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A bstract

The control of nonlinear systems is addressed from a new perspective, which 

makes use of several concepts and techniques developed in the area of Artificial 

Neural Networks. In particular, this work explores the potential of connectionist 

representations which consist of only feedforward connections of sigmoids or gaus- 

sian units. A unified review demonstrating the capabilities of these structures to 

approximate continuous nonlinear functions is given. The use of the Fourier trans­

form and the properties of kernel functions are exploited in order to demonstrate 

some properties of gaussian networks.

The adjustment of the different parameters plays a significant role in the rel­

evance of these structures in control. For sigmoid networks a new learning algo­

rithm  is proposed, its main feature being the use of the forgetting factor and pseu­

doinverse. For gaussian networks several algorithms using different techniques, 

such as: the Fourier Transform, gradient approach, and/or clustering algorithm, 

are explored and compared.

The representation of a dynamic system by means of a static nonlinear func­

tion, and consequently, by a connectionist representation, is addressed. Concepts 

such as controllability, observability, and invertibility, which are needed to develop 

any control structures, are put forward for the nonlinear case.

Four control structures using connectionist models to generate the control sig­

nal are proposed, and its potential analysed. For each approach a simple example 

is presented to illustrate their performance. A summary of their main character­

istics is also given.



Two industrial applications have been tackled, and solutions developed, illus­

trating not only the differences between different techniques, but also the potential 

and limitations of the ideas pursued in this work.

Finally, some suggestions are given, which may engender further research in 

the field of control and artificial neural systems.



Preface

0.1 M otivation and Scope

Controlling nonlinear systems is very important from an industrial point of view, 

because all of the industrial processes are nonlinear. The trend in the industry 

is towards imposing of more and more demanding constraints on the production 

process to satisfy a competitive market which requires high quality goods at low 

prices. From this point of view nonlinear control techniques are highly desired, 

because they can provide a tighter control than their linear counterparts. On the 

other hand, Artificial Neural Networks, one of the most promising new technolo­

gies emerging, with inputs from different fields which range from psychology to 

physics, provides a new framework to develop nonlinear structures amenable for 

control systems. The main aim of this thesis is to explore the capabilities of a 

subset of Artificial Neural Networks (feedforward networks) within the nonlinear 

control framework.

0.2 C ontributions

The main contributions of this work can be summarised as involving the following:

• The use of a nonlinear estimation algorithm instead of Back-Propagation, 

establishing proper links between learning algorithms and the system iden­

tification theory.



• The use of a forgetting factor and pseudoinverse is proposed within the 

context of multilayer networks and learning.

• A comparison of learning algorithms for gaussian networks and their simpli­

fication for real applications.

• The use of Frequency Approach to analyse regular gaussian networks. Ex­

tensions of basic properties to more general representations such as Hermite 

networks.

• The setting up of a general formalism to integrate discrete nonlinear systems 

and control structures.

• The use of parametric models to represent nonlinear relations and the ex­

tension of linear control structures to deal with nonlinear systems.

• The establishment of the limitations and advantages of four different non­

linear control approaches using connectionist representations.

• The presentation of application examples with a clear industrial orientation 

to illustrate the performance and limitations of the different approaches 

analysed.

0.3 T hesis Outline

The thesis is divided into seven chapters, starting with an introduction, which 

contains a brief historical perspective and a general description of the basic ideas 

behind this work.

The remaining chapters are organised in order to give a coherent exposition 

of the work that has been completed. We start from a general description of the 

different feedforward architectures used as parametric representations of nonlin­

ear functions and their training algorithms. Then, the problem of representing a



nonlinear dynamical system using a nonlinear function of delayed inputs and out­

puts is addressed. Following these results, different nonlinear control structures 

are generated, which are analysed and applied to two industrial processes.

The work starts with Chapter 2, giving the necessary background material 

needed to develop the basic representation of a nonlinear system using a con­

nectionist representation. The main contributions of this chapter are the unified 

presentation of the different structures, and the use of Fourier transform and prop­

erties of kernel functions to demonstrate the approximation capability of a regular 

gaussian network.

Chapter 3 gives a comparison among different algorithms for feedforward net­

works using two different activation functions. The main contributions of this 

chapter are a new algorithm based on linearisation, and the introduction of a 

forgetting factor and pseudoinverse within the learning framework for sigmoid 

networks, together with the use of the Fourier transform to analyse gaussian net­

works, and a new version of a known scheme to train gaussian networks with 

different algorithms working in parallel.

Chapter 4 introduces both the feedforward architecture needed to represent 

nonlinear dynamic systems, and presents the concepts of controllability and ob­

servability for nonlinear system, which are used in later chapters. This chapter 

addresses fundamental questions with regard to realisation, i.e., which kind of 

system can be modelled with a feedforward network, plus the invertibility of this 

model.

The usage of nonlinear models to control a nonlinear system is discussed in 

Chapter 5. The approaches analysed are Direct Inverse Control, Model Reference 

Control, Internal Model Control and Receding Horizon Control. Every approach 

is analysed, and its behaviour under different conditions is illustrated by basic 

simulation examples. The original contribution of this chapter is to highlight the 

problems of some known schemes (Inverse Control and Model Reference), and to 

propose other control strategies (Internal Model Control and Receding Horizon



Control), which overcome the difficulties encountered with Inverse Control and 

Model Reference.

In Chapter 6 two industrial applications are described in detail. The first one 

is the control of a pH plant, and the second one is the control of a steel mill strip 

thickness.

This work is concluded with Chapter 7, where appropriate conclusions are 

given, and several extensions to the methodology are also suggested .
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C hapter 1

Introduction

SUMMARY

Firstly, in this introduction there is a description of the basic frame­

work used to establish the relationship between connectionist represen­

tation and control. Secondly, a brief historical review o f both fields is 

given, illustrating the many instances when these two disciplines have 

complemented each other.

1.1 B asic Framework

As J.L. Borges describes in Averroes’ Search [9], our research is bounded by our 

knowledge. He narrates the process of a defeat. He tells of the case of a man who 

set himself a goal which is not forbidden to others, but is to himself. He wrote:

I remembered Averroes who, closed within the orb of Islam, could 

never know the meaning of the terms tragedy and comedy. ... I felt 

that Averroes, wanting to imagine what a drama is without ever having 

suspected what a theatre is, was no more absurd than I, wanting to 

imagine Averroes with no other sources than a few fragments from 

Renan, Lane and Asm Palacios.

1



CHAPTER 1. INTRODUCTION 2

This leads me to picture myself, trying to write a Thesis on Neural Networks and 

control just with a limited reference of a few hundred papers. This is the reason 

why in this thesis some very simple ideas from the Artificial Neural Network 

have been taken and applied to control problems. The aim of this thesis is not 

to give physiologically plausible architectures and algorithms, but rather to give 

ones that are useful in engineering applications. Obviously, the theory is not yet 

complete, nor have its implications and possible applications been fully explored. 

It should be regarded as only a first step in contributing to the joint analysis of 

connectionist systems and control systems, clarifying the potentialities and the 

limitations of these new developments within the system theory framework. To 

expect something different would be unrealistic.

Figure 1.1 illustrates the basic structure used in this work, in which the control 

problem is decomposed in two subproblems: representation and control.

Plant REPRESENTATION CONTROL

Figure 1.1: Decomposition of a controller in representation and control.

In order to control a system it is necessary to know something about it. This 

knowledge is used within a representation framework, which is itself a model of the 

reality. Once this representation is available, it is possible to generate strategies 

or control signals in order to drive the system to a desired operational point or 

trajectory. This concept can be found in the more traditional Artificial Intelligence 

framework, as it is described explicitly by Newell [62] :

An intelligent agent is embedded in a task environment; a task 

statement enters via a perceptual component and it is encodeded in
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an initial representation. Whence starts a cycle of activity in which 

a recognition occurs ... of a method implemented to undertake the 

problem. The method draws upon a memory of general world knowl­

edge. ... It is clear to us all that representation is in this picture. It 

is a data structure that holds the problem and will be processed into 

a form that makes the solution available. Additionally, it is the data 

structure that holds the world knowledge, and will be processed to 

acquire parts of the solution or to obtain guidance in constructing it.

As the first stage, this functional decomposition is conducive to tackling two 

different problems individually, and has the additional advantage of permitting 

incremental refinement, i.e., if a better representation is found then it can be 

included in the system without formulating the control scheme again. Under this 

scheme, as the representation accumulates more information about the unknown 

plant, the system’s control will be altered according to the updated information 

in order to improve the system’s performance.

The relationship between the control scheme and representation is usually 

chosen by the designer. The alternative approaches used throughout the design 

of the controller section are:

• Methods based on the use of nonlinear functional analysis, in which the 

system components are represented as general nonlinear operators.

• Control design methods for nonlinear systems employing optimisation tech­

niques.

There is a third approach based on linearisation of the nonlinear system. This, 

however, was not pursued here.

The concept of representation and memory are closely related. A simple defini­

tion of memory is “preservation of the past experience for future use” [33]. Hence, 

it is possible to regard a representation as the manner in which we preserve the
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past evolution of the plant. One of the contributions of Artificial Neural Networks 

has been the provision of different representations to serve as memories. The main 

aim of the work in this thesis, however, involves the exploration of some of the 

possibilities uncovered when a connectionist representation is employed to control 

systems.

1.2 H istorical Background

This brief summary about neural research is based on the compilation of papers 

done by Anderson and Rosenfeld [4].

In the early 1940’s, the pioneers of the field—MacCulloch and P itts—studied 

the potential and capabilities of the interconnections of several basic components 

based on the model of a neuron. Others, such as Donald Hebb, were concerned 

with the adaptation laws involved in natural neural systems. Rossenblatt coined 

the term of Perceptron, and devised an architecture whose potentialities arose out 

of random connections between elements. In the sixties, Minsky and Papert [56] 

introduced a rigorous analysis of the perceptron; establishing the computational 

cost of what perceptrons can do as a function of increasing problem size, they 

demonstrated rigorously many properties and limitations of the model. In the 

seventies, the work of S. Grossberg became prominent. His work, based on psy­

chological and biological evidence, proposed several architectures of a nonlinear 

dynamic system with novel characteristics. Hopfield applied a particular nonlin­

ear dynamic structure to solve technical problems, for example, optimisations. 

In 1986, the Parallel Distributed Processing (PDP) group published a series of 

results and algorithms [53]. This gave a strong impetus to the area, and provided 

the catalyst for much of the subsequent research in this field.

Parallel to all this development in the control field, some algorithms and con­

cepts were developed and analysed. The first person who saw the control theory 

as a broader discipline involving Artificial Neural Networks was N. Wiener (1948).
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One of the approaches utilised to deal with variations in the parameters of a 

linear representation of a time-invariant nonlinear system was the adaptation of 

the parameters. From an Artificial Neural Network perspective these adaptive 

systems can be regarded as systems which are able to modify their representation 

of their environment and therefore capable of learning.

The early work in the 1950s on adaptive systems came from the studies of 

simple adaptive laws designed using the sensitivity approach (MIT rule), and later, 

in the 1960s, using Lyapunov theory, which has the advantage of embodying the 

notion of stability within the design of adaptive systems.

Kalman (1958) [37] not only envisaged the integration of a self tuning controller 

with explicit identification of the parameters, but also introduced the state space 

representation as a powerful tool to design a controller for a complex linear system; 

he also introduced the key system concepts of observability and controllability.

In the 1960s, Bellman made important contributions to the understanding of 

dynamic programming, and Tsypkin [87] proposed several learning schemes based 

on the stochastic approximation idea. Widrow [91], working in the area of signal 

processing, also proposed a learning rule for the single layer perceptron. This 

work was the only one that explicitly related these fields so far.

It is worth mentioning the work done by Aizermann during the 60’s [1] in the 

field of potential functions in nonlinear representation, which can now be seen as 

one aspect of Artificial Neural Networks research.

In the 1970s and 1980s, most work was concentrated on self-tunning regulators 

and also on the development of tools to analyse these algorithms. Critical exam­

ination and evaluation of the main results to date was also undertaken. Issues 

such as stability, convergence and robustness were addressed.

The book by Padulo and Arbib [63] set up the current trends in system theory, 

unifying different branches of this general body of concepts and techniques which 

are used to analyse and design systems. This unified approach shows that many 

concepts are available for nonlinear systems, as well as for linear ones.
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Following the ideas developed by Kalman and others [38], Hammer [31] de­

veloped his own ideas for controlling discrete systems, extending the algebraic 

approach to nonlinear input-output models. Billings and his collaborators [45] 

[46] concentrated on the practical side of obtaining a nonlinear model from exper­

imental data, and finally, Sontag [83] developed his theory of polynomial maps to 

deal with nonlinear representations.

Modern nonlinear control theory, particularly the differential geometric ap­

proach, has emerged during the seventies and with a rather successful endeavour 

to deal with basic questions in the state space formulation of nonlinear control 

systems, also including the key problems of controllability, observability, and (min­

imal) realisation theory.

Modelling inaccuracy, which can come from the actual uncertainty about the 

plant or from purposeful choice of a simplified representation of the dynamical 

system, has a strong adverse effect on the nonlinear control system. Hence, any 

practical design must address them explicitly. Two major and complementary ap­

proaches to dealing with uncertainty are robust control and adaptive control. One 

way in which to produce a robust control is by the variable structure approach, 

which deals with discontinuous control. The main advantages of this technique 

are: order reduction, decoupling design procedure, disturbance rejection, and ro­

bustness to parameter variation. Its final implementation is simple, and resembles 

the basic characteristic of neurons. Some researchers have already investigated the 

possibility of using connectionist representations within this area [75] [94].



C hapter 2

Feedforward N etw orks

SUMMARY

This Chapter describes the basis of connectionist representations using 

sigmoid and the gaussian functions and their link with Artificial Neural 

Networks. The capabilities of these representations to approximate any 

nonlinear continuous function are proved using the Stone-Weiertrass 

Theorem. In addition, the concept of spatial frequency is introduced 

and the capabilities of a regular gaussian network are proved rising 

properties o f kernel functions. Extensions to Hermite networks are 

also described.

2.1 A rtificial N eural N etw orks

The field of Artificial Neural Networks studies the properties, characteristics, rep­

resentations, and the underlying adaptive mechanisms of the real neural system. 

As described by D. Ballard [5], one of the objectives is to find useful abstract 

descriptions of the computation performed by the neural system without reducing 

them to anatomy. The level of formulation is in terms of symbolic constraints 

and methods for solving them. These useful abstract descriptions generally are



CHAPTER 2. FEEDFORWARD NETW O RKS 8

parallel and non-algorithmic, sometimes they model a function rather than a phys­

iological aspect of the brain. The term connectionist has come to mean the fact 

that these essential components of abstract level can be described in terms of 

synaptics connections of networks of neurons. The main potential of the different 

structures stems from the use of simple basic processing units connected together, 

which gives origin to an architecture. The basic model of an element is not unique; 

different neurons in different parts of the brain seem to represent information in 

very specific ways. For example, the activation function, i.e. type of response 

between the firing rate and the value of the stimulus, for the ocular-motor system 

neurons has a sigmoidal characteristic and for those cortical neurons, from the 

visual areas, has a gaussian characteristic [5]. This suggests that there are certain 

kinds of functions which can be approximated more efficiently using a suitable 

activation function.

In this work only these representations which consider feedforward connections 

with no implicit dynamics are studied.

At a given time t , the ith  layer of a multilayer network, Figure 2.1, can be 

represented by

Vi =  W?Xi ,  (2 .1)

where X{ is given by

(2 .2)

and X{ by

xi+i =  fi(yi). (2.3)

The last element of X{ corresponds to a scalar offset term when multiplied by the

appropriate weight vector. Equation (2.1) describes the linear part of the layer,

where X{ is a vector of dimension ((nt- +  1) x 1) containing n,- inputs to the layer 

together with 1 as the last element, W{ is a matrix of dimension ((n,- +  l) x (n,-+1)), 

which maps the input to the linear output of the layer, and W{ (nt- x (n,- +  1)), a 

submatrix of VF, does not contain the offset weights. Equation (2.3) describes the
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nonlinear part of the layer, where the function /,- maps each element y,-, the linear 

output of the layer, to each element a\-+i, the inputs to the next layer. A special 

case of the nonlinear transformation of equation (2.3) occurs when each element 

of the vector ah+i is obtained from the corresponding element y of the vector yt- 

by the same nonlinear function

Zi+i =  (2.4)

Typical functions f ( y )  are the sigmoid function [53]

= rpW’ (2'5)
and the hyperbolic tangent function

f ( y )  =  tanh(t,) =  +  (2-6)

The former is appropriate to asymmetric scaling between 0 and 1; the latter is 

appropriate to symmetric range between of —1 and 1. The derivative of the 

function in equation (2.5) is

f ( y )  =  ^  =  f ( y ) (  i -  /(»)), (2.7)

and that of the function in equation (2.6) is

/J7*m  = ^  = a + /(»))(i -  /  w) = i -  f(yf- (2.8)

Another useful activation function, but with a rather different characteristic, 

is the gaussian  function,

f ( y )  =  e-"*-”*  (2.9)

where y is a vector of dimension (n x 1), || • || is the weighted norm defined as

l l v l f i  =  yTAy,

A  is a symmetric positive definite matrix of dimension (n x n). In the simple 

case of a diagonal A, the diagonal elements an assign a specific weight to each
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Figure 2.1: Multilayer perceptron.

input coordinate, and the standard Euclidean norm is obtained when A  is set 

to the identity matrix. The centre of the function is defined by the vector m  of 

dimension (n x 1).

The model for a gaussian network is shown in Figure 2.2 and described by the 

following equation

F ( i )  =  (2.10)
t=l

where N  is the number of units, c,- is the weight of unit z, m,- is the centre of unit 

z, and A{ is related with the bandwidth and orientation of the unit i. This repre­

sentation can be regarded as a conceptualization of the receptive field1. Here, the 

computation is performed by gaussian receptive fields and their linear combination 

. In this case the multidimensional gaussian function could be synthetesised by 

combining lower dimensional receptive fields, possibly in multiple stages [68]. The 

synthesis of gaussian functions in many dimensions is easier if they are factoriz- 

able, for example

e-\\x-mi\\2A. _  e-aii,(x1-mJ)2e-a22i(a?2- m?)2

where a m  and a2 2 i represent the values of the diagonal m atrix A,-. The gaussian 

function itself can be synthetesised directly by appropriately weighted connections 

from the sensor arrays, which transduce the implicit position of the stimuli in the

sensor array into the activity of the unit.

1A  receptive field is defined as the response to all neurons’ inputs, some of which may be
feedback connections from neurons in more abstract cortical areas [5].
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Figure 2.2: Gaussian network.

2.2 R epresentation Problem

The representation problem addresses the question of whether a determined struc­

ture can represent an arbitrarily continuous function. The mathematical tools 

most commonly used to answer this kind of question fall in two categories: those 

involving algebra of functions (leading to the Stone-Weierstrass arguments) and 

those involving translation invariant subspaces [15]. In this work the first approach 

was followed.

In order to use the theorem some definitions are necessary [72].

Definition:

If U is a metric space, the set of continuous functions mapping U to the real line, 

R , is denoted by C[U]. Given an arbitrary set U the family A  of functions /  

which map U R  is an algebra if / 1? / 2 € A  => a f i  -f /?/2 € A  and a / 1 / 2  € A, 

for all a  and /? £ R  □

Definition:

Let A  be the family of functions f  : U —* R. Then A  is said to separate points on 

U if for any ^  u 2 of U there exists a function /  6 A  such that f (u i )  ^  / ( u 2) □

Definition:

A  vanishes at no point of U if for any point u € U there exists a function /  € A,  

such that f (u )  /  0 □
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2.3 T he Stone-W eierstrass Theorem

T h e o rem  1 Let U be a compact metric space and A  an algebra of C[U]. I f  A  

separates points on U and does not vanish at any point of U, then A  is dense in 

C[U] (i.e. its closure is the whole C[U]).

Proof: [72].

This theorem provides the theoretical framework to set up the potentialities 

of feedforward networks, but provides neither a training algorithm, nor a useful 

framework to compare different structures, because the property of approximation 

is shared by many architectures.

2 .3 .1  S ig m o id s  a n d  M u lt i la y e r  P e r c e p t r o n

The approximation property of a single layer perceptron is given by the following 

theorem.

T h e o rem  2 Let s (x ) be any continuous sigmoidal function. Then finite sums of 

the form
N

G(x ) = Y l aj s(Pjx +  € Rn, € R
j=i

are dense in C[U], where U C IT1.

In other words, given any /  E C[U] and e >  0, there is a sum, <j(x), of the 

above form, for which

| |G ( x ) - / ( x ) | |  < 6  V x€

Proof: see [15], [34].

Since a hidden layer is adequate to approximate any continuous function, it 

follows that the same property is also valid for networks with more than one layer
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This theorem shows the capability of sigmoid networks to approximate con­

tinuous functions. Even though it has been shown that such representation is 

possible with just one hidden layer, from the practical point of view it may be 

inconvenient to use only one layer. In fact, the number of units to approximate 

certain functions (for example, a function peaking at [0,0]T and equal to 0 every­

where outside of the unit circle) can be very large [13]. This fact was noted by 

Cybenko [15] and Funahashi [22], as well.

In some cases the coefficients can grow exponentially, and this has serious 

consequences both practically and conceptually, as pointed out by Minsky and 

Papert [56]. Questions such as how the coefficients scale with the number of 

hidden layers to solve the same problem, or what is the optimal number of layers 

and units to approximate a given function are open.

2 .3 .2  G a u s s ia n  N e tw o r k s

The Stone-Weierstrass Theorem applies directly to gaussian networks. The fact 

that the gaussian function is defined in terms of the Euclidean norm implies the 

closure of the function space under multiplication.

T h e o rem  3 Let U C R n be a convex compact set. Let the family Q of functions 

corresponding to gaussian functions be defined by2

9mi,ai • U ► R

a,- >  0, to, € U,x  € U.

Then a finite linear combination with real coefficients of elements of Q is dense in 

C[U] .

Proof:

21| • || means || • ||/ ,  where I  is the identity m atrix.
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Multiplying two elements of Q one obtains an element of Q as 

where m,-j is a convex linear combination of m t- and m y

mij =  Cimi +  Cjmj Ci =  Cj =  , (2.11)

where D is a constant given by

Dij =  e a,+aJ

and the centres of a new gaussian are still in U, if U is convex. Let C be the 

set of all finite linear combinations with real coefficients of elements of Q. It is 

obvious that C is closed with respect to the sum and multiplication by scalar. The 

multiplication of two elements of C is a linear combination of product of gaussians. 

Such products, as shown above, are gaussians times a scalar and hence C is closed 

with respect to multiplication. Thus C is an algebra of gaussians on U. Further, 

Q separates points and does not vanish at any point in U. Hence, it follows by 

the Stone-Weierstrass Theorem that linear combination of gaussians is dense in 

C[U) [34]. oo

2 .3 .3  A p p r o x im a t io n  P r o p e r t ie s

As was mentioned before, the Stone-Weierstrass Theorem does not provide hints 

about the characteristics of the solution. From the point of view of approxima­

tion theory, the property of approximating continuous functions arbitrary well 

is not enough to characterise a good approximation scheme. The best approxi­

mation concept guarantees that the approximation problem has a solution. An 

approximation scheme has the best approximation property if in the set A  of ap­

proximating functions (for instance the set of F (W ,x )  defined as (2.10), which is 

spanned by the set of parameters defined as W  — {mt-, ct-, A{\i = 1 , . . . ,  N })  there 

is one that has minimum distance from any given function of a larger set 4>.
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The set A  is called the existence set if, for each /  E $  there is at least one 

best approximation to /  from A. It is clear that the approximation problem, i.e. 

given /  € $  and A c  $  find a best approximation to /  from A, has a solution if 

and only if A  is an existence set. The key property of every existence set is that 

it is closed. Poggio and Girosi [68] have shown that the set defined by

N

S  =  { /  € C[U] I f ( x )  = J 2 ajs((3jX +  7 j), ( 3 j , x e R n, G R}
3 - 1

for TV > 2 is not closed, and therefore is not an existence set. On the other hand, 

the condition of compactness is sufficient for a set to be an existence set.

When the approximating function is a finite linear combination of basis func­

tions, such as gaussians functions, the set that is spanned by these basis functions 

is compact, hence, it is an existence set for C[U]. Depending on the norm that is 

chosen in C[U], the best approximating element can be unique. In particular, it 

has been shown for gaussian networks that the best approximation exists and is 

unique [68].

As was pointed out in [68] the lack of the best approximation property for the 

multilayer perceptron is related to possible practical degeneracies of the solution. 

For example under certain circumstances, when the unit is operating in the sat­

uration zone, a change in the parameters of a sigmoidal unit does not affect the 

output.

2.4 Spatial Frequency

A nice property of the gaussian function is that its Fourier transform exists and 

is also gaussian. This result can be obtained applying the following properties of 

the Fourier transform [86].

If rm denotes translation by m  E R n (this means the operator mapping the 

function g(x) into the function g(x — m)) then

r(Tmg(x)) = (2.12)
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where P(-)) denotes the n —dimensional Fourier transform. If a > 0 and Sa denotes

dilation by a 6 R, i.e. the operator 8 a mapping the function g(x) into the function

g(ax), then

dn^ ( 8 ag(x)) =  G{a~1 x) (2.13)

where (?(•) is the Fourier transform of #(•). The FT of a gaussian function defined 

by g(x) =  e~ ^ 2 is

H g )  =  /  g(x)e-j“Txdx = n?=1 JZo e - * h - ^ d x i
J R n

=  nr=i \pKeT~t =  7T2 (2.14)

Defining gai m̂i as
-  i - m ;

9<Ti,mi — e a* ? (2.15)

and applying the translation and dilation operators

Gai,mi(w) =  H g ^ rm )  =  /  gmi,<Ti(x)e-JU,TxdxJRn

gives

G .i, mi(W) = a f x » c - W c - ^ >

where u  £ R n represents the spatial frequency. It is worth noting that the Fourier 

transform is a basic gaussian function, which has a phase that is linear with respect 

to mt-, and the gain is given only by <rt- which fixes the characteristic of smoothing. 

The Fourier transform of e-47rQfHxll2 is called the Gauss-Weierstrass kernel .

2 .4 .1  R e g u la r  G a u s s ia n  N e tw o r k s

A regular gaussian network is a network with its centres distributed uniformly over 

the input space forming a grid of units. This kind of network offers simplicity with 

good approximating capabilities at the expense of more units. Applying spatial 

frequency concept it is possible to prove the following theorem, which is based on 

function’s kernel [8] [28] [23] and sampling theory [67].
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T h e o rem  4 Given e > 0 and an L2 function F  : [0, l]d C R d —► R, and N  points 

(measurements) ?/,• from the system characterized by (2.16)

y{ =  F(xi)  +  Zi, (2.16)

where X{ are equidistant points, Z{ is a noise with the following properties: var{zf) =  

C and E(z{) =  0. Then there exists a regular gaussian network that can approxi­

mate F  to within e mean square error accuracy.

Proof:

Consider the d—dimensional space Qd =  {x £ R d\x £ [0, l]d}, and let N  = nd,n 

an integer and k =  1 , . . . ,  d and i — 1 , . . . ,  N.  Partition the unit interval on the 

kth. axis into n — 1 equal subintervals of length A ( x k) each, defining the volume 

of an elementary cube as

V(Q d) = A (x ')A { x 2) . . .  A ( id), (2.17)

and F  as the representation of F  by means of a gaussian network defined by

H x ) = Y.y<‘v (Qi)9nmiA x )’ (2-18)
t=i

where gnmi^(x )  is the normalised gaussian defined by gnmit(T(x) =  < r ~ £ g mi,<j{x), 

such that

=  1.

and the centres are located in each a;t-, i.e. m t- =  xt-, i =  1 ,...,JV . Replace 

the index i, in mt-, with I representing a d—tuple [/] =  { /i,. to emphasise

the dependence of the value of mt- on the position of the ith unit in the grid. 

The same change of index applies to ?/t-. This can be expressed in terms of the 

canonical basis vector e for R d as mi =  f1e1A(a;1) +  . . . + ldedA (x d), where I belongs 

to [/qJ =  {/ £ Z d\m{ £ Qd}• Then equation (2.18) can be written as

F (x) = E  v i v m s T ^ A * ) ’
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where j  means a multiple sum over the multiple index defined by the d—tuple

M-

The mean squared error can be expressed as (variance) +  (bias) 2 [27],

E (F  -  F ) 2 = var(F) +  b2 (F), (2.19)

where 6 is

b(F) = E(F) -  F. (2.20)

Since V(Qd) is constant

var(F) = <2 V 2 (Qd) E  (5nraii<I(x))2, (2.21)
1'O il

and

E(F ) = E  W W J * ) ,  (2-22)
['O il

or

A t m rp
E(F ) = (2x) /  ( £  F (m ,)V (Q d)e->“ *G(wAa)du, (2.23)

“  ['O il

where G(uy/a) is the Fourier transform of #0,1 ( ^ ) -  and <f>F(u>) is the Fourier

transform of F(x).  Defining a window function W (x)  such that

4>f (w) = [  e - iJ I*F(x)W (x)dx  =  f  e~iJT*F(x)dx, (2.24)
J R d JQd

to account for the indefiniteness of F  outside Qd. Then the bias b can be expressed 

as

b =  (2 x ) - “ r
J  —  C

Noting that

[ £  F (m ,)V (g i)e -i"Tm'lG (w V ^ -  M A
['O il

e,“ xdw. (2.25)

G{u>VZ) E  F(m ,)V (Q d)e- j“Tm' (2.26)
['O il

can be considered as an approximation to <^(u;), and using the Poisson’s formula, 

Ŷ [i] F(mi)V(Qd)e~juTmiW (mi) = £[*] <f>F(uj + nk), where nk is a vector defined by 

m f n k =  27T if I — k, otherwise m f n k =  0, it follows that

|[G(ujy/a) +  nk)} -  </>F(u)\ < oc. (2.27)
[k]
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replacing b in (2.19) by (2.25) we get

E (F  -  F ) 2 < , 2 V 2 (Qd) £  (anmiA * )?  +  «* (2-28)
['«„)

and finally

E {F  -  F ) 2 < e.

oo

Comments:

• This proof depends on certain regularity conditions, like the same values of 

cr and volume V(Qd) for all the units. Extension to more general case can 

be done.

• ct, see inequality (2.27), takes into account the effect of a finite number 

of units, the lack of compact support, and filtering characteristic of the 

gaussian units. Further implications are analysed in Chapter 3.

• From this analysis it can be seen that the coefficients are related to different 

properties of the approximation, for example the width of the gaussian is 

related to the bandwidth of the function, the linear coefficients to the output 

of the functions, and the centres to a grid, which defines a sampling structure 

over the input space to recover the functions.

2.5 Other Networks U sing G aussians

Another useful function is defined by

gli(x) =  (bi +  c[x)lgmitai(x),

where I E Z, a, >  0,m,- 6 U, x 6 U, and b{ E R  and C{ 6 R n are such that

b{ +  c jx   ̂ 0 .

The central idea of this kind of function is try to generate a window and then

approximate the function within the window with a polynomial expression.
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T h eo rem  5 Let U C R n be a convex compact set. Let the family Ql of functions 

corresponding to gaussian functions defined by

9̂ bi,Ci,mi,ai • U * R.

Then a finite linear combination with real coefficients of elements of Ql is dense 

in C[U].

Proof:

Let C be the set of all finite linear combinations with real coefficients of elements 

of Ql. Multiplying two elements of Ql one obtains an element of C as,

9lbi,ci,mi,ai{x)glbj,cj,rnj,aj{%) =  (&t +  x )i{^j  “I" Cj x ) j  D{j gmij,ai+aj{x )'>

where mtJ- is a convex linear combination of mt- and rrij, Dij a constant, and the 

centres of the new gaussians are still in L/, if C/ is convex. The right-hand side of 

the equation can be represented as

b'+b
(bi-\-ci x)i(bj-\-cj x)jDijgmijiai+aj( x ) — (bk +  ck a;) Dijgmi^ ai .̂aj(x).

fc=0

It is obvious that C is closed with respect to the sum and multiplication by scalar. 

The multiplication of two elements of Ql is a linear combinations of the product of 

elements of Ql. Such products, as shown above, are elements of Ql times a scalar, 

and hence C is closed under multiplication. Thus, C is an algebra on U, as C is 

closed with respect to multiplication. Furthermore, Ql separates points and does 

not vanish at any point in U. Hence it follows by the Stone-Weierstrass Theorem 

that linear combination of function Ql is dense in C[U]. oo

The above theorem is a special case of the one stated in [34]. This represen­

tation is related to the Hermite Theory [49]. In fact, gaussian and its derivatives 

belong to Ql. Using this, it is possible to find a closed form for the coefficients of 

the expansion as explained in [49]. It has been shown that in practice the expan­

sion requires a few terms of the polynomial expression in order to approximate a
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function due to the fact that the frequency peaks for high orders move very close 

together, so that successive terms give very little additional information.

Other approximating schemes such as CMAC and splines are encompassed 

by the gaussian networks and can be included in a general model of memory as 

described in [81].

In statistics the properties of additive models such as the one described in 

the previous sections have been investigated by several authors [18], [32]. The 

difference between gaussian and sigmoids from a statistical point of view is that 

the former is related to kernel functions (this characteristic was fully explored 

in the previous section) and sigmoid is related to the projection based schemes 

[18]. In statistics it is known that the latter representation can reduce the “curse 

of dimensionality” [18]. This refers to the tendency for nonparametric regression 

procedure to perform very badly when the sample data is limited, due to the fact 

the high dimensional space is mostly empty.

2.6 Conclusions

The basic idea of approximation using structures derived from Artificial Neural 

Networks was described, and the main theorems demonstrating the possibility of 

reaching certain approximation were stated and proved for two cases. Further, 

connections with other fields were pointed out and possible extensions analysed. 

The approximation of an unknown function can be accomplished by different 

architectures, but the theorems used here, which are based on algebra of functions, 

do not give the characteristics of the final solution and how to get it. In the next 

chapter a description of how to obtain solutions to the approximation problem is 

given.



C hapter 3 

Learning A lgorithm s

SUMMARY

This Chapter describes some learning algorithms to train different net­

works. We start by analysing the multilayer perceptron and designing 

a new training algorithm for it. It is closely related to the stochastic 

approximation version, but uses a forgetting factor; the performance of 

this algorithm is shown by several simulations. For gaussian networks 

several algorithms are compared. The spatial frequency concept is used 

to solve completely (at least for low dimensions) the training problem 

through the changing format approach. A general least square problem 

is analysed and the decomposition of the training problem for gaussian 

networks into smaller subproblems is pursued with a multi-algorithm 

approach. In addition, some guidelines to train regular gaussian net­

works are given. Finally, a comparison among the different algorithms 

is done.

3.1 Introduction

Learning is defined in behavioural terms as an increase in performance index over 

a specified time interval. In terms of designing a control system, the problem of

22
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learning may be viewed as the problem of estimation or successive approxima­

tion of unknown quantities of a functional which represents the controlled process 

under study [21]. From this perspective, this problem is related from the engi­

neering viewpoint to system identification problems and techniques [48], and from 

the statistical viewpoint with the Theory of Generalised Additive Models [32].

The problem can be stated as the approximation of a multivariable function 

f ( X )  by an approximation function F(0, X )  having a finite number of parameters 

9. For the choice of a specific architecture and units of a connectionist repre­

sentation, which means a specific F , the goal is to find the best (in some sense) 

set of parameters such that F  approximates /  on the set of “training data” . The 

training set contains nt input-output values representing the function / .  Formally 

the approximation problem is stated as:

A pproxim ation Problem :

If f ( X )  is a continuous function defined on a set A  C R",and F ($ ,X )  is an 

approximation function which depends continuously on 0  € P  C R? and A , the 

approximation problem is to determine the parameters 9*, such that

p [F (9 ',X ) , f (X )]  < p [F (9 ,X ) , f (X )]  (3.1)

for all 9 £ P. p represents the distance function which is induced by a norm, i.e. 

the distance between /  and F  is induced by the Lp norm defined as

117 - F \\P= { J c \ f - m x ) m y ,

where /  is the unknown function to be approximated. In this work the standard 

Z/2 norm is used □

The calculation of the norm is based on the training set, so for practical pur­

poses equation (3.1) can be expressed by

X)[F(**,X,) -  / ( X ,)]2 <  i > ( 0 ,X ,) -  /(X ,)]2,
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where I represents an index over the training set. From an engineering point of 

view, the problem can be relaxed such that

£[*■(*, X ,)- / ( * , ) ] ’ <C, (3-2)
1 = 1

where (  € R  is a known constant. This means that 6 * is not of interest but instead 

any 6  E S  suffices, where S  C P  represents the set of 0s which satisfy (3.2). In 

practice is not necessary to get always the best solution and a suboptimal solution 

can be used instead.

The solution to the problem is approached from an engineering, rather than 

a physiological, perspective. In particular, no claim of physiological relevance is 

made nor the solution is constrained by the conventional loosely coupled parallel 

distributed processing architecture. The aim is to find a good learning algorithm; 

the appropriate architecture for implementation is a subject for further investiga­

tion.

For each particular problem, the network must be trained; that is, the weights 

governing the strengths of the connections between units must be varied in order 

to get the target output corresponding to the input presented.

3.2 Learning A lgorithm s for N ets U sing Sig- 

m oids

The most popular method for training networks using sigmoids is ‘Back Propa­

gation’ (BP) [53], but this training method requires a large number of iterations 

before the network generates a satisfactory approximation to the target mapping. 

Improved rates of convergence arise from heuristics to vary certain parameters of 

the basic algorithm, the main problem with the last approach is the difficulty to 

prove correctness and completeness of the heuristic set.

The problem is viewed within a standard framework for the optimisation of 

nonlinear systems: the “Stochastic Approximation” (SA) algorithm of Albert and
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Gardner [3] [2].

The method based on SA is related to the celebrated BP algorithm [53]; and 

this relationship will be explored in this work. However, the simulations presented 

in this work indicate that our method converges to a satisfactory solution much 

faster than the BP algorithm [53]. More simulations can be found in [79] [26].

As Minsky and Papert [56] have pointed out, the BP algorithm is a hill climbing 

algorithm with all the problems implied by such methods. Our method can also be 

viewed as a hill climbing algorithm; but it is more sophisticated than the standard 

BP method. In particular, unlike the BP method, the cost function approximately 

minimised by our algorithm is based on past as well as current data.

Perhaps even more importantly, our method provides a bridge between Ar­

tificial Neural Network approaches and well developed techniques arising from 

control and systems theory. One consequence of this is that the powerful analyti­

cal techniques associated with control and systems theory can be brought to bear 

on Artificial Neural Network algorithms. Some initial ideas are sketched out in 

section 3.2.4.

3 .2 .1  B a c k p r o p a g a t io n

The general index to be minimised is the sum of the squared error over the training 

patterns, which is defined as follows

1 nt 

L t =1

where nt is the number of training points, et = (Yt — un), and yn  is the output 

of the network at presentation of the input data t, To minimise this index the 

gradient algorithm is proposed

Wi(k) =  Wi(k - 1 )  -  * d w ^ — y  (3-3)
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where k is the index for the algorithm iterations, a  is the learning rate, and the

sensitivity of J  with respect to Wi(k — 1) is given by

f t !  1 nt Be2
4 E J *  1V (3-4)d W i ( k - 1) 2 t = i d W i ( k - i y

The calculations of can be done in several steps, unfolding a certain struc­

ture for the calculations themselves.

As a first step, define the incremental error matrix E{ relating the ith  layer to 

the error evaluated for a given set of weights and net inputs

* = S b  (3-5>
Using the chain rule, it follows that

<*•»
and using equations (2.1) and (2.3)

Ei =  Ei+J ' ( yi)WT. (3.7)

Equation (3.7) will be called the error backpropagation algorithm. By definition

E n  = 2 ^ e (. (3.8)Bxn

Applying the chain rule once more

B e \ d y N  d x i  
B W i =  B xi B W i

Substituting from equation (3.5), equation (3.9) becomes

(3.9)

Be? Bx •
dW l  =  E iW i '  3̂' 10^

To calculate an update these equations must be solved backwards, which
• • • A T ^

gives the name to the algorithm. Having computed we get by using 

equation (3.4).

There are several heuristic procedures commonly used to increase the speed of 

convergence of the algorithm:
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• Momentum: This extra feature offers the possibility of increasing the learn­

ing rate without producing oscillation [53], a typical value used for (I is 0.9, 

and the rule is modified in the following way

Wi(k) = Wi{k -  1) -  +  0(Wi(k  -  1) -  Wt(k -  2)). (3.11)

In this case the parameters are updated in each presentation of a training 

value.

• Adaptive learning rate: The learning rate is varied according to whether 

or not an iteration decreases the performance index (the total error for all 

training patterns) [88], [6]. If a step results in reduced total error then the 

learning rate is increased. If an update produces an index greater than the 

previous one, all the changes to the weights are rejected, and the learning 

rate is decreased, the momentum term is set to zero, and the step is repeated. 

When a successful step is then taken, the momentum is set to its original 

value.

The summary of the momentum algorithm is as follows

1. Set the elements of the weight matrices to small random values.

2. Set a  and /?.

At each time step:

1. Present an input X\ =  X t.

2. Propagate the input forwards through the network using equations (2.1) and

(2.3) to give X{ and yt- for each layer.

3. Given X{ for each layer, propagate the incremental error m atrix E{ backwards 

using the gain back propagation of equations (3.7) and (3.8).

4. Compute the partial derivatives using equations (3.10) and (3.4).
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5. Compute the output error et from equation

e« =  (Y, -  yN). (3.12)

6. Update the parameter vector W  using equation (3.11).

3 .2 .2  T h e  S t o c h a s t ic  A p p r o x im a t io n  A lg o r i t h m  

Param etric Linearisation

The stochastic approximation technique deals with the general nonlinear system 

of the form

Yt = F (0 ,X t), (3.13)

where 0  is the parameter vector (np x 1) containing the np system parameters, X t 

is the input vector (nt- x 1) containing the n* system inputs at (integer) time t. Yt 

is the system output vector at time t. F (0 ,X t) is a nonlinear, but differentiable, 

function of the two arguments 0  and X t.

In the context of the layered neural networks discussed in this work, Yt is the 

network output and X t the input (training pattern) at time t and 0 contains the 

network weights. Following Albert and Gardner [3], the first step in the derivation 

of the learning algorithm is to find a local linearisation of equation (3.13) about 

a nominal parameter vector 0 °.

Expanding F around 0° in a first order Taylor series gives

F ( 8 ° +  8 , X ,)  = F ( 8 °, X t) +  F'(0°, X , ) 8  + e, (3.14)

where
dF

F' = w  (3.15)

0  =  0  — 0°, and e is the approximation error representing the higher terms in the 

series expansion. Defining

Yt = F(0° +  0, X t) -  F{0°, X t) +  F'{0°, X t)0° (3.16)
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and

X t = F '(0° ,X t)T (3.17)

then equation (3.14) becomes

Yt = X f 9  + t. (3.18)

This equation forms the desired linear approximation of the function F(0 , witn

e representing the approximation error, and forms the basis of a least-squares type

algorithm to estimate 6 .

Least-squares and the Pseudoinverse.

This section describes an application of the standard non-recursive and recursive 

least squares algorithm to the estimation of 6  in the linearised equation (3.18). 

There is however, one modification: a pseudoinverse is used to avoid difficulties 

with a non-unique optimal estimate for the parameters, which manifests itself as 

a singular data dependent-matrix [2].

The standard least square cost function with exponential discounting of data

is

Vt (0) =  1 £  Ar - ‘[Vt -  X j 6 ) \  (3.19)
1 t-1

where the exponential forgetting factor A gives different weights to different obser­

vations and T  is the number of presentations of the different training sets.

Using standard manipulations, the value of the parameter vector §t minimising 

the cost function is obtained from the linear algebraic equation

T

Sr 0r =  £ A T- 1X ty„ (3.20)
i =1

where the matrix St  (ftp x np) is given by

S T = ' £ \ T~tX tx T .  (3.21)
t=1
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When applied to the layered neural networks discused in this work, S t  will 

usually be singular (or at least nearly singular), thus the estimate will be non­

unique. This non-uniqueness is of no consequence when computing the network 

output, but it is vital to take it into account in the computation of the estimates.

Here the minimum norm solution for $t is chosen as:
T

§T =  5+ £  XT- ‘X tYt (3.22)
t = 1

where S£  is a pseudoinverse of St ■

In practice, a recursive form of (3.22) is required. Using standard manipula­

tions

&t+i =  +  S* X tet , (3.23)

where the error et is given by

e, = Yt - i i fX t , (3.24)

but, using (3.16) and (3.17),

Yt -  e j x t «  Yt -  F{§„ X () (3.25)

and finally (3.23) becomes

=  8 t +  S+Xt(Yt -  F 0 „  X t)). (3.26)

St can be recursively updated according to

St =  A5(_i + X tX j .  (3.27)

Indeed, 5j+ itself can be updated directly [2], but the details axe not pursued further 

here.

Data is discarded at an exponential rate with time constant r given by

r  =  (3.28)

where r  is in units of samples. This feature is necessary to discount old information

corresponding to estimates far from the convergence point and thus inappropriate 

to the linearised model about the desired nominal parameter vector 0°.
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The M ultilayer Perceptron

To apply the algorithm given by equation ( 3.26), however, it is necessary to find 

an expression for X t = F'($ 0 , X t) as in equation (3.18). Because of the simple 

recursive feedforward structure of the multi-layer perceptron, it is possible to 

obtain a simple recursive algorithm for the computation of the elements of X t. 

This algorithm is, not surprisingly, related to the BP algorithm.

As a first step, define the incremental gain matrix G{ relating the ith  layer to 

the net output evaluated for a given set of weights and net inputs.

a ‘ - W  ( 3 ' 2 9 )

Using the chain rule, it follows that

( 3 3 0 )

and using equations (2.1) and (2.3)

G, = G,+1 f ( y , ) W ? .  (3.31)

Equation (3.31) will be called the gain backpropagation algorithm or GBP. By 

definition

where InN is the njq x njq unit matrix.

Applying the chain rule again

dxjv Oxn d%i+i 
dWi =  dx i + 1  dWi '

Substituting from equations (2.1), (2.3) and (3.29), equation (3.33) becomes

(3.33)

dWi ^  dW {

The G BP algorithm

Initially:

9xn  _  ^  d%i+1 /o oa\
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1. Set the elements of the weight matrices Wi to small random values and load 

the corresponding elements into the column vector 0 O.

2. Set A between .95 and .99 and the matrix So to s0I  where I  is a unit matrix 

of appropriate dimension and s 0  a small real number.

At each time step:

1. Present an input =  X t

2. Propagate the input forwards through the network using equations (2.1) and

(2.3) to give Xi and yt- for each layer.

3. Given X{ for each layer, propagate the incremental gain matrix G{ backwards 

using the gain back propagation of equations (3.31) and (3.32).

4. Compute the partial derivatives using equation (3.34) and load the 

corresponding elements into the column vector X .

5. Update the matrix St using (3.27) and find its pseudoinverse 5+ (or update 

S f  directly [2]).

6. Compute the output error et from equation (3.24).

7. Update the parameter vector 0t using equation (3.26).

8. Reconstruct the weight matrices W{ from the parameter vector St.

3 .2 .3  S im u la t io n s

The simple multi-layer perceptrons discussed in section 3.2.2 were implemented in 

Matlab [57] and a number of simulation experiments were performed to evaluate 

the proposed algorithm and compare its performance with the conventional BP 

algorithm.
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The X O R  Problem

To illustrate the method the XOR problem was considered. The architecture for 

solving the XOR problem with two hidden units and no direct connections from 

inputs to output is shown in Figure 3.1.

+1 +1

11
21

i n p u t s

22
12

2 L a y e r1 L a y e r

o u t p u t

Figure 3.1: Architecture to solve the XOR problem.

In this case, the weight and input matrices for layer 1 are of the form

/W in Wn2 \  / x n \

, X \ X1 2

\  1 I

(3.35)Wi21 W122

V Wi3i WiZ2 I

The last row of the matrix in equation (3.35) corresponds to the offset terms. The 

weight and input matrices for layer 2 are of the form

(3.36)

Once again, the last row of the matrix in equation (3.36) corresponds to the offset 

term.

Applying the GBP algorithm (3.31) gives

f w2\\ \ f x2\ ^

w 2 = W22\ ,Z2 = x22

\  W231 / \  1 /

w 211

W 221

(3.37)

Hence, using (3.34) and (3.32),

=  Xif'iVi) = x 3 x3(l -  x3) (3.38)
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and using (3.34) and (3.37)
dx 3  _  n  dx 2  

— Cjt2dWr ~ ‘ dWi *-3'39^

Thus, in this case, the terms X  and 6  linearised equation (3.18) are given by

X  =

f x n x 21( l  -  x 2 1 )xz ( l  -  x 3 )w 2 1 1  > { W ill ^

2 l 22 2l ( l  -  2 2 1 )2 3 (1  -  23)^211 W121

2 2 l ( l  -  2 2 1 )2 3 (1  -  23)^211 W131

2 n 2 22( l  -  2 2 2 )2 3 (1  -  2 3)U7221 WU2

212 222(1 -  ^2 2 )x3{ \  -  23 )^221 ,0 = Wl22

222(1 -  2 2 2 )2 3 (1  ~  2 3)t£>221 W132

22i 2 3(1 -  2 3) W211

2 2l 2 3 ( l  ~  2 3) W221

\  z 3( l  -  X3) )  ̂w 23 i ;

(3.40)

The training patterns used are shown in table 3.1

2l x 2 y
0 0 0 . 9

1 0 0 . 1

0 1 0 . 1

1 1 0 . 9

Table 3.1: Patterns for the XOR problem.

The conventional backpropagation (BP) and GBP algorithms were simulated. 

Figure 3.2 shows the performance of the BP algorithm and Figure 3.3 shows the 

performance of the GBP algorithm.

The reduction in the number of iterations is four fold for the same error.

The effect of not discounting past data is shown in Figure 3.4, where the 

forgetting factor was equal to 1.
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Figure 3.2: Error for the BP algorithm.
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Figure 3.3: Error for the GBP algorithm.

Figure 3.4: Error for the GBP algorithm , with forgetting factor A
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D iscontinuous Function A pproxim ation

This example illustrates the performance of the algorithm approximating a dis­

continuous function defined by

' 1.0 , A 1( / ) > 5 o r X 2( l ) > 5
'  (3.41)

.2 , otherwise,

where X{, i — 1,2 varies in the interval [0,10]. The architecture is the same as 

the one used in the XOR problem. The training set consists of 25 patterns with 

inputs values distributed uniformly over the input space. The evolution of the 

squared error is shown in Figures 3.5 and 3.6. The difference in the convergence 

time is considerable. This is due to appropriate setting of the initial conditions 

for the network.

Figure 3.5: Square Error for the BP Algorithm.

12

lO

8

2

O
35 405 15 20 30O lO

Figure 3.6: Square Error for the GBP Algorithm.

The characteristic of the final solution can be seen in Figure 3.7, in this case
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is obvious that the system can approximate this kind of surface just with a very 

limited number of units.

reference surface

approximation

Figure 3.7: Reference surface and final approximation. 

T ran sfo rm atio n  of C o o rd in a tes

The Cartesian endpoint position of a rigid two-link manipulator (Figure 3.8) is 

given by

x =  Li cos(0i) -f L 2 cos(0! +  #2 ) (3.42)

y =  L\ sin(#i) +  L 2 sin(0i -f 02) (3.43)

where [x,y] is the position in the plane, L\ =  0.3m, L 2 =  0.2m are the lengths of 

the links. The joint angles are $1 , 02.

Equations (3.42) and (3.43) show that it is possible to produce this kind of 

transformation using the structure shown in Figure 3.9.

The linearisation is similar to that of the XOR network except that W\ is 

2 x 10, W 2 is 10 x 1 and input vector xi  is 10 x 1.

The connectionist representation was trained to do the coordinate transforma­

tion in the following range of 0i = [0 ,  7r] and 02=[0, 7r], from this region a grid 

of 33 training values were used. The evolution of the square error (measured in
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y

X
Figure 3.8: Two-link manipulator in cartesian coordinates.

J 10 u n it sIn p u ts ou tp u t

1 Layer 2 Layer

Figure 3.9: Architecture to solve the coordinate transformation problem.
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m) using BP and GBP is shown in Figures 3.10 and 3.11. The GBP algorithm 

converges faster than the BP algorithm and reaches a lower minimum.

Figure 3.10: Square Error for the BP algorithm.
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Figure 3.11: Square Error for the GBP algorithm.

Table 3.3 shows the number of presentations required for both algorithms to 

reach a sum square error of 0.02.

Sum m ary of Sim ulation R esults

The values of the parameters used in each problem axe shown in Table 3.2

problem gain(BP) momentum(BP) A (GBP)
XOR .5 .9 .95
Disc. Trans. .05 0 .95
C. Transform .02 .95 .99

Table 3.2: Parameters used in the simulations.

The results for the four sets of experiments appear in Table 3.3.
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problem N(BP) N(GBP)
XOR 300 70
D. Transform 2,520 15
C. Transform 3,450 24

Table 3.3: Simulation results: number of presentation needed for convergence. 

3 .2 .4  C o m m e n t s  A b o u t  C o n v e r g e n c e  

Following the derivations of Ljung [47], if there exists a 0° such that

e, = Yt - F ( 0 ° , X t) = e„ (3.44)

where et is a white noise, and introducing

0, = 0t -  0° (3.45)

in equation (3.23), the following are obtained

St&t+i == St&t +  Xtet
(3.46)

=  XSt^St  +  X t X j 6 t +  X tet

Using the expression

St = Y ,P U , t ) X j X j  (3-47)
3

and setting

X - ’ = P ( j , t )  (3.48)

(3.46) can be transformed to

S t0t+1 = P(O,t)So0o + '£ P U , t ) X A X f8 j  + e,-]. (3.49)
3

In general

ej = Yj — F (0 j,X j) ,  (3.50)

but its linear approximation around 6° is

e j H C j - X f O j .  (3.51)

Hence, the equation (3.49) becomes

=  (3.52)
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fc+i =  t f E M \  *)*;«;■ (3.53)
j

Then 0t —> 0 as t —► oo, representing a global minimum if 

C l. St has at least np nonzero eigenvalues ;

C2. 5D2Li l l^ ll  < 00 and some following conditions are met:

C3. the input sequence X t is such that X t  is independent of t j  and

C4. (a) tj is a white noise and is independent on what has happened up to the

time n — 1 or

(b) €j =  0.

Comments

1. This analysis is based on two assumptions: firstly that is close to 0°, 

that is the analysis is only local, and secondly that an architecture of the 

NN can approximate the behaviour of the training set. Even though these 

assumptions seem quite restrictive, it is possible to have some insight into 

the convergence problem.

2. The conditions Cl. and C2. are the most important from the solution point 

of view, because if they are not met it is possible to have a local minimum.

3. The condition C2. means that the derivatives must be different from 0, that 

is all the outputs of the units can not be 1 or 0 at the same time. In other 

words, if the input is bounded it will be necessary to bound the parameters. 

For example one way to accomplish this is to change the interpretation of 

the output [53].

4. If S  is not invertible, the algorithm will not give a unique solution. It 

will have a ‘valley’ and certain linear combination of the parameters will 

not converge or converge an order of magnitude more slowly [48]. There
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are many causes for the non-existence of S  inverse, such as: the model set 

contains ‘too many parameters’ or when experimental conditions are such 

that individual parameters do not affect the predictions [48]. These effects 

arise during the learning process, because only some units are active in some 

regions contributing to the output.

5. The condition C4.b) arises when the structure of the connectionist repre­

sentation can match the structure of the system.

6. Condition C3. shows that the order of presentation can be important to get 

convergence of the algorithm.

3 .2 .5  S u m m a r y

The stochastic approximation algorithm presented can successfully adjust the 

weights of a multilayer perceptron using many less presentations of the training 

data than required for the BP method. However, there is increased complexity in 

the calculation.

A formal proof of the convergence properties of the algorithm in this context 

has not been given; but, instead, some insights into the convergence problem, 

together with links back to appropriate control and systems theory, are given. 

Moreover, our experience indicates that the GBP algorithm is better than the BP 

method at performing continuous transformations. This difference stems from 

the fact that in the continuous mapping the transformation is smooth and it is 

possible to have a great number of patterns (theoretically infinity). Only a small 

number is used to train the connectionist representation, so it is possible to choose 

an adequate training set for a smooth representation, giving a better behaviour 

in terms of convergence.

A different situation arises in the discrete case, where it is possible to have some 

input patterns that do not differ very much from each other, and yet produce a 

very different system output. In terms of our interpretations, this means a rapidly
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varying hypersurface and therefore a difficult one to match with a few components.

3.3 General Learning Problem  U sing Gaussian  

Networks

As was described in Chapter 2 a gaussian network is represented by the following 

equation:

F (x ) = D  (3.54)
t=i

where N  is the number of units, x £ R d is an input vector, and gmi,ai(x) is a 

gaussian function defined as in Chapter 2.

Here, the problem is to select the parameters c,-,mi,<Tj, and N  given a certain 

amount of input points contained in a region C C R d1 and their corresponding 

outputs so that the index J  = \\f — < C, C represents a tolerance. As Parzen

[66] has shown, when the number of terms increase and as the variance term 

decreases to zero, the index vanishes. However, from a practical point of view a 

finite number of units N  is desired; so it seems reasonable to attem pt to minimise 

the index given a certain N .  The same problem can be stated in m atrix notation, 

defining

Y, = [ f ( x ( l ) ) . . . f ( x ( l ) ) ] T,

Gi =[gi - - -gi ] ,T
(3.55)

g i  =  \9 m \,a \  ( S '( O ) j  * ‘ * i f7mjv.‘7w (a'( * ) ) ] ’ 1 5 : ® ^  ^

C = [c 1. . . c JV]T,

then for the training set containing nt points equation (3.54) can be written in 

the compact form

Yn t = G ntC , (3.56)

and the index as

j  =  11/ -  f ill = (Y„, -  Gn,C)T(Yn, -  GntC).
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3 .3 .1  C h a n g in g  F o r m a t A p p r o a c h

In Chapter 2 it has been shown that any continuous function on a compact set 

can be approximated by a finite sum of gaussians functions

N

f ( x ) =  ] C ct 9mi,ci(x). (3.57)
*=i

The following approach is based on Medgyessy’s work on decomposition of Func­

tions [54].

Take the Fourier Transform (FT) of (3.57)

N
F(u) = Y , c iG1 (3.58) 

1= 1

where Gmif(Ti(u;) is the FT of Then if the format of g is changed, that is

if the variance is reduced by A

3 W ,- a(z ) =  e , (3.59)

the FT of this function is

Gm „ .  *(«) =  , T , T e - ^ I H P e- i ^ .  (3.60)

This results in

Gm „ - *(«) =  e*M 2 (3.61)

where 0 < A < crt . If A is near to crt-, it is possible to distinguish the contribution 

of each unit to the building of the final function, in a way changing the format is 

like filtering the original function. To recover the filtered function it is necessary 

to apply the inverse FT

h ( x )  =  T - 1( ' £ c ie ^ G mM ) .  (3.62)
1 = 1

If f \ ( x )  is examined it is possible to select the number of units and position of these 

units, a simple example (see Figure 3.12) is given but a further systematisation is 

needed.
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lambda=.02initial surface

lambda=.06lambda=.04

Figure 3.12: Different outputs of the network for different values of A.

This example illustrates the filtering properties of the changing format ap­

proach, each figure shows the output of the system for different values of A. Note

that for A =  0.06 it is possible to distinguish the structure of this function. In

fact, from the last figure it is possible to see that this function can be synthesised 

with a grid of 25 units, with centres located at the maxima of the function / a=.o6-

3 .3 .2  G e n e r a l  O p t im is a t io n  A p p r o a c h

The objective of this approach is the minimisation of | | /  — F\\l over all the training 

points with respect to the parameters Cj,mt, and crt-.

For the training set it is possible to write the index in the following way

||GC -  F ill, (3.63)

where G G R nt x R N, C G R N contains all the linear parameters, and Y  G PC1 

all the desired outputs. As Golub and Pereyra [29] have shown, minimising J  is 

equivalent to minimising

j  = H-Pg FIIj, (3.64)

where the matrix Pq projects orthogonally onto the null space of G , that is 

Pq =  (7 — GG+), where G+ is the pseudoinverse of G.
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The jfth column of the Jacobian matrix (see Lemma 4.1 [29]) of (3.64) is given

by
dG 8G

(3.65)
dOj ~ ' 1 v~ u d6j 

where 6 G R n x R d 71 is a vector containing all <j{ and

The gradient V J  is given by V J  =  (pt Pq Y ,  in order to calculate the Jacobian, 

G can be factorised as

G = Q
R  0 

0 0
Z, (3.66)

where Q and Z  are orthogonal matrices, R  G R r is an upper-triangular matrix of 

full rank r <  nt
r 0 0

6 Int—i

where 7nt_r is the (nt — r) x (nt — r) identity matrix, and of course

P a  = Q Q T , (3.67)

G+ = Z'
R -1 0 

0 0
Q' (3.68)

This algorithm is efficient but very time consuming, due to the factorisation. 

Another drawback is that all samples must be available to train the network, 

enabling only batch operation.

A much simpler algorithm is the gradient descent over the original index J. 

Define the error at a step I as

e(l) =  y(l) -  F(x(l)), (3.69)

where y(l) represents the value of the function at x(l), that is y(I) =  f(x(l)).  

Then the following expressions for the gradient evaluated in each [y(/), x(l)] are 

obtained:

=  - w . ( * ( 0 ) ,



CHAPTER 3. LEARNING ALGORITHMS 47

where represents the element j  of m,-, Xj the element j  of x, and <7,j represents 

element j  of cr*. The algorithm accumulates the changes of the parameters over 

the training set

V q  =  -  a ce ( l ) 0 $ ,

V m i j  =  V m y  -  (3-71)

W y  = V < r « - « , e ( 0 $ $ j ,  

and once all the training points have been presented all the parameters are updated

by
C{(ep) =  Ci (ep) 4- olcVc, +  /?cAct- (ep), 

rriij(ep) =  mtj(ep) +  +  feA m y fep ), (3.72)

=  (Tij(ep) +  a MVaij +  ^aA<jtj(ep), 

where ep is the index to the current epoch, an epoch is the presentation of the 

complete training set, I represents just an index over the training set, and the 

operator A is defined by A x(ep) =  x(ep) — x(ep— 1) and represents a momentum  

term.

In addition to the basic algorithm a heuristic procedure to change the gradient

steps a c, olm, and ol0 and the momentum  is added [88] [6]. This leads to the

following:

• set / =  0, E  =  0, ep, tol as a level of tolerance for the sum of the squared 

error.

• n^max =  maximum number of epochs,

• ns =  number of cycles required to increment the gradient steps.

• while ep < nemax or E  > tol do

— ep =  ep-f 1;

— set Vct- =  Vm,j =  V<7t-j =  0;

— while I < n t do

* / =  / +  1
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* apply equation (3.70) and accumulate changes using (3.71)

* calculate E  =  E  +  e(/)2

— end;

— if there is reduction of the index by ns consecutives steps then double 

the step;

— if there is not a reduction in E  then

* reduce the step by half

* discard all updates

* set (3 to 0

— else

* set (3 to its original value

* update parameters using (3.72)

— end;

• end.

This algorithm is easily implementable in parallel computers and an on-line ver­

sion, where the parameters are updated at every step, can be implemented.

3 .3 .3  M u lt i - a lg o r i t h m  A p p r o a c h

The idea of having several algorithms working in parallel in order to solve a 

problem is worth investigating. As was described in Chapter 2, each parameter is 

associated with some characteristic of the function to be approximated. To reach 

a certain level of the error each parameter is changed by means of the following 

algorithms:

• C lu s te rin g : The centres of the gaussian functions are computed by a clus­

tering algorithm, in this way the location of the centres is decided by the
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o u tp u t sin p u ts^

Adaptation

M odel

S y stem

Figure 3.13: Hierarchical algorithms.

characteristic of the inputs. In general it is desired to have more units in 

those regions where more data is available.

• In te rp o la tio n : The widths are adjusted to reach a certain degree of over- 

laping between the centres.

• A d ap ta tio n : the linear coefficients are calculated in order to minimise the 

difference between the output of the network and the desired output.

These algorithms are organised in an hierarchical way as shown in Figure 3.13.

The whole scheme can be embedded in a temporal framework in which the 

time scale varies according to the hierarchical position of the algorithm, that is the 

adaptation procedures should work at relative higher speed than the interpolation 

algorithm, and clustering a lower speed than the algorithm downstream. This 

defines a series of time operational envelopes for the different algorithms.

C lu s te rin g

Given a number of units it is necessary to distribute their centres in a certain way 

over the input space. In this case, it is possible to use the Kohonen algorithm  to
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adjust the centres of the function mi. The asymptotic values of the weight vectors 

constitute one kind of vector quantisation of the input space, which depends on 

the statistical characteristic of the input. The procedure has the following steps:

1.- select an input of the input variable x(l);

2.- select the unit index i with centre Mt- which m ini||x(/) —

3.- update the parameter m,- =  mt- +  a(x(l) — m t)Wj, where Wj defines a topo­

logical neighbourhood described by

Wj =
1, Vj  £ [* N c,i  +  7VJ; ^  ^

0, otherwise.

N c defines the size of the topological neighbourhood, which is a function of 

time, and a  is a slowly decreasing function sequence <  1 [40];

4.- if there is no more improvement in the values of m,-, stop, otherwise go to 

part 1.

Another algorithm is the k-means algorithm  which computes n centres rep­

resenting a local minimum of the total squared euclidean distances between the 

nt examples of x(l) and the nearest of the n centres mt-:

E  = j 2 Y , M il{ x { l ) - m i)2.
*=i /=i

Here Mu is the cluster membership functions, which is a n x nt m atrix of 0’s and 

l ’s with exactly one 1 per column which identifies the processing units which a 

given exemplar belongs.

The local minimisation of E  can be performed as an interative process over 

the whole training set or as an adaptive incremental process [58].

The batch approach can be summarised as follows:

1.- the centres of each cluster are initialized to different training points;
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2.- for each training example: Each training example x(l) is assigned to the 

unit nearest to it;

3.- for each the unit: The average position of the training points for each units 

is found and unit’s centres is moved to that point;

4.- go to 2 until it converges.

The on-line version follows the following procedure

At each training step:

1.- select an input of the input variable x(/);

2.- select the unit index i with centre which min,||a:(/) —

3.- update the parameter rat- =  mt- +  ct(x(l) — mt);

4.- if there is no more improvement in the values of m t-, stop, otherwise go to 

part 1.

This algorithm has a decay characteristic that makes it sub optimal in its use 

of past data; but under some circumstances it will be able to adapt to changes in 

the system. As a direct consequence of decay in the estimator the variance does 

not approach zero, but as I increases the expected mean value of m,- approaches 

the expected mean value of x(l) as a limit [56]. In fact, seting x*(l) as the value 

assigned to the nearest centre mt-, the learning algorithm can be written as

rrii =  (1 — a ) z ~ l m i  +  ax,-.

This means that the value of the output of this system is equal to the mean value 

of the input and the variance is given by

a 2

The main advantage of this algorithm is that it requires less memory than the 

batch approach, but has the disadvantage of retaining a certain variance in the 

solution.
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There is a surprising analogy between the Kohonen algorithm and the gradient 

algorithm,

Gradient rule: nriij(l +  1) =  rriij(l) — ctCigmif(7i(x W )(xj ~  m*i)c(0>

Kohonen rule: rriij(l -f 1) =  +  a(l)W j(xj  — m tJ)e(/).

From these equations it is possible to see that the Kohonen algorithm is like 

the gradient rule but the error has not been considered and a decreasing sequence 

for the learning rate has been introduced. In the gradient rule the neighbour­

hood is given by the response of the gaussian unit, which acts as a topological 

neighbourhood.

Finally, another common approach is to distribute the centres uniformly along 

the input space without taking into consideration the characteristic of the input 

signal at all.

Interpolation

An interpolation condition is used to adjust <7,, such that a continuous interpola­

tion over all the input region is obtained. A similar approach has been suggested 

in [58]. The interpolation condition is expressed by the following functional

J  = f ) ( l  -  2 (3.74)
/=i K

where K  is defined as
E te l E ”=l 

n t
and (3.74) is minimised with cq. It is interesting to note that if the input variables 

x are normalised and the centres mt- are distributed uniformly, then a ,(=  <r) is 

constant for all units, so the minimisation of J  is reduced to a one-dimensional 

search which contains one global minimum. These ideas are similar to the one 

used in [85].

In both cases the parameter updates depend only on the inputs. The result 

obtained with this procedure is shown in Figure 3.14, which considers a grid of 

121 units.
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Figure 3.14: Output of the network.

There are other heuristics that can be used, the most popular is the P — 

nearest neighbour heuristic  [58]:

<Ti = p O z O ) - ™;!!’
j=l

where x(l) is the P-nearest neighbors of m*; a common value for P  is 2 and as a 

general guideline P  should be much smaller than n t.

A daptation

To adjust the weights C a linear least square approximation problem must be 

solved. Using the pseudoinverse the solution to this problem is

C  =  G+Y. (3.75)

The solution of the above equation can be performed in a recursive form. If 

the solution to the system with n data is given by

c„  =  G+Yn.

and then a new observation is obtained

Cn+l = Grn+iPn+lj

where
Gn

Gn+1 =
9n+ 1

(3.76)

(3.77)

(3.78)
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It turns out that Cn+i is related to Cn [2] by

G t h  =  [(/ -  Hn+1gn+1)G t\H n+l], (3.79)

where
( I - G i G n ) g l

H n+1 ~  i
otherwise-

(3.80)

Thus equation (3.77) has the form

Gn+1 — (7 — Hn+ign+i)GnYn +  77n+iyn+i, (3.81)

and this is

Cn+1 =  Cn +  77n+l[yn+l — yn+lC,(^)]j (3.82)

where the initial conditions for C and H  are 0. Here the recursion takes the form 

of a predictor; where the error between the prediction and the measurement is 

used to correct the parameters.

Taking the basic structure of (3.82), but with a diagonal constant matrix H, 

it is possible to arrive at the same result saving a lot of memory, because there is 

no need to store a square matrix, which can be prohibitive when the number of 

units is very large.

There are two versions, a batch version where the changes axe summed over 

the whole training set and the sum is applied to modify the parameters after each 

iteration over all the training set, and an on-line version where the training set is 

presented at random and the parameters are updated in each presentation.

In the batch algorithm the parameters are updated as

C(k) =  C(k  -  1) +  a[Yn, -  Gn,C(k -  1)]G£„ (3.83)

where the matrices C, Ynn and Gnt are defined as (3.55).

T h e o rem  6 Let C(0) =  0, and 0 <  a  < where c =  m a x (a j ,a 2 , . . .  ,q J), 

eigenvalues of Gnt. Then the learning law (3.83) converges to the solution

Cm = G+Y.
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Proof:

Write (3.83) as a function of C(0)

k

C(k) = (7 -  aG TG)kC(0) +  a  £ ( /  -  aGTG)i OTY.
k = j

As k —► oo the term a Y)]=q(I  — &GT G)* G? tends to G+ (Theorem 3.5.1 [71]), then 

the result follows <̂<0>

In [65] there is a complete analysis of convergence based on Lyapunov functions 

and a description of different results that can be obtained using this algorithm.

For the on-line version the use of the following theorem shows that the algo­

rithm  defined by

C(n) =  C(n -  1) +  a[yn -  gnC(n -  1 )]g%, (3.84)

or equivalently

c ( n ) =  W  _  a9,gJ)C(o) +  L  r i ( 7 ~  a 9jgJ)agiVi
j = 1 t= l  j = l

can solve equation (3.56).

T h e o re m  7 Let the sequence be such that there is a uniformly bounded

number of elements between any two successive occurrences of each fixed integer i 

of the set {1 , . . . ,  M }. Let:

(i) 6m}, with M  > 1 ,  be a set of nonzero linearly independent vectors

of finite norm in R N;

(a) Tk =  n£=i(-^ — a rbirbJr), where a T are scalars;

(Hi) 0 < a T < 2||&ir ||-2 for every r, where ||.|| is the Euclidean norm .

Then the sequence of matrices converges to Pb  = I  — B T( B B T)~l B,

where B  =  [61,. . . ,  6m].

Proof: see [41].
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With the aid of Theorem 7 it is possible to prove the following theorem

T h e o rem  8 The learning law (3.84) under Theorem 7 conditions converges to 

the solution

Cx  = ( /  -  G+G)C{0) +  G+Y, 

which is the least square solution of the equation Y  = G C .

Proof: [41].

The cost involved in the use of a much simpler algorithm is the speed of con­

vergence. For the recursive version of the pseudo-inverse the convergence is given 

by the number of samples, i.e. if there are n independent vectors the algorithm 

converges to the optimal solution in n steps. This should be compared with the 

gradient algorithms whose convergence depends on the parameter a.

M u ltia lg o rith m  in C on tinuous T im e

Extensions to continuous time analysis have been done [80]; a basic gradient law 

has been used to adjust the parameters, and Lyapunov arguments have been used 

to show that this adaptation law is robust enough against modelling errors.

3 .3 .4  T r a in in g  a  R e g u la r  G a u s s ia n  N e tw o r k

Suppose that the system can be represented by

f ( x ) = Y , Cl9nml,<,l(X)’
m

where gn is the normalised gaussian function as defined in Chapter 2, m t- represents 

a grid defined as

m/ =  h e iA  +  . . .  +  ^ e dA,

where {e i , . . . ,  e^} is a basis vector for R d, and [I] =  {/ € Z}.  Then the error can 

be expressed as
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-A

Figure 3.15: Components of the error in the approximation (1-dimensional case).

Noting that c(x) can be calculated as ^  (j>(w)e3VjTxdw or equivalently as was 

shown in Chapter 2 q  =  f(m i)V (Q d ) such that

cie~uTmi = J 2  ~  n k),
w w

then

/  -  /  =  7Td f  ( G ( W 5)  H  4>f{u -  nk) -  <t>(u))e’‘"T*dw.2ir Jn (i]

The error can be approximated by two components , the first one due to the 

filtering properties of G and the second one due to the lack of compact support 

of the gaussian function as it is shown in Figure 3.15, where is it visible that a 

compact support is lacking.

Defining

ei  =  7Td [  G(ujy/a))<j)(yj)t3(JjTxdw,
Z7T JSl

and

e2 =  “ 7 /  ~  n k)G(uy/(T)<l)(uj)e3UjTxdw,
2tt J Q [k0]

where [k°] = {k £ Z\k  ^  0}. From these expressions it can be seen that there is an 

obvious compromise between these two errors. The centres of the units are related 

with the sampling theorem and must be chosen at least such that A,- > 2(3, where
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f3 represents the bandwidth of the function to be approximated, as the radius of 

the smallest d-cube, centered at the origin which completely encloses the support 

of The width cr must be chosen such that +  62 is minimum. A heuristic

approach adopted in [75] is to select sigma, such that

(2tt/?)2 =  367g?

that is cr7r 2 / ? 2  =  1  and then the sampling interval is chosen, such that the exponent 

almost vanishes to that position, that is aw2 ^ 2  =  4.

There is a third source of error, the one produced for a finite set of units. If 

the function is written as

e 3 =  J 2 C'Snm„<r,(X) +  J 2 CiSnmi,^ ( x ) ,
M  ['«]

then the error is

e 3 =  j \ ' l l Ci9nmi, 'AX)\d x - 
Q M

Here [ZqJ is defined as [ZqJ =  {/ € Z\rrii £ Qd}, and [ZqJ is such that [ZqJU[/gd] =  

Z. Due to the gaussian characteristic this error is only important in the borders 

of the approximation.

D ata  Driven Sm oothing Approach

It is natural to try to use the training data itself to determine an appropriate de­

gree of smoothing. This general approach is simple and leads to a batch algorithm 

as described below.

1.- the centres are fixed such that they meet the conditions of the sampling 

theorem;

2.- calculate a  such that min^ J  = ||(7 — GG+)Y\\\\

3.- calculate C =  G+Y.

In step 2 there is an implicit solution of the equation Y  =  GC  obtained by 

C = G+Y, and for this reason the method has been named data driven approach.
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3 .3 .5  S im u la t io n s

59

In order to illustrate the differences in the approximations reached by the different 

algorithms two examples in two dimensions were selected.

D iscon tinuous F unction

The first example illustrates the performance of the algorithm approximating a 

discontinuous function defined by

Y(l) = f ( x 1( l) ,x2(l)) = (3.85)
10 ,£i(/) > 5 or x2(l) >  5;

2 , otherwise

where x  varies in the interval [0,10]. Figure 3.16 shows the desired surface, gen­

erated by the training set, containing 121 uniformly distributed points. Figure 

3.17 shows the solution reached by the optimisation approach after 1000 epochs. 

The solution reached is quite good and reflects the fact that <7; has been varied to 

meet the different requirements in the slope of the surface.

Figure 3.16: Training surface.

Figure 3.18 shows the solution reached by multi-algorithm  approach using 

121 units. Note the oscillatory effect near the discontinuity.

Coordinate Transformation

A network of 121 units was used to approximate a function representing a coor­

dinate transformation, as explained in section 3.2.3. The general optimisation
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Figure 3.17: Surface generated by the network after training using optimisation 
approach.

Figure 3.18: Surface generated by the network after training with multi-algorithm  
approach.
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algorithm converges in 380 epochs to a solution with a sum squared error less 

than 0.0613, the curve of the error is shown in Figure 3.19. The surface used as a 

training surface is shown in Figure 3.20 and final surface reached by the algorithm 

is shown in Figure 3.21.
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Figure 3.19: Sum squared error for the optimisation approach.

Figure 3.20: Surface representing the coordinate trasformation between #2 ? 
and y.

The multi-algorithm  approach produces an approximation shown in Figure 

3.22, with a sum squared error of 3.2 x 10~4.

3 .3 .6  S u m m a r y

To summarise the characteristics of the algorithms a comparison of the use of 

different input-output variables for each of them is given in table 3.4.

Under the actual implementations it is not possible to compare processing 

times, mainly because their implementations are different. Instead, a general
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Figure 3.21: Surface representing the solution after 380 epochs.

Figure 3.22: Surface representing the solution reached by the multi-algorithm  
approach.

Algorithm input data output data
Optimisation n , training data Cf, Mi, cr,
Multi-
algorithm n, training data Ci, M i, ai

Table 3.4: Input-Output data for the different algorithms.
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comparison is given.

The optimisation approach has the drawback that the estimates can become 

trapped at a local minimum of the cost function during the updating process. 

In general, the optimisation procedure is sensitive to initial parameters. The 

following hints can be helpful in overcoming the difficulty: distribute Aft uniformly 

over the input space, set <rt- to small random values, and set c, to zero. From the 

user point of view there is a lot of parameters ( a ’s /9’s ) that must be specified.

The multi-algorithm approach is simple and the interpolation among points 

is embedded in the algorithm. A general drawback is that it is necessary to use 

more units for functions with big variations in their slopes, this effect is produced 

because all units have the same <7, fixing in this way the maximum variation of 

the function which can be approximated. This approach reduces the problem to 

a linear in the parameter minimisation problem having global minima only.

Further examples and descriptions of other algorithms can be found in [78].

Gaussian networks offer high flexibility in the approximation of nonlinear func­

tions, each parameter has a clear influence in different aspects of the outputs, so it 

is easy to devise several algorithms to train them. Among the algorithms analysed 

the multi-algorithm method is the simplest and offers a good compromise between 

complexity and accuracy in the approximation. On the other hand, optimisation 

offers the capability of approximating very complex functions adjusting each crt- 

individually.

3.4 Conclusions

The solutions reached with sigmoid and gaussian networks have different charac­

teristics. From the simulations done it is possible to see that gaussians are more 

suitable for approximating discontinuous functions with small training sets. On 

the other hand, gaussians can approximate well any continuous function with any
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desired degree of accuracy if they are provided with enough training data. The ad­

vantage of using gaussian stems from the convergence of their learning algorithm, 

which is simple and easy to implement.



C hapter 4

System  R epresentation  and  

C oncepts

SUMMARY

This Chapter describes the general conditions under which a nonlinear 

system can be represented as a nonlinear function o f a finite set of 

past input-output values, establishing the link between the connection- 

ist repesentation of a nonlinear functions and the representations of a 

nonlinear dynamical systems. Then different ■'key concepts like observ­

ability, controllability, and invertibility of a nonlinear dynamic system 

are defined. Finally, the problem of identification of a dynamic system 

and its inverse with connectionist model is analysed.

4.1 N onlinear D ynam ic System s R epresentation

The class of systems considered in this study consists of time-invariant single­

input single-output nonlinear dynamic systems in discrete time. The output of 

the system can be expressed as a function of a finite number of values of the input 

and past values of the output. The relationship between the output y and the

65
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input u is given by the following equation

S : y(k + 1) =  f{y{k ) . . .  ,y( fc-  n ) ,u ( k ) , . ..  , u ( k -  m)), (4.1)

where m  and n are fixed integers, /  : R n+1 x R m+1 —> R  is a multivariable function, 

and m < n. In this case, the system can be regarded as a mapping between the 

input defined by the vector [y(k) . . . ,  y(k — n), u(k) , . . . ,  u ( k — m)] and the output 

at next sampling time. The integer n is called the principal degree of the recursive 

equation (4.1).

Defining the vector

x(k) =  [y(k) . . . ,  y(k -  n), u(k -  1 ) , . . . ,  u(k -  m)]T

the system represented by (4.1) can be expressed in the state space form as

x(k  -f 1) =

0 . . .  0 0 . . .  0 /(x(fc),u(A;))

I n  : : 0

0 . . .  0 :
x(k) +

0 . . .  0 0 . . .  0 u(k)

• I m - l 0

0 . . .  0 •

(4.2)

and the output is defined by

y{k) = [l,0,. . . ,0]z(A:).

The following question arises: what kind of systems can be represented by the 

recursive equation (4.1)?. The answer to this question was given by Leontaritis 

and Billings [45], [46]. A summary of the discussion is given below.

Define a general discrete time-invariant system S

(4.3)
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where t £ Z, x(t A  1), x(t) £ X  C R n the state set of dimension n, u(t) £ U C R 1 

the input set of dimension 1, y(t) £ Y  C R  the output set of dimension 1, 

g : Z  x X  x U —> X  the one step-ahead or local state transition function and 

h : Z x X x U —* Y  the output function [63].

Obviously, this state space model is more general than the input-output model 

described by equation (4.2), because all the states are nonlinear functions of the 

previous states.

The many steps transition function 4>, describes the dynamics for all times 

t 4- k, and can be found by repeated application of the function g to (4.3)

x(t + 2 ) =  g[x(t A  l ) ,u( t  +  1)]

=  g\g[x{t) ,u(t)]iu(t+ 1)]

=  $[x(t),u(* +  l),u(*)]

x(t +  3) =  . . .  (4.4)

Let U* be the set of all finite input sequences of members of the set U

U* =  {u(t -f k — 1) , . . . ,  u(t A  1),m(£)| k > 0 and u(t + j )  £ £/,j =  0 , 1 , . . . ,  k — 1}.

The empty sequence denoted by e is included in U* and corresponds to k =  0.

The set of all sequences minus the empty sequence e is the set U+.

The state transfer function can now be defined as

(4.5)

If w =  [u(t A k — 1 ) . . .  u(t +  1) u(2)] then

x ( tA  k) =  $[a;(£),i£;] for k > 0 (4-6)

and

x(t) =  $[x(i), e] for k = 0. (4-7)
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When the system is at an equilibrium state x(t), its behaviour from that state 

can be described by a function / x(q called the input-output map of the system, 

which is defined as

/*(«> : U+ -  (4.8)

where

fx(t) =  h($[x(t)> u(t + k -  l ) . . . u ( t  + 1), u(t)]). (4.9)

R ea lisa tio n  P ro b lem

In general the only thing known is the function / x(0), which is obtained as a result 

of measurements upon the system of interest, but whose dynamic equations are 

not known. Obviously, the function / x(0) is not practical to be used as a model, 

because the amount of memory needed to store / x(0) increases linearly with the 

time scale. A more pragmatic approach is to find a function S  which represents 

the input-output behaviour of the system, requiring just a finite number of past 

data. This defines the realisation problem, which can be stated as:

Given a function F  : U+ —► Y  find the system S  such that it has 

a particular state x(0), which realises F,  i.e. such that the response 

function of the system / x(0) of S  is equal to the function F.

Under this definition, there is a possibility that more than one system S  sat­

isfies the realisation definition, but of all these the simplest or minimal in some 

sense must be chosen [63]. The criterion for minimality commonly demanded is 

that the realisation S  should be reachable and observable, which corresponds to 

the minimal dimension criterion in the case of linear systems.

Hammer [31] found that the minimal recursive representation can be obtained 

from an arbitrary given recursive representation of the system through a step by 

step reduction procedure, which is based on two concepts minimal  domain and 

globally degenerate domain. Define the input-output space Dq as the minimal
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domain over which the recursion function /  has to be defined in order to char­

acterise the input-output relationship induced by the system. It is said that D 0  

is globally degenerate if for every point x (k ) £ R n + 1  x R 71, the one step ahead 

continuation of x(k)  is uniquely determined.

The procedure starts from a given recursive representation E (see equation

(4.1)) with principal degree n, then the reduced recursive representation £ i is 

obtained, having principal degree (n — 1) and input-output space If Dj is still 

globally degenerate the same procedure can be applied to E2. After k such steps, 

where k is at most (n +  1), a recursive representation E* of the system having 

principal degree (n — k ) is obtained, for which the recursion does not depend on the 

output variable, i.e. n — k = —1, or its input-output space is no longer degenerate. 

This procedure does not rely on any special characteristic, like continuity and/or 

invertibility, of function /  to obtain a minimal representation, being in this way 

more general than the approach described next.

If the state space model is considered, and if z(fc) can be solved in terms of 

the values of the output and input, then it not only implies observability but also 

that a recursive input-output equation can be derived for the nonlinear system. 

The function that describes the input-output behaviour of the system is very 

important because this is all that an external observer can obtain.

To illustrate the relation of input-output representation and observability, 

firstly a linear system is considered

x(t  +  1) =  Ax(t)  +  Bu(t),
(4.10)

y(t) =  Cx(t),

where x  £ Rn, u(k) 6 R, A  is a [n x n] matrix, B  is a [n x 1] vector, and C is a 

[1 x n] matrix. Write the future values of y in terms of x(k)  and u(k) 

y(t) =  Cx(t) 

y(t +  1) =  CAx(t)  +  CBuit)
(4.11)

y(t +  /) =  CA ‘x(t) + E j=1 C A ^ B u i t  + j -  1)
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or, in short notation,

Yu  = [CA]tjx [ t )+ [C A B ] t,iUu .

From this equation it follows that the observability depends on the characteristic 

of m atrix [CA]tj. As rows in [CA]t,i cannot be independent of previous rows if 

I > n — 1 because of the Cayley-Hamilton theorem, this means rankQCA]^/) < 

n, V/. If [Cb4]ti/ is invertible, i.e has full rank for / =  n — 1, then the system is 

observable and has the input-output representation given by

y{t +  n) =  C[C A } ^ ^ . ,  -  [CAB]t<n- iUt,n- i )  + f J C A ^ B u ( t + j  -  1).
j = 1

Clearly the input in this case is not relevant if we assume that all values of u(k) 

are available in the computation of x(t). This representation cannot be minimal, 

because the reachability condition has not been imposed.

For the nonlinear system, the many step transition function for the system

(4.3) can be written as

x(t -f k) = $ k(Ut,k- i ,x ( t ) ) ,

where Uk is the input sequence of length k and 4>* : Uk x X  —* X ,  then at any 

time k

y ( t )=  ft[$0(*(<)> “ (*))]. 

y(t +  l ) =  ft[$i(x(<),u(*))]>
(4.12)

y(t +  k — 1) =  A[$/t_1(a:(/), u(t + k -  2 ) , . . . , u(t))].

The function (4.12) can be written as

Ytik = Gk{x(t), Utik-i),  (4-13)

where Gk : Uk x X  —> Y k.

The necessary condition for x ( t ) to be solved in terms of the the output and 

input values is given by the Implicit Function Theorem [72], which states roughly 

speaking, that a continuously differentiable mapping f ( x , y) can be solved for y 

in terms of x at any point (a, b) at which /(a ,  b) =  0 and ^  0.
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T h e o rem  9 (Im p lic it F unction) Suppose }(x,y) is a continuously differentiable 

mapping of an open set E  C R ri+rn into R n, such that / ( a ,  b) = 0 for some point 

(a, b) G E.

Put A  = f '(a,b)  and assume that A x =  f f |( a,6) is invertible.

Then there exist open sets U G R n+m and W  C if™, with (a, 6) G U and 

b G W , having the following property:

To every y G W  corresponds a unique x such that

(x ,y)  G U and f ( x , y ) = 0 .

I f  this x is defined to be g(y), then g(y) is a continuously differentiable mapping 

of W  into R n, g(b) =  a,

and

Proof: [72].

g'{b) = - ( A . ) - 1 A ,

The assumption that A x is invertible means that the n by n matrix

D\}\  . . .  Dnf \

(4.14)

D i f n . . .  Dnf n

evaluated at (a, 6), defines an invertible linear operator in if*; in other words, its 

column vectors should be linearly independent. Furthermore, if f ( x , y )  =  0 holds 

when x — a and y =  6, then the conclusion of the theorem is that / (x ,  y) =  0 can 

be solved for x in terms of y for every y near 6, and these solutions are continuously 

differentiable functions of y. Naturally, the conditions are only valid locally. In 

reference [74] can be found the necessary and sufficient conditions under which it 

is possible to globally and uniquely solve /(x , y) =  0 for x in terms of y , with the 

solution map continuous.
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If the conditions of Theorem 9 are satisfied then there exists a continuous 

function such that x(t) = Uttk- 2 )- Using equation (4.12) the

following relation is obtained

!,(* +  *) =  h ^ G l ^ Y ^ u U t ^ U , ^ ) ] ,  

and from here it follows that

y ( t  +  k)  =  f ( Y tlk - u U t, k - i ) ,

where /  is a nonlinear function.

This means that ma,x(iank(DxGt,i)) must be n, which is equivalent to the 

linear case where a realisable system must have a [CA]lt m atrix of maximum rank 

equal to n for any I and t. Of course this condition is satisfied by a system that 

can be described by state space equations in a finite dimensional space.

The other condition is that the system can be approximated around an equilib­

rium point by the linearised system at that point of operation. This is translated 

to the following conditions on Gtj: there exist k and t , such that the derivative 

DxGtj(x(t) ,Utj)  has rank n.

These conditions mean that x(t) can be solved in terms of the output and input 

values, the system must be finite time observable if the input-output equation is 

to exist.

Theorem  10 Let the nonlinear system (4-3) satisfy the following conditions

a) max(rank(Z)xGfi>/)) =  n for Utji € Ul, x(t) € X  and for any I = 1 ,2 ,. . .  and 

t = 1 ,2 ,. . . ;

b) Ta,nk(DxGtli(x(t), Utji)) = n for some t and some I.

Then there exists a nonlinear function q, such that

y(t + l) = q(Yu ,UtJ. 1) 

for a restricted region of operation around the (x(t) ,Utii -1 ) point.
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Proof:

Let the response vector Yt}i be

Yttl = Gi{x(t),Utj - 1 ),

applying condition a) the system has a finite representation, and for some k and 

£, x(t) can be solved in terms of Ytj  and Applying condition b) and the

Implicit Function Theorem, it follows that there exists a continuous function G* : 

y n_1 x Un~l —> X , such that

x(t) = G*(Yt,n- u Ut,n- 2),

and to every Ytj  and Ut,i- 1 there corresponds a unique x(t) such that

y(t +  n) =  Ut,n- 1 )]

Hence the result. 0 0

There are some special structures commonly used to represent the nonlinear 

system, which admit an input-output model, among them Wiener models and 

Hammerstein models.

The Wiener model consists of a cascade of a linear system followed by a static 

nonlinearity, this model can be described by the following equations

x(k) = z ~ d^ u ( k )  

y(k) = f (x (k)) ,

where B{z)  is a polynomial defined as B(z)  = b\Z~l +  . . .  +  bmz ~m, and A(z)  is 

defined as A(z)  =  1 +  +  . . .  +  anz~n. If the inverse of /  exists then it is

possible to replace x(k)  with / _1(?/(^)) in the equation above to get

y{k) = f ( a 1 f - 1 { y ( k - l ) )  + . . .  + a „ f - 1 ( y ( k - n ) ) )
(4.16)

-\-b\u(k — 1 — d) -f . . .  +  bmu(k — m  — d).

This input-output representation is globally valid if the nonlineaxity is an invert­

ible function.
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A Hammerstein model consists of a cascade of a static nonlinearity followed 

by a linear system, as is described by the following equations

«*(*) 4̂ 1 „  

y(k) =  *-'% $«•(*)■

In this case the input-output representation is given by

y(k) = / ( “(*))

and is valid globally.

The combination of nonlinearity and dynamic system cannot always be repre­

sented by finite input-output maps, even if the nonlinearity is invertible [46], [64]. 

The following example of a real mechanical system will illustrate a case. A drive 

system with backlash in the mechanical transmission, is described by

J\^pi +  / i ^ i  =  M m — M,
(4.18)

J 2 V2 +  /2V?2 =  M,

with M  defined as

M  =  ky8 ,

¥ 1  — <p2 — £ for (fi — (f2 > e

6 =  I
(4.19)

0 for |ifi — (̂>2| <  e

— <£2 +  e for ip\ — ip2 < —e 

The block diagram for this system is shown in Figure 4.1

The aim is to find an expression like <p(k) =  f(y>(k — 1 ) , ,  <p(k— n), M m(k — 

1 ) , . . . ,  M m(k — m)). Obviously the system operating in different regions admits a 

finite representation, but the problem lies in the fact that some of the states are 

not observable in the dead zone region.

4.2 System  Concepts

In order to design a control system it is necessary to consider the key concepts of 

observability, controllability, and invertibility. The observability condition is of a
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M + m
O

1 i- e
/ .

s C ^ s  + f  ^ ------^ J ----- * /
* ■■■ ► 

e

<p

M

s(J2 s +f2)

Figure 4.1: Drive system with backlash.

paramount importance, because when we are using the input-output model this 

condition is implicit in the model. As the input-output models are used in the 

development of the control algorithm, the observability condition is not imposed 

as a requirement for the control design because it is implicit in the model. On 

the other hand, the controllability condition is needed, as presented here, to prove 

some of the theorems stated in the next Chapter.

Even though some of these concepts are widely known and used in linear 

systems their nonlinear counterparts are less known and more difficult to test, as 

described in the following sections.

4 .2 .1  O b s e r v a b il i ty

Two states x\  and X2 are called indistinguishable if for any sequence w € U+ it 

holds that f xi =  f X2. That means that no input-output experiment can determine 

which of the two states the system is at.

A system is called observable when there are no indistinguishable states in the 

set state X  of the system.

A state xo is observable at to if? given any control u, there is a time t\ > £0, 

such that knowledge of U(f0,*i] and the output y(t0,h] =  g(xo, .ti])) sufficient 

to determine x0.

For a linear SISO time invariant system it is possible to find a relation between
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the structural properties of the system (or the algebraic properties of the pair of 

matrices {A , C})  and observability. This relation is given by the observability 

matrix defined as [C, C A , . . . ,  CAn-1]T which must have rank n for the system to 

be completely observable.

If every state x 0  is observable at every time t 0  in the interval of definition of 

the system, then we say that the system is completely observable.

For a linear time-varying system, the conditions are translated into the def­

inition of uniformly completely controllable. A time-varying system defined by 

the pair {A*., Bk}k> 0  is uniformly completely controllable if exists a p 0  > 0 and a 

positive integer N 0, such that

E )  $ ( i  +  iv(, , j  +  i )C J 'C i $ ( j  +  iV0)j  +  i )  >!!„■ i > o  I 6 i r .
j = l

A time invariant system is uniformly completely observable if and only if it is 

completely observable [42].

It is convenient at this point introduce the function class

A i  := { f  : R  R\ f  monotone increasing homeomorphism of R + —► R +}.

For nonlinear systems it is not possible in general to find conditions on the 

structure of the system relating it to observability without imposing certain con­

dition like differentiability and continuity, which are usually restrictive. A more 

general notion of observability is given by a relation between the norm of the input- 

output sequences and the norm of the initial state [39]. System (4.3) is said to 

have property O if there exists a positive integer No and an A4-function Wo, with 

IFo(O) =  0, such that given any i > 0 and sequence triple {(x(fc), y(k),  «(&))}*>* 

that satisfies (4.3) and the following holds

t + N o —l

E  l l ( y ( * ) . « ( * ) ) « >  ^ o ( N O I I ) .  ( 4 . 2 0 )
k = i

The u(k) appears in (4.20) because of the nonlinearities of g and h in equation

(4.3). This allows to account for the fact that the u(k) might be chosen in such a
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way that the y(k) are small independent of z(z). For u(k) =  0, k > i, the property

0  is an uniform observability property [39]; that is observing the outputs y(k) for

1 <  k < i +  N 0 — 1, it is possible determine a bound on the size of the initial state 

x(i).

4 .2 .2  C o n t r o l la b i l i t y

The term controllability means that it is possible to drive any state of the system 

to the origin in a finite time, using bounded piecewise continuous controls.

A state x is said to be reachable from the state z(0) if there exists an input 

sequence w € U* such that x = $ n(x(0 ),w).  If the state X\ =  0 is reachable 

from x 0  at t 0 , then x 0  is controllable at t0. In particular, the subset X  is (n-step, 

globally) controllable (to zero) if for each state x  in X  there is an input sequence 

w of length at most n for which $ n(ar,iy) =  0.

If every state £o is controllable at t0, then we say that the system is completely 

controllable at t0.

The definition of controllability is set up in such a way that it is an obvious 

necessary and sufficient condition for the design of a regulator. The task of a 

regulator is to move an arbitrary initial state x  of E to a fixed desired state x , 

assumed to be zero.

For a linear SISO time invariant system it is possible to find a relation between 

the structural properties of the system (or the algebraic properties of the pair 

of matrices {A, B})  and the controllability of S. This relation is given by the 

controllability m atrix defined as [B , A B , . . . ,  A n~1 B] which must have rank n for 

the system to be completely controllable.

For a linear time-varying system, the conditions are translated into the defini­

tion of uniformly completely controllable. A time-variant system defined by the 

pair {A*, Bk}k>o is uniformly completely controllable if there exists a pc > 0 and
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a positive integer N c, such that 

t + JVe- l

s « r ( £  $(*' +  Aro ,j  +  l ) B i B j $ ( i  +  iVc, i i  +  l ) ) T* W > ^ c N | 2; t >  0 x €  R n •

t=l

A time invariant system is uniformly completely controllable if and only if it 

is completely controllable [42].

And finally, for a nonlinear system we have the notion of property C.

The system (4.1) is said to have the property C if there exists a positive 

integer N c and an .Ad-function Wc, with IUc(0) =  0, such that given any i > 

0 ,a  G R n there exists a sequence pair {(:r(&),u^ ) ) } * ^ ® - 1  which satisfies (4.1), 

x(i) =  a, x(i +  nc) =  0  and

t+Nc—1

£  ||(*(fc),t«(*))||<W .(||« ||).
k= 1

Under this definition with VUc(s) =  pcs, pc > 0, it is possible to see that if a 

time-varying linear system is uniformly completely controllable, then it satisfies 

the property C [39].

4 .2 .3  I n v e r t ib i l i t y

The inversion of nonlinear operators plays a central role in the development of 

nonlinear controllers. Here we explore the invertibility of nonlinear dynamic sys­

tems represented by (4.1).

Suppose two systems Si and S 2 are given, such the output space Y\ of the 

first equals the input space U2 of the second system. Then the output lines of 

5*1 to the input lines of S 2 are connected to obtain the series connection Ss. To 

specify the state of Ss it is necessary to specify the state of each S \  and thus 

X s =  X i  x X 2. If Si is in state xi  and 6 2  is in state X2 then x a =  [xi’|x j]r  denotes 

the state of Ss. Defining

S i  : i ! ( i  +  l ) =  f i ( x i ( t ) , U i ( t ) )
(4.21)

Vi = M xi (<))>
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and
S 2 : x 2(t + l)  = f 2 (x 2 ( t) ,u 2 (t)) 

y2 =  h2 (x2 (t)),
(4.22)

then

S . :
X 1

x 2

/ l ( x i ( < ) ,M l ( 0 )

(4 -23) 

V s  =

A SISO discrete system S  is said to be k-right invertible (k-RI)  around u(k) 

if there exists a system, say S I , such that the series connection S  o S I  is equivalent 

to the k delays for any state of S  and any u 6 where Clu^)  is a suitable

neighbourhood of u(k).

S  is said to be right invertible if the above mentioned property holds true 

around any u(k).

The existence of the inverse of a system is related with the concept of reach­

ability. In fact, we can view the problem as finding an input sequence, which 

drives the system S 2 to the desired state, which represents the input of another 

system connected in series with S\. The formalisation of this idea is given by the 

following theorem.

T h e o rem  11 The system S  is k-RI  if  and only if, for each state x reachable from 

x0, and for each pair of input sequences w =  u (0) . . .  u(k) and w* =  u(0)* . . .  u(k)*, 

the equality $(x,iy) =  $(x,w*) implies that u(0) =  u*(0).

Proof  : [83].

For an input-output description the system S is invertible if there exists a 

system £7  satisfying £  o £7 =  7, and £7  is called the generalised right inverse.

The structure defined by the input-output representation £  assumes that the 

system is observable and reachable, and this leads to the following result.

T h eo rem  12 A recursive system £  : R n x R m —* R  has a recursive R I  £  : 

R n x R m —> R.
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Proof:[ 31]

The idea motivating the introduction of the right inverse of the system is to 

get the control signal u(t) to reach a desired value of the output. That is if the 

system is defined as

y(k + 1) =  f 2 ( y (k ) . . .  ,y (k  -  n ) ,u 2 (k ) , . . .  ,u 2(k -  m)),

and the inverse fx is defined by

u 2 {k) =  f i {y (k ) . . . ,  y(k — n), u2{k -  1 ) , . . . ,  u2(k -  m), y(k  +  1)),

the series connection is reduced to the composition of two static nonlinear func­

tions. Obviously, y(k -j-1) can be replaced by a reference signal, and in this way 

a 1-RI is obtained. Notice that the inverse is a recursive relation on u 2 (k), as it 

was stated by Theorem 4. In Chapter 5 a general discussion about the stability 

of this recursive relation is presented.

The inverse in this case depends on the past output of the plant, the desired 

value of the output and past values of the controller. For this configuration f 2  

is 1-RI invertible if the function f 2 is invertible with respect to tt(fc). If the 

recursive system E : RJ1 x R m —> R  is a bijection, then its inverse map is uniquely 

determined.

The system E is called singular if for any

[;yp(k) , . . . ,  yp(k -  n), u(k -  1) , . . . ,  u(k -  m)]T € A

, and for any distinct inputs ux(k) , u 2 (k), the resulting outputs are equal: 

f ( y p(k) , . . . ,  yp(k -  n), u ^ k ) ,  . . . , u ( k - m ) )  =
(4.24)

f ( y p(k) , . . . ,  yp(k -  n ) ,u 2 (k) , . . . ,  u(fc -  m)).

A particular case is presented when the system is monotonic with respect to 

the control variable.
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T h e o rem  13 I f  f ( y p{k) , . . . ,  yp(k — n), u(k) , . . . ,  u(k — m)) is monotonic with 

respect to u(k) then the system is 1-RI  [yp(k) , . . . ,  yp(k—n ), u(k—1) , . . . ,  u(k—m)]T 

for all u(k).

Proof:

If f ( y p(k) , . . . ,  yp(k — n), u(fc),. . . ,  u(k — m)) is monotonic and w1(A;) > u2 (k) then 

for the same point [yp(k) , . . . ,  yp(k — n ), u(k — 1 ) , ,  u(k — m)]T

f ( y p(k ) , . . .  , y p{k -  n ) ,y}(k) ,u(k  -  1) , . . . ,  u(k -  m)) > 

f ( y p(k), • • •, yp(k -  n), u 2 (k), u(k -  1 ) , . . . ,  u(k -  m))

In the same way,

f { y p(k ) , . . .  , y p[k -  n ) ,u 1 (k),u{k -  1 ) , . . . , u(k -  m)) < 

f { y p{k) , . . . ,  yp(k -  n ) ,u 2 {k), u(k -  1 -  m))

if w1(fc) <  u 2 (k). The system is therefore invertible. 0 0

Clearly, 1-RI is related very much to the global characteristic of the function 

/ .  In general it is possible to use arguments of the inverse function theorem to 

arrive to the same conclusion [73]. In many cases the conditions of invertibility 

can be satisfied just locally.

4.3 Identification

In Chapter 3 we have outlined the architectures which can be used for approx­

imating nonlinear functions, and in Section 4.1 we have shown that a nonlinear 

system can be represented by a nonlinear function of the past values of the output 

and input.

In this section, the learning algorithms used for training the networks are 

presented, i.e. the algorithms necessary to adjust the parameters of the network
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in order to approximate a dynamic system. Even though the performance of the 

algorithms presented in this section is not as good as more sophisticated algorithms 

they provide a base to outline the basic problems and potentials in this area. A 

note of caution is necessary before starting the presentation of the algorithms, 

the basic requirement for a system to have a representation using a network is 

that it must be described by an injective function. Obviously functions such 

as the solution of x 2 =  y cannot represented by a network such as the gaussian 

network. As pointed out by Sontag [84] a solution (nonunique) to this problem 

requires the use of discontinuous mappings, and these cannot be approximated as 

a superposition of maps which are constant on halfspaces or which have kernel 

characteristics. In this section inverse means 1-RI inverse.

4 .3 .1  M o d e l l in g  a  D y n a m ic  S y s t e m

The dynamic system is modelled using a gaussian network, which represents the 

recursive input-output model of the system by

N m

ym(k  +  1) =  E  «T*S„(*“ (*))- (4-25)
t'=l

Here, the superscript m indicates the system’s model. We choose the structure 

of the system model to be the same as that of the plant (4.1), i.e. the model output 

is a nonlinear function of the present and past system outputs, and the present 

and past system inputs. The model input vector x m(k) is thus given as

x m(k) = [yp(k) , . . . ,  yp(k -  n), u(fc), m)]T,

where the superscript p indicates the plant.

We denote the centre of the Gaussian function of hidden unit i as

/ h  — [y*,05 ■ ■ • ? 2/t,nj u i,Oi • • • j u i ,m \  •
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Figure 4.2: Plant identification structure.

The parameters /i™ and <rm are adjusted to meet the interpolation conditions, 

i.e. the fj,™ are distributed uniformly over the input space and <7m  is adjusted such 

that Yli=i 9 ™,a(xm{k)) =const over the input space. There are other possibilities 

as explained in Chapter 3.

The parameter vector c™ is adjusted to minimise the mean square error be­

tween the real plant and the model. That is,

c?{k + 1 )  =  c?(k) + a g ^ ( x ( k ) ) ( y ”(k +  1) -  ym(k +  1)), (4.26)

where, a  is a gain parameter. Figure 4.2 represents the structure used, where the 

TD block represent tapped delay lines.

Using standard linear systems theory, as described in Chapter 3, it can be 

shown that if the function /  is continuous, then it can be approximated with any 

degree of accuracy by (4.25), given the appropriate number of units, and the least 

mean square solution can be found by (4.26) [80].

4 .3 .2  I n v e r s e  M o d e l  I d e n t i f ic a t io n

If the model of the plant is invertible, then the inverse of the plant can be ap­

proximated in a similar way to the plant. This model can then be used as the 

controller. A second network described by
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N 1

«(*) =  2  ci f f L A x I (kM (4-27)
*=i

is utilised. Here, the superscript I  indicates the inverse. The inverse of the 

function /  in Equation (4.1) (required to obtain u(&)) depends upon the future 

plant output value yp{k +  1). In order to obtain a realisable approximation we 

replace this value by the desired input value r. Finally, we define the inverse 

network input vector x T(k) as

x r(k) =  [ym(k ) , . . . ,  ym(k -  n), r(k  +  1), u(k -  1 ) . . . ,  u(k -  m)]T.

Here, the future value r(k  +  1) is obtained at time k . The centre of the 

Gaussian function of hidden unit i is given by

=  [j/t',0) • • • ) 7**? u i , l  • • • ? 1̂,771.] •

N on-iterative M ethods

To adjust cj the architecture shown in Figure 4.3 is used.

Laarninq

A lgorithm

Figure 4.3: Using the model to identify the plant inverse.

This architecture is similar to the specialised learning architecture presented 

by Psaltis et al [70] (the difference being that here we use the plant model, rather 

than the plant itself). The parameters in cf are adjusted to minimise the mean
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square error between the output of the model and the input of the controller. This 

leads to the following learning algorithm:

4 (k +  1) =  cf(fc) +  agli ,,{xI (k)){r{k +  1) -  ym(k +  1))^ g ^ 1^  (4-28)

Here, if the real plant were used in the learning procedure then would

have to be estimated. This can be done using first order differences [70] changing 

each input to the plant slightly at the operating point and measuring the change at 

the output. By using the plant model, however, the derivatives can be calculated 

explicitly. From Equation (4.25) we obtain

’ = -2<rm E  eT sS „(*m(*))(«(k) -  «*»)• (4.29)

T h e o rem  14 The learning algorithm defined by Equation (4-28) converges to a 

global minimum of the index defined by

j  = E (r (j  +  1) -  ym(j + I))2, (4.30)
3

i f the system is monotonically increasing with respect to u(k), where r(k) is a 

bounded sequence corresponding to the desired output of the system.

Proof:

Consider the mean square error defined over all the possible inputs r(k)  described 

by (4.30). Its change A J  under an adaptation step (4.28) resulting from an input 

r* is

A7(r*) =  - 2  E ( r ( i  +  1) -  Vm(j +  1)) E  ^ ( j )  ^ ^ x ^ A c '  

Inserting (4.28) and averaging over all inputs

< A J  > =  - 2 a  E E H ?  +  1 ) -  VmU +  l)) ( r *(' +  l ) - y m*( /+ 1)) +

T d r u ± i ) ,  , ) )y ( i + i )  , ,
Y  du( j )  (J)) du(l)  ( )h
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Figure 4.4: Use of the synthetic signal to identify plant inverse.

<  A J  > =  - 2  « g E  + 1) -  ym(i + 1) ) ] 2 (4.31)

Clearly, this quantity can only be negative or zero. For a monotonic function 

it cannot be zero. From (4.31), if the function is not monotonic the algorithm can 

reach a local minimum when | j  is zero. 0 0

If the sign is changed in (4.29), the same result follows for decreasing functions. 

Another approach involves the use of a synthetic signal [90]. This leads to the 

so called general learning architecture as shown in Figure 4.4.

In this case the adaptation law for the weights does not depend on the deriva­

tives of the plant:

c\(k +  1 ) =  c\{k) +  otgIK ,r{xI (k))(S, -  u(k)). (4.32)

Here, Ss is the synthetic signal.

T h e o rem  15 I f  the system is 1-RI, the algorithm defined by Equation (4-32) 

converges to the best approximation of the inverse in the least square sense under 

the conditions of Theorem 2, Chapter 3.

Proof:

If the system is 1 -RI then there exists an injective mapping which represents 

the inverse. Thus, by Theorem 2 in Chapter 3 the algorithm defined by (4.32) 

converges to the least squares error [80]. 0 0
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I te ra tiv e  M eth o d s

Iterative methods make use of a plant model to calculate the inverse. In this 

case, a recursive method is used to find the inverse of the model at each operating 

point. This method is useful for systems which satisfy the invertibility conditions, 

only locally and not for the whole operating space. This approach can also be 

used when it is necessary to have small networks due to memory or processing 

limitations. In this case, the restricted accuracy of the trained network can be 

enhanced by using the network to provide stored initial values for the iterative 

method, establishing a compromise between speed of convergence and storing 

capacities.

At time k , the objective is to find an input u which will produce a model 

output ym(k -f-1) equal to r(k  +  1). It is possible to use the method of successive 

substitution:

un+1 (k) = un(k) +  7 (r(k +  1 ) -  ym(k +  1 )),

where 7  is a weight to be chosen.

According to the small gain theorem [17], the inverse operator is input-output 

stable if the product of the operator gains in the loop is less than 1

i m i p - 7 / n < i -

The initial value u°(k) can be stored in a connectionist network.

Practical Issues

During the design of an identification set-up not only some of the parameters of 

the model, like the order of the system, must be selected beforehand, but also the 

experimental conditions necessary to extract the information of the system. This 

means a sequence of inputs that is both sufficiently varied to reveal the function’s 

form and sufficiently repetitive to allow the convergence of the learning algorithm. 

This leads to the concept of persistency of excitation .
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Also, the noise and its characteristics must be considered during the modelling 

stage. If a measurement noise is included, the model is described by the following 

equations

y(t) -  y‘ (t) +  e(t),

y ’ (t ) =  / ( « / * ( < - 1). ••• i J/s (< -  (4 -33)

u(t — 1) , . . .  ,u(t  — m)), 

but if the noise enters to the system, the model is given by the following recursion

y(*)= / (y( *- i )>- - *>y(*- n) >

u(t — 1) , . . . ,  u(t — m), (4-34)

e(t -  1 e(t — /)) +  e(t).

The effect of measurement noise upon the parameter identification experiment 

must also be considered. For linear systems it is known that sensitivity of the 

identification process is governed by the degree of excitation present in the input 

signal. In the models described in the last section, where a linear in the parameters 

model was used, the noise immunity or convergence rate will diminish in direct 

proportion to an increase in the condition number of the m atrix defined as the 

persistent excitation matrix V.

Any identification procedure should consider a model validation stage, which 

should reveal the model’s deficiencies. The validation is done with data that has 

not been used during the identification process, but it is contained within the 

boundaries of the training set. For prediction models the validation is done over 

the residual error, that is if the model structure components are correct then the 

prediction error sequence should be nodeterministic for all linear and nonlinear 

combinations of past inputs and outputs [12].

Using the series-parallel structure, Figure 4.5, the output of the system is 

available to identify the parameters, this means that the model is updated with 

the past output of the real plant.

In this case effectively a one step ahead predictor is identified, that is the error 

obtained with this algorithm refers just to one step ahead error.
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P l a n t

M o d e l

series-parallel

parallel

Figure 4.5: The series-parallel and parallel structures.

Under recursive operation of series-parallel model the propagation of the error 

is over the nonlinear system [30], and therefore its potentials diminish over the 

prediction horizon, and even worse the model can drift to a different operational 

region.

Another alternative is the use of parallel structures like the one shown in Figure 

4.5. In this case, the model has its own feedback. A different training algorithm 

must be used to train this network, the concepts of Optimal Control theory play 

a key role [95]. Once the network is trained over the whole set of possible inputs 

and initial conditions, the network can be connected in parallel with the system. 

The disadvantage of using this kind of structure in a nonlinear context is the effect 

of the initial conditions. In fact as the dynamics of the system depends on the 

initial condition there exists the posibility that the error betweeen the output of 

plant and the model increases without bound, even though the model is perfect. 

On the other hand, when the model and the plant are asymptoticaly stable the 

effect of the initial condition dies as the time runs.

The error in this case is related to the trajectories, i.e. the solution of a 

differential equation, of the systems and the model, but in a series-parallel model 

the error is related to the approximating function.



C hapter 5

Control Structures

SUMMARY

Four approaches to control a nonlinear system, given its connectionist 

representation, are described. Each approach is analysed and a ba­

sic example illustrating the design procedure is provided. Some of the 

properties are proved and the limitations of each scheme are pointed 

out. A summary of the methods is given with their main potentials 

and limitations.

5.1 D irect Inverse Configuration

The objective of the design procedure is to obtain a nonlinear operator, which 

represents the inverse of the plant. To obtain this operator the ideas described in 

Chapter 4 can be followed. An off-line procedure which utilises a copy of the plant 

model, established in the way outlined in Chapter 4, is used. To achieve control 

of the plant the model-inverse is simply cascaded with the plant. This forces the 

dynamic response between the reference signal and the plant output to equal the 

desired reference model, by cancelling out the dynamics and nonlinearities.

As was outlined in Chapter 4 a major problem with inverse identification arises

90
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when many inputs produce the same output, i.e. the plant’s inverse is not well- 

defined. In this case, the network will attem pt to map the same network input to 

many different target responses.

The implementation of the inverse can be done with two structures: the feed­

back structure, which is obtained when the past values of the output of the plant 

are used to generate the control signal, and the feedforward structure obtained 

when the past values of the reference signal are used. Figure 5.1 shows the archi­

tectures in both cases for a linear plant.

a) feedforward

o —
1 VY z1 P

t Q

zd-'S)

b) feedback

Figure 5.1: Inverses of a linear plant: a) feedforward, b) feedback.

In order to illustrate the differences between these two structures a discrete- 

time linear system described by the following transfer function

y _  z~ 1 P{z~1) 
u Q{z~x)

is used, where P[z~x) is polynomial such that -P(O) ^  0 and deg(P) =  m  and 

Q(z~l ) is a polynomial such that (J(0) =  1, deg(Q) = ra, and m  < n .
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In this case the transfer function of the feedforward inverse is given by

 ̂ » 0̂ (9.z - ' Q j z - ^ P j z - 1) z - ' P j z - 1) \
P ( z - 1)Q(z~1) 

Q U - 1)
\  P i* -1)

Q (z - ' )

0 \ u  )
(5.1)

where P(z~1) and Q(^-1) are the estimated values of Q(z~x) and P(z~x). If 

P(z~1) = P(z~x) and Q(z~x) =  Q(z-1), the error due to different initial conditions 

(u') follows the dynamic of Q(z~1)e =  0, where e(t) =  r(t) — y(t). If the system is 

stable this effect dies out as t —* 0 0 . Any disturbance in the output of the system 

does not affect any other signal in the system.

The case when the output of the system is used to generate the inverse, the 

response of the system is given by

y _

V w )

z - ' P j z - 1) z - 1 P f z - ^ P j z - 1) \
(1 - Q (z - i ) ) P (z - i )+ P ( * - i )Q ( z - i )  (1 - Q ( z - i ) ) P ( z - ' ) + P ( z - ' ) Q ( z - ' )

Q jz - 1) _____________  Ptz-M d-fr*-1))
V (1 - Q ( z ~ i ) ) P ( z - i ) + P { z - i ) Q ( z - i )  ( l -Q (* - i ) )P (* - i )+ P (« -» )Q ( , -» ) U

(5.2)

In this case the closed loop is stable if (1 — Q(z 1 ))P(z  +  P(z  x)Q(z a) is

stable, and the effect of the disturbance, is given by

2 = Qi2' 1)-

In both cases if the system is non-minimum-phase its inverse is unstable. For 

a linear system by checking the zeros of the transfer function it is possible to see 

if the system is minimum-phase or not. Generalising the notion of zeros for a 

nonlinear system is not a trivial problem. The linear transfer function cannot be 

defined globally for nonlinear systems. As a first approximation, the extended 

linearisation over the recursive equation /  can be used, and then the zeros of the 

linearised system under different operational points can be investigated.

Another concept that has proved to be useful, especially for affine systems, is 

zero-dynamics, which is defined to be the internal dynamics of the system when 

the system output is set to zero by the input. In linear system the poles of the 

zero dynamic are exactly the zeros of the system. Similarly to the linear case
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a system whose zero dynamics is asymptotically stable is called asymptotically 

minimum-phase system. The zero dynamic is an intrinsic property of a nonlinear 

system. If the zero dynamic is stable then the inverse of the system is stable 

around the origin. In fact, using the following form of the recursive function £

x(t  +  1) =

m ) , . . . , u ( t -  1)]T,

0 . . .  0
-

In i 0

0 . . .  0 0 . . .  0 

0 . . .  0
x(t)  +

f (x ( t ) ,u ( t ) )

Ijn—1 0

0 . . .  0 0 . . .  0 u(*)

(5.3)

the control u(t) =  / -1(:r(tf), y(t +  1)) linearises the system. The zero dynamic 

is defined as the strongly unobservable dynamic when this control signal is used. 

The zero dynamic is obtained setting y(t  +  1), £,■($), t =  1 , . . . ,  n, constrained to 

zero
£,■(<) =  0, i =  1, . . .  ,ra,

a'n + l( 0  =  x n+2{t)i .
(5.4)

*n+m =  f  1 (x( t ) , 0 ).

If this system is stable then the system is asymptotically minimum-phase.

Another problem arises when the output of the system is constrained for the

non-linearities of the system and the space defined by the inputs [44]. This means

that there is a feasible region for the output transition (F O T R ), which is defined

by

F O T R  =  {(y(t +  1), y(t)) \y(t +  1) =  f (y ( t ) ,  «(<)) and u(t) e U c  R m+‘ },

where y(t) = [y(t) , . . . ,  y(t — n)]T, and u(t) =  [u(£),. . . ,  u(t — m)]T. In Chapter 6 

further implications of F O T R  are described.
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These issues signal the nontrivial problems of building inverse operators for 

nonlinear dynamical systems.

In an open-loop system, however, the disturbances, noise and approximation 

errors appear directly at the plant output. Their effects can be minimised if the 

adaptive procedure is operating with the system or an extra feedback is added.

The first approach considers the learning algorithm as a compensator, in this 

case the effects of the disturbances are compensated through the adaptation loop. 

The second approach includes a linear controller in cascade with the inverse, here 

the nonlinear inverse acts as a linearising transformation.

5 .1 .1  S im u la t io n s

The plant to be considered in these examples is described by

y(t +  1) =  t +  u (<)3- (5-5)

The system is monotonic with respect to u(t) and therefore invertible. This 

system was previously considered by Narendra and Parthasarathy [61].

Using a synthetic signal and an architecture of one network Af, see section 4.3 

Chapter 4, with 2 inputs and 441 units and a training region defined over the 

interval y(t) E [—9,9] and u(t) E [—2,2], it is possible to calculate the inverse of 

the system as

u(t) = Af(y(t) ,y(t  + 1)),

where after training y(t -J-1) is replaced by the desired output value.

Figure 5.2 shows the final values of the parameters for this regular network 

with 441 units, and the response of the system for a sinusoidal input.

Using the prior information one can decompose the system into two parts:

ym(t -f 1) =  ATi +  Aft(u(t)),

where Aft and Aft represent regular gaussian networks with 40 and 20 units, which



CHAPTER 5. CONTROL STRUCTURES 95

G22ti
S
P h

y  f .  •?. *  *  s  s  y  *. Y  f  >  i  f '

( U *  i  v  >: •; *  >' •; *  ?  *  ;  *  i  ?  $  *
*  *  *

450

Wh

-10
100

Figure 5.2: Linear coefficients and error between model and real response.

represent f \  and / 2 over an interval defined over y{t) — [—9,9] and u(t) = [—2,2], 

The result of these approximations is shown in Figure 5.3.

Then the inverse is calculated as

u(t) = Ms { - M t (y ( t )) +  r ( t ) ) ,

where M 3  is a network with 40 units representing the inverse of Mt  • The results 

obtained with this inverse are shown in Figure 5.4. Notice the oscillation produced 

in the approximation; this effect is due to the fact that the standard deviation of 

the gaussians units have been fixed as too high.

Using prior information about the system it is possible to obtain representa­

tions with smaller number of units and better accuracy.
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Figure 5.3: Final curves obtained.
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Figure 5.4: Estimate of the inverse and response of the controlled system.
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5.2 M odel Reference

A schematic diagram of the fundamental idea used in this approach is given in 

Figure 5.5.

Plant

Model
Reference

Figure 5.5: Model reference architecture.

The double lines used in the block diagram emphasise that the operators are 

nonlinear and that the usual block diagram manipulations do not hold.

The plant to be controlled can be represented by a nonlinear operator P  and 

the desired performance of the closed-loop system is specified through a stable 

reference model, which in general can be a nonlinear system defined by its input- 

output pair {r(t), 2/r (^)} or by a nonlinear operator R.  The control system at­

tem pts to make the plant output y(t) match the reference model output asymp­

totically, i.e.

lim ||y(i) — t/r (*)|| <  e
I —*-00

for some specified constant e > 0 .
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It is necessary to construct an operator C , which is represented by a connec- 

tionist network, such that

C o P  = R.  (5.6)

The solution of equation (5.6) for the controller depends upon the existence 

conditions provided by the Implicit Function Theorem. Instead of solving a func­

tional equation, the problem is transformed to a parametric problem, where the 

unknown function depends on several parameters of a known representation, in 

this case connectionist networks. There are two approaches to find the parame­

ters of this representation such that satisfy the functional equation (5.6); these 

are: the direct and indirect approach. In the direct approach, the adjustment 

of the parameters of the representation is done in order to reduce the norm of 

the output error, that can be expressed as \\C o P  — i?||. The indirect approach 

assumes certain knowledge of the plant, namely how the functional representation 

of the plant is related with the functional description of the controller. In this 

case, the operator representing the plant is estimated, and then the controller is 

chosen assuming that the identified operator represents the true operator. Figure 

5.6 shows the structures used in these cases.

The capability of specifying nonlinear reference system is a practical and pow­

erful tool to shape the response of the closed loop system.

5 .2 .1  G e n e r a l  S t r u c tu r e

In general, the model reference is represented by a nonlinear function, but in some 

specific situations can be represented by a linear equation. Let the model reference 

be described by

yr{t +  1) =  R(yr{t), r ( f )) =  A y r(t) +  Br ( t ), (5.7)

where yr(t) =  [yr(t) , . . .  , y r( t—nr)]T,r(t)  =  [r(tf),. . . ,  r ( t —m r)]T, A  is a (1 x n r +  l) 

m atrix, and F i s a ( l x m r - f l )  matrix. The system P  is defined by the recursive
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Figure 5.6: Model reference architectures: direct and indirect approach.
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nonlinear function

y(t + 1) =  P(y{t),u(t)),  (5.8)

where y(t) =  [y(f),. . . ,  y(t — n)]T , u(t) =  [u(£), • • .,  u(t — m)]T, and u(t — 1 ) =  

[u(t — 1 ) , ,  u(t — m)]T, then the controller performs the nonlinear mapping

w(i) =  Af(y(t) ,r( t) ,u(t  -  1)). (5.9)

In (5.9) Af  represents a gaussian network defined as

N

»=i

or in vector notation as

u(t) = CG(y(t) ,r( t ) ,u(t  -  1 )),

where C is the vector formed by the linear coefficients and G is a vector of the 

regressors note that the model is linear in the parameters. The objective of

training is to solve the following functional equation

l ) ) , u ( t -  1)) =  R(yT(t),r(t)).  (5.10)

In order to have a continuous solution on Af  the conditions of the Implicit Function 

Theorem must be satisfied, this means that P  must be continuously differentiable 

and its derivatives non zero in the domain of interest; such that equation (5.10) 

holds. Some precautions must be taken before implementing the controller, be­

cause solving this equation does not guarantee that the final controller is stable. 

The algorithm to adjust the controller based in a gradient scheme is given by the 

following set of equations

y(i  + 1) =  P( y( t ) , Af  (y(t) , f( t), i i(t  -  l ) ) ,u ( i  -  1)),

e ( < ) =  yT( t ) - y { t ) ,  , g i l .
Ci(t +  1 ) =  c,-(t) -  7 ^ e ( t ) ,

=  d f c W  =  - 1)).
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where C =  [c i,. . .  , cn]t  is the vector of parameters of the network. Under the 

same conditions of Theorem 3 Chapter 3, the system converges to a global min­

imum of the mean squared error. If | i s  unknown, then it can be calculated 

on line or use a model to get an estimate of it, as was explained in section 4.3 of 

Chapter 4.

5 .2 .2  E f fe c t  o f  t h e  D is t u r b a n c e s

Consider the difference between the model and the controlled plant for a linear 

model

yr( t + l ) - y ( t + l )  = Ayr(t)+Br(t)  — P (y(t),Af (y(t),  r(f), u(t -  J ) ) , u ( t  -  l ) )+ d

(5.12)

where d is the disturbance, and u(t — 1 ) =  [u(f — 1 ) , . . .  ,u(t  — m)]T. If Af  represents 

the inverse of P , i.e. Af  o P  =  P , the above equation simplifies to

yr(t +  1) -  y(t +  1) =  A f ( t )  +  Br(t)  -  Ay(t )  -  Bf ( t )  +  d, (5.13)

replacing e(t -j-1 ) =  yr(t +  1) — y(t -f 1) and e(t) = yr(t) — y(t) in equation (5.13) 

the dynamic of the error is then given by

e(t +  1) =  Ae(t) +  d. (5.14)

From this equation it is possible to see that the disturbances have a direct effect 

on the output of the system.

5 .2 .3  S e p a r a b le  S t r u c tu r e s

In this case the plant can be represented by the following structure

y(t +  1) =  P(y(t),u(t))  = f (y( t ) )  +  0 (u(f)), (5.15)

therefore the controller is given by

uW =  9 ' 1 ( ~ f ( y M ) +  M ( y f M)> &(t - 1 ) ) , (5.16)
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where g 1 represents the inverse of the estimate of g and /  represents the estimate

o f f .

Defining a parametric representation for each function, 

g =  CgGg(u(t)),

f  = Ct G,(y{t)), (5-17)

S-1 = (- f { y ( t )) + M(y(t),r(t)),u(t -  1)) ,

where C5, C/, and Cg-i are vectors containing the parameters, and Gg, G /, and 

Gg- 1 are vectors containing the regressors.

As a first step, the model of the system represented by equation (5.15) must be 

identified. To achieve this the following algorithm based on the gradient approach 

is used
y(t + 1 )=  Aff(y(t)) + Afg{u(t)),

e ( t )=  y ( t ) - y ( t ) ,  (5 lg)
Cf (t +  1)= C}( t ) - ^ e { t ) G Tn  

Cg(t + 1) = Cs(t) -  ■
Then, the inverse of g can be identified by the following algorithms

g - 1 = Afg-i (R(y(t) ,r(t))  -  Aff (y(t)),u(t  -  1)), 

e(t) =  R(y(t),r{t)) -  Aff (y(t)) -  J\fg(u(t)),  (5.19)

C r*(t +  1) =  i 30Le(t)C% -u

and finally the control signal is calculated as

u ( t ) = A f g-i (R(y(t) ,r(t))  -  Aff (y(t)),u(t  -  1)). (5.20)

The stability of the controller depends on the characteristic of the function g. 

This scheme belongs to the indirect approach, because the model of the system is 

needed to build the controller.

5 .2 .4  A ff in e  S t r u c t u r e s

In this case the plant can be represented by the following structure

y(t + 1) =  P(y(t),  u{t)) = f (y ( t ) ,u( t  -  1)) +  g(y(t) ,u(t  -  l))u((). (5.21)
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This system is always invertible if g(y(t), u(t — 1)) is different from zero, so given 

this condition it is possible to find a controller defined by

=  g(y(t) 6(< -  1)) “ (( -  !)) +  £(»(*)>f (<))) » (5-22)

where g represents the estimated of g and /  represents the estimate of / .  Both 

are connectionist representations defined by

g = CgGg( y ( t ) , u ( t -  1)), ^

f  = C , G , ( y { t ) M t - m ■

The first step in the indirect approach is to identify the model of the system 

represented by equation (5.15). To achieve this the following algorithm is used

y(t +  1) =  J\ff (y(t),ii(t -  1)) + M’g{y(t),u(t -  1 ))u(t),

e(t) =  y(t) — y(t),
K W (5.24)

C / ( t + l ) =  C} ( t ) - 7le(t)Cq,

Cg(t +  1) =  Cg(t) — 72u(t)e(()G j.

Then, the control signal can be calculated as

U^  =  Mg(y{t)l,u{t -  1)) ~ W v W ’ “ (* "  • (5‘25)

This model can work on line, but at the beginning when there is no infor­

mation about the plant either an identification period must be considered or an 

extra controller that can work with little information about the plant must be 

included. A dead zone has been introduced in the updating laws to take into 

account modelling errors [11].

Another alternative in this case is the direct approach. Here, no information 

about estimated functions of the plant is used. The basic assumptions needed to 

prove the stability of the procedure are:

A1 The model reference is given by a stable minimum-phase linear system de­

fined by

ym(t +  1) =  Ay m(t) +  6r(f), (5.26)

where A is a vector defined by A  =  [a0, . . . ,  an]T, and 6 is a constant.
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A2 There exists an operational region O C R n+m+1 and connectionist repre­

sentations Afj and Af£ such that <$x =  Aft (y(t), u(t — 1)) — and

S2 = Af2(y(t) ,u(t  -  1)) -  g^ (f)-|>(t_1-)), where ^  and S2 are functions of y(t) 

and u(t  — 1) and (y(£),u(£ — 1)) 6 O.

A3 gmin < \\g(y(t),u(t -  1))|| <  gmax, where gmax and gmin are real constants

different from 0.

A4 The sign of g(y(t) ,u(t  — 1)) is known.

Defining the control signal as

u(t) = Aft (y ( t ), u(t -  1 )) +  Af2(y( t ), u(t -  1 ) )r( t)  +  Ay(t )  (5.27)

the error between the model and the system is e(t + 1) =  S/(2-fl) — ym(t +  l),

e(t + 1) =  f (y ( t ) ,u ( t  -  1)) - g ( y ( t ) , u ( t  -  l ) )Af i (y( t ) ,u( t  -  f ) )+  

g(y{t),u(t  -  l))J\f£(y(t),  u(t -  l ) ) r ( t )  +  Ae(t),  

where e(t) =  ym(t) —y(t). Assuming first that <$i and S2 are zero, this means that 

there exist C{ and C ’2 such tha t $ $ $ ) : $  =  CrGi and =  Ci ° 2-

Defining

R(t) =

the dynamic of the error can be written as

(5.28)

'  * ( t ) '

i £
 

---
---

--
1

1--
--- je •

. c ;  -  c 2( t)
(5.29)

e(t +  1) — Ae(t)  = $(t  + 1) tf(* +  l)
Gig

G2gr(t)
(5.30)

(5.31)

Setting z(t  +  1) =  e(t -f 1) — Ae(t)  such that

z(t) = R(t)w(t  — 1),

where w(t  — 1) =  [Gjg G^gr^t — 1)]T, and letting the updating laws for the 

parameters be

Ci(t  +  1) =  Ci(f) -  e(t)z(t)sgn(g(y(t),u(t -  1 )))G f,

C2(t +  1) =  C2{t) -  e(t)z(t)sgn(g(y(t),u(t -  l)))r(* -  1 )G% 

the following result is obtained.

(5.32)
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T h e o rem  1 The origin of the system formed by z(t) = R( t )w( t—1) and equations 

(5.32) is asymptotically stable under assumptions Al ,  A2 with Si = S2 =  0, A3, 

and Af .

Proof:

Consider the following Lyapunov function

V(<) =  +

Then

A V(t) = V{t  +  1) -  V( t ), 

and upon substitution of (5.32) to (5.29), we get

A V(t)  = -2e( t ) z ( ty-Bf*($G2g + VG,gr{t  -  1))

+e(i)2(sgn(g))2(GfGi + GfG2r(t — l)2)2(i)2.
(5.33)

Further, replacing z( t ) with §G\g  +  G\gr(t — 1), yields

A V(t)  =  - z (t f ( 2 e ( t y s M  _  e(i)2(GTGi + G jG jr(t _  1)2)), (5.34)

where e(tf) is defined as

a
t{t) = (\g\(GjG1 + G%G2r(t -  1)*))’ (5'35)

with a  a constant such that 0 < a  < 2. It follows that the system converges to 0 

as t —> oo, and as z{t) represents the input of a stable linear system, then implies 

e(t) —> 0 as t —► oo. 0 0

If there is an error in modelling, i.e. ^  ^ 0  and S2 ^  0, and replacing 6 = 

and z(t)  — 6 = §G\g  +  ^G\gr( t  — 1) in the Lyapunov function given in (5.33), 

then

A y M  =  ~ z (t)2Ot +  Z(0 (|5|(Gj'Gi+G^G2r(<-l)2))- (5.36)

An interesting interpretation of this equation is that the interaction between 

the quadratic term and the effect of the modelling error. The term in z(t)  acts
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as disturbance force, pulling the error away from the origin, i.e. increasing the 

value of the Lyapunov function, but the first term is proportional to the square of 

z ( t ), while the second one is of order to z ( t ), so when z(t) is large the first term 

dominate bringing z(t) to the origin [76]. In this way z(t)  is captured in a zone 

defined by

"  2(t)“  +  (IsKGTGi +  G%G2r(t  -  l ) 2)) =  ° ‘ (5'37)

A bound of z(t) is given consequently by

IkWII <  , 2|lf b r  • (5-38)

By definition GjGi  > 0 for all (y(t),u(t  — 1)) G O.

A practical problem arises if the system is unstable and the learning algorithm 

has a small learning constant, a , the output of the system can grow much faster 

than the necessary control action required to maintain the system operating within 

the range of operational region 0 , where the network has been defined.

5 .2 .5  L in e a r  C a s e

This case can be regarded as a special case of the previous section. The plant can 

be represented by a structure like

y(t +  1) =  P(y(t),u(t))  = f(y(t ))  +  B(z~' )u(t ) ,  (5.39)

where £ ( z -1) is a polynomial defined by B ( z ~a) =  b§z-1 -f . . .  +  bmz m~l . This

system is always invertible if 60 is different from zero, and the inverse is stable

if the polynomial B(z~1) has no roots outside of the unit circle. Given these 

conditions, it is possible to find a stable control defined by

u (t) = y  ( - f ( y ( t ) )  +  R{y(t),r(t)) -  biu(t -  1 ) . . .  -  bmu(t -  m )) , (5.40)
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where /  represents the estimated / ,  defined as /  =  CfGf(y(t)) .  The following 

algorithm based on the gradient is used to update the parameters:

y(i +  l ) =  Aff{y(t)) +  Bu(t ) ,  

e(t ) =

Cf(t  + 1 )=  Cf ( t ) - 7le(t)GTf , 

B(t  +  1) =  B(t)  -  7 2e(t)u(t)T.

The model can be written in the following way

y(t + l) = [Cf  B]
Gj

u(t)

If a bound for bo is known the direct approach can be applied.

(5.41)

(5.42)

5 .2 .6  S im u la t io n s  

System  linear in the control signal

The system is described by the following equation

y(t  +  1) =  f (y( t ) ,  y(t -  1)) +  u(t) =   ̂+  y ^ - 'l ) 2 +  5̂'43^

The identified connectionist model has the following structure

y{t +  1 ) = A f i  (y(t), y(t -  1)) +  u(t),  (5.44)

where Aft  represents a regular gaussian network with 400 units, approximating 

f i  over a defined space, i.e. y(t) 6 [—6,6] and y(t  — 1) € [—6,6] . The control 

objective is to drive the system such that it follows the linear reference model 

described by

yr(t +  1) =  .6 yr{t) +  .2 yr(t -  1) +  .4 r(t). (5.45)

The control signal is given by

u (t) = .6  y{t) +  .2 y(t -  1) -f .4 r(t) -  A/*, (y(f), y(t -  1)). (5.46)
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In this case, the learning algorithm can be applied directly to the system. 

Under these circumstances the parameters of the controller axe adjusted to drive 

the error to zero. As the network has a localised characteristic just the parameters 

of the neighbourhood of that trajectory are adjusted without disturbing the global 

map. The result of this scheme is shown in the first curve in Figure 5.7.

To apply the indirect approach, firstly, the plant equation was identified assum­

ing different initial conditions in the state space and with zero input. Secondly, 

the signal control was generated using the identified system. The response of the 

controlled system is shown in Figure 5.7.

2
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Figure 5.7: a) Direct approach: response of controlled system. b) Indirect 
approach: response of the controlled system.

Fully nonlinear system

The plant to be considered in these examples is described by

y( t  + 1) =  /i(y  (*)) +  /*(**(*)) =  +  “ « 3 (5-47)
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and the model of the system is given by

y(t +  1) =  Ni (y ( t ) )  +  N z (u(t)), (5.48)

where Mi  and Ms represent gaussian nets with 40 and 20 units, representing f i  

and f 2 over an specific defined by y(t) € [—9,9] and u(t) € [—2,2].

For all the simulations a simple first order linear reference model given by

yr(t +  1) =  0.6t/r (£) +  0Ar(t)

was used. The system (5.48) is monotonic with respect to u(t) and therefore 

invertible. Then the control signal can be calculated as

u(t) =  Ms (0.6y{t) +  0.4r(*) -  M t (y( t ) ) ) ,

where Ms represents the connectionist inverse of Ms-

Figure 5.8 shows the response of the system without control and with control 

for an input defined as r  =  s in ( |^ ) .

M ultivariable system

This example illustrates an extension to deal with multivariable cases. The system 

is described by the following equation

=

vi (0 
1+1/2 (*)2 +

Ul(t)

. V2 {t + 1) . . l+i/i (f)2 - _  u2(t) _

The control objective is to follow the reference model given by

.6 .2 y rS )
+

n ( t )

_ 2/2 (* +  1) . .1 - .8  _ . s 6 ( f ) . . r W  .

(5.49)

(5.50)

In this case two networks Mi  and Ms containing 400 units each, were trained 

using random input signal uniformly distributed in the interval [—1,1], the final 

model used is the result of 1200 epochs.
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Figure 5.8: a) Open loop response; b) response of the controlled system.

The control variables are calculated by the following equation

til(f) .6 .2 yiW +
r iW

_ U2(t) _ .  -1 ~ -8 . .  y a ( 0 . .  r 2 W .

The result achieved with the controller is shown in Figure 5.9. Note the effect 

of the initial conditions at the begining of the response.

5.3 Internal M odel Control

The idea followed here is based upon the possibility of training networks to learn 

both a system’s input-output relationship and the corresponding inverse relation­

ship. A suitable control strategy which directly incorporates the plant model (and 

the corresponding inverse model) is provided by the Internal Model Control (IMC) 

[24, 59]. The applicability of IMC to nonlinear systems control was demonstrated 

by Economou et al [19]. The inverse of the nonlinear operator modelling the plant 

was shown to play a crucial role in the implementation of nonlinear IMC. These
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Figure 5.9: a)Response variable y^\ b) response variable y2.

authors studied analytical and numerical methods for the necessary construction 

of nonlinear operator inverses. In this work connectionist networks for the con­

struction of plant models and their inverses are employed, and the use of these 

networks directly within the IMC control structure is pursued.

The IMC structure is now well known and has been shown to underlie a number 

of control design techniques of apparently different origin [24]. IMC has been 

shown to have a number of desirable properties; a deep analysis is given by Morari 

and Zafiriou [59]. Here, a brief summary of these properties is given.

The nonlinear IMC structure is shown in Figure 5.10 (this section follows 

Economou et al [19]). Here, the nonlinear operators denoted by P , M  and C 

represent the plant, the plant model, and the controller, respectively. The operator 

F  denotes a filter, to be discussed in the sequel.

The important characteristics of IMC are summarised with the following prop­

erties:
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d

Filter

Model

Controller Plant

Figure 5.10: Nonlinear IMC structure.

P . l  Assume that the plant and controller are input-output stable and that the 

model is a perfect representation of the plant. Then the closed-loop system 

is input-output stable.

P .2 Assume that the inverse of the operator describing the plant model exists, 

that this inverse is used as the controller, and that the closed-loop system 

is input-output stable with this controller. Then the control will be perfect,

i.e. r = y.

P.3 Assume that the inverse of the steady-state model operator exists, that the 

steady-state controller operator is equal to this, and that the closed-loop 

system is input-output stable with this controller. Then offset free control 

is attained for asymptotically constant inputs.

The IMC structure provides a direct method for the design of nonlinear feed­

back controllers. According to the above properties, if a good model of the plant
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is available, the closed-loop system will achieve exact setpoint following despite 

unmeasured disturbances acting on the plant.

The discussion so far has considered only the idealised case of a perfect model, 

leading to perfect control. In practice, however, a perfect model can never be 

obtained. In addition, the infinite gain required by perfect control would lead 

to sensitivity problems under model uncertainty. The filter F  is introduced to 

alleviate these problems. By suitable design, the filter can be selected to reduce 

the gain of the feedback system, thereby moving away from the perfect controller. 

This introduces robustness into the IMC structure. A full treatment of robustness 

and filter design for IMC is given in [59].

The significance of IMC, in the context of this work, is that the stability 

and robustness properties of the structure can be analysed and manipulated in 

a transparent manner, even for nonlinear systems. Thus, IMC provides a gen­

eral framework for nonlinear systems control. Such generality is not apparent in 

alternative approaches to nonlinear control.

A second role of the filter is to project the signal e into the appropriate input 

space for the controller.

5 .3 .1  N o n lin e a r  I M C  U s in g  C o n n e c t io n is t  N e tw o r k s

A two step procedure for using connectionist networks directly within the IMC 

structure is proposed. The first step involves training a network to represent the 

plant response. This network is then used as the plant model operator M  in the 

control structure of Figure 5.10. Here, the error signal between the model and the 

plant is used to adjust the network weights. Thus, the network is forced towards 

copying the plant dynamics. Full details of the learning law used here are given 

in Chapter 4.

Following standard IMC practice (guided by Property P.2 above) the plant 

inverse model is selected as the controller. The second step in the procedure is
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therefore to train a second network to represent the inverse of the plant. For 

inverse modelling the error signal used to adjust the network is defined as the 

difference between the (inverse modelling) network input and the plant model 

output. This tends to force the transfer function between these two signals to 

unity i.e. the network being trained is forced to represent the inverse of the plant 

model. Having obtained the inverse model in this way this network is used as the 

controller block C in the control structure of Figure 5.10.

The final IMC architecture incorporating the trained networks is shown in 

Figure 5.11.

Model

Figure 5.11: Nonlinear IMC structure incorporating connectionist models.

5 .3 .2  E f fe c t  o f  t h e  D is t u r b a n c e s

For the IMC control, structure shown in Figure 5.10, follows the relationship

u = [I +  F C ( P  -  M)]~l FC( r  -  d) (5.52)
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and the output is

y = P[I + F C ( P - M ) ] - 1F C { r - d )  + d (5.53)

If the controller is equal to the inverse of the model (C =  M ~ l ) and the closed 

loop is stable, then y(t) — r(t) for all t > 0 and all disturbances d(t).

5 .3 .3  S t a b i l i t y  o f  t h e  I M C  S tr u c tu r e

In practice there is always an error between the plant and the model, therefore 

it is essential to known how the system behaves under this discrepancies. Define 

the gain of an operator M,  which maps the domain Dm  into the range R m , as 

the supremum over all u 6 Dm  of the ratios of the norm of the operator output 

of the associated input, i.e.

g{M) = supueDM .

A very conservative bound to assure stability of the closed loop system is given 

by the small gain theorem [17]. For the IMC structure, this translates to

g((P -  M)C)  < 1,

or the sufficient condition

g ( C ) g ( P - M ) <  1. (5.54)

When the plant model mismatch is large the gain of the controller must be 

small and usually this will not be satisfied if the ideal controller is used. Therefore 

the filter F  can be introduced to satisfy the stability condition, and equation (5.54) 

becomes

g(CF)g(P -  M)  < 1,

and shows that as long as C and P — M  are stable, there will always be an F 

satisfying this inequality. In this case the if P  =  M  the closed loop response is 

given by

V =  F(r  -  d).
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As in the model reference approach the use of nonlinear filters can lead to an 

improvement in response without deterioration of the stability of the closed-loop 

system. However, at present guidelines how to design such a filter are not available.

5 .3 .4  S im u la t io n s

The plant to be considered in these examples is described by

y ( t  + 1) =  / i ( y ( 0 )  +  M « ( t ) )  =  +  u W 3' (5 -55>

The system is monotonic with respect to if(2) and therefore invertible. For all 

the simulations a simple first order linear filter F  was used. In this case the main 

objective of the filter was to map the error into the input space defined for the 

controller.

Separable Case

First, the prior information to decompose the system into two parts is used:

ym(t +  1) =  Afi(y(t)) + J\f2(u(t)),

where Afi and M2 represent connectionist networks with 40 and 20 units, repre­

senting f i  and / 2 over a defined interval. Notice that y is used here for training 

the network; when training is complete the network can be used independent of 

the plant with ym(t) as input to Aflm This approach is followed below.

The structure of the inverse of the model can be deduced from the above 

equations; we require the input of the controller r to equal the model output:

r(t + 1) = N 1(ym(t))+AT2(u(t)).

Thus, the control signal u is obtained as
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where is a network with 40 units, representing the right inverse of JV*g.

Figure 5.12 shows the response to reference changes for the IMC structure and 

the response to disturbances and references changes, the system in this case is 

capable of eliminating the step disturbance.

-10
120 140 160 180 200100

-10
120 140 160 180 200100

Figure 5.12: a) Response to changes in the reference signal; b) effect of distur­
bances.

Single N etw ork

Alternatively, the structure of the non-linearity may be ignored. In this case a 

single connectionist network represents the system:

lT(t + l)= .V(y-( t) ,  «(t)).

The inverse is represented by

u{t) = t t - \ y m{t ) , r{ t+  !))•

This represents the right inverse of M . Figure 5.13 shows the response using the 

IMC structure to changes in the reference signal using a mesh of 100 units, and
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the Figure above shows the relation between the input to the inverse and the 

output of the model, that is A/’(ym(i),A/’_i (ym( t ), r(t  +  1 ))).
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Figure 5.13: Response to changes in reference signal using 100 units and relation 
between input to the controller and output of the model.

Figure 5.14 shows the response to changes in the reference signal using a mesh 

of 400 units; in this case the error is much smaller compared with the 100 units 

case. Additionally, it shows the relation between the input to the network that 

represents the inverse of the model and the output of the model, for this case. 

Theoretically, it is possible to increase the number of units to obtain the desired 

behaviour.

Iterative Calculation

The fidelity of the approximation is limited by the number of units. In order to 

increase the accuracy without increasing the number of units it is possible to add 

a refinement procedure over the first approximation using the iterative procedure 

outlined in Section 4.3.2 of Chapter 4.
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Figure 5.14: Response to changes in reference signal using 400 units and relation 
between input to the controller and output of the model.

The method used in the refinement, as described before, is the successive 

substitution. Figure 5.15 shows the results obtained with this procedure as a 

complement to a network with 100 units. Notice the increased accuracy as a 

result of the improvement in the inverse model. The bottom  curve shows the 

relation between the input to the inverse and the output of the model for this 

case.

5.4 Controller B ased On P rediction  M odels

This approach makes use of the model to calculate the control based on an op­

timisation of a certain cost function. The general structure is given in Figure 

5.16.

Depending upon the cost function chosen several algorithms can be obtained.
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Figure 5.15: Response to changes in reference signal using iterative scheme and 
relation between input to the controller and output of the model.
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Figure 5.16: Predictive control structure.
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5 .4 .1  R e c e d in g  H o r iz o n  C o n tr o l

The method, can be summarised as follows:

1. Predict the system output over the range of future time intervals.

2. Assume that the future desired outputs are known.

3. Choose a set of future controls, u, which minimise the future errors between 

the predicted future output and the future desired output.

4. Use the first element of u as a current input and repeat the whole process 

at the next instant.

It has been shown that this technique can stabilise linear systems [16] and non­

linear systems, as well [52].

The objective is to calculate the control such that the error over a future 

horizon is minimised, i.e.

J n 1iN2,n M )  =  i  E f i*  Q (i ) (yr (i + 1) -  y m(i +  <))2

+5 E te i R(i )Au( i  +  t -  l ) 2, (5.56)

where yr represents the output of the reference model and ym the output of the 

plant’s model . The first term of the cost functions is a measure of the distance 

between the model prediction and the desired future trajectory. The second term 

penalises excessive changes of the manipulated variable.

This procedure generates an approximate inverse with almost any desired char­

acteristic by solving this optimisation problem. The process model can be em­

ployed to predict the outputs resulting of a series of inputs. Alternatively, desired 

outputs can be prescribed and the inputs can be calculated such that the pre­

dicted output follows the predescribed output in some optimal manner. If one 

requires that the predicted output agrees with the prescribed one exactly, the 

system inputs resulting from the solution of this matching problem will be the 

same as would be obtained by inversion of the process model. On other hand, if
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one requires the predicted values only to be close to the desired values in the least 

square sense, the solution of the optimisation problem will provide an approxi­

mate inverse of the process model. The characteristic of the approximate inverse 

can be affected by the choice of N\,  N 2, and the weighting constants R(i)  and 

Q(i) in the cost function.

5 .4 .2  S o m e  G e n e r a l  R e s u l t s

In this section we summarise some results about the characteristics of the receding 

horizon controller. This summary is based on references [39],[52] and [51].

Statem ent of the Problem

Consider a plant described as

y(t +  1) =  .. , y ( t -  n +  l) ,u (* ) , . ..  , u ( t -  m  +  1)), O f ,  O n ,

(y ( t ) , . .. , y ( t - n  + 1), u(£),. . . ,  -  m +  1)) € Zt C R n+m, O f ,  (5.57)

y(i) =  a, (5.58)

where /  is a function defined as /  : R n+m —» R, a defines the initial condition of

the system, n > m  > 0, and Zt defines the admissible region for the control and

state signals, such that the moving horizon cost at time i is

1 n 7 ,  n 2

=  9  Z  He(fc +  *)ll«(t) +  9  Z  IIA u(fc +  * -  (5-59)
Z k=Nj. Z k= 1

Here, e(t) is defined as e(t) =  yT(t) — y(t), Au(t) = u(t) — u(t — 1) , || • || defines the 

L 2 norm, N 2 defines the horizon, and Ni  defines the minimum prediction horizon. 

The reference model is described by

yT(t +  1) =  g(yr( t ) , . . . , y r( t - n r +  1 . . .  , r( t  -  m T + 1)),

( f ( t ) ,  . . . , y r( t - n r + l), r(t), . . . , r ( t - m T + 1)) € 2 (r C t > i,

y r(i) =  b. (5.60)
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Initially, the model and the plant are in different steady states, that is yr(t) =  

yr(t -  1) =  . . .  =  yr(t — nr) = b and y(t) =  y(t -  1) =  . . .  =  y(t -  n) =  a.

The problem is to determine a sequence {u(k)} £ 7 2 which minimises the cost 

given by (5.59), subject to (5.58), (5.60) and the additional constraints

i < t < i  + N 2 , y{i +  N 2) = yr{i +  N 2). (5.61)

This means that the reference model must have a settling time less than or equal 

to JV2, that is yr(i +  N 2) =  where the subscript ss stands for steady-state. 

The demonstration of existence of the solution, stability of the closed loop system, 

and robustness are based on references [39], [52], and [51].

The minimum prediction horizon Ni  is usually chosen zero, but it is useful to 

choose Ni > 0 when the system has a time delay or when it is asymptotically 

non-minimum-phase. The maximum prediction horizon N 2 has an effect on the 

rise-time of the response, and must agree with the rise time of the model. If the 

system is minimum-phase, the minimum value of Ni  should be greater than the 

time required by the system to cover the greater positive going part [16].

A ssu m p tio n s  and  N o ta tio n

For * >  0, b — a 6 P , let P( i , b — a) be the problem of minimising the cost «/,-

in (5.59) subject to (5.58), (5.60), and (5.61). A sequence {(e(fc), A u ( k ) ) } ] ^ 2 is

admissible to P (i, b—a) if it satisfies (5.58). For i > 0, let Y ( i )  =  {b—a : P(z, b—a)

has an admissible sequence for which Jj is finite }. Let V(i ,b  — a ,u* ,N2) be the

optimal cost of P(z,6 — a,u*, N 2), and hk = \\\e(k +  «)llQ(ik) +  § 4 -

then the index (5.59) can be written as
n2

J*  -  ]C M e(fc + + 0)>
k = l

where Q(k)  =  0 for 1 <  k < N\  .

The basic assumptions adopted here are:

A .l  For each k > 0 Zk is closed. The functions /  and g are continuous and the 

function hk is lower semicontinuous.
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A .2 3 Hi £ C°°, such that

hk(e(k), Au(k))  > i7i(||e(fc), Au(fc)||) 

with k > 0 and (e(fc), Au(&)) £ R 2.

A .3 3 H 2 € C00, such that

hk(e(k), Au(k))  < H2(\\e(k), Au(A;)||) 

with k > 0 and (e(k), Au(k))  £ P 2.

A .4 N 2 > Ac where Ac is the index in the definition of property C, see section 

4.2.2.

M ain R esults

T h e o rem  2 Suppose A .l ,  A .4 hold and b — a £Y{  . Then P (i, b — a, A2 ) has a 

solution.

P roof:

Assume A .l  and A .4 are satisfied so that, V i > 0 a £ Yi(k), there is an 

optimal control sequence {^(fc)}]^2 for the problem P(i ,b — a , N 2 ), which is a 

finite dimensional problem that corresponds to minimising a nonnegative, lower 

semicontinuous function (J t) with respect to the variables {(e(fc), A u ( k ) ) } ] ^ 2 

on a closed set (nS£72 Zk) subject to equality constraints involving continuous 

function e(i) = b — a and y(i +  N 2 ) = yls). This together with A .4 is sufficient to 

imply the existence of a solution [39].

The existence of a bounded closed region in y(t) and u(t) spaces, and the as­

sumption that /  is continuous is then enough to assure the existence of a solution. 

Any admissible choice of control variable automatically yields and upper bound 

for J .

The problem of uniqueness of the minimising control requires some convexity 

conditions over Zk and hk, which play a major role in determining the structure 

of the solution [7].
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T h e o rem  3 Suppose (5.58) satisfies property C and assumptions A .l  - A .4 hold, 

then for alH  > 0 and b — a £ Y{ lim ^oo e(k , b — a) =  0.

P roof:

Consider [39]
t + N 2

V(t ,e(t) ,u*,  N 2) = ht(e(t), Au*k(t)) + hk(e(k),Aul(k)) ,  (5-62)
k = t + l

define
t + N 2

V(t + l ,e( i+l) ,uI ,JV2 - l ) =  £  h ( e ( k ) , Au l ( k ) ) ,
k = t + l

where u* is the sequence of length N 2 — 1 defined by {tt*(fc)}£U+u and with the 

sequence u* given as

u*, t +  1 <  I <  A2;
«?(l) = {  ~ ~  (5-63) 

k Cn> / =  a 2 + 1 .

By definition of the index and by the fact that u*(t) is not necessarily optimal for 

P(t  +  1, e(t +  1), A2), we have

V(t +  1, e(f +  l),u*, A2 — 1) =  V (t-f l ,e (f  +  l),u*, iV2) >  V(<4-1, e(f +  l),u*+1, A2).

(5.64)

Considering (5.62) and (5.64) the following expression is obtained

V{t , e( t ) ,u*,N 2 ) - V ( t - \ - l , e ( t - \ - l ) , u * +11N 2) > ht(e*(t),Au*{t)).

Then,

V( i , e ( i ) , u ' , N 2) > V ( i , e ( i ) , u l N 2) - V U , e ( j ) , u ' j t N 2) > ^ h k(y(k) ,Av^(k))
k=i

for j  > i. Since j  can be arbitrarily large
0 0  0 0

V(2 ,e(*),iz*, N 2) > ^ 2  hk(e(k),Au*(k)) > ^  hk(e(k +  t), Au*°°(k 4- *))»
k = i  k = i

where u*°°(k) is the optimal control with infinite horizon, then, as V( i , e(z), tt*, N 2)

is a finite quantity, A .4 implies Hi(\\e(k),  Au(&)||) —► 0 as k —► 0 0 . Hi £ C°°

implies ||e(fc), Au(&)|| —* 0 as k —> 0 0 . <̂<£>
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Theorem  4 Suppose that assumptions A .l  - A .4 are satisfied. Then there exists 

an admissible system model discrepancy, such that, for the same reference model 

g , there is a positive constant 7  such that

V(t , ea( t ) ,ui ,N2) -  V(t + l,e'(* + l),u*+1, N2) < 7 ,

where es(£) =  yT(t) — ys(t), and y s(t) represents the real output of the system. 

Proof:

Consider

t+ N 2
V(t,  es(t),u*, N 2) =  ht(es(t)yAu*(t)) + ^  hk(es(k),Au*k(k)). (5.65)

k = t+1

Define
t+ N 2

V(t +  l , e \ t  +  l ) , u ; ,N 2 - l ) =  J2 hk(e‘(k),Aul(k)) ,
k = t+1

where u* is the sequence of length N2 defined by {uj(0}|=<+i> and the sequence 

u* as

f tzT, t -f* 1 ̂  N2i 
« , * ( / )  =  !  ~  ( 5 . 6 6 )I u-(T), I = JV2 + 1.

By definition of the index and by the fact that u*(t) is not necessarily optimal for

P(t +  1, e(t -f 1), A2), we have

V(t +  1, es(t +  l) ,u j ,  N2 — 1) =  V(t +  1, es(t -f 1 ), u*,N2) — ht+N2+i(e*(N2 +  1), 0)

> V(t +  l ,e s(£ +  1),uJ+1 ,A 2).
(5.67)

Considering (5.65) and (5.67) the following expression is obtained 

V(t, es(t), <, N2) - V { t  + 1, es{t + 1), uf+1, N2) >
(5.68)

ht(es(t), A u*(t)) — ht+N2+i(es(t + A2 +  1), 0).

Letting 7  =  ht(es(t), Au*(t)) — ht+jv2(es(t -f N2), 0) the desired result is ob­

tained.
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Ideally es(t +  N 2 +  1) is equal to zero, by calculation of u , but as an effect of 

the mismatch between the model and the real system there is an error at the final 

time expressed by es(t +  N 2 +  1) =  ys(t +  N 2 +  1) — ym(t +  N 2 +  1).

This proposition shows that the system can deal with model discrepancy, but 

does not give the lower bound for this discrepancy that results in a stable closed 

loop system. The second term in 7  reflects the mismatch between the model and 

the real system. The effect of not meeting the final condition in the optimisation 

process yields to the same result, and therefore the closed loop stability cannot 

be guaranteed if there is a big discrepancy.

5 .4 .3  M in im is in g  t h e  F u n c t io n a l

To minimise the functional (5.59) a simple gradient algorithm was used, although 

more efficient, but at the same time more complex, algorithms can be applied [3 9 ],

[69].

Defining the vector

x (k) = [v(k) • • •, y(fc - n), u(k -  1 ) , . . . , u(k -  m)]T 

the system represented by (5.58) can be expressed in a state space equation as

0  . . . 0 0  . . . 0 f{x{k) ,u (k))

I n *•
•

0

x(k  4 -1 ) =
0  . . . 0

:
x(k)  +

0  . . . 0 0  . . . 0 u(k)

• I m - 1 0

0  . . . 0
;

with the output defined as

y(k) =  [1 , 0 , . . . ,  0 ]z(&).
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Define A , F1, and C such that

x(t + 1 ) =  Ax(t)  +  F(x(t),  u(t)) 

y(t) = Cx(t ),

and consider the quadratic index

n 2 n 2

j(®(o),M|jfe) =  Ja +  Jb =  -5{52Q{k)(yr(k) -  y(k))2 +  53 ~  1)2R(k )]̂
k= 1 k=l

where A u(k) =  u(k) — u(A: — 1 ).

Taking the derivative of Ja

(5.70)

with <̂ a,A+i given by

n 2 -  i
<̂ a,i+l =  53

*'=A:+1

TT ^ 0 ' +  1 )
j=k+i duU)

Q( j ) ( ( yr(j) -  y( j ) )

results in
dJa &r(fc +  l)

=  O—  ̂ — Oa,fc+1 .du(fc) ~ dtf(fc)

The quantity 6 a,fc+i can be calculated in the recursive form

dx(k)
$ a ,k —1 — du(k — 1 ) 6a* + QU) ( ( vrW  -  y W),

with

6 a , N 2 - i  = Q(N2)((yr(N2) - y ( N 2) \

(5.71)

(5.72)

and

The derivative of Jb is 

dJb
du(k)

n  ft* (j +  1 ) j- w . .

=  R(k)Au(k)  — R(k  +  l)Au(A; 4-1).

Finally,

d J  dJa +  M  £ =  0 , . . . ,  JV2 — 1.
du(fc) du(k) du(k)

(5.73)
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In practice the derivatives are calculated using a connectionist model,

dx(k  -f 1 ) d F
du(k) du(k)

_9/_
d u ( k )

(5.74)
0  

1

0

As u can have a parametric representation, the problem can be transformed 

to the adjustment of the parameters of that representation.

For a first order plant defined as

y(t + 1 ) =  f (x ( t ) ) ,

with x( t ) =  [y( t ), u(t)], the derivatives of the output against an input variable are 

estimated from the model and used to calculate the gradient in each iteration:

“ ISP = “ lit?2 + 4  + Vu|w „ ) , (5.75)

where 77 fixes the step of the gradient, Ja(i) =  EitS+JVi Q(k){yr(i + k ) —ym(i + k))2, 

Jb =  R(k)Au( i  +  k). The gradients are calculated as

V .1+7̂2 Ja —ul»+*

d y m ( i + N 1)

\  0

d y m ( i + N 2) > 
d u ( i )  ' ( {y r{i +  Nt ) -  ym(i + 7V,))Q(iV1) \

. . .  \ ( f ( i  + N 2) - y " ' ( i  + N 2))Q(N2)J
(5.76)

( R {  1) - R {  1) 0

0 R(  2 ) - R (  2 )

V ,i+N2 Jbul»+fc
0

\  0

\  /  Ati(i) \  

A u(i +  1 )

R ( N 2 - 1 )  R (N 2 - 1 )  

R (N 2) )

A u(i +  N 2 — 1)

V Au(i +  N2) )  
(5.77)
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where A u(t) =  u(t) — u(t — 1). The model can be represented as a gaussian 

network, with ym(t +  1 ) given by

N m

y"(t + l) = £ « J W * W ) .  (5-78)
t = l

Here, N m represents the number of units in a connectionist network, c,- a linear
II*-/*.-II2

coefficient, and 9 mt<ri{x(t)) is a gaussian function defined as e

To calculate the partial derivatives the following formulae were used for each 

control action u(k) with k =  l , . . . , ^  and j  =  Ah, . . . ,  N 2 — 1. The partial 

derivative Dk,j = dVdu(k)^ can calculafed as:

k = j ’

Dkj  =  { D u - t  e £ i  k < i ;  (5-79)

0, k >  j .

At the end of the optimisation process it is necessary to verify that the condi­

tion yr(t +  A^) =  ym(t +  Â2) is met.

For every starting point in the optimisation process, x m(t) =  [y(^),. . .  ,y(i — 

n ) ,u ( t ) , . . .  ,u(t  — m)], there is an associated optimal value of tx*. Thus, Uk can 

be expressed as

uk = Afc(xk, rk), (5.80)

where Afe is an operator to be represented by a connectionist network. This

network becomes the controller C in the overall control structure.

5 .4 .4  E f fe c t  o f  t h e  D is t u r b a n c e s

It is important to include a reasonable representation of likely disturbances since 

the correct controller structure can then be deduced. As it has been pointed out in 

[25], it should not be necessary to force the controller to have integral action, but 

rather this structure should arise naturally from reasonable assumptions about 

the dynamics of the controlled system.
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In this case, the general prediction model is used to calculate the control signal 

including an estimate of a step-like disturbance. The general model is given by

N m

ym(t +  1 ) =  ] C cr W ,M < ) )  +  d(t),
1 = 1

where
d(t) , k  > i

d{t +  1 ) =  (5.81)
k ( y8{ t ) - y m (i))  ->k  =  i

where k is the predictive index, which starts from i.

The disadvantage of this approach is that it assumes independent states of the 

model, this assumption can be dangerous in nonlinear systems as was explained 

in Chapter 4.

5 .4 .5  C o m m e n t s  o n  D if f e r e n c e s  B e t w e e n  L in e a r  a n d  N o n ­

l in e a r  R e c e d in g  H o r iz o n  F o r m u la t io n s

The approach presented here is an extension of the linear case studied by Kwon 

and Pearson [43] and further developed to the nonlinear case [55], [39], and [10]. 

From this point of view it is closely related with GPC [14], the main difference 

is that the former approach specifies a constraint at the final time, the effect of 

this extra specification is that the stability of the closed loop is established. On 

the other hand, in the GPC approach to get stabilising closed loop controllers a 

constraint on the increment of u(t) is imposed, but the problem with this strategy 

is that it is almost impossible to ascertain how to restrict the increments of u(tf) to 

achieve the desired result [60]. In the nonlinear case the analysis is more difficult, 

because it is not possible to solve the control law for a general model, under this 

condition the introduction of an scheme like GPC can be dangerous in that the 

conditions to get closed loop stable system are almost impossible to obtain in a 

general way. As a general recommendation it is preferable to use a condition in 

the final state, in the same way as in the linear case it is possible to establish the 

closed loop stability of the system at the expense of more calculations.
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5.4.6 Sim ulations

The plant to be considered in these examples is described by

132

y(i) +  u(t)3. (5.82)
1  +  y{t)2

The system is monotonic with respect to u(t) and therefore invertible. For all 

the simulations a simple first order linear reference model given by

yr(t + 1) =  . 6  y(t) +  Au(t)

was used.

First, we make use of the prior information to decompose the system into two 

parts:

ym(t +  1 ) =  Mi (y(t))  +  N 2{u(t)),

where Mi and M2 represent connectionist networks with 40 and 20 units, which 

representing f i  and f 2 over a defined interval. Notice that y is used here for train­

ing the network; when training is complete the network can be used independent 

of the plant with ym(t) as input to Mi.  Defining the index as

3  3

Ji,3,3 =  ^ 2  Qi})(yri} +  *0  -  ym(} +  & ) ) 2 +  2  + 1 - 1 ) -  «(* + 1 -  2 ) ) 2
k= 1 k=1

the following are obtained

* 7 $ ?  9- ^  /  ( / ( <  +  ! ) - » " ( < +  D W ( 1 )N

V..|t+2 Ja =t+1
d y m ( i + 2) d y m ( i +3 )  
9 u ( t+ l )  3 u ( t+ l ) (yT(i +  2) — ym(i + 2))Q(2) 

\ ( y ' ( i  + 3 ) - y ”'(i + 3))Q(3)J
(5.83)

f  u(i) -  u(i -  1 ) \

u(i +  1 ) — u{i) 

\ u ( i  +  2 ) — u(i +  1 ) /

(5.84)0 R(  2) - R (  2)

0 0 R(3) I

Figure 5.17 shows the error response between the output of the system and 

the reference trajectory for A =  0, JVi =  1 and N 2 =  6 . In this case a perfect
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Figure 5.17: Error between response of the system and reference trajectory and 
control signal for A =  0 .

tracking of the reference is obtained, which means that the controller is acting as 

the inverse of the plant plus the reference model.

Figure 5.18 shows the response of the system and the reference trajectory for 

A =  30, Ni = 1 and N 2 =  6 . In this situation it is possible to have a certain error 

in the output, so the controller is not the inverse of the plant plus the reference 

system but some “detuned” approximation.

5.5 Sum m ary

In this section we compare the different approaches according to their basic char­

acteristics and the type of systems for which the are applicable, in particular we 

answer the following questions for each method.

Q1. Has a scheme any robustness to unmeasured disturbances and modelling

errors?
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Figure 5.18: Error between response of the system and reference trajectory and 
control signal for A =  30.

Q2. Does the method consider the rejection of disturbances?

Q3 Can the method be applied to control unstable systems?

Q4 Is the closed-loop internal stability guaranteed for non-minimum phase 

systems?

Q5 Is the closed-loop stability guaranteed ?

The answer to these five questions are summarised in Table 5.1, an (*) indicates 

that the available theory is limited, and an (-) indicates that question is not 

relevant for that structure.

5.6 Conclusions

This Chapter has outlined different approaches known in linear control theory, 

which have been extended to deal with nonlinear systems. It seems that the same
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Method Q l Q 2 Q3 <34 Q5
Inverse
Model Reference 
Internal Model 
Predictive Control

no
no*
yes
yes*

no
no
yes
yes

no
no
no
yes

no
no
no
yes

no
yes
yes

Table 5.1: Summary of characteristics.

limitations and advantages of these approaches in linear system are carried over to 

the nonlinear counterpart. Firstly, the inverse control approach was investigated 

pointing out the limitations due to minimum-phase characteristic and reachable 

regions, and how to overcome them. The main disadvantage of this approach is its 

open-loop nature, which can be overcome using a linear controller. This approach 

is similar to the linearising approach [82] in that the linear controller is designed 

just considering linear dynamics. The main difference stems from the fact that 

using an inverse there is no need of calculating the derivatives of the functions in 

each operational point.

Secondly, the Model Reference control approach was described as the problem 

of solving a functional equation. From this point of view several algorithms were 

derived and the convergence for a particular case was proved.

The use of connectionist networks for nonlinear Internal Model Control was 

also explored, where the model of the plant is used directly in the loop to estimate 

the effect of disturbances.

And finally, the use of connectionist representations in the Receding Horizon 

control approach has been addressed. The results show that this approach is 

feasible for application and the method also has the flexibility to deal with some 

practical issues such as disturbances and modelling error.



C hapter 6 

A pplications

SUMMARY

In this Chapter two potential industrial applications are described. The 

first one is the classical pH control problem, and the second one is the 

control of a rolling mill. For each application a comparative study 

among the different nonlinear strategies and linear solutions is done.

6.1 pH  Control

In this section, the control of a pH plant using connectionist representation is 

addressed. Four nonlinear control schemes based on connectionist representation 

of the controlled plant are developed and compared. It is shown that it is possible 

to achieve better results with the connectionist approach than with a linear control 

scheme. Some limitations imposed by the nonlinearity of the plant and the degree 

of approximation of the model over the different connectionist approaches are also 

studied.

6 .1 .1  B a s ic  M o d e l

The neutralisation is a chemical process involving significant nonlinearities. This 

feature can be so severe that classical linear feedback control does not always

136
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lead to a satisfactory performance. In the simplest form the process consists of 

a stirred tank in which waste water from a plant is neutralised using a reagent, 

usually a strong acid or a strong base (see Figure 6.1).

control signal

reagent flowinlet flow

wastewater

measured
signal

pH sensor

outlet
flow

Figure 6.1: Process diagram for the pH plant.

The following assumptions are used:

• The inlet flow of waste water is constant and much greater than the control 

flow.

• The dynamics of the valve are negligible.

• The chemical reactor is well stirred.

• The chemical reactions are much faster than the mixing dynamics.

Let X a(t) be the concentration of a substance a in the reactor tank, Xin(t) the 

inlet concentration of a, <?,n the inlet flow, and V  the volume of the waste water 

in the reactor tank. A mass balance for the substance a gives

=  X l { t ) q in{t) -  q„*X'(t) ,
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where qout is the outlet flow. A mass balance of the reagent in the reactor gives

dcit) . .
* — C\t)(lout “1“ ^m̂ Ztnvv*

The basic relation between the concentration c(t) and pH is given by the titration 

curve. In this example, a process studied in [92] will be used. It concerns neutral­

isation of waste water, containing amonia and sodium hydroxide, by hydrochloric 

acid.

The pH is measured with a pH-sensor that is assumed to be faster than the 

dynamics of the process. This means that the measurement equation is

y(t) = pH(c(t)) + w(t),

where w(t)  represents the noise. From this equation it can be seen that it is 

reasonable to describe this process by a Wiener model. The titration curve used 

in the simulations is shown in Figure 6 .2 .

12

li
10

9

8

7
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5

4

3

2
0.015 0.0250.005 0.02 0.030 0.01

concentration in die tank

Figure 6.2: Titration curve.

The discrete transfer function used is given by

_lx 0.0036262- 1 

H{Z~ } =  1 - 0 0 .8 1 8 7 , - '
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6 .1 .2  L in e a r  C o n tr o l

A linear discrete PI controller is described by

u(t) =  K (  1 +  ^ r - L - r )e(f);

Ts denotes sampling time, K  and 77 the parameters of the controller, and e(t) = 

r(t) — y(t). The system is controlled by this conventional controller with no 

compensation for the static nonlinearity.

The system was first linearised around an operating point where the slope of 

the static linearity is

resulting in the following transfer function

v '  1 — 0.8187z-1

The gain K  and the integration time 77 were determined to give the linearised, 

closed loop system a double pole at z = 0.8 [92]. This leads to the following 

parameters

K  =  -.0246, 77 =  89.4.

The closed-loop responses for different setpoints with this linear regulator are 

shown in Figure 6.3. Notice the oscillations in those zones where the gain is too 

high, producing limit cycles.

6 .1 .3  I d e n t if ic a t io n

The model of the plant in this case is a Wiener model, i.e. a linear dynamical model 

followed by a static nonlinearity (see section 4.1, page 73, formula (4.15)). This 

model has a recursive input-output representation provided that the nonlinearity 

is invertible [45]. The structure of the model is given by a nonlinear relation 

between the past value of the input and past value of the output,

P -  »(< + !) =/(»(*)• “ (<))•
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Figure 6.3: Response of the system under conventional PI controller.

A connectionist model was used to model the system. The model uses gaussian 

units and is described by

N

AT ' y{t 4 -1 ) =  X) «(*))> (6 .1 )
1 = 1

where =  exP( ^  an(j an(j ^  are pa_

rameters to be estimated. In this case the noise has not been modelled.

The connectionist representation was trained to learn the relation between the 

actual output y(t) and past output y(t — 1 ) and the control signal u{t — 1 ). The 

identification was done using a batch algorithm and presenting a set of training 

data consisting of 120 points distributed all over the space of [y(k — T), u(k — T)]. 

In order to obtain a representative training set not only a sufficient excited signal 

in time but also in magnitude is needed. The maximum deviation between the 

system and the model of 5% was obtained.
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6 .1 .4  I n v e r s e  C o n tr o l

The first strategy to be considered employs a connectionist representation trained 

as the inverse function of the plant and used as a controller. There are two 

approaches to get the inverse. The direct approach assumes the plant to be 

invertible and the input-output data is used to build the inverse. In a indirect 

approach, a model is used instead of the real plant in order to generate the inverse

[35].

The right inverse of the system Afj is defined by a gaussian network described 

by the following relation

N

•A/j : U(t) =  +  1 ),SK*))>
i = l

where gmi,<Ti{y{t +  l) ,y( t))  =  exp(~(y(*+i)-mJ —(»(*)— ) ) wag identified using a 

synthetic signal and 1 2 1  units.

In this case the inverse is not defined in the whole domain. In fact there 

is a reachable region defined by those states which can be reached by one step 

control [44]. This region is limited by the nonlinearities and the saturation of the 

controller. The reachable region for the system is shown in Figure 6.4. This means 

that a regular gaussian network, with its centres fixed in a rectangular grid, is not 

the most suitable architecture to approximate the inverse.

Once the parameters of the inverse representation have been adjusted, the 

inverse can be cascaded with the plant. The response of the system is shown in 

Figure 6.5. As the inverse is not perfect some steady-state errors are present in 

the response.

To eliminate steady-state errors due to modelling errors and effects of distur­

bances a PI controller was added as shown in Figure 6 .6 . The adjustment of the 

controller only alters the response to disturbances, because the feedforward path 

gives the desired performance for changes in the set point.

The closed loop response of the system plus inverse is given in Figure 6.7.
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Figure 6.4: Reachable region for the system.
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Figure 6.5: Response of the system under inverse controller.
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Figure 6 .6 : Inverse control plus PI.
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Figure 6.7: Response of the system under inverse system plus PI controller.
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6 .1 .5  M o d e l  R e f e r e n c e  C o n tr o l

The second control scheme tested was Model Reference Control. As in [61] the 

plant P  with an input-output pair {u(k), y(k)} is given. A stable reference model 

R  is specified by its input-output pair {r(k), yr(k)}, where r(k) is a bounded 

function. The aim is to determine the control input u(k) for all k > k0, so that

lim |y(k) -  yr(k) | < e
AC—VOO

for some specified constant e >  0 .

Here an indirect approach was used [61], i.e. a model of the system is used to 

estimate the inverse. The model reference is given by

yr(t +  1 ) =  R(yr(t),r(t))  = 0.8 yr(t) +  0.2u(t).

The output error is defined as e(k) =  y(k) — yT(k), the aim of the control is to 

determine a bounded control signal u{k) such that lim ^oo e(k) =  0. If the inverse 

of the system A/j, that is «/Vj o V  =  Z, is known exactly the control signal can be 

generated as

u(t) =  Afx(0.$y(t) +  0 . 2 u(t), y(t)).

If the inverse is perfect the dynamics of the error is given by

e(t +  1) =  0.Syr{t) +  0.2u(t) -  P  (A/r((0.8y(<) +  0.2u(t), y(t)), y(t))

and simplifying

e(t +  1 ) =  0 .8 e(t), (6 .2 )

which is a stable system. As some modelling errors are always going to be present, 

the output error e(t) is never going to be zero. Modelling errors act as a forcing 

function for the system described by equation (6 .2 ).

The structure of the scheme is shown in Figure 6 .8 . The model reference must 

be such that the inverse can follow the input signal without falling outside the 

reachable region.
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I n v e r s e

-1

Plant

Figure 6 .8 : Model reference scheme.

The response of the system including noise is shown in Figure 6.9. As can 

be seen from Figure 6.9 the performance of the controller is the worst in those 

zones where there is a poor approximation to the inverse, leading to responses 

with steady-state errors.

6 .1 .6  I n t e r n a l  M o d e l  C o n tr o l

The third connectionist strategy considered was Internal Model Control. In the 

structure of this approach two aspects are considered, the control of the plant 

due to changes in the reference signal and compensation of disturbances through 

estimation. The general scheme is shown in Figure 6.10, where two networks are 

included, one representing the model of the plant and the other the inverse of the 

model. Once the model was obtained; it can be included in a control loop. The 

inverse of the model must be obtained, to get the inverse a network is trained to 

learn the inverse relation between the variables. The filter F  plays two important 

roles in the design process: reducing the sensitivity loop against perturbations 

and unmodelled dynamics, and mapping the input signal to the inverse operator 

according to the reachable states. There is no theory yet developed to design the 

filter for nonlinear systems. In this case the filter was chosen as
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Figure 6.9: Response of the system under model reference approach.

_lN 0.4z 1

F{Z~ } = 1 -  0.6z-V

If the gain of F  is equal to one and if in steady-state A/j o Af  =  J, then y =  r, 

no m atter if there are discrepancies between the model (M) and the plant (P).

The Figure 6.11 shows the response of the system following different output set- 

points, and the control signal. The saturation of the input signal was introduced 

considering the range of operation and invertibility of the relations.

The main drawback of this scheme is that it can only be applied to a stable 

plant. In addition, for a linear non-minimum-phase system only the minimum- 

phase part of the plant can be considered for building the inverse. For nonlinear 

systems, the extension of this concept is not trivial and includes the zero dynamics 

as mentioned in section 5.1 of Chapter 5 .
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Figure 6.10: Internal model control scheme.
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Figure 6.11: Response of the system under internal model control.
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6 .1 .7  R e c e d in g  H o r iz o n  C o n tr o l

The last strategy investigated was Receding Horizon Control. In this case no 

inverse is needed to control the system, the control signal is calculated on line. 

The index to be minimised in this case is a quadratic index defined by

J ( t , N) = ^2{yr(t P i ) -  ym{t +  i))2Q{i) +  R(i)(u(t  +  i -  1 ) -  u(t +  i -  2 ))2.
t=i

As there are discrepances between the model and the real plant an estimation of 

the disturbance is introduced to assure steady-state error between the reference 

model and the plant. The stability of the closed loop system is based on a final 

constraint in the optimisation index [39], this constraint is expressed in terms of 

the following equality

yr(t + N)  = ym(t + N).

The gradients are calculated as

I t+JV J  =

d y m ( t + 1) 
d u ( t )

o . y V (yr{t +  N )  _  J,m(f +  N ))Q (N )  y
+

(R{T) —R(l)  0

0 R{ 2) -12(2)

\  /  A u(t) ^

A u(t + 1 )

0

V 0 0

R ( N  -  1 ) R ( N  -  1) 

R(N)  )

A u(t +  N  — 2)

V Au(t  +  N  — 1 ) )
(6.3)

where A u(t) =  u(t) — u(t — 1 ). If the model is a gaussian network, ym(t +  1) is 

given by equation (6 .1 ), and is a differentiable function.

Figure 6.12 shows the response of the system and the control signal following 

different output set-points. Introducing a weighting factor to the deviation of the 

control signal, it is possible to obtain the response shown in Figure 6.13 with less 

abrupt changes in the control signal.
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Figure 6.12: Response of the system under receding horizon control, R  =  0.
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Figure 6.13: Response of the system under receding horizon control, R  = 1.
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6.2 Sum m ary and Conclusions

Even though the pH process is very simple in terms of its dynamic character­

istic it is highly nonlinear, which makes it difficult to control with conventional 

techniques, but amenable to be modelled by a connectionist representation. In 

particular, this application has revealed some practical issues like the problem 

of reachable states due to saturation of actuators, and the range of operation 

for the variables involved when control with connectionist representation is used. 

Some other issues related with the dynamic characteristic of the process like non- 

minimum-phase property and time delays need to be addressed.

A regular gaussian net is not efficient for the approximation of the inverse, 

when the plant is nonlinear and has restrictions on the actuators.

Inverse Control presents an attractive and simple design procedure, but lacks 

capabilities to cope with disturbances. To overcome this difficulty an external 

linear controller can be included to improve the performance of the scheme.

Model Reference Control in the form described in this work does not provide 

the necessary conditions to deal with disturbances. Also, the reference model 

must be chosen considering the possible reachables states.

Internal Model Control makes an efficient use of the model and its inverse 

to provide a clear design procedure to control nonlinear systems, overcoming the 

effect of modelling error by introducing the model within the loop. As this scheme 

uses the inverse of the system, the restrictions imposed by the reachable states 

must also be considered.

Finally, Receding Horizon controller gives the necessary degrees of freedom 

in the design to cope with the problems mentioned before, and additionally the 

responses are satisfactory.
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6.3 Control o f Steel M ill Strip Thickness U sing  

C onnectionist M odels

This section describes different methods of controlling the thickness in a simulated 

steel mill. The unknown nonlinear relation between the variables has been rep­

resented by a connectionist network, which has been trained with input-output 

data from the simulated plant. In comparison with conventional methods this 

approach gives better performance against disturbances. Three approaches are 

considered: PI, Internal Model Control, and Receding Horizon Control.

6 .3 .1  R o l l in g  M il l  M o d e l  a n d  C o n tr o l  P r o b le m

The basic physical representation of the process and the relevant variables involved 

in the control problem are given in Figure 6.14, and summarised here:

Figure 6.14: General diagram of a rolling-mill.

he : strip thickness at entry to stand

ha : strip thickness at output of stand

So : roll gap with zero rolling force

sr : dimensions of the roll stand with zero rolling force
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Vi : stand input velocity 

vw : stand output velocity 

f w : rolling force 

M '  : spring constant

The measured variables are he, ha, ui, f w and vw and the control variable is s0- As 

shown in Figure 6.14 the roll dynamics can be viewed as a damped spring system 

with an effective displacement input of s0 (the roll gap).

Basic equations - nonlinear m odel

The basic equation which establishes the relationship among the variables is given 

by the equilibrium point determined by the characteristics of the material and the 

working curve of the stand.

The characteristics of the stand can be represented by the linear relation given

by

fw =  M '(ha -  So), (6.4)

where M 1 is constant. The characteristic of the material is given by

fw = }{i< , cr, /Z, R)yJ(he -  ha) +  /e, (6.5)

where

K  : mean yield stress [ ^ ]  

a : mean applied tension stress [ ^ ]

fj. : coefficient of friction between work roll and strip in roll gap 

R : deformed roll radius [m]

f e : output elastic recovery [N].
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In order to simulate the system a simplified version of (6.5) was used,

fw =  Vayj{he -  ha),

where Vs is a function of Vi,

V, = v-

(6.6)

(6.7)
2 t>i*al +  vx

Here, v =  111803399[^] and v™ax =  5[^]. The equilibrium point, with s0 =  sj, 

Vi = he = h*e constants, is given by the intersection of two curves, namely 

equations (6 .6 ) and (6.4), as shown in Figure 6.15.

r o ll force

stand suspension characteristic

material characteristic

hh r o ll gaps a

Figure 6.15: Nonlinear relation between roll-force and effective output width.

As equation (6 .6 ) is quadratic it is possible to obtain a closed solution for the 

intersection point (he). In fact, considering

M '{ K  -  So) = V ^ { K  -  K )  

and solving for ds = ha — d0, gives

r
=  2M °

where

b = Vs,

(6.8)

(6.9)

c =
b4 

4 M '4
b2

(6 .10)
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E q . ( 6 . 6 )

Eq.(6.9)

Eq.(6.10)

E q . ( 6 . 8 )

Then

and

Figure 6.16: General sequence for the solution of the equations.

ha — sq ds

f w =  M'ds.

In addition, the relation between the velocities is given by

hev i
=

(6.11)

(6.12)

(6.13)

The general simulation scheme is shown in Figure 6.16.

In any realistic simulation it is necessary to include the effect of measurement 

limitations, namely dead time and noise. If the sensor is located la metres from 

the rolling mill, the dead time associated with the measurements is Ta = -f®-. On 

the other hand, for he there is associated a delay related to V\ given by Te =  ĵ-. 

The noise effect was not included in the simulations. All dynamic effects from the 

actuators and sensors have been ignored.

L in ea r m odel

To design a linear controller it is necessary to have a linear model of the plant. 

The design of the linear model is based on the following linear approximation of 

equation (6 .8 ):

M'(ha - s 0) = Q{he - h a), (6.14)
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where Q is the slope of the curve representing the characteristics of the material 

evaluated at the working point. For practical purposes it must be estimated from 

the operational conditions.

Defining k = the thickness of the output can be expressed as

A ha — A he-—;—-  Asq
l  + k 1 +  k

Defining the constants V  and U as

V  = 

U =

dhg
ds0
dha

1

1 +  k 
k

(6.15)

(6.16) 

(6.17)dhe 14 - k

the system can be represented by a block diagram as shown in Figure 6.17. In 

the Figure the measurement delay Ta is included. The operator A defines small 

deviation from the working point.

Ah

A s,

A v

A h

D elay

w

Figure 6.17: Block diagram for the linearised system.

Control problem

The basic control objective is to keep the thickness of the output material (ha) as 

close as possible to a reference value. The control variable is s0 and the measure­

ments available are ha, /ie, f w, and vw. The evaluation index is the integral of 

the square error over the time elapsed, that is
tmax

I = ' L ( K cl - K { t ) ) 2. (6.18)
t=0
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The input velocity of the strip is given by a curve with a certain period of 

acceleration and deceleration as shown in Figure 6.18.

V ,  ( t )

2010

Figure 6.18: Velocity profile.

Sim ulations

The simulations were carried out using S I  M U  L A B . The simulation scheme of 

the plant including the functions v \t and het , which model the speed profile and 

the disturbance for he, is shown in Figure 6.19.
F i l e  Edi t  Options Simulation Sty le

. MATLAB .
: U IK tlO D

v l t

Clock
, MATLAB . 
: unction  

h e t
R o lls

so2

Figure 6.19: Simulation scheme of the plant.

The block called Rolls is shown in Figure 6.20.
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A
J

/

6 .3 .2  C u r r e n t  C o n tr o l  T e c h n iq u e s

The current techniques are based on the linear model described in section 6.3.1. 

The basic structure has two parts, a feedback controller and a feedforward con­

troller, as shown in Figure 6 .2 1 .

Ah
e

a r e f *0-

controller

- s  T,

P I
-s r

Figure 6.21: Feedforward and feedback linear controllers.

The constant 7  takes into account the fact that the cancellation of the mea­

sured disturbance terms is not exact. A brief description of the design of the 

conventional control system is included in order that the connectionist approach 

developed later can be compared.

File  Edit Options Simulation Style

out_l

M f<u) i— ► n n  
Fen out_2

Mux
in_l

Muxl

Mux
r > ± .

out_4SumMux

in_3

out_3Gain

Figure 6.20: Rolls block.
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6 .3 .3  D e s ig n  o f  t h e  C o n tr o l le r

The basic diagram for the PI controller is shown in Figure 6.22.

Figure 6.22: Simple PI controller.

The Nichols diagram for the open loop transfer function is shown in Figure 

6.23.

I
delay

\ PI controller +  delay

-200 -ISO -100 -SO 0
Ptuue(deg)

Figure 6.23: Nichols diagram of the system.

In order to have a phase margin of 65°, the zero of the controller was placed 

at a frequency of 2.2 and that gives T  =  .454 and K  =  .316 (—10di?). 

Considering a delay of Td =  ~  with m  =  2  and a sampling period of 0.01 [s], the 

integral time is T* =  =  .006954 [93].

The response of the system including feedforward controller as well as feedback 

controller is shown in Figure 6.24
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Figure 6.24: Closed-loop response.

O n line  a d a p ta tio n

The value of Q can be estimated on-line using an input-output model of the process

[93]. As the identification algorithm (an orthogonal recursive least-squares with 

forgetting factor) takes some time to converge, it is necessary to store Q in a 

table indexed by the operational conditions. In this way there is effectively a 

slower adaptation time. The data used for identification are variations of the 

measurements of f w and (ha — he).

6 .3 .4  C o n n e c t io n is t  A p p r o a c h

6 .3 .5  M o d e l l in g

The characteristics of the plant can be respresented by a connectionist network, 

in this case a Gaussian network described by

N

V — Ci9mi,aj(z)) 
i= 1

(6.19)

where c*, M,-, and cr* are the parameters to be adjusted, and x  is a vector containing 

the input variables.



CHAPTER 6. APPLICATIONS 160

There are several algorithms available to train the network, see Chapter 3. 

In this case, the data driven smoothing approach was followed. The units were 

distributed uniformly along the axis of each input variable, then a linear optimiza­

tion problem was solved several times to find c, for different cr, =  cr. The tuple 

{c,-,cr}, which minimizes the square error over the training pattern, was selected. 

This procedure can be summarized as follows

1 Distribute the centres of units uniformly in the following intervals: v \ 6  [1,5]

, ha € [1 0 - 3 , 6  x 1 0 -3], and s0 € [1 0 “ 3 , 6  x 1 0 ~3].

2  Choose a small initial value for cr.

3 Using the training set defined by a set of input-output values {X, T}, cal­

culate the Ci as

C* =  G+Y. (6.20)

4 Calculate the residual error E  =  (Y  — GC*)T(Y  — GC*)

5 If the residual error has decreased then increase a  and go to 3, otherwise 

end.

In this application two nets with 125 units each were trained to model the plant

and its inverse. The first one has the structure shown in Figure 6.25,

V w

Delayh e

V.1 - s  T

S 0
M odel

Figure 6.25: Connectionist model of the system.

The second net represents the realizable inverse of the system (in this case the 

static relation among the variables) as shown in Figure 6.26.
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Figure 6.26: Connectionist model of the inverse.

The results of this stage are shown in Figures 6.27 and 6.28. The percentage 

error in these cases is less than 0.3% for the training patterns.

0.3

0.2

eje 0.1
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-0.1
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training points
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Figure 6.27: Errors for the training set of the model.
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Figure 6.28: Errors for the training set of the inverse model.

Basic structure using PI controller

In this scheme the main idea is to compensate the onlinear relation among the 

variables by introducing the nonlinear inverse model of the system in the loop. In 

this sense the PI controller regards the plant as a system with unit gain. If the 

inverse of the model is not perfect the PI controller helps to reduce the sensitivity
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of the whole system against this type of error and provides zero steady-state error. 

The general structure is shown in Figure 6.29.

P la n t

PI

Inverse

Figure 6.29: PI controller and inverse of the system.

Figure 6.30 shows the results obtained with this approach. It is worth noting 

that the main difference from the conventional approach lies at the beginning and 

at the end of the trial. This difference is due to the fact that the knowledge 

acquired during the training period has been used. The parameters of the PI 

controller are the same as those used in the linear case, section 6.3.3.
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Figure 6.30: Response of the system with PI controller and Inverse model.
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In te rn a l M odel C on tro l

The basic structure of IMC is shown in Figure 6.31.

P la n t

In v e r s e

o

M odel

Figure 6.31: Internal Model Control structure.

In this case the model is used in parallel with the plant. In this way the 

difference takes into account the uncertainty of the model, which is feedback to 

the system. The design of the filter takes the estimated disturbances into con­

sideration. Typically the filter is a first order filter with unit gain and frequency 

response tuned to eliminate high frequency noise introduced by measurement de­

vices. As the connectionist inverse model is not perfect there is a steady-state 

error (as can be seen in Figure 6.32).

In order to eliminate this error it is necessary to have a better inverse. Two 

possibilities are available: the first one is to increase the number of units for the 

connectionist inverse representation, and the second one is to include an iterative 

process, as explained in [36]. The result of this latter modification is shown in 

Figure 6.33.

R eced in g  H orizon  con tro l

The main aim in this approach is to use the solution of a finite dynamic optimiza­

tion problem in order to generate closed loop control laws. To reach this objective 

the structure shown in Figure 6.34 is used.
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Figure 6.32: Response of the system with IMC.
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Figure 6.33: Response of the system with IMC including an iterative process.
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iterative loop

O p t i m i z a t i o n

M odel

P l a n t

M o d e l

Figure 6.34: Receding Horizon Control structure.

The index to be optimised is
Th+J

j  =  W H ^are/ -  ym {i)f +  R (l)(u(i) -  u{l -  l ) )2, (6.21)
i = j

where r  is the reference value for the output of the system, Th is the length of the 

horizon, which must be bigger than the time delay of the system, R  and Q are 

weighting factors, and ym(i) is the output of the model [77].

A special case of the index defined by

j ( j )  =  (h„ef ~  ym(Th +  j )  +  d (j))2 +  R (u(j) -  u (j -  l ) ) 2 (6.22)

was used. Additionally, if an estimate of the disturbance d(j) =  ym(j)  — y(j)  is 

included in the index, zero error in steady-state is obtained. In fact, considering 

that the system is in steady-state, that is u(j) — u (j — 1 ) =  0  and ym(Th A j )  =  

ym{Th + j  — 1) =  ... =  2/m(i), and replacing these conditions in equation 6 . 2 2  we 

have

J { j )  =  ( h a r e f  -  ym(Th +  j )  +  ym( j ) -  y ( j ) f (6.23)
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and if the minimum of J( j )  is 0 then harej  =  y(j)-

Figure 6.35 shows the result obtained with R  =  10~4. In this case the response 

against disturbances is slower than the case when R  = 10-6, which is shown in 

Figure 6.36.
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Figure 6.35: Receding Horizon control with R  =  10 4.
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Figure 6.36: Receding Horizon control with R  =  10 6.
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method Index ( eq. 6.18)
PI controller
PI and inverse model of the plant 
Internal Model Control
Internal Model Control with iterative procedure 
Receding Horizon Control with R  = 10~ 6 

Receding Horizon Control with R  =  10- 4

1.5989e”5
3.1144e-8
3.6382e-8
2 .8 6 8 8 e“ 8

2 .8 6 8 8 e- 8

1.2017e-7

Table 6.1: Performance index for the different approaches.

D iscussion of results

The results obtained so far are summarized in the table 6.1.

All the methods that use connectionist representations performed better than 

the traditional PI controller. This result is due to the fact that the information 

about the speed Ux was included in the model and, secondly, a compensation 

for the system working in different operational points is automatically included 

(without requiring on line identification). The better results obtained with IMC 

and RHC are due to the fact that a model is used within the loop eliminating the 

effect of the delay. Both approaches get the same result if the weighting function 

R(i) for the predictive index is small.

As a general remark, the connectionist approach does not need to differentiate 

signals and does not need a measurement of f w.

6 .3 .6  F u r th e r  W o r k

Some of the topics that can be addressed in the future are:

• On line adaptation of the connectionist representations: this extra feature 

would allow a continuous update of the model to take into account temporal 

variations.

• Evaluation in noisy environments: as is well known Gaussian functions have 

some smoothing properties that can be useful to obtain smooth representa­

tions from noisy data. Furthermore, it is possible modify adaptation laws
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to introduce Kalman filter features, i.e. the knowledge of the noise.

• Modelling capabilities to get better estimates of linear coefficients for the 

traditional PI approach: in this framework the connectionist representation 

is used to build a nonlinear model among the variables and the derivatives 

are obtained from the model. This should reduce the effect of the noise on 

the measured values because there is no differentiation of the incoming data.

• Fusion of information: the operator can have a direct influence on to the 

connectionist representation to set up certain inputs that can have relevant 

information for control. One of these inputs can be, for example, the type 

of steel to be processed.

• Other architectures: the inclusion of dynamics can bring more information 

and inputs to the Gaussian network. In this case, if there is a explosion in 

the number of units an alternative architecture must be used, for example, 

Connectionist Normalized Linear Spline Net [20], Wiener models or others.

6.4 Conclusions

This Chapter has shown that the connectionist approach can be used to address 

current practical nonlinear control problems with successful results. The main 

advantage of using this kind of technology is that it provides a general framework 

to tackle nonlinear control problems. The results obtained with a simulated pH 

plant and a steel mill are encouraging. In both applications there were structural 

dependencies among the variables, and therefore it was possible to enbody them 

into a connectionist representation. In such a case where the parameters or rela­

tion between the variables vary with the time, an on line adaptation algorithm is 

needed. This is a difference compared with traditional adaptive algorithm which 

were used to compensate not only time variation but also nonlinearities of the 

system.



C hapter 7

Further W ork and C onclusions

SUMMARY

In the final part of this work some suggestions about future research, 

together with a speculative thought about our potential to understand 

the organisation of the brain, is given. Some general conclusions are 

also given.

7.1 D irections for Future Research

The directions for further research are both numerous and wide, but from the 

perspective of this work it is possible to identify the following areas for future 

research.

One of the main assumptions used in this work is that the controller uses 

a functional representation between the variables, but there is another possibil­

ity, based on probabilities by which to characterise the system—in this case the 

modelling effort is placed upon distribution estimation.

Further research is needed to explore the relations between the technique of 

projection pursuit within the multilayer perceptron, and other well known statis­

tical strategies to deal with multidimensional, nonlinear regression.

169
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Among the control techniques a deeper analysis of the receding horizon ap­

proach is required, bearing in mind that the robustness issue is worthwhile pur­

suing.

Further use of multidimensional signal processing techniques should be fruit­

ful in the future, for instance, a direct application could be the use of Hermite 

representation for nonlinear dynamical systems.

The use of recurrent networks to model dynamical nonlinear systems must 

be addressed in some detail, since not only can feedback improve the prediction 

capabilities of a dynamic connectionist representation, but can also improve the 

precision of a static map.

Continuous time architectures and learning algorithms can be developed to 

control and model nonlinear dynamical systems. In this case the tapped delays 

must be substituted by time operators.

Time scale plays an important role in dynamic systems, and in particular, in 

adaptive systems. It is generally recognised that in a hierarchical system, the 

variations in the variables involved in the lower level of the structure have a 

dynamic response which is much faster than those of the upper levels. This paves 

the way for a new area of research, where different algorithms can work under 

different scales of time in order to reach a global objective- as an example of this 

approach we have the approximation of surfaces using three different algorithms: 

Kohonen algorithm, interpolation, and adaptation of the linear coefficients. An 

extension of the latter approach is the use of reinforcement learning as an upper 

level in a control structure.

From the simulations done it is possible to realise that the convergence time 

for useful global models are prohibitive in real time. Hence, it will be necessary to 

combine different schemes to produce on-line learning algorithms, involving the 

adjustment of the parameters while using them for controlling the system. All 

the schemes described in this work can be classified as long-term learning, in that 

they require a long time to reach an acceptable solution. On the other hand, a
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short-term learning algorithm should deal with the initialisation of the system 

and with rapidly changing conditions. From this perspective short-term learning 

algorithms will be mainly local in space as well as in time [6 ].

7.2 A Speculative Thought

Given that more information from the biological sciences will be available in the 

future, the people involved in applying this information to solve technological 

problems are going to be faced with the challenge of recognising the real potentials 

of these new paradigms to solve problems of this ilk. Perhaps a more formidable 

challenge is going to be the development of a theory which allows us to recognise 

the organisation of the brain, or even more generally, to recognize the organisation 

of a living system, and answer questions like: given a dynamic system, what rela­

tions should be observed between its concrete components to determine whether 

or not they participate in processes that make it a living system?

The following comments not only question the usefulness of the anatomical 

descriptions, but also the very basis of how to deal with the study of living systems.

The importance of the anatomical descriptions in the understanding of the 

brain function was conjectured by Kalman [38]:

It could be true that it is hopeless to try  to understand brain 

functions solely on the basis of anatomy (wiring diagrams). Perhaps 

the problem will become relatively transparent only after developing 

a theory powerful enough to give us the main feature of anatomy.

and explained by Maturana [50] in the following way:

In a strict sense, although the nervous system has anatomical com­

ponents it does not have functional parts, since any mutilation leaves 

a functioning unit. Each component of the nervous system that an
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observer describes is defined in the domain of interactions of his obser­

vations, and is such, that it is alien to the system which it is supposed 

to integrate.

Neurons are the anatomical units of the nervous system, but are 

not the structural elements of its functioning. The structural elements 

of the functioning nervous system have not yet been expressed in terms 

of invariants of relative activities between neurons.

Models derived from anatomical descriptions can give us some useful percep­

tion, but they will not give us a real understanding of the organisation of the brain 

functions.

The possibility of having different types of representations leads to the ques­

tion: what is the meaning of the information carried in the brain?. Is it possible 

for us to understand the “real” meaning of these signals? W hat type of informa­

tion is encoded in the signals? All of these questions are related to the key issue 

of the approach presented in this work, i.e. the representation of the environ­

ment. In spite of the advances in Neural Science, our capacity to understand the 

underlying natural neural processes is biased by our knowledge and concepts. As 

a limiting factor, perhaps just m an’s capabilities made by man (including math­

ematics, logic and linguistic) may be no more than the basis for communication 

and learning between individuals [89].

Even though, if we have the technology to examine and record all the signals 

and their different properties (not only voltage, but also concentration of chemi­

cals, magnetic fields, etc.) in the brain, the question of meaning and interpretation 

of those signals, i.e. the role of the observer, is a more formidable task, because 

this underlines the basic assessment problem, where the observer is part of the ob­

served phenomena. As Maturana [50] has pointed out, there are clear differences 

between the role of the observer in the process of explaining the organisation of a 

man-made system and a living system.
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In a man-made system the system relations (the theory) that inte­

grates the parts that the describer (the observer) defines is provided 

by him, and as a consequence, these relations appear so obvious to 

the observer that he treats them as arising from the observation of the 

parts, and deludes himself, denying that he provides the unformulated 

theory that embodies the structure of the system which project onto 

them. In a living system the situation is different: the observer can 

only make a description of his interactions with parts that he defines 

through interactions, but these parts lie in his cognitive domain only.

This brief analysis and a few quotations included, not only give a general idea 

about the deep philosophical implications and problems involved in the study of 

real living systems and in any development of a theory of the brain organisation, 

but also help to set up this work in a broader perspective.

7.3 Conclusions

This work has shown that the field of Artificial Neural Network can contribute to 

the solution of some problems in nonlinear control, providing functional represen­

tations and algorithms to adjust the parameters of these functional representations 

in order to approximate nonlinear systems.

The use of conventional mathematical tools can give not only more insight into 

the properties of the different representations, but also into the algorithms used 

to solve the underlying learning problems.

From this perspective, some linear control architectures have been extended 

to deal with nonlinear systems, finding that the same limitations of the linear 

versions are apparent in the nonlinear cases. From simulations, and the brief 

theoretical analysis presented, the Receding Horizon approach seems the most 

promising and general.

In this work, some concrete applications have been analysed, demonstrating
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that the approach presented can yield new ways in which to design nonlinear 

controllers which have better performance than their linear counterparts.
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