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Abstract

A three year field study was conducted at Moredun Research Institute's Firth 

Mains farm on five 0.9 hectare paddocks carrying Nematodirus battus, 

Trichostrongylus vitrinus and an isolate o f Teladorsagia (Ostertagia) spp which was 

known, since 1983, to be resistant to drugs within the benzimidazole (Bz) class o f  

anthelmintics. Ewes were randomly assigned to each paddock every year and their 

twin lambs treated at the manufacturer’s recommended dose (MRD) for their 

allocated anthelmintic. A non-suppressive control regime was adopted consisting o f  

an initial anthelmintic treatment in mid to late May to control Nematodirus and when 

necessary a summer drench to control other gastrointestinal nematodes.

There were very few differences between the dams o f the treated and control 

lambs with no evidence o f reduced body weight, condition score or fleece weight 

over the three year study. There were no clinical signs o f Teladorsagiosis in any o f  

the groups o f lambs throughout the study and plasma pepsinogen concentrations 

remained relatively low each season. There was little evidence o f marked differences 

in performance in the fenbendazole (Fbz) treated lambs despite the presence o f a Bz 

resistant isolate o f T. circumcincta on the paddocks at Firth Mains. The maximum 

difference in weight gain between the Fbz and best performing group at the end o f  

the 1993, 1994 and 1995 seasons were 3.1, 3.6 and 2.6 kgs respectively. The 

immunogenicity and pathogenicity o f the Firth Mains Bz resistant isolate was no 

different to that o f a Bz-susceptible or a multiple resistant isolate o f T. circumcincta 

in a subsequent investigation.

Limitations in faecal egg count reduction tests (FECRTs) and controlled 

efficacy tests (CETs) were apparent when dealing with naturally infected animals 

with differences in the acquisition and expression o f immunity. Results o f the 

FECRTs and CETs conclusively demonstrated the presence o f  Bz resistant 

T. circumcincta on the paddocks at Firth Mains and suggested that resistance to 

levamisole (Lev) may have developed since the start o f the study. A Fbz/Lev 

combination remained effective with worm reductions >95 % at the end o f each 

season. Ivermectin (Ivm) treatments were fully effective with worm reductions



>99.8 %  each year. Whether the expression o f drug resistance that results from 

continued use o f Bz drugs had increased over the study was very difficult to ascertain 

since the apparent extent o f resistance, measured in terms o f efficacy, was influenced 

by seasonally variable factors such as climate, nutrition, pasture contamination and 

timing o f treatment.

Increases in both the bioavailability and treatment efficacy o f Fbz were seen as 

a result o f  feed withdrawal, divided dosing and the co-administration o f piperonyl 

butoxide. If suitable penning is available, withholding feed offers a simple approach 

to maximizing the bioavailability and efficacy o f Bz drugs against resistant parasites.

A naturally infected lamb from each o f the treatment paddocks at Firth Mains 

was housed towards the end o f the study in 1995 and its faeces collected to provide 

infective larvae for artificial infection o f parasite naive animals. Both the Fbz/Lev 

combination and the Ivm treatments were highly effective against abomasal and 

small intestinal species with faecal egg and worm reductions o f over 99 %. The 

calculated efficacy for Fbz treatment using the FECRT was 77.8% whereas 

arithmetic and geometric mean T. circumcincta reductions were 69.9 and 70.7 % 

respectively. The calculated efficacy for Lev using the FECRT was 89.2% with 

arithmetic and geometric mean T. vitrinus reductions o f 86.4 and 98.9 % 

respectively, the arithmetic data clearly suggesting Lev resistance in the T. vitrinus 

population on the paddock were Lev was employed throughout the study.

A study into the use o f an arbitrarily primed polymerase chain reaction (AP- 

PCR) in the detection o f drug resistant nematode parasites sucessfully amplified 

DNA from individual larvae. It was unlikely that this approach could be used 

routinely to differentiate between susceptible and resistant parasites since there was 

variation in the banding patterns o f single larvae from within a population. Its 

application as an epidemiological tool in the assessment o f anthelmintic resistance 

however merits further study.

The results o f  these studies are promising as regards the use o f anthelmintics 

against which resistance has already been selected in the management o f parasitic 

gastroenteritis, at least when it involves less pathogenic species with a low biotic 

potential such as Teladorsagia.
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CHAPTER 1 

General Introduction
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1.1 Introduction

Anthelmintics are used in all domestic species and man, however the ruminant 

market is the largest with approximately $ 1.7 billion spent annually throughout the 

world in an effort to reduce the deleterious effects o f helminth parasites (Lanusse & 

Prichard, 1993). The currently available anthelmintics are scarce resources and there 

is little likelihood that the number will be substantially increased in the near future. 

Few companies are in the business o f research and development for the veterinary 

anthelmintic market. The escalating costs o f drug development are largely due to the 

growing sophistication o f analytical methods for detecting drug residues, mandatory 

long-term trials to determine likely teratogenic or mutagenic effects and wide ranging 

studies on non-target invertebrate and vertebrate species (Waller, 1993b).

Parasitic gastroenteritis (PGE) attributable to nematodes, is a major source o f  

lost production in sheep, particularly in lambs during their first grazing season and is 

commonly associated with high stocking densities and intensive animal husbandry 

systems. Though there are a number o f species o f nematodes which parasitize the 

ruminant gastrointestinal tract the economic impact o f many o f these are limited by 

their climatic and host range. In temperate areas such as northern Britain the most 

prevalent gastrointestinal nematodes o f small ruminants are Teladorsagia 

(Ostertagia) circumcincta, Trichostrongylus vitrinus and Nematodirus battus 

(Parnell, Rayski, Dunn & MacKintosh, 1954; Boag & Thomas, 1971, 1977; Taylor & 

Cawthome, 1972; Thomas & Boag, 1972, 1973; Reid & Armour, 1975a; Waller & 

Thomas, 1978). Other species such as Trichostrongylus colubriformis, 

Trichostrongylus axei, Haemonchus contortus, Chabertia ovina, Oesophagostomum  

venulosum, Nematodirus fillicollis, Nematodirus spathiger, Trichuris ovis, 

Bunostomum trigonocephalum and Strongyloides papillosus tend to occur less 

frequently and are generally not associated with outbreaks o f disease. Ostertagia 

circumcincta (Stadelmann, 1894) has been re-classified and is synonymous with 

Teladorsagia circumcincta (Ransom, 1907) and will be referred to in accordance 

with the reference source.
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1.2 Life-cycles

1.2.1 Teladorsagia (Ostertagia) circumcincta

In Northern Britain, Teladorsagia is the major species implicated in cases o f  

ovine PGE, particularly during the summer months. In ovine faecal samples 

examined at Moredun on behalf o f the Scottish Veterinary Investigation Service, 

Teladorsagia eggs predominated (73 %) followed by T. vitrinus (18 %), although the 

extent to which it occurs throughout Britain is unknown since most cases o f  PGE are 

not diagnosed specifically and are treated locally (F. Jackson, personal 

communication). Teladorsagia spp have simple direct life-cycles typical o f  the 

trichostrongylids (Figure 1.1). Eggs are passed out o f the host and hatch within the 

faecal pat to produce the free-living first larval stages (Lj). The Lj undergo two 

moults separated by periods o f lethargus to produce the infective third larval stages 

(L3). The L3 retain the cuticle o f the L2, which serves a protective role, and thus 

considerable numbers are able to survive the winter on pasture and in soil (Urquhart, 

Armour, Duncan, Dunn & Jennings, 1991). The time taken to hatch and develop to 

the L3 stage is dependent upon the prevailing microclimatological conditions. The 

optimal temperature range for development is between 18-26 °C and takes 

approximately 2 weeks. Development is faster at higher temperatures but the larvae 

become hyperactive and mortality increases as a result o f depleted lipid reserves. At 

lower temperatures (<10°C) development from egg to L3 does not usually take place 

and the movement and metabolism o f developed L3 is minimal (Urquhart et a l., 

1991).

When moist conditions prevail, the free-living L3 migrate from the faeces on to 

herbage where they can be ingested by sheep. Following ingestion, the L3 exsheath 

in the rumen before reaching their predilection site, the gastric glands o f the 

abomasum. Two further moults occur before the immature adult (L5) emerges from 

the gland, which may be as early as 8 days post infection (PI), and matures on the 

mucosa living closely associated with the surface (Armour, Jarrett & Jennings,

1966). Sexually mature worms may then copulate and eggs laid by the female are 

deposited on to the pasture in the host’s faeces; the complete parasitic life-cycle 

taking around 3 weeks.
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Figure 1.1 Typical trichostrongylid life-cycle



1.2.2 Trichostrongylus vitrinus

Trichostrongylus spp also have a simple direct life-cycle, similar to that o f  

Teladorsagia spp, the time taken from hatch to infective L3 varying with 

microclimatological conditions. For example, the minimum time for development o f  

T. vitrinus in the field may vary from 4 days in western Victoria, Australia (Callinan, 

1979) and the south o f England (Rose & Small, 1984) to 24 days in south-east 

Scotland (Jackson, 1982). As with Teladorsagia spp, development from egg to L3 

does not usually take place at lower temperatures (<10°C) and the movement and 

metabolism o f developed L3 is minimal. Infective L3 o f T. vitrinus have also been 

shown to survive over winter on pastures in Scotland (Jackson, 1982) as well as in 

the south-east o f  England (Rose & Small, 1984).

Following ingestion the L3 exsheath in the alimentary tract before reaching 

their predilection site, the anterior small intestine (Taylor & Kilpatrick, 1980).

Within two days PI, larvae penetrate the base o f  the villi and undergo the third moult 

to L4. Development takes place in sub-epithelial tunnels where larvae increase in 

size before entering lethargus around 8-10 days PI prior to the moult to L5. There is 

a marked increase in growth between days 10-14 and the majority o f worms attain 

maturity within 17 days PI, with eggs appearing in host faeces within 3 weeks o f  

infection (Taylor, 1977; Taylor & Pearson, 1979a; Jackson, 1989).

1.2.3 Nematodirus battus

The direct life-cycle o f N. battus differs from that o f other strongyles in that 

eggs voided in the host faeces do not hatch to release first-stage free-living larvae 

(Lj) but successively moult within the egg to the L3 stage. The L3 then hatch from 

the egg following an increase in temperature (spring and summer months) which has 

been preceded by a period o f cold exposure (autumn and winter months). 

Consequently, eggs passed by infected lambs can overwinter on pasture and hatch the 

following spring, thereby infecting the succeeding year’s lamb crop (Boag &

Thomas, 1975).

Infective L3, when ingested, exsheath before penetrating the mucosa between 

the villi o f  the anterior small intestine where they undergo their third moult to the L4 

stage by day 4 PI. Between days 4 and 6 PI many L4 return to the mucosal surface
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before the final moult, the majority o f worms reaching the L5 stage by day 10 PI. 

Adult worms can be distinguished as early as day 10 and eggs may appear in host 

faeces by day 15 PI (Thomas, 1959a; Mapes & Coop, 1972).

1.3 Epidemiology

Gordon (1948) recognised that the epidemiology o f gastrointestinal nematode 

infections differed markedly from that o f bacterial, viral and protozoal diseases and 

preferred to consider nematode epidemiology in terms o f the population dynamics o f  

the parasite. Armour (1980) identified three key factors which precipitate production 

loss due to helminth infection in endemic areas. The first was an increase in 

infecting mass which is usually the result o f  a change in contamination and 

translation o f infective stages. The second was due to an alteration in the 

susceptibility o f existing stock and the third was the introduction o f susceptible stock 

into an infected area. Helminthoses may also occur in non-endemic areas due to the 

movement o f infected stock. Other key factors which affect the population dynamics 

o f nematode infection and hence the occurrence o f nematodoses are acquired 

immunity, the peri-parturient relaxation in immunity (PPRI) and the ability o f the 

different species to enter arrested development (hypobiosis).

1.3.1 Periparturient relaxation in immunity (PPRI)

A periparturient relaxation in immunity during pregnancy and lactation has 

been observed in a number o f species including rabbits (Dunsmore, 1966), sheep 

(Connan, 1968), rats (Connan, 1970), mice (Ngwenya, 1977) and more recently goats 

(Rahman & Collins, 1992). In considering the epidemiology o f infection it is 

important to take into account the rise in faecal egg counts seen as a result o f  this 

PPRI. Host immunity, acquired during previous exposure, is invariably lost in the 

periparturient period in sheep (Brunsdon, 1970; Reid & Armour, 1975b). This 

phenomenon seems to result from a temporary relaxation in host immunity and it has 

been suggested that it may be due to the suppression o f T-cell dependent mechanisms 

(Lloyd, 1983). This relaxation is thought to affect a wide variety o f effector
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mechanisms including those responsible for controlling larval establishment, 

development and hypobiosis, as well as adult fecundity and mortality (Gibbs & 

Barger, 1986). Consequently, eggs passed in the faeces o f ewes, from about 2 weeks 

pre- until 6 weeks post-lambing, serve to provide large numbers o f larvae at a time 

when highly susceptible lambs are present.

Although circulating levels o f prolactin, which functions to promote mammary 

development and milk production, may play a role in maintaining the PPRI, it may 

not be responsible for initiating the response and the exact cause is still unknown 

(Barger, 1993a). By inducing high prolactin levels Coop, Mellor, Jackson, Jackson, 

Flint & Vemon (1990) showed that susceptibility to infection with T. circumcincta 

was not increased in inbred ewes. Similarly, by administering the prolactin 

antagonist bromocryptine, Jeffcoate, Fishwick, Bairden, Armour & Holmes (1990) 

found little influence on the periparturient rise in faecal egg counts (FECs) o f  

lactating ewes.

In the case o f Teladorsagia spp, considerable numbers o f larvae may 

overwinter on the pasture and in soil, but the most important source o f  contamination 

is derived from the PPRI. The development o f eggs deposited in late spring, from 

both ewe and lamb, is slow but becomes more rapid towards mid-summer, giving 

rise to potentially dangerous populations o f L3 on pasture from July to October.

The epidemiology o f Trichostrongylus spp is also influenced by the PPRI, 

although it is not as significant since pre-parturient ewes retain the ability to regulate 

new T. vitrinus infections (Jackson, Jackson & Williams, 1988). The presence o f  

O. circumcincta has also been shown to reduce the establishment o f  T. vitrinus in 

young lambs, at least over the first 8 weeks o f exposure to both species (Jackson,

1989). As a result this species often becomes apparent in lambs later in the season 

(Boag & Thomas, 1977). Pamell et al.( 1954) concluded that T. vitrinus was one o f  

the main causes o f helminthoses in the late winter and spring in Scottish hill sheep 

aged between 6 and 12 months.

Since immunity towards N. battus infections is acquired rapidly the PPRI does 

not play a major role in the epidemiology o f this species. Essentially transmission is 

lamb-to-lamb, with eggs passed from the current year’s lambs overwintering to infect 

the following lamb generation. Generally, the disease is prevalent during late spring
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affecting young lambs o f about 4 to 8 weeks o f age (Coop, 1989), rarely affecting 

sheep aged over 4 months (Boag & Thomas, 1975). The possibility o f an alteration 

in epidemiology o f Nematodirus spp has been proposed since increased levels o f  

pasture contamination during the autumn months and incidences o f patent infections 

have been noted (McKellar, Bairden, Duncan & Armour, 1983; Hollands, 1984) and 

have been correlated to changes in the climate (Thomas, 1991).

1.3.2 Arrested Larval Development (Hypobiosis)

The temporary cessation in the development o f  nematodes, known as 

hypobiosis, serves to synchronize events within the host and is thought to coincide 

with the onset o f environmental conditions adverse to the survival o f  the free-living 

stages, or as a consequence o f host immunity (Gibbs, 1986). The proportion o f  

challenge which undergo inhibition is also governed by the age, acquired immunity 

and reproductive status o f the host (Michel, Lancaster & Hong, 1979). Resumption 

o f  development appears to be timed to occur when environmental conditions are 

suitable for the survival o f the free-living stages, the mechanisms o f which are not 

fully understood, involving host reproductive status, immune status, nutrition and 

stress (Armour, 1980).

In a temperate climate the primary stimulus for the induction o f inhibited 

development o f Ostertagia spp appears to be declining temperatures in the autumn 

(Armour & Bruce, 1974). Following ingestion o f ‘conditioned’ free-living stages, 

development is arrested at the L4 stage and the larvae remain in the gastric glands. 

Significant numbers o f established adult worms may also survive within the host 

(Waller & Thomas, 1978). Type II ostertagiosis disease may occur in yearling calves 

following their first grazing season and results from the synchronous maturation o f  

hypobiotic larvae ingested during the previous Autumn.

Ovine Trichostrongylus spp also have the capacity to undergo inhibited 

development within the host but differ from other trichostrongylids in that they 

inhibit at the L3 stage rather than L4 (Eysker, 1978; Waller, Donald & Dobson,

1981), but in other geographical locations they may survive adverse environmental 

conditions primarily as adult worms (Ogunsusi & Eysker, 1979). Eysker (1978) 

concluded that under European conditions the main cause o f inhibition was



developing host immunity, rather than the effect o f environmental stimuli upon the 

free-living stages.

Larval arrest in Nematodirus spp has been demonstrated under natural grazing 

conditions in sheep (Waller & Thomas, 1983). The authors suggested that seasonal 

factors and age o f  the host played an important role in inhibition, and it was not 

associated with host immunity or density-dependent effects, although Taylor & 

Thomas (1986) attributed the increased numbers o f L4 stages in their study to 

acquired immunity.

1.3.3 General

As the grazing season progresses there appears to be a definite succession o f  

parasite species on the pasture and within the host. The epidemiological studies o f  

Boag & Thomas (1977) demonstrated a succession o f nematode species throughout 

the season in north-east England (with Ostertagia spp and Nematodirus spp recorded 

in June, H. contortus in July, T. vitrinus in August and T. axei, T. colubriformis and 

Cooperia curticei in September) and was attributed to the overwintering capabilities 

and rate o f larval development o f individual species. The relative abilities o f  

different species to be transmitted in the PPRI, their biotic potential (fecundity) and 

host susceptibility are also associated with these changes. Generally, H. contortus is 

not as prevalent in Scotland, being seen only occasionally in ewes and lambs (Reid & 

Armour, 1975a).

In particular, the epidemiology and pattern o f larval contamination is governed 

by climatic conditions which affect larval development and translation. For example, 

a dry summer would delay the translation o f larvae on to the herbage and limit the 

size o f larval challenge. Providing the moisture content o f faecal matter is sufficient 

to support infective larvae, the onset o f autumn rainfall would result in the release o f  

large numbers o f larvae ‘preconditioned’ to arrest upon ingestion. If these animals 

remain on the farm the magnitude o f the PPRI would be increased, resulting in 

heavier levels o f pasture contamination the following year. Thus, the epidemiology 

o f nematode species is often complex and has a propensity for modification by a 

number o f  factors.
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1.4 Pathogenicity and Productivity

Although infestations with Teladorsagia spp, Trichostrongylus spp and 

Nematodirus spp cause specific diseases, infections are commonly multispecific 

having similar effects, the clinical signs o f which are weight loss, poor body 

condition, inappetence and often diarrhoea. The pathophysiological changes induced 

have been extensively studied, revealing significant effects upon appetite, gut 

function, protein and energy metabolism, all o f  which are dependent on the age, 

nutritional and immunological status o f the host as well as the level o f  infection 

(Holmes, 1985). The loss o f protein into the gastrointestinal tract is a distinctive 

feature o f gastrointestinal parasitism and is associated with plasma leakage, 

exfoliated epithelial cells and increased mucus secretion (Holmes, 1985). Reduction 

in voluntary food intake is thought to be the most important factor accounting for 

decreased rates o f liveweight gain, although little is known about the underlying 

mechanisms. Symons (1985) has reviewed the situation and identified some o f the 

possible causes including pain, changes in pH (affecting protein digestion and /or 

absorption), gastrointestinal motility, circulating hormonal concentrations and direct 

neural effects.

1.4.1 Teladorsagia (Ostertagia) spp

The response to Ostertagia spp infection involves complex biochemical, 

hormonal, nutritional and immunological interactions between the parasite and host 

and has recently been reviewed by McKellar (1993). The presence o f  

O. circumcincta in the abomasum in sufficient numbers gives rise to extensive 

pathological and biochemical changes which are largely due to the emergence o f  

immature adults from the gastric glands as early as 8 days post infection (Armour et 

al., 1966). Cells occupied by parasites lose their specialized secretory function such 

that parietal (HC1 secreting) and zymogenic (pepsinogen secreting) cells are replaced 

by irregular cuboidal epithelium (McKellar, 1993). Emerging parasites spread the 

damage to surrounding un-parasitized cells which also lose their differentiation; the 

end result being a thickened hyperplastic gastric mucosa with impaired cell 

junctional integrity. Abomasal pH is elevated due to the loss o f functional parietal
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cells, this leads to increased circulating pepsinogen levels since pepsinogen 

conversion to the proteolytic enzyme pepsin is most effective at low pH (Jennings, 

Armour, Lawson & Roberts, 1966). The exact mechanism for elevated blood 

pepsinogen is not yet completely defined and it may be that it is multifactorial 

involving direct stimulation o f  zymogenic cells by the parasite, indirect stimulation 

via elevated circulating concentrations o f hormones and leakage from abomasal fluid 

between poorly differentiated epithelial cells (McKellar, 1993). In the study o f  

Armour et al. (1966) a single infection with 100,000 O. circumcincta L3 failed to 

produce clinical signs o f  ovine ostertagiosis, although it should be noted that the 

sheep were aged 6 months at the start o f the investigation. Holmes & MacLean 

(1971) also commented on the mildness o f clinical signs following infection with

300.000 or 900,000 infective larvae, but these animals were also older (9 to 13 

months) and, as the authors noted, pathogenicity may be dependent on the breeds o f  

sheep employed.

1.4.2 Trichostrongylus spp

Taylor & Pearson (1979a and b) described the pathological changes which 

occurred in the mucosa o f the small intestine in lambs infected with 50,000 or

250.000 T. vitrinus L3 which were found to be similar to those seen with 

T.colubriformis. The major effects evident within the first five weeks o f infection 

include villous atrophy, flattening o f the mucosa and erosion o f the epithelium and an 

associated inflammatory infiltration o f lymphocytes and neutrophils into the 

damaged areas.

1.4.3 Nematodirus spp

The general feature o f nematodirosis is local villous atrophy which is believed 

to be a sequel o f pressure/damage upon the epithelial cells which are then lost into 

the lumen, although the mechanism o f damage is unclear (Coop, Angus & Mapes, 

1973). Mucus hypersecretion is another common pathological change seen with 

Nematodirus spp infection and is thought to be involved with the rejection 

mechanism o f immunity (Martin & Lee, 1980). Irreparable tissue damage is unlikely 

since the tissue phase is transient, superficial and limited to the larval stages which

11



do not penetrate deep into the mucosa (Rowlands & Probert, 1972). The actual 

number o f  worms associated with mortality is extremely variable; deaths have been 

reported with burdens o f 10,000 (Thomas & Stevens, 1956) whereas lambs with over

30.000 have appeared healthy (R. L. Coop, personal communication).

1.4.4 Continuous infections

Initial work on the pathogenicity o f nematode species employed large single 

doses, which is not comparable with the continuous daily ingestion o f small numbers 

o f infective larvae by the majority o f lambs at pasture. In an attempt to mimic the 

field situation by continuous larval dosing Coop, Sykes & Angus (1976) 

demonstrated that T. colubriformis can significantly reduce animal performance 

without obvious clinical signs o f parasitism. Using the same techniques and 

experimental design, O. circumcincta was also shown to adversely affect the 

performance o f sheep without clinical signs (Coop, Sykes & Angus, 1977; Sykes & 

Coop, 1977). Symons, Steel & Jones (1981), in a comparison with another study 

using T. colubriformis (Steel, Symons & Jones, 1980) concluded that, on a larval 

intake basis, O. circumcincta is considerably less pathogenic. Based on impairment 

o f  liveweight gain, wool growth and food consumption, the effects o f 3,000 

T. colubriformis infective larvae per week were generally more severe and lasted 

longer than those observed with a weekly dose o f 37,500 O. circumcincta larvae.

Coop, Sykes & Angus (1977 and 1982) concluded that the effect o f parasitism 

was dose related and seemed to have a threshold level since only larval intakes above

1.000 O. circumcincta per day affected food intake and growth rate. This reduction 

in growth rate was due not only to a depression o f appetite but also to a reduction in 

the efficiency o f food utilisation since infected sheep grew at only half the rate o f  

pair-fed controls. In a later study Coop, Sykes, Spence & Aitchison (1981) 

demonstrated that intakes above 1,000 also affected skeletal growth. These results 

are consistent with the suggestion made by Dineen (1963) that the initiation o f  

immunological control o f helminth infections requires the presence in the host o f  a 

threshold level o f parasitic material. From a practical point o f view  the existence o f  

some threshold level o f infection, below which there are no obvious effects on 

performance is important since it is clearly more feasible, both practically and
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economically, to reduce a parasite population on pasture below a given level than to 

eliminate it altogether. Symons et al. (1981) found a threshold level o f between

12,000 and 37,500 larvae per week in their study with lambs continuously exposed to 

O. circumcincta. Differences in the age and breed o f lambs and the parasite isolate 

used between these studies may account for the different findings. The lambs in the 

study conducted by Coop et al. (1982) were aged 16 weeks and dosed on a daily 

basis whereas those in the study o f Symons et al. (1981) were aged between 18-24 

weeks by the time dosing, which was divided into three equal aliquots throughout the 

week, had started. Breed and genotype differences may be particularly important 

when assessing threshold levels. Abbott, Parkins & Holmes (1984) found that as 

well as having higher faecal egg counts, the effects o f chronic haemonchosis were 

more severe in Merino lambs compared to Scottish Blackface lambs. Steel et al. 

(1980) concluded that the threshold level, under their experimental conditions, for 

T.colubriformis infections was between 950 and 3,000 larvae per week, but pointed 

out that under poor dietary conditions this level may well be lowered.

Since most studies concerning the consequences o f infection with 

Trichostrongylus species have used T. colubriformis rather than T. vitrinus, 

investigations have been conducted to determine the relative pathogenicities o f the 

two species. Coop, Angus & Sykes (1979) reported the pathological changes in the 

small intestine whilst Sykes, Coop & Angus (1979) looked at the effects on food 

utilisation and animal performance in sheep chronically infected with T. vitrinus.

The authors compared the results to an earlier study using sheep o f  a similar age and 

breed, fed the same diet and identical intakes o f T. colubriformis larvae (Coop et al., 

1976; Sykes & Coop, 1976). Assuming that the viability o f larvae was similar the 

authors concluded that there was a lower fecundity and earlier expulsion o f worms 

with T. vitrinus infections. Furthermore, although the intestinal lesions caused by 

both species were similar in most respects they were not as extensive and there 

appeared to be less o f  an effect upon food intake with T. vitrinus infection.

1.4.5 Mixed infections

Most studies on the effects o f sub-clinical gastro-intestinal parasitism in sheep 

have involved single species nematode infections. In the field situation ruminants
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are generally exposed to both abomasal and small intestinal parasites concurrently. 

Attempts to determine whether the effects o f multiple infections are additive or 

otherwise have provided conflicting results. Steel, Jones & Symons (1982) 

investigated the threshold levels o f single T. colubriformis (900 larvae per week) or 

O. circumcincta (38,000 larvae per week) as well as concurrent infections. These 

authors found respective reductions in liveweight gains o f approximately 20% and 

30% with single infections whereas concurrent infection resulted in a reduction o f  

approximately 75 %. In a similar experiment using T. vitrinus as the small-intestinal 

species, Coop, Field, Graham, Angus & Jackson (1986) saw 17 % and 20 % 

reductions in liveweight gain with monospecific T. vitrinus (5,000 larvae per week) 

and O. circumcincta (12,500 larvae per week) infections respectively. Concurrent 

infection however resulted in a reduction o f 30 % with no evidence o f additive or 

multiplicative effects.

Dobson, Barnes & Windon (1992a) investigated the population dynamics and 

acquisition o f host immunity to T. colubriformis and O. circumcincta in both single 

(10,000 and 5,000 larvae per week respectively) and concurrent infections using 

lambs aged 21 weeks. Under their experimental conditions, the establishment o f  

infective larvae, cumulative worm burdens, faecal egg counts and lamb bodyweights 

were not affected by concurrent or pre-existing infection with the other species. 

Weight gains o f the single O. circumcincta infected sheep were similar to those o f  

the uninfected controls confirming the threshold level o f approximately 1,000 larvae 

per day noted by Coop et al. (1982) and agreeing with the findings o f Coop et al. 

(1986), using T. vitrinus, that no additive or multiplicative effects on performance are 

seen with the abomasal and small-intestinal species. An interaction between these 

species as regards establishment rates has been demonstrated by Jackson, Jackson, 

Coop & Huntley (1992b). These workers noted that the initial establishment rate o f  

T. vitrinus was reduced as a result o f concurrent T. circumcincta infection and may be 

an important factor for differences in their seasonal prevalence.

The major limitation o f previously mentioned studies is the confidence with 

which the results from housed animals consuming conserved feeds can be 

extrapolated to grazing animals consuming fresh herbage. Both the plane o f nutrition 

and the increased energy expenditure associated with grazing may influence the
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responsiveness o f  sheep to infection under field conditions, such that threshold levels 

o f larval intake which affect productivity may well be considerably lower (Symons et 

al., 1981). Another problem associated with pelleted feed is the palatability o f the 

diet. For example, in the study o f Steel et al. (1980) the feed intake o f several sheep 

including uninfected controls was temporarily depressed, but their appetite recovered 

rapidly when a freshly prepared batch o f feed was offered to them.

In an attempt to overcome this problem Sykes, Poppi & Elliot (1988) 

investigated the effect o f a concurrent infection on growing lambs consuming fresh 

herbage. The 4 month old lambs were fed freshly cut rygrass-white clover pasture 

which had been managed during the previous eighteen months to achieve minimal 

larval contamination. Bodyweight gain was reduced by 13 and 43 grammes per day 

following infection with 4,000 O. circumcincta and 3,000 T. colubriformis larvae per 

day respectively. Concurrent infection on the otherhand resulted in a reduction o f 92 

grammes per day. The multiplicative effect o f  the mixed infection that resulted on 

animal performance was in agreement with Steel et al. (1982). The contrary findings 

o f Coop et al. (1986) may be explained by the different trichostrongyle species 

employed and also by the considerable differences between the experimental 

conditions in terms o f larval dosages, animal breed, age, dosing schedule and diet. 

The possibility o f differing pathogenicities, not only between the trichostrongyle 

species but also between different isolates, should also be taken into account. It 

should also be noted that although pasture counts revealed no larval contamination 

the uninfected control animals in the study by Sykes et al. (1988) had positive faecal 

egg counts and harboured small numbers o f worms indicating that the freshly cut 

herbage carried some infective larvae.

A  study by Coop, Graham, Jackson, Wright & Angus (1985) went one step 

further by monitoring the effects o f experimental infection on grazing lambs. 

Minimally contaminated grazing for the ten 0.9 hectare paddocks used in the study 

was achieved by taking a hay crop each year and grazing the aftermath with adult 

cattle or ewes given anthelmintic every two weeks. Three and a half month old 

lambs were infected daily, five days a week, with either zero, 500, 1,500, 3,000 or

5,000 infective O. circumcincta larvae for twelve weeks. The procedures used to 

produce ‘clean’ pasture and the practice o f moving the lambs to a fresh paddock
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every 7 - 1 0  days were very successful, as judged by the low level o f  parasitism in 

the control lambs. Faecal egg counts followed a stereotypic pattern in all the infected 

groups, peaking at week four and declining to low levels by week six. Reductions in 

liveweight gain compared to the uninfected controls for the groups dosed with 1,500,

3,000 and 5,000 larvae per day were 24 %, 31 % and 37 % respectively. No 

differences in liveweight gain were apparent in the group dosed with 500 larvae per 

day. These figures are similar to those recorded in the same breed o f  lambs receiving 

a complete ruminant ration and on a comparable infection regimen with O. 

circumcincta when housed, and suggest that a threshold level o f exposure for a 

significant effect on productivity o f between 1000 and 1500 larvae per day for this 

age o f  lamb (Sykes & Coop, 1977; Coop et al., 1982). This figure is lower than that 

suggested by Symons et al. (1981) for housed Merino-cross lambs o f between 12,000 

and 37,500 O.circumcincta larvae per week. However, as mentioned earlier, 

differences in animal age, breed, larval isolate, dosing schedule and diet may account 

for these discrepancies.

1.5 Development o f  immunity to gastrointestinal parasites

The effects o f acquired resistance on the course o f gastro-intestinal nematode 

infections in sheep under both natural conditions (Gordon, 1948; Morgan, Parnell & 

Rayski, 1951) and in experimental infections (Dineen, Donald, Wagland & Offner, 

1965) have long been noted. These and similar studies have identified some o f the 

means by which the host regulates its nematode burden during prolonged and 

continuous exposure to infection. These include the periodic spontaneous expulsion 

o f  the established adult parasite by resistant individuals (Gordon, 1948; Stewart, 

1953), a reversible inhibition o f larval development which may form part o f  a 

process for the continual replacement o f adult worms, the inhibition o f ovulation o f  

female worms and the development o f resistance to reinfection (Michel, 1963).

In natural infections the frequency o f gastrointestinal nematode infection 

follows a negative binomial distribution describing a state o f overdispersion (Barger, 

1985). The result o f this is that a relatively small proportion o f the host population 

harbours a large proportion o f the parasite population. Riffkin (1988) has estimated
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that the most resistant 50% of grazing animals may produce less than 10% o f  the 

worm eggs counted, whereas the most susceptible 15% o f the flock may be 

responsible for over 50% o f the egg output. The existence o f such overdispersed 

parasite populations illustrates the importance o f host immunity to infection. Host 

immunity to infection can be expressed in one o f  two ways; innate and acquired. 

Innate immunity is a non-specific and pre-existing phenomenon which provides a 

measure o f  the host’s ability to regulate parasite establishment, development, 

persistence and fecundity. In contrast, acquired immunity is highly specific for a 

particular pathogen and is an active, adaptive and aggressive response which 

improves with repeated exposure to the same pathogen (Emery & Wagland, 1991).

Young animals are most susceptible to gastrointestinal nematode infection. In 

temperate regions, where grazing animals are exposed to continuous trichostrongylid 

infection, these animals are gradually able to acquire an immunity to subsequent 

infection. The development and expression o f acquired immunity is a complex 

process which may be strongly influenced by a number o f factors, most notably the 

age o f the host, the plane o f host nutrition, the level o f exposure to infection and the 

animal management. The rate o f development and degree o f host immunity also 

varies with nematode species, such that resistance to Nematodirus spp. may be 

acquired within weeks, whereas that to Teladorsagia spp and Trichostrongylus spp 

may take between 3 to 5 months (Sykes, 1994).

1.5.1 Age

Growing lambs acquire immunity to gastrointestinal nematode infections at a 

slower rate than older sheep (Manton, Peacock, Poynter, Silverman & Terry, 1962; 

Dineen, Gregg & Lascelles, 1978; Douch & Morum, 1993). Generally, immunity to 

gastrointestinal nematode infection in sheep gradually improves with age over the 

first 12 months (Watson & Gill, 1991). This has been reported for sheep infected 

with H. contortus (Manton et al., 1962; Benitez-Usher, Armour, Duncan, Urquhart & 

Gettinby, 1977), T. colubriformis (Gibson & Parfitt, 1972 and 1973; Chiejina & 

Sewell, 1974a and 1974b; Dineen et a l., 1978) and T. circumcincta (Smith, Jackson, 

Jackson & Williams, 1985). The relative immunological unresponsiveness o f  

immature lambs has been described by Watson, Colditz, Andrew, Gill & Altmann
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(1994) and supports other studies which suggest that lambs are unable to mount an 

effective immunity to nematode infection until they are at least 6 months o f  age 

(Waller & Thomas, 1981; Soulsby, 1985). It has been suggested that the 

unresponsiveness o f young lambs may be partly due to the immaturity o f gut effector 

mechanisms rather than the failure to produce parasite-specific antibodies (Gregg, 

Dineen, Rothwell & Kelly, 1978). The factors involved in the development o f  age- 

related immunity are as yet unknown, but have been linked to factors such as 

puberty, bodyweight and condition rather than chronological age (Abbott & Holmes,

1990). It is also possible that in parasitised ruminant animals there are competing 

demands for the available nutrients between growth, the repair o f gastrointestinal 

pathology and the immune response with the first two processes taking priority in the 

young lamb (Coop, Huntley & Smith, 1995).

1.5.2 Weaning

Spedding, Brown & Large (1963) investigated the effects o f milk intake upon 

lamb growth rate, food consumption and worm infestation. These workers concluded 

that milk intake and growth rate were highly correlated and that a negative 

relationship existed between milk intake and intake o f solid foods. As a result, lambs 

receiving more milk consumed less grass in the field and had fewer worms post 

mortem. A direct effect o f  ew e’s milk was not excluded and it was also noted that 

since milk supply influences growth rate, lambs require less time for fattening on 

pasture and are exposed to fewer larvae.

The effect o f weaning on antibody responses and nematode parasitism in 

Merino lambs was investigated by Watson & Gill (1991). As expected, weaning 

seriously compromised growth rate and was attributed to the cessation o f milk intake, 

but it was noted that the anxiety and stress o f weaning may also have lowered pasture 

intake by increasing the amount o f time that weaned lambs spent calling and 

searching for their mothers. When the lambs were experimentally infected with

H.contortus and T. colubriformis larvae at eight weeks old, the mean faecal egg 

count for weaned lambs was twice that for controls and there was also a significant 

decline in haematocrit values. Antibody responses following immunisation with 

either proteinaceous (ovalbumin) or bacterial {Brucella abortus) antigens did not
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differ significantly between control and weaned lambs at 4 and 8 weeks o f age. 

However, serum antibody responses to H. contortus and T. colubriformis differed 

significantly with controls responding earlier and more strongly than weaned lambs. 

From these findings it was concluded that up to the age o f three months suckled 

lambs, when faced with substantial parasite challenge, have much better prospects 

than weaned lambs.

Chappie & Lynch (1986) suggested that lambs’ diet selection after weaning is 

strongly influenced by learning experiences while still with their dam. Weaned 

lambs therefore may not learn to select as nutritious a diet as those grazing close to 

their mother and there may also be dominance effects at sites o f  competition.

Shaw, Nolan, Lynch, Coverdale & Gill (1995) investigated whether delaying 

the age o f  weaning or feeding a protein-rich supplement altered the rate at which 

lambs developed immunity to H. contortus. There were no differences evident in the 

response to a trickle infection between suckling lambs and those weaned at four 

months but an earlier immune response was mounted in groups given protein 

supplementation. Gender differences were also evident with castrated males, 

whether supplemented or not, having lower faecal egg counts than females. 

Unweaned females were also more susceptible to parasitism than weaned females. 

Whether these differences were due to the effect o f maternal hormone, differences 

between the maternal relationship between male and female offspring or due to other 

reasons was not clear.

1.5.3 Nutrition

The nutritional status o f the host and the consequences o f infection have long 

been established with malnourished animals showing increased susceptibility to 

parasitism (Gibson, 1963). Baird, Vegors, Sell & Stewart (1954) showed that the 

actual protein content o f the diet, rather than the total consumption o f forage, was 

associated with increased susceptibility in ruminants. Dobson & Bawden (1974) 

studied the effects o f a low-protein diet on the resistance o f sheep to infection with 

the large intestinal nematode Oesophagostomum columbianum and concluded that 

increased susceptibility was associated with malfunctions o f the innate immunity o f  

the gut. This involved decreased peristalsis, failure o f mucin cell hyperplasia,
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reduced lymphocyte and plasma cell reactions and possibly poor functional 

coordination between lymphocytes, antibodies and mast cell-granulocyte effector 

mechanisms.

The importance o f protein intake for the development and expression o f  

immunity towards T. colubriformis was demonstrated by Wagland, Steel, Windon & 

Dineen (1984). Dietary protein does not appear to influence parasite establishment 

and pathogenesis in lambs o f varying ages and breed when given a single challenge 

o f infective H. contortus larvae (Abbott, Parkins & Holmes, 1985 and 1986). 

However, when lambs aged four months were continuously infected with small 

numbers o f larvae and fed a high protein diet many animals developed resistance to 

further infection (Abbott, Parkins & Holmes, 1988). In a vaccination trial using 

irradiated H. contortus larvae Abbott & Holmes (1990) demonstrated that dietary 

protein was not as important in older lambs, aged eight months, since a strong 

resistance to a challenge infection developed in these animals regardless o f  dietary 

intake.

Bown, Poppi & Sykes (1991) described the effects o f an abomasal infusion o f  

casein and glucose on protein and energy deposition in lambs chronically infected 

with T. colubriformis. The pathological damage to the small intestine caused by 

infection was a result o f induced protein rather than energy deficiency and the 

authors concluded that this was probably a consequence o f  increased endogenous 

protein loss into the gastrointestinal tract rather than a failure o f protein absorption. 

The authors demonstrated that this deficiency may be overcome by a post-ruminal 

infusion o f extra protein with a consequent reduction in the effects o f parasitism.

Kambara, McFarlane, Abell, McAnulty & Sykes (1993) investigated the effect 

o f age, 8-26 or 33-51 weeks old, and dietary protein, 11 % or 20 %, on the 

development o f immunity and resistance in lambs infected with T. colubriformis. 

Immunity was measured by an in vitro lymphocyte blastogenesis test to T and B cell 

mitogens and to a larval antigen. Resistance to challenge infection was ascertained 

by worm burden, FEC and eggs in utero in the nematode. The young lambs on the 

high protein diet developed a better resistance and greater live-weight gain than those 

fed a low protein diet but there were no differences between the older groups. 

Lymphocyte responsiveness to T cell mitogens was higher in lambs on the high
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protein diet, being greater in the older animals. Increased sensitization to larval 

antigen was only observed in the older lambs. It was concluded that the response to 

larval antigen was affected by age and that this mechanism o f resistance is not 

evident in young lambs regardless o f protein intake.

Using a protected protein (resistant to microbial degradation in the rumen) van 

Houtert, Barger, Steel, Windon & Emery (1995) demonstrated an increased 

resistance to the effects o f parasitism by T. colubriformis in Merino lambs aged three 

months. As well as significantly higher liveweight gains, the rate o f worm expulsion 

was higher in supplemented animals and was correlated with eosinophil numbers and 

sheep mast cell protease (SMCP) levels. Although there was no difference between 

circulating antibody levels, supplemented animals did show an enhanced 

responsiveness to T. colubriformis larval antigen in vitro. It was suggested that the 

reduction in production losses attributed to T. colubriformis infection were 

immunologically mediated but that the mechanism(s) through which nutrition 

enhances this response requires further investigation.

Coop et al. (1995) investigated the effect o f  protein supplementation on the rate 

o f development o f immunity in growing lambs infected with O. circumcincta.

Protein supplement was administered directly to lambs aged four and a half months 

by means o f an abomasal catheter so as to avoid degradation by the rumen 

microflora. As well as lower mean faecal egg counts, worm burdens were 

significantly lower in supplemented lambs suggesting that the provision o f protein 

accelerated the development o f immunity to O. circumcincta in these lambs. There 

was also a greater percentage o f worms at the early fourth stage and higher levels o f  

SMCP in the supplemented animals. Coop & Holmes (1996) recently reviewed the 

interaction between nutritional status and gastrointestinal parasitism in ruminants.

The effect o f host nutrition upon parasite establishment and survival, the 

development o f  immunity and the pathophysiology o f infection was discussed as was 

the influence o f the parasite upon host nutrition. In addition to dietary protein, the 

influence o f both macro-minerals and trace elements was highlighted and it was 

concluded that further research is required into the complex parasite/nutrition 

relationship within the host.

21



1.5.4 Teladorsagia (Ostertagia) spp

Gibson & Whitehead (1981) examined the development o f immunity and the 

consequent changes in worm populations in sheep continuously infected with 

O.circumcincta. Using lambs aged between 20-22 weeks and a daily dose o f 2000 

infective larvae, faecal egg counts declined after 7 weeks whereas worm burdens fell 

abruptly by week 12. Although the lambs in this study were older than those o f a 

similar study with T. colubriformis (Gibson & Parfitt, 1973), the authors attributed 

the differences in results between the experiments to the different life cycles o f  the 

nematodes. They concluded that the close contact between the histotrophic phase o f  

O. circumcincta and host tissues promotes a more rapid development o f resistance to 

infection than with T. colubriformis where the contact between immature stages and 

host is not so intimate.

In their study on the population dynamics o f O. circumcincta, Hong, Michel & 

Lancaster (1987) infected groups o f lambs aged 18 weeks at three daily dosage 

levels. Although there were a few abnormal individuals, the number o f  established 

worms appeared to be related to the rate o f larval intake. Faecal egg counts fell 

rapidly in all groups after about 6 weeks and worm burdens between weeks 9-12. A  

decrease in worm length was observed with time and the numbers o f females with 

reduced vulval flaps was more prevalent indicating that there was a rapid turnover o f  

worms, a phenomenon originally noted by Michel (1963) with O. ostertagi in calves.

1.5.5 Trichostrongylus spp

Jackson, Angus & Coop (1983) monitored the development o f morphological 

changes in the small-intestine o f lambs aged 12 weeks infected daily with 2,500 

T.vitrinus larvae five days a week. These authors noted that worm burdens were 

declining and animals were immune to larval infection by week 14. Gibson & Parfitt 

(1973) found that worm burdens increased up to the 20th week o f infection using 

similar aged lambs and a dosing regime o f 2,000 infective T. colubriformis per day. 

Comparison o f the worm burdens between these two studies and that o f  a similar 

study by Coop et al. (1976) show that much larger burdens may become established 

with T. colubriformis. These results led Jackson et al. (1983) to conclude that there
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is an apparent ability o f lambs to mount a more rapid and effective response to 

T.vitrinus than to T.colubriformis species.

1.5.6 Nematodirus spp

Within 5-6 weeks experience o f infection with N. battus lambs are capable o f  

regulating faecal egg output and by 3 months are capable o f regulating adult 

populations (Gibson & Everett, 1963). Using larger numbers o f lambs Taylor & 

Thomas (1986) confirmed that immunity to N. battus may develop in the first 3 

months o f life but that it is a true acquired immunity rather than a manifestation o f  

age immunity.

1.5.7 Use o f  radiolabelled larvae

While serial killing o f sheep in continuous infection experiments has provided 

information on the total population o f parasites at any given time, radiolabelling has 

made it possible to distinguish newly acquired, normally developing worms from 

earlier arrivals which may have become retarded, or arrested in their development.

By following the fate o f radiolabelled larvae given as a challenge to lambs previously 

exposed to a continuous infection, Seaton, Jackson, Smith & Angus (1989a and 

1989b) have studied the development o f immunity in lambs dosed with T. vitrinus 

and O. circumcincta respectively.

The development o f immunity to incoming radiolabelled T. vitrinus larvae was 

studied in lambs aged 6 months (Seaton et a l., 1989a). The mean faecal egg count 

increased from day 17 o f the experiment to reach a peak during week 7, afterwhich 

they declined. Nevertheless, partial immunity to freshly acquired larvae was present 

as early as 4 weeks in the form o f reduced establishment and by 8 - 12 weeks there 

was almost complete immunity to further infection as well as retardation o f  

established worms.

In the case o f O. circumcincta the first indication o f  immunity in lambs aged 5 

months was a retardation o f  developing worms after 4 weeks o f dosing (Seaton et al., 

1989b). Faecal egg counts were variable, peaking after 7 weeks but remaining high 

until week 11. Immunity to the establishment o f incoming larvae had developed 

between weeks 4 and 8 o f continuous challenge and by week 12 the animals were
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almost completely immune to further infection. The authors suggested that there was 

a brief period o f population turnover with a loss o f established worms between 4 and 

8 weeks, agreeing with the findings o f Hong et al. (1987).

This work has provided direct evidence that immunity to continuous infection 

begins earlier than suggested by indirect studies and despite rising faecal egg counts. 

It also demonstrated an apparent difference in the development o f immunity towards 

the different species. With O. circumcincta the first indication o f immunity was 

retardation o f developing worms whereas resistance to establishment was the first 

sign with T. vitrinus. It would seem therefore, that the relative importance o f each 

aspect in the initial development o f  immunity is different for these abomasal and 

small-intestinal species. Barger, Le Jambre, Georgi & Davies (1985) working with 

radiolabelled H. contortus concluded that resistance to establishment and inhibition 

o f  parasite development were separate aspects o f the immune response to continuous 

challenge, dependent upon the host’s previous experience o f infection and the current 

rate o f larval intake.

1.6 Patterns o f  worm exclusion/expulsion

1.6.1 Expulsion o f  infective larvae

The term ‘rapid expulsion’ was first introduced by Bell, McGregor & 

Despommier (1979) to describe the speed o f larval expulsion in secondary 

Trichinella spiralis infections in rats and the premature rejection o f larvae surviving 

the initial phase. Rapid expulsion (RE) is directed against infective larvae as they 

enter the gastrointestinal tract and is ultra-rapid, apparently occurring before 

establishment takes place, the majority o f worms being expelled in the faeces within 

24 hours (McClure, Emery, Wagland & Jones, 1992) and as quick as 4 hours 

following challenge (Jackson, Miller, Newlands, Wright & Hay, 1988). However, as 

pointed out by Rothwell (1989), the term RE should not necessarily be applied to all 

expulsion processes which are rapidly initiated and should be restricted to that o f  

T. spiralis in rats until its relationship with other host-parasite systems is established. 

The establishment o f  T. spiralis larvae requires attachment to and penetration o f
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intestinal epithelial cells; processes that are not required by many other nematode 

species and may well be uniquely susceptible to host intervention.

There was no evidence o f immune exclusion o f a single challenge o f 10,000

H.contortus L3 in the study o f Jackson et al. (1988) whereas higher levels did elicit a 

response. However, as the authors pointed out, there is no reason to suggest that this 

mechanism does not play a part in the regulation o f worm populations in animals 

continuously exposed to low levels o f infection since marked increases in initial 

lymphocyte traffic and raised antibody levels were maintained as a result o f  daily 

challenge with 2,000 O. circumcincta L3 (Smith, Jackson, Jackson, Williams & 

Miller, 1984a; Smith, Jackson, Graham, Jackson & Williams, 1987). Several 

mechanisms have been proposed that may account for the immune expulsion o f  

incoming larvae, reviewed by Miller (1984). These include the cooperation between 

mucus and antibodies and their interaction with inflammatory mediators released 

from a variety o f effector cells, the components o f which will be discussed later, all 

o f which must be immediately available for activation.

I.6.2 Expulsion o f  established worms

Primary infections with gastrointestinal nematodes in their natural hosts 

invariably progress to patency and the eventual immune elimination o f adult worms 

occurs over a variable period o f time, the quantitative features o f which depend upon 

the host genotype, immune status and number o f infective larvae given (Rothwell, 

1989). Immune responses may be directed against developing larvae or pre-adults 

which have already established but are expelled before they reach adulthood, or there 

is the more usually described spontaneous cure wherein the adult worms are expelled 

over a period o f several days, weeks or months. Alternatively, the response may 

merely cause stunting o f parasites, a reduction in worm fecundity or, under certain 

circumstances, inhibition o f the infective larvae after they have reached their niche in 

the mucosa (Miller, 1984).

In experimental O. ostertagi trickle infections in cattle the worm burden 

undergoes continuous turnover with new worms being acquired as old worms are 

lost. Under field conditions adult worms have an average lifespan o f 26 days 

(Michel, 1970) despite the potential to survive for more than 100 days in single
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pulse, low-level infections (Michel, Lancaster & Hong, 1978). Thus, there is a 

continuous turnover o f the worm population and, since immunity to infection 

increases with continued exposure, incoming larvae are gradually less successful in 

their rate o f establishment and ultimately worm numbers decline (Michel, 1970).

A different pattern o f events is observed in animals repeatedly infected with 

T. vitrinus or T. colubriformis. When sheep are exposed to daily infection with 

Trichostrongylus species, adult worm burdens accumulate until immunity develops 

to incoming larvae, after which adult worms may persist for varying periods o f time 

before they are ultimately expelled (Jackson et a l., 1983).

The regulation o f H. contortus populations in sheep grazing on endemic 

pastures is more complex. Adult worms may accumulate for the first 4 weeks o f  

infection before immunity develops against incoming larvae, after which adult 

worms may persist for varying periods o f time before they are ultimately expelled, 

the length o f time depending upon the level o f  larval intake (Barger et al., 1985).

Trichostrongylus and Haemonchus infections, by means o f  some 

immunomodulatory activity, are similar in that adult worms appear to survive in 

hosts which are immune to reinfection but eventually these modulatory factors are 

overturned and expulsion o f adult worms takes place (Behnke, 1987). In explaining 

worm turnover in terms o f host protection and immunomodulation it is possible that 

larvae are themselves immunomodulatory, keeping host responses at bay until a 

particularly high threshold o f stimulation is exceeded and anti-larval immunity 

initiated. Presumably the modulatory factors o f adult worm Ostertagia species are 

less effective than those o f Trichostrongylus and Haemonchus species (Behnke, 

1987).

Expulsion o f established worms is probably brought about by a combination o f  

immunologically specific (e.g. T cells and antibodies) and non-specific components 

(e.g. mucus and inflammatory mediators) interacting in concert, the mechanisms o f  

which will be discussed later. As well as host genotype, immune status and number 

o f infective larvae given, the immune response is influenced by the age o f the sheep 

and its nutritional and hormonal status (Smith, 1988) the complexities o f which may 

help to explain the reason for conflicting results from studies on immunity to 

gastrointestinal nematodes.
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1.6.3 Cross-protection

Initial studies by Stewart (1953 and 1955) revealed the phenomenon o f ‘self- 

cure’ in sheep that had been rendered hypersensitive as a result o f  previous 

infestations. Immunity to H. contortus resulted in the rejection o f a combined 

challenge with T. colubriformis, however, H. contortus could establish in 

T. colubriformis-immunQ  sheep indicating that expulsive mechanisms could work 

down-stream but not up-stream (i.e. antigenic material from larvae in the abomasum 

could pass readily to the small intestine, whereas similar material from the small 

intestine could not pass to the abomasum). The ability o f T. colubriformis-immunQ  

sheep to regulate a combined challenge with T. colubriformis, N. spathiger and 

T. vitrinus L3 led Dineen, Gregg, Windon, Donald & Kelly (1977) to suggest that 

expulsion o f gastrointestinal nematodes from immune sheep is mediated by an 

effector mechanism that is non-specific in nature. Similar findings have also been 

recorded with T. colubriformis-immunQ  sheep challenged with a mixed infection at 

pasture (Douch, 1989). Compared with naive controls, immune animals had reduced 

adult worm burdens o f T. colubriformis (87%), N. spathiger (91%), T. vitrinus 

(44%), T. axei (67%), O. circumcincta  (42%), but increased numbers o f  arrested 

larvae o f Nematodirus and Ostertagia species, and similar numbers o f H  contortus 

and C.curticei. Emery, Wagland & McClure (1993) have recently confirmed the 

findings o f non-specific rejection o f unrelated parasites living in the same or 

downstream niches o f the gut and suggested that a similar mechanism(s) may operate 

as a result o f antigens produced by L4 and later stages following challenge.

In the study o f Dineen et al. (1977) a single challenge infection with T. vitrinus 

administered to the T. colubriformis-immunQ sheep resulted in 34 % protection, and 

it was suggested that shared antigens may have evoked this cross-protection. This 

theory may help to explain the rejection o f the abomasal parasite T. axei in the study 

o f Douch (1989) or it may well be that the effector mechanism can also work up

stream. Douch (1989), suggested that the unexpected cross-protection seen with 

O. circumcincta, which was associated with increased numbers o f  globule leucocytes 

in the abomasal mucosa, may have resulted from the small numbers o f  

T. colubriformis present in the abomasa o f some sheep. Also evident from the study
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o f  Douch (1989) was the failure o f the effector mechanism to expel C. curticei 

populations down-steam and suggests that the non-specific effector mechanism(s) 

may work in either direction, but in close proximity, to the site o f parasitism.

Adams, Anderson & Windon (1989), on the otherhand, failed to demonstrate cross

protection between H. contortus and T. colubriformis when the vaccinating infections 

were removed by anthelmintic.

It should be noted that physiological changes induced by one species have also 

been shown to affect the establishment o f a second species. For example, alterations 

in abomasal pH and sodium ion concentration induced by H. contortus infections 

have been shown to alter the intestinal environment down-stream thereby affecting 

the development o f  concurrent A. battus infections (Mapes & Coop, 1970 and 1971 

and 1973). Similarly, it has been suggested that alterations in gut pH caused by prior 

exposure to O. circumcincta interferes with the establishment and fecundity o f  

subsequent H. contortus infections (Blanchard & Wescott, 1985). It is also thought 

that physiological changes may account for the reduced establishment rate o f  

T. vitrinus in concurrent T. circumcincta infections noted by Jackson et al. (1992b). 

Cross protection, therefore, may involve a combination o f immunological, 

physiological, pathological and parasitological changes occurring simultaneously.

7.7 Mechanisms o f  immunity to gastrointestinal parasites

1.7.1 Humoral (antibody) response

Despite numerous observations o f increased levels o f parasite-specific 

antibodies in ovine gastrointestinal nematode infections their role in immunity 

remains unclear (Miller, 1984). Early studies on the development o f immunity 

described anti-parasitic antibodies in the abomasa and intestines o f sheep infected 

with H. contortus (Smith, 1977) and T. colubriformis (Adams & Cripps, 1977) 

respectively, with the IgA isotype predominating. Although IgE is the isotype most 

widely associated with parasitic infections and immediate type hypersensitivity 

reactions, the class o f immunoglobulin responsible for anaphylactic activity in sheep 

has yet to be fully characterised (Miller, 1984). Elevated levels o f  serum IgG, IgM 

and mucosal/lymph IgA antibodies are typical responses to sheep nematode
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infections, although local IgG has been observed in both H. contortus and 

O. circumcincta infected sheep (Smith, 1977; Smith, Jackson, Jackson & Williams, 

1983a). Recent studies comparing the antibody responses o f immune and randomly- 

bred sheep demonstrated the presence o f local IgG! as well as IgA in immune 

animals, indicating that both isotypes may play an important role in mediating 

resistance (Gill, Husband, Watson & Gray, 1994).

Large temporary increases in the concentration o f lymph antibodies, peaking 

around 6 days after challenge, have been consistently recorded in immune sheep 

(Smith, 1988). However, attempts to transfer protection against gastrointestinal 

nematodes in sheep by intravenous infusion o f large quantities o f IgA-rich immune 

lymph plasma have been unsuccessful (Adams, Merritt & Cripps, 1980; W. D.

Smith, personal communication). The fact that resistance was not transferred does 

not rule out a role for antibody since the concentrations achieved in the mucosa o f  the 

recipients o f  such lymph are much lower than those in immune sheep (Smith, 1988).

Stunting, reduced fecundity and loss o f worms are frequently associated with 

immunity and various mechanisms by which antibodies may exert their protective 

effects have been proposed. Bound antibody makes it easier for phagocytic cells to 

attach to parasites and can also activate a system o f blood proteins (collectively 

known as complement) that attack the worm (Taverne, 1993). Other suggestions 

include the ability o f antibodies to interfere with the worms’ capacity to feed by 

blocking or neutralizing vital parasite enzymes (Smith et a l., 1985; Gill et a l., 1994) 

or inhibiting essential metabolic processes which are vital for parasite establishment 

and maintenance (Carlisle, McGregor & Appleton, 1990). Furthermore, the 

demonstration that IgA is capable o f inducing eosinophil degranulation has led to the 

suggestion that the interaction o f eosinophils and IgA, under cytokine control, may 

play an important role in mucosal immunity (Abu-Ghazaleh, Fujisawa, Mestecky, 

Kyle & Gleich, 1989).

1.7.2 Cell-mediated response

The cell-mediated response involves T lymphocytes and the production o f  

specialized cells that react with foreign antigens on the surface o f other host cells. 

Studies o f gastrointestinal nematodoses in neonatally thymectomized or athymic
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laboratory animals have demonstrated the fundamental involvement o f T 

lymphocytes in the acquired immune response (Mitchell, 1980). T lymphocytes play 

a regulatory role in immunity, acting either to enhance or suppress the responses o f  

other white blood cells (leucocytes), referred to as T helper and T suppressor cells 

respectively. Cytokines, which include interleukins (IL), interferons (IFN), colony 

stimulating factors (CSF), tumour necrosis factors (TNF) and migration inhibitory 

factors (MIF), are soluble low molecular weight proteins which regulate the 

amplitude and duration o f the immune-inflammatory responses. Principally, 

cytokines are produced by T lymphocytes, macrophages and mast cells but may also 

derive from B lymphocytes, fibroblasts and endothelial cells. Other T lymphocytes, 

called cytotoxic T cells, along with B lymphocytes and cells such as macrophages, 

eosinophils, mast cells and neutrophils are involved directly in defence against 

infection and are collectively referred to as effector cells. Many o f the anti-parasitic 

activities o f effector cells are enhanced by interaction with inflammatory mediators 

released by other types o f cell in response to infection (Taverne, 1993).

Typically the cellular response reaches a peak 3 days after challenge, 

comprising a large transient increase in the output o f lymphoblastic and IgA 

containing cells in the lymph (Smith, 1988). The infusion o f lymphocytes from the 

gastric lymph o f  sheep immune to H. contortus (Smith, Jackson, Jackson, Williams, 

Willadsen & Fehilly, 1984b) and O. circumcincta (Smith, Jackson, Jackson, Graham, 

Williams, Willadsen & Fehilly, 1986) resulted in the transfer o f partial immunity to 

parasite naive histocompatible recipients. Miller (1984) emphasised that the transfer 

o f lymphocytes is unlikely to affect gastrointestinal nematodes directly and that an 

indirect mechanism triggered by the donor cells seems a much more plausible 

scenario. The immunity adopted by Smith and his co-workers (1984b and 1986) was 

associated with a local IgA response and mastocytosis but, as the authors pointed out, 

these were only two o f the many potential effector cell populations that were 

monitored and the extent to which they influenced worm retardation and/or expulsion 

remains speculative.

Recently, helper T-cell lines (CD4+) have been shown to play a pivotal role in 

acquired immunity. In genetically resistant sheep treated with a monoclonal 

antibody against CD4+ subsets, cellular and humoral responses were abolished, with
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consequent increases in faecal egg counts and worm burdens (Gill, Watson & 

Brandon , 1993). However, the type o f T cell response involved in protection may 

vary depending upon the parasite species and different phenotypes may be required at 

different stages o f infection (Taveme, 1993).

1.7.3 Gastrointestinal mucus

Invariably infective stages come into contact with superficial mucus at the 

epithelial surface and hyperplasia o f mucus secreting goblet cells has been described 

in a variety o f infections (Rothwell, 1989). Christie, Hart, Angus, Devoy &

Patterson (1978) reported hyperplasia o f the abomasal mucosa in sheep repeatedly 

infected with H. contortus, whilst Jackson et al. (1983) recorded similar findings in 

the intestinal mucosa o f  sheep infected with T. vitrinus; both sets o f  authors 

associated these changes with the development o f immunity. Mucus is not thought 

to act as a physical barrier since it is penetrated in some systems (Miller, Jackson, 

Newlands & Appleyard, 1983a), but rather it may have a protective role, dislodging 

established worms or acting as a medium for trapping larvae in which they are 

exposed to parasite specific antibodies and/or inflammatory mediators (Miller, 1987). 

Bell, Adams & Ogden (1984) demonstrated expulsion without significant mucus 

trapping in rats exposed to an abbreviated primary infection regime in which 

T.spiralis did not reach patency, although Rothwell (1989) proposed that adequate 

mediator levels may well be achieved in the absence o f mucus. Antibody and 

complement are known to be present in mucus and are thought to enhance retention 

o f larvae in the superficial mucus by interacting with the nematode cuticle (Miller, 

1984). Gill et al. (1994) demonstrated significantly higher numbers o f  parasite 

specific antibody containing cells in the abomasal mucosa o f sheep bred for 

resistance to H. contortus compared to randomly bred animals. The IgA isotype 

predominated followed by IgGj and IgM. Similarly, elevated IgA concentrations 

were seen in sheep previously infected with O. circumcincta, as judged by levels in 

gastric lymph (Smith et al., 1987).

Douch, Harrison, Buchanan & Greer (1983) investigated the antiparasitic 

property o f mucus from immune sheep using an in vitro larval migration inhibition 

(LMI) bioassay. Inhibition o f T. colubriformis larval migration was attributed to
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mucus components having similar properties to slow reacting substance o f  

anaphylaxis (SRS-A) and was shown to be non-specific since abomasal species were 

also unable to migrate. The major constituents o f SRS-A are the leukotrienes B4,

C4, D4 and E4, two o f which were assessed, along with histamine, in lambs 

genetically defined as high or low responders to vaccination and challenge with 

T. colubriformis (Jones, Windon, Steel & Outteridge, 1990). The authors found 

increased concentrations o f these mediators in mucus o f responsive animals 

compared to intestinal tissue and suggested that they may play a role in preventing 

establishment o f incoming larvae. As well as measuring inflammatory mediators 

Jones, Emery, McClure & Wagland (1994) used a LMI assay to examine possible 

causal relationships between mediator release and kinetics o f parasite rejection. 

Challenge o f immune sheep evoked a release o f  mediators and the intestinal contents 

inhibited migration o f  larvae significantly more than those o f  worm-free sheep given 

a single infection o f T. colubriformis. Mediator concentrations in gut contents were 

considerably lower than those found in mucus indicating that the adjacent mucosa 

was the likely source o f these mediators. Increased concentrations o f mucosal 

mediators were evident at the time when egg counts declined in primary infected 

animals suggesting a role for these mediators and/or their cellular source in the 

expression o f immunity.

1.7.4 M ast cells

Mast cells are often indistinguishable from circulatory basophils in a number o f  

properties although their relationship is not clear. There are two different kinds o f  

mast cell; one is associated with the mucosa (MMC) whilst the other is found in 

connective tissue (CTMC). Like basophils, mast cells contain numerous lysosomes 

and secretory granules and can be activated by cytokines. They also contain specific 

high affinity receptors for the Fc portion o f IgE which causes them to degranulate 

upon antibody binding. The two types o f mast cell have common precursors and 

seem to be interconvertable depending upon the level o f cytokines in the local 

environment (Rothwell, 1989). Histopathological changes which develop in the 

alimentary tract following infection by nematode parasites are characterized by mast
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cell hyperplasia (mastocytosis) and their accumulation, especially in the mucosa 

(Rothwell, 1989).

The appearance in the mucosa o f  cells with large acidophilic granules or 

globules, designated globule leucocytes (GL), has been recorded by many workers. 

The relationship o f a GL response to nematode infestation was demonstrated by 

Whur (1966) in a comparison o f worm-free and parasitized sheep; reviewed by 

Gregory (1979). Investigation into the ultrastructural, morphological and 

histochemical properties o f GLs have confirmed that in ruminants, GLs are derived 

from MMCs as a consequence o f prolonged antigenic challenge (Huntley, Newlands 

& Miller, 1984).

Appropriately stimulated MMCs release a variety o f mediators including 

biogenic amines (histamine, serotonin), lipid mediators (prostaglandin, leukotrienes, 

platelet-activating factor), granule proteins (serine proteases, aryl sulphatase) and 

proteoglycans (heparin, chondroitin sulphate) as well as cytokines (Taveme, 1993). 

Studies in rats have shown that the immune expulsion o f nematodes is associated 

with local immediate hypersensitivity reactions involving increased mucosal 

permeability and concomitant systemic release o f a mucosal mast cell proteinase, 

termed rat mast cell proteinase II (RMCPII) (Miller, Woodbury, Huntley & 

Newlands, 1983b). A similar although fundamentally different proteinase, sheep 

mast cell proteinase (SMCP), has been isolated from ovine MMCs (Huntley, Gibson, 

Knox & Miller, 1986) and the subsequent development o f an ELISA has provided a 

means o f monitoring the functional activities o f sheep MMCs in vivo (Huntley, 

Gibson, Brown, Smith, Jackson & Miller, 1987). Although the presence o f  

proteinase inhibitor(s) interfered with this assay the authors detected high 

concentrations o f SMCP in the sera and gastric lymph o f immune sheep challenged 

with H. contortus and O. circumcincta respectively. Release o f SMCP from 

intestinal MMCs has also been demonstrated in vitro following the addition o f  

specific parasite antigens (Jones, Huntley & Emery, 1992) providing further evidence 

o f  the involvement o f mast cells in protective immunity.

Nevertheless, the question o f an effector role for mast cells and their products 

in worm expulsion has not been resolved and technical problems such as inadequate 

fixing o f cells, unreliable counts in tissue sections and the possible involvement o f
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basophils (which may be functionally similar) has been overlooked in many studies. 

Other sources o f  mediators include enterochromaffm cells and platelets; the absence 

o f  MMCs therefore does not preclude the involvement o f these mediators in the 

expulsion process (Rothwell, 1989).

1.7.5 Granulocytes

Peripheral blood contains three types o f granulocytes; neutrophils 

(polymorphonuclear leukocytes), eosinophils and basophils all o f which contain 

numerous lysosomes and secretory granules and are activated by cytokines. 

Granulocytes are short-lived (2-3 days) relative to monocyte/macrophages which 

may live for months or years. Neutrophils possess receptors for the Fc portions o f  

antibodies and for complement proteins, and they migrate to and accumulate at sites 

o f  complement activation. Eosinophils express specific receptors for the Fc portion 

o f  IgE antibodies and are important effector cells in immune reactions to antigens 

that induce high levels o f IgE, such as parasites. In vitro experiments suggest that 

IgE antibody-dependent cytotoxicity mediated by eosinophils may be particularly 

effective at restricting helminth infections. This is because the major basic protein o f  

eosinophil granules may be more toxic for helminths than the proteolytic enzymes 

and reactive oxygen species produced by neutrophils and macrophages (Taveme,

1993).

Eosinophils are a major and well known component o f the cellular infiltrate in 

parasitized tissues and some hypersensitivity reactions (Rothwell, 1989). Increases 

in the numbers o f eosinophils (eosinophilia) in blood and tissues is a characteristic o f  

parasitic infection in most species although their role against helminths is still 

uncertain (Butterworth, 1984). Nevertheless, studies conducted with sheep have 

shown a correlation between eosinophilia and the ability o f lambs to respond to 

T.colubriformis (Dawkins, Windon & Eagleson, 1989; Buddie, Jowett, Green, Douch 

& Risdon, 1992; Rothwell, Windon, Horsburgh & Anderson, 1993) and H. contortus 

(Gill, 1991). The association o f eosinophils with hypersensitivity reactions led to 

suggestions that they were attracted by chemotactic factors, such as eosinophil 

chemotactic factor o f anaphylaxis (ECF-A), in order to regulate the effects o f mast 

cells. However, as well as containing a major basic protein (MBP) which can
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activate MMCs and basophils (Rothwell, 1989) eosinophils contain other proteins 

including a cationic protein (ECP) which is a potent helminthotoxin for a range o f  

parasites including schistosomula o f Schistosoma mansoni (Ackerman, Gleich, 

Loegering, Richardson & Butterworth, 1985). Eosinophils are also known to 

generate leukotrienes, platelet activating factor and reactive oxygen metabolites and 

their categorisation as an end-stage effector cell appears to be an oversimplification 

(Rothwell, 1989). As well as having receptors for IgG, IgE and complement it has 

recently been demonstrated that IgA is capable o f inducing eosinophil degranulation 

(Abu-Ghazaleh et al., 1989). Since local levels o f IgA have been shown to be 

significantly elevated in ovine gastrointestinal infections (Smith et al., 1987; Gill et 

al., 1994) it has been suggested that the interaction o f eosinophils and IgA, under 

cytokine control, may play an important role in mucosal immunity (Abu-Ghazaleh et 

a l  1989).

Basophils are the circulating counterparts o f tissue mast cells possessing high 

affinity receptors and their possible involvement has been overlooked in many 

studies. Peripheral basophilia and infiltration o f the site o f infection with basophils 

accompanies mast cell proliferation and the expulsion o f T. colubriformis by guinea 

pigs (Rothwell, 1975). However, as pointed out by Rothwell (1989), there are no 

published quantitative studies in other species from which conclusions can be drawn. 

Nevertheless, basophils are an important source o f mediators and may well be 

involved in the expulsion process.

1.7.6 Monocytes/Macrophages

Monocytes originate in the bone marrow and enter the bloodstream as 

incompletely differentiated cells containing granular lysosomes, phagocytic vacuoles 

and cytoskeletal filaments. Once they settle in tissues, monocytes mature and 

become macrophages, both cell types being members o f the mononuclear phagocyte 

system. As well as phagocytosis and the production o f cytokines involved with 

innate immunity, mononuclear phagocytes play an important role in specific immune 

responses. Macrophages can act as antigen presenting cells, displaying foreign 

antigens on their surface in a form that can be recognized by antigen specific T 

lymphocytes resulting in a more efficient phagocytic, degradative and cytocidal
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function. Macrophages also express surface receptors for antibodies and certain 

complement proteins and as a result can participate in the elimination o f antibody 

coated (opsonized) antigens (Taveme, 1993). Very little is known about 

macrophages, monocytes and other bone marrow-derived cells, all o f  which, 

presumably, are o f considerable importance in the immune response to parasitic 

nematodes (Miller, 1984).

1.7.7 Complement

Complement, so called because it complements and amplifies the action o f  

antibodies, is the name given to a series o f some 20 proteins forming an enzyme 

system (cascade) found in plasma. It can be activated either by the classical pathway, 

triggered by IgG or IgM binding to antigen, or by the alternative pathway which is 

triggered by the cell coat o f some organisms. The most important and pivotal 

component is the C3 protein which when activated binds covalently to nearby 

membranes and is referred to as C3b. Each catalytic site thereby leads to the 

deposition o f a large number o f C3b molecules on the organism which initiate the 

assembly o f further complement components, the end result being an ampipathic 

molecule that forms a transmembrane channel that can cause organisms to lyse. 

Neutrophils, macrophages and eosinophils have receptors for C3b which also 

facilitates their adherence to the organism. The activation o f complement also 

releases a variety o f small soluble peptides (C3a and C5a) that attract and activate 

neutrophils and stimulate mast cell degranulation (Taverne, 1993).

1.7.8 General

Phagocytes, complement, mast cells, goblet cells, cytokines and the leukocytes 

that mediate inflammation are all components o f innate immunity, because they do 

not specifically recognize or distinguish between different foreign antigens. Thus, 

specific immunity serves to amplify and focus foreign antigens to this variety o f  

effector mechanisms. In order to determine the mechanism o f immune protection it 

is necessary to examine not only isolated parameters but also their interaction. 

McClure et al. (1992) attempted such an approach by examining a range o f  

parasitological, morphological, biochemical and immunological parameters in
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immune and susceptible sheep at intervals after challenge with T. colubriformis. The 

majority o f  challenge larvae were rejected within the first day and was attributed to 

local mast cell degranulation and increased concentrations o f parasite specific IgGj 

and IgG2 in the intestinal mucus. Rejection o f the remaining worms occurred 

between days 3 and 14 following challenge and, as well as continued mast cell 

degranulation, was associated with increased parasite specific IgA and IgG2 in the 

intestinal mucus, local T cell infiltration and epithelial necrosis and sloughing.

Despite increasingly sophisticated immunoparasitological research it is still not 

clear which components o f the humoral and cellular immune responses are protective 

and how they interact to achieve effective immunoregulation. There may be a 

number o f alternate pathways which vary for incoming larvae, established worms, 

different nematode species and different host species or they may all lead to a 

common final effector process (Rothwell, 1989). In immune sheep, expulsion is 

probably brought about by a combination o f immunologically specific (e.g. T cells 

and antibodies) and non-specific components (e.g. mucus and inflammatory 

mediators) interacting in concert. This response is influenced by the age and 

genotype o f  the sheep as well as by its nutritional and hormonal status (Smith, 1988). 

Nematodes inhabit different niches in the gastrointestinal tract, including the lumen, 

the surface o f  the mucosa, the mucosal epithelium and the lamina propria, and 

different effector mechanisms are thought to act at each o f these sites. In the gut 

lumen, antibodies, mucus and inflammatory mediators may exclude, damage and 

paralyze the worms. The mechanisms operating within the epithelium are not 

understood although inflammatory mediators may have some effect on nematode 

survival. Those worms penetrating into the tissues would be susceptible to direct 

helminthotoxic activity o f inflammatory cells as well as the action o f mediators 

(Miller, 1984).

1.8 Evasion o f  Immunity by Gastrointestinal Parasites

The ability o f  gastrointestinal nematodes to survive in their hosts reflects 

evolutionary adaptations that permit these organisms to evade and resist immune 

effector mechanisms (reviewed by Behnke, 1987). Immune responses in the intestine
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are particularly complex and poorly understood, the complexity o f these interactions 

reflecting the importance o f distinguishing between pathogens and irrelevant 

immunogenic molecules in the intestinal contents. It is conceivable therefore that 

parasites have evolved mechanisms which interfere with the various 

immunoregulatory pathways present in the intestine (Behnke, 1987).

If the immune responses in the intestine operate in a very local manner, worms 

in low-level infections may simply avoid expulsion by moving on to a fresh location 

(Miller, 1984). Gastrointestinal nematodes, including Ostertagia, Trichostrongylus 

and Nematodirus species, seldom distribute themselves evenly along the intestine 

(Behnke, 1987). For example, T. vitrinus, which can survive in lambs for some 12 

weeks post infection, accumulate in “finger print” lesions (Coop et al., 1979). These 

are patches o f  the intestine which have undergone villous atrophy, below which the 

mucosa is deficient in globule leucocytes and mast cells, even though both cell types 

abound in the surrounding tissue (Jackson et al., 1983; Angus & Coop, 1984). 

Survival o f Trichostrongylus species therefore may be mediated through 

immunomodulatory factors (IMF) having a local effect which create foci o f  relative 

safety from the host responses. Characterization o f IMFs should therefore enable 

ways o f  neutralizing their effects to be devised. For example, the synthesis o f  

analogues with no immunodepressive activity but sufficient similarity to parasite 

IMF, could elicit cross reactive neutralizing antibody (Behnke, 1987).

1.9 Control o f  gastrointestinal nematodes

The main aim o f all control measures is simply to limit host-parasite contact to 

levels which do not impair performance (Brunsdon, 1980). Presently, there are two 

key strategies for the control o f gastrointestinal nematodes; namely grazing 

management and chemotherapy, the effectiveness o f which are dependent upon 

detailed epidemiological knowledge (Pandey, 1995). Research into alternative 

means o f  control such as vaccine development, selective breeding and biological 

control will be discussed in section 1.10.
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1.9.1 Grazing management

Grazing management is aimed at reducing the rate o f infection from pastures 

by means o f several practices which have been discussed by Morley & Donald 

(1980). These include changes in stocking rate, timing o f reproductive events 

(parturition and weaning), pasture resting (including rotational grazing), alternate 

grazing using different host species (or older animals o f the same species with 

acquired immunity) and the use o f fodder crops, new sowings and aftermaths. 

Variations in the numbers o f young and adult livestock and the choice o f pasture 

species are also discussed in relation to the size o f larval challenge met by grazing 

animals. The availability o f land is one o f the major constraints involved with 

grazing management and as a result many o f the strategies are not applicable to 

intensive livestock production systems such as those practiced in Britain.

1.9.2 Chemotherapy

The earliest attempts to control the economic impact o f gastrointestinal 

nematodes was the use o f a variety o f narrow spectrum drugs which were relatively 

inefficient and often dangerous. The discovery o f the anthelmintic properties o f  

phenothiazine was a major advance in helminth chemotherapy, but the first highly 

efficacious broad spectrum anthelmintic produced was thiabendazole (Brown, 

Matzuk, lives, Peterson, Harris, Sarett, Egerton, Yakstis, Campbell & Cuckler, 

1961). Since its introduction 35 years ago, benzimidazoles and pro-benzimidazoles 

with improved efficacy and extended spectra o f  activity have been developed 

(McKellar & Scott, 1990). The success o f thiabendazole stimulated considerable 

research into anthelmintic discovery which has led to the availability o f three classes 

o f broad spectrum drugs. These are the benzimidazoles, the imidazothiazoles 

/tetrahydropyrimidines and the avermectins/milbemycins, each having activity 

against most gastrointestinal nematodes, lung worms and some tissue nematodes. 

Other compounds in the organophosphorus, salicylanilide and substituted 

nitrophenols have only a limited application in the control o f ovine nematodes in the 

UK.
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Table 1.1 Currently licensed anthelmintics for sheep in the UK

Anthelmintic class Chemical Number of registered 
products

Benzimidazoles and Netobimin 1

probenzimidazoles Febantel 5

Mebendazole 2

Ricobendazole 3

Oxfendazole 3

Albendazole 4

Fenbendazole 12

Imidazothiazoles / Morantel 1

T etrahydropyrimidines Levamisole 24

Avermectins Ivermectin 2

Moxidectin 1

(A dapted  from  C om pendium  o f  D ata S heets for V eterinary Products (1 9 9 5 -9 6 ))

Benzimidazole anthelmintics are generally believed to work primarily by 

interfering with the cytoskeletal protein, tubulin, thereby blocking its polymerization 

into microtubules which are essential for the normal functioning o f all eukaryotic 

cells (Lacey, 1988 and 1990). The selectivity o f these drugs is explained by their 

higher affinity for parasite tubulin compared to mammalian tubulin and is also 

reflected in a considerably slower rate o f benzimidazole dissociation. The metabolic 

processes within parasites may also be disrupted by the activity o f benzimidazole 

anthelmintics (McKellar & Scott, 1990).

The imidazothiazole/tetrahydropyrimidine class o f anthelmintics is represented 

by levamisole, morantel and pyrantel, all o f which act as cholinergic agonists, 

causing an outflow o f Na+ ions from depolarised nematode muscle bag membranes, 

resulting in spastic paralysis (Coles, East & Jenkins, 1975; Harrow & Gration, 1985).
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Early reports suggested that the mechanism o f action o f the avermectin class o f  

anthelmintics, which includes ivermectin, work by associating with y-aminobutyric 

acid (GABA) receptors, thereby irreversibly opening chloride channels o f nematode 

neuromuscular membranes, resulting in worm paralysis (Barragry, 1984). However, 

recent evidence (reviewed by Geary, Klein, Vanover, Bowman & Thompson, 1992a) 

indicates that the chloride channels are glutamate-dependent and are not under the 

control o f  GABA. It has also been speculated that altered pharyngeal function may 

be the key effect o f  this anthelmintic since the pumping o f this organ was inhibited 

more than muscular motility by ivermectin in H. contortus (Geary, Sims, Thomas, 

Vanover, Davis, Winterrowd, Klein, Ho & Thompson, 1993).

1.10 Alternative means o f  control

The problem o f anthelmintic resistance is increasing so much to the extent that 

livestock producers in some regions o f South Africa are being forced out o f  business 

due to the failure o f  available anthelmintics to control nematode disease in their 

animals (van Wyk, Malan, Gerber & Alves, 1989). The interest in alternative control 

strategies for helminth diseases has not only been spurred on by the widespread 

emergence o f anthelmintic resistance but also due to public demands in relation to 

human health and attitudes from an environmental standpoint (Waller, 1993b).

1.10.1 Vaccines

In comparison with viral and bacterial infections the success in developing 

vaccines against helminths has been limited. Only one vaccine, against the lung- 

worm Dictyocaulus viviparus in cattle is commercially available (Clegg & Smith, 

1978). Most lambs aged 6 months or less which have been immunized with either 

infective H. contortus or irradiated H. contortus or T. colubriformis are not immune 

to homologous challenge with normal larvae, whereas the same immunizing 

procedure produces a consistently high degree o f protection in older sheep (Manton 

et al., 1962; Urquhart, Jarrett, Jennings, MacIntyre & Mulligan, 1966; Dineen et al., 

1978). The reason for this age-related unresponsiveness is unknown and difficult to 

understand since lambs are capable o f mounting protective immune responses against
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a wide range o f bacterial and viral infections (Soulsby, 1985). Strategies for vaccine 

development fall into two broad categories; excretory/secretory antigens and ‘hidden’ 

antigens (Newton, 1995).

1.10.1.1 Excretory/secretory antigens (ES products)

Besides oral and anal openings, nematodes have prominent secretory glands, 

excretory pores and genital openings from which a wide range o f substances 

emanate, including enzymes and metabolites, commonly known as 

excretory/secretory antigens (ES products). The function o f many ES products in 

terms o f  parasite survival are unknown but are thought to play a role in the 

maintenance between parasite and host (Miller, 1984; Knox, 1994). Rothwell & 

Love (1974) found that vaccination o f  guinea pigs with ES products from 

T. colubriformis L4 was highly effective against further infection and consequently 

ES products are o f particular interest as reagents for vaccination. One group o f ES 

products which have received particular attention are the acetylcholinesterases 

(AChE) which are secreted in comparatively large amounts in vitro by many 

nematode species (Ogilvie, Rothwell, Bremner, Schnitzerling, Nolan & Keith, 1973; 

Douch, Harrison, Buchanan & Greer, 1988). AChE is thought to act as a 

biochemical holdfast for worms by slowing intestinal movements in the vicinity 

(Ogilvie & Jones, 1971) or inhibiting mucus production by goblet cells (Philipp, 

1984).

Many other ES proteins and glycoproteins are produced by nematodes besides 

AChE, but to date these are poorly characterized. Savin, Dopheide, Frenkel, 

Wagland, Grant & Ward (1990) isolated and characterized a 30-kilodalton 

glycoprotein secreted from T. colubriformis L4 and adult worms whilst Dopheide, 

Tachedjian, Phillips, Frenkel, Wagland & Ward (1991) have isolated an 11- 

kilodalton protein from the ES fluid, both o f which afforded good protection in 

guinea pigs towards subsequent infection. The biological importance o f these ES 

products has yet to be determined but sequence homology o f the 30-kilodalton 

product to vasolin, a porcine intestinal peptide, implicates possible alteration o f  gut 

physiology whilst the 11 -kilodalton product displays similarity to a y-interferon- 

induced protein and may play a role in immune modulation. Recent findings suggest
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that AChE does not act as a biochemical holdfast, but rather a vasoactive intestinal 

polypeptide exists, similar to that isolated by Savin et al. (1990), and is responsible 

for the reduction in motility o f the alimentary tract (Lee & Foster, 1995). The 

potentially crucial functions at the host/parasite interface o f  ES products therefore 

makes them attractive targets for chemotherapeutic or immunological intervention, 

however, this requires detailed characterization in vivo at the molecular level (Knox,

1994). A  recent immunization trial, using lambs aged 5 months given surface 

antigens from infective larvae that were recognized by bile antibodies from immune 

sheep, resulted in 72 %  reduction o f O. circumcincta worm burdens compared to 

challenge controls (Wedrychowicz, Bairden, Dunlop, Holmes & Tait, 1995).

1.10.1.2 "Hidden ” antigens

It is now apparent that vaccination does not have to concentrate exclusively on 

surface proteins or ES products. Antigens in the parasite gut can also elicit an 

immune response and vaccination to these ‘hidden’ antigens could see the animal 

mount a truly novel assault on the parasite. The potential value o f  vaccination with 

preparations containing proteins associated with the luminal surface o f the parasite’s 

gut was first demonstrated by Munn, Greenwood & Coadwell (1987) against 

experimental haemonchosis in sheep. Search for other potential protective antigens 

from this site, particularly those associated closely with the microvillar membrane, 

have established integral membrane glycoproteins, including HI 1 (Munn, Smith, 

Graham, Greenwood, Tavemor & Coetzee, 1993) and H-gal-GP (Smith, Smith & 

Murray, 1994) which have been shown to be 88 % and 72 %  effective, respectively, 

in reducing challenge H. contortus worm burdens in sheep.

1.10.1.3 General

Recent advances in genetic engineering mean that it is now possible to isolate 

genes coding for antigenic proteins which can then be produced in quantity by 

bacterial or viral vectors. Tertiary structure may be important however and 

expression systems may therefore be crucial. Similarly, once a potential vaccine has 

been developed the route o f administration, the timing and the adjuvant to be 

employed must be determined. Individual results o f vaccination trials are very
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variable, both in test and control animals (Dopheide et al., 1991) and are typical o f  

the genetic variability in outbred populations (Rothwell, Le Jambre, Adams & Love, 

1978). Other problems that have to be tackled include the possibility that there may 

be immunologically non-responding sheep, and in the case o f ‘hidden’ antigens 

absence o f continued stimulation by the parasite may only result in short-term 

protection. Considerable research is still required therefore before the availability o f  

vaccines becomes a commercial reality. Furthermore, multi-species vaccines are 

required since non-targeted species may then pose a threat to livestock.

1.10.2 Breeding for immunoresponsiveness

The heritable nature o f ‘resistance’ to gastrointestinal nematodes was first 

demonstrated in studies with H. contortus (Warwick, Berry, Turk & Morgan, 1949) 

and subsequently with Ostertagia spp (Scrivner, 1967). Using a programme o f  

assortative mating, Windon, Dineen & Kelly (1980) identified lambs, previously 

vaccinated with irradiated T. colubriformis larvae, with highly heritable immunity 

(responders) or susceptibility (non-responders) traits following challenge. Selective 

breeding for genetically resistant hosts is therefore seen as a means o f  reducing the 

reliance upon chemotherapy (reviewed by Gray, 1991; Windon, 1991). Research 

into selected lines o f  sheep is particularly advanced in Australia and N ew  Zealand, 

with flocks selected for resistance to H contortus, T. colubriformis, O. circumcincta 

or mixed infections (Barger, 1993b). Heritability o f immunity, indicating the 

proportion o f  variation between individuals which is under genetic control, has been 

estimated to be in the order o f 0.23-0.44. This is o f a similar magnitude to 

production traits such as fleece weight or liveweight gain and some commercial 

breeders in Australia and New Zealand have now incorporated 

immunoresponsiveness into their stud operations (Barger, 1993b). Worries as to 

whether breeding programmes based on host immunity may also select for parasite 

genotypes capable o f withstanding immunological attack seem unfounded. 

Woolaston, Elwin & Barger (1992) examined this possibility by serial passage o f

H.contortus and T. colubriformis in resistant or susceptible sheep and found that after 

14 generations there were no indications that parasites passaged in one genotype 

were any more successful than those from another. Stear, Bairden, Bishop,
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Buitkamp, Epplen, Gostomski, McKellar, Schwaiger & Wallace (1996) have recently 

identified an allele in Scottish Blackface sheep which is associated with reduced 

faecal egg counts. Breeding for immunoresponsiveness is inevitably a lengthy 

process but the identification o f genetic markers provides a means o f enhancing the 

rate o f  progress. Since immunity does not appear to be acquired by young lambs, 

selective breeding is unlikely to provide the sole means o f controlling nematodoses 

but nonetheless can provide a useful adjunct to existing methods o f control and 

reduce reliance upon chemotherapy.

1.10.3 Biological control

Potential biological control agents include bacteria, viruses and protozoa but 

the most promising group o f all are fungi (Waller, 1991). The predacious fungus 

Duddingtonia flagrans has been shown to survive gut passage in calves and to grow 

and entrap trichostrongyle larvae in dung pats (Larsen, Wolstrup, Henriksen, 

Gronvold & Nansen, 1992). A subsequent field study in which fungal spores were 

strategically fed to calves resulted in significant reductions on pasture o f Ostertagia 

and Cooperia larval populations and the prevention o f clinical disease (Nansen, 

Larsen, Gronvold, Wolstrup, Zorn & Henriksen, 1995). Even more promising is the 

recently reported effects o f the fungus Harposporium anguillulae (Charles, Roque & 

Santos, 1996). Sheep faecal cultures treated with spores from this species reduced 

the number o f H. contortus infective larvae by over 99 % compared to control 

samples, making this an excellent candidate in the development o f  an alternative 

control strategy. Although this type o f control requires knowledge about the 

complex natural biological systems and antagonists that may be involved, industry 

may become more interested, not only because o f anthelmintic resistance and the 

increasing cost o f  drug development, but in particular the increasing public concern 

about chemical residues in animal products and the environment. Simply cleaning 

faeces from pasture may also be adopted as a method o f biological control and has 

been shown to be effective in reducing the use o f anthelmintics in horses (Herd, 

1990).
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1.10.4 Alternative compounds

There is a paucity o f  novel anthelmintic chemicals under investigation, 

however paraherquamide, an oxindole alkaloid metabolite o f Penicillium 

paraherquei, with potential broad-spectrum use is currently under evaluation (Shoop, 

Haines, Eary & Michael, 1992). Interest in compounds other than conventional 

anthelmintics includes nematode growth regulators such as triflumuron which was 

shown to exert potent larvacidal effects upon free-living stages o f T. colubriformis 

(Waller & Lacey, 1986). Unfortunately the effects were not as marked on closely 

related nematodes and further research into this class o f compounds is required.

There is also the possibility o f developing novel anthelmintic compounds from 

bioactive natural products. For example, a variety o f plants containing condensed 

tannins (Waghom, Charleston, Niezen & Robertson, 1995), naturally occurring 

compounds from Eucalyptus trees (Bryant & Bennett-Jenkins, 1995) and herbal 

preparations (Sharma, 1994) have been shown to have detrimental effects on 

gastrointestinal nematodes. The use o f herbage species such as chicory has also been 

examined as a means o f reducing the effects o f parasites (Scales, Knight & Saville,

1995). Conditions for larval development and migration were thought to be less 

suitable with chicory swards, although the possibility o f a metabolic effect was not 

discounted. The implementation o f mechanism-based screening for new  

anthelmintics rather than whole organism toxicity offers promise for antiparasitic 

drug discovery. Such screening must be based on a thorough understanding o f the 

proteins or processes that offer the best chance for selective chemotherapeutic 

intervention, o f which nematode neuropeptides look promising targets (Geary, 

Bowman, Friedman, Maule, Davis, Winterrowd, Klein & Thompson, 1995). Further 

research is required however, in order to increase our knowledge o f the physiology o f  

nematodes so that potential targets for novel anthelmintics may be identified.

1,11 Anthelmintic resistance

The term ‘anthelmintic drug resistance’ was defined by Prichard, Hall, Kelly, 

Martin & Donald (1980) as a greater frequency o f individuals within a population 

able to tolerate doses o f a compound than in a normal population o f the same species
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and is heritable. More recently Taylor & Hunt (1989) described resistance as the 

heritable ability o f  some nematode parasites to survive treatment with anthelmintic 

drugs at the recommended therapeutic dose levels. Resistance to different 

compounds within a class o f anthelmintic is termed side resistance whereas 

resistance to compounds from more than one class is defined as multiple resistance 

(Prichard et al., 1980). The first reports o f anthelmintic resistance in nematodes o f  

sheep were made in the USA by Drudge, Leland & Wyant (1957) who identified

H.contortus resistant to phenothiazine. Workers from the same group also identified 

the first case o f benzimidazole (Bz) resistance within three years o f thiabendazole 

being released onto the market in the same species o f nematode (Drudge, Szanto, 

Wyant & Elam, 1964). Further reports o f resistance to B z’s in H. contortus followed 

in Australia (Smeal, Gough, Jackson & Hotson, 1968) and it soon became apparent, 

from increasing reports and more comprehensive surveys, that resistance to B z’s was 

becoming widespread in the H. contortus endemic region o f Australia (Waller,

1986). Resistance to this class o f broad spectrum anthelmintic was subsequently 

reported in field isolates o f T. colubriformis (Hotson, Campell & Smeal, 1970) and 

O. circumcincta (Hall, Campbell & Carroll, 1979) and has since become a worldwide 

problem mainly involving H. contortus, Ostertagia spp and Trichostrongylus spp, 

with resistance in other genera having a more limited distribution.

Resistance to B z’s in populations o f small strongyles in horses has been widely 

reported throughout the world (Prichard, 1990). Resistance to pyrantel is also 

believed to be present for small strongyles in the United States (Herd, 1992).

Parasitic nematodes o f cattle however, have evolved resistance much more slowly 

than related species o f the same genera in sheep. The reason for this is unclear but it 

is possible that there are differences in the population dynamics o f sheep and cattle 

parasites, or in the intensity o f anthelmintic treatment between the two species 

(Barger, 1993b). Cattle are known to metabolise Bz anthelmintics more quickly than 

sheep (Prichard, Hennessy, Steel & Lacey, 1985) and it has been suggested that this 

may have reduced selection for resistant parasites in this species (Coles & Taylor, 

1990). It is also possible that bovine dung-pats may provide a relatively larger 

refugia o f susceptible infective larvae, thereby reducing the proportion o f  the 

population exposed to anthelmintic selection (Martin, 1990). Nevertheless, there
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have been reports o f Bz and levamisole/morantel resistance in O. ostertagi o f cattle. 

Both o f  these drugs provide less than optimal protection against inhibited larval 

stages and it is possible that resistance has developed in what amounts to 

subtherapeutic dosing (Conder & Campbell, 1995). Populations of T. axei (Eagleson 

& Bowie, 1986) and C. oncophora (Jackson, Townsend, Pyke & Lance, 1987) 

resistant to the B z’s have also been identified in cattle. Although reports in other 

hosts are rare, resistance to levamisole (Lev) has been reported in Oesophagostomum 

quadrispinulatum and O.dentatum o f pigs in Denmark (Bjorn, Roepstorff, Waller & 

Nansen, 1990).

Although Bz resistance predominates in small ruminants (Prichard et al.,

1980), there are also field reports o f resistance against Lev and ivermectin (Ivm) 

classes. Levamisole resistant strains o f H. contortus, Trichostrongylus spp and 

Ostertagia spp have been identified in Australia, New Zealand and South America 

(reviewed by Prichard, 1990). Ivermectin resistant H. contortus has been described 

in sheep in South Africa (van Wyk & Malan, 1988), South America (Echevaria & 

Trindade, 1989), Australia (Le Jambre, 1993) and goats in the USA (Craig & Miller, 

1990). Ivermectin resistant Ostertagia spp have been described in goats in New  

Zealand (Badger & McKenna, 1990) and in Scotland (Jackson, Jackson & Coop,

1992a) and recently a field case has been described in sheep in Australia (Swan, 

Gardner, Besier & Wroth, 1994). Reports o f multiple resistance to B z’s and Lev 

have been well documented, being particularly frequent in Australia (reviewed by 

Overend, Phillips, Poulton & Foster, 1994) but there are also increasing reports o f  

multiple resistance involving Ivm in sheep (van Wyk & Malan, 1988) and goats 

(Watson & Hosking, 1990; Jackson et al., 1992a). In South Africa (van Wyk, Malan, 

Gerber & Alves, 1987) and Australia (Rolfe, Boray, Fitzgibbon, Parsons, Kemsley & 

Sangster, 1990) it is also evident that the narrow-spectrum salicylanilides, used 

almost exclusively to control strains o f H contortus resistant to the broad-spectrum 

anthelmintics, are rapidly becoming less effective because o f resistance development. 

Drudge, Lyons, Tolliver & Fallon (1990) suggested that phenothiazine may have a 

similar mode o f action as the B z’s and its use may have preselected some small 

strongyle populations in horses for Bz resistance. However, it is unlikely that the 

mode o f action o f these two anthelmintic classes are directly related and it possible
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that some degree o f cross-resistance was present in the study o f Drudge et al. (1990) 

(R. J. Martin, personal communication).

Comparison with previous surveys has provided evidence that the problem o f  

resistance is on the increase, in terms o f both the level of resistance and the number 

o f  cases reported: UK (Coles, Hong & Hunt, 1991), Australia (Love, Johns & 

Coverdale, 1992), New Zealand (McKenna, Badger, McKinley & Taylor, 1990), 

South Africa (van Wyk et al., 1989) and the Netherlands (Borgsteede, Schavemaker, 

Van der Burg, Gaasenbeek & Pekelder, 1991). Anthelmintic resistance has been the 

subject o f  many reviews, the latest o f which include Prichard (1990 and 1994), 

Waller (1994) and Conder & Cambell (1995). A recent survey o f  South American 

sheep flocks indicates that the problem o f anthelmintic resistance is particularly 

widespread in this area (Waller, Echevarria, Eddi, Maciel, Nari & Hansen, 1996).

1.11.1 Anthelmintic resistance in Britain

Bz resistance involving O. circumcincta was first reported in Britain by Britt 

(1982) and subsequently by Cawthome & Whitehead (1983). Evidence o f  Bz 

resistance involving H. contortus species was reported on farms in southern England 

by Cawthome & Cheong (1984). The incidence o f anthelmintic resistance in 

Scotland was reviewed by Scott, McKellar, Armour, Coop, Jackson & Mitchell 

(1990) and the need for large scale surveys was stressed. There is evidence in the 

UK o f  an increasing prevalence o f anthelmintic resistant nematode species in both 

sheep (Mitchell, Jackson & Coop, 1991; Hong, Hunt, Harris, Coles, Grimshaw & 

McMullin, 1992) and goats (Jackson, Jackson, Little, Coop & Russel, 1992c; Hunt, 

Hong, Coles & Jones, 1994), reviewed by Hazelby, Probert & Rowlands (1994). 

Anthelmintic resistance has been reported in the UK against all three chemical 

classes o f  anthelmintics: B z’s (Cawthome & Whitehead, 1983), Ivm (Jackson et al., 

1992a) and Lev (Hong, Hunt & Coles, 1994; Coles & Simkins, 1996).

1.11.2 Emergence of resistance

The rapid emergence o f anthelmintic resistance in sheep and/or goats is 

primarily due to two important aspects o f management; frequent dosing and the 

practice o f  running these animals together (Conder & Campbell, 1995). Suppressive
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treatment regimes, in which animals are treated within or close to the prepatent 

period o f  the parasite population, inevitably favour the selection o f a parasitic 

population (infrapopulation) which contains only resistant phenotypes (Jackson,

1993). The population dynamics o f the free-living stages (suprapopulation) are 

another important factor that can influence the rate o f development o f  resistance. For 

species such as Teladorsagia, the size o f the suprapopulation on permanent pasture 

in the UK, with its prevailing moist and mild climate and the relatively long survival 

times for infective larvae, tends to follow a stable annual pattern. This stability may 

initially provide a reservoir o f susceptibility but unfortunately the converse is also 

true and highly selected resistant populations may survive for some time on pasture 

(Jackson, 1993).

Differences in the metabolism o f anthelmintics in sheep and goats are known to 

exist. Bogan, Benoit & Delatour (1987) compared the pharmacokinetics o f  

oxfendazole metabolism and noted that the bioavailability o f drug was lower in goats 

compared to sheep. In a comparative in vitro study o f fenbendazole (Fbz) 

metabolism Short, Flory, Hsieh & Barker (1988) noted variation in the relative 

quantities o f  metabolites produced in hepatic microsomal fractions between goats 

and sheep. Hennessy, Sangster, Steel & Collins (1993 a) monitored the kinetic 

disposition o f oxfendazole and its metabolites in plasma and abomasal fluid and 

suggested that goats possessed a faster hepatic metabolism than sheep which results 

in a more rapid elimination o f drug. Other studies have provided evidence that 

anthelmintics have not been applied at adequate dose rates in goats (McKenna 1984; 

Charles, Pompeu & Miranda, 1989) and it has been suggested that the correct dose 

rate for the B z’s in goats may be twice that o f sheep (Sangster, Rickard, Hennessy, 

Steel & Collins, 1991b). Similarly, studies with levamisole (McKenna & Watson, 

1987; Coles, Giordano & Tritschler, 1989a) have suggested that higher dosages are 

required for drug efficacy in goats than in sheep. Sub-optimal dosing may increase 

the frequency o f resistant genes since it allows the survival o f heterozygous resistant 

individuals and has been shown to rapidly select for anthelmintic resistance in 

Ostertagia spp (Martin, 1989). Since goats share the same genera o f  nematode 

infections with sheep, to which they appear more susceptible in terms o f faecal egg 

counts and worm burdens, the consequences o f grazing these animals together and
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the spread o f resistant parasites is clear (McKenna, 1984). However, it should be 

noted that simply increasing dosage rates does not offer a viable solution in delaying 

resistance. Not only does overdosing have obvious drawbacks in terms o f increased 

tissue residues, cost and toxicity, but it has also shown to offer little benefit in terms 

o f systemic availability and efficacy in goats (Sangster et a l., 1991b).

1.11.3 Mechanisms o f  anthelmintic resistance

It appears that resistance to the Bz’s is due to a change in the p-tubulin isotype 

pattern, resulting in the loss o f high affinity receptor binding sites, the biochemical 

mechanisms o f  which are discussed by Lacey & Gill (1994). Geary, Nulf, Favreau, 

Tang, Prichard, Hatzenbuhler, Shea, Alexander & Klein (1992b) cloned and 

sequenced P-tubulin genes from H. contortus and showed that there are at least two 

different isotypes o f the gene. Kwa, Kooyman, Boersema & Roos (1993) have 

shown that the restriction fragment length polymorphism (RFLP) patterns for both 

isotype 1 and isotype 2 p-tubulin genes are reduced with Bz resistance, and in very 

resistant strains o f H. contortus isotype 2 may be absent. A subsequent study, using 

an allele-specific polymerase chain reaction (PCR), has shown that all Bz resistant 

isolates o f  H. contortus and T. colubriformis examined have a change from 

phenylalanine to tyrosine at amino acid position 200 in isotype 1 p-tubulin (Kwa, 

Veenstra & Roos, 1994). The same mechanism for resistance to Bz drugs has also 

been shown in T. circumcincta (Elard, Comes & Humbert, 1996). Whether this 

amino acid substitution is the actual cause o f resistance or simply a genetically linked 

factor is unclear. If the tyrosine amino acid is critical then it is unlikely that Bz 

resistance could be overcome by a change in drug chemistry since mammalian P- 

tubulins also have tyrosine at this position (Prichard, 1994). It is possible that there 

are at least two mechanisms that select for Bz resistance; selection o f a pre-existing 

9kb isotype 1 P-tubulin with reduced affinity for B z’s and the elimination o f  isotype 2 

genes from highly resistant individuals (Conder & Campbell, 1995). Recent work by 

Grant & Mascord (1996) supports the hypothesis that a single allele is selected for in 

the evolution o f Bz resistance. Furthermore, these workers proposed that the loci 

involved with T. colubriformis and H. contortus can be regarded as homologues with 

closely related sequences.
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Knowledge o f the site o f action and the molecular mechanisms o f Lev/morantel 

and Ivm resistance are still sparse although, as with Bz’s, it seems that multiple 

mechanisms may operate. Backcross studies conducted with a Lev resistant strain o f  

T. colubriformis suggest that resistance may be due to a major sex-linked gene, 

single recessive gene or linked gene complex (Martin & McKenzie, 1990).

Resistance appears to be the result o f a reduction in the number o f Lev receptors or in 

their affinity (Sangster, Davis & Collins, 1991a) which is consistent with studies in 

Caenorhabditis elegans (Lewis, Fleming, McLafferty, Murphy & Wu, 1987). Less is 

known about the genetics o f Ivm resistance in parasitic nematodes, but if  the 

mechanisms are similar to those in the free-living nematode C. elegans then 

resistance may also be under polygenic control (Le Jambre, 1990).

1.11.4 Delaying anthelmintic resistance

The first step in the control o f resistance is to avoid incorrectly attributing 

treatment failure as a case o f resistance. A variety o f other infections (protozoal, 

bacterial and viral), disease syndromes (mineral deficiency) or even changes in diet 

can mimic clinical signs o f nematode infections, unrelated to resistance.

Underdosing animals, either as a result o f under estimating liveweight or as a 

consequence o f pharmacokinetic differences such as those that exist between sheep 

and goats, sets the stage for rapid development o f resistance. Similarly, inadequate 

attention to calibration or condition o f dosing equipment can also result in 

underdosing. Quarantining, monitoring and treating all replacement stock is also a 

critical management practice in preventing the introduction o f resistant parasites 

(Conder & Campbell, 1995).

Control measures outlining the principles o f delaying the spread o f resistance 

have been published (Coles & Roush, 1992; Waller, 1993a; Barger, 1993b; Coles, 

Borgsteede & Geerts, 1994). Although reducing the number o f anthelmintic 

treatments reduces the selection pressure for resistance it requires local 

epidemiological knowledge in order that strategic treatments can be given to 

optimize production. It is also generally supposed that the alternation o f drug classes 

on an annual basis can slow down the development o f resistance (Prichard et al.,

1980). It was initially hoped that a ‘slow’ rotation o f drugs would result in reversion
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to susceptibility during the intervening years but evidence to date suggests that this is 

not the case (Jackson, 1993).

Maximising treatment efficacy to ensure that heterozygous resistant individuals 

are removed is another method to delay the onset o f resistance. Extending the period 

o f  drug administration by dividing the dose (Sangster et al., 1991b) or reducing feed 

intake before treatment (Ali & Hennessy, 1993) have resulted in increased efficacies 

o f  Bz treatment against resistant species. Combinations o f anthelmintics offer 

another means o f maximizing efficacy and have been shown to be effective by 

Martin, Anderson & McKenzie (1990). These authors reported that resistance was 

not evident following six generations o f parasite exposure to a Bz/Lev combination 

but it was apparent to the single drugs within three to four generations o f application. 

Sustained- or pulse-release anthelmintics may also provide a useful tool in 

controlling resistant nematodes or preventing their selection if  used in a judicious 

manner (Sangster, Rickard, Collins, Hennessy & Steel, 1992).

The need for integrated systems o f control, incorporating anthelmintic 

treatment and grazing management has long been recognized (Thomas & Boag,

1973) but requires sound epidemiological knowledge. In Australia, Donald & Waller 

(1982) confirmed the benefits o f an integrated system, in terms o f liveweight gain 

and fleece production, when weaner sheep were grazed alternatively on pastures with 

cattle and treated three times per season. Similarly, Armour (1983) demonstrated 

that where clean grazing is available in Britain, dosing and moving at weaning can 

provide adequate control in lambs destined for market in autumn. However, dose 

and move strategies involving minimally contaminated pasture may increase the rate 

at which resistance is selected. Depending upon the efficacy and epidemiological 

timing o f  treatment, it is possible that the infrapopulation being transferred within the 

host to clean pasture may be composed entirely o f resistant parasites which will then 

be transmitted to the aftermath (Taylor & Hunt, 1989). Consequently, the benefits 

gained by reducing the suprapopulation have to be weighed against the potential risk 

o f increased selection for resistance (Jackson, 1993).

Mathematical models have been developed in order to evaluate factors 

contributing to resistance and/or strategies to limit its development. These include 

models for O. circumcincta (Gettinby, Soutar, Armour & Evans, 1989),
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T. colubriformis (Barnes & Dobson, 1990) and H. contortus (Echevarria, Gettinby & 

Hazelwood, 1993). Optimal strategies to minimize production losses whilst 

prolonging the useful life o f anthelmintics, by a combination o f their judicious use 

with other management practices, can be predicted. However, although useful tools, 

these models should also be treated with caution (Conder & Campbell, 1995). They 

are dependent on accurate information regarding nematode biology and 

epidemiology, genetics o f resistance, acquired immunity, management practices and 

environmental factors, all o f which vary locally and over time and therefore require 

field confirmation.

Employing a narrow-spectrum drug along with a broad-spectrum anthelmintic 

has been shown to be effective in the control o f some resistant species. For example, 

programs such as ‘Wormkill’ that were introduced in Australia to control resistant

H. contortus with the strategic use o f closantel has led to the eradication o f this 

species in some areas (Barger, Hall & Dash, 1991). However, as mentioned earlier, 

resistance to closantel and other narrow-spectrum anthelmintics is emerging, 

jeopardizing this and similar control programs (van Wyk et a l., 1987; Rolfe et al., 

1990). An interesting strategy proposed by van Wyk & van Schalkwyk (1990) is the 

reintroduction o f susceptible strains using donor sheep into areas/herds where 

resistance is a problem. However, this approach has only a limited application and is 

unlikely to be successful in temperate climates due to the low fecundity o f  the more 

important species such as Teladorsagia (Jackson, 1993). Selectively deworming 

animals from a population has also been proposed as a means o f limiting selection 

for anthelmintic resistance (Duncan & Love, 1991).

I.12 Detection o f  anthelmintic resistance

As well as the introduction o f guidelines for evaluating the efficacy o f  

anthelmintics in ruminants (Powers, Wood, Eckert, Gibson & Smith, 1982) a range 

o f in vivo and in vitro techniques have been developed for the detection o f  

anthelmintic resistance (reviewed by Taylor & Hunt, 1989; Coles, 1990; Conder & 

Campbell, 1995). An updated second edition o f the guidelines for evaluating the 

efficacy o f anthelmintics in ruminants has recently been published (Wood, Amaral,
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Bairden, Duncan, Kassai, Malone, Pankavich, Reinecke, Slocombe, Taylor & 

Vercruysse, 1995). The procedure o f choice for field survey investigation is the 

faecal egg count reduction test (FECRT) which allows all anthelmintics to be tested 

at the same time and does not require sophisticated equipment or highly trained 

personnel (Presidente, 1985; Johansen, 1989). This test provides an estimate o f  

anthelmintic efficacy by comparing worm egg counts from a group o f animals before 

and after treatment but has several shortcomings. In an effort to overcome these 

limitations, WAAVP guidelines have been produced to standardize the procedures 

and encourage uniformity o f data analysis (Coles, Bauer, Borgsteede, Geerts, Klei, 

Taylor & Waller, 1992). However, it should be noted that such tests may be host and 

drug specific since longer periods are required before post-treatment samples are 

taken in goats treated with Ivm (Jackson, 1993). Furthermore, resistance to minor 

species in a mixed population may be missed when vastly outnumbered (Martin, 

Anderson & Jarrett, 1989), and although larval culture can be used for identification, 

highly fecund species may mask species with low fecundity (West, Pomroy, Probert 

& Charleston, 1989). Species with a high mortality in culture may also be 

underestimated (Dobson, Barnes, Birclijin & Gill, 1992b). Caution must be taken 

when assessing efficacies with Lev since there is a potential for misinterpretation o f  

FECRT results. Grimshaw, Hong & Hunt (1996) noted that faecal egg counts taken 

11 or more days after treatment with Lev may allow time for development o f  

immature stages to egg producing adults.

The controlled efficacy test (CET) is the most reliable test for assessing 

anthelmintic efficacy against mixed nematode infections and despite being costly in 

terms o f animals and labour, is the definitive test for resistance (Johansen, 1989). 

Animals are slaughtered following treatment and their worm burdens collected and 

drug efficacies calculated by comparison to untreated controls. However, due to the 

economic considerations this assay is generally used for research purposes only. 

Small animal models offer a more cost-effective approach and the opportunity to 

monitor dose-responses by systematic slaughter would allow the precise 

identification o f changes in susceptibility, thereby measuring resistance rather than 

efficacy (Conder & Campbell, 1995). This approach has been used to assess 

resistance with an isolate o f H. contortus injirds (Conder, Thompson & Johnson,
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1993) the results o f which were substantiated in the host species (Shoop, Haines, 

Michael & Eary, 1993). Guinea pigs (Kelly, Sangster, Porter, Martin & Gunawan,

1981) and more recently immunosuppressed rats (Gration, Bishop, Martin-Short & 

Herbert, 1992) have been used for efficacy trials with 7 . colubriformis. However, 

although these models offer attractive alternatives further research needs to be carried 

out before they can be adopted with confidence (Hazelby el al., 1994).

A number o f in vitro assays, based on anthelmintic effects on physiological 

processes, have been developed to support egg count reduction assays and are 

summarized in Table 1.2. These include the egg hatch assay as well as larval 

development, paralysis, motility and migration assays. In addition, a variety o f  

biochemical based assays have been developed which include the colorimetric assay 

o f acetylcholinesterases and tubulin binding/polymerisation assays. At present 

genetic assays are limited to the B z’s where resistant populations have been 

identified using cloned p-tubulin probes. With the exception o f the egg hatch and 

larval development assays most other approaches are not suitable for field use 

because o f technical requirements and are only applicable to certain anthelmintic 

classes.

Understanding the biochemistry and the molecular genetics o f different types 

of anthelmintic resistance will lead to improvements in methods for the detection o f  

resistance in parasites. Knowledge o f the site o f action and the mechanisms o f  

ivermectin and levamisole/morantel is still sparse but DNA probes for Bz 

susceptible/resistant individual worms, larvae or eggs may soon be available. The 

ability to detect heterozygous resistant individuals would allow earlier identification 

of the problem and a more accurate assessment and likely effectiveness o f different 

approaches to the prevention and reversion o f anthelmintic resistance (Prichard,

1994).
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Table 1.2 In vitro assays available for the detection of resistance

Assay Spectrum Author(s)

Physiological

Egg hatch assay (1) Bz Le Jambre (1976)
Egg hatch assay (2) Lev Dobson et al. * (1986)
Larval paralysis Ivm Martin & Le Jambre (1979)
Larval motility (1) Bz Coles, Folz & Tritschler (1989)
Larval motility (2) Ivm Gill, Redwin, van Wyk & Lacey (1991)
Larval development (1) Bz Lev Taylor (1990)

Ivm
Larval development (2) Bz Lev Lacey et al. f  (1990)

Ivm
Larval development (3) Bz Lev Hubert & ICerboeuf (1992)

Ivm
Larval migration inhibition Bz Lev Rothwell & Sangster (1993)

Ivm Sal
Biochem ical

Tubulin binding Bz Lacey & Snowden (1988)
Acetylcholinesterase Bz Sutherland, Lee & Lewis (1989)
Larval paralysis Bz Sutherland & Lee (1990)
Isoenzyme analysis Ivm Echevaria. Gennari & Tait (1992)

Genetic

p-tubulin probe (1) Bz Roos et al. J (1990)
p-tubulin probe (2) Bz Le Jambre (1990)

Bz-benzimidazoles; Lev-levamisole; Ivm-ivermectin; Sal-salicyIanilicies. 
* Dobson, Donald, Waller & Snowdon (1986). 
f  Lacey, Redwin, Gill, Demargheriti & Waller (1990).

J Roos, Boersema, Borgsteede, Comelissen, Taylor & Ruitenberg (1990).

1.13 Summary

Since it may be many years before alternative methods o f controlling helminth 

infections become widely available, chemotherapy will necessarily remain as an 

important means o f achieving control (Jackson, 1993). Consequently, the need to 

conserve currently available anthelmintics is o f the utmost importance and even 

when vaccines become available, chemotherapy has the advantage o f not only 

prophylaxis but also treatment, including that o f immunocompromised animals
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(Gutteridge, 1989). It is too late to prevent anthelmintic resistance for two o f the 

three broad spectrum classes in most sheep and goat regions throughout the world 

where nematode parasitism is a problem. This essentially means that, for sheep and 

goat industries at least, strategies need to be devised and implemented to manage an 

existing resistance problem, rather than preventing its occurrence (Waller 1993a).

The emergence o f multiple resistant strains in Australia (Swan et a l., 1994) has 

focused attention upon the use o f anthelmintics against which resistance has already 

been selected in the management o f resistance. It has been suggested that effective 

control may be achieved on well-managed farms by treatment o f animals with an 

anthelmintic o f reduced efficacy (70-80 %) provided it is used infrequently (Barger, 

1993b). The risks associated with the re-introduction of ‘selected’ drugs for 

therapeutic and prophylactic purposes are influenced largely by the pathogenicity and 

fecundity o f  the prevailing resistant species and the extent o f any increase in 

resistance that results from further exposure. Given that the production and welfare 

o f  treated animals are not compromised then it may be possible, under carefully 

monitored circumstances, to re-introduce ‘selected’ drugs into slow  

chemoprophylactic rotations, particularly when resistance involves less pathogenic 

species with a low biotic potential such as Teladorsagia (Jackson, 1993). By doing 

so the life expectancy o f the other drug classes may be extended and the risk o f  

selecting multiple resistance, if  it does not already exist, reduced. A change in 

attitude to nematode control is required, with the aim of ensuring that parasite 

populations do not exceed levels compatible with economic production rather than 

total eradication. However, if  such control systems are to gain acceptance, large- 

scale field testing is essential to show that they work in practice (Waller, 1993b).

1.14 Aims o f  the study

Previous caprine studies at Moredun have demonstrated that adequate control 

may well be achieved with treatments which are not fully effective. No differences 

in performance were seen between groups o f does and kids grazing on pastures 

contaminated with a benzimidazole resistant strain o f Teladorsagia, that were treated
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with fenbendazole, levamisole or ivermectin (F. Jackson, unpublished data). These 

findings formed the basis for a detailed field investigation to determine the extent to 

which drugs, against which resistance has been developed, can be used in the control 

o f commonly occurring sheep parasites in the UK.

The main aims o f the study were:

1. To determine what extent, if  any, the use o f a less effective drug compromised 

performance.

2. To measure any increase in the expression o f resistance that results from 

continued use o f an anthelmintic against which resistance has been selected.

3. To investigate ways o f  increasing the efficacy o f resistance selected drugs.

4. To assess the use o f arbitrarily primed polymerase chain reaction (AP-PCR) in the 

detection o f resistant nematodes.
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CHAPTER 2 

General Materials and Methods
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2.1 Animals

2.1.1 Ewes and lambs (grazing)

Greyface ewes ( 2 - 3  years old) grazing at Firth Mains farm were used with a 

Suffolk tup to provide lambs for the study. The ewes were brought indoors at the 

end o f January each year and treated with anthelmintic immediately on housing 

(Oramec, MSD Agvet UK, 0.2 pg kg"1). Terramycin antibiotic (oxytetracycline, 

Pfizer UK) was administered on day 100 o f gestation as a prophylactic treatment 

against pneumonia and a clostridial vaccine (Covexin, Mallinckrodt Veterinary Ltd. 

UK) given three weeks before lambing. The ewes were not given a pre- or post

lambing treatment with anthelmintic since this has been shown to have little effect on 

lamb growth or ewe production when clean pastures cannot be provided (Donnelly, 

McKinney & Morley, 1972; Brunsdon, 1974). The ewes were drawn from a 

Greyface flock (n = 350) with different animals being used in each year o f the study.

2.1.2 Worm free lambs

Greyface x Suffolk parasite naive lambs used in the study were bom and reared 

indoors under conditions designed to preclude accidental infection.

2.2 Parasitological Techniques

2.2.1 Collection o f  faecal samples

Rectal faecal samples were taken into 230 x 300 mm, 30pm polythene bags 

(McKinnon and Hay, Edinburgh, UK) and transported to the laboratory. Samples 

were processed immediately or stored at 4 °C for no longer than 3 days before 

examination.

2.2.2 Scoring o f  sheep faeces samples

This procedure was carried out whilst weighing samples for faecal egg counts 

(2.2.3) in order to monitor consistency. Faecal scores were assigned ranging from 

1 for a sample consisting almost wholly o f blood and mucus to a score o f 5 for a 

sample consisting o f dry, hard pellets; the details o f which are shown in Table 2.1.
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Table 2.1 Scoring system used to monitor faecal consistency
Score Condition

1 Sample consisting wholly o f blood and mucus

2 Sample fluid consisting largely o f faecal debris together with some mucus 
and or blood

2-3 Fluid sample containing no blood or mucus.

3 Sample soft, unformed consisting o f faecal debris

3-4 Sample partially formed, obvious pellets within faecal mass.

4 Sample formed consisting o f moist pellets.

5 Sample formed consisting o f dry hard pellets.

2.2.3 Faecal Egg Count (Flotation Method)

Faecal egg counts were determined using a modification o f the sensitive 

flotation technique described by Jackson (1974). The faecal samples were weighed 

and 10 ml o f tap water added for every gramme of faeces. Each sample was then 

emulsified using a stomacher (Seward Medical Ltd., UK). A 10 ml sub-sample was 

then removed and passed through a tea strainer (1mm mesh) and washed through 

with an additional 5 ml o f  tap water. The retentate was squeezed and discarded. The 

filtrate obtained was poured into 15 ml polyallomer centrifuge tubes (16 x 102 mm, 

Beckman, USA) and centrifuged at 1000 rpm (228 g) for 2 minutes.

The supernatant was removed using a vacuum line and the remaining faecal 

pellet re-suspended with 12 ml saturated sodium chloride. The tubes were 

centrifuged again at the same speed and time as described earlier. Using artery - 

forceps, the tube was clamped just below the meniscus of the supernatant and the 

contents o f  the upper chamber was poured into a 4 ml disposable polystyrene cuvette 

(LIP Ltd., Shipley, UK). The upper chamber was rinsed with saturated NaCl and 

again poured into the cuvette which was filled totally and capped. The cuvette 

containing all the eggs in one gramme o f faeces was placed under a compound 

microscope and examined under x40 magnification.
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The microscope contained a calibrated eyepiece graticule (Miller square, 

Graticules Ltd., UK) which was used to count eggs in samples with high egg 

concentrations. For samples with few eggs all the eggs in the cuvette were counted. 

Whenever samples contained high numbers o f eggs the graticule was used. Either 

eggs that fell in the large square along two traverses o f the cuvette were multiplied by 

3 or those that fell in the small square multiplied by 9 in order to obtain the total 

number o f  eggs per gramme (EPG) o f faeces.

Those eggs which could not be simply distinguished on their appearance or 

morphology (Teladorsagia spp, Trichostrongylus spp, Haemonchus, Cooperia, 

Chabertia, Bunostomum and Oesophagostomum) were referred to as trichostrongylid 

eggs. Species including Nematodirus spp, Trichuris and Strongyloides which are 

readily identifiable were noted separately. Other readily identifiable parasitic species 

such as Moniezia, lungworm and liverfluke were noted specifically. A score was 

also assigned for the density o f coccidial oocysts present in each sample where:

1 = low, 2 = moderate and 3 = dense numbers o f oocysts.

2.2.4 Specific Identification o f  Strongyle eggs

An egg dimension measurement technique (Christie & Jackson, 1982) was 

employed in order to improve the specificity o f faecal egg counts. The method is a 

development o f the approach made by Cunliffe and Crofton (1953) estimating 

proportions o f species present using unique areas o f size distribution plots. Eggs that 

had been counted using the flotation technique (2.2.3), either from an individual or a 

pooled sample from all o f the animals within a group, were collected in a 38pm sieve 

and washed with water to remove the saturated salt. The eggs were then stored at 

4°C in a test-tube with water and a couple o f drops o f iodine. Following at least one 

overnight sedimentation the supernatant was removed using a vacuum line and the 

eggs re-suspended in saturated salt and mounted in a cuvette and presented for 

measurement in the manner described in the egg count method. The dimensions 

(length and width) o f  50 eggs were obtained using a strain gauge image shearing 

model (M14/2, Vickers Instruments, UK) which was fitted to a Vickers M14 

microscope at a magnification o f x60 and interfaced to a microcomputer. The file 

containing this data was saved and then analysed using an in-house programme
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called ‘Ovasort’. The programme works by identifying the numbers o f eggs 

contained in specific unique areas o f ellipses calculated for each species. These 

standard ellipses have been constructed from data from mono specifically infected 

sheep. From the numbers o f eggs appearing in unique areas o f the specific ellipses it 

is possible to estimate the overall prevalence o f each species. The estimated 

percentage was noted for each genera/species and the data used in epidemiological 

studies or to increase the sensitivity o f faecal egg count reduction tests. 

O.circumcincta and T. colubriformis cannot be separated on size alone and these two 

species form a composite group. Data for C. oncophora and C. curticei have recently 

been added and since the size distributions overlap with T. axei these three species 

also form a composite group. The distribution o f 50 per cent ellipses for the common 

nematode species in Scotland are shown in Figure 2.1.

Width (pm)

Oesophagostomum
venulosumChabertia

ovina
60 -

Trichostrongylus
colubriformis

50 -
Trichostrongylus

vitrinusOstertagia
circumcinctaHaemonclit 

40 -  contortus

Trichostrongylus
axei

70 80 90 100 110
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Figure 2.1 The distribution o f  50 per cent ellipses fo r the common nematode species 
in Scotland (adaptedfrom Christie & Jackson, 1982)
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2.2.5 Larval Culture, Recovery, Storage and Infection Techniques

Faeces collected from either a donor animal or a pooled group sample were 

placed in culture trays (maximum depth 30 mm) and incubated inside a loosely 

sealed polythene bag (to enable some exchange o f air) at 22 °C for ten days. 

Following incubation the sample was flooded with warm tap water (approx. 25 °C) 

and left to soak for 1-4 hours. Coarse faecal material was then separated from the 

fluid using a 1 mm sieve. Following a 2 hour sedimentation at 4 °C the fluid volume 

was reduced and the sample cleaned o f fine faecal debris by Baermannization using 

high wet strength paper (Cleanaroll Ltd., UK). The sample was poured through the 

paper which was held on a filter holder (plastic tube 50 mm in diameter and 100 mm 

long) by a rubber band. The paper temporarily restrained the larvae which were 

sluggish following the cold incubation whilst releasing the water. The filter holder 

was then suspended in a jar containing warm tap water (approx. 25 °C) which 

allowed the larvae to migrate through the filter leaving the sediment behind. 

Baermannization was usually run overnight providing sufficient time for the larvae to 

migrate. The clean larval suspension (maximum density o f 500,000 larvae per 250ml 

storage flask) was then labelled and stored at 4 °C until the larvae were required 

(within 4 weeks).

For infecting lambs, larval suspensions were made up to an appropriate volume 

in a volumetric flask and shaken to evenly disperse the L3. From a 1 in 10 dilution 

(lm l + 9ml water) 5 samples o f 100 pi were streaked on to a glass slide and the L3 

counted under a stereo microscope. The total numbers of larvae were calculated and 

the concentration o f the suspension adjusted for the required larval dose. In most 

circumstances a 10 ml dose was conveniently delivered per os via a glass McCartney 

vial.

2.2.6 Parasite isolates

All o f the parasites used in the study were isolated from field material and 

maintained at Moredun in worm-free donor lambs. The Bz-resistant T. circumcincta 

from Firth Mains was first isolated from lambs in 1983 and has been passaged twice 

per annum and is referred to as the Moredun ovine resistant isolate (MORI). A  

multiple resistant (Bz + Ivm) isolate o f T. circumcincta was derived from goats
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grazing a hill farm near the Scottish borders in 1991 and has been passaged twice per 

annum and is referred to as the Sourhope caprine resistant isolate (SCRI). The Bz- 

susceptible T. circumcincta was first isolated in 1979 from lambs grazing pastures at 

the Moredun Research Institute on which no anthelmintic treated animals had grazed 

previously. The Bz-susceptible T. circumcincta isolate has been passaged in worm- 

free donor lambs four times per annum and is referred to as the Moredun ovine 

susceptible isolate (MOSI). The Bz-susceptible isolate o f H  contortus (HcS) has 

been maintained at Moredun in worm-free donor lambs since the late 1960’s and has 

been passaged four times per annum. The multiple resistant (Bz + Ivm) white river 

isolate o f  H.contortus (HcR) from South Africa was provided by Glasgow 

University in 1992 and has been passaged twice per annum.

2.2.7 Pasture Larval Counts

Pastures were sampled using the method o f Taylor (1939). Herbage samples 

were plucked from sites 10 metres apart along a series o f ‘V ’ shaped traverses up and 

down the pasture. A small sub-sample was removed and weighed, usually between 

50-100 grammes, for dry matter estimation. The remaining sample was weighed, 

usually between 500 and 1000 grammes, and then soaked overnight in 40 litres o f  

warm tap water (25°C) which contained a small amount o f detergent (1 ml per 40L, 

Tween 20, Aldrich Chemical Co., UK).

Following soaking, the herbage was removed in small handfuls which were 

squeezed to remove as much water as possible. The sample was then sedimented in a 

cold room (4°C) overnight and its volume reduced to 2 litres. Following two further 

sedimentations to 500 ml initially the sample was reduced to 100 ml which was 

poured into 6 cellulose acetate tubes. The larvae were recovered from each tube by 

centrifugation using saturated NaCl in the manner described for the faecal egg count 

method. The recovered larvae were pooled, washed twice centrifugally using water 

and the sample volume reduced to 0.3 ml.

The numbers o f infective larvae were determined at x 100 magnification in 

saturated potassium iodide in a cuvette. The counting o f larvae was done in the same 

manner described for the faecal egg count method. The counts were converted to 

numbers o f larvae per kg o f wet herbage using the following formula:
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No. L3 kg’1 = No. L3 counted x (1000 Wt. o f sample in grammes)

The number o f L3 kg’1 wet herbage were then converted to numbers per kg dry 

herbage using the following formula:

No. L3 kg’1 dry herbage = No. L3 kg’1 wet herbage x (Wt. o f  herbage sub-sample)
(Dry Wt. o f herbage sub-sample)

2.3 Worm Recovery Techniques

2.3.1 Removal o f  gastrointestinal tract fo r  worm recovery.

Sheep were positioned on a cradle with all four limbs extended through the 

metal bars while an assistant restrained the sheep. A single captive bolt was 

delivered through the forehead; once stunned the sheep were exsanguinated and the 

spinal cord severed. Each sheep was restrained until any remaining nervous stimuli 

diminished and then turned onto its back and the abdomen opened along the ventral 

midline.

The entire gastrointestinal tract was removed following ligation o f the 

omasal/abomasal, abomasal/ileal and jejunal/caecal junctions. If only the abomasum 

was required then only the first two ligatures were applied. The abomasum and small 

intestine were then detached into pre-labelled (sheep number, organ) 10 litre buckets 

prior to being opened to recover their contents.

The contents o f  the abomasum and first two thirds o f the proximal small 

intestine were emptied into their respective buckets before each organ was split 

lengthwise using gut scissors and, along with the contents, soaked in approximately

4.5 litres o f warm 0.85 %  saline solution for 4-6 hours at 37 °C with regular agitation 

(Jackson, Jackson & Smith, 1984). Following incubation the superficial mucosa, 

together with any adhering worms, was removed by running abomasal folds or 

lengths o f  intestine through the thumb and index finger. The remaining tissue was 

then discarded before making the samples up to 5 litres with additional saline. 

Following thorough mixing o f the bucket contents, two 250 ml aliquots were 

removed and pooled together to form a 10 % sub-sample which was fixed with 20 ml 

formalin.
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2.3.2 Worm counts

2 % sub-samples (i.e. 100 ml) were stained with a few mis o f helminthological 

iodine (Appendix). After a few minutes o f staining the sample was rinsed over a 

38 pm sieve to remove excess iodine and fine debris and collected into a container. 

The stained sample was poured into 100 mm gridded contact plates (Sterilin, UK) 

and searched for worms at x 100 magnification using a stereo microscope. Worms 

were identified, staged and sexed according to the descriptions given by Denham 

(1969) T. circumcincta, Douvres (1957) T. vitrinus, and using keys supplied by the 

Ministry o f Agriculture, Fisheries and Food (1986) and Thomas & Probert (1993). 

Any worms present were recovered and preserved in 2 % formalin in plastic bijou 

bottles.

2.4 Production Parameters

2.4.1 Weighing

Animals were weighed to the nearest half kilogram, at a similar time o f  day on 

each occasion, using a calibrated weigh crate. Following shearing in July o f  each 

year, individual ewe fleeces were rolled into a ball, placed into a bag and their 

weights recorded using a spring-suspension balance (Salter, UK).

2.4.2 Bleeding and Plasma samples

Animals were bled, at a similar time o f day on each occasion, by jugular 

venepuncture into 10 ml vacutainer tubes (Becton Dickinson, UK) containing lithium 

heparin. Animals were bled at the relevant timed interval following treatment when 

pharmacokinetic analyses were required. The tubes were centrifuged at 3000 rpm 

(2060 g) for 20 minutes and the plasma carefully removed using a Pasteur pipette 

into two 2 ml aliquots which were frozen at -  20 °C for subsequent analysis.

2.4.3 Condition scoring o f  ewes

The technique offers a means o f subjectively assessing the degree o f fatness o f  

an animal based on a six point scale. The system was proposed by Russel, Doney &
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Gunn (1969) and has since been adopted by the Meat and Livestock Commission. It 

relies on the principle that the loin is the last part o f the body to put on fat and the 

first part to lose it. Readily identifiable anatomical characteristics were assessed by 

feeling on and around the backbone in the loin area immediately behind the last rib 

and above the kidneys. The first stage was an assessment o f the degree o f  

prominence (degree o f sharpness or roundness) o f the spinous processes o f the 

lumbar vertebrae. The prominence and degree o f fat cover over the transverse 

processes o f the vertebrae were then assessed. Thirdly, the extent o f the muscular 

and fatty tissues below the transverse processes was judged by the ease with which 

the fingers passed under the ends o f these bones. Finally, the fullness o f  the eye 

muscle area, and its degree o f fat cover, in the angle between the spinous and 

transverse processes, was estimated. Animals were then awarded a score according 

to the following scale in Table 2.2.

Table 2.2 Condition scoring o f  ewes (Russel et a l, 1969)

Score* Condition

0 E xtrem ely  em aciated  and on the point o f  death. It is not p o ssib le  to  d etect any
m uscular or fatty tissu e betw een  the skin and the bone

1 T he sp inous p rocesses are fe lt to be prom inent and sharp. The transverse  
p rocesses are a lso  sharp, the fingers pass ea s ily  under the ends and it is p o ssib le  
to  fee l betw een  each  process. T he ey e  m u scle areas are sh a llow  w ith  no fat 
cover.

2 T he sp inous p rocesses still fee l prom inent, but sm ooth , and individual p rocesses
can be fe lt on ly  as fin e corrugations. The transverse p rocesses are sm ooth  and  
rounded, and it is p o ssib le  to pass the fingers under the ends w ith  a little  
pressure. The ey e  m u sc le  areas are o f  m oderate depth, but have little fat cover.

3 T he sp inous p rocesses are detected  on ly  as sm all elevation s; th ey  are sm ooth
and rounded, and individual bones can be fe lt on ly  w ith  pressure. The  
transverse p rocesses are sm ooth  and w ell covered , and firm  pressure is required  
to fee l over the ends. T he ey e  m u scle  areas are fu ll, and have a m oderate 
d egree o f  fat cover.

4 T he sp inous p rocesses can ju st be detected, w ith  pressure, as a hard lin e
b etw een  the fat-covered  m u scle  areas. The ends o f  the transverse p rocesses  
cannot be felt. T he ey e  m u sc le  areas are fu ll, and have a th ick  coverin g  o f  fat.

5 T he sp inous p rocesses cannot be detected  even  w ith  firm  pressure, and there is
a d epression  b etw een  the layers o f  fat in the position  w here the sp inou s  
p rocesses w ou ld  norm ally  be felt. The transverse p rocesses can n ot be detected. 
T he e y e  m u scle  areas are very  fu ll w ith  very  thick fat cover. There m ay  be 
large dep osits o f  fat over the rump and tail.

* Interm ediate scores w ere a lso  assigned  to anim als, for exam p le 2 -3 .
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2.5 Biochemical Techniques

2.5.1 Plasma Pepsinogen Assay

(Refer to Appendix for reagent and buffer preparation)

Plasma pepsinogen concentrations were determined by a modification o f the 

method o f Mylrea & Hotson (1969) using bovine serum albumin as substrate and a 

glycine / hyrochloric acid buffer (pH 2.0). Pepsinogen activity was expressed as 

units (U) where 1 unit equals 1 pinole tyrosine released per minute per litre o f  

plasma at 37°C. Stored plasma samples were removed from -2 0  °C and allowed to 

thaw out overnight in a fridge. Glycine buffer (0.1M pH 2) and 1% bovine serum 

albumin (BSA) were mixed together in a ratio o f 4:1 before dispensing 0.5 ml o f this 

mixture into each eppendorf, to which 0.1 ml o f plasma was added (each sample was 

run in duplicate). These ‘test’ samples were mixed using a vortex mixer and 

incubated in a water bath at 37°C for 4 hours. To a further set o f  duplicate samples 

(unincubated controls) the 0.1 ml o f plasma was immediately followed by the 

addition o f 0.4 ml o f 10 % Trichloroacetic acid (TCA), mixed and centrifuged for 3 

minutes at 13,000 rpm (11,000 g). Following the incubation period 0.4 ml o f  10 % 

TCA was added to the test samples, mixed and centrifuged as above.

A standard curve for tyrosine was constructed by making up Opl, lOOpl, 250pl, 

500pl, 750pl and lOOOpl volumes o f working standard (1 in 10 dilution) to a total 

volume o f 2 ml using 1 ml o f 10 % TCA and distilled water. The appropriate 

number o f  rotors were loaded into a Monarch centrifugal semi-automated 

spectrophotometer (Instrumentation Laboratories, UK) with Folins and Ciocalteau’s 

reagent (1 in 3 dilution) in one reagent boat and IN NaOH in another. The standards 

and sample supernatants were then transferred into 0.2 ml sample cups 

(Instrumentation Laboratories, UK) and their absorbances read at 690 nm.

Plasma pepsinogen concentrations were then calculated using the mean 

absorbance o f the standard curve having a tyrosine concentration o f 0.0039 pM (for 

75 pi volume used with the Monarch):
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Test - Control x pM Tyrosine x 1000_____  x 1______
Vol plasma (ml) Time (mins)Mean Std - Blank

Test - Control x 0.0039 pM x 
Mean Std - Blank 0.0075

1000 x
240

Test - Control x 2.166 = U (pM Tyrosine/min/litre at 37 °C) 
Mean Std - Blank

2,6 Molecular Techniques

2.6.1 Extraction o f  genomic DNA

(Refer to Appendix for reagent and buffer preparation)

2.6 .1.1 Adult populations

Adult parasites were removed at necropsy from the abomasa o f donor sheep 

and approximately 0.5 g (wet weight) o f worms snap-frozen in liquid nitrogen, 

powdered and solubilized in 5 ml o f Tris EDTA (TE) buffer using a pre-chilled 

(-70°C ) pestle and mortar. The resulting solution was mixed and incubated at 55 °C 

for 30 minutes and then at 37 °C for one hour. DNase-free RNase (Pharmacia, UK) 

was added to a final concentration o f 10 pg ml’1 and the solution incubated at 37 °C 

for a further 15 minutes. An equal volume o f phenol/chloroform was added before 

the solution was mixed with a vortex. The aqueous phase was removed following 

centrifugation at 10,000 rpm (12,096 g) for 15 minutes at 4 °C and further extracted 

using an equal volume o f chloroform/isoamyl alcohol (49 : 1). DNA was 

precipitated by the addition o f a 0.1 volume o f 3M sodium acetate (pH 5.2) and 2 

volumes o f  ethanol before incubating at -2 0  °C for 2 hours. Following 

centrifugation at 10,000 rpm (12,096 g) for 15 minutes at 4 °C, the resulting DNA  

pellet was re-suspended in 1ml o f TE buffer, sub-aliquoted and stored at -2 0  °C.

2.6.1.2 Individual larvae

Larvae were recovered from faecal cultures o f donor lambs infected with 

different isolates o f T. circumcincta; Bz-susceptible (MOSI), Bz-resistant (MORI) or
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multiple (Bz + Ivm) resistant (SCRI) described in chapter 2.2.6. Larval suspensions 

were washed centrifugally in 1.5 ml eppendorfs by pelleting them three times and re- 

suspending them in 1 ml o f sterile distilled water each time using a benchtop 

microfuge (13,000 rpm (1 l,000g) for 20 seconds). The larval suspension was poured 

out onto a petri dish and individuals were aliquoted into sterile 100 pi eppendorfs by 

taking up each larva into a 10 pi volume using an automatic pipette under the view o f  

a stereo-microscope at x60 magnification. Individual larvae were then stored at 

-20°C  until DNA extraction was required.

Individual larvae were thawed before adding 20 pi o f lysis buffer (Appendix) 

to the eppendorf which was then incubated at 45 °C for 3 hours. An equal volume o f  

TE saturated phenol was then added (30 pi) and mixed gently for 5 minutes. 

Following centrifugation at 13,000 rpm (1 l,000g) for 5 minutes the aqueous phase 

(approximately 20 pi) was removed and put into fresh sterile eppendorfs to which a 

0.1 volume o f 3M sodium acetate (pH 5.2) and 3 volumes o f 100% ethanol were 

added before incubating at -2 0  °C for 60 minutes. Following centrifugation at 

13,000 rpm (1 l,000g) for 15 minutes the ethanol was removed taking care not to 

disturb the invisible DNA pellet. The pellet was then washed with 70 % ethanol 

(60pl), re-centrifuged at 13,000 rpm (1 l,000g) for 15 minutes and the ethanol 

carefully removed once more before allowing the pellet to air dry. The extracted 

DNA was then re-suspended overnight at 4 °C in 20 pi o f sterile distilled water, 

ready for AP-PCR.

2.6.2 Arbitrarily Primed Polymerase Chain Reaction (AP-PCR)

(Refer to Appendix for reagent and buffer preparation)

The following method acts as a general guideline and amendments to the 

protocol are indicated in the relevant chapter. All buffers, pipette tips, microfuge 

tubes and distilled water were autoclaved before use and gloves were always worn in 

order to prevent contamination. To a sterile 0.1 ml microfuge eppendorf tube, 2.5 pi 

PCR incubation buffer (Appendix), 2.5 pi Primer (lOx, Oswell, Edinburgh, UK), 

l.Opl target DNA (8 ng pi"1), 1.0 pi MgCl2 (0.1 M) and 12.0 pi o f sterile water were 

added. A  control was also set up containing all the components o f the polymerase 

chain reaction except the template DNA (i.e. 13.0 pi o f sterile water). The tubes
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were then microfuged for a few seconds to deposit the reaction mixture in the base o f  

the tube. The eppendorfs were then placed into a polystyrene stand and the reaction 

mixture heated in boiling water for 4 minutes to denature the DNA. The tubes were 

then cooled on ice for 5 minutes before the addition o f 5 pi o f a stock solution o f  

deoxyribonucleoside triphosphates (dNTPs) and 1 pi o f Taq DNA polymerase (0.5 

Units pi’1, Boehringer, UK). Total volume 25 pi. Finally, the tubes were 

microfuged for a few seconds before overlaying the reaction mixture with 25 pi o f  

mineral oil to prevent evaporation during the repeated cycles o f heating and cooling. 

The PCR reaction was performed using a thermal cycler (Cetus, Perkin Elmer, USA) 

programmed with the following conditions: (30 cycles) denaturation (94 °C) for 1 

minute, primer annealing (45 °C) for 1 minute, primer extension (72°C) for 3 

minutes and a final extention (72 °C) for 8 minutes. The tubes were then stored at 

-2 0  °C for subsequent analysis.

2.6.3 Agarose Gel Electrophoresis.

(Refer to Appendix for reagent and buffer preparation)

The edges o f a clean, dry plastic tray supplied with the electrophoresis 

apparatus (GN100, Pharmacia, UK) were sealed with autoclave tape so as to form a 

mould. Sufficient electrophoresis buffer (TAE lx) from the same batch was used to 

fill the electrophoresis tank and to prepare the gel (approximately 600 ml per run).

(It is important to use the same batch o f buffer since small differences in ionic 

strength or pH can create fronts in the gel that can greatly affect the mobility o f  the 

DNA fragments). A 1.4 % gel was prepared using 1.4 g o f  agarose per 100 ml o f  

buffer and heating the slurry in a microwave-oven until the agarose dissolved 

(approximately 2 minutes). The volume o f the solution was then checked to ensure 

that it had not been decreased by evaporation and replenished with water if  

necessary. The solution was then cooled to about 60 °C before pouring it into the 

mould to which an appropriate comb had been inserted before leaving the gel to set.

If it was desired, 5 pi ethidium bromide (EtBr, 10 mg/ml) was added per 100ml 

agarose (final concentration o f 0.5 pg/ml) and mixed thoroughly before pouring the 

gel. Although the electrophoretic mobility o f linear double-stranded DNA is reduced 

by approximately 15 % in the presence o f the dye, the ability to examine the gel
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directly under UV illumination both during or at the end o f a run is often an 

advantage. However, the gel may also be run in the absence o f ethidium bromide 

and stained after electrophoresis is complete. After removing the comb 2pl o f Bloo 

Joos was added to 5 pi o f  an AP-PCR sample before mixing and carefully pipetting 

into a well. A well containing 14 pi o f 1 Kb DNA markers was also included in each 

run. Typical run conditions were 80V for 90 minutes. In cases were EtBr was not 

added, the gel was post-stained by immersing it in water containing the dye (0.5 

pg/ml) and gently swirling for 30-45 minutes at room temperature. The gel was then 

photographed under UV illumination.

2.6.4 Polyacrylamide Gel Electrophoresis (PAGE)

(Refer to Appendix for reagent and buffer preparation)

The glass plates and spacers supplied with the electrophoresis apparatus (Mini 

PROTEAN II, Bio-Rad, UK) were prepared and placed into the clamp assembly 

stand supplied with the apparatus for pouring the gel. The gel was then prepared: A  

7.5% gel was prepared using 6.5 ml distilled water, 1.0 ml Loening E buffer (lOx),

2.5 ml acrylamide stock solution (30 %) and gently mixing the solution by swirling. 

The gel was then polymerised by the addition of: 50 pi N ,N ,N ’,N ’- 

tetramethylethylenediamine (TEMED) and 80 pi o f 10 % ammonium persulphate 

(APS) and poured immediately. The appropriate comb was added and the gel 

allowed to set.

After removing the comb 2 pi o f Bloo Joos was added to 5 pi o f an AP-PCR 

sample before mixing and carefully pipetting into a well. A well containing 7 pi o f  

1Kb DNA markers was also included in each run. Typical run conditions were 200V  

for 30 minutes. Gels were then silver-stained (see below).

2.6.5 Silver-staining o f  polyacrylamide gels

(Refer to Appendix for reagent and buffer preparation)

Following electrophoresis the glass plate sandwich was laid on a bench and one 

o f the spacers gently twisted in order to lift o ff the upper plate smoothly. The gel and 

its attached plate was submerged in a plastic weighing boat containing enough FIX 

solution to cover the gel. Once in solution, the gel was removed by carefully teasing
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it away from the glass plate and incubated in 100ml FIX for 10 minutes at room 

temperature with gentle shaking. The FIX was then carefully poured o ff and the gel 

incubated in 100ml STAIN for at least 15 minutes at room temperature with gentle 

shaking. The STAIN was then carefully poured off and the gel washed briefly with 

distilled water. The distilled water was carefully poured o ff and the gel incubated in 

100ml DEVELOPER for about 10 minutes at room temperature with gentle shaking. 

When the desired contrast was obtained the DEVELOPER was carefully poured off 

and the gel washed twice in STOP (approximately 125ml STOP for each wash). 

Wearing gloves, the gel was carefully placed on a light box where it was examined 

and photographed if  necessary.

2.7 High Performance Liquid Chromatography (HPLC)

(All HPLC analyses were carried out under good laboratory practice (GLP) in 

the department o f veterinary pharmacology laboratory at Glasgow University 

Veterinary School. Refer to Appendix for preparation o f standard compound 

solutions)

2.7.1 Preparation o f  samples

Stored plasma samples for a particular animal(s) were removed from -20°C  

along with blank ovine plasma (known to be free o f drug) and allowed to thaw. Five 

spikes were set up in labelled ground glass tubes, each containing 0.5 ml blank 

plasma and 50 pi o f  either 0.5, 1.0, 2.5, 5.0, or 10.0 pg ml"1 fenbendazole mix 

(Appendix). A tube containing 0.5 ml blank plasma and 50 pi o f  methanol was also 

set up as a blank spike. 0.5 ml o f plasma from each sample and 50 pi o f methanol 

was pipetted into appropriately labelled ground glass tubes. Finally, 50 pi o f  

albendazole (10 pg ml’1) was added to every tube as an internal standard.

2.1.2 Extraction procedure

All manipulations involving chloroform were carried out in a fume cupboard 

(Holliday Fielding Hocking Ltd., UK). To each tube 100 pi o f 0.1 M ammonium 

hydroxide solution and 0.4 g NaCl (using a calibrated scoop) was added and mixed
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using a vortex mixer. Following the addition o f 6 ml o f chloroform (using a 

calibrated automatic dispenser) the tubes were sealed using ground glass stoppers and 

mixed for 10 minutes on a slow rotary mixer. The stoppers were then replaced by 

cling-film and the tubes centrifuged at 3500 rpm (2800 g) for 10 minutes. The 

plasma layer was carefully removed using a Pasteur pipette before transferring 4 ml 

o f chloroform into an appropriately labelled glass drying tube using a bulb pipette. 

The tubes were then placed on a heated block and allowed to dry under high purity 

nitrogen at 50 °C. Once dry, the samples were reconstituted by the addition o f  150pl 

o f methanol, mixed using a vortex mixer and sonicated for 30 seconds. Following a 

second vortex 125 pi was transferred into appropriately labelled 300 pi glass vials 

which were then sealed with cling-film in preparation for analysis by HPLC.

2.7.3 HPLC run conditions

HPLC analyses were carried out on an integrated chromatographic system with 

automatic injection (Spectra Physics, UK). A C l8 nucleoside column (15 cm x 4.6 

mm id, Capital HPLC, Edinburgh, UK) was employed using the gradient solvent 

profile detailed in Table 2.3. The injection volume used was 20 pi, with a solvent 

flow rate o f 1.5 ml min'1 and ultraviolet detector wavelength o f 292 nm.

Table 2.3 Solvent profile fo r  HPLC analyses

Time (mins) % A % B

0.0 35.0 65.0

5.0 55.0 45.0

10.0 55.0 45.0

10.2 35.0 65.0

13.0 35.0 65.0

A  =  A ceton itr ile  (0 .5  % acetic  acid) 

B  =  H 2O (0 .5  % acetic  acid)
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2.8 Tissue Histology

2.8.1 Enumeration o f  mast cells

Where mucosal mast cell counts were required a small section o f  an abomasal 

fold was taken and processed using the techniques described by Huntley et al.

(1987). The processing o f samples and enumeration o f mast cells was kindly 

performed by John Huntley from the immunopathology department at Moredun. The 

tissue was fixed in 4 % paraformaldehyde in phosphate buffered saline pH 7.4 for 6 

hours before being transferred into paraffin wax and 5jum sections cut. The sections 

were mounted, stained with Toluidine Blue pH 0.5 and the numbers o f  mucosal mast 

cells counted at x250 magnification (Enerback, 1966). Five fields from each o f three 

separate sections from each abomasal fold were counted and the results expressed as 

mast cells per 0.02 mm o f mucosa.

2.9 Statistical analyses

All statistical analyses were performed using Minitab statistical software. 

Arithmetic means are given in the text, tables and figures with ± 1 standard deviation 

(SD) or standard error o f the mean (SEM) unless stated otherwise. Where data were 

skewed or had unequal variances they were transformed by log10 or log10(x+ l). The 

transformation for particular data sets and the tests used are explained in each 

chapter.
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CHAPTER 3

Field study on the control of a fenbendazole resistant isolate 

of Teladorsagia (Ostertagia) - Effects on production in lambs

and ewes
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3.1 Introduction

It is important to recognize that few pharmaceutical companies direct resources 

towards research and development o f anthelmintics for the veterinary market and that 

currently available anthelmintics are precious resources. Escalating costs are caused 

by the growing sophistication and sensitivity o f analytical methods for detecting drug 

residues, the requirement for wide ranging studies on non-target invertebrate and 

vertebrate species and long-term trials to determine likely teratogenic or mutagenic 

effects (Waller, 1993b). It has been estimated that it costs up to $ 230 million to 

develop a novel anthelmintic from discovery to release onto the veterinary market 

(McKellar, 1994). Since biological diversity dictates that resistance is an inevitable 

occurrence it is not surprising therefore that very few chemicals warrant the 

investment to be taken from discovery through to marketing (D. R. Hennessy, 

personal communication). However since it may be many years before alternative 

methods o f controlling helminth infections become widely available, chemotherapy 

will necessarily remain as an important means o f achieving control (Jackson, 1993).

As discussed in the general introduction the emergence o f multiple 

anthelmintic resistant nematode species in New Zealand (McKenna et al., 1990) and 

Australia (Overend et al., 1994) has focused attention upon the use o f anthelmintics 

against which resistance has already been selected in the management o f PGE.

Given that the production and welfare o f treated animals are not compromised then it 

may be possible, under carefully monitored circumstances, to re-introduce ‘selected’ 

drugs into slow chemoprophylactic rotations, particularly when resistance involves 

less pathogenic species with a low biotic potential such as Teladorsagia (Jackson, 

1993). However, if  such control systems are to gain acceptance, large-scale field 

testing is essential to show that they work in practice (Waller, 1993b).

Previous caprine studies at Moredun have demonstrated that adequate control 

of nematodes may well be achieved with treatments which are not 100 % effective. 

No differences in performance were seen between groups o f does and kids grazing on 

pastures contaminated with a Bz resistant isolate o f Teladorsagia, that were treated 

with fenbendazole (Fbz), levamisole (Lev) or ivermectin (Ivm) (F. Jackson, 

unpublished data). These findings formed the basis for this detailed field 

investigation to determine the extent to which drugs, against which resistance has
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been selected, can be used in the control o f commonly occurring sheep parasites in 

the UK.

Increasing attention has also focused on the use o f combinations o f Bz and Lev 

drugs in the control and prevention o f anthelmintic resistance. The principal theory 

behind the use o f combination drenches is largely based on the proposition that dual 

resistance is likely to be comparatively rare and that worms surviving one o f these 

drugs will be removed by the other (McKenna, Allan & Taylor, 1996). Modelling 

studies have also suggested that the use o f Bz-Lev combinations may well be a more 

effective means o f delaying resistance than administering the same drugs in an 

annual alternation (Smith, 1990; Barnes, Dobson & Barger 1995). However, 

although Bz-Lev combinations offer greater potential as a means o f slowing down 

the development o f resistance they may, nevertheless, also provide satisfactory 

control in at least some circumstances where resistance already exists (Anderson, 

Martin & Jarrett, 1988a; McKenna, 1990b). Another objective o f this study therefore 

was to assess the effects o f  such a combination in terms o f lamb performance and 

treatment efficacy.

The three year field study was conducted on five 0.9 hectare paddocks on 

Moredun Research Institute's farm at Firth Mains, 14 kilometres south east o f  

Edinburgh, elevation approximately 230 m (Plate 3.1). The pastures, originally sown 

with a mixture containing 60 % perennial rye grass, 10 % timothy and cocksfoot and 

5 %  red and white clover, had been grazed with sheep for several years prior to the 

study and were known to be carrying N. battus, T. vitrinus and an isolate o f  

Teladorsagia (Ostertagia) spp which was known, since 1983, to be resistant to drugs 

within the Bz class o f anthelmintics (Coop, Jackson, Coles & Hong, 1993). The Bz 

resistant isolate o f T. circumcincta was selected by dosing non-lactating ewes that 

were used as ‘mowers’ on clean grazing. Drugs from within the Bz class o f 

anthelmintics were withdrawn from use on the farm following the discovery and 

characterization o f the resistant isolate o f Teladorsagia. Sheep were treated with 

either Lev or Ivm on an annual basis and in 1991 a controlled efficacy test showed 

that there was no reversion to Bz-susceptibility in the intervening years (Jackson, 

Coop & Jackson, 1993).
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Plate 3.1 The paddocks at Firth Mains

3.2 Materials and methods

3.2.1 Experimental Design

The paddocks were randomly assigned to their drug treatments at the start o f  

the study in April 1993. Table 3.1 contains details o f  the stock on each paddock and 

their allocated drug treatments during 1993, 1994 and 1995. Details o f  the twin 

bearing Greyface x Suffolk ewes used in the study are described in chapter 2.1. 

Lambing took place indoors over a two week period during the middle o f  March, 

prior to the ewes being turned out to pasture in the second (1995) or third week (1993 

and 1994) o f April each year. Following shearing in July o f  each year, ewes were 

sprayed for blowfly/headfly (Vector, 1.25 % w/v high cis-cypermethrin, Young’s 

Animal Health, UK). Ewes and their twin-lambs were randomly allocated to each 

paddock as lambing progressed to ensure each paddock contained lambs o f  a 

comparable age. The lambs were individually numbered with coloured ear tags 

(Allflex Ltd., UK) prior to turnout. Lambs were treated at the manufacturer’s
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recommended dose rate (MRD) for their allocated drug on the basis of liveweight 

outlined in Table 3.1. Lambs within the control group were treated only when 

required on welfare grounds using Ivm (Oramec, MSD Agvet UK). A non

suppressive control regime was adopted consisting of an initial anthelmintic 

treatment in mid to late May to control Nematodirus and a summer drench to control 

other gastrointestinal nematodes if necessary (Table 3.2). At weaning the ewes were 

removed from the paddocks and the lambs grazed until they were of marketable size. 

At the end of each season a number of lambs from each treatment group were used in 

a controlled efficacy test. During the course of the study some of the treatments were 

modified for groups of lambs in order to assess the benefits of altering bioavailability 

upon treatment efficacy (see chapter 4).

Table 3.1 Treatment allocation to each paddock and stocking details
Paddock No. 1 2 3 4 5
Anthelmintic Fbz/Lev Lev Fbz Controls Ivm
1993 Stock 12 Ewes 12 Ewes 12 Ewes 12 Ewes 12 Ewes

24 Lambs 24 Lambs 24 Lambs 24 Lambs 24 Lambs

1994 Stock 10 Ewes 10 Ewes 10 Ewes 10 Ewes 10 Ewes
20 Lambs 20 Lambs 20 Lambs 20 Lambs 20 Lambs

1995 Stock 10 Ewes 10 Ewes 10 Ewes 10 Ewes 10 Ewes
20 Lambs

. -i ^

20 Lambs 20 Lambs 20 Lambs 20 Lambs

Fbz (Fenbendazole) 5 mg kg' - Panacur 2.5 %, Hoechst UK.
Lev (Levamisole hydrochloride) 7.5 mg kg'1 - Levacide 7.5 %, Norbrook Animal Health UK. 
Ivm (Ivermectin) 0.2 mg kg'1 - Oramec, MSD Agvet UK.

Table 3.2 Treatment dates throughout the three year study
Year Fbz/Lev, Lev, Fbz and Ivm 

Treatment Dates
Controls (Ivm)

1993 May 19lh June 1st

1994 May 25th and August 17th May 25th

1995 May 18th and July 12th
^  n /  T T . . . 1 . . i T T T r

June 1st

Fbz (Fenbendazole) 5 mg kg' - Panacur 2.5 %, Hoechst UK.
Lev (Levamisole hydrochloride) 7.5 mg kg'1 - Levacide 7.5 %, Norbrook Animal Health UK. 
Ivm (Ivermectin) 0.2 mg kg'1 - Oramec, MSD Agvet UK.

i 82



3.2.2 M eteorological data

Meteorological data was kindly supplied by Henry McGeechan from the 

Scottish Institute o f Agricultural Engineering department o f  the Bush Estate, situated 

3 miles West o f  Firth Mains, the nearest venue recording a full set o f  readings.

3.2.3 Parasitological Parameters

Ewe’s were faecal sampled per rectum fortnightly and the lambs weekly in 

1993. In 1994 and 1995 ewe’s were sampled monthly and lambs fortnightly. Faecal 

consistencies were monitored as described in chapter 2.2.2. Faecal egg counts were 

determined using a flotation method described in chapter 2.2.3. Pasture larval counts 

were determined monthly throughout the grazing season using the methods described 

previously (chapter 2.2.7). The total trichostrongylid egg production for each group 

o f lambs was calculated using the sum o f the trichostrongylid faecal egg counts on 

each sampling date over the season.

3.2.4 Production Parameters

Ewe’s were weighed and condition scored on a monthly basis and their 

individual fleece weights recorded following shearing in July o f each year using the 

methods described in chapter 2.4. Lambs were weighed and bled fortnightly and 

plasma stored for subsequent pepsinogen analysis using the methods described in 

chapter 2.5.1.

3.2.5 Statistical analyses

Differences between treatment group faecal egg counts were determined by 

Log10 (x+1) transformation prior to analysis o f variance (Minitab, version 10.0). 

Differences between faecal consistencies, ewe condition scores, ewe fleeceweights, 

ewe and lamb bodyweights and lamb pepsinogen values were determined by analysis 

o f variance o f untransformed data (Minitab, version 10.0).
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3.3 Results

3.3.1 M eteorological data

Figures 3.1 to 3.5 show the respective monthly average rainfall, hours o f  

sunshine, minimum grass temperature (measured 2 inches from the ground) and the 

minimum and maximum air temperatures over the three year study. A 36 year 

average (1955-90) for these parameters is also included in each of the graphs. 1994 

and 1995 had particularly dry spells from April to June which is reflected in the 

amounts of daily rainfall and hours o f  sunshine. Differences between the average 

minimum daily grass temperatures were evident with 1994 having a cooler Spring 

and 1993 having a cooler late Summer/early Autumn than the other years. The 

average air temperatures were broadly similar over the three years.
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Figure 3.1 Average monthly rainfall (mm) in each year o f  the study compared to a 
36 year average (1955-90)
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Figure 3.2 Average monthly sunshine (hours) in each year o f  the study compared to 
a 36 year average (1955-90)
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Figure 3.3 Average minimum grass temperature ( ° ( \  measured 2 inches from  the 
ground) in each year o f  the study compared to a 36 year average (1955-90)
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Figure 3.4 Monthly average minimum daily air temperatures ( ° ( )  in each year o f  
the study compared to a 36 year average (1955-90)
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Figure 3.5 Monthly average maximum daily air temperatures (°C ) in each year o f  
the study compared to a 36 year average (1955-90)
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3.3.2 Clinical Observations

1993 - Lambs were harbouring patent infections with both N. battus and
thtrichostrongyles when first sampled on May 5 . Anthelmintic treatment was given 

on May 19th to control N. battus infection although trichostrongyle faecal egg counts 

were also reasonably high. The control group was treated with ivermectin 3 weeks 

later when the lambs became diarrhoeic. Following treatment there were no clinical 

signs o f  disease in any o f the groups throughout the rest o f the grazing season.

1994 - Lambs were again harbouring patent infections with both N. battus and
thtrichostrongyles by the start o f sampling on May 10 . Anthelmintic treatment was

thgiven to all groups, including the controls, on May 25 to treat both N. battus and 

trichostrongyle infection. Four lambs were removed from the study for various 

reasons: In the Ivm group one lamb (1161z) broke its hind leg; in the control group 

one lamb (1489z) died o f pneumonia and in the Fbz/Lev group one lamb (1259z) 

gained access to another pasture and was withdrawn from the trial. In the Fbz group 

one lamb (1545z) was put down, histopathological examination o f its kidneys 

showed lesions consistent with nephrosis. A second anthelmintic dose was given to
theach group, except the controls, on August 17 as a strategic treatment against 

trichostrongyles. Clinical signs o f disease were not evident in any o f the groups 

throughout the season.

1995 - Faecal egg counts for both N. battus and trichostrongyles were low at 

the start o f sampling on May 5th indicating low levels o f patent infection. The first
thanthelmintic treatment was administered on the 19 May when faecal scores were 

low and egg counts began to rise. The control group was treated with Ivm two weeks 

later to control N. battus and trichostrongyles. Three lambs were removed from the 

study for various reasons: In the Fbz/Lev group one lamb (1536a) died from chronic 

liver disease. In the control group one lamb (1426a) died o f pneumonia and in the 

Fbz group one lamb (1421a) was diagnosed as having chronic liver disease and was 

withdrawn from the trial. A ewe from the Fbz group (1629x) was taken ill and
thremoved from the study on the 28 June. Her lambs (1448a and 1449a) were weaned 

at this time and left on the paddock. A second anthelmintic dose was given to each 

group, except the controls, on the 12th July as a strategic treatment against

87



trichostrongyles. Clinical signs o f disease were not evident in any o f  the groups 

throughout the season.

Faecal consistencies for the lambs over the three year study are shown in 

Figure 3.6. There were no statistical differences between any o f the groups at any 

point throughout the study. Faecal consistencies were lowest soon after turnout in 

each year but increased following treatment and remained stable for the rest o f the 

season. The density o f coccidial oocysts present in the lamb faecal samples were 

also recorded and are summarised in Tables 3.3, 3.4 and 3.5. At the start o f sampling 

in May 1993 and 1994 the numbers o f oocysts remained low but in 1995 the density 

was notably higher. By the beginning o f June in 1995 the density o f oocysts had 

declined to a level similar to that seen in the previous two years.

Table 3.3 Average density o f  coccidial oocysts during the early grazing
season o f  1993

Group 5/5/93 11/5/93 19/5/93 26/5/93 1/6/93

Fbz/Lev 1.14 1.00 1.00 1.00 1.10
Lev 1.09 1.00 1.09 1.09 1.09
Fbz 1.00 1.14 1.00 1.00 1.00
Controls 1.00 1.25 1.04 1.00 1.00
Ivm 1.04 1.00 1.00 1.09 1.20

Average 1.05 1.08 1.03 1.04 1.08

1 = low, 2 = moderate, 3 = dense numbers o f  oocysts

Table 3.4 Average density o f  coccidial oocysts during the early grazing 
season o f  1994

Group 10/5/94 25/5/94 3/6/94

Fbz/Lev 1.28 1.18 1.06
Lev 1.12 1.19 1.00
Fbz 1.00 1.05 1.16
Controls 1.26 1.00 1.00
Ivm 1.11 1.00 1.00

Average 1.15 1.08 1.04

1 = low, 2 = moderate, 3 = dense numbers o f  oocysts



Table 3.5 Average density of coccidial oocysts during the early grazing
season o f  1995

Group 4/5/95 18/5/95 1/6/95

Fbz/Lev 1.93 1.63 1.07
Lev 1.69 1.65 1.00
Fbz 1.60 1.29 1.05
Controls 1.50 1.72 1.00
Ivm 1.50 1.61 1.11

Average 1.64 1.58 1.05

1 = low, 2 = moderate, 3 = dense numbers of oocysts

3.3.3 Pasture larval counts

Figure 3.7 shows the N. battus pasture larval counts over the three year study. 

Pasture larval counts for this species were highest in May o f each year but by June 

the numbers had rapidly declined. In September o f 1994 there was a small increase 

in N. battus numbers on pasture which was even more evident in 1995. Figure 3.8 

shows the trichostrongyle pasture larval counts over the three year study. The 1993 

trichostrongyle pasture larval counts followed a characteristic biphasic pattern 

typically seen on ‘dirty’ pasture (Thomas & Boag, 1972). However, as a result o f the 

particularly dry spells in May o f 1994 and 1995, the size o f the early season 

suprapopulation peak in late June o f these years was limited thereby affecting the 

pattern o f contamination throughout the rest o f the season. Figures 3.9 and 3.10 

show the average pasture larval counts for N. battus and trichostrongyles respectively 

and help to illustrate the epidemiological patterns seen in each year.
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Figure 3.6 Average faecal consistencies (±SEM) fo r  the groups o f  lambs in each
year o f  the study
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Figure 3.7 Pasture larval counts fo r  N. battus on paddocks 1 - 5  in each year o f  the 
study
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Figure 3.8 Pasture larval counts fo r  trichostrongylids on paddocks 1 - 5 in each 
year o f  the study
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Figure 3.9 Average pasture larval counts (paddocks 1-5) fo r  N. battus in each year  
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Figure 3.10 Average pasture larval counts (paddocks 1-5) fo r  trichostrongylids in 
each year o f  the study
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3.3.4 Ewe parasitological and production results

3.3.4.1 Ewe faecal egg counts

Figure 3.11 shows the trichostrongylid faecal egg counts (FECs) for the ewes 

over the three year study. The groups o f ewes showed similar within-season patterns 

o f  egg count and no differences were observed in overall egg output. Throughout the 

study ewe N. battus faecal egg counts were either negative or very low with a 

maximum recorded individual egg count o f 45 eggs per gramme (EPG). In the first 

two years o f the study there was no evidence o f a marked post-parturient rise in ewe 

trichostrongyle faecal egg count with an overall mean count o f less than 100 EPG. In 

early May o f 1995 there was a more pronounced post-parturient increase in 

trichostrongyle faecal egg count with overall mean o f more than 230 EPG, although 

there was a rapid decline thereafter. Statistical comparison o f  faecal egg counts 

between groups over the three years are shown in Tables 3.6 - 3.8. It should be noted 

that on several occasions following herding a number o f ewes were ‘empty’ and 

comparisons were made against different numbers o f animals. There were very few  

differences in terms o f faecal egg output between the groups over the three year 

study. Table 3.9 shows the % species o f trichostrongylid eggs identified by 

dimension measurements. Since these animals had grazed the same pastures prior to 

lambing the egg counts for the groups o f ewes were pooled which allowed positive 

identification o f ewe faecal eggs when counts were declining. At the start o f  each 

season, egg output by the ewes was predominantly Teladorsagia IT. colubriformis 

with small numbers o f T. vitrinus, the proportions o f which remained remarkably 

constant over the three years. Although identification o f ewe worm burdens was not 

performed, previous work at Firth Mains and results o f the lamb CETs carried out at 

the end o f each season identified only T. circumcincta and T. vitrinus worms.

Though the dimension measurement technique cannot differentiate between 

Teladorsagia  / T. colubriformis it seems unlikely that the latter species was present 

in this study.
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Table 3.6 1993 statistical comparison of ewe trichostrongylidfaecal egg counts

Comparator
Date Fbz/Lev Lev Fbz Controls Ivm

5/5 Lev** - - - Lev***
1/6 Lev* Fbz* Ivm** - - Lev* Ivm* -

1/7 - - - - -

29/7 - - - - -

26/8 - - - - -

- no significant differences
* significantly lower egg count than comparator P < 0.05, **p<o.01 ,***P<  0.001

Table 3.7 1994 statistical comparison o f  ewe trichostrongylid faecal egg counts

Comparator
Date Fbz/Lev Lev Fbz Controls Ivm

10/5# Controls** Controls* Controls*** Lev* - -

3/6 - - - - -

16/6 - - - - -

23/7 - - - - -

22/8 - - - - -

- no significant differences
* significantly lower egg count than comparator P < 0.05, ** P < 0.01, *** P < 0.001
# several ewes from the control were ‘empty’

Table 3.8 1995 statistical comparison o f  ewe trichostrongylid faecal egg counts

Comparator
Date Fbz/Lev Lev Fbz Controls Ivm

4/5 - - - - -

18/5 - - - - Fbz*
1/6 - - - - -

28/6 - - - - -

9/8 - - - - -

-  no significant differences
* significantly lower egg count than comparator P < 0.05
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Table 3.9 % species o f  ewe trichostrongylid eggs identified by dimension 
measurements over the three year study

Year May June July August

1993 93 % Ost/Tc 88 % Ost/Tc 88 % Ost/Tc 78 % Ost/Tc
7 % Tv 12%  Tv 12%  Tv 22 % Tv

1994 100 % Ost/Tc 93 % Ost/Tc 93 % Ost/Tc 77 % Ost/Tc
7 % Tv 7 % Tv 23 % Tv

1995 93 % Ost/Tc 93 %  Ost/Tc 79 % Ost/Tc 78 % Ost/Tc
7 % Tv 7 % Tv 21 % Tv 22 % Tv

Ost/Tc, Ostertagia /  T. colubriformis spp 
Tv, T. vitrinus

3.3.4.2 Ewe condition scores

The monthly group mean condition scores for ewes in each year are shown in 

Figure 3.12. There were very few differences in terms o f body condition between 

groups in 1993 and 1994 (the statistics o f which are shown in Tables 3.10 and 3.11) 

and none were apparent in 1995.

Table 3.10 1993 statistical comparison o f  ewe condition scores
Comparator

Date Fbz/Lev Lev Fbz Controls Ivm

5/5 - - - - -

1/6 - - Lev* Ivm* - -

1/7 - - Controls* - -

29/7 - - - - -

26/8 - - - - -

- no significant differences
* significantly higher score than comparator P < 0.05

Table 3.11 1994 statistical comparison o f  ewe condition scores
Comparator

Date Fbz/Lev Lev Fbz Controls Ivm

10/5 Fbz* Controls* Fbz* - - Fbz*

16/6 - - - - -

13/7 - Fbz/Lev* - - -

12/8 - Fbz/Lev** Ivm* - - -

-  no significant differences
* significantly higher score than comparator P < 0.05, ** P < 0.01
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Figure 3.12 Average ewe condition scores (±SEM) over the three year study
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3 .3 .43  Ewe bodyweights

The average ewe body weights for each group over the three years are shown in 

Figure 3.13. There were very few differences in terms o f body weight between 

groups in 1993 and 1994, although towards the end o f the season in 1995 ewes from 

the control and Fbz groups were heavier than ewes from the Lev group, the statistics 

o f which are shown in Tables 3 .12 -3 .14 .

Table 3.12 1993 statistical comparison o f  ewe bodyweights

Comparator
Date Fbz/Lev Lev Fbz Controls Ivm

5/5 - - - - -

1/6 - - - - -

1/7 - Ivm* - - -

29/7 - - - - -

26/8 - - - - -

- no significant differences 
* significantly heavier than comparator P < 0.05

Table 3.13 1994 statistical comparison o f  ewe bodyweights

Comparator
Date Fbz/Lev Lev Fbz Controls Ivm

10/5 - - - - -
16/6 - - - Fbz* -

13/7 - - - - -

12/8 - Ivm* - - -
- no significant differences 
* significantly heavier than comparator P < 0.05

Table 3.14 1995 statistical comparison o f  ewe bodyweights

Comparator
Date Fbz/Lev Lev Fbz Controls Ivm

4/5 - - - - -

1/6 Controls* - - - -

28/6 - Controls* - - -

9/8 - Fbz* Controls* - - -

23/8 - Fbz* Controls* - - -

-  no significant differences
* significantly heavier than comparator P < 0.05
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Figure 3.13 Average ewe bodyweights (±SEM) over the three year study
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3.3.4.4 Ewe fleece weights

The average ewe fleece weights following shearing in July of each year are 

shown in Figure 3.14. In 1993 and 1995 there were no significant differences 

between the groups in terms o f  fleece weight. In 1994, both the Fbz (P < 0.05) and 

control (P < 0.01) groups had significantly heavier fleece weights than the Fbz/Lev 

group. The average fleece weight o f  the controls was also heavier than the Lev 

group (P < 0.05) in this year.

Kg

3.2
3.0  
2.8 
2.6 
2.4
2.2
2.0

Fbz/Lev Lev

1993

Fbz Controls

i i ■ T

Ivm

Kg
3.2
3.0 
2.8 
2.6
2.4
2.2
2.0

Fbz/Lev Lev

1994

Fbz Controls Ivm

Kg
3.2
3.0 
2.8 
2.6 
2.4
2.2
2.0

1995

i  I
Fbz/Lev Lev Fbz Controls Ivm

Figure 3.14 Average ewe fleeceweights (+ SEM) over the three year study
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3.3.5 Lamb parasitological and production results

3.3.5.1 Anthelmintic treatments

The efficacy o f the various anthelmintic treatments against N. battus and 

trichostrongyles over the three year study are shown in Figures 3.15 and 3.16 

respectively. Treatments administered in May provided good control o f N. battus, 

which was susceptible to all o f the anthelmintics, and faecal egg counts remained 

reasonably low throughout the rest o f  the season. The Lev treatment given in May 

1995 however resulted in an efficacy o f less than 90 % against this species. Ivm 

treatment and the Fbz/Lev combination provided good control o f  trichostrongyles 

throughout the study. The reduced efficacies seen with Fbz against trichostrongyles 

confirmed the presence o f resistant nematodes against this class o f anthelmintic. 

Results o f the faecal egg count reduction tests (FECRTs) also suggest that the Lev 

treatments given in 1994 and 1995 were not fully effective. Treatment efficacies will 

be discussed in detail in chapter 4 along with the merits o f the FECRT and the end o f  

season controlled efficacy tests (CETs).

3.3.5.2 Lamb faecal egg counts

Figure 3.17 shows the average N. battus faecal egg counts for each group 

whilst Figure 3.18 shows the corresponding trichostrongylid faecal egg counts over 

the study. The pattern o f N. battus faecal egg output was similar in 1993 and 1994, 

peaking in mid-May and remaining minimal following anthelmintic treatment. In 

1993 the control group were treated three weeks after the other groups, by which 

time their N. battus faecal egg counts were already declining. In 1995 there was a 

smaller N. battus peak faecal egg count in mid-May which responded well to 

anthelmintic treatment. Lambs became reinfected with N. battus in June 1995 when 

egg counts averaged 453 EPG in the Fbz/Lev, Lev, Fbz and Ivm treated groups. This 

reinfection was not evident in the controls which were treated 2 weeks previously. 

Statistical differences between groups in terms o f N. battus faecal egg output 

throughout the early season o f each year and overall comparisons are shown in 

Tables 3.15 to 3.18. In terms o f N. battus faecal egg output the controls compared
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favourably to the other groups, having lower counts up until treatment on several 

occasions.

The pattern o f trichostrongylid faecal egg output was similar in 1993 and 1994, 

increasing sharply following turnout but, following anthelmintic treatment, tending 

to increase only slowly. In 1993 the control group were treated three weeks after the 

other groups, by which time their trichostrongylid faecal egg counts were declining. 

In the Fbz/Lev, Lev, Fbz and Ivm groups there was a second wave o f  infection in 

mid-July o f 1993 but these counts subsequently declined. In 1994 the pattern o f  

pasture contamination may have been influenced by the particularly dry spell in May. 

This would have influenced the pasture larval counts and helps to explain why the 

second wave o f infection in this year was limited. The low numbers o f  larvae on the 

pasture at the end o f the 1994 season led to relatively low numbers o f larvae on 

pasture the following spring. When the lambs were treated in mid-May o f 1995 lamb 

average trichostrongylid faecal egg counts were lower than the preceding years. A  

second wave o f infection was evident in the Fbz/Lev, Lev and Fbz groups in mid- 

June o f this year which, as with N. battus faecal egg output, was not evident in the 

control group treated 2 weeks previously. These counts subsequently declined and 

remained low following a mid-seasonal treatment. Statistical differences between 

groups in terms o f trichostrongylid faecal egg counts over the three years are shown 

in Tables 3.19 to 3.21. Differences between the control group and treated groups 

were largely governed by the different times o f treatment. Despite reduced 

anthelmintic efficacy, due to the presence o f resistant parasites, the Fbz group 

compared favourably with the other anthelmintic groups in terms o f trichostrongylid 

faecal egg output over the three seasons. Comparison between total trichostrongylid 

faecal egg output in each year are shown in Table 3.22.
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Figure 3.15 Treatment efficacy against N. battus during the study
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Figure 3.16 Treatment efficacy against trichostrongyles during the study
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Table 3.15 1993 statistical comparison of lamb N. battus faecal egg counts
Comparator

Date Fbz/Lev Lev Fbz Controls Ivm

5/5 - Controls***
Fbz/Lev**

Controls***
Fbz/Lev**

- Controls***
Fbz/Lev**

19/5 Anthelmintic 
(not controls)

Controls** Controls* Controls*** - Controls**

1/6 Lev* Ivm* Fbz/Lev***
Lev***
Fbz***
Ivm***

15/6
(controls treated 8/6)

Controls* Controls*** 
Fbz/Lev** 

Lev*** Ivm**

Controls*

1/7 Lev* Ivm* - Lev** - -

- no significant differences
* significantly lower egg count than comparator P < 0.05, * * P < 0 .0 1 ,* * * P <  0.001

Table 3.16 1994 statistical comparison o f  lamb N. battus faecal egg counts
Comparator

Date Fbz/Lev Lev Fbz Controls Ivm

10/5 - - - Lev* -

25/5 Anthelmintic 
(including controls)

Controls* Controls** - - -

3/6 Controls*** 
Fbz/Lev*** 

Fbz*** Ivm***
16/6 - Controls** Fbz* - - Controls* Fbz*

29/6 - - - - Controls* 
Fbz/Lev* Fbz*

- no significant differences
* significantly lower egg count than comparator P < 0.05, * * P < 0 .0 1 ,* * * P <  0.001

Table 3.17 1995 statistical comparison o f  lamb N. battus faecal egg counts
Comparator

Date Fbz/Lev Lev Fbz Controls Ivm

4/5 - - - - -

18/5 Anthelmintic 
(not controls)

Lev*** Fbz** 
Controls*** 

Ivm* * *
1/6
(controls treated)

Fbz/Lev***
Fbz***
Ivm***

Fbz/Lev**
Ivm**

Fbz/Lev*** 
Lev*** 

Fbz*** Ivm***
16/6 Controls*** Controls*** 

Fbz/Lev* 
Fbz* Ivm*

Controls*** Controls***

28/6 - - - - -

- no significant differences
* significantly lower egg count than comparator P < 0.05, * * P < 0 . 0 1 , * * * P <  0.001
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Table 3.18 Statistical comparison of total N. battus faecal egg output in the groups
o f lambs over each season

Comparator
Year Fbz/Lev Lev Fbz Controls Ivm

1993 - - Lev* Ivm** 
Controls**

- -

1994 Controls** Controls** - - Controls**

1995 Ivm* - - Ivm* -

- no significant differences
* significantly lower egg count than comparator P < 0.05, ** P < 0.01

Table 3.19 1993 statistical comparison o f  lamb trichostrongylid faecal egg counts

Comparator
Date Fbz/Lev Lev Fbz Controls Ivm

5/5 - Fbz/Lev**
Fbz*

- Fbz/Lev***
Fbz**

Fbz/Lev*

19/5 Anthelmintic 
(not controls)

- Fbz** - - Fbz*

1/6 Lev*
Ivm***

Ivm*** Fbz/Lev***
Lev***
Ivm***

Fbz/Lev*** 
Lev*** 
Fbz** 

Ivm** *
15/6
(controls treated 8/6)

Controls***
Lev*

Controls** Controls***
Lev**

- Controls***

1/7 Controls*
Lev**
Fbz**

Fbz*

15/7 Lev* - Lev* - Lev**
Controls*

29/7 - - Lev** - Lev*

11/8 - - Lev* - -

26/8 - - Ivm* - -

- no significant differences
* significantly lower egg count than comparator P < 0.05, ** P < 0.01, *** P < 0.001

108



Table 3.20 1994 statistical comparison of lamb trichostrongylid faecal egg counts
Comparator

Date Fbz/Lev Lev Fbz Controls Ivm
10/5 Lev* - - Lev** Lev**

25/5 A nthelm intic 
(including controls)

Lev* - - Lev** Fbz* -

3/6 Controls**
Ivm**

Controls**
Ivm**

Controls*** 
Fbz/Lev*** 

Lev*** Ivm***

16/6 Controls*** Controls*** Controls*** - Controls**

29/6 Controls*
Fbz**

Fbz* - - Fbz**

13/7 Fbz* Fbz* - - Fbz*

26/7 - - - - -

12/8 - - - - -

17/8 Anthelm intic 
(not controls)

- - - - -

26/8 Ivm* Fbz/Lev**
Ivm***

Fbz/Lev***
Ivm***

Fbz/Lev*** 
Ivm*** Lev*** 

Fbz***

8/9 Ivm* Ivm** - Fbz/Lev* 
Fbz** Ivm***

-

21/9 - Fbz* - Fbz/Lev** Fbz** 
Lev* Ivm**

-

4/10 Ivm** Ivm** - Ivm* -

- no significant differences
* significantly lower egg count than comparator P < 0.05, * * P < 0 .0 1 ,* * * P <  0.001

Table 3.21 1995 statistical comparison o f  lamb trichostrongylid faecal egg counts
Comparator

Date Fbz/Lev Lev Fbz Controls Ivm
4/5 - - - - -

18/5 Anthelmintic 
(not controls)

Lev* Ivm** 
Controls*

- Fbz/Lev*
Ivm***

- -

1/6
(controls treated)

- Fbz/Lev*
Ivm*

Fbz/Lev*
Ivm*

Fbz/Lev** 
Ivm* * *

-

16/6 Controls***
Ivm**

Controls***
JyjYI ♦ ♦ ★

Controls***
Ivm**

- Controls***

28/6 - - - - Controls*

12/7 Anthelmintic 
(not controls)

• - Lev** -

24/7 Ivm** Ivm*** Fbz/Lev*** 
Lev* Ivm***

Fbz/Lev* * *Fbz* * 
Ley*** ivm ***

-

9/8 - - - Fbz/Lev* Fbz* -

23/8 - - - Lev* Lev*

6/9 Ivm* - - Lev*** Fbz* 
Ivm**

-

12/9 - - - Fbz/Lev** Fbz** 
Lev*** Ivm***

-

- no significant differences
* significantly lower egg count than comparator P < 0.05, ** P < 0.01, *** P < 0.001
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Table 3.22 Statistical comparison of total trichostrongylid faecal egg output in the
groups of lambs over each season

Comparator
Year Fbz/Lev Lev Fbz Controls Ivm

1993 - - - - -

1994 Fbz** - - - -

1995 - - Ivm** Ivm** -

- no significant differences
** significantly lower egg count than comparator P < 0.01

Tables 3.23 to 3.25 show the average percentage o f the different 

trichostrongyle species identified by means o f egg dimension measurements 

throughout the season in each year. The patterns seen on each paddock were similar 

each year with Ostertagia / T. colubriformis spp predominating throughout the early 

season and T. vitrinus appearing later in the year. As previously mentioned, results 

o f the lamb CETs carried out at the end o f each season identified only Ostertagia and 

T. vitrinus, and even though the dimension measurement technique cannot 

differentiate between Ostertagia / T. colubriformis it seems likely that the former 

species predominated throughout the study.

Table 3.23 Identification o f 1993 lamb trichostrongyle faecal egg counts

1993 May June July August

Fbz/Lev 1 0 0 %  Ost/Tc 1 00 %  Ost/Tc 100 % Ost/Tc 93 % Ost/Tc 
7 % Tv

Lev 1 0 0 %  Ost/Tc 100 % Ost/Tc 1 00 %  Ost/Tc 88 % Ost/Tc 
12 % Tv

Fbz 100 % Ost/Tc 100 % Ost/Tc 100 % Ost/Tc 93 % Ost/Tc 
7 % Tv

Controls 1 0 0 %  Ost/Tc 1 00 %  Ost/Tc 100 % Ost/Tc 87 % Ost/Tc 
13 % Tv

Ivm 100%  Ost/Tc 100%  Ost/Tc 100 % Ost/Tc 94 % Ost/Tc 
6 % Tv

Ost/Tc, Ostertagia IT. colubriformis spp 
Tv, T. vitrinus
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Table 3.24 Identification o f1994 lamb trichostrongyle faecal egg counts

1994 May June July August September

Fbz/Lev

Lev

Fbz

Controls

Ivm

100%  Ost/Tc 

100%  Ost/Tc 

100%  Ost/Tc 

100 % Ost/Tc 

100 % Ost/Tc

100 % Ost/Tc 

100 % Ost/Tc 

100%  Ost/Tc 

100 % Ost/Tc 

100%  Ost/Tc

100 % Ost/Tc 

100%  Ost/Tc 

100%  Ost/Tc 

100 % Ost/Tc 

100 % Ost/Tc

93 % Ost/Tc 
7 % Tv 
100%  Ost/Tc

100%  Ost/Tc

94 % Ost/Tc 
6 % Tv 
100%  Ost/Tc

79 % Ost/Tc 
21 % Tv 
64 % Ost/Tc 
36 % Tv 
68 % Ost/Tc 
32 % Tv 
88 % Ost/Tc 
12 % Tv 
90 % Ost/Tc 
10 % Tv

Ost/Tc, Ostertagia IT. colubriformis spp 
Tv, T. vitrinus

Table 3.25 Identification o f 1995 lamb trichostrongyle faecal egg counts

1995 May June July August September

Fbz/Lev

Lev

Fbz

Controls

Ivm

100%  Ost/Tc 

100 % Ost/Tc 

100%  Ost/Tc 

100%  Ost/Tc 

100%  Ost/Tc

100%  Ost/Tc 

100 % Ost/Tc 

100 % Ost/Tc 

100%  Ost/Tc 

100%  Ost/Tc

100 % Ost/Tc 

100%  Ost/Tc 

100%  Ost/Tc 

100%  Ost/Tc 

100%  Ost/Tc

100%  Ost/Tc 

100%  Ost/Tc 

100%  Ost/Tc 

100%  Ost/Tc 

100%  Ost/Tc

66 % Ost/Tc 
34 % Tv 
68 % Ost/Tc 
32 % Tv 
62 % Ost/Tc 
38 % Tv 
88 % Ost/Tc 
12 % Tv 
90 % Ost/Tc 
10%  Tv

Ost/Tc, Ostertagia/  T. colubriformis spp 
Tv, T. vitrinus
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3.3.5.3 Lamb body weights

Figure 3.19 shows the average cumulative weight gains o f the lambs 

throughout each season whilst Figure 3.20 shows the average daily weight gain o f  

each group over similar periods o f the three year study. Statistical differences 

between groups in terms o f cumulative weight gains throughout the season and 

overall weight gains are shown in Tables 3.26 - 3.29. In 1993 the control group fared 

less well than the treated groups and were lighter at several points throughout the 

season. By the end o f the 1993 season both the Fbz/Lev and Ivm groups had gained 

significantly more weight than the Fbz and Lev treated groups (P<0.05) and the 

controls (P<0.01). Despite being given anthelmintic on the same date the controls 

gained weight more slowly than the other groups in the first half o f the 1994 season. 

By the end o f 1994 both the Lev and Ivm groups were significantly heavier than the 

control group (P<0.05) but no differences were evident between any o f the treated 

groups. The Fbz group fared less well than the other treated groups at points 

throughout 1995 but by the end o f the season only the Fbz/Lev group had 

significantly heavier overall weight gains than both the Fbz and control groups 

(P<0.05).
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Table 3.26 1993 statistical comparison of lamb cumulative weight gains
Comparator

Date Fbz/Lev Lev Fbz Controls Ivm

5/5 - - - - -

19/5 Anthelmintic 
(not controls)

- Controls***
Fbz***

- - Controls*** 
Fbz* * *

1/6 - Fbz* - Fbz/Lev***
Fbz***

Fbz***

15/6
(controls treated 8/6)

Fbz/Lev*** 
Lev** Fbz** 

Ivm***

1/7 - - Fbz/Lev*
Ivm*

Fbz/Lev***
Ivm*

-

15/7 - - Fbz/Lev* Fbz/Lev***
Ivm**

-

29/7 Fbz/Lev* Fbz/Lev*** 
Lev* Fbz* 

Ivm***

11/8 Fbz/Lev*** 
Lev* Fbz* 

Ivm***

26/8 - - Ivm* Fbz/Lev*** 
Fbz* Ivm***

-

- no significant differences
* significantly heavier than comparator P < 0.05, * * P < 0 .0 1 ,* * * P <  0.001

Table 3.27 1994 statistical comparison o f  lamb cumulative weight gains
Comparator

Date Fbz/Lev Lev Fbz Controls Ivm

10/5 - - - - -

25/5 Anthelmintic 
(including controls)

- - Fbz/Lev* Fbz/Lev*** Lev*** 
Fbz* Ivm*

-

16/6 - - Lev** Fbz/Lev*** Lev*** 
Fbz*** Ivm**

-

29/6 - - - Fbz/Lev*** Lev*** 
Fbz*** Ivm***

-

13/7 - - - Fbz/Lev*** Lev*** 
Fbz** Ivm***

-

26/7 - - - Fbz/Lev*** Lev*** -

12/8 - - - - -

17/8 Anthelmintic 
(not controls)

- - Lev* Ivm* Lev* Ivm* -

8/9 - - - Fbz/Lev* 
Lev*** Ivm*

-

21/9 - - - Lev** Ivm* -
4/10 - - Ivm** Lev* Ivm*** -
- no significant differences
* significantly heavier than comparator P < 0.05, ** P < 0.01, *** P < 0.001
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Table 3.28 1995 statistical comparison of lamb cumulative weight gains
Comparator

Date Fbz/Lev Lev Fbz Controls Ivm

4/5 - - - - -

18/5 Anthelm intic 
(not controls)

Controls**
Fbz/Lev*

Ivm**

1/6
(controls treated)

- - Ivm** - -

16/6 Ivm* - Ivm* - -

28/6 - - Fbz/Lev*
Ivm**

- -

12/7 Anthelm intic 
(not controls)

- - Lev* - -

24/7 - - Lev* Ivm* - -

9/8 - - Fbz/Lev**
Lev*

- -

23/8 - - Fbz/Lev**
Lev*

Fbz/Lev* -

6/9 - - Fbz/Lev* Fbz/Lev* -

12/9 - - Fbz/Lev* Fbz/Lev* -

- no significant differences
* significantly heavier than comparator P < 0.05, ** P < 0.01, *** P < 0.001

Table 3.29 Statistical comparison o f  overall cumulative weight gains in the groups 
o f  lambs over each season

Comparator
Year Fbz/Lev Lev Fbz Controls Ivm

1993 - Fbz/Lev*
Ivm*

Fbz/Lev*
Ivm*

FbzLev**
Ivm**

-

1994 - - - Lev*
Ivm*

-

1995 - - Fbz/Lev* Fbz/Lev* -

- no significant differences
* significantly heavier weight gain than comparator P < 0.05, ** P < 0.01

3.3.5.4 Lamb plasm a pepsinogen values

The average plasma pepsinogen values for the groups o f lambs over the three 

year study are shown in Figure 3.21. Plasma pepsinogen concentrations remained 

well below 1.0 U in the treated and control groups throughout the study. Statistical 

analyses (Tables 3.30 - 3.32) showed no clear differences between groups, although 

the Fbz/Lev treated animals had lower pepsinogen values at several points 

throughout 1993 and 1994.
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Figure 3.21 Average pepsinogen values (±SEM ) fo r  the groups o f  lambs during 
each season
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Table 3.30 1993 statistical comparison of lamb pepsinogen values
Comparator

Date Fbz/Lev Lev Fbz Controls Ivm

5/5 - Fbz/Lev* Fbz* 
Controls* Ivm*

- - -

1/6 - Fbz/Lev* Fbz/Lev** Fbz/Lev**
Ivm*

-

1/7 - Fbz/Lev* Fbz/Lev** Fbz/Lev** Fbz/Lev**

29/7 - - - - -

17/8 - - - - -

8/9 - - - - -

- no significant differences
* significantly lower pepsinogen value than comparator P < 0.05, ** P < 0.01

Table 3.31 1994 statistical comparison o f  lamb pepsinogen values
Comparator

Date Fbz/Lev Lev Fbz Controls Ivm

2/5 Ivm* Ivm*** Fbz* - Ivm** -

16/6 - - - - -

13/7 - Fbz/Lev* Fbz/Lev* - Fbz/Lev**

12/8 - - - - -

21/9 - - - - -

- no significant differences
* significantly lower pepsinogen value than comparator P < 0.05, ** P < 0.01, *** P < 0.001

Table 3.32 1995 statistical comparison o f  lamb pepsinogen values
Comparator

Date Fbz/Lev Lev Fbz Controls Ivm

18/5 Fbz* Ivm* Fbz* Ivm* - - -

16/6 - Fbz/Lev** Fbz*** 
Controls*** Ivm***

- - -

12/7 Fbz* Fbz** Ivm* - - -

23/8 - - - - -

12/9 - - - - -

- no significant differences
* significantly lower pepsinogen value than comparator P < 0.05, ** P < 0.01, *** P < 0.001
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3.4 Discussion

There was little evidence o f  reduced performance in the Fbz treated lambs 

despite the presence o f  a Bz resistant isolate o f T. circumcincta on the paddocks at 

Firth Mains. The Fbz treated animals performed well throughout the first two 

seasons with only occasional differences in weight gains compared to the other 

treated groups. The Fbz treated animals did not perform so well in the early part o f  

1995 but by the end o f  the season only the Fbz/Lev group had gained significantly 

more weight (P<0.05). In 1993 a check in growth was evident in the control lambs 

by the middle o f  June which persisted for the rest o f  the season. These lambs were 

exposed to greater numbers o f N. battus on pasture and treated with anthelmintic 3 

weeks later than the other groups which may explain their reduced performance. 

Despite being given anthelmintic at the same time as the other groups, the controls 

gained weight more slowly than the other treated groups in the first half o f the 1994 

season. This may be explained by the pasture larval counts for N. battus and 

trichostrongylids which were highest on the control paddock in 1994. Interestingly 

these animals displayed the lowest N. battus faecal egg counts in 1994 and there were 

no differences in trichostrongylid egg output compared to the other treated groups.

In 1995 the weight gains o f the controls compared well throughout the season despite 

having only a single treatment in May, which they received two weeks later than the 

other groups. The timing o f treatment resulted in the control animals avoiding a 

wave o f reinfection with both N. battus and trichostrongyles which was experienced 

by the other groups and may account for their comparable performance.

The maximum differences in weight gains between the treated groups at the 

end o f the 1993, 1994 and 1995 seasons were 3.1, 3.6 and 2.6 kgs respectively.

Figure 3.22 shows the average total cumulative weight gains over the three seasons 

for the different treatment groups. The Fbz/Lev and Ivm groups gained significantly 

more weight than the control group (PO.Ol and PO.OOl respectively) and the Fbz 

group (PO .O l). The Lev group also gained more weight than the controls (P O .05) 

but there were no significant differences between these and the Fbz treated animals.
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Figure 3.22 Average total cumulative weight gains (+ SEM) fo r  the different 
treatment groups over three seasons (* significantly heavier weight gam  than 
comparator P<0.05, ** P < 0.0J, *** P < 0.001)

There were no clinical signs o f disease in any o f the groups throughout the 

study. These observations were supported by the plasma pepsinogen concentrations 

for each o f the groups w hich remained relatively low each season. The highest 

average plasma pepsinogen concentration reached in the 1993, 1994 and 1995 season 

was 0.45, 0.35 and 0.40 U respectively. The mean plasma pepsinogen value for 42 

uninfected Scottish Blackface sheep aged six-months in the study o f Armour et al. 

(1966) was 0.273 U. The normal range for pepsinogen from over 1000 samples 

collected from parasite-naive sheep was between 0 - 0.454 U in the study o f Lawton, 

Reynolds, Hodgkinson, Pomroy & Simpson (1996) although the age and breed(s) o f 

the sheep were not specified. The field study by Coop et a/.( 1985) is o f particular 

relevance since the same 0.9 hectare paddocks were used in their study with lambs of 

the same breed and age. The maximal pepsinogen value seen with uninfected 

control lambs grazing the paddocks when they were minimally contaminated was 

approximately 0.4 U (Coop et a l., 1985). The maximal pepsinogen figures for lambs
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given a daily dose o f 500, 1,500, 3,000 or 5,000 T. circumcincta L3 on the otherhand 

were approximately 0.7, 0.8, 1.35 and 1.7 U respectively (Coop et al., 1985). These 

peak values were reached following 6  weeks o f daily dosing but by week 10  the 

average plasma pepsinogen values for all o f these groups had fallen to approximately 

0.4, 0.5, 0.6 and 0.65 U respectively (Coop et al., 1985). It is possible therefore that 

pepsinogen values may well have been higher at a particular point in the early part o f  

each season and were inadvertently missed since the lambs were only monitored on a 

monthly basis. Nevertheless, the plasma pepsinogen values remained relatively low  

throughout the season and suggests that the lambs in this study were not facing a 

particularly high level o f larval challenge from pasture.

The density o f  coccidial oocysts was notably higher at the start o f  sampling in 

May 1995 compared to the previous two years. O f the 11 species o f Eimeria  

described in the UK only E. ovinoidalis and E. crandallis are pathogenic. The other 

9 species are not known to be very harmful, but their occurrence in mixed infections 

can pose problems in diagnosis (Catchpole, Norton & Gregory, 1993). Whereas very 

young lambs are relatively resistant to infection, susceptibility has been shown to 

increase progressively up to at least 4 weeks o f age (Gregory & Catchpole, 1989). 

There are two possible explanations for the increased counts in 1995. Firstly, lambs 

may not have been exposed to challenge at housing and secondly, the lambs went 

onto pasture a week earlier in this year which may have affected their exposure 

pattern.

Concurrent infection in a rodent model with coccidia and Nippostrongylus 

brasiliensis has been shown to produce increased egg production and extended 

patency o f the nematode infection (Bristol, Pinon & Mayberry, 1983). An 

interaction between coccidia and N. battus has also been shown to exist in lambs on 

pasture (Catchpole & Harris, 1989). These workers demonstrated that simultaneous 

infection with pathogenic coccidia and N. battus increased both the clinical 

symptoms and the numbers o f nematode eggs. Faecal consistencies tended to be 

lower in May 1995 and it is possible that this may have exerted some influence on 

apparent N. battus faecal egg counts. However, it was in this year that weight gains 

in all groups were greatest despite the increased coccidial counts and reduced faecal 

consistencies. The species o f coccidia present were not identified and it is possible
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therefore that neither pathogenic species featured in this study. There was a wave o f  

reinfection in the treated groups with increased N. battus FECs in mid June and it is 

possible that the interaction between coccidia and N. battus may have affected the 

development o f immunity in some way. A more likely explanation is that the timing 

o f anthelmintic treatment affected the development o f immunity towards N. battus in 

this year. The control group were treated two weeks later than the other groups in 

1995 and no second wave o f infection with N. battus was evident in these animals 

following anthelmintic treatment.

As previously mentioned the field study by Coop et <z/.(1985) is o f  particular 

relevance since the same 0.9 hectare paddocks were used in their study with lambs of 

the same breed and age. These workers demonstrated average daily growth rates for 

minimally parasitised control animals o f 155 grammes per day over the first nine 

weeks o f a three month period commencing in July. Table 3.33 shows the average 

daily liveweight gains o f  the treated groups in each year o f the present study over a 

comparable nine week period.

Table 3.33 Average daily liveweight gain in grammes (+SD) o f  the groups o f  lambs 
over a nine week period  from  July - September o f  each year
Year Fbz/Lev Lev Fbz Ivm

1993 157.9 (47.8) 148.5 (40.0) 147.3 (48.2) 159.4 (54.6)

1994 136.8 (44.9) 128.9 (34.9) 127.1 (35.4) 135.6 (30.8)

1995 153.2 (29.2) 145.1 (27.8) 128.6 (32.1) 129.3 (54.9)

Although the gains seen by Coop et al. (1985) offer a valuable contrast, the 

cumulative weight gains o f the animals before July should also be taken into 

consideration when making comparisons. The average cumulative weight gains o f  

the treated groups before this period in 1993, 1994 and 1995 were 12.1 kg, 9.4 kg 

and 16.7 kg respectively. Consequently, although lambs in 1995 seem to have fared 

less favourably over the nine weeks, it was in this year that the highest initial gains 

were achieved in all groups. The capacity for maximal growth should be taken into 

account therefore when assessing gains over such a restricted period.
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Nevertheless, if  we consider the gain o f 155 grammes seen by Coop et al. 

(1985) as an index o f the maximal potential growth rate on pasture o f  that age, 

quality and location when the paddocks were minimally contaminated, the rates seen 

over the three year study compare favourably despite seasonal differences in climate, 

herbage availability and parasite contamination. In 1994 for example, when gains in 

all groups were poorest over this period, the figure for the Fbz treated lambs equates 

to a weight gain o f less than 1 kg per month below that seen with the minimally 

parasitized animals o f Coop et al. (1985).

There were very few differences between the dams o f the treated and control 

lambs with no evidence o f reduced body weight, condition score or fleece weight 

over the three year study. Sampling commenced in early May o f each year and in 

1993 and 1994 the PPRI in ewes was relatively insignificant. The predominant 

species o f eggs derived from reinfection post-turnout were from Ostertagia. Egg 

counts for N. battus did not feature in the post parturient rise despite heavy pasture 

contamination and remained low or negative throughout the season confirming work 

by Thomas (1959b). The PPRI phenomenon was most evident in 1995 when pasture 

larval counts were at their lowest. Recent work suggests that nutrition may play an 

important role in governing periparturient immunity (M. van Houtert, personal 

communication). It is possible that the ewes were under some nutritional stress in 

1995 which would explain their response despite lower pasture contamination. 

Nevertheless, no compromise in ewe production was evident compared to previous 

years and it was in 1995 that lambs in all groups performed best.

From the lamb trichostrongylid egg counts over the three years (Figure 3.18) it 

can be seen that the peak count in May was lowest in 1995. It could be argued that 

the lamb treatments were administered at a more strategic point in this season before 

counts had reached a ‘maximum’. However, the control lambs were treated two 

weeks later without any further increase in egg count suggesting that pasture 

contamination may have been lower in this year. This is supported by the average 

pasture larval counts for trichostrongylids seen on the paddocks (Figure 3.10) and 

may help to explain why the initial cumulative weight gains for all groups were 

greatest in 1995.
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Faecal egg counts are recognized as an insensitive quantitative measure o f  

pathogenicity o f parasitic infections and there is no simple relationship between them 

and worm burdens, clinical signs or liveweight gains (Chiejina & Sewell, 1974b). 

They serve to confirm that worms are reproductively active but do not convey 

quantitative significance in terms o f effect on animal performance (Coop et al.,

1976). In the case o f Ostertagia species the most pathogenic stage is caused by 

emerging fourth stage larvae (Holmes, 1985) and therefore, on this criterion alone, 

faecal egg counts are o f limited value in assessing effects on performance (Coop et 

al., 1977). Moreover, despite five-fold differences in larval intake and large 

differences between groups in effects on performance, faecal egg counts were similar 

in all groups in the study conducted by Coop et al. (1977). This stereotypic effect 

seen with Ostertagia species has been noted by several other workers (Michel, 1969; 

Jackson & Christie, 1979 and 1984; Coop et al., 1976 and 1985) and should be taken 

into consideration when assessing the significance o f faecal egg counts with this 

species.

Nevertheless, faecal egg counts do offer a convenient and valuable tool in the 

monitoring o f parasitic infection, especially in young lambs. In a study undertaken 

to determine the relationship between egg and worm counts McKenna (1981) studied 

the gastrointestinal tracts o f 190 ‘young’ (up to 12 months o f age) and 131 ‘old’

(over 12 months o f age) sheep harbouring mixed infections. By comparing strongyle 

species other than Nematodirus, McKenna (1981) showed that faecal egg counts 

were closely correlated with worm burdens in young outbred sheep with a weaker 

correlation in older animals. Faecal egg counts were also found to be a good 

indicator o f the potential pathogenicity o f  the burden in both young and older sheep 

but it was concluded that their diagnostic significance should never be considered in 

isolation. Rather they should always be interpreted in relation to the history and 

management o f the flock and be supported by clinical signs such as anaemia, 

diarrhoea and illthrift. Stear, Bishop, Duncan, McKellar & Murray (1995) found that 

despite only moderate repeatability, faecal egg counts were the parasitological 

parameter most strongly associated with worm burdens in comparison with 

eosinophil counts and plasma pepsinogen concentrations during experimental 

infections with O. circumcincta in lambs aged 6  and 9 months. Similarly,
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Williamson, Blair, Garrick, Pomroy & Douch (1994) found a reasonable relationship 

between worm burden and faecal egg count in fleeceweight-selected and control 

sheep using mixed infections, which was stronger in unselected animals.

Between season differences in climate and herbage availability make it difficult 

to make direct comparisons o f the results from each year. The epidemiological 

pattern o f  trichostrongyle pasture contamination in 1994 and 1995 was markedly 

different to that o f 1993 which saw a characteristic biphasic pattern typically seen on 

‘dirty’ pasture (Thomas & Boag, 1972). This was a consequence o f the particularly 

dry spells in May 1994 and 1995 which limited the size o f the early season 

suprapopulation peak in late June o f these years, thereby affecting the pattern o f  

contamination throughout the rest o f the season. Differences between the average 

minimum daily grass temperatures and rainfall were also evident, both o f which 

would be expected to affect the microclimate and consequently the epidemiology o f  

pasture contamination. The temperature requirement for maximal larval 

development o f free-living stages o f T. circumcincta has recently been shown to vary 

depending upon moisture levels (Rossanigo & Gruner, 1995) adding further to the 

complexities o f comparisons.

This study has provided evidence that drugs against which resistance has been 

selected may be used in the management o f PGE, at least when it involves less 

pathogenic species with a low biotic potential such as Teladorsagia {Ostertagia). 

However, one major question that has to be considered is the relative pathogenicity 

and immunogenicity o f the particular Bz-resistant isolate o f  T. circumcincta at Firth 

Mains. Since the selection process inevitably produces resistant parasites which are 

genetically restricted, it is possible that they may differ in their pathogenicity and/or 

immunogenicity in comparison to unselected susceptible isolates. It is for this reason 

that a study was undertaken to compare the responses o f different resistant isolates o f 

T. circumcincta to that o f a susceptible isolate, the results o f  which will be discussed 

in chapter 5.
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CHAPTER 4

Field study on the control of a fenbendazole resistant isolate 

of Teladorsagia (iOstertagia) - treatment efficacy
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4.1 Introduction

As the results from chapter 3 demonstrate there may be a small penalty upon 

production associated with the continued use o f drugs against which resistance 

already exists. However, there was no evidence that the penalty increased 

successively over the three seasons that were studied. Continuing to use resistance 

selected drugs (RSDs) may also have the drawback o f selecting resistant populations 

o f other target species (Coles & Rouch, 1992). The faecal egg count reduction test 

(FECRT) and controlled efficacy test (CET) are commonly practiced in vivo 

techniques used to detect resistance but are known to be relatively insensitive (Martin 

et al., 1989). Consequently they are only likely to provide evidence o f  gross changes 

in resistance within a population. Although in vitro bioassays such as the egg hatch 

assay have the potential to provide data on the resistance o f a population there is a 

requirement for known susceptible isolates (Hunt & Taylor, 1989). In practice egg 

hatch assays are also flawed since it is known that the expression o f resistance to the 

B z’s varies during the course o f an infection (Borgsteede & Couwenberg, 1987; 

Kerboeuf & Hubert, 1987). The lack o f  sensitivity o f the resistance detection 

methods suggests that it will be necessary to use genetic markers associated either 

directly or indirectly with resistance in order to obtain accurate measurements o f  

changes at the population level. The current study provides the opportunity to 

examine within and between season variation in efficacy in animals carrying 

susceptible and resistant populations.

Results o f  chapter 3 have also demonstrated the effectiveness o f  a Bz-Lev 

combination in the control o f the Bz-resistant isolate o f Teladorsagia on the 

paddocks at Firth Mains. It has been suggested that the risk o f selecting for multiple 

resistance in parasites already resistant to one o f the components o f a Bz-Lev 

combination is unlikely to be greater than that which would otherwise develop from 

the use o f the other component separately (McKenna, 1990b). The success o f this 

strategy was also examined in terms o f treatment efficacies using FECRTs and CETs 

throughout the three year study.

The investigation also provided an ideal model system for examining ways o f  

improving the efficacy o f RSDs. The increasing prevalence o f anthelmintic 

resistance has focused attention on the need to maximize the useful life span o f
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present and any future anthelmintic compounds. As a result, recent research has 

investigated means o f increasing drug bioavailability in order to enhance efficacy 

against resistant species. Extending the period o f drug administration by dividing the 

dose has been shown to increase the efficacy o f Bz anthelmintics. Bogan et al. 

(1987), working with goats, demonstrated that the repetition o f three administrations 

o f oxfendazole at 24 hour intervals produced a significant increase in the area under 

the plasma concentration-time curve (AUC) compared to a single equivalent total 

dose. A similar enhancement o f drug bioavailability produced increased efficacies 

against Bz-resistant isolates o f H.contortus, Ostertagia spp and Trichostrongylus spp 

(Sangster et al., 1991b). In addition, greater efficacy was recorded by Sangster et al. 

(1991b) when the oxfendazole doses were separated by a 12 compared to a 24 hour 

interval.

Altering feed intake has also been shown to enhance Bz efficacy. Recent 

evidence suggests that Bz anthelmintics associate strongly with particulate digesta in 

the rumen (Hennessy, Ali & Tremain, 1994) and that drug availability is significantly 

influenced by the rate o f passage o f digesta (Ali & Chick, 1992; Taylor, Mallon, 

Blanchflower, Kennedy & Green, 1992). Ali & Hennessy (1993) found that halving 

feed intake o f sheep for 36 hours before and after treatment slowed digesta flow rate 

and prolonged the period for metabolite absorption/availability. As a result, the 

activity o f oxfendazole was significantly increased against Bz-resistant isolates o f  

H.contortus and T.colubriformis. Increased efficacy appears to be influenced by 

drug-digesta particle association in the rumen which, by regulating the rate and 

duration o f metabolite availability, is a major determinant o f the pharmacokinetic 

disposition o f oxfendazole in ruminants (Hennessy et al., 1994). Similar results 

against Bz-resistant isolates o f H.contortus and T.colubriformis have been 

demonstrated with albendazole despite intrinsic pharmacokinetic differences 

compared to oxfendazole (Hennessy, Ali & Sillince, 1995).

Modification o f drug metabolism is another method which has been shown to 

enhance treatment efficacy against resistant parasites. In a laboratory study, using 

the Firth Mains Bz-resistant isolate o f T. circumcincta, Benchaoui & McKellar (1994) 

demonstrated an increase in worm reduction o f over 80 %  compared to conventional 

Fbz treatment by co-administering piperonyl butoxide, a novel Bz synergist.
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Piperonyl butoxide is a metabolic inhibitor o f cytochrome P450. This enzyme system  

is found in liver microsomes and is involved in the mixed-function oxidization o f  

xenobiotic compounds in order to facilitate their excretion. As a result o f piperonyl 

butoxide co-administration, the metabolism o f Fbz and its active sulphoxide 

metabolite were inhibited, resulting in extended bioavailability o f these metabolites 

and increased treatment efficacy.

4.2 Materials and methods

4.2.1 Experimental Design

The experimental design was outlined in chapter 3 with the treatment 

allocation, stocking details and treatment dates in Tables 3.1 and 3.2. A non

suppressive control regime was adopted consisting o f an initial anthelmintic 

treatment in May to control Nematodirus and a summer drench to control other 

gastrointestinal nematodes when necessary. Lambs were treated at the 

manufacturer’s recommended dose (MRD) for their allocated drug on the basis o f  

liveweight. Lambs within the control group were treated only when required on 

welfare grounds with ivermectin (Oramec, MSD Agvet UK). At weaning the ewes 

were removed from the paddocks and the lambs grazed until o f marketable size. At 

the end o f each season a number o f lambs from each treatment group were used in a 

CET.

4.2.2 Faecal egg count reduction tests (FECRTs)

Lambs were faecal sampled on day 0 and treated on the basis o f  liveweight at 

the relevant MRD for sheep before returning to pasture. Since the study was 

primarily concerned with monitoring effects on production it was not feasible to 

include untreated control animals as recommended by WAAVP guidelines (Coles et 

al., 1992) for the anthelmintic treatments given in May o f each year. Faecal egg 

counts were determined using a flotation technique described in chapter 2.2.3. Eggs 

from each group were pooled and identified by means o f an image shearing 

technique, described in chapter 2.2.4. Treatment efficacies were calculated using the 

formula:

129



%  Reduction = 100 (1 - Xt / Xo), where Xo and Xt are the treated group 

arithmetic mean egg counts at days 0 and 10-14 respectively.

Confidence intervals (95 %) were calculated according to WAAVP guidelines 

(Coles et al., 1992) although day 0 faecal egg counts for the treated groups were used 

to make comparisons rather than day 10-14 counts o f untreated control animals.

4.2.3 Controlled efficacy tests (CETs)

At the end o f each season groups o f animals (n = 6 ) from each paddock were 

used in CETs based on their previous anthelmintic exposure. All animals were faecal 

sampled and weighed two days before treatment and allocated into balanced groups 

such that each group had members with similar faecal egg count and bodyweight.

The animals were faecal sampled again on day 0 and treated on the basis o f  

liveweight at the relevant MRD for sheep. Lambs remained housed following 

treatment to avoid the possibility o f post-treatment re-infection. FECRTs using 

untreated control animals were performed in conjunction with the CETs, the 

efficacies o f which were calculated according to WAAVP guidelines (Coles et al., 

1992) using the formula:

%  Reduction = 100 (1 - Xt / Xc), where Xt and Xc are the treated and control 

group arithmetic mean egg counts respectively at 10-14 days.

Following slaughter the gastrointestinal tract was removed and the abomasal 

and small intestinal worm burdens estimated using 2  % sub-samples as described in 

chapter 2.3. Efficacies resulting from treatment were calculated according to 

WAAVP guidelines (Wood et al., 1995) using geometric mean data in the following 

formula:

% Reduction = 100 (1 - Xt / Xc), where Xt and Xc are the respective treated 

and control group geometric mean worm counts at slaughter.

Concerns have been raised as to whether the use o f geometric mean worm 

burdens is appropriate in the calculation o f drug efficacy (Dash, Hall & Barger,

1988). Therefore % reductions were also calculated using arithmetic mean worm 

data as a comparison. In an effort to reduce the costs o f the study all lambs, except 

those o f the Fbz group in 1994, were slaughtered with the co-operation o f a local 

abattoir (Stobbarts, Gorgie, Edinburgh). In 1993 all animals were slaughtered on day
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14 post treatment whereas in 1994 and 1995 this date was extended by one week due 

to new regulations on withdrawal periods.

4.2.4 Reduced feed  intake and divided dosing

The effect o f  feed withdrawal upon the treatment efficacy o f Fbz was 

investigated at the end o f season CET in 1993. The effects o f feed withdrawal and 

divided-dosing upon the treatment efficacy o f Fbz were investigated during the mid- 

seasonal FECRT in 1994. The synergistic effects o f feed withdrawal and divided 

dosing upon the treatment efficacy o f Fbz were investigated in the 1995 CET. The 

effect o f  feed withdrawal upon the treatment efficacy o f  Lev was also investigated in 

the 1995 CET.

All animals were faecal sampled and weighed two days before treatment and 

allocated into balanced groups such that each group had members with similar faecal 

egg count and bodyweight. Group treatments were assigned randomly and the 

animals in the feed reduction group housed 24 hours prior to drug administration. 

This group was allowed water ad libitum but denied access to feed whilst the other 

groups remained at pasture. Faecal samples were taken again on day 0 and groups 

treated on the basis o f liveweight with the relevant MRD for sheep.

In the 1994 FECRT, the Fbz dose was divided with half the MRD given at time 

0 and half after a 12 hour interval (2.5 + 2.5 mg kg"1), with the animals returning to 

pasture during this interval. In the 1995 CET, lambs were given half o f a double- 

MRD following feed withdrawal at time 0 and the other half after a 24 hour interval 

(5 + 5 mg kg’1), with the animals remaining housed until slaughter.

4.2.5 Piperonyl butoxide

The effect o f the co-administration o f piperonyl butoxide upon the treatment 

efficacy o f  Fbz was investigated at the end o f season CET in 1994. Eight lambs were 

drafted in from the control group, two o f which were assigned to each o f the groups 

in order to provide sufficient animals for statistical comparisons. All animals were 

faecal sampled and weighed two days before treatment and allocated into balanced 

groups such that each group had members with similar faecal egg count and 

bodyweight. Group treatments were assigned randomly and faecal samples re-taken
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on day 0  before treating animals on the basis o f liveweight at the relevant dose rate. 

Group 1 lambs were treated with Fbz at the MRD for sheep (5 mg kg"1) whereas 

those o f group 2 remained as the untreated controls. Group 3 were orally 

administered piperonyl butoxide at a dose rate o f 63 mg kg’1 and acted as controls for 

this compound. Group 4 were co-administered both Fbz (5 mg kg’1) and piperonyl 

butoxide (63 mg kg’1). Since the piperonyl butoxide treated lambs were unsuitable 

for commercial use the four Fbz groups were slaughtered in-house on day 14 whereas 

the other anthelmintic groups in the 1994 CET were slaughtered at the abattoir on 

day 2 1 .

4.2.6 Statistical analyses

Differences between treatment group faecal egg count and worm burden 

reductions were determined by Log10 (x+1) transformation prior to analysis o f  

variance (Minitab, version 10.0).

4.3 Results

4.3.1 FECRTs

A graphical representation o f the treatment efficacies against both N. battus and 

other strongyles during the study was shown in chapter 3 (Figures 3.15 and 3.16). 

Tables 4.1 to 4.5 show the pre- and post-treatment group arithmetic mean faecal egg 

counts for each group and the resulting % efficacies o f treatment against N. battus, 

including 95 % confidence intervals where appropriate. At the time o f anthelmintic 

treatment in August 1994 the faecal egg counts for N. battus in all groups were 

minimal and efficacies against this species have not been included.
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Table 4.1 N. battus faecal egg count reductions in May 1993

Treatment EPG (± SD) day 0 EPG (± SD) day 12 % Reduction 95 % CIs

Fbz/Lev 2392.2(1995.5) 2.4 (5.1) 99.90 99.7, 100
Lev 825.0 (702.6) 0.4 (0.8) 99.95 99.9,100
Fbz 1461.7(1352.3) 5.2(11.9) 99.64 99.0, 99.9
Ivm 1117.4 (935.5) 0.3 (0.7) 99.97 99.9, 100

Table 4.2 N. battus faecal egg count reductions in May 1994

Treatment EPG (± SD) day 0 EPG (± SD) day 10 %  Reduction 95 % CIs

Fbz/Lev 803.6 (590.0) 0 .0  (0 .0 ) 1 0 0 -

Lev 1174.5 (1104.2) 16.2 (31.2) 98.62 96.3, 99.5
Fbz 986.0 (951.8) 0.5 (1.1) 99.94 99.9, 100
Ivm 713.2 (660.6) 0.2 (0.4) 99.97 99.9, 100

Table 4.3 N. battus faecal egg count reductions in August 1994

Treatment EPG (± SD) day 0 EPG (± SD) day 10 %  Reduction 95 % CIs

Fbz/Lev 28.3 (67.2) 0.2 (0.7) 99.29 94.5, 99.9
Lev 22.6 (37.8) 0 .0  (0 .0 ) 10 0 -

Fbz* - - - -

Ivm 12.3 (27.7) 0 .0  (0 .0 ) 1 0 0 -

* feed reduction and divided dose study undertaken

Table 4.4 N. battus faecal egg count reductions in May 1995

Treatment EPG (± SD) day 0 EPG (± SD) day 14 % Reduction 95 % CIs

Fbz/Lev 1823.6(1065.7) 1.3 (3.3) 99.93 99.8, 100
Lev 588.2 (471.9) 76.1 (114.8) 87.06 71.7, 94.1
Fbz 784.9 (498.9) 12.6(19.1) 98.39 96.6, 99.2
Ivm 534.5 (323.1) 1.3 (4.2) 99.76 98.9, 99.9

Table 4.5 N. battus faecal egg count reductions in July 1995

Treatment EPG (± SD) day 0 EPG (± SD) day 10 % Reduction 95 % CIs

Fbz/Lev 143.2 (197.2) 0 .0  (0 .0 ) 1 0 0 -

Lev 102.9(185.7) 0.1  (0 .2 ) 99.90 99.6, 100
Fbz 98.2(161.7) 0 .0  (0 .0 ) 1 0 0 -

Ivm 152.6(197.3) 0 .0  (0 .0 ) 1 0 0 -
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The anthelmintic treatments administered in May o f each year, and July 1995, 

provided good control o f N. battus with each compound approaching 100 % efficacy 

against this species. The Lev treatment given in May 1995 however resulted in an 

efficacy o f less than 90 %.

Tables 4.6 to 4.10 show the group arithmetic mean faecal egg counts pre- and 

post-treatment for each group and the resulting % efficacies o f treatment against 

trichostrongyles over the study including 95 % confidence intervals.

Table 4.6 Trichostrongylid faecal egg count reductions in May 1993

Treatment EPG (± SD) day 0 EPG (± SD) day 12 % Reduction 95 % CIs

Fbz/Lev 560.3 (631.6) 18.0(17.7) 96.78 94.0, 98.3
Lev 529.8 (363.2) 4.4 (4.5) 99.17 98.6, 99.5
Fbz 239.6(196.9) 58.6 (27.6) 75.54 63.7, 83.5
Ivm 449.1 (297.2) 0.2 (0.5) 99.95 99.9, 100

Table 4.7 Trichostrongylid faecal egg count reductions in May 1994

Treatment EPG (± SD) day 0 EPG (± SD) day 10 %  Reduction 95 % CIs

Fbz/Lev 396.0 (313.4) 7.5(10.1) 98.10 96.1,99.1
Lev 188.8 (253.6) 14.8 (27.6) 92.16 77.5, 97.3
Fbz 204.1 (128.1) 57.6 (42.1) 71.78 56.1,81.8
Ivm 544.1 (398.5) 0.2 (0.7) 99.97 99.8, 100

Table 4.8 Trichostrongylid faecal egg count reductions in August 1994

Treatment EPG (± SD) day 0 EPG (± SD) day 10 % Reduction 95 % CIs

Fbz/Lev 211.3 (127.7) 8.12(17.0) 96.16 89.6, 98.6
Lev 222.0(151.4) 86.9(195.8) 60.86 0, 86.7
Fbz* - - - -

Ivm 257.3 (243.8) 0.1 (0.5) 99.96 99.7, 100
* feed reduction and divided dose study undertaken
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Table 4.9 Trichostrongylid faecal egg count reductions in May 1995

Treatment EPG (± SD) day 0 EPG (± SD) day 14 % Reduction 95 % CIs

Fbz/Lev 3 4 5 .4  (349.0) 23.8 (24.2) 93.11 86.7, 96.4
Lev 168.1 (190.4) 102.0 (84.6) 39.32 0 , 6 8 .1

Fbz 209.6 (197.4) 159.9(127.7) 23.71 0, 56.7
Ivm 136.0(151.5) 0 .0  (0 .0 ) 1 0 0 -

Table 4.10 Trichostrongylid faecal egg count reductions in July 1995

Treatment EPG (± SD) day 0 EPG (± SD) day 10 % Reduction 95 % CIs

Fbz/Lev 188.0 (230.1) 11.1 (27.2) 94.10 79.3, 98.3

Lev 91.7(103.7) 21.4 (28.2) 76.66 48.2, 89.4
Fbz 183.8(174.6) 81.3 (120.6) 55.77 0.9, 80.3
Ivm 145.9(115.0) 0.1 (0.5) 99.93 99.5, 100

Pre- and post-treatment egg measurements identified 100 % Teladorsagia for 

all o f the groups confirming that the paddocks were contaminated predominantly 

with this species at these points in the season. According to WAAVP guidelines 

(Coles et al., 1992), resistance is present if  the percentage reduction is less than 95 % 

and the lower confidence interval is less than 90 %. If only one o f these two criteria 

is met then resistance is suspected. Under these assumptions, the efficacy o f Ivm 

against trichostrongylids remained highly effective over the three year study. The 

Fbz/Lev combination was fully effective for the treatments given in May 1993 and 

May 1994 but resistance was suspected for the treatment given in August o f 1994. 

Efficacies calculated for the FECRT suggest that resistance was also present to this 

drug combination for the treatments administered in May and July o f 1995. The Lev 

treatment given in May 1993 was fully effective against trichostrongylids but results 

of remaining FECRTs suggest that resistance to this compound was present. The 

faecal egg count reduction o f 75 % seen with Fbz in May 1993 confirmed the 

presence o f resistant species to this drug upon commencement o f the study. 

Subsequent FECRTs also indicated Bz-resistance, but efficacies did not follow any 

consistent pattern.
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4.3.1.1 Reduced feed  intake and divided dosing

As part o f the August treatment in 1994 to control trichostrongyles the 

opportunity was taken to investigate the effects o f feed withdrawal and divided 

dosing upon the treatment efficacy o f Fbz. FECRT calculated efficacies for the 

different methods o f drug presentation are shown in Table 4.11. Pre- and post

treatment egg measurements identified 100 % Teladorsagia confirming that the 

paddock was contaminated predominantly with this species at this point in the 

season. Dividing the dose with a 12 hour interval resulted in an increased efficacy o f  

28.8 % compared to conventional treatment although this was not statistically 

significant. Administering the MRD following a 24 hour period o f food withdrawal 

on the otherhand resulted in a significant increase compared to conventional 

treatment o f 39.7 %.

Table 4.11 Faecal egg count reductions in sheep naturally infected with Bz-resistant 
T. circumcincta treated with Fbz either conventionally, dividing the dose with a 12 
hour interval or following 24 hours offood withdrawal. Including 95 % confidence 
intervals and differences compared to conventional treatment

Group Treatment EPG EPG EPG % 95%  P value

(n=6) (± SD) (± SD) (± SD) Reduction CIs

day -2 day 0 day 10

1 Conventional 218 171 86.7 49.3 0, 81 -

(5 mg k g '1) 0 9 8 ) 0 2 6 ) (77)
2 Divided dose 211 155 34 78.1 21, 94 0.13

(2.5 + 2.5 mg k g '1) (243) (115) (45)
(12 hour interval)

3 24 hour food withdrawal 223 318 35 89.0* 59, 97 0.03
followed by 5 mg kg"1 (235) 0 9 6 ) (50)

* Significantly different (P < 0.05)

4.3.2 CETs

4.3.2.1 CET faecal egg count reductions

Trichostrongylid FECRTs performed in conjunction with the 1993, 1994 and 

1995 CETs, determined according to WAAVP guidelines, are shown in Tables 4.12- 

4.14. Reductions calculated using FECs o f the treated group on day 0 are also 

included for comparison. Invariably the FECs o f the untreated control lambs
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increased markedly for each o f the treatment groups upon housing. Efficacies 

calculated using treated and untreated control mean FECs on day 10-14 (as suggested 

by WAAVP guidelines) were higher than those calculated using treated counts on 

day 0. Only Ivm treatment was effective in reducing FECs o f the housed animals by 

more than 95 %. Calculated efficacies (WAAVP method) for the Fbz/Lev group 

ranged from 82 - 92 %  whilst that o f the conventionally treated Lev and Fbz groups 

between 2 0 - 5 1  and 0 - 72 % respectively. As with the field FECRTs the calculated 

efficacies did not follow any consistent pattern.

Table 4.12 1993 CET faecal egg count reductions calculated using mean egg counts 
o f  the treatment and control groups on day 10-14, WAAVP, or by comparison to the 
treatment group count on day 0

Treatment 
(n =  6)

W eight (kg) 
(± SD) 
day -2

EPG 
(± SD) 
day -2

EPG 
(± SD) 
day 0

EPG 
(± SD) 
day 13

%
Reduction

WAAVP (day 0)

Fbz/Lev

Untreated controls 38.5 (5.2) 97 (69) 151 (121) 470 (178) -

Conventional (5 + 7.5 mg kg'1) 

Ivm

39.2 (5.7) 88 (55) 179(119) 47 (47) 90.0 (73.7)

Untreated controls 40.8 (2.4) 101 (136) 95 (61) 602 (495) -

Conventional (0.2 mg kg'1) 

Lev

41 .0 (1 .7 ) 9 9 (1 3 9 ) 90 (56) 1 (2 ) 99.8 (98.9)

Untreated controls 40 .0 (3 .5 ) 121 (84) 154 (98) 338 (271) -

Conventional (7.5 mg kg'1) 

Fbz

40.0 (2.8) 123 (88) 146(152) 27 1 (2 0 2 ) 19.9 (0)

Untreated controls 38.3 (5.6) 128(109) 185(160) 745 (542) -

Conventional (5 mg kg'1) 38.2 (3.0) 129(101) 151 (122) 210 (1 5 9 ) 71.8 (0)

N o feed (24 hours) followed by 
(5 mg kg'1)

38.5 (3.9) 113 (106) 127(103) 137(116) 81.6 (0)
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Table 4.13 1994 CETfaecal egg count reductions calculated using mean egg counts 
o f  the treatment and control groups on day 10-14, WAAVP, or by comparison to the 
treatment group count on day 0

Treatm ent 
(n = 6)

Weight (kg) 
(± SD) 
day -2

EPG 
(± SD) 
day -2

EPG 
(± SD) 
day 0

EPG 
(+ SD) 
day 14

%
Reduction 

WAAVP (day 0)
Fbz/Lev

Untreated controls 38 .8 (5 .1 ) 142(103) 195(190) 564 (338) -

Conventional (5 + 7.5 mg kg'1) 38.8 (9.6) 145 (99) 162(116) 98 (162) 82.6 (39.5)

Ivm

Untreated controls 44.8 (6.8) 104 (63) 87 (53) 20 7 (1 8 4 ) -

Conventional (0.2 mg kg’1) 45.3 (5.1) 94 (74) 95 (108) 0.0 100 (100)

Lev

Untreated controls 39.4 (6.5) 121 (48) 188 (76) 602 (306) -

Conventional (7.5 mg kg'1) 39.2 (4.1) 117(59) 120 (58) 323 (212) 46.4 (0)

Fbz

Untreated controls 40.1 (3.3) 107 (82) 114(115) 498 (255) -

Piperonyl butoxide (63 mg kg'1) 39.3 (6.9) 115(134) 163 (106) 3 6 2 (167) -

Conventional (5 mg kg'1) 40.0 (6.3) 113 (158) 70 (94) 449 (262) 0 (0 )*

Fbz (5 mg kg'1) +
Piperonyl butoxide (63 mg kg'1)

39.4 (4.2) 105 (104) 145 (142) 201 (113) 53.2 (0)*

* Using pooled faecal egg counts o f  untreated and PB controls
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Table 4.14 1995 CET faecal egg count reductions calculated using mean egg counts 
o f  the treatment and control groups on day 10-14, WAAVP, or by comparison to the 
treatment group count on day 0

Treatment 
(n = 6)

W eight (kg) 
(± SD) 
day -2

EPG 
(± SD) 
day -2

EPG 
(± SD) 
day 0

EPG 
(± SD) 
day 14

%
Reduction  

WAAVP (day 0)

Fbz/Lev

Untreated controls 40.9 (5.2) 88 (52) 67 (56) 410 (2 0 3 ) -

Conventional (5 + 7.5 mg kg"1) 40.9 (4.3) 90 (45) 95 (80) 34 (37) 91.9 (64.2)

Ivm

Untreated controls 42.6 (4.0) 56 (24) 55 (36) 335 (136) -

Conventional (0.2 mg kg"1) 42.4 (7.2) 55 (40) 78 (69) 0.2 (0.4) 99.9 (99.7)

Lev

Untreated controls 41.0 (3.9) 62 (57) 61 (44) 333 (179) -

Conventional (7.5 mg kg"1) 40.5 (5.8) 49 (25) 74 (65) 163(142) 51.2 (0)

N o feed (24 hours) followed by 
(7.5 mg kg'1)
Fbz

40.3 (5.5) 52 (22) 97 (74) 90 (86) 73.0 (7.2)

Untreated controls 40 .7 (3 .2 ) 74 (60) 56 (35) 365 (118) -

Conventional (5 mg kg’1) 38.1 (6.7) 70 (53) 75 (41) 267 (174) 26.7 (0)

N o feed (24 hours) followed by 
divided dose (5 + 5 mg kg"1) 
(24 hour interval)

40.1 (5.8) 71 (54) 9 2 (1 0 1 ) 306 (183) 16.2 (0)
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4.3.2.2 Abomasal worm burdens

Only T. circumcincta worms were identified from lamb in these studies. Figure

4.1 shows the T. circumcincta burdens for the Fbz/Lev, Lev and Ivm treated groups in 

the 1993 end o f season CET. The effect o f feed withdrawal upon the treatment 

efficacy o f Fbz was also investigated in this year and is shown in Figure 4.2. 

Individual T. circumcincta burdens for the treatment groups in 1993 are shown in 

Tables 4 .1 5 -4 .1 8

Figure 4.3 shows the T.circumcincta burdens for the Fbz/Lev, Lev and Ivm 

treated groups in the 1994 end o f season CET. The effect o f co-administering 

piperonyl butoxide upon the treatment efficacy o f Fbz was also investigated in 1994 

and is shown in Figure 4.4. Individual T. circumcincta burdens for the treatment 

groups in 1994 are shown in Tables 4.19 - 4.22.

Figure 4.5 shows the T.circumcincta burdens for the Fbz/Lev and Ivm treated 

groups in the 1995 end o f season CET. The synergistic effect o f feed withdrawal and 

divided dosing upon the treatment efficacy o f Fbz and feed withdrawal upon the 

treatment efficacy o f Lev were also investigated in this year and are shown in Figures

4.6 and 4.7. Individual T.circumcincta burdens for the treatment groups in 1995 are 

shown in Tables 4.23 - 4.26.
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Figure 4.1 T. circumcincta burdens fo r  the Fbz/Lev, Lev and Ivm treated groups in 
the 1993 end o f  season CET (Day 14)
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Figure 4.2 Abomasal worm burdens o f  sheep naturally infected with Bz-resistant T. 
circumcincta, treated with Fbz either conventionally or following 24 hours o ffeed  
withdrawal in the 1993 end o f  season CET (Day 14)

Table 4.15 1993 CET Fbz/Lev group individual T. circumcincta burdens

Group Lamb No. Males Females Immatures Total (± SD)

969 3300 5600 0 8900

1004 1400 2650 0 4050

1197 5350 6750 500 12600

Untreated controls 1198 2900 4800 0 7700

1258 800 1150 50 2 0 0 0

1259 4300 4050 50 8400

Mean 3008 4167 100 7275 (± 3759)

970 150 400 0 550

1001 100 100 0 200

1003 100 250 50 400

Fbz/Lev 1005 100 200 0 300

1257 0 50 0 50

1260 50 100 0 150

Mean 83 183 8 275 (± 181)
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Table 4.16 1993 CET Lev group individual T. circumcincta burdens

Group Lamb No. Males Females Immatures Total (± SD)

358 150 500 0 650

362 5900 7050 2 0 0 13150

363 1550 2650 400 4600

Untreated controls 368 2450 2700 150 5300

397 7550 7950 50 15550

876 1200 2 0 0 0 50 3250

Mean 3133 3808 142 7083 (± 5898)

359 200 300 0 500

360 150 300 50 500

361 150 550 0 700

Lev 369 400 450 50 900

396 1050 1750 0 2800

875 400 400 0 800

Mean 392 625 17 1033 (± 880)

Table 4.17 1993 CET Ivm group individual T. circumcincta burdens

Group Lamb No. Males Females Immatures Total (± SD)

888 5950 8650 0 14600

901 50 400 0 450

902 2700 4850 0 7550

Untreated controls 918 2 0 0 0 3650 50 5700

959 11500 14900 850 27250

960 3350 3500 2450 9300

Mean 4258 5992 558 10808 (± 9284)

889 50 50 0 100

919 0 0 0 0

920 150 150 0 300

Ivm 921 0 50 0 50

936 0 0 0 0

937 0 0 0 0

Mean 33 42 0 75 (± 117)
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Table 4.18 1993 CET Fbz group individual T. circumcincta burdens

Group Lamb No. Males Females Immatures Total (± SD)

898 900 1900 0 2800

926 3900 7050 0 10950

927 21450 27750 3650 52850

Untreated controls 930 600 1300 100 2 0 0 0

944 5900 4950 550 11400

965 300 350 0 650

Mean 5508 7217 717 13442 (± 19855)

899 200 350 0 550

925 1350 1800 0 3150

932 1100 1600 0 2700

Fbz 933 1500 1950 100 3550

945 1800 3000 1400 6200

955 600 500 0 1100

Mean 1092 1533 250 2875 (± 2009)

924 1000 950 0 1950

931 250 200 0 450

956 300 550 50 900

No Feed (24 hours) 962 450 550 0 1000

Fbz 963 700 1100 0 1800

966 350 1000 50 1400

Mean 508 725 17 1250 (± 573)
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Figure 4.3 T. circumcincta burdens fo r  the Fbz/Lev, Lev and Ivm treated groups in 
the 1994 end o f  season CET (Day 21)
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Figure 4.4 Abomasal worm burdens o f  sheep naturally infected with Bz-resistant T. 
circumcincta, treated conventionally with Fbz (5 mg kg~l), with piperonyl butoxide 
(63 mg kg~l) or a combination (5 + 63 mg kg~l) in the 1994 end o f  season CET (Day 
14)

Table 4.19 1994 CET Fbz/Lev group individual T. circumcincta burdens

Group Lamb No. Males Females Immatures Total (± SD)

1268 3900 5550 500 9950

1319 2650 4100 1750 8500

1324 3750 6550 2300 12600

Untreated controls 1517 2950 5200 100 8250

1538 2 100 3450 750 6300

1726 4250 4450 2500 11200

Mean 3267 4883 1317 9467 (± 2258)

1260 700 650 100 1450

1320 0 50 0 50

1325 0 0 0 0

Fbz/Lev 1539 150 50 50 250

1547 750 1150 50 1950

1552 50 400 150 600

Mean 275 383 58 717 (± 806)
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Table 4.20 1994 CETLev group individual T.circumcincta burdens

Group Lamb No. Males Females Immatures Total (± SD)

1215 3250 4650 550 8450

1254 6350 7950 1350 15650

1524 4050 6350 750 11150

Untreated controls 1578 5650 6650 1700 14000

1579 6400 7250 800 14450

1696 4650 6150 2500 13300

Mean 5058 6500 1275 12833 (± 2614)

1152 200 500 100 800

1255 2350 4400 150 6900

1525 500 700 50 1250

Lev 1668 1100 2550 50 3700

1694 300 1350 50 1700

1729 1650 2500 550 4700

Mean 1017 2000 158 3175(± 2366)

Table 4.21 1994 CET Ivm group individual T. circumcincta burdens

Group Lamb No. Males Females Immatures Total (± SD)

1154 1350 2250 250 3850

1169 8050 11150 5800 25000

1184 2000 2600 2700 7300

Untreated controls 1226 4300 4400 550 9250

1227 1150 1400 400 2950

1276 3250 4750 350 8350

Mean 3350 4425 1675 9450 (± 8016)

1155 0 0 0 0

1160 0 0 0 0

1170 50 0 0 50

Ivm 1201 0 50 0 50

1202 0 50 0 50

1560 100 0 0 100

Mean 25 17 0 42 (± 38)
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Table 4.22 1994 CETFbz group individual T.circumcincta burdens

Group Lamb No. Males Females Immatures Total (± SD)

1174 8150 9850 3400 21400

1197 3900 5950 700 10550

1253 2700 2550 1600 6850

Untreated controls 1256 100 300 1200 1600

1257 1050 1950 1150 4150

1540 100 250 600 950

Mean 2667 3475 1442 7583(± 7640)

1134 5150 6350 4650 16150

1179 4850 6500 2550 13900

1204 2050 21 0 0 1000 5150

PB Controls 1265 2400 2650 2400 7450

1530 4950 4950 3000 12900

1565 1900 3250 550 5700

Mean 3550 4300 2358 10208(± 4684)

1043 1150 2050 650 3850

1133 3500 6900 1650 12050

1203 1400 2300 550 4250

Fbz 1266 400 1150 400 1950

1488 2150 4950 700 7800

1541 1250 2300 850 4400

Mean 1642 3275 800 5717(± 3633)

1042 650 550 350 1550

1196 850 1300 450 2600

1240 1150 1200 1200 3550

Fbz + PB 1252 2350 3300 650 6300

1529 1600 2350 700 4650

1567 400 800 800 2 0 0 0

Mean 1167 1583 692 3442(± 1789)
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Figure 4.5 T.circumcincta burdens fo r  the Fbz/Lev and Ivm treated groups in the 
1995 end o f  season CET (Day 21)
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Figure 4.6 T.circumcincta burdens o f  naturally infected sheep treated with Lev 
either conventionally or following 24 hours o ffeed  withdrawal in the 1995 end o f  
season CET (Day 21)
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Figure 4.7 Abomasal worm burdens o f  sheep naturally infected with Bz-resistant T. 
circumcincta, treated with Fbz either conventionally (5 mg kg~l) or as a divided  
double dose following 24 hours o f  feed withdrawal using a 24 hour treatment 
interval (5 + 5 mg kg~l), in the 1995 end o f  season CET (Day 21)
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Table 4.23 1995 CET Fbz/Lev group individual T.circumcincta burdens

Group Lamb No. Males Females Immatures Total (± SD)

1429 1900 2700 300 4900

1486 8450 9150 1800 19400

1488 1300 2800 150 4250

Untreated controls 1502 8100 8950 1550 18600

1547 3200 4400 20 0 7800

1551 3650 5350 350 9350

Mean 4433 5558 725 10717 (± 6687)

1485 100 100 0 200

1501 100 300 0 400

1511 400 800 0 1200

Fbz/Lev 1525 50 0 0 50

1526 250 600 0 850

1545 50 50 0 100

Mean 158 308 0 467 (± 462)

Table 4.24 1995 CET Ivm group individual T. circumcincta burdens

Group Lamb No. Males Females Immatures Total (± SD)

1454 3850 5400 0 9250

1510 3350 4400 250 8000

1518 5550 6850 0 12400

Untreated controls 1532 6300 8050 100 14450

1538 5250 6050 0 11300

1566 3000 4250 0 7250

Mean 4550 5833 58 10442 (± 2764)

1453 0 0 0 0

1509 0 50 0 50

1519 150 50 0 2 0 0

Ivm 1531 0 50 0 50

1539 0 0 0 0

1553 0 0 0 0

Mean 25 25 0 50 (± 77)
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Table 4.25 1995 CET Lev group individual T.circumcincta burdens

Group Lamb No. Males Females Immatures Total (± SD)

1375 6350 8450 20 0 15000

1440 5250 7500 20 0 12950

1465 7650 10300 3500 21450

Untreated controls 1477 4800 7350 1300 13450

1490 6750 8800 1600 17150

1797 16700 20600 5400 42700

Mean 7917 10500 2033 20450 (±11331)

1387 450 400 0 850

1438 3100 4750 0 7850

1439 5500 7550 0 13050

Lev 1458 1550 2 100 50 3700

1489 2950 3350 0 6300

1498 150 550 0 700

Mean 2283 3117 8 5408 (± 4712)

1374 250 0 0 250

1386 0 50 0 50

1436 300 200 0 500

No Feed (24 hours) 1466 400 1100 0 1500

Lev 1478 200 600 0 800

1499 100 350 50 500

Mean 208 383 8 600 (± 509)
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Table 4.26 1995 CET Fbz group individual T.circumcincta burdens

Group Lamb No. Males Females Immatures Total (± SD)

1397 7650 11200 50 18900

1416 11200 12400 800 24400

1449 6600 8800 1200 16600

Untreated controls 1455 8550 11700 1200 21450

1460 4250 5400 250 9900

1464 5650 8250 550 14450

Mean 7317 9625 675 17617(± 5157)

1358 1950 2950 100 5000

1360 2150 3000 350 5500

1422 2350 3400 500 6250

Fbz 1441 7900 9050 50 17000

1448 3550 5150 0 8700

1459 7450 7950 150 15550

Mean 4225 5250 192 9667 (± 5294)

1357 4900 6750 0 11650

1359 2900 4200 0 7100

1415 3800 5350 0 9150

No Feed (24 hours) 1442 1700 2800 450 4950

Divided dose Fbz 1456 1150 2250 0 3400

1463 1100 1250 0 2350

Mean 2592 3767 75 6433 (± 3553)

Table 4.27 shows the CET calculated efficacies against abomasal species using 

geometric and arithmetic mean worm burden data for each o f the conventionally 

treated groups. The efficacy o f Ivm, calculated using either geometric or arithmetic 

mean worm burdens remained highly effective (> 99 %) over the three year study. 

The Fbz/Lev combination, although not as effective, remained above 95 % when 

calculated using geometric mean data. Similar figures were achieved using
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arithmetic mean data in 1993 and 1995, although in 1994 the combination was only 

92.4 % effective. Generally, efficacies calculated using arithmetic mean worm 

burden data were lower than those resulting from geometric data for each o f the 

anthelmintic treatments. The efficacy o f Lev calculated with either method remained 

at about 75 - 80 % suggesting that resistance to this compound may have been 

present at the end o f the first season. The presence o f resistant species to Fbz upon 

commencement o f the study was confirmed with a geometric efficacy o f 59 % 

although the figure achieved using arithmetic data was reasonably higher at 78.6 %. 

The efficacy for Fbz was lower in 1994 with reductions o f 25.7 and 35.7 % using 

geometric and arithmetic mean data respectively. Efficacies for Fbz were slightly 

higher in 1995 with reductions in worm burdens o f  approximately 45 % using either 

method.

Table 4.27 End o f  season CET % abomasal worm reductions following  
conventional anthelmintic treatment, calculated using geometric (or arithmetic) 
mean data

Treatment 1993 1994 1995

% Efficacy % Efficacy % Efficacy

Fbz/Lev (5 + 7.5 mg kg'1) 96.5 (96.2) 98.2 (92.4) 97.0 (95.6)

Lev (7.5 mg kg'1) 82.1 (85.4) 80.7 (75.3) 82.0 (73.5)

Fbz (5 mg kg'1) 59.1 (78.6) 25.7 (35.7)* 49.4(45.1)

Ivm (0.2 mg kg'1) 99.8 (99.3) 99.8 (99.6) 99.9 (99.5)

* Using pooled worm burdens o f  untreated and piperonyl butoxide controls

The CET calculated efficacies, using geometric and arithmetic mean data 

against abomasal species following feed withdrawal, divided dosing and the co

administration o f piperonyl butoxide are shown in Table 4.28. Using geometric 

mean data, withholding feed for 24 hours before drug administration produced an 

increase in Fbz efficacy o f 20 % compared to conventional treatment. Although this 

increase was only 12 % using arithmetic data, the efficacy o f 90.7 % that resulted
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from feed withdrawal was somewhat higher than the 79.1 % calculated using 

geometric data. An increase o f over 27 %  using geometric data was calculated 

following the co-administration o f the novel Bz synergist piperonyl butoxide. A  

similar increase was seen using arithmetic data although efficacies were 

approximately 10 % higher using these figures. A period o f feed withdrawal 

followed by a divided dose, using double the MRD for Fbz and a 24 hour treatment 

interval, resulted in an increase o f  approximately 18 % using geometric mean data. 

The calculated efficacies were very similar using arithmetic mean data as was the 

increase compared to conventional treatment. The enhancement o f approximately 

16% seen with Lev treatment following 24 hour feed withdrawal resulted in 

significantly fewer worms (P<0.05) than the conventionally treated lambs. The 

efficacy o f conventional Lev treatment was somewhat lower using arithmetic mean 

data with a resulting increase in efficacy o f approximately 24 %  following feed 

withdrawal.

Table 4.28 Abomasal worm reductions as a result o f  feed withdrawal, divided  
dosing and the co-administration o f  piperonyl butoxide, calculated using geometric 
(or arithmetic) mean data

1993 %
Efficacy

1994 %
Efficacy

1995 %
Efficacy

Fbz Fbz Fbz
Conventional 59.1 Conventional 25.7* Conventional 49.4
(5 mg k g ' ) (78.6) (5 mg kg'1) (35.7)* (5 mg kg'1) (45.1)

N o feed for 24 79.1 Fbz (5 mg kg'1) 53.1* No feed for 24 67.1
hours followed (90.7) + piperonyl (61.3)* hours followed by (63.5)

82.0
(73.5)

97.9f

by 5 mg kg butoxide 
(63 mg kg'1)

divided dose 
5 + 5 mg kg'1 
(24 hour interval)

Lev
Conventional 
(7.5 mg kg'1)

N o feed for 24
hours followed by_ _ i - l (97.1)*
7.5 mg kg

* Using pooled worm burdens o f  untreated and piperonyl butoxide controls 
 ̂Significantly fewer worms than conventional treatment P < 0.05
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4.3.2.3 Small intestinal worm burdens

Only Trichostrongylus spp were identified from lambs in these studies and 

examination o f the male worms confirmed that they were T.vitrinus. Figure 4.8 

shows the T.vitrinus burdens for the Fbz/Lev, Lev and Ivm treated groups in the 1993 

end o f  season CET. The effect o f feed withdrawal upon the treatment efficacy o f Fbz 

was also investigated in this year and is shown in Figure 4.9. Individual T.vitrinus 

burdens for the treatment groups in 1993 are shown in Tables 4.29 - 4.32.

Figure 4.10 shows the T.vitrinus burdens for the Fbz/Lev, Lev and Ivm treated 

groups in the 1994 end o f season CET. The effect o f co-administering piperonyl 

butoxide upon the treatment efficacy o f Fbz was also investigated in this year and is 

shown in Figure 4.11. Individual T.vitrinus burdens for the treatment groups in 1994 

are shown in Tables 4.33 - 4.36.

Figure 4.12 shows the T.vitrinus burdens for the Fbz/Lev and Ivm treated 

groups in the 1995 end o f season CET. The synergistic effect o f feed withdrawal and 

divided dosing upon the treatment efficacy o f Fbz and feed withdrawal alone upon 

the treatment efficacy o f Lev were also investigated in this year and are shown in 

Figures 4.13 and 4.14. Individual T.vitrinus burdens for the treatment groups in 1995 

are shown in Tables 4.37 - 4.40.
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Figure 4.8 T.vitrinus burdens fo r  the Fbz/Lev, Lev and Ivm treated groups in the 
1993 end o f  season CET (Day 14)
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Figure 4.9 T.vitrinus burdens o f  naturally infected sheep treated with Fbz either 
conventionally or following 24 hours o ffeed  withdrawal in the 1993 end o f  season 
CET (Day 14)

Table 4.29 1993 CET Fbz/Lev group individual T.vitrinus burdens

Group Lamb No. Males Females Immatures Total (± SD)

969 200 100 0 300

1004 100 100 0 20 0

1197 400 200 0 600

Untreated controls 1198 300 100 0 400

1258 0 100 0 100

1259 100 2 0 0 0 300

Mean 183 133 0 317 (± 172)

970 0 100 0 100

1001 0 0 0 0

1003 0 0 0 0

Fbz/Lev 1005 0 0 0 0

1257 0 0 0 0

1260 0 0 0 0

Mean 0 17 0 17 (± 41)
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Table 4.30 1993 CET Lev group individual T.vitrinus burdens

Group Lamb No. Males Females Immatures Total (± SD)

358 200 100 0 300

362 800 400 0 1200

363 800 1000 0 1800

Untreated controls 368 200 200 0 400

397 400 100 0 500

876 700 800 0 1500

Mean 517 433 0 950 (± 635)

359 0 0 0 0

360 0 0 0 0

361 0 0 0 0

Lev 369 0 0 0 0

396 0 0 0 0

875 300 0 0 300

Mean 50 0 0 50 (± 122)

Table 4.31 1993 CET Ivm group individual T.vitrinus burdens

Group Lamb No. Males Females Immatures Total (± SD)

888 0 200 0 2 0 0

901 100 0 0 100

902 200 0 0 2 0 0

Untreated controls 918 100 200 0 300

959 200 0 0 2 0 0

960 0 100 0 100

Mean 100 83 0 183 (± 75)

889 0 0 0 0

919 0 0 0 0

920 100 0 0 100

Ivm 921 0 0 0 0

936 0 0 0 0

937 0 0 0 0

Mean 17 0 0 17 (± 41)
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Table 4.32 1993 CET Fbz group individual T.vitrinus burdens

Group Lamb No. Males Females Immatures Total (± SD)

898 0 0 0 0

926 200 200 0 400

927 450 900 0 1350

Untreated controls 930 50 50 0 100

944 150 250 0 400

965 50 100 0 150

Mean 150 250 0 400 (± 493)

899 0 0 0 0

925 0 0 0 0

932 0 0 0 0

Fbz 933 0 50 0 50

945 50 0 0 50

955 0 0 0 0

Mean 8 8 0 17 (± 26)

924 0 0 0 0

931 0 0 0 0

956 0 0 0 0

No Feed (24 hours) 962 50 0 0 50

Fbz 963 0 0 0 0

966 0 0 0 0

Mean 8 0 0 8 (± 20)
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Figure 4.10 T.vitrinus burdens fo r  the Fbz/Lev, Lev and Ivm treated groups in the 
1994 end o f  season CET (Day 21)
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Figure 4.11 T.vitrinus burdens o f  naturally infected sheep treated conventionally 
with Fbz (5 mg kg'1), with piperonyl butoxide (63 mg kg~l) or a combination (5 + 63 
mg kg~l) in the 1994 end o f  season CET (Day 14)

Table 4.33 1994 CET Fbz/Lev group individual T.vitrinus burdens

Group Lamb No. Males Females Immatures Total (± SD)

1268 600 500 0 1100

1319 900 2100 0 3000

1324 1200 2400 0 3600

Untreated controls 1517 600 900 0 1500

1538 600 1500 100 2 2 0 0

1726 6700 7500 0 14200

Mean 1767 2483 17 4267 (± 4953)

1260 0 0 0 0

1320 0 0 0 0

1325 0 0 0 0

Fbz/Lev 1539 0 0 0 0

1547 0 100 0 100

1552 0 0 0 0

Mean 0 17 0 17 (± 41)
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Table 4.34 1994 CET Lev group individual T.vitrinus burdens

Group Lamb No. Males Females Immatures Total (± SD)

1215 1300 1600 100 3000

1254 4100 6200 0 10300

1524 2 000 2900 0 4900

Untreated controls 1578 2 000 3700 0 5700

1579 1400 2 200 100 3700

1696 4000 3400 100 7500

Mean 2467 3333 50 5850 (± 2691)

1152 100 100 100 300

1255 200 400 0 600

1525 100 0 0 100

Lev 1668 400 100 0 500

1694 0 0 0 0

1729 200 500 0 700

Mean 167 183 17 367 (± 280)

Table 4.35 1994 CET Ivm group individual T. vitrinus burdens

Group Lamb No. Males Females Immatures Total (± SD)

1154 400 400 0 800

1169 1300 600 200 2 1 0 0

1184 1000 500 0 1500

Untreated controls 1226 0 0 0 0

1227 0 100 0 100

1276 200 500 0 700

Mean 483 350 33 867 (± 812)

1155 0 0 0 0

1160 0 0 0 0

1170 0 0 0 0

Ivm 1201 0 0 0 0

1202 0 0 0 0

1560 0 0 0 0

Mean 0 0 0 0(±0)
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Table 4.36 1994 CET Fbz group individual T.vitrinus burdens

Group Lamb No. Males Females Immatures Total (± SD)

1174 300 0 300 600

1197 100 0 0 100

1253 2700 4600 0 7300

Untreated controls 1256 200 500 0 700

1257 1200 2900 20 0 4300

1540 600 600 2 0 0 1400

Mean 850 1433 117 2400 (± 2830)

1134 1200 1000 300 2500

1179 200 100 0 300

1204 200 400 0 600

PB Controls 1265 100 900 100 1100

1530 2 200 2900 2 0 0 5300

1565 300 400 600 1300

Mean 700 950 200 1850 (± 1852)

1043 0 0 0 0

1133 0 0 0 0

1203 0 0 0 0

Fbz 1266 0 0 0 0

1488 0 100 0 100

1541 100 100 100 300

Mean 17 33 17 67 (± 121)

1042 0 0 0 0

1196 0 0 0 0

1240 0 0 0 0

Fbz + PB 1252 0 0 0 0

1529 0 0 0 0

1567 0 0 0 0

Mean 0 0 0 0(±0)
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Figure 4.12 T.vitrinus burdens fo r  the Fbz/Lev and Ivm treated groups in the 1995 
end o f  season CET (Day 21)
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Figure 4.13 T.vitrinus burdens o f  naturally infected sheep treated with Lev either 
conventionally or following 24 hours offeed  withdrawal in the 1995 end o f  season 
CET (Day 21)
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Figure 4.14 T.vitrinus burdens o f  naturally infected sheep treated with Fbz either 
conventionally (5 mg kg~l) or as a divided double dose following 24 hours o f  feed  
withdrawal using a 24 hour treatment interval (5 + 5 mg kg~l), in the 1995 end o f  
season CET (Day 21)
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Table 4.37 1995 CET Fbz/Lev group individual T.vitrinus burdens

Group Lamb No. Males Females Immatures Total (± SD)

1429 1600 1000 0 2600

1486 2 0 0 0 2 100 0 4100

1488 400 1000 0 1400

Untreated controls 1502 2900 4300 0 7200

1547 100 300 0 400

1551 3000 4300 400 7700

Mean 1667 2167 67 3900 (± 3019)

1485 0 0 0 0

1501 100 0 0 100

1511 0 0 0 0

Fbz/Lev 1525 0 0 0 0

1526 100 0 0 100

1545 0 0 0 0

Mean 33 0 0 33 (± 52)

Table 4.38 1995 CET Ivm group individual T. vitrinus burdens

Group Lamb No. Males Females Immatures Total (± SD)

1454 0 100 300 400

1510 0 0 0 0

1518 0 0 100 100

Untreated controls 1532 200 0 0 20 0

1538 100 400 100 600

1566 0 200 0 200

Mean 50 117 83 250 (± 217)

1453 0 0 0 0

1509 0 0 0 0

1519 0 0 0 0

Ivm 1531 0 0 0 0

1539 0 0 0 0

1553 0 100 0 100

Mean 0 17 0 17 (± 41)
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Table 4.39 1995 CET Lev group individual T.vitrinus burdens

Group Lamb No. Males Females Immatures Total (± SD)

1375 1300 900 300 2500

1440 2400 2300 200 4900

1465 5100 7400 0 12500

Untreated controls 1477 2800 3500 500 6800

1490 400 600 0 1000

1797 6200 6000 5900 18100

Mean 3034 3450 1150 7634 (± 6507)

1387 400 100 0 500

1438 200 0 0 20 0

1439 300 500 0 800

Lev 1458 100 100 0 20 0

1489 200 100 0 300

1498 0 0 0 0

Mean 200 134 0 334 (± 280)

1374 0 0 0 0

1386 0 0 0 0

1436 200 100 0 300

No Feed (24 hours) 1466 400 0 0 400

Lev 1478 100 0 0 100

1499 100 200 0 300

Mean 134 50 0 184 (± 172)
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Table 4.40 1995 CET Fbz group individual T.vitrinus burdens

Group Lamb No. Males Females Immatures Total (± SD)

1397 600 800 0 1400

1416 2500 2400 0 4900

1449 2700 3300 0 6000

Untreated controls 1455 1000 1100 0 2 1 0 0

1460 500 800 0 1300

1464 1700 2 1 0 0 0 3800

Mean 1500 1750 0 3250 (± 1956)

1358 0 0 0 0

1360 0 0 0 0

1422 0 100 0 100

Fbz 1441 100 200 0 300

1448 0 0 0 0

1459 100 0 0 100

Mean 34 50 0 84 (± 116)

1357 0 0 0 0

1359 0 0 0 0

1415 0 0 0 0

No Feed (24 hours) 1442 0 0 0 0

Divided dose Fbz 1456 0 0 0 0

1463 0 0 0 0

Mean 0 0 0 0(±0)

Table 4.41 shows the CET calculated efficacies against T.vitrinus using 

geometric and arithmetic mean worm burden data for each o f  the conventionally 

treated groups. The calculated efficacies for each o f the anthelmintic treatments was 

greater than 97.5 % using geometric mean data. These figures were lower using 

arithmetic mean data and in some cases were below 95 % suggesting that drug 

resistant T.vitrinus may well be present on the paddocks. The CET calculated 

efficacies, using geometric and arithmetic mean data against T.vitrinus following
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feed withdrawal, divided dosing and the co-administration o f piperonyl butoxide are 

shown in Table 4.42. Although the conventional treatments in these cases were 

effective, >95%  using either geometric or arithmetic data, small increases in efficacy 

were evident using each o f the enhancement methods.

Table 4.41 T.vitrinus reductions (%) following conventional anthelmintic treatment 
at the end of season CETs, calculated using geometric (or arithmetic) mean data

Treatment 1993 1994 1995

% Efficacy % Efficacy % Efficacy

Fbz/Lev (5 +  7.5 mg kg'1) 99.6 (94.7) 99.9 (99.6) 99.9 (99.1)

Lev (7.5 mg kg'1) 99.8 (94.7) 97.5 (93.7) 97.5 (95.6)

Fbz (5 mg kg'1) 97.8 (95.8) 99.6 (96.9) 99.6 (97.4)

Ivm (0.2 mg kg'1) 99.3 (90.9) 1 0 0 ( 1 0 0 ) 97.8 (92.9)

Table 4.42 T.vitrinus reductions as a result of feed withdrawal, divided dosing and 
the co-administration of piperonyl butoxide compared to conventional treatment, 
calculated using geometric (or arithmetic) mean data

1993 %
Efficacy

1994 %
Efficacy

1995 %
Efficacy

Fbz Fbz Fbz
Conventional 97.8 Conventional 99.6* Conventional 99.6
(5 mg kg'1) (95.8) (5 mg kg'1) (96.9)* (5 mg kg'1) (97.4)

N o feed for 24 99.2 Fbz (5 mg kg'1) 1 0 0 * No feed for 24 1 0 0
hours followed by (97.9) + piperonyl ( 1 0 0 )* hours followed ( 1 0 0 )

97.5
(95.6)

99.3

5 mg kg butoxide 
(63 mg kg'1)

by divided dose 
5 + 5 mg kg'1 
(24 hour interval)

Lev
Conventional 
(7.5 mg kg'1)

No feed for 24
hours followed (97.6)
by 7.5 mg kg 1

* Using pooled worm burdens o f  untreated and piperonyl butoxide controls
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Comparisons between the geometric mean abomasal and small intestinal worm 

burdens o f the untreated control animals for each treatment group at the end o f each 

season are shown in Tables 4.43 to 4.45. The %  o f the total worm burdens which 

were T. vitrinus are also included.

Table 4.43 1993 CET geometric mean worm burdens, including % o f  total burden
which were T. vitrinus, o f  untreated control lambs from each treatment paddock
Comparator Abomasal worm 

burden (± SD)
Small intestinal worm % 

burden (± SD) T. vitrinus

Fbz/Lev 6235 (3759) 275 (172) 4.2

Lev 4682 (5898) 762 (635) Fbz/Lev*Ivm** 14.0

Fbz 5372 (19855) 122 (493) 2 .2

Ivm 6445 (9284) 170 (75) 2 .6

* Significantly fewer worms than comparator P < 0.05, ** P < 0.01

Table 4.44 1994 CET geometric mean worm burdens, including % of total burden 
which were T. vitrinus, o f untreated control lambs from each treatment paddock
Comparator Abomasal worm 

burden (± SD)
Small intestinal worm % 

burden (± SD) T. vitrinus

Fbz/Lev 9235 (2258) 2869 (4953) 23.7

Lev 12582 (2614) Fbz/Lev* 5369 (2691)Ivm*Fbz* 29.9

F b zf 6545 (6195) 1166 (2298) 15.1

Ivm 7368 (8016) 238 (812) 3.1

* Significantly fewer worms than comparator P< 0.05 
 ̂ Using pooled worm burdens o f  untreated and piperonyl butoxide controls

Table 4.45 1995 CET geometric mean worm burdens, including % o f  total burden
which were T. vitrinus, o f  untreated control lambs from each treatment paddock
Comparator Abomasal worm 

burden (± SD)
Small intestinal worm 

burden (± SD)
%

T. vitrinus

Fbz/Lev 9046 (6687) 2631 (3019) '™‘ 22.5

Lev 18573 (11331)Fbz/Lev*
Ivm*

5161 (6508)'™** 21.7

Fbz 16924(5157)'™ * 2746(1956)'™ *’ 14.0

Ivm 10139(2764) 100 (217) 1 .0

* significantly fewer worms than comparator P < 0.05, ** P < 0 .0 1
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By the end o f the first grazing season there were no differences in the 

T.circumcincta burdens o f the untreated control lambs from each o f the treatment 

paddocks. However, untreated control animals from the Lev treatment paddock did 

have significantly more T. vitrinus burdens than those from the Fbz/Lev (P<0.05) and 

Ivm paddocks (PO .O l). The abomasal and small intestinal worm burdens o f the 

untreated lambs from each o f the treatment paddocks had increased at the end o f  

season CET in 1994. The increases seen with T. vitrinus burdens were significantly 

higher (PO .O l) for each o f the untreated groups in 1994 compared to those o f the 

untreated animals in 1993 except for the Ivm group. Untreated lambs from the Lev 

group had significantly higher (PO .05) T.circumcincta burdens than the Fbz/Lev 

group and T. vitrinus burdens than both the Fbz and Ivm groups. Post mortem 

examination o f the untreated lambs in the 1995 end o f season CET revealed similar 

levels o f abomasal and small intestinal worm burdens to those o f 1994. However, 

untreated lambs from the Ivm group once again displayed lower T. vitrinus burdens 

which were significantly less (P<0.05) than each o f the other treatment group 

controls. In addition, the Ivm controls were carrying significantly fewer (P<0.05) 

T.circumcincta than the Fbz and Lev controls, the latter o f which had significantly 

more (P<0.05) worms than the Fbz/Lev group.

4.4 Discussion

The anthelmintic treatments administered in May o f  each year, and July 1995, 

provided good control o f N. battus with each compound approaching 100 % efficacy 

against this species. The Lev treatment given in May 1995 however resulted in an 

efficacy o f less than 90 %. This may be explained by the post-treatment sample 

being taken on day 14 which is close to the prepatent period for this species. This is 

supported by the second seasonal treatment given in July o f this year which, on day 

10 post-treatment, resulted in an efficacy o f 99.9 %.

Early and mid-season FECRTs could not be calculated using day 10-14 post

treatment faecal egg counts o f untreated control animals, as suggested by WAAVP 

guidelines (Coles et al., 1992), due to constraints o f the study design. Nevertheless,
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in May 1993 and 1995 the control group were treated at a later date and, although the 

faecal egg counts o f these animals are not directly comparable, they do give some 

indication o f the dynamics o f egg production over these periods. Comparisons can 

also be made for the mid-seasonal treatments given in 1994 and 1995 since the 

controls were not treated on these dates. Table 4.46 shows the trichostrongylid faecal 

egg count reductions for each group calculated using counts o f  either the treated 

animals on day zero or according to WAAVP guidelines (Coles et al., 1992) using 

counts for the untreated control lambs on day 10  - 14.

Table 4.46 Anthelmintic efficacies against trichostrongyles calculated by comparing 
arithmetic mean faecal egg counts of the treatment groups on day 0 or to the 
untreated control group on day 10-14 (WAAVP)

Treatment May 1993 August 1994 May 1995 July 1995

dayO (WAAVP) dayO (WAAVP) dayO (WAAVP) dayO (WAAVP)

Fbz/Lev 96.8 (93.2) 96.2 (96.9) 93.1 (89.8) 94.1 (93.7)

Lev 99.2 (98.1) 60.9 (66.3) 39.3 (56.6) 76.7 (87.4)

Fbz 75.5 (77.6) 72.1* (80.2)* 23.7 (31.9) 55.8 (53.7)

Ivm 99.9 (99.9) 99.9 (99.9) 1 0 0  ( 1 0 0 ) 99.9 (99.9)

* Using average faecal egg counts o f  feed withdrawal, divided dose and conventional Fbz treatments

The efficacies calculated using either approach correlate very well and lend 

support to the validity o f the values obtained using pre-treatment faecal egg counts. 

McKenna (1990a) also found a very good relationship between faecal egg count 

reductions calculated using pre-treatment counts compared to post-treatment control 

counts in his study which analysed the data o f 149 published trials.

Results o f the trichostrongylid FECRTs have conclusively demonstrated the 

presence o f Bz resistance on the paddocks at Firth Mains and suggest that resistance 

to Lev has developed since the start o f the study. Resistance to the Fbz/Lev 

combination was also suspected in the latter treatments o f the study. Ivm on the 

otherhand remained fully effective throughout the study with faecal egg count 

reductions in excess o f 99.9 % on each occasion. In every case where faecal egg 

count reductions were less than 95% the lower 95% confidence limit was below 90%
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and, as suggested by McKenna (1994), is o f little practical purpose when dealing 

with reductions below this level.

The FECRTs indicated that the magnitude o f  resistance increased with 

successive Lev treatments. However, caution must be taken when assessing 

efficacies with Lev since there is a potential for misinterpretation o f FECRT results. 

Grimshaw et al. (1996) noted that faecal egg counts taken 11 or more days after 

treatment with Lev may allow time for development o f immature stages to egg 

producing adults. This may account for the particularly poor efficacy seen in May 

1995 which was calculated on day 14 post treatment. Grimshaw et al. (1996) 

concluded that it may be necessary to take faecal samples no later than 7 days post

treatment to avoid false positive results with Lev. It is questionable therefore, 

whether resistance was present to this class o f drug throughout the study since faecal 

egg counts were determined, at the earliest, on day 10. The average pre-treatment 

faecal egg counts for the Lev group in July 1995 were less than 100 EPG which 

would also affect the reliability o f the test on this occasion.

The present study has shown that FECRTs do have their limitations when 

dealing with naturally infected animals, particularly when applied to species with a 

relatively low fecundity such as Teladorsagia whose egg counts tend to be 

stereotypic (Michel 1969; Jackson & Christie 1979; Barger, 1987). Furthermore, the 

fecundity o f parasites capable o f surviving anthelmintic treatment appears to be 

variable, thereby reducing the value o f the test as a quantitative assay. For example, 

McKellar, Bogan, Horspool & Reid (1988) noted that the numbers o f  eggs in utero o f  

Cooperia  were markedly reduced following treatment with Ivm. Scott, Baxter & 

Armour (1991) on the otherhand noted that the numbers o f eggs in utero increased in 

adult multiple resistant Haemonchus within 7 days post-treatment with Ivm but were 

lower following the administration o f oxfendazole. Ovosuppression not only occurs 

in response to anthelmintic treatment but may also be a feature o f host 

immunoregulatory responses. Faecal egg counts are unlikely therefore to provide an 

accurate measure o f the number o f  parasites present and as a result FECRTs can 

provide evidence o f resistance but not a measure o f its extent.

Infection levels o f the animals under study should also be considered when 

evaluating FECRTs and CETs. Compared to non-parasitised animals, Marriner,
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Evans & Bogan (1984/85) observed reduced AUCs o f Fbz in parasitized sheep.

These workers suggested that the reduced bioavailability was due to a combination o f  

increased gut motility and increased abomasal pH in the parasitized animals, 

resulting in a shorter residence time for drug absorption and reduced solubility at the 

higher pH’s.

Despite its inherent weaknesses the FECRT offers the considerable advantages 

o f simplicity and applicability and is also relatively inexpensive. The results o f  the 

feed withdrawal and divided dosing studies carried out in August 1994 clearly 

demonstrate the value o f the technique in field investigations upon Fbz treatment 

efficacy. Administering the MRD as two 2.5 mg kg*1 bodyweight doses divided by a 

12  hour interval resulted in an increase in efficacy o f  over 28 %, whereas 

withholding feed for 24 hours before treatment at the MRD resulted in an increase o f  

39.7 % (P < 0.05) compared to conventionally treated sheep. One criticism o f  this 

study is that each o f  the treatment groups consisted o f only 6  lambs whereas 15 

animals and an untreated control group are required to satisfy WAAVP guidelines 

(Coles et a l., 1992). Although this was not possible due to the overall study design, 

as discussed, the use o f treatment counts on day 0  correlated very well with that o f  

untreated control counts in this study.

The FECRTs performed in conjunction with the 1993, 1994 and 1995 CETs, 

determined according to WAAVP guidelines provided interesting results. Invariably 

the FECs o f the untreated control lambs increased markedly upon housing. The 

FECs o f  the Fbz and Lev treated animals also increased upon housing with 

consequent decreases in calculated efficacy. FECs did not increase to the same 

degree in the Fbz/Lev treated animals but efficacies were still compromised as a 

result. Only Ivm treatment was effective in reducing FECs by more than 95 % in 

these housed studies. It should be noted that in 1993, as a result o f one o f the 

untreated control lambs (927x) in the Fbz group having an extremely high faecal egg 

count on day 14 (1737 EPG), the treatment efficacies for this drug are likely to be an 

overestimation in this year. Increases in faecal egg count following the cessation o f  

larval dosing has been noted in previous experimental infections with Teladorsagia 

species (Coop et a l., 1982 and 1985). These authors suggested that the antigenic 

stimulus from incoming larvae may have depressed the egg laying capacity o f
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existing adult worm populations and/or retarded the development o f larvae through 

to the adult stage. The possibility o f  dietary changes influencing faecal egg 

concentration was also considered. Faecal consistencies did not change upon 

housing in this study and it seems more likely that the increase in FECs may have 

been caused by a relaxation in immunity resulting from the removal o f  any antigenic 

stimulus. Furthermore, since it is well established that there are density dependent 

effects upon faecal egg production with Teladorsagia spp (Michel 1969; Jackson & 

Christie 1979; Barger, 1987) the validity o f such reductions is questionable.

The definitive test for determining drug susceptibility/resistance to all stages o f  

development is the CET. However, as with the FECRTs, the immunoresponsiveness 

o f  the lambs will exert some influence upon calculated treatment efficacies. This 

was particularly evident from the range o f worm burdens seen in the untreated 

control animals in the CETs conducted at the end o f each grazing season. CET 

treatment efficacies are likely to be underestimated when using older naturally 

infected control animals compared to parasite naive lambs. This statement is 

supported by the study o f Benchaoui & McKellar (1994) who demonstrated an 

increase in worm reduction o f over 80% compared to conventional Fbz treatment by 

co-administering piperonyl butoxide whereas the comparable figure was just over 

27% in this study. The parasite naive lambs used by Benchaoui & McKellar (1994) 

were also Suffolk-cross, but more importantly the Bz-resistant T. circumcincta used 

for artificial infection was isolated from the same pastures at Firth Mains.

The question as to whether geometric or arithmetic mean worm burden data 

should be used in the calculation o f  CET treatment efficacies has been raised by 

Dash et al. (1988). The credibility o f  the WAAVP recommendation (Wood et al., 

1995) regarding the use o f geometric means is undermined by their contradictory 

support for the use o f arithmetic means in the FECRT (Coles et al., 1992). In view  

o f  the similarity in the aims o f  these two procedures Dash et a l.{1988) concluded that 

arithmetic data would provide a better estimate o f  anthelmintic efficacy. Reductions 

calculated using arithmetic mean values in this present study generally provided a 

more conservative estimate o f  anthelmintic efficacy. However, when the drugs were 

less effective the use o f  arithmetic estimations o f worm burden tended to favour 

treatment efficacies. It seems therefore, that there is no simple or clear cut
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relationship and that a common sense approach is required when evaluating worm 

burden data. If all the animals in a treatment group have zero burdens apart from one 

animal then obviously using arithmetic data from this animal would lower the 

apparent efficacy o f a drug. In this case it is likely that the individual is not 

representative due to some peculiarity in pharmacokinetics or maladministered drug 

and the use o f geometric means would offer a more realistic measure o f  

effectiveness. Resistance is likely to be indicated where several treated animals have 

worm burdens and under these circumstances geometric or arithmetic data should 

suffice. It seems logical therefore, that both calculations should be quoted so that 

large discrepancies can be identified and examined more carefully. This would 

prevent not only false impressions o f anthelmintic success but also misguided 

conceptions o f resistance.

Despite the fact that treatment efficacies are likely to be underestimated when 

using older naturally infected control animals, increases in Fbz efficacy as a result o f  

feed withdrawal were evident in the end o f season CETs. These findings are similar 

to those seen with FECRTs using smaller treatment groups than WAAVP 

recommendations. Withholding feed for 24 hours before treatment with Fbz at the 

MRD resulted in an increase in geometric mean abomasal worm reduction o f  20 % 

compared to conventionally treated sheep. A similar regimen with Lev resulted in an 

increase in abomasal worm reduction o f nearly 16 % compared to conventional 

treatment which was statistically significant (P < 0.05).

A 24 hour period o f feed withdrawal followed by double the MRD for Fbz (5 + 

5 mg kg'1), with a 24 hour treatment interval produced an increase in abomasal worm 

reduction o f nearly 20 %  compared to conventional treatment. This is a similar 

figure to that achieved using a single MRD o f Fbz (5 mg kg'1) following feed 

withdrawal alone. The reason why no cumulative effect upon Fbz treatment efficacy 

was seen by combining feed withdrawal and divided dosing may be explained by the 

extended treatment interval. Administering the MRD in August 1994 as two 2.5 mg 

kg ' 1 body weight doses with a 12  hour interval resulted in an increase in faecal egg 

count reduction o f over 28 % compared to conventional treatment. Although this 

value was not statistically significant, no increase was seen when a 24 hour interval 

was used in a previous study with sheep at Moredun (Jackson, Rugutt, Jackson, Coop
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& Russell, 1993). Similar findings have also been reported from a study using goats 

naturally infected with Haemonchus, Ostertagia and Trichostrongylus in which 

reducing the administration interval for oxfendazole from 24 to 12 hours markedly 

increased efficacy (Sangster et al. 1991b). A 24 hour treatment interval exposes the 

worms to two discrete intervals o f  drug which apparently is not as effective as 

sustained exposure achieved by using a 12 hour interval. In hindsight therefore, a 12 

hour interval may have resulted in a cumulative increase following feed withdrawal 

but consideration must also be given to the practicality o f such an approach. It was 

for this reason that twice the MRD was administered using the 24 hour treatment 

interval, although no further increase in efficacy resulted. However, simply 

increasing the dosage rate does not appear to offer a viable solution to the problem o f  

resistant strains. In a previous Australian study, using animals naturally infected 

with resistant gastrointestinal nematodes, efficacies in a FECRT using groups o f  

goats given single doses o f  oxfendazole at 10 and 20 mg kg’1 increased from 53 to 

only 6 6 % (Sangster et al. 1991b). Considering that the clearance o f  a single dose 

follows first order principles (Hennessy 1994), increasing the dosage increases the 

peak plasma concentration but may not significantly extend drug persistence. 

Nevertheless, the fact that immunoresponsive lambs were used in the study should 

also be considered and the use o f such a regimen in naive animals deserves further 

investigation.

The results o f  using the Fbz/Lev combination, in terms o f lamb performance 

(discussed in chapter 3) and treatment efficacy was very promising despite the 

presence o f Bz-resistant Teladorsagia spp on the paddocks at Firth Mains. Reduced 

efficacy o f this combination was evident in the 1995 FECRTs with calculated 

efficacies o f just under 95 % on each occasion. However, results o f the CETs against 

abomasal species saw geometric (arithmetic) reductions o f 96.5 (96.2), 98.2 (92.4) 

and 97.0 (95.6) %  in 1993, 1994 and 1995 respectively. The significance o f the 

continued effectiveness o f this combination is further emphasized by the suspected 

development o f Lev resistance on the paddock at Firth Mains where this drug was 

employed. These results support the view o f McKenna (1990b) that the selection for 

multiple resistance is unlikely to be greater than that which would otherwise develop 

from the use o f each component separately. Therefore, although advocated for
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slowing down the development o f anthelmintic resistance, the benefits o f using such 

combinations when resistance is present are clear. Furthermore, evidence from 

Australia (Anderson, Martin & Jarrett, 1991; Overend et al., 1994) and New  Zealand 

(McKenna et al., 1996) have shown that the use o f Bz-Lev combinations may also be 

effective on some properties where resistance is present against both anthelmintics.

Analysis o f the geometric mean worm burdens o f the untreated control lambs 

from each paddock which were used in the CETs conducted at the end o f each season 

provided some interesting results. The proportion o f the total burden that was 

T. vitrinus was highest in all o f the untreated groups when the CET was conducted 

later in the season, a finding in agreement with the epidemiological studies o f  Boag 

& Thomas (1977). The untreated control lambs from the Lev treatment paddock had 

the highest proportion o f T.vitrinus at the end o f the first season. This may have also 

reflected the numbers o f T.circumcincta since previous studies have suggested a 

physiologically mediated negative interaction between these two species (Jackson et 

al., 1992b). Nevertheless, the untreated control animals in the Lev group had the 

highest T.vitrinus burdens in each year suggesting that the pasture contamination 

with this species was greatest on this paddock. The proportion o f T.vitrinus burdens 

at the end o f each season also increased in the untreated control lambs grazing the 

Fbz/Lev and Fbz treatment paddocks. Interestingly however, the same pattern was 

not seen in lambs grazing the Ivm treatment paddock where the proportion o f  

T.vitrinus in the untreated controls actually decreased over the three year study. In 

view o f these results it is tempting to speculate that T. vitrinus may be particularly 

sensitive to Ivm and to suggest that this class o f anthelmintic may offer better control 

o f  this species.

Besides highlighting the limitations o f both FECRTs and CETs the study has 

clearly demonstrated the presence o f a Bz-resistant isolate o f T. circumcincta on the 

paddocks at Firth Mains. Whether the expression o f resistance that results from 

continued use o f Bz drugs has increased over the study is very difficult to establish. 

Whilst it is possible to estimate a resistance factor for a strain by comparing its 

susceptibility to that o f a known susceptible strain (Hunt & Taylor, 1989), this can 

only be applied to artificial infections. In the case o f natural infections the apparent 

extent o f resistance, measured in terms o f efficacy, can be influenced by seasonally
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variable factors such as climate, pasture contamination and timing o f treatment.

Also, as demonstrated by the feed withdrawal studies, nutrition can also exert 

quantitative and qualitative effects upon treatment efficacy (Taylor et al., 1992). 

Another point that should be considered when assessing resistance, particularly mid- 

and end o f season treatments, is the effect o f acquired immunity. As shown in 

chapter 3, there was evidence that faecal egg output was regulated from mid-season 

with counts remaining low despite increasing pasture contamination. Therefore, it is 

not possible to make direct within-season comparisons o f anthelmintic efficacies. 

Furthermore, treatment efficacies in CETs are likely to be underestimated when 

using older naturally infected control animals. Therefore, although the efficacies o f  

Lev were just over 80 % in the CETs each year, whether or not resistance to this 

class o f  drug was present is unclear. Towards the end o f the study an attempt was 

made to resolve these questions and confirm resistance levels for each anthelmintic. 

Larvae were collected from donor lambs taken from each o f the treatment paddocks 

and used to infect parasite naive lambs, the results o f which will be discussed in 

chapter 6 .

180



CHAPTER 5

Pathogenicity and immunogenicity of different isolates of

Teladorsagia (Ostertagia)
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5.1 Introduction

It is possible that the genetic restriction that occurs during the selection o f  

resistance may produce genotypes whose pathogenicity and/or immunogenicity 

varies from that o f unselected isolates. Previous studies (Kelly, Whitlock,

Thompson, Hall, Martin & Le Jambre, 1978; Le Jambre, Martin & Jarrett, 1982; 

MacLean, Lewis & Holmes, 1987; Martin, Anderson, Brown & Miller, 1988;

Maingi, Scott & Prichard, 1990) have suggested that changes in the physiological 

characteristics o f a parasite population may be associated with alleles that confer 

resistance to anthelmintics. In addition to a higher infectivity rate, Kelly et al. (1978) 

reported more severe pathological changes, as measured by packed cell volume, 

plasma protein concentration and haemoglobin levels, in sheep infected with a Bz- 

resistant isolate o f H. contortus compared to that o f a susceptible isolate. The 

development and survival o f eggs and free-living stages on pasture and the faecal egg 

output for the resistant isolate were also higher, as was the exsheathment rate in 

ruminal fluid. MacLean et al. (1987), on the otherhand, reported completely 

opposite results (lower establishment, fecundity and pathogenicity) when comparing 

a Bz-resistant to that o f  a Bz-susceptible isolate o f T. colubriformis. The view that 

distinct populations o f a parasite may show significant differences in 

immunogenicity was demonstrated by Goyal & Wakelin (1993). Using two different 

in-bred strains o f mice these workers noted considerable variation in immunogenicity 

(worm recovery, mast cell, eosinophil and antibody responses) towards three 

different isolates o f Trichinella spiralis. Whether the same variability occurs in 

sheep is more difficult to establish due to host heterogeneity in the immune responses 

o f these animals.

The results o f the studies reported in chapter 3 showed that the Bz resistant 

populations at Firth Mains had limited effects upon lamb performance and elicited a 

fairly rapid immune response. Since the selection process inevitably produces 

resistant parasites which are genetically restricted, it is possible that they may vary in 

their pathogenicity and/or immunogenicity in comparison to unselected susceptible 

isolates. Previous studies at Moredun using a Bz-susceptible isolate o f  

T.circumcincta, Moredun ovine susceptible isolate (MOSI), showed that a daily dose 

o f  4000 L3 produced reduced growth rates in naive lambs following 3-4 weeks o f
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infection (Sykes & Coop, 1977). Resistance to the establishment o f incoming worms 

developed between 4-8 weeks in parasite naive lambs given the MOSI at a daily dose 

o f 1000 L3 (Seaton et al., 1989b). The aim o f the present study therefore, was to 

investigate the effects on performance and development o f  immunity in lambs 

infected with different Bz-resistant isolates o f T. circumcincta compared to that o f  

the MOSI.

5.2 Materials and methods

5.2.1 Infective larvae

The methods used for larval culture, recovery, storage and infection were those 

described in chapter 2.2.5. Details o f the T. circumcincta isolates used in the study 

are described in chapter 2.2.6. The Bz-resistant isolate is referred to as the Moredun 

ovine resistant isolate (MORI). The multiple resistant (Bz + Ivm) isolate o f T. 

circumcincta is referred to as the Sourhope caprine resistant isolate (SCRI). The Bz- 

susceptible isolate o f T. circumcincta is referred to as the Moredun ovine susceptible 

isolate (MOSI).

5.2.2 Experimental Design

Details o f the experimental design are summarized in Table 5.1. Twenty six 

parasite naive Suffolk-cross lambs (average weight 30 kg), aged six months, were 

allocated into three groups o f 6  animals and a control group consisting o f 8 animals, 

balanced in terms o f body weight and sex. The different T. circumcincta isolates 

were randomly assigned to groups o f lambs, each o f which received 4000 L3 p er os 

daily for eight weeks. The lambs were fed a ruminant ration daily and hay was 

supplied ad libitum. On days 56 and 57 all o f the lambs, including the uninfected 

controls, were treated with anthelmintic on the basis o f liveweight (Levamisole 7.5 

mg kg _1, Norbrook Animal Health, UK) in an effort to ensure the removal o f all 

worms including histotrophic stages. One week later the lambs were challenged with

10,000 L3 o f  their designated isolate. Previous work at Moredun suggests that the 

establishment and persistence o f incoming larvae and histotrophic stages is relatively
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consistent and populations o f immature Teladorsagia larvae appear to be remarkably 

stable (W. D. Smith, unpublished data). Similar results have been shown by Armour 

et al. (1966) in their serial kill o f lambs infected with 100,000 O. circumcincta. Since 

only 8 worm-free animals were available for controls it was decided that 4 would be 

challenged with the susceptible isolate 10,000 L3 (MOSI) and the other 4 with the 

Bz-resistant isolate (MORI). The lambs were necropsied 10 days post challenge and 

their abomasa removed and worm burdens estimated using 2 % sub-samples 

(described in chapter 2.3.1). Worms were staged and sexed according to the methods 

described in chapter 2.3.2.

Table 5.1 Experimental design o f  the immunogenicity and pathogenicity study o f  
lambs infected with different isolates ofT. circumcincta
Group 

(n = 6 )

Primary Infection Day 0-56  

Daily dosage

Day 56 + 57 

Anthelmintic

Day 63 

Challenged

1 * Controls - Levam isole 10,000 L3  M ORI (4)

10,000 L3  M OSI (4)

2 MORI 4,000 L3 Levam isole 10,000 L3  MORI

3 SCRI 4,000 L3 Levam isole 10,000 L3  SCRI

4 MOSI 4,000 L3 Levam isole 10,000 L3 M OSI

FEC - twice weekly Day 73 - post mortem
Bodyweight - weekly (worm burdens)
Pepsinogen - fortnightly (mucosal mast cells)

* n = 8 MORI = Moredun ovine resistant isolate (Bz-resistant)
SCRI = Sourhope caprine resistant isolate (Bz + Ivm resistant) 
MOSI = Moredun ovine susceptible isolate

5.2.3 Parasitological and production parameters

Lambs were sampled per rectum twice weekly with faecal consistencies and 

egg counts determined using the methods described in chapter 2.2. The animals were 

weighed weekly (chapter 2.4.1), blood samples were taken fortnightly (chapter 2.4.2) 

and plasma stored for subsequent pepsinogen analysis (chapter 2.5.1). At slaughter 

small sections o f an abomasal fold were taken from each lamb and the number o f  

mast cells counted as described in chapter 2.8.1. The enumeration o f mast cells was
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kindly performed by John Huntley from the immunopathology department at 

Moredun.

5.2.4 Statistical analyses

Differences between treatment group faecal egg count and worm burden 

reductions were determined by Log10 (x+1) transformation prior to analysis o f  

variance (Minitab, version 10.0). Differences between group faecal consistencies, 

liveweight gains, pepsinogen values, and mucosal mast cells were determined by 

analysis o f variance o f untransformed data (Minitab, version 10.0).

5.3 Results

5.3.1 Faecal consistencies and egg counts

The average faecal consistency scores for the different groups are shown in 

Figure 5.1. The MORI (Bz-resistant) group had significantly softer faeces compared 

to the other challenged groups (P < 0.05) when the animals were sampled on days 7 

and 14 but by day 21  faecal consistencies were similar in all o f the groups including 

the controls. The faecal egg counts (FECs) o f the different groups are shown in 

Figure 5.2. One lamb (No. 2444) in the SCRI (Bz + Ivm) group had an extremely 

high faecal egg count compared to the other lambs although it’s faecal scores were no 

different to the other members in the group. The average FECs for the groups 

omitting lamb No. 2444 are shown in Figure 5.3. Patent infections were apparent in 

some o f the lambs by day 14, with the MOSI (susceptible) group having significantly 

higher (P < 0.05) counts than the other two infected groups. By day 21, FECs were 

similar in all the infected groups although they tended to be lower in the SCRI (Bz + 

Ivm) group if  the counts o f lamb No. 2444 were disregarded. Nevertheless, with or 

without this particular animal, there were no significant differences between the 

FECs o f  the infected groups from day 21 onwards. By day 52, FECs had declined 

for all o f  the infected groups and there were no differences between them and the 

control group.
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Figure 5.1 Average faeca l consistencies (±SEM ) fo r  groups o f  lambs infected daily 
with 4000 L3 o f  different isolates of'T. circumcincta
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Figure 5.2 Faecal egg counts (±SE M ) o f  lambs infected daily with 4000 L 3 o f  
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Figure 5.3 Faecal egg counts (±SEM ) o f  lambs infected daily with 4000 L3 o f  
different isolates o f  f. circumcincta (omitting lamb No. 2444from  the Bz + Ivm  
group) *Note: the EPG scale is 0 - 120

5.3.2 L iveweight gains

The cumulative weight gains o f the different groups are shown in Figure 5.4 

whilst the average daily weight gains are shown in Figure 5.5. Lambs in all o f the 

infected groups showed varying degrees o f liveweight gain and there were no 

statistical differences between them and the uninfected control group at any point in 

the study. Animal No. 2444 from the SCRI (Bz + Ivm) group fared less well, gaining 

only 2 kg over the 8 week study compared to an average o f  9.7 kg for the other 

animals in this group. Nevertheless, there were still no statistical differences in 

terms o f weight gains between the different groups whether omitting this animal or 

not.
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Figure 5.4 Average cumulative weight gam s (±SEM ) o f  lambs infected daily with 
4000 L3 o f  different isolates o fT . circumcincta
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Figure 5.5 Average daily weight gains (grammes, + SEM) o f  lambs infected with 
different isolates o fT . circumcincta (4000 L3 per day)



5.3.3 Pepsinogen values

The average pepsinogen values o f the different groups throughout the study are 

shown in Figure 5.6. Pepsinogen values became elevated in the infected groups from 

day 14, from which point the uninfected control group values remained significantly 

lower throughout the rest o f the study. At day 14 the pepsinogen values o f the SCRI 

(Bz + Ivm) group were significantly lower than the other infected groups (P < 0.05) 

but thereafter there were no differences between the infected groups. The 

pepsinogen values for lamb No. 2444 were similar to those o f the other lambs in the 

Bz + Ivm resistant group.
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Figure 5.6 Average pepsinogen values (±SEM ) o f  lambs infected daily with 4000 L? 
o f  different isolates o f  T. circumcincta
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5.3.4 Abomasal worm burdens

The T. circumcincta burdens o f the groups following challenge with 10,000 L3 

are shown graphically in Figure 5.7. The individual T. circumcincta burdens for each 

animal are shown in Table 5.2. The numbers o f male and female middle and late L4 

stage larvae were approximately equal in every lamb where worms were counted.

One parasite naive control lamb (No. 2349) challenged with the Bz resistant isolate 

had a worm burden o f only 600 late L4 stage larvae. With the exception o f this 

animal the establishment rates in the parasite naive challenged controls were similar 

for both the MOSI (susceptible) and MORI (Bz resistant) isolates, being 45.5 and

39.3 % respectively. The challenge controls had significantly higher numbers o f late 

fourth larval stage and overall worm burdens than all o f the trickle infected groups 

(P< 0.01). There were no differences between the dosed groups in terms o f worm 

burdens or development stages although the susceptible isolate (MOSI) tended to 

have lower numbers of worms than the other two isolates. Animal No. 2444 from 

the SCRI (Bz + Ivm) group did have a reasonably high worm burden o f 3,950 

although the majority o f the established worms were at the early fourth larval stage.

No. o f  worms
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Figure 5.7 Early, middle and late fourth larval stage worm burdens o f  lambs 
challenged with 10,000 L j  o f  different isolates ofT . circumcincta (10 days post 
infection)
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Table 5.2 Individual worm burdens o f  lambs challenged with 10,000 L3  o f  different 
isolates ofT. circumcincta ( 1 0  days post infection)

Group Lamb
No.

EL4 ML4

Males
m l 4

Females
l l 4

Males
l l 4

Females
Total (± SD)

2265 100 0 300 1700 2 0 0 0 4100
2342 0 0 250 2150 2550 4950

(MOSI) 2380 0 0 100 2150 2300 4550
2263 0 0 100 2350 2150 4600

Controls
Mean 25 0 188 2088 2250 4550 (± 349)

2434 0 0 150 1300 1450 2900
2397 0 150 200 2600 2700 5650

(MORI) 2349 0 0 0 300 300 600
2403 0 50 200 1400 1600 3250
Mean 0 50 138 1400 1513 3100 (± 2067)

2269 400 0 0 0 0 400
2271 100 0 0 0 0 100

MORI 2425 1750 250 0 650 750 3400
(Bz resistant) 2273 250 50 0 50 0 350

2134 450 0 0 0 0 450
2335 150 0 0 0 0 150
Mean 517 50 0 117 125 809 (± 1278)

2348 550 0 0 0 0 550
2381 1750 50 0 0 0 1800

SCRI 2330 0 0 0 0 0 0

(Bz + Ivm res.) 2444 3250 350 300 50 0 3950
2404 0 0 0 0 0 0

2254 50 0 0 0 0 50
Mean 934 67 50 9 0 1059 (± 1577)

2272 1150 500 350 0 50 2050
986 250 0 50 0 0 300

MOSI 2388 100 0 0 0 300 400
(susceptible) 2357 0 0 0 0 0 0

1005 0 0 0 0 0 0

2258 50 0 0 0 0 50
Mean 259 84 67 0 59 467 (± 793)
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5.3.5 Abomasal mucosal mast cells

The average number o f mucosal mast cells counted from sections o f an 

abomasal fold taken from each lamb were expressed as mast cells per 0.02 mm o f 

mucosa and are shown graphically in Figure 5.8. The individual mucosal mast cell 

numbers for each animal are shown in Table 5.3. There were no differences between 

the numbers o f mucosal mast cells in the lambs from the control group challenged 

with either the MORI (Bz resistant) or MOSI (susceptible) isolates. No data was 

available for one lamb in the MOSI trickle challenged group (No. 2272) as the 

section taken at post mortem  was inadvertently destroyed. Each o f the trickle 

challenged groups had significantly higher abomasal mucosal mast cell counts than 

the challenged controls (P < 0.001). There were no differences between any o f the 

trickle infected groups in terms o f mucosal mast cell counts.
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Figure 5.8 Average abomasal mucosal mast cell numbers (per 0.02 mm~ tissue) o f  
lambs challenged with 10,000 L j  o f  different isolates o fT . circumcincta (10 days 
post infection)
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Table 5.3 Individual abomasal mucosal mast cell numbers (per 0.02 mm^ tissue) o f  
lambs challenged with 1 0 ,0 0 0  L3  o f  different isolates ofT. circumcincta ( 1 0  days 
po st infection)

Group Lamb No. No. MMC  

(0 .0 2 mm2)

Group Lamb No. No. MMC  

(0 .0 2  mm2)

2265 4 2434 9

Controls 2342 11 Controls 2397 5

(MOSI) 2380 11 (MORI) 2349 6

2263 2 2403 4

Mean (± SD) 7(4 .7) Mean (± SD) 6  (2 .2 )

2269 67 2348 34

2271 76 2381 57

2425 6 2330 45

MORI 2273 55 SCRI 2444 54

2134 85 2404 111

2335 33 2254 32

Mean (± SD) 54 (29.5) Mean (± SD) 56 (29)

2272 *

986 113
2388 72

MOSI 2357 82

1005 54
2258 67

Mean (± SD) 78 (22.2)

* data not available.

MOSI, susceptible isolate 

MORI, Bz resistant isolate 

SCRI, Bz + Ivm resisatnt isolate
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5.4 Discussion

No differences were apparent in the immunogenicity or pathogenicity o f  the 

two Bz-resistant isolates o f  T. circumcincta investigated in comparison to that o f  an 

unselected susceptible isolate. Faecal egg counts, plasma pepsinogen values and 

liveweight gains were similar for all three groups during the period o f trickle 

challenge. There was a notable difference in the pre-patent period o f the different 

isolates with the susceptible (MOSI) parasites producing significantly higher faecal 

egg counts by day 14 o f the study (P < 0.05). Five o f the six MOSI infected lambs 

had positive faecal egg counts (FECs) on day 14 with an averge o f 54 EPG. This 

was compared to 2/6 and 3/6 lambs in the MORI and SCRI infected groups with 

average FECs o f  5 and 3 EPG respectively. There were also differences in the 

profiles o f the three isolates with peak FECs on days 31, 35 and 42 for the MOSI, 

MORI and SCRI infections and average counts o f 78, 61 and 28 EPG respectively. 

The counts remained reasonably low once infections had reached patency despite 

continued infection, suggesting that regulation o f  egg output was occurring in these 

animals.

The MOSI has been used in several studies at Moredun with variable results in 

terms o f  peak average FEC and days to peak count, the results o f which are 

summarised in table 5.4. Animal age (Douch & Morum, 1993), genotype (Abbot et 

al, 1984) and nutrition (Coop & Holmes, 1996) can influence faecal egg output and 

may account for the large variation seen in studies with this isolate. The lambs were 

aged 6  months at the start o f the present study and on a high plane o f  nutrition which 

may help to explain why the FECs remained reasonably low. It is interesting to note 

that there were no marked differences in terms o f weight gain between the trickle 

infected groups and the uninfected controls. Significant differences in terms o f  

weight gain were noted by Sykes & Coop (1977) and Jackson & Christie (1984) 

using the MOSI and a similar dosing regime but the lambs in these studies were aged 

4 months and there were also breed differences. The average plasma pepsinogen 

value for the SCRI group was lower on day 14 (P<0.05) but there were no marked 

differences between either o f the infected groups throughout the remaining trickle 

infection. The pepsinogen values were elevated in the present study suggesting that 

these lambs were experiencing some degree o f sub-clinical pathophysiological
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damage, although this was not associated with significant reductions in lamb 

performance.

Following the administration o f anthelmintic to remove residual worms from 

the trickle infection, no differences between the infected groups, in terms o f  worm 

burden or mucosal mast cell numbers, were evident as a result o f  challenge with

10,000 L3. Although anthelmintic controls were not employed, previous studies have 

demonstrated the susceptibility o f the SCRI (Jackson et al., 1992a), MORI and 

MOSI (F. Jackson, unpublished data) to levamisole. Furthermore, the lambs were 

treated with anthelmintic on two consecutive days in an effort to ensure the removal 

o f histotrophic stages.

Table 5.4 Comparison o f  several studies using the Moredun susceptible isolate 
(MOSI) ofT. circumcincta in terms o f  daily infective dose, average peak faeca l egg  
counts and days to achieve peak counts

Authors Age
(months)

Breed Daily dose 
(L3)

Peak FEC  
(EPG)

Days 
to peak

The present study 6 G x S 4000 78 42

Sykes & Coop (1977) 4 B/BL x S* 4000 480 63

Coop et al. (1982) 4 B /B L x S 1 0 0 0 350 42
3000 275 42
5000 300 42

Jackson & Christie (1984) 314-4 BL x S 400 2 0 0 42
4000 190 42

Seaton et al. (1989b) 5 G x S 1 0 0 0 240 48

Coop et al. (1995) 4 lA G x S 2 0 0 0 500 53

G - Greyface, B - Blackface, BL - Border Leicester, S - Suffolk 
* Male lambs only

The degree o f  immunity that the infected groups acquired during the trickle 

challenge was similar for each o f the isolates with no significant differences in terms 

o f total worm burden, stage o f worm development or mucosal mast cell numbers. 

Average establishment rates (± SD) in the previously infected lambs for the MORI
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(Bz-resistant), SCRI (Bz + Ivm resistant) and MOSI (susceptible) challenge 

infections were 8.1 (± 12.8), 10.6 (± 15.8) and 4.7 (± 7.9) % respectively. The MOSI 

has also been used in several challenge studies at Moredun involving control and 

secondary infections, the results o f which are summarised in table 5.5. Differences 

in animal age, daily larval dosage and size o f challenge infection may account for the 

variable establishment rates seen in these studies.

Table 5.5 Comparison of several studies using the Moredun susceptible isolate 
(MOSI) ofT. circumcincta in terms of establishment (Est.) rates for control (C) and 
secondary (S) infections. Age of sheep is given at time o f challenge, following period 
of trickle infection. Greyface x Suffolk lambs were used in each study and worm 
burdens taken on day 10 post challenge

Authors Age
(months)

Daily dose
(L3)

Trickle
(weeks)

Challenge
f l* )

Est.
(%)

Present study 8 4,000 8 10,000 (C) 45.5 
(S) 4.7

Smith et al. * (1983b) 11 2 ,0 0 0 8 - 1 0 50,000 (C) 29.2 
(S) 11.0

Smith et al. (1984a) 10 2 ,0 0 0 9 50.000

1.000

(C) 46.2 
(S) 4.8

(C) 26.8 
(S) 12.4

Smith et al. (1985) 4V2 2 ,0 0 0 8 -9 50.000

50.000

(C) 27.4 
(S) 22.8

(C) 63.0 
(S) 30.6

Coop et al. (1995) 1 2 ,000 8 50,000 (C) 32.8 
(S) 39.2

* Smith, Jackson, Jackson & Williams (1983b)

Average abomasal mucosal mast cell numbers (± SD) for the infected sheep 

challenged with the MORI, SCRI and MOSI isolates were 54 (± 29), 56 (± 29) and 

78 (± 22) cells per 0.02 mm tissue respectively. There was a very good relationship 

between the number o f mast cells and the number o f worms present in each animal.
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The overall value, including worm burdens and mast cell counts o f  the challenge 

controls, resulted in an inverse correlation o f 0.72, suggesting that mucosal mast cell 

counts are a good indicator o f immunogenicity. Although the average mast cell 

count for the MOSI group was slightly higher, the tissue sample for the lamb with the 

highest worm burden in this group was missing. In view o f the correlation between 

worm burden and mucosal mast cell count, it likely that the average number o f  mast 

cells would be lower for the MOSI group if  the counts for this particular animal were 

available. The heterogeneity in the immune responses o f the sheep in the present 

study has also highlighted the difficulty in making compararisons between different 

studies on immunogenicity.

Previous work, such as that o f Kelly et al. (1978), has been criticized because 

comparisons were made between isolates with very different origins and histories and 

results may have reflected ecotypic differences. The same criticism applies to the 

present study since the isolates had very different backgrounds in regard to their 

exposure to anthelmintics. The MOSI and MORI may however, due to extensive 

movement o f  animals between Firth Mains and the Moredun site, have at some time 

shared a common ancestry. The main cause for Bz resistance in both H. contortus, 

T.colubriformis (Kwa et al., 1994) and T. circumcincta (Elard et al., 1996) is a single 

mutation from phenylalanine to tyrosine at amino acid position 200 in the P-tubulin 

isotype 1 gene. It seems reasonable to suggest that alleles conferring resistance may 

be advantageous for survival if  selected for by anthelmintics, but whether such a 

minor change in the genetic code would modify fundamental characteristics such as 

larval establishment and development, and adult persistence and fecundity, is not 

clear. Beech, Prichard & Scott (1994) studied the genetic variability o f p-tubulin 

genes in Bz-susceptible and Bz-resistant isolates o f H. contortus. Examining the 

allelic variation at two p-tubulin loci, these workers concluded that resistance is 

associated with changes in allele frequency at these loci rather than novel genetic 

rearrangements. If anthelmintic-resistant alleles are linked to increased infectivity 

these parasites might indeed be more pathogenic but, conversely, more likely to kill 

their hosts and incidentally themselves (Le Jambre et al., 1982).

Nevertheless, the purpose o f  the present study was to compare and assess the 

relative effects o f infection o f the three different isolates o f T. circumcincta. The
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MOSI has been used in all o f  the pathogenicity and production studies at Moredun 

since it’s isolation in 1979 and had been passaged 64 times in donor lambs before 

this study. Although there were no statistical differences, the MORI (Bz resistant) 

isolate tended to show a higher degree o f  pathogenicity in terms o f lower faeal 

consistencies over the first two weeks o f infection, higher worm burdens and reduced 

liveweight gains compared to the other isolates. Average daily weight gains for the 

MORI (Bz resistant), SCRI (Bz + Ivm resistant) and MOSI (susceptible) isolates 

were 167, 181 and 183 grammes per day respectively. Similarly, the respective 

geometric mean burdens for each o f the groups following challenge were 384, 76 and 

48 worms. It seems that the Bz resistant T. circumcincta isolated from Firth Mains is 

not atypical for this species and it’s degree o f fitness within the host may indeed be 

greater than that o f our unselected susceptible isolate. The results o f the three year 

field study on production are therefore supported by this present study since neither 

the pathogenicity or immunogenicity o f the MORI are atypical for this species. This 

also strengthens the suggestion made in chapter 3 that resistant parasites may well be 

controlled with anthelmintic treatments which are not fully effective, at least when 

dealing with species o f a low biotic potential such as Teladorsagia.
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CHAPTER 6

Anthelmintic resistance status of parasites on the paddocks

at Firth Mains
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6.1 Introduction

Following the characterization o f the Bz-resistant T. circumcincta isolated from 

Firth Mains in 1983, drugs within the Bz class were withdrawn from the farm and 

sheep on the contaminated paddocks were treated on an annual basis with either Lev 

or Ivm. Results o f the faecal egg count reduction tests (FECRTs) and controlled 

efficacy tests (CETs) conducted as part o f the three year field study on production 

suggested that resistance at Firth Mains may have extended to the imidazothiazole 

(levamisole) class o f  anthelmintic and possibly to the Fbz + Lev combination. 

However, as discussed in chapter 4, the treatment efficacies seen with naturally 

infected animals can be influenced markedly by the degree o f immunity acquired by 

each lamb throughout the season. This in turn can be influenced by a number o f  

factors including genotype, nutrition and the degree and duration o f exposure to 

infection. Therefore, in an attempt to determine the resistance status o f  the parasites 

on each paddock, a CET was performed in accordance with WAAVP guidelines 

(Wood et al., 1995) which require artificial infection o f parasite naive animals.

6.2 Materials and methods

6.2.1 Infective larvae

A naturally infected male lamb from each o f the treatment group paddocks at 

Firth Mains was housed towards the end o f the study in 1995 and its faeces collected 

to provide infective larvae. Methods o f larval culture, recovery, storage and infection 

techniques were those described in chapter 2.2.5. Since it was near the end o f the 

season, larval cultures also contained T. vitrinus. The relative proportions o f  T. 

circumcincta and T. vitrinus in each larval culture was determined by examining the 

tail characteristics o f 1 0 0  exsheathed infective larvae under a compound microscope. 

The larvae were exsheathed by the addition o f 200 pi o f sodium hypochlorite (Milton 

sterilizing solution) per 1ml o f larval suspension and left for 2  minutes to exsheath 

before the addition o f one drop o f  helminthological iodine.
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6.2.2 Experimental Design

Details o f the experimental design are summarized in Table 6.1. Thirty two 

parasite naive Suffolk-cross lambs, aged six months, were allocated into four groups 

o f 8 animals, balanced in terms o f body weight and sex. The different isolates 

collected from each donor were randomly assigned to groups o f lambs, each o f which 

was challenged with 10,000 L3 on day 0. Two lambs o f similar weight from each 

group, one male and one female, were assigned as untreated controls. The groups 

remained housed in separate concrete pens, the surfaces o f which were cleaned daily 

and replaced with fresh straw. The lambs were fed with hay and feed concentrates 

daily and water was provided ad libitum. On day 28 lambs from each group, except 

the controls, were treated on the basis o f liveweight with their respective anthelmintic 

at the relevant MRD. The lambs were slaughtered 7 days post-treatment and their 

abomasa and small intestines removed for worm burden estimation using 2  %  sub

samples as described in chapter 2.3.

Table 6.1 Experimental design of study to determine resistance status of 
anthelmintics at Firth Mains

Group 
(n = 8)

Anthelmintic used 
on paddock from 

which donor lamb 
grazed

Day 0 
(infected)

Day 28* 
(anthelmintic)

Day 35

1 Ivm 1 0 ,0 0 0  l 3 Ivm (0.2 mg kg’1) Post mortem

2 Fbz 1 0 ,0 0 0  l 3 Fbz (5 mg kg'1) Post mortem

3 Lev 1 0 ,0 0 0  l 3 Lev (7.5 mg kg'1) Post mortem

4 Fbz/Lev 1 0 ,0 0 0  l 3 Fbz/Lev (5 + 7.5 mg kg"1) Post mortem

* Two lambs from each group remained as untreated controls

6.2.3 Parasitological parameters

Lambs were sampled per rectum weekly and their faecal egg counts determined 

using the methods described in chapter 2.2. Eggs from each group were pooled and 

identified by means o f an image shearing technique, described in chapter 2.2.4.
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The FECRT treatment efficacies for each o f the anthelmintics were calculated 

according to WAAVP guidelines (Coles et al., 1992) although day 7 counts were 

necessary due to the experimental design :

%  Reduction = 100 (1 - Xt / Xc), where Xt and Xc are the treated and control 

group arithmetic mean faecal egg counts respectively on day 7.

The CET treatment efficacies were calculated according to WAAVP guidelines 

using both arithmetic and geometric mean worm data since either method should be 

equally acceptable for determining efficacy with artificially induced infections in 

parasite naive animals (Wood et al., 1995):

% Reduction = 100 (1 - Xt / Xc), where Xt and Xc are the treated and control 

group arithmetic/geometric mean worm counts respectively at slaughter.

6.2.4 Statistical analyses

Differences between group faecal egg counts were determined by Log10 (x + 1) 

transformation prior to analysis o f variance (Minitab, version 10.0).

6.3 Results

6.2.1 Specific composition of larval cultures

The relative proportions o f T. circumcincta and T. vitrinus in each larval 

culture, as determined by examining the tail characteristics o f 1 0 0  infective larvae, 

are shown in Table 6.2. The Lev group were infected with the highest proportion o f  

T. vitrinus larvae (36 %) whereas the respective infective dose for the Fbz/Lev and 

Fbz groups was composed o f 21 %  and 25 % o f this small-intestinal species. The 

larval culture used to infect lambs within the Ivm group had comparatively low  

numbers o f T. vitrinus with only 2 % o f the overall dose comprising o f  this species.

6.3.2 Faecal egg count reduction test (FECRT)

The faecal egg counts o f the different groups are shown in Figure 6.1. Patent 

infections were apparent in some o f the lambs by day 14 o f the study. Faecal egg 

counts were similar in all o f the infected groups by day 21. Lambs infected with
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larvae from the Fbz and Fbz/Lev paddocks, as well as the control lambs, had 

significantly lower faecal egg counts (P < 0.05) than the Ivm group on day 28. There 

were no significant differences between the faecal egg counts o f the Ivm and Lev 

groups at this point. Following anthelmintic, all o f the treated groups had 

significantly lower faecal egg counts than the untreated controls (P < 0.001).

Faecal egg count reductions for each o f the anthelmintic treatments, calculated 

according to WAAVP guidelines, are shown in Table 6.3. Pre- and post-treatment 

egg measurements for each group are shown in Table 6.4. According to WAAVP 

faecal egg count reduction test guidelines (Coles et al., 1992), resistance is present if  

the percentage reduction is less than 95 % and the lower confidence interval is less 

than 90 %. If only one o f these two criteria is met then resistance is suspected.

Under these assumptions, the Fbz/Lev combination and Ivm treatments have 

remained fully effective, both approaching reductions in faecal egg count o f  1 0 0  %. 

Results o f the FECRT confirmed the presence o f Fbz resistance at Firth Mains 

although the treatment efficacy o f 77.8 % is somewhat higher than was seen in 

naturally infected animals. The treatment efficacy o f just over 89 % seen with Lev 

suggests that resistance to this anthelmintic is also present, at least on the particular 

paddock were sheep have been treated with this drug for three seasons.

Table 6.2 Relative proportions ofT. circumcincta and T. vitrinus in larval cultures 
from donor lambs grazing different paddocks, as determined by the tail 
characteristics of 100 exsheathed infective larvae

Paddock on 
which lamb was 

grazing.

Anthelmintic employed 
on paddock from 

1993 -1995

%  T. circumcincta %  T. vitrinus

5 Ivm 98 2

3 Fbz 75 25

2 Lev 64 36

1 Fbz/Lev 79 21
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Figure 6.1 Average faecal egg counts (+SEM) o f  groups o f  lambs (n 8)  infected  
with 1 0 ,0 0 0  fro m  a donor lamb which had grazed a particular paddock, the lambs 
o f  which had been treated with either Ivm, Fbz, Lev or Fbz/Lev using a non- 
suppressive treatment regime fo r  three seasons. Two lambs from  each group 
represented the untreated controls
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Table 6.3 Faecal egg count reductions in groups o f  sheep infected with 10,000 L3  

28 days previously, including 95 % confidence intervals

Treatment EPG (± SD) EPG (± SD) % 95 % CIs
(day 0 ) day 0 day 1 0 Reduction

Untreated controls 274.5 (91.3) 490.1 (174.4) - -

Ivm (0.2 mg kg’1) 519.0(183.3) 3.2 (7.3) 99.3 95, 100
Fbz (5 mg kg'1) 316.5 (45.7) 109.0 (40.4) 77.8 6 6 , 8 6

Lev (7.5 mg kg’1) 351.0 (83.1) 53.0 (23.6) 89.2 83 ,93
Fbz/Lev (5 +  7.5 mg kg'1) 255.0 (56.3) 0.7 (1.2) 99.9 99, 100

Table 6.4 Identification ofpre- (day 0) and post-treatment (day 10) faecal egg count 
measurements o f  sheep infected with 10,000 L3  28 days previously

Treatment group (%) T. circumcincta (%) T. vitrinus
day 0 day 1 0 day 0 day 1 0

Untreated controls 91 90 9 10

Ivm (0.2 mg kg’1) 1 0 0 * 0 *

Fbz (5 mg kg'1) 83.3 85.7 16.7 14.3
Lev (7.5 mg kg'1) 89.5 90.9 10.5 9.1
Fbz/Lev (5 + 7.5 mg kg'1) 91.3 * 8.7 *

* insufficient eggs

6 .3.3 Controlled efficacy test (CET)

6.3.3.1 Abomasal worm burdens

The abomasal worm burdens o f the groups following anthelmintic treatment 

are shown graphically in Figure 6.2. The individual abomasal worm burdens for 

each animal are shown in Table 6.5. Only adult T. circumcincta were present and the 

proportion o f male and females were similar in all o f the lambs where worms were 

counted. The average number o f T. circumcincta present in each pair o f infected 

controls was 2775, 3225, 2750 and 3850 for the Ivm, Fbz, Lev and Fbz/Lev larval 

cultures respectively. Anthelmintic efficacies, calculated using both arithmetic and
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geometric mean worm burden data, are shown in Table 6 .6 . Both the Fbz/Lev 

combination and the Ivm treatments were highly effective against abomasal species 

using either arithmetic or geometric mean data, with worm reductions o f over 99 %. 

Fbz treatment resulted in abomasal worm reductions o f  approximately 70 %  using 

either method, confirming the presence o f Bz-resistant T. circumcincta on the 

paddocks at Firth Mains. The efficacy for Lev treatment calculated using geometric 

data was over 99 %, whereas reduction using arithmetic worm burdens was 97.9 %.

Wbrm burden 
4000

3000

2000

1000

Controls Ivm Fbz
Q Q □ 

I jcv

__
Fbz/Lev

Figure 6.2 T. circumcincta burdens of untreated controls and lambs treated with 
either Ivm (0.2 mg kg~l), Fbz (5 mg kg~l), Lev (7.5 mg kg~l) or a Fbz/Lev (5 +7 . 5  
mg kg~l) combination. Lambs were infected 28 days pre-treatment with 10,000 L3 
from a donor lamb which had grazed the particular treatment paddock with two 
lambs from each group remaining as controls
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Table 6.5 Individual T. circumcincta burdens o f  untreated controls and lambs 
treated with either Ivm, Fbz, Lev or a Fbz/Lev combination. Lambs were infected 28 
days pre-treatment with 1 0 ,0 0 0  L3  from  a donor lamb which had grazed the 
particular treatment paddock with two lambs from  each group remaining as controls

Group Lamb No. Males Females Total (± SD)
603 (Ivm) 1600 1800 3400
1275 (Ivm) 1050 1100 2150
592 (Fbz) 1150 1300 2450

Controls 601 (Fbz) 1750 2250 4000
397(Lev) 900 1350 2250
591(Lev) 1400 1850 3250

394 (Fbz/Lev) 1850 20 0 0 3850
678 (Fbz/Lev) 1500 2350 3850

Arithmetic mean 1400 1750 3150 (± 763)
Geometric mean 1362 1695 3064

386 0 0 0
644 0 0 0
649 0 0 0

Ivm 670 0 100 100
693 0 0 0
1268 0 0 0

Arithmetic mean 0 16.7 16.7 (± 41)
Geometric mean 0 1.2 1.2

370 500 150 650
576 400 250 650
695 900 350 1250

Fbz 696 700 800 1500
1254 600 350 950
1282 450 250 700

Arithmetic mean 591.7 358.3 950 (± 357)
Geometric mean 569.2 311.8 898.7

391 100 0 100
392 50 100 150
610 0 0 0

Lev 624 0 50 50
662 50 50 100
1287 0 0 0

Arithmetic mean 33.3 33.3 66.7 (± 61)
Geometric mean 7.0 7.0 19.7

393 0 0 0
396 0 0 0
588 0 50 50

Fbz/Lev 639 0 0 0
646 50 0 50
661 0 0 0

Arithmetic mean 8.3 8.3 16.7 (± 26)
Geometric mean 0.9 0.9 2.7
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Table 6 .6  Abomasal worm burden reductions in groups o f  sheep artificially infected 
with 10,000 L$ 28 days pre-treatment, calculated using arithmetic and geometric 
mean worm burden data

Treatment 
(day 0 )

Arithmetic mean 
worm burden 
(± SD) day 10

%
Reduction

Geometric 
mean worm 

burden day 10

%
Reduction

Untreated controls 3150 (763) - 3064 -

Ivm (0.2 mg kg’1) 17(41) 99.5 2 99.9
Fbz (5 mg kg'1) 950 (357) 69.9 899 70.7
Lev (7.5 mg kg’1) 67 (61) 97.9 2 0 99.3
Fbz/Lev (5 + 7.5 mg kg’1) 17(26) 99.5 3 99.9

6.3.3.2 Small intestinal worm burdens

The small intestinal worm burdens o f the groups following anthelmintic 

treatment are shown graphically in Figure 6.3. Only Trichostrongylus spp were 

identified from lambs in these studies and examination o f the male worms confirmed 

that they were T. vitrinus. The individual T. vitrinus burdens for each animal are 

shown in Table 6.7. The ratio o f male to female worms was approximately equal in 

those lambs with reasonable burdens. The average number o f  small intestinal worms 

present in each pair o f infected controls was 50, 2050, 3050 and 1150 for the Ivm, 

Fbz, Lev and Fbz/Lev larval cultures respectively. Efficacies were calculated using 

both arithmetic and geometric mean worm burden data, the results o f which are 

shown in Table 6 .8 . The particularly low worm burden o f the Ivm controls was to be 

expected since these lambs were infected with an isolate having the lowest 

proportion (2 %) o f  T. vitrinus larvae. Efficacies calculated with the omission o f  the 

Ivm control lamb worm burdens are shown in Table 6.9. Using either arithmetic or 

geometric mean data, and with or without the Ivm controls, both the Fbz/Lev 

combination and the Ivm treatments were 100 % effective at removing small 

intestinal species. Inclusion o f the Ivm controls resulted in the lowest calculated 

efficacies for both Fbz and Lev treatment, with arithmetic data being least effective. 

Nevertheless, Fbz was still highly effective with a minimum efficacy o f 98.9 %. The 

efficacy o f Lev treatment however, calculated using arithmetic data, was moderate
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with 82 % and 86.4 % reductions with and without the Ivm controls respectively. 

Geometric data on the otherhand resulted in reductions o f  96 %  and 98.9 %  with and 

without the Ivm controls respectively.

Wbrm burden 

4000

3000

2000

1000

Controls Ivm Fbz
JEL
Lev Fhz/Lev

Figure 6.3 T. vitrinus burdens o f  lambs treated with either Ivm (0.2 mg kg~l), Fbz (5 
mg kg~l), Lev (7.5 mg kg~l) or a Fbz/Lev (5 + 7.5 mg kg'1) combination. Lambs 
were infected 28 days pre-treatment with 1 0 ,0 0 0  L3  from  a donor lamb which had  
grazed the particular treatment paddock with two lambs from  each group remaining 
as controls
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Table 6.7 Individual T. vitrinus burdens o f  untreated controls and lambs treated with 
either Ivm, Fbz, Lev or a Fbz/Lev combination. Lambs were infected 28 days p re 
treatment with 1 0 ,0 0 0  L3  from  a donor lamb which had grazed the particular 
treatment paddock with two lambs from  each group remaining as controls

Group Lamb No. Males Females Total (± SD)
603 (Ivm) 100 0 100
1275 (Ivm) 0 0 0
592 (Fbz) 700 1000 1700

Controls 601 (Fbz) 1000 1400 2400
397(Lev) 1600 2 100 3700
591(Lev) 1100 1300 2400

394 (Fbz/Lev) 500 700 1200
678 (Fbz/Lev) 300 800 1100

Arithmetic mean 662.5 912.5 1575 (± 1248)
Geometric mean 255.7 194.7 512.7

386 0 0 0
644 0 0 0
649 0 0 0

Ivm 670 0 0 0
693 0 0 0
1268 0 0 0

Arithmetic mean 0 0 0
Geometric mean 0 0 0

370 0 0 0
576 0 0 0
695 0 100 100

Fbz 696 0 0 0
1254 0 0 0
1282 0 0 0

Arithmetic mean 0 16.7 16.7 (± 41)
Geometric mean 0 1.2 1.2

391 200 0 20 0
392 600 400 1000
610 0 0 0

Lev 624 300 200 500
662 0 0 0
1287 0 0 0

Arithmetic mean 183.3 100 283.3 (± 402)
Geometric mean 17.2 5.6 2 0 .6

393 0 0 0
396 0 0 0
588 0 0 0

Fbz/Lev 639 0 0 0
646 0 0 0
661 0 0 0

Arithmetic mean 0 0 0
Geometric mean 0 0 0
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Table 6 .8  Small intestinal worm burden reductions in groups o f  sheep artificially 
infected with 10,000 L j  28 days pre-treatment, calculated using arithmetic and  
geometric mean worm burden data

Treatment 
(day 0 )

Arithmetic mean 
worm burden 
(± SD) day 10

%
Reduction

Geometric 
mean worm 

burden day 10

%
Reduction

Untreated controls 1575 (1249) - 513 -

Ivm (0.2 mg kg'1) 0 (0 ) 1 0 0 0 1 0 0

Fbz (5 mg kg'1) 17(41) 98.9 1 99.8

Lev (7.5 mg kg'1) 283 (402) 82.0 21 96.0

Fbz/Lev (5 + 7.5 mg kg’1) 0 (0 ) 1 0 0 0 1 0 0

Table 6.9 Small intestinal worm burden reductions in groups o f  sheep artificially 
infected with 1 0 ,0 0 0  L3  28 days pre-treatment, calculated using arithmetic and  
geometric mean worm burden data (omitting worm burdens o f  the Ivm control lambs 
since these animals had negligible burdens ofT. vitrinus)

Treatment 
(day 0 )

Arithmetic mean 
worm burden 
(± SD) day 10

%
Reduction

Geometric 
mean worm 

burden day 10

%
Reduction

Controls (not Ivm) 2083 (970) - 1905 -

Ivm (0.2 mg kg’1) 0 (0 ) 1 0 0 0 1 0 0

Fbz (5 mg kg'1) 17(41) 99.2 1 99.9

Lev (7.5 mg kg’1) 283 (402) 86.4 21 98.9

Fbz/Lev (5 + 7.5 mg kg'1) 0 (0 ) 1 0 0 0 1 0 0
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6.4 Discussion

In an effort to reduce the number o f animals required, it was decided to use 

pooled control data for the pairs o f animals infected with each o f the isolates. This 

was based on previous studies at Moredun which have shown that there are no 

significant differences between different isolates, at least with T. circumcincta, in 

terms o f  initial establishment in parasite naive lambs (F. Jackson, unpublished data). 

The establishment rates o f the isolates used in chapter 5 also support this statement. 

Tables 6.10 and 6.11 show the respective abomasal and small intestinal calculated 

efficacies using only the two control lambs infected with each particular isolate 

compared to values using pooled worm burdens. The values compare very well 

indeed and support the results obtained using this experimental design.

Table 6.10 Arithmetic (and geometric) efficacies calculated using the abomasal 
worm burdens o f  the two control animals infected with the particular isolate 
com pared to that o f  values obtained using pooled  controls

Group Pooled
controls

Ivm
controls

Fbz
controls

Lev
controls

Fbz/Lev
controls

Ivm 99.5 (99.9) 99.4 (99.9)

Fbz 69.9 (70.7) 70.5 (71.3)

Lev 97.9 (99.3) 97.6 (99.3)

Fbz/Lev 99.5 (99.9) 99.6 (99.9)

Table 6.11 Arithmetic (and geometric) efficacies calculated using the small 
intestinal worm burdens o f  the two control animals infected with the particular 
isolate compared to that o f  values obtained using pooled  controls

Group Pooled
controls

Ivm
controls

Fbz
controls

Lev
controls

Fbz/Lev
controls

Ivm 1 0 0 ( 1 0 0 ) 1 0 0 ( 1 0 0 )

Fbz 99.2 (99.9) 99.2 (99.9)

Lev 86.4 (98.9) 90.7 (99.3)

Fbz/Lev 1 0 0 ( 1 0 0 ) 1 0 0 ( 1 0 0 )
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Both the Fbz/Lev combination and the Ivm treatments were highly effective 

against abomasal and small intestinal species with faecal egg and worm reductions o f  

over 99 %. Results o f the FECRTs corresponded very well with those o f the CETs, 

providing further evidence that using fewer lambs than the 15 required to satisfy 

WAAVP guidelines (Coles et al. 1992) may still provide a useful guide to 

anthelmintic efficacy when conducting FECRTs.

As expected the study confirmed the presence o f Bz resistant T. circumcincta 

on the paddocks at Firth Mains, although the treatment efficacy o f Fbz was 

somewhat higher than was seen with the naturally infected field infections. The 

calculated efficacy for Fbz treatment using the FECRT was 77.8 % with similar 

proportions o f T. circumcincta and T. vitrinus spp eggs identified in samples taken 

before and after treatment suggesting we may also have Bz resistant T. vitrinus. The 

egg measuring technique employed only uses 50 % ellipses o f the egg size 

distributions in estimating the size o f specific populations and therefore has some 

margin o f  error. Eggs recovered post-treatment may also have been expelled by 

dying worms or from autolysis o f dead worms. Results o f the CET, the definitive 

test for resistance, showed calculated efficacies for Fbz o f  over 99 % against small 

intestinal species using either arithmetic or geometric mean worm burdens 

suggesting that Bz resistant T. vitrinus is not a problem.

According to WAAVP guidelines standard parametric or nonparametric worm 

burden data should be equally acceptable for determining efficacy o f an anthelmintic 

with artificially induced infections in young parasite naive animals in which 

infections are relatively uniform (Wood et a l., 1995). The calculated efficacy for Fbz 

treatment in the CET using arithmetic and geometric mean abomasal worm burden 

data were 69.9 and 70.7 %  respectively. In the corresponding 1995 end o f season 

CET conducted on lambs from this paddock, Fbz treatment efficacy was only 49.4 

%, confirming that treatment efficacies are likely to be lower when using naturally 

infected animals. Benchaoui & McKellar (1994) used the same Bz-resistant isolate 

o f  T. circumcincta in parasite naive Suffolk cross sheep in their study but achieved 

geometric mean worm reductions o f only 1 % following Fbz treatment. However,
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this work is not directly comparable since these lambs were also infected with H. 

contortus and mixed infections are known to affect drug pharmacokinetics (Landuyt, 

Debackere, Vercruysse & McKellar, 1995). The treatment efficacy o f Fbz, as 

determined by a CET with naturally infected Grey face x Suffolk lambs at Firth 

Mains in 1991, was 43.9 % (Jackson et al., 1993). The results are encouraging 

therefore since they provide no evidence o f any decline in the efficacy o f Fbz despite 

its continued use over three successive seasons.

Results o f the study also suggest that Lev resistance may be present at Firth 

Mains on the paddock where this drug was used in a non-suppressive treatment 

regime. The calculated efficacy for Lev using the FECRT was 89.2 %, with similar 

proportions o f T. circumcincta and T. vitrinus spp eggs identified in samples taken 

before and after treatment. However, calculated efficacies for Lev treatment in the 

CET using arithmetic and geometric mean abomasal worm burden data were over 

97.9 and 99.3 % respectively, suggesting that Lev resistance is not yet a problem 

with T. circumcincta. With the omission o f the Ivm controls, due to the low levels o f  

T. vitrinus infection in these animals, arithmetic and geometric small intestinal worm 

reductions for Lev compared to pooled controls were 86.4 and 98.9 %  respectively. 

The arithmetic and geometric efficacies against T. vitrinus calculated using only the 

two control animals infected with the Lev isolate were 90.7 and 99.3 %  respectively. 

The arithmetic data in each case clearly suggesting Lev resistance in the T. vitrinus 

population on the particular paddock were Lev was employed throughout the study.

In the corresponding 1993-1995 end o f season CETs conducted on lambs from 

the Lev treatment paddock, efficacies against T. circumcincta were 82.1, 80.7 and 

82% respectively. However, as previously mentioned, the accuracy o f CETs 

conducted on naturally infected animals containing a variety o f worm stages is 

questionable. Whether or not we have Lev resistant T. circumcincta species is on 

this particular paddock is unclear and further investigations are currently being 

undertaken at Moredun.

In the corresponding 1993-1995 end o f season CETs conducted on lambs from 

the Lev treatment paddock, efficacies against T. vitrinus were 98.8, 97.5 and 97.5% 

respectively. However, the calculated efficacies in the present study using arithmetic 

data were 86.4 and 90.7% using the pooled and paired controls respectively.
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Furthermore, since the highest proportion o f T. vitrinus was isolated from this 

paddock it seems likely that we may be seeing the beginnings o f Lev resistance in 

this species. A  study is currently being undertaken at Moredun to determine whether 

this is the case or not. Using surgical transfer o f identified adults a pure isolate o f  

T. vitrinus from the Lev treatment paddock has been obtained and is currently being 

used in a CET.

The apparent development o f resistance to Lev at Firth Mains is interesting 

since the animals contaminating this paddock have been exposed to only five 

treatments over three years. In a FECRT conducted in 1992 there was no evidence o f  

Lev resistance at Firth Mains where the treatment efficacy o f Lev in young lambs 

was greater than 98 %  (Scott, Robbins, Jackson & Jackson, 1993/94). Following the 

discovery o f Bz resistance at Firth Mains in 1983, drugs from within this class were 

suspended and animals were treated with Lev or Ivm in an annual rotation.

Therefore, prior to the start o f the study in 1993 there will have been some selection 

for Lev resistance. Nevertheless, the rapid development o f resistance to Lev is not 

uncommon; in Australia resistance to this drug was selected for in both Ostertagia 

and Trichostrongylus spp within one year o f its introduction (Anderson, Martin, 

Jarrett, Brown & Miller, 1988b). The potential for misinterpretation o f the FECRT 

when assessing Lev resistance is well known (Grimshaw et al., 1996). However, in 

this present study only adult parasites were present and thus any reduction in the 

calculated efficacies cannot be due to stage specific differences in susceptibility.

Geometric mean worm burdens o f the untreated control lambs in the 1995 CET 

agree reasonably well with those seen in the larval cultures used in this study. For 

instance, the proportion o f T. vitrinus in the larval cultures obtained from the Ivm, 

Fbz, Lev and Fbz/Lev treatment paddocks were 2, 25, 36 and 25 % respectively. The 

% o f the total geometric mean worm burdens which were T. vitrinus in the 1995 CET 

were 1, 14, 22 and 22 % for the untreated control animals grazing the Ivm, Fbz, Lev 

and Fbz/Lev treatment paddocks respectively. The donor lambs taken from each 

paddock appear to be representative o f their group and support the results o f  this 

study on the anthelmintic resistance status o f the parasites on each o f the paddocks at 

Firth Mains.
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CHAPTER 7

The effects of feed withdrawal, divided dosing and co- 

administration of piperonyl butoxide upon the 

pharmacokinetics of fenbendazole
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7.1 Introduction
The increasing prevalence o f  anthelmintic resistance has focused attention on 

the need to maximize the useful life span o f the present and any future anthelmintic 

compounds. Consequently, recent research has investigated means o f  increasing drug 

bioavailability in order to maximize treatment efficacy against heterozygous and 

homozygous resistant individuals. Since the mode o f action o f Bz anthelmintics 

requires sustained presentation for activity rather than high initial concentrations 

(Lacey, 1988), altering drug administration offers a means o f  increasing the duration 

o f  availability and efficacy against resistant parasites.

It is known that reductions in feed result in reduced flow rates o f  digesta 

through the gastrointestinal tract (Coombe & Kay, 1965). Taylor et al. (1992) 

investigated the importance o f feed intake upon the pharmacokinetics o f  Fbz, as well 

as Ivm, in sheep and cattle fed different diets. Using a chromium-EDTA marker these 

workers demonstrated that the rate o f passage o f digesta through the gut was more 

rapid in lambs grazing fresh pasture than that o f  housed animals fed a hay and 

concentrate diet. It was suggested that the reduced availability o f  the drugs in the 

former animals, as estimated by area under the plasma concentration-time curve 

(AUC), was a consequence o f reduced time for absorption o f  the anthelmintics. Ali & 

Chick (1992) confirmed these observations when describing the availability o f  

oxfendazole in plasma o f sheep fed fresh pasture compared with housed sheep fed a 

dry ration.

The concept that a faster gastric flow rate in sheep on high feed intake 

decreases the time for drug absorption and recycling, contributing to a shorter 

duration o f  drug availability, has been established by the work o f Ali & Hennessy 

(1993 and 1995a and 1995b). These workers found that halving the feed intake o f  

sheep slowed the passage o f digesta through the gastrointestinal tract and increased 

the period for drug release from particulate material and absorption into the 

bloodstream. By implementing such a regimen, 36 hours before and after drug 

treatment, the activity o f  oxfendazole was significantly increased against Bz-resistant 

isolates o f  H. contortus and T. colubriformis. Increased efficacy appears to be 

influenced by drug-digesta particle association in the rumen which, by regulating the 

rate and duration o f metabolite availability, is a major determinant o f  the
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pharmacokinetic disposition o f oxfendazole in ruminants (Hennessy et al., 1994). 

Similar results against Bz-resistant isolates o f H. contortus and T. colubriformis have 

been demonstrated with albendazole despite intrinsic differences in pharmacokinetic 

behaviour compared to oxfendazole (Hennessy et al., 1995).

Extending the period o f drug administration by dividing the dose has likewise 

been shown to increase the efficacy o f Bz anthelmintics against resistant parasites. 

Bogan et al. (1987), working with goats, demonstrated that the repetition o f three 

administrations o f oxfendazole at 24 hour intervals produced significant increases in 

the AUC compared to a single equivalent dose. Using a similar regime, Sangster et 

al. (1991b) demonstrated increased drug bioavailability and increased efficacies 

against Bz resistant isolates o f H. contortus, Ostertagia spp and Trichostrongylus 

spp. In addition, greater efficacy was recorded by Sangster et al. (1991b) when the 

oxfendazole doses were separated by 12 hours compared to a 24 hour inter-dosing 

interval.

Modification o f drug metabolism is another method which has been shown to 

enhance treatment efficacy against resistant parasites. Benzimidazole sulphide 

anthelmintics are extensively metabolised into their sulphoxide which in turn are 

oxidized into the more polar and less anthelmintically active sulphone metabolites 

(Prichard et al., 1985). Benchaoui & McKellar (1994) investigated the effects o f  

piperonyl butoxide, a novel Bz synergist, upon Fbz metabolism in sheep. Piperonyl 

butoxide (PB) is a synthetic methylenedioxyphenyl derivative widely used as an 

insecticide synergist (Hodgson, Ryu, Adams & Levi, 1995) and has been shown to 

inhibit mixed function oxidase activity in insects as well as mammals (Haley, 1978). 

Inhibition o f cytochrome P450 activity which is involved in the mixed-function 

oxidization o f xenobiotic compounds in order to facilitate their excretion, has been 

observed in liver microsomal preparations from goats treated with PB (Burley & 

Bray, 1983). In sheep infected with a Bz-resistant isolate o f T. circumcincta, 

Benchaoui & McKellar (1994) demonstrated an increase in worm reduction o f over 

80 % compared to conventional Fbz treatment by co-administering PB. The 

enhanced treatment efficacy was attributed to a decreased rate o f  Fbz metabolism, 

resulting in an increased bioavailability o f Fbz and its active sulphoxide metabolite, 

oxfendazole (Ofz).
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Feed withdrawal, divided dosing and co-administration o f PB and their effects 

upon the treatment efficacy o f Fbz were described in chapter 4. This chapter will 

focus on these methods in more detail and determine their effects upon the 

pharmacokinetics o f Fbz in sheep naturally infected with a Bz-resistant isolate o f  

T. circumcincta.

7.2 Materials and methods

7.2.1 D ivided dosing and feed  withdrawal

The effects o f divided dosing and feed withdrawal upon the treatment efficacy 

and pharmacokinetics o f Fbz were investigated in the mid-seasonal FECRT in 1994. 

The naturally infected 5 month old ewe and wether Suffolk-cross lambs were grazing 

the Fbz treatment paddock, known to be contaminated predominantly with a Bz- 

resistant isolate o f T. circumcincta (Coop et al., 1993). Lambs were faecal sampled 

and weighed two days before treatment and allocated into balanced groups such that 

each group had members with similar faecal egg count and bodyweight. Group 

treatments (n = 6 ) were assigned randomly and the group which were used in the feed 

reduction study housed 24 hours prior to drug administration. This group were 

allowed water ad libitum but denied access to feed whilst the other groups remained 

at pasture.

All animals were faecal sampled again on day 0 and treated on the basis o f  

liveweight with Fbz (2.5 % w/v Panacur, Hoechst UK Ltd.) at the relevant MRD for 

sheep. Blood samples were taken as previously described in chapter 2.4.2 at 0, 4, 8 , 

12, 20, 24, 36, 48, 72, 120 and 168 hours following treatment and plasma stored at 

-2 0  °C for subsequent analysis. Group 1 lambs were orally administered with Fbz at 

the MRD for sheep (5 mg kg'1). Group 2 were also given Fbz at 5 mg kg"1 but the 

dose was divided with half the MRD given at time 0 and half after a 12 hour interval 

(2.5 + 2.5 mg kg'1). Those o f group 3 were denied access to food for 24 hours before 

being treated with Fbz at the standard dose rate (5 mg kg’1). Following treatment all 

animals were returned to pasture.
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7.2.2 Co-administration o f  piperonyl butoxide

Lambs from the same paddock, now aged 7 months, were used to investigate 

the effects o f co-administering piperonyl butoxide (90 % w/v, Aldrich Chemicals 

Co., UK) upon the treatment efficacy and pharmacokinetics o f Fbz in the 1994 end o f 

season CET. A dose rate o f 63 mg kg’1 for PB was selected as the optimal 

concentration following titration studies (Benchaoui & McKellar, 1994). Eight 

lambs were drafted in from the control group, two o f which were assigned to each o f  

the groups in order to provide sufficient animals for statistical comparisons. All 

animals were faecal sampled and weighed two days before treatment and allocated 

into balanced groups such that each group had members with similar faecal egg count 

and bodyweight. Group treatments (n = 6 ) were assigned randomly and faecal 

samples re-taken on day 0  before treating animals on the basis o f liveweight at the 

relevant dose rate.

Blood samples were taken as previously described in chapter 2.4.2 at 0, 1, 4, 8 , 

12, 24, 32, 48, 72, 96, 120 and 168 hours following treatment and plasma stored at 

-2 0  °C for subsequent analysis. Group 1 lambs were treated with Fbz at the MRD 

for sheep (5 mg kg’1) whereas those o f group 2 remained as the untreated controls. 

Group 3 were orally administered PB (63 mg kg’1) and acted as controls for this 

compound. Group 4 were co-administered both Fbz and PB (5 + 63 mg kg"1). The 

animals remained housed until necropsy on day 14 post-treatment.

7.2.3 Parasitological parameters

Treatment efficacies for the FECRT and CET were calculated according to 

WAAVP guidelines as described previously in chapter 4.2.

7.2.4 HPLC analyses

Fbz and its sulphoxide (Ofz) and sulphone (FbzS02) metabolites were 

extracted from plasma and quantified by HPLC analysis. The preparation o f  

standards and samples, extraction procedures and HPLC run conditions are described 

in chapter 2.7. All HPLC analyses were carried out under good laboratory practice
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(GLP) in the department o f veterinary pharmacology laboratory at Glasgow  

University Veterinary School.

7.2.5 Pharmacokinetic and statistical analyses

The maximum plasma concentration (Cmax), time to maximum concentration 

(Tmax), the area under the plasma concentration-time curve computed to the last 

observation (AUClast) and the area under the first-moment curve computed to the last 

observation (AUMClast) were derived from fitted profiles o f individual animals using 

the pharmacokinetic modelling program PCNONLIN, version 4.0 (Statistical 

Consultants Inc., Lexington, USA). The mean residence time computed to the last 

observation (MRTlast) was calculated as the ratio AUMClast/AUClast. The half-life 

(T1/2) was calculated by multiplying the MRT by the natural log o f  2 (0.693). 

Differences in the pharmacokinetic parameters between groups were determined by 

analysis o f variance (Minitab, version 10.0), with a value o f P < 0.05 being 

considered statistically significant.

7.3 Results

7.3.1 Divided dosing and feed  withdrawal

Plasma concentration profiles o f Fbz, and its sulphoxide (Ofz) and sulphone 

(FbzS02) metabolites following feed withdrawal, divided dosing and conventional 

treatment are shown in Figures 7.1, 7.2 and 7.3 respectively. The respective mean 

pharmacokinetic parameters for these metabolites are shown in Tables 7.1, 7.2 and 

7.3. The Cmax and AUC values for Fbz, Ofz and FbzS02 following feed withdrawal 

were consistently higher than the values obtained by conventional treatment and 

divided dosing. The maximum concentration o f 0.17 |ag ml' 1 achieved for the active 

Ofz metabolite following feed withdrawal was an increase o f over 40 %  (P<0.05) 

compared to the other treatment methods. Although the highest concentrations were 

achieved following feed withdrawal, the longest residence times were achieved 

following a divided dose. Using this approach the Tmax was increased by over 14 

hours (P<0.001) and the MRT by nearly 6  hours (P<0.05) compared to conventional
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treatment. The Tmax value for Fbz using a divided dose was also 8 hours longer 

than was achieved using feed withdrawal (P<0.05).

The FECRT calculated efficacies for the different methods o f  drug presentation 

are shown in Table 7.4. Pre- and post-treatment egg measurements identified 100 % 

Teladorsagia confirming that the paddock was contaminated predominantly with this 

species at this point in the season. Dividing the dose with a 12 hour interval resulted 

in an increased efficacy o f 28.8 % compared to conventional treatment although this 

was not statistically significant. Administering the MRD following a 24 hour period 

o f food withdrawal on the otherhand resulted in a significant increase compared to 

conventional treatment o f 39.7 % (P < 0.05).
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Figure 7.1 Mean plasma concent rations (±SEM ) offenbendazole (Fbz) in groups o f  
sheep (n 6)  treated with Fbz either conventionally (5 mg kg 1), as a divided dose 
(2.5 + 2.5 mg k g '1) with a 12 hour treatment interval or fo llow ing 24 hours o f  fe e d  
withdrawal (5 mg kg '')

Table 7.1 Pharmacokinetic parameters (mean ±SD ) o f  fenbendazole (Fbz) in 
groups o f  sheep (n 6)  treated with Fbz either conventionally (5 mg k g a s  a 
divided dose (2.5 + 2.5 mg k g '[) with a 12 hour treatment interval or fo llow ing 24 
hours o f  fe e d  withdrawal (5 mg k g ' )

Parameter Conventional(a) 
(5 mg k g 1)

Divided dose(b) 
(2.5 + 2.5mg kg 1') 
12 hour interval

Feed withdrawal(c) 
(24 hours) followed 

by 5 mg kg 1

Crnax ()ig m l 1) 0.09 (0.02) 0.10(0.01) 0.12(0.02)

Tmax (h) 8.0 (6.2) 22.7 (2.1) a*** c* 14.0(8.3)

T,/2 (h) 14.3 (2.5) 18.3 (2.3) a* 15.3(4.5)

AUClast (pg.h m f 1) 2.84 (1.04) 3.03 (0.52) 3.43 (1.07)

AUMClast (jag.lr m l 1) 61.24 (29.63) 80.96 (21.51) 80.24(50.14)

MRTlast (h) 20.59 (3.60) 26.40 (3.28) a* 22.10(6.55)

* significantly different from suffix group P < 0.05. ***P < 0.001
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Figure 7.2 Mean plasma concentrations (±SEM ) o f  fenbendazole sulphoxide 
(oxfendazole, Ofz) in groups o f  sheep (n 6 ) treated with Fbz either conventionally 
(5 mg kg  ' ) ,  as a divided dose (2.5 + 2.5 mg kg '[) with a 12 hour treatment interval 
or fo llow ing 24 hours o f  feed  withdrawal (5 mg k g ' )

Table 7.2 Pharmacokinetic parameters (mean ± SD ) o f  fenbendazole sulphoxide 
(Ofz) in groups o f  sheep (n 6 ) treated with Fbz either conventionally (5 mg kg 
as a divided dose (2.5 + 2.5 mg kg ' l)  with a 12 hour treatment interval or following  
24 hours o f  feed  withdrawal (5 mg kg 1)

Parameter Conventional(a) 
(5 mg kg ’)

Divided dose(b) 
(2.5 + 2.5mg k g 1) 
12 hour interval

Feed withdrawal(c) 
(24 hours) followed 

by 5 mg kg 1

Cmax (jag m l 1) 0.12(0.03) 0.12(0.01) 0.17 (0.04) a* b*

Tmax (h) 22.7(2.1) 24.0(0.0) 22.7(2.1)

T 1/2 (h) 19.3(1.6) 22.8 (3.1) a* 20.6(3.9)

AUClast (jag.h m f 1) 4.47(1.10) 4.41 (0.99) 6.50 (2.58)

AUMClast  (jLXg.h2 m f 1) 125.1 (37.1) 147.8 (50.6) 201.1 (110.5)

MRTlast ( h ) 27.83 (2.28) 32.96 (4.53) a* 29.75 (5.61)

* significantly different from suffix group P < 0.05
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Figure 7.3 Mean plasma concentrations (±SEM ) o f  fenbendazole sulphone (Fbz 
SO 2)  in groups o f  sheep (n 6) treated with Fbz either conventionally (5 mg k g '[), as 
a divided dose (2.5 + 2.5 mg kg 1) with a 12 hour treatment interval or fo llow ing 24 
hours o f  fe e d  withdrawal (5 mg kg ' )

Table 7.3 Pharmacokinetic parameters (mean ±SD ) o f  fenbendazole sulphone 
(FbzSO2) m groups o f  sheep (n 6) treated with Fbz either conventionally 
(5mgkg as a divided dose (2.5 4- 2.5 mg kg '[) with a 12 hour treatment interval 
or fo llow ing 24 hours o f  fe e d  withdrawal (5 mg kg ' )

Parameter Conventional(a) 
(5 mg k g 1)

Divided dose(b) 
(2.5 + 2.5mg kg'1) 
12  hour interval

Feed withdrawal(c) 
(24 hours) followed 

by 5 mg kg 1

Cinax (jag m l'1) 0.06 (0.02) 0 . 0 5 ( 0 .0 1 ) 0 .08 (0.02) b**

Tmax (h) 3 6 .0 (1 0 .7 ) 4 2 . 0 ( 6 .6 ) 4 2 . 0 ( 1 0 .0 )

T ,/2 (h) 3 3 .7 ( 3 .8 ) 3 4 . 8 ( 5 .5 ) 3 3 . 8 ( 7 .3 )

AUClast (|ug.h m l ' 1) 3.69 (1.46) 2.75 (1.0) 4 . 8 8 ( 2 .1 8 )

AUMClast  (jug.h“ m f 1) 185.1 (96.1) 144.1 (81.8) 253.7  (160.2)

MRTlast  (h) 48.59 (5.53) 50.18 (7.92) 48.75 (10.55)

** significantly different from suffix group P < 0.01
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Table 7.4 Faecal egg count reductions in groups o f  sheep (n = 6)  naturally infected 
with Bz-resistant T. circumcincta, treated with Fbz either conventionally (5mg kg ~1), 
as a divided dose (2.5 + 2.5 mg kg -1) with a 12 hour treatment interval or following  
24 hours o f  feed withdrawal (5 mg kg ~1)

G roup
(n=6)

T reatm en t EPG  
(+SD ) 
day -2

EPG  
(±SD ) 
day 0

EPG  
(±SD ) 
day 10

%
Reduction

9 5 %
CIs

P  value

1 Conventional 218 171 86.7 49.3 0,81 -

(5 mg kg"1) (198) (126) (77)
2 Divided dose 211 155 34 78.1 21 ,94 0.13

(2 .5+  2.5 mg k g '1) (243) (115) (45)
(12 hour interval)

3 24 hour food withdrawal 223 318 35 89.0 59, 97 0.03*
followed by 5 mg kg-1 (235) (196) (50)

* Significantly different compared to conventional treatment P< 0.05

7.3.2 Co-administration o f  piperonyl butoxide

Plasma concentration profiles o f Fbz, and its sulphoxide (Ofz) and sulphone 

(FbzS02) metabolites following conventional treatment with Fbz or with its co

administration with piperonyl butoxide (PB) are shown in Figures 7.4, 7.5 and 7.6 

respectively. The respective mean pharmacokinetic parameters for these metabolites 

are shown in Tables 7.5, 7.6 and 7.7. The mean maximum concentrations (Cmax) 

achieved following conventional treatment for Fbz and its Ofz and FbzS02 

metabolites were 0.05, 0.09 and 0.04 jig ml’1 respectively. Increases o f over 200 % 

(P<0.001) for each o f these values was achieved with the co-administration o f PB. 

Similar increases in AUC’s (P<0.01) for each o f the metabolites were seen as a result 

o f  co-administration but there were no statistical differences in the Tmax, T 1/2 or 

MRTs compared to conventional treatment.

CET calculated efficacies for the different methods o f drug presentation are 

shown in Table 7.8. Only reductions in abomasal worms are shown since Fbz was 

fully effective against small intestinal species. Due to the wide range o f burdens seen 

in the untreated and PB control animals these groups were pooled in order to 

calculate treatment efficacies. The co-administration o f PB resulted in an increase in 

worm reduction o f over 27 % compared to conventional treatment, although this 

figure was not statistically significant.
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Figure 7.4 Mean plasma concentrations (±SEM ) o f  fenbendazole (Fbz) in groups o f  
sheep (n 6) treated with Fbz either conventionally (5 mg kg ’ ) or in combination 
with piperonyl butoxide (5 + 63 mg kg ~!)

Table 7.5 Pharmacokinetic parameters (mean ±SD ) o f  fenbendazole (Fbz) in 
groups o f  sheep (n = 6)  treated with Fbz either conventionally (5 mg kg ~J) or in 
combination with piperonyl butoxide (5 + 63 mg kg ’ )

Parameter Conventional 
(5 mg k g 1)

Fbz + PB
(5 + 63 mg kg ')

Cmax (jig m f 1) 0.05 (0.01) 0.15 (0 .02)  ***

Tmax (h) 18.0 (9 .4 ) 10 .7 (7 .0 )

T 1/2 (h) 17.62 (2.59) 16.60 (2 .01)

AUClast (jag.h m f 1) 1.74 (0.37) 5.09 (1.11)  ***

AUMClast (jag.h2 ml"1) 4 5 .0 9 ( 1 3 .8 0 ) 123.90 (41.38)  **

MRTlast  (h) 25.43 (3.74) 23.95 (2.90)

** significantly different from conventional treatment P < 0.01, ***P < 0.001
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Figure 7.5 Mean plasm a concentrations (±SEM ) o f  fenbendazole sulphoxide 
(oxfendazole, Ofz) in groups o f  sheep (n 6) treated with Fbz either conventionally 
(5 mg kg '') or in combination with piperonyl butoxide (5 + 63 mg kg ' )

Table 7.6 Pharmacokinetic parameters (mean ± SD ) o f  fenbendazole sulphoxide 
(Ofz) in groups o f  sheep (n 6) treated with Fbz either conventionally (5 mg k g ' )
or in combination with piperonyl butoxide (5 63 mg kg ' )

Parameter Conventional 
(5 mg kg !)

Fbz + PB
(5 + 63 mg k g 1)

Cmax (gig m l '1) 0.09(0.02) 0.29 (0.05) ***

Tinax (h) 25.3 (3.3) 24.0(0.0)

T j/2 (h) 23.98 (2.98) 22.06(1.78)

AUClast (jag.h m l 1) 3.81 (0.96) 11.98(2.34)***

AUMClast (fig.h2 ml’1) 134.5(49.2) 382.6 (87.1) ***

MRTlast (h) 34.60(4.30) 31.83 (2.57)

*** significantly different from conventional treatment P < 0.001
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Figure 7.6 Mean plasma concentrations (±SFM ) o f  fenbendazole sulphone 
(FbzSO y in groups o f  sheep (n = 6) treated with Fbz either conventionally (5mgkg ~l) 
or in combination with piperonyl butoxide (5 + 63 mg k g '[)

Table 7.7 Pharmacokinetic parameters (mean ± SD ) o f  fenbendazole sulphone 
(FbzSO 2) in groups o f  sheep (n 6) treated with Fbz either conventionally (5mgkg'') 
or in combination with piperonyl butoxide (5 + 63 mg kg 1)

Parameter Conventional 
(5 mg kg ')

Fbz + PB
(5 + 63 mg kg ')

Cmax (jug m l '1) 0 . 0 4 ( 0 .0 1 ) 0.14 (0 .05)  ***

Tmax (h) 4 8 . 0 ( 0 .0 ) 4 8 . 0 ( 0 .0 )

T 1/2 (h) 41.55 (6.74) 4 2 .0 0 ( 4 .2 2 )

AUClast ( |a g .h  m l'1) 2.52 (0 .99) 8 . 6 8 ( 4 .1 9 ) * *

AUMClast (jLig.h" m l'1) 158. 59 (8 9 .8 3 ) 539.98 (3 1 3 .0 3 )*

MRTlast  (h) 59.95 (9.72) 6 0 .6 0 ( 6 .0 9 )

* significantly different from conventional treatment P < 0.05, **P < 0.01, ***P < 0.001
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Table 7.8 Abomasal worm reductions in groups o f  sheep (n = 6)  treated with Fbz 
either conventionally (5 mg kg ~i) or in combination with piperonyl butoxide (5 + 63 
mg kg ~])

Group
(n=6)

Treatment 
(day 0)

Geometric mean worm burden 
(± SD) day 14

%
*

Reduction

1 Conventional Fbz 
(5 mg kg'1)

4861 (3633) 25.7

2 Untreated controls 4623 (7640) -

3 PB controls 
(63 mg kg'1)

9267 (4684) -

4 Fbz + PB 
(5 + 63mg kg'1)

3071 (1789) 53.1

♦
using pooled geometric mean worm burdens o f  untreated and PB controls

7.4 Discussion

The ‘effective’ concentrations o f a drug to which a parasite population must be 

exposed have never been specifically defined, nor are they likely to be, given the 

multitude o f variables which are associated with host and parasite (Hennessy, 1994). 

In his review, Hennessy (1994) proposed that the metabolite concentration in the 

respective compartment which is midway between zero and the maximum could be 

regarded as the minimum ‘effective’ level (Figure 7.7). Assuming these proposals, 

the effective concentrations for the active Fbz and Ofz metabolites were extended for 

each o f the enhancement methods, particularly co-administration o f PB.

As well as sulphoxidation, Fbz and Ofz may undergo hydroxylation, the 

metabolites o f  which are also thought to contribute to anthelmintic activity (Short et 

a l., 1988). These hydroxylated metabolites are then conjugated to increase their 

solubility before the majority are secreted in bile, o f which about 40 %  are 

reabsorbed and enterohepatically recycled (Hennessy, Steel & Prichard, 1993b). The 

extensive metabolic sequences which are necessary for the clearance o f  Fbz are 

further complicated by the involvement o f gut microflora which may reduce Ofz 

back to its parent molecule within the ruminal environment. Similarly, biliary 

metabolites in the large intestine may be deconjugated by bacteria to further promote
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absorption (Hennessy, 1993). Assessment of the pharmacokinetics o f  Fbz and its 

metabolites in plasma, therefore, is likely to be only an approximation of the 

situation at the pharmacodynamic level. Nevertheless, any such alterations would be 

expected to increase the duration of the plasma-tissue recycling process, leading to 

increased concentrations of active drug traversing the gastrointestinal mucosa.

C on cen tration

‘ E ffective’
C on cen tration /

D uration

T im e

Figure 7.7 Typical concentration-with-time profile o f  a drug metabolite in plasma  
demonstrating first-order absorption and elimination processes. Adapted from  
Hennessy (1994)

The increases seen in both drug availability and treatment efficacy as a result of 

divided dosing and feed withdrawal serve to confirm the merits of these techniques in 

the combat against resistant parasites. The mean half life of the parent compound of 

just over 14 hours following conventional treatment serves to illustrate the necessity 

o f  a 12 hour treatment interval when employing a divided dose. Considering that the 

clearance o f  a single dose follows first order principles, a 24 hour treatment interval 

would expose worms to two discrete intervals of drug which is not as effective as the 

sustained exposure conferred by a 12 hour interval.
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The increases in drug availability that resulted from the co-administration o f  

PB, although more clear-cut, were not mirrored with increases in treatment efficacy 

o f the same magnitude. This may be explained by the inclusion o f naturally infected 

control animals. As discussed in chapter 4, treatment efficacies calculated using 

untreated control animals with varying degrees o f acquired immunity will 

underestimate reductions that would be expected when employing parasite naive 

animals. Since their seasonal treatments were not fully effective the majority o f  

lambs grazing the Fbz paddock will have had constant infections and the potential to 

mount solid immune responses. Although the lambs were allocated into balanced 

groups on the basis o f faecal egg counts, this is often a poor indicator o f worm 

burden, especially with older animals (McKenna, 1981). These remarks are 

supported by the work o f Benchaoui & McKellar (1994) who demonstrated an 

increase in worm reduction o f over 80 % with the co-administration o f PB compared 

to conventional Fbz treatment. The parasite naive lambs used by these workers were 

also Suffolk-cross, but more importantly the Bz-resistant T. circumcincta used for 

artificial infection was isolated from the same pastures at Firth Mains.

The co-administration o f PB produced increases in Cmax and AUC o f  

approximately 200 %  for each o f the Fbz metabolites compared to conventional 

treatment. However, no differences were apparent between either treatment regime 

in terms o f residence parameters. PB has been shown to produce a distinct biphasic 

effect on several hepatic enzyme activities in mice (Kinsler, Levi & Hodgson, 1990). 

Inhibition and subsequent induction o f these enzymes may explain why the residence 

times were not extended to the same degree as the initial metabolite concentrations.

Another interesting observation from this work was the difference between the 

pharmacokinetic parameters o f the conventionally treated animals in either study.

The Cmax and AUC were consistently lower for each o f the metabolites in the 

conventionally treated lambs o f the PB study. Retention parameters (Tmax, T 1/2 and 

MRT), on the otherhand, were extended in the same animals. These observations 

may be explained by the fact that the lambs used in the second study were treated at 

the end o f the season when infections with T. vitrinus were also apparent. Parasitism 

with small intestinal species is associated with increased digesta transit time at this 

site (Gregory, Wenham, Poppi, Coop, MacRae & Miller, 1985) as well as villous
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atrophy (Coop et al., 1979), both o f which may affect the pharmacokinetics o f  

anthelmintic drugs. Similar results, reduced Cmax and extended Tmax values, have 

recently been reported in lambs infected with T. colubriformis (Landuyt et a l., 1995). 

Lambs used in the divided dosing/reduced feed study returned to pasture following 

treatment whereas those in the second study remained housed and were fed hay and 

concentrates. The differences between these diets may have also affected the 

pharmacokinetics o f the conventionally treated lambs in either study (Taylor et a l., 

1992).

This present study on the co-administration o f  PB has provided valuable data 

as to whether or not such combinations may be effective in the control o f resistant 

parasites. Other compounds such as the anti-thyroid drug methimazole and the anti

steroid drug metyrapone have been reported to inhibit the microsomal oxidation o f  

different xenobiotics (Tynes & Hodgson, 1983). The influence o f these compounds 

upon the pharmacokinetics o f the pro-benzimidazole anthelmintic netobimin in sheep 

was investigated by Lanusse & Prichard (1991). More recently, Lanusse, Gascon & 

Prichard (1995) investigated the effect o f methimazole upon the pharmacokinetics o f  

Fbz and Ofz in sheep. Improved pharmacokinetic profiles were obtained in both 

studies and, since both compounds are inexpensive and relatively safe, further 

research is required to evaluate their potential.

Parbendazole, a Bz o f only moderate anthelmintic potency, has also been 

shown to enhance the anthelmintic efficacy o f Ofz against resistant isolates 

(Hennessy, Lacey, Prichard & Steel, 1985; Hennessy, Steel, Prichard & Lacey,

1992). The latter workers concluded that the presence o f parbendazole temporarily 

slowed the hepatic metabolism and biliary secretion o f Ofz and its metabolites. This 

depressed liver activity also affected the relative metabolite proportions with 

increased concentrations o f anthelmintically active hydroxy-Fbz (OH.Fbz) compared 

to conventional treatment. Although parbendazole is a strong inhibitor o f  

mammalian microtubule assembly (Lacey, Brady, Prichard & Watson, 1987) the 

study o f Hennessy et al. (1992) demonstrated that these effects were reversible and 

that the use o f such a combination may be sufficiently safe for commercial 

application.
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Although the use o f slow-release devices would similarly prolong the duration 

for absorption o f  Bz compounds from the gastrointestinal tract, the use o f  feed 

reduction offers a means o f achieving this goal. Using existing preparations, the 

manipulation o f feed intake requires only that suitable penning is available to enable 

animals to be held around the time o f treatment. Withholding feed offers a simple 

and practical approach to maximizing the bioavailability and efficacy o f Bz drugs 

and may prolong their useful life-span against resistant parasites. Increases in 

efficacy o f the magnitude reported here may still be valuable in strategic and 

prophylactic regimens aimed at controlling ostertagiosis, where the principal aim is 

to reduce parasite impact to levels which do not compromise animal performance and 

welfare.
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CHAPTER 8

Investigation into the use of arbitrarily primed polymerase 

chain reaction (AP-PCR) in the detection of drug resistant

nematode parasites
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8.1 Introduction

The polymerase chain reaction (PCR) technique promotes the amplification o f  

a segment o f DNA that is flanked by two regions o f known sequence. Double

stranded DNA is first denatured by increasing the temperature to provide two single

stranded DNA templates. By lowering the temperature, oligonucleotide primers, 

with complementary sequences to flanking regions, are allowed to anneal to each 

strand. This provides a starting point for the synthesis o f a new strand o f DNA, 

catalyzed by the enzyme DNA polymerase. The discovery o f  a heat stable DNA  

polymerase (Taq) from the thermophilic bacterium, Thermus aquaticus, allows 

repeated cycles o f  denaturation, annealing and DNA extension. As a result, the 

production o f an exponential number o f copies o f the central DNA segment is 

possible without inactivating the enzyme (Saiki, Scharf, Faloona, Mullis, Horn,

Erlich & Amheim, 1985).

Arbitrarily primed PCR (AP-PCR) is a recently developed technique (Welsh & 

McClelland, 1990; Williams, Kubelik, Livak, Rafalski & Tingey, 1990) which 

employs a single primer o f arbitrary nucleotide sequence which simultaneously 

amplifies a number o f loci distributed throughout the genome. Each primer gives a 

different pattern o f products, revealed by electrophoresis, each with the potential o f  

detecting polymorphisms between strains. It is a relatively simple process that does 

not require nucleotide sequence information or experience o f  molecular techniques 

such as the cloning o f probes or hybridization methods. The pattern o f  products 

resulting from AP-PCR are referred to by some workers as random amplified 

polymorphic DNA markers (RAPD) and their use here will be synonymous.

Resistance to the Bz anthelmintics appears to be due to a change in the 13- 

tubulin isotype pattern, resulting in the loss o f high affinity receptor binding sites. 

Using an allele-specific PCR, Kwa et al. (1994) demonstrated that the main cause for 

Bz resistance in both H. contortus and T. colubriformis is a single mutation from 

phenylalanine to tyrosine at amino acid position 2 0 0  in the p-tubulin isotype 1 gene. 

The same mechanism for resistance to Bz drugs has also been shown to exist in 

T.circumcincta (Elard et al., 1996). A prerequisite o f allele-specific PCR however, is 

that the gene(s) associated with resistance to a particular anthelmintic is/are already 

defined. Preliminary findings at Moredun (D. Knox & R. C. Moore, unpublished
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data) have suggested that AP-PCR may be able to differentiate between Bz-resistant 

and susceptible populations o f T. circumcincta and H. contortus without the need for 

specific probes. The aim o f this study was to confirm these findings and investigate 

variation at the single parasite level. Furthermore, since knowledge o f the site o f  

action and the molecular mechanisms o f levamisole/morantel and ivermectin 

resistance is limited, it was hoped that such a technique may also be applicable in the 

detection o f parasites resistant to either o f these anthelmintics.

8.2 Materials and methods

8 .2.1 Parasite material

All o f the parasites used in this study were isolated from field material and 

maintained at Moredun in worm-free donor lambs. Adult worms were collected at 

necropsy as described in chapter 2.3. Methods o f larval culture, recovery and storage 

are described in chapter 2.2.5. Details o f the nematode isolates used in the study are 

described in chapter 2.2.6. The two H. contortus isolates used in the preliminary 

investigation were the Moredun Bz-susceptible strain (HcS) and a multiple resistant 

(Bz + Ivm) white river strain from South Africa (HcR). The two T. circumcincta 

isolates used were the Moredun Bz-susceptible strain (MOSI) and a multiple resistant 

(Bz + Ivm) caprine strain (SCRI).

8.2.2 Genomic DNA

Methods o f extracting genomic DNA from adult populations and individual 

larvae are described in chapter 2.6.1. DNA extracted from adult populations was 

diluted using sterile distilled water to a concentration o f approximately 8 ng pT1 

before storing aliquots at -2 0  °C. The concentration o f DNA extracted from 

individual larvae was not quantified.

8.2.3 Primers

The oligonucleotide primers available for the study were purchased from 

Oswell DNA Service (Edinburgh, UK) and are listed in Table 8.1. Primer stock
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solutions were diluted to a concentration o f 10 pM using sterile distilled water 

(Appendix A).

Table 8.1 Primers tested fo r  arbitrarily prim ed PCR o f  genomic DNA from  adult 
populations o f  H  contortus and T. circumcincta

Primer Sequence*

391 R 5’-ACC.GCA.TGC.AAC.ACG.AGC.ACC.-3’

392 R 5 ’-GCG.GGT.CCG.CAT.TTC. AAT.CCT.-3 ’

393 R 5’-GTT.GGT.GAT.CTT.GGA.AAT.-3’

394 R 5 ’-ATT.TCC. AAG. ATC. ACC. AAG.-3 ’

395 R 5 ,_ T tt  tc c .G A G . ATC. ATC.-3 ’

508 G 5,-ACA.GAA.TTC.CAG.GGI.CAG.TGC.GGI.TCI.TGC.TGC.TGG.-3’

509 G 5’-ACA.AAG.CTT.GTA.ICC.ICC.GTT.GCA.ICC.CTC.-3’

* A = Adenine, C = Cytosine, G = Guanine, T =  Thymine, I = Inosine

8.2.4 AP-PCR amplification

8 .2.4.1 Adult populations

Optimal amplification conditions were investigated using genomic DNA  

extracted from the Bz-susceptible isolate o f H. contortus (HcS) diluted to a 

concentration o f 8 ng pi’1. Amplifications were performed in 25 pi reaction volumes, 

the protocol o f  which is described in chapter 2.6.2. Primers 391R and 509G were 

chosen, as was an annealing temperature o f 45 °C and a final MgCl2 concentration o f  

4 mM, to proceed the investigation with resistant and susceptible isolates.

8 .2.4.2 Individual larvae

In order to achieve amplification from individual larvae the AP-PCR protocol 

had to be redeveloped such that there were lower concentrations o f primer and MgCl2 

but increased amounts o f polymerase enzyme. Primer 509G was chosen to 

investigate the optimal amplification conditions for genomic DNA from individual 

larvae. Extracted DNA was re-suspended in 20 pi o f sterile distilled water the day
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before AP-PCR. Amplifications were performed in 50 pi reaction volumes with the 

following amendments to the protocol: 5 pi PCR incubation buffer (Appendix A),

2.0 pi Primer, 2.0 pi MgCl2 (25 mM, final concentration o f  1 mM) and 9.0 pi o f  

sterile water. After boiling the tubes for 5 minutes, 10 pi o f  stock dNTPs and 2.0 pi 

o f Taq DNA polymerase (1.0 Units p f 1, Boehringer, UK) was added before 

overlaying with 50 pi o f mineral oil. Amplification conditions were the same as 

those described in chapter 2 .6 .2 .

8.2.5 Analysis o f  PCR products

All AP-PCR reactions were routinely analysed using 1.4 % agarose gel 

electrophoresis, described in chapter 2.6.3. If greater resolution was required 

samples were analysed using 7.5 % polyacrylamide gel electrophoresis, described in 

chapter 2.6.4. A  large (300 ml) 1.4% agarose gel (run at 25V overnight) and two 

10% polyacrylamide gels (20mA for 16 hours) were used to compare individual 

larvae from MOSI and SCRI, using sample volumes o f 20 pi.

8.3 Results

8 .3.1 Adult populations

Amplification products for the different primers using genomic DNA from HcS 

with an annealing temperature o f 45 °C and a final MgCl2 concentration o f  4 mM are 

shown in Plate 8.1. Controls containing all the components except the template 

DNA were always negative. Primers 391R and 509G produced a more clearly 

defined range o f banding patterns and were chosen to proceed the investigation with 

the resistant and susceptible isolates. The amplification products using genomic 

DNA from the susceptible and resistant isolates o f H. contortus and T. circumcincta, 

as revealed by agarose and polyacrylamide gel electrophoresis, are shown in Plates

8.2 and 8.3 respectively. There were distinct differences in the banding profiles o f  

the susceptible and resistant isolates using either primer. These differences were 

enhanced by polyacrylamide gel electrophoresis which allowed the resolution o f  

more detailed banding.
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Plate 8.1 Amplification products fo r  different prim ers using genomic DNA from  a 

Bz-susceptible isolate ofH. contortus (HcS), an annealing temperature o f  45 °C and  

a fin a l M gCl2 concentration o f  4 mM. M  = Molecular weight markers, Primers: 1 = 

391R, 2 = 392R, 3 = 393R, 4 =  394R, 5 = 395R, 6 = 508G, 7 = 509G, 8 =  -ve  

Control. Visualized using 1.4 % agarose gel electrophoresis



Primer 391 R Primer 509 G

M l  2 3  4 1 2 3 4

2036

1635

1018

506/516
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Plate 8.2 Amplification products using primers 391R or 509G and genomic DNA 

from  a Bz-susceptible isolate o f  H. contortus (HcS), a multiple resistant (Bz + Ivm) 

isolate o fH . contortus (HcR), a Bz-susceptible isolate ofT.  circumcincta (MOS1) and  

a multiple resistant (Bz + Ivm) isolate o fT . circumcincta (SCRI). M  = Molecular 

weight markers, I = HcS, 2 = HcR, 3 = MOSI, 4 = SC RI Visualized using 1.4 % 

agarose gel electrophoresis
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Primer 391 R 

2 3

506/516

344/394

200/220

142/154

Primer 509 G 

2 3

Plate 8.3 Amplification products using prim ers 39IR or 509G and genomic DNA 

from  a Bz-susceptible isolate o f  H. contortus (HcS), a multiple resistant (Bz + Ivm) 

isolate ofH.  contortus (HcR), a Bz-susceptible isolate ofT.  circumcincta (MOSI) and  

a multiple resistant (Bz + Ivm) isolate ofT.  circumcincta (SCRI). M  = M olecular 

weight markers, 1 = HcS, 2 = HcR, 3 = MOSI, 4 -  SCRI. Visualized using 7.5 % 

polyacrylam ide gel electrophoresis
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8.3.2 Individual larvae

Differences in the banding intensity were observed between and within 

different AP-PCR runs. Controls containing all the components except the template 

DNA were always negative. Non-discrete size ranges of amplification products, 

appearing as a "smear’ as visualized by electrophoresis were also a problem between 

and within runs. Nevertheless, successful amplifications from fourteen susceptible 

and fourteen resistant larvae were compared using large scale agarose and 

polyacrylamide gels, shown in Plates 8.4 and 8.5 respectively. A relatively complex 

pattern of products was revealed and although there were common bands (for 

example see arrow in Plate 8.5) there was also considerable variation between 

individuals of each particular isolate.
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8.4 Discussion

Results of AP-PCR using DNA from adult populations suggested that it may be 

possible to differentiate between susceptible and resistant isolates of H. contortus or 

T. circumcincta. If a particular band was repeatedly amplified in either population 

then it is possible that it could be used as a diagnostic marker for resistance or 

susceptibility. However, there was also variation in the banding patterns o f single 

larvae from within a population. It is unlikely therefore, that this approach could be 

used routinely to differentiate between susceptible and resistant parasites (at least 

with the primer employed in this study). Grant & Whitington (1994), whilst 

characterizing a library of DNA probes, demonstrated extensive genetic variability 

within and between two isolates of T. colubriformis. The intraspecific variability 

within species was also very large for most of the trichostrongylid nematodes studied 

by Humbert & Cabaret (1995). Blouin, Yowell, Courtney & Dame (1995) also 

commented on the unusually high within-population diversity of mitochondrial DNA 

of H. contortus and T. circumcincta. The results of the present study provide further 

evidence of the considerable DNA polymorphism within helminth parasites and it is 

not surprising therefore, that such variability in banding patterns were achieved.

The method developed for the extraction of DNA from individuals was 

relatively simple and did not require exsheathment of larvae. Although separate 

amplifications from the same individual were not attempted the reproducible banding 

patterns achieved whilst developing the technique (not shown) support the validity of 

the variation seen at the individual level, a conclusion which has also been drawn by 

other workers (Humbert & Cabaret, 1995). However, the quality of amplification 

products did vary between runs and the methodology requires further fine tuning.

This was probably a reflection of the quality of the template DNA and demonstrates 

the sensitivity of the technique to any changes in PCR components (Black, 1993).

The use of different primers also merits further study. Shorter oligonucleotides 

would be expected to produce more detailed patterns with a greater potential of 

detecting polymorphisms. Alternatively, the complex series of bands could be 

simplified by increasing the annealing temperature to improve the stringency of the 

amplification procedure. The use of primers towards defined elements within a
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species (Gasser, Nansen & B0 gh, 1995) could also increase the precision o f this 

approach.

In the case o f  Bz resistance the AP-PCR products could be Southern blotted 

and a p-tubulin probe employed to determine whether or not one or more o f the 

bands is mutually exclusive for this genotype. This approach would specifically 

visualize PCR products encompassing all, or part, o f the p-tubulin gene and has the 

potential o f differentiating between resistant and susceptible banding profiles. 

However, until the molecular mechanisms o f levamisole/morantel or ivermectin 

resistance are determined, it is unlikely that such an approach could be adopted for 

these drug classes. AP-PCR clearly has its limitations that need to be considered 

when assessing its potential. Since electrophoresis separates bands on the basis o f  

molecular weight, it is possible that apparently homologous fragments do not 

correspond to the same portion o f genomic DNA (Dias Neto, Pereira de Souza, 

Rollinson, Katz, Pena & Simpson, 1993). Furthermore, as AP-PCR is not 

quantitative, it is unknown whether individuals whose DNA yields a specific 

fragment are heterozygous or homozygous for an amplifiable allele (Williams et al., 

1990). Therefore the usefulness o f such a technique in detecting heterozygous 

resistant individuals is questionable. Ideally a genetically based method is required 

that can identify these genotypes so that resistance can be diagnosed earlier and 

reversion given a chance to succeed. Nevertheless, AP-PCR does have the potential 

to monitor resistance and provide a more accurate diagnosis o f the problem. Its 

application as an epidemiological tool in the assessment o f different approaches to 

the prevention and reversion o f anthelmintic resistance also merits further study.
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CHAPTER 9 

General discussion
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9,1 Discussion

The results from this series o f studies have provided useful data on the 

epidemiology, diagnosis and control o f anthelmintic resistant populations o f  

Teladorsagia and the effects o f  these populations upon lamb performance.

Production losses that result from nematode parasitism can be very difficult to assess 

or quantify, particularly in the field (Sykes, 1994). Most o f our knowledge on the 

impact o f infection comes from pathophysiological and nutritional studies with 

artificial infections. Suckling lambs at pasture with their mothers will be exposed to 

small numbers o f larvae from a very early age which may have important 

consequences on the development o f immunity. Another important aspect 

concerning artificial infection is the age o f the infective larvae, since storing larvae at 

4 °C for differing periods o f time can result in different infectivity levels (Kerboeuf, 

Hubert & Mallett, 1989) and may explain discrepancies seen in trials o f similar 

design. The naturally infected lambs in this field study however provided a valuable 

model for studying grazing performance in set stocked animals on permanent 

pasture. There was little evidence o f marked differences in performance in the Fbz 

treated lambs over the three year study despite the presence o f a Bz resistant isolate 

o f Teladorsagia on the paddocks at Firth Mains. The maximum difference in weight 

gain between the Fbz and best performing group at the end o f the 1993, 1994 and 

1995 seasons were 3.1, 3.6 and 2.6 kgs, reductions o f 12.6, 13.5 and 9.5 % 

respectively. In this present study, as in previous studies (Rowlands & Probert,

1972; Coop et al. 1985), the two principal gastrointestinal nematodes, N.battus and 

T.circumcincta both compromised performance in the absence o f correctly timed 

control measures. Although the results are encouraging with regard to the use o f  

resistance selected drugs (RSDs) in the control o f less pathogenic species with a 

relatively low biotic potential such as Teladorsagia, it should be noted that only a 

modest stocking rate was employed and that there was no evidence o f clinical 

disease. The effects o f using less effective drugs upon lamb performance may well 

be more serious in situations where challenge from pasture is greater or the 

development o f immunity compromised by nutritional stress or trace element 

deficiencies.
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The importance o f acquired immunity in the regulation and limitation o f  

pasture contamination was also highlighted in this study. By mid-season o f  each 

year there was evidence o f regulation o f egg output despite increasing pasture 

contamination. It should be noted however, that the particularly dry spells in 1994 

and 1995 may have produced atypical epidemiological patterns. The population 

dynamics o f gastrointestinal nematodes can be influenced by a number o f seasonal, 

nutritional and managemental factors which are depicted in Figure 9.1. The potential 

for complex interactions between the various elements make it very difficult to 

compare lamb performance between seasons. Nevertheless, Teladorsagia 

populations tend to be remarkably stable which is thought to be a consequence o f  

stereotypical and density dependent effects upon faecal egg output seen with this 

species (Barger, 1987). Climatic conditions especially favourable for hatching and 

survival o f eggs and larvae, or a succession o f unfavourable seasons, tend therefore 

not to lead to escalating or declining Teladorsagia populations.

CONTAMINATION

X CHALLENGE

IMMUNITY NUTRITION

INFRAPOPULATION

ENVIRONMENT

SUPRAPOPULATION

Chemotherapy Browsing,
Grazing

HOST
MANAGEMENT

HOST BEHAVIOUR

Grazing management, 
Stocking density

Season, Moisture, 
Temperature, 

Soil/Herbage type

PASTURE
MANAGEMENT

Species, Breed, 
Genotype, Sex, 

Reproductive status

Weaning, Protein, 
Minerals, Trace elements, 

Diet selection

Figure 9.1 Interactive elements that influence parasite population dynamics
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One interesting aspect o f this study was the continued highly efficacious use o f  

the Fbz/Lev combination both in terms o f lamb performance and treatment efficacy. 

The principal theory behind the use o f combination drenches is largely based on the 

proposition that dual resistance is likely to be comparatively rare and that worms 

surviving one o f these drugs will be removed by the other (McKenna et a l., 1996). 

Modelling studies have also suggested that the use o f Bz-Lev combinations may well 

be a more effective means o f delaying resistance than administering the same drugs 

in an annual alternation (Smith, 1990; Barnes et al., 1995). Although advocated to 

slow down the development o f anthelmintic resistance, the short term benefits o f  

using such combinations when resistance is present are clear. The significance o f  

this statement is further emphasized by the suspected development o f Lev resistance 

on the paddock at Firth Mains where Lev was used. These findings provide some 

support therefore for the view expressed by McKenna (1990b) that the selection for 

multiple resistance is unlikely to be greater than that which would otherwise develop 

from the use o f  each component separately. Furthermore, evidence from Australia 

(Anderson et al., 1991; Overend et al., 1994) and New Zealand (McKenna et al.,

1996) have shown that the use o f  Bz-Lev combinations may also be effective on 

some properties where resistance is present against both anthelmintics. Combination 

drenches consisting o f mixtures o f Bz and Lev drugs have been released onto the 

anthelmintic market in Australia and N ew Zealand in recent years but at present are 

not licensed for use in the UK. Whether such combinations ever become available in 

the UK will depend not only on their perceived commercial benefits but also upon 

the attitude o f the licensing authorities. Evidence from this study certainly indicates 

that manufacturer’s should consider the introduction o f combinations as a means o f  

prolonging the useful life o f both Bz and Lev anthelmintics.

The FECRT remains the method o f choice for the routine monitoring o f  

resistance, being capable o f evaluating any anthelmintic and the advantage o f  

simplicity. However, it has been estimated that it is only when the proportion o f  

resistant parasites is above 25% that this in vivo test can detect anthelmintic 

resistance (Martin et al., 1989). It is also important that the species o f nematode eggs
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pre- and post-treatment are differentiated to avoid interpretive errors o f  the FECRT 

(McKenna, 1996) since the identification o f species surviving treatment is 

meaningless without a corresponding measure o f their initial abundance. Seasonal 

changes in the relative numbers o f the various nematode parasites o f sheep (Boag & 

Thomas, 1977) emphasizes the necessity o f pre-treatment evaluation. Egg 

differentiation techniques (Christie & Jackson, 1982) were employed to identify 

genera in these studies, but coproculture and larval identification could also have 

been used.

This study has provided further evidence to suggest that the interval before 

post-treatment sampling in the FECRT may need to be reconsidered, at least for the 

levamisole class o f  anthelmintics (Grimshaw et al., 1996). These workers concluded 

that it may be necessary to take faecal samples less than 7 days post-treatment to 

avoid misinterpretation associated with the subsequent development o f immature 

stages. This is especially relevant to Teladorsagia spp., the immature stages o f  

which are thought to be particularly refractory to levamisole). Similarly, the 

WAAVP guideline o f 10-14 days for post-treatment sampling may have to be 

reconsidered for both the host and nematode species under investigation. 

Discrepancies between the results o f FECRTs in sheep and goats were noted by 

Jackson (1993) and it was suggested that longer resampling periods may be required 

when investigating Ivm resistance in the caprine host. Furthermore, the fecundity o f  

parasites capable o f  surviving anthelmintic treatment appears to be variable, which 

reduces the value o f  the test as a quantitative assay. For example, McKellar et al. 

(1988) noted that the numbers o f eggs in utero o f Cooperia were markedly reduced 

following treatment with Ivm. On the otherhand Scott et al. (1991) noted that the 

numbers o f eggs in utero increased in adult multiple resistant Haemonchus within 7 

days post-treatment with Ivm but were lower following the administration o f  

oxfendazole. The likelihood o f false positive results for Nematodirus spp. when 

using an interval o f 14 days was also demonstrated in this study. It appears that the 

FECRT may need to be tailored to suit the host, drug and nematode species under 

investigation.

Several other points need to be considered before results o f the FECRT can be 

regarded with confidence. Firstly, the FECs o f the untreated control lambs in this
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study increased markedly upon housing. Increases in faecal egg count following the 

cessation o f larval dosing have been noted in previous experimental infections with 

Teladorsagia species (Coop et al., 1982 and 1985). These authors suggested that the 

antigenic stimulus from incoming larvae may have elicited responses that depressed 

the egg laying capacity o f existing adult worm populations and/or retarded the 

development o f larvae through to the adult stage. The removal o f  this stimulus was 

thought to be the primary factor for the abrupt changes in egg count. However, the 

possibility o f dietary changes influencing faecal egg concentration should also be 

considered. In the present study faecal consistencies did not change and there was no 

evidence o f  inappetence upon housing and it was concluded that the increase in FECs 

was caused by a relaxation in immunity resulting from the removal o f larval 

antigenic stimulus. Although housing animals offers the substantial benefit o f  

convenience for resistance screening, the results from our studies suggest that faecal 

egg output should be closely monitored. It may be necessary to allow some time for 

the worm populations to stabilize and to obtain pre-treatment FEC data to enable the 

selection o f comparable groups for the FECRT. Another convenient time to conduct 

FECRTs in the case o f ewes is during the PPRI. However, this also poses some 

problems since the degree and extent o f  relaxation appears to very variable. Recent 

studies in N ew  Zealand, in which the faecal egg output o f Teladorsagia was 

suppressed by the inclusion o f a non-rumen degradable protein, have shown that the 

effects o f the PPRI may also be markedly influenced by nutrition (M. F. J. van 

Houtert, personal communication).

The definitive test for determining drug susceptibility/resistance to all stages o f  

development is the CET. However, results from this present study have also 

identified weaknesses in this test when applied to naturally infected animals. The 

heterogeneity o f  host immunoresponsiveness, reflected in the worm burdens o f  

untreated control animals, affects the calculated efficacy o f RSDs. The influence o f  

acquired immunity upon CET findings was exemplified in untreated control animals 

at the end o f  each season, some o f  which had very low worm burdens. This also 

raises the question as to whether low burdens in treated animals were the result o f  

anthelmintic treatment, acquired immunity or the additive effects o f  the two. The 

obvious response would be to test lambs before they have acquired immunity but
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there is a drawback to this apparently simple solution. It is well established that there 

is a succession in prevalence o f nematode species throughout the season (Boag & 

Thomas, 1977). In naturally infected animals CETs against species such as 

T.vitrinus for example, which become more numerous in lambs later in the season, 

would be compromised by age based restrictions.

Between season differences in climate, herbage availability and parasite 

contamination will also affect the development o f  immunity (Figure 9.2). These 

uncontrolled seasonally varying factors make it very difficult therefore, to compare 

changes in population susceptibility/resistance over time. The presence o f inhibited 

larvae having different rates o f metabolism/susceptibility may also be expected to 

affect treatment efficacy for certain drugs. A fuller understanding o f the sources o f  

trial variability is required to increase the sensitivity o f the CET in field infections.

SEASON AGE

\  /
NUTRITION

\
DRUG PRESENTATION

\
EFFICACY

t
STAGE and SPECIES 

EFFECTS

t
ACQUIRED IMMUNITY

Figure 9.2 Interactive elements which may affect treatment efficacy
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The use o f highly effective drugs may also interfere with the development and 

maintenance o f immunity. There was clear evidence in the study o f Barger (1988) 

that untreated lambs, but not lambs given one or more treatments, had acquired 

immunity against H. contortus by the age o f 4 months. Recent studies have 

suggested that anthelmintics may exert direct effects upon the immune system o f  

sheep and possibly hormone levels. Cabaj, Stankiewicz, Jonas & Moore (1994 and 

1995) studied the effects o f Fbz and Lev in uninfected sheep which were injected 

with soluble (ovalbumin) and particulate (human erythrocytes) antigens following 

drenching on days 0 and 28. In both studies there were variable humoral immune 

responses to the different antigens and decreased serum complement activity was 

noted 3 days after the second antigen injection. Interestingly, however, at the end o f  

each experiment the drenched lambs were significantly heavier than the non

drenched control lambs. In the case o f Fbz these differences were not attributed to 

increases in levels o f growth promoting hormones whereas in the Lev study there 

was a small decrease in insulin-like growth factor-1 (IGF-1) hormone levels 4 days 

after the first drench. In each case the authors concluded that the growth enhancing 

effects o f these drugs requires further observation. The same group o f workers 

(Stankiewicz, Cabaj, Jonas, Moore, Millar & Ng Chie, 1995) studied the effects o f  

Ivm upon the immune responses o f lambs using an identical experimental design. 

Similar antibody responses were seen for the drenched and control lambs although 

the secondary response to soluble antigen was significantly depressed in the Ivm- 

drenched lambs. The ability o f lymphocytes to divide in vitro was also decreased but 

no effects were seen on the complement system between Ivm-treated and non

drenched control lambs. Ivermectin had variable effects upon the growth hormones 

studied but no differences were observed in terms o f body weight gain. The authors 

concluded that the immunosuppressive property o f Ivm may be important in parasite 

removal without concomitant inflammation. It is apparent that anthelmintics do exert 

a variety o f direct/indirect effects upon the immune system o f sheep, but the 

interactions are very complex and clearly require further study.

In non-suppressive treatment regimes, any effects upon acquired immunity 

resulting from anthelmintic treatment should be relatively small. However, in 

suppressive regimes or those incorporating persistent anthelmintics or
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sustained/pulse release delivery devices this may not be the case. At present the use 

o f an albendazole bolus is restricted to sheep greater than 35 kg body weight, by 

which time they should have acquired some degree o f immunity. Moxidectin is a 

more recently introduced anthelmintic for sheep having an extended activity in 

comparison with Ivm (Taylor, Edgar & Kenny, 1993). Other anthelmintics in the 

avermectin class such as doramectin also have persistent activity (Weatherley, Hong, 

Harris, Smith & Hammet, 1993). Although currently only available for cattle it is 

possible that doramectin may be introduced for sheep in the near future. Whether or 

not these long acting drugs will compromise developing immunity is a matter o f  

some debate and requires further investigation.

The question as to whether geometric or arithmetic mean worm burden data 

should be used in the calculation o f CET treatment efficacies was also considered in 

this study. Reductions calculated using arithmetic means generally provided a more 

conservative estimate o f anthelmintic efficacy whereas geometric data tended to bias 

in favour o f the anthelmintic. However, as discussed in chapter 4, a common sense 

approach is required when evaluating worm burden data. Both calculations should 

be quoted so that any significant discrepancies can be examined more carefully. This 

would prevent not only false impressions o f anthelmintic success but also misguided 

conceptions o f resistance.

It is well established that biochemical or genetic assays are required in order to 

make a more direct measurement o f resistance. The main cause o f Bz resistance in 

both H. contortus and T. colubriformis (Kwa et al., 1994) and T. circumcincta (Elard, 

et a l., 1996) is a single mutation from phenylalanine to tyrosine at amino acid 

position 200 in the p-tubulin isotype 1 gene. Although genetic probes are available 

for B z’s, these tests are relatively expensive and currently applicable as research 

tools only. With an improved understanding o f both the mode o f action o f  drugs and 

the mechanism(s) o f resistance, routine diagnostic tests may become available. This 

would not only allow the detection o f resistance at the earliest possible stage but 

could provide accurate data on any changes that occur in the frequency o f resistance 

genes with the continued use o f RSDs.

The findings from the studies on increasing treatment efficacy against resistant 

parasites are similar to others using a variety o f Bz-resistant isolates in Australia (Ali
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& Hennessy 1993; Hennessy et al., 1994 and 1995). Not only are the findings on 

food withdrawal prior to treatment and divided-dosing relevant for the management 

o f resistance in the UK, but it is also clearly important for farms where resistance has 

not yet developed. Modelling studies, incorporating varying degrees o f resistant 

alleles, suggest that drug efficacy will decline at a slower rate when using methods 

such as modified feed management (Barnes et al., 1995). Furthermore, it has been 

predicted that the rate at which resistance develops is slowest when anthelmintics are 

capable o f killing the largest fraction o f parasites heterozygous for resistance (Smith 

& Grenfell, 1994). Using approaches that maximize drug efficacy may therefore 

delay resistance and prolong the useful life o f anthelmintic classes. If suitable 

penning is available, withholding feed offers a simple and practical approach to 

maximizing the bioavailability and efficacy o f Bz drugs against resistant parasites. 

Obviously this approach would not be suitable for pregnant ewes since it may 

increase the risk o f  toxaemia. Increases in efficacy o f the magnitude reported here 

may still be valuable in strategic and prophylactic regimens aimed at controlling 

parasitic gastroenteritis in which Teladorsagia is the principal species, where the aim 

is to reduce parasite impact to levels which do not severely compromise animal 

performance and welfare.

The influence o f diet on the pharmacokinetics o f Bz anthelmintics is known to 

be important in cattle as well as sheep (Taylor et al., 1992; Sanyal, Knox, Singh, 

Hennessy & Steel, 1995). The increased period for drug release from particulate 

material and extended absorption/recycling that results from slowing the passage o f  

digesta may also be important in goats (Barrett, Jackson, Patterson, Jackson & 

McKellar, in press). Despite differences in metabolism compared to Bz’s, Taylor et 

al. (1992) noted that plasma concentrations o f Ivm were also lower in lambs grazing 

fresh pasture. Recent work by Ali & Hennessy (1996) has confirmed the importance 

o f diet upon the pharmacokinetic disposition and efficacy o f Ivm. By reducing the 

level o f feed intake these workers noted extended residence times and greater 

availability o f Ivm compared to sheep on a high feed intake. This resulted in a 97% 

reduction o f Ivm-resistant H. contortus burdens compared to only 53% in sheep 

maintained on a high feed intake. The increase in Lev treatment efficacy following 

feed withdrawal seen in the present study suggests that diet may also have some
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impact on the pharmacokinetics o f this drug class. Differences in gastrointestinal 

transit times and hepatic metabolism o f Bz anthelmintics are thought to account for 

the large variation in pharmacokinetics seen in ruminant species (McKellar & 

Benchaoui, 1994). It is important therefore, that enhancement methods for 

anthelmintic classes are assessed for each host and that dosage rates are not 

extrapolated between species.

The requirement o f  a 12 hour treatment interval to achieve maximum efficacy 

when dividing Bz anthelmintic treatments was demonstrated in this study. Although 

divided dosing is less practical, it provides an alternative to the provision o f penning 

or modified feed management. It is important however, to establish a balance 

between the minimal number o f anthelmintic treatments required and the maximum 

benefit gained. In addition to the problem o f tissue residues, it is possible that 

sustained release or extended pulse release devices may have detrimental effects on 

Bz anthelmintics. Gleizes, Eeckhoutte, Pineau, Alvinerie & Galtier (1991), using 

hepatic microsomes isolated from rabbits, demonstrated that successive oxfendazole 

treatments produced an induction o f specific isoenzymes o f the cytochrome P450 

system. The induction o f sulphonating enzymes would be expected to increase the 

metabolism o f Bz anthelmintics. The production o f anthelmintically inactive 

sulphone moieties would not only reduce treatment efficacy but may well select for 

resistant parasites. It is possible that the development o f a short term erodible bolus 

might ensure/maintain the success o f this approach. A formulation that could mimic 

two or three 12 hour pulses would be ideal for Bz’s and may well be suitable for the 

other anthelmintic classes. The sustained presentation o f avermectin or levamisole 

drug classes are unlikely to be affected by any induction o f hepatic enzymes since 

these drugs are not metabolized to the same degree as B z’s and tend to be excreted as 

parent molecules.

The pharmacokinetics o f different anthelmintics may also increase the selection 

pressure for resistant species. The depot effect o f lipophilic drugs such as Ivm, 

doramectin and moxidectin could increase the selection pressure in two ways.

Firstly, any persistence within the host should effectively screen a larger population 

o f  parasites thereby selecting for hetero- and homozygous resistant individuals. 

Secondly, the elimination o f drugs results in a ‘tail’ effect during which the
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anthelmintic concentration decreases enabling heterozygous individuals to survive. 

Whether or not this ‘tail’ is prolonged with persistent anthelmintics is an important 

consideration since a slowly declining efficacy may result in subtherapeutic levels 

which may enable heterozygous resistant individuals to survive (Taylor et a l., 1993).

During the course o f these studies there was no evidence o f any resistance 

against Ivm and with the exception o f goat studies (Jackson et a l., 1992) there 

appears to be little avermectin/milbemycin resistance in the UK. The relatively slow  

rate o f development o f resistance in the UK appears to be due, at least in part, to the 

ability o f the suprapopulation to survive for prolonged periods under UK climatic 

conditions on pasture (Waller & Thomas, 1978; Rose & Small, 1984) and in soil (Al 

Saqur, Bairden, Armour & Gettinby, 1982). The extended survival on pasture o f  our 

common gastrointestinal parasites thereby provides a reservoir o f  susceptibility 

which ensures a slower rate o f accumulation o f resistance genes in the population as 

a whole.

Drugs within the avermectin/milbemycin class are extremely potent having 

helminthocidal effects at very low concentrations for some species (Conder & 

Campbell, 1995). One possible explanation for the decline in the T. vitrinus 

population on the Ivm treatment paddock over the course o f the study may lie in the 

sensitivity o f this species to the drug. It is conceivable that for highly sensitive 

species the prolonged tail effect may well extend its period o f activity beyond that 

seen with less sensitive species. For example, Shoop, Mrozik & Fisher (1995) noted 

that a compound may kill one species at 2 0 0  pg kg ' 1 whilst it may kill other species 

at varying dosages between 2 and 200 pg kg’1. Clearly the prophylactic potential o f  

longer acting drugs and delivery systems has important implications as regards the 

development o f chemical and managemental strategies for the control o f ovine 

nematodes in the UK.

The co-administration o f Fbz and PB has provided valuable data as to whether 

or not such combinations may be effective in the control o f resistant parasites. 

Improved pharmacokinetic profiles o f the pro-benzimidazole anthelmintic netobimin 

was demonstrated by Lanusse & Prichard (1991) using either the anti-thyroid drug 

methimazole or the anti-steroid drug metyrapone. Enhanced pharmacokinetic 

profiles o f Fbz and Ofz in combinations with methimazole were also observed in the
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study o f Lanusse et al. (1995). Parbendazole, a Bz o f only moderate anthelmintic 

potency, has been shown to slow down the metabolism o f Ofz with consequent 

increases in efficacy against resistant isolates (Hennessy et al., 1985 and 1992). 

Altering the metabolism and elimination o f anthelmintics to increase systemic 

availability and efficacy against hetero- and homozygous resistant parasites offers a 

cost effective alternative to developing new drug classes and the use o f such 

combinations merits further research.

Considerable research and development is still required before nematode 

vaccines become a commercial reality. Furthermore, multi-species vaccines may be 

required since monovalent vaccines may simply allow non-targeted species to pose a 

threat to livestock. The ease with which helminths have countered all classes o f  

anthelmintics and the apparent high levels o f polymorphism in helminth populations 

suggests that hidden antigen vaccines may also prove to be vulnerable to the adaptive 

capabilities o f  the parasite (Jackson, 1993; Grant, 1994). Breeding for 

immunoresponsiveness is inevitably a lengthy process and is unlikely therefore to 

have any immediate impact. Embryo manipulation and transfer does offer an 

opportunity for acceleration, however, the possibility o f genetic restriction makes this 

a hazardous approach. Schwaiger, Gostomski, Stear, Duncan, McKellar, Epplen & 

Buitkamp (1995) for example concluded that the selection o f particular alleles may 

hinder the protective immune response to other pathogens. Selecting ‘resistant’ lines 

o f sheep on the basis o f low faecal egg counts may inadvertently select 

hypersensitive sheep that suffer significantly more diarrhoea (Larsen, Vizard & 

Anderson, 1995), thereby affecting animal performance. It seems therefore, that an 

immunological approach is unlikely to offer a sole means o f control but may simply 

complement existing and future methods.

Although naturally acquired immunity plays an important role in parasite 

population regulation its acquisition takes some time to develop in naive animals and 

it is likely to be compromised at points throughout an animals life. Conditions may 

sometimes permit large numbers o f larvae on pasture leading to occasional outbreaks 

o f  clinical disease. Besides growing lambs, acquired immunity is liable to fail in 

ewes undergoing PPRI and in animals under stress, such as poor nutrition. For these 

reasons the immediacy offered by chemotherapy will ensure that there will always be
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a need for anthelmintics and they will remain an important means o f achieving 

control (Gutteridge, 1989). Recent advances in drug targeting and new delivery 

systems will hopefully maintain the use o f anthelmintics. For example, the use o f  

zeolite, a synthetic crystal matrix, was shown to prolong the delivery o f tetramisole 

in rats, producing improved efficacy against N. brasiliensis (Shaker, Dyer & Storey, 

1992). More recently the release o f levamisole from biodegradable poly-lactide-co- 

glycolide microspheres was shown to be extended in the study o f Fitzgerald & 

Corrigan (1996). The encapsulation o f  albendazole into liposomes has also provided 

promising results (D. R. Hennessy, personal communication). The protection 

afforded by the liposomes resulted in better drug delivery with consequent increases 

in drug bioavailability and increased efficacies against abomasal and small intestinal 

species.

In Australia a series o f regional, epidemiologically based strategic programmes 

such as ‘WormkilF and ‘Drenchplan’ have been developed and successfully adopted 

by farmers (Waller, Dash, Barger, Le Jambre & Plant, 1995). Given the shortage o f  

research funds for applied parasitological research it is hardly surprising that similar 

programmes have not been developed and promoted in the UK or indeed Europe. If 

such schemes are ever to be developed then it is clear that they must not only include 

managemental and immunological approaches but also an improved understanding o f  

parasite epidemiology. Information from current research on anthelmintics and their 

pharmacokinetics needs to be included in any such programmes. The establishment 

o f  sheep nematode control schemes also requires improved communication between 

scientists, veterinarians, livestock owners and pharmaceutical companies. The 

recognition o f deficiencies in chemical control and the development o f  improved 

strategies are also in the best interests o f the pharmaceutical industry (Herd, 1993). It 

is only with the disclosure o f reliable information however, that control strategies 

will have the chance to succeed. The importance o f regular monitoring o f faecal egg 

counts should be emphasized. Similarly, farmers should understand that 

anthelmintics are valuable but extremely limited resources that should not be 

squandered by excessive and unnecessary use (Barger, 1993b).

Alternative methods o f control such as the utilization o f  supplementary protein 

(Coop et a l., 1995), nematophagous fungi (Charles et a l., 1996) or the use o f
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different herbage species (Scales et al., 1995) need to be evaluated in the field. 

Simply removing faeces has been shown to reduce the level o f  contamination for 

horses with consequent increases in the amount o f grazable pasture available (Herd, 

1990). Currently, and for the foreseeable future, the most important means o f control 

will be chemotherapy. This study has shown that the development o f resistance need 

not necessarily signal the end o f an anthelmintic class. Under careful management it 

may be possible to re-introduce RSDs into slow chemoprophylactic rotations, at least 

when resistance involves less pathogenic species with a low biotic potential such as 

Teladorsagia. Progress in vaccine development and the implementation o f  breeding 

programmes for immunoresponsive individuals are unlikely to replace the need for 

chemotherapy. Indeed, the role o f anthelmintics in the future o f parasite control may 

well be to support the use o f such alternatives.
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APPENDIX

General

Helminthological Iodine

250 g Potassium Iodide (Fisons, UK)

50 g resublimed Iodine (BDH chemicals Ltd., UK)

Dissolve in 500 ml o f  distilled water

2.5.1 Plasma Pepsinogen Assay

1% Bovine serum albumin (BSA)

0.25 g BSA dissolved in 25 ml distilled water

Glycine buffer (0.1M, pH  2)

7.5 g glycine 

5.85 gN aC l

Dissolve in 800 ml o f distilled water, stirring vigorously with a magnetic stirrer. 

Adjust the pH to 2 with HC1. Make up to 1 litre using distilled water.

IN  Sodium hydroxide (NaOH)

40 g NaOH pellets dissolved in 1 litre o f distilled water.

10% Trichloroacetic acid (TCA)

100 g TCA crystals dissolved in 1 litre o f distilled water.

Folins Working Reagent

5 ml Folins and Ciocalteau’s reagent mixed with 10 ml distilled water.

Stock tyrosine solution

0.0362 g tyrosine dissolved in 100 ml o f 0.1NHC1. (Note: shelf life 1 month at 4 °C) 

Working standard is a 1 in 10 dilution o f  stock with distilled water.
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2.6.1 Extraction o f  genomic DNA

Lysis Buffer

500 pi PCR Buffer lOx (without MgCh)

100 nl 1M DTT

250 h1 10 % SDS

50 p,1 10% Triton X-100

4050 pi sterile distilled water

Made without Protease K and stored at -2 0  °C in 495 pi aliquots 

Before use add 5 pi o f fresh Protease K (10 mg ml'1, Sigma, UK) per 495 pi aliquot. 

Final concentrations (20 mM DTT, 0.5 % SDS, 0.1 %  Triton X-100, 0.1 mg ml"1 

Protease K).

1 M D T T

0.309g DTT dissolved in 2 ml o f  0.01 M sodium acetate pH 5.2 

Sterile filtered (0.45 pm) and stored at -2 0  °C.

2.6.2 Arbitrarily Primed Polymerase Chain Reaction (AP-PCR)

PCR Incubation Buffer lOx (without M gCl2)

0.1 MTris-HCl (0.157g)

0.5M K C 1 (0.373g)

1 mg ml"1 gelatine (0.0 lg)

Dissolve in 8 ml sterile distilled water, adjust pH to 8.3 using NaOH, make up to 10 

ml with water, sub-aliquoted and stored at -2 0  °C.

1 Kb DNA markers

20 pi Stock 1 Kb DNA ladder (1000 pg pi"1, BRL, Paisley, Scotland, UK)

60 pi Bloo Joos (see below)

340 pi sterile distilled water 

Stored at -2 0  °C
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TE buffer (lx)

2 ml o f  1 M Tris buffer

0.4 ml o f 0.5 M EDTA (pH 8) - see below 

make up to 200 ml with sterile distilled water

Deoxyribonucleoside triphosphates (dNTPs), stock solution 

2 pi o f  each dATP, dCTP, dGTP and dTTP (Boehringer, UK)

92 til sterile distilled water 

Stored at -2 0  °C

Prim er (lOx)

The concentration o f  the oligonucleotide primer (Oswell DNA Service, Edinburgh, 

UK) was determined by dividing its OD260nm by its extinction coefficient (e).

(dATP e = 15.4, dTTP 8 = 8.8, dGTP e = 11.7, dCTP 8 = 7.3)

For example, primer 509G: OD260nm ml’1= 13, e = 305.3 : .c  = 42.58 pM 

Therefore a 1 in 4.258 dilution is required for a 10 pM (lOx) solution.

1.e. 100 pi stock + 326 pi sterile water

Mix, pipette into 20 pi aliquots and store at -2 0  °C.

2.6.3 Agarose Gel Electrophoresis.

0 .5 M ED TA (pH 8)

186.1 g EDTA

Dissolve in 800ml o f distilled water, stirring vigorously with a magnetic stirrer. 

Adjust the pH to 8 with NaOH (approx. 20 g o f NaOH pellets).

Note: EDTA does not go into solution until the pH is adjusted to approx. pH 8.
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Tris-acetaie buffer (TAE)

5Ox Concentrated stock solution (per litre)

242 g Tris base

57.1 ml glacial acetic acid

100 ml 0.5 M EDTA (pH 8)

Dissolve the Tris in 700 ml o f distilled water before adding the glacial acetic acid and 

the EDTA. Make up to 1 litre using distilled water.

Bloo Joos (0.2 % Bromophenol blue)

(Gel-loading buffer)

25 % Sucrose (w/v) in water

Dissolve 5 g o f  sucrose in 15 ml o f distilled water. Add 40pl o f  bromophenol blue and 

make up to 20 ml with distilled water. Store at 4 °C.

Ethidium Bromide (ElBr) lOmg/ml.

Add 1 g o f  ethidium bromide to 100 ml o f  distilled water. Stir on a magnetic stirrer 

for several hours to ensure the dye has dissolved.

Store at 4 °C in a dark bottle.

Caution: EtBr is a powerful mutagen and is moderately toxic. Always wear gloves 

when working with solutions that contain the dye, and a mask should be worn when 

weighing it.

2.6.4 Polyacrylamide Gel Electrophoresis (PAGE)

Loening E  buffer

lOx Concentrated stock solution (per litre)

43.59 g Tris base

41.39 g sodium dihydrogen monophosphate 

3.72 g EDTA

Dissolve in 800 ml o f  distilled water. Adjust the pH to 8.3 with NaOH. Make up to 1 

litre using distilled water.
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10 % Ammonium Persulphate (APS)

0.1 g o f  ammonium persulphate, make up to 1 ml with distilled water.

N ote : Prepare fresh daily.

30 % Acrylamide

Dissolve 29.2 g o f acrylamide and 0.8 g o f N ,N ’-methylene-stock solution 

bisacrylamide in 80 ml o f distilled water. Make up to 100 ml with distilled water. 

Filter and store at 4°C in a dark bottle.

Caution : Acrylamide is a potent neurotoxin and is absorbed through the skin. Weigh 

in a fume cupboard wearing gloves and a mask. Always wear gloves when handling 

solutions containing these chemicals. Although polyacrylamide is considered to be 

non-toxic, it should be handled with care because o f the possibility that it might 

contain small quantities o f unpolymerized acrylamide.

2 .6.5 Silver-staining o f  polyacrylamide gels

FIX

10 ml ethanol.

0.5 ml acetic acid.

Make up to 100 ml with distilled water.

STAIN

0.19 g silver nitrate.

Dissolve in 80 ml o f  distilled water.

Make up to 100 ml with distilled water.

DEVELOPER 

3 g sodium hydroxide.

0.75 ml formaldehyde.

Dissolve the sodium hydroxide in 80 ml o f distilled water then add the formaldehyde. 

Make up to 100 ml with distilled water.
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STOP

1.9 g sodium carbonate.

Dissolve in 200 ml o f  distilled water. Make up to 250 ml with distilled water.

2.7 High Performance Liquid Chromatography (HPLC)

Individual stock solutions (100 jug/ml)

Stock solutions (100 |ig/ml) for each compound (Albendazole (Abz), Fenbendazole 

(FBz), Fenbendazole sulphoxide (FBzSO), Fenbendazole sulphone (FB zS02), and 

Fenbendazole hydroxide (FBzOH) were prepared by weighing out accurately to four 

decimal places 0.0100 g o f compound which was dissolved and made up to 100 ml in 

a volumetric flask using methanol. Standards o f Abz and Fbz and its metabolites were 

supplied by Hoechst Ltd., Gebaude, Germany.

Fenbendazole Mixtures (FBz + FBzSO + FBzSO2 + FBzOH)

10 pg/ml Mix : 20 ml o f  each stock (100 pg/ml) solution, made up to 200 ml with 

methanol.

5 pg/ml Mix : 10 ml o f each stock (100 pg/ml) solution, made up to 200 ml with 

methanol.

2.5 pg/ml Mix : 5 ml o f each stock (100 fig/ml) solution, made up to 200 ml with 

methanol.

1.0 pg/ml Mix : 10 ml o f 10 |Lig/ml Mix, made up to 100 ml with methanol.

0.5 p,g/ml Mix : 10 ml o f 5 pg/ml Mix, made up to 100 ml with methanol.
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