. If the remote graph structure is itself under evaluation
the fetch request will block on the locked closure. The reply will be sent only after
having evaluated the graph structure. This means that the perceived latency in the
system is unbounded as it depends on the computations being performed on other
processors. It is therefore important to provide latency hiding mechanisms that allow
to overlap the communication with useful computation.

The unbounded perceived latency also underlines the importance of data locality in
order to avoid communication. By data locality we mean the distance between data
structures required within one thread of computation, where the unit of distance is
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one processor. The goal is to keep all required data on the same processor, avoid-
ing communication and thereby improving parallel performance. In sequential im-
plementations a stack ensures data-locality and the efficient use of storage. The
importance of using a stack-oriented evaluation in order to maintain data-locality
has already been shown in the implementation of heterogeneous graph reduction
(Goldberg 1988a, Goldberg 1988b) for lazy functional languages. In Goldberg’s model
a stack-based model is used in the sequential parts of the computation in order to
achieve high sequential performance and only for the parallel components a packet
based model of graph reduction is used.

In a parallel system conceptually each thread needs its own stack. Because the cre-
ation structure of threads is a tree the stack becomes a cactus stack, with thread
creation causing a new branch in this stack. The portion of the stack generated be-
fore thread creation is shared between child and parent thread. In subsequent sections

the following possible implementations of a cactus stack are discussed:

1. a linked list of packets;
2. a linked list of stack segments;
3. a contiguous stack that is reallocated when needed; or

4. a meshed stack.

An area related to the storage management model in a parallel system is parallel,
or more general distributed, garbage collection. However, it is not directly relevant
to the issues studied in this thesis and will not be discussed in detail. Plainfossé &
Shapiro (1995) give an excellent survey of distributed garbage collection techniques.

Packet-based Models

The first designs of parallel graph reduction machines, such as ALICE (Darlington
& Reeve 1981, Harrison & Reeve 1986), used a packet-based reduction method: con-
ceptually variable size packets are used to hold the arguments to the code as well as
local variables needed during the execution of the code. These packets, or frames, are
linked together during runtime thereby creating a cactus stack structure with each
packet playing the role of an activation frame. Such a packet-based model does not
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have an runtime allocation overhead because the allocation is done at compile time
when generating the closure. However, it uses much more heap space and the danger
of space leaks is much higher because if a closure is still live so are all local variables in
its frame. In essence, some of the allocation overhead has been moved to the garbage

collector.

The HDG machine (Kingdon et al. 1991) uses such a packet-oriented approach. It uses
a special “stacklessness analysis” (Lester 1989) to determine the size of the activation
record needed to evaluate a node. With this information it is possible to allocate all
the required stack space in the node itself. No explicit checks for stack overflow are
required at runtime. In contrast, the (v, G)-machine (Augustsson & Johnsson 1989)
and the PAM machine (Loogen et al. 1989) may have to extend the space allocated
for one packet if a generic function application, which does not contain information
about the arity of the function, is used.

Segmented Stack Model

In this model the stack is allocated in the heap but separated from closures in the
graph. By splitting the stack into segments this model can efliciently handle small
threads without wasting space on a large stack. For large threads it must be possible
for the stack to grow by allocating new segments. In contrast to the packet-based
model, these segments are separate from activation frames and changing the size of
the stack segments can be a useful tool in the performance tuning stage of parallel

program development.

Of course, the increased flexibility imposes some runtime overhead when allocating
new stack segments. However, in practice segment sizes are chosen high enough to
avoid the creation of long lists of stack segments even if this leads to some waste
in heap space. One particular danger of this model is “stack thrashing”: if the
stack grows and shrinks rapidly across segment boundaries many segments have to
be allocated. Additionally, to increasing the runtime overhead this creates a lot of
garbage stack segments, which increases the garbage collection rate, unless garbage
stack segments are kept on a special list for further reuse. Therefore, it might be
better to leave some headroom in each stack segment that can be used upon returning
from a discarded stack segment. The GRIP (Peyton Jones et al. 1987) and GUM
(Trinder, Hammond, Mattson Jr., Partridge & Peyton Jones 1996) machines use
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such a segmented stack model.

Contiguous Stack Model

In this model each thread uses a monolithic block of heap space as its own stack. This
achieves good data locality, similar to the sequential evaluation. If the stack runs out
of space it has to be enlarged using standard re-allocation. However, this is a rather
expensive operation and should be avoided whenever possible. Therefore, in practice
rather big stacks are used.

The main disadvantage of this scheme is the huge waste of heap space if many threads
do not require a lot of stack. This model is far less suited to dealing with threads of
different sizes compared to the previous two approaches. The PABC machine (Nocker,
Plasmeijer & Smetsers 1991) uses this kind of stack model.

Meshed Stack Models

The meshed stack technique eliminates a parallelism overhead in case of sequential
computation by interleaving all local stacks into a single stack. This avoids the
necessity of allocating the stack in the heap. This concept was first introduced under
the name of spaghetti stack by Bobrow & Wegbreit (1973). The main idea is to mark
activation frames that are not on top of the stack as garbage and to run a special
compacting garbage collector on the meshed stack if it runs out of space.

This mechanism drastically reduces the overhead when sequential execution is per-
formed because there is no need for allocating new stack segments. It also achieves
very good data locality because data is not attached to closures in the heap. However,
since the single meshed stack is a centralised resource, it is very hard to implement
thread migration on top of this stack model. The meshed stack model has been in-
troduced for the PASTEL machine (Hogen & Loogen 1994) and was inspired by the
handling of backtracking in the Warren Abstract Machine (WAM) for implementing
logic languages (Warren 1983). Measurements comparing this model with a packet-
based model using an interpreter on a transputer system show that the amount of
heap allocations is reduced up to a factor of two and the runtime improves by about
20% (Hogen & Loogen 1995).
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2.4.3 Communication Models

This section tackles the following question:
How is data exchanged between processors?

One of the main sources of overhead in a parallel system is communication. In
most parallel architectures communication is much more expensive than computa-
tion. Therefore, it is very important to provide good data locality in order to avoid

communication.

To this end, it is useful to distinguish several aspects of the communication model:

1. Data placement: Is data moved to a thread or vice versa?

2. Latency hiding: Can the communication be overlapped with useful computa-
tion?

3. Packing: How much data should be sent in one packet?

An important issue for hiding communication costs is multi-threading, i.e. a schedul-
ing method that allows the interleaved execution of several threads of computation.
In particular, it is possible to deschedule a thread waiting for data and to sched-
ule another thread, which can perform computation in the meantime. This section

discusses details of this method.

Data Placement

One important issue for the data locality in the system is data placement, which
describes how to handle the distribution of data during the execution of the program.
Whenever the result of a remote thunk is required by a local thread there are two

possibilities of communication:

e Send the thunk to the demanding process, evaluate it locally by this process and
replace it with a global indirection on the remote processor (local evaluation).
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e Start a thread on the remote processor to evaluate the thunk and then send the

result to the demanding process (remote evaluation).

The advantage of the local evaluation scheme is that it minimises the delay in ob-
taining the result. Furthermore, parallelism is only created via picking a spark from
a spark pool, not as a side effect from receiving a message. This simplifies load
management. The local evaluation model is used in Flagship (Keane 1994), GRIP
(Peyton Jones et al. 1987), and GUM (Trinder, Hammond, Mattson Jr., Partridge
& Peyton Jones 1996). The remote evaluation scheme, however, might increase data
locality by avoiding a distribution of subgraph structures. Because of the poten-
tially high hidden latency imposed by performing the evaluation on the remote pro-
cessor, an effective latency hiding mechanism is required. There is a higher dan-
ger of a severe load imbalance attached to this scheme if no thread migration is
provided because some processors may become hot-spots of computation. The re-
mote evaluation scheme is used for example in the PABC machine (Nocker, Plasmei-
jer & Smetsers 1991, Kesseler 1996), in the proposed v — ST G-machine (Hwang &
Rushall 1992), in PAM (Loogen et al. 1989), and in the related PASTEL (Hogen &
Loogen 1994) machine. Alfalfa combines the remote evaluation scheme with an active
work distribution scheme which sends available work to idle processors, rather than

have idle processors ask for work.

Latency Hiding

The latency in a parallel machine is the time required to send one piece of data
between two processors. In practice, latency often varies between pairs of processors
and also depends on the network traffic. One way of reducing the impact of the
communication costs on the performance of the system is latency hiding. The idea
of this scheme is to overlap the communication with some useful computation on the
local processor. In general, when a thread requests remote data the processor can

either:

e block while waiting for the data (synchronous communication) or

e execute another thread (asynchronous communication).

The second option imposes some overhead on the runtime-system because it has
to support multi-threaded scheduling on each processor. However, as a result it is
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possible to hide the latency in the system if at every point when data is requested

enough parallelism is available to perform useful computation.

In a model of synchronous communication a processor is blocked if a thread requests
remote data. This kind of communication only makes sense if the ratio of latency to
the time needed for scheduling is very small. In such a case it is more efficient for the
processor to block on a thread that is waiting for remote data, rather than deschedule
it and look for another thread to run.

In contrast, asynchronous communication, allows other threads to run while one
thread waits for the arrival of remote data. This behaviour allows the overlapping
of communication and computation and is essential for latency hiding. It is worth
noting, that machines based on the dataflow model, which usually generate a huge
number of fine-grained threads, put a specific emphasis on latency hiding, e.g. TAM
(Culler et al. 1993), *T (Chiou et al. 1995), pHluid (Flanagan & Nikhil 1996). In these
models certain instructions like accessing an I-structure or writing to it, cause an au-
tomatic descheduling of the current thread. Therefore, these split-phase instructions
implicitly define the length of one sequential thread of computation.

Packing

Finally, the aspect of packing has to be considered. The question here is how much
data to pack into one packet when transferring data. By developing a pre-fetching
packing scheme a graph reduction system can realise a caching scheme that exploits
the structural information of the program, which is encoded in the graph. The goal of
such a scheme is to reduce the total communication cost by increasing the granularity
of the communication. However, if the packing scheme also pre-fetches thunks, which
represent work, it may lead to a very uneven load balance and even deteriorate data

locality.

In the context of the PABC machine (Kesseler 1996) examines different “copying
strategies” for the Concurrent Clean system on a transputer network. Finally, he
develops a lazy normal formal copying strategy, which copies normal form closures
and only those non normal form closures that are specially annotated in the program.
We have implemented several “packing schemes” in the GRANSIM simulator. In mea-
surements of these schemes, a scheme that packs a full-subgraph generally performed
best. However, for some communication-intensive programs a scheme that only packs
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normal forms performed better. These packing schemes are discussed in detail in
Section 3.3.1.

2.4.4 Load Distribution

The question that is examined in this section is dual to the question how the heap is

distributed over all processors:
How is work distributed and balanced between processors?

From a global point of view it is useful to distinguish two approaches toward load
distribution:

o Passive load distribution where idle processors have to explicitly ask for work,

and

e active load distribution where new threads are sent to remote processors.

Passive load distribution, which is sometimes called work stealing, tries to minimise
the overhead during periods in which all processors are busy anyway. However, this
may yield an uneven load distribution if few threads are creating a lot of parallelism.
In contrast, active load distribution sends, by default, a new thread to a remote
processor for execution. Although this gives a more even load distribution it may
yield a deterioration in the data locality of the system. In both cases, however, it is
desirable to have load information about other processors available. Obtaining such
information may require significant communication and therefore all machines have
to find a compromise between the competing goals of an even load distribution and a
minimal amount of communication. As a result, many implementations use a random
allocation mechanism, e.g. ALICE (Harrison & Reeve 1986).

For example, GUM (Trinder, Hammond, Mattson Jr., Partridge & Peyton Jones
1996), a system of passive load distribution, uses a “fishing” mechanism, where re-
quests are sent to random processors. Some delay is added to avoid flooding the
system with work requests, a problem observed on ALICE (Harrison & Reeve 1986),
and allowing just one outstanding fish per processor. Because GUM packs more than
one thunk into a packet, some pre-fetching of work is performed. The HDG machine
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(Kingdon et al. 1991) sends requests only to neighbouring processors. They return
work if they have at least two tasks where one of them has not been started, yet.
This is similar to the strategy used in ZAPP (McBurney & Sleep 1987). On ZAPP
and GRIP experiments have been performed with pre-fetching work, i.e. asking for
work when the local pool of work falls below a certain threshold. However, this did
not in general yield better performance. The PAM (Loogen et al. 1989) system reg-
ularly exchanges information about the workload of neighbouring processors in order
to improve the load balance. It uses passive load distribution and exploits the load
information in order to decide which processor to ask for work.

In contrast, the Alfalfa machine is based on active load distribution. Extensive studies
of various different load balancing schemes (Goldberg 1988b) have been performed on
this distributed memory architecture. As a result, diffusion scheduling with a simple
load balancing heuristic performed best. The idea of diffusion scheduling is to send
work only to neighbouring processors and to pick the least loaded processor. Thus,
only load informations from the neighbours is required. However, this method may
react rather slowly to rapidly changing load situation and to hot-spots in the system.
On Alfalfa it showed satisfying results, even though no task migration is supported

in this implementation.

Issues closely related to load balancing are load bounding and throttling, which aim
at avoiding an excessive amount of parallelism in the system. It is important not to
prohibit a large amount of parallelism by design because this would diminish its scal-
ability. However, typically functional languages exhibit an abundance of parallelism,
which requires some techniques aiming at limiting the total number of generated
threads. Problems with load bounding have been observed on ALICE (Harrison &
Reeve 1986), ZAPP (McBurney & Sleep 1987), on PAM (Loogen et al. 1989), and
on many dataflow machines. This problem is related to the fine granularity of the
threads that are normally created.

A simple but quite effective mechanism for load bounding has been developed on
ZAPP (McBurney & Sleep 1987): when the load of the machine is low the runnable
queue is treated as a FIFO queue, favouring threads near the root of the divide-and-
conquer tree. However, when the load drops below a certain threshold a LIFO mech-
anism is used. A similar mechanism has been adapted on the Manchester Dataflow
machine (Gurd et al. 1985), where a hardware throttle examines the length of the to-
ken queue to decide whether a new thread should be generated or whether it should
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be suspended. In the latter cases it may be reactivated at some later time when
the load drops below the threshold (Ruggiero & Sargeant 1987). Similar techniques
have been used in the LAGER model (Watson 1988), in the STAR:DUST machine
(Ostheimer 1991), and in the 7-RED"-machine (Biilck et al. 1994) via a limited supply
of tickets.

2.5 Our Model

This section locates the model of GRANSIM and GUM in the design space outlined in
the previous sections. The detailed discussion of GRANSIM in the following chapter
will show that both models are almost identical.

In short, the characteristics of the GRANSIM/GUM model can be specified as follows:

e Implementation model: parallel graph reduction
e Evaluation model: evaluate-and-die

e Thread placement: local evaluation

e Communication: message passing

e Storage management: segmented stack

e Load distribution: passive

Scheduling: multi-threading, unfair

The choice of this particular model has been motivated by experiences from parallel
functional programming on the GRIP machine (Hammond & Peyton Jones 1992,
Hammond et al. 1994), which uses parallel graph reduction, an evaluate-and-die model
of computation and passive load distribution. In order to support general parallel
architectures message-passing is used for communication. In order to support higher
latency systems multi-threading has been added as a means of hiding latency.
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Implementation model: The implementation model is an extension of the Spine-
less Tagless G-machine (Peyton Jones 1992). In the parallel system new types of clo-
sures such as FetchMe closures (see Section 2.4.2) and waiting lists (see Section 2.4.1)
have to be added. Furthermore, the notion of a global address has to be introduced
to uniquely identify closures on different processors. Threads and stacks are modelled

as special closures.

Evaluation model: Our model uses an evaluate-and-die model as described in
Section 2.4.1. This model was very successful on GRIP. One of its most important
features is the possibility to dynamically increase the granularity of threads. An
explicit, distributed spark pool is used for maintaining sparks. One difference between
GUM and GRANSIM is that the latter can use an infinite spark pool.

Data placement: In our model we use local evaluation of data that is needed by
a thread. In this approach the delay in obtaining a result does not dependent on the
load of a remote processor. Therefore, the perceived latency is reduced. In general,
however, it is not clear whether local or remote evaluation will yield better results.

It is an interesting topic for future work.

Communication: The communication is modelled via message passing between
different processors. This yields a very portable implementation. By using packing
routines that are tailored to graph reduction it is possible to exploit the information
contained in the structure of a graph to be sent.

Storage management: Our model uses a segmented stack storage management
model. This minimises the waste due to too large stacks, and increases the data local-
ity compared to packet based approaches. GUM uses a weighted reference counting
mechanism for performing distributed garbage collection (Bevan 1987). However, we
will not explore issues related to garbage collection in more detail here.

Load distribution: GUM uses a passive model of work distribution by imple-
menting a work stealing mechanism. This mechanism tries to minimise the number
of messages required for load distribution, but may produce a rather uneven load
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balance. GRANSIM simulates this model but offers more flexibility, for example al-
lowing several steal requests per processor at the same time. No load information is
exchanged between the processors.

Scheduling: Our model uses multi-threaded scheduling, which is essential to hide
latency. In GRIP (Peyton Jones et al. 1987) synchronous communication was used
and therefore multi-threading was not necessary.

2.6 Summary

This chapter has shown that parallel graph reduction is a very natural model for
expressing parallel execution. In common parallel machines its rather high level de-
scription of computation requires an efficient mapping of basic operations like locking
closures and handling waiting lists onto standard hardware. This is a similar situation
as in the dataflow community where the current trend is to depart significantly from
the core model, using a few selected standard synchronisation constructs to imple-
ment a functional language. One main source of cross-fertilisation in this area has
been in adopting an aggressive multi-threading approach within a graph reduction

framework.

Two aspects of the dynamic behaviour in a parallel graph reduction system require
special attention: data locality and granularity. The former is crucial to avoid unnec-
essary communication, the latter is essential for minimising the overhead for parallel
computation. Chapter 5 will focus on mechanisms for improving granularity. How-
ever, before focusing on the issue of granularity the following chapter will describe the
underlying parallel machine and its simulator, GRANSIM, in more detail. In doing
so, variants in implementing crucial runtime-system operations, as outlined in this
chapter, will be discussed.



Chapter 3

GRANSIM— A Simulator for
Parallel Haskell

Capsule

The main motivation for simulating the parallel execution of a functional
program is to abstract from machine specific details and from the often non-
deterministic behaviour of a complex parallel system. Such an abstraction
enables the programmer to focus on the parallelism inherent in an algorithm,
taking an algorithm-oriented view of parallel execution. In order to support
such a view a very simple simulator is sufficient. For example, communication
costs are often ignored in order to expose the maximal amount of parallelism
in the program. The GRANSIM-Light setup of the simulator presented in this
chapter supports this view by modelling an idealised machine with zero com-
munication costs and an infinite number of processors.

For the subsequent studies on granularity, however, such an approach is not
sufficient. For studies on this level of detail, involving aspects of the underly-
ing runtime-system, a more detailed system-oriented view of parallel execution
is taken. For this approach it is crucial to accurately model a wide range of
parallel machines that differ in the implementation of basic operations like inter-
processor communication. Therefore, flexibility and accuracy are two equally
important, though competing, aspects in the design of GRANSIM. For the over-
all accuracy of the simulation it is important to achieve a balance between the
accuracy of the compilation (to avoid naive generation of inefficient sequential
code), of the computation, and of the communication during the simulation.
In order to meet these requirements of flexibility and accuracy GRANSIM has

the following crucial features:

53
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o It offers different variants for many basic runtime-system operations like

communication.

e It uses a state-of-the-art optimising compiler (GHC) for generating graph
reduction code.

e It measures computation time in machine cycles rather than reduction

steps.
e It accurately models the communication in a parallel system.

e It offers granularity improvement mechanisms to improve the performance

of parallel programs.

GRANSIM has been used in the parallelisation of several large programs. In
this process, it has proven to be robust and to be an important component of
the parallel engineering environment. This is being underlined by its current

use at several universities worldwide.

3.1 Introduction

In the parallel functional programming community simulators are very popular, e.g.
(Runciman & Wakeling 1993, Roe 1991, Deschner 1989, Joy & Axford 1992). They al-
low the programmer to take a very abstract view of parallelism, matching the rather
abstract view of computation that is supported especially by lazy functional lan-
guages, where definition is cleanly separated from control. However, when running
the program on a real machine low-level details of the execution can no longer be
ignored. These details may very well be the reason for not obtaining the parallelism
that is present on a more abstract level. At this stage the development of a parallel
algorithm or the parallelisation of an existing algorithm turns into the performance
tuning for a specific parallel machine. Although simulators for exactly modelling
such machine details exist (Bennett 1993, Hofman 1994, van Groningen 1992, Keller
& Lin 1984, Morais 1986, Watson 1989), they usually lack the ability to model a wide

range of parallel architectures.

GRANSIM, a simulator for the parallel execution of Glasgow Parallel Haskell (GPH)
(see Section 2.2.3), helps the programmer in both stages. Different setups of the
simulator reflect different views of the parallel execution: an algorithm-oriented view
is supported by the GRANSIM-Light setup, whereas a less abstract system-oriented
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view is supported by the standard setup of GRANSIM. In the latter setup GRANSIM
can simulate most MIMD machines by tuning the available parameters specifying the
characteristics of the parallel machine. The limits of such a simulation are discussed

in Section 3.5.

GRANSIM uses a parallel graph reduction model of computation as discussed in Sec-
tion 2.3.1. The particular implementation is based on the Spineless Tagless G-machine
(STGM) (Peyton Jones 1992), with the parallelism annotations par and seq, which
have been discussed in Section 2.2.3. The STGM has been chosen as the underly-
ing abstract machine, because it is used in the Glasgow Haskell Compiler (GHC).
Therefore, GRANSIM can make use of GHC for performing the compilation. The
GUM system, a portable parallel runtime-system for Haskell (Trinder, Hammond,
Mattson Jr., Partridge & Peyton Jones 1996), uses the same abstract machine and
a subset of the same annotations as GRANSIM. For realising the communication be-
tween the processors, GUM uses the PVM communication harness. Thereby, GUM
achieves a high level of portability and it has been used on shared-memory machines,
distributed-memory machines and workstation networks already. The development of
GRANSIM and GUM was independent, but in several cases influential. As a result of
using the same abstract machine, GRANSIM can be parameterised to closely resem-
ble the GUM system. However, as will become clear from this chapter, GRANSIM is
much more flexible than just simulating the GUM system.

The two main topics studied in this thesis are large-scale parallel programming and
granularity. The first topic requires an algorithm-oriented view in developing and
tuning a parallel program. A more detailed system-oriented view is needed in order
to run it on a particular parallel machine. The study of granularity also requires a
system-oriented view in order to model and study different runtime-system features.
In particular for the latter view the flexibility and the accuracy of the simulator are
of special interest. These issues will be emphasised in the following discussion.

The core system of GRANSIM has been developed jointly with Dr. Kevin Hammond
and Dr. Andrew Partridge. This initial version includes the basic design of the dis-
tributed heap, of spark pools, and of thread pools. This design was based on the
runtime-system of GRIP for PVM (Hammond 1993) and GRAPH for PVM (Loidl &
Hammond 1994), two versions of a port of the GRIP runtime system using PVM to
perform communication. The latter added multi-threading and asynchronous commu-
nication to the original GRIP runtime-system. Part of the support for multi-threading



3.2. Structure of GRANSIM 56

in GRANSIM is based on the existing implementation of the GHC runtime-system for
Concurrent Haskell (Peyton Jones et al. 1996). The extensions developed in this
thesis on top of the core version of GRANSIM include the design and extension of
the communications system with asynchronous communication, several variants of
rescheduling, bulk fetching with several variants of packing graph structures (see
Section 3.3.1). An extension of the work request mechanism, several granularity im-
provement mechanisms, and the idealised GRANSIM-Light setup (see Section 3.4)
have been implemented. These extensions are necessary to study a variety of ar-
chitectures and to specifically focus on granularity aspects of the parallel execution.
Finally, GRANSIM has been integrated into GHC and is now publicly available from
the GHC web page (GranSim 1998) for both Haskell 1.2 and 1.4.

The structure of this chapter is as follows. Section 3.2 presents the global structure
of the simulator. Section 3.3 discusses its main characteristics, distinguishing it from
other simulators. Section 3.4 focuses on the GRANSIM-Light setup. Section 3.5
addresses shortcomings of the current version of the simulator. Section 3.6 validates
the results obtained from GRANSIM by comparing them with results from HBCPP,
GRIP and GUM. Finally, Section 3.7 summarises.

3.2 Structure of GRANSIM

Figure 3.1 shows the global structure of GRANSIM. In the standard setup GRANSIM
simulates a finite number of processors. The GRANSIM-Light setup drops this re-
striction in order to provide an algorithm-oriented view of computation that exposes
the total amount of parallelism available in a program. GRANSIM-Light is discussed
in more detail in Section 3.4.

Each of the simulated processors has its own spark pool and thread pool as well
as its own clock. Clock synchronisation is performed via accessing the global event
queue, which is sorted by the time stamps of the entries in this queue. The spark
and thread pools are physically distributed but logically shared. Explicit messages
between processors have to be simulated in order to transfer sparks and threads
between processors.

The simulation is event driven with events representing actions related to the par-
allel nature of the program execution like thread creation, communication etc. The
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Figure 3.1 Global structure of GRANSIM

events in the global event queue contain information about the type of the event, a
time-stamp, the processor where it is happening and a link to the thread state object
(TSO), a descriptor of the thread affected by the event. The statistics buffer accu-
mulates important information such as the runtime, fetchtime, blocktime, amount of

heap allocations etc.

From the presentation of the principles of parallel graph reduction in Section 2.3.1
it should be clear that the management of the spark and thread pools is fundamen-
tal for the behaviour of a parallel graph reducer such as GRANSIM. Therefore, we
concentrate on the discussion of these two issues.

Spark Management: The spark pool holds sparks generated by threads on this
processor as well as those obtained from other processors. By default it is managed as
a first-in first-out (FIFO) queue. This means that older sparks appear earlier in the
spark queue. Although this mechanism is likely to pick larger pieces of work first if
the program has a divide-and-conquer structure, this is not necessarily the best way
to manage the spark pool. Alternatives will be discussed in Section 5.5. In contrast
to recent work on lazy threads (Goldstein et al. 1996), which tries to eliminate a
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separate spark pool altogether (see Section 5.7.1), such an explicit spark pool gives
the runtime-system a handle to control the behaviour of the parallel program on a
rather low-level, e.g. by attaching granularity information to individual sparks.

From the user’s point of view two aspects of sparks deserve special attention. First
of all, GRANSIM uses an evaluate-and-die model of computation, as discussed in
Section 2.4.1. This means that one parallel thread may perform a reduction, for
which another spark has been created. In short, sparks may be subsumed (Peyton
Jones et al. 1987). This mechanism improves the granularity of the program to some
degree. This issue is studied in greater depth in Chapter 5. Another important
aspect of sparks is the fact that they may be discarded by the runtime-system. This
is done for example when the closure, which should be evaluated, is already in weak
head normal form (WHNF). It might also happen during garbage collection. For
the programmer this means that he cannot rely on all sparks actually being turned
into threads. This might be a problem if a spark is discarded although it drives the

parallelism by generating many more sparks.

Thread Management: Each processor maintains a pool of runnable threads. Like
the spark pool, the thread pool is implemented as a FIFO queue. The default schedul-
ing algorithm for the threads is unfair: the currently running thread will only be
descheduled if it demands a closure that is under evaluation by another thread or if it
has to fetch remote data and asynchronous communication is enabled. If synchronous
communication is turned on, the whole processor will be blocked while the data is
fetched. In a previous version of GRANSIM a fair round robin scheduling mechanism
was implemented. However, comparing simulations with these two variants of the
scheduling mechanism showed only minor differences in the overall behaviour whilst
increasing the simulation time significantly. The same unfair scheduling algorithm is
also used in GUM.

A potential problem with unfair scheduling is that a single thread may exhaust all
system resources. However, so far only the largest of our example programs, Lolita,
causes such resource problems. Even in this case simulation time is a more serious
limiting factor than resource exhaustion.



3.3. Characteristics of GRANSIM 59

3.3 Characteristics of GRANSIM

This section discusses the main characteristics of GRANSIM, showing that the level
of detail presented by the simulation supports a system-oriented view of parallel
computation. In particular, the flexibility and the accuracy of the simulation will
be discussed. Furthermore, a set of visualisation tools that have been implemented
while developing GRANSIM proved to be crucial for a detailed analysis of the dynamic
behaviour of the parallel programs.

The main characteristics of GRANSIM are

1. Support for different levels of abstraction;

2. Flexbility in simulating different parallel machines and different features of the

runtime-system;

3. Accuracy of the simulation;

4. Visualisation of the dynamic behaviour and of the granularity of the program;

5. Efficiency of the simulation;

6. Integration of GRANSIM into a state-of-the-art optimising compiler (GHC);

7. Robustness of GRANSIM,;

8. Using Granularity Information in the runtime-system.
Different levels of abstraction are provided by supporting both a GRANSIM-Light
and a standard GRANSIM setup. In the latter configuration it is possible to abstract
from certain aspects of the parallel execution, such as the communication latency, by
setting the corresponding parameter to zero. This will become clear when discussing
the simulation parameters in the following section. The GranSim User’s Guide (Loidl

1996) contains a complete presentation of these parameters. A detailed discussion of
the granularity improvement mechanisms in particular is given in Chapter 5.
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3.3.1 Flexibility

GRANSIM enables the programmer to model a wide range of parallel architectures.
This is possible by tuning many of the low-level characteristics of the parallel machine.
For example the communication behaviour of a machine can be modelled by specifying
several parameters like communication costs such as latency, message pack time etc,
and the strategy that is used for packing a graph, such as incremental packing or bulk
packing. The overhead imposed by the simulated runtime-system can be specified by
setting costs for thread creation, context switch, etc. The specifics of the underlying

processor can be changed, too (see Section 3.3.2).

Crucial for the flexibility of the simulator is its ability to simulate several different
variants of important operations of the runtime-system. Variants of the most impor-
tant operations in GRANSIM are:

e Bulk fetching versus incremental fetching: different packing schemes specify how
much of a graph to pack into one packet.

e Synchronous versus asynchronous communication: different rescheduling schemes

specify what to do while waiting for remote data.

e Migration: is a toggle indicating whether a runnable, but not running, thread
may be moved (“migrated”) to another processor. Experiments on GRIP have
shown that migration, although very expensive, is essential for the performance
of some programs (Hammond & Peyton Jones 1990). Migration is not imple-
mented in GUM.

e Some of the more experimental features implemented in GRANSIM are: throt-
tling communication by bounding the number of outstanding fetch requests,
prefer stealing of threads over sparks, and prefer sparks of local closures over
remote closures, to improve data locality.

The simulator is based on experiences from real parallel systems (GRIP, GUM) and
therefore accurate in modelling aspects of the runtime-system. In fact, to a large
extent GRANSIM shares the same code with GUM.

This close relationship between GRANSIM and GUM encourages the prototype imple-
mentation of runtime-system features not yet available in GUM. The author has used
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this possibility in implementing and measuring various packing schemes and various
rescheduling schemes in GRANSIM (Loidl & Hammond 19965), which are discussed
in the following sections.

Packing Schemes

A packing scheme prescribes how much of the graph to transfer to a processor that
sends a fetch request for one closure. For example, an incremental fetching scheme
only sends the closure that is immediately requested. This scheme aims to minimise
the total number of closures that are sent during the execution of the program. This
is achieved by fetching closures lazily when they are known to be required. However,
this means that the requesting thread has to block for every remote closure, involving
some delay determined by the latency of the machine. Such an incremental scheme

has been used in the low-latency GRIP system.

In contrast, a bulk fetching scheme transfers a group of related closures in a single
packet. The per-packet overhead is higher because packet construction and decon-
struction are much more complicated. The gain is in reduced perceived latency per
closure, because many nodes will be transferred in a single packet, and so will not
need to be transferred individually if they are needed. As a refinement of this mech-
anism GRANSIM offers the possibility to specify a bound on the packet size or on
the number of thunks that can be packed into a single packet. If neither limit is
specified, all the graph that is reachable from the requested node will be packed into
the packet. Note that packing multiple thunks into one packet essentially amounts
to eager work distribution. The GUM implementation currently uses a full-subgraph
packing scheme but imposes a limit on the packet size.

Figure 3.2 depicts the bulk fetching mechanism in action on a simple graph that
involves sharing. The left hand side shows the graph before packing takes place,
the right hand side shows the graph as it has been updated following packing. The
centre of the diagram shows the packet that is constructed to transmit the graph.
Shading is used to depict thunks, normal form closures are left unshaded. The packing
algorithm traverses the graph structure in a breadth-first fashion. Each closure is
given a global address which is used to preserve sharing both across the system and
within the packet. When packing a thunk the original closure is overwritten with a
FetchMe closure (lightly shaded), which acts as a global indirection to remote data
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Figure 3.2 The bulk fetching mechanism (with 3 thunks per packet)

(see Section 2.4.2). In contrast, normal form closures are duplicated by copying them
into the communication packet.

The example in Figure 3.2 shows a packing scheme that packs a maximum of 3
thunks into a packet. Therefore one thunk is left behind on the original processor
and is referenced by a FetchMe closure in the packet. A particularly useful version
of this scheme is a normal-form-only packing scheme, which does not pack a thunk
except for the root of the graph but it includes all normal forms before the first thunk
because they can copied without duplicating work. The GUM system currently packs
a full subgraph until one communication packet is filled.

Rescheduling Schemes

A rescheduling scheme prescribes what the processor should do after having sent
a fetch request to another processor. Two basic rescheduling schemes realise syn-
chronous communication, where the processor waits for the remote data, and asyn-
chronous communication, where another piece of computation is done in the interim.
The latter amounts to latency hiding, since useful work can be performed until the

requested data arrives.
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Four different levels of rescheduling schemes specify how aggressive a processor will

be in trying to obtain work:

1. only execute another runnable thread;

2. turn a spark into a thread if no runnable threads are available;

3. try to acquire a remote spark if the processor has no local sparks;

4. try to migrate another runnable thread if no remote sparks can be found.

These schemes are cumulative, so that thread migration will only be attempted if
the three previous schemes have failed, etc. Note that the third and fourth ‘global’
rescheduling schemes will involve communication in order to obtain new work. In
particular, the fourth scheme may introduce gratuitous thread migration towards
the end of the computation, when the system load is low. The GRIP system uses
synchronous communication and the GUM system currently tries to obtain remote
sparks if no local work is available, corresponding to the third scheme in the list

above.

An Evaluation of Packing and Rescheduling Schemes
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Figure 3.3 A comparison of packing and rescheduling schemes

Figure 3.3 shows two of the measurements presented in Loidl & Hammond (19965).
The test program is the LinSolv algorithm discussed in Section 4.6. The left hand
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graph compares different packing schemes in combination with synchronous and asyn-
chronous communication. The graph shows relative runtimes (in percent) with an in-
cremental synchronous fetching scheme as the baseline. The best results are achieved
when using a bulk fetching scheme with asynchronous communication. We observe
a reduction of the total runtime of 17% and 28% for latencies between 1,000 and
50,000 cycles and a reduction of 50% at a latency of 260,000 cycles. The relative
improvement in runtime increases for higher latencies. The graph also shows that
bulk fetching should not be combined with synchronous communication because this
would prevent the processor from performing useful work while waiting for the data.

The right hand graph of Figure 3.3 compares different rescheduling schemes with
varying latencies. The baseline in this case is Scheme 3, which is used in GUM. This
graph demonstrates that the best choice of a rescheduling scheme depends on the
latency of the machine. For low latencies the more aggressive global schemes perform
best since there is little cost associated with fetching work from remote processors.
The improved load distribution outweighs the increased communication caused by a
deteriorated data locality. However, for high latencies the dominant cost becomes
that of moving data between processors. In this case, data locality is more important
than an even load distribution. Therefore, the local rescheduling schemes usually

perform better than the more aggressive schemes.

More detailed measurements with all different variants are presented and assessed in
Loidl & Hammond (19965). Several medium-scale programs have been used to test
different packing and rescheduling schemes in setups with varying latencies. From

these measurements the following conclusions can be drawn:

e Rescheduling schemes: For low latencies, where an even load distribution is
more important than high data locality, aggressive rescheduling schemes deliver
good work distribution and therefore good performance. For high latencies,
however, the improved load distribution does not compensate for reduced data
locality. The crossover point usually lies between 15,000 and 30,000 cycles, i.e.
loosely-coupled multiprocessors.

e Packing schemes: In general, full-subgraph packing proves to be the best pack-
ing scheme. In practice, there is little danger that such a packing scheme will

cause a disastrously uneven load distribution.
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e Thunk stealing: Occasionally the full-subgraph packing scheme causes thunk

stealing: the gratuitous offloading of thunks that will be needed later. This
increases communication costs and hence reduces performance. We believe that
thunk stealing is the reason for full-subgraph packing sometimes being worse
than those schemes that pack a limited number of thunks per packet. This does
not happen very frequently, however.

Bulk versus incremental fetching: For low latencies (up to about 100 cycles)
there is no difference in the performance of bulk and incremental fetching. Es-
pecially for very high latencies (more than about 50,000 cycles) bulk fetching
achieves significant runtime improvements compared to incremental fetching
even when using asynchronous communication for latency hiding.

Bounded packet size: The average packet size is in general very small, even for
full-subgraph packing (usually smaller than 15 closures). Therefore, changing
the packet size, as has been previously suggested for improving communication

performance, has hardly any effect on the runtime of the program.

As a result of the measurements in Loidl & Hammond (1996b) the following concrete

suggestions for improving the GUM runtime-system can be made:

e For programs with a high degree of communication a normal-form-only pack-

ing scheme should be used in order to minimise a gratuitous transfer of work
together with data (“thunk stealing”), which has been observed in GRANSIM
measurements. It is probably not worthwhile implementing a more general
scheme that allows the user to specify the number of thunks per packet because
good values for such a parameter are very hard to predict.

When running on a high-latency system of more than about 15,000 cycles a less
aggressive rescheduling scheme should be used in order to maintain good data
locality.

In contrast to previous suggestions (Trinder, Hammond, Mattson Jr., Partridge
& Peyton Jones 1996), we found that choosing a small packet size is not an
effective means of tuning the granularity of the communication. This is due to
the small average number of closures per packet in most programs.
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3.3.2 Accuracy

To evaluate the accuracy of the simulation it is necessary to examine the accuracy of
several key steps in the compilation and execution of a program. GRANSIM manages
to achieve a balance in the accuracy of the following key steps:

e the compilation of the program;
e the simulation of the computation;

e the simulation of the communication.

Compilation: A prerequisite for achieving a high accuracy of the simulation is a
compilation of the functional program, which avoids inefficiencies of a naive imple-
mentation of graph reduction. A naive compilation would distort every simulation
because the compiled code, which is the input to the simulator, would differ signifi-
cantly to code produced by an optimising compiler. Therefore the results even of an
idealised simulation would have only a very limited relevance. GRANSIM is built on
top of, and therefore makes use of, a state-of-the-art optimising compiler for Haskell
(GHC). As a result the generated code is almost identical to the code used for se-
quential execution. The only difference is an instrumentation of the generated code

on basic block level.

Computation: In order to assign computation costs to the basic blocks in the pro-
gram an instruction count function is applied in an intermediate representation of the
optimised program. This intermediate code bears a strong resemblance to low-level
C without loops. At this level the operations in the program closely correspond to
machine operations, which permits an exact modelling of the cost of computation.
The instruction count function has been carefully tuned by analysing the assembler
code generated by GHC and the results have been compared with the number of in-
structions executed in real Haskell programs. These comparisons have shown that the
instruction count of the simulation lies within 10% for arithmetic operations, within
2% for load, store operations, within 20% for branch instructions and within 14%
for floating point instructions of the real values (Hammond et al. 1995). Overall, it
has to be emphasised that GRANSIM does not measure the computation in reduction



3.3. Characteristics of GRANSIM 67

steps, as it is often done in idealised simulators, but in machine cycles for a specific

processor.

To permit different kinds of architectures to be modelled the instructions have been
split into five classes, with different weights. The default weights in the following
list model a SPARC processor and have been verified with Haskell programs in the
sequential NoFib suite (Partain 1992), which is used to tune the Glasgow Haskell
Compiler and which is publicly available (NoFib 1998). These weights are tunable in
order to simulate other kinds of processors:

e arithmetic operations (default: 1 cycle),
o floating point operations (default: 1 cycle),
e load operations (default: 4 cycles),

store operations (default: 4 cycles) and

branch instructions (default: 2 cycles).

Communication: The basic communication parameters of a parallel machine such
as latency, message creation costs, etc are parameters to the runtime-system. In total,
GRANSIM offers 6 different parameters to describe the communication behaviour of
a machine thus giving the user a high degree of flexibility in describing the character-
istics of the machine being modelled. The accuracy of the modelled communication
depends on the accuracy of the parameters provided by the user. One aspect of the
communication that is not covered by GRANSIM is the topology of the parallel ma-
chine: in GRANSIM the latency between any two processors is the same. The latency
also does not change with increasing network traffic. These shortcomings will be
discussed in more detail in Section 3.5.

3.3.3 Visualisation

Together with the GRANSIM simulator a set of visualisation tools has been developed.
Two kinds of profiles are generated: activity profiles and granularity profiles. This
section discusses both kinds of profiles. These visualisation tools have proven indis-
pensable in the parallelisation and optimisation of programs such as a linear system
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solver. Based on the group’s experience from implementing several large programs
(see Chapter 4), such tools are essential when working with a lazy language, in which
the order of evaluation is not at all obvious from the program source.

All visualisation tools take a GRANSIM or a GUM profile, a log-file of the program
execution, as input and generate a PostScript file as output. The format of this log-file
is discussed in the GranSim User’s Guide (Loidl 1996). Producing individual graphs
can be seen as a form of static visualisation. Other packages such as the VISTA
package (Halstead Jr. 1995) allow the user to step through the parallel execution
based on the information available in the provided log file. This dynamic visualisation
obviously can expose more information about the exact behaviour of the program.
However, our experiences show that already static activity profiles with different levels
of detail provide valuable information in order to tune the performance even of large
parallel programs.

A promising direction of ongoing work is the use of cost centres, as developed for
sequential profiling of Haskell (Sansom & Peyton Jones 1995), to connect points in
the activity profiles with expressions in the source code. A prototype of combining
GRANSIM with cost centre profiling, GRANCC, to whose development the author
has contributed, is already available (Hammond et al. 1997). Several projects for
improving parallel profiling are aiming at increasing the information contained in
these profiles, developing a self-describing log-file format that can be used for both
sequential and parallel profiling, and developing graphical user-interfaces that provide
a dynamic visualisation of the program behaviour. Research groups at the Universities
of Glasgow, St. Andrews, York, the Open University and the Parallel Application
Centre of the University of Oxford are collaborating in this effort.

Activity Profiles

The aim of the activity profiles is to summarise the activity of the machine during
the computation in one graph. In order to give the programmer the possibility of
examining the program execution in more detail, three different levels of detail are
supported. Furthermore, it is possible to focus only on parts of the execution, like
examining only one processor, by first applying a filter on the generated GRANSIM
profile.

The activity profiles show the activity of the machine in three levels of detail:
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e Quverall activity of the whole machine;
e Per-processor activity of the individual processors;

e Per-thread activity of the individual threads.

The following subsections discuss each of these profiles and give examples.

Overall activity: The idea of the overall activity profile is to present a global
picture of the computation. In particular, it should show the utilisation of the machine
at each point. A drop in utilisation might reflect a performance bottleneck in the
algorithm. This profile can be regarded as an “algorithm focusing” profile and is
particularly important for an algorithm-oriented view of parallelism. The overall
activity profile separates the threads into five different classes:

e running threads, i.e. threads that are currently performing a reduction, which

are shown as a green area in the graph,

e runnable threads, i.e. threads that could be executed but that have not found
an idle processor, which are shown as an amber area in the graph,

e blocked threads, i.e. threads that wait for a result that is being computed by
another thread, which are shown as a red area in the graph,

o fetching threads, i.e. threads that are currently fetching data from a remote
processor, which are shown as a light blue area in the graph,

e migrating threads, i.e. threads that are currently being transferred from a busy
processor to an idle processor, which are shown as a dark blue area in the graph.

The overall activity profile in Figure 3.4 shows the number of threads in each class
for each point in time. The example program in this case is a word search program,
described originally in the FLARE book (Runciman & Wakeling 1995). It has a
bottleneck at about 110k cycles. In the given setup, asynchronous communication
with incremental fetching and a latency of 400 cycles, this results in a drop down to
only one running thread for some time. As thread migration is enabled we observe
several runnable threads being transfered to another processor immediately before
that point. Overall this program suffers from a lack of parallelism, which can be
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Figure 3.4 Overall activity profile (original in colour)

seen from the low number of runnable threads although the machine rarely is fully
utilised. The sequential tail of the program is due to the collection and the printing of
the result. GRANSIM measures the costs of all Haskell input/output routines, which

are written in a monadic style (Peyton Jones & Wadler 1993).

Per-processor activity: The idea of the per-processor activity profile is to show
the most important pieces of information about each processor in one graph. There-
fore it is easy to compare the behaviour of the different processors and to spot imbal-
ances in the computation. This profile is often used to study runtime-system issues
like the load balance in the system and is therefore most useful in a system-oriented

view of parallelism. This profile can be regarded as a “load focusing” profile.

The per-processor activity profile shows one strip for each of the simulated processors.

Each of these strips encodes three pieces of information:

» Is the processor active at a certain point? If it is active the strip appears in
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some shade of green (gray in the monochrome version). If it is idle it appears

in red (white in the monochrome version).

* How high is the /oad of the processor? The load is measured by the number of
runnable threads on this processor. A high load is shown by a dark shade of

green (or grey).

* How many blocked threads are on the processor? This information is shown by
the thickness of a blue (black) bar at the bottom of each strip. This bar may
cover up to 80% of the strip. Thus, the load information is always visible “in

the background”.
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Figure 3.5 Per-processor activity profile (original in colour)

The per-processor activity profile in Figure 3.5 uses the same example as in the
previous section. The drop in utilisation at about 110k cycles is reflected by a rather
large red area. The distribution of work at the beginning of the computation starts

with low-numbered processors. Therefore, these processors have bigger pieces of work.



3.3. Characteristics of GRANSIM 72

The distribution of work is quite even, which is represented as the same shade of green
on all processors. The number of blocked threads is very small in general. Thread
migration causes the main thread to be moved to processor 25, which is the processor
that collects the final result.

Apart from showing the load of the processors, this kind of graph can also be used
to show two additional pieces of information:

e Migration: This variant of the graph, a “migration” graph, shows arrows be-
tween processors indicating the migration of a thread from one processor to
another. Load and blocking information are suppressed in this variant.

e Sparking: This variant of the graph, a “spark” graph, shows information about
the number of sparks on a processor in the same way as the number of runnable
threads, i.e. by shading. This graph is useful to highlight hotspots of spark

creation.

Per-thread activity: The idea of the per-thread activity profile is to show the
activity of all generated threads. For each thread a horizontal line is shown. The
line starts when the thread is created and ends when it is terminated. The thickness
of the line indicates the state of the thread. The possible states correspond to the
groups shown in the overall activity profile. This profile can be regarded as a “thread
focusing” profile.

The states of the threads are encoded in the following way:

e A running thread is shown as a thick green (gray) line.
e A runnable thread is shown as a medium red (black) line.
e A fetching or migrating thread is shown as a thin blue (black) line.

e A blocked thread is shown as a gap in the line.

This profile gives the most accurate kind of information. Although it is a static profile
the information is so detailed that it is possible to “step through” the computation
by relating events on different processors with each other. For example the typical
pattern at the beginning of the computation is a running period for starting the thread
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Figure 3.6 Per-thread activity profile

followed by fetching remote data. After that the thread may become runnable, rather
than running, if another thread has been started on that processor in the meantime.

The per-thread activity profile in Figure 3.6 only shows the threads that were executed
on processor 0. As it is often done in practice, a filter has been used in order to obtain
this kind of partial information. Usually this kind of profile is only used for focusing
on a specific part of the execution or for a program with a rather small number of
threads. The profile in Figure 3.6 shows the main thread, which is running most of
the time. Occasionally it has to fetch data, shown as a thin line, or it is suspended
because another thread is running on the processor, shown as a medium line.

Granularity Profiles

The tools for generating granularity profiles aim at showing the total execution times
of the generated threads. Of particular interest is the number of tiny threads, for
which the overhead of thread creation is relatively high.
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In order to show granularity information, i.e. information about the runtime of

threads, two basic kinds of graphs can be generated:

e A bucket statistics, which collects threads with similar runtime in the same

“bucket” and shows the number of threads in each bucket.

o A cumulative statistics, which shows how many threads have a runtime below
a certain value. This graph gives more detailed information but is usually
not necessary. Examples of using these graphs can be found in (Hammond

et al. 1995).

Bucket Statistics: A bucket statistics partitions the x-axis, which represents thread
execution times, into intervals and records the number of threads whose execution
time lies in a specific interval. Thus, this statistics transforms continuous informa-
tion, the runtime of a thread, into discrete information, the number of threads in a
bucket. Standard methods for representing and processing of discrete data can be
used on this data. For example, the number of threads in each interval is shown as a
histogram. In order to show a wide range of possible values the y-axis is often shown

in a log scale.
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Figure 3.7 Bucket statistics of thread runtime and heap allocations

Usually such a bucket statistics is used to analyse the distribution of the execution
times of threads, giving a granularity profile. However, as can be seen in Figure 3.7
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the same kind of statistics can be used in order to analyse different aspects of the
execution such as the total amount of heap allocated by a thread. The similar profiles
for both kinds of statistics in Figure 3.7 is typical for a range of programs we have
studied. This reveals a non-obvious close relationship between the execution time and
the number of closures allocated by a thread. Because the graph reduction model is
centred around operations on the heap, it rarely happens that a time consuming
thread performs very little allocation, even if the generated code has been optimised.
As a matter of fact, our studies in (Hammond et al. 1995) show a more than 90%
correlation between these two aspects for several example programs. The example
program used in Figure 3.7 is again the word search algorithm.

Cumulative Statistics: One problem with the bucket statistics is that the result-
ing profile depends to some degree on the choice of the intervals. With an unlucky
choice different results may show a similar profile. To avoid this problem, the visu-
alisation tools can also generate cumulative statistics. In a cumulative granularity
statistic a point (z,y) in a graph indicates that y threads have a runtime of at most
x cycles. Thus, the graph cumulates the number of threads and will show the to-
tal number of threads generated at the right end of the x-axis. This graph can be
produced with either the absolute number of threads or the percentage of threads on
the y-axis. Again the same kind of graph can be used to show aspects other than

execution time.

3.3.4 Efficiency

The two most important features of GRANSIM for supporting a system-oriented view
of the computation are its flexibility and accuracy (see Section 3.6 for a compari-
son with results from GUM). However, a high degree of accuracy also imposes a
high bookkeeping overhead on the simulation. The three main factors governing the

efficiency of the simulation are:

e the degree of communication in the program;
e the number of threads that are created; and

e the frequency of blocking a thread on a closure that is under evaluation.
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The exact modelling of communication in GRANSIM is rather expensive, because each
simulated communication causes a rather expensive context switch in the simulator.
Such a context switch requires the current state of the simulator to be saved and
restored. Furthermore, a “runtime-system call” has to be performed, interrupting
the normal reduction process. This slows down the simulation especially of machines
with low latency where much communication is performed.

Switching to another thread is also rather expensive. As a consequence, the total
number of threads that are created affects the efficiency of the simulation in a crucial
way. The influence of the number of threads on the performance of the simulation can
be reduced by increasing the time slice given to each thread. This will result in a faster
but less accurate simulation, because a thread may run ahead in the computation,

ignoring communication events.

Another problem caused by a large number of threads is their heap consumption.
With 30 words per thread, plus the size of the initial stack object, the heap used
directly by the thread is not critical. However, because each thread holds on to a
piece of graph, the total amount of live data can increase drastically. This causes more
frequent garbage collections, which in turn increases the runtime of the simulation
compared with an optimised sequential version. This point currently poses a problem
for using the GRANSIM-Light setup in very large programs like Lolita.

In order to get an idea of the simulation costs Table 3.1 shows the simulation times,
i.e. the time needed to run the simulation, of several programs run on GRANSIM and
GRANSIM-Light with that on HBCPP (Runciman & Wakeling 1993), an idealised
simulator for the same source language. As example programs a set of non-trivial
programs from the emerging parallel NoFib suite has been used: a ray tracer, Ray,
the same word search program, Soda, that has been used as an example for the
visualisation tools, a linear system solver, LinSolv, discussed in detail in Section 4.6, a
determinant computation, Determinant, used as a part of the linear system solver, and
a matrix multiplication, MatMult. Two values are given for the GRANSIM simulation
times: the first value uses the default time slice given to every thread; the value in
parentheses uses a very small time slice for a more accurate but slower simulation.
The difference from the first value gives an idea how much the simulation time can
be tuned by choosing a different time-slice.

In three cases, Ray, LinSolv, and MatMult the GRANSIM-Light setup shows a signif-
icant higher runtime compared to the standard GRANSIM setup. This is mainly due
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Table 3.1 Simulation times (in seconds) of GRANSIM and HBCPP

Program GRANSIM GRANSIM- | HBCPP | optimised

default short Light GHC

time slice time slice

Ray 70.7 198.9 141.3 73.2 11.1
Soda 2.4 5.5 1.5 0.8 0.1
LinSolv 75.9 96.8 334.0 — 0.1
Determinant 7.9 8.4 4.3 41 1.7
MatMult 22.3 26.9 65.9 26.9 0.4

to the large number of threads that are created in the idealised simulation, causing a
large number of context switches. This aspect is elaborated further in Section 3.4. It
should be noted that faster simulation time is not the main goal of GRANSIM-Light.
Often it generates a faster simulation but the main purpose is to simulate an idealised
machine, reflecting an algorithm-oriented view of parallelism.

Usually, GRANSIM is between 1.5 and 2.5 slower than HBCPP, the factor would
probably be larger for 1insolv but this program did not compile successfully under
HBCPP. Considering the additional information produced in the standard GRANSIM
setup this can be regarded as an acceptable factor. In the case of MatMult and
for some very small example programs it occasionally even manages to outperform
HBCPP. One reason for the reduced simulation time might be the improved code
generation. Because GRANSIM is integrated in GHC we can profit from the ongoing
tuning of the compiler itself (see the following section for details).

Compared to an optimised sequential version the simulation shows a slow-down of a
factor of 4.6 to 759. Again the worst case is generated by 1linsolv with an abundance
of parallel threads and a lot of communication in the program. Most of the simulations
exhibit a slow-down of 10 to 15. Considering that GHC produces the fastest code of
all available Haskell compilers (Hartel 1995), these factors still render the simulator
useful for large programs and this has been proven for programs such as LinSolv
(Section 4.6) and Lolita (Section 4.5).
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3.3.5 Integration into GHC

GRANSIM is built on top of the Glasgow Haskell Compiler (GHC), a state-of-the-art
optimising compiler for Haskell. This means that the execution of sequential code in
the simulator is realistic. In fact, the code generated by GRANSIM is almost identical
to the sequential code generated by GHC. The only difference are macros that check
for the existence of a closure on a processor, at the beginning of every basic block,
and another macro for adding the execution time of the basic block to the local clock,
at the end of this basic block.

It is possible to use all the features of a normal GHC compilation in GRANSIM, too.
For example, the ccall mechanism can be used to call C functions in a parallel pro-
gram. This feature is essential for the parallelisation of Lolita(see Section 4.5). With
this mechanism optimised sequential, possibly even imperative, code in libraries can
be called from a parallel lazy functional program. This feature has been exploited in
an experimental implementation of a parallel resultant algorithm using basic polyno-
mial operations of a sequential computer algebra library.

One of the main features of GHC is the use of many program transformations in
order to optimise the sequential code. This covers well-established optimisations
such as inlining and the use of strictness information as well as rather new optimi-
sations such as let-floating and deforestation. The influence of these new sequential
optimisations on the parallel execution of a program is an interesting but largely
unstudied area. For example deforestation might eliminate intermediate lists that
are crucial for the parallel execution of the program. Indeed Santos reports that in
one example program (Fast Fourier Transformation) the full laziness transformation
creates a sequential bottleneck, which slows down the computation by a factor of 6
to 10 (Santos 1995, Section 5.2.2). GRANSIM would seem to be the ideal basis for
studying these interactions in more detail.

3.3.6 Robustness

The robustness of GRANSIM has been proven by using it in the parallelisation and
performance tuning of a set of large Haskell programs. Some of these programs are
discussed in more detail in Chapter 4. Most of the parallelisation of the Lolita natural
language engineering system has been done by using GRANSIM. Other scientists have
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used GRANSIM to parallelise substantial pieces of Haskell code such as a program that
determines accident blackspots based on a large database of traffic accident reports
(Wu & Harbird 1996, Trinder et al. 1998) and Naira, a parallelising compiler for a
subset of Haskell (Junaidu 1998).

Without a simulator it would be much more difficult to parallelise such large programs
because of system issues, e.g. integrating foreign language calls, and “external” aspects
of the execution, e.g. system load, cannot be easily eliminated. The separation into
GRANSIM and GRANSIM-Light configurations encourages the parallel program to
be developed in two stages: first the parallel algorithm is developed in a machine
independent setting; then it is optimised for a specific machine. In particular, the
parallelisation of Lolita showed the importance of having a simulator that is integrated
in a state-of-the-art-compiler with all its tools: it was crucial to have a profiler for the
sequential version of the program. Based on these experiences of using both GRANSIM
and GUM in the parallelisation of several programs the parallel programming group
at Glasgow has developed a parallelisation methodology, with GRANSIM as one of its
major components (see Section 4.8).

3.4 GRANSIM-Light

One main purpose of GRANSIM is to provide a testbed for variations of the runtime-
system. This requires a very accurate simulation that is flexible enough to model
different kinds of parallel architectures. However, in early stages of the development
of a parallel algorithm a more abstract view of parallel computation is advantageous.
This different attitude requires slightly different characteristics of the simulator.

The GRANSIM-Light setup has been designed to satisfy such an algorithm-oriented
view of parallelism. Therefore, GRANSIM-Light models an idealised machine with

e an infinite number of processors and

e zero communication costs.

This difference in modelling the parallel execution of a program requires changes in
the structure of the simulator. Most importantly, the spark and thread pools are not
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Figure 3.8 Global structure of GRANSIM-Light

distributed in this setup. Figure 3.8 shows the global structure of the GRANSIM-Light
setup.

This setup exposes all parallelism in the algorithm and allows the programmer to
tune the performance of the algorithm before studying its dynamic behaviour on a
specific parallel machine. Although such a simulation gives a less accurate picture of
the parallel behaviour on a concrete machine, it has proven to be an important step
in the methodology for parallelising large lazy functional programs (see Section 4.8).

The GRANSIM-Light setup is very close to the HBCPP simulator (Runciman &
Wakeling 1993). In Section 3.6 we compare the results of some simulations under
both simulators. Table 3.1 has already shown that the simulation time in GRANSIM
is comparable to that in HBCPP. GRANSIM-Light sometimes manages to be as fast
as HBCPP and is within a factor of 2.5 for the remaining programs.

One problem with GRANSIM-Light, however, is the fact that its performance de-
pends very much on the number of generated threads. The idealised simulation of
GRANSIM-Light usually creates a much larger number of threads than the standard
simulation because in the latter case the evaluate-and-die mechanism manages to sub-
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sume potential parallel threads. Clearly, the evaluate-and-die mechanism cannot be
effective in a setup where every spark is immediately turned into a thread. We have
seen this behaviour when comparing simulation times in Table 3.1. For some exam-
ple programs in these measurements the GRANSIM-Light simulation is significantly
slower than the standard setup of GRANSIM. The main reason for this slow-down
is the large number of context switches necessary to simulate the graph reduction of
and the interaction between so many threads.

3.5 Shortcomings of GRANSIM

Despite the high degree of parameterisation of GRANSIM, there are certain aspects
of a parallel machine that are not modelled. This section comments on these short-
comings and their impact on the development of parallel algorithms.

Computation: GRANSIM models an execution on a homogeneous MIMD multi-
processor. This model does not include the concept of clusters of processors, with
cheap local communication. Nor does this model encompass SIMD machines, which
operate with only a single instruction stream. However, this model corresponds to

the underlying computation model of GUM.

Communication: Two of the most important aspects of a parallel machine that
are not covered by GRANSIM relate to the communication behaviour of the machine:
the bandwidth of the communication and the topology of the underlying machine.
GRANSIM assumes that the latency between two processors is independent of the
communication traffic. In reality, however, “contention” will occur at some point,
drastically degrading the performance of the communication. However, this usually
only happens with an excessive amount of communication and should therefore be no
problem for normal executions. Another simplifying assumption is that the distance
between any two processors in the system is the same. This fixes the simulation to one
special topology, a fully-connected graph. However, experiences with modern parallel
machines show that the topology has a rather small influence on the communication
speed.
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Memory Management: One important aspect in the execution of a parallel pro-
gram is the data locality. In the computation model used by GRANSIM as well as
GUM there is only very limited support for studying this aspect. An experimental
feature in GRANSIM allows absolute placement of a process on a specific processor,
but the data will always travel to the thread never vice versa. A useful extension of
GRANSIM would be the implementation of “sticky closures” that have to be evaluated
on the processor on which they have been created. The idea of such an implementa-
tion would be to automatically create a spark for a sticky closure when it is demanded.
The usual runtime-system mechanisms can then be used to turn the closure into a
thread and to evaluate it. This evaluation must be on the specified processor but the
runtime-system still has the choice to discard the spark.

GRANSIM does not provide any modelling of garbage collection in the parallel system.
The main motivation for this design decision is that the choice of one particular
mechanism would likely have global effects in the execution, e.g. reference counting
garbage collection introduces an overhead when copying any closure in the system.
Thus, all results would be biased towards the chosen form of garbage collection.

Extensions of GRANSIM: One important shortcoming is the lack of a parallel
profiling mechanism. When parallelising big programs it would be very important to
mark certain threads that are of special interest and to focus on these threads with
the visualisation tools. So far, only a rudimentary thread marking mechanism has
been implemented. It propagates a thread name to all children and makes it possible
to change the name during execution. In order to use this information special filter
programs have to be applied to the GRANSIM profile. In the meantime, a parallel
profiler, GRANCC, has been constructed by merging GRANSIM with sequential cost
centre profiling (Hammond et al. 1997). Initial results of this research effort, to which
the author is contributing, show valuable additional information. An alternative
approach is to dynamically mark evaluation strategies (see Section 4.3) in the code
to provide information about which threads have been generated by which strategy.
This approach is currently pursued by a research group at The Open University.
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3.6 Validation of Simulation Results

This section gives a validation of some simulation results by comparing profiles ob-
tained from GRANSIM with those from HBCPP, GRIP, and GUM. This compari-
son shows that GRANSIM yields a realistic picture of a program’s parallel behaviour,
provided that the GRANSIM parameters are set to model the underlying hardware

architecture.

3.6.1 GranSim versus HBCPP

(GrAnSIm  queens_mg § +RTS -bP -b. -0200 -H6M -be -sslden Hpcep Yaudenshbepp

Figure 3.9 Activity profiles from GranSim and HBCPP

Figure 3.9 compares the overall activity profiles for the queens program generated by
GranSim and HBCPP. The activity profile produced by the GranSim execution
is significantly more detailed, which results in a more fine-grained picture. It also
manages to exhibit stages of blocking that are too short to be detected in HBCPP.

Most importantly, the overall pattern of the computation is the same.

3.6.2 GranSim versus GRIP

Section 4.6 discusses three variants of a symbolic algorithm for solving a system of

linear equations, LinSolv. Starting with a rather inefficient algorithm the perfor-
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mance of this algorithm is tuned and sequential bottlenecks are eliminated. The
final algorithm has also been executed on the GRIP multi-processor. Figure 3.10
presents a comparison of the activity profiles generated by GranSim and GRIP.
The GrANSIM version uses a setup with 16 processors and a latency of 400 cycles,
matching the GRIP configuration. In the GRIP profile no runnable threads are
shown because this kind of information is not collected. The shape of both profiles is
very similar. Both profiles show a small peak of parallelism at the end of the compu-
tation. Comparing the raw numbers we observe an average parallelism of 15 under
G rRANSIM, whereas the average parallelism on GRIP is 14.5. The speedup obtained
under GRANSIM, 11.92, is slightly below the speedup on GRIP, 13.58.

The most pronounced difference is the larger number of blocked threads in GRANSIM.
This is probably due to the use of local sparking in GRIP, which is not simulated in
GRANSIM. Local sparking distinguishes between local spark pools for each processor
and one shared global spark pool. In order to improve data locality local sparks are
preferred. Only in the case of a global shortage of sparks are the local sparks moved
into the global spark pool. In this example the GRANSIM graph shows that there are
runnable threads through most of the computation. Therefore, the GRIP version will
rarely have to move sparks into the global spark pool, where they can be picked up
by other idle processors. In total this leads to a smaller number of generated threads.

[GrAnSim  UnSotv (final): 16 Processors. 400 Cycle Latency Average Parallelism = 15 0 Average Parallelism = 14.5)

[ = running ) runnable 0 Mocked Speedup = 11.92 = running 0 blocked

Figure 3.10 GranSim and GRIP activity profiles of LinSolv
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One of our example programs that shows a very interesting granularity profile is a
parallel ray tracer. This program has been developed by Kelly in his thesis (Kelly
1989).

Hammond et al. (1994) study the granularity of this algorithm on the GRIP multi-
processor, deriving granularity profiles for each of the programs. The author used the
same code of the ray tracer under GRANSIM to analyse the granularity of the gener-
ated threads. Figure 3.11 compares these profiles in a bucket statistics. In both cases
a log scale is used to show even small buckets. GRANSIM measures time in machine
cycles, whereas in the GRIP measurements the granularity is measured in terms of
the number of heap allocations. The previously mentioned high correlation between
execution time and heap allocations justifies this approximation of execution time.
This program shows two main clusters of threads with respect to their runtimes: two
clusters of short threads and a cluster of large threads. The short threads represent
processes that “drive the parallelism” in the program, generating many sub-threads.
The large threads are performing the actual computation. Because of the different
measure of execution time, concrete x-values cannot be directly compared. However,
the granularity profile in both cases is the same.

3.6.3 GRANSIM versus GUM

Figure 3.12 gives a comparison of a parallel determinant computation executed under
GRANSIM, left hand side, and on a Sun SPARCserver shared memory machine with
four processors under GUM, right hand side. The overall shape of both profiles
exhibits a very similar overall behaviour of the program. The GRANSIM version
underestimates the number of blocked threads and especially the number of fetching
threads. The latter is a general trend, which can also be observed in the Lolita system
(see Section 4.5). Although the overhead for creating a communication packet has
been increased in this simulation it does not model all of the software overhead in
PVM, which is in part data dependent. The regular, short drops in the utilisation of
the GUM profile may in part be caused by operating system interference, because
the 4 processor machine used in this experiment has a significant load of users.
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Figure 3.11 GRANSIM (top) and GRIP (bottom) granularity profiles of a ray tracer

3.7 Summary

A simulator for the parallel execution of functional programs may be of use for either
the programmer, who wants to study the parallel behaviour of a certain algorithm,
or the compiler designer, who wants to study the effectiveness of certain mechanisms
in the runtime-system. This chapter has shown that GRANSIM is a useful tool for
both groups by supporting a high-level algorithm-oriented view as well as a low-
level system-oriented view. In the latter view the focus might be on an extremely
accurate simulation of a specific machine or on a flexible simulation of a wide range
of parallel architectures. GRANSIM supports the approach of a flexible simulation by
being highly parameterised without losing accuracy on the compilation level. Only
certain very low-level machine characteristics are not captured in the simulation.
Taking such a system-oriented view, GRANSIM measurements with implementations
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Figure 3.12 GranSim and GUM activity profiles of a determinant computation

of alternative packing and rescheduling schemes have led to concrete suggestions for
improving the GUM runtime-system for specific architectures, e.g. by packing smaller
graph structures in highly-communicating programs or by using a less aggressive

rescheduling scheme in high-latency systems.

In the following chapter G RANSIM will be used in the parallelisation and performance
tuning of a set of large functional programs. This will demonstrate its practical
usefulness beyond its original design as a testbed for implementing variants in the
parallel runtime-system. The integration of GRANSIM into a parallel engineering
environment together with the GUM parallel runtime-system, and the availability
of visualisation tools in both systems are crucial in the development of large parallel

programs.



Chapter 4

Large-Scale Parallel Functional

Programming

Capsule

The superior computational power of parallel machines is most likely to be

used in time consuming programs. Such programs are typically large. During

the performance tuning of the parallel code it is often necessary to restructure

parts of the code. For these reasons, a modular design is even more important

for parallel programs than for sequential programs. Lazy functional languages

offer a high level of modularity via higher-order functions and a non-strict

semantics. This chapter focuses on the question how to specify parallelism in

a lazy functional language without sacrificing modularity.

Previous experiences with writing medium-scale parallel programs have

shown that the undisciplined use of par and seq annotations in the program

can yield opaque code. This observation has led to the development of evalua-

tion strategies based on laziness, overloading, polymorphism, and higher-order

functions. This chapter presents evaluation strategies, which have been devel-

oped in a group effort, and contributes to the design of strategies by augmenting

the core module with a construct for strategic function application. The re-

sulting module has been used in parallelising several large programs including

LinSolv, a linear system solver, an Alpha-Beta search algorithm, and Lolita,

a natural language engineering system consisting of more than 47,000 lines of

Haskell. These programs show that with only a few localised changes in the

code good parallel performance can be achieved in programs that have not

necessarily been written with parallel execution in mind. The laziness of the

88
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language favours a data-oriented style of parallel programming, where the par-
allelism is defined on intermediate data structures rather than within specific
modules of the program. This facilitates top-level parallelisation and restricts

the contextual knowledge the programmer has to have about the program.

4.1 Introduction

Although the advantages of the high level of abstraction in functional languages
mainly show up in big programs there is a daunting shortage of such programs. In the
context of parallel processing this is even more critical since realistic time-consuming
programs, which should be executed in parallel, are often large. Obtaining a parallel
version that exhibits a reasonable parallel performance without spending a lot of
effort in modifying the code is therefore of utmost importance.

This thesis focuses on symbolic computation as main application area. By and large,
programs in this area use the major advantages of functional languages such as higher-
order functions and algebraic data-types much more heavily than numerical compu-
tation programs. Thus they are a natural application for functional languages. For
programs with these characteristics it is possible to make use of parallel computation
without a vast effort in recoding the program, even if that results in the loss of some
parallelism. Again this is in contrast to the approach towards parallel computation
usually taken for numerical applications, where it is feasible to invest a lot of time in
parallelising one particular program. In contrast, the parallelisation of the programs
in this chapter takes an approach of “acceptable gain for low pain”.

In order to cope with large programs the parallel programming group at Glasgow has
developed evaluation strategies, a new programming technique based on lazy evalu-
ation, overloading, polymorphism, and higher-order functions. Evaluation strategies
allow a clean separation of algorithmic code from an operational description of the
parallel program behaviour. This chapter discusses the author’s contribution to the
development of strategies and his parallelisation and performance tuning of several
large functional programs. This presentation shows that the parallel program devel-
opment is much easier when using strategies, in particular because of better support
for modularity, and that most of the complexity of parallel program development for
imperative languages is absent in this model, because synchronisation and communi-

cation are managed entirely by the runtime-system.
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The parallel programming group at Glasgow has studied about 8 medium to large
parallel functional programs. This chapter describes the following three programs:

e LinSolv, a program for finding an exact solution of a system of linear equations.
It is interesting for its use of an approach typical to many algorithms in computer

algebra.

e Alpha-Beta search, a program for performing a heuristic search in a tree struc-
ture, usually used in game programming. It is a typical program for Al appli-

cations.

e Lolita, a large natural language engineering system. It is a very general system
and can be used for extracting semantics from newspaper articles, translate text

between languages, or for interactive language tutoring.

The contributions of this thesis to the work described here are as follows. The au-
thor’s experience with parallelising LinSolv has initiated the development of evalua-
tion strategies in a group effort led by Dr. Phil Trinder. The author’s main indepen-
dent contribution to the design of strategies is the development of strategic function
application as a convenient way to express pipeline parallelism and to combine it
with other forms of parallelism via function composition. The modified strategies
module has been used in the author’s parallelisation of LinSolv, strategy version, and
of Alpha-Beta search, based on the sequential algorithm by Hughes (1989). These
experiences have led to changes in the core design of evaluation strategies. The
parallelisation of Lolita has been done in collaboration with the Natural Language
Engineering Group at the University of Durham. Sections 4.2, 4.3, and 4.9.1, describ-
ing evaluation strategies, are revised versions of material published in Trinder et al.
(1998). Sections 4.4 and 4.5 cover material published in Loidl & Trinder (1997) and
Loidl et al. (1997), respectively. Section 4.6 is a revised version of material submitted
for publication in Loidl (1997).

The structure of this chapter is as follows. Section 4.2 discusses problems when us-
ing annotations in order to describe parallel program behaviour for large programs.
Section 4.3 introduces evaluation strategies and presents simple generic strategies
demonstrating the flexibility of this approach. The following three sections present
case studies of using strategies on several large programs: an Alpha-Beta search algo-
rithm in Section 4.4, Lolita, a natural language engineering system in Section 4.5, and
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LinSolv, a linear equation solver in Section 4.6. Section 4.7 compares the style of par-
allel programming in a lazy functional with a strict imperative language. Section 4.8
outlines a methodology for parallelising large lazy programs based on the acquired
experiences with parallelising several large applications. Finally, Section 4.10 con-
cludes.

4.2 Problems with Parallel Programming in-the-

large

The big advantage of functional programming languages is the fact that they avoid
overspecification by only defining the result without specifying an exact order of
evaluation steps. More informally, they specify what to compute without fixing how
to compute it. However, when writing an explicitly parallel program it is necessary
to specify some aspects of the dynamic behaviour of the program. In the model used
in this thesis this means exposing parallelism by marking expressions that might be
evaluated in parallel. Since the basic execution model is a lazy one, the programmer
may also want to specify the evaluation degree in the program in order to guarantee a
certain amount of evaluation without relying on the quality of the strictness analyser.

This approach abstracts from details about thread creation, thread placement, syn-
chronisation, data transfer, and many other aspects that often have to be explicitly
handled in a parallel language by the programmer. However, even just describing
potential parallelism together with evaluation degree may lead to a program that is
cluttered with behavioural code. The undisciplined use of annotations in the paral-
lelisation of several programs, such as a linear system solver, has generated opaque
parallel code. The comparison of a straightforward parallelisation of LinSolv with
a version using strategies in Section 4.6 shows the practical advantages of a more
structured approach towards exposing parallelism.

4.2.1 A Simple Example

As a simple example demonstrating the problem mentioned above, let us consider
parallel quicksort. A naive version of a parallel function might be written as follows.
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quicksortN :: (Ord a) => [a] -> [a]
quicksortN [] []
quicksortN [x] [x]
quicksortN (x:xs) losort ‘par’
hisort ‘par:®
losort ++ (x:hisort)

where
losort = quicksortN [y|y <- xs, y < x]
hisort = quicksortN [y|y <- xs, y >= X]

The intention is that two threads are created to sort the lower and higher halves of
the list in parallel with combining the results. Unfortunately quicksortN has almost
no parallelism because threads in GPH terminate when the sparked expression is in
weak head normal form (WHNF). In consequence, all of the threads that are sparked
to construct losort and hisort do very little useful work, terminating after creating
the first cons cell. To make the threads perform useful work a “forcing” function,
such as forceList below, can be used. The resulting program has the desired parallel
behaviour, yielding a parallel divide-and-conquer structure. However, the definition
of quicksortF is cluttered with behavioural code, namely the forcing functions.

forceList :: [a] -> ()

forceList [] = ()

forceList (x:xs) = x ‘seqg' forceList xs
quicksortF [] []

[x]

(forceList losort) ‘par®
(forcelList hisort) ‘par®
losort ++ (x:hisort)

quicksortF [x]
quicksortF (x:xs)

where
losort = quicksortF [y|y <- xs, y < x]
hisort = quicksortF [y|y <- xs, y >= x]

4.2.2 Data-Oriented Parallelism

Quicksort is an example of (divide-and-conquer) control-oriented parallelism where
subexpressions of a function are identified for parallel evaluation. Data-oriented par-
allelism is an alternative approach where elements of a data structure are evaluated in
parallel. A parallel map is a useful example of data-oriented parallelism; for example
the parMap function defined below applies its function argument to every element of

a list in parallel.
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parMap :: (a -> b) -> [a] -> [b]
parMap £ [] = []
parMap f (x:xs) = fx ‘par' fxs ‘seq' (fx:fxs)
where
fx = £ x

fxs = parMap f xs

The definition above works as follows: fx is sparked, before recursing down the list
(fxs), only returning the first constructor of the result list after every element has
been sparked. Note that if the function argument supplied to parMap constructs a
data structure, it must be composed with a forcing function in order to ensure that
the data structure is constructed in parallel.

4.2.3 Dynamic Behaviour

As the examples above show, a parallel function must describe not only the algorithm,
but also some important aspects of how the parallel machine should organise the
computation, i.e. the function’s dynamic behaviour. In GPH, there are several aspects

of dynamic behaviour:

e Parallelism control, which specifies what threads should be created, and in what

order, using par and seq.

e FEuvaluation degree, which specifies how much evaluation each thread should per-
form. In the examples above, forcing functions were used to describe the eval-

uation degree.

e Thread granularity: it is important to spark only those expressions where the
cost of evaluation greatly exceeds the thread creation overheads.

e Locality: part of the cost of evaluating a thread is the time required to com-
municate its result and the data it requires, and in consequence it may only
be worth creating a thread if its data is local. Because GPH does not contain
explicit placement information, locality has to be controlled indirectly, e.g. by
constructing data structures that contain all data that should be kept local.

Evaluation degree is closely related to strictness and defined over the same partially
ordered, lifted domain of values. If the evaluation degree of a value in a function is
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less than the program’s strictness in that value, i.e. its value in the semantic domain
is smaller than that defined by its strictness property, then the parallelism is con-
servative, i.e. no expression is reduced in the parallel program that is not reduced in
its lazy counterpart. In several programs we have found it useful to evaluate some
values speculatively, i.e. the evaluation-degree may usefully be more strict than the
lazy function. Although this runs the risk of performing unnecessary computation it
allows the programmer to specify parallelism that is useful most of the time.

4.3 Evaluation Strategies

4.3.1 Evaluation Strategies

In the examples above, the code describing the algorithm and dynamic behaviour
are intertwined, and as a consequence both have become rather opaque. In larger
programs, and with carefully-tuned parallelism, the problem is far worse. This section
describes evaluation strategies, a solution to this dilemma. The driving philosophy
behind evaluation strategies is that it should be possible to understand the semantics

of a function without considering its dynamic behaviour.

An evaluation strategy is a function that specifies the dynamic behaviour required
when computing a value of a given type. A strategy makes no contribution towards the
value being computed by the algorithmic component of the function: it is evaluated
purely for effect, and hence it returns just the nullary tuple (.

type Strategy a = a -> ()

4.3.2 Strategies Controlling Evaluation Degree

The simplest strategies introduce no parallelism: they specify only the evaluation
degree. The simplest strategy is termed r0 and performs no reduction at all. Perhaps
surprisingly, this strategy proves very useful, e.g. when evaluating a pair we may want
to evaluate only the first element but not the second.
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r0 :: Strategy a

ro _ = ()

Because reduction to WHNF is the default evaluation degree in GPH, a strategy to
reduce a value of any type to WHNF is easily defined:

rwhnf :: Strategy a

rwhnf x = x ‘seqg' ()
Many expressions can also be reduced to normal form (NF), i.e. a form that contains
no redexes, by the rnf strategy. The rnf strategy can be defined over built-in or
datatypes, but not over function types or any type incorporating a function type as
few reduction engines support the reduction of inner redexes within functions. Rather
than defining a new rnfX strategy for each data type X, it is better to have a single
overloaded rnf strategy that works on any data type. The obvious solution is to use
a Haskell type class, NFData, to overload the rnf operation. Because NF and WHNF
coincide for built-in types such as integers and booleans, the default method for rnf

is rwhnf.

class NFData a where
rnf :: Strategy a
rnf = rwhnf

For each data type an instance of NFData must be declared that specifies how to
reduce a value of that type to normal form. Such an instance relies on its element
types, if any, being in class NFData. Consider lists and pairs for example.

instance NFData a => NFData [a] where

rnf [] = ()
rnf (x:xs) = rnf x ‘seqg' rnf Xs

instance (NFData a, NFData b) => NFData (a,b) where
rnf (x,y) = rnf x ‘seq' rnf y

4.3.3 Combining Strategies

Because evaluation strategies are just normal higher-order functions, they can be com-
bined using the full power of the language, e.g. passed as parameters or composed
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using the function composition operator. Elements of a strategy are combined by se-
quential or parallel composition (seq or par). Many useful strategies are higher-order,
for example, seqList below is a strategy that sequentially applies a strategy to every
element of a list, in essence mapping a strategy and then folding the seq combinator
over the list. For example, the strategy seqList r0 evaluates just the spine of a list,
and seqList rwhnf evaluates every element of a list to WHNF. There are analo-
gous functions for every datatype, indeed in Haskell 1.3 and later versions (Peterson
et al. 1996) constructor classes can be defined that work on arbitrary datatypes.
The strategic examples in this thesis are presented in Haskell 1.2 for pragmatic rea-
sons: they are extracted from programs run on our efficient parallel implementation
of Haskell 1.2 (Trinder, Hammond, Mattson Jr., Partridge & Peyton Jones 1996).
However, the current version of the strategies module does support Haskell 1.4, too.

seqgList :: Strategy a -> Strategy [a]
seqgList strat [] ()
seqgList strat (x:xs) strat x ‘seq' (seqgList strat xs)

4.3.4 Data-Oriented Parallelism

A strategy can specify parallelism and sequencing as well as evaluation degree. Strate-
gies specifying data-oriented parallelism describe the dynamic behaviour in terms of
some data structure. For example parList is similar to seqList, except that it
applies the strategy to every element of a list in parallel.

parList :: Strategy a -> Strategy [a]
parList strat [] ()
parList strat (x:xs) strat x ‘par' (parList strat xs)

Data-oriented strategies are applied by the using function which applies the strategy
to the data structure x before returning it. The expression x ‘using‘ s isa projection
on x, i.e. it is both a retraction (x ‘using‘ s is less defined than x) and idempotent
((x ‘using‘ s) ‘using‘ s =x ‘using‘ s). The using function is defined to have
a lower precedence than any other operator because it acts as a separator between
algorithmic and behavioural code.

using :: a -> Strategy a -> a
using x s = s x ‘'seqg' x
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A strategic version of the parallel map encountered in Section 4.2.2 can be written
as follows. Note how the algorithmic code map f xs is cleanly separated from the
strategy. The strat parameter determines the dynamic behaviour of each element of
the result list, and hence parMap is parametric in some of its dynamic behaviour.

parMap :: Strategy b -> (a -> b) -> [a] -> [b]
parMap strat f xs = map f xs ‘using' parList strat

4.3.5 Control-Oriented Parallelism

Control-oriented parallelism is typically expressed by a sequence of strategy applica-
tions composed with par and seq that specifies which subexpressions of a function
are to be evaluated in parallel, and in what order. The sequence is loosely termed
a strategy, and is invoked by either the demanding or the sparking function. The
Haskell £1ip function simply reorders a binary function’s parameters.

demanding, sparking :: a -> () -> a
demanding = flip seq
sparking = flip par

The control-oriented parallelism of pfib can be expressed as follows using demanding.
The LinSolv and Lolita programs in Sections 4.6 and 4.5 contain more elaborate
examples of using sparking.

pfib n
| n <=1 =1
| otherwise = (nl+n2+1l) ‘demanding‘' strategy
where

nl = pfib (n-1)
n2 = pfib (n-2)
strategy = rnf nl ‘par' ranf n2

The control-oriented parallelism of quicksort can be expressed with the following
strategy, selecting losort and hisort for parallel evaluation.
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quicksortS (x:xs) = losort ++ (x:hisort) ‘using' strategy
where
losort = quicksortS [y|y <- xs, y < x]
hisort = quicksortS [y|y <- xs, y >= x]
strategy result = rnf losort ‘par®
rnf hisort ‘par®
rnf result

4.3.6 Additional Dynamic Behaviour

Strategies can control other aspects of dynamic behaviour, thereby avoiding cluttering
the algorithmic code with them. A particularly important example for the scope of
this thesis is a thresholding mechanism that controls thread granularity. In pfib for
example, granularity is improved for many machines if threads are not created when
the argument is small. The use of thresholding in Lolita is discussed in Section 4.5.

pfibT n
| n <=1 =1
| otherwise = (nl+n2+l) ‘demanding' strategy
where
nl = pfibT (n-1)
n2 = pfibT (n-2)
strategy = if n > 10
then rnf nl ‘par' rnf n2
else ()

Another example of a generic strategy that affects granularity, i.e. the computation
costs of potentially parallel threads, is the parGranList strategy below. This strategy
uses a granularity estimate function and creates the parallelism in an order of decreas-
ing granularity. This strategy has been developed by the author during the perfor-
mance tuning of a very coarse-grained parallel bowing algorithm (Hall et al. 1997).
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parGranList :: Strategy a -> (a -> Int) -> [a] -> Strategy [a]
parGranList s gran_estim 1_in = \ 1_out ->

parListByIdx s 1_out $
sortedIdx gran_list (sortLe ( \ (i,_) (j,_) -> i>j) gran_list)
where

-- spark list elems of 1 in the order specified by (i:idxs)
parListByIdx s 1 [] = ()

parListByIdx s 1 (i:idxs) = parListByIdx s 1 idxs ‘sparking' s (1l!!1i)
-- get the index of y in the list

idx y [] = error "idx: X not in 1"
idx y ((x,_):xs) | y==x =0
| otherwise = (idx y xs)+1

~-— the ‘'schedule’ for sparking: list of indices of sorted input list
sortedIdx 1 idxs = [ idx x 1 | (x,_) <- idxs ]

-- add granularity info to elems of the input list

gran_list = map (\ 1 -> (gran_estim 1, 1)) 1_in

The purpose of the parGranList strategy is to spark all elements in the list 1_out

in an order of decreasing granularity. The function gran_estim provides an estimate
of the granularity. Note that this estimate has to be applied to the input list 1_in
determining the order of the sparks in the output list. Thus, this strategy abstracts
over the concrete definition of how to compute the results in the output list. The

strategy proceeds in four steps:

1. First granularity estimates are added to each list element yielding gran_list.

The construct \ 1 -> ... represents a lambda expression in Haskell, i.e. an
anonymous function with the argument 1 and the body ...

Then the resulting list is sorted by these estimates using the library function
sortLe, which takes a predicate, the less-than-or-equal function to be used for

sorting, as the first argument.

In order to obtain a “schedule” for the order in which the list elements should
be sparked, a list of indices of the sorted list is computed using sortedIdx.

Finally, the index-list is used as the schedule for the parListByIdx strategy,
which introduces parallelism via a sparking clause. The 1!!i construct is used
to extract the i-th element from the list 1.

For clarity, the current version separates the sorting of the list from obtaining the list
of indices, yielding a quadratic algorithm. This could be improved further by merging
both steps.
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Clearly, this strategy encodes a deeper insight into the parallel behaviour of the pro-
gram than previous strategies. The original motivation for designing this strategy
came from the observation that in a coarse-grained program, with largely varying
computation times, it is crucial to generate the largest thread first in order to min-
imise a sequential tail with only the largest thread executing. In a typical process of
developing a parallel algorithm the programmer starts with examining the types on
the most important data structures and uses pre-defined parallel strategies on these
types, e.g. parList over list structures. Then, in the performance tuning stage, the
programmer might try to improve the behaviour by encoding a particular parallel
behaviour in the algorithm as it has been done with the parGranList strategy above.
The discussion of the LinSolv algorithm in Section 4.6 elaborates this tuning process
further.

4.3.7 Strategic Function Application

This section discusses one of the author’s contributions to the latest version of eval-
uation strategies as part of his parallelisation of Lolita. The initial version of parallel
Lolita was written with using-based pipelines. Introducing the notion of strategic
function application and rewriting the code in this style simplified the overall struc-

ture significantly.

In pipelined parallelism a sequence of stream-processing functions are composed to-
gether, each consuming the stream of values constructed by the previous stage and
producing a new stream. This kind of parallelism is easily expressed in a non-strict
language by function composition. The non-strict semantics ensures that no barrier
synchronisation is required between the different stages.

When using strategies to describe this kind of parallelism a function composition is
needed, which applies a strategy to the intermediate value. Based on this observation
strategic function application and strategic function composition are introduced. The
new operators correspond to function application $ and function composition . de-
fined in the Haskell prelude. The strategic function application takes one additional
argument, a strategy s, which is applied to the argument. The parallel version of the
operator, $| 1, applies the strategy and the function in parallel, thereby overlapping
two stages in the pipeline. The sequential version of this operator, $|, first applies
the strategy and then the function to the argument. This introduces a synchroni-
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sation barrier and may be used to define evaluation order. However, the strategy
may itself define parallelism, e.g. over the structure of the argument. The .|| and
. | operators define the same behaviour for function compositions. The definition of
these operators in GPH is given below.

infixl 6 $/, $// -- strategic function application
infixl 9 ./, ./[/ -- strategic function composition

(), 8l :: (a -> b) -> Strategy a -> a -> b

(., (| :: (b ->c) -> Strategy b -> (a -> b) -> (a -> c)
(8)) £ s x f x ‘demanding' s x

(/) £ s x

f x ‘sparking' s x

(.]) £fsg=\x->1let gx =g x
in f gx ‘demanding‘' s gx
(./]) £sg=\x->1let gx =g x
in f gx ‘sparking' s gx
An often used example of the modularity of functional languages is the definition of
the sum-of-squares function for computing the sum of the first n integer values via the
composition of three separate functions. With the new construct of strategic function
application we can define a parallel behaviour of the same definition in a very natural

way without obscuring the original algorithmic code:

sum_of_squares :: Int -> Int
sum_of_squares n = sum $|/| parList rnf $ -- [Int]
map ("2) $/| rnf s -- [Int]

enumFromTo 1 n

The functions are applied via the parallel $|| operator to obtain a parallel pipeline
structure. Furthermore, the types of the intermediate lists, [Int], already suggest
a strategy for exposing additional data parallelism in the code: parList rnf. How-
ever, in this case we have chosen not to use the parallelism over the list generated
by the enumFromTo library function, because it contains too little computation for
each of the list elements. As a result, this function defines a pipeline strategy with
data parallelism over one of the two intermediate list structures (see Figure 4.1). It is
easy to experiment with the parallelism in the code, e.g. by merging pipeline stages,
which amounts to replacing $|| with a $| operator. The data parallelism over the
intermediate data structures can be simply modified by choosing different strategies
as arguments to the $|| operator. Because none of these changes require to exam-
ine the code for the function sum, map, and enumFromTo, this example shows how
the modularity, obtained in functional languages via non-strict data structures and
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[\

Figure 4.1 Structure of sum-of-squares

function composition, carries over to the definition of the parallel behaviour of the

code.

As a comparison of two versions of a more sophisticated strategy we now discuss the
back end in the Lolita system, which interprets semantic information obtained in a
previous analysis in the system. This comparison illustrates that keeping intermediate
values anonymous increases the readability of the program significantly. A using-
based version of the back end in Lolita can be written as follows. Details of the code
will be discussed in Section 4.5.

back_end inp opts
= r8 ‘demanding' strat

where

rl = unpackTrees inp

r2 = unifySameEvents opts rl

r3 = storeCategoriseInformation r2

r4 = unifyBySurfaceString r3

r5 = addTitleTextrefs r4

r6 = traceSemWhole r5

r7 = optQueryResponse opts rbé6

r8 = mkWholeTextAnalysis r7

strat = (parPair rwhnf (parList rwhnf)) inp ‘seq’
(parPair rwhnf (parList (parPair rwhnf rwhnf))) rl ‘seq’
rnf r2 ‘par®
rnf r3 ‘par'
nf r4 ‘par’
rnf rS ‘par’
rnf r6 ‘par’®
(parTriple rwhnf (parList rwhnf) rwhnf) r7 ‘seqg’

()

By using strategic function application the same code can be written more succinctly
as follows. The separation of algorithmic and behavioural code is maintained by
allowing strategies only as arguments to the strategic function application.
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back_end inp opts =

mkWholeTextAnalysis $| parTriple rwhnf (parList rwhnf) rwhnf $
optQueryResponse opts $/]/ rnf $

traceSemWhole $/| raf $

addTitleTextrefs $|| rnf $

unifyBySurfaceString $§[] rnf §

storeCategoriseInf $/| rnf

unifySameEvents opts §/ parPair rwhnf (parList (parPair rwhnf rwhnf)) $
unpackTrees $/ parPair rwhnf (parList rwhnf) $

inp

Strategic function application has proven useful in particular for the parallelisation of
Lolita (see Section 4.5.3). The Alpha-Beta search algorithm described in Section 4.4
has a top-level pipeline structure. However, in this case there is far less potential
parallelism in the pipeline structure.

The importance of strategic function application and composition for parallel pro-
gramming is underlined by the fact that function composition is considered the basic
building block for constructing large programs from independent modules (Hughes
1989). The software engineering advantages, such as improved modularity, for sequen-
tial program development are well known. In the parallel setting strategic function
composition also facilitates a data-oriented approach to parallelisation, making use
of the modularity provided by lazy languages.

4.4 Alpha-Beta Search

The first example program is the Alpha-Beta search algorithm, typical of artificial
intelligence applications. It is mainly used for game-playing programs to find the best
next move by generating all possible moves up to a certain depth, applying a static
evaluation function to each of the leaves in this search tree, and combining the result
by picking the best move for the player assuming that the opponent picks the worst
move for the player. In a more general setting this algorithm can be used for heuristic
search. The idea of the heuristics is that the quality of the result depends on the static
evaluation function as well as on the search depth. If the latter is sufficiently high a

very simple static evaluation function can be used.

This section discusses two versions of the Alpha-Beta search algorithm: a simple ver-
sion, and a pruning version. Both versions are based on the Miranda'! code presented

IMiranda is a trademark of Research Software Ltd.
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by Hughes (1989) in order to demonstrate the strengths of lazy functional languages.
Based on the generic Alpha-Beta search algorithm two simple games (tic-tac-toe and
escape) have been implemented. An interesting aspect of this algorithm is the fact
that the pruning version relies on laziness to prune the search tree based on interme-
diate results of the computation. This behaviour is crucial for the efficiency of the
sequential algorithm, and has to be preserved in the parallel algorithm.

This section presents both parallel versions and studies their parallel runtime be-
haviours. The parallel algorithms show how the use of strategies allows the program-
mer to develop an efficient parallel algorithm without sacrificing the advantages of the
original lazy algorithm, namely its modularity and efficiency. A description of both
algorithms and a comparison of the parallelisation with that of other applications is
given in Loidl & Trinder (1997).

4.4.1 Simple Algorithm

In the simple algorithm each possible next move is evaluated independently yielding
a divide-and-conquer structure of the algorithm. The result is either the maximum,
player’s move, or the minimum, opponent’s move, of the evaluations of these positions.
As discussed by Hughes (1989) this algorithm can be very naturally derived as a
sequence of function compositions (see Figure 4.2). The stages in the pipeline perform
the following tasks:

1. Construct a tree with positions as nodes and all possible next moves as subtrees.
This is done by repeatedly applying a newPosition function to the nodes in
the tree, alternating between the functions for the two players, repTree.

2. Prune the tree, which might be infinite at this stage, to a fixed depth to bound
the search via prune. The search depth is an argument to the algorithm.

3. Map a static evaluation function over all nodes of the tree via mapTree.

4. Crop off subtrees from winning or losing positions via cropTree. If such a
position is found it is not necessary to search deeper in a subtree.

5. Finally, pick the maximum, or minimum, of the resulting evaluations in order
to determine the value of the current position via mise f g. The functions £
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bestMove :: Int -> Piece -> Player -> Player -> Board -> Evaluation
bestMove depth p £ g = (mise £ g)
cropTree .

(mapTree (static p))

(prune depth)

repTree (newPositions p)
(newPositions (opposite p))

Figure 4.2 Top level structure of choosing the best next move

and g represent the combination functions for the two players, maximum or
minimum respectively, and alternate when traversing the tree.

Dynamic Behaviour

The fact that the results in all subtrees can be computed independently makes par-
allelisation rather easy. For both versions of the algorithm the following four sources

of parallelism can be used.

Top Level Pipeline. An obvious approach to parallelise this algorithm is to use
pipeline parallelism between the stages of the pipeline. However, it is crucial not to
force the intermediate values too far. In particular, the result of the repTree stage

might be an infinite tree.

Parallel Static Evaluation Function. The idea of a parallel static evaluation
function is to reduce the costs of the function, which will be mapped over the leaves
of the pruned search tree. This only makes sense for a rather time consuming static
evaluation function, otherwise it creates a lot of fine-grained parallelism. However, an
underlying assumption of the Alpha-Beta search algorithm is that the static evalua-
tion function can be very simple when using a tree search structure to determine the
best value. In the example implementations, the static evaluation function computes
the distance of the current position to a set of known winning positions. The parallel

version computes all distances in parallel.
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Parallel Higher-Order Functions over Trees. Parallelising the definitions of
some higher-order functions is a bottom-up approach. It can be used for the par-
allelisation of many functional programs. In this case a parallel version of a map
function over search trees, mapTree, is used. However, the measurements in Table 4.1
show, that without any knowledge about the context in which these higher-order
functions are used a lot of redundant work may be generated resulting in extremely

poor parallelism.

Data Parallelism over all Possible Next Moves. In a data parallel approach
the goal is to evaluate all possible next moves in parallel. It is a top-down approach
and turns out to be the best source of parallelism in particular for an algorithm with no
dependencies between the evaluations of the subtrees. A simple parMap rnf strategy
can be used to capture the dynamic behaviour of this function. The only necessary
change in the algorithm affects the mise function in Stage 5 of the algorithm, shown
in Figure 4.3. This function takes the two combination functions, either the binary
max or min function, and a tree of static evaluations of positions in the game, as
arguments. It then recursively maps the mise function over all subtrees, switching
the functions £ and g to record the switch of turns. Finally, the combination function
at the current level, £, is folded to obtain the score of the current position.

-- This does simple minimaxing without pruning subtrees based on
-- intermediate evaluations (i.e. purely compositional)

mise :: Player -> Player -> (Tree Evaluation) -> Evaluation
mise £ g (Branch a []) = a
mise £ g (Branch _ 1) = foldr £ (g OWin XWin) (parMap rnf (mise g f) 1)

Figure 4.3 Data parallel combination function in the simple Alpha-Beta search
algorithm

Performance Measurements

The measurements of both versions of the algorithm under the GRANSIM simulator
are summarised in Table 4.1. The setup used in these measurements models a shared
memory machine with 32 processors, a latency of 64 machine cycles, and bulk fetching.
The first four data columns of this table show the results of the simple algorithm
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Table 4.1 Measurements of the simple and the pruning Alpha-Beta search algorithm

Simple Algorithm Pruning Algorithm

Runtime Avg Total Runtime Avg Total

(kcycles) Par Work SpdUp | (kcycles) Par Work SpdUp
Position I (standard)
Sequential 60,297 34,363 (1.75)
Par Pipeline 60,297 1.0 100% 1.00 34,370 1.0 100% 0.99
Par Static Eval 21,091 3.1 108% 2.85 12,099 3.1 109% 2.84
Data Par 3,503 26.4 153% 17.21 2,265 23.7 156% 15.17
Par h.o. fcts 4,954 20.9 172% 12.16 4,248 24.2 299% 8.08
Par Static Eval &
Data Par 3,507 28.5 166% 17.19 2,156 27.6 173% 15.93
Par h.o. fcts &
Data Par 3,701 28.2 173% 16.29 3,683 28.3 303% 9.32
Position II (early solution)
Sequential 4,427 4,703 (0.94)
Par Pipeline 4,427 1.0 100% 1.00 4,706 1.0 100% 0.99
Par Static Eval 1,772 2.9 116% 2.49 1,898 29 117% 2.47
Data Par 1,152 13.9 362% 3.84 1,075 13.1 299% 4.37
Par h.o. fcts 759 9.6 165% 5.83 811 9.0 155% 5.79
Par Static Eval &
Data Par 775 23.2 406% 5.71 779 20.4 338% 6.03
Par h.o. fcts &
Data Par 919 20.4 424% 4.81 1,001 18.9 403% 4.69
Position IIT (large search tree)
Sequential 145,720 90,377 (1.61)
Par Pipeline 145,720 1.0 100% 1.00 90,385 1.0 100% 0.99
Par Static Eval 48,808 3.3 111% 2.98 29,891 3.3 109% 3.02
Data Par 6,621 29.1 132%  22.00 7,699 16.2 138%  11.73
Par h.o. fcts 9,345 21.4 137% 15.59 8,093 24.6 220% 11.16
Par Static Eval &
Data Par 7,083 29.3 142% 20.57 5,210 25.7 148% 17.34
Par h.o. fcts &
Data Par 6,882 29.3 138%  21.17 6,802 29.6 223%  13.28

when using the different sources of parallelism. All runtimes are given in machine-
independent kilocycles. The total work column measures the total work compared
to a sequential run and is therefore a measure of the redundant work, in particular
of speculative parallelism. The three horizontal sections in the table represent three
different positions that have been analysed: a standard opening position (I) with
a sequential runtime of 60,297 kilocycles; a winning position (II) with a sequential
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runtime of 4,427 kilocycles; and a position generating a large search tree (III) with a
sequential runtime of 145,720 kilocycles.

The parallel pipeline version creates hardly any parallelism at all. This is due to the
fact that it is not possible to force the search tree before pruning it without generating
a huge amount of redundant work. This result differs significantly from the results
with programs like Lolita, where the top-level structure of the whole algorithm is a
parallel pipeline. The parallel static evaluation function generates conservative par-
allelism shown by the small amount of total work performed. However, the degree
of parallelism is rather small: in this example program the distance of the current
position to a small set of winning positions is computed in a data parallel fashion.
Another disadvantage is the fine-grained nature of the parallelism, i.e. each of the
generated threads performs very little computation. The data parallelism over all
next positions proves to be the best source of parallelism. The simple algorithm will
only cut-off subtrees if it finds a winning position in one of the subtrees. Therefore,
this data parallelism is conservative except for the case where a winning position is
found as in Position II. Note that in the latter case the simple sequential algorithm
performs even better than the pruning algorithm indicated by the algorithm speedup
of 0.94, in brackets, in the last column. Finally, the higher-order functions approach
generates the largest amount of redundant work shown by the high total work per-
centage. Here a parallel tree map of the static evaluation function is used. However,
this also maps the evaluation function on nodes that are actually pruned in the se-
quential algorithm. Combining data parallelism with parallel static evaluation does
not improve the performance in general. Although the average parallelism increases,
the speedup actually drops for Positions I and III because the additional parallelism

is very fine-grained.

For the simple Alpha-Beta algorithm using only data parallelism gives an almost
perfect utilisation of the machine, provided that the search space is large enough. If
a solution is found early on then the speedup will naturally drop (see Position II in
Table 4.1). However, for more realistic games than tic-tac-toe the search space should
easily be large enough because of the exponential growth of the search tree.
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Figure 4.4 Pruning subtrees in the optimised Alpha-Beta search algorithm

4.4.2 Pruning Algorithm

The simple algorithm described in the previous section lacks one crucial optimisation
of the Alpha-Beta search: the pruning of subtrees based on intermediate results. The
pruning algorithm returns an increasing list (player’s move) of approximations with
the exact value as last list element rather than a single value. The main pruning
function, minleq, has to test whether the opponent’s move from a subtree can be
ignored (see Figure 4.4). This is the case if the worst result of the decreasing list
[, i.e. its minimum, is no better, i.e. less than or equal to, the intermediate result
z. Or more formally: minimum ! < 2z <: minleq ! z. Since minleq works on
decreasing lists it can stop examining the list as soon as it finds a value less than z.
Thus, laziness is used to ignore parts of the list of approximations, which amounts
to pruning subtrees in the search tree. A complete description of this lazy functional
pruning algorithm can be found in Hughes (1989).

In the sequential code in Figure 4.5 the prelude functions min and max from the simple
algorithm are replaced with functions min’ and max’, respectively. The new functions
operate over lists of approximations. In implementing the behaviour described in the
previous paragraph the betterthan function will stop examining list elements of
next when it is clear that the final result will not be better than the value a found so
far. Figure 4.4 illustrates this behaviour. After having determined the value of the
left subtree and the value 0 in the right subtree it is not necessary to examine the



4.4. Alpha-Beta Search 110

-- A pruning version of alpha-beta search

mise :: Player -> Player -> (Tree Evaluation) -> [Evaluation]

mise £ g (Branch a []) = [al

mise £ g (Branch _ 1) = £ (map (mise g f) 1)

betterthan :: (Evaluation -> [Evaluation] -> Bool) -> -- maxleqg or minleqg
([Evaluation] -> Evaluation) -> -- max’ or min’
Evaluation -> -- Score to compare
[ [Evaluation]] -> -- list of approxs
[Evaluation]

betterthan _ _ [1 = 11

betterthan better_than_worst worst a (next:rest)
| a ‘better_than_worst' next = betterthan better_than_worst worst a rest
| otherwise = m : betterthan better_than _worst worst m rest
where m = worst next

-- minleq y 1 <=> minimum 1 <=y

minleq :: Evaluation -> [Evaluation] -> Bool
minleq vy [] = False
minleq y (x:xs)
| X <=y = True -- throws away the rest of the list!

| otherwise = minleq y xs

-- used as argument to mise

max’ :: [[Evaluation]] -> [Evaluation]
max’ (first:rest) = m : betterthan minleq minimum m rest
where m = minimum first -- strict in first

Figure 4.5 Pruning version of the Alpha-Beta search

rightmost leaf. The overall maximum is guaranteed to be at least 1.

Dynamic Behaviour

Unfortunately, the pruning version seriously complicates the parallelisation of the
algorithm. We have already seen in the simple algorithm that the most promising
source of parallelism is the parallel evaluation of all next positions. However, using
a simple parList rnf strategy over all next positions is no longer advisable, since
this might result in a lot of redundant work, if many subtrees can be pruned. The
measurements of the data parallel strategy on the pruning algorithm in Table 4.1
show a rather high degree of redundant work. In fact, in the data parallel strategy
on Position III the parallel simple version is even faster than the highly speculative
parallel pruning version of the algorithm!

A better approach for parallelisation is to force only an initial segment in the list of
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-- Parallel version of the pruning version

mise :: Player -> Player -> (Tree Evaluation) -> [Evaluation]
mise £ g (Branch a {]) = [a]
mise f g (Branch _ 1) =

f

-- force the first n elements of the result list
((map (mise g f) 1)
‘using' \ xs -> if force_len==-1 -- infinity
then parList rnf xs ‘par' ()
else parList rnf (take force_len xs) ‘par’'
parList rwhnf (drop force_len xs) ‘par®
()
)

Figure 4.6 Strategy for a parallel pruning version with a static force length

possible next positions. We call the length of this segment the “force length”. We
have experimented with static force lengths as well as dynamic force lengths that
depend on the level in the search tree. To date the best results have been obtained
from using a static force length as shown in the parallel code for mise in Figure 4.6.
The algorithmic code for mise is unchanged compared to the sequential version. The
strategy uses a global constant force_len to determine how much of the list xs should
be evaluated. Because strategies are simply Haskell functions, the prelude functions
take and drop can be used for that purpose. Note that the force length represents a
trade-off between increasing the degree of parallelism and reducing the total amount
of work being done.

Performance Measurements

Figure 4.7 compares the speedups of the pruning version of Alpha-Beta search un-
der GRANSIM, using the same setup as in the previous measurements. The x-axis
shows the static force length, the y-axis the speedup. The left hand graph uses a
program implementing tic-tac-toe, the right hand graph uses an implementation of a
similar game, escape, with a search space of comparable size but asymmetric winning
conditions.

The left hand graph shows for the data parallel strategy a large improvement when
increasing the force length, in particular for Position III. A purely conservative data
parallel strategy (i.e. the force length is 0) achieves a speedup of only 8.58 because the
amount of available parallelism drops early on in the computation (see Figure 4.8).
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Figure 4.7 Speedup with varying force length (GRANSIM)

fGrAnSIm  mntmax_mg 3 +RTS -bP -bp32 b4 -b-G -toy2 -be H 10M Average Paraetiiwn = 10 [GrAnSim  minmax_mg 3 +RTS -bP -bp32 -4 -b-G -by2 be -HIOM Average Paraletem =29 9)

[ Bruming O runnable B totchmg  Bblocked O migrating  Runtime » 11 4M cycles) [ Bruming O runnable Bt etching B blocked migraling  RurHime» 6 2 Meycles

Figure 4.8 Data parallel versions with static force lengths of 0 and 4

In contrast, with a force length of 4 the speedup is 15.71. After that the percentage
of redundant work done in the parallel algorithm increases too much to achieve a
further improvement. For Position II, which finds a winning position early on in the
search, parallelism can achieve hardly any improvement because almost all potential
parallelism in the algorithm is pruned. The versions additionally using a parallel
static evaluation function usually outperform the versions with data parallelism alone,
because the small amount of conservative parallelism in the static evaluation can make
use of idle time on the machine. This is in contrast to the simple algorithm, where the
data parallel evaluation function generates enough parallelism to keep the machine
busy. This can be seen in Table 4.1, comparing the speedups of the lines for data

parallelism and data parallelism together with a parallel static evaluation function.
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4.5 Lolita

4.5.1 Algorithm

The Lolita natural language engineering system (Morgan et al. 1994) has been de-
veloped at the University of Durham over several years. It has not originally been
written with a parallel execution of the code in mind. The team’s interest in paral-
lelism is partly as a means of reducing runtime, and partly also as a means to increase
functionality within an acceptable response-time. The overall structure of the pro-
gram bears some resemblance to that of a compiler, being formed from the following

large stages:

e Morphology (combining symbols into tokens; similar to lexical analysis);

Syntactic Parsing (similar to parsing in a compiler);

e Normalisation (to bring sentences into some kind of normal form);

Semantic Analysis (compositional analysis of meaning);

Pragmatic Analysis (using contextual information from previous sentences).

These stages form the core of Lolita. Depending on how Lolita is to be used, a final
additional stage may perform a discourse analysis, the generation of text (e.g. in a
translation system), or it may perform inference on the text to answer queries. This
design of the system yields a very flexible and modular structure. A more detailed
discussion of the Lolita system and of its parallelisation is given in Loidl et al. (1997).
The parallelisation has been done as joint work with the group at the University of
Durham.

Central to Lolita’s flexibility is the semantic network, a graph based knowledge rep-
resentation used in the core of Lolita. In the semantic network concepts and relation-
ships are represented by nodes and arcs respectively, with knowledge being extracted
by graph traversal. The task of the analysis stages is to transform the possibly
ambiguous input into a sub-graph of the semantic network. Application-dependent
backend stages can then extract pieces of the semantic network and present it in the

required form.
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4.5.2 Sequential Profiling

As a preparation for parallelising such a large program the author has performed
sequential profiling of the code. This did not reveal a particular hotspot in the
program although the syntactic parsing stage is the biggest component in the top-
level structure with about 20% of the execution time. However, this stage makes
heavy use of C-functions, called from within Haskell, to optimise the time consuming
parsing process. This complicates a parallelisation of the parsing stage. The Haskell
part of the parsing, however, can be parallelised without major recoding.

4.5.3 Top Level Pipeline

Without a clear hotspot in the sequential execution of the program a pipeline ap-
proach is a promising way to achieve enough parallelism for a four processor shared-
memory machine such as a Sun SPARCserver. The structure of a pipeline parallel
version is shown in Figure 4.9. Each stage listed above is executed by a separate
thread, which are linked to form a pipeline. Note that in order to make use of the
multi-threaded runtime-system, which overlaps computation and communication, the
parallel algorithm should contain more threads than there are processors available.
The key step in parallelising the system is to define strategies on the complex in-
termediate data structures, e.g. parse trees, that are used to communicate between
these stages. This data-oriented approach simplifies the top-down parallelisation of
this very large system, since it is possible to define the parallelism over parts of a data
structure without considering the algorithms that produce that data structure. This
approach hides unnecessary information about the generation of the data structure
and is in the spirit of functional programming, which tries to achieve modularity by
composing flexible, possibly higher-order, functions.

Morpholgy Synt. Parsing @ Back End

Figure 4.9 Overall pipeline structure of Lolita

The code of the top-level function wholeTextAnalysis in Figure 4.10 uses strategic
function application as the basic operator to introduce parallelism (see Section 4.3.7).
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The algorithm is separated from the dynamic behaviour in each stage by using the
$11 operator. In a first parallel version the same separation has been achieved with
an explicit pipeline strategy. However, this required to name every intermediate value
in the pipeline. As a result many additional variables had to be added to the code,
obscuring the algorithmic part of the code. This experience was the main motivation
for developing the strategic function application operator.

Note that this code uses a parList strategy in the definition of rawParseForest
in the parsing stage to describe data parallelism over the whole input by processing
sentences in the input text in parallel. In the current version of the system it is not
possible to use this source of parallelism because the C code in this stage is not re-
entrant. Changing the C code to exploit this form of parallelism is ongoing work. The
strategies in the individual stages of Figure 4.10 will be discussed in the subsequent

sections.

The semantic and pragmatic analysis stages are wrapped into a timeout function in
order to guarantee a worst case response time of the system. This indicates that
these stages can be very computationally intensive. Therefore, both analyses are
kept rather simple in the sequential system. By providing the strategy evalScores,
in parse2prag, speculative parallelism is defined, which allows the system to perform
a more sophisticated analysis by examining several possible parse trees. The goal of
this strategy is therefore to improve the quality of the result. Section 4.5.5 discusses
this issue in more detail. In general, it would be very desirable to improve the quality
of semantic and pragmatic analysis in the system. Parallelism inside these stages
could be used to maintain good performance despite the increased complexity of the

system.

4.5.4 Parallel Parsing

One major source of parallelism in the time consuming syntactic parsing stage is the
merging of possible parse trees in order to build a parse tree for a whole sentence.
One complication in the parsing of natural languages is their ambiguity. Because of
this ambiguity the parsing stage produces not just one but a list of possible parse
trees. Internally, however, the result is represented as a single tree, which at some
points contains alternatives (“or-nodes”) representing different possible parses of the
subtrees. A lazy function is used to convert this single tree into a list of possible parse
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wholeTextAnalysis opts inp global =

result
where
-- (1) Morphology
(g2, sgml) = prepareSGML inp global
sentences = selectEntitiesToAnalyse global sgml

-- (2) Parsing
rawParseForest = map (heuristic_parse global) sentences
‘using' parList rnf

-- (3)-(5) Analysis
anlys = stateMap_TimeOut (parse2prag opts) rawParseForest global2

-- (6) Back End
result = back_end anlys opts

-- Pick the parse tree with the best score from the results of
-- the semantic and pragmatic analysis. This is done speculatively!

parse2prag opts parse_forest global =
pickBestAnalysis global §// evalScores $§

take (getParsesToAnalyse global) S

map analyse parse_forest

where
analyse pt = mergePragSentences opts $ evalAnalysis
evalAnalysis = stateMap_TimeOut analyseSemPrag pt global
evalScores = parList (parPair rwhnf (parTriple rnf rwhnf rwhnf))

-- Pipeline the semantic and pragmatic analyses
analyseSemPrag parse global =

prag_transform $/| raf $
pragm $/] rnf $
sem_transform $/| znf $
sem (g, [1) $[] rnf 3
addTextrefs global $] =rwhnf §

subtrTrace global parse

back_end inp opts =

mkWholeTextAnalysis $| parTriple rwhnf (parList rwhnf) rwhaf $
optQueryResponse opts $[/ raf $

traceSemwhole $/| rnf $

addTitleTextrefs $/| rmf s

unifyBySurfaceString $// rnf §

storeCategoriseInf $/] mf s

unifySameEvents opts $/ parPair rwhnf (parList (parPair rwhnf rwhnf)) $
unpackTrees $| parPair rwhnf (parList rwhnf) §$

inp

Figure 4.10 The top level function of Lolita

trees. In each or-node the parser, which returns a list of parse trees, must merge the
lists of parse trees produced by the recursive calls. In merging these lists the possible
parse trees have to be sorted based on some simple syntactic criteria representing the
likelihood of a parse, and the laziness of Haskell is crucial. In order to produce one
parse tree in an or-node it is only necessary to evaluate the first element in the lists
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mergeStrategy :: (NFData a, NFData b) =>
(ParseForest, FeatureForests) -> Span -> MergeStrategy a b

mergeStrategy (pf,ff) span

| totalSpan == = MStrat serialMerge
| percentSpanned >= minSpan = MStrat parallelMerge
| otherwise = MStrat serialMerge
where
percentSpanned = (span * 100) ‘div‘' totalSpan

totalSpan = forestSpan pf
minSpan = getParsingParPercent (forestGlobal pf)

parallelMerge :: (NFData a, NFData b) =>
[(a,b)] -> [(a,b)] -> Strategy [(a,b)]
parallelMerge as bs _
= fstPairFstList bs ‘par:®
fstPairFstList as ‘seq‘

9]

fstPairFstList :: (NFData a, NFData b) => Strategy [(a,b)]
fstPairFstList = seqgqListN 1 (segPair rwhnf r0)

serialMerge :: (NFData a, NFData b) =>

[(a,b)] -> [(a,b)] -> Strategy [(a,b)]
serialMerge as bs
= r0

Figure 4.11 A granularity control strategy used in the parsing stage

produced by all alternatives.

From a parallelism point of view this behaviour explains why it is not possible to
force the evaluation of parts of the parse forest without risking to introduce a high
degree of redundant work. Within the parsing process the merging of lists triggers the
evaluation of sublists, in particular the evaluation of the quality of possible parses.
Although the merging itself is very cheap it triggers work that can be usefully done
in parallel.

In order to improve the granularity of the threads produced by the parallel tree
traversal in the parsing stage, we apply a thresholding strategy, shown in Figure 4.11,
to the “span” in the tree. The span value, which is attached to each node in the tree,
specifies the number of leaves in the current subtree. The threshold for generating
a parallel process in order to merge all possible subtrees is specified as a percentage
of leaves that can be reached from the current node, and this percentage is part
of the global system environment. Checking the threshold is very cheap because it
only involves the comparison of the span argument, as a percentage, with a system



4.5. Lolita 118

parameter assigned to minSpan.

The two parallel calls to fstPairFstList in parallelMerge define parallelism in
this stage. Only the first element of the pair is evaluated because it contains the
value determining the quality of the resulting parse tree. Thus, the fstPairFstList
strategy specifies an evaluation degree that is sufficient to select the tree to return as
the result of the syntactic parsing stage but without evaluating the tree itself more

than necessary.

One strength of strategies is their reusability for different algorithmic code that has the
same dynamic behaviour. We were able to exploit this feature with mergeStrategy
in Figure 4.11 by applying the same polymorphic thresholding strategy to two lists of
different types within the syntactic parsing stage. This reuse is highlighted by the pa-
rameterisation of the MergeStrategy datatype over the two possible types in the list.
Both instances of applying mergeStrategy are in sub-functions of heuristic_parse

in Figure 4.10.

The measurements discussed in this section have been performed with GRANSIM in
a setup that models the four processor shared-memory Sun SPARCServer available
at Durham. The goal of these measurements is to determine the best value for the
span in the mergeStrategy. Figure 4.12 shows the activity profiles for Lolita using
a span threshold of 50%, left hand graph, and 90%, right hand graph. Both profiles
show a good utilisation of the system during the syntactic parsing stage. However,
in the left hand graph almost 100 blocked threads and a high number of runnable
threads are generated, too. These impose significant runtime overhead in the system.
The granularity profile at the left hand side of Figure 4.13 reveals that most of the
threads are very fine-grained: 3,422 of the 5,122 threads (67%) are shorter than 2,000
cycles. This leads to a bad ratio of computation versus parallelism overhead.

In comparison, when increasing the span threshold to 90% the number of blocked
and runnable threads is reduced significantly (at most 36), and the number of small
threads drops drastically, as shown in the right hand graph of Figure 4.12 (note the
different scaling in both graphs). Now, only 67 of the 165 threads are shorter than
2,000 cycles (40%). Corresponding to this drop in the total number of threads, espe-
cially fine-grained threads, the runtime drops from 754,687 kilocycles in the previous
version to 526,842 kilocycles in this version. As a result of these measurements and
considering the low amount of parallelism that is required to fully utilise the four
processor shared-memory machine, span thresholds around 90% are used for GUM
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Figure 4.12 Activity profiles of Lolita with span thresholds of 50% and 90%
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Figure 4.13 Granularity profiles of Lolita with span thresholds of 50% and 90%

executions of Lolita.

4.5.5 Parallel Semantic Analysis

Another source of parallelism can be used to improve the quality of the analysis by
applying the semantic and pragmatic analyses in a data-parallel fashion on different
possible parse trees for the same sentence. Because of the complexity of these analyses,

the sequential system always picks the first parse tree, which may cause the analysis
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to fail, although it would succeed for a different parse tree. In this case the system
cannot produce a result for the current sentence in a sequential setup. Therefore,
parallelism in this stage would not reduce the runtime of the system, but might
improve the quality of the result.

This additional data parallelism is defined by the strategy evalScores in the function
parse2prag (see Figure 4.10). The parse forest rawParseForest contains all possible
parses of a sentence. The semantic and pragmatic analyses are then applied to a
predefined number, specified in global, of these parses. The data parallel strategy
evalScores is applied to the list of these results and demands only the score of each
analysis, the first element in the triple, in order to avoid unnecessary computation at
this stage. This score is used in pickBestAnalysis to decide which of the parses to
choose as the result of the whole text analysis.

The improvements in the quality of the result by analysing several possible parse trees
have not been systematically measured, yet. However, considering that about 70%
of all sentences that are analysed have several possible parse trees, the possibility
to analyse several of them without large additional costs is very attractive from a
natural language engineering point of view.

4.5.6 Overall Parallel Structure

Figure 4.14 summarises the overall parallel structure arising when all of the sources of
parallelism described above are used. The possible data parallelism over the input is
depicted by analysing three sentences in parallel in this picture. Note that the number
of possible parse trees for the input sentences varies. The syntactic parsing stage
is internally parallelised using the granularity control strategy shown in Figure 4.11.
Note that the analyses may add nodes to the semantic net. This creates an additional
dependence between different instances of the analysis, which is indicated as vertical
arcs. Lazy evaluation ensures that this does not completely sequentialise the analyses,

however.

It should be emphasised that specifying the strategies that describe this parallel
behaviour entailed understanding and modifying only two of about three hundred
modules in Lolita and three of the thirty six functions in that module. Apart from
the top level function, the only sub-module that has been parallelised is the syn-
tactic parsing stage. If it proves necessary to expose more parallelism it would be
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Figure 4.14 Detailed structure of Lolita

possible to parallelise other sub-algorithms such as the graph algorithms operating
on the semantic net. In fact, the most tedious part of the code changes was adding
instances of NFData for intermediate data structures, which are spread over several
dozen modules. However, in the meantime this process has been partially automated
(Winstanley 1997).

4.5.7 Sun SPARCserver Implementation

This section discusses early performance measurements of Lolita on the Sun SPARC-
Server. A realistic simulation showed an average parallelism between 2.5 and 3.1,
using just the pipeline parallelism and parallel parsing. The actual speedup, how-
ever, does not exceed 2.4. Measurements with varying span values indicate that this
is partly caused by fine-grained parallelism in the parsing stage. One obvious bottle-
neck in the computation is the sequential front end of about 10-15% caused by the
C part of the syntactic parsing stage.

However, the wall-clock speedups obtained to date do not quite match the simulation
results. As shown in Figure 4.15 a two processor execution on small inputs achieves
an average parallelism of 1.4. A high span value is used to bound the amount of
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Figure 4.15 Activity profile of Lolita run under GUM with 2 processors

parallelism in the parsing phase. This also bounds the total heap residency in the
system, which proves to be very important. With more processors the available
physical memory is insufficient and heavy swapping causes a drastic degradation
in performance. The reason for this behaviour is that GUM, which is designed
to support distributed-memory architectures uniformly, loads a copy of the entire
code, and a separate local heap, onto each processor. Lolita is a very large program,
incorporating large static data segments (totalling 16Mb), and requires 100Mb of

virtual memory in total in its sequential incarnation.

One difference of the GUM activity profile in Figure 4.15 to the GRANSIM results
is a larger degree of fetching in the former. This is probably caused by the rather
expensive but generic communication routines used by PVM, on which GUM is
based. In contrast, GRANSIM measures mainly the hardware costs for performing
communication. Together with the fine granularity of the generated threads this
increased overhead leads to a significantly smaller utilisation in the parsing stage.
However, the later pipeline stages in the computation are still an effective source of

parallelism.
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4.6 LinSolv

The linear system solver discussed in this section uses an approach that is very com-
mon in the area of computer algebra: a multiple homomorphic images approach
(Lauer 1982). This approach consists of the following three stages:

1. map the input data into several homomorphic images,
2. compute the solution in each of these images, and

3. combine the results of all images to a result in the original domain.

Since computer algebra algorithms aim at finding ezact solutions to mathematical
problems, unbounded data types like arbitrary precision integers are frequently used.
In algorithms operating on arbitrary precision integers the original domain is typically
Z, the set of all integer values, and the homomorphic images are Z modulo p, written
Z,, with p being a prime number. The advantage of this approach becomes clear
when the input numbers are very big and each prime number is small enough to fit
into one machine word. In this case the basic arithmetic in the homomorphic images
is ordinary fixed precision arithmetic with the results never exceeding one machine
word. No additional cost for handling arbitrary precision integers has to be paid.
Only in the combination phase will the big numbers appear again. In the case of Z as
original domain the well-studied Chinese Remainder Algorithm (CRA) can be used
in the combine step (Lipson 1971).

The linear system solver (LinSolv) discussed in this section uses such a multiple ho-
momorphic images approach. Thus, it must be emphasised that this algorithm is not
meant to represent a highly-tuned numerical algorithm for finding just an approxi-
mation of a solution, but a typical symbolic algorithm for finding an exact solution,
which represents a wide class of computer algebra algorithms. Other algorithms with
the same basic structure will be discussed in Section 4.7.

It is obvious that this approach lends itself to parallel processing: all solutions in
the homomorphic images can be computed independently. An obvious bottleneck
is the final combination stage. The following sections first discuss the structure of
the sequential algorithm. Then a straightforward, parallel version is developed and
improved by eliminating the two main sequential bottlenecks.
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4.6.1 The Sequential Algorithm
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Figure 4.16 Structure of the LinSolv algorithm

This section describes the basic structure of the sequential LinSolv algorithm. For a
given matrix a and vector b, both ranging over integers, this algorithm finds a solution
z to the equation axz = b. More formally, this problem can be specified as follows:

Input: a,b where a € Z™", deta #0, b€ Z"
Output: s,t,z  where a(iz) =0,

s,t€Z, x €Z"

ged(s,t) =1, ged;oy 7 =1

where Z denotes the set of all integers; for a domain D and an integer n, D" denotes
the set of all vectors of length n with components from D; and D"*" denotes the set
of all 2-dimensional square matrices of size n over . For an integer n, Z, denotes
the set of integers {0,...,n — 1} (the homomorphic image of Z with base n). Note
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that we are computing a vector z of integer values and factor out the rational part of
the solution into {. This is convenient when using the result in a bigger application
because later stages can avoid most of the expensive rational number arithmetic on

the result vector.

A particularly important aspect of the algorithm we are designing is that it has
to compute an exact solution over integers of arbitrary size. Therefore, the main

questions to be considered for the efficiency of the sequential algorithm are:

1. How big are the intermediate values in the computation?
2. How high is the overhead associated with using rationals instead of integers?

3. Are there inherently sequential parts in the algorithm?

The first question is directly addressed by using a multiple homomorphic images
approach, which bounds every value by the base of the image. The next two questions
are crucial in picking a concrete algorithm for the solution phase. The following
paragraphs discuss the individual stages of the algorithm with the paragraph on the
solution phase discussing the advantages and disadvantages of three alternatives with
respect to the questions raised above. Figure 4.16 summarises the overall structure

of the algorithm.

Forward mapping: This stage is trivial: for a given prime number p the function
‘mod‘ p is mapped over all elements of a and b. This stage is easily parallelised.

Homomorphic solutions: We have investigated several candidates for computing
the homomorphic solutions, which have the following characteristics:

e (Gaussian Elimination: This is a very efficient algorithm often used for solv-
ing linear systems of equations. However, since it works over rational numbers
the basic arithmetic operations are much more expensive than those over fixed
precision integers. An alternative to the classical algorithm would be to intro-
duce rational numbers only in the back-substitution phase by using for example
Bareiss’ variant of the algorithm. However, this variant requires O(n%) addi-
tional integer divisions, so it is not clear whether it gives an improved perfor-

mance in practice.
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e LU-Decomposition: The LU-Decomposition method has very strong data depen-
dencies and yields an inherently sequential algorithm. An initial parallelisation
of LU-Decompostion achieved only a speedup of 3.8 on an idealised machine.
Some significant restructuring would be necessary to obtain an efficient parallel

algorithm.

e Cramer’s Rule: Although this algorithm is less efficient in the sequential case, it
is very attractive because of its high potential of parallelism. In this algorithm
the result is computed by evaluating n+1 independent determinants. The main
structure of this algorithm is described below.

Iterative algorithms often used in numerical applications have not been considered
because the goal here is to find an exact solution. Furthermore, LinSolv should
use a parallel algorithm for computing a homomorphic solution in order to maintain
scalability of the overall algorithm for cases where the number of available processors
is higher than the number of homomorphic images used by the algorithm. Using
an efficient sequential algorithm might achieve better results for small number of

processors but is inherently limited in its parallelism.

The method used in LinSolv is based on Cramer’s rule. This rule states that the
solution of the equation ax = b can be computed as a vector, with ratios of two
determinants as components. In each component the denominator is the determinant
of the original matrix a. The numerator of the j-th component is the determinant
of the matrix obtained from a by replacing the j-th column with the vector . More
formally, let a,,, b,, be the homomorphic images of a and b w.r.t. the prime number

pi- Then the solution z,, = [z,,,,...,Zp, ] can be computed by:

!
det O,

Tp, =
P detay,

where a;,i]_ is ap;, with the j-th column replaced with by,.

When applying the above formula in a homomorphic domain Z,,, the determinant
det a,, might become 0. Obviously, no solution can be computed in such a domain.
Prime numbers p; which result in deta,, being 0 are termed unlucky and must be
filtered from the list of prime numbers which are used as bases for the homomorphic

domains.
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Combination: The final stage of the algorithm consist of combining the homomor-
phic solutions to a solution in the original domain Z (‘lifting’). This combination
can be done by using the Chinese Remainder Algorithm (CRA) (Lipson 1971). This
algorithm finds the “original” of two images i.e. a value r, which maps to the given
values 71,72 in the images generated by the prime numbers p,, ps, respectively. More
formally the algorithm can be specified as follows:

Input: T1,T2,P1,P2 where pi,p, prime, 7y € Zyp,, T2 € Zy,
Output: r where r € Zyp,p,, 11 =7 mod p;, T2 =7 mod p,

Although the CRA operation is associative, for two lists it is most efficient to use
a left associative fold operation over the binary version above (Garner’s algorithm
(Knuth 1981, p.274)). The reason for this is that all computations in the binary CRA
operate in the domain Z,,, which can be chosen to be a fixed precision domain in
each stage. Hence, the large accumulated input values p; and 7, in the folding process
are mapped to small numbers, making the binary CRA almost equally cheap in every
step of the folding. Unfortunately, this is also an obvious sequential bottleneck.

Figure 4.17 shows the top level of the algorithm based on Cramer’s rule. Note
that xList is an infinite list of solutions in homomorphic images corresponding to
prime numbers in the infinite list primes. The CRA computation itself is hidden in
list_cra, which basically performs a left associative fold operation, accumulating the
product of all prime numbers met so far until this product becomes larger than s™nl
(n is the size of the matrix a and s is the maximal element in ¢ and b). The gen_xList
function has to check whether the modular determinant is 0 in order to avoid pick-
ing unlucky prime numbers. The strategy strat in the body of the let construct
describes the dynamic behaviour of the code separately from the algorithmic code.
For the sequential version the default strategy rwhnf can be used. Figures 4.19, 4.21,
and 4.23, which are discussed in the subsequent sections, give different definitions of
strat for parallel execution without changing the code in Figure 4.17 at all.

4.6.2 Naive Parallel Algorithm

Figure 4.18 shows a naive parallel version of LinSolv, written without strategies by
parallelising gen_xList, which implements the forward mapping and solution phases.
The idea of this code is to create a single parallel thread to evaluate both the forward
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linSolv a b =
let
{- forward mapping and solution via Cramer’s rule -}

xList :: [[Integer]] -- infinite list of solutions in hom images
xList = gen_xList primes

gen_xList (p:ps) =

let

modDet = toHom p (determinant (toHom p a))

pmx = [ toHom p (determinant (replaceColumn j (toHom p a)

(toHom p b) ))
| 3 <- [jLo..jHi] ]

((iLo,jLo), (iHi,jHi)) = bounds a
in
if modDet /= 0

then (p : modDet : pmx) : gen_xList ps

else gen_xList ps
{~ combination via CRA -}
detList = projection 1 xList
= list_cra pBound primes detList detList
X_i i = list_cra pBound primes X_1i_List detList
where x_i_List = projection (i+2) xList
X =map x_i [0..n-1]
in
X ‘using' strat

Figure 4.17 Top level code of the sequential LinSolv algorithm

mapping (via toHom) and the determinant computations for each prime p;. To achieve
this behaviour a parmap function is used in the definition of a homomorphic solution
pmx, and a par combinator is used in the body of the let construct to evaluate every
homomorphic image in parallel. However, the actual dynamic behaviour is quite dif-
ferent: the thread sparked for homsol will only evaluate the top-level cons cell, which
does not trigger the computation of the actual homomorphic solution (pmx) at all.
Only when the result is required in the combination stage the parmap will be trig-
gered, creating parallelism within a homomorphic image but sequentialising all stages.
The combination stage is basically a fold operation. This causes a sequentialisation

of the homomorphic images.

The resulting activity profile at the left hand side of Figure 4.20 reveals two stages
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linSolv a b =
let
{- forward mapping and solution via Cramer’s rule -}

xList :: [[Integer]] -- infinite list of solutions in hom images
xList = gen_xList primes

gen_xList (p:ps) =

let
homSol = (p : modDet : pmx)
pmx = parmap ( \ j -> -- parallelism within each hom im
let al = replaceColumn j a0 b0
in modHom p (determinant al) )
[jLo..jHi]
((iLo,jLo), (iHi,jHi)) = matBounds a

restList = gen_xList ps
in
if modDet ==
then gen_xList ps
else par homSol (homSol : restList) -- par between hom ims

{- combination via CRA -}
detList = projection 1 xList
det = list_cra pBound primes detList detList
X_1 1 = list_cra pBound primes x_i_List detList
where x i _List = projection (i+2) xList

x = map x_1i [0..n-1]

in

x

Figure 4.18 Naive parallel pre-strategy code

in the computation:

e In the first stage, up to approximately one third of the total execution time, the
overall determinant det a is computed using the same structure as for the overall
computation. This causes a sequence of computations in the homomorphic
domains, which is visualised as a sequence of small peaks.

e In the second stage, the solution is computed in each homomorphic image. All
components of the solution are evaluated in parallel using a parallel determinant
computation in each case. This yields a higher degree of parallelism within each
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rnf det ‘seq@"
seqListAccum 1 seq sol_strat xList ‘par®
parList rnf x
where
seqListAccum :: Integer -> Strategy [Integer] -> Strategy [[Integer]]
seqListAccum accum s =
\ (xs:xss) -> if accum>pBound
then ()
else s xs ‘seq'
seqgListAccum (accum* (head xs)) s xss

seq_sol_strat :: Strategy [Integer]
seq _sol_strat = \ (p:modDet:pmx) -> ranf modDet ‘seq‘
if modDet /= 0
then seqgList rnf pmx
else ()

Figure 4.19 Strategy version of a naive parallel LinSolv algorithm

stage.

Note that the number of parallel peaks in both stages is determined by the number
of homomorphic images necessary to construct the result in the original domain (13

in this case).

The dynamic behaviour of this code becomes much clearer when reformulating the
code with strategies. Figure 4.19 shows the definition of strat in the body of the
1inSolv function in Figure 4.17. Note that in contrast to the pre-strategy version
the algorithmic code is unchanged. In the strategic version of the code it becomes

clear that two nested strategies are used:

e the outer strategy, seqListAccum in this case, traverses the infinite list of solu-

tions (xList), and

e the inner strategy, seq-sol_strat in this case, traverses the homomorphic so-

lutions (pmx).

Each of these strategies can be done either sequentially or in parallel. From the above
description of the dynamic behaviour of the naive parallel code it should be clear that
both dimensions are done sequentially. The outer seqListAccum strategy encodes
the dynamic behaviour of the algorithm when traversing xList: it accumulates the
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Figure 4.20 Activity profile of pre-strategy and strategic naive LinSolv

product of all prime numbers in order to decide how many homomorphic solutions to
generate. The explicit use of seq in seqListAccum reflects the evaluation order, which
is implicit in the pre-strategy code. The inner seq sol strat strategy describes a
dependency between the modDet component of the homomorphic solution and the
rest. Although the parmap construct in Figure 4.18 specifies parallelism over the
elements of the homomorphic solution, it is hidden by the first two elements of the
result list in sol, which are demanded first when computing the overall determinant
det. Figure 4.20 shows that the dynamic behaviours of the pre-strategy and the

strategic version are almost identical.

4.6.3 Improved Version

Reflecting the performance tuning in the pre-strategy version of the code the strategy
in Figure 4.21 shows two changes compared to the previous strategy: it does not force
the computation of the determinant as a first step and it computes all components of
the homomorphic solution in parallel using the par_sol_strat strategy. This avoids
the delay in generating parallel processes for performing the most time consuming

computations in the solution phase.

The activity profiles in Figure 4.22 show that the fi