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Summary

This thesis reports a study of the relative tolerances of infection by the 

powdery mildew fungus (Ervsiphe graminis f.sp. avenae) in one line of wild oat (Avena 

fatua) and two cultivars of cultivated oats (Avena sativa). cvs Lustre and Peniarth .

The extent to which mildew developed on the three lines was assessed at 

various stages of growth by measuring percentage leaf area covered, and conidial 

production per plant and also amounts of chitin produced per unit fresh weight of leaf 

tissue. At all stages of plant growth, the line of wild oat supported more fungal growth 

than did cv. Lustre and even more so than cv. Peniarth .

The effects of infection on growth and development of the three lines was 

assessed by growth analysis. In all lines, infection reduced dry matter production and 

the development of the different plant structures particularly the leaf. The partitioning 

of photosynthates to different parts of the plant was also altered. Levels of infection of 

between about 20 and 25 % of leaf area infected reduced dry matter production in the 

cultivated oats but reductions were not evident in wild oat until about 30 % of the leaf 

area was infected. Infection had little or no effect on the pattern of translocation in wild 

oat whereas it did in the cultivated oats, especially in cv. Peniarth. Reductions in green 

leaf area were a consequence of losses due to the enhanced senescence of the lower 

leaves as well as to reductions in the final sizes of the upper leaves. The reduced size of 

the upper leaves resulted from reduced cell division and cell expansion. All the 

reductions occurred to a greater extent in the cultivated oats than in wild o a t.

The reduction in dry matter production was reflected in reductions in yield 

components in all lines. Infection reduced numbers of tillers, numbers of fertile tillers 

and the numbers of grains per panicle. The numbers of grains per plant, hundred grain 

weight and total grain yield were thus reduced although the proportion of total biomass 

converted to grain (harvest index) was not affected in any of the three lines. Again all 

the reductions were greater in the cultivated oats than in wild o a t.

The reduction in dry matter production was partly due to reductions in 

green leaf area but reductions in the rate of photosynthesis per unit of green leaf tissue



were also apparent. The photosynthetic efficiency was measured in infected and 

uninfected leaf tissue and also in the adjacent uninfected tissue of the infected leaf in 

wild oat and the cultivated oats using a Hansatech leaf electrode and by fluorescence 

analysis. The photosynthetic system in the infected tissue was reduced more by low 

levels of infection in the cultivated oats than by higher levels of infection in the wild 

oat. Compensatory photosynthesis in adjacent uninfected tissue was also reduced in all 

plant lines but not to the same extent as photosynthesis in the infected tissue. This was 

apparent in cv. Lustre but particularly so in wild oat. Thus infected leaves fixed less 

carbon than uninfected leaves but the total available to the plant and fungus in infected 

plants was reduced even more since more was lost through enhanced respiration. 

Measurements of dark respiration showed that infection increased the respiratory rate of 

infected and adjacent uninfected tissue in all three lines .

The reduced rates of photosynthesis could have been due to parasite 

induced stomatal closure since this would reduce the amount of CO2  diffusing to the 

carboxylation sites within the chloroplasts of the mesophyll. The effects of infection on 

stomatal diffusive resistance were measured using an automatic porometer. An increase 

in diffusive resistance was found in the infected leaves during the light period in all 

lines around 5 days after inoculation, when mycelium development became significant. 

This increase in diffusive resistance could reduce the diffusion of CO2  into the leaf to 

the mesophyll cells and in fact, a reduction in the amount of CO2  reaching the reaction 

centres in the chloroplasts was evident particularly in the cultivated oats. In contrast, a 

decrease in diffusive resistance, almost certainly due to greater than normal stomatal 

opening since mycelium development was between 1 to 2 %, was recorded during the 

dark period in the infected leaves of cultivated oats and wild oat. This decrease was 

recorded earlier in the cultivated oats than in wild o a t.

Some of the reduction in photosynthesis was also probably due to 

reductions in chlorophylls per unit area of leaf tissue. However, these reductions were 

not directly related to the reductions in photosynthesis since photosynthesis per 

milligram of chlorophyll in both infected and adjacent uninfected leaf tissue was not 

affected in any of the three lines. Thus the mechanisms by which photosynthesis was



impaired in infected leaves probably involved effects on photosynthetic electron 

transport after the PSII Qg binding site and thus on the thylakoid proton motive force. 

However, the exact site of inhibition of the photosynthetic electron transport is 

uncertain but inhibition may be due to photoinhibition of the Qg binding-protein or 

impairment of any subsequent component of the photosynthetic electron transport 

system including P S I.

This study showed that all aspects of growth measured were less reduced 

in wild oat than in the cultivated oats. Thus wild oat appears to be more tolerant of 

mildew infection than are the cultivated oats. However, the differences in tolerance 

between wild and cultivated oats were not great enough to suggest that tolerance is 

likely to be a useful character for inclusion in a conventional breeding programme for 

crop improvement.
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CHAPTER 1 Introduction 1

INTRODUCTION

Resistant cultivars have generally been very successful in limiting crop 

losses caused by many fungal parasites. Their use controls the genetic composition of 

the host population with which the parasite population must interact, and by restricting 

the ability of the parasite population to grow and reproduce enables the host to continue 

growth longer so that its yielding capacity is less impaired .

The commonest means of controlling plant parasites by resistance 

breeding has been through the use of major genes. In a few cases, major gene resistance 

has given lasting protection. For example, potato wart disease caused by Svnchvtrium 

endobioticum has been successfully controlled for many years through the use of 

resistant cultivars in most countries where potatoes are grown (Burton, 1989). Cultivars 

of tomato possessing a race-specific resistance gene against nailhead spot, a fruit, stem 

and leaf spot disease caused by Altemarlia tomato have been used to give good disease 

control (Crill, 1977). Some of the older English and French wheat varieties showed a 

good resistance for many years to the yellow rust caused by Puccinia striiformis until 

they were superseded by higher yielding varieties. For example, Little Joss, a winter 

wheat variety bred at Cambridge by Biffen (1907) was reported to be as resistant to 

yellow rust in the 1950's as when it was first bred. Innes (1974) reported that bacterial 

blight of cotton in the Sudan caused by Xanthomonas malvacearum was greatly 

reduced, and even almost eliminated by the use of resistant cultivars.

However, in most cases, major gene resistance has been effective only in 

the short term. Thus cultivars of wheat and oats having race-specific resistance to stem 

and crown rust have been found to be effective for a few years during which new 

parasite races to which the resistance was not effective became established (Ausemus, 

1943 ; Van Der Plank, 1968). Furthermore, major gene resistance to powdery mildew in 

barley and to leaf mould in tomatoes has not usually given lasting control of disease. 

Thus the causal organisms Ervsiphe graminis and Fulvia fulva have been able to 

develop new variants with virulence genes corresponding to the resistance genes used in 

the host. The transient nature of major gene resistance has been in many cases due to
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the tremendous variability of fungal parasites which enable them to overcome certain 

types of resistance, when the selection pressure in their favour is great enough (Russell,

1978).

In contrast to major gene resistance, which is generally non durable and 

race-specific, resistance controlled by polygenes tends to be durable and non-race- 

specific. Unfortunately polygenically controlled resistance rarely provides complete 

resistance. However, even levels of partial resistance can give useful disease control 

particularly when supported by other methods of control. For example, in the case of 

late blight of potato, partially resistant varieties are used in conjunction with fungicides. 

With some diseases, such as maize rust and sugar beet downy mildew, many varieties 

can express enough field resistance for additional control measures to be unnecessary 

(Russell, 1978).

In some crops adequate levels of partial resistance to important pathogens 

are not available, for example, in wheat and barley to the causal organism of take-all 

disease, Gaeumannomvces graminis. (Scott, 1981), in broad bean to the causal 

organisms of chocolate spot, Botrvtis fabae and Botrvtis cinerea (Harrison, 1988) and in 

potato to the causal organism of dry rot, Fusarium coeruleum (Leach and Webb, 1980). 

In such instances tolerance might be used in conjunction with existing levels of 

resistance as a breeding objective for the development of cultivars which produce an 

acceptable yield even when the crop is infected.

1.1. T olerance

Reviewing existing knowledge of tolerance is hampered by the fact that 

the term has been loosely used from early times to describe different aspects of the 

host-parasite interaction. In some instances, tolerance is considered to be a form of 

resistance. Slow-rusting is frequently considered to be an example of tolerance 

(Caldwell, 1958; Mussel, 1980). The term has also often been applied to plants which 

are known to be infected by a wilt fungus (Bell and Presley, 1969) or a virus (Bawden,
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1964) yet show few symptoms. In most cases the degree of infection was not 

determined and in some cases the plants may have contained limited parasite growth. 

Thus the term may have been applied to cases of partial resistance rather than true 

tolerance. Others, while recognizing that tolerance is a phenomenon distinct from 

resistance, classify it along with resistance for convenience (Browning et aL, 1977).

Some confusion between tolerance and resistance is inevitable because of 

a lack of knowledge of some aspects of the host-parasite interaction. The Shorter 

Oxford English Dictionary defines tolerance as the action or practice o f enduring or 

sustaining hardship or pain. The operative words are enduring and sustaining which 

mean to put up with or to bear with patience. Some misuse of the term has probably 

come from the failure of certain definitions to encompass mechanisms of tolerance 

based on the relative ability of a plant to tolerate the physical presence of a developing 

parasite or its metabolic products (tolerance of the parasite), and the relative ability of a 

plant to tolerate any damage a parasite may cause (tolerance of disease). Both Schafer 

(1971) and Gaunt (1981) in fact refer to the possibility of tolerance of the pathogen as 

distinct from tolerance of disease and Schafer (1971) offers a definition of tolerance, 

which encompasses both, as that capacity of a cultivar resulting in less yield or quality 

loss relative to disease severity or pathogen development when compared with other 

cultivars or crops.

The term tolerance should only be used in relation to properties or features 

of the host which enable it to endure or sustain given levels of parasite development 

(tolerance of the parasite), or disease (tolerance of disease), or both, and not in relation 

to properties or features which prevent or resist the development of the parasite or 

disease. Tolerance of the parasite, tolerance of disease and resistance to the parasite are 

likely to be determined by different sets of biochemical and physiological systems in 

the host, and so both may be present in any host. Thus a host should, in theory, be able 

to restrict the development of a parasite by resistance mechanisms but tolerate those 

levels of parasitic infection and disease which do occur (Clarke, 1984 and 1986).

Tolerance of the parasite is measured by relating the amount of parasite 

biomass to total disease whereas tolerance of disease is measured by relating the amount
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of disease produced, to the performance of the plant in terms of growth or yield 

(Clarke, 1986).

1.1.1. Physiological basis of tolerance

Parasites may stress or damage their host by various mechanisms during 

infection. Firstly, they may divert host metabolites to support their own growth and 

development. Secondly, they may produce metabolites which either directly or 

indirectly affect normal functioning of the cells and tissues of the host. Thirdly, they 

may disrupt the structure and integrity of host tissues. Some of this damage may be 

unavoidable in the sense that it is bound to occur when the parasite infects its host and 

completes its life cycle. Other damage may not be essential for parasite development 

and such damage could be considered avoidable (Clarke, 1984).

Unfortunately the potential value of tolerance cannot as yet be assessed 

because little is known about the nature of tolerance or the degree of tolerance that may 

be achieved.

1.2. The effects of infection on host growth and development

Most of the studies referred to in the following reviews have not related 

physiological changes in the infected plant to the extent of infection. However such 

studies have been included because they do indicate the kinds of effects that may occur 

in the infected plant as a result of the activities of the parasite .

The work of Harrison and Isaac (1969) is an early example of the 

application of growth analysis to plant pathological problems. They found that during 

the first 5 to 6 weeks of growth, potato plants infected with Verticillium albo-atrum or 

V. dahliae were morphologically similar to the control plants. However, during this 

period, the growth rate of the plants was affected as was the distribution of dry matter 

between the various organs. It was also found that Verticillium infection impaired the 

photosynthetic efficiency of the leaf area which was itself greatly reduced as the result
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of defoliation and stunting effects. In contrast to uninfected plants, infected ones had 

lower specific leaf areas, higher leaf weight ratios and leaf area ratios and lower relative 

growth rates and unit leaf rates .

A number of studies have been carried out in which growth analytical 

techniques have been aaplied to mildew infections. Thus Last (1962) reported that 

although total dry weight of Ervsiphe graminis f.sp. hordei infected barley (Hordeum 

vulgare) plants continued to increase throughout the period of investigation, control 

plants developed 59 % more dry matter than infected plants. Infected plants had a 

shorter main axis, produced fewer tillers per plant and developed a smaller leaf area per 

main axis and per tiller than did control plants. However, the size of the root system 

was reduced more than that of the shoot and, consequently, the dry weight ratio of 

root/total plant decreased. Infection thus affected the balance between the absorbing and 

the assimilating systems by decreasing the average dry weight of roots per unit leaf 

area. The efficiency of unit leaf area was also reduced by about 27 %. As a result of 

these alterations, fewer and smaller ears were produced by infected than uninfected 

plants. Similarly, Fric (1975) showed greater reductions in root than shoot dry weight 

caused by mildew infection in barley plants. He also found that infection reduced the 

number of tillers and their extension growth. The straw height of infected plants was 24 

% less than that of control plants. The loss in total leaf area paralleled the loss in shoot 

dry weight and both were attributed to a decrease in the number of leaves and tillers per 

plant. The mean unit leaf rate of infected plants was reduced by about 27 %. Ear 

development and yield per plant were also affected; the total yield per plant was 32 % 

less in the infected plants than in the controls .

Walters and Ayres (1981) also showed that the dry weights of root and 

shoot, the root/shoot ratio and the relative growth rate of barley plants infected with E. 

graminis f.sp. hordei were significantly reduced in infected plants when compared with 

controls.

The effects on growth will be affected by the growth stage at which 

infection occurs. When mildew infection occurs late in plant development, reductions in 

grain size were the only effect (Brooks, 1972). Early infection, however, reduced the
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number of fertile tillers, grain size and the number of grains per ear. Mildew infection 

of barley plants was found to result in reductions in the number of fertile tillers, the 

number of grains per ear and thousand grain weight, especially when plants were 

infected early in their development (Griffiths et al., 1975 ; Ayres and Zadoks, 1979).

Carver and Griffiths (1981) investigated the relationship between green 

leaf area and grain yield of barley plants infected with E. graminis f.sp. hordei. 

Infection affected neither number of leaves produced nor the number of spikelet 

primordia differentiated, on the main axis. The only obvious effects of mildew were 

reductions in green leaf area, the number of fertile tillers and grain yield. The reduction 

in grain yield (number of ears per plant and grains per ear) was a consequence of 

reductions in green leaf area pre-anthesis because of the importance of this latter in 

grain filling. They concluded that the damage produced by barley mildew infection was 

essentially confined to the period pre-anthesis. Roderick and Jones (1988) investigated 

the effects of E. graminis f.sp. avenae on yield components of eight cultivars of oats. 

They found that losses in grain yield were accounted for mainly by reductions in 

numbers of fertile panicles and thousand grain weights. The proportion of grain yield to 

total biomass, or harvest index, was also reduced .

None of the research cited so far indicated that cereals, or indeed any crop, 

has tolerance of powdery mildew infection because in no case were comparisons made 

between cultivars nor were the amount of parasite or disease measured. However some 

studies on interactions between the common annual weed Senecio vulgaris and 

Ervsiphe fischeri (Ben-Kalio and Clarke, 1979; Harry and Clarke, 1992) indicate that S. 

vulgaris possesses greater levels of tolerance of mildew infection than may be present in 

many crop plants. Thus even heavy levels of infection, in which between 75 % and 100 

% of total leaf area were colonized, did not affect chlorophyll levels or the rate of dry 

matter production per unit area of leaf, and nor did they affect the distribution of 

photosynthates around the plant. However, total plant growth and the yield of fruits 

were reduced, apparently as a result of a reduction in the expansion of leaf tissue. The 

responses of S. vulgaris are in stark contrast to those of cultivated wheat or barley 

infected by E. graminis. as described earlier. A comparative study of the effects of E.
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grarainis on the diffusive resistance of the leaves of the weed grass Elvmus repens and 

of barley showed that about 25 % of the leaf area of the grass required to be infected 

before there was a significant change in diffusive resistance compared to the controls, 

whereas a significant change was found with barley when less than 10 % of the leaf 

area was colonized (unpublished results). Both these studies clearly indicate that the 

wild plants are much more tolerant of powdery mildew infection than cultivated cereals 

are (Clarke, 1986).

Doodson et al. (1964), in a detailed quantitative study of the effects of 

Puccinia striiformis on the growth of wheat (Triticum aestivum), reported a reduction in 

plant height by about 26 % and reductions in the size of leaves and number of tillers. 

Ear emergence and anthesis were delayed by about 14 days. In fully infected plants, the 

number of grains per ear was reduced by up to 42 % and the mean dry weight per grain 

by about 34 %. There was also a very striking reduction in root development when 

compared with other parts of the infected plant. The mean root dry weight of fully 

infected plants was reduced by about 78 %. This was probably related to the reduction 

in the amount of translocates moving to the roots from the aerial parts in infected 

plants, and also to the fact that the uninfected plants produced two to three times as 

many tillers as infected plants, each of which produced its own root system. Owera et 

a l , (1981) showed that P. hordei infection of the first leaf of barley resulted in plants 

with about 20 % less dry weight than controls 16 days after inoculation. The overall 

decrease in weight was paralleled by an increase in weight of the infected leaf. The 

amount of translocates 16 days after inoculation was reduced by about 63 % as a result 

of reduced photosynthesis in, and export from, the infected leaf. The infection did not 

alter the root/shoot ratio. Whether this was due to the small amount of fungal growth (a 

small sink) or to other effects during the course of infection was not investigated .

Mather and Hansing (1960) found that infection of wheat plants with loose 

smut, Ustilago tritici. caused total dry weight to be reduced by 33 %, root dry weight by 

32 %, main axis height by 13 % and tiller number by 11 % in infected plants. Billett 

and Burnett (1978) examined the effects of U. mavdis infection on the growth of maize 

(Zea mays) plants. They found that infection resulted in an increase in main axis dry
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weight from 3 days after inoculation until early fungus sporulation, and then it 

decreased. The initial increase was paralleled by a decrease in dry weight of other 

developing plant parts. As infection progressed, both plant dry weight and leaf area 

were reduced. Leaf expansion was delayed and final leaf size reduced. Infected areas of 

the leaf blades had became chlorotic 3 to 5 days after inoculation, having lost 60 % of 

their chlorophyll. The roots suffered a proportionately larger reduction in dry weight 

than the shoot.

In all the examples cited above, the root / shoot dry weight ratio of 

infected plants was generally decreased as a result of infection or was unaffected. In 

some host-pathogen combinations, however, this ratio has been found to increase. For 

example, infection of cabbage plants with Plasmodiophora brassica was found to cause 

the root / shoot ratio to increase as the result of the diversion of metabolites to the 

developing clubroot gall at the expense of shoot development. However, as with the 

other cases reported earlier, the decrease in total leaf area closely paralleled that of total 

plant dry weight. From the 35th day after inoculation onwards, infected plants had 

smaller and thinner leaves than those of control plants. Leaf expansion was also 

delayed, one new leaf unfolding every 9 days on infected plants against one every 4 

days on control plants. The dry weight of root per unit area of leaf was decreased and 

unit leaf rate was consistently lowered, on the average by about 15 % of the control 

value (Macfarlane and Last, 1959).

It appears from all these studies that the infected regions of the plant 

increase in dry weight at the expense of other plant parts, and in cereals infected with 

powdery mildews and rusts especially, at the expense of the roots and tillers. The extent 

to which fungal material accounted for the localised increase in dry weight was usually 

undetermined.

For most of the examples cited and for others, the various investigators 

have shown the effects of parasitic activities on the host growth and development. They 

have also studied the consequences of such activities on the normal functioning of the 

cells and tissues of the host (see section 1.3. in this chapter). Unfortunately, neither 

these nor any of the other studies with crop plants have measured the amount of fungal
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growth on the host, and so the extent to which different levels of infection affect the 

host response is not known .

1.3. Impairment of plant functions

In this section the impairment of plant functions is discussed in broad 

terms with relevant examples .

1.3.1. Effects on carbon fixation

Infection of plant tissues by biotrophic organisms generally causes a 

reduction in the rate of photosynthesis .

Edwards (1970) found a biphasic inhibition of photosynthesis in barley 

infected with E. graminis f.sp. hordei. The first phase of inhibition occurred prior to or 

during the early stages of sporulation by the fungus, with the second phase occurring 

around 6 days after inoculation when fungus sporulation on the tissues reached a 

maximum. Ayres (1976) showed that in pea (Pisum sativum) infected with E. pisi, 

photosynthesis was reduced within 24 h. of inoculation and had decreased to less than 

one third of that in healthy plants by the seventh day after inoculation. Sugar beet (Beta 

vulgaris) leaves infected with E. polvgoni showed declining rates of photosynthesis 

relative to controls with reductions of 35, 70 and 75% being observed at 9, 16 and 22 

days after inoculation respectively. The quantum efficiency of photosynthesis was also 

reduced by 17 and 22 % at 14 and 18 days after inoculation, respectively (Gordon and 

Duniway, 1982a).

Similar reductions have been observed with rust infections. Mitchell 

(1979) showed that when the first leaf of wheat was infected with P. graminis f.sp. 

tritici. rates of CO2  assimilation and chlorophyll content declined progressively from 3 

days after inoculation. Barley plants infected with brown rust, P. hordei. at the first leaf 

stage showed no reduction in photosynthesis until 9 days after inoculation after which 

photosynthesis declined to about half the control level (Owera et al., 1981).
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During the early stages of infection, the rate of photosynthesis often rises 

before the subsequent fall. Scott and Smillie (1966) showed that infection of leaves of 

barley with E. graminis f.sp. hordei resulted in a slight increase in photosynthesis 48 h. 

after inoculation, but subsequently there was a progressive decrease in the leaves in 

comparison with the controls. Similarly Allen (1942) reported stimulation of 

photosynthesis soon after infection of wheat leaves with E. graminis f.sp. tritici. Hewitt 

and Ayres (1975) showed in oak (Ouercus robur) seedlings infected with powdery 

mildew (Microsphaera alphitoidesl an initial increase in photosynthesis 24 h. after 

inoculation followed by a rapid decline on the second day after inoculation .

Similar increases have been observed in wheat (Triticum aestivum) leaves 

infected with Puccinia graminis f.sp. tritici and bean (Phaseolus vulgaris) leaves 

infected with Uromvces phaseoli (Livne, 1964). Subsequently, photosynthetic activity 

and carbohydrate accumulation in infected leaves declined to one-third and one-half of 

that of control leaves respectively .

Although infection reduces total photosynthesis in the whole leaf, rates of 

photosynthesis can remain near the values in uninfected leaves or even be increased in 

certain regions of infected leaves. For example, green-islands are a characteristic feature 

of biotrophic infections and become apparent during the later stages of infection, when 

areas in and around fungal pustules remain green, while the remainder of the leaf 

senesces. Both increases and decreases in photosynthesis have been reported in green- 

islands in rust and mildew infected leaves. The rate of photosynthesis was examined in 

whole leaves of barley infected with P. hordei and within pustule areas, from 

presporulation to green-island formation. The rate of photosynthesis and the quantum 

efficiency of O2  evolution declined when measurements were made on a whole leaf 

basis as the infection progressed. However, the rate of photosynthesis per unit 

chlorophyll was increased in rusted leaves. When measurements were made within 

pustule areas, photosynthesis per unit chlorophyll was also increased in comparison to 

that in similar regions on uninfected plants (Scholes and Farrar, 1986). In contrast, 

photosynthesis in green-islands and surrounding senescing tissue of barley leaves 

infected with E. graminis f.sp. hordei was reduced by 14 % (when expressed on a unit
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area basis) or 32 % (when expressed on a chlorophyll basis). The quantum efficiency of 

photosynthesis and the chlorophyll a : b ratio were also reduced. However the senescing 

tissue was unable to photosynthesize due to a considerable reduction in total chlorophyll 

(Coghlan and Walters, 1992). Roberts and Walters (1988) also found that rates of 

photosynthesis, expressed on both a chlorophyll and a leaf area basis, were considerably 

reduced in pustule areas on leek (Allium porruml leaves infected with P. allii. 

Similarly, Scholes and Farrar (1985) showed a reduction in photosynthesis per unit area 

and per unit chlorophyll within pustule areas of Uromvces muscari infection of bluebell 

(Hvacinthoides non-scripta) leaves .

Photosynthesis has been reported to be stimulated in the healthy leaves of 

infected plants. For example Ayres (1981) showed a stimulation of photosynthesis in 

healthy fourth leaves of pea when the lower three leaves of the same plant were infected 

with E. pisi. Wang (1960), using wheat leaves infected with P. graminis f.sp. tritici 

reported higher CO2 uptake by healthy regions of inoculated leaves than by infected 

areas. Livne (1964) found that heavy infections of primary unifoliate bean leaves with 

U. phaseoli stimulated rates of 14CC>2 fixation in uninfected trifoliate leaves of the same 

plant by more than 50 %, while So and Thrower (1976) found that very light rust 

infections of second leaves of Vigna sesquipedalis slightly stimulated 14CC>2 fixation 

by uninfected third leaves. Thus it appears that the pathogen can affect photosynthetic 

CO2  fixation in uninfected tissues of infected plants. Photosynthesis may be stimulated 

by the increased removal of photoassimilates from their site of synthesis as the result of 

the establishment of a sink for nutrient accumulation by the fungus at its infection site .

Photosynthesis is in part a diffusion process where the flux of CO2  into a 

leaf is driven by the concentration gradient of the gas between the external air and the 

carboxylation sites. Models of diffusion pathway have been applied to the analysis of 

photosynthesis in several host-pathogen systems (see chapter 2, section 2.8.2.2.). The 

mechanisms by which photosynthesis may be inhibited are numerous. Reductions in 

photosynthesis have been attributed to altered rates of CO2  diffusion into the leaf 

through stomata (Majemik, 1971; Ayres, 1976; Gordon and Duniway, 1982b). 

Reductions may also be due to direct effects of the pathogen at the biochemical or
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chloroplast level. For example, reductions might be due to inhibition of the light 

reactions of photosynthesis (Montalbini and Buchanan, 1974; Buchanan et a l , 1981), or 

destruction of chloroplasts within developing lesions (Ahmad et a l,  1983).

The reduction in photosynthesis in pea leaves infected with E. pisi from 

the third day after inoculation was partly attributed to an increase in the stomatal 

resistance to CO2  diffusion into the leaf (Ayres, 1976). Small increases in stomatal 

resistance have also been reported in mildewed barley 3 days after inoculation (Ayres,

1979) and mildewed oak 6  days after inoculation (Hewitt and Ayres, 1975). In contrast, 

a small decrease in stomatal resistance was observed during the early stages of infection 

of bean leaves by Uromvces appendiculatus (Sempio et al., 1966). In more recent work, 

barley plants (Hordeum distichumi infected with P. hordei showed a reduction in 

photosynthesis and an increase in the internal CO2  concentration which was due to 

increased dark respiration and photorespiration (Owera et al., 1981). Analysis of 

photosynthesis as a diffusion process showed an increased resistance to CO2  flux due to 

increased mesophyll resistance. Gordon and Duniway (1982b) also showed a reduction 

of 50 % in stomatal conductance and an increase in mesophyll resistance in sugar beet 

leaves infected with E. polvgoni. Increases in mesophyll resistance were correlated with 

reductions in the activity and concentration of ribulose-l,5-bisphosphate (RuBP) 

carboxylase, and also a reduction in total soluble protein .

Much of the earlier and even more recent work involved possible 

relationships between chlorophyll loss due to infection and the subsequent reduction in 

photosynthesis. A characteristic symptom of mildew and rust infections is an increased 

chlorosis of infected leaves due to chlorophyll breakdown. Ahmad et al. (1983) 

concluded that the reduction in photosynthesis in barley leaves infected with P. hordei 

was principally due to a decrease in the number of functional chloroplasts. In more 

recent work, Scholes and Farrar (1985) have shown that U. muscari rust infection of 

bluebell (Hvacinthoides non-scripta! resulted in reductions in chloroplast numbers per 

unit area, chloroplast volume, chlorophyll concentration and the ratio of chlorophyll 

a:b, within individual pustules. This work showed that, in rusted bluebell, chlorophyll is 

lost from individual chloroplasts. Electron micrographs showed that in rust and
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powdery mildew infections, the grana and intergranal lamellae of chloroplasts become 

progressively more disorganised as infection progressed (Coffey et al., 1972; Heath, 

1974).

In some cases, reductions in chlorophyll concentrations are not closely 

correlated with changes in rates of photosynthesis. Allen (1942) showed that in wheat 

infected with E. graminis f.sp. tritici. photosynthesis per unit chlorophyll declined 

below the control levels one week after inoculation. These results were confirmed in a 

latter study on barley by Scott and Smillie (1963). However, Hewitt (1976) showed that 

in oak leaves infected with M. alphitoides. photosynthesis declined before total 

chlorophyll levels were reduced by infection, and noted that the chlorophyll a:b ratio 

decreased only at the latter stages of infection. In contrast, Way good et al. (1974) found 

that photosynthesis per milligram of chlorophyll was actually 50 % higher in wheat 

leaves infected with P. graminis f.sp. tritici than in healthy leaves. Recently, Owera et 

al., (1981) showed that although chlorophyll levels decreased in barley leaves infected 

with P. hordei. photosynthesis per unit of chlorophyll increased slightly .

The mechanisms responsible for the increase in photosynthesis which have 

been reported within green-islands are not known. However, cytokinins and/or 

polyamines have been implicated in the biosynthetic activity retained in the green- 

islands (Scholes and Farrar, 1986; Coghlan and Walters, 1992).

Infection has been shown to have little or no effect on 

photophosphorylation in chloroplasts. For example, chloroplasts isolated from oat 

leaves infected with P. coronata (Wynn, 1963) and from barley leaves infected P. 

hordei (Ahmad et al., 1983) showed no reduction in their capacity for 

photophosphorylation. Although it has been found that photophosphorylation may not 

be affected, there is evidence from several host-parasite systems that inhibition of the 

non-cyclic electron transport chain may occur. Chloroplasts isolated from E. polveoni 

infected sugar beet leaves (Beta vulgarisl (Magyarosy et al., 1976) and U. fabae 

infected broad bean (Vicia fabal (Montalbini and Buchanan, 1974) showed reductions 

in the rate of electron transport and in the accompanying ATP formation in non-cyclic 

photophosphorylation (reduced electron flow from water to NADP). They also showed
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that these reductions were associated with a decrease in the rate of photosynthetic CO2 

assimilation and alterations in chloroplast ultrastructure and other components of the 

photosynthetic apparatus. Magyarosy and Malkin (1978) have shown that mildew 

infection of sugar beet results in a substantial (33 %) reduction in the cytochrome 

content of the electron transport chain. Buchanan et al. (1981) found that non-cyclic 

electron transport was inhibited by up to 45 % in chloroplasts isolated from barley 

leaves infected with P. hordei . It seems likely that the inhibition of non-cyclic 

photophosphorylation is due to changes in certain components of the non-cyclic 

electron transport chain such as the cytochromes (Scholes and Farrar, 1986).

Powdery mildew infection of barley and rust infection of wheat have also 

been shown to result in a substantial decrease in the activity and amount of ribulose- 

1,5-bisphosphate carboxylase (RuBP) which is the biochemical component of 

mesophyll resistance and which acts as the active CC>2 -fixing enzyme in plants (Walters 

and Ayres, 1984). However, Gordon and Duniway (1982b) have suggested that RuBP 

carboxylase in sugar beet leaves infected with E. poligoni may not be responsible for 

limiting the flux of carbon through the reductive pentose phosphate pathway since the 

activities of other enzymes in that pathway are also reduced by infection. Recent work 

has shown that stimulation of photosynthesis in uninfected leaves of mildewed barley 

was due, in part, to an increase in the amount and activity of RuBP carboxylase 

(Walters and Ayres, 1084). However, both the stimulation in photosynthesis and the 

increase in the amount and activity of RuBP carboxylase were transient, lasting no more 

than 5 days after inoculation .

Changes in nucleic acid metabolism also occur. Barley mildew infection 

has been shown to result in a reduction in ribosomal RNA in chloroplasts (Dyer and 

Scott, 1972) and more recently, Higgins et al. (1985) have shown that infection of 

barley by E. graminis f.sp. hordei results in a reduction in the amounts of mRNA 

coding for the two sub-units of RuBP carboxylase, a consequence of which would be a 

loss of chloroplast proteins and a reduction in the rate of photosynthesis .

In most of the host/pathogen systems discussed, there was a decrease in 

photosynthesis as a result of infection. Reductions in photosynthesis appeared to be
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related to the following : increased stomatal resistance, increases in mesophyll 

resistance due mainly to loss of chlorophyll, specific alterations in components of the 

non-cyclic electron transport chain such as cytochromes and reductions in RuBPcase 

protein content. Observations of leaf symptoms have led several investigators to suggest 

that the pathogen produced toxins some of which are known to act directly on 

photosynthesis, stomatal function, water retention and transport in leaves (Habeshaw, 

1984).

1.3.2. Effects on carbon losses through respiration

I.3.2.I. Photorespiration

Changes in photorespiration have not been widely investigated in diseased 

plants. In some host-parasite associations, the rate of photorespiration has been shown 

to decrease as a result of infection. Reduced photorespiration has been reported to 

occur in barley infected with E. graminis f.sp. hordei (Ayres, 1979 ; Walters and Ayres, 

1984), in oak infected with M- alphitoides (Hewitt and Ayres, 1975) and in flax leaves 

infected with the rust Melampsora lini (Kakkar, 1966). Hewitt and Ayres (1975) found 

that in oak, the initial stimulation of photosynthesis following infection with M- 

alphitoides was attributed to the fact that a decline in photorespiration began earlier 

than that in photosynthesis. However, an initial increase in rates of photorespiration has 

been observed in pea leaves infected with E. pisi (Ayres, 1976) and in barley leaves 

infected with P. hordei (Owera et al., 1981), before the subsequent decline. 

Furthermore, Mitchell (1979) showed no differences in rates of photorespiration 

between healthy and infected first leaves of wheat during infection by P. graminis f.sp. 

tritici.

Where reductions in photorespiration in infected plants were recorded, 

they appear to be due to reductions in the activities of associated enzymes. In wheat 

infected with P. graminis f.sp. tritici and oak leaves infected with M- alphitoides. 

glycolate oxidase activity was reduced by infection. In addition to a decrease in 

glycolate oxidase activity, Walters and Ayres (1984) found a decrease in the activities
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of glycolate reductase and RuBP oxygenase upon infection of barley with E. graminis 

f.sp. hordei. The mechanism responsible for the observed increase in photorespiration in 

barley infected with brown rust is not known (Owera et al., 1981). Reduced 

photorespiration observed in some host/pathogen combinations appeared to be the result 

of reduced activity of the enzymes involved (Walters, 1985).

1.3.2.2. Dark respiration

Another common observation of the effects of a parasite on its host is that 

dark respiration is affected. Increased dark respiration in infected plants means that, as 

infection progresses, an increasing proportion of assimilate is lost via respiratory 

processes. This is not unexpected since both the parasite and the host will have a high 

demand for energy, the fungus for growth and maintenance and the host additionally for 

defence, and respiration would thus be increased to provide both the energy and carbon 

skeletons needed for the various biosynthetic processes involved (Farrar and Rayns, 

1987).

One of the earliest reports of respiratory changes in diseased plants is that 

of Allen and Goddard (1938) who showed that dark respiration was increased in 

powdery mildew infected wheat. They found that this increase was maintained when the 

fungus mycelium was removed from the surface of the infected leaf. The increase 

occurred in the mesophyll and so was clearly of host origin. These results were 

confirmed by Millerd and Scott (1956) who found that mildewed barley leaves respired 

at almost the same rate as leaves with the fungus removed. In the case of rust and other 

infections where the fungus develops endogenously there is much uncertainty about the 

scale of the contribution of the fungus to the increased respiration, due to the difficulties 

involved in attempting to separate host and fungus. It is generally held that the fungal 

contribution to increased respiration is small (Ayres, 1979). However, Owera et al. 

(1981) suggested that all the increased dark respiration in barley infected with P. hordei 

could be attributed to the fungus .

Increased respiration has been reported in barley leaves infected with E. 

graminis f.sp. hordei (Scott and Smillie, 1966 ; Farrar and Rayns, 1987), in wheat
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leaves infected with P. graminis f.sp. tritici (Daly et al., 1961 ; Mitchell, 1979), in bean 

leaves infected with U. phaseoli (Livne, 1964) and in oak infected with M- alphitoides 

(Hewitt and Ayres, 1975). Allen (1942) emphasized that in biotrophic pathogens, there 

is often a considerable period when the respiration rate of an infected leaf is high and 

this period corresponds with the period when the assimilation rate is low. The result is 

the depletion of the reserves of assimilates available to the host.

Few studies correlated changes in dark respiration to changes in 

photosynthesis. Roberts and Walters (1988) found an increase in dark respiration within 

pustule areas on leek (Allium porruml leaves infected with P. allii where photosynthesis 

was reduced. The overall rate of dark respiration in whole barley leaves infected with P. 

hordei was found to be at least twice that of the controls at the time of sporulation, 

while the rate of photosynthesis declined. However, the rate of dark respiration within 

pustule areas was four times higher than controls at the time of sporulation, while the 

rate of photosynthesis increased (Scholes and Farrar, 1986). These studies contrast with 

recent studies on oat plants infected with E. graminis f.sp. avenae where Haigh et a l 

(1991) found that although infection reduced rates of photosynthesis, it had little effect 

on rates of dark respiration. Little change was also found in dark respiration in green- 

islands on barley leaves infected with E. graminis f.sp. hordei where photosynthesis was 

reduced (Coghlan and Walters, 1992).

Allen and Goddard (1938) suggested that the rise in respiration in 

mildewed wheat was due to diffusible substances produced by the fungus which moved 

into the mesophyll. Bushnell and Allen (1962) found an accumulation of metabolites, 

often in a mobile form, in the uninvaded cells adjacent to the periphery of the 

developing pustules and in the tissues immediately below. This observation suggests 

that the mildew parasite produces toxic substances which diffuse into the underlying 

cells and there initiate the metabolic changes which result in the increased respiration .

Allen (1953) suggested that the enhancement could be caused by a toxin 

which uncouples respiration from energy-requiring processes by acting on oxidative 

phosphorylation. If the uncoupling hypothesis is true, the synthesis of ATP would be 

reduced or prevented in the electron transport system, and the concentration of ADP
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would increase and thus the ratio ADP/ATP would be increased. Poszar and Kiraly 

(1958) found that the ADP/ATP ratio was higher in wheat leaves infected with P. 

graminis f.sp. tritici. The uncoupling hypothesis has also been suggested as an 

explanation for increased O2  uptake in oat tissue treated with victorin, the host-specific 

toxin of Helminthosporium victoriae (Krupka et al., 1959). The uncoupling hypothesis 

has been investigated by several other authors who suggested that the effects of the 

toxin on mitochondria is secondary rather than primary .

The most likely cause of the increased respiration caused by biotrophic 

fungi is the enhanced operation of the oxidative pentose phosphate pathway (Daly, 

1976). The pentose phosphate pathway appears to be located in the cytosol and is 

limited by the availability of NADP+. It is possible that the increased activity of this 

pathway in rust and mildew infected tissues may be due to the release of NADP+ into 

the cytosol after chloroplast breakdown. The rise in dark respiration that occurs in the 

latter stages of infection of barley with E. graminis f.sp. hordei may be a direct response 

to the change in the NADP+/NADPH balance (Scott and Smillie, 1966; Dyer and Scott, 

1972). That an increase in the pentose phosphate pathway is involved is supported by 

the finding that increased respiration appears to be associated with an increase in the 

activity of enzymes of this pathway in infected tissues. Scott (1965) found a 2 to 3-fold 

increase in the activity of such enzymes in mildew-infected barley tissues. Chakravorty 

and Scott (1982) suggested that the reductions in photosynthesis in rusted and mildewed 

plants lead to the release of control mechanisms on the two dehydrogenases resulting in 

increased activity of the pathway. Increased dark respiration could also be due to an 

activation of existing pathways, such as the citric acid cycle in wheat leaves infected 

with P. graminis f.sp. tritici (Kiraly and Farkas, 1957) and the electron transport chain 

in radish (Raphanus sativusl infected with Albugo Candida (Williams and Pound, 1964). 

Farrar and Rayns (1987) showed that infection of barley leaves with E. graminis f.sp. 

hordei results in an increase in dark respiration by 80 % during fungus sporulation. 

About half of the increase was due to increased electron flow through the cytochrome 

chain and half through an alternative pathway. The mechanism of the latter was not 

obvious.
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In other host/pathogen systems, increased host respiration was attributed to 

the stimulation of existing pathways* Whatever the cause of the increased respiratory 

activity, it results in the loss of photosynthate that could otherwise be utilized for plant 

growth. These results support the view that enhanced oxygen uptake is not directly a 

part of pathogenesis but rather a result of increased biosynthesis by which the host 

supplies the fungus with nutrients for its growth and sporulation. Also, biotrophic fungi 

create a metabolic sink which at the expense of host energy draws photoassimilates and 

other nutrients from surrounding tissues to the sites of infection (Shaw and Samborski, 

1956).

1.3.3. Effects on translocation

A common effect of attack by biotrophic pathogens on plants is that the 

translocation and distribution pattern of assimilates throughout the plant is affected 

(Crowdy and Manners, 1971; Manners and Myers, 1973). The reductions in 

photosynthesis and the increases in dark respiration alter the amount of photosynthate 

supply to the various sinks in the infected and uninfected organs of the plant. Thus it is 

not suprising that movement of assimilates around the plant is affected by infection. 

One of the earliest attempts to quantify the flow of carbon in infected plants was that of 

Yarwood and Childs (1938) who measured an increase in the dry matter of bean leaves 

infected with U. phaseoli concomitant with overall reductions in dry weight for the 

entire plant. Subsequently, Yarwood and Jacobsen (1955) demonstrated the 

translocation of assimilates by means of radioactive tracers such as 14CC>2 .

In general, infection by fungi results in a reduction in the export of 

assimilates from infected leaves and the increased import into infected tissues. For 

example, Fric (1975) found that in the primary leaf of barley infected with E. graminis 

f.sp. hordei. export of labelled assimilate was less, although export from the uninfected 

second leaf was greater 5 days after inoculation. The absolute amount of labelled 

assimilates reaching roots in the 24 h. after feeding was reduced by about 27 %, while 

the amount remaining in shoots was reduced by 20 %. Plants of three cultivars of wheat
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infected with E. graminis f.sp. tritici showed a reduction in the percentage of labelled 

assimilates exported to roots when fed with 14CC>2 at third, fifth or flag leaf stages 

(Lupton and Sutherland, 1973). Continued assimilate importation into infected leaves 

was also demonstrated by Hewitt and Ayres (1976), working on oak seedlings infected 

with M- alphitoides .

Walters and Ayres (1982) concluded that reductions in the growth of 

primary roots of barley infected with E. graminis f.sp. hordei was due to a reduction in 

the specific activity of different fractions within roots (soluble, storage and structural), 

with reductions being greatest in root tips. These reductions in the root carbohydrate 

fractions were paralleled by a progressive reduction in the mitotic index of root tips. 

Walters and Ayres (1981) showed that the length and branching of main seminal and 

nodal root axes were reduced in mildew infected barley plants and this was associated 

with reduced solute accumulation which determines both cell division and cell 

expansion involved in root growth. These results were similar to those obtained by 

Minarcic and Pauleck (1975).

Doodson et al. (1965) investigated the effects of infection by P. striiformis 

on the third leaf of wheat on the assimilation and translocation patterns of that leaf. 

They found that, 14 days after inoculation, only negligible amounts (0.4 %) of 

assimilates were leaving the infected leaf compared with 21 % in the corresponding leaf 

of control plants. However the pattern of distribution of translocates as between the 

various plant organs was relatively unaffected, the only effect being that the proportion 

moving to the roots and tillers was drastically reduced and this was correlated with 

greatly reduced dry weights of these organs in infected plants. The situation in which 

only one leaf was affected was somewhat artificial, although convenient for 

experimental purposes. The more usual situation, where the whole plant is affected, was 

investigated in later experiments by Siddiqui and Manners (1971) who found that in 

plants with all leaves infected, 14 days after inoculation, 31 % of assimilate was 

translocated out of infected leaves in comparison with 0.4 % in Doodson's experiment. 

Thus, they showed that the effects on the translocation pattern were greater when only
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one leaf was infected, and that the proportion of assimilation moving to the 

infected from uninfected leaves was increased at the expense of the roots .

Livne and Daly (1966) found that in bean leaves infected by the rust U. 

appendiculatus. the amount of exported carbon dropped from 50 % to 2 %, whereas 

import from the next youngest leaf increased from < 1 % to 32 %. The diversion of 

assimilates to the rust was at the expense of the roots and newly emerging leaves. These 

results were similar to those obtained by Thrower and Thrower (1966) working on the 

translocation pattern in broad bean infected with U. fabae .

Host growth and translocation patterns were also examined in loose smut 

infections. Gaunt and Manners (1971) studied the effects of U. nuda infection on the 

growth of wheat plants. A growth analysis experiment showed that smut infection had 

considerable effects on host growth in many ways comparable to those produced by rust 

infection. Thus, they found a reduction of about 40 % in root growth, at the expense of 

ear formation, at an early stage of infection, 40 days after inoculation, followed by a 

stimulation of host stem growth during fungal sporulation, 50 days after inoculation. 

Subsequently, at 60 days, the infected stem ceased to grow but the roots developed 

further.

Coffey et a l  (1970) investigated the translocation pattern of labelled 

in tomato plants infected with the early blight fungus, Altemaria solani and found a 

significant reduction in the amount of assimilates exported from the infected leaf but 

only at the early stages of infection. At latter stages of infection, where there was 

chlorosis as well as increased necrosis, export from infected leaves increased and the 

distribution of translocated assimilates was altered. They also found that the labelled 

carbon in the stem of infected plants was less than half that of the controls but the 

fraction in the roots was greater than that in uninfected plants. This later investigation 

shows that necrotrophs can alter the translocation and distribution patterns in their hosts 

in ways very similar to the effects produced by biotrophs .

Most studies showed a pronounced initial accumulation of carbohydrate at 

the sites of infection followed, in some cases, by a subsequent decline. Carbohydrate 

levels in primary leaves of bean infected with U. phaseoli depended on the development
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and intensity of infection. For example at 5 days after inoculation, with a high inoculum 

giving around 87 pustules.cm-2, sucrose levels in infected leaf tissue rose to 33 % of 

those in healthy tissue. In contrast, with low levels of infection giving around 50 

pustules.cm-2, starch levels in infected leaves rose to 2 0 0  % of those of healthy tissue. 

However, with the advent of sporulation, sugar levels declined well below those in 

healthy tissues (Inman, 1962). Increase in sugars in infected tissues has been reported 

before by other authors (Allen, 1942 ; Shaw et al., 1956). Some of the distortions of 

leaves of Urtica parviflora characteristic of infection with Puccinia caricina. or the 

swollen shoots of Zizania caduciflora produced in response to the smut Ustilago 

esculenta infection (Whipps and Lewis, 1981) could be due to particularly high levels 

of accumulation of carbohydrates .

Conversely, several investigators have reported a decrease in the sugar 

content of rust-infected tissues. In wheat infected with P. graminis. total sugar content 

and especially the sucrose fraction, decreased slightly in the resistant host and greatly in 

the susceptible one (Krog et al., 1961). Murphy (1936) similarly found a decrease in 

soluble sugars in oats infected with crown rust (Puccinia coronata).

The precise mechanism whereby infection by obligate biotrophs alters the 

pattern of assimilate translocation in plants is still not known. However, the 

phenomenon of tranlocation and distribution can be explained by the high metabolic 

activity of the attacked tissue and of the parasite which represent an active "sink" for the 

attraction of nutrients from other plant parts (Thrower, 1965). The factors controlling 

normal translocation are not well understood, but there is much evidence to implicate 

plant hormones in the control of both photosynthesis and translocation (Walters, 1985).

1.3.4. Effects on transniration

The rate of water vapour loss from leaves depends on the water 

concentration gradients within the leaf and resistances to water vapour diffusion 

between evaporating surfaces and the ambient air. The cuticle and stomata offer the 

chief resistance to water vapour diffusion from leaves. Whereas there is a relative
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abundance of data concerning the effects of biotrophic pathogens on resistances to 

water flow through leaves, very little information is available on resistance to water 

flow across the root and through the stem to the leaf.

The influence of various rust and powdery mildew infections on 

transpiration rate has been studied. The early stages of infection of barley by E. 

graminis f.sp. hordei significantly reduces the transpiration rates of the leaves in the 

light, whereas the later stages of infection involve increases in transpiration rates 

(Priehradny, 1971). The reduction in transpiration is associated with a reduction in 

stomatal opening in the light as observed from impressions of the leaf surface 

(Majemik, 1965). In a later study, Majemik (1971) employed a viscous flow porometer 

and found that mildew inhibited both the opening and closure of stomata in barley; with 

stomatal aperture being lower in the light and greater in the dark relative to the controls 

by the fifth day after inoculation. Stomatal opening and transpiration rate were also 

inhibited in wheat plants within 6  h. of inoculation with E. graminis f.sp. tritici and this 

was attributed to a volatile product of fungal metabolism (Martin et al., 1975).

In contrast, Ayres (1976) showed that in the first 48 h. after inoculation of 

pea leaves with E. pisi. stomatal opening in the light was greater in infected than in 

healthy leaves but on the third and later days after inoculation, it progressively 

decreased. The stomata failed to close in the dark and by the seventh day after 

inoculation were immobilized in a partly open position. Transpiration in infected leaves 

followed closely the pattern of stomatal opening, decreasing in the light and increasing 

in the dark. The net result was a slight reduction in total transpiration over a 24 h. 

period, from the third day onwards. The reduced transpiration in the light shown by 

infected leaves was probably the result of not only an increase in stomatal resistance to 

the diffusion of water vapour but also of an increase in boundary layer resistance caused 

by the presence of a cover of fungus mycelium over the leaf surface, including stomatal 

pores, because transpiration increased when the mycelium was removed but stomatal 

opening showed no effect (Ayres, 1976).

Several studies on powdery mildew of barley have attempted to 

distinguish stomatal and cuticular transpiration rates by measuring the loss in fresh
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weight of leaves as a function of time after excision in air. For example, by this 

analysis, Paulech et a l  (1970) found that all stages of powdery mildew infection in 

barley decreased stomatal transpiration but that in the later stages cuticular transpiration 

increased markedly. However measurements of decrease in fresh weight with time are 

difficult to interpret because of the lack of information on leaf water status, the 

contribution of external resistance and changes in leaf temperature (Ayres, 1976). Ayres 

(1976) showed that, in barley infected with powdery mildew, transpiration from the 

fungus was less than the reduction in transpiration from the leaf which was caused 

when development of the fungus mycelium increased the boundary layer resistance of 

the leaf.

Ayres and Zadoks (1979) showed that water consumption per plant of 

barley infected with powdery mildew was reduced because the transpiring leaf area was 

reduced and, also, because stomatal opening in the light was inhibited. Furthermore, 

incomplete stomatal closure in the dark, lead to increased rates of transpiration (some 

part of the increased water loss in the dark also occurred through fungal mycelium) and 

lowered water potentials in infected plants. The lowering of cell water potential 

inhibited growth by inhibiting cell expansion, the latter depending on the attainment of 

high turgor in cells during the dark period (Boyer, 1976).

The transpirational behaviour of bean plants infected with XI* phaseoli 

showed during the early stages of infection a decrease in transpiration rate with a partial 

inhibition of stomatal opening in the light. After fungal sporulation, the epidermis and 

cuticle of infected leaves were damaged and transpiration rate per unit leaf area 

increased. The lack of stomatal control over leaf water loss through the damaged cuticle 

led to very severe wilting (Duniway and Durbin, 1971). Paul and Ayres (1984) have 

shown that, after sporulation, groundsel plants infected with the rust, Puccinia 

lagenophorae. transpired more than did uninfected controls, and, in addition rust 

infection resulted in an increased transpiration ratio (mg water lost per mg of CO2 

fixed), indicating a much decreased water use efficiency .

Records on fungal pathogens causing increased stomatal opening in the 

light are rare. Infection of potato by the blight fungus, Phvtophthora infestans. induced
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stomata to open more widely than normal in the light and to fail to close in the dark, 

resulting in increased transpiration (Farrell et al., 1969). Since stomatal opening 

depends upon the guard cells having a higher turgor pressure than the epidermal cells, 

they attributed the increase in stomatal opening to an increased osmotic value in 

affected guard cells. Similar results were obtained in barley leaves infected with leaf 

blotch, Rhvnchosporium secalis (Ayres, 1972). Cruickshank and Rider (1961) have 

shown that infection of tobacco leaves with the downy mildew fungus, Peronospora 

tabacina, results in a small increase in transpiration in the light, and a doubling of 

transpiration in the dark in the presporulation phase of the fungus. Although no 

stomatal measurements were made, it appeared that the pathogen produced an effect on 

stomata very similar to that induced by P. infestans. Upon the onset of the post- 

sporulation phase, the transpiration rate decreased which was probably due to blockage 

of stomatal pores by sporangiophores (Cruickshank and Rider, 1961).

1.3.5. Effects on growth regulatory substances

Parasite metabolites such as toxins, growth regulatory substances and 

enzymes will be essential to the development of a parasitic relationship if their 

production is essential for the establishment of that relationship. These metabolites 

could be responsible for the changes in metabolism, in transport systems and in growth 

and development of the host which occur during infection .

Some parasites, by producing growth regulators or by stimulating host 

tissues induce growth abnormalities such as galls and tumours. They cause damage in 

part by disrupting the normal arrangements of the cells so that the tissues no longer 

function normally. For example, the tissues of crown gall induced in a wide range of 

host plants by Agrobacterium tumefaciens. of root galls in brassicas induced by 

Plasmodiophora brassicae. of maize smut galls induced by Ustilago mavdis and of 

cocoa swollen shoot induced by a virus (CSSV) have been shown to contain abnormally 

high amounts of growth regulatory substances such as auxins and cytokinins .
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Daly and Inman (1958) found that infection of safflower hypocotyls by the 

fungus Puccinia carthami resulted in a fourteen-fold increase in auxin level compared to 

uninfected controls. Pozsar and Kiraly (1966) found that extracts from bean leaves 

infected with H- phaseoli showed increased cytokinin activity when compared to 

uninfected tissues. In rice, infection by Gibberella fuiikuroi (Fusarium moniliforme) 

causes an elongation of the intemodes of the stem, a condition originally described as 

the bakanae or foolish seedling disease. This increased growth has been attributed to 

high amounts of gibberellins (Yabuta and Yayashi, 1939). In these examples, the 

abnormal growth utilises nutrients which would otherwise have been available for the 

development of normal structures and they are therefore acting as metabolic sinks .

Despite the abundance of literature on plant growth regulators, the precise 

role of these compounds in plant-pathogen interactions is still unclear. This is perhaps 

not surprising since, in many cases, the physiological effects of individual growth 

regulators interact, and normal plant growth and development is determined by the 

integrated action of several types of hormone, rather than as the result of changes in 

concentrations of a single compound (Walters, 1985).

1.3.6. Conclusions

In this section we have highlighted some of the ways, in addition to its 

feeding activities, that a parasite can affect the physiological and biochemical processes 

of the host, ultimately leading to alterations in its growth and development. The major 

damage caused by parasites is probably a combination of the effects of the diversion of 

host metabolites to form their structure, and to the activity of the metabolites secreted 

into the host during the course of the infection .
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1.4. Evidence for tolerance in crop and wild plants

From the account so far it is obvious that no detailed study of the type 

required to establish the relative levels of overall tolerance in a series of cultivars has 

been done. That is not to say that there is no evidence for the occurrence of tolerance in 

some form, and in fact evidence can be cited both for tolerance of the parasite and 

tolerance of disease in certain crop plants (Clarke, 1986). A clear example of tolerance 

of disease is shown by barley in relation to take-all caused by Gaeumannomvces 

graminis. Barley is affected much less than wheat by given levels of infection, and its 

tolerance appears to be due to its greater capacity than wheat to produce adventitious 

nodal roots to compensate for root tissue destroyed by the infection (Scott, 1981). The 

greater tolerance of some brassica crops, of clubroot disease (Plasmodiophora 

brassicae). appears to be associated with the development of large root systems which 

enable them to tolerate much greater root damage than the less tolerant forms (Crute, 

1986).

There is certainly good observational evidence (Tarr, 1972) and some 

experimental evidence (Ben-Kalio and Clarke, 1979) that degrees of tolerance, both of 

the parasite and of disease, occur in wild plants. For example, studies on interactions 

between Senecio vulgaris and Ervsiphe fischeri (Ben-kalio and Clarke, 1979) indicate 

that the host possesses a substantial level tolerance of the mildew. Thus studies of 

interactions between wild plants and their parasites are likely to be the most fruitful 

source of information about the levels of tolerance that may occur and of the potential 

value of tolerance as a breeding aim for controlling yield losses in crop plants .

Studies on crop plants alone are unlikely to provide many clues because 

most crop plants are the products of years of selection for resistance, and any tolerance 

their wild ancestors may have possessed is likely to be considerably diminished (Clarke, 

1986). However, apart from studies of Ben-Kalio and Clarke (1979) and Harry and 

Clarke (1992) on S. vulgaris, nothing is known of the capacity of wild plants to tolerate 

infections and studies on other wild plant pathosystems are essential. The host-parasite
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system which has been selected for study here is the oat Avena fatua /  E. graminis f.sp. 

avenae combination for the following reasons .

Of all wild grasses common in Britain, A. fatua is the one most closely 

related to a cultivated cereal, A. sativa. Both species are hexaploid (2n = 42) and in fact 

probably constitute a biological species in that they can form fertile hybrids (Jones, 

1976). A. fatua is usually distinguished in the field from cultivated forms by the greater 

height and vigor as well as by its whitish straw and chaff at maturity. Freshly collected 

seeds exhibit a characteristic dormancy which can be lost by storage under dry 

conditions. It has, in general, a similar morphology to A. sativa. except some 

differences in the inflorescence structure (Jones, 1976). It has also a short life-cycle like 

the cultivated oats and therefore experimental work can be completed in a relatively 

short period. Furthermore, A. fatua is inbreeding which means that populations of 

genetically uniform plants can be obtained. It is commonly infected with the same 

species of E. graminis that attacks the cultivated oats .
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GENERAL M ATERIALS AND M ETHODS  

2.1. Growth conditions

The experiments were carried out in growth rooms or greenhouses located at 

the Botany Department Research Laboratories, Garscube. The growth rooms were 

maintained at 19 ± 2°C, between 70 to 80 % RH with a 16 h photoperiod. During the light 

period a photon flux density (PFD) of about 55 pmol photons m- 2 s- 1 at bench level was 

provided by high pressure mercury vapour lamps. The greenhouse temperature ranged 

between 25-30°C and supplementary lighting was supplied by high pressure sodium lamps. 

The PFD at bench level was on average 83 pmol photons m" 2 s_1.

2.2. Plant material

2.2.1. Sources of wild and cultivated oats

Seeds of wild oat, Avena fatua L., were obtained from Herbiseed 

(Herbiseed Nurseries, Billingbar Park, Wokingham, England) and those of cultivated oat, 

Avena sativa L., were obtained from Plant Breeding International (PBI) Cambridge. 

Since the seed of wild oat was likely to be a mixture of genotypes, it was necessary to 

obtain a pure line for experiment. Plants were raised in the greenhouse and when the 

fruits were ripe, grains were collected from a single susceptible line and sown. Freshly 

harvested grains were treated with gibberellic acid solution at 50 ppm to break their 

dormancy before sowing. Progenies from these seeds were then raised, harvested in the 

same way and inbred for a further generation. Seeds of the inbred line were then used for 

experiments .

In a preliminaiy experiment to select the plant lines for the more detailed 

experiments, the reactions of the wild oat and a range of cultivars were tested by
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exposing them to natural infection in the greenhouse, or by inoculating them using the 

detached leaf procedure. The results of the tests, given in Table 1, reveal that most of 

the plant lines were susceptible to mildew in some degree. The two most susceptible 

cultivars, Lustre and Peniarth, were selected for comparison with the inbred line of wild 

o a t.

2.2.2. Growth of plants

Seeds of the two cultivars of oat and of wild oat were germinated on 

moistened filter paper in trays in an incubator at 22°C. Seeds of wild oat were placed 

for germination on filter paper moistened with an aqueous solution of gibberellic acid at 

50 ppm (to break dormancy). Three to four days after sowing, the germinated seeds 

were transferred to S.A.I. (Imperial Chemical Industries) potting compost in 12.7 cm 

plastic pots, three seedlings per pot, at about 2 cm depth. A week later, seedlings of 

approximately equal vigour were transplanted either singly or 2  seedlings per pot, as 

required, into 12.7 cm or 15 cm plastic pots containing the same potting compost. 

Supplementary feeding was supplied twice weekly in the form of Phostrogen (P.O. 100, 

CORWEN, CLWYD, Wales) liquid feed .

For growth analysis, seedlings were transplanted into 15 cm pots 

containing coarse sand so that the root system could be harvested for dry weight 

determinations. A nutrient solution (Knop's) was added twice a week until 7 weeks after 

transplanting, and then once a week until the final harvest. Each pot received 

approximately 350 ml of the nutrient solution .

The nutrient Knop's solution made up with Analar chemicals was prepared 

by adding the volume of each of the five stock solutions listed in Table 2, to 500 ml of 

water. The volume was then made up to 1 litre .
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TABLE 2

Stock solution A B C D E F

Volume (ml) 1.0 2.5 1 .0 1 .0 1 .0 1 .0

The compositions of the stock solutions were :

A 82 g Ca(NC>3 )2  4 H2 0  in 100 ml solution .

B 20 g KNO3 in 100 ml solution .

C 49 g MgSC>4 7 H2 0  in 100 ml solution .

D 14 g K2HPO4  in 100 ml solution .

E 2.3 g commercial chelated iron salt in 100 ml solution

(Sequestrene Fe1̂ ^ ).

F A trace element mixture containing per m l:

28.6 mg H3 BO3 

13.8 mg MnSC>4 4 H2 0  

2.2 mg ZnSC>4 7 H2 O 

0.8 mg Q 1SO4  5H20  

0.9 mg H2 M0 O4

2.2.3. Design of experiments

In all the experiments, plants of the two cultivars and of wild oat were 

grown under the same conditions in a randomized design, with four replicates, either in 

growth rooms or in the greenhouse. The plants were moved around, in the growth room 

or greenhouse, at weekly intervals to ensure even growth .
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2.3. Mildew cultures

2.3.1. Isolation method

Isolates of Ervsiphe graminis f.sp. avenae used in this investigation were 

obtained from and maintained on greenhouse grown plants. Inoculum from these plants 

was used to inoculate all greenhouse experiments. For growth room experiments, plants 

were inoculated with a single conidial isolate of the mildew in an attempt to ensure the 

minimum variability in infection between plants. The isolate was obtained from 

greenhouse infected plants using the following procedure :

Conidia from infected plants were dusted directly onto uninfected leaf 

segments obtained from plants grown in a mildew-free growth room. The leaf segments 

were placed adaxial surface uppermost on 0.5 % water agar containing 150 ppm 

benzimidazole solution in 9 cm plastic Petri-dishes. The Petri-dishes were then 

incubated for 7 to 10 days in a growth room maintained at 21 ± 2°C with a 16 h 

photoperiod providing a PFD of 55 pmol photons m-2 s-1. Single chains of conidia were 

picked off the colony with a fine pointed needle and gently placed on separate leaf 

segments of plants of the two cultivars or wild oat. An isolate originating from a single 

chain which gave good infection on the plant lines was then multiplied on fresh leaf 

segments of the different oat species for use in the growth room experiments .

2.3.2. Maintenance of the mildew isolate

2.3.2.I. On detached leaves in Petri-dishes

The single conidial isolate of the mildew was maintained on leaf segments 

in Petri-dishes on 0.5 % agar containing 150 ppm benzimidazole. Person et al. (1957), 

Caldwell (1960) and others were successful in culturing Ervsiphe graminis on leaf 

segments on 50 ppm benzimidazole solution. This medium delays the senescence of 

detached leaf segments and has been found to be valid for studies of resistance to 

mildew. The Petri-dishes were incubated for 10 to 14 days. A temperature between 15 

and 20°C was found to be the optimum range for incubation. Most of the leaf segments
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started to produce visible colonies 5 to 7 days after inoculation and by the 10th day, 

susceptible plants had produced large heavily sporing colionies. Leaf segments remained 

green for about two weeks on the benzimidazole agar and supported abundant 

development of the fungus (Plate 1).

23.2.2. On whole plants in an Isolation Plant Propagator

Seedlings of oat plants were raised in Propagator pots in a mildew-free 

growth room. When 10 days old, they were inoculated, covered and transferred to the 

Isolation Plant Propagator (Burkard Manufacturing Co Ltd.). The temperature of 

growth on the Propagator varied between 20 and 25°C. The plant pots were illuminated 

from above in a 16 h photoperiod with supplementary lighting provided by white 

fluorescent tubes, giving a PFD of 42 pmol photons m"2  s"1. The plants were watered 

from below by a wick system and a positive pressure was maintained inside each plant 

chamber by blowing filtered air through the chambers. The mildew isolates could be 

maintained in this way for several weeks. After 4 to 6  weeks, a set of newly inoculated 

seedlings was transferred to the Isolation Plant Propagator.

Plants grown on the Propagator were used as a source of inoculum for 

most experiments involving a single conidial isolate because it was easier to obtain a 

large bulk of inoculum than using detached leaf segments .

2.4. Maintenance of mildew-free control plants

The fungicides used to maintain mildew-free plants in greenhouse 

experiments were 'Patrol' (Fenpropidin spray formulation applied at 0.1 %) or 'Benlate' 

(Benomyl spray formulation applied at 0.05 %).

Fenpropidin (Fig. la) is a systemic fungicide based on piperidine which 

inhibits ergosterol biosynthesis, one of the essential components of the membranes of 

most fungal groups. This fungicide is phytotoxic when applied at high concentrations. 

The effects of phytotoxicity are usually expressed as chlorosis or tissue breakdown in
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PLATE 1 : Maintenance of mildew isolates on leaf segments in Petri-dishes on 0.5 % 

agar containing 150 ppm benzimidazole (15 days after inoculation).



ch3
a )  Fenpropidin {C H ^C  - ^ ~ \ - C H z CH . C H . , -  / ^  P a t r ° l

00w
CO. NH. (CH2I3CH3

b) Benomyl | || Benlate
OCH3

Fig. 1 : Chemical structure of the fungicides.
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leaves. In this investigation, concentrations of Patrol above 0.1 % were found to be 

harmful to the growth of plants .

Benomyl (methyl- l-(butylcarbamoyl)-2-benzimidazole-carbamate) (Fig. 

lb) is a systemic fungicide and a member of the group known as ’MBC generators'. 

MBC (methyl-2-yl-benzimidazole carbamate) is the active fungitoxic molecule and it 

has a broad spectrum of activity. It is generally non-phytotoxic and gives good control 

of mildew infections. Phytotoxic effects were also expressed in plants treated with 

benomyl at high concentrations. Ben-Kalio (1976), in an investigation of the effects of 

Benlate on the growth of groundsel, showed that plants treated with the fungicide at 2 

% showed symptoms of chlorosis, but not at the low concentration of 0.05 % .

Both Patrol and Benlate were applied in spray formulations. The plants to 

be sprayed were moved to a separate compartment of the greenhouse to ensure that 

spray did not drift onto the untreated plants. After spraying, they were moved back to 

the compartment with the untreated plants. To ensure that transfer of fungicide did not 

occur through root contact through the bench gravel, all the sprayed and unsprayed pots 

were placed on saucers. The fungicide was applied at weekly intervals from the time of 

transplanting since preliminary experiments have indicated that a single treatment did 

not protect the plant throughout the full 15 weeks growth period .

2.5. Inoculation procedures

Several methods of inoculation were used depending upon requirements :

(i) Heavily infected plants were introduced into the growth room or greenhouse 

and the inoculum was spread by shaking them daily for a period of one week over the 

experimental plants.

(ii) A small paint brush was used to transfer conidia from sporulating colonies, on 

leaf segments in Petri-dishes, to the leaf to be inoculated. In some experiments, the 

leaves were inoculated by gently brushing conidia, from sporulating colonies, over the
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central region of the adaxial surface of the leaf. However, it was difficult to standardize 

the amount of inoculum applied by this method .

(iii) Using a spore settling tower. The mature conidia present on 10-12 days old 

infected plants grown in the Isolation Plant Propagator were removed by shaking the 

plants 24 h before inoculum was required. The spores produced during the subsequent 

24 h were then used for inoculum. Inoculation was carried out 2 h before the end of the 

light period. The infected plants were gently shaken over the top of the tower to release 

a rain of spores onto leaf segments or leaves in the base of the tower. The fully 

expanded leaves to be inoculated were aligned horizontally, adaxial surface uppermost 

at the base of the tower, holding each leaf in position by attaching the distal end to a 

microscope slide. Conidia were shaken into the top of the tower and allowed to settle 

for about 10 minutes. The inoculum density, 1.75 to 2 conidia per mm2 of leaf area, 

was checked in all tests by counting conidia settled on coverslips smeared with vaseline 

placed in the tower at the same level as the leaves. The inoculated plants were then 

transferred to the growth room for incubation .

2.6. Methods for assessing mildew development

2.6.1. Visual assessment of mildew development

Percentage leaf area covered by mildew colonies was determined visually 

on each leaf using Large and Doling's (1962) standard diagrams of mildew development 

(Fig. 2). The pustules on the main axis were not included in the assessment since the 

exposed leaf base and or stem area contributes only a small proportion of the total 

photosynthetic area of the plant. The leaf area was determined using a photoelectric leaf 

area meter (see later) and the mean percentage leaf area covered by mildew colonies on 

each main axis leaf was assessed. Total percentage area of leaf blade infected was 

calculated using the following formula :



Pig. 2 : Standard diagrams used to determine percentage leaf area
covered by mildew.
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^  _ vl-al + v2 .a2 + v3-a3 +....

a l +  a2 +  a3 + ....

Where y1? y2, y3...n are percentage area infected of leaves 1, 2, 3...n (on the main axis) 

with blade areas of a1? a2, a3...n .

2.6.2. Spore production

Another method of measuring fungal growth is by counting spore 

production per unit leaf area. Zadoks (1972b) justifies this approach on the technical 

ground that this method is fast, more accurate than visual estimations and non 

destructive .

A number of spore traps and air sampling equipment have been devised to 

collect spores from fungi sporulating on the surfaces of their hosts. For example, 

Johnson and Bowyer (1974) devised an apparatus for collecting uredospores of yellow 

rust from wheat leaves. Schwarzbach (1978) designed a jet spore trap, especially for the 

collection of mildew spores from attached living leaves. In a more direct way, spores 

can also be shaken from leaves or scraped from pustules and collected in a glass tube. 

The number of spores produced per unit leaf area can then be determined from 

haemocytometer counts .

The infected leaves were inserted singly into clean open-ended glass tubes 

20 x 150 mm which were wide enough to insert an oat leaf without loss of spores. The 

leaves were then carefully cut from the plant and the tubes sealed before transfer to the 

laboratory. Spores were shaken from the leaves in 25 ml distilled water containing the 

wetting agent Tween 80 to facilitate spore dislodgement, using a vortex mixer. The area 

of each infected leaf was measured before it was homogenized in distilled water. The 

resultant suspension was agitated for half an hour on a vortex mixer. The suspension 

was then centrifuged at 100 0  rpm for 10 min, the supernatant discarded and the pellet of 

spores and plant material resuspended in 5 ml distilled w ater.
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The number of spores per unit volume in each suspension was counted 

using a haemocytometer. Ten counts were made per leaf sample and the mean number 

of spores per unit leaf area was calculated*

2.6.3. Chitin analysis

Fungal biomass can be assessed on infected plants by measuring amounts 

of fungal constituents such as: chitin, mannan, glucans, fungal lipids, or miscellaneous 

compounds such as phenols, yellow pigments, carotenoids and enzymes in infected 

tissues (Whipps et al., 1982). The most commonly used method is based upon the 

colorimetric assay for hexosamines which are released on hydrolysis of chitin. The 

hexosamines are the basic structural units of chitin, the important hyphal wall 

component of most fungal groups. The assay for chitin was developed by Ride and 

Drysdale (1972) to estimate fungal biomass in plant tissues. It is relatively rapid and 

simple and has been used, with varying degrees of success,with a variety of parasitic 

fungi, including Fusarium spp. (Zak, 1976; Raghu Kumar and Subramanian, 1977) , 

Puccinia spp. (Mayama et al., 1975; Whipps et al., 1980) , Uromvces phaseoli 

(Kaminskyj and Heath, 1982) and resting spores of Plasmodiophora brassica (Thornton 

et al., 1991).

The assay has been criticized on the grounds that it can be confounded by 

galactosamine in the plant tissue and because the chitin content of mycelium varies 

during development (Sharma et al., 1977). Whipps et al. (1980) noted that the assay 

gives only proportional values since the alkaline digestion of chitin does not proceed to 

completion. Nevertheless they stressed its usefulness as a quantitative method, provided 

that suitable account is taken of such factors. The Ride and Drysdale's method has been 

most frequently used for determination of fungal biomass with some modifications 

introduced later by several authors .

The assay used for determining the relative amount of fungal mycelium on 

mildewed oat leaves was slightly modified from that presented by Ride and Drysdale 

(1972).
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Reagents :

Acetone.

Concentrated KOH (120 g dissolved in 100 ml water).

75 % aqueous ethanol.

40 % aqueous ethanol.

Celite suspension (The supernatant obtained by mixing 1 g celite 

545 with 20 ml of 75 % ethanol and allowing to stand for 2 

minutes).

5 % NaN02  

5 % KHSO4  

12.5 % NH4 SO3NH2 

0.5 % MBTH (3-methyl-2- benzothiazolinone hydrochloride).

The solution was prepared daily .

0.5 % FeCl3 (0.83 g FeCl3 .6 H2 0  dissolved in 100 ml water).

The solution was stored in a cool place and discarded after two days.

Assay procedure :

Samples of infected and uninfected leaf tissues of about 1 g fresh weight 

were weighed, cut into segments before being macerated in 10 ml of cold acetone. The 

slurry was centrifuged in 15 ml glass tubes at 1000 rpm for 10 minutes. After 

centrifugation, the supernatant was discarded and the pellet washed with 10  ml distilled 

water and re-centrifuged at 1000 rpm for 10 minutes. The acetone and water wash 

removes interfering substances which may contain hexosamines (Whipps et al., 1980). 

The supernatant was again discarded and the pellet homogenized in 10 ml distilled 

water. Subsamples of 5 ml were then centrifuged and used for chitin analysis .

(1) Hydrolysis o f chitin to form chitosan

After centrifugation, the chitin was deacetylated to form chitosan, a 

polymer of glucosamine, by autoclaving for 1 hour in 3 ml of KOH solution. Eight 

millilitres of 75 % ethanol were added to the cooled tubes and chilled on ice for 15
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minutes. Then 0.9 ml of Celite suspension was layered on top of the alkali solution and 

the tubes were centrifuged as before. The pellet was washed once with 40 % ethanol, 

twice with distilled water and then suspended in distilled water to give a volume of 1.5 

ml. From this stage, Ride and Drysdale recommended the use of two sensitivity levels 

depending on the amount of chitin present in the tissue. The first level at 0.5 ml is used 

for lightly infected material. The second level at 1.5 ml, for high levels of infection was 

used in these experiments .

(2) Deamination and colorimetric assay

Five percent NaNC>2 and 5 % KHSO4  (1.5 ml each), which react to form 

HNO2 , were added to each tube. The solutions were shaken using a vortex mixer for 15 

minutes, in order to facilitate the deamination and depolymerization of the chitosan. 

The tubes were then centrifuged at 1000 rpm for 2 minutes .

Two 1.5 ml samples of the supernatant were taken for the colorimetric 

assay. Each sample received 0.5 ml of a 12.5 % solution of ammonium sulphamate 

(NH4 SO3NH2 ) and the solutions were mixed for 5 minutes. MBTH (0.5 ml of 0.5 % 

solution) was added to the deaminated mixture and the tubes were heated to 100°C in a 

boiling water bath for 5 minutes. After cooling to laboratory temperature, 0.5 ml of 0.5 

% FeCl3 was added to each tube and the mixture allowed to stand for 30 minutes for 

the blue colour to develop before the absorbance was measured at 650 nm in a 

spectrophotometer.

Standard solutions prepared from known concentrations of glucosamine 

hydrochloride (3 to 35 pg in 1.5 ml) and water blanks were incorporated into each 

assay. They were treated in the same way as the final 1.5 ml samples removed for the 

colorimetric assay (Kaminskyj and Heath, 1982). The chitin content of diseased and 

healthy host tissues were thus determined using the calibration curve (Fig. 3, in the 

appendix) which shows a linear relationship between absorbance at 650 nm and 

hexosamine equivalents over the range 3 to 35  pg glucosamine .
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2.7. Growth analysis of infected and uninfected plants

2.7.1. Growth analytical methods

At each harvest, the number of tillers per plant and the height of the main 

axis, measured from sand level to the base of the youngest leaf lamina before ear 

emergence but after ear emergence to the level of the fully emerged ear were recorded. 

The plant was then carefully removed from the sand. The root system was severed, 

rinsed under running tap water to remove adhering sand particles and then blotted dry .

Measurement of leaf area: A portable photoelectric leaf area meter Delta-T Devices 

(128 Low Road, Burwell, Cambridge CB5 OEJ, U.K.) was used for the measurement of 

leaf area. Yellow and brown areas were excised prior to measurement and the area of 

each green leaf on the main axis and total leaf area on the tillers was measured. Each 

leaf was measured twice and the mean calculated .

Drv weight determinations: The dry weights of the root, the main axis, leaf blades on 

the main axis, tillers and leaf blades on tillers of each plant were determined separately. 

The different plant parts were wrapped separately in pre-weighed aluminium foil 

envelopes and dried to constant weight at 80°C for 24 h. After cooling for about 10 

minutes in a dessicator, their dry weights were determined .

Grain yield: Plants were harvested when the caryopses were ripe and the following 

measurements were made in addition to the number of tillers per plant and total plant 

dry weight.

(i) Number of ears per p lant.

(ii) Number of grains per main shoot e a r .

(iii) Number of grains per p lan t.

(iv) Hundred grain weight.

(v) Total dry weight of grain per plant.

(vi) Harvest index.
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2.8. Photosynthesis and chlorophyll measurements

The instantaneous rate of photosynthetic CO2  assimilation has generally 

been studied in model systems such as chloroplasts and algae. From these studies and 

from theoretical analyses of gas exchange behavior it is now possible to study the 

photochemistry of photosynthesis in intact leaves using a combination of methods, most 

of which are nondestructive (Sharkey, 1985).

2.8.1. Photosynthesis in intact leaves: physiology and rate limitations

In photosynthesis, light energy (hv) is absorbed and used to drive the 

reduction of carbon dioxide to carbohydrate, (CH2 0 )n. The source of electrons for 

photosynthetic electron transport is the oxidation of water with the concomitant release 

of oxygen. The rate of liberation of molecular oxygen gives a direct measure of 

photosynthetic electron transport (Walker and Hill, 1967). The overall process is 

represented by the equation :

hv

nCC>2 + n H 2 0  ------------ > (C H 2 0 )n + nC>2

The limitations to the rate of photosynthesis can be divided among 3 

general classes : (1) the supply and utilization of CO2  , (2 ) the supply and utilization of 

light and (3) the supply and utilization of phosphate in the photosynthetic carbon 

reduction cycle (C-3 cycle) (Sharkey, 1985). These limitations are discussed in the 

following sections.

2.8.1.1. The supply and utilization of CCh

The efficient CO2 supply to the carboxylation sites within the leaf depends 

on the concentration of CO2  in the surrounding atmosphere and photosynthesis 

increases with increased CO2  concentration. Once inside the chloroplast, CO2 is 

enzymatically combined with ribulose-l,5-bisphosphate (RuBP) to form two molecules 

of 3-phosphoglycerate (PGA), the first product of photosynthesis. The enzyme involved 

is ribulose-1,5-biphosphate carboxylase/oxygenase usually abbreviated to Rubisco. The
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CC>2 supply to the carboxylation sites within the leaf depends upon the amount or 

activity of rubisco (Sharkey, 1985).

2.8.1.2. The supply and utilization of light

The absorption of light by chlorophyll causes an electron to become more 

electronegative. This energy can be lost as heat, or as light (fluorescence), or the 

electron can leave the chlorophyll molecule and reduce a neighbouring molecule .

(1) Photo synthetic electron transport

The electron transport chain in photosynthesis is believed to involve two 

photochemical reaction centres in series PSI and PSII. These centres are excited by 

antenna chlorophyll complexes which can absorb light and transfer that energy to 

reaction centre chlorophyll and a light-harvesting chlorophyll-protein complex (LHC) 

which can increase the effective light absorption in the photosystem reaction centre .

The following simple model of the electron transport chain in 

photosynthesis is given to serve as a frame of reference for later discussion .

PHOTOCHEMISTRY )

\ hv2 , hv1
1 1 1 ! C02

psii ■ psi 1
H2 0  — r *  z  — z - *  Q t *  A p — ^  x  I \

CARBOXYLATION )

0 2  H+
n a d p h - 4  

— 1 [CH20]

In this model, Z and Q are the primary electron donor and acceptor of light reaction 

centre PSII, and h \\  are quanta absorbed in light reaction centres PSI and PSII, A is 

an intersystem intermediates (e.g. plastoquinone, PQ, Cytb^/f complex etc.), P and X 

are primary electron donor and acceptor of light reaction centre PSI and e- are electrons 

flowing from PSII to PSI. The NADPH and ATP generated are consumed in the 

reduction of CO2  to sugars in the carbon assimilation cycle (carboxylation) (Munday 

and Govindjee, 1969).
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(2) Phosphorylation

Photosynthetic phosphorylation is the production of ATP. Protons are 

pumped from outside the thylakoids during electron transport. For every electron 

transported to NADP+ one proton is liberated inside the thylakoid during the oxidation 

of water and one proton is translocated across the thylakoid membrane by the 

plastoquinone. The resulting pH gradient across the thylakoid is the principal 

component of the proton motive force (pmf). When the pmf is sufficient, the outward 

passage of three internal protons is required for the synthesis of ATP from ADP and Pp 

If either ADP or Pj is not in sufficient supply the pH gradient will build up and inhibit 

photosynthetic electron transport.

2.8.1.3. The supply and utilization of phosphate

The ATP and NADPH generated by photosynthesis electron transport are 

used in the C-3 cycle to convert 3-phosphoglycerate (PGA) to triose phosphate in the 

presence of enzymes. The enzymes required for the thirteen steps of the carbon cycle 

are present in photosynthetic tissues. Deficiencies in these enzymatic activities result in 

a reduction in the rate of photosynthesis .

2.8.2. Photosynthesis measurement

2.8.2.I. Principle of Oxygen evolution measurement

The measurement of oxygen evolution was carried out using a Hansatech 

LD2 Leaf Disc Electrode Unit (Hansatech Ltd., Paxman Road, Hardwick Industrial 

Estate, King's Lynn, Norfolk, U .K .).

The C>2 electrode: The O2  which accumulates in the gas-phase during 

photosynthesis was detected by a disc located in the lower half of the middle section of 

the apparatus. The disc was a conventional Clark-type Pt/Ag/AgCl2  electrode (Delieu 

and Walker, 1981). It consists of an electrochemical cell containing a platinum cathode
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and a silver anode immersed in a solution of saturated KC1. The electrodes were 

protected by a thin wick (cigarette paper) and an oxygen permeable polythene 

membrane, of approximately 2  cm each, from a reaction chamber containing the 

sample lea f.

The leaf chamber: The leaf chamber is located on top of the electrode and the 

platinum cathode is exposed to the atmosphere in the leaf chamber through a small hole 

in its floor. The leaf chamber and the electrode disc are both encased in a massive 

anodized aluminium case through which water from a thermostatically-controlled water 

bath was passed in order to maintain a steady temperature (± 0.01 °C). The chamber 

itself is cylindrical (5 ml internal volume when empty) and accommodated small pieces 

of leaf of 10  cm2 area on a perforated stainless steel disc, with an unperforated centre to 

prevent light falling directly onto the cathode. The upper section of the chamber is the 

perspex floor of the upper water jacket, through which the chamber can be illuminated. 

When the chamber is closed, the upper section is fixed in position by two clips. O-rings 

are used to give an air-tight seal. Two taps, fitted to the outside of the leaf chamber, 

enable the chamber to be connected to the external atmosphere. These taps are used in 

the calibration procedure when the oxygen partial pressure is altered by inserting or 

removing a volume of a ir .

The CO2  concentration of the sealed atmosphere of the leaf chamber is 

maintained at approximately 1 % (v/v) by moistening capillary matting on the floor of 

the chamber with sodium hydrogen carbonate (NaHC0 3 ) buffer (200 pi of 1M 

solution). The leaf tissue is protected from the alkaline buffer by a second stainless steel 

disc and a foam rubber disc within the chamber. A probe fitted with its own perspex 

window is inserted into the chamber and allows chlorophyll fluorescence detection by a 

photodiode.

For all measurements of oxygen evolution from oat leaf segments, the 

whole unit was kept at approximately 23 °C and illumination was provided by a 24°, 

50W Dichroic quartz halogen spot lamp (WOTAN). The PFD measured at the position 

normally occupied by the leaf material was about 828 pmol photons m-2 s-1. The 

incident light intensity was altered using Balzar neutral density filters placed on the top
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of the window. Nine filters, ranging from 1 % to 75 %, were used and the percentage 

transmission expressed in pmoles photons m-2 s-1 .

Calibration: Using a gas-tight syringe, a volume of air or N2  was inserted through 

one tap while the other one was kept closed. The electrical output of the O2  sensor 

indicated on a recorder as voltage, rose to a steady state when a volume of air was 

injected and fell when the chamber was flushed with N2 . The difference between the 

electrical output of the electrode in air and N2  is a measure of the partial pressure of O2 

in the internal atmosphere. Thus within the limits imposed by the potentiating circuit, 

the deflection (in millivolts) corresponded to the number of moles of O2  at T °C .

The calibration was carried out either before or after the leaf material was placed in the 

leaf chamber.

Photosynthesis measurements: For photosynthesis measurements, the steady state 

of O2  evolution was determined. This was attained when a straight line was recorded 

for at least 7 minutes. The dark respiration (Rd) was calculated after placing the leaf 

material in the dark for about 15 minutes and the net photosynthesis (Pn) also estimated 

by illuminating the leaf material for 6  to 8 minutes at each PFD .

2.8.2.2. Diffusion pathway of photosynthesis

Before fixation, CO2  must first diffuse through the leaf boundary layer, 

the stomata and the mesophyll layer (comprising intercellular spaces, cell wall and 

intracellular fluid). The process of diffusion can be described by an electrical analogue 

where the fluxes Pn and Rd, driven by concentration gradients, pass through resistors 

representing steps in the pathway. The resistance chain represented in Fig. 4 is a 

convenient simplification of the process of CO2  diffusion which forms the basis of the 

photosynthesis-light response (PLR) model (Marshall and Biscoe, 1980).

2.8.2.3. Calculating photosynthesis rates using PLR model

Some models have been proposed to describe the response of 

photosynthesis to irradiance for C3 leaves .
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Fig. 4 : Circuit representing the diffusion pathway of CCb from the atmosphere to the site of 
fixation within the leaf. It is used in the derivation of the photosynthesis-light response model 
(PLR).

Ca CO2 concentration in the atmosphere.
Cf CO2  concentration at the site of fixation.
Cs COn concentration in the intercellular spaces within the leaf,
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net photosynthesis, 
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stomatal resistance, 
chemical or carboxylation resistance 

Equations described the model:
Pg = Pn + Rd 
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(1) The model of Rabinowitch

Rabinowitch (1951) proposed a model based on the biochemical reactions 

within the chloroplast and used various simplifying assumptions to describe these 

complexe reactions. The model describes the relationship between photosynthesis and 

irradiance in terms of a rectangular hyperbola (Fig. 5). The PLR curve has no sharp 

discontinuity between light-limited and C0 2 -limited parts of the curve nor does 

photosynthesis saturate in bright light. The model uses 2 parameters: Pgmax and a  :

Where:

Pg = rate of gross photosynthesis (Pg = Pn + Rd).
Pgmax = maximum rate of gross photosynthesis.
a  = photochemical efficiency of photosynthesis at low light intensity or quantum 

yield of light harvesting complexe (LHC).
I = photon flux density.

Plots of Pg against [I] are not linear and therefore it was not possible to measure 

Pgmax. However the model of Rabinowitch can be linearised by inverting the equation 

(1) and multiplying by [I] to give:

determined from the gradient [I]/Pgmax. The photosynthetic efficiency at low light 

intensity (a) is determined from the gradient Pg against [I]. The model (1) can also be 

solved by non-linear solver procedure of Microsoft Excel version 4.0.

substrate reaction (Marshall and Biscoe, 1980). The gross photosynthesis depends on

[I], Cf and rx according to:

Pg -  pgmax • a I 
Pgmax + a l (D

The data collected from Hansatech leaf electrode was used to calculate Pg.

Pgmax (2)

A plot of [I}/Pg against [I] gives a straight line and Pgmax can be

The model (1) was modified by Thornley (1976b) for a simple enzyme-

_ a l  (Cf / rx) 
~ a !  + (C f/rx) (3)

Where :

Cf = CC>2 concentration at the site of fixation.
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rx = chemical or carboxylation resistance 
Cf/Cx = Pgmax

(2) The model of Marshall and Biscoe

Referring to Fig. 4, a modification, appropriate for photosynthesis, of the 

model (3) was derived by Marshall and Biscoe (1980). The derived model (4) combines 

a simplified description of the biochemical reactions occuring within the chloroplast 

with the physical diffusion of CO2  from the atmosphere. The model is a non- 

rectangular hyberbola and uses 4 parameters: Rd, Pmax, a  and 0 (fig. 5 ):

0Pn - (Pgmax + a.I - 0Rd)Pn + a.I(Pgmax - (l-0)Rd) - Rd.Pgmax = 0 (4 )

where a is still the initial slope at low light intensity and q is the ratio of physical to 

total resistance to diffusion of CO2  (rp/rp+rx) which describes the degree of curvature 

at the shoulder of the PLR curve (Fig.5). The maximum rate of net photosynthesis, 

Pnmax, is calculated from the equation :

Pnmax = Pgmax - (1 - 0)Rd (5)
The model as it appears in equation (4) is in quadratic form and can be rewritten :

y = aPn + bPn + c = 0 (6 )

Where : 
a = 0
b = - (Pgmax + a.I - 0Rd) 
c = a .I (Pgmax - (1 - 0)Rd) - Rd.Pgmax

When y = 0, the solution or root of the equation (6 ) is :

x = -b ± V b2 - 4a.c 
2 a

The data was fed to the computer and analysed using a conjugate method in solver 

programme of Microsoft Excel version 4.0. Constants a, b and c were evaluated for any 

particular level of irradiance, given parameters Pmax, Rd, a  and 0 and equation (6 ) 

solved for P n .

The model of Marshall and Biscoe is shown to be a significant 

improvement on the rectangular hyperbola (1). It provides good fits to the
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measurements made during the course of this investigation, and gives consistent and 

reliable estimates of the 4 parameters (Marshall and Biscoe, 1980).

2.8.3. Measurement of chlorophyll content

The chlorophyll content of oat leaf segments was determined 

spectrophotometrically by the method of Mackenny (1941). The same leaf segments 

used for photosynthesis measurement were used for chlorophyll analysis .

Procedure :

The leaf segments were placed in a 25 ml tube and 25 ml methanol was added. 

The tube was then wrapped in aluminium foil and placed in a heated water bath at 

60°C for 30 to 40 minutes .

After heating, the tube was removed from the bath, cooled to room temperature 

and centrifuged at 70 g for 5 minutes to remove large fragments .

The supernatent was placed in a 25 ml volumetric flask and made up to volume 

with methanol.

The absorbance of the solution was read against methanol at 665 and 650 nm in a 

spectrophotometer. The amount of chlorophyll in the solution was calculated using the 

following formulae:

pg Chi a . ml- 1 = 16.5 (A6 6 5 ) - 8.3 (A ^o). 

pg Chi b ,  ml- 1 = 33.8 (A65q) - 12.5 ( A ^ ) .

From these values, the ratio Chi a /  Chi b and total chlorophyll could be calculated .

2.9. Fluorescence

Measurement of chlorophyll fluorescence quenching induced in 

photosynthetic systems by exposure to light can provide qualitative information on the 

organization and functioning of the photosynthetic apparatus (Genty et al., 1989). The



CHAPTER 2 Materials and Methods 50

changes in rate of oxygen evolution are accompanied by fluctuations in the yield of 

chlorophyll fluorescence. The problem is to relate these fluctuations to the mechanism 

of photosynthesis .

2.9.1. Fluorescence induction from intact leaves

Most fluorescence is emitted by chlorophyll a in PSII reaction centre. The 

factor controlling chlorophyll fluorescence intensity is the redox state of Q, the electron 

acceptor in the PSII reaction centre (see section 2.8.1.2.). Thus if a leaf is kept for a few 

minutes in the dark (or in low light) and then illuminated with bright light, chlorophyll 

fluorescence rises, in fractions of a second, to O and then to an initial peak P (fast 

change), then falls to a level S before rising again to a second peak M and finally 

declines to a steady state T in a process lasting several minutes (slow change) (Fig. 6 a) 

(Quick and Horton, 1984 and Walker, 1987). The fast fluorescence change from O to P 

is considered to indicate the reduction of electron acceptors between photosystems PSII 

and PSI, and probably represents the change in electron transport rate through Q 

primarily from the water splitting complex to the pool of intersystem intermediates (see 

section 2.8.1.2.) (Papageorgiou, 1975; Lavorel and Eitienne, 1977; Miranda et al, 

1981). Reoxidation of Q makes an important contribution to the slow decline in 

fluorescence from P to T, which is not determined solely by the redox state of Q but is 

also ultimately linked in with the onset of photosynthetic carbon assimilation (Quick 

and Horton, 1984).

Thus the interpretation of fluorescence induction curves is complicated by 

the existence of several photochemical and non-photochemical components of 

fluorescence quenching. The major quenching components are attributable to the 

following : photochemical q-quenching (qQ), due to the redox state of the PS II 

reaction centre (Qg acceptor), and non-photochemical energy-quenching (qE) which is 

closely related to the build up of the proton gradient (pH) which develops across the 

thylakoid membrane (Horton, 1983) (Fig. 6 b ) .
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2.9.2. Fluorescence induction measurement

Modulated fluorescence techniques allow the chlorophyll fluorescence 

components, qQ and qE, to be resolved and quantified. An alternative approach, light- 

doubling, first introduced by Bradbury and Baker (1981), has been used extensively on 

chloroplasts and leaf tissue (Miranda et al., 1981; Kraus et al., 1982; Dietz et al., 1985; 

Schreiber et al., 1986 and Genty et al., 1989).

2.9.2.1. Principle of fluorescence induction measurement

In vivo chlorophyll fluorescence kinetics were determined using freshly 

detached leaf segments (30 mm length), by a custom built modulated fluorimeter (Fig. 

7). The leaf tissue was irradiated via two arms of a trifurcated glass fibre optic light 

guide (Ealing optics). The first arm delivered a PFD of 100 pmol photons m-2 s- 1 

modulated blue light (Lj) (64 Hz) onto the leaf surface. The light source was provided 

by a 20W quartz halogen lamp filtered through a Schott BG-1 glass filter. The 

irradiation was produced by an EG+G light chopper (9479 EG+G Brookdeal). The 

second arm delivered a PFD of 300 pmol photons m-2 s- 1 of continuous blue light (L2 ) 

on the leaf surface. The light source for this arm was provided by a 50W quartz halogen 

lamp filtered through a Schott BG-1 low pass blue filter. A mechanically operated 

optical shutter was placed in the light path to control repetitive flashes of L2  .

The fluorescence (modulated plus continuous) was collected by the third 

arm of the trifurcate fibre optic and filtered through a Schott RG 665 high pass filter 

and a Balzar 685 nm interference filter. The transmitted light was collected by an EMI 

(9658 QA) photomultiplier and the signal demodulated by a Brookdeal 9503 mode- 

locked amplifier and recorded on a chart recorder (Fig. 7).

This configuration allowed light-doubling experiments to be performed on 

intact leaf tissue (Bradbury and Baker, 1981) from which information can be drawn 

concerning the efficiency of the photochemical and enzymic processes of 

photosynthesis (Walker, 1987). Unfortunately, due to the rejection ratio of the 

Brookdeal 9503 amplifier, it was not possible to monitor fluorescence using a weak
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modulated beam, as described by Schreiber et al. (1986), and so it was not possible to 

measure Fo with a high degree of precision .

2.9.2.2. Determining fluorescence parameters and quenching coefficients

In this investigation, it was not possible to measure the initial fluorescence 

rise Fo of dark adapted leaf tissue. Dark adaptation ensures that Qg is fully oxidised 

before the onset of variable fluorescence. Upon irradiation of the leaf tissue with the 

modulated light (I4 ), the variable fluorescence rises to an initial peak (Fo + Fv) or Fm 

(Fig. 6b). A further rise of variable fluorescence (Fo + Fv) to a maximum peak level 

(Fm)0 occurs upon the application of continuous light (L2 ), which fully reduces the 

electron acceptor Qg (100 % Qg=, qE=0) (Fig. 6 b). Thereafter, application of 

repetitive saturating light pulses which fully reduce Qg gives smaller fluorescence 

peaks at any given time (Fm)t, largely because of the development of qE quenching 

(Fig. 6 b ) .

The leaf tissue sample was placed in darkness for 15 minutes before 

fluorescence measurements were made. The continuous light was applied in short 

pulses of 2  seconds duration, beginning immediately after the initial rise of variable 

fluorescence (after about 2 seconds), and continuing at intervals of 5 seconds until 60 

seconds, and then at intervals of 10 seconds until 160 seconds. The photochemical 

fluorescence quenching qQ and non-photochemical fluorescence quenching qE were 

determined, from the fluorescence induction curves, as follow :

E = (Fm)n - (Fm)t _ Fl
(Fm)0 (Fm)0

O _ (Fm)t - (Fv + Fo)t _ F2 
(Fm)t (Fm)t

The fluorescence parameter qQ was determined in the same way as Genty 

et a l (1989).
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2.10. Stomatal measurement

Attempts have been made to measure stomatal aperture ever since it was 

realized that gas exchange between plants and the atmosphere is regulated by the degree 

of opening of the stomata. For this purpose, different methods for measuring the 

dimensions and frequencies of stomatal appararus and the degree of opening have been 

used. The most obvious method is direct microscopic observation of stomata on a living 

leaf or portion of a leaf. Important indirect methods of observation which are used, 

include transpiration and leaf porometer measurements (Meidner and Mansfield, 1968 

and Wilkins, 1969). Leaf porometer measurements have been broadly used to study 

stomatal behaviour, transpiration and CO2  exchange in infected leaf tissues (Majernik, 

1971 and Ayres, 1972 and 1976).

2.10.1. Stomatal frequencies and distribution

Microscopic measurements were carried out to estimate the number of 

stomata and epidermal cells other than stomatal cells, of infected and uninfected oat 

leaves. Lower epidermal imprints were obtained by spreading nail varnish over 

equivalent positions along the leaf on both infected and uninfected leaves. These 

epidermal imprints were allowed to dry and then peeled off carefully. Each epidermal 

imprint was then mounted in distilled water on a microscope slide. The number of 

stomata and other epidermal cells per unit area was determined microscopically by 

counting the numbers per field of view (0.332 mm2) at a magnification of x 200 .

2.10.2. Porometer measurements of leaf diffusive resistance

Measurements of leaf diffusive resistance were carried out using an 

automatic porometer MK 3 Delta-T- Devices (128 Low Road, Burwell, Cambridge 

CB5 OEJ, U .K .).
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2.10.2.1. Principle of measurement

The porometer measures the outward diffusion of water vapour through 

the stomata. An air tight cup, in which is situated a relative humidity sensor, is attached 

to a leaf for short periods of time. The sensor is fixed at a certain distance from the leaf, 

and water vapour emitted by the transpiring leaf diffuses out of the leaf across this 

distance, onto the initially dry element at rates depending chiefly on the degree of 

stomatal opening.

Before a reading is taken a small battery-operated pump blows an air 

stream, dried by passing through a column of silica gel, through the cup so that the 

sensor becomes dry and offers an infinite resistance to current flow. As the sensor 

becomes moist, its conductivity increases, and a gradually increasing current flows 

through the sensor. The time for the current to increase to a set level is measured 

automatically over a fixed interval. The rate of increase in conductivity of the sensor is 

directly proportional to the rate of outward diffusion of water vapour from the leaf. A 

thermistor is built into the leaf clamp so that the temperature of the leaf can be 

measured after every porometer reading. The readings obtained are then converted to 

diffusive resistance using a calibration curve which is usually obtained before the leaf 

measurements are taken and which is checked at intervals if leaf measurements are 

taken over a long period .

Calibration: A calibration plate containing six sets of holes of different sizes 

which provide six diffusion resistances of known value was used for calibration. A 

piece of absorbent paper (30 x 60 mm) was wetted with distilled water and placed on 

the flat side of the calibration plate to cover all holes. A piece of brown waterproof tape 

was then stuck over the paper ensuring that the edges were sealed. The plate was 

inserted into the sensor, engaging the position of each set of holes. At a given 

temperature and RH level, the counts at each position, when stabilised, were recorded. 

A calibration curve was obtained by plotting the six resistance values against the 

corresponding counts.
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2.10.2.2. Leaf diffusive resistance measurements

Measurements of stomatal diffusive resistance in the light/dark period 

were made on attached leaves on plants. All measurements in the light were carried out 

in the laboratory at 12 pm. and near the window so that plants were exposed to natural 

daylight. The temperature in the laboratory was about 20 ± 2°C and the relative 

humidity about 42 ± 3 %. After measurements in the light, the plants were transferred 

to a darkroom for 24 h to induce stomatal closure. Measurements of stomatal diffusion 

resistance were then made in green light. The temperature in the darkroom was 

maintained at about 19 ± 2°C and the relative humidity at about 45 ± 2 % .

Constant measurements on both upper and lower surfaces of the leaf for 

the same sample area were difficult to obtain. Measurements were only taken in the 

middle and tip of the upper surface of infected and uninfected third leaf blades on each 

plant line .

2.11. Statistical treatment of the data

In order to make comparisons between infected and uninfected plants 

within each plant line and between the three lines, all the data were subjected to an 

analysis of variance using the GENSTAT statistical programme followed by the LSD 

test.
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THE EFFECTS OF MILDEW INFECTION ON THE 

GROWTH AND DEVELOPMENT OF WILD AND TWO LINES OF 

CULTIVATED OAT.

3.1. Introduction

Growth in plants may be defined as increase in dry weight (Sestak et al,

1971). Growth analysis makes it possible to follow the formation and accumulation of 

the biomass resulting from the interactions between external environmental factors, 

such as different levels of fungal infection, and the internal factors of the plant. Fresh 

and dry weights of various organs; and the size of the assimilatory apparatus are some 

of the attributes which are employed in the analysis of growth. From some of these 

primary values, the various indices of plant growth can be calculated .

A. Simple ratios

Simple ratios have been constructed (Hunt, 1978) for the determination of 

the distribution of dry matter along the plant axis. The more frequently used ones are as 

follow :

Root : Shoot ratio : This ratio indicates the relative proportion of dry matter 

allocated between the root and shoot during plant growth .

Leaf Weight Ratio

Leaf weight ratio (LWR) is the ratio between total leaf dry weight and 

total plant dry weight. In analytical terms it is an index of the leafiness of the plant on a 

weight basis which represents the average fraction of the plant's total stock of organic 

material divided between the photosynthesizing organs and the rest of the plant (Hunt, 

1978 and 1990). It is derived from the formula :
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LWR = UK

Where : LW = Total leaf dry weight 

W = Total plant dry weight

Leaf Area Ratio

Leaf area ratio (LAR) is defined as the ratio of total leaf area to whole 

plant dry weight. It is a morphological index of the leafiness of the plant, devised by 

Briggs, Kidd and West (1920b). In a broad sense, it describes the relative size of the 

assimilatory apparatus (Hunt, 1978 and 1990) and is calculated from the formula :

LAR -  ^

Where : LA = Total leaf area

Specific Leaf Area

Specific leaf area (SLA) is defined as the mean area of leaf displayed per 

unit of leaf weight (Hunt, 1978 and 1990). It reflects leaf density or relative thickness 

and varies according to the relative proportions of the assimilatory and conductive or 

mechanical tissues in the leaf. It is derived from the formula :

B. Indices of plant productivity 

The Relative Growth Rate

The relative growth rate (RGR) is an index of the productive efficiency of 

plants in relation to total dry weight (Hunt, 1990). It represents the efficiency of the 

plant as a producer of new material (Blackman, 1919 and Williams, 1946)). It is 

defined as the increase in plant weight per unit weight per unit time (Fisher, 1921). The 

mean relative growth rate is derived from the formula :

R2_i = -Loge W2 -_ L o ge Wl
T2 - Tj
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Where :

Wj = the total plant dry weight at time Tj

W2 = the total plant dry weight at time T2

T2-Tj = the time interval between harvests

e = the base of natural logarithms

The unit leaf rate (ULR) is an index of the productive efficiency of plants

in relation to total leaf area (Hunt, 1990). It is a measure of increment in dry weight per 

unit leaf area per unit time. It thus gives a measure of the photosynthetic efficiency of 

the leaves. Williams (1946) provided a formula for the estimation of mean unit leaf rate 

between two harvests :

Where :

LAj = the total leaf area at time Tj 

LA2 = the total leaf area at time T2 

This expression makes the assumption that weight and leaf area are

linearly related over the period of the observations. Various other formulae are 

available in cases where total plant dry weight is not linearly related to leaf area (Evans,

For the present investigation, the Williams' formula was adopted because

total dry weights and leaf areas were linearly related (Fig. 8 , in the appendix), and for 

the additional reason that the time interval between harvests, being only seven days, 

was relatively short.

The growth indices described above can be shown to be related as follows :

Unit Leaf Rate

E2-1 = W2

t 2

W l . T
Tj LA2 - LAj

1972).

LAR SLA x LWR

RGR = ULR x LAR
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3.2. A comparison of mildew development on cvs Lustre. Peniarth and 

wild oat

3.2.1. Percentage leaf area covered bv mildew

Since the percentage leaf blade area covered with mildew was assessed on 

the plants used for the growth analysis measurements, the account of the way the plants 

were grown and inoculated is found in section 3.3. The assessments were made using 

the diagrammatic scale given in Materials and Methods (Fig. 2). The development of 

mildew, as mean percentage green leaf blade area affected on the main axis is given in 

Appendix tables 4 to 6 and the results are summarized in Fig. 9 .

Mildew infection in the dry and humid conditions of the greenhouse was 

much higher than that which is usually found under natural conditions in the field. 

Colonies of the mildew developed over all the aerial parts of the plants including both 

surfaces of the leaf blade, Plates 2 and 3. Mildew colonies covered a greater percentage 

area of the leaf in wild oat than in cvs Lustre and Peniarth. Infection was first apparent 

in the three lines one week after inoculation and the level increased rapidly from then 

on and within seven to eight weeks from sowing about 30 % of the foliage was affected 

in wild oat, 25 % in cv. Lustre and about 20 % in cv. Peniarth (Fig. 9). After this stage, 

because the lower heavily infected leaves senesced prematurely, the mean level of 

infection decreased due to lower levels of infection on the upper leaves especially in cvs 

Lustre and Peniarth. The upper leaves in all three lines appeared to express adult plant 

resistance (Fig. 9).

3.2.2. Spore production on infected leaves

Spore production was measured on a different set of plants from those 

used for growth analysis because the measurements involved tissue destruction. For this 

experiment, twenty five seedlings of each line were raised singly in the growth room in 

12.7 cm plastic pots containing S.A.I. potting compost. When 12 days old, the plants 

were transferred to the greenhouse and inoculated daily over a period of one week by



CHAPTER 3 Results 60

PLATE 2 :

Ervsiphe graminis 

on the abaxial surface of 

a leaf of cv. Lustre (more 

than 75 % mildew cover).

PLATE 3 :

Ervsiphe graminis 

on the abaxial surface of a 

leaf of wild oat (more than 

75 % mildew cover).
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shaking spores from heavily infected plants over them. At each sampling time, the fully 

expanded leaf blades on the main axis of three plants were carefully excised and the 

numbers of spores present on each individual leaf blade were counted. The first sample 

was taken two weeks after the plants were first inoculated and subsequent samples were 

taken at weekly intervals. Seven counts were made in total. The results obtained for 

spore production per unit area of individual leaf blades along the main axis, of plants of 

each line, are plotted in Fig. 10 .

The cumulative number of spores calculated per unit area of each leaf on 

the main axis, at each sampling time, showed significant differences between leaves on 

each plant line and between the three plant lines. Spore production on the lower leaves 

of cv. Peniarth was higher than that on the corresponding leaves of cv. Lustre and wild 

oat, but thereafter, due to the effects of infection, the lower leaves became chlorotic and 

senesced more quickly on cv. Peniarth than on the other lines (Fig. 10). The youngest, 

uppermost, leaves of wild oat produced around 8 weeks after sowing were less infected 

than the older lower leaves. Thus wild oat appears to show some adult plant resistance, 

but at a late stage of infection. However, cvs Lustre and Peniarth showed much greater 

adult plant resistance since their upper leaves either did not become infected at all or 

were significantly less infected than the corresponding upper leaves in wild o a t.

Spore production on all leaves on the main axis, at each sampling time, 

was calculated and the results are plotted in Fig. 11 A. On both cultivars, the maximum 

number of spores was reached by about 47 days after sowing after which there appeared 

to be no further production whereas in wild oat, spore production continued to increase 

up to 68 days when the last sampling was made (Fig. 11 A). The cumulative number of 

spores calculated for wild oat, at each sampling time, was significantly higher than that 

for cv. Peniarth whereas there were little differences between wild oat and cv. Lustre .

3.2.3. Total spore production per plant

Since mildew development appeared to follow the same pattern on the 

tillers as on the main axis, the total number of spores per plant could be estimated and 

the results are plotted graphically in Fig. 11B .
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3.3. A comparison of the effects of infection on the growth and 

development of cvs Lustre. Peniarth and wild oat

Sixty plants of each line were raised singly in the growth room in 15 cm 

plastic pots containing coarse sand as described in Materials and Methods. When the 

third leaf blade had fully expanded, plants were transferred to the greenhouse and 

inoculated. Thirty plants of each oat line were inoculated daily over a period of one 

week. The other thirty plants were kept free from mildew by spraying with 0.1 % Patrol 

solution at weekly intervals. The treated and untreated plants were placed in a random 

arrangement on the same greenhouse bench and fertilized at weekly intervals. Four 

plants per treatment per line were sampled at each harvest. The first harvest was made 

two weeks after inoculation with subsequent harvests at weekly intervals until six 

harvests had been made. A seventh harvest of ten plants of each line was made when 

fruits were ripe for the measurement of grain yield .

The experiment was carried out twice. Since each experiment gave 

essentially the same results, the detailed results of one only are reported .

3.3.1. Effects of infection on drv matter production

Dry weights of individual organs and total dry weights of infected and 

uninfected plants, of each line, at each harvest, are given in Appendix tables 1 to 3 and 

the results are plotted in Figs. 12-14 .

Although shoot dry weight (Fig. 12) of infected plants was smaller than 

that of uninfected plants at each harvest, none of the differences became significant (P < 

0.05) until the eighth week after sowing in the three lines, when mildew cover was 

about 25 % in cv. Lustre, about 18 % in cv. Peniarth and about 30 % in wild oat (Fig. 

12). At this stage, the dry weight of shoots of infected plants increased significantly 

more slowly than in the controls, in all three lines, with the differences between 

infected and uninfected plants being more marked in the two cultivars than in wild oat 

as infection progressed (Fig. 12).
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Infection also reduced root dry weight of the infected plants in all three 

lines (Fig. 13). Differences between infected and uninfected plants became significant 

(P < 0.05) 7 weeks after sowing in cvs Lustre and Peniarth when percentage mildew 

cover was about 20 % in cv. Peniarth, about 23 % in cv. Lustre but not until the eighth 

week after sowing in wild oat when percentage mildew cover was about 30 %, and the 

differences became more pronounced as infection progressed especially in cvs Lustre 

and Peniarth (Fig. 13).

The total dry weights of infected plants were thus significantly reduced (P 

< 0.05) by 30 % in the two cultivars but by only 15 % in wild oat by the seventh week 

after sowing (Fig. 14). By the tenth week, the total dry weights of infected plants of cvs 

Lustre and Peniarth and wild oat showed a reduction of about 61 %, 55 % and 45 % 

respectively over that of uninfected plants. Thus reductions in dry weights were greater 

in cvs Lustre and Peniarth than in wild oat at each harvest.

3.3.2. Effects of infection on the patterns of plant development

3.3.2.1. Effects on shoot development

In both infected and uninfected plants of each line, change of the shoot 

apex from a vegetative to a reproductive state and thus the commencement of main axis 

elongation occurred around 30 days after sowing when the fifth leaf had emerged .

3.3.2.1.1. Main axis height

The main axis heights recorded at each harvest are given in Appendix 

tables 4 to 6, and plotted graphically in Fig. 15 .

The rate of elongation of the main axis of the uninfected plants, of each 

line, increased steadily up to the eighth week after sowing and then accelerated up to 

the tenth week. In the infected plants, the rate of elongation followed the same trend but 

the rates of extension were lower. However, the main axis of the infected plants of wild 

oat was taller than those of the infected plants of cvs Lustre and Peniarth at each harvest 

(Fig. 15). The differences between main axis heights of infected and uninfected plants
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did not become significant (P < 0.05) until 8 weeks after sowing in cvs Lustre and 

Peniarth and a week later in wild o a t.

3.3.2.1.2. Number o f leaves expanded on the main axis

The mean total number of leaves (including green leaves and senescent 

leaves) and the mean number of senescent leaves along the main axis of infected and 

uninfected plants of each line, at each harvest, are recorded in Table 3 .

The infected and uninfected plants of all three lines had produced about 7 

leaves along the main axis by the sixth week after sowing. At this stage percentage 

mildew cover was over 15 % in cv. Lustre and wild oat and over 10 % in cv. Peniarth. 

From the seventh week, additional leaves expanded earlier on the uninfected plants of 

cvs Lustre and Peniarth than on the infected plants. As a result of this, the uninfected 

plants of both cultivars completed leaf expansion on the main axis earlier than the 

infected plants and in fact, in cv. Peniarth the infected plants expanded one leaf fewer 

than the control plants (Table 3). There were, however, no such differences in the rate 

of leaf expansion on plants of wild oat at any harvest.

The first senescent leaves were observed in infected plants of cv. Peniarth 

five weeks after sowing, and a week later in infected plants of cv. Lustre and wild oat. 

The rate of senescence of infected leaves increased with infection, especially in cvs 

Lustre and Peniarth, and as a result of this, infected plants of wild oat had a higher 

number of non-senescent leaves than those of the two cultivars (Table 3).

3.3.2.1.3. Green leaf blade area on the main axis

Total green leaf blade areas along the main axis of infected and uninfected 

plants of each line, together with areas of individual leaf baldes at each harvest, are 

given in Appendix tables 1 to 3 and 4 to 6 respectively. The areas of the individual 

green leaf blades are presented as histograms in Figs. 16A-F (in the appendix) and total 

leaf blade areas are plotted in Fig. 17 .

The reductions in sizes of the individual green leaf blade areas appeared to 

vary according to the level of infection on the leaf, the areas of leaf blades at the lower
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positions being more heavily infected and more reduced than those of leaf blades at 

higher positions on the main axis in each line (Figs. 16A-F). The major difference 

between infected and uninfected plants of each line, at different harvests, was the 

smaller size of the infected green leaf blades. However, even the apparently uninfected 

or slightly infected upper leaf blades (about 5 % or less mildew cover) on the infected 

plants were significantly reduced in size .

As a consequence of the reductions in size of the individual green leaf 

blades, total leaf blade areas were significantly reduced (P < 0.05) in each line (Fig. 

17). Total green leaf blade areas of uninfected plants of each line increased throughout 

the period of investigation, but those of infected plants increased slowly up to the eighth 

week after sowing in both cv. Lustre and wild oat, but then they declined when total 

mildew cover was about 25 % and in cv. Lustre and about 30 % in wild oat. Howrever, 

in cv. Peniarth, there was no further increase in total leaf blade area after the sixth week 

after sowing when only about 12 % of the foliage was affected. The differences 

between infected and uninfected plants of each line were not significant until the 

seventh week after sowing, and 3 weeks after where a greater reduction was produced, 

especially in cvs Lustre and Peniarth (Fig. 17).

3.3.2.1.4. Number of Tillers

The numbers of tillers recorded at each harvest are given in Appendix 

tables 4 to 6 and the results plotted in Fig. 18 .

The first tillers were formed before the first harvest 5 weeks after sowing. 

In the control plants, numbers continued to increase up to about 4.50 tillers in wild oat, 

about 4.75 tillers in cv. Lustre and about 5.5 tillers per plant in cv. Peniarth, reached at 

the ninth week after sowing, but in the infected plants there was no further increase 

after the seventh week when there were about 2.75 tillers in both wild oat and cv. 

Lustre and about 3.25 tillers per plant in cv. Peniarth (Fig. 18). The LSD for tiller 

number per plant shows significant differences (P < 0.05) between infected and 

uninfected plants of each line. These differences were evident at the seventh week after 

sowing in both cvs Peniarth and Lustre, when percentage mildew cover was over 20 %
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and 23 % respectively, and a week later in wild oat, when percentage mildew cover was 

about 30 % .

3.3.2.1.5. Green leaf blade area on tillers

Mean total green leaf blade areas of tillers of plants at each harvest are 

given in Appendix tables 4 to 6 and the results are plotted graphically in Fig. 19 .

The reduction in tiller green leaf blade area on the infected plants of each 

oat line was due to a reduction in the number of tillers produced per plant. The 

reduction in tiller green leaf blade area followed the same pattern as that on the main 

axis, the only difference being that tiller green leaf blades were more reduced in area 

than were green leaf blades on the main axis. The analysis of variance shows significant 

differences (P < 0.05) between infected and uninfected plants which were apparent 

around the seventh week after sowing in all three lines with the differences being 

greatest in cv. Lustre (Fig. 19).

3.3.2.1.6. Cell size and cell number per leaf

Since the reduction in green leaf blade area could be due to reductions in 

cell expansion and/or in cell division, attempts were made to estimate cell size and cell 

number per leaf. Three leaves from position 1 and two from position 3, on the main 

axis, showing about 30 %, 40% and 75 % mildew/ cover on the leaves from position 1, 

50 % and 80 % mildew cover on the leaves from position 3, were excised from five 

infected plants of each of the two lines. Leaves from corresponding positions were 

excised from five uninfected plants. The area of each leaf was measured with the leaf 

area meter and lower epidermal imprints were obtained (see Materials and Methods, 

section 2.10.1.). The number of stomata (guard cells and subsidiary cells) and the 

epidermal cells other than stomata, per unit area were determined microscopically by 

counting the number per field of view (0.332 mm2) at a magnification of x 200. Five 

counts per strip were made and the mean number of stomata and of other epidermal 

cells per unit area was calculated. A total of ten epidermal imprints per leaf were 

assessed. The results are given in Tables 4 to 6 andl are illustrated in Plates 4 and 5 .
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The results show that the number of stomata and the non stomatal cells, 

per unit area (0.332 mm2) was always higher in the infected leaves than in the 

corresponding uninfected leaves in both cv. Peniarth and wild oat (Tables 4 and 5). The 

mean number of stomata per field of view was about 11.9 in infected leaves and 10.7 in 

uninfected leaves of cv. Peniarth, 12.0 in infected leaves and 10.5 in uninfected leaves 

of wild oat ; while the mean number of the other epidermal cells was about 31.6 in 

infected leaves and 29.2 in uninfected leaves of cv. Peniarth, 30.4 in infected leaves and 

28.4 in uninfected leaves of wild oat. The analysis of variance shows significant 

differences (P < 0.05) in the number of stomata and the non stomatal epidermal cells 

per unit area between leaves with different mildew intensities in each line (Table 6A), 

but there were no significant differences between the uninfected leaves except for the 

number of non stomatal epidermal cells which was found to be significantly different in 

each line and this was probably due to differences in leaf position (Table 6B). The 

analysis of variance also shows significant differences (P < 0.05) between infected and 

uninfected leaves in each line (Table 6C ).

Since the ratio between numbers of stomata and epidermal cells per field 

of view (stomatal index) was not altered by infection in either line (Table 7a-7b), it is 

clear that the higher number of stomata per field of view for the infected leaves is due 

to the reduced expansion of the epidermal cells with the relative increase in number 

indicating the extent of this reduction in both lines. Counts of stomata and of the other 

epidermal cells per unit leaf area, together with measurements of total leaf area, were 

used to calculate the approximate numbers of epidermal cells per leaf (Table 8a-8b). 

The values found indicate that there were between 4 to 13 % fewer stomata and 

epidenpal cells in the lower epidermis of infected than uninfected leaves of wild oat 

(Table 8a), and between 5 to 17 % fewer stomata and epidermal cells in the lower 

epidermis of infected than uninfected leaves of cv. Peniarth (Table 8b). Thus, the 

reduction in leaf blade area, which ranged from 8 to 23 % in wild oat and from 9 to 29 

% in cv. Peniarth, was due to reduced cell division as well as reduced cell expansion .



a) 
Th

e 
ef

fe
cts

 o
f 

in
fe

cti
on

 
on 

the
 

nu
m

be
r 

of 
sto

m
ata

 
(g

ua
rd

 
ce

lls
 

and
 

su
bs

id
iar

y 
ce

lls
) 

pe
r 

un
it 

are
a 

of 
in

fe
cte

d 
and

 
un

in
fe

ct
ed

 
lo

w
er

 
ep

id
er

m
is 

of 
lea

f 
tis

su
e 

of 
wi

ld 
oa

t.

o
CO co O co CM QN ©  CO CM O

O  ^  T—t *—I 1—1
CO CM

CO

CXJ
CM

3

§
O  O ni-H O O ON O CM1 J t-H

NO
©

CO

Ou.
Go
U

CO

3
3
tH
(D

c O © © © O n O O n C M » —i i—iiV—4 T—4 ymrn* ©
oo
CM

CO CM ©  <—' CM O  O n CM ©  XC.~b ©
NO
CO

CM

Vi
CD

X >

S3
£ O '  O '  ( ©  i—( t—c OO ON CO

i-H  c ] ( j i—H 1*1 t-H c j  c~‘j i—1 r-H
X

ON

XOn
O

CO

CO
CM

o
X

r ^- ' ^ t CM' ^- CONOCMNncMNC NOr-

•oa>
<D

NO
CM

O

COt"~-

33Vi
(D3,

CO 3 " <—' C M O ' — —' C O T f

CM Nl - CM O CO CM ON ^  CM*-H t-H C~‘j t-H 1

OO

CM*

CM

ONO
cm’

NOr->

CM o

o
CO

<D
X>
B
3
£

C O C M O O O C M X O N ©r"H H j—H c!~jb t-H <N

O  ON 1-H O ON ON O © O n CO 
©  1

NO

©

CM

©

©
CO

CO
CM

C/2Oa.C+H3
<D
►J

s

J
C3
<D

3O
•
M—»o
<£
£

3 T3 
£  X



<D
*o

-o<D
O,<D

G3
T3G3

<D
■4—>o.o

s
3
« -l
<D0<
3
3s
G
3

J3
■(—>

Vi
<D

- G

©CO

CO

© c- o o n ' O ' O x —
C O C M C O C M C M C M C M C O C M C M

X
CM O  O n 1 X  X  *-h  O  ©  O  

C M C M C O C M C M C O C M C O C M C O

O
u

G
O

u

CO

Vi
CD
O h

© N O t ' - ' X N o x N o r ' - x x
C O C M C M C M C M C M C M C M C M C M

CO x r ^ v o t ^ - o x r ^ > - H N O N o
C M C M C M C M C M C M C M C O C M C M

CM r - ' N C N C x © x N O r - > X ' —i 
C M C M C M C M C O C M C M C M C M C O

CO
CM

CO

©
X

N O c O r —i t —i r f  NO CM i o  CM C -  
c o c o c o c o c o c o c o c o c o c o

NO
CM

©
» o

O C M © C M O < —' N O t -' - © ' —1 
C M C O C O C O C M C O C O C M C O C O

•a
0>

(J « o
c ~

Vi
(D
O h

X © C O C M O cO h—( Q n C M ©  
C M C O C O C O C M C O C O C M C O C O

CM ©rj- H—' O X X C - O N O N O X O  
C O C M C M C M C M C M C M C M C M C M

©
CO

© © O X X O X h—1 C - ’—I 
C O C O C M C M C M C M C M C O C M C O

o

3 TJ
£  x

o
O h

<3
(D
vJ

3 O

c



a) 
Th

e 
ef

fe
ct

s 
of 

in
fe

ct
io

n 
on 

the
 

nu
m

be
r 

of 
sto

m
ata

 
(g

ua
rd

 
ce

lls
 

and
 

su
bs

id
iar

y 
ce

lls
) 

pe
r 

un
it 

are
a 

of 
in

fe
cte

d 
and

 
un

in
fe

ct
ed

 
lo

w
er

 
ep

id
er

m
is 

of 
lea

f 
tis

su
e 

of 
cv

. 
Pe

ni
ar

th
.

s CO CS O n c s © © O n ■'d-
Sr* rH rH T”H rH r-H O r-H r-H rH t-H ©r * n

CO cd

2
5

o

WW

CS rH CS o CO ON o rH
8

CO o 4—1

4—» • r^
C
3
i- i

4—1 rH rH rH 4—4 O rH rH rH rH
rH

mm <D
©

i n CO
qHH r f o o CO ON O O n ON 4—4 ©c

CS cd rH rH rH fH o rH O o r-H rH ©
o 4-* rH rH

u
cd
a
o4—1
C/2

r*>
<4-1
o CO o <N o O n c s O _ O n rH t"~ r -

c s
CS
4—4

4—4 rH th rH O 1—H r-H rH O rH o
r

l-l
<D

JO
g

rH rH

4-^ o
3

z o O n rH O n O O CS O © rH CS

0
.8

7

4—4 rH 4-H O rH O r-H rH rH rH ©
rH

OO o m CS r r NO O C"> rH rH CS c s CO
c s4—* OO t—4 rH T—H r-H t-H i 4 rH rH rH rH c d

cd
rH c S

aco <3

c s O 4-4
• a

o CO O c s CS c s
s

rH c sq
c s rH rH rH r—4 r-H rH rH rH rH rH

3

(X

4—4

■ o

©
q > o

cd
cdH

u o CS CS NO H - o O n CS CS NO NO
o o r - rH rH rH rH H r-H r-H o rH rH CS*«4-i g rH CS

s
NH 2

C/3
<4-1
O

o o < o m o < S rH CS o O n O o CS CS
T "H

N
um

be
r rH T -H rH r-H rH rH O rH rH rH

rH

0 0

rH

r -
O o 0 4 ON r-H O n cs rH O CS © cs r S rH
rH CO rH o l—H O rH rH rH rH rH rH rH

CS^
3
cd T3c

o
"•*-> • r

6 cs
O • ̂  4—>

<D 4-4
0 0

o cd o

«+-( J <4-1
c

cd c 1—4
a> cd

CD

s



b) 
Th

e 
ef

fe
ct

s 
of 

in
fe

cti
on

 
on 

the
 

nu
m

be
r 

of 
the

 
ep

id
er

m
al

 c
el

ls,
 o

th
er

 t
ha

n 
sto

m
at

a,
 p

er 
un

it 
are

a 
of 

in
fe

cte
d 

and
 

un
in

fe
cte

d 
lo

w
er

 
ep

id
er

m
is 

of 
lea

f 
tis

su
e 

of 
cv

. 
Pe

ni
ar

th
.

CN

co

< s i t ^ - o s o o T - H v o o r ^ r ^ r ^  
c O c N n l c N c O c N c O c O c N c N oc

CN

CN
T—<

CN

O1m
c©
U

in
CN

< N

u<uOh
gj<oo

r H O O N X T t t ^ O O ( N ' O M

i—< © O O i —( O  ©  OO OO ON OO 
c o c o c s c o c N c o c n c N c n c N

oo
as
< N

as
CN

SOin
cs

CO

CS T3
ex4><+Ho
f-l<uo
B3
Z

i—i © r j - 0 0 © < N O © 0 0  Os
C O C O C O < N C O C O < O C O < N < N

O O o o o o o s O s o o o o O O s
C O < N C N C N C S < N C N < S < N C S

< N

©
CO

00
< N

©
CN

CNCN

00

CO

©oo vOi —i ^ \ 0 0 > O O n O \ ^ M  
c o c o c o c o c o c o c N c N c o c o CN

CO

o
CN

TJa>
M
s

CN
CN

in
OO

©
in

in
r>-

(-H0)ex

© i - H i n O N C O < N c O O O < N ©
C O C O C O C N C O C O C O C N C O C O

O ^ O C O ^ ^ O ^ h O I O C O  
CN C O CO CO CO CO C O CO C O CO

CO
r - H

CO

lO
CO
CO

CN

VO
o
< N

kJ

©

©
CO

<L>
• ̂  ext>X-io
l-H<uX)s
3

z

O C O C N C N O ^ O V O O I O H
C O C O C O C O C O C O C N C N C O C O

© r ^ o o o o c N © t ^ - O N O N ©
C O C N C N C N C O C O C N C N C N C O

r —H

CO

as
CN

VOm

00

go • ̂  +->• rHCAoex
X-HaS<D
hJ

a

J
c
d>

Go• rH
o

X-<
G

§ 3
09



S O

CQ
<

<D\O
|

c9>

3<>>
■3

^3
Sj

•S
'o’

§1C3
33
Is.

a,
a3
03
O'!C

-3
£

I

04
>

CO

CO
CO

<+-!T3

cd

><+-<
o
<D
a3O

CO

o
CO o  ^

Z  d  ©

LO CO CO
o sq 00
o os T-«̂

8 I D  IT)  OOso oo r- in os <s 
r-! »fi cn co

Q o O o OSO SO Tf o SOT—H CN Os © cq
o SO »o LO

CN
i—H

i—H OsCN CO
t j -

O  OS 
Os Os

X

DC3 f<

E £

r -  <D _
3  cd

^  O O 
0-i 04 H

vo

303.05c*

"3
a

3
3
aa
’33
Is.3
o,

•3

a
g

'S,

•s3
3
■s
*3 '

-3
3

CO

ed

^  O  ^  
©  o  o
o d d

0 0 CN so
s q O s

L O CO

o o LO Os
s

r—H SO
o os q
o CO

*-H SO

o  o3  so 
o  
di—i rtcs

S o  o  O SO sq cs so
OS OS so  LO CO o  CO SO

H  d -  r t O  Os 
Os Os

<L>

cdH .<l> S '53
«  ^  «  d) O
0̂  m On Pi H

o
Q'
CO
J

* 
LS

D 
va

lu
es

 
for

 p
lan

t 
lin

e 
x 

in
fe

ct
io

n 
in

te
ra

ct
io

ns
.



(1)
 

Nu
m

be
r 

of 
sto

ma
ta

 
pe

r 
un

it 
ar

ea
 

of 
un

in
fec

ted
 

lea
f 

tis
su

e
P-< C O C O CO

£  z  2

IO rH ^  CO CN OO

CO
O O O Os '■'t Os vo (N in oo 
O CN t“H T-H

CO
CO

o  ©  o  e  oTf SO SO O SOso OS CO Tt CO
o  oo so so Hso OO

T3- Tt O  OS  
O s  O s

3

<L>
a3O

CO

o

a
o • ̂
o,<u<+Ha

<D .
.s ^33 3
H-i ’O

3 C-h 3. C

"a
SiSj

s:a
'o'
§
a
s;sv.
O,

Sj
a
g
■§
!•s<so

•s
'o'
Jh.

5s

CN

Oh

CO

3

O v-i O © —I 
© © ©

CO so CNsq r-; o
Os CN CN

o so s o H ’Os CN t-H r -’sfr COoo cq
CNCO OS SO CO

O  O  O  Os o
Os O  s o  Os u-i
Tf CO CN so t"-
cn r- r- co co co cn ©CO

T—' ”3- O  O s  
O s  O s

X

3

£ +-> % t-H
8 g ‘38 3 y “  o o 
S Oh 04 H

O .3 o

o 'co
*

LS
D 

va
lu

es
 f

or 
pl

an
t 

lin
e 

x 
in

fe
ct

io
n 

in
te

ra
ct

io
ns

.



(1)
 

Nu
m

be
r 

of 
sto

ma
ta

 
pe

r 
un

it 
ar

ea
 

of 
in

fec
ted

 
an

d 
un

in
fec

ted
 

lea
f 

tis
su

e

>

00
00

T3

O
a
o

00

©
00 o  00
Z  ©  Z

Tt- ON
© eft
0 00 ©

<N

wo WO WO wo
CS CS 0

1-H VO CS
O r—̂

On
© CO

wo wo wo On wo
cs cs © cn On1—H 1—̂ VO ON
© 1—H

ON
© ©

cn
vo

CS
r-

VO On 
On On

Co
• PH +-»O
<+-1c

t i  o  aG ^ Ca t*-( as
EC £

ce =5
•a 3 ^  q o CU 04 H

a
.05■C*

"a
fiiVj
I'Sa
“aaa

a
Sia

s:
?3
?■
v»
-K

*«■t-i

-O
a

c*

OO

0  0  *  
O C ( f l

© o  Z

wn cn r~
wn r-t
© CS ©
H wo

WO wo wo ©
Tt © ^r cn
© cs 00 ©
cn
wo

CS*
VO

© wo*

CS

woTfo
wo wo On WO
© wo wo
cs 00 00 ON
cs © wo i—H
VO 00 ©
cs ON cn

i-H

VO ON 
On On

d
•S
£dI—I 

*
O p; a) ^
^ o Es ^3  .2 d  3

w <H w flj ft
EC c

ON
00
o
11
mo

Q'
00

* * 
LS

D 
va

lu
es

 f
or 

pl
an

t 
lin

e 
x 

in
fe

ct
io

n 
in

te
ra

ct
io

ns
.



TABLE 7

Effects o f infection on Stomatal Index in infected and uninfected lower epidermis of

teaves-of:

a) wild oat

Leaf position Stomatal Index
on Infected plants Contro plants

main axis Mean SE Mean SE

1 0.26 0.017 0.26 0.012

1 0.27 0.019 0.27 0.019

1 0.28 0.019 0.27 0.020

3 0.29 0.026 0.26 0.026

3 0.29 0.018 0.29 0.018

b) cv. Peniarth

Leaf position
on 

main axis

Stomatal Index

Infected plants Control plants
Mean SE Mean SE

1 0.27 0.016 0.27 0.017

1 0.26 0.029 0.26 0.016

1 0.28 0.031 0.27 0.024

3 0.27 0.021 0.27 0.011

3 0.29 0.016 0.27 0.010



TABLE 8

Effects o f infection on total number o f stomata and the other epidermal cells per lower 

epidermis o f leaves o f :

a) wild oat

Leaf
Infected
plants

Control
plants

Percentage
reduction

position Leaf Number of Leaf Number of
on area stomata epiderm. area stomata epiderm. Leaf stomata +

mam axis (cm2) cells (cm2) cells area epider. cells

1 11.0 338.30 965.14 12.0 354.58 1002.22 8.33 3.90

1 12.0 383.52 1016.70 13.0 407.64 1077.90 7.69 5.74

1 10.0 364.83 925.64 13.0 407.64 1070.06 23.08 12.67

3 26.0 1003.43 2406.67 28.0 894.89 2490.49 7.15 -

3 23.0 957.80 2337.02 30.0 1022.12 2541.74 23.33 7.55

b) Peniarth

Leaf
Infected
plants

Control
plants

Percentage
reduction

position Leaf Number of Leaf Number of
on area stomata epiderm. area stomata epiderm. Leaf stomata +

main axis (cm2) cells (cm2) cells area epider. cells

1 10.0 325.63 874.38 11.0 338.30 928.66 9.10 5.28

1 10.0 337.69 946.75 12.0 387.14 1092.68 16.67 13.20

1 8.5 322.92 858.56 12.0 379.90 1049.26 29.17 17.33

3 22.0 776.09 2076.21 25.0 829.16 2246.26 12.00 7.25

3 18.0 716.39 1774.70 24.0 788.75 2081.29 25.00 13.20



CHAFTER 3 Results (

of wild oat infected (I) andPLATE 4 : Photomicrographs o f the lower epidermis 

uninfected (C) with Ervsiphe graminis.



CH APTER 3 Results

PLATE 5 : Photomicrographs o f the lower epidermis of cv. Peniarth infected (I) and 
uninfected (C) with Ervsiphe graminis.
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3.3.2.2. Effects on root development

Infection clearly altered root growth, as shown earlier by the 

measurements on the accumulation of dry weight in the different organs. However, the 

morphological changes which probably occurred in total length and in individual root 

thickness as a result of infection were not examined .

3.3.2.3 Effects on reproductive structures and grain yield

The results of counts or measurements of yield components and grain 

yield of infected and uninfected plants of each line are given in Appendix tables 7 to 9 

and they are summarized in Tables 9 and 10.

The LSD shows that, for each oat line, the total grain yield per plant was 

significantly reduced (P < 0.05) by mildew infection. The reduction as a percentage of 

the uninfected controls of cv. Peniarth, cv. Lustre and wild oat being, 57 %, 55 %, and 

48 % respectively. Comparisons between infected and uninfected plants in relation to 

yield components, showed that the reduction in grain yield was principally a 

consequence of fewer tillers, fewer fertile tillers, fewer grains per main axis panicle and 

therefore fewer grains per plant (Table 9). Infection reduced the number of tillers of 

infected plants but the differences between infected and uninfected plants were not 

significant in all three lines. However, the number of fertile tillers per plant was 

reduced by infection in cv. Lustre but significantly reduced (P < 0.05) in cv. Peniarth 

and wild oat (Table 10A). Infection also significantly reduced (P < 0.05) the number of 

grains per main axis panicle in cvs Lustre, Peniarth and wild oat. The number of grains 

per plant was therefore significantly reduced (P < 0.05) in all three lines (Table 10B). 

The infection also significantly reduced (P < 0.05) hundred grain weight and total grain 

yield in cvs Lustre and Peniarth, but also, although to a lesser extent, in wild oat (P < 

0.1) (Table 10C). However, although the total grain yield and total plant dry weight 

were significantly reduced in all three lines, though to a lesser extent in wild oat, the 

values obtained for the harvest index of infected plants were not significantly different 

from those of uninfected plants for any line (Table 10D). It thus appear that the
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FIGURES 20A-20D : Effects of infection on (A) root/shoot ratio, (B) leaf weight ratio,

(C) leaf area ratio and (D) specific leaf area of infected (♦) and 

uninfected (O ) plants of wild oat and cvs Lustre, Peniarth. 

Vertical bars represent standard errors.
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CHAPTER 3 Results 71

proportion of total biomass converted to grains was not affected in any of the plant 

lines.

3.3.3. Effects of infection on the distribution of drv matter

3.3.3.1. Effects on ro o t: shoot ratio

The ratios of root to shoot dry weight of infected and uninfected plants of 

each line at each harvest are plotted in Fig. 20A .

The analysis of variance shows that the proportion of total dry matter 

contained in the roots of infected plants was less than that of uninfected plants in cv. 

Lustre and wild oat but significantly less (P < 0.05) in cv. Peniarth (Fig. 20A). The 

differences in the ratios between infected and uninfected plants of the cv. Peniarth were 

first evident at about the same time as reductions in dry matter production, seven weeks 

after sowing when total mildew cover was about 20 %, whereas these differences did 

not become significant even when total mildew cover was about 23 % in cv. Lustre or 

about 28 % in wild oat (Fig. 20A).

3.3.3.2. Effects on leaf weight ratio

Changes in leaf weight ratios of infected and uninfected plants of each line 

are plotted in Fig. 20B .

The ratio of leaf dry weight to total plant dry weight of infected and 

uninfected plants showed a negative correlation with time for all three lines, its value 

being high during the early stages of growth and low as the plants matured (Fig. 20B). 

The downward trend of leaf weight ratio indicates that as the plants grow older and as 

total plant biomass increased, the proportion of dry matter that accumulated in the 

leaves diminished. The analysis of variance shows that leaf weight ratios of infected 

plants were significantly higher (P <0.05) than those of uninfected plants of cvs Lustre 

and Peniarth, but not of wild oat (Fig. 20B). The differences between infected and 

uninfected plants became apparent around eight weeks after sowing in cv. Lustre when
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total mildew cover was about 25 % and a week later in cv. Peniarth when total mildew 

cover was about 15 %. It thus appears that although infection reduced the size of the 

leaves, the relative proportion of total dry matter in leaf tissue was greater in the 

infected plants than in the uninfected. However, in wild oat, although infection reduced 

leaf area, the reduction was proportional to the size of the plant and infection did not 

significantly alter the relative proportion of dry matter in the leaves .

3.3.3.3. Effects on leaf area ratio and specific leaf area

Changes in leaf area ratio and specific leaf area of infected and uninfected 

plants of each line are plotted in Figs. 20C and 20D .

Leaf area ratios (Fig. 20C) and specific leaf areas (Fig. 20D) of infected 

and uninfected plants of all three lines showed a negative correlation with time similar 

to the leaf weight ratio. A decline in specific leaf area suggests that a relatively higher 

proportion of the assimilates were retained within the leaves. Whether they are retained 

within the cells as starch or other storage materials or utilised to form new cells was not 

determined. Since both leaf area ratio and specific leaf area were also determined from 

leaf area data, they both show a similar negative correlation with time. The declining 

leaf area ratio suggests a diminishing amount of materials allocated for the development 

of the assimilatory surface in relation to the total amount available in the plant. The 

analysis of variance shows that leaf area ratios (Fig. 20C) and specific leaf areas (Fig. 

20D) of infected plants were not significantly different from those of uninfected plants 

in the two cultivars and in wild o a t.

3.3.4. Effects of infection on the efficiency of growth

3.3.4.I. Effects on relative growth rate

Changes in the relative growth rates of infected and uninfected plants of 

each line are plotted in Fig. 21 .
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Fig. 21 : Effects of infection on relative growth rates of infected and 
uninfected plants of wild oat and cvs Lustre, Peniarth.
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The results show a distinct ontogenetic drift in the relative growth rates of 

both infected and uninfected plants of each line. The relative growth rates are high 

during the early stages of growth, but decrease as the plants age up to the eighth week 

after sowing. Between the eighth and ninth week, the relative growth rates increased 

coincident with the period of main axis elongation and ear emergence, followed by a 

further decrease up to the tenth week after sowing when the last harvest was made (Fig. 

21). The differences between infected and uninfected plants of cvs Lustre and Peniarth 

and of wild oat became apparent between the sixth and seventh week after sowing, with 

the differences being greater in the two cultivars than in wild oat (Fig. 21). The total 

effect of mildew infection was to decrease the relative growth rate by 28 % in cv. 

Lustre, 26 % in cv. Peniarth but only 21 % in wild oat, 5 to 10 weeks after sowing .

3.3.4.2. Effects on unit leaf rate

The changes in unit leaf rates during the growth of infected and uninfected 

plants of each line are plotted in Fig. 22 .

The curves for both infected and uninfected plants of each oat line show a 

negative correlation with time, except during the interval between the eighth and ninth 

week after sowing where the unit leaf rates of both infected and uninfected plants of 

each line increased, followed by a decline in the interval between the ninth and tenth 

week after sowing (Fig. 22). Up to the eighth week after sowing, the amount of mildew 

increased (Fig. 9) without decreasing leaf blade area on main axis (Fig. 17), but 

between the eighth and ninth week, a high number of the lower infected leaves senesced 

leaving only the lightly infected, young and effective leaves (Table 3). Thus, in the 

interval from eight to nine weeks after sowing, when differences in leaf blade area and 

total plant dry weight were more conspicuous, leaves on infected plants became almost 

as efficient as those on healthy plants. The differences in unit leaf rates between 

infected and control plants were less apparent in wild oat than in cvs. Lustre and 

Peniarth (Fig. 22).
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THE EFFECTS OF MILDEW INFECTION ON STOMATAL FUNCTION  

IN THE LEAVES OF WILD OAT AND TWO LINES OF CULTIVATED  

OAT.

4.1. Introduction

Stomatal function directly regulates processes of primary importance in 

the growth and development of plants, such as photosynthesis and transpiration 

(Meidner and Mansfield, 1968). Through their influence on these major activities, 

stomata will exert effects on all other processes that are directly or indirectly dependent 

on them. One element in the diffusion pathway of CO2  into the leaf to the reaction 

centres within the chloroplasts is stomatal aperture and so the changes in dry matter 

production reported in the last chapter could thus result in part from changes in stomatal 

behaviour.

The object of this investigation was to compare stomatal behaviour in 

infected and uninfected leaves during both the light and the dark periods in cvs Lustre, 

Peniarth and in wild oat, and to examine whether the reductions in dry matter 

production in infected tissues could result from changes in stomatal behaviour.
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23 : Changes in diffusive resistances, during the light and dark period, of 
infected (middle.♦ ,  and tip, A,) and uninfected (middle,O ' and  tip, 
A.) leaves of cv. Lustre. Measurements taken betw een 1 and  10 days 

after inoculation.
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4.2» The effects of stomatal diffusive resistance in control leaves

Sixty seedlings of each line were raised in the growth room. The plants 

were grown singly in 15 cm plastic pots containing S.A.I. potting compost. When 3 

weeks old, the fully expanded third leaves on thirty plants of each line were inoculated 

by applying single conidial isolates (from leaf segments in Petri dishes) to the middle 

region of the upper surface of the leaf blade using a paint brush. The tip and base of the 

leaf were not inoculated. The other thirty plants were kept free from mildew by 

spraying with 0.05 % Benlate solution at weekly intervals. The treated and untreated 

plants of each line were then placed in the growth room. Six plants per treatment per 

line were sampled at each harvest. The first measurements in the light were made 24 h 

after inoculation, whereas those in the dark were made 48 h. after inoculation. 

Subsequent measurements were made at 2 day intervals until 5 harvests had been made. 

Porometer measurements were taken in the middle and tip of the upper surface of 

infected and uninfected third leaves on each plant line .

This experiment was carried out three times with an interval of two weeks 

between experiments. Similar results were obtained on each occasion and the detailed 

results of the third experiment are reported .

4.2.1. Ontogenetic changes in stomatal diffusive resistance

Diffusive resistances in both, middle and tip, regions of uninfected control 

leaves were relatively constant during the light period in all three lines (Figs. 23-25), 

although it is generally reported that the efficiency of stomatal functioning declines as 

the leaf ages (Solarova, 1970 cited in Majemik, 1971). However after 24 h. in the dark, 

stomatal diffusive resistances were initially high in both regions of control leaves in all 

three lines, particularly in cv. Lustre, but then they declined as the leaf aged in both 

cultivars but not in wild oat (Figs. 23-25). The reduction in diffusive resistance which 

occurs as the leaf aged, particularly in cv. Lustre, could be due to the increasing failure 

of the stomata to close in the dark or to changes in the cuticle leading to increased
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cuticular transpiration. Whether such changes were due to normal ontogenetic effects or 

to other external factors is not known .

4.2.2. Effects of infection on diffusive resistance during the light phase of the 
photonerind

Measurements were made in the middle of the light phase at 12 pm. The 

diffusive resistances in both the middle and tip regions of infected and uninfected leaves 

measured at this time are given in Appendix table 14 and are plotted in Figs. 23-25 .

The diffusive resistances in the light in both, middle and tip, regions of the 

infected and uninfected leaf showed that during the first 3 days after inoculation, when 

the percentage of mildew cover on infected leaves was negligible (1 to 2 %), the 

diffusive resistance in the infected middle region of the leaf fell relative to that in the 

corresponding region of the control leaf in wild oat (Fig. 25). The fall was even greater 

(P < 0.05) in cvs Lustre and Peniarth (Figs. 23 and 24). The diffusive resistance in the 

uninfected tip region of the infected leaf was also significantly lower (P < 0.05) than 

that in the corresponding region of the control leaf in cv. Lustre but no significant 

differences were found between infected and control leaves in either cv. Peniarth or 

wild oat. However, from 5 to 9 days after inoculation, a period which correlated with 

maximum fungal growth, assessed by fungal sporulation and chitin analysis (Figs. 27 A- 

B, see chapter 5), the diffusive resistances became greater in both the middle and tip 

regions of infected leaves than in the uninfected controls in cvs Lustre (Fig. 23), 

Peniarth (Fig. 24) and in wild oat (Fig. 25). The results of the analysis of variance 

shows that the differences between diffusive resistances in the middle region of the 

infected leaf and the corresponding region of the control leaf became significant (P < 

0.05) from 5 days after inoculation in each line, whereas for the uninfected tip region of 

the infected leaf and the corresponding region of the control leaf, the differences did not 

become significant until two days later in all three lines. However, no significant 

differences were found between the middle and tip regions of either infected or 

uninfected leaf in each line .
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4.2.3. Effects of infection on diffusive resistance during the dark phase of the

photoperiftti
After measuring diffusive resistances in the light phase, the plants were 

moved to the dark room and measurements were made 24 h. later. The results of 

measurements of diffusive resistances in both the middle and tip regions of infected and 

uninfected leaves during the dark period are given in Appendix table 15 and are plotted 

in Figs. 23-25 .

After 24 h in the dark, the diffusive resistances in both the middle and tip 

regions of uninfected leaves were higher than those of infected leaves at each harvest in 

all three lines (Figs. 23-25). The lower values obtained for diffusive resistances of 

infected leaves indicate that either infection prevented stomata from closing in the dark 

as fully as those in uninfected control leaves, or that the presence of mycelium on the 

leaf surface lead to greater water loss from the infected leaf. In both, middle and tip, 

regions of uninfected leaves, the diffusive resistances remained high after 24 h. in 

darkness, with small fluctuations particularly in cvs Lustre and Peniarth, during the 

course of the experiment indicating that the stomata were closed. However, in both 

regions of infected leaves, the diffusive resistance in cv. Peniarth began to fall within 

48 h. after inoculation (Fig. 24), although percentage mildew cover at this stage was 

negligible (< 1%), with significant differences (P < 0.05) between infected and 

uninfected leaves thereafter. These differences were not apparent in either cv. Lustre 

(Fig. 23) or wild oat (Fig. 25) until 4 days after inoculation when percentage mildew 

cover was between 1 to 2 %. From then on, as the mycelium developed, the diffusive 

resistances in both the middle and tip regions of infected leaves became significantly 

lower than those in the corresponding regions in healthy leaves in all three lines, 

although, the reductions were not as large in wild oat as in the two cultivars. The 

analysis of variance shows no significant differences between the middle and tip regions 

of either the uninfected or infected leaf in any line, except during the early stages of 

infection when the differences between the two regions of the infected leaf were 

significant (P < 0.05) in cv. Peniarth and wild oat but not in cv. Lustre .
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4.3. Conclusion

The diffusive resistances in the light and dark period respectively were 

changed by infection in a similar way in cvs Lustre, Peniarth and wild oat. During the 

light period, diffusive resistances of control leaves were low indicating that the stomata 

were open and their aperture appeared to remain constant during the course of 

experiment. In infected leaves, the decrease in diffusive resistances in the light that 

occurred during the first 3 days after inoculation, before fungal mycelium had 

developed to any significant extent, almost certainly reflects an increase in stomatal 

aperture since water loss from the mycelium would have been insignificant at this stage. 

This increase is in line with that caused by Ervsiphe pisi in pea (Ayres, 1976). The 

factors responsible for this are not known. The increased diffusive resistances in the 

light that occurred from about 5 days after inoculation, when mycelium development 

became significant and so would be expected to contribute to water loss, clearly 

indicates that the degree of stomatal opening in the light decreased with increasing 

levels of infection in all three lines .

During the dark period, the diffusive resistances in control leaves showed 

a distinct ontogenetic drift indicating that as leaves aged either their stomata failed to 

close completely or cuticular transpiration increased, particularly in cvs Lustre and 

Peniarth. In infected leaves, 48h. after inoculation when mycelium development was 

limited, the diffusive resistances were low in cv. Lustre and wild oat but much lower in 

cv. Peniarth indicating that the stomata failed to close in the dark. An increase in 

stomatal opening in the dark could not be clearly recorded in cv. Lustre and wild oat 

because by the time significant differences in diffusive resistances were recorded, there 

was too much mycelium development to separate water loss from stomata from that 

from mycelium .
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THE EFFECTS OF MILDEW INFECTION ON 

PHOTOSYNTHESIS IN THE LEAVES OF WILD AND  

TWO LINES OF CULTIVATED OAT.

5.1. Introduction

In chapter 3, it was shown that infection decreased dry matter production 

significantly in all three lines. Some of this decrease was due to the reductions in green 

leaf blade area as a result of enhanced senescence of the older leaves, reduced 

expansion of individual leaves and reduced rate of leaf production particularly in cv. 

Peniarth. However, infections of plant tissues by microbial parasites are also reported to 

decrease the rates of photosynthesis (Allen, 1942; Ayres, 1976 and Walters, 1985), and 

so some of the loss of dry matter production could result from effects on the efficiency 

of the photosynthetic systems .

In the last chapter, it was shown that infection was likely to reduce CO2 

diffusion into the leaf through the stomata so that photosynthesis in the infected leaf 

could be reduced due to a reduced level of CO2  reaching the reaction centres in the 

chloroplast.

This chapter describes a series of experiments which determined the 

effects of mildew development on a leaf on the photosynthetic and respiratory rates and 

chlorophyll content of that leaf in the same three lines, as were used for the growth 

analysis experiments, or in cv. Lustre and wild oat only. Photosynthetic and respiratory 

rates were measured using a Hansatech leaf electrode. Similar trends in photosynthetic 

parameters were determined when the data were analysed by the two models which 

describe the photosynthetic-light response curve (PLR), the model of Rabinowitch and 

that of Marshall and Biscoe (see Materials and Methods, section 2.8.2.3.).

In the first experiment, the effects of infection were measured on the third 

leaf in the three lines where the whole of that leaf had been inoculated. For this
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Fig 26 : Diagrammatic representation of the fourth leaf inoculated with 
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inoculated control (C).
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experiment, mildew development on the leaf at each sampling time was assessed. In the 

second experiment, the middle part or the tip and base of the fourth leaf was inoculated 

(Fig. 26) and the effects of infection in the inoculated middle part (Fig 26A), in the 

uninoculated part (Fig. 26B) and in the uninoculated control leaf (Fig. 26C) were 

studied. This experiment was designed to determine if photosynthesis in uninfected 

regions of an infected leaf can compensate for any reductions in the infected regions. 

Chlorophyll fluorescence emission was also assessed in the second experiment.

The data were subjected to an analysis of variance using the GENSTAT 

statistical programme and significance was assessed using the LSD test.

5.2. Mildew development on the third leaf

Fungal development on the third leaf of the two cultivars and on wild oat 

was assessed in two ways; by measuring spore production and by measuring the 

accumulation of chitin.

5.2.1. Fungal development assessed bv counting spore production

Twenty eight seedlings of each line were raised singly in 12 cm plastic 

pots. When three weeks old, the third leaves on all plants of each line were inoculated 

with a single conidial isolate using inoculum from plants grown in the Isolation Plant 

Propagator. Inoculation was carried out using a settling tower as described in Materials 

and Methods. The plants were then replaced in the growth room until required for spore 

production measurements. Four plants per line were sampled for each measurement. 

The first measurement was made 4 days after inoculation with subsequent 

measurements at 2 day intervals until six counts had been made and then a final count 

was made 4 days later. Counts of spore production per unit leaf area at each sampling 

time are presented graphically in Fig. 27A .

The mycelium developed rapidly on the inoculated leaf of each line to produce a 

uniform covering over the leaf within 4 to 6 days (Plate 6). Few spores were produced
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over this period, but spore production became abundant from the sixth day onwards 

after inoculation. On all three lines the maximum number of spores was reached by 

about 10 days after inoculation after which there appeared to be no further production 

(fig. 27A). At each sampling time, the cumulated number of spores present per unit leaf 

area of wild oat and cv. Lustre was higher than that of cv. Peniarth. However, there was 

little differences between wild oat and cv. Lustre .

5.2.2. Fungal development assessed bv chi tin analysis

Forty eight seedlings of each line were raised in 12 cm plastic pots, two 

seedlings in each pot. Twenty four plants of each line, e.g. 12 pots, were inoculated as 

above while the plants in the other 12 pots were kept free from mildew by spraying 

with 0.05 % Benlate solution at weekly intervals. Three pots, e.g. six plants per line per 

treatment, were sampled at each time; three samples of leaves were taken, each sample 

consisting of two entire blades of the third leaf. The first sample was taken 5 days after 

inoculation with subsequent samples 10, 15 and 20 days after inoculation. The results of 

the chitin analyses are plotted in Fig. 27B .

The amounts of glucosamine detected in the uninfected tissues of plants of 

each line were consistently well below those of infected tissues (Fig. 27B) indicating 

that host tissues did not contain sufficient hexosamines to interfere with the assay. Early 

fungal growth on infected leaves was detectable from around 5 days after inoculation 

(Fig. 27B). Then glucosamine levels increased dramatically over a further 5 days after 

inoculation, a period which correlated with sporulation (Fig 27A). By 10 days after 

inoculation, high levels of glucosamine had accumulated in the leaf tissue of all three 

lines. At this stage, the amount of glucosamine measured in infected tissues of wild oat 

was significantly greater (P < 0.05) than that in cvs Lustre and Peniarth. These 

differences were maintained up to 20 days after inoculation when the last measurements 

were made .
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PLATE 6 : Scanning Electron Micrograph of oat leaf infected with mildew. Colonies 

growing from more than one conidium 5 days after inoculation, (a) chain 

of conidia developing from a swollen flask-shaped cell from the 

mycelium.
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5.3. The effects of infection on respiration, photosynthesis and 

chlorophyll content of the third leaf

Experiment 1

5.3.1. Methods

Fifty six plants of each of the three lines were grown singly in 15 cm 

plastic pots. When the third leaf blades had fully expanded, twenty eight plants of each 

line were inoculated and the other twenty eight plants were kept free from mildew as 

described earlier. The treated and untreated plants of each line were grown in the 

growth room under the same conditions as the plants used for fungal growth 

measurements (see section 5.2.1.). Four plants per line per treatment were sampled at 

each harvest. The experiment was carried out twice and since both gave essentially the 

same results, the detailed results of one experiment are reported .

In this experiment, the model for photosynthesis vs. PFD proposed by 

Marshall and Biscoe (see chapter 2, section 2.8.2.3.) was used to calculate: dark 

respiration (Rd), maximum rate of net photosynthesis (Pnmax), maximum rate of gross 

photosynthesis (Pgmax), photochemical efficiency of photosynthesis at low light 

intensity (a) and the ratio of physical to total resistance to CO2 diffusion (0).

5.3.2. Effects of infection on dark respiration

The dark respiratory rates (Rd) of infected and uninfected leaf tissue of 

each line, at each sampling time, are plotted graphically in Fig. 28 .

The rates of respiration of both infected and uninfected leaves of each line 

showed a fluctuating decline during the course of the experiment (Fig. 28). The 

respiration of infected leaves in all three plant lines, however, was generally higher than 

that of uninfected leaves at all times after inoculation. No measurements of respiration 

were possible in leaves of cv. Peniarth from 15 days after inoculation because the 

infected leaf had by this stage senesced .
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The LSD value shows significant differences (P < 0.05) between infected 

and uninfected leaves in cvs Lustre and Peniarth, but not in wild oat, during the course 

of infection. (Fig. 28). However, there were no significant differences between the three 

lines in the respiratory activities of the uninfected leaves over the 15 days of the 

experiment.

5.3.3. Effects of infection on photosvnthetic activity

5.3.3.I. Maximum rate of net photosynthesis

Maximum rates of net photosynthesis (Pnmax) of infected and uninfected 

leaf tissue, of each line, at each sampling time are plotted in Figs. 29 and 30 .

The maximum rates of net photosynthesis per unit area of uninfected leaf 

tissue of each line decreased progressively during the course of the experiment. 

However, that of infected leaf tissue showed a much greater reduction, especially in cvs 

Lustre and Peniarth, which probably includes the reduction due to infection in addition 

to the reduction which occurs normally during leaf maturation (Fig. 29). Significant 

differences (P < 0.05) were found between infected and control leaves of all three lines, 

with the differences being more marked in cvs Lustre and Peniarth than in wild oat as 

infection progressed. The total effect of infection was to decrease the maximum rates of 

net photosynthesis of infected leaves by about 43 % in cv. Peniarth, with about 3131 

spores produced per mm2 leaf area, about 32 % in cv. Lustre with about 3388 spores 

produced per mm2 leaf area but only by 26 % in wild oat with about 3568 spores 

produced per mm2 leaf area, between 4 and 15 days after inoculation. No further 

measurements were possible for cv. Peniarth after 15 days but those for cv. Lustre and 

wild oat were continued up to 20 days after inoculation. At this stage, Pnmax in the 

infected leaves was reduced by about 47 % in cv. Lustre, although spore production had 

by then ceased, but only about 27 % in wild oat although the number of spores 

produced had increased to about 3684 per mm2 leaf area .
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However when maximum rates of net photosynthesis were calculated per 

milligram of chlorophyll, they were also found to decrease as infection progressed, in 

all three lines, but more slowly than when expressed per unit leaf area basis. However 

none of the differences between infected and uninfected leaves were significant in any 

of the three lines at any stage of infection (Fig. 30).

5.3.3.2. Maximum rate of gross photosynthesis

Maximum rates of gross photosynthesis (Pgmax) of infected and 

uninfected leaf tissue, of each line, at each sampling time are plotted in Figs. 31 and 32.

The maximum rates of gross photosynthesis per unit area of uninfected 

leaf tissue of each line decreased as the leaf aged through the course of the experiment. 

However, that of infected leaf tissue showed a more rapid decline, especially in cvs 

Lustre and Peniarth, as infection progressed (Fig. 31). The LSD value shows significant 

differences (P < 0.05) between infected and uninfected leaves in all three lines. The 

total effect of infection was to decrease the maximum rates of gross photosynthesis of 

infected leaves by about 36 % in cv. Peniarth, about 27 % in cv. Lustre and about 26 % 

in wild oat, between 4 and 15 days after inoculation. Measurements for cv. Lustre and 

wild oat were continued up to 20 days after inoculation. At this stage, Pgmax in the 

infected leaves was reduced by about 32 % in cv. Lustre whereas for wild oat there was 

no further reduction.

The maximum rates of gross photosynthesis, expressed per milligram of 

chlorophyll, of infected leaves were found to be not significantly different from those of 

uninfected leaves in the three lines at all stages of infection (Fig. 32).

The difference between Pgmax (or Pnmax) when expressed per unit area 

and per unit chlorophyll suggests that the decrease in Pgmax (or Pnmax) could be due 

to a low density of the photosynthetic unit and/or a decrease in the amount of light- 

harvesting chlorophyll, or to an alteration of the efficiency of photosynthetic electron 

transport.
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5.3.3.3. Photochemical efficiency of photosynthesis

Photochemical efficiency of photosynthesis at low light intensity (a) at 

different times after inoculation are plotted in Fig. 33 .

The curves show that as infection progressed, the photochemical 

efficiency of photosynthesis at low light intensity in infected leaves fell below that in 

uninfected leaves in all three lines (Fig. 33). The analysis of variance shows significant 

differences (P < 0.05) between infected and control leaves in each line, with the 

differences becoming greater as infection progressed. The overall effect of infection 

was to decrease the photochemical efficiency of photosynthesis by about 27 % in cv. 

Peniarth but about 18 % in cv. Lustre and wild oat, in the period between 4 and 15 days 

after inoculation. By 20 days after inoculation, the photochemical efficiency of 

photosynthesis in infected leaves was reduced by about 26 % in cv. Lustre but only 

about 19 % in wild o a t.

The decrease in a  also suggests a low density of the photosynthetic unit 

and therefore a decrease in the light-harvesting capacity (loss of chlorophyll).

5.3.3.4. Ratio of physical to total resistance to COo diffusion

The values of the ratio of physical to total resistance to CO2  diffusion (0) 

at different times after inoculation are plotted in Fig. 34 .

The results showed that the values of 0 for infected leaf tissue were lower 

than those for uninfected tissue in cvs Lustre and Peniarth whereas in wild oat, although 

they fluctuated widely between harvests they did not show a consistent fall in infected 

tissue (Fig. 34). The analysis of variance shows no significant differences between 0 

values in the infected and uninfected leaf in cv. Lustre and wild oat at any stage of 

infection. However, in cv. Peniarth, the values of 0 in the infected leaf became 

significantly different (P < 0.05) from those in the uninfected leaf from around 12 days 

after inoculation onwards (Fig. 34).
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Figures 35A-C : Chlorophyll a (A), chlorophyll b (B) and total

chlorophyll (C) content of Ervsiphe graminis infected (♦) and 

uninfected «>) third leaf of wild oat and cvs Lustre, Peniarth. 

Vertical bars represent standard errors.
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5.3.4. Effects of infection on chlorophyll content

5.3.4.1. Chlorophylls a and b and total chlorophyll

Changes in chlorophylls a and b in infected and uninfected leaf tissue of 

each line are plotted in Figs. 35A -B .

Chlorophylls a and b in uninfected leaf tissues of all three lines declined as 

the leaf matured but those in infected tissues showed a much greater reduction 

presumably due to the effects of infection in addition to the normal decline due to leaf 

maturation (Figs. 35A-B). The analysis of variance revealed significant differences in 

chlorophylls a and b between infected and uninfected leaves of each line during the 

course of infection.. The differences between infected and uninfected leaves, for 

chlorophyll a, became significant (P < 0.05) 6 days after inoculation in cv. Peniarth but 

not until 8 days after inoculation in cv. Lustre and wild oat (Fig. 35A). Differences, 

with respect to chlorophyll b, became significant (P < 0.05) around about 8 days after 

inoculation in cv. Peniarth, but not until 10 days after inoculation in cv. Lustre and wild 

oat (Fig. 35B). However the differences, for both chorophylls a and b, were always less 

marked in wild oat than in cvs Lustre and Peniarth at all stages of infection .

Total chlorophyll content of infected and uninfected leaves of each line are 

given in Table 11 and the results are plotted in Fig 35C. The analysis of variance shows 

significant differences (P < 0.05) between infected and uninfected leaves of each line, 

with the differences being more apparent in cvs Lustre and Peniarth than in wild oat as 

infection progressed. The overall effect of infection, at 15 days after inoculation, was to 

reduce total chlorophyll content of the infected leaves about 36 % in cv. Lustre, about 

33 % in cv. Peniarth but only by about 25 % in wild oat. At 20 days after inoculation, 

there had been no further reductions in total chlorophyll of infected leaves in either cv. 

Lustre or wild o a t.

5.3.4.2. Ratio of chlorophyll a : b

The ratios of chlorophyll a : b at each harvest are given in Tables 11 and

11A.
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Although chlorophyll a appeared to decline more rapidly than chlorophyll 

b in the infected leaves, as shown in Figs. 35A and 35B, the ratios of chlorophyll a : b 

were not significantly different from those in the uninfected leaves of the two cultivars 

and wild oat during the course of the experiment (Tables 11 and 11 A). This suggests 

that infection reduced chlorophylls a and b almost equally in the three lines .

5.3.5. Relation between Pgmax and parasite biomass production

The reduction in maximum gross photosynthesis during infection in each 

oat line was found to be linearly correlated (P < 0.001) with increasing parasite 

biomass, measured as fungal spore production in the infected leaves (Fig. 36) (Table 

12). The results suggest that although infected leaves of wild oat supported the 

production of more fungal spores than those of cvs Lustre and Peniarth, over the course 

of the experiment, the maximum gross photosynthesis of the infected leaf of wild oat 

declined more slowly than that of the two cultivars (Fig. 36).

5.4. The effects of infection on the fourth leaf on respiration, 

photosynthesis and chlorophyll content of the uninfected parts of that 

leaf

5.4.1. Introduction

The results of experiment 1 using the third leaf clearly suggest that infection 

resulted in increases in respiration and reductions in photosynthetic carbon fixation, the 

photochemical efficiency of photosynthesis at low light intensity, and chlorophyll 

contents in cvs Lustre, Peniarth and wild o a t . Such reductions were more marked in the 

two cultivated oats than in wild oat. Thus, the fact that growth and development of wild 

oat were less reduced than those of the two cultivars by given levels of mildew, the 

tolerance could be due to the lower effect of that infection on photosynthesis. However a 

further factor affecting the more limited effects on growth and development in wild oat
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Fig. 36 : Relationship between gross photosynthesis and spore production on
the infected third leaf of wild oat (■ ) and cvs Lustre (♦ ) , Peniarth (+ ).



TABLE 12

Repression analyses o f maximum gross photosynthesis (Pemax) and funeal spore

production in cvs Lustre. Peniarth and wild o a t .

Regression
parameters Lustre wild oat Peniarth

Intercept (a) 12.257 12.465 13.092
Slope (b) 1.925 10'09 1.640 10'09 2.203 10-°9

Standard error for (a) 0.558 0.559 0.497
Standard error for (b) 0.197 10"09 0.193 10-09 2.012 10-°9

Coefficient of corr. (r2) 0.786 0.734 0.870
Degree of freedom 26 26 18

F ratio 95.383 71.942 119.90

The regression analysis using the general equation for straight line y = a + bx .
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could be the levels at which uninoculated tissues adjacent to infected tissues are able to 

compensate for reductions due infection. This aspect was investigated in the following 

experiment.

Experiment 2

5.4.2. Methods

Forty eight plants of cv. Lustre and of wild oat were grown until the fourth 

leaf blade had fully expanded. The fourth leaves from plants of each line were 

inoculated by applying single conidial isolates (from leaf segments in Petri dishes) to 

different parts of the leaf (Fig. 26) using a paint brush: sixteen plants of each line were 

inoculated in the middle part of the leaf (Leaf A), another sixteen plants were 

inoculated at the base and tip of the leaf leaving the middle region uninoculated (Leaf 

B) and the other sixteen plants were kept free from mildew (Leaf C) using fungicides, 

as described before. The infected and uninfected plants were then placed in the growth 

room. Four plants per line per treatment were sampled at 5 day intervals until 20 days 

after inoculation.

The results of experiment 1 applying the model of Marshall and Biscoe 

showed that infection did not appear to affect the physical (rp) or carboxylation 

resistance (rx) to CO2  diffusion in both cv. Lustre and wild oat as the numerical value 

of 0 did not change significantly. In this experiment the model of Rabinowitch was used 

instead to calculate Pgmax, a  and Rd (Rd was simply deduced from the equation Pg = 

Pn + R d ) .

5.4.3. Effects of infection on dark respiration

The dark respiratory rates of the infected middle region of leaf A, the 

uninoculated middle region of Leaf B and the middle region of leaf C, in the two lines, 

at different times after inoculation are plotted in Fig. 37 .
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The rates of respiration in the infected middle region of leaf A and in the 

uninoculated middle region of leaf B were generally higher than those of the 

uninoculated control leaf C in both cv. Lustre and wild oat throughout the experiment 

(Fig. 37). The LSD value shows that, in wild oat, the rate of respiration in the infected 

middle region of leaf A and the uninoculated middle region of leaf B were significantly 

higher (P < 0.05) than that in the control leaf C, from 5 to 10 days after inoculation, but 

thereafter the rate of respiration in both infected regions of leaves A and B (when the 

uninoculated region of leaf B had became infected) declined to the level of that in the 

control leaf C (Fig. 37). However, in cv. Lustre, the rate of respiration in the 

uninoculated region of leaf B was significantly higher (P < 0.05) than that in the control 

leaf C, during the initial 5 days after inoculation, but thereafter the rate of respiration in 

both infected regions of leaves A and B stayed higher but not significantly higher than 

that in the control leaf C (Fig. 37).

5.4.4. Effects of infection on photosvnthetic activity

5.4.4.I. Maximum gross photosynthesis

Maximum rates of gross photosynthesis (Pgmax) at different times after 

inoculation are plotted in Fig. 38 .

Five days after inoculation, the maximum rates of gross photosynthesis, 

expressed on a unit leaf area basis, in the uninoculated middle region of leaf B was 

slightly higher but not significantly higher than in the control leaf C, but thereafter it 

fell below that of the control in both lines (Fig. 38). Differences between the infected 

middle region of leaf A, the uninoculated middle region of leaf B and the uninoculated 

control leaf C became significant (P < 0.05) 10 days after inoculation, in both cv. 

Lustre and wild oat. Thereafter, when the middle region of leaf B became infected, the 

ability of both infected middle regions of leaves A and B to photosynthesise decreased 

more rapidly than that of the corresponding uninoculated controls, especially in cv. 

Lustre (Fig. 38). The total effect of infection was to decrease the maximum rates of
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gross photosynthesis, from 5 to 20 days after inoculation, in the middle region of leaf A 

by about 38 % in cv. Lustre, about 26 % in wild oat and that of the middle region of 

leaf B by about 29 % in cv. Lustre and about 23 % in wild oa t .

The maximum rates of gross photosynthesis per milligram of chlorophyll 

slightly decreased in the infected region of leaf A and uninoculated regions of leaf B 

and C as infection progressed and the differences between the three leaves were not 

significant in either cv. Lustre or wild oat at any stage of infection (results not given).

S.4.4.2. Photochemical efficiency of photosynthesis

Photochemical efficiencies of photosynthesis at low light intensity (a) at 

each sampling time are plotted in Fig. 39 .

The curves show that the photochemical efficiency of photosynthesis in 

the middle region of control leaf C in both cv. Lustre and wild oat did not change over 

the 20 day period of the experiment, whereas that in the infected middle region of leaf 

A and the uninoculated region of leaf B did, especially in cv. Lustre (Fig. 39). In cv. 

Lustre, the photochemical efficiency in the infected middle region of leaf A was below 

that of the uninoculated control leaf C 5 days after inoculation, although the reduction 

did not become significant (P < 0.05) until 15 days after inoculation, whereas the 

photochemical efficiency in the uninoculated middle region of leaf B was significantly 

stimulated 10 days after inoculation followed thereafter by a reduction below that of the 

control leaf C. At 15 days after inoculation, when the uninoculated middle region of 

leaf B became infected, the photochemical efficiency in the infected middle region of 

leaf B became significantly different (P < 0.05) from that of the control (Fig. 39). In 

wild oat, the photochemical efficiency in the infected middle region of leaf A and the 

uninoculated middle region of leaf B were significantly higher than that of the controls 

5 days after inoculation. Thereafter, the photochemical efficiency in the infected middle 

region of leaf A fell below that of the uninoculated control, and the differences did not 

become significant (P < 0.05) until around 20 days after inoculation. In contrast, the 

photochemical efficiency in the uninoculated middle region of leaf B never fell below 

that in control leaf C (Fig 39). The total effect of infection was to decrease the



Figures 40A-C : Chlorophyll a (A), chlorophyll b (B) and total

chlorophyll (C) content of Ervsiphe graminis infected ( ♦ ) ,  

adjacent uninoculated ( A)  and uninoculated control (O ) leaf 

tissue of cv. Lustre and wild oat. Vertical bars represent 

standard errors.
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photochemical efficiency of photosynthesis in the middle region of leaf A by about 29 

% in cv. Lustre but about 11 % in wild oat and that of the uninoculated middle region 

of leaf B by about 16 % in cv. Lustre but only about 2 % in wild oa t .

5.4.5. Effects of infection on chlorophyll content

5.4.5.I. Chlorophylls a and b and total chlorophyll

Changes in chlorophylls a and b in the infected middle region of leaf A, 

the uninoculated middle region of leaf B and the middle region of leaf C, of each line, 

at each sampling time are plotted in Figs. 40A -B .

Chlorophylls a and b in the control leaf C in the two lines showed a slow 

decline throughout the course of the experiment but those in the infected middle region 

of leaf A and the uninoculated middle region of leaf B showed a rapid decline as 

infection progressed (Figs. 40A-B). The LSD value shows significant differences in the 

amounts of chlorophylls a and b between the infected middle region of leaf A, the 

uninoculated middle region of leaf B and the control leaf C in the two lines. In cv. 

Lustre, the levels of chlorophylls a and b in the infected middle region of leaf A were 

significantly lower (P < 0.05) than in the control leaf C from around 5 days after 

inoculation whereas those in the uninoculated region of leaf B did not become 

significantly lower (P < 0.05) than in the control leaf C until around 10 days after 

inoculation, with the differences becoming greater as infection progressed (Figs. 40A- 

B). In contrast, the levels of chlorophylls a and b in the infected middle region of leaf A 

of wild oat were not observed to be significantly reduced (P < 0.05) until around 10 

days after inoculation for chlorophyll a and until 15 days after inoculation for 

chlorophyll b. Furthermore, the differences between the uninoculated middle region of 

leaf B and the control leaf C of wild oat were not observed to be significant (P < 0.05) 

until 10 days after inoculation for chlorophyll a and none of the differences were 

significant until 15 days after inoculation for chlorophyll b (Figs. 40A -B) .
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Total chlorophyll in the infected middle region of leaf A and in the 

uninoculated middle regions of leaves B and C are given in Table 13 and plotted in Fig. 

40C. Reductions in total chlorophyll content of the infected middle region of leaf A and 

the uninoculated middle region of leaf B were due to reductions in both chlorophylls a 

and b. The total effect of infection, from 5 to 20 days after inoculation, was to reduce 

total chlorophyll in the infected middle region of leaf A by about 36 % in cv. Lustre, 

about 31 % in wild oat, and that of the uninoculated middle region of leaf B by about 

25% in cv. Lustre and about 22 % in wild o a t.

S.4.5.2. Ratio of chlorophyll a : b

The ratios of chlorophyll a : b at different times after inoculation are given 

in Tables 13 and 13A .

The ratios in the infected middle region of leaf A and in the uninoculated 

middle region of leaf B were reduced in both cv. Lustre and wild oat (Table 13). 

However, none of the differences between the infected middle region of leaf A, the 

uninoculated middle region of leaf B and the control leaf C were observed to be 

significant (P < 0.05) until 15 days after inoculation (Table 13A ).
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5.5. The effects of infection on the fourth leaf on chlorophyll 

fluorescence changes in the uninoculated parts of that leaf

5.5.1. Introduction

The results obtained in the previous section showed that infection results 

in reductions in the rates of photosynthesis in the infected and also the adjacent 

uninoculated leaf tissue particularly in cv. Lustre, and also, although to a lesser extent, 

in wild oat. The following section describes measurements of chlorophyll fluorescence 

induction which were carried out to investigate the probable mechanisms by which 

photosynthesis was reduced in wild and cultivated o a t.

5.5.2. Methods

Forty eight seedlings of cv. Lustre and wild oat were raised in 15 cm 

plastic pots, two seedling per pot. Plants were grown until the fourth leaf had fully 

expanded. The fourth leaves from plants of each line were inoculated and incubated as 

described for the photosynthesis measurements in the previous experiment (see section

5.4.2.). Four plants per line per treatment were sampled at 5 day intervals until 20 days 

after inoculation. At each sampling time, the infected leaves A and B and the 

uninoculated control leaf C (see Fig. 26) were excised and a leaf segment of 30 mm 

length was cut from the middle region of each leaf and used for chlorophyll 

fluorescence measurements. The experiment was carried out twice and since both gave 

essentially the same results, the detailed results of one only are reported .

5.5.3. Effects of infection on chlorophyll fluorescence

Chlorophyll fluorescence was examined at different times after 

inoculation. Photochemical (qQ) and non-photochemical (qE) components of 

fluorescence quenching were determined from the fluorescence induction curves (see 

Materials and Methods, section 2.9.2.2., Fig. 6b) and were used to examine the
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relationship between fluorescence quenching parameters and photosynthetic electron 

transport. The fluorescence parameter qQ was determined in the same way as Genty et 

a l  (1989).

5.5.3.I. Effects of infection on non-photochemical fluorescence quenching . qE

Non-photochemical fluorescence quenching (qE) in the infected middle 

region of leaf A, the uninoculated middle regions of leaf B and control leaf C are 

presented in Figs. 41A-D .

The qE value calculated as the ratio Fl/Fmo (see Materials and Methods, 

section 2.9.2.2.) gives some indication about the proton motive force across the 

thylakoid membrane (Horton, 1983). The qE values obtained after 60 s (time of 

maximum fluorescence quenching) and 160 s (steady state fluorescence) of 

fluorescence induction were chosen for comparison between infected and uninoculated 

leaf tissue in each line. Five and ten days after inoculation, the fluorescence ratio 

(Fl/Fmo) in the infected middle region of leaf A and the uninoculated regions of leaves 

B and C in the two lines reached the maximum level after about 60s, which was then 

followed by a quenching of fluorescence to a steady state at 160s (Figs. 41A-B). At 5 

days after inoculation, there were no significant differences between the values of qE at 

60 s and 160 s in the infected and uninoculated leaf tissue in each line, but by 10 days 

after inoculation, the value of qE at 60 s in the uninoculated control leaf C was 

significantly higher (P < 0.05) than that in the infected region of leaf A and 

uninoculated region of leaf B in wild oat and cv. Lustre (Figs. 41A-B). However, there 

were no significant differences between the qE value at 160 s in the infected region of 

leaf A and the uninoculated regions of leaves B and C in either cv. Lustre or wild oat. 

The differences in qE after 60 s and 160 s became more pronounced as infection 

progressed. This probably indicates that the proton gradient across the thylakoid 

membrane was not altered in the infected tissue of leaf A and the uninoculated tissue of 

leaf B until around 10 days after inoculation, when it began to decrease slowly in both 

cv. Lustre and wild oat. By 15 days and 20 days after inoculation, the fluorescence ratio 

(Fl/Fmo) decreased slowly from 60 s to 160 s in the control leaf C, whereas in the



Figures 41A-D : The time course of fluorescence quenching qE

determined in Ervsiphe graminis infected (♦ ), adjacent 

uninoculated (A)  and uninoculated control (O) leaf tissue of cv. 

Lustre and wild oat, between 0 and 160 s of fluorescence 

induction. Vertical bars represent standard errors.
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infected regions of leaves A and B (when the uninoculated region of leaf B had became 

infected), it reached a maximum level earlier (around about 35 to 40 s in both lines) 

than in the uninoculated controls (around about 60 s in both lines) and then it decreased 

rapidly. The LSD values show that the qE values at 60 s and 160 s in the infected 

regions of leaves A and B were significantly lower (P < 0.05) than those in the control 

leaf C; this was most noticeable in cv. Lustre (Figs. 41C-D).

These results suggest that the proton gradient across the thylakoid 

membrane in the control leaf tissue decreased slowly with leaf age, whereas in the 

infected and adjacent uninoculated tissue, it decreased rapidly due to the additional 

effects of infection upon age effects. Furthermore, there were no significant differences 

in the infection-dependent decrease of qE when leaves were infected as leaf A and leaf 

B in both lines. The effect of infection on qE appeared to be more pronounced in cv. 

Lustre than it was in wild o a t.

S.5.3.2. Effects of infection on photochemical fluorescence quenching . qO

Photochemical fluorescence quenching (qQ) in the infected region of leaf 

A, the uninoculated region of leaf B and control leaf C are presented in Figs. 42A-D .

The qQ value calculated as F2/Fmt (see Materials and Methods, section

2.9.2.2.) estimates the oxidation state of the Qg site of the electron transport chain 

(Horton, 1983). The qQ values after 60 s and 160 s of fluorescence induction were also 

compared in the infected and uninoculated leaves of each line. At 5 days after 

inoculation, the qQ values at 60 s and 160 s in the infected region of leaf A were 

significantly less (P < 0.05) than those in the uninoculated region of leaf B or in the 

control leaf C in cv. Lustre (Fig. 42B). However, the corresponding qQ values in the 

infected region of leaf A in wild oat were not different from those in the uninoculated 

region of leaf B or in the control leaf C (Fig. 42A). This suggests that in cv. Lustre, 5 

days after inoculation, Qg in the infected leaf tissue was not fully re-oxidised as in the 

control tissue after 60 s and 160 s of fluorescence induction. However, there were no 

significant differences between the qQ values at 60 s and 160 s in the uninoculated 

region of leaf B and the control leaf C in the two lines (Figs. 42A-B). Ten days after



Figures 42A-D : The time course of fluorescence quenching qQ

determined in Ervsiphe graminis infected, adjacent uninoculated 

(*) and uninoculated control leaf tissue of cv. Lustre and wild 

oat, between 2 and 160 s of fluorescence induction.
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inoculation, the qQ values at 60 s and 160 s in the infected region of leaf A of wild oat 

became significantly lower (P < 0.05) than those in the uninoculated region of leaf B, 

and the control leaf C (Fig. 42A) whereas in cv. Lustre, the qQ values in both, the 

infected region of leaf A and the uninoculated region of leaf B, were significantly lower 

(P < 0.05) than those in the uninoculated control leaf C (Fig. 42B). These differences 

were maintained until 20 days after inoculation when the experiment was terminated. 

At 15 and 20 days after inoculation, a decrease in the qQ value in the infected region of 

leaf A occurred during the initial 2 s of fluorescence induction in the two lines, which 

was more apparent in cv. Lustre than in wild oat, with further decreases at 60 s and 160 

s especially in cv. Lustre (Figs. 42C-D).

The high values of qQ in the uninoculated control leaf tissue suggest that 

Qg is extensively re-oxidised during the fluorescence induction. However, the low 

corresponding values of qQ in the infected and adjacent uninoculated leaf tissue 

indicate that Qg is not re-oxidised to the same extent and that this effect is exacerbated 

as infection progressed; cv. Lustre was more affected than wild o a t.

The greater reduction of the Qg sites of photosynthetic electron transport 

chain in the infected and adjacent uninoculated leaf tissue could be interpreted in two 

ways. Firstly, if the density of functional Qg sites is lower in the infected and adjacent 

uninoculated tissue than in the controls, PSII unit connectivity would ensure a more 

reduced state of this acceptor. Secondly, if the rate of oxidation of the Qg pool is 

impaired in infected and adjacent uninoculated tissue, but the rates of reduction are 

similar to that of the controls, the QB pool would be more reduced (Dominy, P.J.) 

(personal communication).
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DISCUSSION

Parasitic infections, particularly heavy infections, are bound to affect the 

growth and development of their host to some extent. Some of the effects are likely to 

be due to parasite activities which are essential if the parasite is to infect and complete 

its life cycle successfully, and such effects can be termed unavoidable disease (Clarke, 

1986). Even the most tolerant host genotypes would be expected to suffer this level of 

disease. Levels of disease over and above those which are an inevitable consequence of 

infection have been termed avoidable and considered to reflect intolerance (Clarke, 

1986). However, avoidable damage is likely to have been reduced to a minimum, or 

even eliminated altogether, during the course of evolution in wild plant pathosystems 

because natural selection should favour host genotypes which suffer the least disease for 

given levels of infection (Clarke, 1986).

A plant's overall tolerance of a parasitic infection will be determined 

partly by its tolerance of the parasite and partly by its tolerance of any disease the 

parasite may cause. Overall tolerance can be measured by relating the accumulation of 

parasite biomass to any reduction in the overall performance of the plant in terms of 

growth or yield. The overall tolerance of a plant should also be determined by the 

individual tolerance of its different organs, tissues and metabolic systems to the parasite 

or any disease it may cause (Clarke, 1988).

The interaction between wild oat, Avena fatua. and Ervsiphe graminis f.sp. 

avenae is likely to be the product of a long period of co-evolution and therefore 

avoidable damage should have been eliminated through natural selection. Thus any 

effects of infection on the growth of A. fatua will reflect the unavoidable damage 

caused by that level of infection. However, in cultivated oats, Avena sativa. selection 

for important economic traits through oat breeding programmes may have inadvertently 

resulted in host genotypes in which the genetic systems controlling tolerance have been 

disrupted so that some degree of original tolerance may have been lost. In other words, 

avoidable damage may occur. A comparative study of the effects of mildew infection 

on wild and cultivated oats could be useful because it could indicate the nature and
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extent of the unavoidable damage which are likely to result from given levels of 

infection and the extent of the avoidable damage which may occur in some cultivated 

oats. These studies are important, not only because they could indicate the likely 

importance of tolerance in the survival strategy of wild plants, which enable them to 

survive despite parasite attack, but also because they could indicate the potential value 

of tolerance as a component of a protection strategy for a crop in the absence of 

adequate sources of resistance (Harry and Clarke, 1992).

In the present work, as well as overall tolerance, tolerances of different 

tissues and metabolic systems of wild and cultivated oats were examined, i.e., leaf 

growth and development, photosynthesis and dry matter accumulation, the partitioning 

of photosynthates to different parts of the plant and stomatal function .

Since this work involves a comparative study of the degree of tolerance in 

wild and two cultivated oats, a preliminary measurement of fungal growth was carried 

out to determine any differences in the ways mildew infection developed and the 

amounts of that infection which developed on each line. Under controlled conditions, 

the line of wild oat supported more fungal growth at all stages than the cultivated oats 

did. Measurements of fungal development as percentage leaf area covered showed that 

within 1 week of exposure to natural infection, pustules of Ervsiphe graminis appeared 

on the lower leaves of plants of each line and subsequently the infection spread rapidly. 

The level of infection increased so that within 4 to 5 weeks, mildew colonies covered a 

greater percentage of leaf area in wild oat (about 30 %) than in cvs Lustre (about 25 %) 

and Peniarth (about 20 %). As infection progressed, the levels of infection decreased 

due to a greater loss of the older leaves through enhanced senescence and to the upper 

younger leaves which became only lightly infected, or not at all, especially in cvs 

Lustre and Peniarth. Thus the three lines showed adult plant resistance but this was 

expressed at a later stage in wild o a t.

Measurements of fungal development as number of spores also showed 

that spore production on individual leaves on the main axis and in total per plant of wild 

oat was higher than that on cv. Lustre and higher still than that on cv. Peniarth. Spore
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production on the upper leaves was found to decrease on each line as infection 

progressed but more so on the two cultivars than on wild o a t.

Mildew infection altered growth and development in essentially the same 

way in the three lines although the magnitude of the effects were not the same in each 

line. Infection substantially reduced dry matter production in each line and this was 

expressed in reductions in shoot and root development. The reduction in shoot 

development was reflected in a shortening of the main axis, fewer tillers, reductions in 

leaf area and green leaf area, reductions in yield components and in final grain yield. 

The reductions in total plant growth were greater in the two cultivated oats than in wild 

oat although wild oat at all stages of infection supported the greater levels of mildew 

development.

Infection reduced the relative growth rates of all three lines and thus total 

dry matter production. The relative growth rates were reduced by about 28 % in cv. 

Lustre, about 26 % in cv. Peniarth but only about 21 % in wild oat 7 weeks after 

inoculation. The reductions in dry matter production first became significant at about 20 

% mildew cover in cv. Peniarth, about 23 % in cv. Lustre but not until about 30 % 

mildew cover in wild oat. The percentage reduction in total dry weight was about 30 % 

in the two cultivars but only 15 % in wild oat 4 weeks after inoculation. The percentage 

reduction became progressively greater as infection progressed so that 7 weeks after 

inoculation it was about 61 % in cv. Lustre, about 55 % in cv. Peniarth but only about 

45 % in wild oat.

Last (1962) found that infection of barley with E. graminis f.sp. hordei 

reduced total dry matter production by about 59 % when about 20 % of the foliage was 

affected. The relative growth rate of barley was also found to be reduced by mildew 

infection (Walters and Ayres, 1981). Owera et al. (1981) showed that infection of 

barley with Puccinia hordei caused a reduction of 20 % in plant dry weight 16 days 

after inoculation. More detailed studies on Senecio vulgaris (groundsel) infected with 

Ervsiphe fischeri (Ben-Kalio, and Clarke, 1979; Harry, 1980) and other studies 

involving Elvmus repens (couch grass) infected with E. graminis and Epilobium 

montanum (broad-leaved willow herb) infected with Sphaerotheca epilobii
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(unpublished undergraduate studies) have shown that none of these infections reduced 

dry matter accumulation until more than 30 % of the aerial surfaces were colonized.

Mildew infection also reduced the partitioning of dry matter between the 

different parts of the plant in the two cultivars but not in wild oat. The proportion of dry 

matter going to the roots was reduced relative to that going to the shoot in cv. Peniarth, 

but not in cv. Lustre or wild oat. Infection also affected the balance between the 

assimilatory surface and the rest of the plant by increasing the dry matter content of the 

leaves per unit plant dry weight and this was evident in the two cultivars but not in wild 

oat. Changes in the relative proportions of dry matter in the different organs and tissues 

are a result of the effects of infection on translocation patterns within the plant. Such 

effects were more apparent in the two cultivars than in wild oat. Thus in cvs Lustre and 

Peniarth, although infection reduced the size of the leaves, the relative proportion of 

total dry matter in the leaf tissue was greater in the infected than in the uninfected 

plants. However, in wild oat, although infection reduced leaf area the reduction was 

proportional to the size of the plant and infection did not appear to alter the relative 

proportion of dry matter in the leaves. Thus infection appeared to have little or no effect 

on the pattern of translocation within wild oat whereas it did in the cultivated oats, 

especially in cv. Peniarth .

In crop plants, such as cereals, root growth has been shown to be reduced 

substantially more than shoot growth even by low levels of infection (Ayres, 1984). The 

ratio of root to shoot dry weight was found to be decreased in barley infected with 

mildew (Last, 1962; Fric, 1975). In addition, Owera et al. (1981) showed that the 

overall decrease in dry weight of barley plants infected with P. hordei was paralleled by 

an increase in weight of the infected leaves. However, studies on S. vulgaris infected 

with E. fischeri have shown that the distribution of the dry matter in relation to the 

development of various organs was not affected even at 90 % total mildew cover (Ben- 

Kalio and Clarke, 1979; Harry and Clarke, 1992).

The reductions in total dry matter production in the three lines, following 

infection, was probably related to the reductions in green leaf blade area, in unit leaf 

rates and in chlorophyll levels per unit of leaf area. Part of the reductions in green leaf
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blade area resulted from premature senescence of the older lower leaves. Normally, 

senescence commences in the older lower leaves and then progresses to the upper leaves 

and mildew infection which occurs first on the lower leaves appears to increase the rate 

at which the leaves senesce. The extent to which infection caused the leaves to senesce 

on the main axis or on tillers, was significantly greater in the two cultivars than in wild 

o a t.

The production of new leaves on the main axis in both cvs Lustre and 

Peniarth, but not in wild oat, was slower than in the controls. In the case of cv. Lustre, 

the final number of leaves expanding on the main axis of infected plants was eventually 

the same as on the control plants but infection reduced the number of leaves expanded 

on the main axis in cv. Peniarth by one leaf. It is possible that, in the cases of cv. Lustre 

and wild oat, those leaves of the full complement which had not unfolded at the time of 

inoculation were already formed in the apical bud and their development was not totally 

inhibited by infection. In the case of cv. Peniarth, which developed one less leaf in 

response to heavy infection, either the last leaf primordium was never formed or it 

aborted, or it might have been transformed to a reproductive structure. However the 

growing points were not dissected to investigate these possibilities .

Infection also reduced the size of individual leaves in both wild oat and cv. 

Peniarth. The cv. Lustre was not included in this experiment. The reductions in 

individual leaf blade area were found to be due to reductions in both cell division and 

cell expansion. The effects of infection on cell division and cell expansion were 

deduced from counts of stomata and epidermal cells per unit area of the lower 

epidermis because, although infection increased the number of stomata per unit area, it 

did not change the ratio between the numbers of stomata and epidermal cells. Thus the 

increase in number of stomata per unit area was due to reduced expansion of the 

epidermal cells. The reduction in epidermal cell expansion in the infected leaves is 

probably not a specific response to infection because similar reductions have been 

reported to occur in response to other stress factors (Wilkinson, 1979). However, 

reductions in the expansion of the epidermal cells did not account for all the reduction 

in size of the infected leaf, and so there must have been fewer epidermal cells in the
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leaves of the two lines. The reductions in leaf area were also due to reduced cell 

division and it was calculated that there were about 13 % fewer epidermal cells in wild 

oat but about 17 % fewer epidermal cells in cv. Peniarth. Clearly the reductions in 

green leaf blade area of infected plants found in this study were due to increased losses 

through senescence as well as reductions in the growth of the individual leaves through 

reduced cell division and cell expansion .

Reductions in leaf growth and development have been reported for many 

crops plants infected with various pathogens, including viruses, bacteria and fungi. Last 

(1962) reported that barley plants infected with E. graminis f.sp. hordei , besides 

producing fewer tillers than uninfected plants, also produced smaller leaves. 

Furthermore, leaves on infected plants senesced earlier than leaves on uninfected plants. 

Macfarlane and Last (1959) showed that cabbage plants infected with Plasmodiophora 

brassicae had fewer, smaller and thinner leaves, and the leaves expanded more slowly 

than the corresponding leaves on uninfected plants. They suggested that the reduction in 

leaf size was probably due to the effects of infection on cell division in the leaf 

primordium caused by the drain of materials to the gall, in addition to effects on cell 

expansion (Macfarlane and Last, 1959). Recent studies on the effects of E. fischeri on 

the growth of S. vulgaris (Harry and Clarke, 1992) similarly showed that green leaf 

tissues were reduced partly through rapid loss of the older leaves due to senescence and 

partly to the reduction in leaf expansion. These smaller leaves contained fewer and 

smaller cells than the corresponding leaves on control plants, indicating that, as in this 

study, mildew infection inhibited both cell division and cell expansion in the 

developing leaf.

Both cell division and cell expansion are physiological processes which 

are very sensitive to the changes in leaf water potential (Ayres, 1981). Such changes 

have been observed to be brought about by infection (Ayres, 1972). Although the water 

relations of the infected leaves were not investigated in this study, the mildew 

mycelium alone over the surfaces of oat leaves is likely to increase the rate of water loss 

not only by increasing the surface area from which water loss can occur, but through 

effects on stomatal function. In fact, the study of stomatal function did show that it was
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impaired by infection, stomatal resistance of infected leaves was reduced in the dark 

and became more reduced as infection progressed. Thus leaf water potential would be 

expected to decrease as a result of increased stomatal transpiration from infected 

tissues. However, all the plants were well watered and so some of the increased loss 

should have been compensated for by increased uptake unless root function was 

impaired. Walters and Ayres (1981, 1982) showed that in barley infected with mildew, 

not only was the total activity (14C) in the roots reduced but that the length and 

branching of main seminal and nodal root axes of the plant were also reduced. It is also 

possible that infection altered the water relations in the infected leaves by effects on cell 

membranes reducing the turgor relations of the epidermal cells (Ayres, 1972).

In addition to the effects on leaf growth, the mildew colonies probably 

physically obstructed the plant's photosynthetic surface area and in this way limited the 

plant's capability of dry matter production. In this study, the operation of the 

photosynthetic system was altered by infection in all three lines, evidenced by 

reductions in unit leaf rates and chlorophyll levels per unit leaf area. The unit leaf rates 

followed similar ontogenetic progressions in infected and uninfected plants although the 

levels were always lower in the infected plants throughout the course of infection. The 

differences in unit leaf rates between infected and uninfected plants were more apparent 

in the two cultivars than in wild o a t.

In barley plants infected with E. graminis f.sp. hordei. reductions in dry 

matter production, which occurred when plants had only about 20 % mildew cover, 

were partly attributed to a reduction in the assimilatory surface and partly to a reduction 

in the unit leaf rate (Last, 1962). However, Harry (1980) showed that unit leaf rates in 

S. vulgaris infected with E. fischeri were not reduced until more than 90 % of the plant 

was infected. This is indicative of high levels of tolerance in groundsel to mildew 

infection.

The rates of photosynthesis in the infected third leaf were found to be 

more reduced by low levels of infection in the cultivated oats than by higher levels of 

infection achieved in wild oat. Thus, the results indicate clearly that although mildew 

development per unit area of the leaf, measured as spore production or accumulation of
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chitin, was higher in wild oat than in cvs Lustre and Peniarth, the maximum rate of 

photosynthesis in that area of the leaf declined more slowly than in the two cultivars. 

For example, 15 days after inoculation, the maximum rate of gross photosynthesis per 

unit area of the infected leaf was reduced by about 36 % in cv. Peniarth, about 27 % in 

cv. Lustre but about 26 % in wild oat. However, the mildew development on the leaves 

showed an inverse relationship to the suppression of photosynthesis since about 3131 

spores per mm2 leaf area were present on cv. Peniarth, about 3388 spores per mm2 leaf 

area were present on cv. Lustre but about 3568 spores per mm2 leaf area were present 

on wild oat, 15 days after inoculation. No measurements were possible on leaves of cv. 

Peniarth from 15 days because the infected leaf by this stage had senesced so far, but 

measurements on cv. Lustre and wild oat were still possible and by 20 days after 

inoculation, maximum gross photosynthesis in the infected leaf was reduced by about 

32 % with no further spore production on cv. Lustre whereas in wild oat there was no 

further reduction in photosynthesis although the number of spores produced had 

continued to increase to about 3684 per mm2 leaf area .

The rates of photosynthesis per unit area of the infected tissue and the 

adjacent uninoculated tissue, when the tip and base regions of the fourth leaf were 

inoculated, were also found to be more reduced in cv. Lustre than in wild oat. cv. 

Peniarth was not included in this experiment. The maximum rate of photosynthesis in 

the adjacent uninoculated tissue slightly increased during the first 5 days after 

inoculation, but thereafter it fell below that of the control in both cv. Lustre and wild 

oat. The mechanism by which the increase was brought about is obscure. Infection 

decreased the maximum rate of gross photosynthesis per unit area of the infected tissue, 

20 days after inoculation, by about 38 % in cv. Lustre but only 26 % in wild oat 

whereas that of the adjacent uninoculated tissue was reduced by about 29 % in cv. 

Lustre and about 23 % in wild o a t.

Reports exist of stimulation of photosynthesis in the healthy leaves of 

infected plants. Wang (1960) reported higher CO2  uptake by healthy regions of 

inoculated leaves than by infected areas in wheat leaves infected with Puccinia graminis 

f.sp. tritici.
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Stimulation of photosynthesis in uninfected leaves might allow the plant to 

compensate for the loss of assimilates due to the fungus (Walters, 1985). Ayres (1979) 

suggested that stimulation of photosynthesis in uninfected tissues during the initial stage 

of infection is probably linked with changes in photorespiration .

The photochemical efficiency of photosynthesis at low light intensity was 

also found to be more reduced in the infected tissues of the two cultivars than in wild 

oat, the percentage reduction being about 27 % in cv. Peniarth but only about 18 % in 

cv. Lustre and wild oat at 15 days after inoculation, with further reductions to 26 % in 

cv. Lustre and to 19 % in wild oat by 20 days after inoculation. Similarly, the 

photochemical efficiency of photosynthesis in low light was more reduced 20 days after 

inoculation in the infected tissue (about 29 %) and adjacent uninoculated tissue (about 

16 %) in cv. Lustre than in wild oat where the respective values were only about 17 % 

and 2 % .

Infection reduced total chlorophyll content per unit area of the infected 

tissues in cvs Lustre and Peniarth, and also, but to a lesser extent, in wild oat. The 

percentage reductions in total chlorophyll contents, at 15 days after inoculation, were 

about 36 % in cv. Lustre, about 33 % in cv. Peniarth but about 25 % in wild oat, with 

no further reductions in cv. Lustre and wild oat at day 20. Total chlorophyll contents of 

the infected tissue and the adjacent uninoculated tissue were also more reduced in cv. 

Lustre than in wild oat. The percentage reductions in the infected tissue were about 36 

% in cv. Lustre and about 31 % in wild oat whereas the reductions in the adjacent 

uninoculated tissue were only about 25 % in cv. Lustre and about 22 % in wild oat by 

20 days after inoculation .

Reductions in the rate of photosynthesis following fungal infection have 

been shown by several authors. Sugar beet leaves infected with E. polvgoni showed 

reductions in photosynthesis by about 35, 70 and 75 % at 9, 16 and 22 days after 

inoculation respectively. The photosynthetic efficiency of photosynthesis at low light 

was also reduced by about 17 % and 22 % at 14 and 18 days after inoculation 

respectively (Gordon and Duniway, 1982a). Scholes and Farrar (1985) showed a 

reduction in photosynthesis per unit area and per unit chlorophyll within pustule areas
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of Uromvces muscari infected bluebell (Hvacinthoides non-scriptal leaves .

Reductions in photosynthesis have been attributed to altered rates of CO2 

diffusion into the leaf through stomata (Gordon and Duniway, 1982b). Photosynthesis 

is in part a diffusion process where the flux of CO2  must first diffuse through the leaf 

boundary layer, into the leaf through the stomata and into the mesophyll layer before 

being fixed at the carboxylation sites in the chloroplast. Measurements of stomatal 

function showed that it was altered by infection in all three lines. The diffusive 

resistances in the light in both the middle and tip regions of infected leaves were first 

low when compared with those in control leaves, particularly in cvs Lustre and 

Peniarth, but then they increased in all three lines as infection progressed. In contrast, 

the diffusive resistances in the dark in both the middle and tip regions of infected leaves 

were lower than those in control leaves, especially in cv. Peniarth. The increase in 

diffusive resistances in the light occured from around 5 days after inoculation in all 

three lines, a period which correlated with maximum fungal growth as assessed by 

fungus sporulation and chitin analysis. This increased diffusive resistance of the 

infected leaves in the light is likely to reduce the diffusion of CO2  to the mesophyll 

cells and could be then partly responsible for the reduction in the rate of photosynthesis 

that occurred. Furthermore, the increased diffusive resistances in the light could also be 

expected to contribute to water loss from infected leaves. Thus the changes in the 

transpiration rate in the light in infected leaves would be expected to be the result of not 

only an increase in stomatal resistance to the diffusion of water vapour but also of an 

increase in boundary layer resistance caused by the presence of the fungus mycelium 

over the leaf surface. During the dark period, a decrease in diffusive resistances, almost 

certainly due to greater than normal stomatal opening, was recorded 48 h after 

inoculation in cv. Peniarth when mycelium development was limited (< 1 %), 

indicating that the stomata were unable to control water loss from an early stage of 

infection. These reductions were not apparent in either cv. Lustre or wild oat until 4 

days after inoculation when percentage mildew cover was between 1 to 2 % .

The increased stomatal opening in the light that occurred in the first 3 days 

after inoculation in oat leaves was similar to that in pea leaves infected with E. pisi.
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although the increase occurred 48 h after inoculation in pea (Ayres, 1976). However, 

the reduction in stomatal opening in the light was shown to occur 3 days after 

inoculation in pea leaves infected with E. gisi (Ayres, 1976), 24 h after inoculation in 

barley infected with E. graminis f.sp. hordei (Majemik, 1965) but only 6 h after 

inoculation in wheat leaves infected with E. graminis f.sp. tritici (Martin et al., 1975). 

Martin et al. (1975) have suggested that stomatal closure is induced by volatile or 

diffusible substances produced by the fungus. If this is correct, it seems that either E. 

graminis f.sp. avenae does not produce these substances or that it takes longer for a 

critical concentration to be reached in oat than in pea or barley. The difference in the 

effects of the mildew fungus on stomatal function between these three species could 

also be due to differences in the levels of infection in each species and/or to different 

mechanical interactions (turgor pressure) between guard and epidermal cells as the 

fungi begin their invasion (Ayres, 1976).

Changes in the transpiration rate of mildewed peas (Ayres, 1976), barley 

(Majemik, 1965) and wheat (Martin et al, 1975) followed closely changes in stomatal 

opening in the light and dark period. The difference between pea and the cereals in the 

timing of these changes probably results from the different times at which changes in 

stomatal behaviour begin following infection (Ayres, 1976).

In the leaf oxygen electrode experiments, photosynthesis was measured 

under conditions of saturating CO2 (Delieu and Walker, 1981) and so any change in 

rates of photosynthesis was not due to a reduced supply of CO2  but could probably be 

attributed to changes within chloroplasts. In this study, two models describing the 

photosynthetic light-response curve have been used. The model derived by Marshall 

and Biscoe (1980) in which the resistance to CO2  diffusion to the carboxylation sites, 

expressed as the ratio of physical to total resistance (0 = rp/rp+rx), is greater than zero, 

and the model of Rabinowitch (1951) in which the resistance to CO2  diffusion to the 

carboxylation sites, 0, is equal to zero. The results obtained in this study, using the 

model of Marshall and Biscoe, showed that the reduction in photosynthetic efficiency of 

the infected tissue was unlikely to be due to changes in the amounts of CO2  diffusing 

into the leaf to the carboxylation sites in either cv. Lustre or wild oat because the values
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of 0 in the infected tissue were not significantly different from those in the controls at 

any stage of infection. However, in cv. Peniarth, the differences in 0 values between the 

infected and uninfected tissue became significant from around 12 days after inoculation 

and onwards. The changes in 0 values in the infected tissue of cv. Peniarth suggest that 

the physical or carboxylation, or both, resistances to CO2 diffusion into the leaf were 

altered by infection but at a later stage .

Reductions in photosynthesis may also be due to direct effects of the 

pathogen at the biochemical or chloroplast level. Alterations in the photosynthetic 

apparatus could be attributed to changes within the chloroplast which affect: (a) the 

supply of CO2  to the carboxylation sites in the chloroplast; (b) the light-harvesting 

capacity; (c) photosynthetic electron transport which provides reducing power NADPH 

and/or ATP from the light reaction centres, PSI or PSII; (d) the turnover rate of 

enzymes of the C-3 cycle (carboxylation efficiency).

This study showed that the reductions in the maximum rate of 

photosynthesis in the infected and adjacent uninoculated tissue could have been due to 

an impairment of photosynthetic electron transport which reduced the supply of 

reducing power (NADPH) and/or ATP. Secondly, the turnover of enzymes of the C-3 

cycle could have been impaired and this would result in low carboxylation efficiency. 

In cv. Peniarth, the reduction in the rate of photosynthesis of the infected leaf could also 

be due to reduced supply of CO2  to the carboxylation sites within the chloroplast, 

evidenced by the changes in 0 values at later stages of infection .

The photochemical efficiency of photosynthesis at low light intensity is 

thought to be a sensitive indicator of damage to the electron transport chain (Sharkey,

1985). At low light intensity, the number of quanta of light reaching the reaction centres 

determines the rate of electron transport, and this is dependent upon the amount of 

light-harvesting chlorophyll. In the present investigation, the reduction in the 

photochemical efficiency of photosynthesis at low light in the infected and adjacent 

uninoculated tissue could be due to a low density of the photosynthetic unit and 

therefore a reduction in the amount of light-harvesting chlorophyll (from the light- 

harvesting complex or a specific loss of chlorophyll a from the reaction centres of PSI
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or PSII) and this would result in reduced light-harvesting capacity. Loss of chlorophyll 

was confirmed in chlorophyll content measurements. However, inhibition of 

photosynthesis did not appear to be due to reductions in the effectiveness of the light- 

harvesting chlorophyll since the maximum rate of photosynthesis per milligram of 

chlorophyll in the infected or adjacent uninoculated leaf tissue was not affected either at 

low or high levels of infection in the three lines .

Scholes and Farrar (1985) showed that in bluebell leaves infected with 

Uromvces muscari. the rate of photosynthesis was reduced, whether measured on either 

a unit area or a unit chlorophyll basis. Contrarily, the rate of photosynthesis per unit 

chlorophyll was found to increase in barley infected with brown rust Puccinia hordei 

(Scholes and Farrar, 1986).

The chlorophyll fluorescence studies also indicated alterations to the 

photosynthetic apparatus and that these alterations were more pronounced in the 

infected and adjacent uninoculated tissue in cv. Lustre than in wild o a t.

Measurements of chlorophyll fluorescence provide more evidence on the 

probable mechanisms by which photosynthesis was impaired in infected and adjacent 

uninoculated tissues. The results indicated that infection results in a decrease in the rate 

of photosynthetic electron transport after the PSII Qg binding site (Qg is more 

reduced). These findings can be interpreted in two ways. If photosynthetic electron 

transport was directly impaired by infection, then the proton motive force (pmf) across 

the thylakoid membrane would be expected to be low. Alternatively, if carboxylation 

processes downstream of the photosynthetic electron transport were impaired, low ATP 

demand, and possibly cyclic electron transport, would establish a high proton motive 

force. The experiments on non-photochemical qE quenching in infected and adjacent 

uninoculated tissue clearly show that infection causes a decrease in qE quenching and 

this decrease has been interpreted to result from a decrease in the thylakoid proton 

motive force (Horton, 1983). This suggests that photosynthetic electron transport is 

affected directly. Although the photochemical efficiency of photosynthesis at low light 

intensity and the light harvesting capacity has been decreased due to a loss of 

chlorophyll, these are not limiting factors as photochemical qQ quenching showed that
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Qg was more reduced in the infected and adjacent uninoculated tissue in cv. Lustre than 

in wild o a t.

It has also been pointed out that qQ quenching is not only a measure of the 

redox state of the Q pool but is also a measure of the efficiency of photosynthetic 

electron transport at any point of in vivo fluorescence induction curve (Genty et a l , 

1989). Therefore, in the present study, the implication is that infection inhibited the rate 

of photosynthetic electron transport as shown by qQ and also qE quenching .

The exact site of infection-induced inhibition of photosynthetic electron 

transport is uncertain but inhibition may be due to photoinhibition of the Qg binding- 

protein (Kyle, 1985) or impairment of any subsequent component of the photosynthetic 

electron transport system including P S I.

Such alterations of the photosynthetic apparatus were greater in the 

infected tissue in the cultivated oats than in wild oat and also greater in the adjacent 

uninoculated tissue in cv. Lustre than in wild oat. Furthermore, the rate of 

photosynthesis of the uninoculated tissue in infected leaves showed an initial increase, 

before it dropped below that of the control tissues, suggesting that the photosynthetic 

efficiency in those tissues was not affected to the same extent as in infected tissues. This 

was apparent in cv. Lustre but particularly so in wild o a t.

Montalbini and Buchanan (1974) showed reductions in the rate of electron 

transport and in the accompanying ATP formation in non-cyclic phosphorylation of 

chloroplasts of Vicia faba infected with Uromvces fabae . Buchanan et al. (1981) found 

that non-cyclic electron transport chain was inhibited by up to 45 % in chloroplasts 

isolated from barley leaves infected with P. hordei.

In contrast to reductions in the photosynthetic systems, the rate of dark 

respiration was increased in the infected tissue in the three lines and also in the adjacent 

uninoculated tissue in wild oat and cv. Lustre .

One of the earliest reports of respiratory changes in diseased plants is that 

of Allen and Goddard (1938) who showed that dark respiration was increased in wheat 

infected with E. graminis f.sp. tritici. The rate of dark respiration in barley leaves 

infected with E. graminis f.sp. hordei was found to be at least twice that of the controls
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at the time of sporulation (Scholes and Farrar, 1986). These studies, as well as the 

present study, contrast with recent studies on oat plants infected with E. graminis f.sp. 

avenae where infection reduced rates of photosynthesis but had little effect on the rate 

of dark respiration (Haigh et al., 1991).

Bushnell and Allen (1962) suggested that the accumulation of metabolites, 

often in a mobile form, around lesions could be the cause of increased respiration. 

However, the most likely cause of the increased respiration caused by biotrophic fungi 

could be the enhanced activity of the oxidative pentose phosphate pathway (Daly, 

1976).

This account has so far shown that the parasite alters the host metabolic 

systems, i.e. photosynthesis, respiration, metabolic pathways, transport systems etc, by 

a variety of mechanisms during the course of infection. Parasites produce, during 

infection, a wide range of metabolites some of which may have fairly localized effects 

on host tissues, while others are released into the host and act at a distance. They 

include recognition factors, growth regulators, inhibitors, toxins and enzymes (Clarke,

1986). For example, changes in photosynthesis occur in tissues not infected by the 

fungus and therefore they must be the result of a signal, e.g., a translocatable 

metabolite, produced by the parasite growing in the epidermal cells but acting on the 

mesophyll cells. However, there is no evidence to indicate the nature of the signal.

The consequence of the reductions in dry matter production were evident 

in reductions in yield components and final grain yield. The components of grain yield 

were affected in all three lines. Comparisons between the two cultivars and wild oat 

showed reductions in the numbers of tillers but the differences between infected and 

uninfected plants were not significant in any of the three lines. However, infection 

significantly reduced the number of fertile tillers so that by the end of the experiment, 

infected plants had about 2.8 fertile tillers compared with 3.6 in uninfected plants in cv. 

Peniarth, about 2.5 compared with 3.1 in cv. Lustre and about 3.0 compared with 3.7 in 

wild oat. The numbers of grains per main axis panicle and per plant were also reduced 

in all three lines. Infection reduced the number of grains per main axis panicle by about 

24 % in cv. Lustre but only about 19 % in cv. Peniarth and wild oat whereas the
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number of grain per plant was reduced by about 47 % in cv. Peniarth and about 43 % in 

cv. Lustre and wild oat. Hundred grain weight per plant was also found to be reduced 

by about 19 % in the two cultivars but only about 11 % in wild oat. Similarly, 

reductions in total grain yield were greater in the two cultivars than in wild oat with 

percentage reductions being about 57 % in cv. Peniarth, about 55 % in cv. Lustre but 

about 48 % in wild oat. However, although infection reduced the assimilatory surface 

and total plant dry weight, the proportion of total biomass converted to grain, i.e., the 

harvest index, was not significantly reduced in any of the three lines .

Fric (1975) showed that mildew infection of barley reduced total grain 

yield per plant by about 32 %. Inoculation of the plants at an early stage was found to 

result in reductions in the number of fertile tillers, the number of grains per ear and 

thousand grain weight (Griffiths and Scott, 1980). Roderick and Jones (1988) found 

that in eight cultivars of oat infected with E. graminis f.sp. avenae. losses in grain yield 

were accounted for by reductions in numbers of fertile tillers and thousand grain 

weights. Infection also significantly reduced the harvest index. Carver and Griffiths 

(1981) showed that in mildew infected barley, the number of fertile tillers and grain 

yield were reduced. The reduction in grain yield was a consequence of the reduction in 

green leaf area pre-anthesis .

In conclusion, this study has shown that the facets of growth investigated, 

for example leaf growth and development, dry matter production, stomatal function, 

photosynthesis, the partitioning of photosynthates to different parts of the plant and the 

final grain yield were less affected in wild oat by given levels of infection than in the 

cultivated oats. The changes brought about in almost all growth parameters measured in 

wild oat probably reflect unavoidable damage and the greater effects of similar levels of 

infection on the cultivated oats probably reflect the extent to which they suffer 

avoidable damage in addition to unavoidable damage .

The wild oat line used in this investigation appears to be more tolerant of 

mildew infection than the two cultivated oats. The tolerance of infection of wild oat 

might be due to the way the mildew fungus grows and reproduces on the tissues of this 

line. For example, if the changes to the photosynthetic systems are brought about by
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translocatable metabolite produced by the fungus at the site of infection, then on wild 

oat the fungus may produce less than are produced on the cultivated oats. It is also 

possible that the metabolic systems and physiological processes of wild oat have the 

greater tolerance of any metabolite produced by the fungus than the cultivated oats .

The magnitude of the reductions in growth and development of the wild 

oat line used in this study were quite large. However, the levels of infection achieved 

under the controlled conditions used appear to be much higher over a longer period than 

those generally found in the field. Studies under controlled conditions may be testing 

the tolerance of wild oat to the limits. Clearly, the wild oat line was significantly more 

tolerant of infection than the cultivated oats. However, the levels were not great enough 

to suggest that it is likely to be useful in breeding programmes. Since tolerance appears 

to be reflected in the responses of a range of growth processes such as cell division and 

cell expansion, photosynthesis, transport systems etc, it is unlikely that its genetical 

control is simple and therefore it would be difficult to breed fo r .

Speculation about the role of tolerance in wild oat in relation to its 

survival strategy is not clear. Dinoor (personal communication) suggested that mildew 

attacks on wild grasses in arid regions may be useful to plant survival. Once the plant 

has developed yielding structures, the lower leaves become surplus to requirements 

because most of the photosynthates required during the reproductive stage of the plant 

come from the flag leaf and glumes. The lower leaves are mainly a site for water loss 

and thus their presence could lead to significant water stress so that their loss through 

enhanced senescence caused by mildew infection would benefit the plant. However, the 

flag leaf and glumes have adult plant resistance so that the parts of the plant involved 

directly in grain fill are protected. Clearly tolerance is not the only component of the 

survival strategy of wild oat. Field studies are required to assess its precise role .
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FIGURES 16A-F : Effects of infection on the number and areas of individual green 

leaf blades, on the main axis, of infected ( ■  ) and uninfected ( □ )  

plants of wild oat and cvs Lustre, Peniarth during the growth period 

between the fifth and tenth weeks after sowing.
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Appendix tables 1 to 3

Data on some primary values of growth of Ervsiphe graminis infected and 

uninfected plants of wild and cultivated oats taken at weekly intervals during 

the growth period between the fifth and tenth week after sowing.

LS Leaf sheaths + stem tissues 

SLB Leaf blades of stem 

LT Leaf sheaths + tillers tissues 

TLB Leaf blades of tillers
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CN
Tf 3̂H

CN©©
r-VOi-H

voCO
t-H

SOin
t-H

©
TfĤ
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Ĥ
r -
T t

5
Ov

CNin
VO

in00
c n

Ov
O
Ov

0
c n

Ov
CN

r -
CN

in
CN

00
CN O

00
OV
Ov
VO

OV
r -
T t

VO
c n
Ov

OV00
T t

CN
r -l-H

v o VO VO in VO 0

c n r -
r -
0

VO
T t
c n

T t
Ov
v o

r -
min

CN
Ov
CN

m in T t c n T t O

00
c n
Ov

000000
T t
c n
m

in̂H
CN

T t
Ov
c n

Ov
T t
c n

r - r - c-~ v o r - O

in
m00

CN
T t
m

CNin
VO

T t
VO
OO

00
CNe'

00
VO
O

c n c n c n c n e n O

m
CN
r -

in
v o
CN

c n
c n
Ov

c n
T tOs

VO1 H
(N

VO

VO VO in m vO 0

Ov
VO

l-H
c n

CN
CN

c n
T t

1—H

T t
0

CN CN CN CN CN 0

T t T t c n c n

3
.5

0
 

!

0
.2

5

0

O O O O 0 0

- CN c n T t

M
ea

n
SE



Ap
pe

nd
ix

 
ta

bl
e 

3F
. 

6th
 

H
ar

ve
st

 (
T

en 
we

ek
s 

af
ter

 
so

w
in

g)
'P

en
ia

rth
'

o Jl 60 
p  E < '

bO

JSbO
‘5
£

Q

bO

JS
bO

Hh

Vl—1 B  ^
t d  ID  cw H 5J  < 3

7  W 0)o <u >o c 5?*7 5> 4)^  M J

EO
^  O 

.O

a<u04

Q
H
H
U
Wfa
Z

3
.5

7
6

4
.3

0
8

2
.8

9
3

2
.5

4
8

3
.3

3
1

0
.3

3
7

© © o o i n VO r -
o o m c n i-h v o
Tf VO c n c n ©
© © © © © ©

r - s o v v o VO v o
<N v o © CN m
c n i n CN CN c n ©
o © © © © ©

s © OO c n r -
o o CN CN c n o oĤ CN Ov OO © ©
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Ĥ CN c n Tf

M
ea

n
SE

fao
t t
H
Z
O
u

Ov
P -
1—H

r -
o o

c n
CN
Tf

CN
c n
e -

m
i n

m
©
i n

o o o o VO v o P - ©

CN
©
c n

m
Tf
m

m
Ov
o o

CN
vO
Ov

VO
C'-
^H

c n
l—H

f H © © H ©

Ov
1—H
P "

VO
c n
©

o o
©
m

v o
m

v o
©
p -

c n
©

© 1-1 © © © ©

OO
©1-H

Tf
p -
m

o o
Ov
m

c n
v o
e-"

H
©
©

©
r -
T—H

c n c n CN CN c n ©

Tf
e -
v o

©
p -

Ov
©
VO

Tf
p -
i n

Ov
c n
v o

i n
CN
©

© © © © © ©

VO
e'
e n

m
o o
©

c n
o o
p -

CN
p -
o o

o v
CN
©

Tf
r-H 
v—H

CN CN l—H H CN ©

i n
c n
v o

OO
m
Ov

c n
CN
OO

m
m
VO

OO
t- h

m
Ov
©
i n

CN
■<t

m
Tf

o o
c n

o o
c n

—̂4
Tf

i—H

CN
Ov
' t

VO
CN
OO

©
o o
CN

©
i n
o o

CN
VO
c n

P -
p -

VO v o VO m VO ©

Ov
r -
CN

v o
tH
c n

m
p -
Ov

©
CN
c n

CN
r -
Tf

©
v o
i n

Tf v o c n c n Tf ©

H
Tf
v o

p -

m

CN
P -
CN

P -
©
VO

Ov
©
m

CN
c n
VO

r - Ov
1-H

VO
1-H

VO
l-H

C"
^H ©

VO
CN
p -

©
CN
1-H

CN
CN
r -

o o
rH
Ov

t- h

p -
o o

CN
OO
©

CN c n CN CN CN ©

L6V
11 10

.1
79

9.
57

4 096*6 10
.3

02

0.
36

1

Tf
c n

Ov
C "

c n Ov
CN

o o
c n

Tf
r H

CN CN CN CN CN ©

Tf Tf Tf Tf Tf ©

©

© © © © © ©

r -H CN c n Tf

M
ea

n
SE



Appendix tables 4 to 6

Data on the effects of infection on the development of individual leaves on the 

main axis, on the stem height, on the number of tillers and on total leaf blade 

area on tillers. Measurements taken at weekly intervals during the growth 

period between the fifth and tenth week after sowing.
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Appendix table 10

Measurements in the light of diffusive resistances of infected and uninfected third leaf of 
cvs Lustre, Peniath and wild o a t.

Days Repli Lustre wild oat Peniarth
after cates Infected Control Infected Control Infected Control
inocul. M T M T M T M T M T M T

1 4.0 4.2 4.0 4.1 3.3 3.3 3.6 3.6 2.8 2.8 3.2 3.3
1 2 3.8 4.2 4.0 4.1 3.3 3.5 3.4 3.5 3.2 3.2 3.5 3.5

3 4.0 4.5 5.0 5.2 3.6 3.5 3.6 3.6 2.9 3.2 3.3 3.5
4 4.2 5.2 5.2 5.2 3.6 3.8 3.3 3.5 3.3 3.0 3.2 3.3

Mean 4.00 4.53 4.55 4.65 3.45 3.53 3.48 3.55 3.05 3.05 3.30 3.40
Std 0.16 0.47 0.64 0.64 0.17 0.21 0.15 0.06 0.24 0.19 0.14 0.12

1 2.9 3.0 4.0 4.0 3.0 3.1 2.9 3.2 2.2 2.7 2.9 2.9
3 2 3.2 2.9 3.9 3.9 2.9 2.9 3.0 3.2 2.3 2.9 2.8 3.0

3 3.0 3.3 3.5 4.0 3.0 3.4 3.3 3.4 2.3 2.9 2.8 2.8

4 3.0 3.4 3.5 3.5 2.9 3.0 3.2 3.5 2.7 3.0 2.7 2.9
Mean 3.03 3.15 3.73 3.85 2.95 3.10 3.10 3.32 2.38 2.88 2.80 2.92
Std 0.13 0.24 0.26 0.24 0.06 0.22 0.18 0.15 0.22 0.13 0.08 0.08

1 3.6 3.0 3.0 3.3 2.9 3.2 2.6 2.6 3.0 2.9 2.6 2.9
5 2 3.5 3.2 3.3 3.3 3.2 3.2 2.5 2.9 3.5 3.4 3.0 2.9

3 3.6 3.5 3.7 3.7 2.6 2.8 2.8 2.8 3.4 3.1 2.8 3.0
4 3.7 3.7 2.9 3.0 3.2 3.7 2.3 2.6 3.3 3.2 2.8 3.2

Mean 3.60 3.35 3.23 3.33 2.98 3.23 2.55 2.72 3.30 3.15 2.80 3.00
Std 0.08 0.31 0.36 0.29 0.29 0.37 0.21 0.15 0.22 0.21 0.16 0.14

1 4.7 5.5 4.2 4.3 3.7 3.3 2.8 2.5 3.4 3.3 2.8 2.7
7 2 5.8 4.1 3.7 4.0 2.9 3.0 2.3 2.9 3.2 2.9 2.6 2.9

3 4.9 4.9 3.8 4.6 2.9 3.2 2.6 2.9 3.0 3.5 3.1 2.9
4 4.8 4.7 4.4 4.5 3.3 2.8 2.6 2.7 3.5 3.8 2.9 2.8

Mean 5.05 4.80 4.03 4.35 3.20 3.08 2.58 2.75 3.28 3.38 2.85 2.83
Std 0.51 0.58 0.33 0.26 0.38 0.22 0.21 0.19 0.22 0.38 0.21 0.10

1 4.0 4.7 3.1 3.3 3.2 3.5 2.6 2.6 3.4 3.6 2.3 2.4
9 2 4.4 3.6 3.5 3.8 3.2 2.6 2.6 2.8 3.3 3.2 2.4 2.6

3 3.8 3.8 3.5 3.5 3.9 4.2 2.2 2.6 2.7 2.6 2.5 2.6

4 3.8 4.0 3.4 3.6 2.7 2.7 2.4 2.5 3.6 3.8 2.6 2.6
Mean 4.00 4.03 3.37 3.55 3.25 3.25 2.45 2.62 3.25 3.30 2.45 2.56
Std 0.28 0.48 0.19 0.21 0.49 0.75 0.19 0.13 0.39 0.53 0.13 0.10

M = middle region of the leaf , T = tip of the leaf.



Appendix table 11

Measurements in the dark of diffusive resistances of infected and uninfected third leaf of 
cvs Lustre, Peniarth and wild o a t.

Days
after
inocul.

Repli Lustre wild oat Peniarth
cates Infected Control Infected Control Infected Control

M T M T M T M T M T M T

1 8.4 8.8 8.9 9.0 7.1 7.3 8 .0 8.0 7.3 7.6 8.0 8.3
1 2 8.6 8.8 9.2 9.4 7.5 7.6 8.1 8.3 7.2 7.6 8.1 8.1

3 8.9 9.2 9.8 9.9 7.6 8.0 7.5 7.5 7.4 7.6 7.8 8.1

4 9.0 9.2 8.2 9.4 7.5 8.0 7.8 8.1 7.1 7.3 8.1 8.3
Mean 8.73 9.00 9.03 9.43 7.43 7.73 7.85 7.98 7.25 733 8.00 830
Std 0.28 0.23 0.67 037 0.22 034 0.26 034 0.13 0.15 0.14 0.12

1 6.9 7.0 8.4 8.6 6.7 7.4 7.5 7.7 6.4 6.8 8.1 8.5
3 2 7.5 7.2 8.1 8.3 6.2 6.8 7.5 7.7 6.8 7.7 8.0 8.5

3 6.8 7.0 8.1 8.5 6.6 7.0 7.2 7.5 6.2 7.7 8.1 8.5
4 7.0 7.2 8.5 8.7 6.6 6.8 7.4 7.6 6.1 6.7 7.9 8.0

Mean 7.05 7.10 8.28 8.53 6.53 7.00 7.40 7.63 6.38 733 8.03 837
Std 0.31 0.12 0.21 0.17 0.22 038 0.14 0.10 0.31 035 0.10 035

1 6.1 6.1 7.2 7.6 5.2 5.2 7.7 7.7 5.0 5.6 7.8 8.0

5 2 6.0 5.6 6.8 7.0 5.0 4.9 7.3 7.8 5.4 5.6 8.0 8.2

3 5.5 5.3 6.8 7.3 4.7 5.0 7.6 7.8 6.6 7.0 7.5 8.0

4 6.1 6.0 7.3 7.0 5.2 5.3 7.8 7.8 5.2 6.5 7.7 7.8
Mean 5.93 5.75 7.03 7.23 5.03 5.10 7.60 7.78 5.55 6.18 7.75 8.00
Std 0.29 037 0.26 0.29 0.24 0.18 0.22 0.05 0.72 0.69 0.21 0.16

1 6.8 5.5 7.7 8.0 3.6 3.5 6.5 6.5 4.1 4.2 7.0 7.2
7 2 5.8 6.5 7.5 7.7 3.5 3.5 6.5 6.7 4.3 4.3 6.6 6.8

3 5.3 5.5 7.3 7.5 6.2 3.6 6.9 7.0 3.8 3.8 6.8 7.0
4 5.5 5.8 7.6 7.8 4.2 4.3 6.6 7.0 4.2 4.6 6.6 6.8

Mean 5.85 5.83 7.53 7.75 4.38 3.73 6.63 6.80 4.10 4.23 6.75 6.95
Std 0.67 0.47 0.17 0.21 1.26 039 0.19 0.24 0.22 033 0.19 0.19

1 4.5 4.5 6.9 6.7 4.3 4.5 7.2 7.3 3.4 4.1 6.1 6.3
9 2 4.4 4.9 7.2 6.9 4.1 4.0 7.5 7.7 4.1 4.1 6.9 6.7

3 5.4 5.3 6.7 6.7 4.4 5.0 7.5 7.7 4.1 3.8 6.6 6.7
4 4.3 4.3 7.3 7.1 4.0 4.3 7.7 7.8 4.0 3.8 5.9 6.1

Mean 4.65 4.75 7.02 6.85 4.20 4.45 7.47 7.62 3.90 3.95 6.37 6.45
Std 0.51 0.44 0.28 0.19 0.18 0.42 0.21 032 0.34 0.17 0.46 030

M = middle region of the leaf , T = tip of the leaf.
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