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ABSTRACT

In this work the dynamic response of a ship to slamming loads in random seas was 

studied. This study focused only the vertical motions and loads. The motions were 

obtained using a linear strip method and the hydrodynamic coefficients were 

obtained by using the multipole expansion technique for circular shapes and a 

multiparametric conformal transformation which transforms a circle into an arbitrary 

form. Special attention was given to the common two dimensional methods to obtain 

the hydrodynamic coefficients and chapter 2 was dedicated to this study.

In this research it is assumed that the total vertical bending moment induced by 

waves is divided into two components: the first one is obtained by the linear theory 

and the second one is due to the slamming loads which induces whipping stresses. 

Several formulations for the determination of the slamming pressures and loads were 

compared in chapter 4.

The vibratory response of the ship is calculated by modelling it with two 

dimensional Timoshenko beam finite elements with a consistent mass formulation, 

which is used to determine the natural modes and frequencies. The response is 

obtained by modal superposition using direct integration methods.

Experiments to obtain the ship motions and sea loads were carried out in the 

Hydrodynamics Laboratory of the University of Glasgow with a segmented model of 

a container ship in the ballast condition. Comparisons between the measurements and 

the theoretical results were carried out for the vertical motions and bending 

moments, and satisfactory results were obtained for some of the theoretical methods.

Time domain simulations for the low and high frequency vertical bending moments 

were carried out for irregular seas. Some of the relevant statistical parameters 

involved in this process were compared in time and frequency domain. Based on the 

time domain simulations some statistical distributions were obtained for long term 

analysis for the slamming and total bending moments. The correlation between the 

several distributions were also analysed.
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CHAPTER 1 

INTRODUCTION

1.1 - HISTORICAL REVIEW

The ship dynamics in waves is a problem which concerns several fields in engineering 

and the solution of this problem is of major importance for design purposes, ship 

owners, shipbuilders and classification societies.

The dynamics of ship hulls can be divided into two fields. The first one treats the ship 

motions for a certain seastate and by using some criteria related with the maximum 

acceleration and several other aspects, the ship operation conditions can be estimated 

(short term analysis) and long term predictions for the operation conditions can also be 

performed, which gives valuable information for shipping (voluntary and involuntary 

speed reductions, changes of course, etc.). The other field deals with the loads applied 

to the structure and corresponding shear forces and bending moments (primary 

stresses). These loads induce two different kinds of primary stresses named as low and 

high frequency stresses.

The low frequency stresses are obtained using a quasi-static analysis and the high 

frequency stresses are calculated using the hull vibration analysis. The high frequency 

stresses can be classified according to the nature of the loads and the more important 

ones for conventional ships are the whipping and springing stresses.

The whipping stresses are related with the slamming loads which occur when the ship 

sections emerge the water and, according to Ochi and Motter (1971), penetrates in 

water with some velocity greater than the threshold velocity. The springing stresses
9

occur when the wave frequency is close to the structural natural frequencies of the ship 

hull.

For the structural design of conventional hulls, the whipping stresses are more 

important than the springing ones because these stresses will appear for extreme seas 

and for wave frequencies close to the values where the low frequency stresses reach the
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maximum value and consequently the combination of these two stress components is 

also a very important task to study.

Ochi and Motter (1971) presented a complete description of the slamming problem. 

Due to the great amount of unknowns required for the determination of the whipping 

stresses they suggested some simple formulae for the calculation of the slamming loads, 

for practical purposes. These formulae were obtained based on experiments on frigates. 

Using the statistical framework they suggested that a threshold velocity must exist for 

the slamming occurrence and based on the Froude law scale they proposed an 

expression to evaluate that velocity. Based on the expressions for the short term 

statistics, they found the long term statistics for the pressures, loads and corresponding 

bending moments. They stressed the importance at the design stage of the combined 

effect of wave-induced and whipping stresses, i.e. the total bending moment induced by 

the waves. Using experimental data they found that the phase angle between the point 

where the maximum bending moment in hogging is reached and where the slamming 

starts is in the range of 20-70 degrees.

Based on an iterative scheme, Kaplan (1972) performed non-linear ship motion 

calculations in the time domain including the slamming loads. The basic approach used 

by Kaplan is the determination of the ship motions using linear theory and after that the 

effects of non-linear buoyancy and momentum are estimated and fed back to the time 

domain routine as corrections to the previous calculations. The slamming loads were 

evaluated using the momentum theory.

Using the linear strip theory to calculate the ship motions and the momentum theory to 

predict the slamming loads, Mansour and Oliveira (1975), presented a computational 

technique to evaluate the total bending moments for regular waves.

Kawakami et al. (1977), whose study was based on experimental work for a tanker, 

proposed an expression for the time history of the slamming loads. They found that the 

Ochi and Motter’s (1971) formulation for the prediction of the maximum slamming 

pressure underpredicts the experimental measurements. Finally using long term 

statistics for the whipping stresses and for the wave bending moments obtained from the 

linear theory, they found that the return values of these two distributions have the same 

order of magnitude.
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Belik et al. (1979) assumed that the bottom slamming can be divided into two different 

components named as impact and momentum slamming. Using this assumption they 

used the Ochi and Motter method for the determination of the maximum slamming 

pressure and the Kawakami et al expression for the determination of the time history of 

the slamming impact force. After that they carried out calculations for the vertical 

bending moments and shear forces in regular head seas.

Using the same approach for the calculation of the slamming loads, Belik and Price 

(1982) made comparisons for two different slamming theories using time simulation of 

ship responses in irregular seas. They found that the magnitudes of the responses after a 

slam depend very much on the mathematical model adopted in the calculation of the 

slamming loads.

Yamamoto et al. (1986) used non-linear ship motions based on the equations given by 

the linear theory but with time varying coefficients dependent of the instantaneous 

sectional draft. They also included the hydrodynamic impact component given by the 

rate of change of the sectional added mass, assuming that this force only acts on the 

vessel when the section is penetrating the water. Dynamic structural analysis was 

performed using the finite element method and considering Timoshenko’s beam 

elements. After that they carried out experiments and calculations on a bulk carrier 

model for head seas. They found that the accuracy of the calculation of the 

hydrodynamic coefficients have a significant influence on the results of the slamming 

forces, and the computation with accurate coefficients result in better agreement with 

experiments. Guedes Soares (1989) used a similar method for the calculation of the 

slamming loads in regular waves with the Frank close fit method for the evaluation of 

the sectional added mass.

Three dimensional hydroelasticity theory was applied by Bishop et al. (1986) for a 

swath travelling in regular oblique sinusoidal waves. Using this theory they found that 

the magnitudes of the responses at a relative heading angle of 135° tend to be larger 

than those obtained for head seas, which contrasts with the usual predictions for 

monohulls.

Comparisons between the full scale measurements and theoretical predictions were 

carried out by Aksu et al. (1993) for a fast patrol boat travelling in rough seas. Due to

3



the uncertainty of the wave measurements in a real sea state, the experimental results of 

the vertical bending moments were compared with calculations for two different sea- 

states in a histogram form and satisfactory results were found.

In order to find out the effect of the forward speed effect on the slamming pressures, 

experiments were carried out by Radev and Beukelman (1993) using 3-D wedges with 

forward speed and they concluded that the forward speed has some influence in the 

slamming pressures and that the influence increases for wedges with larger trim angles.

For irregular seas, and considering the slamming process as a train of Poisson impulses 

of random intensity occurring in random time intervals with stationary intervals and 

assuming the structural response of the hull as linear, Mansour and Lozow (1982) 

developed a theory to determine the slamming bending moments statistics. Applying 

this theory in one example, they found that the ship speed has a great influence in the 

root mean square (RMS) of the vertical bending moment due to slamming loads.

Applying a similar theory but assuming that the slamming process can be described as a 

non stationary Poisson process, Chen (1980) determined the correlation between the 

RMS of the slamming bending moments and several factors, like the ship speed, 

significant wave height and peak frequency of the wave spectrum.

Ferro and Mansour (1985) stressed the fact that implementation of reliability analysis in 

the structural design depends to a large extent on the ability to combine the loads acting 

on the structure. Based on this statement the slamming statistics must be combined with 

the wave bending moments statistics. For that purpose they developed a theory which 

combines the bending moments in the frequency domain. In order to study the 

sensitivity of the results to several important input parameters such as the threshold 

velocity, the structural damping, pressure coefficient and significant wave height, they 

performed a sensitivity analysis on a cargo ship for the mean slamming induced stresses 

|x ,  standard deviation a  and the mean slamming rate X. They found that the wave 

height has a larger influence in the p, a  and X,  than other input parameters, and that the 

threshold velocity affects especially X. They also found that the damping coefficient has 

some influence in the standard deviation a, and that the pressure coefficient has a linear 

relation with the mean p and a. Finally they stressed that more research is needed in 

this field before using reliability analysis in the ship design. Some of the areas which
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should be investigated are related with the statistical dependence of the wave and the 

slamming bending moments, so the assumption of random time intervals between 

successive impacts must be studied. The method used for the determination of the 

slamming loads and the spatial distribution and correlation of these loads must also be 

investigated.

1.2-STRUCTURE OF THE THESIS

The thesis is divided into eight chapters and the general structure of the research is 

represented in figure 1.1 with the different studied subjects and corresponding chapters. 

The first and last chapters (introduction and conclusions) and also chapter 6 which is 

the comparison of the theories with the experimental results are not represented in this 

figure.

C2

C2

C3

C4

C5

C7

C7

STATISTICS

SLAMMING LOADS

STRUCTURAL RESPONSE

MAPPING TRANSFORMATION

SHIP MOTIONS AND LOADS

HYDRODYNAMIC
COEFFICIENTS

DESIGN 
EXTREME VALUES

Figure 1.1 - Subjects studied in this research
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Chapter 2 presents a review of the common two dimensional methods for the 

determination of the hydrodynamic forces and comparisons between the multipole 

expansion method combined with the multiparametric conformal and the Frank Close 

Fit method are performed for several sections. The accuracy of the conformal 

transformation and the corresponding hydrodynamic coefficients is also studied and the 

correlation between these two quantities is analysed.

In Chapter 3 the vertical motions and loads were obtained using a linear strip theory 

and the hydrodynamic coefficients were obtained by using the formulation explained in 

chapter 2. The results for the vertical motions were obtained for the container ship SL- 

175 (ITTC 1976) and compared with experimental results and with other linear strip 

theories.

In Chapter 4 several theories for the calculation of the maximum slamming pressure, 

and the slamming force for wedges with varying deadrise angle were compared. Two 

different empirical time history functions for the slamming forces are also compared 

and several methods were studied for some of the forward ship sections of the SL-175 

container ship.

In Chapter 5 the finite element analysis using Timoshenko’s beam formulation for the 

calculation of the stiffness matrix and consistent mass formulation for the evaluation of 

the mass matrix were used to describe the ship hull structure. The dynamic system is 

solved by using the modal decomposition and direct integration methods to perform the 

response in the time domain.

In Chapter 6 the ship motions and loads theory and the slamming theories were 

validated by comparison with experiments. The experiments were carried out on a 

segmented model of a container ship in the Hydrodynamics Laboratory of the 

University of Glasgow. In order to guarantee bottom emergence without green water 

effects the model was loaded in the ballast condition.

In Chapter 7 the whipping stresses and the combination of these stresses with the wave 

stresses were performed for irregular seas. In the first part of this chapter several 

important slamming statistics for the calculation of the whipping stresses were 

calculated and compared in time and frequency domain. After that, one of the slamming 

theories was chosen and, in order to use one method suitable to be studied in frequency
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domain, the structural response was simplified by using the structural response to one 

impulse. Using this simplified theory the mean value and variance of the whipping 

stresses were obtained for the time and frequency domain. Based on time domain 

simulations the extreme distributions for the whipping bending moments were 

performed by fitting two theoretical distributions to the data. Using these distributions 

and the wave bending moment distribution, the combined or the total bending moment 

was obtained.

In Chapter 8 the general conclusions of the research are discussed and some 

recommendations for future work proposed.
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CHAPTER 2

HYDRODYNAMIC FORCES

2.1 - INTRODUCTION

The calculation of the added mass and damping coefficients are very important for the 

determination of ship motions and sea loads and as a consequence several authors have 

dedicated special attention to it.

The accuracy in the determination of the hydrodynamic coefficients is also important in 

the determination of the slamming forces. In fact, Yamamoto et al. (1986) carried out 

experiments and calculations on a bulk carrier model for head seas and they found that 

the accuracy in the calculation of the hydrodynamic coefficients has a significant 

influence on the results of the slamming forces, and the computation with accurate 

coefficients results in better agreement with experiments.

Lewis (1929) using a two-parameter conformal mapping transformation, evaluated the 

added mass for infinite frequency, i.e., not taking into account the presence of the free 

surface. Landweber and Macagno (1957) extended this method to a more general N- 

parameter forms.

Ursell (1949) indicated a theoretical solution based on potential theory to evaluate the 

hydrodynamic coefficients of a cylinder in the presence of the free surface. Using this 

theory damping coefficients can be evaluated and the frequency dependence of the 

hydrodynamic coefficients is considered. Grim (1959) and Tasai (1959) extended 

Ursell's theory for the Lewis forms, and Porter (1960) and Tasai (1961), extended 

Ursell's method for an N-parameter family using a multiparametric transformation.

To perform the mapping transformation various methods were proposed. Landweber 

and Macagno (1967) adopted an approach based on the Bieberbach's method of inverse
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transformation, De Jong (1973) proposed another method based on the orthogonality of 

the Fourier series and Von Kerzeck and Tuck (1969) proposed an iterative method 

based on the least square and the Newton-Rapson methods.

Frank (1970) proposed a different approach for the evaluation of the hydrodynamic 

coefficients. In this method the velocity potential is represented by a distribution of 

sources over the submerged cross section. Green functions, satisfying the Laplace 

equation, the conditions at infinity and the free surface boundary condition, are applied 

to represent the potential of the unit strength sources. The source density is an unknown 

function of the position along the contour, to be determined from the integral equations 

derived by applying the kinematic boundary condition on the submerged part of the 

cross section.

Experimental work has also been carried out on two dimensional sections and ship 

models. Porter (1960) measured the total vertical force and the pressure distribution on 

a heaving circular cylinder. Paulling and Richardson (1962) made experiments in four 

different sections and they measured the total force, pressure distribution, wave heights 

and phase angles. Vugts (1968) made experiments on five different sections for the 

heave, sway and roll motions and compared the experimental results with the 

theoretical method based on the multiparametric transformation. Vugts found good 

agreement in heave and sway motions. Frank (1970) also performed experimental work 

to validate his method.

Bishop et al (1978) compared the Lewis, Frank and the multiparametric conformal 

transformation methods for a variety of cross sections including a chine hull, a bulbous 

bow and other sectional shapes that cannot be adequately represented by a Lewis form 

fit. In this paper they concluded that the hydrodynamic coefficients evaluated by using 

the Lewis method are significantly different from the other methods in which the number 

of mapping coefficients is increased. They also stressed the presence of irregular 

frequencies in the Frank method and the high computation time to eliminate these 

irregularities by using interpolations schemes, particularly for the high frequency range, 

where there is increasing occurrence of these irregular frequencies.
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To choose the best method for the evaluation of the hydrodynamic coefficients there are 

still some unanswered questions that must be clarified and if possible quantified, some of 

which are:

• The convergence of the multipole expansion method when the number of 

mapping coefficients used in the transformation is changed.

• The relation between the errors in the mapping transformation and in the 

hydrodynamic coefficients.

• The computation time used for the Frank method and for the multipole 

expansion.

So the objective of this chapter is to give a detailed comparison of the most common two 

dimensional methods used for the evaluation of the hydrodynamic coefficients. Special 

attention is given to the conformal transformation method, and the parameters that 

influence the accuracy of this method are studied. The results are compared with the ones 

of Frank close fit method, with respect to accuracy and the computation time involved. 

Finally the correlation between the geometric and hydrodynamic errors is examined and 

some relationships are proposed.

2.2- MAPPING TRANSFORMATION

An arbitrary section is described using the transformation to a circle in the complex form:

z = (2.1)
n=-l

where z is a variable represented in the physical plane and £ is represented in the 

reference plane, z and C, being complex variables. The transformation is graphically 

represented in Fig. 2.1.

C, Plane Z Plane

Figure 2.1 Circle transformation
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For symmetric sections the conformal mapping transformation can be generally 

expressed by:

Zb = (2.2)
n = -l

Equation 2.2 can then be rewritten in parametric form by using:

x = An sin(2n + 1)Y (2.3)
i=-l

y = Z ( - l ) ”+' A» C0S(2n + l)Y (2.4)
i=-l

The geometric problem is completely solved when the coefficients An of the conformal 

transformation are evaluated.

The method used in the present work to solve this problem was proposed by Von 

Kerzeck and Tuck (1969) who derived two different systems of equations based on the 

minimisation of two error functions.

The method starts with three mapping coefficients given by Lewis (1929), that are 

calculated recurrently using explicit expressions which use some geometric properties 

of the section. Using the first system of equations, which is non linear, the angles Yi are 

calculated for the Lewis sections.

The number of unknown angles is equal to the number of the section offset points. For 

each offset point the corresponding angle is found by minimising the following 

expression:

s = ( x ( y ) - x i)2 + ( y ( Y ) - y i)2 (2.5)

where x; and yi are the coordinates of the offset points and x(y), y(y) are given by (2.3) 

and (2.4).

Using these angles and the least square technique, a linear system of equations is solved. 

At each step the number of coefficients An is increased by one. After that the new angles 

can be evaluated by using the approach explained above. Consequently, this method is 

recursive and it stops when certain input parameters have been reached.
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Figs. 2.3 and 2.4 show the precision of the mapping transformation in relation to the 

actual geometry for some of the transverse sections of a Series 60 ship.
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Figure. 2.2 - Transverse ship lines resulting from  the Lewis transformation, showing the input

points fo r  each section.
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Figure. 2.3 - Transverse ship lines resulting from  a 12 param eter transformation.

2.3- HYDRODYNAMIC COEFFICIENTS USING THE MULTIPOLE EXPANSION 

TECHNIQUE

In this section the formulation used in this work, which is basically the same as the one 

used by Vugts (1968), will be described. This method is a generalisation of the Ursell’s 

(1949) method for arbitrary shaped cylinders. There are some differences between the 

expressions given in Vugts’ report and the ones presented here.
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The differences are related to the mapping transformation and the potential expressions 

employed in this study, which are slightly different from the ones used by Vugts. This is 

because he used non dimensional mapping coefficients and here dimensional mapping 

coefficients were used for the potential calculations, which simplifies these expressions. 

Assuming

-dy = Aj V( y ) dy (2.6)

and

dx = A., W( y ) dy (2.7)

where y is the angular coordinate which is zero at the positive x axis and n i l  at the 

positive y axis. Substituting 2.6 and 2.7 in 2.3 and 2.4 gives the following expressions:

V (y) = 2 > i r '  a„ ( 2 n  + 1 ) s in ( 2 n  + 1 )  y  ( 2 . 8 )
i= -l

N

W (y) = 2 >  l)n an (2n +1) cos(2n + 1) y (2.9)
i=-l

where

a ^ A , / ^  i = -1, 0, 1, . . . , N (2.10)

To evaluate the added mass and damping coefficient which result from radiation forces, 

the main assumption consists in considering the cylinder with a regular motion in a calm 

water, and performing the calculations of the radiation forces. The vertical motion of the 

cylinder can be expressed as follows:

y = ya cos ( co t + e ) (2.11)

where co is the frequency of the motion and 8 the phase angle.

Following Ursell’s theory, the total potential for the heave motion is composed by a 

source potential at the origin and a sum of multipole potentials. For each one the strength 

is chosen in such a way that the boundary condition of the cylinder is satisfied. So the 

total potential can be written in the following form:

oo

4 = C, R e|(<h + ^  ) e ' ,M | (2j 2)
m=l
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where the constant C, ensures that the radiated waves at infinity will have the required 

amplitude.

C. = (2.13)
07C

The velocity potential on the section contour can be expressed as:

<|>b = <|> (l,y, t) = Cj [ M(y ) sin( 0 t) + N(y ) cos( 0 t)] (2.14)

The functions M and N are obtained directly from the potential (|) using the following

relationships:

M(y) = t ,  + £ q 2n,<M Y ) (2.15)
m=l

N(y) = 4>c + S X - M y ) (216)
m=l

The pressure acting on a point on the cylinder can be obtained using the Bernoulli’s 

equation,

pb = p (l,y, t) = = P ^ a[M (y) co s(o t) - N (y)sin(o  t)] (2.17)
U t  TZ

A stream function which satisfies the boundary condition on the section contour can be 

represented in a similar way:

Vb = V 0, Y, 0 = [ C(y ) sin( 0 t) + D(y) cos( 0 t)] (2.18)

where

C(y) = ¥s + Zq2mV2m(r) (2-19)
m=l ,

D(y) = Vc + ZP2mV2m(Y) (2-20)
m=l

The stream function and the velocity potential according to the potential theory are 

related by the Cauchy-Rieman equations, so the components of the stream function can 

be directly obtained if the velocity potential is known.
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De Jong (1973) derived all the potential expressions for a generic multiparametric 

transformation and obtained the following expressions:

<J)c(x,y) = n  e"ky cos (kx) (2.21)

00 p-Px
<Mx>y) = e'^ sin (kx) + f———(k sin (Py) - P cos (Py)) dp (2.22)

J0 k + p

, . . (-l)n(2n + l)An cos((2m + 2n + l)y) |
4>2m(Y) = cos (2my) + k J  \  n ^  (2.23)

Vn̂ i 2m + 2n +1 J

V cfoy) = 71 e"ky sin (kx) (2.24)

v s(x>y) = eky cos + f .2 n2(k cos (Py) + Psin (Py)) dP (2-25)o k +p

/ i ( J L  (-l)n(2n + 1)A_ sin((2m + 2n + l)y)>|
V 2m( y )  = sin (2my) + k  £  -----------—  (2.26)

VnT] 2m + 2n +1 J

Introducing the boundary conditions on the potential, De Jong shows that the stream 

function on the cylinder is determined by:

V.(Y) - ) = £ p 2„ f 2m(Y) (2.27)
D 2  m=l

y s(y ) - ^ J v . ( ^ ) =  Z q ^ ^ r )  (2.28)b 2 m=]

or putting in matrix form

Vc, = Fr2mP2m and y ’ = F?2m Q2m (2.29)

where

F ,*  = V*,(§) - V ^ Y ) (2-30)

The only unknowns in these equations are q and p , their values can be computed by
2m 2m

using a finite number of components. The number of chosen points must be at least equal 

to the number of coefficients.
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If the number of points is equal to the number of coefficients then the equations can be 

solved by a linear system of equations, but in the other case p's and q's must be computed 

according to the least squares method.

Finally the added mass and damping coefficients are obtained using the following 

relations:

m , = 2pb^ M i M  (2.3i)
A +B

N, = 2pb2 M^A n  b

A + B

where

M0 = ^ - | m (y)W(y) dy (2.33)

N0 = ( ! r |n (Y)W(y) dy (2.34)

and A and B are related with the potentials parts C and D,

*  -  d ( | )  e.35)

B = C ( f )  (2.36)

and the constant G is a scale factor equal to:

G = —  (2.37)
A i

2.3.1 - Numerical Aspects

The main numerical problem of this method is how to perform the integrals (|)s (eqn. 

2.22) and \|/s (eqn. 2.25). This problem is related to the fact that the integral do not have 

an analytic solution, the upper limit of the integral is infinity and there are many 

variables involved in the expression.
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However the integral always converges to a real value so it is possible to write them in 

the following form:

00 p-P* f»'Px
h — ry(k sin (Py) - p cos (Py)) dp » j —— -y(k sin (Py) - p cos (py)) dp (2.38)
0 K + p  0 k + p

00 e-px B2 e-px
j V2~̂  R2 (k cos (py) + P sin (py)) dp « )  2 - ■-T(k cos (py) + p sin (py)) dp (2.39) 
o P o P

where B, and B2 are significantly large real values.

To evaluate this integral the Romberg integration method was used, which divides the 

integral into 2" equally spaced points and then the trapezoidal rule was used to perform 

the integration. Afterwards the integrated value is corrected by using some weighting 

factors given by this method. The method also estimates the error and if it is smaller than 

a certain input criteria then the method finds the integral value and if not n is increased by 

1.

The main problem of this method, when trying to solve equations (2.38) and (2.39), is the 

value of upper limits B, and B2. If the limits are "too large" the Romberg integration 

method do not converge and if they are "too small" the integral value is not equal to the 

real value. Unfortunately the value of B, and B2 are very dependent on the variables x and 

k, and they have some correlation with the variable y. Fig. 2.4 illustrates the different 

behaviour of the function for different values of k and x.

300

k=l .8 x=0250

200  -

ik=0.0041 x=3.0
150 -  0.6k=1.0 x=1.0

100  - 0.4

k=1.0 x=5.050 - 0.2

k=0.03 x=4

0.270 0.30.03 0.05 0.22 0.24 0.320.08 0.11 0.14 0.16 0.19

Figure 2.4 -Behaviour o f  function H  fo r different values o f  x and k
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Looking at equations (2.38) and (2.39) one can say that if the auxiliary integral,

H(x, k) = f — r j(k  + (3 ) dp (2.40)
J0 k + (3

can be evaluated, it can be used to provide bounds to the integrals of interest:

B1 g'Px
-H (x,k) < f (k sin (Py) - P cos (Py)) dp < H(x,k) (2.41)

J0 k + P

B2 g-Px
•H(x, k) < f ^ ( k  cos (Py) + P sin (Py)) dp < H(x, k) (2.42)

* k +p

So if for a certain value of B, the integral H(x,k) converges, then the integrals of eqns.

2.38 and 2.39 will also converge for the same upper limit. Let H' be equal to

H'(x,k,P) = - L - L ( k  + p )  (2.43)
k +p

The maximum value of H' occurs in almost all cases, when p is between 0 and 0.5. When 

k x  > 1 the maximum will occur for p=0. The value of H’ for P=0 is always very 

significant, so the limit of integration B of the first integral will be chosen such that:

= or _ £ L ( k + B ) - > ^  = 0 (2.44)
H '(x,k,0) k + B } k V '

implying that, for values of B such that the integrand becomes much lower than 

H’(x,k,0), they can be neglected in the evaluation of the integral. By using this approach 

the first upper limit of the integral can be estimated. The roots of equation (2.44) are 

evaluated using the bisection method. Using this approach the values of B are evaluated 

and shown in table 2.1 for the five cases presented in the figure 2.4.

X k B
0.00 1.80 181.77
5.00 1.00 0.936
1.00 1.00 3.519
4.00 0.03 0.477
3.00 0.0041 0.221

Table 2.1 - Upper limits B  fo r  several values o f  x and k

The total integrals in equations (2.41) and (2.42) are evaluated by summing a series of 

integrals, where the limits of integration are given by eqn. (2.45):
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J i^e n2(k sin (Py) - P cos (Py)) dP ~  S  I  , 2e r2 (k sin (Py) - p cos (Py)) dp
Ok + P i=l Bj ^ + P

J e."  (k c o s  ( P y )  +  P  sin ( P y ) )  dp «  2  j* e -  (k cos (Py) + P sin (Py)) dp
Ok + P i=l Bi ^ + P

where

Bj = 0 B2 = B Bi+1 = B, + i ^  i = 2, 3, .. N (2.45)

When the ratio of each integral by the sum of the previous ones is smaller than 10"4, the 

summation is stopped.

2.4 - RESULTS

In this section the behaviour of the mapping transformation and the change of the 

hydrodynamic coefficients when the number of mapping coefficients is changed will be 

studied. The Frank close fit method is also used to evaluate the hydrodynamic 

coefficients and comparisons between these methods are carried out.

Another important aspect is the possible relation between the error produced by the 

mapping transformation and the deviations observed in the hydrodynamic coefficients, 

which will be studied here. Finally the computing time for the mapping transformation 

is evaluated for different numbers of coefficients and compared with the one obtained 

by using the Frank close fit method.

Eight different sections were chosen to perform this analysis. The first five represent 

typical midship sections for large conventional ships: rectangular section with a circular 

bilge whose radius varying from zero to 0.4 of the section draft. Fig. 2.5 represents 

one generic midship section. The other three sections have bow type shapes with 

different side steepness. The bow section labelled as A do not have a flare, and section 

C has a severe flare. The three sections are depicted in figure 2.6.
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MIDSHIP SECTION

2.5 - M idship section

SECTION B

SECTION C

SECTION A

Figure 2 .6  -B o w  sections 

The mean geometric error in defining the geometry with different number of mapping 

coefficients is obtained by using:

+ s„
e =

e„ =
N

2 a b s ( x i -x (y i)) By =
y N

(2.51)

N

£ a b s  (ys — y(Yi))

where A represents the sectional area. Fig. 2.7 shows the dependence of the mean 

geometric error on the number of coefficients used in the transformation.
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Figure 2 .7  - Variation o f  the mean error with the number o f  coefficients fo r  different midship
sections

Figures 2.10 and 2.11 show the convergence of the hydrodynamic coefficients when 

the number of coefficients of the mapping transformation for the section with bilge keel 

with radius equal to zero (R00) is increased. For all midship sections the behaviour of 

the deviations in the hydrodynamic coefficients vs. frequency is also illustrated in 

figures 2.8 and 2.9. The hydrodynamic coefficients are non dimensionalised by the 

coefficients corresponding to a 12 conformal mapping transformation (M12 and N12). 

The frequency is non-dimensionalised using the following factor:

© = q B
2g

(2.54)

1.20

1.15

1.10

1.05

0.90

0.85

0.80
2.52.0 3.00.0 0.5 1.51.0

4 Coef.Coef. 6 Coef.

Figure 2.8 - Added mass deviations fo r  the rectangular section (R00)
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Figure 2.9  - Dam ping deviation fo r  the rectangular section (R00)
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sections
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Figure 2.11 - Damping mean error fo r  the different midship sections
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Another important aspect is the comparison of more common methods used in the 

evaluation of the added mass and damping coefficient. Figs 2.12 and 2.13 show curves 

of added mass and damping coefficients versus frequency for the rectangular section.

Three curves for the comparison of added mass and damping coefficients are presented. 

The first one corresponds to the Lewis method which uses only the first three 

coefficients of the mapping transformation, the second curve represents the 

hydrodynamic coefficients for a 12 coefficient transformation and the last one is the 

Frank close fit method. The results are similar for the curves even for the rectangular 

section which is the section with greatest mean geometric and hydrodynamic errors. In 

conclusion, it was found that the Lewis method can predict reliable values for this type 

of sections.

12
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0
0 0.5 3 3.5 41 1.5 2.52

O'

Figure 2.12 - Comparison o f  the added  mass from  the three methods fo r  the rectangular
section(ROO).
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Figure 2.13 - Comparison o f  the damping coefficient from the three methods fo r  the rectangular

section (R00).
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The methodology described above was used to study three non conventional bow 

sections. All sections have a bulbous bow and a flare at the upper part increasing from 

section A to C, as represented in fig. 2.6. This type of sections are chosen because it is 

shown in figure 2.2 that in this case the Lewis forms are very different from the real 

sections.

Figures 2.14 to 2.19 show the convergence of the hydrodynamic coefficients with the 

increase of the number of coefficients used in the mapping transformation for the three 

bow sections. The hydrodynamic coefficients are non dimensional by the same 

coefficients corresponding to 18 or 12 parameters of the conformal mapping 

transformation.
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Figure 2.14  - Norm alised added mass fo r  section A
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Figure 2.15 - Normalised damping fo r  section A
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Large deviations appear in the damping coefficient for the transformations with few 

coefficients. Two distinct error sources exist in the damping coefficient deviations, the 

first one is related to the absolute values i.e. the deviation of the maximum reached in 

damping and the variation of the damping coefficient with the frequency.

The first source is important for the total deviations, but the second contribution is the 

most important one. In the added mass deviations the behaviour is similar for all 

numbers of coefficients but the values have significant variations. The following figures 

represent the mean errors averaged over frequency for the added mass and damping 

coefficients with different number of coefficients used in the mapping transformation.

<N

6.5 7 7.563 3.5 4.5 5 5.5 84

Number of mapping coefficients

—©—  Section A  — &—  Section B —o —  Section C

Figure 2.20  - A dded mass. Mean error
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Figure 2.22 - M ean geom etric error variation fo r  the bow sections

Comparisons between the Frank close fit, Lewis methods and the transformation using 

12 coefficients have been performed and figures 2.23 to 2.28 show the results. The 

Lewis method for this type of sections is a crude approximation when compared with 

the Frank close fit and the 12 parameter method. Good agreement was found between 

the Frank close fit method and the 12 parameter method specially for sections B and C. 

For high frequencies the Frank close fit method shows some irregularities.
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Knowing that the Frank close fit method has irregular frequencies, its effect can be 

removed by calculating the hydrodynamic quantities for several frequencies, neglecting 

the irregular frequencies and interpolating. However, in this study the irregular results 

have not been removed.
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0.7

0.6

0.5

s 0.4

0.3

0.2

0.0
10.07.50.0 2.5 5.0

co'
Figure 2.23 - A dded mass coefficient fo r  section A
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Figure 2.28 - Damping fo r  section C

In order to define the “best method” it is important to consider not only the accuracy of 

the results but also the computation effort associated with each method. The computer 

which was used to perform all the computations is a personal computer 486/33. Two 

computer programs are used to perform the hydrodynamic coefficients using the 

mapping transformation. The first one evaluates the coefficients of the transformation 

and the second one calculates the hydrodynamic coefficients using the mapping 

coefficients. The time consumption for all sections and for the Lewis, Frank close fit 

and 12 parameter methods is illustrated in table 1. In the Frank method 14 segments 

were used to define the section geometry. The number of multipoles used in the 

multipole expansion is, as well, equal to 14. The mean value, variance and coefficient 

of variation (COV) are also calculated.

Transformation Hydrodynamic Coef. Total
Lewis 12 Coef. Lewis 12 Coef. Lewis 12 Coef. Frank

R00 0.91 11.26 6.26 9.71 7.17 20.97 100.8
R01 1.04 14.01 6.26 9.61 7.30 26.2 98.90
R02 1.10 14.05 6.27 9.67 7.37 27.2 92.7
R03 1.04 14.17 6.26 9.62 7.30 27.9 101.58
R04 1.10 14.17 6.26 9.63 7.36 28.0 104.12
Seel 0.99 11.70 6.26 9.67 7.25 21.37 108.88
Sec2 0.95 11.90 6.24 9.66 7.19 21.56 120.56
Sec3 0.89 11.90 6.15 9.64 7.04 21.54 110.95
Mean 1.00 12.90 6.25 9.65 7.25 22.55 1 0 5 .1 7
COY 0.081 0.101 0.006 0.003 0.015 0.057 0.079

Table 2.2 - Computation time (CPU) in seconds fo r  the different sections
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Based on the relatively small values obtained for the COV it can be assumed that the 

time consumed to calculate the hydrodynamic coefficients is independent of the section 

geometry.

Using this assumption Fig. 2.29 represents the mean value of the time spent in the 

transformation and in the calculation of the hydrodynamic coefficients and the total 

time consumed. The computation time for the Frank close fit method is about 4.8 times 

greater than the 12 parameter method and 14.5 times greater than the Lewis method.

25 

20 

15o UOT
^  10 

5 

0
Lewis 4 5 6 7 8 9 10 11 12

Number of mapping coefficients

Figure 2.29  - Time consumption varying the number o f  coefficients (seconds)

Finally the next two figures show the relation between the errors in the definition of the 

geometry and in the hydrodynamic coefficients. The correlation between these two types 

of errors was evaluated based on the regression equation:

y = A x

where the coefficients are represented in table 2.

Correlation coef. (p) Coefficient A
Added mass 0.95 7.73
Damping coefficient 0.81 12.42

Table 2.3 - Correlation coefficient and slope coefficient

M apping

Hyd. Coef.
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Figure 2.31 - Correlation between the damping coefficient deviations and the mean geom etric
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2.5 - CONCLUSIONS

The important parameters that are involved in the determination of the added mass and 

damping coefficient are studied using the mapping transformation. These values are also 

compared with the results of the Frank close fit method.
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For the midship sections, a small number of parameters is enough to obtain satisfactory 

results when compared with the Frank close fit method. For bow type sections with 

severe flare, great deviations occur between the Lewis and the Frank method.

The hydrodynamic coefficients obtained using the transformation method tend to 

approximate the Frank close fit method with the increase of the number of mapping 

parameters. The advantages of the transformation method when compared to the Frank 

method is the computation speed and the confidence in the results for high frequencies, 

but the disadvantage is that the mapping is impossible to be performed for some sections 

like close bulbs and completely submerged sections.

Some correlation between the geometric errors and the hydrodynamic errors was found, 

especially for the added mass and using those results the hydrodynamic errors can be 

estimated.
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CHAPTER 3

WAVE INDUCED MOTIONS AND LOADS

3.1 - INTRODUCTION

In this chapter only the vertical ship motions and loads will be studied. This 

simplification is undertaken because for the purpose of this research, which is the 

calculation of the combined vertical shear forces and bending moments (due to waves 

and slamming), the only motions of interest are the vertical ones.

The prediction of ship motions and sea loads have been studied by several investigators 

since the end of the last century. Krilov (1896) calculated the vertical exciting forces 

acting on the ship hull, using the wave pressure distribution formulation ignoring the 

presence of the hull, i.e. he did not consider the radiation effects. Using this approach 

he formulated the equations for vertical motions using only the inertia and hydrostatic 

coefficients.

Weiblum and St. Denis (1950) stressed the importance of including the hydrodynamic 

forces in the equations of motion and they proposed simple formulae to estimate these 

quantities.

Korvin-Kroukovsky (1957) introduced a strip theory method with the objective of 

reducing the three dimensional problem to a series of two dimensional problems in 

several longitudinal strips with constant cross section. In order to obtain the global 

effect on the ship the strips contributions are integrated along the length. As a 

consequence of this approximation the assumption of slender body must be imposed, 

i.e. the beam and draft are much less than the ship length.

Based on the strip theory assumption and the relative motion concept Gerritsma and 

Beukelman (1967) extended this method, taking into account the ship forward speed.
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To validate this method, Smith (1967) made comparisons with experiments for three 

different ships and he obtained quite satisfactory results for the vertical motions.

Salvesen, Tuck and Faltinsen (1970) derived the strip theory in a consistent way and 

they found some new terms that must be included in the original strip theory.

Newman (1978) gives a complete history of the development of theoretical methods to 

predict ship motions in regular waves.

3.2 - FORMULATION OF THE EQUATIONS OF MOTION

In determining the ship motions it was assumed that:

• The motion, velocity and acceleration of the ship have linear dependence on the 

wave amplitude

• The forward velocity of the ship is constant

• The ship has a slender form

• The ship can be considered as a rigid body

Using the slender body assumption, the real three-dimensional flow around the ship can 

be approximated by a series of two dimensional flows in transverse strips with constant 

cross section. The hydrodynamic coefficients of the sections are obtained by assuming 

that the ship do not have forward speed and the corrections related to the ship velocity 

are introduced in the coefficients of the differential equations.

It is considered that the ship is travelling in head seas and that the wave excitation 

forces and the resultant oscillatory motions are linear and harmonic at the frequency of 

encounter:
2

<De = CD + —  U = (D + kU  (3-1)
g

where cd is the wave frequency, U is the ship speed, g the acceleration due to gravity

and k is the wave number. Using the linearity assumption and considering that, for the

vertical motion the only coupling terms are between heave and pitch motions, then the 

equations of motion for these two motions can be written in the form of two coupled 

second-order differential equations with frequency-dependent coefficients.
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In order to simplify the ship motion equations, the coordinate system is fixed to the 

body, with its origin situated at the free surface on a vertical line passing through the 

centre of gravity. So the equations of motion can be written in the following form:

where A is the ship displacement, I the inertia, z the heave motion, 0 the pitch motion, F 
the vertical force, M the exciting moment and a, b, c, d, e, g, A, B, C, D, E, G are 
coefficients of the diferential equations obtained from the ship hydrostactic and 
hydrodynamic properties.

The coefficients on the left hand side of the equations (3.2) and (3.3) are evaluated 
using the method proposed by Salvesen, Tuck and Faltinsen (1970).

(A + a) z + b z + cz + d 0 + e 0 + g 0  = F (3.2)

( I + A) 0 + B 0 +C 0 + D z + E z + G z — M (3.3)

(3.4)

(3.5)
L

(3.6)

(3.7)

(3.10)

(3.8)

(3.9)

(3.11)
L

(3.12)
L

(3.13)
L

(3.14)
L
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where a' and N' represent the sectional added mass and damping coefficient for the 

vertical motion, the superscript A denotes the aftermost cross-section of the ship, b the 

section beam, x the longitudinal position, L the ship length and p the water density.

The formulation for the excitation forces is different from Salvesen et al. and is 

obtained using the method proposed by Korvin-Kroukovsky and Jacobs (1958). The 

difference between these two methods is related to the following empirical assumption 

used by Korvin-Kroukovsky:

fekzdl = e'kT* T* = — (3.15)
C b

where A represents the sectional area.

Using this approximation the expressions for the exciting forces are simplified and they 

can be expressed in terms of the added mass and damping coefficient. Gerritsma and 

Beukelman (1967) used this method for the calculation of the exciting forces and they 

concluded that this method requires less computation time than the Salvesen et al. one 

and produces similar results for conventional ship forms. The amplitudes of the exciting 

force and moment for the two methods are obtained using the equations (3.16) and 

(3.17).

F0 = p C J(f2 + h2) dx + p h* (3.16)

M0 = -p  C J d x - p ? T ^ x Ah* (317)
ICO „

The difference between these two methods is in the simplification of the functions fz

and hz. For head seas the functions fz and hz obtained by the two methods are for the

Salvesen et al.’s method

h2 = icoeik* JN ZV|/Zekz ds (3.18)
C

f2 = g eb  j N zekzds (3.19)
C
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and for the Korvin-Kroukovsky’s method they are: 

1 co
hz =  ------ e ^ e "*1 (a>;a' - io eN') (3.20)

P®e

f2 = g e ikxe-kT*b (3.21)

where co represents the wave frequency and C, the wave amplitude.

The added mass and damping coefficients are obtained using the method proposed in the 

previous chapter.

3.3 - SOLUTION OF THE DEFERENTIAL EQUATIONS

In order to solve the system of equations, the forces are written in the following 

complex form:

F = F0 eico,t (3.22)

M = M0 eim,t (3.23)

Where F0 and Mq are complex numbers given by,

F0 — Fr  + i Fr (3-24)

M0 = Mr + i Mj (3.25)

In the linear theory, the harmonic responses of the vessel will be proportional to the 

amplitude of the exciting forces with the same frequency, but with a phase shift. 

Consequently the ship motions will have the form:

z = z0 eia>,t (3.26a)

0 = 0O eitfl,t (3.26b)

where z represents the heave motion and 0 the pitch motion.

The velocity and the acceleration of the motion are obtained taking the time derivatives

(3.27a) 

(3.27b) 

(3.28a) 

(3.28b)

z  = i z o

z = 1 N o e' c°e 1

0  = oCD

C
D

: II 1 CD o ©e
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Substituting equations (3.26), (3.27) and (3.28) into (3.2) and (3.3) one obtains:

{-(A  + a)o" + bicoe + c } z0 + ( - d ©* + e icoe + g ) 0 o = F0 (3.29)

| - ( I + A ) c O g  + Bia>e + c } 0 o + (-DcOg + Eicoe + G ) z 0 = M0 (3.30)

The system can be easily solved in an explicit way. If one define the frequency- 

dependent constants P, Q, R, S as:

p = _(A+a)(Dg+bi©e +c (3.31)

Q = - d ( o ^ + e i c o e +g (3.32)

R = — (I+A)©g +Bi ©e +C (3.33)

S = -D (0g + E i o c +G (3-34)

Then the motion complex variables are obtained using the following relations:

FS - MQ
z0 = ------------  (3.35)
0 PS - QR V '

MP - FR
e° = (3-36)

In order to obtain the equations of heave and pitch motion in a regular wave, equations 

(3.26a), (3.26b) obtained in a complex form have to be changed to the real form, using 

the relation:

I zo I = Vz? + (3-37)

sz = tan1 ( ) (3.38)
ZR

The transfer function for the heave motion represents, for a certain frequency, the ratio 

between the heave and wave amplitudes and for the pitch motion it quantifies the 

amplitude of the pitch angle divided by the wave slope.

T R F > o) = (3.39)

TR FeK ) = (3.40)
K
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The response amplitude operators for heave and pitch motions are obtained using the 

following relations

|Hz|2=TRFz2 (3.41)

|He|2 = (TRFe k)2 (3.42)

These functions are very important in the calculation of the ship response in irregular 

seas, because if an irregular seastate can be represented by sea spectra, then according 

to the linear theory of motions the response spectra for that sea is obtained by using the 

following equations:

Sz = |HZ|2 Sw (3.43)

Se = M ’ Sw (3.44)

The response amplitude operator (RAO) for the relative motion at an arbitrary section is 

obtained using the RAO for heave and pitch and the phase between the wave and the 

corresponding motions

|H,|2 = 1 + |HV|2 -  2 |HV| cos ( kx -  £x) (3.45)

where represents the RAO for the vertical motion of the ship for a given 

longitudinal position x and ex the phase between the vertical motion in the x position 

and the wave at the centre of gravity. These two values are obtained using:

|Hr|2 = |HZ|2 + x2 |Hef  -  2x |HZ| |He| cos ( s e -  £z) (3.46)

|h z| sin( ez) +  x|He|sin( se)
£„ = tan

f
-i

|Hz|cos( ez) + x[He|cos( s 9),
(3.47)

As it is done in the heave and pitch motions, the relative motion spectra of the ship 

Sr(co,x) is obtained by multiplying the response amplitude operator of the ship by the 

sea spectra.

S > ,x )  = |Hr(cc,x)|2 Sw(cb) (3.48)
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When the ship velocity is non-zero and the transfer functions are dependent on the wave 

frequency, the relative motion spectra has to be transformed in terms of the encounter 

frequency using the following relation:

Sr(co,x) do = Sr(o e,x) d o e 

Substituting (3.1) into (3.49) one obtains: 

Sr(cp,x)
Sr(coe,x)

1 + 2U o

(3.49)

(3.50)

The relative velocity spectrum is obtained using 

Ss (o e>x) = ffl2 Sr(to„,x)

The formulation to obtain the shear forces and bending moments is given by:

Q(x) = J " { m .(2- S § )  - F'}d£,

(3.51)

(3.52)

M(x) = £  {m,( z - i j d  ) - F ' } ( x - ^  (3.53)

where ms is the longitudinal mass distribution. F' can be divided into three components

f ' = f ; + f 2+ f 3

with

dm1Fj = - m' z - | N' - V-^—J z - pgb z

F2 = m'x0 + I N'x - 2m'V- 6 + (pgb x - VN' + V2-j^ -| 0

F, = ± C e-kT* pgb ™k* =F «,  ̂ dm'Vm 2 cosN' - V — I k x - o V ^ k x
dx cos

COS

y C0et
sin

(3.54)

(3.55)

(3.56)

(3.57)

3.4 - RESULTS

Using the formulation given in this chapter, the hydrodynamic coefficients and the 

transfer functions for the heave and pitch motions were obtained for a container ship 

named as S-175. This ship was proposed by the seakeeping committee of the ITTC and 

extensively studied during the period of 1976-1978, and some experiments have also 

been made on this ship. The results of the experiments and the various ship motion
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theories were published in the Proceedings of the 15th ITTC (1978). The offset data is 

available in one of the ITTC reports (1978). Table 3.1 gives the ship principal 

particulars.

Ship S-175
LPP (m) 175.0
B (m) 25.4
T(m) 9.5
A(t) 24 742
LCB (%L) 1.417
Q, 0.572
Cm 0.970
GM (m) 1.0

Kyy/Lpp 0.24
iC /B 0.328

Table 3.1 - Ship main particulars

The body plan of the container ship is shown in figure 3.1.

i

Figure 3.1 - Body Plan

The ITTC committee also gave the ship mass distribution which is illustrated together 

with the section area distribution in figure 3.2.
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Figure 3.2 - M ass and section area distribution

The hydrodynamic coefficients were evaluated using mapping transformations with 4, 8 

and 12 coefficients. It is assumed that the ship is travelling in head seas with a Froude 

number equal to 0.275. The results for the heave and pitch motions were compared with 

several results obtained from some of the partners involved in the ITTC project. The 

organizations and the programs used are listed in table 3.2.

Organization Program
Helsinki University of Technology Honkanen (1976)

Hamburg Ship Model Basin (HSVA) Grim (1960)

Delft Shipbuilding Laboratory (Delft) Delft (1975)

Netherlands Ship Model Basin NSMB

Table 3.2 - Ship motion program s used fo r  the ITTC comparison

The heave and pitch transfer functions were also compared with the experimental 

results carried out by the Ship Research Centre of Japan.

3.4.1 - Comparison of the Hydrodynamic Coefficients

In the first part of this section some coefficients of the equations (3.2) and (3.3) are 

compared for different numbers of mapping coefficients against the Lewis method,. 

Figs. 3.3 and 3.4 illustrate this.
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Figure 3.6 - Coefficient B used in eqn. (3.3) fo r  three different number o f  mapping coefficients
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From figures 3.3 to 3.6 it can be concluded that for this ship the number of coefficients 

used in the mapping transformation will not produce significant deviations in the 

hydrodynamic coefficients.

As with the analysis done in chapter 2, the major deviations occur in the damping 

coefficient in the extreme sections, which can be seen by comparing figure 3.4 with 

figure 3.6.

3.4.2 - Vertical Motions

For the evaluation of the heave and pitch motions several formulations are compared 

with the proposed one and with the experimental results. The theoretical methods and 

the experiments produced quite similar results. The variation of the number of mapping 

coefficients in the transformation do not produce significant deviations in the transfer 

functions, and for the heave motion this deviation is in practice irrelevant.
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3.5 - CONCLUSIONS

For the heave and pitch motions, the predicted results are quite accurate when compared 

with experimental results. The variation in the number of mapping coefficients does not 

produce significant deviations in the transfer functions especially for the heave motion.

The comparison of the relative motion with the experimental results was not carried out 

because no experimental data for the motion phases was available, but these values are 

close to the theoretical values given by the organisations involved in the ITTC project.

However, significant deviations were observed in the relative motion between the 

Lewis method, the one that uses 9 parameters in the mapping transformation. This 

means that the relative motion transfer function is more sensitive to small variations in 

the hydrodynamic coefficients than the heave and pitch transfer functions, because to 

evaluate this function the phase between the motions and the wave were taken into 

account.
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CHAPTER 4 

SLAMMING LOADS

4.1 INTRODUCTION

The impact loads induced by waves on ships are, as a rule, concentrated at their forward 

sections. These slamming loads can consist of bottom impacts or of the development of 

sudden forces at bow-flared sections. The interest on slamming has often been raised 

from the point of view of the structural strength of the hull and form the ship and from 

of the ship operational standpoint.

From the structural side, slamming is looked upon as a possible cause of structural 

damage and also as a significant component of the primary stresses that the hull is 

subjected to.

As a consequence of the impact loads, structural damage like breaking of masts, 

excessive flexure of the shell plating, panels, fractures in the hull, piping, etc can occur. 

These damages cause extra costs to the ship owners. Studies in the early 1960s have 

shown that in 390 US general cargo vessels, 199 experienced damage. In that study 

229 damages were found with average costs equal to $28,700 Aertssen (1968).

The slamming pressures increase with the ship forward speed, so for the new kind of 

fast container ships this problem is very important. The usual way to prevent the severe 

slamming is to reduce the speed or change the course.

Aertssen (1968) found that in the North Atlantic, high speed vessels had to reduce their 

speed as a percentage of the total time at sea something like 4% for ships with length 

above 260 m and 15% for ships under 125 m.
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Slamming occurs during extreme ship motions and impact forces are generated when 

the forward bottom of a ship emerges from the water and re-enters with a certain 

velocity greater than the threshold velocity Ochi and Motter (1971).

Experimental investigations were carried out to determine the impact pressures for 

plates, scale models of ship bottoms with various deadrise angles and real ship sections. 

Chuang (1967) performed various drop tests for three dimensional models and in rigid 

wedge shaped bodies for different deadrise angles.

Impact tests for ship models were also carried out by various researchers. Ochi (1958) 

performed extensive work in this area.

For the reasons explained above it is very important to know the loads generated by 

slamming. In order to evaluate these loads certain factors must be known; the most 

important ones are: the maximum slamming pressure and its distribution along the 

section and the time variation of the loads.

Another important aspect is the probability of slamming for a given loading condition 

and heading angle. Ochi (1964) produced figures for the probability distributions of 

slamming occurrence for several vessels, one of them is shown in Fig. 4.1.

Heading
o

Ligth

Moderate

0.5 0.4 0.2 0.3 0.50.3 0.2 0.1 0 0.1 0.4

Probability

Figure. 4.1-Probability o f  Occurence o f  Slam fo r  Various Loading Conditions and  

Course Angles (0° = H ead seas), Ochi (1964).
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4.2 - MAXIMUM SLAMMING PRESSURE

The first problem is related to the determination of the maximum slamming pressure. 

There are several methodologies to evaluate the maximum slam pressure and the 

objective of this section is to compare them. All the methods assume that the maximum 

slamming pressure is given by the following relation:

= - p k v 2 
2

(4.1)

where v is the impact velocity and k is a form coefficient that depends on the section 

geometry and its orientation to the water surface. So the problem reduces to the 

determination of the k factor.

The first method studied in this section was developed by Ochi and Motter (1973). In 

their work 15 sections are analysed and regression analysis was used to establish the 

following relation:

k  =  gO-377 + 2.419 ax -  0.873 a2 + 9.624 a3 ) ^  2 ^

where a! , a2 and a3 are non-dimensional coefficients of the mapping transformation.

The mapping is performed for any conventional hull shape between the baseline and 

1/10* of the design draft. Using Ochi’s method, the mapping transformation was 

performed for wedges with deadrise angles varying from 0 to 45 degrees and the k 

values are plotted in the following figure.
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Figure 4.2 - Form coefficient obtained using Ochi's m ethod fo r  wedges by varying the
deadrise angle
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The second method was proposed by Stavovy and Chuang (1976) and according to 

them "the method can predict the maximum slamming pressures on all types of ships 

including advanced vehicles that may travel at speeds up to 100 knots and even higher 

speeds". The method gives the k value for any given angle. The maximum pressure 

along the ship section is evaluated using the local deadrise angle. The k value is 

obtained using a series of polynomials that fit experimental values and given as follows:

1. For 0 < a  < 2.2 deg
0.37 ak, = --------  + 0.5

2.2

2. For 2.2 < a  < 11 deg
k, = 2.182094 - 0.9451815 a  + 0.2037541 a 2 - 0.0233896 a 3 

+ 0.0013578 a 4 - 0.00003132 a 5

3. For 11 < a  < 20 deg

k, = 4.748742 - 1.3450284 a  + 0.1576516 a 2 - 0.0092976 a 3 

+ 0.0002735 a 4 - 0.00000319864 a 5

4. For a  > 20 deg
( 1 + 2.4674 tan2a  )kj = 0.768546471

(4.3)

(4.4)

(4.5)

(4.6)
288

The relation between k and kj is given by

kik = 288
cos4a

(4.7)
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Figure 4.3  -  Form coefficient as function o f  deadrise angle (  Stavovy and Chuang, 1976)
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The methods presented above are empirical and based on experiments, however some 

theoretical work for the determination of the slamming pressures has also been made. 

The following method was originally proposed by Wagner (1932) and was later 

extended by several investigators.

In the Wagner approach the fluid is considered ideal, so the potential theory can be 

applicable. Assuming that the flow is two dimensional, the boundary value problem for 

the velocity potential is given by,

A(|> = 0 

<|> = 0 

d<l> _ dyb
d y  d t  

<J> —> 0

(x,t)

(y < o)

(y = o, |x| > c(t» 

(y = o, |x| < c(t)) 

(x2 + y2 -» °o)

(4.8)

(4.9)

(4.10)

(4.11)

where eqn. (4.8) is the Laplace equation, c(t) is an unknown function (figure. 4.4) and 

yb (x,t) represents the wetted part of the body:

yb(x,t) = f(x) - s(t) (4.12)

where f(x) describes the body shape and s(t) the penetration depth of the body. For 

constant penetration velocity, equation (4.12) is rewritten as:

yb(M ) = f(x) - v t (4.13)

- c ( t ) c(t)

Figure 4.4  - c value fo r  the Wagner approach

The solution to the problem given by eqns. (4.8)-(4.11) can be found for arbitrary 

functions of yb and c(t). The shape of the free surface |x | > c(t) is given by the equation 

y= rj(x,t) where

_ f1̂■H (x,t) = f —  (x,0,x) dx
d y

(4 .14)
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In the Wagner approach it is assumed (figure 4.4) that the spray jets are very thin 

compared to the dimension of the wetted area and they can be approximately

disregarded to determine the flow and the pressure in the main liquid region. The

elevation of the free surface at the contact point c(t) must be equal to the body position,

n(c(t),t) = yb[c(t),t] (4.15)

Korobkin (1995) showed that eqn. (4.15) can be transformed to:

71

J02yb[c(t) sine, t ] d 0  = 0 (4.16)

The pressure distribution along the body is given by the following equation:

p(x,o,t) = p
C C S  I  7 7+ sv c -  X

F F ~ 2
(4.17)

X

For wedges and considering constant impact velocity, the maximum slamming pressure 

occurs at the end of the jet region and is given by:

7t2
P™ = —  P cotan2 (a) v2 (4.18)

Based on the analytical formulation by Dobrovol’skaya (1969), Zhao and Faltinsen 

(1993) present a numerical method to solve the slamming problem based on the non

linear boundary method. This method is different from the Wagner solution because the 

jet is taken into account. Using this method the slamming forces can be evaluated for 

deadrise angles larger than 2-3°. After that they performed calculations using this 

method for wedges with deadrise angles varying from 4° to 40° and compared with two 

different methods:

1) Similarity solution for wedges.

2) Asymptotic Solution based on the Wagner (1932) work.

The form coefficient values obtained for the three methods are represented in the table 
4.1 and plotted in figure 4.5.

a Simil. Wagner BE
4.0 503.03 504.61 521.40
7.5 140.59 142.36 148.30
10 77.85 79.36 80.20
15 33.27 34.37 32.80
20 17.77 18.63 18.20
25 10.96 11.35 10.90
30 6.93 7.40 6.94
40 3.27 3.50 3.26

Table 4.1 - k  values according to Zhao and Faltinsen and using eqn. 4.18.
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Figure 4 .6  - Comparison o f  the various methods

Figure 4.6 represents the results of the several methods previously presented in figs. 

4.2, 4.3 and 4.5. By looking at this figure one can conclude that large deviations exist 

between the methods and the pressures given by the Wagner theory and by the other 

theoretical methods are much greater than those given by the formulation of Ochi and 

Motter and by the Stavovy and Chuang’s method which is based on experimental 

results. Hagiwara and Yuhara (1974) carried out tests for wedges with small deadrise 

angles and they measured pressure peaks under the water impact, that are close to the 

values obtained by the Wagner theory with a short duration in time, as predicted by the 

Wagner method.

56



4.3 - SLAMMING VERTICAL FORCE

Ochi and Motter (1973) and Kawakami et al. (1977) assumed that the slamming 

pressure has a linear distribution vertically with the maximum value at the bottom and 

the zero value at one tenth of the design draft. Fig. 4.7 illustrates the pressure 

distribution using this approximation for a general cross section.

A'/2
0.1 T

pmax

Figure 4.7 - Pressure distribution according to Ochi

Assuming the pressure distribution linear vertically, the pressure at any point is given 

by

P „ = P m« ^  d = 0.1T (4.19)

The total vertical force is obtained by integration:

F = 2 cos «(e> de = pm« J  (4.20)

or substituting the maximum pressure in equation (4.1)

F = —  p k v 2 (4.21)
2d

Figure 4.8 wedge geometry and system coordinates fo r  the Stavovy method
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Using the formulation given by Stavovy and Chuang, the pressure in an entering wedge 

is assumed constant and so the vertical force is obtained as:

b 2
F = P™* s coscc = pm» b = -  p k v (4.22)

where b represents the breadth of the wedge.

The pressure distribution obtained by Zhao and Faltinsen (1993) has the form depicted

in figure 4.9 with a sharply increased value in a z position, according to the asymptotic

theory, equal to (0.57T - 1) z'.

k

Figure 4.9 - Pressure distribution using the boundary element method

Korobkin (1995) has shown that the force for an arbitrary body can be calculated by 

using the following equation which is based on the Wagner theory,

7t

F(t) = -2 c c | o2-^-[c(t)sin 0, t] - —̂ -[c (t)sin  0, t] cos2 0 d0 (4.23) 

For constant impact velocity, the second part of equation (4.23) is zero, therefore:

71

F(t) = -2 c c Jo2y bt[c(t)sin  0, t] d0 (4.24)

The vertical force calculation in the other two methods compared by Zhao and Faltinsen 

is based on the direct integration of the pressure. In these studies the total vertical force 

were non-dimensionalized by using:

Fad = "T7 (4 25)p v z
with

z = vt

The non-dimensional forces using the three methods are given in the table 4.2.
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a Simil. Wagner BE
4 1503.64 1540.51 1491.80

7.5 399.82 423.74 417.90
10 213.98 213.97 220.80
15 85.52 96.88 85.50
20 42.49 50.64 43.00
25 23.66 29.77 23.70
30 14.14 18.75 13.90
40 5.48 8.32 5.31

Table 4.2 - Non-dimensinal vertical force

Another method to calculate the slamming force is based on the added mass theory 

(momentum theory). This method was proposed by Leibowitz (1963) and many authors 

used this method with some corrections. Belik and Price (1982) suggested that the total 

slamming force is equal to the momentum contribution plus the impact slamming, using 

this approach they made comparisons between the impact forces obtained by the Ochi 

method and the Stavovy method. Guedes Soares (1989) used the Leibowitz formulation 

and the Frank close fit method to perform time domain calculations in regular waves.

In the Leibowitz method the section force can be obtained by using:

F =  £ ( m h z)  (4.26)

Using the assumptions that the vertical velocity during the slamming process is constant 

and the wedge longitudinal velocity is equal to zero (drop test), the vertical slamming 

load expression is reduced to the following expression:

_ dm, . 2 dm, 2
F = — k z2 = ----±  v2 (4.27)

dz dz
The added mass is computed assuming that the free surface is undisturbed and that it 

can be evaluated using Landweber's (1967) method,

mh = A-' ' (1+ 2a0 + f ] ( 2 i - l ) a ? )  (4.28)
\ i=l

Figure 4.10 represents the methods non-dimensionalized vertical force on wedges with 

varying deadrise angle obtained by the several using eqn. (4.25).
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Figure 4.10 - Comparison o f  the different methods to calculate the vertical force

The problem of the Wagner theory and the momentum theory is that the force will be 

equal to infinity when the deadrise angle is zero. But in this case the time duration of 

the high pressures tends to zero, and the impulse exerted by the water on a unit length 

of the body is equal to the added mass for the equivalent horizontal plate times the 

impact velocity:

I = -^p c2v (4.29)

where c is equal to half breadth of the equivalent plate.

4.3.1 - Time History of the Vertical Slamming Force.

In order to evaluate the time history of the vertical slamming force, Ochi and Motter 

(1973) assumed that the force has a triangular shape varying from zero to Fmax and zero 

again during a period T .̂ He proposed that the time period , can be evaluated using 

the Froude scale law. Using experimental results he found the following relation 

between the period and the ship length:

Td = 0.00794 Vl  (for SI units) (4.30)
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Based on this approximation and in experimental observations, Kawakami et al. (1977)

proposed another expression for the vertical slamming force as function of time, (see

Fig. 4.11).
_t_

F(t) = F H  e '  (4.31)
■̂o

where F represents the vertical force evaluated for 1/ 10th of the design draft, T0 is 
given:

T0 = 0.00088 VL (4.32)

-Ochi
0.8

0.6

0.4
Kawakami

0.2

0.008 0.010.0060 0.002 0.004

t /  Vl
Figure 4.11 - Time history o f  the vertical slamming load proposed  by Ochi and M otter (1973)

and Kawakami et a l (1977).

4.4 - SLAMMING LOADS CONSIDERING CONSTANT IMPACT VELOCITY

Three different stations and two different impact velocities of the S7-175 container ship 

were chosen to perform comparisons between the several methods. Considering the 

nature of these forces which act on the ship for a short period compared with the 

structural natural periods, it is suggested to compare the impulses instead of the forces. 

The impulse is defined as:

I = J ‘F(t) dt (4.33)
The methods that will be compared are

1. O ch i a n d  M o tte r  m e th o d fo r  the m axim um  slam m in g  p re ssu re  a n d  tim e h istory.

2. S ta vo vy  a n d  C huang m e th o d  f o r  the p re ssu re  a n d  K a w a k a m i e t  a l  m e th o d  f o r  the  

tim e duration .

3. M e th o d  b a se d  on  the d er iva tive  o f  the a d d e d  m ass.

4. W agner so lu tion  u sin g  the K orobk in  equ ation  f o r  the w e tte d  area.
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4.4.1 - Ochi and Motter Method

The three coefficients of the mapping transformation, the sectional area and the k value 

were performed for the forward stations of the container ship and given in the table 4.4.

Station al a2 a3 A ’ k
7 0.7652 -0.0186 0 .0101 13.75 56.70

yl/2 0.7170 -0.0154 0.0129 10.61 51.60
8 0.6460 -0.0086 0.0158 7.67 44.23

8 1/2 0.5428 -0.0009 0.0174 5.30 34.53
9 0.4176 0.0095 0.0158 3.63 24.79

9 i/4 0.3079 0.0228 0.0126 2.67 18.26
91/2 0.2515 0.0339 0 .0 1 2 2 2.28 15.76
93/4 0.1943 0.0287 0.0118 2.06 13.71
1 0 0.1315 0.0219 0.0125 1.85 11.91

table 4.4 - Ochi param eters fo r  the determination o f  the k value

According to Ochi and Motter, the time duration for the slamming force for this vessel 
is equal to

T j = 0.105 s 

The maximum slamming force can be written as

F = p Kv vr2 (4.34)

where K̂ , for the Ochi and Motter method is given by

K" = Y d  k (4 '35)

Substituting values given in table 4.4 in the equation (4.35) the coefficient Kv can be 

obtained.

Station K
7 409.46

yl/2 287.55
8 178.19

81/2 96.01
9 47.28

91/4 25.61
91/2 18.89
93/4 14.85
10 11.60

Table 4.5  -  K v values according to Ochi and Motter.
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The impulse function for this method is equal to:

I(t) =
K y
2T

1
I(t) = z i

I(t) = T K^v2

- — t2 +2t + T 
2T K y

0 < t < X,

Td < t < 2 Td (4.36)

t > 21

4.4.2 - Combining the Method of Stavovy and Chuang and of Kawakami et al. 

Method

In this method, the pressure distribution is obtained using the equations (4.3) to (4.7). 

To evaluate the k value for an arbitrary point in the section, the local deadrise angle 

must be computed which can be computed using the conformal mapping of the section:

a  = tan'

a  = tan'

-if dy
dx.

f  N

A;(2n + 1) cos(2n + 1)0
i=-l

A;(2n + 1) sin(2n + 1)0
v i=_i

(4.37)

(4.38)

where a  represents the deadrise angle.

In this method eight parameters are used in the transformation to guarantee that the 

deadrise angles will be close to the real values. The maximum vertical force is obtained 

using the direct pressure integration limits proposed by Ochi. In table 4.5 the Kv values 

for the different stations are shown.

Station Kv
7 1041.5

7l/2 757.4
8 494.2

81/2 309.9
9 179.6

91/4 95.5
91/2 68.1
93/4 52.2
10 41.0

table 4.5 - Kv values according to Stavovy and Chuang
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Acording to Kawakami et al the value T0 given by eqn. (4.32) for this vessel is equal to: 

T0 = 0.0116 s

Finally, the impulse function can be easily obtained by integrated eqn. (4.31):

t -  Tn

I(t) = -e T° (t + T0) + T0 e K..V' (4.39)

4.4.3 - Momentum Theory

In this method the added mass was computed for several waterlines between the base 

line and the design draft and its vertical derivative was obtained. Using the multipole 

expansion method for the determination of the added mass, the mapping must be 

performed for each waterline position.

If the station has a flat bottom, equation (4.28) is used to evaluate the added mass for 

the flat bottom part. The added mass was calculated in twenty vertical positions. The 

impulse function for this method is equal to:

I(t) = m(z) z = m(z)v (4.40)

4.4.4 - Wagner Solution Using the Korobkin Integral

In this method the impact force is also infinite for the flat bottom. This numerical 

problem can easily be solved if one is interested in the impulse function. For flat 

bottoms in order to evaluate the forces, it is sufficient to carry out the calculations for 

deadrises which are close to zero. For example, if one considered the deadrise angle 

equal to 0.01° the final result for the impulse function will be practically the same.

4.4.5 - Comparison of Methods

Three stations chosen for the methods comparison are illustrated in figure 4.12. These 

three stations were chosen in order to study the slamming in typical forward stations: 

the first one without flat bottom and the local deadrise angle will be equal to 0 degrees 

near the bottom, the second one with small flat bottom and the last with significant flat 

bottom and small deadrise angles between 0 and 1/10th of the design draft.
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71/291/2

d/10

Figure 4.12 - Transverse lines o f  the chosen stations

The resulting impulse time functions obtained by four different methods and for two 

different velocities on the three stations are shown in figures 4.13 to 4.18.
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Figure 4.13 - Impulse time function fo r  the station 61/2, V=4 m/s
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Figure 4.14 - Impulse time function fo r  the station 6m,
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Figure 4.15  - Impulse time function fo r  the station 7m,
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Figure 4.16 - Impulse time function fo r  the station 7m,
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Figure 4.17 - Impulse time function fo r  station 9 m, and V=4 m/s
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Figure 4.18  - Impulse time function fo r  the station 9 1/2, V=8 m/s

Belik and Price (1982) suggested that the slamming force is the summation of an 

impulsive force associated with a pressure peak with the sudden force calculated with 

the momentum theory. For impulsive force they compared the Ochi and Motter method 

with the Stavovy and Chuang method for the calculation of the maximum slamming 

force combined with the Kawakami formula to describe the time history of the impact 

force. In the Stavovy method, the evaluation of the maximum slamming pressure it is 

assumed that this value is obtained taking into account only the flat bottom or near the 

keel.

67



This method can be compared in the initial stage with the impulse method which gives 

the impulse by using the momentum theory for flat plates:

T K  2 Io = - p c v

The impulse obtained using the method of Stavovy and Chuang and the Belik and Price 

approximation is given by:

I' = T0 e Kvv2 (4.41)

For a flat bottom and using the Stavovy and Chuang method Kv is equal to

Kv = 2 ccos(0°) = 144 p c (4.42)

Comparing the two expressions for the impulse one gets the following expression for T0

144 T0 p c v2 = - p c ! v o  T. = 0.01091 -  (4.43)
2 v

So, according to the momentum theory and if one uses the Kawakami method for the 

time dependence of the slamming force, the parameter T0 will not depend on the Froude 

number but is dependent of the impact velocity and the section shape. This last result 

seems more reasonable than the Ochi and Kawakami’s approximation in which T0 

depends on the Froude number. Fig. 4.19 shows the curve where both methods will give 

the same impulse values.

10.0

8.0

6.0
v [m/s]

4.0

2.0

0.0 +
10.08.04.0 6.00.0 2.0

c[m]

Figure 4.19  - Line where the momentum theory and the method used by 

Belik and Price (1982) gave the same results fo r  the impulse
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Figure 4.19 shows that for flat plates the impulse given by the method of Stavovy and 

Chuang combined with the one of Kawakami et al when compared with the one based 

on the momentum theory gives results c (half breadth) within the dimensions of the 

container vessel for the expected impact velocities. So one can say that the line 

represented on figure 4.19 is inside the physical region for this vessel.

The problem arises when T0 goes outside this line, the impulse can be different from the 

results obtained using the Wagner method and the momentum method. The figures for 

the same station but for different impact velocities shows that the impulse can be quite 

different for one impact velocity and for another similar see for example figures 4.13 

and 4.14.

Analogous results are obtained using the Ochi method and the only difference is that the 

values for the impulse are smaller.

The behaviour of the impulse functions obtained by the Wagner solution and the 

momentum theory is similar but the results obtained by Wagner are higher than the 

momentum theory. This difference can be explained by the fact that the momentum 

theory does not take into account the free surface elevation which is very important for 

the first phase of the slamming process when the deadrise angle is small.

On the other hand the Wagner theory is based on the assumption that the wetted part of 

the section can be approximated by a plate and it is only valid for the initial stage of the 

slamming process where, for the usual ship sections, the relation between the breadth 

and the draft is large.

So the more reasonable solution can be obtained by a hybrid method which uses the 

Wagner theory for the initial stage and the momentum theory for the penetration. So the 

first stage of the phenomena can be classified as impact and the second one as 

penetration. The problem with this assumption is to find the boundary between the two 

stages.
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4.5 - SLAMMING LOADS IN REGULAR WAVES

In the previous section the impact velocity was considered constant. This approximation 

can be made without significant errors if the time duration of the impact loads is small 

when compared with the frequency of encounter. For the Ochi and Kawakami 

formulations this assumption can be used but for the Wagner and momentum theory 

this assumption should not be used.

Taking this into account, comparisons for slamming forces when the ship is advancing 

in regular waves will be treated in this section.

For a sinusoidal wave it is possible to perform analytical calculations for the relative 

motion and velocity, and thus, to compare the slamming loads it is useful to carry out 

the calculations for a single wave system. The comparison will be made for two 

different wave frequencies with a single wave amplitude which is chosen to guarantee 

the occurrence of slamming. The wave amplitude was considered to be 4 m and the 

wave frequencies are equal to 0.45 and 0.55 rad/s. The vessel is travelling in head seas 

with a Froude number equal to 0.275.

Figure 4.20 shows the longitudinal variation of the amplitude of the relative motions for 

the two wave systems. The horizontal line represents the ship draft and relative motion 

amplitudes larger than the draft means the emergence of the bow at those stations. The 

longitudinal phase angles ex for the relative motion are represented in fig. 4.21. Figure 

4.22 illustrates the time simulation of the relative motion for the foremost stations and 

for the wave frequency equal to 0.55 rad/s.

14 --

10
z(m)

6 --

71/2 93/47 91/2 108 81/2 9

Station

Figure 4.20  -  Relative motion amplitude longitudinal variation
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Figure 4.21 - Phase angle
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Figure 4.22 - Relative motion fo r  the fo rw a rd  stations, co = 0.55 rad/s 

The time instant when the section hits the water z  is evaluated using the following 

relation:

1 1
r

z  =  --- cos' “  £ xlz rJ
(4.44)

Table 4.6 shows the time instant, for the different stations and waves, when the sections 

reenter the water.

Station
55.21 63.96 72.71 77.09 81.46 85.84 90.21

0.45 1.458 1.481 1.285 1.165 1.038 0.930 0.870
0.55 - - 2.286 2.352 2.327 2.243 2.159

Table 4.6 - Time instant when the section reenters the water

The vertical velocity of the relative motion for the impact instant is obtained using eqn.

(4.45) and illustrated in figure 4.23.

z = z COs(cOc X + E X ) (4.45)
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Figure 4.23 - Longitudinal distribution o f  impact velocity

4.5.1 - Travelling Velocity of Pressure in the Longitudinal Direction.

One important aspect of the slamming process is the travelling velocity of the impact 

pressure in the longitudinal direction. This is important for studying slamming in 

irregular waves, where usually for simplification purposes the travelling velocity of 

pressure vt in the longitudinal direction is assumed to be constant, or equal to infinity 

i.e. all the stations hit the water at the same time e.g. Kawakami (1977).

Ochi and Motter made experiments in a Mariner ship and obtained values between 260 

and 520 fps for a 520 ft vessel. From the structural point of view they concluded that 

the worst impact occurs for the slowest travelling velocity. Based on these conclusions 

they proposed one expression using the Froude's law,

Figure 4.24 shows the pressure travelling velocity obtained for the container ship and 

the line represents the travelling velocity computed using expression 4.46.

In this particular case the mean of the computed travelling velocity of the water 

pressure is close to the value obtained by using the Ochi and Motter expression:

v, = 6.30 VL (4.46)

Ochi and Motter method V = 83.4 m/s

Mean (Computed) V = 94.2 m/s
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Figure 4.24  - Longitudinal travelling velocity o f  the pressure

4.5.2 - Impulse Using the First Two Methods (1-Ochi and Motter 2-Stavovy et al + 

Kawakami et al)

The impulse shape for these two methods is similar if constant velocity of impact is 

assumed. This can be easily proved if one compares the period after which the impulse 

force becomes zero or negligible with the encounter period:

Ochi and Motter method T0 = 0.105 s

Kawakami et al. method T0 = 0.079 s

Encounter period (minimum) Te = 10 s

4.5.3 - Wagner Solution for Regular Waves

For regular seas the impact velocity cannot be considered constant and the Wagner 

method becomes more complicated. The wetted part of the section for regular waves is 

given by:

yb(x,t) = f(x) - Ar cos[©e(t + x) + p] (4.47)

Substituting (4.47) in (4.16) the following equation can be easily obtained,
7t

0  f(c(t)cos(0)) - Ar cos[a> e(t + t) + p]d0 = 0 (4.48)

71

Jo2 f(c(t)cos(0)) d0 = ~ [ A r c o s ( g) e (t + t)  + P)] (4.49)
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This integral equation can be solved in a non-formal way. If c(t) is assumed equal to C, 

which is an arbitrary value between 0 and the half breadth, then the instant t can be 

obtained by:

t = cos

71
2P  f(Ccos(0)) d0

G) 71 A.
-  T (4.50)

The force is obtained by substituting (4.50) in (4.23)

F(0 = P“  Arco c[sin(<a =(t + t)  + p)c2 + c2co e cos(® e(t + t) + p)] (4.51)

There are two different contributions in the total slamming force given by eqn.(4.51). 

The first one is related to the impact velocity and the second one to the acceleration of 

the body during the impact. From the second contribution it can be seen that the 

Wagner solution assumed that the penetrated body is considered a flat plate with half 

breadth equal to c. Figure 4.23 quantifies these two contributions during the impact 

period of the station and demonstrates that at the initial stage the first contribution is the 

greater one.

160
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Figure 4.23 - Slamming contributions according to Wagner (eqn. 4.51)
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4.5.4 - Momentum Theory Applied to Regular Waves

For the ship advancing in head seas in regular waves, the vertical force given by this 

method is as follows,

F = — (m1 v) = ——— v + m' v - U - ^ -v  -  U (0 + kQm'  (4.52)
Dt ; dt dx 7

The first two terms of equation (4.52) are similar to the ones given in the Wagner 

theory. Eqn. (4.52) can be rewritten as:

F = Fj + F2 + F3 + F4 (4.53)

where

F, = ~ - A > ^ s in 2(coe(t + x) + p) (4.54)
dz

F2 = -m'Aro^ cos(ooe(t + T) + P) (4.55)

F3= U -^ -A r©esin(oe(t + T) + p) (4.56)
dx

F4 = -Um'(Apcos(©e(t + T) + 0p)+£kcos(kx + G)e(t + T)) (4.57)

Section 9 1/2 
Momentum theory
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Figure 4.24  -  Contributions o f  some o f  the components o f  the slamming force
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The problem with this method when combined with the linear theory for the prediction 

of the ship motions and the wave bending moments is that the last three terms of 

equation 4.53 are already included in the linear theory but with constant values for the 

coefficients. From figure 4.24 it can be seen that the last three terms have a small 

contribution in the initial stage of the slamming process. For the time 0.3 s which for 

this case corresponds to a draft equal to 1.9 m (0.2 T), this contribution is equal to 25% 

and for the time equal to 0.7 s (immersion equal to 0.63 T) the contribution is equal to 

65% but for this immersion the linear theory will produce similar results for the last 

three contributions.

Figure 4.24 represents the slamming forces for a foremost station. For these stations 

where there is no flat bottom, the contribution of Fj is smaller than the other 

components. The same calculations were performed for other stations and for station 8 

the first component contribution was equal to 84% for 0.2 T. So it seems appropriate 

not to include these three components in the slamming forces and to use as for the 

constant velocity, only the first term of equation 4.52.

The same approximation will be made for the Wagner solution to determine the 

slamming bending stresses. For these two methods, only terms related with the vertical 

variation of the added mass will be included, knowing that this assumption is not 

theoretically correct but for the calculation of the whipping stresses small deviations are 

expected.

Further investigations will be made in this area and the results of the structural bending 

moments including these terms will be calculated and compared in chapter 6.
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4.5.5 - Comparison of Methods

In this section, comparisons between the Wagner and the momentum methods will be 

performed for two stations and two different waves. Comparisons will also be made 

between the calculated impulse for regular waves and the one that assumes constant 

velocity during the slamming process.
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Figure 4.25  - Slamming impulse obtainedfrom  Wagner and momentum theories.
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Figure 4.26 - Slamming impulse obtained from  Wagner and momentum theories.
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The behaviour of these two methods for regular waves is the same as mentioned in the 

previous section. Another comparison for simplification purposes is between the 

impulse obtained from the regular waves and the one that assumes constant impact 

velocity.

Impulse
Section 9 - Momentum theory

60

50 - Regular waves © = 0.45

40 -■
Constant velocity

30 -■

I (KNs)

10 -■

0.60 0.4 0.80.2

t (sec)

Figure 4.25 - Slamming impulse obtained from  momentum theory assuming constant impact
velocity and fo r  regular waves, A = 4m.
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10 --
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Fgure 4 .26 - Slamming impulse obtained from  momentum theory assuming constant impact

velocity and fo r  regular waves, A = 4m.
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From Figs. 4.25 and 4.26 one can say that the impulse for regular waves is higher when 

compared with the impulse when constant impact velocity is considered. This means 

that the absolute value of the velocity increases during the section penetration.

No general conclusion can be made about the increase of the impulse for regular waves 

because this value depends on the phase of the velocity in the impact instant and the 

amplitude of the velocity.

Figures 4.27 and 4.28 shows two curves representing the impulse calculated between 

the baseline and 0.6 of the design draft. The first one is obtained for regular waves and 

the second one assuming constant velocity.

From these figures it can be concluded that the difference between the impulse for 

regular waves and the one which considered constant impact velocity, decreases with 

the increase of the wave amplitude and consequently with the velocity.
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♦ Regular waves ~~D—Constant vel.

Figure 4.27 - Impulse calculated between 0 and 0.6 T  fo r  regular waves and assuming

constant velocity.
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Figure 4.28 - Impulse calculated between 0 and 0.6 T fo r  regular waves and assuming

constant velocity.

4 . 6  - CONCLUSIONS

In this chapter, important parameters related to the slamming pressures and loads were 

studied and the several formulations to predict them were compared.

In the first section, the maximum slamming pressure represented by the form coeffcient 

was compared for the several methods using a wedge geometry with varying the 

deadrise angle. Two of the methods are empirical and based on experiments and the rest 

of the methods are analytical. Large deviations exist between the results of the methods 

and the higher results obtained for the analytical methods, particularly for small 

deadrise angles. The Ochi and Motter method gives the lower results for the maximum 

slamming pressure for all deadrise angles.

Similar behaviour were obtained for the several methods used in the calculation of the 

maximum slamming forces but with smaller deviations. For the calculation of the 

maximum slamming force another method based on the momentum theory was 

compared and similar results were obtained for the Stavovy, momentum and Wagner 

methods. Ochi’s method, as for the maximum slamming pressure, produces the smaller 

results.
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For the evaluation of the whipping stresses it is necessary to obtain the time history of 

the maximum slamming force. Knowing that these loads act on the ship in small 

periods, when compared with the natural period of the structure, it is more reasonable to 

compare the impulse than the loads. So the impulses obtained by using the several 

methods were compared in three sections assuming constant impact velocity and in 

regular waves.

Two different constant impact velocities were chosen for the first study, and different 

behaviour was observed between the empirical and the analytical methods. The first 

group of methods assumed that the time history of the impact force depends on the 

Froude number and second one that the time history of the impact loads is dependent on 

the impact velocity and section shape.

The impulse function for regular waves tends to give higher results than that which 

assumes constant impact velocity.
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CHAPTER 5

STRUCTURAL RESPONSE

5.1 - INTRODUCTION

To assess the ship’s structural response due to vertical slamming loads, the ship is 

modelled using the finite element method (FEM) with Timoshenko’s beam elements. 

For typical hull sections, Timoshenko’s beam theory produces better results than the 

conventional Euler one, because the ratio between the sectional inertia and area is 

relatively high and consequently the shear deformations cannot be neglected. Bishop 

and Price (1979) studied the difference in the natural frequencies obtained with these 

two theories and concluded that significant deviations can appear in the natural 

frequencies for the higher modes.

The reason to model the ship structure as a beam instead of using real plate elements is 

related to the fact that, for the prediction of natural frequencies, vibration modes and 

structural response, a lot of computer time is required if the ship is modelled with the 

plate elements. Also, the errors associated in the prediction of the natural modes will 

increase with the size of the system. Another reason to adopt this simplification is that 

for conventional ships the beam theory gives good results for the calculation of the 

longitudinal stresses, displacements, rotations, forces and moments, if the ship is 

properly divided.

5.2 - PROBLEM FORMULATION

The damped transverse elastic response of the non-uniform beam is governed by the 

following system of partial differential equations:

(5.2)

(5.1)
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where p represents the mass distribution per unit length, Ir is the rotary inertia, c' is the 

structural damping distribution, V the shear force, M the vertical bending moment, and y  

bending slope.

Bishop and Price (1979) demonstrated that the rotary inertia term do not have a great 

influence on the resulting natural frequencies and mode shapes.

The finite element method is a numerical procedure which uses integral formulations to 

generate a system of equations in the following form:

The matrices M and K represent the mass and stiffness for the system i.e. in this 

particular case for the whole ship beam. To evaluate these matrices, several steps must 

be undertaken and, in a simple way, the scheme for the evaluation of these two matrices 

can be described as follows:

• The beam is discretized using several nodes points.

• The function that describes the displacements and rotations (degrees of freedom 

in the nodes) between the nodes is assumed to be linear, so the functions are

completely defined using two known values, i.e. the local elements can be

defined by using only two nodes.

• The potential energy formulation is written in terms of the nodal displacements.

It is then minimised giving one equation for each of the unknown displacements.

Using this process the local element matrix can be obtained in an analytic form.

• Using the local element matrices, the boundary conditions and compatible node 

displacements, the local matrices are assembled into a so called global matrix, as 

represented in eqn. (5.4).

If the damping matrix do not have some properties, see Bishop and Price (1979), the 

system (5.4) is difficult to solve and the existence of normal modes is not guaranteed. In

(5.3 a)

(5.3b)

M ii + C u + K u = Fij j '-'ij wj ij j i (5.4)
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real structures, damping forces are often small when compared with the inertial and 

stiffness forces and for that reason the natural frequencies will not be significantly 

affected by damping.

So the calculation of the natural frequencies and natural mode shapes can be done by 

assuming that damping does not exist, and the damping contribution will be included in 

the equations of motion for the calculation of the structural response. Using that 

statement the non-damped system is:

M kj fij + Kkj Uj = 0 (5.5)

The displacement u(x,t) can be written in the following way

u(x,t) = Re[ e'mt w(x)] (5.6)

where Re represents the real part of the complex function.

The eigenvalue problem is formulated as

(-co2M kj + Kkj) Wj = 0 (5.7)

The solution of this system gives n values of Qj and eigenvectors wj. The eigenvectors 

are orthogonal to each other and if they are properly normalised the following relations 

must be preserved

w k M kj Wj = 5kj (5.8)

and

Wk Kkj Wj = 5kj (5.9)

where the terms of the matrix are the Koneker 5kj.

Defining the transformation obtained using the matrix columns equal to the 

eigenvectors of the system, expression (5.4) can be written in the following form:

Ox M O p  + <DTK O p  = O t F (5.10)

or
SyPj + ^ kjPj = qk (5-ii)

where
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CO 0

n = O co.

0  co.

For the ship hull and considering the nature of the exciting forces, several authors e.g. 

Bishop and Price (1979) have shown that the response for modes higher than the fifth 

mode is negligible.

The displacement and bending moment are obtained using the following equations:

W(x,t) = E p r( t ) w r(x)
r=l

(5.12)

(5.13)M (x,t) = E p r( t )M r(x)
r=l

For the simplification of the equations of motion, the cross-coefficients of the 

transformed damping matrix (eqn. 5.17) are assumed to be equal to zero. Bishop and 

Price (1979) compared five formulations for the evaluation of the damping coefficients 

and they stressed that none of the formulations can be generalised for all ships, because 

they don't predict aspects like cargo damping, welding quality and many other aspects.

The damping coefficients in this work are estimated using the formulation given by 

Kumai (1958). According to his work the logarithmic decrement can be obtained using 

the following relations:

8j=  0.0024 to, and 5n = 0.0068 g o n > l  (5.14)

Using this assumption, the response for each mode in the principal coordinates are

obtained using the following equation:

“ rPr + CrPr + kr Pr = qr (5.15)

The coefficients of the differential equation are obtained using the following relations

mr = J p w ^ d x  (5.16)
L

cr = J c ' w ^ d x  (5.17)

k = rn go (5.18)
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5.3 - SOLUTION OF THE DIFFERENTIAL EQUATIONS IN THE TIME 

DOMAIN

The equations given by (5.15) are solved using the central difference method. This 

method is obtained from Taylor's expansion. According to Taylor's series expansion, the 

solution for a step i+1 and i-1 can be obtained by using the following expressions

h2 .. h3...
X; , =  X: +  h X ;  +   X: +   X: +  . .
1 - 11  2 6

h2 .. h3...xi+I = X, - hXi + — X; - — Xi + . . .
Z o

(5.19)

(5.20)

Taking constant time steps, using the first three terms of the series expansion and 

rearranging the equations, the velocity and acceleration can be obtained from the 

displacements:

- Xm)

= i + xi« '  2xi + xi-i)

(5.21)

(5.22)

Replacing the derivatives obtained in the damped second order differential equation, 

and putting h equal to At, the solution for the displacement at the time instant i+1 is

x i+i =  < m c+
At2 2 At.

2m
At2"■ ‘ M

m
2 At AT

5.23)

This is a recurrent expression and the method requires some initial conditions. The 

initial velocity and displacement are sufficient to start the solution because the 

acceleration can be obtained using the equilibrium equation:

*0= — ko -  c*o -  kx0]m J
(5.24)

If the time step At is smaller than the critical time step, then the method is conditionally 

stable. For this method the critical time step is equal to:

T
A tcri= ^  

n 2 n

where Tn is the minimum natural period o f the system.
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5.4 - RESULTS

To find the errors associated with the numerical approximation used in this chapter, a 

beam is represented by the Bernoulli formulation with uniform distribution of weight 

and inertia. This choice is made, because for this formulation it is possible to find the 

theoretical solution and to compare it with the finite element results. To study the 

sensitivity of the system to the variation of the number of elements, the beam was 

modelled with 10, 20 and 25 elements. For the Bernoulli beam formulation the relation 

between the shear force and bending moment and the vertical displacement is

Mr(x) = El (5.25)
O X

V (x) = El (5.26)
'  d x 3

The beam properties of this example are the same as the properties given by Bishop and 

Price (1979).

L = 100 m I = 3.092 m4

E = 207GPa p = 20000 Kg/m

The natural frequencies for a free-free Bernoulli beam are obtained using the following

expression:

«L E
L2 V p®r = Tf J —  (5-27)

For this particular beam one has:

cor = 0.5657a,

whose a r is the root of the characteristic function,

cosar coshar -1 = 0 (5.28)

The values cor are calculated by using the finite element method which is compared with 

the analytical natural frequencies as described in table 5.1.
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r ccr cor FEM 10 FEM 20 FEM 25
1 4.7243 12.63 12.65 12.69 12.72
2 7.8532 34.89 35.09 34.89 34.89
3 10.9954 68.39 68.43 68.39 68.39
4 14.1371 113.1 113.25 112.98 112.98

Table 5.1 Natural frequencies (rad/s) o f  a beam predicted  by an analytical expression 
and the fin ite element method with 10, 20 and 25 elements.

For the natural frequency calculations, the finite element method shows good agreement 

with the theoretical values. For the first four modes, the number of the elements chosen 

for the discretization of the beam do not have a significant effect on the accuracy of the 

results.

The vibration modes for a free-free Bernoulli beam can be obtained with an explicit 

formula. Bishop and Price show that for a free-free beam using as conditions wr=l for 

the beam at x=0 and x = L, the vibration modes can be expressed as follows,

w,(x) = ̂ ( c o sh ( a r + cos(ar - a r(sinh(ar + sin(ar ^ » )  (5.29)

where a r is a function independent of the spatial variable x: 

co sha r - c o s a r
° r = . . — :-----L (5.30)s i n h a r - s i n a r

The .mean error obtained for the natural modes is defined as,

100 f w ' - w C x V l  
E» = — E A B S n , \  (5-31)N V wr(xj) J

where ABS represents the absolute value and N the number of nodes.

N 10 Elem. 20 Elem. 25 Elem.
1 1.41 0.81 0.96
2 0.09 0.09 0.07
3 0.04 0.09 0.10

4 0.11 0.05 0.06

Table 5.2 - M ean errors (%) fo r  the natural shapes using eqn. (5.31)
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Table 5.2 contains the mean errors evaluated by using eqn. (5.31). As in the case of the 

calculation of the natural frequencies, the errors are quite small, even if the number of 

elements used to model the beam is small, and it is also difficult to draw conclusions 

about the behaviour of the error when the number of the elements is changed.

A possible explanation for these results is that, with an increase in the number of 

elements, the accuracy of the finite element model will increase, but the errors 

associated with the evaluation of the natural values and shapes will also increase.

To see the fitting of the numerical models to the theoretical curves given by (5.27), the 

values for all the models and the theoretical curves are plotted for the first four natural 

frequencies.
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Figure 5.1 - Natural shape 1st mode
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Figure 5.2  - Natural shape 2nd mode
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Figure 5.4 - Natural shape 4 rd mode

In the finite element method the final output is wr and 0r for the nodes. So the shear 

forces and bending moments are evaluated assuming that the natural shape between two 

nodes can be represented by a third order polynomial, with the conditions that the 

displacements and rotations in the nodes must be the same:

w“ (x) = A x3 + B x 2 + C x  + D x g Dei (5.32)

The shear forces and vertical bending moments are obtained using the Bernoulli 

formulation and eqn. (5.31):

M f(x) = El (6A x + B ) X G D (5.33)

V“ (x) = E I(6A ) X e  D (5.34)
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Observing the equation for the shear force and the approximation outlined above, the 

values are constant for the elements, so the error associated with it will increase as the 

number of elements used in the model decreases.

For the bending moment the behaviour of the error is the same as the shear force, and as 

shown in the following figures the error increases with the mode.
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Figure 5.5 - Bending Moment, 1st mode
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Figure 5.8 - Bending Moment, 4th mode

Table 5.3 shows the vertical bending moment mean error for the three models and for 

the first four modes.

N FEM 10 FEM 20 FEM 25
1 3.41 2.18 1.58
2 5.80 3.09 1.72
3 11.80 3.63 2.03
4 20.10 6.69 2.31

Table 5.3 - M ean error (%) fo r  the vertical bending moment

So in conclusion, one can say that the precision of this method depends on the number 

of elements used in the beam model, and for that kind of analysis normally only the first 

four modes are required to have a good approximation. If the number of elements used
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is greater than twenty, then the expected results for the beam modal analysis will be 

quite accurate. The apparent large deviations in the last mode will not produce large 

errors in the final result, because for that mode the responses in the principal coordinates 

will be very small for the usual ship excitations. For this example the beam in vacuo is 

loaded with two different loads:

F,(x,t) -  Fx(x) K„ F2(x,t) = Fx(x) Kt2

where Fx, Ktl and Ktl are represented in the figures 5.9 and 5.10.
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Figure 5.11 - Maximum force longitudinal distribution

The time step for this particular beam is equal to

1T 1At = —  = —
271 G). 113.1

= 0.00884
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The response for the two loads and for the first four modes are plotted in figures 5.12 to 

5.15.
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Figure 5.12 -M idsh ip  displacement using K tj
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Other important figure is the longitudinal variation of the maximum bending moment in 

sagging and hogging obtained for the two methods.
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Figure 5.16 -M aximum B M  longitudinal distribution

Looking at the bending moments curves i.e. figures 5.14 and 5.15, the values for the 3rd 

and 4th modes are very small when compared with the first mode, and for the first mode 

second half cycle the bending moments for the higher modes can be neglected. So in 

conclusion, the higher modes only have some influence in the total response for a very 

short period (less than one half cycle in the first mode). Figure 5.17 shows the 

longitudinal variation of the sagging and hogging ratio for the maximum bending 

moments.
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Figure 5.17 Ratio between sagging and hogging bending moments

Even for two different values of vertical bending moments the longitudinal ratio 

between the sagging and hogging bending moment is approximately the same and the 

maximum values are, as expected, in the forward stations.
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CHAPTER 6

VALIDATION OF METHODS WITH EXPERIMENTAL RESULTS

6.1 - INTRODUCTION

Experiments to measure ship motions and wave induced loads for head seas, were 

carried out in the towing tank of the University of Glasgow, which is 77 m long, 4.6 m 

wide and 2.7. deep, with an X-carriage that can travel at a maximum speed of 6.4 m/s. 

One end of the tank contains a wave maker which can generate regular and irregular 

waves and at the other end there is a wave absorbing beach. The wave maker is driven 

by an hydraulic pump controlled electronically by a micro-computer which contains a 

suitable software to generate the desired sea conditions.

6.2 - MAIN PARTICULARS OF THE MODEL

The model used to validate the motions and loads was the S-175 container ship whose 

main particulars are given in chapter 3. The scale ratio of the model is 1/70 and the 

experiments were carried out in the ballast condition. This choice was made in order to 

attain the bottom emergence without green water effects. Table 6.1 shows the model 

main particulars for the ballast condition.

Lpp (m) 2.50
0.363
0.10

48.8
0.54

B (m) 
T (m)
A (Kg)
Q,
LCG (aft of midship) 0.8% Lpp 

0.61Pitch radius of gyration
Table 6.1 - M o d e l’s main particulars



In order to measure the vertical shear forces and bending moments, the model was cut 

in three longitudinal positions and the segments were connected using flexible bars. In 

each bar three strain gauges were mounted, two of which were used to measure the 

normal stresses, i.e. bending moments and the last one to measure the shear forces. Near 

the forward and aft perpendiculars, two light emitting diodes were mounted on the 

model. The signals emitted by these diodes were received by two cameras fixed on the 

main carriage. Using these signals and the positions of the LED’s in the model, the 

heave and pitch motions can be easily obtained.

To measure the incident wave height, one wave probe was fixed in the main carriage 

near the model forward perpendicular. This probe induced an electrical signal whose 

intensity depends on its wetted height. All these signals (12 channels) were amplified 

and sent to a data collection system and recorded in a micro-computer which presents 

the experimental results in a graphical form. Figure 6.1 shows the longitudinal positions 

of the strain gauges and the diodes.

DiodeDiode Cutn. 1 Cut Cut

Flexible bars
FPAP

0.75 0.3750.625

Figure 6.1 - Logitudinal position  o f  the strain gauges and diodes

Channel Description
1 Strain Gauge for measuring VBM cut n.l (bottom of the

bar)
2 Strain Gauge for measuring VBM cut n. 1 (top of the bar)
3 Strain Gauge for measuring Shear Force cut n. 1
4 Strain Gauge for measuring VBM cut n.2 (bottom of the

bar)
5 Strain Gauge for measuring VBM cut n.2 (top of the bar)
6 Strain Gauge for measuring Shear Force cut n.2
7 Strain Gauge for measuring VBM cut n.3 (bottom of the

bar)
8 Strain Gauge for measuring VBM cut n.3 (top of the bar)
9 Strain Gauge for measuring Shear Force cut n.3
10 Forward Diode
11 Aft Diode
12 Wave Probe

Table 6.2 -- Channels description used in the experimental measurements
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6.3 - WEIGHT DISTRIBUTION OF THE MODEL

The weight distribution of the S-175 container model is unknown because there was not 

available data about the longitudinal distribution of the model hull weight.

So the longitudinal weight distribution must be approximated and it is assumed that it 

can be described by an N order polynomial function with N+l unknown coefficients,

w(x) = £ c n x" (6.1)
n=0

The coefficients are determined using some properties obtained from measurements on 

the hull model such as the hull weight, the longitudinal centre of gravity, the gyration 

radius and the still water bending moments in three longitudinal positions. The weight 

distribution of the model was assumed such that it was zero at the extremes. Since the 

number of measurement quantities is eight, this is also the maximum number of 

coefficients that can be in the polynomium.

To obtain the deviations of this approximation from the real weight distribution, two 

different weight distributions were considered and for each one four different 

polynomial curves were determined using the following number of coefficients and 

conditions.

Conditions for curve 1 - Zero weight at the extremes, specified displacement and

position of LCG, leading with 4 coefficients in the polynomium.

Conditions for curve 2 - Zero weight at the extremes, specified displacement,

position of LCG and radius of gyration, leading with 5 coefficients in the

polynomium.

Conditions for curve 3 - Zero weight at the extremes, specified displacement,

position of LCG, radius of gyration and vertical bending moment in three

longitudinal positions, leading with 8 coefficients in the polynomium.

Conditions for curve 4 - Zero weight at the extremes, specified displacement,

position of LCG, radius of gyration, vertical bending moment and shear force in 

three longitudinal positions, leading with 11 coefficients in the polynomium.
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Figure 6.2 Weight longitudinal distribution, curve I
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Figure 6.3 Weight longitudinal distribution. Curve II

From figures 6.2 and 6.3 it can be concluded that the polynomial that use 8 and 11 

coefficients fit the real curve well from a practical point of view. The problem with the 

curve in Fig. 6.3, is that some values are negative and this is physically impossible. 

However, if we obtain the bending moment curve from the weight distribution, this 

approximation gives very similar results to the real curve, as can be seen from figure 

6.4.
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Figure 6.4 Vertical Bending M om ent calculated fo r  curve II

The static bending moments of the model were measured and the values are shown in 
table 6.3.

M (Kgm)
Strain gauge 1 1.45
Strain gauge 2 4.75
Strain gauge 3 2.40

Table 6.3 M easured bending moments 

The static bending moments presented in table 6.2 can be calculated using the following 

relation,

M(x) = J V m(x) - Vb(x) dx (6.2)

where Vm is the shear force due to the mass distribution and Vbdue to the buoyancy. For 

calculation of the vertical bending moments due to the mass distribution equation (6.2) 

can be rewritten for the strain locations using the following set of equations,

J°Vmdx = Mb(0.75) + 1.45

rl-375
JoVmdx = M„(1.375)+ 4.75

£'Vmdx = Mb(1.75)+ 2.4

Figure 6.5 represents the vertical bending moment induced by buoyancy.
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VBM due to Bouancy
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Figure 6.5 - Vertical bending moment induced by buoyancy

The bending moment induced by the mass distribution for the three points, can be 

obtained,

j v .  dx = 3.35 Kgm

J 'v radx = 18.83 Kgm

J ’v m dx = 29.63 Kgm

Using the information about the displacement, radius of gyration, longitudinal position 

of the gravity centre, the weight distribution at the ship extremes and the bending 

moments in three longitudinal positions, one polynomial with 8 coefficients to represent 

the mass distribution was found and its curve is shown in figure 6.6.
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Figure 6.6 -M odel mass distribution using the 8 coefficient polynomial
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The still water bending moment distribution for this condition is illustrated in figure 

6.7.

5.0 
4.5
4.0
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Polynomial 

□  Measured pts
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Figure 6.7 -Still water bending moments using the 8 coefficients polynom ial 

6.4 - STRUCTURAL ASPECTS OF THE MODEL

In order to measure the vertical bending moment and shear forces, the model was 

segmented into three parts. From a structural point of view the model can be considered 

as three nodes with rotational stiffness and four rigid segments that are linked to the 

nodes. Figure 6.8 shows this in diagrammatic form.

K2 K3 K4
La Lb Lc Ld

Figure 6.8 - D iagram  o f  the equivalent system o f  the model

In this system the unknown variables are the rotations. For practical purposes it is better 

to transform the rotations into vertical translations and to find the equivalent system for 

the stiffness and mass matrices. For the evaluation of the mass matrix and the force 

vector, the finite element approximation can be used. Assuming that each element has 

only two degrees of freedom, the shape functions can be considered as linear.

%  =  1- -  
L

(6.3)

(6.4)
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y
1

Figure 6.9 - Shape functions used in the fin ite element approximation

Applying the definition that a unit acceleration at node 1 will create a force in node 2 

and by using the principle of virtual displacement, the element mass matrix can be 

obtained using the following expression,

m,j = fm W  ^  d* (6.5)

where m(x) is the total mass distribution i.e. including the added mass contribution. The 

applied force vector can be evaluated in a similar form,

F , ( x , t )  = jQq(x,t) %  dx (6.6)

The expression for the stiffness matrix is more complicated because it requires the 

transformation of the rotational stiffness into translation stiffness. Using the unit 

displacement method combined with static equilibrium for the forces and moments, the 

global stiffness matrix was derived as follows

K _ k 2 

K " - ~ c

K,, = ^ .  + K. 
I i■'b

K,

JC ~ - * z21 L„

' ' - U J - V
vL, L J

' J — L l K „ .  K.
a ,  l J L„Lb

K41= 0  k 51= o

32 L
1 1— + —

b
+

'b v

LbLc

K  _  K 4

43 ~ ~ r

k 52 = o

1 1 1---
vLc Ldy

K. r
- U - L  k 53 = J ^
Lc L J  LCL„

Y — —Y — K  — Y  — Y
33 13 23 43 1V53

K _ K4
Kh "  ~ l 7

r
1 1+ —

A
k 44 = - k 24- k 34- k 54

k 55 = 4
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Since the stiffness matrix is symmetric the other elements of the matrix were obtained 

using this property.

For the evaluation of the natural frequencies and mode shapes of the structural model in 

water, some amount of water mass must be added to the mass distribution of the model. 

This quantity can be determined using the Landweber or the Lewis method for 

determination of the added mass for infinite frequencies, and then the value is corrected 

using a “J” value or a reduction factor to allow for the three dimensional effects.

Some work has been done on the determination of the J value, Lewis (1929) obtained 

an expression for ratio of the kinetic energy of the fluid surrounding a vibrating 

ellipsoid, the axis of which is deformed into the arc of a parabola as it deflects while 

vibrating and the same kinetic energy for a non deformable ellipse using the common 

two dimensional approach. Based on this type of analysis and using Euler’s beams 

formulation, Daidola (1984) deduced the J values for several cylinders varying the ratio 

L/B. Some more complex three dimensional work based on a finite element approach to 

derive the added mass of a vibrating ship hull was made by Armand and Orsero (1979). 

Full scale experiments conducted by Ohtaka (1966) have shown that Lewis forms with 

the Lewis three dimensional correction factor showed good results for the first vibrating 

modes. Based on experimental results on ellipsoids and ship models, Townsin (1969) 

proposed a very simple formula for the J coefficient and for the first three modes of 

vertical flexural vibration of ships,

J„ = 1 .0 2 - 3 ^ ( l .2 - l )  (6.7)

Considering the simplicity of this formulation, the fact that all of the above methods 

will produce similar results for the first natural frequencies as shown by Townsin 

(1969), eqn. (6.7) will be used for the calculation of the natural frequencies and shapes. 

The problem of the equivalent model illustrated in figure 6.8 is to find the equivalent 

values of the rotational stiffener springs K and the associated structural damping. For 

this purpose three different free vibration experimental tests were conducted. Figs 6.10- 

6.12 show the measured vertical bending moments (VBM) for the three strain gauges.

105



0.06
0.04
0.02
0.00

-0.02
-0.04
-0.06
-0.08
-0.10
-0.12

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t(s)

Figure 6.10 - Vertical Bending M oment fo r  a  free  vibration test. Cut number 1
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Using the information contained in figures 10-12, the first natural frequency of the 

structure can easily be obtained and table 6.4 shows the mean first natural frequency 

obtained using the data from the three experimental tests.



Natural Frequency (rad/s)
Strain gauge 1 61.37
Strain gauge 2 61.48
Strain gauge 3 61.29

M e a n 6 1 . 3 8
Table 6.4 - F irst natural frequency o f  the model structure

The higher frequencies of the structural model cannot be seen and obtained because the

measured data is filtered, using one analogic filter, for frequencies higher than 50 Hz. 

The logarithmic decrement of the dynamic system can be obtained using the following 

expression:

8 = - l n - ^ -  (6.8)
n un+,

where n is the number of positive or negative peaks and U! is the first positive or 

negative peak and un+1 the n+1 peak. This approximation is valid if the bending 

moments are oscillating about the zero value. Looking at figures 6.10-6.12 it can be 

seen that there is a small oscillation in the mean position so it is desirable to use an 

equivalent amplitude in equation 6.8, which is given by,

u — uu = — -min (6.9)

where umax is the maximum peak of the cycle n and umin the minimum for the same

cycle. Figure 6.13 shows the amplitude decay for the three strain gauges.
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Figure 6.13 - VBM amplitude decay observed in the three strain gauges
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Using the information contained in Fig. 6.13 and eqn. (6.8) the logarithmic decrement 

was calculated in the three sections during 10 cycles and is shown in Fig. 6.14.
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’Strain gage 2 

’Strain gage 3

Number o f cycles

Figure 6.14 - Logarithmic decrement fo r  the three strain gauges

From figure 6.14 one important conclusion can be drawn: the logarithmic decrement for 

the three strain gauges converge for the same value. This means that the coupled terms 

of the damping matrix can be neglected.

The mean value obtained for the logarithmic decrement is equal to:

5j =0.174

Based on the small value obtained for the logarithmic decrement, the damping ratio can 

be obtained using the following linear relation,

£. = —  = 2.77%
271

This value is within the region in which the natural frequency can be considered equal 

to the natural frequency of damped vibration, which implies that the classical modal 

analysis can be performed with some confidence.

Using this assumption and the value obtained for the first natural frequency, the 

rotational stiffness of the springs was found to be:

K = 9.44 KN

Using this value, the three first natural frequencies and the natural shapes were obtained 

and these values are represented in table 6.5 and figure 6.15.

Natural Frequency (rad/s)
Mode 1 61.4
Mode 2 165.9
Mode 3 338.5

Table 6.5 -  Natural frequencies fo r the wet mode
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Figure 6.15 - N atural shapes fo r  the wet mode 

Kumai (1958) suggests a formula to evaluate the logarithmic decrement for the higher 

frequencies

SN = 5l
r \ 075 co.
v co! y

(6.10)

Using the formulation explained in chapter 5, the mass and stiffness coefficients were 

obtained for the first three modes and the values are presented in table 6.6.

Mode Mass Damping Stiffness
1 7.76 26.56 3.04E4
2 2.86 55.49 7.87E4
3 9.14 616.91 1.04E6

Table 6.6  - Coefficients o f  the decoupled dynamic system

In order to check the derivation of the stiffness matrix, the node displacements were 

evaluated for the still water condition and afterwards the total rotations of the nodes 

were also calculated. Using these values the bending moments were obtained using the 

following relation

Mj = K,e,
Using this approximation table 6.7 shows the bending moment results

(6.11)

Real Calculated Dif. (%)
Spring 1 1.450 1.377 -5.006
Spring 2 4.850 4.895 0.936
Spring 3 2.400 2.599 8.312

Table 6.7  -  Comparison o f  the still water bending moments
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So it can be concluded that this approximation gave reasonable results despite the small 

number of elements used in the model. Also in order to check the modal analysis 

mentioned in chapter 5, the structural nodal displacements were evaluated and 

compared with the ones obtained using a static analysis. Figure 6.16 shows the results 

for the two approximations indicating a good agreement.

2 T
o[

-2 -

-4 
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-8 

-10 - 
-12 •
-14 - 
-16 

-18 *

0

Figure 6.16  - Still water structural displacement using direct and m odal calculations

6.5 - SHIP MOTIONS AND WAVE LOADS

The heave and pitch transfer functions were calculated using the formulation given in 

chapter 3 and the results were compared with the experimental measurements.

Twelve different runs were carried out with a Froude number equal to 0.2. Table 6.8 

represents the main particulars of the tests.

Run Speed (m/s) Wave freq. (Hz) Wave Amp (cm)
1 0.989 0.48 1.71
2 0.989 0.56 1.84
3 0.999 0.64 1.77
4 0.985 0.79 1.58
5 0.990 0.96 1.31
6 0.992 1.11 1.40
7 0.992 0.56 3.62
8 0.991 0.64 3.51
9 0.996 0.79 3.56
10 0.988 0.56 5.37
11 0.993 0.64 5.40
12 0.994 0.79 4.35
Table 6.8 - Model speed and Wave data fo r  the different runs

"Modal Analysis 

"Static Analysis

0.5 1.5 2.5
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Figures 6.17 and 6.18 show the experimental and theoretical results using the linear 

strip theory for the model with a Froude number of 0.2. From these figures it can be 

concluded that the linear theory can predict quite well the heave and pitch ship motions 

even for severe seas.
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Figure 6.17 - Heave transfer function  
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Figure 6.18 - Pitch transfer function

The lag between the wave and the heave and pitch motions can be evaluated using the 

signals of the wave probe that was mounted on the forward perpendicular.
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Figure 6.19  - Heave Lag - Results comparison
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Figure 6.20 - Pitch Lag - Results comparison

Using the experimental data from the heave and pitch transfer functions and phase 

angles, the relative motion transfer functions for any longitudinal position can be 

obtained. Figures 6.21 to 6.23 shows the comparison between the experiments and the 

theory.
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Figure 6.21 - M easured and calculated relative motion fo r  f  =0.56 H z
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Figure 6.22 - M easured and calculated relative motion fo r  f = 0 .64 Hz

Head seas Fn = 0.2 XfL = 1.00
4.5
4.0
3.5
3.0
2.5
2.0zr/ C,

0.5
0.0

-1.5 -1.0 -0.5 0.0

x (m )

0.5 1.0 1.5

'H/T = 0.32 —  - —  - H/T = 0.71 —  - - —  H/T= 1.0

Figure 6.23 - M easured and calculated relative motion fo r  f = 0 .79 H z - Results comparison

From the figures of the relative motions it can be concluded that linear theory gives 

satisfactory results for the vertical motions and even for large waves this theory can be 

applied with some confidence. However for the frequencies which produce the larger
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relative motion amplitudes the linear theory shows some deviations from the 

experimental results. For larger wave amplitudes linear theory produces, like for the 

pitch transfer function, higher relative motion amplitudes.

Using the formulation described in chapter 3, the vertical bending moments were 

calculated and compared with measurements for the first six runs in which the wave 

amplitude is small compared with the ship length. The vertical bending moments were 

non-dimensionalized using the following relation:

M' =
M

P g L  B
(6.12)
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Figure 6.24 - Vertical Bending M oment at Strain Gauge 1
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Figure 6.25 - Vertical Bending M oment at Strain Gauge 2
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Figure 6.26 - Vertical Bending M oment a t Strain Gauge 3

From figures 6.24-6.26 it can be concluded that, considering all the possible error 

sources due to the unknown weight distribution and the calibration of the experimental 

equipment, satisfactory agreement between measured and predicted values for the wave 

bending moments were found.

6.6 - COMBINED LOW FREQUENCY AND WHIPPING BENDING MOMENTS

In this section comparisons between the experimental results and some of the methods 

described in chapter 4 are reported. Due to the large number of methods considered 

these were divided into two distinct groups.

The first one uses the linear theory for the calculation of the wave bending moments 

and the empirical formulations for the calculation of the whipping stresses. Two 

different methods are compared in this group, one using the formulation proposed by 

Ochi and Motter and the other one is the combination of the Stavovy and Chuang 

method for calculation of the maximum slamming force and the Kawakami et al 

formula for evaluation of the time history of the slamming force.

The second group uses the linear theory in association with the vertical derivative of the 

added mass for evaluation of the slamming bending moments.
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Before starting the comparison of the methods, some conclusions can be drawn from 

the theoretical and experimental results:

• More severe slamming occurs when the relative motion attains the maximum 

values and this occurs for tests 9 and 12 for A/L = 1.0 (f = 0.79 Hz).

• For A/L = 1.5 (f = 0.64 Hz) only a mild slamming occurs for the highest wave 

amplitude which corresponds to test number 11.

• For A/L = 2.0 (f = 0.56 Hz) no slamming occurs.

6.6.1 - Bending Moments for A/L = 1.0

Three experiments were made for A/L=1.0 with different wave amplitudes. In order to 

check the validity of the linear theory for the ship motions and wave loads, the first test 

was made with small amplitudes. In the last two tests, the wave amplitude was chosen 

such that slamming occurs.

Figure 6.26 shows the longitudinal variation of the relative motion amplitude divided 

by the ship draft, obtained from the last two tests. It is understood from the figure that 

when this value is greater than one the bottom will emerge. From the information 

contained in this figure it can be seen that for the second test the slamming extension is 

about 20% of the ship length and for the last one it is equal to 25%. These are typical 

values that can be considered to represent severe slamming, Ochi and Motter (1973).

Relative motion 
Fn = 0.2 X /L  = 1.0

2.0

Bottom emergence
1.0

z r /T  0.8  
0.6 
0.4  
0.2 
0.0

0.6 0.8 1.00.0 0.2 0.4

x / L

H/T = 0.71 --------------H/T = 0.87

Figure 6.27 - Longitudinal variation o f  the relative motion fo r  A /L  = 1.0
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The calculated impact velocities for the last two runs are shown in the next figure. The 

velocities increased, as expected, in the forward direction and with the increase in wave 

amplitudes.

Impact velocity 
Fn = 0.2 X/L=1.0

0.3
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0.2

V 0.1

0.1

0.0
0.0 0.80.2 0.4 0.6 1.0

x /L

................H/T = 0.71 H/T = 0.87

Figure 6.28 - Impact velocity fo r  the two experiments

6.6.1.1 Linear Wave Induced VBM Combined with Empirical Methods fo r Slamming 

Loads

In this section the experimental measurements will be compared with two theoretical 

methods using different approaches. The first one uses the linear theory combined with 

the slamming methods proposed by Ochi and Motter, and the second one combines the 

linear theory with the slamming methods of Stavovy and Chuang and Kawakami et al.

The bending moments will be compared in the three longitudinal positions shown in 

Fig. 6.1. From table 6.2 it can be seen that two strain gauges were used at each section, 

so the bending moments represented in the next figures, denominated as strain gauges, 

are in fact the mean of the two strain gauges at each position as shown in table 6.8.

Denomination Cut number (fig 6.1) Channels
Strain gauge 1 1 1 and 2
Strain gauge 2 2 4 and 5
Strain gauge 3 3 7 and 8

Table 6.8 - Equivalent strain gauges used in the comparisons

117



1.50 

1.00 

0.50 

0.00
VBM (Kgm)

-0.50 

- 1.00 

-1.50

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80

t (sec)

I' — Linear + Ochi ................2 Linear + Stavovy ^ " " 3  Experimental |

Figure 6.29 - M easured and pred icted  bending moments on SG 1 using em pirical form ulations
fo r  the whipping stresses H /T =0.71 X/L=l. 0
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Figure 6.30 - M easured and pred ic ted  bending moments on SG 1 using em pirical form ulations
fo r  the whipping stresses H /T=0.87 X /L -l. 0
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Figure 6.31 - M easured and pred ic ted  bending moments on SG 2 using em pirical form ulations
fo r  the whipping stresses H /T =0.71 7dL=l. 0
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Figure 6.32 - M easured and pred ic ted  bending moments on SG 2 using em pirical 
form ulations fo r  the whipping stresses H /T=0.87 U L = 1.0
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Figure 6.33 - M easured and pred ic ted  bending moments on SG 3 using em pirical 
form ulations fo r  the whipping stresses H /T = 0 .71 X /L -l. 0
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Figure 6.34 - M easured and pred icted  bending moments on SG 3 using em pirical form ulations
fo r  the whipping stresses H /T -0 .8 7  y jL - l .O
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6.6.1.2 Linear Wave Induced VBM Combined with Momentum term fo r Slamming 

Loads

In chapter 4, when the slamming loads were compared, some questions related to 

possible simplifications of the method were kept for investigation in connection with 

the structural bending moment results. The first one is related to the extent of the hull 

domain where the impact force produces significant whipping stresses i.e. resorting to 

equation 4.27,

F<„ ,
at

Knowing that this force will have a great value in the beginning of the impact and that 

the force will sharply decrease afterwards, the question is, how long and what is the 

vertical hull position where these forces will not have influence the whipping stresses. 

This question has a difficult answer which depends on several factors like, the impact 

velocities, the longitudinal extension of the bottom emergence and the natural 

frequencies of the ship hull. From figure 6.35 it can be found that if the slamming loads 

are evaluated between 0 and 0.3 T the stresses are closed to the ones if the loads are 

performed between 0 and 0.6 T.
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Figure 6.35 - Whipping stresses fo r  the momentum m ethod varying the maximum draft in which 
the slamming loads are taken into account H /T =0.87 X /L -l.O
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The other important aspect is the contribution of the whipping stresses compared with 

the other force components described in eqn 4.52. Figure 6.36 represents the whipping 

stresses calculated using only the momentum term and the other one using all the 

components of eqn. 4.53. From this figure one can conclude that the other components 

of the force will not have significant influence in determination of the whipping 

stresses. So the next calculations will be made using only eqn.4.27 for the determination 

of the slamming loads.
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Figure 6.36 - Whipping stresses fo r  the momentum method varying the hull domain o f  the
slamming load  H /T =0.87 X/L=1.0
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Figure 6.37 -M easured  and predicted  bending moments on SG 1 using the vertical derivative 
o f  added mass fo r  the whipping stresses H /T =0.87 X /L -1.0
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Figure 6.38 - M easured and pred icted  bending moments on SG 2 using the vertical derivative 
o f  added mass fo r  the whipping stresses H /T =0.87 X /L=l. 0
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Figure 6.39 - M easured and predicted  bending moments on SG 3 using the vertical derivative  

o f  added mass fo r  the whipping stresses H /T-0 .8 7  X/L=1.0

6.7 - CONCLUSIONS

One of the main assumptions of this work is that the total bending moment acting on 

the ship can be divided into linear low frequency and whipping components. In other 

words, linear strip theory is used for the calculation of the low frequency stresses and 

the whipping stresses are added when slamming occurs. Figs. 6.40 and 6.41 compare 

the measured vertical bending moments for two different wave heights, and the higher 

one causes non-linear bending moments. From these figures one can conclude that the 

strong non-linearity is related to the structural vibration, due to the slamming loads and 

corresponding bending moments. So this approximation from the practical point of 

view seems to be reasonable.
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Figure 6.40 - Vertical bending moment assuming to be linear (obtained from  the f ir s t  
experiment) and measured in the SG2, H /T = 0 .71 )JL=1.0
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Figure 6.41 - Vertical bending moment assuming to be linear (obtained from  the fir s t  
experiment) and m easured in the SG2, H /T=0.87 XIL-1.0

Figs. 6.42-6.43 show the slamming contribution Ks obtained from the experiments and 

the three methods. The coefficient Ks is obtained by using the following relation:

K_ = Max(M(t)) -  Min(M(t)) 
2

(6.13)

where M(t) is the bending moment time history and Ma is the amplitude of the vertical 

bending moment obtained using the linear theory.
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Figure 6.44 - Comparison o f  the coefficient K s with the experiments and the several methods,
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Good agreement was found between experiments, the Stavovy and Chuang and the 

momentum theory for coefficient Ks for the first two strain gauges, but the Ochi and 

Motter method tends to produce lower values for the coefficient. For the last strain 

gauge large deviations were observed between the experiments and the theories. Several 

factors, which are not related to the slamming loads, can produce these deviations:

1 - The structural model.

2 - The structural damping was assumed constant.

3 - Errors in the measurements (Strain gauges).

4 - Interaction between the bars used in the forward part of the model which

can induce extra loads and localised the bending moments in this strain 

gauge due to the structural vibration of the model.
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— - — * Momentum 

A  Experiments
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Knowing all these error sources and the relative simplicity of the theoretical model, 

satisfactory and encouraging results were obtained for the momentum theory and 

Stavovy and Chuang method combined with the Kawakami et al method for the 

prediction of the time history of the slamming force.
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CHAPTER 7 

SLAMMING IN IRREGULAR SEAS

7.1-REPRESENTATION OF AN IRREGULAR SEAWAY

The mathematical models of wave spectra are governed by one or more parameters like 

the significant wave height, mean period and shape factors. The most common spectra 

used for engineering purposes are the Pierson-Moskowitz (1964) and the Jonswap 

(1965) spectrum. Very often the ISSC (1964) and the ITTC (1966) parameterization 

of the Pierson-Moskowitz spectrum are used. Ochi and Hubble (1976) presented a 

more complicated spectrum with six parameters. This spectrum describes two peaks in 

order to account for the combined existence of swell and wind sea. Guedes Soares 

(1984) proposed a simpler model with only two parameters which is also able to 

describe two-peaked spectra. Furthermore it was shown that the additional spectral 

parameters are independent of Hs, Guedes Soares (1991) but some dependency exists 

on the mean period (Guedes Soares and Nolasco, 1992).

Most of the mathematical models of the wave spectra have the following general form:

S (®) = B q ‘p e"CcD q (7.1)

The spectral parameters change with time (eg. Guedes Soares and Ferreira 1995, 1996) 

and so the spectrum represents the real wave environment only for periods of 20 to 30 

minutes although they are taken as representative of periods of 3 hours. The wave 

energy spectrum S(co) used in this work is the Pierson Moskowitz which is defined by 

two characteristic parameters, the significant wave height Hs and the mean zero

crossing period Tz. This spectrum fits the experimental measurements quite well for

deep water and developed seas. Fig. 7.1 represents a Pierson-Moskowitz spectrum with 

the parametrization proposed by the ISSC, for a significant wave height of 5 m and a 

zero crossing period of 8 seconds.
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The expression for the Pierson-Moskowitz spectrum with the proposed ISSC 

parametrization is:

1
S(®) = - H ^ 5 ra-5 e'B“

4 t -4B = 0.44 tT T

(7.2)

(7.3)

where fi. represents the significant height and Tz the mean zero crossing period. These 

quantities are obtained using:

Hs = 4 ^

T, = 2 n
m.
m-

where mn represents the n* spectral moment.
oo

mn = j*oonS(oo) do
0

The zero*11 moment can be obtained easily from the expression of the spectrum:

(7.4)

(7.5)

(7.6)

m n =  0.0625 H
,  (T,©)-4 m ,
? e 71 C = 0.0625 H?
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Figure 7.1 - Pierson-M oskowitz spectrum fo r  Hs = 5 m, Tz = 8 sec

The wave elevation for an irregular sea state can be represented by a Fourier series 

using the following expression:
N

Tl(£,0 = 2 tf, G)iC(>s(co,. t + k£ + <fc)
;=i

_ 27t _ oof

1 “ xT " T

(7.7)

(7.8)

where k represents the wave number and <j) is the phase angle which is a random 

variable uniformly distributed in the range (0, 27c).
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In order to obtain the amplitude of each wave component the sea spectrum is divided 

into equally distributed intervals A© and the relation between the amplitudes of the 

wave components and the ordinates of the sea spectrum is:

a, = V 2 S ^ U o  (7-9)

The vertical surface velocity and acceleration is obtained by using the following 

equations: 

dr|
d t
d 2r\

= - S ai (OiSinCcDi t + k£  + 40
i=l

N

= " ai ® f c°s(o> i t + + f )

(7.10)

(7.11)
^  i=]

A typical wave elevation simulation obtained for the Pierson-Moskowitz spectrum 

shown in Fig. 7.1 is illustrated in Fig. 7.2.
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Figure 7.2 - Surface elevation simulation o f  a sea state with Hs = 5 m Tz -  8 sec.

The spectral width parameter e is a measure of the width of the wave energy density 

spectrum, and its value ranges from 0 to 1. If e is close to 0 the spectrum is a narrow 

banded and the energy is concentrated in a narrow frequency range and for values close 

to 1 the spectrum tends to a white noise. The spectral width is given by:

e = 1-
m,

m0m4
(7.12)

where m i are the moments of the spectrum.

The spectrum is considered reasonably narrow banded if the spectral width parameter is 

lower than 0.6. In the time domain this parameter can be obtained using the following 

equation:

e2 = 1- (7.13)
V UJ

where Tc is the crest period.

128



7.2 - STATISTICAL PROPERTIES OF THE SEA SURFACE ELEVATION

Consider the random variable Yj which represents a single wave as 

Yj = a; cos^j) (7.14)

where (J), is a random variable with a uniform distribution. The probability density 

function of the random variable Y { can be easily obtained:

f(y.) -
1

V 2 2
a i “ Yi

2 2 
y ,  < a i

yf -  af

(7.15)

The mean value and variance for the random variable Y; are equal to:

E[Y.] = f
Yi

V a f -  y?
= dy = 0

- T

Considering now the random variable Y as,

Y = £ y , (7.16)
i=l

The mean value and variance of this random variable can be obtained from the previous 

results

E[Y] = E 

v [y ] = V

Z Y ,
i=l 

'  N

Z Y,
i=l

-  Z e[yJ = o

'  N

ZY i1= E
i=l

N a?
=  Z e [y ? ]  -

i=l zi=l

Replacing the result obtained for the variance of the Y process in equation (7.9) the 

following equation is obtained:

V[Y] = Jsd® (7.17)

So the variance of the wave process can be calculated directly from the wave spectrum. 

For the wave velocity and acceleration the same scheme can be done and similar 

relations between the variance of the process and the spectrum are obtained.
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If Y is the random variable that represents the wave velocity, the variance for this 

process is:

i=l

N

i=l
v [y ] = V ^  = E £ y ,2 = Z E[Yi2] = = J s®2 dffl (7.18)

i=l i= l ^  o

Another important relation, especially for this work is the correlation between the wave 

elevation and the wave velocity which is obtained using the following relation,

COV[y y ] = e [y y ] - E[Y]e [y ] = e [y y ] (7.19)

COV[Y y ] = i ]  f  * 2 , y' . 2dy,dy, = 0
i - i 7 t v ai - y j  5tv(ffliai) - y i

So the wave elevation and velocity are not correlated and may be considered as

statistically independent. Finally using the central limit theorem: If Y1? Y2,.. ,YN are

random independent variables with mean E[Yj] = and V[Yj] = cq2 with i = 1,2, .. 

,N, the random variable given by Y = Yj + Y2 +.. +Yn have a Gaussian distribution 

with the following parameters:

N
.2

e  = and a  =
i= l V i=l

So the wave elevation and velocity can be considered as a Gaussian distributions.

7.3 - SLAMMING OCCURRENCE IN THE FREQUENCY AND TIME 

DOMAINS

For a certain sea state, and if the transfer functions for the relative motion are known, it 

is possible to simulate the relative motion in the time domain for an arbitrary station, to 

identify when slamming occurs and to calculate the impact velocity. Using this 

information it is also possible to evaluate the slamming impact force, and consequently 

the bending moments, structural displacements and shear forces. After that, short and 

long term statistics can be calculated if a certain number of simulations are undertaken. 

This approach has a big disadvantage resulting from the large CPU required time to 

perform all these calculations. Ochi and Motter’s research, based on experimental work, 

concluded that slamming produces significant stresses only if the impact velocity is 

greater than a certain magnitude that he named as threshold velocity. He established the 

following expression based in the Froude scale law:

y, = 0.29 VL (7.20)
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Using this assumption and considering that the relative displacement and velocity are 

independent, Ochi and Motter proposed that the conditions for slamming occurrence are 

the relative motion amplitude greater than the ship draft and the relative velocity 

amplitude greater in absolute value than the threshold velocity.

Using these assumptions and the Rayleigh distribution to describe the amplitudes of the 

relative motion y, the probability of the combined event is calculated by using the 

following expression:

J L + J L
P(Y > T,|y| > yt) = P((y > T) P(|y| > yt ) = e V2<J’ 2° ’ J (7.21)

with

a J = J oSydffl a *  = | ” o 2Syda)

where Sy is the spectrum for the relative motion. It should be noted that, according to 

the convention used at the previous chapters, the velocity in the impact instant is 

always negative.

Figure 7.3 represents the slamming probability for the Folkstra (1974) container ship 

and for a Pierson-Moskowitz spectrum with a significant wave height of 11m and a 

mean period of 10s. The solid line represents the slamming probability using eqn. 

(7.21) and the points were obtained for five different time simulations with a time 

duration of 25 min each.

Slam m ing probability

A £

C k  U

ffi ffl S-ffl- SBBBBffl
°

B fB S  a T --------------
0 0.2 0.4 0.6 0.8 1

X/L

Figure 7.3 - S lam m ingprobability(% ) fo r  H s = llm  Tz=10 s

Good agreement was observed between these two methods, and it seems that the 

Rayleigh distribution and the independence between the relative motion and velocity 

are realistic assumptions.
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The next aspect is the time interval between successive impacts. Ochi’s (1964) research 

based on full scale observations, concluded that the probability of the number impacts 

in a specific time period can be obtained by using the properties of the Poisson process.

A,n
P(X = n) -  - e - (7.22)

where X  represents the mean number of occurrences in a period T.

This quantity is easily obtained dividing the slamming probability by the mean period 

of the relative motion and multiplying the time duration t0.

X  =
t0 a .

~ ~  P(y > T) P(y < yt) (7.23)
2 %  a l

Figure 7.4 shows the probability of the number of slamming impacts for the forward 

station and for a series of 30 simulations with a period equal to 50 seconds. The sea 

spectrum is the same as the one used for the calculation of the slamming probability. 

Good correlation is obtained between the theoretical probabilities and the ones obtained 

using time domain simulation.
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Number o f  impacts

Figure 7.4 - Theoretical and observed (from time domain simulations) probability distribution o f the 
number o f  impacts in time period equal to 50 seconds.

Assuming that the maximum slamming pressure is given as a function of the square of 

the relative velocity, the density distribution for the slamming pressure can easily be 

obtained if the relative velocity density distribution is known. Ochi (1973) proposed 

that the relative velocity has a Rayleigh distribution, so he derived the following 

expression for the probability distribution:

f(p) = x t  e'Mp‘p,) (7.24)
where p is the slamming pressure and p is the threshold pressure.
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The parameter is given by:

(7.25)

Ferro and Mansour (1985) suggested that the relative velocity does not follow the 

Rayleigh distribution but instead the Gaussian distribution and, consequently the 

slamming pressure density distribution can be described by a Chi-square distribution, 

with one degree of freedom:

where O represents the standard normal distribution.

They also compared these two distributions with experimental measurements using an 

histogram, and found that for the relatively high values of pressure the differences 

between them are not significant when compared with the deviations obtained from the 

experimental data.

Using this information for the evaluation of extreme values of pressure, the exponential 

distribution proposed by Ochi and Motter can be used. So the extreme value in n finite 

number of impacts can be written using the following expression:

where n must be a large number.

This expression can be rearranged in order to express the maximum predicted pressure 

whose probability of exceedance is lower than a certain probability value a:

After the evaluation of the maximum slamming pressure, the slamming force can also

infinity, i.e. all stations impact the water at the same time, the whipping stresses can be 

evaluated for the given probability of exceedance.

p

f(p) =
i

■ A P ^  Po

a^47 tpkp  <t> (7.26)

0 P <  Po

P. S P . (7.27)

P „ ( « )  =  Po " l n { l - ( l - a ) 1/n} (7.28)

be obtained. Considering that the travelling velocity of the slamming force is equal to



The formulation proposed by Ochi and Motter is consistent if the superposition of the 

bending moments caused by slamming impacts can be neglected. After one impact, the 

time duration which the vertical bending moment can be considered to be significant 

depends on the structural damping. After the slamming force extinction the structural 

response is governed by the following equation for the free vibration of a beam:

x(t) = A e'c“nt sin(codt - P )  (7.29)

For practical purposes, the response can be considered as extinct if

lnlO '2 4.605
e-?i®.ir = 10-2 or T =   =    (7.30)

For the Flokstra container ship the period of response extinction was found to be 61s.

Using this period, the mean rate of occurrence of slamming X  can be evaluated and the 

probability of the number of impacts greater than one can also be calculated,

P(X>1) = 1-P(X =1)-P(X  = 0) (7.31)

where P(X) is given by eqn. (7.22).

If the value of this probability is greater then a certain criteria, than the Ochi and Motter 

model for the prediction of slamming stresses can not be used. Fig. 7.5 illustrates the 

longitudinal distribution of the probability for three different significant wave heights 

and for a mean period of 10 seconds.
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Figure 7.5 - Probability o f  existence more than one impact during the p erio d  where the

response is assumed important.
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7.4 - STRUCTURAL RESPONSE

In the previous chapter the structural response of the ship hull to slamming in regular 

waves was calculated using direct integration methods because the principal objective 

was to compare the effect of the various formulations for calculating the slamming 

forces. Direct integration methods are usually more time consuming when compared 

with convolution methods, especially if it is possible to find an analytical solution, in 

the CPU time to perform the response.

In this chapter the method that will be used for the evaluation of the slamming forces is 

the combination of the Stavovy and Chuang method for the evaluation of the maximum 

slamming force, with Kawakami et al method for the time history. The force developed 

at each impact and for each mode, can be expressed by using the equation suggested by 

Kawakami et al:

After solving the convolution integral, the following expression for the response is 

obtained:

(7.33)

The dynamic response of the system for the k* mode can be obtained using the 

convolution integral given by:

xk0) = J0fkW 8k(t-x) dx (7.34)
where gk is the response function to a unit impact and is given by:

1
e CkCDnkt si t>  0

gk(o j mk®<ik 
0

sinfi>dkt (7.35)

t <,0

(7.36)

where
( I  \  

<J>2 = tan dkt̂
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The expression for the response to a unit impact seems rather complicated, but the 

computer time required to calculate the response is approximately 1/27 the CPU time 

used by the direct integration method using five modes.

If the time duration of the impact forces that acts on the vessel is small when compared 

with the natural periods of vibration, the force time history can be reduced to an 

equivalent impulse. Using this simplification, the response for each mode given by this 

method is obtained by using the following relation:

xk(t) = Kc I0gk (7.37)

where Kc is a correction factor that depends on the ratio between T0 and the natural 

period Tnof the structure and I0 is the total impulse obtained recurring to eqn. (7.33).

I0 -  F e T0 (7.38)

The coefficient Kc was obtained, for several relations of To/Tn, by calculating the ratio 

between the peak values obtained from equation (7.36) which is the exact solution and

(7.37) that gives the approximate solution. The results are presented in Figure 7.6.
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Figure 7.6 - Correction fa c to r  used fo r  the sim plified method 

To determine the deviations produced by the simplified method when compared with 

the one that uses the exact solution, the response calculation was performed for the first 

three natural modes under an arbitrary force F applied the container model described in 

chapter 6. The coefficients used in the differential equation are the ones indicated in 

table 6.6. The ratio between T0 and Tn and the corresponding correction factor is shown 

in table 7.1 and in figure 7.7.

T0/T n Kc
0.014 0.993
0.037 0.949
0.075 0.883

Table 7.1 - Coefficients used in the equation 7.37.
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3rd mode
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Figure 7.11 - Response using exact and approximate solutions fo r  the 4rd mode 

In view of the significant reduction of computation time when the approximate method 

is used, and having verified that the deviations of this method as compared with the 

exact one are very small, it seems appropriate to use it in the time domain calculations 

for irregular seas. This simplification is also convenient for the statistical analysis in the 

frequency domain.

Using this approximation the impulse process can be written as a sequence of 

independent random variables In, according to Mansour and Lozow (1982):
N($,t)

Z(S,t)= 2 X G ) 8 ( t - 0  (7.39)
n=l

where £ is the longitudinal coordinate at which the impulse load is applied. The vertical 

bending moment induced by these impulses is given by:
N « ,t )

M (x,e,t)=  £ l„ (© h (x ,5 ,t-T .)  (7.40)
n=l

where h(x,£,t) is the impulse response function for the vertical bending moment:

h(x,£,t) = £ g k(t)M k(x) wk( 0  (7.41)
k=l

where wk and Mk are the natural shapes and natural bending moments described in 

chapter 5. Mk can also be obtained directly form the natural modes and frequencies:

M k(x) = <ok £  (x - 1 )  v e i l )  w (0  di; (7.42)
2

From eqns. (7.39) and (7.41) and using the equivalent method given in eqn. (7.37), eqn. 

(7.40) is rewritten in the following way:

N ($,t) °°

M (x^ .t) = £  X X k(^ )g t (t)M k(x) wk(^)
n=l k=l

(7.43)

The equivalent impulse given by eqn. (7.37) gives an additional complexity to equation 

(7.43). However taking into account that the values for the correction coefficients Kc
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and for the first natural frequencies are very close to one, then eqn. (7.39) can be used 

for describing the loading process. Using this approximation the mean value and 

covariance for the bending moment response process and for an arbitrary longitudinal 

position can be expressed, according to Lin (1967), in the general form as:

E[M(x,t)]= f ] M k (x) £ g k(t -  x) |l w k (5)E[Z(5,x)] d^dx (7.44)
k=l

00 00

COVMM(t1, t2,X1,X2) — 2J Z M j(x1)Mk(x2)£ ,0 J Lw j(^1)w k(^2)

gj(tl _T l)gk(t2 -  X2)Pzz(^l>?2.t l>t 2) (15id^2dxidx2 

The problem in these two expressions is related with the cumulant functions of the 

loading process. Considering a stationary number of increments N(t) in eqn. (7.39), the 

mean value for Z(x,t) is given by:

E[Z(l;,t)]=Xft)E[l(5)] (7.46)

where X(£) is the number of slams per unit time for an arbitrary station which, 

according to Ochi (1964), can be calculated by using:

m  = hL  7t
e 2° ,J  (7.47)

Va y J
According to Mansour and Lozow (1982), the mean of the process I can be obtained by 

using:

E[I(«] = KeE[P(^]K s (7.48)

where P(£) is given by eqns. (7.24) or (7.26) and Kg for the proposed method is given 

by:

Kg = eT0 (7.50)

The constant represents the ratio between the maximum force and the maximum 

pressure for the £ station. Replacing (7.48) in (7.46) and substituting in (7.44)? the 

expression for the mean value of the slamming bending moment response can be 

written in the final form:

E[M(x)]= K , f ] M k(x)Gk f wt (5)Xft)E[P(0]K{d5 (7.51)
k=l

where

Gk = f — -— e-CltCOnkT sin©dkxdT =— —̂  (7-52)
Jo m  rr» m  rnmk©dk mkco ^
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Figure 7.12 shows the longitudinal distribution of the mean value of the vertical 

bending moment induced by slamming obtained using eqn. (7.51) and calculated 

directly from the time domain calculations. The calculations were made using only the 

first mode.
5.0

4.5

4.0

3.5

3.0

2.5
E(M) [MNm] 2.0

0.5

0.0 4 -  

0.0 0.70.4 0.5 0.6 0.8 0.90.1 0.2 0.3 1.0

x/L

 -Theoretical o  Observed

Figure 7.12 - M ean value o f  the whipping bending moment using one mode.

Eqn. (7.51) is also useful to find the number of modes that have significant contribution 

for the calculation of the whipping stresses. Fig. 7.13 shows the mean value of the 

vertical bending moment when varying the number of modes. From this figure it can be 

concluded that the contribution of the modes higher than the third one becomes small 

for the Flokstra container ship.
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Figure 7.12 - M ean value o f  the whipping bending moment varying the number o f  modes used
in eqn. 7.51.
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Assuming that the slamming process is stationary and highly correlated in time and 

space and the natural frequencies of the structure are well separated and with ligth 

damping, than eqn. (7.45) can be simplified and the variance of the bending moment is 

obtained by using:

.2
' m mg

where

(x) = Z M j ( x ) G2k([jLwk( y a zz(5)d ]̂2 +[{Lwk(4)E [zfc)]dJ;JJ (7.53)

'2 k = fJO

1

•m kco dk
e CktDnkT sinco d k dx =  2 r 2

mkCk e>
(7.54)

nk

Two of the main assumptions used to obtain (7.53) are related with the time and space 

correlation in the slamming pulse process. Kawakami et al. (1977) computed the time 

history for the whipping stresses using three different longitudinal travelling velocities 

and they found similar behaviour for the response, suggesting that the correlation in 

time will not generate significant deviations in the variance of the response. Fig. 7.14 

shows the vertical bending moment obtained for the Flokstra container ship using three 

different longitudinal travelling velocities.
300

240

180

120

60"S'z2
2
® -60

-120

-180

-240

-300

5 6 7 8 90 1 2 3 4

t(sec)

Figure 7.14 - Whipping bending moment fo r  three different travelling velocities ofpressure H s

= 7 m and Tz = 10 sec.

In order to find the spatial correlation of the impulse loads, time domain simulations for 

the relative motion were carried out and the impact velocities and the correlation 

between them were obtained. Fig.(7.15) represents the correlation between the impact 

velocities using a Pierson-Moskowitz spectrum with F^ = 7 m and Tz = 10 sec. Using 

the information contained in this figure one can say that eqn. (7.53) tends to over 

predict the variance of the bending moment response.
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Figure 7.15 - Spatial correlation o f  the impact velocities fo r  the fo rw a rd  stations using a 

Pierson-M oskowitz spectrum with Hs = 7 m and Tz — 10 sec.

Using the convolution method the structural response for the container ship was 

performed for head seas and for a Pierson-Moskowitz spectrum with a significant 

height of 8 m and a mean period of 10 s. The time duration of the simulation was equal 

to 25 minutes. The next figure illustrates the impact velocities obtained from one time 

simulation for one forward station localised at x/L= 0.9. Figures 7.17 and 7.18 shows 

the midship bending moment for two different simulations.
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Figure 7 .1 6 - Impact velocities fo r  x/L = 0.9 using one time domain simulation.
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Figure 7.18 -Midship VBM. Second simulation.

If one compares the results of the two simulations it can be concluded that the 

maximum bending moment reached for each simulation is quite different i.e. 115 MNm 

for the first simulation and 435 MNm for the second one. This observation is important 

for the prediction of extremes. Figs 7.19 and 7.20 represent the mean value and 

standard deviation of the midship maximum bending moment. The convergence is 

slower for the standard deviation and for the first 20 simulations the oscillations for the 

mean value are quite significant.
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Figure 7.19 - M ean value fo r  maximum bending moment a t the midship section.
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Figure 7.20- Standard deviation fo r  maximum bending moment at the midship section.
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Two different distributions will be studied for the description of the maximum bending 

moment. The first one is the gamma distribution and the density distribution is given by 

following equation:

f,(x) = - 2 -  (a  x)M e ~  (7.55)r(x)
where T  is the gamma function. The r and a  parameters are estimated using the mean 

and the variance of the sample,

a  -  m  (7.56)
V(X)

;  -  (7.57)
V(X)

The gamma distribution was chosen only because the simplicity of the expressions to 

obtain the distribution parameters and also it is a non-symmetric distribution.

The second distribution the Gumbel which is given by following equation:

x - X  —

f2(x) = 1  e ~  e ‘ '  (7.58)
o

The parameters 5 and X  are estimated using
/

A  A

X  =  - 5 log
( 1 N r- 
--5
n s

(7.59)

X xi e 5
5 = E[X]-  —  C7-60)

N —r

Z e 8
i= l

The second equation is easily solved using the Newton-Raphson method with few
A  A

iterations. Once 5 is known, X  is immediately computed.

The seed to start the Newton-Raphson method 5* can be obtained using the following 

expression:

6 * .
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The observed data were sorted and compared with the theoretical distribution using the 

reduced variate given by:

y ' = - ln[- In P] (7.62)
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Figure 7.21 - O bserved and theoretical curve fittin g  using the Gumbel distribution

The following figures show the histograms obtained for several ship stations and the 

two density distributions using 150 time simulations.
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Figure 7.22 - Density functions fo r  the maximum sagging bending moment fo r  several ship

stations

The two distributions fit the numerical results satisfactorily in all stations. Another 

important aspect is the convergence of the distributions with the increasing number of 

simulations. In practice the best distribution is the one that needs fewer time simulations 

to predict with a small deviation, the maximum bending moment for a certain 

probability.

So the density functions are obtained using 30, 60, 100 and 150 simulations and the 

maximum bending moment was compared with the one obtained from 150 time domain 

simulations. The following figures show the longitudinal variation of the maximum 

bending moment for the two distributions.

1200

1000

800

600

400

200

0.0 0.5 0.6 0.70.1 0.2 0.4 0.8 0.90.3 1.0
X/L

■« Observed ------ »------- N=30  ♦------- N=60  &------- N=100  *------- N=150

Figure 7.23 M idship maximum sagging bending moment prediction using Gamma function.
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Figure 7.24 - M idship maximum sagging bending moment prediction using Gumbel function.

Looking at the Figs. 7.23 and 7.24, it can be concluded that the Gumbel distribution 

requires less time domain simulations to predict, with some confidence level, the 

observed probability. The Gumbel function is also more stable than the Gamma 

distribution and the convergence is faster.

Figure 7.25 represents the long term distribution of the whipping stresses for the 

midship position using the Gumbel distribution.
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Figure 7.25 - Whipping bending moments. Probability o f  exceed fo r  the midship position using 

the Gumbel distribution f itte d  by using 130 time simulations (H s-8  m, Tz=10 s)
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7.5 - SLAMMING COMBINED WITH THE WAVE INDUCED STRESSES

For the structural design it is important to know the total stresses i.e. the slamming 

stresses combined with the wave induced ones. The wave bending moments for the 

container ship adopted by Flokstra (1974) were obtained using the formulation given in 

chapter 3. Using the inverse Fourier transform, time domain simulations for the linear 

bending moment are obtained for irregular seas, and the combined loads are also 

evaluated. The following figures show some typical results obtained for irregular seas 

with Hs = 8 m and Tz = 10 s and for the container ship.
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Figure 7.26 - Time simulations fo r  the wave and combined bending moments amidships.

Performing several time simulations, the maximum wave bending moment, the 

whipping bending moment and the combined moment were calculated and the results 

were tabulated in table 7.2. Fig. 7.27 shows the results for the sagging bending 

moment.
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Sagging Hogging
Wave Slamming Combined Wave Slamming Combined

1828 170 1821 1409 136 1465
1567 78 1578 1233 67 1241
1767 153 1813 1673 113 1744
1529 532 1567 1748 364 1786
2017 255 2050 1620 159 1602
1612 174 1603 1886 121 1933
2098 324 2167 2244 175 2301
1911 513 2211 1804 403 1730
1800 153 1843 1648 122 1658
2052 188 2121 2111 144 2183
2110 747 2553 2021 624 2058
1497 192 1584 1526 152 1574
1610 320 1737 1352 297 1564
1717 492 2070 1643 433 1729
1683 280 1710 1689 149 1713
2145 460 2187 1835 371 1964
1905 162 1898 1652 131 1733
1774 420 2081 1456 333 1648
1722 433 1733 1723 324 1719
1712 225 1776 1893 213 2000
1632 118 1652 1369 94 1376
1796 124 1791 1888 109 1924
1622 549 1943 1948 466 2011
1738 182 1753 2011 109 1993
1825 196 1830 1580 200 1550
1729 213 1802 1770 153 1771

Table 7.2 - Maximum values fo r  the wave, whipping and combined VBM occurred fo r  several
time simulations amidships.
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Figure 7.27 -M aximum values fo r  the wave, whipping and combined VBM occurred fo r  several
time simulations

The maximum combined bending moment can be written in the following form:

MC = M W+ K M S (7.63)

where Mw is the wave component M the slamming component and K the slamming 
contribution that can be varied in the range [-1,1].

Wave

Slamming

Combined
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All of the right term quantities are random variables. To asses the appearance of the 

distribution of K three histograms are obtained from the time domain results. The 

histograms are evaluated for three different seastates. Figures 7.28-7.30 represents the 

histograms obtained using 100 time domain simulations for each one.
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Figure 7.28 - Histogram o f  the slamming combination fa c to r  K  (Hs = 8 m, Tz =8 sec)
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Figure 7.29 - H istogram o f  the slamming combination fa c to r  K  (Hs - 8  m, Tz =10 sec)
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Figure 7.30 - Histogram o f  the slamming combination fa c to r  K  (Hs - 8  m, Tz =13.2 sec)

For the long term predictions the more important part of the distributions are the right 

tail of the probability functions. Using that statement, three Beta distributions truncated
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between [-1.0,1.0] were fitted to the observed histograms of Ks. The parameters a , P of 

the proposed Beta density functions are represented in table 7.3 and the function is 

illustrated in Figs 7.30-7.31. This distribution was chosen because it can be easily 

truncated and fitted to the experimental observations by changing the two parameters.

2.50

2.00

1.50

1.00

0.50

0.00 0.20 0.40 0.60-0.80 -0.60 -0.40 - 0.20 0.80 1.00

Hs=8 Tz=8 —D— Hs=8 Tz= 10 -<>— Hs=8 T z=  13 a=4 p=3 a=5 p=3 a^8 P=5

Figure 7.31 - Observed histograms and proposed  distributions fo r  K s
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Table 7.3 - Param eters p roposed  fo r  the Beta function fo r  the sagging condition
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Figure 7.32 - D etail o f  the important region fo r  the long term statistics o f  the observed  
histograms and proposed  distribution fo r  K s
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Another important aspect of the expression (7.63) is the correlation of the three 

distributions. The next two figures were obtained from the time domain simulation 

results for the sea spectra with a mean period of 10 seconds. The correlation 

coefficients are found to be very small, so the three distributions can be considered 

independent.
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Figure 7.33 - Relation between the maximum whipping stresses and the slamming contribution
fa c to r
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Figure 7.34 - Relation between the maximum whipping stresses and the maximum wave stresses 

Assuming independence between the random variables NT. and K, and considering the 

following relation:

M « = K M ,  (7.64)

The density function of the new variable can be obtained by using the following 

expression:

p K c )  = £ “ Pm. ^ )  PkOO dk PkOO dk (7-65)
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Figure 7.35 illustrates the distribution of Ms without the combination factor for the 

curve 1 and the several distributions Mcs obtained by using the three different proposed 

Beta functions to described the slamming combination factor.

From the information contained in this figure it can be concluded that the distribution of 

k will reduce the contribution of the whipping stresses in the total bending moment on 

the order of 50% and also different distributions used to described the K distribution 

will not produce significant deviations in Mcs. From fig. 7.35 one can conclude that 

using different parameters in the Beta function will not affect significantly the 

contribution of the whipping stresses to the total stresses.
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Figure 7.35 -.M arginal functions fo r  the slamming bending moment contribution (Sagging)
amidships.

To see the relative contribution of the whipping stresses, equation (7.63) can be 

transformed into the following form using only two random variables:

MC= M W(1 + K') (7.66)

where K’ is the slamming component or the relative contribution of the whipping 

stresses in the combined bending moment. The figures 7.36 to 7.38 show this 

contribution using the same sea-states as used for the evaluation of the slamming 

component.
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Figure 7.36 - Slamming component (Hs = 8 m, Tz = 8 s)
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Figure 7.37 - Slamming component (Hs = 8 m, Tz = 10 s)
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Figure 7.38 - Slamming component (Hs = 8 m, Tz = 13 s).

The K’ distribution gave a more understandable information about the influence of the 

slamming stresses in the global stresses than the K distribution. However K is a more 

general distribution and it can be easily combined with other distributions for the low 

frequency stresses, as for example, with the one obtained from non-linear methods.
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7.6 - CONCLUSIONS

In this chapter the important slamming parameters were studied for irregular seas, the 

whipping stresses were also combined with the low frequency stresses. Time and 

frequency analysis were performed for the calculation and prediction of the random 

variables associated with slamming. In this analysis the limitations of the methods 

based on the frequency domain were found and the problem of using time domain 

simulations were also stressed. Long term predictions based on time domain simulations 

were performed for the whipping bending moments.

The combined bending moment was also calculated in time domain and probabilistic 

distributions for the contribution of the slamming stresses in the total ones were 

proposed. From these results it was found that the whipping stresses can not simply 

added to the wave stresses.

From figures 7.36-7.38, which illustrate the final calculations, some conclusions can be 

drawn. The first one is that the mean period have small influence in the K’ distribution, 

so the only dependence of this random variable is the significant wave height. The 

second one is the significant weight of the slamming stresses in the global stresses. The 

weight of this component will certainly increase with the significant wave height. 

Further investigations must be done in smaller vessels (between 100-150 m) where the 

slamming forces are even more dominant when compared with the wave and still water 

components. For this container ship with relative large length, the whipping stresses 

only have importance for high wave heights and for some cases the values are in the 

order of magnitude of 40% of the wave stresses.
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CHAPTER 8 

CONCLUSIONS

8.1 - GENERAL CONCLUSIONS

The principal aim of this research was the calculation of the global stresses induced by 

waves on ship hulls, and in particular the whipping stresses. To evaluate them several 

steps must be carried out, for which one, different approaches proposed by several 

authors can be used. Due to the significant differences given by the methods special 

attention was given to the comparison of the several theories with experimental results 

of a container ship in ballast condition.

One of the main assumptions of this work was to consider the total bending moment as 

a sum of the so called low frequency stresses calculated using linear strip theory 

methods with the high frequency or whipping stresses obtained from the hull structural 

response to slamming loads. From the comparisons with the experimental data one can 

conclude that, even for large wave amplitudes, this approach gives satisfactory results. 

It is also important to stress that from the observation of the experimental results the 

larger non-linear contribution in the stresses is given by the hull stresses, i.e. the 

whipping stresses. Good agreement was also found between the vertical motions given 

by the linear theory and the experiments for the different wave amplitudes.

Finally the global stresses were analysed in irregular seas based on time domain 

simulations and some probabilistic distributions of the global stresses were obtained. 

For this study the stresses were divided in two different components given by linear 

theory and by the whipping response and the maximum global stresses were assumed to 

be equal to the sum of the maximum given by low frequency and a percentage of the 

maximum whipping stresses modelled by a random variable. It was found that this 

variable can be described by a beta distribution which does not have significant 

variation with the sea state. From this distribution it was found that the relative 

contribution of the whipping stresses can be an important quantity and for some 

seastates about 50% of the whipping stresses should be added to the amplitude of the 

low frequency wave induced stresses.
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8.1 - SPECIFIC CONCLUSIONS

In chapter 2 the important parameters involved with the determination of the added 

mass and damping coefficients were studied using the multipole expansion and 

mapping transformation of the section. These values were also compared with the 

results of the Frank close fit method. The conclusions collected from this study are:

• For the midship sections, small number of parameters are enough to obtain 

satisfactory results when compared with the Frank close fit method.

• For bow type sections with severe flare, great deviations in the hydrodynamic 

coefficients, and particularly for the damping coefficient, occurs using the 

Lewis transformation.

• The hydrodynamic coefficients obtained using the transformation method tend 

to approximate the Frank close fit method with the increase of the mapping 

parameters.

• The advantages of the transformation method when compared to the Frank 

method is the CPU time and the results confidence for high frequencies.

• Some correlation between the geometric errors and the hydrodynamic errors 

was found, especially for the added mass and using those results the 

hydrodynamic errors can be estimate by using the geometric errors.

In chapter 3 the vertical motions and loads were obtained using a linear strip theory and 

the hydrodynamic coefficients were obtained by using the formulation explained in 

chapter 2. The results for the vertical motions were obtained for a container ship and 

compared with experimental results. The conclusions obtained from this chapter are:

• For the heave and pitch motions, the predicted results are quite accurate when 

compared with experimental results.

• The variation in the number of mapping coefficients does not produce 

significant deviations in the transfer functions especially for the heave motion.
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• Significant deviations were observed in the relative motion between the Lewis 

method the one that uses 9 parameters in the mapping transformation. This 

means that the relative motion transfer function is more sensitive to small 

variations in the hydrodynamic coefficients than the heave and pitch transfer 

functions, because to evaluate this function the phase between the motions and 

the wave is also taken into account.

In chapter 4 the important parameters related to the slamming pressures and loads were 

studied and the several formulations to predict them were compared. The maximum 

slamming pressure and force were compared for the several methods using wedge 

geometry with varying the deadrise angle. Two of the methods are empirical and based 

on experiments and the other formulations are analytical. The results for the maximum 

slamming pressure and force are the following ones:

• Large deviations exist between results of the methods and the higher results 

were obtained for analytical methods, particularly for small deadrise angles.

• Ochi method gives the lower results for the maximum slamming pressure for 

all deadrise angles.

• For the calculation of the maximum slamming force similar results were 

obtained for the Stavovy, momentum and Wagner methods.

• The Ochi’s method, as for the maximum slamming pressure, produce the 

smaller results.

The impulse obtained by using the several methods were compared in three sections 

assuming constant impact velocity and in regular waves. Two different constant impact 

velocities were chosen for the first study and the following results were found:

• Different behaviour in the impulse functions were observed between the 

empirical and the analytical methods.

• The first group of methods assumed that the time history of the impact force 

depends on the Froude number and second one that the time history of the 

impact loads is dependent of the impact velocity and section shape.
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• The impulse function for regular waves tends to give higher results than one 

which assume constant impact velocity.

In chapter 5 the finite element using Timoshenko’s beam formulation, the modal 

analysis and direct integration methods to perform the structural response in time 

domain were described.

A small study to check the numerical methods when compared with the theoretical 

ones, were performed for a uniform Bernoulli’s beam and the following conclusions 

were achieved:

• For the calculation of the natural frequencies and modes, the finite element 

method produces accurate results and this result doesn’t depend on the number 

of elements used in the model.

• Different behaviour was found in the vertical shear forces and bending 

moments. For this quantities it was found that for the first 4 structural modes 

if the beam is divided using at least 20 elements quite satisfactory results were 

obtained.

Experimental work was carried out in the Hydrodynamics Laboratory of the University 

of Glasgow in a segmented model of a container ship and the summary of the 

measurement results is summarised in chapter 6. In this chapter the experimental results 

were also. compared with the theoretical ones. The overall conclusions attained from 

this chapter are:

• The linear strip theory used for the determination of the ship motions agrees in 

a very satisfactory way with the experimental results for all the wave 

frequencies and for the different wave heights.

• Good agreement were also found for the vertical bending moment for small 

waves by using the linear theory.

• From the experimental results it can be concluded that the assumption that 

divided the total bending moment into two different components named as
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linear and whipping, seems to be a reasonable approximation from the 

practical point of view.

• Good agreement was found between the experiments and the Stavovy and 

momentum theory for the coefficient Ks for the first two strain gages, but for 

the Ochi method some deviation appears and this method tend to produce 

lower values for the coefficient.

• For the last strain gage large deviations were observed between the 

experiments and the theories. Several factors, which are not related to the 

slamming loads can produce these deviations like the structural damping 

which was assumed constant, possible errors in the measurements and the 

interaction between the bars used in the forward part of the model which can 

induce extra loads and localised the bending moments in this strain gage due 

to the structural vibration of the model.

In chapter 7 the time and frequency domain analysis were performed in irregular seas 

for the wave, ship motions, slamming loads and whipping stresses and finally the 

combined bending moment. Some of the statistics for the slamming process were 

obtained and compared in time and frequency domain and good correlation were found 

for all of them.

The general conclusions obtained in this chapter are:

• Good correlation were found in the prediction of the statistics of slamming 

occurrence for time and frequency domain analyses.

• For the method used in the prediction in the slamming loads, these loads can 

be defined with a single impulse without significant deviations for the first 

structural modes and for the model used in chapter 6.

• The slamming stresses can have significant importance in the global primary 

stresses.

• The relative contribution of the whipping stresses in the global stresses is very 

important factor and the two magnitudes can not be simply added.
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8.2 - RECOMMENDATIONS FOR FUTURE WORK

In the future work there several aspects that can be improved and developed. Some of 

those are:

• In the determination of the low frequency bending moments some other 

methods can be used in order to take into account the non-linearity of certain 

coefficients used in the linear theory.

• It is recommended to do more experimental work on the measurement of 

motions and stresses for severe regular and irregular waves in order to get 

more information for the validation of the theoretical methods.

• It is also important to do more research on the slamming in irregular seas in 

order to find new probabilistic methods based on the frequency domain 

calculations that can be taken into account the non-linear part of slamming 

and also the combination factors between low and high frequency stresses.
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