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A B S T R A C T

Macrophage Inflammatory Protein-la is a member of the Chemokine family of inflammatory 

mediators. In addition to its chemotactic properties, M IP-la is an inhibitor of the proliferation of 

primitive stem cells, and is therefore potentially useful in cancer therapy. It has also recently been 

shown to protect certain subsets of human cells from infiltration by HIV-1 virus.

The crystal structures of three structural mutants of the Chemokine Macrophage Inflammatory 

Protein-la have been determined. The structure of a monomeric mutant has been determined to 

2 .9A, that of a dimeric mutant to 2 .3A, and the structure of a tetrameric mutant has been deter­

mined in two crystal forms at 2.05A and 1.65A.

This thesis outlines the process by which these mutant structures were solved and compares 

them with other Chemokine structures. The potential implications of the structures of the MIP- 

l a  mutants are investigated. The complex network of Chemokines and Chemokine receptors 

is described, and attempts are made to rationalise receptor-binding specificities of M IP-la and 

related proteins on the basis of the M IP-la structures.
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1. INTRODUCTION.

1.1 The Im mune System .

Normal function of the immune system is essential to life. It encompasses the movement, target­

ing, adhesion, activation and eventual removal of a vast array of cell types involved in defending 

the host organism from hostile invasion. At the heart of this process is the inflammatory response, 

where leukocytes or white blood cells are transported to a site of injury and activated in order to 

alleviate the problem. However, the balance between a beneficial inflammatory response and a 

harmful one is often very fine. If the magnitude of the immune response is out of proportion to the 

injury it is trying to combat, the outcome can be more harmful to the host organism than the orig­

inal injury would have been. Examples of detrimental immune responses include arthritis, asthma 

and the ability of retroviruses such as HIV to infiltrate and assume control of immune cells.

The recruitment and targeting of the specific subset of leukocytes required to challenge a 

particular injury is therefore of paramount importance. Of equal, and perhaps even greater, import 

is the subsequent removal of those cells from the site of injury and the downregulation of leukocyte 

production to prevent harmful reaction to the immune response.

It is therefore clear that the mediators of inflammation are of extreme importance in the sur­

vival of many organisms. Knowledge of the structures of these molecules and their receptors will 

allow greater understanding of the interactions they make with each other and with leukocytes, 

and may shed light on their roles in immune and autoimmune disorders.

1.2 Cytokines.

The Cytokines are a broad family of proteins, ranging in size from 8  to over 50kD. They are all 

Inflammatory mediators, and often have other properties which influence the Immune response, 

such as the stimulation or inhibition of the growth and proliferation of progenitor cells. In general, 

they are structurally unrelated, although they can be divided into several distinct superfamilies 

based on the three-dimensional structures of their monomers. Membership of the Cytokine family 

is therefore based on biological activity rather than structural definitions.
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1.2.1 Definition and Historical Significance.

The term “Cytokine” was originally intended to refer to molecules with some form of modulatory 

activity over immune cells1 ’ 2  3. Derived from terms for “cell” and “motion”, it was appropriate 

for proteins which mediated the proliferation and distribution of a great variety of immune-system 

cell types.

More recently it became clear that any attempt to clarify the definition of the family on the 

basis of the source, target or activity of its members would be impossible3 4. Although some 

Cytokines are produced by only one cell type, most have multiple cellular sources. Similarly, the 

majority of Cytokines are active on more than one cell type, and many have a variety of different 

activities on different types of cell. While most of the known Cytokines are fairly small soluble 

proteins, membrane-bound forms of several Cytokines, have also been identified5  6.

Today the term refers to a large and diverse group of over 120 proteins7  involved in regulating 

the normal activity of the immune system, controlling the activity and growth of individual cells, 

and in mediating interaction and communication between cells.

Within the large family of proteins to which the term “Cytokine” can be applied, three broad 

structural groups can be defined:

•  a-Cytokines Consist of various types of four helix bundles.

• p-Cytokines A more diverse collection of primarily P-sheet proteins.

•  a  + p A more clearly defined group of proteins

containing significant amounts of both helix and sheet.

Each of these consists of many distinct proteins and can be further subdivided8.

Within the a-Cytokines, more than ten proteins have been structurally characterised, and

have been shown to belong to three subfamilies. The Long-chain four-helix bundle structures

are characterised by human Growth Hormone QiGH) and Granulocyte-Colony Stimulating Factor

(G-CSF), and the Short-chain four-helix bundles by Interleukins-2 and -4 (IL-2 and IL-4). Both

groups contain a novel “up-up-down-down” four-helix motif, with very little additional secondary

structure. The third family contains Interferon-y and IL-10, and is distinct from the other two as its

members dimerise to form two adjacent four-helix bundles, with at least one helix in each coming

from the other monomer.

The P-Cytokines also consist of three subfamilies, although there is little similarity between

them. The Cysteine knot growth factors, such as Platelet-derived Growth Factor (PDGF) 9  and
10



human Chorionic Gonadotropin (hCG)10-n , are heterodimers containing a knotted central cluster 

of three disulphides. They have little secondary structure, containing just a few strands of 13- 

sheet. The (3-trefoil structures, such as IL-1(312 and human Fibroblast Growth Factor (/zFGF) 13 are 

trimeric (3-barrels. The third group are (3-sandwich structures, the only example of this type to date 

being the Tumour Necrosis Factor (TNF) trimer14.

In some classifications, the a+P-Cytokines comprise only the Chemokines, while in others 

proteins such as Angiogenin15 are also included. The Chemokines all have a monomer which 

consists of three strands of p-sheet and a single a-helix16, whereas Angiogenin has a fold similar 

to that of Ribonuclease A17, containing a long p-sheet and three a-helices.

1.2.2 Biological Activities.

As their names often reflect, the majority of the Cytokines were originally identified by their 

possession of a distinct biological activity. However it is also a general property of the Cytokines 

that there is a very high degree of cross-reactivity and hence redundancy in their activities. In fact 

there are many examples where two or more Cytokines can replace one another with little or no 

reduction in biological activity or specificity18.

Consequently it has been difficult in many cases to precisely determine the natural function of 

many of the Cytokines. There are several whose primary biological activities remain a mystery.

It now seems clear that the overlap in function observed between so many Chemokines can not 

be accidental. However, it is not clear why such a complex and frequently overlapping network of 

chemotactic proteins is necessary. It has been argued that these functional overlaps are extremely 

important in providing as flexible an immune response as possible2. While many of the Cytokines 

have apparently identical major functions, some of their minor ones differ. As Cytokines sel­

dom occur individually, the overall activity of a Cytokine mixture could be subtly altered by the 

production of different combinations of proteins.

While all of the proteins defined as Cytokines are involved in some way in modulating the 

normal function of the immune system, their specific activities are often very different. The family 

contains a huge variety of proteins involved in chemotaxis and cell signalling, as well as Growth 

Factors and glycoprotein hormones19.

Amongst the chemotactic proteins there are examples which preferentially attract neutrophils, 

monocytes, lymphocytes, almost any other immune system cell type, or any combination thereof3. 

There are also vast differences in the relative potencies and specificities of many of those whose 

chemotactic targets are similar. Most of them will only show chemotactic activity within a fairly



narrow range of concentrations2 ’ 2 0  3, and if the concentration is too low or too high they will be 

unable to attract their target cells, further enhancing the flexibility of the Cytokine network.

For example, TGF-p, the most potent monocyte chemoattractant known, is most effective at 

a concentration less that one millionth of the optimal concentration for MCP-1, which is also a 

highly potent monocyte chemoattractant3 4. Both proteins can be produced together in an im­

mune response, and would have relatively high concentrations close to the site of production. It is 

possible to envisage a scenario where the local concentration of TGF-P is so high that it is rela­

tively inactive as a chemoattractant, whereas MCP-1 is still extremely effective. As both proteins 

diffuse away from the site of production, TGF-p concentration is reduced to the level at which 

it becomes an exceedingly effective monocyte chemoattractant, and therefore is able to recruit 

monocytes from distances far beyond the range of MCP-1. Thus TGF-P and MCP-1 can act in a 

complementary fashion, although at first glance it might appear that they would compete with one 

another.

Among the Cytokines which are also growth factors are proteins of fundamental importance 

in development, including Nerve Growth Factor (NGF), Transforming Growth Factor-p (TGF-p) 

and the glycoprotein hormones19 - Chorionic Gonadotropin (CG), Leutinising Hormone (LH), 

Thyroid Stimulating Hormone (TSH) and Follicle Stimulating Hormone (FSH). The proteins of 

the TGF-P family affect the normal cell cycle, as well as stimulating or inhibiting cell growth 

because of their ability to modulate the effects of other proteins which act as growth factors. The 

specific role of NGF is less well understood, although it is known to control the development and 

survival of certain subsets of neurons.

The glycoprotein hormones are a group of four related heterodimeric proteins. All of them 

have important roles in endocrinilogy. CG, FSH and LH are regulators of the reproductive cycle, 

whereas TSH is involved in metabolic control21.

1.2.3 Location and Targets.

The Cytokines should be considered primarily to be mediators of immune system cells, controlling 

chemotaxis, cell interaction, cell growth and in some cases cell motility. The plethora of other 

properties belonging to individual Cytokines are generally secondary to this. However there is a 

potentially important subset for which these “secondary” effects seem to be the major, if not sole 

biological activities that can be ascribed22.

The sites of production of the Cytokines reflect their primary activities. Those with chemo­

tactic properties are rapidly produced at sites of inflammation and wound-healing, and then can
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control the migration of cells of the immune system towards those sites. Almost all cell types 

are able to produce some population of Cytokines, and most of these proteins can be generated 

by many different cells. In addition, many Cytokines have a vast range of functions, as described 

above, making the definition of specific cellular targets and sites of production relatively mean­

ingless.

For this type of rationale to be of use, the Cytokines must be considered as groups of related 

molecules, expressed close to one another, and having similar but non-identical profiles of biolog­

ical activity. Only in this way can the intricate Cytokine network be simplified to any extent.

1.3 Chemokines

As mentioned above, the Chemokines are a distinct Cytokine subset consisting mainly of small 

proteins with molecular weights from 8-15&D. They can be subdivided into four distinct families, 

based on their relative distributions of Cysteine residues, and on some of their physical properties. 

The first and second families, which are called the a- and P-Chemokines, have been known for 

around twenty years and were thought to be the only two branches of the Chemokine subfamily 

tree. However, there have recently been reports of two other proteins which do not conform to 

the Cysteine distribution pattern of any other known Chemokine. Lymphotactin2 3  was proposed 

as the first and so far, only, member of the y-Chemokine family, and Neurotactin5  as the single 

member of the 8 -Chemokines.

1.3.1 Definition and Physical Properties o f the Family.

The majority of the Chemokines are small proteins, typically containing 70 amino acids and having 

molecular weights of approximately SkD. However there are some slightly larger Chemokines, 

which are discussed in Section 1.3.2.

Members of the four Chemokine subfamilies share a high degree of sequence homology. In­

deed it is the patterns of certain conserved residues which have been used to define the boundaries 

between them.

The a-Chemokines were formerly known as the “CXC Chemokines”, since the two cysteine 

residues closest to the N-termini of these proteins were always separated by a single residue (See 

Table 1.1). Conversely, in the p-Chemokines, these two cysteines are adjacent in the sequence 

(See Table 1.1). In both cases there are two other completely conserved cysteine residues and 

two conserved disulphides, which are formed between Cys7-Cys777 and CysII-CysIV, where Cys7
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is the Cysteine closest to the N-terminus. In this and subsequent sequence alignments, human 

Chemokine sequences are used.

In Lymphotactin, Cys7 and Cys777 are absent, which results in just a single disulphide in 

this molecule (See Table 1.1). The alternate notation for the y-Chemokines is therefore the “C 

Chemokines”.

In Neurotactin, Cys7 and Cys77 are separated by three residues (See Table 1.1), and hence have 

been referred to as “CX3 C Chemokines”. It has been proposed that Neurotactin and any related 

proteins be classified as 8 -Chemokines5. The disulphide bonding pattern observed for the first four 

Cysteines in this protein is identical to those of the a- and p-Chemokines. However Neurotactin is 

distinct from these families in having another three Cysteine residues close to its C-terminus (not 

shown in Table 1.1, two of which form a third disulphide bond. Neurotactin is also referred to as 

Fractalkine in some publications24.

Aside from the pattern of conserved disulphides, there are several other characteristics that 

define the boundaries between the families. Although there is some overlap in biological activities, 

particularly between the a- and p-Chemokines, the sites of action and specific activities of the 

proteins of the four subfamilies are fairly distinct. The physical properties of the proteins are also 

a defining feature. The proteins of the a - and p- families are small, soluble and heparin-binding, 

and generally have a molecular weight in the range from 8 -KM)25. Lymphotactin is slightly larger 

than this, with a molecular weight of 12.5&D23. Neurotactin, on the other hand, is considerably 

larger than any other Chemokine, and unlike the others is proposed to be a membrane protein 

with a C-terminal cytoplasmic domain. From its sequence5, the expected molecular weight will 

be in excess of 40kD. However, it has also been reported that the Chemokine-like fragment of 

Neurotactin can be detached from its membrane anchor under certain conditions to produce a 

soluble Chemokine similar in size to the a- and p-Chemokines24.

Despite the differences outlined above, the sequence similarity between most members of the 

Chemokine family is significant. As would be expected, the greatest degree of sequence identity 

is found between members of the same Chemokine subfamily, and can be as high as 8 8 % in the 

case of the a-Chemokines gro-a, -p and -y3. Sequence identity within the p-Chemokine family is 

as high as 71%, between Monocyte Chemotactic Protein-1 (MCP-1) and Monocyte Chemotactic 

Protein-3 (MCP-3)3. However there are also sequence identities of 20-40% between a- and P- 

Chemokines16, suggesting some structural similarities between these two subfamilies. Sequence 

comparisons between Lymphotactin and various a- and p-Chemokines showed a maximum se­

quence identity of 26% with MCP-2. The Chemokine domain of Neurotactin shows a maximum

14
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sequence identity of 40% with MCP-15, 30% with Macrophage Inflammatory Protein-la (MIP- 

la )  and only 23% with RANTES (Regulated on Activation, Normal T-cell Expressed and Se­

creted). Comparison between Lymphotactin and Neurotactin shows a sequence identity of 26%. 

A summary of the sequence identities between the various members of the p-Chemokine family 

is given in Table 1.2.

1.3.2 Sequence Comparison.

Table 1.3 shows a sequence alignment for all known members of the a-Chemokine family. One 

member of each of the p, y  and 8  is also shown for comparison. This and subsequent sequence 

alignments were performed using MultAlin2 6  and the original Blosum6227 symbol comparison 

table.

Table 1.4 shows a similar alignment for all known members of the p-Chemokine family. Ta­

ble 1.5 shows a cluster plot based on the sequence alignment shown in Table 1.4. Sequence identity 

increases towards the left of the diagram, with M IP-lp being most similar to M IP-la, and TECK 

being least so. It is clear from this diagram that the MIP-like proteins cluster together, as do the 

MCP-like proteins. The Exodus proteins also seem to form a distinct cluster. This diagram sug­

gests that sequence comparison may indicate subtle differences between groups of p-Chemokines, 

which could lead to further subdivision of the family. These concepts are discussed in greater 

detail in Section 5.4.4.

Another striking fact regarding the sequence homology within the Chemokine family is appar­

ent when proteins from different species are compared. The majority of the Chemokines identified 

to date have been detected in both mice and humans, and some for quite a variety of species. How­

ever there are some exceptions, most notably the a-Chemokine IL-8 , for which only a human form 

is known4, although the murine IL- 8  receptor has been identified28. The sequence identity between 

homologous proteins from different species is generally very high; for example, the sequence iden­

tity between the human and murine M IP-la proteins is 75%, and between the corresponding MIP- 

1P proteins this figure is 78%.

For Lymphotactin, the identity between the murine and human versions of the proteins is 

slightly lower than this at around 60%. The figure is around 76% for the Chemokine portion of 

Neurotactin, very similar to the figures for M IP-la and MIP-lp. Lymphotactin and Neurotactin 

are somewhat larger than the other Chemokines, and therefore only a part of their sequences ac­

tually comprise the “Chemokine domain”. There appears to be no significant similarity between 

the residues in the extra portions of these molecules. In the case of Lymphotactin, there is no

16
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indication from the sequence as to the probable conformation of the additional peptide. Con­

versely, for Neurotactin, one stretch of nineteen conserved hydrophobic residues seems to indicate 

a membrane-spanning domain, and therefore the residues to the C-terminal side of this region cor­

respond to a cytoplasmic domain5. There are three “extra” Cysteine residues in Neurotactin, one 

of which is encompassed by the potential membrane- spanning region, while the other pair are 

expected to form a disulphide bond within the cytoplasmic domain. The remaining residues, con­

necting the Chemokine domain to the membrane-spanning domain, have been suggested simply 

to be a flexible linker region, even though this region is larger than the others combined.

In addition to these two proteins, there are several other recently identified members of the 

P-Chemokine family that are somewhat larger than those already known. Murine MIP-ly, which 

was first identified2 9  in 1996, consists of 100 amino acids, including an extra twenty-five amino- 

terminal residues not present in MDP-la and MIP-ip. Human Macrophage Inflammatory Protein 

Related Protein-1 (MRP-130) consists of 96 residues, and has insertions at both the N and C ter­

mini which do not occur in other p-Chemokines. MPIF-131 and HCC-23 2  also appear to be related 

to MIP-ly. These proteins are distinct from the other members of the family in having six cysteine 

residues within the portions of their sequences which correspond to the full lengths of the other p- 

Chemokines. The two extra conserved Cysteine residues occur in positions that would be proximal 

were MIP-ly assumed to have the same secondary structure elements as the other Chemokines, 

suggesting that a third conserved disulphide bond would be formed. These proteins may represent 

the first members of a new subdivision of the p-Chemokine family. Some of the MCP-1 homo- 

logues isolated from species other than human have also been shown to have a substantial number 

of extra residues at their C-termini, giving molecular weights up to around 14&D.

The final piece of evidence which suggests partitioning of the Chemokines into distinct sub­

families is perhaps the most compelling of all. When the chromosomal location of the various 

Chemokine genes is compared, it is apparent that the Chemokines are subdivided in a way which 

corresponds exactly with partitioning on the basis of cysteine distribution (See Table 1.6). Thus 

the “CXC”, “CC”, “C” and “CX3 C” Chemokines are found at distinct and different chromosomal 

locations. In addition, there is similar evidence to show that p-Chemokine genes occur in several 

discrete clusters which are close together, but nevertheless distinct, on human chromosome 17. 

This suggests that the p-Chemokine family may consist of several subfamilies with identical cys­

teine distribution but which can be distinguished according to their exact chromosomal location.

All the a-Chemokine genes map to human chromosome 4 and to mouse chromosome 5. The 

majority of the P-Chemokine genes map to human chromosome 17 and to mouse chromosome 11,
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although there are several recently discovered exceptions (See Table 1.7). Lymphotactin differs 

from both families as its gene maps to mouse chromosome l 23  and also to human chromosome 

l 33. Finally Neurotactin is different again5, its gene being located on human chromosome 16q and 

on mouse chromosome 8 . Two p-Chemokine genes have also been located on human chromo­

some 16q34 35, and it is possible that there may be some relationship between these proteins and 

Neurotactin.

Chemokine Family Representative Protein Cys Distribution

Chromosomal Location

Human Murine

a IL-8 CXC 4ql2-q21 5

P RANTES CC 17qll-q21 11

Y Lymphotactin C 1 1

5 Neurotactin CXXXC 16q 8

Table 1.6: Defining characteristics o f the Chemokine subfamilies

1.3.3 Biological Activities o f the Chemokines.

1.3.3.1 History.

The first Chemokines were identified as long ago as 1977, when the isolation and crystallisation 

of Platelet Factor 4 (PF4) was reported36. PF4 had been known for substantially longer than this 

however, and had first been described as a heparin-neutralising activity in extracts from blood 

platelets in 195137. Until very recently it was common for Chemokines to first be identified in 

this way, due to a new or interesting biological activity rather than similarity to related proteins. 

However, enormous advances in genetic screening capabilities coupled with an increased under­

standing of the important physical properties of the various Chemokine subfamilies have led to 

the discovery, production and sequencing of several new Chemokines in a relatively short space 

of time. In addition, DNA sequences of even more candidate Chemokines have been identified4.

While PF4 and another product of blood platelet a-granules, p-Thromboglobulin (p-TG), 

were being studied in the late 1970s38, it was not until the late 1980s that it became clear that 

the Chemokines were a family of related proteins. The identification, in rapid succession, of 

IL-8 3 9  (then called Macrophage Derived Neutrophil Chemotactic Factor - MDNCF), Interferon-y 

inducible Protein-10 (y-IPIO) 4 0  and 9E341 brought about an understanding that there was a struc­

tural relationship between all of these molecules. The characterisation of the two disulphide bonds

in p-TG38 and the recognition that the four cysteine residues were conserved in each molecule39
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Chemokine

Chromosomal Location

Human Murine

MIP-la 17qll-17q21 11

MIP-lp 17qll-17q21 11

HCC-1 17ql 1.2 not known

DC-CK1 17ql 1.2 ?

RANTES 17qll.2-ql2 11

ILINCK 17qll.2 not known

MIP-ly not known 11

MRP-1 not known 11

HCC-2 17qll.2 not known

MPIF-1 ? not known

MCP-1 17qll.2-ql2 11

MCP-2 17ql 1.2 ?

MCP-3 17qll.2-ql2 11

MCP-4 17qll.2 not known

MCP-5 not known 11

Eotaxin 17qll.2-17q21 11

Eotaxin-2 ? not known

TARC 16ql3 not known

1-309 17qll.2 11

Exodus 2q33-q37 not known

Exodus-2 9pl3 not known

Exodus-3 9pl3 not known

MDC 16 not known

TECK ? not known

Table 1.7: Chromosomal location o f p-Chemokine Genes.

In Table 1.7, not known implies that the protein has not been isolated for that species, whereas ' ?' implies that the 

protein is known but the chromosomal location has not been reported.
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led to the notion of the “CXC Chemokine” family42.

Following these discoveries regarding the nature of the protein family itself, several other 

members were identified. First the proteins Connective Tissue Activating Peptide (CTAP-HI)43, 

Platelet Basic Protein (PBP) 4 4  and Neutrophil Activating Peptide-2 (NAP-2)45, which were also 

known to be platelet a-granule products, were shown to be cleavage products belonging to the 

same root. PBP is the intact molecule, with CTAP-in, (3-TG and finally NAP-2 being formed by 

successive N-terminal processing.

The next of the a-Chemokines to be discovered was gro-a 4 6  (then called Melanoma Growth 

Stimulatory Activity - MGSA). Two closely related proteins with similar biochemical activities, 

gro-p and gro-y, were reported some time after this. Several other a-Chemokines have been 

identified since, including Epithelial cell-derived Neutrophil-Activating protein (ENA-78)47 for 

which only human and bovine forms are known. Other a-Chemokines for which reliable protein 

sequences are available include Granulocyte Chemotactic Protein-2 (GCP-2)48, LIX49, stromal 

cell-derived factor-1 (SDF-1) 5 0  and Monokine induced by Interferon-y (Mig)51.

While the first a-Chemokines have been known for a considerable time due to their obvious 

biological activities, it was not until 1986 that the first member of the p-Chemokine family was 

isolated. LD78 was the first to be discovered52, followed in 1988 by Act-253. The subsequent 

identification of two closely related murine proteins, M IP-la5 4  and MEP-lp5 5  led to the proposal 

that LD78 and Act-2 were the human homologues, and today LD78 is known as human M IP-la 

and Act-2 as human MIP-lp.

MCP-15 6  and RANTES57  were the next p-Chemokines to be isolated. These two proteins 

have been studied extensively since their discovery, and are by far the best-characterised of this 

family of proteins. Recently a substantial number of other p-Chemokine proteins and sequences 

have been identified, and these have often been named according to their similarity to one of the 

known proteins. Hence MCP-258, MCP-358, MCP-459  and MCP-56 0  are now characterised, in 

addition to I-30961, Eosinophil Chemotactic Protein (Eotaxin)62, Eotaxin-26 3  31, HCC-164, HCC- 

232, Exodus25, Exodus-265, (also called SLC), Exodus-366, (also called ELC, or EBIl-ligand 

Chemokine), Myeloid Progenitor Inhibitory Factor-1 (MPIF-1)31, Macrophage-derived Chemokine 

(MDC)34, Thymus and activation-regulated Chemokine (TARC)35, Dendritic-cell-derived C-C 

Chemokine (DC-CK1)67, ILINCK68  and TECK69. Based on analysis of their sequences, they 

are all expected to be structurally similar to MCP-1, RANTES and the MIP-1 proteins.

Very recently though several other sequences have been identified that while possessing the 

definitive CC motif, are somewhat larger than the other p-Chemokines and do not follow patterns
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of other conserved residues that occur throughout the group. This suggests that there may be 

at least one more group of “CC-Chemokines” which are structurally distinct from the others. 

Murine MIP-ly29, and the human proteins MRP-130-70, MPIF-131 and HCC-23 2  have all been 

shown to possess an additional pair of conserved cysteine residues that are expected to form a 

third disulphide, and 1-309 also possesses a third pair of cysteine residues which occur at positions 

different to those proteins. The identification, in addition, of the first members of the y- and 

8 -Chemokines, suggests that there is still a great deal to be discovered regarding variations in 

structure and sequence within the Chemokine family.

1.3.3.2 Alternate Names.

As will already have become clear, the field of Chemokine study is now littered with defunct and 

confusing alternate terms. This is a problem that is likely to diminish as understanding of the 

underlying organisation of the various subfamilies improves, particularly as many of the newly 

discovered Chemokines are being categorised and named due to their similarity to existing pro­

teins.

The problem has been engendered as a result of the way in which the first known Chemokines 

were isolated and identified. Proteins such as M IP-la, RANTES, PF4 and P-TG were named 

according to their first known activities, and in some cases they were known by several names 

until it became clear that the same factor was responsible for each activity. However, as it becomes 

apparent that most of the Chemokines have a variety of biological activities, it is clear that a few 

of the existing names refer to their minor properties and hence are not particularly appropriate.

Nevertheless, continuing rationalisation of the naming conventions of the Cytokines in general 

should ensure that things will continue to become easier for those with an interest in the subject. As 

the majority of Chemokines are now being identified from searches of DNA databases, the problem 

is unlikely to arise again. The current convention is for each uncharacterised Chemokine to be 

given a temporary label, with the real name of the protein following once it has been biochemically 

characterised. There are two new a-Chemokines, C K al and CKa2, and at least thirteen new P- 

Chemokines, CKpl-CKpi3, that fall into this category4, although some of these have now been 

characterised and renamed. Appendix A contains an extensive list of the alternative names by 

which the various Chemokines are and have been known.
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1.3.3.3 Classification based on Activity.

As has already been explained, the Chemokines were initially identified by biochemical purifica­

tion of particular biological activities from cell supernatants. For this reason they tended to be 

associated purely with a single specific activity, until the breadth of function of EL- 8  was realised3, 

and led others to explore the full range of activities mediated by the Chemokines.

IL- 8  was originally identified as a selective chemoattractant for neutrophils that had no activity 

towards monocytes. Subsequently, a range of experiments showed that IL- 8  was able to activate 

as well as mobilise neutrophils, inducing shape change, a rise in cytosolic free Ca2+ concentration 

and an increase in the respiratory burst, amongst other activities3. It was also shown to be chemo­

tactic and mildly activating for basophils, chemotactic for a subset of T-lymphocytes, and to have 

minor but significant non-chemotactic effects on monocytes, keratinocytes and melanoma cells.

The other a-Chemokines which were known relatively early, such as PF4, Gro-a and P-TG, 

were initially grouped together with IL- 8  as they were also shown to be chemotactic for neu­

trophils. Indeed, one early definition of the a- and p-Chemokines was that a-proteins were 

chemotactic for neutrophils but not monocytes, p-proteins were chemotactic for monocytes but 

not neutrophils. More careful study showed this partitioning to be slightly flawed, since the a- 

Chemokine PF4, for example, is chemotactic for both neutrophils and monocytes. However, PF4 

is chemotactic for neutrophils only at concentrations much higher than required for IL-8 , and 

lacks the neutrophil-stimulating activity of IL- 8  as well. PF4 has been shown to be chemotactic 

for fibroblasts and to have effects on megakaryocytopoiesis and angiogenesis, but its prime bio­

logical activity is likely to be as a Glycosaminoglycan (GAG)-binding factor and consequently as 

a controlling factor in the coagulation process.

Of the other a-Chemokines, only NAP-2 shows neutrophil chemotactic and activating ac­

tivity to rival IL-8 . PBP, CTAP-in and p-TG, the precursors of NAP-2, are relatively inactive, 

although p-TG does function as a fibroblast chemoattractant. CTAP-EH was reported to function 

as a growth factor43, but subsequent studies have cast doubt on these findings44. The gro-proteins 

are also mildly chemotactic and activating for neutrophils, and gro-a  has been shown to have 

growth stimulatory activity for melanoma cells and fibroblasts. SDF-1 has recently been shown 

to be a lymphocyte chemoattractant, although it was also known as PBSF (pre-B cell growth 

stimulating factor) as it stimulates B-cell progenitor proliferation. It also stimulates monocytes, 

neutrophils and peripheral blood lymphocytes, and appears to be a very specific ligand for the 

important a-Chemokine receptor CXCR4. yIP-10 and Mig have been shown to be specific lig­

ands for the a-Chemokine receptor CXCR3, which is expressed only on activated T-lymphocytes,
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suggesting they are involved in the regulation of lymphocyte recruitment. The other members 

of the a-Chemokine family have been studied to a lesser extent and these proteins are not well 

characterised biochemically.

Of the |3-Chemokines, only M IP-la has been shown to have any stimulatory effect on neu­

trophils, and even then it is not chemotactic. However, the majority of the p-Chemokines have sig­

nificant effects on monocytes. Monocyte chemotactic properties have been ascribed to RANTES, 

1-309, MCP-1, MCP-2 and MCP-3, and monocyte stimulation has been observed both by these 

proteins and by M IP-la and MIP-ip.

In addition, MCP-1, RANTES and M IP-la, but not MIP-lp, are highly effective stimula­

tors of basophils. Of these proteins, RANTES has been shown to be the most effective basophil 

chemoattractant, whereas MCP-1 is the most powerful stimulant.

Eosinophils are also much more susceptible to P- rather than a-Chemokines. RANTES is 

a powerful chemoattractant and activator, with M IP-la being slightly less effective, and MCP-1 

and MIP-lp inactive. The P-Chemokines Eotaxin and Eotaxin-2 are both extremely potent and 

selective eosiniphil chemoattractants.

Some other studies have suggested that several P-Chemokines have chemotactic effects on 

certain types of T-lymphocytes, and that several also inhibit the proliferation of certain progenitor 

cells, but their results have at times been contradictory. RANTES, M IP-la and M IP-lp cer­

tainly appear to have some effects, although the specific properties ascribed to each protein differ, 

whereas MCP-1 is inactive. Exodus-3 is a highly specific ligand for the receptor CCR7, and has 

been shown to be a chemoattractant and activator for lymphocytes. Both MPIF-1 and Eotaxin- 

2 have been shown to be chemotactic for resting T-lymphocytes and neutrophils, while MPIF-1 

also attracts monocytes. Both of these proteins affect hematopoietic progenitor cells, MPIF-1 sup­

presses proliferation of progenitors of the granulocyte and monocyte lineages, whereas Eotaxin-2 

suppresses the proliferation of multipotential hematopoietic progenitor cells. MDC is produced 

specifically by cells of macrophage lineage, and is a chemoattractant for monocytes, macrophage- 

derived dendritic cells and for natural killer cells. Exodus is chemotactic for peripheral blood 

mononuclear cells, and is expressed by both lymphocytes and monocytes. It inhibits the prolif­

eration of myeloid progenitor cells. TARC is chemotactic for some human T cell lines, and has 

been shown to be a highly specific ligand for the receptor CCR4. HCC-1 has weak activity on hu­

man monocytes and also inhibits the proliferation of some myeloid progenitor cells, but is inactive 

on some lymphocyte and leukocyte populations. DC-CK1 is chemotactic for T cells, but unlike 

RANTES and M IP-la, it specifically attracts naive or inactivated T cells.

27



Like the a-Chemokines, many of the P-Chemokines are only recently identified and have 

therefore not been studied extensively. In a few cases all that is available is a protein sequence 

in a database, predicted from a cDNA sequence. However, even from the limited experimental 

results available to date, it is clear that the Chemokines as a family have an extensive variety of 

overlapping functions. It will therefore be extremely difficult to identify the specific properties of 

each protein, but it will be vitally important to do so in order to fully understand the synergy and 

the complexity inherent in their interactions.

1.3.3.4 Cellular Sources.

While the specific cellular targets of the various Chemokines are many and varied, the same is 

also true of the cellular sources of most of the proteins. This complicates the picture still further, 

particularly as there is no obvious partitioning between a- and P-Chemokines with respect to their 

cellular sources, in contrast to the obvious differences in their target specificities.

Monocytes and macrophages are sources of many a- and P-Chemokines, with IL-8 , gro-a,- 

p,-y, MCP-1 and MCP-2 among the major products. Lymphocytes are important sources of many 

of the P-Chemokines, including M IP-la, MIP-ip and RANTES, but are less significant with 

respect to the a-Chemokines. Neutrophils have also been shown to produce some a-Chemokines, 

including IL-8 , gro-a  and gro-p.

Chemokine expression has also been observed in a great variety of other cell-types, most 

notably endothelial cells, epithelial cells and fibroblasts. The production of IL-8 , gro-a , gro-p, 

gro-y, ENA-78, y-IPIO, MCP-1, M IP-la and MIP-ip has been reported in one or more of them.

1.3.3.5 Receptors.

Only very recently have the Chemokine receptors begun to be understood to any extent. For 

several years it was assumed that there would probably be a specific receptor related to each 

Chemokine protein. It was not until their incredible cross-reactivity became apparent that the 

reality of receptors specific for certain subsets of Chemokines was recognised. Knowledge of the 

complete Chemokine receptor system is still sketchy at best, although significant recent advances 

have been made in receptor identification, cloning and sequencing that will enhance understanding. 

In addition, the recent implication of some Chemokine receptors in the study of the HIV virus71 

will ensure that the field remains in the forefront of research for the foreseeable future.

All of the known Chemokine receptors are seven-transmembrane-helical G-protein coupled

receptors (GPCRs). Although quite a number of them are now known, it is very likely that a
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significant number remain to be discovered. They can be partitioned into two distinct subsets, the 

a-Chemokine receptors which have sequence identities between 36-77%, and the p-Chemokine 

receptors, with sequence identities between 46-89%. Between the two families, average sequence 

identities are around 25%. In addition to the obvious relationship between many of these receptors 

hinted at by the above statistics, there are several important motifs that are conserved throughout 

either family.

A series of experiments has been able to demonstrate that, in general, it is the amino-terminal 

extracellular domain of a Chemokine receptor that determines specificity. The a-Chemokine re­

ceptors CXCR1 and CXCR2 and the P- Chemokine receptor CCR2B have been shown to obey 

this rule , although the P-Chemokine receptor CCR5 does not. Four a-Chemokine receptors are 

currently known, as well as eight P-Chemokine receptors. The majority of them bind two or 

more known Chemokines, although a few appear to be specific for a single molecule. Viral re­

ceptors, which bind both a- and P-Chemokines have been discovered, in addition to the Duffy 

Blood Group antigen, a “promiscuous” receptor that binds both a- and p-Chemokines, and is im­

plicated in malarial infection. The known Chemokine receptors and their ligand-binding profiles 

are summarised in Table 1.8.

Identification of the P-Chemokine receptor CCR5 as a coreceptor for macrophage-tropic HIV 

strains, and the a-Chemokine receptor CXCR4 (formerly fusin) as a coreceptor for T-cell-tropic 

variations of the virus gave research into Chemokine receptors a massive boost. Both of these re­

ceptors and their various ligands therefore became the subject of substantial speculation regarding 

their potential utility in anti-HIV therapies. More recent research has shown that other Chemokine 

receptors are also implicated in binding different strains of the virus72’73, with the result that 

Chemokine research has assumed a high profile within the research community. Primary HIV- 

1 infection affects only cells of macrophage lineage, and hence the primary isolates of HTV are 

known as macrophage-tropic. Disease progression is associated with a switch from macrophage- 

tropic to T-cell-tropic virus, and associated sequence differences in the gp 120 subunit of the viral 

envelope glycoprotein.

The macrophage-tropic stage is often considered a latent phase, as monocytes and macrophages 

support only low levels of virus replication. Infected individuals can remain in the macrophage- 

tropic state for many years, but progression to T-cell-tropic virus brings a dramatic increase in 

virus levels, as CD4+ T-lymphocytes support much higher levels of virus replication. Typically 

99% of viral particles present in infected individuals were produced by T-cells and just 1% by 

monocytes and macrophages74.

29



a-Chemokine receptors

Receptor Ligand

CXCR1

CXCR2

CXCR3

CXCR4

IL8

All a-Chemokines containing ELR motif 

YlP-10, mig 

SDF-1

P-Chemokine receptors

Receptor Ligand

CCR1

CCR2

CCR3

CCR4

CCR5

CCR6

CCR7

CCR8

CCR9

CCR10

MIP-la, RANTES, MCP-3, HCC-2 

MCP-1, MCP-2, MCP-3, MCP-4, MCP-5 

Eotaxin, Eotaxin-2, RANTES, MCP-3, MCP-4, HCC-2 

MIP-la, RANTES, TARC 

MIP-la, MIP-lp, RANTES 

Exodus 

Exodus-3 

1-309 
?

MCP-1, MCP-3 MCP-4, RANTES

Others

Receptor Description Ligand

CMV US28 

HSV ECRF3 

DBGA

Receptor encoded by Cytomegalovirus 

Receptor encoded by Herpes Saimiri virus 

Duffy Blood Group Antigen “promiscuous” receptor

MCP-1, RANTES, MIP-la, MIP-lp 

IL-8, gro-a, NAP-2 

Many a- and P-Chemokines

Table 1.8: Known Chemokine Receptors and their Ligands. 

Minor ligands are in italics
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The recent identification of CXCR4 as the coreceptor for HIV on T-tropic cell lines75, and 

of SDF-1 as the specific ligand for this receptor50, brings an opportunity to use Chemokines or 

Chemokine analogues to combat both macrophage-tropic and T-cell-tropic HIV strains. One of 

the most exciting recent studies in the field of HIV treatment has been the continuing progress in 

the use of triple combination therapy. This is a cocktail of three of the most effective known anti- 

HIV drugs, including a reverse transcriptase inhibitor and a protease inhibitor. The results suggest 

that this cocktail suppresses viremia to less than 1 % of the level before treatment74, but even con­

tinued administration does not eradicate the virus. One possibility is that the cocktail is efficiently 

controlling viral replication in T-cells, but is unable to do so in monocytes and macrophages. How­

ever, the p-Chemokine cocktail of M IP-la, MIP-lp and RANTES has already been shown to be 

able to control viral replication in these cell types71. It is possible that a blend of triple combina­

tion therapy and P-Chemokine therapy would be able to clear the virus from T-cells, monocytes 

and macrophages.

1.3.3.6 Importance ofFusin and CCR5.

A landmark paper71 in 1995 revealed that a cocktail of three p-Chemokines, M IP-la, MIP-lp 

and RANTES, was able to inhibit binding of the macrophage-tropic strains of the HIV virus to 

human cells. Subsequently, it was shown simultaneously by several research groups that a recep­

tor specific for those three Chemokines was responsible for the observations, and was the elusive 

coreceptor for macrophage-tropic HIV strains. This had a number of vital implications for those 

studying p-Chemokines and their receptors. Firstly, since the proteins themselves had been shown 

to be HIV-suppressants, a great deal of interest was generated in the potential use of native or 

modified proteins in inhibiting the HIV virus. Since the macrophage-tropic strain of HIV is re­

sponsible for the initial stages of infection, there was the potential to arrest the spread of the virus 

through the body before it managed to infiltrate any other cell-types.

Secondly, the receptor also became a viable target for possible mutagenesis and for the gen­

eration of inhibitors that would block the binding of the HIV virus without side effects. A CCR5 

mutation that was quite prevalent in Northern Europe was discovered to severely inhibit the ability 

of HIV-1 strains to infiltrate macrophages76. It was subsequently shown that the mutation in ques­

tion was a 32-base-pair deletion which resulted in a severely truncated CCR5 receptor lacking the 

final three transmembrane segments76. The truncated CCR5 receptor did not appear to be able to 

reach the cell surface77. Even more importantly, there appeared to be absolutely no detrimental 

effects on host fitness associated with this mutation. The CCR5 receptor was therefore proposed
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to be redundant as it had already been shown that each of its ligands bound to more than one other 

Chemokine receptor76.

Individuals heterozygous for this mutation (denoted CCR5/Accr5) were found to have partial 

resistance to HIV infection77’7879. Several studies reported examples of individuals homozygous 

for this mutation (denoted Accr5/Accr5) who had been exposed to the virus on numerous occasions 

but had remained uninfected. It was therefore proposed that normal CCR5 was a regulator of 

both HIV-1 infection and of disease progression, and that homozygous individuals were therefore 

highly protected from HIV-1 infection, and were perhaps even immune. Hopes of immunity were 

short-lived though, as it was subsequently shown that a handful of homozygous individuals have 

been infected by HIV-180. Careful investigation showed that macrophage-tropic strains are capable 

of using CCR2b and CCR3 as fusion cofactors, in addition to CCR5. While CCR5 is undoubtedly 

responsible for macrophage infection by the majority of HIV-1 strains, these other receptors might 

allow a small but significant degree of infection by minor HIV-1 strains, giving the virus an initial 

! foothold in the body. However, it is also possible that the infected homozygous individuals were
i

I directly exposed to T-cell-tropic virus, from which they had no protection. While this phenomenon

| is rare, it is thought to be a plausible explanation.
(
t

1.3.4 Known Chemokine Structures.

Given the recent surge of interest in the biochemistry of the Chemokines, it is no surprise that 

| there have been significant advances in the elucidation of Chemokine structure within the same

period. While the majority of the structures solved to date have been of a-Chemokines, this is 

due mainly to the fact that they were discovered earlier and have been studied more extensively. 

The p-Chemokine structures that are known have provided many surprises, and the continuing 

identification of many new and potentially different p-Chemokines promise more.

All of the a-Chemokines have proved to have highly similar structures so far, the only real 

difference being the aggregation state of the protein involved, with both dimers and tetramers 

known. In each case the dimers have the same topology, and the tetramers are built up in the same 

way, as described in greater detail in Section 4.1.1.

This is very much in contrast to the situation observed for the p-Chemokines, where the pres­

ence of two types of dimer and one type of tetramer is already known from just four structures, 

and where a second type of tetramer is reported in Section 4.2.2. These variations lend further 

weight to the suggestion that the P-Chemokine family as currently defined could be divided into at 

least two and possibly several more subfamilies. The a-Chemokines seem at present to comprise
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a single well-defined group of proteins.

1A  B iology and Biochemistry o f  M IP -1 a

As was explained in Section 1.3.3.1, the human form of M IP-la was the first p-Chemokine to be 

identified. The structural studies presented here relate to the murine protein, which was identified 

slightly later. As it was one of the earliest known p-Chemokines, there is a substantial amount of 

biochemical data available for the protein, but recent focus has tended to be placed on RANTES 

and MCP-1 rather than M IP-la, as the effects of those proteins seem to be more ubiquitous.

L4.1 Physical Properties.

Murine M IP-la is a fairly typical member of the p-Chemokine family, consisting of 69 amino 

acids and having a native molecular weight of 7883Da by Electrospray Mass Spectrometry81. 

Despite being a heparin-binding protein, it is overall slightly acidic, with a pi of 5.147. The 

aggregation state of the protein under physiological conditions is difficult to quantify, although 

several reports have suggested that, in common with the p-Chemokines M IP-lp82, y-IPlO4 0  and 

RANTES83, M IP-la forms large aggregates with mass of at least 100AD, which correspond to a 

potential dodecamer. This property, allied to the propensity that many Chemokines demonstrate 

to bind tightly and non-specifically to plastics and glycans, has made biochemical characterisation 

difficult. Nevertheless, M IP-la was shown to exist as an equilibrium mixture of several aggre­

gation states, including homogeneous monomer and tetramers84, in addition to the much larger 

aggregates. It was also shown that the active form of the protein was the monomer85, and that 

the aggregation phenomenon was completely reversible86. All this biochemical evidence pointed 

to a particularly interesting equilibrium between the various aggregation states, but also predicted 

that crystallographic analysis of the protein would be extremely difficult, due to inhomogeneity. 

In addition, any potential clinical use for the protein would be tempered by the probability that 

the aggregated states would have varying efficacy and tissue penetration, thereby making specific 

dosing difficult. Previous investigation of the associative properties of M IP-la had shown that the 

higher aggregation states could be disrupted to tetramers in high salt concentrations, suggesting 

that the interactions responsible for their formation were electrostatic86, whereas those responsible 

for formation of the tetramer were considerably more hydrophobic84.

1 Theoretical pi from the SWISS-PROT database
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1.4.2 Known Biological Activity.

As the outline of the biological activities of the Chemokines in Section 1.2.2 has already demon­

strated, each of these proteins has several types of activity on a variety of cells, and M IP-la has 

probably the broadest known activity spectrum.

It has recently become apparent that M IP-la has one property that is shared by very few of 

the closely related Chemokines. It was shown that the protein Stem Cell Inhibitory factor (SCI), 

a potent inhibitor of stem cell proliferation and differentiation, was identical to M IP-la22. It 

therefore occupies a pivotal role in the control of the stem cell compartment and in the regeneration 

of cells of hematopoietic lineage. Not only is M IP-la an extremely potent inhibitor, its effects are 

also reversible and specific, suggesting a potential clinical role as described in more detail below. 

While several other P-Chemokines are inhibitors of various progenitor cell types, only M IP-la 

inhibits the most primitive hematopoietic stem cells. The potential effects of M IP-la on leukocyte 

population are therefore substantially more important than the possible effects of proteins such as 

MPIF-1, Exodus and Eotaxin-2.

In addition to this novel activity, M IP-la displays a broad range of chemotactic properties. It 

has been shown to be chemotactic for monocytes, T-cells, basophils and eosinophils, in common 

with many other P-Chemokines. However, in general these effects are only apparent at concentra­

tions higher than required to obtain similar results from a variety of other Chemokines, suggesting 

that these chemotactic properties may represent minor biological activities. M IP-la also appears 

to have effects on mast cells, natural killer cells, dendrocytes, B-cells and neutrophils3’20-18, which 

are affected by few, if any, of the other p-Chemokines. However, the major activity of M IP-la 

actually appears to be stem cell inhibition22.

1.4.3 Receptor Interactions.

M IP-la has been shown to bind to and induce a signal from several of the known p-Chemokine 

receptors. The binding profile is similar to but not identical to those of MIP-lp and RANTES. 

These three proteins have all been shown to be ligands for the receptor CCR587’88’ 89>90, while 

M IP-la and RANTES, but not MIP-ip are also ligands for CCR12 8  (originally called the “MIP- 

la/RANTES receptor”) and CCR44. This suggests a greater similarity between MDP-la and 

RANTES, despite the greater sequence identity between M IP-la and MIP-lp, as was shown in 

Table 1.2. However, RANTES is also a ligand for the receptor CCR34  (“the Eotaxin receptor”) 

while M IP-la is not, so the profile of receptor interaction for these two proteins is also different.

34



1.4.4 SCI Activity o f MIP-la.

Bone marrow contains a population of immortal self-replicating “stem cells”, which are hematopoi­

etic progenitors. This means that these cells are the progenitors of all the body's leukocytes. Each 

stem cell has the potential to divide when it is active, or in cycle, producing another immortal stem 

cell and a leukocyte progenitor. The new stem cell will remain in the bone marrow and the leuko­

cyte progenitor will develop into a particular type of leukocyte as it is transported out of the bone 

marrow and becomes a part of the body's immune system. This is an ongoing process, continually 

refreshing and replenishing the cells of the immune system.

In normal bone marrow, around 10% of stem cells are in cycle, while the remainder are said to 

be quiescent, and are unable to proliferate. The administration of M IP-la inhibits the proliferation 

of the stem cells by forcing some of the active cells into the quiescent state. This provides a 

potential clinical use for M IP-la in chemotherapeutic treatments91, as outlined below.

The majority of chemotherapeutic agents are cytotoxic for normal cells as well as tumour 

cells, and therefore the administration of the agent kills a percentage of the patient's immune 

cells, including those stem cells which are in cycle. These are replenished by an increase in the 

percentage of active stem cells in bone marrow, leading to increased immune cell production.

Unfortunately, in these treatments it is generally necessary to administer serial doses of the 

chemotherapeutic agent over a period of weeks or months. This can lead to a catastrophic reduc­

tion in the numbers of available bone marrow stem cells in a short period of time, as the number 

of active stem cells will continue to rise, placing more and more of them at risk. Eventually, they 

will be unable to properly replenish the immune cells and the patient will become vulnerable to 

secondary infection.

M IP-la could be administered shortly before each dose of the chemotherapeutic agent, re­

ducing the number of stem cells in cycle at that particular time, and effectively protecting many 

of those cells which would otherwise have been killed. The deterioration of stem cell numbers 

would be less dramatic, and additionally there would be the potential to use higher doses of the 

chemotherapeutic agent with a resultant reduction in the number of doses required. M IP-la  has 

been shown to effectively inhibit stem cell proliferation both in vitro and in vivo in clinical tests 

on mice91.
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1.4.5 HTV-suppressant Activity o f MIP-la.

As was explained in Section 1.3.3.6 , M IP-la, MIP-lp and RANTES are the ligands for the p- 

Chemokine receptor CCR5, and a cocktail of all three proteins is able to inhibit the infiltration of 

human cells by the macrophage-tropic strain of the virus71. Each of these molecules is therefore 

potentially of great use in understanding the mechanism of HIV infection and in designing useful 

therapies. An understanding of the specific structural requirements for binding to the receptor 

CCR5 would allow the design of small molecules which could imitate the HIV-suppressant activ­

ities of the protein cocktail. Such an understanding could come only from the three-dimensional 

structure of the receptor itself, or from careful study of the three-dimensional structures of the three 

ligands, and comparison between them and related proteins which are unable to bind to CCR5.

The structure solution of CCR5, while possible, would be extremely difficult. Many previous 

attempts to discern the structures of seven-transmembrane helical GPCRs have met with failure.

I As well as the difficulties inherent in handling transmembrane proteins which have been removed

from their membranes, most of these proteins can only be expressed at very low levels, and sel- 

| dom can sufficient material be produced for structural investigation to be feasible. The structures
i

| of RANTES and MIP-lp, however, are known82  92, and several structures of M IP-la mutants

| are presented within this thesis. Taken together, these structures should provide a great deal of

| information regarding the regions of these molecules critical for HIV inhibition. Specifically,

| comparison with the recently reported structures of the non-CCR5 binding p-Chemokines MCP-1

| and MCP-3 should allow the definition of specific portions of the structures which interact with
j

certain receptors. Previous biochemical studies have identified regions of the MCP-1 molecule 

that are implicated in receptor-binding, and by comparison of the structures of M IP-la and MCP- 

1 it will be possible to determine which of these regions are similar in the two molecules and hence 

may be involved in receptor interactions. It may also be possible to discern a structural basis for 

the different receptor-binding profiles of the various p-Chemokines. These comparisons will be 

explored in greater detail in Section 5 after the M IP-la structures have been described.

1.5 Mutants o f  M IP-1 a

Since the aggregation of M IP-la had been shown to be mediated by electrostatic interactions, 

several mutants were prepared in which one or more charged residues had been neutralised86. The 

intention was to discover whether specific regions of the molecule, or even specific residues, were 

responsible for aggregation. The results indicated that there were several residues which did seem
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to be critical to the aggregation interactions.

1.5.1 Rationale behind the Mutants Produced.

It was noticed that the proteins M IP-la, MIP-lp and RANTES, in contrast to non-aggregating p- 

Chemokines, had several acidic residues close to their C-termini. It was therefore these residues, 

specifically Glu 60, Asp 64 and Glu 6 6 , which were the initial targets for neutralisation86. The 

effects of these neutralisations is shown in Table 1.9.

Mutant C-terminal sequence Aggregation State Mol. wt.

Wild type W V Q E Y I T D L E L N A Aggregate lOOfcD

1 W V Q E Y I T D L Q L N A Tetramer 32kD

2 W V Q E Y I T N L Q L N A Dimer 16kD

3 W V Q Q Y I T N L Q L N A Monomer SkD

5 7 58 5 9 60 61 62 63 64 65 66 67 68 69

Table 1.9: Murine MIP-la mutants

The most dramatic effect was the neutralisation of Glu 6 6 . This single mutation completely 

prevented formation of aggregated species larger than around 30kD.

1.5.2 Biological Activities o f Mutants.

While the biological activities of the mutants have not been studied to the same degree as those 

of the native protein, it has been shown that each of the mutants has an almost identical capacity 

to inhibit the proliferation of haemopoietic stem cells86. This is probably not unexpected given 

previous evidence that M IP-la is functional as a monomer and that it spontaneously disaggregates 

in solution as required. These mutants therefore provide a potential means of administering a 

specific M IP-la dose, which would be impossible using the native protein85. While the biological 

activity of the mutants is almost identical to that of the native protein in vitro, it is entirely possible 

that this might not be the case in vivo, due to differences in protein transport and storage86. The 

structures of the mutants may help to explain some of these observations and perhaps allow the 

design of other mutants with higher potency than native M IP-la.

1.5.3 Other Mutants.

The production of two other M IP-la mutants has been reported. The mutant BB1001093, which

involves neutralisation of Asp 26, resulted in a homogeneous dimer. This implied that residue Asp
37



26 was involved in dimer-dimer interactions to form tetramers, and was potentially involved in 

tetramer-tetramer interactions giving larger aggregates as well.

Another mutant, called Hepmut, involving neutralisation of Lys 44 and Arg 45, has been 

reported94. This particular variant also appeared to have a molecular weight corresponding to a 

dimer, although its elution peak in a gel filtration experiment was broad, suggesting the dimer is 

present in equilibrium with other higher aggregates. These two residues were also proposed to 

be implicated in the electrostatic aggregation process86, and the fact that a dimer results on their 

neutralisation supports that hypothesis. A second result of this neutralisation is that Hepmut does 

not bind heparin or any other proteoglycan to a significant extent. The patch of positive potential 

that residues Lys 44 and Arg 45 represent may therefore constitute the major heparin binding 

determinant in M IP-la. Since Hepmut was inactive on human monocytes, and was shown to 

be unable to bind to the human receptor CCR194, it is likely that this region is also involved in 

interaction between M IP-la and CCR1, and hence is important to the monocyte chemoattractant 

property of M IP-la.

It is possible to explain precisely why both of these mutants result in dimers by comparing 

them with the three mutant structures presented in Section 4.1.1.
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2. CRYSTALLISATION

The first stage in the structural determination of the M IP-la mutants was to obtain three-dimensional 

crystals suitable for diffraction from each of them. The growth of protein crystals is often diffi­

cult, and has proved to be a bottleneck in many previous protein structure determinations, but in 

the case of the M IP-la mutants it proved to be relatively straightforward. The theory of crystal 

generation and growth is outlined in Appendix B.

2 .1 Crystallisation: Materials and M ethods

Each of the mutants was supplied in standard Phosphate-Buffered Saline (PBS) and 30% Ace- 

tonitrile. The Acetonitrile was removed by blowing nitrogen gas across each of the samples. The 

original and resulting protein concentrations were as shown below:

Mutant Initial concentration (mg/ml) Final concentration (mg/ml)

PM3 0.47 0.77

PM2 0.51 0.71

PM1 0.42 0.59

Table 2.1: Initial and final protein concentrations

To prepare the samples for crystallisation trials, 1ml of each was added to 9ml of HPLC grade 

water and centrifuged at 5000g using a 3kD-cutofT Centricon microconcentrator, to give a ten-fold 

dilution of the PBS buffer. The volume of each sample was reduced to around 100 jA, to give a 

theoretical protein concentration of 4-7 mg ml-1 . However, the final concentrations after this stage 

were somewhat lower than this, as the mutants bound readily to the Centricon membrane. It was 

estimated from Ultraviolet absorption measurements (See Figures 2.1 and 2.2) that around 25% 

of each of the samples was lost in this way, giving final protein concentrations for crystallisation 

trials of 3-5 mg ml-1 .
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Figure 2.1: Dimeric mutant: Absorption Spectrum 1 

UV Absorption Spectrum at 280nm of original dimeric mutant sample prior to concentration. Estimated protein

concentration: 0.7 mg ml- 1 .
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Figure 2.2: D im eric mutant: Absorption Spectrum 2 

UV Absorption Spectrum at 280nm of concentrated sample of dimeric mutant. Sample diluted 50 times in order to 

remain within Absorbance limts of Spectrophotometer. Estimated protein concentration before 50-fold dilution:

5.1 mg ml- 1 .
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In order to determine the Molar Extinction Coefficient e  for the dimeric mutant, the Absorption 

Spectrum shown in Figure 2.1 was measured. Assuming the estimated protein concentration of 

0.7 mgml- 1  to be approximately correct for this sample, e was calculated using the Beer-Lambert 

law:

A = c e /

where A : Absorbance

c Protein concentration (mol I-1)

e Molar Extinction Coefficient (1 mol- 1  cm-1)

I : Path length of sample7 (cm)

This gave an estimated e of 1.98 1 mol- 1  cm-1 . This value was then used in conjunction with 

the second Absorption Spectrum (Figure 2.2) in order to determine the actual concentration of 

protein present in the second sample. The resulting figure, 3.8 mg ml-1 , was then compared with 

the estimated protein concentration of 5.1 mg ml-1 , in order to determine the proportion of the 

sample which was lost on concentration. Similar experiments were used to determine £ values for 

monomeric and tetrameric samples.
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2.1.1 A nalysis o f  Mutant M olecular Weight and Purity by SDS-PAGE

Molecular weights and purities o f the mutant samples were assessed by SDS-PAGE95. Reduced 

and non-reduced samples of each of the three mutants were analysed on a 12% SDS-PAGE gel 

(See Figure 2.3). The reduced samples of monomeric, dimeric and tetrameric mutants each had the 

same apparent molecular weight o f around 8kD, suggesting that the dimerisation and tetramerisa- 

tion interactions were disrupted by the high temperature and the presence o f SD S. The majority of  

each o f the the non-reduced samples also migrated as a band corresponding to 8kD, although there 

were faint bands at 15kD corresponding to the dimer and 30kD corresponding to the tetramer. The 

presence o f SDS in the gels themselves is likely to have disrupted the equilibrium between the 

aggregation states, to the extent that only a small amount o f the dimeric and tetrameric mutants 

remained in the aggregated state.

£ **-0

St A BC DE  F G —  C F  St

Figure 2.3: SDS-PAG E Gel 
B: PM 1 without DTT E: PM 1 with DTT

C: PM2 without DTT F: PM2 with DTT

D: PM3 without DTT G: PM3 with DTT
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2.1.2 Analysis o f Mutant Sample Monodispersity by Dynamic Light Scattering

It has been shown9 6 ’ 97 that the monodispersity of a crystallisation sample is often correlated to 

the likelihood that crystals will be obtained from it. Samples which are monodisperse, or contain 

a single species in solution, are more likely to provide crystals than samples which are polydis- 

perse. Polydispersity can reflect the presence of multiple protein isoforms or of differing protein 

aggregation states, as well as impurity within the solution.

The monodispersity of concentrated samples of each of the three mutants was investigated by 

Dynamic Light Scattering (DLS) using the Dynapro-801 instrument. Unfortunately, in the DLS 

technique, the required sample concentration is inversely proportional to the sample molecular 

weight. The monomeric and dimeric mutants could not be concentrated to a sufficient extent to al­

low readings to be obtained, but a sample of the tetrameric mutant at 0.7 mg ml- 1  gave satisfactory 

results. The solution showed two main components, one with an estimated molecular weight of 

around 30kD, corresponding closely to the predicted molecular weight of 31.2AD, the other with 

an estimated molecular weight of more than lOOOkD, which suggested slight contamination of 

the sample. Previous spectroscopic evidence suggested that the molecular weight of the M IP-la 

aggregate was between 100 and 250&D86’85-18. However, there was no evidence for any species in 

the range 36-200&D, suggesting that the tetrameric mutant did not exist in a state of equilibrium 

with higher aggregation states. The estimated molecular weights from five separate runs ranged 

from 24kD to 36/cD, as the low protein concentration made calibration of the instrument difficult 

and gave an unstable sample baseline.

2.2 Crystallisation o f  M onomeric M utant

The monomeric mutant was crystallised from the “Magic 50” sparse matrix screen9 8  -99. Of the 48 

conditions tried, 6  gave crystals, and 3 of these gave large, single, trigonal bipyramidal crystals. 

The other conditions gave stacks of thin rhombus-shaped plates or fine needles. The conditions 

which gave single crystals all contained Mg2+, were buffered at mildly acidic pH and had a fairly 

high concentration of a mild precipitant. The successful screening conditions are summarised in 

Table 2 .2 /

A second crystallisation screen, consisting of 60 conditions, gave a further 4 conditions under

1 It was later discovered that the HEPES buffer used in this initial crystallisation screen had been prepared incorrectly. 

The pH of the standard HEPES solution from which all conditions containing HEPES were prepared was 5.7, which is 

well outside the useful buffer range for this compound. When conditions 12 and 23 were repeated using Citrate (CIT) 

buffer pH 5.7 instead of HEPES, crystals of the same size and morphology were obtained.
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Condition Salt (0.2M) Buffer (0.1M) Precipitant Result

9 NH4 AC CIT pH 5.6 30% PEG 4000 Irregular plates (0.3mm) and 

Long needles (0.7mm)

1 2 MgCl2 HEPES pH 5.7 30% IPR Large trigonal bipyramids

2 1 MgAc CAC pH 6.5 30% MPD Sharp trigonal bipyramids (0.2mm)

23 MgCl2 HEPES pH 5.7 30% PEG 200 trigonal bipyramids (0 .2 mm)

26 NH4 AC CIT pH 5.6 30% MPD Small sharp, irregular crystals

34 none NaAc pH 4.6 2.0M NaForm Stacks of round-edged plates

Table 2.2: Results o f initial crystallisation trials for monomeric mutant

which the monomeric mutant could be crystallised (Shown in Table 2.3). Each of these gave small 

cuboidal crystals, with a morphology that appeared different to the crystals obtained previously.

Condition Salt (2M) Buffer (0.1 M) Precipitant Result

N6 none MES pH 6.1 1.IMAMS Sharp cuboids (0.1mm)

N7 none MES pH 6.1 1.4MAMS Small cuboids (0.05mm)

N59 NaCl PIPES pH 6 . 8 10% PEG 3400 Small cuboids (0.1mm)

N60 NaCl PIPES pH 6 . 8 30% PEG 3400 Cuboids & small trigonal bipyramids

Table 2.3: Results o f further crystallisation trials for monomeric mutant

Diffraction tests on the three distinct crystal morphologies obtained for this mutant showed 

the trigonal bipyramidal crystals to be the most promising. Small crystals taken directly from 

the initial screen showed diffraction to 3.5A. Finer crystallisation screens around those initial 

conditions yielded large single crystals up to 0.5mm in each dimension. These showed diffraction 

to 2.5A at Station 9.5 of the Synchrotron Radiation Source at Daresbury Laboratory (DL9.5). 

The diffraction limit was further improved by cryocooling, and a dataset extending to 2.0A was 

collected at 100 K at Station 7.2 of the Synchrotron Radiation Source (DL7.2).

2.3 Crystallisation o f  Dimeric M utant

The dimeric mutant was also crystallised from the “Magic 50” crystallisation screen98" .  Large 

single crystals were obtained from 7 separate conditions, and crystals or microcrystals were ob­

served in 24 of the 48 wells. The largest of these were trigonal bipyramids (See Figure 2.4) 

similar to those observed for the monomeric mutant, although rhombus-shaped plates and some 

irregularly-shaped crystals were also present. Similar morphologies were observed for the smaller 

crystals, although small cuboids and trigonal prisms were present in some wells. The successful



screening conditions are summarised in Table 2.4.

Figure 2.4: Trigonal Bipyramidal crystal o f dim eric mutant

The two conditions which gave large single trigonal bipyramidal crystals were similar to each 

other and resembled those which gave similar crystals for the monomeric mutant. Once again the 

buffer was mildly acidic and the precipitant was around 30% o f MPD, IPR or PEG 200. These 

three precipitants are mild and are often considered interchangeable. The only significant differ­

ence between the conditions which gave crystals o f the monomeric mutant and the corresponding 

conditions for the dimeric mutant was the presence o f M gC h in the former and CaC^ in the lat­

ter. A series o f screens around conditions 1 and 14 for the dimeric mutant showed that CaCh  

was not a prerequisite for crystallisation, and that replacing CaCl2 with M gC^ or one o f several 

other divalent metal chlorides resulted in similar crystals. A  similar screen for the monomeric

mutant showed that M gCh could be replaced by CaCh to give larger crystals with sharper faces
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Condition Salt (0.2M) Buffer (0.1M) Precipitant Result

1 CaCl2 NaAc pH 4.6 30% MPD Sharp trigonal bipyramids (0.2mm)

7 none CAC pH 6 . 8 1.4M NaAc Large plates (0.2mm x 0.2mm)

8 NaCIT CAC pH 6 . 8 30% IPR Rhombus-shaped plates (0.1mm)

14 CaCl2 HEPES pH 7.5 28% PEG 200 Trigonal bipyramids (0.3mm)

18 MgAc CAC pH 6 . 8 20% PEG 8000 Large plates (0.3mm x 0.1mm)

19 NH4 AC Tris pH 8.5 30% IPR Irregular single crystals (0.1mm)

2 0 AMS NaAc pH 4.6 25% PEG 4000 Small irregular crystals (0.05mm)

Table 2.4: Results o f crystallisation trials for dimeric mutant

and edges.

Diffraction tests demonstrated diffraction to 3.1 A  for the trigonal bipyramidal dimer crystals, 

and to 3.0A for the largest of the plate crystals. Further improvement of the crystallisation param­

eters resulted in trigonal bipyramidal crystals which showed diffraction to 2.3A. The diffraction 

limit was improved to 1 .8 A at DL7.2 by cryocooling.

2.4 Crystallisation o f  Tetrameric M utant

Obtaining initial crystallisation conditions for the tetrameric mutant proved considerably more dif­

ficult than for the other two. Several different sparse matrix crystallisation screens were attempted, 

but only 3 of the 228 conditions tried gave promising results. The successful screening conditions 

are summarised in Table 2.5.

Condition Salt Buffer (0.1M) Precipitant Result

19 0.2M NH4 AC Tris pH 8.5 30% IPR Large hexagonal plates (0.5mm)

N54 none none 2.0M NaCIT pH 6.4 Small rods (0.1mm)

M67 0.05M CaCl2 Tris pH 8.75 5% PEG 8000 Orthorhombic disphenoid (0.4mm)

Table 2.5: Results o f crystallisation trials for tetrameric mutant

The crystals from conditions 19 and N54 were tested with Coomassie Blue. Protein crystals, 

but not salt crystals, are generally stained blue by this compound, although the test is far from 

definitive. The crystal from well N54 gave a positive result, whereas the crystal from 19 appeared 

not to stain at all. Crystals from condition N54, which grew in around a week, were then tested 

and found to diffract to around 8 A. A crystal from condition 19, which took around two weeks to 

grow, was also tested and no diffraction was observed.

Crystals from condition M67 grew in 24 hours, but began to crack shortly afterwards and
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shattered within 2-3 days o f being set up. This is characteristic o f very swift equilibration between 

well and drop, which can probably be attributed to the presence o f PEG 8000, which is a powerful 

dehydrating agent. Therefore a finer crystallisation screen was tried around condition M67, in 

order to find conditions where the rate o f equilibration was slower and the crystals would be likely 

to be more stable. A condition was found which gave large single crystals in around 24 hours. 

These were stable for several weeks, but did eventually crack in a similar way to those obtained 

from the initial screen. Crystals from this condition were used for subsequent diffraction tests, 

and the crystallisation parameters were improved over som e time, eventually giving large single 

crystals in around a week which survived indefinitely. These crystals were orthorhombic in habit 

(See Figure 2.5), and showed diffraction to 2.4A in house on a Siem ens Area detector, and to 1.8A 

at DL9.5. The resolution limit was improved to 1.5A on finding suitable cryocooling conditions.
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Figure 2.5: Orthorhombic crystal form o f tetrameric mutant

In addition, crystals were occasionally observed to be hollow, which is again characteristic of  

crystal growth being too rapid. However, standard techniques for slowing down the rate at which 

new m olecules can add to a growing crystal, such as the addition o f glycerol to the drop, or dilution 

of the drop in order to slow down the rate o f equilibration, did not appear to improve this particular 

problem. It was eventually solved by increasing the protein concentration from around 2 m g m l-1 

to 5 m g m l- 1 . Protein concentration, although not particularly high for crystallisation o f any of 

the three mutants, did appear to be one o f the most important parameters.

The addition o f glycerol to certain crystallisation trials did have some unexpected effects. A
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second crystal form o f the tetrameric mutant (See Figure 2.6) was observed to grow alongside 

the previously observed orthorhombic crystals when glycerol was included in the crystallisation 

mixture. This form was monoclinic and showed diffraction to at least 2.0A in house on a DIP 2020 

image plate.

Figure 2.6: M onoclinic crystal form o f  tetrameric mutant

Unlike the other two mutants, the crystals o f the tetramer could not be reproduced by swapping 

M gC h or some other divalent metal chloride for the CaC^. In all crystallisation trials which 

produced orthorhombic or monoclinic crystals, CaCl2 was present, suggesting that the Ca2+ ion 

might have some role in mediating crystal contacts between tetramers and might therefore be 

necessary for crystallisation.
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2.5 Final Crystallisation Conditions

The final crystallisation conditions used for each of the mutants is given below in Table 2.6. All 

crystals were grown using the hanging-drop vapour diffusion method. Crystallisation drops were 

prepared by mixing lfA of protein solution with \{A of the appropriate well solution. Once final 

conditions were determined, larger crystals were grown from larger drops composed of the same 

proportions of protein and well solutions. Crystals were grown at 19°C.

Mutant Salt Buffer (0.1M) Precipitant Protein Cone. Morphology

Monomer none none 2.0M AMS 1 mg/ml Cuboid

Monomer 0.2M CaCl2 Acetate pH 4.35 30% PEG 200 1 mg/ml Hex. Bipy.

Dimer 0.2M CaCl2 Acetate pH 4.35 30% PEG 200 2mg/ml Hex. Bipy.

o-Tetramer 0.2M CaCl2 Tris pH 7.4 8% PEG 6000 3mg/ml Orthorhombic disphenoid

m-Tetramer 0.2M CaCl2 Tris pH 7.4 8% PEG 6000 & 10% Glycerol 5mg/ml Trapezoid

Table 2.6: Final Crystallisation Conditions for each mutant

2.6 Discussion

A crystal was obtained from the dimeric mutant which suprisingly had very similar physical 

appearance to the orthorhombic crystals grown from the tetrameric mutant. A diffraction test 

showed that this crystal had an identical unit cell and spacegroup to the orthorhombic crystals of 

the tetrameric mutant. This result implied that interaction between dimeric mutants could form 

tetramers under certain conditions, and seemed at odds with the gel filtration evidence which pre­

dicted this was highly unlikely86. The implications of this observation are discussed in more detail 

in Section 4.1.1, where the structures of the dimeric and tetrameric mutants are compared.

The condition from which this crystal was obtained was 0.2M MgC^, 0.1M HEPES pH 5.7, 

1% PEG 200. As mentioned above, the HEPES buffer used in many of these conditions was at a 

pH outwith the useful range for this compound. The crystal took over a year to appear, and the 

drop from which it grew was almost dry by the time it eventually appeared. Therefore it is likely 

that the final conditions within the drop were very different to the original ones. In particular, the 

protein concentration at the time the crystal began to grow would have been very much higher than 

was used in any of the crystallisation trials.

This condition also contained MgCk, not CaCl2 . This would seem to contradict the other

evidence suggesting a requirement for CaC^ in formation of crystals of the tetrameric mutant.

However, Mg2+ is similar to Ca2+ in many of its physical properties, and should be able to replace
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it in some cases, despite having a smaller ionic radius and preference for higher coordination 

states100. It is possible that tetramer-tetramer interaction via Ca2+ is considerably more favourable 

than similar interactions involving other ions, but that the unfavourability of those interactions can 

be overcome by the presence of a sufficiently high concentration of protein.

Given that the three mutants are generated simply by neutralisation of charged residues, the pH 

at which the various crystals are obtained is also of interest. Since the pKa of lysine is 10.0 and that 

of arginine is 1 2 .0 , residues of these types are always protonated and positively charged in each of 

the mutant crystals. Glutamic acid and aspartic acid have pK^ values of around 4.4. Therefore the 

monomeric and dimeric crystals contain both protonated and unprotonated acid residues. While 

approximately half of these residues will be charged at this pH, it is impossible to calculate the 

precise precentage of Glu and Asp residues that will be charged as the pKa value of a particular 

residue also depends on temperature, ionic strength and local chemical environment. Glutamic 

and aspartic acids in the two crystal forms of the tetrameric mutant will always be unprotonated, 

and therefore charged, whereas only some of those in the crystals of monomer or dimer will be 

charged. While at first glance this might hint that some of the interactions involved in formation 

of the various types of crystal are pH-dependant, this is not true for the monomeric and dimeric 

mutants, as crystals of identical symmetry and morphology have been obtained at much higher 

pH values. The tetramer may require a reasonably high pH value to ensure that the glutamic and 

aspartic acids are charged, which would imply electrostatic contacts involving residues of that type 

being involved in crystal contacts.

It is interesting that each of the mutants can be crystallised using CaCl2 , but that only the 

tetrameric mutant seems to absolutely require it for crystals to form. A series of trials on the 

monomeric, dimeric and orthorhombic tetrameric crystal forms tested the ability of various other 

substances, divalent metal chlorides for the most part, to replace CaCl2 . Crystals were obtained 

from monomeric and dimeric mutants using MgCl2 , S1CI2 , MnCl2 , NiCl2 , CdCh, C0 CI2  and 

Lu2 (SC>4 )3 . However, none of these compounds resulted in crystals of the tetrameric mutant.

The original intention, when growing crystals in which Ca2+ ions had been substituted, was to 

discover whether Ca2+ had been incorporated into those crystals. This would allow the substitution 

of Ca2+ by heavier metal ions, such as Lu3+, and allow phase information to be derived using 

either the anomalous signal from the Lu3+, or from the isomorphous differences between Ca2+- 

containing and Lu3+-containing crystals. However, the range of ions which seemed to be effective 

in crystallisation of monomeric and dimeric mutants suggested that the Ca2+ was unlikely to be 

incorporated into those crystals in a well-ordered fashion. Comparison of data obtained from
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crystals grown in CaCl2 , S1O 2 and Lu2 (S0 4 ) 3  via difference Patterson maps proved that Sr2+ 

and L u3+ were not present at specific points within the crystals, and that Ca2+ therefore was also 

unlikely to be bound at specific locations.

Conversely, the tetrameric mutant apparently depended upon the presence of Ca2+ for crys­

tallisation, which suggested that Ca2+ might well have been incorporated into these crystals in a 

specific fashion. The fact that it proved impossible to replace those ions in cocrystallisation exper­

iments, despite using other ions of very similar charge and ionic radius, suggested that a specific 

interaction involving Ca2+ might be involved in mediating tetramer-tetramer contacts within the 

crystal. While all of the ions which were tried were similar to Ca2+, there were inevitable dif­

ferences in both charge and ionic radii which could easily account for the observations. It was 

later discovered that Ca2+ ions were indeed present in the crystals, as discussed in more detail in 

Section 5.2

A later experiment which appeared to give a promising result was a conventional Lu2 (S0 4 ) 3  

soak of the orthorhombic tetramer crystals. Data were collected from such a soaked crystal and 

after comparison with native data the soaked crystals appeared to represent a single-site Lu3+ 

derivative. This experiment is outlined and the results described in Section 5.2.2.
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3. STRUCTURE SOLUTION

This chapter describes the structure solution process for each of the M IP-la mutants. No attempt 

has been made to discuss most aspects of crystallographic theory, as the subject has been dealt with 

extremely well in a variety of excellent textbooks100-101-102-103. However, the Molecular Replace­

ment technique is outlined in Appendix C, as some problems encountered using this particular 

method are discussed in Section 3.8. Although certain programs are mentioned and referenced ex­

plicitly, the majority of the programs used during the structure determination were from the CCP4 

suite104.

The great similarity between the monomers of both a- and (3- Chemokines is apparent in 

their crystal and NMR structures16. Therefore it was intended to solve the structures of the MIP- 

l a  mutants by Molecular Replacement105, using as a search model one or more of the existing 

Chemokine structures106-107-108-92-82-109-110. Unfortunately, for reasons discussed later in this 

chapter, this proved impossible. Initial phase information was therefore obtained by the Heavy 

Atom Isomorphous Replacement method; more specifically the Single Isomorphous Replacement 

with Anomalous Scattering (SIRAS) technique. Once one of the mutants had been solved by 

SIRAS, the resulting model was used to find Molecular Replacement solutions for the others. 

This chapter explains in greater detail the collection and processing of all diffraction data. It 

also investigates the initial failure of the Molecular Replacement technique and shows how the 

structures of the various mutants were eventually solved.

3.1 Data Collection and Processing

Native data were collected using a variety of sources and several types of detector. Relevant 

information for datasets used in the structure solution of each of the mutants is contained in the 

tables below. The following abbreviations are used:

•  Temp. : Temperature at which data were collected. At 100 K, cryoprotectant was 15% 

Glycerol plus the equivalent drop solution.

•  Osc. Rng. : Width of each diffraction image in degrees.
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•  R merge • Defined as

• Comp. : Overall completeness of data.

•  Mult. : Overall multiplicity of data.

• N. Ref. : Total number of unique reflections measured.

_  |/(A)-/(%|
k j  /(/>); ’

(where 1(h) is the mean intensity)

• DL7.2 : Daresbury Laboratory Synchrotron Radiation Source Station 7.2

•  (o ) : Orthorhombic crystal form.

(m ): Monoclinic crystal form.

Sample Detector Location Resolution Temp. Osc. Rng. Comp. Mult. N. Ref. Emerge

Native DIP 2020 St Andrews 20.0 - 2.9A 298K 2.0 93.1% 1.5 3195 6.4%

UO2 AC soak Siemens AD Glasgow 28.0 - 4.0A 298K 0.2 93.4% 1.5 1218 6.6%

Native MAR 18cm DL7.2 20.0 - 2.2A 100K 1.5 80.4% 2.0 5728 5.4%

Table 3.1: Statistics for datasets collected from crystals o f monomeric mutant 

All data were collected at Cu K« wavelength (1.5418A), with the exception of DL7.2 data (1.448A).

Sample Detector Location Resolution Temp. Osc. Rng. Comp. Mult. N. Ref. R-merge

Native DIP 2020 St Andrews 20.0-2.85A 298K 2.0 99.6% 3.0 3425 5.7%

Native Mar 18cm DL7.2 16.6 - 2.24A 100K 1.0 94.0% 4.9 6640 5.7%

Table 3.2: Statistics for datasets collected from crystals o f dimeric mutant 

All data were collected at Cu K« wavelength (1.5418A), with the exception of DL7.2 data (1.448A).

Sample Detector Location Resolution Temp. Osc. Rng. Comp. Mult. N. Ref. Emerge

Native (0 ) DIP 2020 Glasgow 20.0 - 2.0A 100K 2.0 94.9% 3.5 10168 6.6%

Native (0 ) Mar 30cm DL7.2 20.0- 1.6A 100K 1.5 85.7% 3.0 17182 4.8%

Lu2 (S0 4 > 3  soak (0 ) DIP 2020 Glasgow 30.0 - 3.0A 100K 2.0 85.2% 6.0 3172 8.9%

Native(m) DIP 2020 Glasgow 30.0 - 2.05A 100K 1.0 87.8% 1.5 21339 6.7%

Table 3.3: Statistics for datasets collected from crystals o f tetrameric mutant 

All data were collected at Cu K« wavelength (1.5418A), with the exception of DL7.2 data (1.448A).

Area detector data were processed and scaled using the programs XDS and XSCALE111-112.

Image plate data were processed using both DENZO11 3 - 1 14 and MOSFLM115.
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3.2 Merging and Scaling o f Data

As a consequence of the strong diffraction observed from crystals of each of the three mutants, and 

also to the long exposure times necessary to collect high resolution data, low resolution spots were 

often saturated on synchrotron Image Plate data. Low resolution data were therefore collected 

separately in several instances, and later merged with the high resolution observations.

Where more than one dataset had to be combined, every measurement from each dataset was 

input to scaling. All data processed with DENZO and XDS were combined using SCALEPACK113. 

Where one of the datasets to be merged had been processed with MOSFLM, AGROVATA was 

used for scaling. Data were reduced using the program TRUNCATE116. Indexing and space- 

group determination for XDS data used the program IDXREF111. For other datasets, spacegroup 

was determined using DENZO. Data processed with MOSFLM were indexed with IDXREF. Data 

processed with DENZO were also indexed with DENZO.

The spacegroup and unit cell parameters obtained for each of the mutants is given in Table 3.4. 

The following abbreviations are used:

•  Z : Number of molecules (M IP-la monomers) per asymmetric unit.

• Solvent: Solvent contents of unit cell, as estimated by the method of Matthews117.

Mutant Spacegroup Z Solvent a b c a P Y

Monomer P3j 21 1 75.62% 59.780 59.780 66.580 90.0 90.0 120.0
Dimer P3]21 1 74.05% 59.101 59.101 64.002 90.0 90.0 120.0

Tetramer C222] 2 47.81% 52.205 89.873 63.178 90.0 90.0 90.0

Tetramer P2i 4 54.76% 52.431 62.003 53.800 90.0 102.12 90.0

Table 3.4: Unit Cell parameters and contents for all crystal forms o f M IP -la  mutants

3.3 Initial Molecular Replacement Attempts

It was expected that it would be possible to find Molecular Replacement (MR) solutions for each 

of the mutants using the coordinates of one of the Chemokines whose structure was known.

M IP-lp was initially used as a search model since there was a high degree of sequence homol­

ogy between it and M IP-la. Despite trying the whole protein, fragments of it and even a M IP-la 

homology model based on it as search models, it proved impossible to solve the MR using MIP-

1(3. The other CC-Chemokine structure known at the time, that of RANTES, gave similar results.
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This failure seems most likely to be due to the problems associated with the use of NMR struc­

tures as search models in solving crystal structures118. Two other (3-Chemokine structures, those 

of MCP-1 and MCP-3, were published after the Molecular Replacement experiments were per­

formed. As described in Sections 3.6 and 3.7, the dimeric and tetrameric M IP-la mutants could 

both be phased by MR using the structure of either of the MCP-1 crystal forms as a search model.

3.4 Derivatisation

Once it became apparent that Molecular Replacement was unlikely to provide a way to solve the 

mutant structures, attempts were made to generate heavy atom derivatives in order to obtain initial 

phase information using the Isomorphous Replacement technique. Initially, this involved the use 

of selected heavy atom compounds during crystallisation, as previously described. Although this 

was generally unsuccessful, crystals of the monomeric mutant were obtained from crystallisation 

conditions containing two heavy atom compounds; Strontium Chloride and Lutetium Sulphate. 

Datasets were collected using crystals from both conditions, but comparison with existing native 

datasets via difference Patterson maps indicated that heavy atoms were not present in either. At­

tempts to grow crystals of the monomeric mutant from conditions containing Platinum, Mercury 

and Uranium compounds were unsuccessful.

As it appeared unlikely that heavy atoms would be able to be incorporated during crystallisa­

tion, several conventional heavy atom soaks were performed. Millimolar quantities of the heavy 

atom compound were added to the appropriate cryoprotectant solution, so that heavy atom and 

cryoprotectant entered the crystals concurrently. Platinum and Mercury compounds were again 

the first to be tried, but both proved ultimately unsuccessful. Crystals of the monomeric mutant 

generally survived for only a matter of minutes in soaks containing less than millimolar concen­

trations of Ammonium Tetrachloroplatinate. While this was encouraging in that it implied that the 

Pt compound was entering the crystals and binding to the protein, even crystals soaked for around 

ten seconds showed no observable diffraction. Reduction of the heavy atom concentration did not 

alleviate the problem.

Crystals soaked in Mercury Iodide, by contrast, did not appear to be adversely affected by the 

soaking condition, and showed diffraction comparable to that observed from native crystals. How­

ever, comparison with native diffraction data proved that these crystals had not been derivatised.

A successful heavy atom soak was eventually performed using a combination of Uranium- 

containing compounds, as described below in Section 3.5.

When it became apparent that crystals of the tetrameric mutant might contain Ca2+ ions bound
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at specific positions, these crystals were soaked with Lii2 (S0 4 )3 , in an attempt to specifically 

replace the Ca2+ ions with Lu3+ ions. The results of this experiment are described in Section 

5.2.2.

3.5 Solution o f Monomeric Mutant

The monomeric mutant was solved by soaking crystals in a solution containing ImM each of 

U0 2 (Ac)2 , K^UC^Fs) and Mg(Ac)2 . Patterson and difference Fourier maps showed that the 

resulting derivative had a single U O ^  ion bound close to the C-terminus of the protein. Uranyl 

compounds have successfully been used to derivatise proteins in several other cases100, but the 

UOl+ ion has a reputation for binding to many sites per molecule, often in a non-specific fashion. 

However, the presence of a low concentration of Mg2+ ions in a solution is often sufficient to 

disrupt these weak, non-specific interactions, leaving bound only those Uranyl ions involved in 

strong specific interactions with the protein119. From a crystallographic viewpoint, the result is a 

much cleaner derivative, unlikely to have minor binding sites in addition to the major ones, and 

therefore considerably easier to interpret.

 > X
■v

Figure 3.1: Difference Patterson: Harker Section z = j  
The six largest peaks on this section are due to Uranium—̂Uranium vectors.

Data from a Uranyl-soaked crystal were collected at room temperature and extended to 4.0A.
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Comparison with a room temperature native dataset via a difference Patterson map (See Figure 3.1) 

clearly showed several promising peaks on each of the Harker sections. The Uranium atom was 

located using the program SHELX120, and difference Fourier maps phased using the atomic po­

sition showed that there were no other sites. (Maximum Likelihood) Refinement of the phasing 

using the program MLPHARE121 suggested that there was a detectable anomalous signal from 

the Uranium atom, allowing the anomalous occupancy of the derivative to also be refined. Upon 

convergence of the phase refinement, the techniques of solvent flattening and histogram matching 

were applied using the density modification program DM122, thus improving the quality of the 

electron density maps. This made a dramatic improvement to the quality of the protein electron 

density maps, as would be expected for crystals of high solvent content. At this stage the hand of 

the solution had still to be determined, but it was obvious after solvent flattening and examining 

both possible maps that only the correct one contained a meaningful signal. Attempts to cross­

phase the HgLt and Lu2 (S0 4 > 3  datasets using the Uranyl phases showed that neither of the other 

two datasets was in fact a derivative.

Inspection of the solvent-flattened maps enabled visual identification of secondary structure 

elements in the density, and allowed the positioning of the main-chain atoms of the M IP-lp NMR 

structure within the density. This gave an initial model for the monomeric mutant, although the 

density was continuous and of sufficient quality that the main-chain atoms could easily have been 

traced without the model. Even at 4.0A, many side-chains could be clearly distinguished. In 

addition, it was clear from the fit between the MIP-lp model and the electron density maps that 

while M IP-la and MIP-ip overall were very similar, there were several regions in which the 

molecules were clearly different. These regions were presumably responsible for the failure to 

solve M IP-la by MR using MIP-lp as a search model. Fitting of the initial M IP-la model to the 

electron density map and subsequent refinement of the model are described in Section 3.9.

3.6 Solution o f Dimeric Mutant

The dimeric mutant was solved by Molecular Replacement using the initial main-chain trace

of the monomeric mutant as a search model. A rotation function, calculated using the program

AMoRe123, showed a single clear solution (See Figure 3.2). A translation search, and subsequent

rigid-body refinement provided a single solution which was significantly better than any other

both in terms of correlation coefficient and R-factor124 (See Figures 3.3, 3.4, 3.5 and 3.6). The

search model was transformed by the orientation matrix output from AMoRe using the program

LSQKAB125, and was used to calculate initial electron density maps. Fitting of this initial model
58



into these maps and the refinement of the structure o f the dimeric mutant is described in Section  

3.9. All MR calculations were performed using data o f resolution 10 - 4.0A, with the integration 

sphere radius automatically determined by the program.
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Figure 3.2: Rotation function solutions for dim eric mutant

3 .7 Solution o f  Tetrameric M utant

Unlike the monomeric and dimeric mutants, in the case o f both tetrameric crystal forms there was 

non-crystallographic symmetry (NCS). In other words, the crystallographic asymmetric unit con­

tained more than one M IP -la  monomer. In the case o f the orthorhombic crystal form, there was 

two-fold non-crystallographic symmetry, and the tetramer was therefore formed by the intersection 

o f the NCS axis with a crystallographic two-fold axis. In the m onoclinic crystal form, there were 

four monomers within the asymmetric unit. Therefore, in order to form the same tetramer as seen 

in the orthorhombic crystal form, there must be two NCS two-fold axes, one which corresponds to 

the orthorhombic NCS two-fold and one which corresponds to the orthorhombic crystallographic 

two-fold. Although the presence o f non-crystallographic symmetry can be extremely beneficial at 

certain stages o f the structure solution process, it can be a hindrance at the Molecular Replacement

stage. Effectively the presence o f two-fold NCS represents a dilution o f the useful signal relative
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to the noise level. In the case of four-fold NCS, the situation becomes even more difficult.

The orthorhombic crystal form of the tetrameric mutant was also solved by Molecular Re­

placement using the AMoRe program, with the initial main-chain trace of the monomeric mutant 

as a search model (The solutions are not shown graphically in this case). In the rotation function, 

two solutions clearly stood out from the rest. These were seen to be non-crystallographically re­

lated, as described above. A translation function search for two molecules, followed by rigid-body 

refinement, gave an outstandingly clear MR solution for two molecules. These two monomer 

molecules formed half of the M IP-la tetramer, the other half being related by a crystallographic 

two-fold rotation. Calculation of a self-rotation function, also using the program AMoRe, in ad­

dition to inspection of the MR solution, showed the two monomer solutions to be related by a 

non-crystallographic rotation. Fitting of the initial model into electron density maps and refine­

ment of the orthorhombic form of the tetrameric mutant is described in Section 3.9.

The monoclinic form of the tetrameric mutant was also solved using AMoRe and with the 

initial main-chain trace of the monomeric mutant as a search model. In this case there were four 

independent monomers in the asymmetric unit, so the AMoRe search was for four molecules. The 

four correct solutions appeared as second, third, ninth and sixty-fifth highest solutions, respec­

tively, in the rotation function. None of the correct rotation function peaks were visible above the 

noise level, but in the case of the first, second and third MR solutions, there was a clear distinction 

between the correct solution and the incorrect solutions after a translation search. In the case of 

the fourth MR solution, even a translation search did not distinguish between the correct solution 

and the incorrect ones, and it was not until rigid-body fitting was performed that this solution also 

became apparent. Fitting of the initial model into electron density maps and refinement of this 

crystal form of the tetrameric mutant is described in Section 3.9.

3.8 Molecular Replacement: W hy did it not work?

Initial MR attempts used the structures of M IP-lp and RANTES as search models, but were com­

pletely unsuccessful. Once it became clear that using the entire RANTES or M IP-ip molecule 

would not result in success, various truncated versions of both molecules were tried, again without 

success. While it is clear from the MIP-lp and RANTES structures that there are regions in which 

even very similar p-Chemokines differ, the core structure, and particularly the secondary structure 

elements, were expected to be very similar. It was presumed therefore that the major reason for 

the lack of success using MR was the difficulty in identifying which parts of these two molecules

would be inappropriate for inclusion in the search model. Given the comparisons between the
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M IP-la structures and those of the other (3-Chemokines presented in Section 4.3.2, it was pos­

sible to identify portions of the MIP-lp and RANTES molecules with the greatest similarity to 

M IP-la, and to use only those parts in MR calculations. The intention was to solve the MIP- 

l a  structure again, and to try to obtain some explanation for the apparent unsuitability of NMR 

structures as MR search models.

3.8.1 Molecular Replacement using NMR Search Models

The areas of the NMR search models identified as being highly similar to the correct, refined 

M IP-la coordinates were effectively the areas of defined secondary structure, and as can be seen 

in Table 4.2, the RMS deviations between M IP-la and the equivalent portions of the MIP-lp and 

RANTES molecules were just 1.175A and 0.995A respectively. These figures were sufficiently 

low as to imply that the truncated versions of both MIP-lp and RANTES could successfully be 

used to solve MDP-la by MR.

However, when the experiment was performed with AMoRe, neither search model provided 

any solutions. Although both models contained considerably fewer atoms than the respective 

unabbreviated proteins, their contents were sufficient that the correct solution should have been 

visible above the noise level. Solutions were obtained from both crystal forms of MCP-1 using 

truncated search models containing identical numbers of residues. It is therefore unclear precisely 

why the MR could not be solved using the M IP-lp and RANTES models.

3.8.2 Molecular Replacement using MCP-1

As part of the investigation of the failure of MIP-lp and RANTES as MR search models, an 

attempt was made to solve the M IP-la structure using both crystal forms of the Chemokine MCP- 

1 as search models. Although this protein has significantly lower sequence identity relative to 

M IP-la than the two NMR models, it was possible to solve the MR using either crystal form.

Perhaps surprisingly, a clear solution was obtained using the entire p-form of MCP-1, while

the entire /-form gave no result. However, when the two MCP models were truncated in exactly the

same way as the NMR models had been, both gave very clear MR solutions. As shown in Table 4.2,

the RMS deviations between the refined dimeric M IP-la and p-MCP-1 structures was 1.615A and

that between M IP-la and /-MCP-1 was 1.596A. This in itself reflects the unpredictability of the

technique, as based on these figures these two models would be expected to behave identically.

What is also surprising is that the RMS deviation for the /-form is almost identical to that observed

for the entire RANTES molecule. In addition, on truncation of both MCP-1 forms to leave just
63



secondary structure elements, the observed RMS deviations of 0.899A (p-form) and 0.749A (i- 

form) are again similar to those observed for RANTES and MIP-lp after similar treatment. The 

overall implication seems to be that there is an inherent problem with the use of NMR search 

models in MR, and that use of a crystal structure as a search model is to be encouraged, even when 

NMR structures of higher homology are available.

3.8.3 Fundamental Differences between NMR and X-ray Structures

Several previous studies1 1 8 ’ 126 have noted that NMR protein structures make notoriously poor 

search models in MR. Despite apparently high coordinate similarity between the solved M IP-la 

structure and both search models, the NMR structures perhaps reflect a lower effective resolution 

and a greater “breathability”, or internal flexibility.

Table 4.2 shows that both MCP-1 structures, which were successfully used in MR, had only 

slightly lower RMS deviations from M IP-la for the same areas of defined secondary structure. 

This suggests that the significantly different MR results for NMR and X-ray search models were 

caused by extremely subtle differences between those models. While this is probably partly at­

tributable to the greater internal flexibility of the NMR models, it may equally be a reflection of 

the innate and certainly unnatural inflexibility of proteins within crystals.

For this reason, it may be unreasonable to expect an NMR structure, which is generally an 

averaged structure based on many individual solutions, to be highly similar to a crystal structure. 

The averaged NMR structure inherently reflects the much greater flexibility of the protein in solu­

tion relative to the protein within a crystal. The use of each individual NMR solution as a separate 

search model may well be more likely to provide a solution, although it would obviously consume 

considerably more time.

The individual NMR solutions represent a population distributed around the average NMR 

structure. Clearly some of them will be considerably more similar to the crystal structure than the 

average NMR structure is. Therefore, while the average NMR structure represents a state which 

can be considered flexible, and the crystal structure represents a state which can be considered 

inflexible, individual solutions within the population of NMR structures are likely to resemble the 

inflexible crystal structure, purely as there is a finite probability that an individual NMR structure 

would have such a conformation in a randomly distributed population.

One aspect of the MR attempts using RANTES and MIP-lp that is likely to reduce the chances 

of obtaining a solution is the lack of temperature factors for NMR models. This necessitates the 

use of uniform temperature factors over the entire search model, which is clearly unrealistic. It has
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been proposed that the use of pseudo-temperature factors118 (pseudo B-factors) can overcome this 

problem in certain cases. Pseudo-temperature factors can be derived from an NMR structure if 

each of the original NMR structures used to generate the “averaged” NMR structure is available. 

Every atom in each of the original structures can be assigned a temperature factor based on its 

deviation from the corresponding average position. This results in a set of search models in which 

there is a fairly realistic distribution of temperature factors, and has been shown to be crucial in 

the solution of some proteins using NMR search models118-127. It is possible that application of 

this particular technique to the case of M IP-la would lead to solution of the MR using an NMR 

model.

It can also be argued that in certain cases the calculation of pseudo-temperature factors is 

analogous to truncation of the search model, and may therefore make little real difference the 

Patterson function calculated from the model. In NMR structures, as in crystal structures, the 

secondary structure elements and the core are the most well-defined regions, and would therefore 

have low pseudo-B factors. Poorly ordered loops are generally even more flexible in NMR struc­

tures than in crystal structures, and would therefore tend to have high pseudo-B factors. As this 

temperature factor effectively determines the weight a particular atom has in the MR calculation, 

loops with very high values will effectively make no contribution to the calculation. While ad­

mittedly the pseudo-B calculation provides a more realistic model of the less ordered regions of 

an NMR structure, if there is a sharp demarcation between ordered and unordered regions it is 

unlikely to be useful. In addition, it fails to address the more fundamental problem - that even the 

most well-ordered regions of an NMR solution seem to have considerably more conformational 

freedom than the same regions in a crystal structure. Clearly there is no easy way to deal with 

this problem. However, it is possible that the combination of the pseudo-B technique with other 

methods such as determination of sulphur distribution from native anomalous Pattersons may lead 

to more NMR models being successfully used in Molecular Replacement.

3.9 Refinem ent

Each of the three mutants was refined using the program REFMAC128, where possible using the 

Free R-factor1 2 9 - 13 0  in order to validate the significance of individual refinement steps. As the 

monomeric mutant was refined using data to 2.9A, there were not sufficient reflections to allow 

the use of Free R validation. However, for the dimeric mutant and for both crystal forms of the 

tetrameric mutant, around 5% of reflections were selected as a Free R set and were excluded from
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refinement. Final refinement parameters are shown in Table 3.5.

Mutant Final

R/

Final

R/ree

Resolution R merge Completeness

Low High Overall High res. Overall High res.

Monomer 

Dimer 

Tetramer o 
Tetramer m

19.41%

22.52%

23.15%

20.23%

NA

27.75%

26.69%

26.11%

20.4A

27.1 A

26.1 A 

29.4A

2.90A

2.30A

1.65A

2.05A

6.4%

5.7%

6.4%

6.7%

22.7%

42.2%

43.6%

25.5%

98.6%

94.0%

91.6%

87.8%

99.4%

99.5%

74.1%

86.8%

Table 3.5: Refinement statistics for MIP-la mutants

Abbreviations used in Table 3.5 are as follows:

Rmerge is defined as
d _  V V Hfyj I 
mrs‘ 2*zyiwj

(where 7(h) is the mean intensity)

R f  or reliability index is defined as

„  YMxmm-Wcmw 
s  i * p c \ m ) \

and the Free R-factor (Rf ree) is defined as

„  _^\\Fo{h)\-\Fc(h)\\
! r e e  ~  2WIHWI

where F0(h) and Fc(h) are observed and calculated structure factors, respectively. X  represents the “Free R set” 

excluded from refinement calculations.

Rmerge and Completeness values are given over the entire resolution range (“Overall”) and for the 

highest resolution bin used in refinement (“High res.”).

In each case, a bulk-solvent correction was performed using the program XPLOR131. Bulk- 

solvent terms were output from XPLOR as partial structure factors, which were then included in 

the REFMAC refinement calculations. Hydrogen atom contributions to the calculated structure 

factors were included in a similar way, partial structure factors being calculated using the CCP4 

programs HGEN and SFALL.

Refinement used all available data, as REFMAC assigns weights to individual reflections based 

on their standard deviations, and is therefore considerably more robust than other refinement pro­

grams when including weak data. For instance, although the Rmerge in the highest resolution shell
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of the orthorhombic tetramer dataset was over 4 0 % , it was not necessary to cut back the resolution 

to the point where Rmerge was around 25% , as is conventionally done in other refinement programs. 

However, in the case of the dimeric mutant, where the highest resolution shells had Rmerge values 

of over 70% , the resolution had to be cut back to 2 .3 A , where the Rmerge was 50% .

Data were also scaled anisotropically during refinement, and this correction in particular was 

observed to considerably improve Rf ree relative to R/ .  Minimisation was by the conjugate di­

rection method, using the “-log-likelihood” residual. Geometric restraints were calculated using 

PROTIN. At the end of each refinement cycle, maps were calculated from the coefficients out­

put by REFMAC, using the CCP4 program FFT. The maps were analysed using the program 

ARP132, in order to assign solvent molecule positions. Initially, a 4.5a cutoff was used to deter­

mine whether electron density represented solvent molecules, but this was lowered to 3a as the 

refinement proceeded and the model improved. Individual refinement stages were interspersed 

with manual rebuilding using the program O133.



4. CHEMOKINE STRUCTURES

4 .1 Descriptions o f  other Chemokine Structures.

4.1.1 Introduction

To date the structures of several Chemokines of both the a  and p subfamilies are known. No 

structures have yet been obtained for proteins of the proposed y  or 8  subfamilies. While there are 

similarities between the a- and p-Chemokines, analysis of their relative structures provides one 

way of differentiating between them.

The first structure of an a-Chemokine was obtained in 1989, and the first p-Chemokine struc­

ture in 1993. There are now several examples of each type, but there have been many surprises 

along the way. Given the vast recent expansion in the amount of relevant sequence informa­

tion available to the scientific community, and the consequent increase in the rate at which new 

Chemokines and even new Chemokine families are being identified, it seems likely that the future 

will hold many more surprises.

4.1.2 a-Chemokine Structures.

Given the high degree of sequence similarity throughout the Chemokine family, it was expected 

that their monomers, dimers and higher aggregates would all have the same topology. Hence when 

the first Chemokine structure, of bovine Platelet Factor 4, was solved in 1989107, it was expected 

that the remaining proteins could all be modelled on it. That structure revealed the interactions that 

gave rise to both dimer and tetramer, and showed how the simple monomer building-blocks could 

be arranged to form the rather beautiful tetramer. The monomer structure consisted of somewhat 

less a-helix and more p-sheet than had been predicted for the human form of the protein. Overall 

there was 18% helix and 29% sheet in the bPF4 structure.

This structure also hinted at some of the difficulties experienced by many investigators attempt­

ing structural analyses of Chemokines. From initial crystallisation13 4 and diffraction to 2 .8 A, it 

took nearly five years to solve the structure, and then only at 3.0A. The first 23 residues were 

missing, and the final R-factor was 28.0%.

68



Nevertheless, the secondary structure o f the protein was revealed. The basic topology was a 

three-stranded antiparallel (3-sheet, arranged in a Greek key, surmounted by a C-terminal a-helix, 

as shown in Figure 4.1. From the N-terminus, the first 23 residues were unobserved; this was 

presumed to be due to proteolytic processing and disorder. The CXC m otif was involved in twin 

disulphides which held together the secondary structure elements. Extending from the disulphides 

towards the C-terminus, there was a large open loop turning into strand I, a hairpin loop into strand 

II, a reverse turn into strand III and finally an 11-residue a-helix.

bPF4

Figure 4.1: M onom er structures o f  IL-8 and bPF4.

The interactions which gave rise to the dimer primarily involved strand I and the final few  

residues o f the helix. The dimer packing allowed the three-stranded (3-sheets o f two monomers 

to com e together and form an extended six-stranded (3-sheet. This resulted in the helix from  

one monomer overhanging the (3-sheet o f another, making stabilising interactions. The tetramer 

was then formed by packing two o f these dimers back to back, stabilised by salt-bridges and 

electrostatic interactions.

The solution structure o f a second a-Chem okine, Interleukin-8, was next to be described135 136. 

IL-8 was known to be dimeric, and as expected the dimer was formed in exactly the same way as 

the PF4 dimer. The crystal structure o f Interleukin-8 was solved shortly afterwards137 by M olec­
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ular Replacement using the IL8  solution structure as a search model. While the crystal structure 

was broadly similar to the solution structure, there were some specific differences, most notably 

in the monomer-monomer interaction and the distance between the two helices. It is notable that 

even several years later there are still very few proteins that have been solved by MR from an 

NMR model.

More recently, the structures of several other a-Chemokines have been described. The crystal 

structure of the human homologue of bovine PF4 was solved to a resolution of 2.4A in 1994108. 

The structure was similar to that of &PF4, with four monomers forming a tetramer with pseudo-222 

symmetry.

The solution structure of Melanoma Growth Stimulating Activity (gro-MGSA) was also pub­

lished in 1994106. MGS A had been expected to form a dimer similar to that of IL-8 , and that was 

exactly what was observed. MGSA was found to be more similar to the crystal structure of IL- 8  

than to any of the other a-Chemokine structures.

The most recently described a-Chemokine structure was that of NAP-2138 which was solved 

to 1.9A by X-ray crystallography. This particular molecule was actually a mutant in which Met 

6  had been replaced by Leu in order to enable expression. The structure was a tetramer with 

identical topology to the PF4 structures, and had RMS deviations of 1-2A when compared to the 

other known a-Chemokine structures. It is assumed that PBP, the precursor of NAP-2, and its 

other truncation products, CTAP-IH and p-TG, will have essentially the same structure.

4.1.3 ^-Chemokine Structures.

While the first P-Chemokine structure was not solved until 1995, a model of the MCP-1 (MCAF) 

structure, based on the IL- 8  solution structure, was produced in 1991139. It predicted that MCP- 

1 in particular, and all p-Chemokines by extrapolation, would adopt the monomer, dimer and 

tetramer architecture seen for the a-Chemokines.

It was therefore something of a surprise when the first actual p-Chemokine structure, the so­

lution structure of the MIP-lp, revealed a completely new method of dimerisation82. While the 

M IP-lp monomer, as expected, showed the same secondary structure elements that were present 

in the a-Chemokines, the dimer interface was the N-terminal region. The resulting dimer was 

elongated and rod-like, in contrast to the compact and approximately globular IL- 8  dimer (See 

Figure 4.2). The M IP-la structures were expected to be more similar to the M IP-lp structure, 

on the basis of sequence identities. The differences between the expected and observed structures 

were rationalised by comparing the relevant regions of the a- and p-Chemokine sequences. Strand



I o f MIP-1|3 contains hydrophilic residues that would be buried in a hydrophobic pocket on forma­

tion o f the IL-8 dimer, but remain exposed on formation o f the MIP-1(3 dimer. The orientation o f  

the N-terminal peptide is also very different in these two monomers, making it easier for MIP-1(3 

but very difficult for IL-8 to dimerise in this way.

M IP -16 IL-8

Figure 4.2: Dimer structures o f IL-8 and MIP-1(3.

Following this result, there was an expectation, based on sequence comparison, that the (3-

Chemokines would all form this type o f dimer. To date most known structures have done so, but

there have been further surprises as well. The solution structure o f RANTES92 in 1995 showed the

MIP-1 (3-type dimer and supported this theory. RANTES has also been crystallised and preliminary

diffraction data collected140, but the crystal structure is yet to be reported. The first crystal structure

o f a (3-Chemokine to be reported was that o f M C P-1109 which was solved in two crystal forms. In

each o f these an MCP-1 dimer similar to that o f M IP-1 (5 was observed, but in one form a dimer

similar to that o f IL-8 could also be seen. MCP-1 actually formed a tetramer, with one o f the

nominal dimers o f  the a  type and the other o f the (3 type (See Figure 4.3). The a-Chem okine type

dimer did not have a continuous six-stranded (3-sheet however, as the distance between the two
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MCP-1 molecules was around 2A greater than in IL-8.

Figure 4.3: MCP-1 tetramer. The two distinct MIP-1 [3-type dim ers are coloured differently.

Another (3-Chemokine, exhibiting another distinct type o f tertiary structure, has also been 

solved. M onocyte Chemoattractant Protein-3 (MCP-3) was predicted to be unable to form dimers 

or higher aggregates on the basis o f NM R spectroscopy and analytical ultracentrifugation141. 

However, MCP-3 was subsequently shown to form the a-type dimer, similar to that observed for 

MCP-1 when the full solution structure was determined110.
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4. 1.4 Structures o f other Chemokine Types.

To date, no y- or 8 -Chemokine structures have been published. Sequence comparison with both 

a- and p-Chemokines suggests that these molecules are likely to have very similar monomer 

structures. However there will be interesting differences as a consequence of the different Cysteine 

distributions. In particular, the structure of a y-Chemokine should indicate the importance of the 

CysII-CysIV disulphide in maintaining the integrity of the representative Chemokine monomer.

4.2 Descriptions o f MIP-1 a  Structures.

The various mutants and crystal forms have provided a total of eight distinct M IP-la monomer 

structures. Comparison within this group has shown that the differences between these structures 

are small and can generally be explained in terms of differences in crystal packing and crystal 

contacts. Comparison of each of the M IP-la structures with the coordinates of other members of 

the p-Chemokine family highlights the regions of the proteins which vary most markedly. There­

fore these regions are probably responsible for the differences in receptor affinity and biological 

activity.

4.2.1 Structures o f Monomeric and Dimeric Mutants.

Given the identical Spacegroup and near identical Unit Cells observed for crystals of the monomeric 

and dimeric mutants, it was expected that there would be little or no difference between these two 

structures. This fact is borne out by the RMS deviation between the two structures of just 0.345A 

for all residues. Since the dimer structure was refined at slightly higher resolution, only it will be 

described here, although the monomer structure can be considered to be essentially identical but 

less well defined.

The monomer structure is entirely as expected, showing the characteristic three-stranded Greek 

Key and single a-helix motif of all other Chemokines (See Figure 4.4). The short fourth strand 

of P-sheet near the N-terminus, expected to be involved in dimerisation and also observed in the 

structures of M IP-lp and RANTES, is also present.

As in both of those proteins, the first few residues at the N-terminus of M IP-la are highly 

flexible and are not seen in the crystals due to disorder. This is unfortunate as these residues are 

almost certainly important if not crucial for many of the biological functions ascribed to MIP- 

la . The N-terminus is present from residue Gly 4 on, stabilised at this point by a hydrogen 

bond from Asp 6  O to Cys 50 N. This interaction is conserved in MIP-lp, RANTES and MCP-1,
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Figure 4.4: Secondary structure elements of MIP-la.

74



and is probably very important in maintaining the integrity of this dimer. The next few residues 

form a short P-strand, and are extremely well defined in the density. Temperature factors for this 

part of the molecule are lower than average, indicating that this region is effectively buried in 

the structure. The P-strand interacts with an identical region of a symmetry-related molecule in 

antiparallel fashion, forming four hydrogen bonds. The same H-bonding pattern is also seen in 

all the p-Chemokine structures in which the dimer is formed by this method (See Figure 4.5). 

The four H-bonds are: Thr A9 N to Cys B i l l  O; Thr A9 O to Cys B i l l  N; Cys A ll  N to Thr 

B109 O; Cys A ll  O to Thr B109 N. Cys 11 makes a disulphide bond with Cys 34 and Cys 12 

makes a disulphide with Cys 51. Both have the left-handed spiral conformation, characterised 

by dihedral angles7 %1=%/1=-60°, X2 =X2 =X3 =' ^ 0- As previously reported82, the conformation of 

the first disulphide differs between a  and p Chemokines, and partially accounts for some of the 

differences in spatial distribution of secondary structure elements between the two families.

After the disulphide pair, a long unstructured loop extends to the first p-strand. Phe 13, at 

the start of the loop, inserts its side-chain into a hydrophobic pocket and therefore appears to be 

important in stabilising the dimer. Tyr 15 appears to be involved in stabilising the loop, both 

by hydrogen-bonding through OH to Pro 37 O, and by acting as a spacer between the loop and 

strands II and III. Both Arg 17 and Lys 18 are solvent-exposed, and Arg 17 in particular is poorly 

defined in the density. lie 19 also helps to stabilise the loop, this time where it packs against the 

hydrophobic core of the monomer (See Figure 4.8). The side-chain of Arg 21 adopts an unusual 

conformation, curving back round on itself to facilitate hydrogen-bonds to Asn 64 OD2 and to 

lie 24 O, and appears to be important in anchoring the helix onto the rest of the molecule (See 

Figure 4.6). The two residues at the apex of the loop, Asn 22 and Phe 23, are the least well- 

defined, mainly due to their high temperature factors. Residues Arg 21 to Phe 23 actually form a 

single turn of 3io helix. The dihedral angles are distorted slightly from the ideal values, but the 

characteristic hydrogen bonds from n —► n+3 are present for Pro 20 O —>• Phe 23 N and Arg 21 O 

-> lie 24 N.

The first p-strand begins at Asp 26 and extends as far as Thr 30 (See Figure 4.7), making 

five hydrogen-bonds to strand n. In addition to these, strand n, which runs from Gly 38 to Thr 

1 These are defined as follows

.  X3:CP-Sy-Sy -CP'.

•  x2 and%2 : Ca - Cp - Sy- Sy.

•  xi and Xi : N - Ca - Cp - Sy.
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Figure 4.5: Hydrogen bonding pattern at the dimerisation interface.
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Figure 4.6: Arg 21 H-bonding to Asn 64 and to (3-strand I.
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43, makes a further five hydrogen bonds across to strand III, which runs from Arg 47 to Ala 51. 

Strand III makes hydrogen bonds to the long loop between the cysteine pair and strand I, but none 

of these interactions are standard for antiparallel (3-sheet.

Figure 4.7: H ydrogen-bonding pattern in the antiparallel |3-sheet.

The a-helix  runs from Thr 56 to the C-terminus at Ala 69. Both a -  and (3-Chemokines tend 

to have amphipathic a-helices, and M IP -la  is no exception. The side o f the helix which packs 

against the (3-sheet is composed almost entirely o f hydrophobic residues, including Trp 57, Asn 

68, Tyr 61, Leu 65, Ala 69, lie  62 and Val 58, whereas the solvent-exposed face o f the helix 

consists mainly o f  residues which are hydrophilic, charged, or which would be charged in the 

native protein. Many of these hydrophobic residues are incorporated in the hydrophobic core of  

the monomer, with Trp 57 and Tyr 61 in particular interacting with other aromatics to hold the 

helix in place (See Figure 4.8).

The turn between strands I and II is anchored by the disulphide bond between Cys 11 and Cys

34 at the centre o f the turn. The regions immediately to either side o f Cys 34 can therefore be

considered as separate entities. Residues Ser 31 to Cys 34 form a classic type I tight turn142 with a

hydrogen bond between Ser 3 1 0  and Cys 34 N. On the other side o f the Cys residue, the presence
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Figure 4.8: Arom atic residues in the hydrophobic core o f M IP -la .
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of Pro 37 prevents any hydrogen bonding.

The turn between strands II and HI is another classic type I turn. This region of the molecule 

is not well-defined, and has a high average temperature factor. In addition to the hydrogen bond 

between Thr 43 O and Asn 46 N which defines the turn, there is a main-chain-side-chain hydrogen 

bond between 43 Thr OG and Arg 47 N, which is almost a continuation of the (3-sheet hydrogen- 

bonding between strands II and m .

The region between strand HI and the helix also contains a type I tight turn between Asp 52 

and Glu 55, with a hydrogen bond between Asp 52 O and Glu 55 N as well as interactions between 

the Glu 52 side chain and main chain atoms. The density for this loop is fairly good, although the 

side chain of Lys 54 is not visible; it is highly solvent-exposed and presumably is very flexible.

The final refined dimer model, at 2.3A resolution, is missing 3 N-terminal residues and con­

tains 49 solvent molecules. The final refined monomer model, at 2.9A resolution, is missing 4 

N-terminal residues and contains 17 solvent molecules. The average temperature factor for all 

atoms is 42A2 for the monomer and 60A2 for the dimer.

Overall then, the structure is almost exactly as would have been predicted from the structures 

of MIP-1(3 and RANTES. The greatest differences between M IP-la and these molecules seems 

to be in the N-terminal region and in the loop anchored by Cys 34 between strands I and n. This 

is further evidence to support the proposal that this surface of the molecule must be involved in 

some way in receptor interaction. The a-helix is longest in the M IP-la dimer, running all the way 

to the C-terminus, but this is possibly due to restraint of the last few residues by crystal contacts. 

In solution, these residues may be much more mobile.

4.2.2 Structure o f Orthorhombic Form o f Tetrameric Mutant

In the orthorhombic crystal form of the tetrameric mutant, the asymmetric unit contains two inde­

pendent monomers, which will be denoted C222ia and C222\b. The dimer thus formed is related 

to another dimer by a crystallographic two-fold rotation in order to form the tetramer. It was 

initially difficult to identify the physiologically relevant tetramer, although eventual comparison 

with the monoclinic crystal form allowed unambiguous identification of the correct tetramer (See 

Figure 4.9. This process is discussed in more detail in Section 5.1.

As expected, the structures of each of the two independent monomers within the tetramer 

were very similar to the monomeric and dimeric mutant structures. The RMS deviations between 

the secondary structure elements of the dimer structure and those of C222ia and C222i b were 

0.376A and 0.218A respectively. However, comparison of the entire structures gave higher figures
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Figure 4.9: Structure o f the M IP -la  tetramer.
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of 0.444A and 0.592A (See Table 4.1). This suggested that the loop regions of both C2 2 2 i<s and 

C222i& were somewhat different to the corresponding regions in the dimer structure. While this 

could be construed as perhaps an artefact of the higher resolution of the tetramer structure, the 

comparison of C222ia and C222\b in the same way (See Table 4.1) proved that there are definite 

differences between the two independent monomers in the orthorhombic tetramer structure.

Each of the monomers exhibits the expected motif of three-stranded Greek-key and C-terminal 

a-helix. The three-residue p-strand on the N-terminal peptide is particularly well defined in both 

monomers. One difference between the monomers observed in the orthorhombic tetramer struc­

ture and those seen in the monomer and dimer structures was the presence of a very large electron 

density peak sitting on a crystallographic two-fold axis. The surrounding density suggested that 

whatever was responsible for the peak was being coordinated octahedrally by two crystallographi- 

cally related molecules. The equatorial positions were occupied by main-chain carbonyls from the 

loop containing Cys 34, from two independent monomers. Solvent molecules occupied the other 

coordination positions. Consideration of the contents of the crystallisation mixture suggested that 

only a Calcium ion could have resulted in such a peak. The interatomic distances were consistent 

with a Ca2+ ion, and so one was included in the model and eventually refined to a reasonable 

temperature factor, consistent with those of its ligands and the protein atoms in the vicinity. The 

octahedral coordination of the Calcium ion is shown in Figure 4.10.

It is clear from inspection of the electron density maps obtained from this mutant that portions 

of this molecule are extremely well resolved, even for such a high resolution structure. In particu­

lar, the residues immediately surrounding the Calcium ion, as shown in Figures 4.10 and 4.11, have 

very low temperature factors, and consequently the quality of the density around these residues is 

very high. Comparing this region of the tetramer to the the corresponding residues in the monomer 

and dimer structures, it is clear that the loop is considerably more ordered in the tetramer. This 

can be attributed purely to the presence of the Ca2+ ion and the resulting crystal contacts.

Although the dimer observed within the orthorhombic tetramer crystals appeared to be exactly 

the same as that seen in both monomer and dimer, there were some slight differences. The angle 

between the two monomers was slightly different. This was probably a consequence of the pres­

ence of the Ca2+ ion in the tetramer, resulting in a modified conformation for the loop containing 

Cys 34. Any motion of this residue would be correlated to a motion of Cys 11, and would there­

fore result in movement of the entire N-terminal peptide relative to the remainder of the molecule. 

A different orientation for this part of the molecule would necessitate the angle between the two 

monomers being different.

82



Figure 4.10: E lection density surrounding the Calcium ion.
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Figure 4.11: Calcium coordination: V iew  down crystallographic tw o-fold axis.
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The striking difference in the strength of diffraction obtained from dimeric and tetrameric crys­

tals reflected the differing solvent contents in the two crystals. While the dimeric crystals showed 

diffraction to around 2 .0 A, and had a fairly high solvent content of about 75%, the tetrameric crys­

tals contained just 48% solvent. Since there are more crystal contacts in the tetrameric structure, 

the loop regions and exposed residues tend to be much better defined. For example, the basic 

loop between strands II and EH is solvent-exposed and flexible in the dimeric structure, and conse­

quently there is little density for the side chains. In the tetramer structure, this region is stabilised 

both by the dimer-dimer interaction that gives rise to the tetramer, and also by crystal contacts. 

The positions of the important side-chains of Lys 44, Arg 45 and Arg 47 are therefore well defined 

in the tetramer structure.

The refined model, at 1.65A resolution, is missing 6  residues from each of the independent 

monomers, 3 from each N-terminus and 3 from each C-terminus. Two residues, Gin 22 from 

C222i<a, and Leu 42 from C222\b, are modelled in dual conformations. The model contains a 

single Calcium ion, and 87 solvent molecules. The average temperature factor in the model is 

4 lA 2.

4.2.3 Structure o f Monoclinic Form o f Tetrameric Mutant.

In the monoclinic crystal form of the tetrameric M IP-la mutant, there were four independent 

monomers in the asymmetric unit. These will henceforth be referred to as P2i<z, P2ib, P2\c and 

P2id. The tetrameric unit observed in this crystal form had identical topology to that seen in 

the orthorhombic form. As predicted, there was non-crystallographic symmetry, consisting of 

two independent non-crystallographic two-fold axes. A self-rotation function calculated using 

AMoRe124 clearly showed that one of these axes was almost parallel to the c-axis of the crystal, 

but the signal for the second did not appear above the noise level.

It was immediately apparent from examination of the electron density for this crystal form 

that the pattern of crystal contacts for each of the monomers was quite different, and therefore 

there were certain regions in which there were significant differences between the monomers. For 

example, while the N-terminal regions of monomers P2\b and P2ic sat in the central cavity of the 

tetramer, those of monomers P2\a and P2\d were close to the edge of the tetramer and were con­

sequently much more solvent-exposed. Similarly, while the C-terminal peptides of the P2i a and 

P2\b monomers followed a  helical geometry, the P2ic monomer was a-helical only to residue Gin 

6 6 . The remaining residues adopted a non-helical conformation in order to facilitate the binding 

of a Ca2+ ion by Asp 64 and the carbonyl oxygen of Leu 67. The C-terminal region of monomer
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P2 i<i pointed directly into a large solvent channel, as a result of which there was no interpretable 

density beyond residue Asp 64. In fact monomer P2\d was very highly solvent-exposed, and 

consequently most of the loop regions of this particular molecule appear to be disordered.

In addition to the Ca2+ ion bound to the helix of monomer P2ic, another was observed bound 

on the loop containing Cys 34. This particular ion was involved in an interaction that was es­

sentially identical to that observed in the orthorhombic crystal form, mediating contacts between 

two crystallographically-related molecules. Close inspection of the Ca2+ site on the P2ic helix 

showed that it too mediated crystal contacts between two independent molecules. In addition to 

these interactions, there was only one other tetramer-tetramer contact within the crystals. There­

fore the situation is particularly interesting, with two thirds of all crystal contacts being mediated 

by Calcium ions.

4.3 Comparison o f  Chemokine Structures.

4.3.1 Comparison o f the MIP-1 a  Monomers.

In order to assess and quantify the similarity between the eight independent M IP-la monomers, 

the RMS deviations between each possible pair were measured. The deviations were defined on 

the basis of the overlap between the regions of the molecules with defined secondary structure/. 

The RMS deviations for entire molecules are also given in each case. These results are shown in 

Table 4.1

These results show that the M IP-la monomers are generally very similar. The analysis of 

the deviations between secondary structure elements indicates that each of them is essentially 

identical in those regions. However, there appear to be some slightly larger differences when the 

entire structure is considered.

This analysis could potentially indicate whether particular residues or loops change conforma­

tion on formation of the tetramer. The loop containing Arg 45 and Arg 47 is the obvious candidate. 

Monomers P2\a and P2i<i, in which this loop interacts with Glu 6 6  on another monomer, would 

be expected to have higher RMS deviations compared to the dimeric mutant than P2\b and P2ic, 

in which this loop is solvent exposed. However, it is the RMS deviations of P2i b and P2ic relative 

to the dimeric mutant which are higher. It is also possible that this is a result of motion of the 

C-terminal helix upon tetramerisation, but that seems quite unlikely. Considering the tetramer as

1 Secondary structure is defined as follows: P4  - Thr 7 —> Cys 12, Pi - Asp 26 -»• Thr 30, P2  - Gly 38 —» Thr 43, P3 

- Arg 47 —> Ala 51, a  - Thr 56 -¥  Leu 65. See also Figure 4.4



Molecule 1 Molecule 2 RMSD (Secondary structure) RMSD (all)

Dimer Monomer 0.274A 0.345A
Dimer C222ia 0.376A 0.444A
Dimer C222i b 0.218A 0.592A
Dimer P2ja 0.223A 0.446A

Dimer P2 ib 0.266A 0.729A
Dimer P2i c 0.204A 1.076A
Dimer P2i d 0.460A 0.607A

C222\a C122ib 0.431 A 0.756A
C222]a Yl\a 0.359A 0.496A
C222ia P2i b 0.672A 0.914A
C222ia P2i c 0.473A 0.854A

C222ia P2j d 0.418A 0.521k
C llh b P2i a 0.405A 0.155k
C222ib P2| b 0.256A 0.372A
C222ib P2i c 0.261A 0.464A
C222ib P2i d 0.478A 0.122k

Table 4.1: RMS deviations between MIP-la monomers

a whole, it seems more feasible that the N-terminal regions of P2ib and P2ic are responsible for 

the higher RMS values, as their conformations are constrained due to their position internal to the 

tetramer.

Aside from this, the M IP-la monomers all appear very similar in structure. It seems likely 

that the observed RMS deviations are primarily due to slight differences in the orientation of the 

N-terminal peptide in each of the monomers, and that there is no significant change to the structure 

of a M IP-la dimer on formation of the tetramer.

4.3.2 Comparison between M IP-la and fi-Chemokine Structures.

The results in Table 4.2 show that, for the p-Chemokine structures known, the i-form of MCP-1 is 

the one which is most similar to M IP-la. The p-form of MCP-1 is also very similar to M IP-la, 

but the NMR structures of RANTES and M IP-lp are suprisingly the least similar of all.

It is not clear how much can be read into these comparisons, however. There are previous 

examples137, even from within the Chemokine family, where the RMS differences between NMR 

and crystal structures of the same protein are greater than the differences between two crystals 

structures of different proteins. Therefore it is probably most useful to compare the M IP-la struc­

tures with the coordinates of the two MCP-1 crystal forms. The RMS deviations for the secondary 

structure elements in MCP-1 are clearly comparable to those between the different M IP-la crystal



Molecule 1 Molecule 2 RMSD (p) RMSD (a  + p ) RMSD (ss) RMSD (all) RMSD (dimer)

M IP -la  Dimer RANTES 0.503A 0.603A 0.995A 1.597A 3.587A

M IP -la  Dimer MIP-lp 0.724A 0.600A 1.175A 1.715A 3.372A

M IP -la  Dimer MCP-lp 0.401A 0.440A 0.899A 1.615A 3.986A

M IP -la  Dimer MCP-li 0.397A 0.469A 0.749A 1.596A 2.498A

Table 4.2: RMS deviations between M IP -la  (dimer mutant) and other P-Chemokines

The regions of the molecules used to calculate these values were:

•  P : Comparison of residues in strands p i, P2  and P3

•  a  + P : Comparison of residues in P i, P2 , P3 and a.

•  ss : Comparison of residues in Pi, P2 , P3 , a  and P4 .

•  a ll: Comparison over all residues present in both structures.

forms. However, the RMS deviations between M IP-la and the other four known P-Chemokines 

are much larger when the N-terminal portions of these molecules are included in the calculations. 

This implies that the path of the residues between the N-terminus and the initial Cysteine pair is 

different in M IP-la compared with the other p-Chemokines.

When the other members of the family are compared with each other (see Table 4.3), it be­

comes apparent not only that M IP-la differs from the others, but that no pair actually have the 

same conformation in the region between the disulphide pair and the N-terminus. Since this is the 

region which forms the dimer interface, it would be expected that the dimers formed by each of 

the p-Chemokines would therefore be slightly different with respect to the relative orientations of 

the two dimers. This is reflected in the observed RMS deviations between the various dimers, all 

of which are significantly higher than for just the monomer.

Monomer 1 Monomer 2 RMSD (P) RMSD (a  + P ) RMSD (ss) RMSD (all) RMSD (dimer)

M IP-lp RANTES 0.762A 0.709A 1.214A 1.819A 5.801A

MIP-lp MCP-1 p 0.925A 0.823A 0.865A 1.394A 2.443A

RANTES MCP-1/? 0.525A 0.671 A 1.043A 1.533A 4.293A

RANTES MCP-li 0 .5 1 2 k 0.711 A 0.888A 1.437A 2.646A

MIP-lp MCP-li 0.988A O.88OA 1.005A 1.447A 5.146A

MCP-lp MCP-li 0.179A 0.232A 0.419A 0.510A 3.251A

Table 4.3: RMS deviations between other P-Chemokine monomers

These observations may go some way towards explaining an aspect of the functionality of 

the Chemokines which has puzzled so many people for so long, namely the fact that their bio­

88



logical specificities can be so very different despite their structures being almost identical. Since 

the biological activities of the various members of the family overlap, and since each of the (3- 

Chemokine receptors identified to date interacts with at least two and often several of them, it 

should be possible to begin to rationalise the specificities of the particular proteins by comparing 

their N-terminal conformations. This, however, is likely to be extremely difficult, given only a 

few example structures with which to work. It may therefore be more constructive to consider just 

the receptor CCR5, and its three ligands M IP-la, MIP-lp and RANTES, as structures of all three 

ligands are available. By identifying aspects of the N-terminal regions of these specific proteins 

that are common to them but not to the other p-Chemokines, it may be possible to construct a 

basic model of the receptor. With the other P-Chemokine receptors, there may not yet be enough 

structural information available to perform the same type of analysis.

While the path of the N-terminal peptide is the most obvious difference between the various 

p-Chemokines, there are others which may be even more significant. The orientation of the N- 

terminus with respect to the p-strands seems to be controlled by the Cys 11 - Cys 34 disulphide 

and specifically by the conformation of the loop between strands I and II which contains Cys 34. 

This loop appears to be fairly different in M IP-la structures compared to the other p-Chemokines. 

Tables 4.4 and 4.5 show the deviations in position of the sulphur atoms between M IP-la monomer 

C222\b and all the other structures. C222\b was chosen as the template as it seemed to have 

the lowest average RMS deviations when comparing all M IP-la structures with each other, and 

therefore can be considered as the most representative M IP-la structure.

Molecule 5-Cys 11 S-Cys 34 8-Cys 12 8-Cys 50

Dimer 
C222ia 

P2i a 
P2i b 

P2 ic 

P2i d

0.53A

0.52A

0.54A

0.46A

0.3lA

0.3lA

0.54A

0.42A

0.59A
0.36A
0.26A

0.39A

0.22A
0.17A

0.13A
0.09A
0.10A
0.14A

0.20A 
0.10A 
0.19 A 
o.ii A 
o.ii A 
0.22A

Average 0.445A 0.427A 0.14A 0.155 A

Table 4.4: RMS deviations of Cysteine atoms in the various MIP-la monomers 
Monomer C222ib was the template for these comparisons

It is clear from Tables 4.4 & 4.5 that the positions of the sulphur atoms in the Cys 11 - Cys 34

disulphide are much more variable than those of the Cys 12 - Cys 50 disulphide. This implies that

loop between strands I and II of each of these molecules which is anchored by the Cys 11 - Cys

34 disulphide is also flexible. It could be argued that this effect is mediated by Cys 11 and that the
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Molecule 8-Cys 11 8-Cys 34 8-Cys 12 8-Cys 50

MIP-10 

RANTES 

MCP-lt 

MCP-lp

1.35A
1.93A

1.33A

0.75A

2.55A 
1.57A 

1.51 A 
0.99A

0.65A
1.75A

0.75A

0.58A

0.30A
0.85A

0.68A
0.33A

Average 1.34A 1.66A 0.93A 0.54A

Table 4.5: RMS deviations o f Cysteine atoms in the P-Chemokine family.
Monomer C222\b was the template for these comparisons

movement of Cys 34 and the attached loop are a consequence of movement of Cys 11. However, 

the much lower deviations observed for Cys 12 and Cys 50 make this unlikely. Given that Cys 11 

and Cys 12 are adjacent, any movement of Cys 11 would necessitate some displacement of Cys 

12 also. The observed displacements for Cys 12 and Cys 50 are so much lower that the effect is 

more likely due to a displacement of Cys 34 for some reason, one consequence of which would be 

a correlated motion of Cys 11.)

It is clear from sequence alignment of p-Chemokines that there are also some significant differ­

ences between residues on P-strand I. Comparison of M IP-la and MCP-1, in particular, suggests 

that the residues in positions 26,27 and 29 (numbering relative to M IP-la) are particularly impor­

tant in determining the specific activities of p-Chemokines. M IP-la and MCP-1 have essentially 

the same conformation in this region, but while M IP-la has Asp 26, Tyr 27 and Glu 29, MCP-1 

has Ser 26, Tyr 27 and Arg 29. In contrast to the disulphides, however, it seems to be just the 

relative distribution of electrostatic potential that is important in this region.

4.3.3 Comparison between P- and a-Chemokine Structures.

The Chemokine families are almost unique in the complexity and variability of their interactions, 

given the almost identical monomer units from which their structures are derived. The difference 

between a- and p-Chemokine dimers is currently the most evident example.

It is possible to rationalise most of these variations by examining the spatial distribution of 

charged and hydrophobic residues in the regions of the monomers which would be directly in­

volved the interaction. Several groups have already done this8 2  and their findings are very consis­

tent with the structures known to date. However, this type of comparison has also resulted in some 

erroneous predictions in the past139, and so it may be safer just to analyse the RMS deviations 

between the a- and p-Chemokines in order to search for the underlying pattern.

There are probably still too few examples for an experiment of this type to provide answers
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that cannot be questioned. In addition, the apparent subdivision of the p-Chemokine family, into 

at least two and possibly more groups based on different dimer-dimer interactions, suggests that 

there may be even more structural distinctions within the Chemokine families than are currently 

appreciated.

Molecule 1 Molecule 2 RMSD (p) RMSD (a  + p ) RMSD (all) RMSD (dimer)

MIP-la hPF4 0.833A 1.246A 4.442A 15.182A

MIP-la bPF4 6.905A 6.574A 4.459A 15.123A
MIP-la IL-8 0.734A 2.073A 6.143A 14.355A

MIP-la NAP-2 0.832A 0.840A 4.535A 15.291A
MIP-la gro-MGSA 0.742A 0.810A 4.543A 14.259A

Table 4.6: RMS deviations between a - and P-Chemokine monomers

i
|

| Table 4.6 demonstrates that the M IP-la monomer structure is comparable to the known a-

Chemokine structures. While the low resolution structure of bPF4 appears to give an anomalous
i

| result, each of the others appears very similar to M IP-la when comparing secondary structure el-
[

I ements. As expected the RMS deviation over the whole molecule is considerably higher, presum-
|
| ably as a result of the insertion between the first Cysteine pair changing the relative conformations

of the N-termini and of P strands I and II. The huge RMS deviations between the dimers reflect

I the completely different dimer structures that were shown in Figure 4.2.
|

i

4.4 Conclusion

M IP-la has been shown to form monomer and dimer structures which are effectively the same 

as those seen for the other p-Chemokines. While the close packing observed in the orthorhombic 

crystal form of the tetrameric mutant made it difficult to determine which pair of dimers gave rise 

to the tetramer, the solution of the monoclinic crystal form aided its identification.

Comparisons between the various independent M IP-la monomers have shown that they do 

essentially all have the same structure. Similar comparisons with other p-Chemokines have high­

lighted certain regions of these molecules which may be responsible for the observed differences 

in aggregation potential and biochemical properties within the family.

Finally, comparisons between M IP-la and the known a-Chemokine structures have shown 

that although the dimers formed by the two families are markedly different, the monomers are 

fairly similar.
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5. IMPLICATIONS OF MIP-la STRUCTURES

5 .1 Aggregation M echanism

As expected, the dimer identified in the M IP-la structures corresponds very closely with those 

already identified for RANTES and MIP-lp. The MCP proteins MCP-1 and MCP-3 have also 

been shown to form dimeric structures, but these reflect the clear differences between these two 

branches of the p-Chemokine family which have recently become apparent. It was therefore ex­

pected that the structures of the M IP-la and MCP-1 tetramers would be somewhat different, and 

might in some way account for the differences in their physiological properties. In particular, the 

large non-specific aggregates which M IP-la, MIP-lp and RANTES all form under physiological 

conditions are not known to occur for the MCP proteins. Clearly MIP protein multimers beyond 

the dimer level will give snapshots of the building blocks from which these aggregates are formed.

The MCP-3 dimer is analogous to that of IL-8 , with the two helices lying parallel and the three- 

stranded P-sheets coming together to form an extended p-structure. MCP-1 forms both this dimer 

(the MCP dimer) and that observed for M IP-la, MIP-lp and RANTES (the MIP dimer) within its 

tetramer. The implication of the p-Chemokine structures known to date is that the dimers formed 

by the MCP and MIP branches are different. However, the structure of the MCP-1 tetramer shows 

that this distinction is by no means a definite one.

The two structures obtained from tetrameric M IP-la mutants therefore provide an insight into 

the interactions which might be important in dimer formation and for the mechanism by which 

tetramers are then formed from dimers. The solution of both tetrameric crystal forms allowed un­

ambiguous identification of the correct tetramer. The two independent examples of the tetrameri- 

sation interaction simplified the task of distinguishing between those interactions vital for tetramer 

formation and those which are merely crystal contacts.

It was apparent from the orthorhombic M IP-la tetramer structure that the low solvent content

and consequent tight packing of protein molecules within these crystals resulted in each monomer

interacting with five others. While the structure of the dimer was known and could be readily

identified within the crystal, the structure of the tetramer was not. Discounting the dimerisation

interaction, there were then four different monomer-monomer interactions in the crystals which
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could potentially be implicated in tetramer formation.

Identification o f Tetramer

Tetramers within protein crystals most commonly occur in tetrahedral or pseudotetrahedral ar­

rangements. In such an arrangement, each molecule has the same environment, and they are 

related by three orthogonal two-fold axes. Each of the three known Chemokine tetramers, MCP- 

1, PF4 and NAP-2 had been shown to have a pseudotetrahedral arrangement of monomers, and 

MDP-la was expected to follow this trend.

It was surprising therefore that such an arrangement was not immediately obvious in the Or­

thorhombic crystal structure. After the location of the Ca2+ ion, it became clear that there were 

two dimer-dimer interactions which formed candidate tetramers, but neither of these had a tetrahe­

dral arrangement of monomers. One potential tetramer (henceforth referred to as Tetl) consisted 

of two dimers lying side by side in very similar orientations and related by a rotation of around 

30° (See Figure 4.9).

The second possible tetramer involved one monomer from each dimer coordinating a Calcium 

ion. The Calcium was octahedrally coordinated, with two adjacent equatorial coordination sites 

occupied by carbonyls from each monomer. The other coordination sites were filled by solvent. 

Again, the dimers were related by a two-fold axis, with the Calcium ion lying on this axis. In this 

mode of interaction (henceforth referred to as Tet2), only one monomer from each of the dimers 

was involved in dimer-dimer contacts - the other monomer only contacted its own dimer partner 

(See Figure 5.1). That particular aspect of Tet2 suggested that the dimer-dimer interaction via the 

Ca2+ ion was simply a crystal contact and was unlikely to have any physiological relevance.

However, when a near identical tetrameric orientation, likewise mediated by a Ca2+ ion, was 

also observed in the monoclinic crystal form, then the interaction had to be considered as po­

tentially important. The RMS deviation between C a atoms of all residues from each of these 

tetramers is just 1.09A, demonstrating that the relative orientations of the two dimers in each case 

is almost identical. The Tetl interaction was also observed in the monoclinic crystal form. The sol­

vent content was higher and there were fewer intermolecular contacts overall, making it easier to 

distinguish between crystal contacts and those which were potentially involved in tetramerisation.

Both crystal forms therefore contained a near identical octameric assembly, one half of which 

was presumably the physiologically relevant tetramer, with the second half perhaps representing 

one of the interactions important in forming the higher aggregates.

It was assumed that the physiologically relevant tetramer would be the one which was most
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Figure 5.1: Tet2: V iew show ing the single dimer-dimer contact.

stable. Therefore it was decided to examine factors which would stabilise the tetramer, such as 

interactions between specific residues and the amount o f surface area buried on tetramerisation, 

and analyse them in order to determine which o f the possible tetramers was likely to be more 

stable. These results are shown below in Tables 5.1 and 5.2, and their implications are discussed 

below.

All analysis o f solvent accessible areas used the CCP4 program “SURFACE”.

5.1.1 A nalysis o f  Surface A ccessib ility  Data

From these results the most obvious conclusion is that there is a vast difference in the amounts 

of surface area buried by the two tetramerisation modes. Whereas Tetl buries around 1800A2 

on each dimer, Tet2 only buries around 500A 2. It is also interesting to note that on dimerisation 

around 1400A2 is buried on each monomer, and that this figure could potentially be higher if  the 

m issing N-terminal residues were also taken into account. In comparison to the total accessible
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Crystal Form Subunits Solvent Accessible Area

C222i Monomer A 4581.4A2

C222i Monomer B 4725.3A2

C222i Monomer C 4568.9A2
C222] Monomer D 4710.2A2

C222i Dimer AB 7947.1A2
C222i Dimer CD 7944.6A2

C222i Tetramer (Tetl) 13927.0A2

C222i Tetramer (Tet2) 15400.5A2

P2i Monomer A 4756.6A2

P2i Monomer B 4871.2A2

P2i Monomer C 4855.2A2

P2i Monomer D 4338.5A2

P2i Dimer AB 8160.1 A2
P2i Dimer CD 7827.5A2

P2] Tetramer (Tetl) 14285.1 A2
P2i Tetramer (Tet2) 15498.2A2

f
Table 5.1: Solvent-Accessible Areas for Tetrameric Subunits o f M IP-1 a

|
i

Crystal Form Relevant Area Buried Surface Area

C222i Area buried on dimerisation of AB 1347.0A2

C222j Area buried on dimerisation of CD 1347.1A2

C222i Area buried on tetramerisation (Tetl) 1964.7A2
C222i Area buried on tetramerisation (Tet2) 581.2A2

P2i Area buried on dimerisation of AB 1451.7 A2
P2i Area buried on dimerisation of CD 1382.2A2

P2i Area buried on tetramerisation (Tetl) 1702.5A2
P2i Area buried on tetramerisation (Tet2) 489.4A2

Table 5.2: Surface Areas buried by potential M IP -la  multimerisation interactions

95



surface area of each of the monomers, this figure appears high. It represents burial of just less 

than one third of the total surface area of each monomer upon dimerisation. This seems a fairly 

high proportion of the molecule to be buried by a single interaction, and implies that the two 

dimerisation surfaces are complementary and that the dimer thus produced is likely to be stable.

By contrast, Tet2 buries just 5% of the accessible surface area of each dimer, which is too low 

a proportion for this interaction to have any physiological significance. Tetl buries around 15% 

of the available surface area of each dimer, and while this figure is higher than for Tet2 it does not 

represent an interaction as strong or as specific as the dimerisation of M IP-la. The biochemical 

evidence for an equilibrium between monomer, dimer, tetramer and perhaps even other species is 

consistent with such a tetramer84-94, as is the crystallographic evidence presented in Section 2.6.

|
5.1.2 Comparison with other Chemokines

|
In comparison to the other Chemokines for which tetramer structures are known, the M IP-la

i

interaction appears much looser. An analysis similar to that above for M IP-la was performed

| for the Chemokines MCP-1 and hPF4 and the results are shown below in Figures 5.3 and 5.4.
I

I Clearly the dimerisation interactions in each case are comparable, burying around 15% of the total
I

accessible surface area of each monomer. However, both MCP-1 and hPF4 bury over 20% of the

j  accessible surface of each dimer upon tetramer formation. This is higher than the figure for MIP-

la ,  and suggests this tetramerisation product is more stable, and that the tetramer will be a more 

significant aggregation state for these molecules.

The aggregation states of hPF4 have been studied in considerably more detail than most of 

the other Chemokines. It has been shown that the monomeric and tetrameric states of PF4 are 

more stable than the dimeric state, although an equilibrium between all three states exists under 

physiological conditions143-144. In contrast to this, the structures of all (3-Chemokines currently 

known demonstrate a highly stable dimeric state, although a disputed monomeric structure of 

MCP-3 has also been reported141. It would therefore appear that the association mode used by 

the p-Chemokines M IP-la, MIP-lp and RANTES gives a particularly stable dimer, whereas the 

a-Chemokine dimer is somewhat less stable in some cases but can form a particularly stable 

tetrameric state. Both the stability, and the kinetics and thermodynamics of formation of the P- 

Chemokine tetramers would have to be carefully assessed before any conclusions could be drawn 

from their apparent lower stability relative to the a-Chemokines.

While analysis of buried surface areas provides much useful information regarding different 

association states, it should also be remembered that this method takes no account of specific inter-
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subunit interactions such as salt-bridges or metal binding sites, which could have very significant 

stabilising effects. Examination of potential interactions of this type in the M IP-la structures pro­

vides further evidence on the relative importance of the various potential aggregation states, and 

is discussed below.

Chemokine Subunit Accessible area

hPF4 Monomer A 4906.9A2

hPF4 Monomer B 5018.5A2

/iPF4 Monomer C 4993.OA2

APF4 Monomer D 4832.6A2

APF4 Dimer AB 8342.4A2

/iPF4 Dimer CD 8119.2A2

hPF4 Tetramer ABCD 12886.5A2

MCP-1 Monomer A 5415.0A2

MCP-1 Monomer B 5428.1A2

MCP-1 Monomer C 5415.0A2

MCP-1 Monomer D 5428.1A2

MCP-1 Dimer AB 9534.3A2

MCP-1 Dimer CD 9534.3A2

MCP-1 Tetramer ABCD 15191.5A2

Table 5.3: Solvent-Accessible Areas for subunits o f other Chemokines

Chemokine Relevant Area Buried Surface Area

h?F4 Area buried on dimerisation of AB 1583.0A2

h.PF4 Area buried on dimerisation of CD 1706.4A2

HPF4 Area buried on tetramerisation of ABCD 3575.1A2

MCP-1 Area buried on dimerisation of AB 1308.8A2

MCP-1 Area buried on dimerisation of CD 1308.8A2

MCP-1 Area buried on tetramerisation of ABCD 3877.1A2

Table 5.4: Areas buried on formation o f multimers for other Chemokines

5.1.3 Shapes o f Potential Tetramers

Considering just the relative shapes of the potential tetramers, Tetl appears to be much more

compact than Tet2, and is therefore more likely to be the physiological tetramer. However, the Tetl

tetramer is quite square and relatively flat, and does not appear at first glance to be a particularly

stable arrangement. Unlike the a-Chemokine tetramers and even the MCP-1 tetramer, it is far from

globular in shape. While the (3-Chemokine dimers are also somewhat elongated, these have been

shown to be stabilised by hydrophobic interactions, the burial of large amounts of surface area and
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the presence of certain specific stabilising interactions, such as the formation of an antiparallel 

p-sheet between the N-terminal portions of the two monomers. As explained above, there is a fair 

degree of contact between the two dimers in the Tetl tetramer, which would enhance stability. An 

examination of the importance of certain specific inter-dimer interactions and their implications 

for the stability of the two tetramerisation modes is given in Section 5.1.4.

The Tet2 tetramer has a much smaller area of contact between the two dimers and consequently 

appears more fragile (See Figure 5.1). Clearly this interaction depends critically on the Ca2+ ion, 

and its removal would certainly result in abrogation of this particular tetramer. If tetramerisation 

does indeed depend so critically on the presence of a particular ion, it would be expected that 

there be some biochemical evidence for its importance. The current literature does not contain any 

evidence to support a functional or structural role for Ca2+ ions with respect to MEP-la or any 

other Chemokine.

5.1.4 Specific Interactions within Potential Tetramers

In both potential tetramerisation modes identified, there are surprisingly few specific interactions 

between dimers.

5.1.4.1 Tetramerisation M odel: Tetl

The major specific interaction between the dimers in this tetramer model is a salt bridge between 

Asp 26 on one dimer and Arg 45 (and perhaps Arg 47) on another. The significant degree of buried 

surface area hints at there being many hydrophobic interactions as well. This is in agreement with 

a spectroscopic study of aggregation in the human form of M IP-la84, in which it is stated that the 

major stabilising force in tetramer formation is hydrophobic. It is almost certain that the human 

and murine forms of the protein will have identical properties with respect to mode and specificity 

of aggregation interactions, despite some charged residues not being conserved between them. 

Therefore, applying the spectroscopic evidence to the observed M IP-la structure, the implication 

is that the single salt bridge observed makes little stabilising contribution in comparison with the 

many hydrophobic interactions. There are several other electrostatic interactions, but these all 

involve hydrogen-bonded interactions between main-chain and side-chain atoms, and are likely to 

be less significant than the Asp 26 - Arg 45 interaction.



5.1.4.2 Tetramerisation Model: Tet2

In this tetramer model there is only one direct interaction between dimers, a hydrogen bond be­

tween Ser 35 O on one and OG of Ser 32 on the other. The major interaction is the coordination of 

the Ca2+ ion by Ser 32 O and Cys 34 O on each of the dimers. There are also several electrostatic 

dimer-dimer interactions mediated by water molecules surrounding the Ca2+ ion. However, there 

are no hydrophobic interactions whatsoever. This fact alone effectively discounts Mode 2 from 

representing the physiologically relevant M IP-la tetramer. Assuming again that both human and 

murine forms of M IP-la will have identical aggregation properties, and applying the results of 

spectroscopic studies on human M IP-la to the murine form, the major stabilising force of the 

tetramer must be hydrophobic. Human M IP-la exists as a tetramer in conditions which disrupt 

ionic interactions, namely 500mM NaCl. A tetramer which depended on the presence of a calcium 

ion for its integrity would be disrupted under these conditions.

5.1.5 Do the Mutations make sense?

“No” would have to be the honest answer to that question. All the evidence points to the interac­

tions giving rise to both dimer and tetramer being predominantly hydrophobic. This of course is at 

odds with the original assumption that these interactions were electrostatic, and implies that the ra­

tionale behind the production of the three M IP-la mutants was flawed. Nevertheless, interactions 

between tetramers giving rise to larger aggregates do primarily involve electrostatic interactions, 

and hence the residue mutated in order to produce the tetrameric mutant is likely to be highly 

significant. However, the other mutations which give rise to the monomeric and dimeric mutants 

do not correspond with the spectroscopic data or with the observed structure, and it must be ques­

tioned what effects they really have on aggregation. The mutation E6 6 Q which gives rise to the 

tetrameric mutant is discussed in more detail below, but the effects of the mutations D64N and 

E60Q will now be considered.

5.1.5.1 Mutation D64N

As can be seen in Figure 5.2, residue Asp 64 sits on the external face of the a-helix in both 

monoclinic and orthorhombic forms of the tetramer. Therefore it is some 10A from the closest 

residue on the other dimer, and could not possibly have any direct effect on tetramerisation.
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5.1.5.2 Mutation E60Q

As shown in Figure 5.2, in each of the four monomers composing the tetramer, residue Gin 60 

sits at one end and points directly away from the rest of the tetramer. In the second potential 

tetramerisation mode, the situation is very similar, with each Gin 60 residue lying at one end 

of the tetramer and pointing away from the centre. Therefore it is clear that in no way could 

this residue have any influence on the monomer-monomer interactions giving rise to the dimer, 

or even on the formation of the tetramer. This of course is in complete contradiction to the gel 

filtration studies on the three mutants86. It is clear from both the dimer and tetramer structures that 

the monomer-monomer interactions involved in dimer formation are predominantly hydrophobic. 

The most significant electrostatic contribution appears to be the short antiparallel p-sheet formed 

by the N-terminal regions of the two monomers.

Each of the crystal structures therefore reinforces the biochemical and spectroscopic evidence 

suggesting predominantly hydrophobic interactions in dimerisation and tetramerisation. The most 

likely explanation for the molecular weights obtained for each of the mutants by gel filtration is 

that there is a dynamic equilibrium between monomer, dimer and tetramer. In such a case, the 

aggregation state of the molecules will depend critically on various environmental factors, such as 

ionic strength and pH. The mutation of one or two of the charged side-chains would modify the 

overall charge distribution of the monomer, which in turn could affect the equilibrium.

Therefore the tetramer model is consistent with the available biochemical and spectroscopic 

evidence8 4  94. It is also consistent with the observation that the dimeric mutant was able to form 

tetramers or crystallise with the same morphology as the tetramer, under certain conditions. How­

ever, while this model appears to satisfy all the evidence with respect to the monomer, dimer and 

tetramer, it does not account for the formation of aggregates via electrostatic interactions.
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Figure 5.2: Influence of mutated residues on aggregation

The above diagram shows the three residues which were mutated in the M IP -la  mutants. As 

this is the tetramer, only Glu 66 has been mutated. Clearly Asp 64 and Glu 60 have no direct 

influence on tetramer formation.



5.1.6 Higher Aggregation States

A tetramer has been identified in both PM1 crystal forms as being the physiologically relevant 

one. However, as explained in Section 5.1, the same Calcium-mediated dimer-dimer interaction 

was observed in both crystal forms. There is therefore a nearly identical octameric assembly within 

each of them. As M IP-la is known to aggregate under a variety of conditions, this octamer must 

be considered as a possible example of an interaction giving rise to a higher aggregate. Before 

any possible physiological relevance of this octamer is assessed, the biochemical evidence for the 

mechanism of M IP-la aggregation will be considered.

5.1.6.1 Biochemical Evidence for Aggregation

Spectroscopic studies8 4  have suggested a potential molecular weight for the human M IP-la ag­

gregate of between 100 and 250&D. Importantly, the solubility of these M IP-la aggregates is 

suggestive of some form of order being present in the self-association process. In other words, 

the aggregates are composed of discrete units, possibly tetramers, and probably do not involve 

non-specific interactions. The mass of the aggregate has also been assessed by various groups, 

and has been estimated at 650kD85,100-150&D86 and 100&D18 by different methods.

It has been suggested86  that the aggregate may represent a discrete dodecamer, which would 

correspond to a molecular weight of around 95kD. However, the estimates from spectroscopic 

data and from gel filtration analysis are consistent with a population of aggregate molecules com­

posed of at least twelve monomer units, and possibly many more. The highest molecular weight 

estimate85, of 650&D, would correspond to an enormous aggregate of over 80 monomer units.

Biochemical evidence suggests that there is an equilibrium between various multimerisation 

states. In contrast to the most closely related p-Chemokines, MIP-ip and RANTES, it is proposed 

that the monomeric and tetrameric states predominate in M IP-la. The dimeric state, which ap­

pears to be one of the most physiologically relevant to the other two molecules, was not observed 

in spectroscopic studies on the human form of M IP-la84. However, different dimeric human MIP- 

l a  molecules have been produced by mutagenesis145. Given the great similarity between M IP-la, 

M IP-lp and RANTES, both in sequence and in monomer structure, it is likely that the aggregation 

mechanism of each will be the same.

It is therefore likely that, under any conditions, M IP-la exists as an equilibrium mixture of 

multimers, from monomers up to aggregates. The multimerisation state of M IP-la is then de­

pendent only on how this equilibrium is affected by the local chemical conditions. Biochemical
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studies on the M DM a mutant BB-10010145, in which residue Asp 26 was changed to Ala, are 

consistent with this hypothesis, and suggest that even in this fairly homogeneous mutant, dimer, 

trimer and tetramer states are likely to be present.

5.1.6.2 Aggregation Models

As the packing in the orthorhombic crystal form is fairly tight, each monomer interacts with several 

others. It is quite possible that some of these interactions correspond to interactions relevant to 

the aggregation process. Certain assumptions can be made regarding the internal structure of the 

aggregate. Firstly, it is assumed that the aggregate will consist of discrete units, probably tetramers, 

arranged in a fairly ordered fashion. It can also be assumed that interactions between these building 

blocks will be similar, and therefore corresponding portions of each of these components will have 

the same environment. Aggregate models can therefore be constructed by considering tetramer- 

tetramer interactions observed in the orthorhombic crystal form, and using similar interactions to 

propagate successively larger models.

Naturally, the most interesting candidate models will be the ones involving electrostatic inter­

actions of residue Glu 6 6 . However, several other tetramer models will be possible, and all should 

be considered for the sake of completeness. It should also be remembered that as all interac­

tions represent crystal contacts, none of them necessarily represents an interaction that is actually 

involved in forming the physiological aggregate.

5.1.6.3 Aggregation Model 1 (Aggl)

The most obvious way to generate a multimer from the M IP-la tetramer is to use the relationship 

between two dimers to propagate an infinite chain of identically interacting M IP-la dimers. As 

the two dimers within the tetramer differ in orientation by only around 30°, the multimer thus 

generated is helical, as shown in Figure 5.3. While such a model is very aesthetically pleasing, 

it seems inconsistent with the biochemical data on interactions within M IP-la. The dimer-dimer 

interactions which form the tetramer are predominantly hydrophobic, and are not disrupted by 

the presence of 0.5M8 4  or l.OM85 NaCl. Therefore, in Aggl, the aggregate is also stabilised by 

predominantly hydrophobic interactions. However, the interaction between Glu 6 6  and Arg45/Arg 

47 is electrostatic, and although it does not appear to be a particularly strong interaction in the 

tetramer crystal structures, it seems feasible that a slight translation of one dimer relative to the 

other would put these residues in position to form a strong and more stable salt-bridge.



While various pieces of biochemical evidence point towards an aggregate that is formed by 

electrostatic interactions, different to the hydrophobic ones which are involved in tetramer forma­

tion, it is conceivable that the two interactions are in fact the same. The dimer-dimer interaction, 

while predominantly hydrophobic, does have a potential strong electrostatic contact in the Glu 

6 6 -Arg 45-Arg 47 interaction. While the hydrophobic interaction might be sufficient to hold to­

gether the tetramer, addition of further dimers or tetramers would produce a much more elongated 

arrangement. While the hydrophobic interactions alone might not be enough to stabilise this struc­

ture, the additional presence of two strong salt-bridge interactions could be enough to stabilise 

slightly larger aggregates.

This model would probably result in a population of aggregates of various molecular weights. 

It is quite possible that the aggregate mixture would represent an equilibrium centred around 

100£D, and would therefore be fairly consistent with the various estimates of the mass of the 

aggregate. The average mass of such a distribution would be dependent, to some extent, on chem­

ical environment. The considerable differences between the various estimates of aggregate mass 

could therefore be accounted for by differences in the environment within which the estimate was 

made.

Although the predominant aggregated species has been proposed to be a dodecamer, there 

is little evidence to indicate whether it is composed of tetramers or of other species. While the 

presence of a tetrameric state has been demonstrated for both human and murine forms of MIP- 

la ,  there is no other evidence for the suggestion that the proposed dodecamer consist of a trimer of 

tetramers. As native M IP-la consists of a range of species from monomer up to aggregate, there 

does not appear to be any reason why the aggregate could not be formed by interaction between 

tetramer and dimer species.

The major drawback of this model is the observed disaggregation to tetramers in 0.5M NaCl. 

While this has been interpreted as demonstrating that entirely different types of interaction are re­

sponsible for dimer-dimer and tetramer-tetramer interactions, this result can be viewed in another 

way. It may simply reflect the inability of the hydrophobic dimer-dimer interactions to stabilise any 

aggregate that becomes significantly elongated - in other words any aggregate that is larger than 

a tetramer. Naturally, this model would be more consistent with disaggregation to an equilibrium 

state where, although the predominant molecular weight corresponded to a tetramer, some smaller 

and larger species were also present. However, analytical ultracentrifuge and sedimentation equi­

librium measurements8 4  seem to indicate the formation of an almost completely monodisperse 

human M IP-la tetramer in 0.5M NaCl, and are therefore inconsistent with this particular model.
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Given the propensity for interaction via Ca2+ ions that both tetrameric mutant crystal structures 

have demonstrated, it is tempting to consider whether such interactions could have any bearing on 

aggregation.

The Ca2+ ion which is observed in both tetramer crystal forms would lie on the outer surface 

of the proposed helix, and would therefore be well-placed to interact with other molecules or even 

other helices. While it has previously been shown that such a tetramer-tetramer interaction would 

not confer very much stability, helices of moderate length could interact by this mechanism to 

produce aggregates of very high molecular weight, consistent with some observations85. Such 

aggregates would be considerably more globular, and hence presumably more stable, than single 

helical aggregates of similar molecular weight. It would therefore be extremely interesting to test 

the effects of Ca2+, and of similar ions, on the aggregation of M IP-la and related p-Chemokines.

There does not appear to be any steric or structural impediment to the addition of further dimers 

to the tetramer which has been identified within the two crystal forms of the tetrameric mutant. If, 

as seems likely, this tetramer is physiologically relevant, then interactions of these tetramers with 

further dimer or tetramer molecules by this mechanism would seem inevitable. Therefore, even if 

the proposed dodecameric aggregate is formed by another means, interactions of this type are still 

likely to occur to some extent.

5.1.6.4 Aggregation Model 2 (Agg2)

As mutant data suggested that residue Glu 6 6  is probably the most important in terms of aggrega­

tion interactions, a tetramer-tetramer interaction involving it was sought. Such an interaction was 

discovered, in which one monomer from the first tetramer was sitting in the central cavity of the 

second tetramer, and making interactions on either side (as seen in Figure 5.4). There are two spe­

cific electrostatic interactions of note; firstly the interaction between Glu 60 on the first tetramer 

and Arg 45/Arg 47 on the second, and secondly an interaction between Asp 26 and Glu 6 6  on the 

first tetramer and Lys 44, Arg 45 and Arg 47 on the second. In this second interaction, Asp 26 

seems ideally placed to interact with either of the three basic side-chains, whereas Glu 6 6  is more 

remote but may interact with Arg 45 on the opposite tetramer. In addition there are several other 

hydrogen-bonded interactions, mainly between side-chain atoms on one tetramer and main-chain 

atoms on the other. It is also clear that there are significant hydrophobic interactions involved as 

well, specifically an aromatic stacking interaction involving Phe 23 on the first tetramer and Phe 

28 on the second. Since this interaction is present within the crystal structure, there will of course 

be an infinite chain of tetramers related by this interaction within the crystal.
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Figure 5.3: Structure of Aggregation Model Aggl
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Therefore it is most unlikely that the interaction seen within the crystals is the same as is 

physiologically relevant for aggregation. However, it is possible that the interaction observed in 

the crystals is similar to the one of interest, and the interaction within the crystals represents an 

imperfect model of that interaction. It is clear that the fit between the two tetramers is not that 

good, and could probably be improved markedly by a minor motion of one tetramer relative to 

the other. Perhaps what is seen in the crystal is therefore a distorted representation of the true 

aggregation interaction. In particular it is clear that Glu 6 6  is not ideally placed to interact with 

Arg 45, but a minor motion of one tetramer would enable a stronger interaction between them.

It is possible to generate a tetramer of tetramers from this particular interaction, and the re­

sultant “aggregate” looks reasonably compact and potentially stable (as seen in Figure 5.5). The 

molecular weight of this model, at 125&D, is consistent with most of the biochemical data, al­

though it appears that it would not be possible to form a stable dodecamer using this interaction. 

Like Aggl, it is also consistent with mutagenesis evidence, with residues Asp 26, Arg 45 and Glu 

6 6  all involved in the interaction.

5.1.7 Conclusion

The M IP-la structures provide snapshots of two of the basic units used to build up the large 

aggregates observed for the proteins M IP-la, MIP-1(3 and RANTES. They show that each of 

these proteins forms a dimer of identical topology, but also demonstrate that there are small but 

potentially significant differences between certain regions of these molecules. The tetrameric MIP- 

l a  structures also show two potential tetramerisation modes. One of these buries a large amount 

of surface area, and thus is the one that is likely to be more significant to the aggregation process. 

The second of these is mediated by Ca2+ ions, although there is no evidence to suggest a role for 

Calcium in control of (3-Chemokine aggregation. It is unlikely that both tetramerisation modes 

observed within the M IP-la crystals are physiologically significant. It seems almost certain that 

tetramerisation mode 1 is in fact the correct tetramer.

In addition, some of the other crystal contacts observed within the tetramer crystals bury sig­

nificant portions of surface area, and may represent interactions relevant to the formation of ag­

gregates. Two tetramer models have been proposed, although others are of course possible. Both 

models are consistent with all the available mutagenesis evidence, but neither can completely ac­

count for all the biochemical data on M IP-la aggregation.
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Figure 5.4: Interactions involved in formation o f  A ggregation M odel A gg2



Figure 5.5: Structure o f  Aggregation M odel A gg2

Figure 5.6: Structure o f  A ggregation M odel A gg2  

Figures 5.5 and 5.6 show two different views of Agg2
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5.2 The Potential Role o f  Ca2+ Ions.

It is interesting that the two different tetrameric crystal forms were obtained from near identical 

crystallisation conditions. A similar phenomenon has been observed for other Chemokines109. 

Orthorhombic crystals were grown using a well solution containing 0.2M CaCl2 , 0.1M Tris pH 

7.4 and 8 % PEG 6000. This solution was diluted 1:1 with protein to give the drop solution. The 

monoclinic crystals were grown using a well solution containing 0.2M CaCl2 , 0.1M Tris pH 7.4, 

8 % PEG 6000 and 10% glycerol.

Glycerol had been added to this particular tray to reduce the rate of equilibration in an attempt 

to slow down crystal growth. It is possible that the glycerol had some additional precipitant effect, 

but the monoclinic crystals did take significantly longer to appear than the orthorhombic ones, 

suggesting that the glycerol may have had the desired effect.

The only other parameter that varied between the two crystallisation conditions was the pro­

tein concentration. The monoclinic crystals were grown using a protein solution of 1.4 mg/ml, 

whereas the optimal orthorhombic crystals came from a protein solution of 5.4 mg/ml. However, 

some of the wells containing monoclinic crystals also contained what appeared to be crystals of 

orthorhombic habit. While these crystals have not been diffraction tested, it seems likely that both 

crystal forms can be grown from the same initial crystallisation mixture.

Since the orthorhombic crystals appear within 2 days of being set up, and the monoclinic 

crystals take several weeks to appear, it is possible that the orthorhombic crystal form represents 

the “kinetic” product of the crystallisation mixture, whereas the monoclinic crystals represent the 

“thermodynamic” product. Nuclei that will generate orthorhombic crystals will be rapidly formed, 

and if the protein concentration is sufficiently high then these crystals will grow in several days. If 

the protein concentration is lower, these transient aggregates may not be able to add enough protein 

molecules to grow to a stable size, and will disperse. The presence of glycerol, slowing down the 

diffusion of protein molecules within the crystallisation drop, would also help to prevent crystals 

growing from such a mixture. As the mixture gets closer to equilibrium, monoclinic crystal nuclei 

could form, perhaps being stabilised by the extra cross-linking via the second Ca2+ ion. Possibly 

it is only the extra stability this interaction provides that allows the initial aggregate to survive long 

enough to become a viable crystal.
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5.2.1 Are Ca2+ Ions involved in Aggregation?

It is possible that Ca2+ or similar ions are involved in some way in the aggregation phenomenon. 

The available evidence points to electrostatic interactions being predominantly responsible for the 

aggregation interaction, which would not discount the possibility of the involvement of ions of 

some kind.

There are several ways in which to test for presence of Ca2+ ions. Firstly, although most bio­

chemical studies to date have used physiological conditions, and therefore have some salt present, 

it should be possible to perform similar experiments on samples from which all salt had been re­

moved. A reagent such as EDTA could be used initially, and if there was some observed effect then 

reagents specific for particular ions could then be used in order to identify which were important. 

This would give some indication of the effects of ionic strength or the presence of particular ions 

on aggregation. Secondly, there are various methods which could be used in order to determine the 

presence of Ca2+ ions in the aggregate. For example, the aggregated M IP-la molecules could be 

separated from the smaller multimers also present in solution by gel-filtration chromatography85. 

They could then be washed with non-Ca2+ containing buffer and the resulting solution analysed 

by Electrospray Mass Spectrometry to specifically identify any Calcium present.

The observed tetramer-tetramer interaction mediated by Ca2+ ions may be physiologically 

relevant. The fact that it occurs almost identically in both crystal forms suggests that it may be 

more than just a crystal contact. Indeed, the RMS deviation between the two potential Ca2+- 

mediated tetramers, one from the orthorhombic structure and one from the monoclinic structure, 

was just 1.086A for all C-a atoms (1.467A for all atoms). While the analysis of buried surface 

area had shown that this particular “tetramer” is most unlikely to be physiologically relevant, it 

seems equally unlikely that the same crystal contact would appear in two entirely different crystal 

forms with an RMS deviation of around 1 .0 A.

5.2.2 Are Ca2+ Ions necessary for Crystallisation?

Ca2+ ions seem to be necessary for crystallisation of the tetramer, but not for the monomer or 

the dimer. However, many of the originally identified conditions for those molecules did contain 

Ca2+, as did those eventually identified as the optimal ones.

Following identification of the Ca2+ sites in the structures of the tetrameric M IP-la mutants, 

crystals of the orthorhombic type were soaked in a solution containing Lu2 (8 0 4 )3 . It was ex­

pected that L u3+ ions would enter the crystals and would be able to specifically replace some of



the Ca2+ ions. Lu3+ was chosen as it has an ionic radius of 0.98A, compared to l.OOA for an 

octahedrally coordinated Ca2+ ion146. The replacement of Ca2+ by Lu3+ has been described for 

Thermolysin147, although the ionic radii quoted in this case were estimated differently100.

Data collection parameters for soaked crystals are shown in Table 3.3. The Lu3+ ion was sub­

sequently located using the program SHELX120. These results indicated a single-site derivative, of 

quality comparable to that of the Uranyl derivative obtained for the monomeric mutant. However, 

when refinement of the Lu3+ phasing was attempted121, it was impossible to refine either the posi­

tion or the temperature factor of the heavy atom, and the phasing did not seem to be self-consistent. 

The L u3+ position obtained from SHELX was compared with the orthorhombic structure of the 

tetrameric mutant, and did not correspond with the expected Ca2+ position, even when taking into 

account the alternative origin in spacegroup C222i. The observed position was in fact over 6 A 

from the closest protein atom, and could not therefore represent a bound derivative. The observed 

“signal” in the Patterson maps and in SHELX was probably be due to non-isomorphism or to lack 

of data completeness at low resolution.

5.2.3 Are Ca2+ Ions involved in M IP-la Interactions with Receptor?

If it could be demonstrated that Ca2+ ions have any physiological effect on M IP-la, particularly in 

receptor-binding, there would be scope for the investigation of the Ca2+ binding sites by mutagen­

esis. To date there is only one report of a mutant in this region of a |3-Chemokine148. The insertion 

of a proline in the corresponding loop of MCP-1 caused an almost complete loss of activity. This 

mutation presumably had some effect on the conformation of the N-terminal peptide, and has been 

proposed to be the reason for the loss of activity.

However, it is interesting to consider the possibility of constructing similar mutants for MIP- 

la ,  in order to see whether they could bind Ca2+. Another possibility would be minor modification 

of the residues surrounding Calcium-binding sites in both crystal forms, in order to accommodate 

ions of other types.

5.3 Areas of the Structures involved in Receptor-Binding

5.3.1 Chemokine Receptors

Over the last few years many new Chemokine receptors have been identified, with the family 

now consisting of four distinct groups - Specific, Shared, Viral and Promiscuous. Distinction can 

also be made between a-Chemokine receptors and p-Chemokine receptors, although Promiscuous
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Figure 5.7: Schematic diagram o f CC receptor
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receptors by definition will bind proteins from either subfamily.

From a rather confusing beginning, the nomenclature for this receptor family is now fairly 

simple and very well established. The p-Chemokine receptors are numbered, with the prefix 

“CCR”, and receptors CCR1 through to CCR8  are currently known. In addition, receptor CCR2 

exists in two distinct forms, CCR2a and CCR2b. The a-Chemokine receptors follow a similar 

system, with the prefix “CXCR”. a-Chemokine receptors CXCR1 to CXCR4 are known to date. 

The only known promiscuous receptor is the Duffy Blood Group Antigen (DBGA) which was 

first recognised as a receptor used by malaria parasites. The binding profile of each of the known 

human Chemokine receptors is shown in Table 1.8.

Each of these receptors is a seven-transmembrane helical receptor, and mediates its Chemo- 

tactic effects via interaction with G proteins. A schematic diagram of a Chemokine receptor is 

shown in Figure 5.7. There is a considerable degree of sequence identity between each of these 

receptors. As would be expected the putative transmembrane segments have the highest degree of 

identity, and the overall sequence identities range from 30% to around 65%.

5.3.2 p -Chemokine Receptors

As mentioned in Chapter 1, the receptor-binding profiles of many of the P-Chemokines are com­

plex, and M IP-la is no exception. Human M IP-la is known to bind to the human forms of 

CCR1, CCR4 and CCR54. The murine form has been shown to bind to the murine versions of 

CCR1, CCR4 and CCR5, in addition to a recently-identified receptor, D6 149.

Despite mutagenesis studies involving several p-Chemokines, including M IP-la, little is known 

about which specific regions of these molecules are determinants of receptor-binding. It is quite 

feasible, and even likely, that different regions of these molecules are involved in binding to dif­

ferent receptors. The N-terminal region has been identified as important to the functionality of 

RANTES1 50 and MCP-1148. However, in these studies residues close to the N-terminus were 

mutated and then the ability of the mutants to stimulate monocyte chemotaxis and intracellular 

calcium mobilisation was examined. This implied investigation of the ability of the mutants to 

interact with the receptors CCR1 (in the case of the RANTES mutants) and CCR2a and CCR2b 

(in the case of the MCP-1 mutants).

Similar mutagenesis studies on another region of both human and murine M IP-la gave sur­

prisingly different results. One study9 4  showed that in murine M IP-la, residues on the loop be­

tween P-strands II and III were essential for glycosaminoglycan (GAG)-binding, and were in­

volved in binding to murine CCR1. The other study showed that mutation of a single residue
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on the corresponding loop in human M IP-la prevented glycosaminoglycan-binding, but had no 

effect on CCR1-binding.

Therefore it is likely that the N-terminal regions of the p-Chemokines are critical in determin­

ing whether they can bind to CCR1, CCR2a and CCR2b, although other parts of the molecules are 

also likely to be important. However, the other p-Chemokine receptors, most notably CCR5, may 

well interact with entirely different portions of their ligands.

It is puzzling that such similar mutations in human and murine forms of M IP-la gave such 

different results. There are several possible explanations which, while not entirely compelling, 

may explain these observations.

• Human and murine forms of M IP-la are quite different to each other when compared with 

human and murine forms of other p-Chemokines. There are also several charged residues 

that are unconserved between the two.

• Their receptor-binding properties are known to be different.

• In the human mutant, only Arg 45 was changed. In the murine mutant, both this residue and 

Lys 44 were altered.

• In the human mutant, Arg 45 was mutated to Ala. In the murine mutant, Lys 44 was mutated 

to Asn and Arg 45 to Ser - hence there are possible steric differences between the mutation 

products.

Two additional mutants of M IP-la - R18A and R47A also abolished GAG-binding. They are 

dealt with in greater detail in Section 5.4.3.

In order to develop some kind of understanding of the interactions between the p-Chemokines 

and their receptors, the following Section will collect the available biochemical data for each re­

ceptor and attempt to discover any underlying connection between it and the known P-Chemokine 

structures.

5.3.3 CCR5

The P-Chemokine receptor CCR5 has been shown to bind the Chemokines M IP-la, M IP-ip and 

RANTES. Many of the other p-Chemokines, most notably all of the Monocyte Chemoattractant 

Proteins, as well as all of the a-Chemokines, have been shown not to bind to or induce a signal



While it is clear from the analysis of p-Chemokine sequence similarities in Table 1.2 that these 

three proteins have quite a high degree of sequence identity, there are several other proteins, most 

notably HCC-1, DC-CK1 and MPIF-1, which are also very similar. Interestingly, HCC-1 and DC- 

CK1 also seem to be much more similar to M IP-la than to RANTES, but there is currently no 

evidence to suggest that these proteins also bind to CCR5.

This makes it somewhat difficult to define the requirements for CCR5 binding. It would be 

expected that the high degree of sequence identity would result in three proteins with highly similar 

tertiary structures. It is likely though that HCC-1 and DC-CK1 have essentially the same tertiary 

structure as M IP-la, MIP-lp and RANTES, but lack some specific residues or motifs that are 

absolutely required for CCR5 binding. While the structures of MCP-1 and MCP-3 have shown 

that the tertiary structure of the Monocyte Chemoattractant Proteins is very similar to that of the 

CCR5 ligands, these proteins are likewise unable to bind to CCR5. Again it is likely that the lack 

of an essential residue or structural motif prevents binding. The availability of the MCP-1 and 

MCP-3 structures, in addition to those of M IP-la, MIP-lp and RANTES, allows investigation 

and potential identification of such residues.

5.3.3.1 Ligand Evidence

CCR5 binds M IP-la, MIP-lp and RANTES, but none of the MCP proteins. Sequence identities 

in its ligands range from 45-68%. It is fairly simple to define a set of residues which are conserved 

in the CCR5 ligands but not in the MCP proteins. This set corresponds almost exactly with the 

residues previously identified as vital in M IP-la aggregation (See Table 5.5). This may imply 

that one or more of the interactions made during the aggregation process mimics the interactions 

within multimers. Alternatively, Glu 29, which has been shown not to have a role in the formation 

of multimers, may be the residue which is vital to CCR5 binding, as it has never been demonstrated 

that M IP-la, MIP-lp or RANTES are unable to bind to CCR5 as multimers.

A recent study on RANTES151 has demonstrated that residues Phe 12 and lie 15 are essential 

for CCR5 binding. In addition, residues Tyr 3 and Asp 6  are required for signal transduction. 

This suggests that the CCR5-binding epitope on RANTES and related p-Chemokines will involve 

residues close to the disulphide pair. There is also some evidence to suggest that the signal trans­

duction process can be considered as separate from receptor-binding. This would imply a two-step 

interaction between ligand and receptor, each step involving a different set of residues.

From Table 5.5, it is clear that HCC-1 and DC-DK1, following this pattern of conserved 

residues, would be expected to also bind to CCR5. However, there has not yet been sufficient
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MCP-1 . .. S Y R R I - T S s K c p K E A V I F K T

MCP-2 ... s Y T R I - T N I Q c p K E A V I F K T

MCP-3 ... s Y T R T - T S s H c p R E A V I F K T

MCP-5 ... s Y R R I - T S s Q c p R E A V I F R T

Eotaxin ... s Y R R I - T s G K c p Q K A V I F K T

MCP-4 ... s Y V - I - T T S R c p Q K A V I F R T

26 27 28 29 30 31 32 33 34 35 3 6 3 7 38 3 9 4 0 41 42 43

M IP -la ... D Y F E - - T s S Q c s K P G V I F L T

M IP-lp ... D Y Y E - - T s s L c s Q P A V V F Q T

RANTES . .. E Y F Y - - T s G K c s N P A V V F V T

HCC-1 . .. D Y Y E - - T N S Q c s K P G I V F I T

DC-CK-1 ... D Y S E - - T s P Q c p K P G V I L L T

MCP-1 I V A K E I c A D ...

MCP-2 K R G K E V c A D ...

MCP-3 K L D K E I c A D ...

MCP-5 I L D K E I c A D ...

Eotaxin K L A K D I c A D ...

MCP-4 K L G K E i c A D ...

44 45 46 47 48 49 50 51 52

M IP-la K R s R Q V c A D ...

MIP-lp K R s K Q V c A D ...

RANTES R K N R Q V c A N ...

HCC-1 K R G H s V c T N ...

DC-CK-1 K R G R Q I c A D ...

Table 5.5: Sequence alignment: Residues that may be involved in CCR5/CCR2 binding
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investigation of these proteins to confirm or deny this proposal.

One other notable difference between the MIP and MCP proteins is the charge distribution at 

their C-termini. As the M IP-la mutants have shown, modifications to charged residues in this 

region can have profound effects on the entire molecule, although it remains unclear precisely 

why. It is certainly possible that CCR5 binding requires the p-Chemokine helix to be proximal to 

a patch of positive potential, thereby favouring the MIP proteins over the MCPs.

5.3.3.2 Receptor Evidence

Several mutation studies on CCR5 have provided useful data on interactions with P-Chemokines. 

The N-terminal region has been shown not to be required for high affinity MIP-la-binding152. 

This region has, however, been shown to be essential for signal transduction153. This implies 

an interaction mechanism for CCR5 and its ligands that is very different to the now partly charac­

terised “two step” interaction between CCR2 and its ligands152. The third extracellular loop (Loop 

D in Figure 5.7) has been shown to be essential for both receptor-binding and signal transduction.

Naturally, the HIV-coreceptor activity of CCR5 has resulted in many other studies on the 

receptor. It has been shown that signal transduction and HIV-coreceptor activities are entirely 

uncoupled153. The cytoplasmic domains as a whole are unimportant to HIV-coreceptor activity.

53.3.3 Conclusion

•  CCR5 Loop D may contain a Chemokine-binding motif - comparing the sequences of CCR5 

and the other P-Chemokines in this region might allow some of the Chemokine-binding 

determinants to be elucidated.

•  It is possible to construct a model of the interaction between CCR5 and p-Chemokines. (See 

Figure 5.8). It resembles the CCR2 receptor model, but has a different mechanism.

• HIV-binding requires a ternary interaction between CCR5, CD4 and gpl20154. The interac­

tion between M IP-la and CCR5 may mirror the interaction between CCR5 and gpl20 (or 

gpl20/CD4) and explain HIV inhibition by p-Chemokines.

•  Exposed residues close to the Cysteine pair are essential for receptor-binding.

• Residues closer to the N-terminus are implicated in Signal Transduction, suggesting a two- 

step mechanism for receptor binding and activation (See Figure 5.8).
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Figure 5.8: M odels o f  MCP and MIP interactions with receptors

In the above diagram, M IP -la  is depicted as a green sphere and MCP-1 as a yellow sphere. 

The characterised two-step interaction between MCP-1 and CCR2 is shown. A proposed mecha­

nism for binding o f M IP -la  to CCR5 and subsequent signal transduction is also shown. In contrast 

to the MCP-1 mechanism, M IP -la  binds first to the extracellular loops o f the receptor, and then 

the N-terminal region swings across to hold the ligand in place.
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5.3.4 CCR1

CCR1 has not been studied to the same extent as CCR2 and CCR5, so the available evidence is a 

little limited.

It has been shown to bind M IP-la, RANTES and MCP-3, but not MIP-lp, MCP-1 or MCP-2. 

Recent tentative evidence suggests that HCC-1 and MPIF-1 may also be viable ligands6. Unlike 

the ligands of CCR5, there is no clear pattern to suggest why only certain Chemokines can bind to 

CCR1. Sequence similarities between M IP-la, RANTES, HCC-1 and MPIF-1 are high. However, 

MCP-3 does not fit this pattern and neither does MIP-lp, as it is very similar to the other ligands 

yet still does not bind.

In the particular case of MIP-lp there are only two residues in the entire sequence that might 

constitute significant differences between it and the related MIP proteins. There is an extra "fyr 

residue at position 63 (using M IP-la numbering), but more significantly there is an extra proline 

residue in the N-terminal peptide, at residue 7. As can be seen from the MEP-lp structure82, this 

results in the N-terminal residues of MIP-lp following a very different path to that seen for the 

other p-Chemokines. Since CCR1 binding has been shown150 to be extremely dependent on the 

specific conformation of the N-terminal residues of its ligands, this observation is likely to explain 

the apparently anomalous behaviour of MIP-ip.

From the MCP-3 sequence, there is very little to separate it from the remaining MCP proteins. 

Looking specifically at the N-terminus, MCP-3 differs from all the other MCP proteins in lacking a 

proline residue at position 8 . Again, it is possible that this residue is responsible for a significantly 

different N-terminal peptide conformation in MCP-3 relative to the other MCP proteins. However, 

it should also be noted that in common with all the other MCP proteins, M IP-la and HCC-1 both 

possess Pro 8 .

The interesting observations with respect to the non-GAG binding mutants of M IP-la are 

relevant to the consideration of CCR1. While the murine mutant was reported not to bind to CCR1, 

the human mutant was reported to bind as normal. The implication is that the loop between strands 

II and HI on the Chemokine ligands, with its high density of positive charges, may be important in 

CCR1 binding. However, the sequence comparisons point, admittedly vaguely, at the N-terminal 

regions of these molecules being the major determinant of CCR1 binding.

This assumption was recently partly confirmed in a mutagenesis study on RANTES151. It was

demonstrated that Arg 17 was essential for CCR1 binding, and that Pro 2, Asp 6  and Thr 7 were

all essential for CCR1 signal transduction by RANTES. This seems to imply a two-step ligand-

receptor interaction, very similar to that proposed for CCR5. Although the same region appears to
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be responsible for signal transduction in both cases, receptor-binding appears to be mediated by 

slightly different regions of the CCR1 and CCR5 ligands.

5.3.5 CCR2

CCR2 has been shown to bind all of the known MCP proteins - MCP-1, MCP-2, MCP-3, MCP-4 

and MCP-5, but does not bind any of the MIP proteins. There is a considerable amount of evidence 

relating to the parts of the CCR2 molecule that are important in ligand-binding. The N-terminal 

portion of the receptor has been shown to be necessary for high affinity binding of MCP-1, and 

presumably for the other ligands as well. Each of the other three loops has been shown to be 

necessary for signal transduction, although the N-terminus is not. This data has resulted in a 

model of the interaction between CCR2 and its ligand, as described below.

The activation mechanism of CCR2 has been proposed to be a two step process152 (See Fig­

ure 5.8). Step one involves a direct specific interaction between the N-terminal region of the 

receptor and the ligand. In step two, the N-terminal region of the receptor moves in order to place 

the bound ligand onto the surface of the other loops. Non-specific interactions between these loops 

and the ligand are then responsible for signal transduction.

There is some evidence identifying two regions of the MCP-1 molecule that are important in 

receptor binding. Both the N-terminus and the loop containing the third Cysteine residue have 

been shown to be important. The integrity of both regions has been shown, by mutagenesis, to 

be essential to Chemotactic function148. However, this study did not explicitly refer to CCR2 as 

the receptor involved, and therefore there is no firm evidence that these two regions of the MCP 

proteins are specific determinants of CCR2 binding.

5.3.6 CCR3

CCR3 has been shown to be specific for the Chemokines Eotaxin and Eotaxin-2, although certain 

other Chemokines will bind to a certain extent. RANTES, MCP-3 and MCP-4 have been shown 

to have some effect, although M IP-la and the non-GAG-binding mutants of MEP-la have been 

shown not to bind. The CCR3-binding epitope on RANTES has been proposed to lie close to the 

CCR5-binding epitope151, but to be distinct. Residues close to the N-terminus have been identified 

as important to signal transduction, implying a ligand-receptor interaction similar to that expected 

for CCR1 and CCR5.
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5.3.7 CCR4

CCR4 was known for a considerable time to be a receptor for M IP-la and RANTES, but it has 

recently become clear that these two proteins have very minor effects when compared to TARC. 

While TARC is not strictly specific for CCR4, the affinity between the two is so much greater than 

that between CCR4 and any other P-Chemokine that they are effectively specific for one another.

5.3.8 CCR6, CCR7 and CCR8

These three p-Chemokine receptors have been identified very recently. Each of them currently 

appears to be specific for a single p-Chemokine, although that may be due purely to the lack of 

biochemical knowledge. CCR6  has been shown not to bind M IP-la, MIP-lp, RANTES, MCP-3 

or Eotaxin.

5.3.9 CCR9, CCR10 and other receptors

The most recently identified of the p-Chemokine receptors are CCR9 and CCR 10. While CCR9 

has been reported its ligands have not, and its role in the p-Chemokine receptor network has not 

yet been revealed. However, CCR 10 has been shown to bind MCP-1 and MCP-3 particularly 

strongly, and also to be affected to a lesser extent by RANTES and MCP-4. It therefore has a 

similar ligand-binding pattern to CCR-1 and CCR-3, in that it binds both MIP and MCP proteins.

A variety of orphan receptors exist which are proposed to be Chemokine receptors on the basis 

of sequence similarity with portions of the existing p-Chemokine receptors. CCR6  and CCR8  are 

examples of what were originally orphan receptors of this type, but which were added to the p- 

Chemokine receptor family when their ligands were shown to be P-Chemokines. As a number of 

these orphan receptors currently exist and others are still being discovered, it is certain that many 

other p-Chemokine receptors remain to be identified and characterised.

The Duffy Blood Group Antigen (DBGA or DARC) is unusual in that it can bind both p- 

and a-Chemokines, despite having only 30% sequence identity with the appropriate receptors for 

those two families. DBGA binding studies involving the Chemokines RANTES, MCP-1, MGS A 

and IL- 8  have provided a considerable body of information relating to the specific regions of the 

receptor important to this interaction.

The N-terminal region of DBGA has been shown to be essential, in much the same way as 

that of CCR2 was. In addition, it has been shown155 that the formation of a disulphide bond 

between the N-terminus of the receptor and the third extracellular loop (D) forms a “pocket”
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which accommodates the Chemokine ligand.

Some recently described chimeric mutant receptors showed Chemokine specificities some­

where between those of CCR2 and CCR5. By creating a receptor that contained the important 

determinants for MCP binding by CCR2 - the N-terminus and the first extracellular loop - and the 

important determinants for MIP binding by CCR5 - the second and third extracellular loops -they 

were able to combine the two activities. The chimeric receptor binds M IP-la, MIP-lp, RANTES, 

and MCP-1, and appears to show that the ligand-binding mechanisms used by CCR2 and CCR5 

are completely different.

A murine M IP-la receptor that has no known human homologue has recently been described. 

It binds murine M IP-la and also non-GAG binding variants of murine M IP-la. It is known to be 

expressed on monocytes, therefore it is surprising that the human homologue, if it does exist, has 

not yet been identified.

5.4 Conclusion

5.4.1 Stem Cell Inhibition by M IP-la

The three M IP-la mutants are not more active than native protein. This suggests that they undergo 

spontaneous disaggregation in solution prior to functioning as monomer. This is consistent with 

aggregation model Aggl, where a dynamic equilibrium of aggregate states would be likely to exist. 

It is probably less consistent with aggregate model Agg2, which would constitute a probably fairly 

stable aggregate of 16 monomer units.

Stem Cell inhibition has been shown not to be affected by mutation of Lys 44 or Arg 45. 

Therefore Stem Cell inhibition may well use the same receptor-binding region on M IP-la as 

interacts with CCR5. There is some evidence to suggest that interaction with CCR1 and Stem Cell 

Inhibition are mediated by different parts of the molecule.

5.4.2 HIV-1/CD4 Interactions o f M IP-la

HIV-1 glycoprotein 120 (gpl20) loop v3 interacts with CD4 and a Chemokine receptor in order to 

allow entry of HIV-1 to human cells. M IP-la, as well as MIP-lp and RANTES, has been shown 

to prevent the infiltration the virus into some cells, presumably by inhibiting this interaction. It is 

possible that the viral protein mimics the way in which M IP-la interacts with the receptor, and 

that any model of the interaction between M IP-la and CCR5 would also have implications for the 

interaction between CCR5 and viral glycoproteins.



It is possible that the dimerisation of M IP-la and the interaction between CCR5 and M IP-la 

involve similar contacts. The precise conformation of M IP-la in the dimer interface region might 

perhaps provide some indication of the way in which gpl20 interacts with CCR5.

5.4.3 GAG-Binding by M IP-la and P-Chemokines

While it is known that M IP-la binds heparin and other glycosaminoglycans, the specific interac­

tions involved and affinity for various GAG populations have not been studied. A recent inves­

tigation identified a probable heparin-binding site on human M IP-la, which was consistent with 

previous mutagenesis data156. The residues Arg 18, Arg 46 and Arg 48 in human M IP-la were 

each shown to be essential for heparin binding. In addition, residues Lys 45 and Lys 61 were 

shown not to be involved. A related murine M IP-la mutant, called HepMut, in which Lys 44 

and Arg 45 had been neutralised, did not bind to proteoglycans94. These two studies appear to be 

slightly at odds with one another, as the first identifies Lys 44 as unimportant but the second sug­

gests that this residue is vital. Since the second case was a double mutant however, it is possible 

that all the biochemical properties ascribed to HepMut are due specifically to the neutralisation of 

Arg 45.

The observed biochemical properties of the various mutants appear also to be contradictory. 

While mutant R45A bound to CCR1 with the same efficacy as native protein1 56 and was equally 

active, HepMut was inactive on human monocytes, which is likely to indicate a compromised 

ability to bind to human CCR194.

It is proposed that the residues Arg 17, Arg 45 and Arg 47 form what is known as a “cationic 

cradle” (as shown in Figure 5.9), and that Lys 18 may also contribute157. The M IP-la structures 

are consistent with the formation of a short cleft lined by these residues, although Arg 21 seems to 

point away from the other basic residues and appears unlikely to be involved. What is interesting 

is that this proposed “cradle” is in fact the dimerisation site on M IP-la. This implies that GAG 

binding would disrupt formation of M IP-la multimers larger than dimers, and vice versa. It 

also suggests that at least some of the dimer-dimer interactions observed in the tetrameric mutant 

structures will mirror interactions that occur upon GAG binding by M IP-la.

Although these results are apparently contradictory, they raise some very interesting points 

regarding the interactions of M IP-la with proteoglycans. Firstly, both studies indicate that unlike 

members of the a-Chemokine family such as PF4, the heparin binding site on M IP-la is a single 

patch of positive potential formed by, at most, three residues within a monomer. Secondly, the 

physiological role of such an interaction is unknown and there are several potential reasons for
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Figure 5.9: R esidues involved in the proposed cationic cradle in M IP -la
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it. Glycosaminoglycans, bound to the surface of endothelial cells, may bind Chemokines in order 

to immobilise them and hence form a chemotactic gradient. It is also possible that Chemokines 

are bound in order to provide a method of presentation to target cells, or in order to increase local 

concentration of a particular Chemokine , perhaps to facilitate formation of multimers158.

Previous mutagenesis studies on p-Chemokines identified the regions close to the first disul­

phide pair and the loop containing the third disulphide as being essential for receptor binding148 

on monocytes. Inspection of the M IP-la structure indicates that in the monomer these regions are 

substantially removed from the region containing the heparin binding site. This makes it unlikely 

that both regions would be involved simultaneously in interactions with a common receptor, and 

suggests that the CCR1 and GAG receptor binding regions on M IP-la are distinct.

The heparin-binding site in the MCP-1 structure shows a stripe of positive potential, similar to 

that seen for PF4 and the a-Chemokines. However, this band is nowhere near as pronounced, and 

does not encircle the molecule. Unlike the heparin-binding portion of PF4, this patch of positive 

potential appears not to involve the C-terminal helices at all. This suggests that the heparin- 

binding mechanisms of MIP and MCP p-Chemokines are distinct, and that both are different to 

that observed for the a-Chemokines. However, assuming that 1-309 dimerises in the same way 

as the MCP proteins, the preponderance of basic residues in its probable C-terminal helix is very 

reminiscent of the corresponding region of the a-Chemokines, and suggests that this particular P- 

Chemokine may bind heparin in a way similar to that observed for PF4. In addition, mutagenesis 

studies have shown some of these basic residues to be essential for heparin binding, suggesting 

that there may be several different heparin interaction mechanisms, even within the p-Chemokine 

family.

Interestingly, although the p-Chemokines are all thought to function as monomers, there is 

evidence to suggest that MCP-1 can bind to its receptor in the dimeric form158. IL- 8  has also been 

shown to be able to bind to its receptor as a dimer159, and so it is tempting to speculate that there 

may be some role for the GAG-binding surface of the dimer in promoting such an interaction.

Another interesting observation is that C-terminally truncated IL- 8  is unable to bind to hep­

arin, and is not fully active as a chemoattractant. This implies that either the GAG-binding region 

of IL- 8  is also involved in receptor-binding, or that the capacity to bind GAGs is required in order 

to bind to IL- 8  receptors. Given that MCP-1 and MCP-3 form a similar dimer to IL-8 , it is natural 

to wonder whether these two molecules should be able to cross-react with IL- 8  receptors. How­

ever, the N-terminus of MCP-1 has been shown to be essential for binding to its receptor, CCR2. 

This suggests that the specific regions of IL- 8  and MCP-1 required to bind to their respective
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receptors occur at fairly distant parts of the molecules, despite their GAG-binding regions being 

comparitively close.

5.4.4 Redefinition o f Chemokine Family Boundaries

Three residues, Tyr 28, Arg 30 and Asp 6 8  have been identified as being essential for the forma­

tion of the IL-8 -like dimer by MCP-1. These residues are involved in a small hydrogen-bonded 

network which enables interaction between the helices on each monomer. In the MCP-1 tetramer 

which involves this dimerisation interaction, there also appear to be several important internal 

electrostatic interactions. Residues Arg 29 and Glu 50 interact via salt bridges, and Lys 44 is also 

internal to the tetramer and may also interact with Glu 50 either directly or via water molecules. 

In addition, two other residues, Thr 10 and Pro 8 , point towards the internal cavity in the MCP-1 

tetramer. Previous mutagenesis studies had replaced Thr 10 with Arg and generated an inactive 

MCP-1 mutant. Mutation of the residues Arg 30 and Asp 6 8  had significantly less effect on bio­

logical activity, while residue Tyr 28 appeared to be so vital to both activity and stability that when 

it was mutated the resultant peptide was improperly processed and was not secreted.

MCP-1 tetramerisation seems to be stabilised by electrostatic interactions involving residues 

Arg 29, Lys 44 and Glu 50. While the dimerisation and tetramerisation processes in M IP-la have 

been shown to be predominantly hydrophobic, it is uncertain whether the same is true for MCP- 

1. Examination of sequence alignment for the p-Chemokines shows that these three residues are 

conserved within the MCP branch of the P-Chemokines and are completely unconserved within 

the MIP proteins (See Table 5.5). This suggests that these proteins will be members of a p- 

Chemokine subfamily, will be structurally and functionally similar, and will be the only members 

of the p-Chemokine family which can form multimers using the IL- 8  dimer-like interaction. The 

implication therefore is that MCP-1, MCP-2, MCP-3, MCP-5 and Eotaxin, but perhaps not MCP- 

4, will be members of the MCP subgroup of the p-Chemokine family.

Conversely, it can also be seen from such an alignment that there are also certain residues con­

served only in those proteins related to M IP-la. More specifically, some of those residues already 

identified as being crucial to the formation of M IP-la dimers, tetramers and higher aggregates 

are conserved in MIP-lp, RANTES, HCC-1, ILINCK and DC-CK-1 (See Tables 5.5 and 1.2). 

The sequence identity analysis of the various members of the p-Chemokine family has already 

provided some related clues, but this study seems to indicate that while M IP-la, MIP-ip, HCC-1, 

ILINCK and DC-CK-1 are very closely related, RANTES is a little different and does not contain 

exactly the same pattern of conserved residues. This is reflected in the receptor-binding pattern
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of RANTES in comparison to the other MIP-like proteins. RANTES, in binding to CCR3 and 

CCR 10 appears to bear more similarity to the MCP proteins than the other members of the MIP 

subfamily. Residues Asp 26, Arg 45 and Arg 47, proposed as being important to tetramerisation, 

have been confirmed as such by the M IP-la tetramer structures. Each of them is either conserved 

or conservatively mutated in MIP-lp, RANTES, HCC-1, ILINCK and DC-CK-1. While many 

other unrelated P-Chemokines have positively charged residues at the positions of the conserved 

motif KRXR, Asp 26 is completely unconserved throughout the remaining members of the p- 

Chemokine family. This suggests that the dimer-dimer interaction in these molecules requires a 

salt-bridge between a specific single negatively-charged residue and a patch of positively charged 

residues. The existing mutagenesis data for M IP-la would concur with this hypothesis. Neutrali­

sation of Asp 26 produces a molecule that cannot aggregate past the dimer state, whereas both Lys 

44 and Arg 45 must be neutralised to produce a similar effect. In addition, there is still evidence 

for the presence of some larger multimers even when Lys 44 and Arg 45 have been neutralised. 

Glu 29 also appears to be conserved as an acidic amino acid in the MIP-like proteins, but as a 

basic amino acid in MCP-like proteins.

Mapping the M IP-la structure onto that of MCP-3 allows investigation of the specific interac­

tions within these molecules which determine the mode of dimerisation. Comparing the M IP-la 

dimer to that of MCP-3, the following observations can be made:

• Tyr 28 (numbering according to M IP-la) is conserved and has the same rotamer in both.

• Glu 6 6  replaces Asp 6 8  - the new side-chain is too long to allow H-bonding to Tyr 28.

• Asp 26 replaces Ser 27 - this produces a steric clash with Tyr 28' on the opposing monomer.

•  Glu 29 replaces Arg 30 - the new side-chain is not long enough to allow interaction with Tyr 

28. Arg 30 is presumably required to balance the charge on Asp 6 8  as well. In the MCP-3 

dimer Asp 6 8  comes unfavourably close to Asp 6 8 ' on the other monomer - presumably the 

presence of Arg 30 alleviates this problem.

•  Lys 44 and Arg 45 generate steric clashes with the N-terminus of the opposite monomer. In 

MCP-1, the corresponding residues are small hydrophobics. As Lys 44 is conserved in some 

MCP proteins, but Arg 45 is not, it is presumably the latter which is primarily responsible.

Although none of the examples given above represents a major clash, the presence of a few 

such adverse steric interactions would probably be enough to push the monomers slightly further
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apart. Since the monomers in the MCP-3 dimer are already considerably more separated than in 

IL - 8  and lack the stabilisation of an extended p-sheet, this extra loss of stability would be enough 

to make this dimer less favourable than that formed by the MIP proteins.

The problems encountered in modelling a M IP-la monomer-monomer interaction via the 

MCP dimerisation method correspond very well with the comparison of the sequences of MIP 

and MCP proteins in Section 1.3.2. Most of the residues which are conserved differently within 

these two families are directly involved in monomer-monomer interactions forming one of the 

two dimers. The most notable exception is the observed difference in charged residue distribu­

tion in the C-terminal helices of the two families. While M IP-la, MIP-lp and, to a lesser extent, 

RANTES, have a propensity for acidic residues in this region, most of the other p-Chemokines 

have a high proportion of basic residues. It is possible that the means to stabilise such a knot 

of positive charges exists in the MCP-3 dimer, but a similar knot of negative charges induces 

instability into this particular mode of interaction.

The idea that a single salt-bridge interaction between dimers is sufficient to explain the gen­

eration of the M IP-la tetramer is at odds with spectroscopic evidence. As was discussed earlier, 

spectroscopic data indicate that the major stabilising force in the dimer-dimer interaction is hy­

drophobic. It seems likely that this is in fact true, given the extensive areas of surface on each dimer 

involved in the interaction. While such interactions may be favourable for all p-Chemokines, it 

is possible that only for M IP-la and related proteins is there the possibility of the Asp 26 salt- 

bridge interaction to anchor the two dimers together. Without it, dimer-dimer interactions would 

be a transient phenomenon, and the dimer-tetramer equilibrium would favour the presence of the 

dimer.

It is possible that lack of either of the two motifs identified as important for tetramer forma­

tion precludes a Chemokine from self association to anything larger than a dimer. Certainly there 

are many novel members of the p-Chemokine family which do not fall into either of the newly 

defined groups, and are correspondingly different when sequence identity and chromosomal loca­

tion are considered. Alternatively, there may be other Chemokine aggregation methods still to be 

discovered.

Three definite subfamilies, the MIPs, the MCPs and the Exodus proteins, appear to exist within 

the p-Chemokine family. Whether further subdivisions of the family will be necessary remains to 

be seen, although several of the known P-Chemokines do not seem to correspond to any of these 

three. It does seem likely that as more and more examples are discovered, the specific differences 

between the various proteins will become more apparent and their grouping and nomenclature will
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have to be further rationalised.

Figure 5.10 is a summary of all relevant data for the characterised p-Chemokines. It is an 

attempt to subdivide the proteins based on their sequence similarities26, chromosomal location 

and receptor-binding patterns. It seems clear from the sequence comparison in the right-hand 

portion of the diagram, and from the previous discussion in Section 1.3.2 that there are three 

distinct clusters - the MIP proteins, the MCP proteins and the Exodus proteins. The MIP proteins 

are coloured blue, the MCP proteins red, and the Exodus proteins green for clarity.

While the MIP and MCP groups occur at similar positions on the same chromosome, the other 

P-Chemokines have more remote locations. This observation, allied to the sequence compari­

son, suggests a more simple distinction between these subfamilies than would be expected from 

biochemical considerations.

However, the binding patterns of the various receptors reflect the true complexity of the P~ 

Chemokine system. Clearly there is a subset of receptors which binds MIP proteins (CCR4, CCR5 

and perhaps CCR9), and a subset which binds MCP proteins (CCR2). However, receptors CCR1, 

CCR3 and CCR10 all bind different subsets of both MIP and MCP proteins. Another receptor 

subset (CCR6 , CCR7, CCR8 ) is specific for a single p-Chemokine. Even CCR4 is only weakly 

affected by RANTES and M IP-la, and can be considered as a specific receptor for TARC.

At present, the underlying organisation of the p-Chemokine receptor family appears to be as 

follows:

•  Proteins in the M IP-la family bind to a subfamily of shared receptors.

•  Proteins in the MCP family bind to a different subfamily of shared receptors.

• A third subfamily of receptors can bind proteins from both the M IP-la and MCP branches.

•  This receptor type appears to favour proteins which are intermediate in character between

MIP and MCP families, most notably RANTES and MCP-4.

•  A fourth subfamily of receptors is specific for a single P-Chemokine.

Clearly the network of p-Chemokines and their receptors in extremely complex, and is only

beginning to be understood. However the pivotal role which the Chemokines occupy within the 

immune system has led to their exploitation by a variety of pathogenic organisms. Their impor­

tance in viral infections such as HIV is certain to promote the identification and characterisation 

of novel ligands and receptors, and should improve understanding of this fascinating and intricate
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Figure 5.10: Summary o f available data on P-C hem okines and their receptors
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system. The great variation in receptor-binding specificities of the various P-Chemokine ligands, 

allied to the large number of receptors with overlapping but slightly differing functions, provides 

the Chemokine system with the flexibility and versatility required for such an important compo­

nent of the immune response.
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6. SUMMARY

The structures of three interesting structural mutants of the Chemokine M IP-la have been solved 

by X-ray crystallography.

As M IP-la tends to extensively self-aggregate under various conditions, non-aggregating mu­

tants were generated by successive neutralisation of acidic amino acids in its carboxy-terminal 

region. The three mutants thus generated showed stable molecular weights corresponding to 

monomeric, dimeric and tetrameric variants.

These mutants were crystallised and X-ray diffraction data were collected from each of them. 

The phase problem was solved by SIRAS in the case of the monomeric mutant, and by Molecular 

Replacement in the case of the dimeric and tetrameric mutants.

The resulting structures have revealed the way in which M IP-la forms multimers from monomeric 

units. The structures of monomer, dimer and tetramer were unambiguously determined, and mod­

els for the structures of larger aggregates have been proposed.

The high resolution structure of the M IP-la tetramer will be extremely useful in investigat­

ing the interactions between P-Chemokines and their receptors. It is the highest resolution p- 

Chemokine structure known to date, and is also the first example of a novel method of Chemokine 

tetramerisation.

The existence of a second method of multimerisation within the p-Chemokine family has many 

implications. It is now clear that the p-Chemokine family consists of several subfamilies. While 

they were known to be functionally distinct, the M IP-la structures have shown that there are also 

structural distinctions.

Greater understanding of the aggregation method of M IP-la will direct the search for more 

effective and more clinically useful stem cell inhibitors. Knowledge of the precise conformation 

of receptor-binding portions of the molecule will aid the search for small molecules able to mimic 

the SCI and anti-HIV properties of M IP-la.

As the amount of p-Chemokine structural data available increases, so too does the understand­

ing of the complex way in which they interact with their receptors.
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APPENDIX



A. ALTERNATE NAMES OF CHEMOKINES

Chemokine Family Human Name(s) Murine Name(s)

9E3 a Only Chick form known 9E3, EMF-1, CEF-4

ENA-78 a ENA-78 not known
GCP-2 a Granulocyte Chemotactic Protein not known
Y-IP10 a •y-IPIO, INP-10 INP-10, CRG-2, IFI10, C7

GRO-a a GRO-a, MGSA, NAP-3, GRO, GRO-1 KC, Secretory Protein NS1

11^8 a IL-8, MDNCF, TCCF, NAP-1 
LDNAP, 3-10C, NAF, GCP-1, LUCT

not known

LIX a not known LIX

MIG a MIG mig, Ml 19

MIP-2a a MIP-2a, GRP-P, Gro-P, Gro2, MIP-2

MIP-2P a MIP-2p, GRP-y, Gro-y, Gro3 MIP-2

NCXC-1 a NCXC-1 not known
PF4 a Oncostatin-A, Iroplact not known

SDF-lo a SDF-la, SDF-ip, PBSF, SDF-1, PBSF. TPAR-1, TLSF,

(5-TG a P-TG, CTAP-m, LA-PF4, NAP-2, not known

DC-CK1 P DC-CK1, MIP-4, PARC, SCYA18, AMAC-1 not known
Eotaxin P Eotaxin, SCYA11 Eotaxin, Scyal 1

Eotaxin-2 P Eotaxin-2, MPIF-2, CkP-6, SCYA24 not known
Exodus P Exodus, LARC, MIP-3a, SCYA20 not known

Exodus-2 P Exodus-2, SLC, SCYA21, TCA4,6CKINE not known
Exodus-3 P Exodus-3, EBIl-ligand, SCYA19, MIP-3P not known

HCC-1 P HCC-1, NCC-2, SCYA14, CCC-1, HCC-3 not known
HCC-2 P HCC-2, MIP-5, NCC-3, CCC-2, SCYA15 not known
1-309 P 1-309, SCYA1 SIS-e, P500, TCA-3, SIS-f

ILINCK P ILINCK, NCC-4, LEC, SCYA16 not known

MCP-1 P MCP-1, MCAF, MIP-JE, HC11, SCYA2 JE, Scya2

MCP-2 P MCP-2, HC14, SCYA8 not known
MCP-3 P MCP-3, NC-28, SCYA7 MARC, FIC, Scya7
MCP-4 P MCP-4, NCC-1, SCYA13, CKP-10 not known
MCP-5 P not known MCP-5, Scyal2

MDC P MDC, STCP-1, SCYA22 not known
MIP-lo P MIP-la, LD78, SCYA3, G0S19-1 

SIS-P, PAT 464.2

MIP-lo, Scya3, SIS-a, L2G25B, TY-5

MIP-ip P MIP-ip, TCAP-2, Act-2, Pat 744, H400 

SIS-Y, LAG-1, HC21, SCYA4, G-26

MIP-ip, H400, SIS-Y, Scya4, L2G25C,

MlP-ly P not known MIP-Iy, P150-1, CCF-18, MRP-2, Scya9
MRP-1 P not known MRP-1, CIO, Scya6, L2G75B

MPIF-1 P MPIF-1, CkP-8, MIP-3, SCYA23 not known

RANTES P RANTES, SIS-S, SCYA5 RANTES, SIS-8, MURANTES, Scya5

TARC P TARC, SCYA17 not known

TECK P TECK, SCYA25 not known

Lymphotactin Y Lymphotactin, ATAC Lymphotactin

Fractalldne 8 Fractalldne, Neurotactin Fractalldne, Neurotactin
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B. CRYSTALLISATION THEORY

In a crystallography experiment, the aim is to derive the three-dimensional structure of a sample 

by examining the way in which it diffracts an X-ray beam of a particular wavelength. Crystals 

are used as they are a huge array of identically oriented objects, and therefore give a diffraction 

signal which is amplified with respect to that of a single object. The strength and quality of 

the diffraction signal obtained from a crystal will depend on its size and internal order. It is 

therefore desirable to be able to grow large, well-ordered single crystals of a protein to aid structure 

determination, although this is often far from straightforward. This Appendix gives an outline of 

the theory of protein crystallisation and describes some of the variables which are important in 

many crystallisation experiments.

B. 1 Theory o f  Crystallisation

In any type of crystallisation experiment, the aim is to supersaturate the protein solution, and 

then to allow the solution to become less saturated in a controlled fashion, hopefully resulting 

in well-ordered crystals. This is most commonly done by vapour diffusion (see Section B.2.3), 

where diffusion of a solvent away from the protein solution results in supersaturation and often 

crystallisation.

The crystallisation of proteins is a very complex and poorly understood process. There are 

many parameters controlling the rate at which supersaturation is achieved and the rates of crystal 

nucleation and growth, and it is important to consider each of these when attempting to crystallise 

proteins. They include temperature, pH, protein concentration, presence and concentration of 

precipitants, salts, detergents or other additives. Given the large number of parameters that can be 

varied and the fact that only small amounts of protein are generally available, a full-matrix search 

of all of them is impossible. Therefore it is common to employ a sparse-matrix screening system 

in initial crystallisation trials, in order to sample as much of “crystallisation space” as possible". 

Several sparse-matrix screens are now commercially available.

It will be thermodynamically favourable for a protein to come out of solution when it becomes 

supersaturated. However, this does not necessarily result in crystallisation. The strategy of a crys-
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tallisation experiment is best explained by the use of a solubility diagram such as Figure B . l .  At 

any point below the Solubility Curve in this diagram, the protein is soluble. At any point above the 

line, the protein solution is supersaturated. At any point above the Precipitation Curve, the pro­

tein will precipitate immediately, and crystallisation will not occur. These diagrams (Figures B .l 

and B .2) are schematic representations o f the relationship between protein concentration and crys­

tallising agent concentration during crystallisation

Precipita tion
C urve

Solubility
C urve

Protein
C oncen tration

Soluble Region

C rystallising
Agent

C oncentration

' X  M etastable Region

Figure B .l:  Phase diagram for protein in solution.

In order for crystal nucleation to take place, the protein solution must lie within the Metastable 

Region. W hile here, the solution will be able to produce small clusters o f protein m olecules which 

can act as nucleation centres, and can grow larger by addition of more protein m olecules. Recent 

theoretical studies suggest that the initial nuclei consist o f as few as four m olecules, and can be 

formed within microseconds o f the crystallisation drop being prepared160. A s more nucleation 

sites are formed, and as these proto-crystals grow larger, the protein concentration decreases. In 

order for large crystals to form, it is important that the rate at which nucleation sites are formed is 

low, or else many microcrystals will be formed and the solution will become depleted o f protein 

before they can grow to reasonable size.

Therefore the ideal scenario is one in which the protein solution begins in the Metastable 

Region, and forms one or more nuclei. These crystals grow larger, and so the protein concentration 

decreases, bringing the solution close to the Solubility Curve again. Once at this point, equilibrium  

has been reached, and no more nucleation or crystal growth will occur. Figure B .2 depicts some
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of the possible outcomes of crystallisation experiments.

Protein
C oncentration

Crystallising
Agent

Concentration

Precipitation
Curve

Solubility
Curve

A: Equilibrium reached before nucleation occurs.

No crystals formed.

B: Protein precipitates.

C: No crystals or precipitate formed.

Clear drop.

D: Crystals formed.

Figure B.2: Phase diagram for possible crystallisation experim ents..

B .2  F actors a ffe c tin g  C rys ta llisa tio n

B .2 .1  T em p era tu re

Protein crystals have been obtained from a wide variety o f temperatures. It is advisable to main­

tain a constant temperature during crystallisation as even small changes in temperature can have 

significant effects. It is also possible to use a temperature gradient to bring a protein out o f solution 

and form crystals, but this requires a very precise control o f the temperature and its rate o f change.
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B.2.2 pH

The pH of the crystallisation medium is generally the parameter that can be most easily varied, but 

is often the most sensitive parameter as well. A low concentration of a buffering agent is usually 

present in crystallisation trials to maintain a constant pH. A variety of common buffers are used 

in protein crystallisation, covering a useful pH range of 2.0 to 12.0. A protein tends to be least 

soluble at or near its isoelectric point, so by choosing a buffering agent at a pH close to this it is 

possible to maximise the chances of the protein coming out of solution.

B.2.3 Precipitant

Although some proteins will naturally crystallise from solution given time, most must be forced 

out of solution using substances known as precipitants. These are mixed with the protein solution 

and equilibrated with a reservoir solution containing the precipitant at a higher concentration . As 

the vapour pressures of the two solutions equilibrate, water, or any volatile solvent, will diffuse 

from the protein solution to the reservoir, gradually increasing the concentrations of protein and 

the other components in the drop. This is the vapour diffusion technique.

For crystallisation to occur, the protein must reach a sufficient degree of supersaturation for 

nucleation to occur. In some cases this is not possible, but existing nuclei can be introduced to the 

crystallisation drop in the form of “seeds” which then grow normally.

One of the most commonly used precipitants is salt, which has a fairly significant effect on 

the ionic strength of a protein solution, and hence on the solubility of a protein in that solution. 

Protein solubility tends to decrease with increasing salt concentration. This property is exploited 

in the “salting out” procedure, a method of crystallising proteins by slowly increasing the salt 

concentration within the protein solution. As the salt concentration increases, so does the ionic 

strength of the protein solution. The salt ions mask the charges on the surface of the protein, with 

the result that the protein's solubility depends on hydrophobic effects rather than interactions of 

its charged residues with their environment. By coordinating the water surrounding the protein, 

sufficient salt concentrations begin to strip away water molecules involved in protein solvation. 

This forces the protein out of solution, hopefully resulting in crystallisation. Protein solubility 

also tends to be low at very low ionic strength, and in certain cases it is possible to crystallise 

proteins by “salting out”. This involves decreasing the salt concentration in the protein drop to 

the point where the charges on the protein surface are no longer masked by salt ions, and the 

protein molecules begin to aggregate via salt bridges, potentially forming crystals. This method is
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particularly useful for highly charged proteins.

Other commonly used precipitants include volatile compounds such as methanol, alcohols, 

sugars and ethylene glycols. Polyethylene Glycol (PEG), which is available as a polymer with a 

range of Molecular Weights from 200 to 20000, is the most commonly used precipitant. Each of 

these compounds performs a similar task to that of the salt in the “salting in” and “salting out” 

procedures; binding water molecules and eventually stripping off so many that the protein is no 

longer solvated. Unlike salts however, they have no effect on the ionic strength of the crystalli­

sation solution. For this reason, and due to the variety of available molecular weights, PEG is an 

extremely useful and versatile reagent for protein crystallisation.

B.2.4 Protein Concentration

It is clear from Figure B.l that the concentration of the protein sample used in a crystallisation 

experiment will have a profound effect on the kinetics of nucleation and crystal growth. Higher 

protein concentration will bring the protein closer to supersaturation. In general, protein concen­

trations of around lOmg ml-1 are used in initial trials, but there are examples where much higher 

concentrations were required for nucleation. At the other extreme, it is possible to crystallise pro­

teins at relatively low concentrations (less than lmg ml-1) using a sufficiently high precipitant 

concentration. In this case, there is the advantage that equilibration occurs rapidly and crystals can 

therefore be obtained in a matter of hours.

B.2.5 Detergent

In the crystallisation of membrane proteins, it is necessary to simulate the lipidic environment of 

the exposed hydrophobic portions of the protein in order to maintain its structural integrity. This 

is commonly done by replacing the lipid molecules surrounding the crystal with molecules of a 

detergent. They generally consist of uncharged polar head groups with short aliphatic chains.

B.2.6 Additives

In some specific cases, most commonly for membrane proteins, the inclusion of a small molecule 

additive to the crystallisation mixture has been vital in obtaining high quality crystals. Amphiphilic 

molecules are generally used. Their mode of action is very poorly understood, but it is thought that 

they might interact in some way with detergent micelles to modify the parameters of a membrane 

protein crystallisation experiment.



C. M OLECULAR REPLACEMENT

C. 1 Overview

Molecular Replacement (MR) is an increasingly common technique in which a protein of known 

structure is used to phase an unknown protein of similar structure. In order to calculate phases for 

the unknown structure, the orientation of the known protein relative to the unknown protein must 

be determined. The MR technique allows the determination of the six parameters, three rotational 

and three translational, that define this orientation.

C.2 Rotation Function

The rotational and translational searches can be performed separately, greatly simplifying the prob­

lem. The rotational search is conventionally performed in reciprocal space by making use of the 

Patterson function. As it is the self-vectors in the Patterson that are of interest in the rotation 

search, the Patterson is calculated only within a sphere of radius r from the origin, r is generally 

close to the largest intramolecular distance, and therefore will exclude most of the cross vectors 

and include the majority of the self vectors.

The success or failure of a rotation search is generally assessed by considering the “rotation 

function”. By strict definition, this is a product function, composed of the original Patterson and 

the rotated Patterson161. Naturally the optimal Patterson overlap would be expected to correspond 

to the maximum of the product function.

C.3 Translation Function

For a successful rotation function solution, the second stage of the orientation procedure is known 

as the “translation function”. In this case it is the intermolecular vectors which are useful, so many 

of the modem MR programs automatically subtract the intramolecular vectors during computation 

of the translation function.

There are a variety of possible translation function techniques, including both real and recipro­

cal space methods. Most commonly, the translation function is also treated as a Patterson overlap
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function.

On successful completion of both rotation and translation steps, the search model is trans­

formed by the rotational and translational portions of the calculated orientation matrix to obtain 

an initial model and hence initial phasing for the unknown structure.

C.4 Rigid-Body Refinem ent

It is increasingly common to improve the orientation matrix obtained from Molecular Replacement 

by performing rigid-body refinement of the oriented search model relative to the diffraction data. 

As well as improving the quality of the model and hence the initial phasing, this also makes it 

possible to deal with search models in which there is a domain motion relative to the unknown 

structure.

C.5 Modifications o f  the basic M R  technique

Although the technique is now well-established, there are many recent and interesting variations. 

Patterson Correlation (PC) refinement is an analogue of the rigid-body refinement method, but is 

applied to a rotation function solution in order to improve the chances of obtaining a solution from 

the translation function. Phased translation searches can be performed when approximate phase 

information is available from another source. For example, if one part of a two-domain structure 

has been positioned, approximate phases from this part can be used to improve the translation 

search for the second component.

Although the number of proteins being solved by Molecular Replacement continues to rise, 

a variety of problems associated with the technique are also becoming apparent. Clearly it is 

necessary for the coordinates of a homologous structure to be available for use as a search model. 

This is becoming less and less of a problem, as the number of novel folds identified each year is 

declining. An increasing number of structures, particularly of smaller proteins, are being solved by 

NMR methods. It is generally thought (as discussed in Section 3.8.3) that such structures present 

some challenges when used in Molecular Replacement. Overcoming such difficulties will almost 

certainly be important in the near future as more and more NMR structures become available.

Finally, the majority of unsuccessful Molecular Replacement attempts are desribed as a failure 

of the MR technique. However, it is generally more correct to observe that among the many 

solutions that MR provided, one may well be correct. Unfortunately, the criteria for distinction 

between correct and incorrect solutions are unable to provide the correct one. It seems possible
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that improving these criteria will have a more profound effect that other improvements to the MR 

technique.
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D. GLOSSARY

•  Basophil: A type of leukocyte or white blood cell.

• Chemotaxis : Directed movement of cells.

• Chemokinesis : Increased random movement of cells.

• Eosinophil: A type of leukocyte or white blood cell.

• Leukocyte : Generic term for white blood cell. Among the different types of leukocyte are 

basophils, eosinophils, lymphocytes (of which there are two types, T- and B-), macrophages, 

monocytes and neutrophils.

• Lymphocyte : A type of leukocyte. B-lymphocytes are responsible for antibody production, 

T-lymphocytes are responsible for cell-mediated immunity.

• Macrophage : A type of leukocyte. Found in mammalian tissue, derived from monocytes.

•  Monocyte : A type of leukocyte. Found in blood, differentiate to form macrophages.

• Neutrophil: The most common type of leukocyte.
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E. STRUCTURE VALIDATION

The accuracy of the derived structures was checked using the validation programs PROCHECK162 

and WHATCHECK163. Some of the statistics output by these programs are shown in Table E.l. 

Ramachandran plots for the dimer structure and for both crystal forms of the tetramer are presented 

in Figures E .l, E.2 and E.3

Structure Dimer m-Tetramer o-Tetramer

RMSD (bond lengths)

ESU (atomic positions, Cruickshanks DPI) 

RMSD (bond angles)

Average Temperature Factor 

ESU (temperature factor) 

Correlation Coefficient (F0fe to Fcaic) 
Free Correlation Coefficient (F0̂  to Fca/c)

0.025A

0.189A

4.4°

60.7A2

6.1A2

0.95

0.92

0.016A

0.226A

2.9°

44.4A2

5.22A2

0.92

0.89

0.015A 

0.129 A 
3.8° 

32.0A2 

2.59A2 

0.94 

0.93

Table E. l:  Geometric statistics for the refined dimer and tetramer structures.
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pm2_may2_01 .ps

ALA 5 (A7b

PROCHECK

Ramachandran Plot

Plot statistics

Residues in most favoured regions [A,B,L] 54 90.0%
Residues in additional allowed regions [a,b,l.p] 4 6.7%
Residues in generously allowed regions [~a,~b,~l,~p] 0 0.0%
Residues in disallowed regions 2 3.3%

Number o f non-glycine and non-proline residues 60 100.0%

Number o f end-residues (excl. Gly and Pro) 1

Number of glycine residues (shown as triangles) 2
Number of proline residues 3

Total number of residues 66

Based on an analysis of 118 structures of resolution of at least 2.0 Angstroms 
and R-factor no greater than 20%, a good quality model would be expected 

to have over 90% in the most favoured regions.

Phi (degrees)

Figure E. 1: Ramachandran plot: Dimeric mutant
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PROCHECK

Ramachandran Plot

<D
<Di-
bf)
<u

T3

Phi (degrees)
Plot statistics

Residues in most favoured regions [A,B,L]
Residues in additional allowed regions [a,b,l,p] 
Residues in generously allowed regions [-a,~b,~l,~p] 
Residues in disallowed regions

Number of non-glycine and non-proline residues

Number o f end-residues (excl. Gly and Pro)

Number o f glycine residues (shown as triangles) 
Number o f proline residues

Total number of residues

208 92.9%
15 6.7%
0 0.0%
1 0.4%

224 100.0%

Based on an analysis of 118 structures of resolution of at least 2.0 Angstroms 
and R-factor no greater than 20%, a good quality model would he expected 

to have over 90% in the most favoured regions.

pml_mono_m3_o_fit_01 .ps

Figure E.2: Ramachandran plot: Tetrameric mutant, monoclinic form



pml hr_m4.2.2_01 .ps

Ramachandran Plot

Phi (degrees)
Plot statistics

Residues in most favoured regions [A,B,L] 102 90.3%
Residues in additional allowed regions [a,b,l,p] 11 9.7%
Residues in generously allowed regions [~a,~b,~l,~p] 0 0.0%
Residues in disallowed regions 0 0.0%

Number o f non-glycine and non-proline residues 113 100.0%

Number o f cnd-residues (excl. Gly and Pro) 3

Number of glycine residues (shown as triangles) 4
Number o f proline residues 6

Total number of residues 126

Bused on an analysis of 118 structures of resolution of at least 2.0 Angstroms 
and R-factor no greater than 20%, a good quality model would he expected 

to have over 90% in the most favoured regions.

PROCHECK

Figure E.3: Ramachandran plot: Tetrameric mutant, orthorhombic form
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