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Abstract 

 
Little is known about historic wood as it ages naturally. Instead, most studies focus on 

biological decay, as it is often assumed that wood remains otherwise stable with age. 

This PhD project was organised by Historic Scotland and the University of Glasgow to 

investigate the natural chemical and physical aging of wood.  

The natural aging of wood was a concern for Historic Scotland as traditional timber 

replacement is the standard form of repair used in wooden cultural heritage; replacing 

rotten timber with new timber of the same species. The project was set up to look at 

what differences could exist both chemically and physically between old and new wood, 

which could put unforeseen stress on the joint between them. Through Historic Scotland 

it was possible to work with genuine historic wood from two species, Oak and Scots 

pine, both from the 1500’s, rather than relying on artificial aging. Artificial aging of 

wood is still a debated topic, with consideration given to whether it is truly mimicking 

the aging process or just damaging the wood cells. 

The chemical stability of wood was investigated using Fourier-transform infrared (FTIR) 

microscopy, as well as wet chemistry methods including a test for soluble sugars from 

the possible breakdown of the wood polymers. The physical properties assessed 

included using a tensile testing machine to uncover possible differences in mechanical 

properties. An environmental chamber was used to test the reaction to moisture of 

wood of different ages, as moisture is the most damaging aspect of the environment to 

wooden cultural objects.  The project uncovered several differences, both physical and 

chemical, between the modern and historic wood which could affect the success of 

traditional ‘like for like’ repairs. Both oak and pine lost acetyl groups, over historic 

time, from their hemicellulose polymers. This chemical reaction releases acetic acid, 

which had no effect on the historic oak but was associated with reduced stiffness in 

historic pine, probably due to degradation of the hemicellulose polymers by acid 

hydrolysis. The stiffness of historic oak and pine was also reduced by decay. Visible pest 

decay led to loss of wood density but there was evidence that fungal decay, extending 

beyond what was visible, degraded the S2 layer of the pine cell walls, reducing the 

stiffness of the wood by depleting the cellulose microfibrils most aligned with the grain. 

Fungal decay of polysaccharides in pine wood left behind sugars that attracted 

increased levels of moisture. 

 The degradation of essential polymers in the wood structure due to age had different 

impacts on the two species of wood, and raised questions concerning both the 

mechanism of aging of wood and the ways in which traditional repairs are implemented, 

especially in Scots pine. These repairs need to be done with more care and precision, 
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especially in choosing new timber to match the old.  Within this project a quantitative 

method of measuring the microfibril angle (MFA) of wood using polarised Fourier 

transform infrared (FTIR) microscopy has been developed, allowing the MFA of both new 

and historic pine to be measured. This provides some of the information needed for a 

more specific match when selecting replacement timbers for historic buildings.  
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Probability values given in this thesis have the following meanings: 

P >0.05 – No significant difference 

P < 0.05 –Significant - there is less then 5% probability that the difference in the results 
occurred by chance. 

P < 0.01 Very significant – there is less than 1% probability that the difference occurred 
by chance. 

P <0.001 Highly significant - there is less than 0.1% probability that the difference 
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Chapter 1 

Introduction  
 

1.1 Scope of the thesis 

 

Historic wood is one of the most important materials in our cultural heritage. Without it 

we would not have any of the wooden buildings (figure 1.1) or ships that are greatly 

admired today (figure 1.2). There are still many structures standing today that contain 

historic wood (Grimsdale, 1985).  

Wood is still favoured for a lot of building work today due the fact that it is extremely 

strong and light in weight. It is also an easy material to work with in regard to cutting 

and shaping (Krauss et al., 2011; Kisternaya and Kozlov, 2006; Mitchell, 1985). 

Durability depends on species, chemical composition and environment (Yilgor et al., 

2013). 

 As wood is an organic material its properties are all interlinked (Lasserre et al., 2009; 

Zwerger, 1997, p. 10). The intention of this research is not only to examine the 

mechanical properties of historic wood, but also to examine the wood at a cellular level 

to uncover how its performance changes with age.  

Little is known about historic wood as it ages. Most published research focuses on 

biological decay. It is generally thought that without the influence of biological decay, 

wood would not age. However there is some evidence for chemical degradation (Erhardt 

et al., 1996; Gereke et al., 2011). 

 

 

 

  

Figure 1.2: HMS Victory 
(McGowan, 1999) 

Figure 1.1: Stirling Castle 
(Carpenter Oak and Woodland, 
2003) 
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1.2 Timber sources and trade routes 

 

Historically speaking the definition of wood is the material from small diameter 

coppiced trees where most commonly the whole stem is used. The technique of 

coppicing can only be carried out on hardwood trees. Historically timber is referred to 

as pieces cut from larger trees. These terms are not used with these strict historical 

definitions throughout this thesis and are more broadly used according to the more 

modern generalisation of the terms. 

The most commonly found historic wood species in England is oak. Oak was the most 

abundant wood available until softwoods began to be shipped in during the Georgian 

period, when England’s supply of oak was fast running out (Stevenson, 2009). Oak was 

then becoming scarcer due to competition for its use in the construction of houses and 

of ships for the wars with France (Yeomans, 1985).  

Oak was not only preferred due to its abundance. Oak is a dense wood which is durable 

and extremely strong in tension and compression, making it a preferred material in the 

construction of timber framed buildings (Zwerger, 1997, p.36). 

Scotland’s timber heritage does not follow the same pattern that is seen in England. It 

is linked more to building traditions on the Continent such as those of the Netherlands, 

Germany and France. It is thought that this occurred through contact with these nations 

when they were at war with England (Brentnall, 2008).  

Scotland began to import wood long before England, in the 15th century. This was due to 

the relatively poor quality of oak in Scotland, which has a tendency to grow more 

twisted making it unsuitable for structural use, and with the constant wars with 

England, the Scots looked elsewhere for the resource. Dendrochronological evidence 

shows that oak was imported principally from the Scandinavian regions (Mills and Crone, 

2012). Local records of forest land are less readily available in Scotland than in England, 

but the combination of records and dendrochronology can give a lot of details about the 

history of a forest, including dates when more trees were felled or cleared for grazing 

by burning (Davis and Watson, 2007, p.1782).  

Evidence for Scots pine in Scotland stems back to over 8000 years ago. In the mid 

Holocene there was around 1,500,000 ha of pine forest, of which only an estimated 1% 

remains (Wilson et al., 2011). This is believed to be due to major climatic changes, with 

harsh winds and increased rainfall (Wilson et al., 2011; Smout, 2015), as well as the 

gradual expansion of blanket bog. Birch then out-competed Scots pine as it can 

withstand wet soils (Smout, 2015). As the soils began to dry out about 4,500 years ago 

the pine resource began to recover (Smout, 2015).  
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Pine wood has been used locally over the course of history, but during the late 

eighteenth century Scots pine from northern Scotland was used more widely to support 

the ship building industry, and later for sleepers for railway lines (Smout, 2015). But 

evidence of imported Scots pine can be seen as far back as the 1460’s from Finland. 

More frequent use of imported timber began in the 16th century from Scandinavia 

(Crone, 2008; Mills and Crone, 2012). Local knowledge allowed Scots pine to be grown in 

the Highlands producing wood with relatively few knots, but the trees were difficult to 

extract from the Highland glens. Dendrochronological evidence for the use of native 

Scottish pine in surviving medieval buildings is therefore very limited.  

Dendrochronological evidence shows that Scotland relied heavily on imported pine until 

the 18th century, when the infrastructure to use the native resource was developed 

(Mills and Crone, 2012). Therefore the wood obtained for this project, dated to the 15th 

and 16th century, is most likely Scandinavian imports. 

1.3 Structural properties of historic timber roofs 

 

The design of timber roofs in Scotland was influenced, much like anywhere else, by the 

timber resources available. Timber throughout the Medieval period was in short supply 

in Scotland, especially long straight timbers, and when these were available they were 

very expensive, whether home-grown or imported (Mills and Crone, 2012; Gomme, 

2002).  

Timber roof structures are a complex piece of engineering. Even the simplest of roofs 

have a very precise function with each element working together to keep the whole 

structure stable. At any one time there are three forms of loads on a roof structure: 

superimposed loads, meaning the weight of the roof covering; the weight of the frame 

itself; and the force of the elements such as wind (Brunskill, 2004, p20). The weight of 

the roof material, for example slate or thatch, puts a considerable load on the timber 

framework supporting it (Brunskill, 2004, p20). This weight can be resolved into a 

bending stress on the rafter and an outward force at the bottom of the rafter, which 

can topple the supporting walls. This is the main problem of construction that had to be 

overcome for a building design to be successful (Brunskill, 2004, p20). From an early 

date there were two very simple solutions common in Scotland, the cruck frame and the 

tie beam.  More complex solutions including hammer beam roofs evolved later. 

 

1.3.1 Cruck Roofs  

 

Cruck design is thought to have stemmed from an extremely primitive approach of just 

tying two poles together and then thatching the roof, but its origins cannot be traced in 
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detail as there is little evidence of timber structures from before 1200 (Harris, 2010, 

p.9; Fenton, 1976, p.181).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generally cruck frames (figure 1.3) (cruiks in Scots) were used in vernacular buildings. 

But there have been examples found in a wide range of Scottish buildings from barns 

and cottages to castles (Dixon, 2002; Martin, 1987, p144). There a number of different 

designs for a cruck frame but in the basic design the roof is supported by pairs of curved 

timbers springing from the ground (Russell, 1993; Hanke 2008b; Fenton, 1976, p.183). 

The outward force caused by the weight of the roofing is transmitted down to ground 

level, or to near the base of the wall if the cruck stops short of the ground (Hay 1974, 

p33; Brunskill, 2004, p40). In Scotland cruck frames were most often used in 

conjunction with dry stone walling, which is stable under compression but not when 

subjected to an outward (shear) force. It was difficult to get large curved timbers to 

make taller buildings, and most were single-story.  In the 12th century the cruck blades 

were brought directly down to the earth but in the 13th to 14th century they were 

shortened and were raised upon stone foundations (Dixon 2002).  The crucks support the 

roof purlins. Over time there were many different designs. In some the cruck blades 

carry the lowest purlin or a wall plate and in others they hold the ridge purlin (Hay, 

1976, p.33). 

There are regional differences in the design of cruck systems (Walker, 1976, p.56) but 

the roofs themselves were generally thatched (Fenton, 1976, p.182). Sometimes the 

large curved timbers were simply tied or pegged together at the apex of the roof, but in 

other cases they were held together by a tie beam or a collar beam (Grant, 1961, p.144; 

Matin, 1987, p.145; Brunskill, 2004, p.40). The tie or collar beam reduces the bending 

Figure 1.3: Cruck frame seen at 
Prior’s Lynn, Dumfries-shire (Dixon, 
2002). 
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stress on the cruck timbers. Tenon joints were used to connect the tie beam with the 

cruck (figure 1.4) (Brunskill, 2004, p.43). 

 

 

 

 

 

 

 

 

 

 

Over time cruck design developed into the jointed cruck, with very simple joints, 

usually dovetail joints for the main crucks, but some used pegged, halved joints which 

would help alleviate bending stress on the timbers. Jointed crucks were adopted to 

enable cruck systems to be used when the timbers available were not as curved or as 

long as usually required (Hay, 1976, p.33; Brunskill, 2004, p.42-43). Builders would 

travel miles searching for a tree growing in the manner they wanted for the curved 

timbers (Grant, 1961, p.149). 

 

1.3.2 Tie beam or A-frame roofs 

 

The tie beam system was popular because it overcame the issue of the outward force at 

the bases of the rafters, carrying this force in a tie-beam between them. This was the 

most common solution found in Scotland, particularly in parish churches and smaller 

castles, as the span of the roof could be no more than the length of the timbers 

available for the tie beams (Brunskill, 2004, p.62). This roof had many different designs 

but the general principle has two inclined principal rafters tied together with either a 

tie beam connecting the base of the rafters, or a collar connecting them at a higher 

level (Brunskill, 2004, p.115).  

From the 15th century a number of tie beam roofs survive in Scotland; these essentially 

tie the rafter together at the base stretching from the top of each wall. There are also 

simple A-frame designs tying the rafters with a collar; a good example of this can be 

seen in figure 1.5 (Fawcett, 2002, p.245; Gomme 2002). 

 

 

 

 

Figure 1.4: Example of a Tenon joint 
(Brunskill, 2004, p. 142) 
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The main problem of this construction was the lack of any longitudinal tie. This allowed 

the rafters to deflect from vertical under pressure from the elements, which has caused 

a number of these roofs to collapse (Oldrieve and Scot, 1916; Brunskill, 2004, p.62).  

Aside from this there are other design problems with tie beam construction. The tie 

beam itself is under tension load. This makes it difficult to ensure that the rafters are 

well attached to it, as most kinds of joint will be pulled apart rather than forced 

together. Lap joints were used where the brace meets the rafter (Brunskill, 2004, p. 

142). In the case of the pegged lap joint (figure 1.6) the key to this joint’s success is the 

pegs, but these can become compromised with time as they can become loose from the 

swelling and shrinkage of the wood in changing humidity. Although the pegs used in 

joints were not always of the same wood as the frame, this could be a larger problem 

for pine structures from the results found in Chapter 4. This is discussed further in 

Chapter 11.  

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.5: A-frame roof at Doune Castle 
(Tabraham, 1986, p.10) 

Figure 1.6: Example of a lap joint 
(Brunskill, 2004, p.142) 
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1.3.3 More complex roofs 

 

In larger church buildings, excessively long timbers would be needed for the tie beams 

(41% longer than the rafters, if the roof pitch is 45 degrees). A tie beam is also 

incompatible with a stone vault that comes above the level of the wall head, and other 

solutions were necessary. None of the Scottish abbey churches kept their roofs after the 

Reformation. However the 13th century roof of Glasgow cathedral survived until it was 

renewed sometime in the 1900s (Fawcett, 2002, p244; Oldrieve and Scot, 1916). It is a 

form of scissor beam roof. The scissor beams in combination with the collar beam 

prevent the outward force at the base of the rafters, which are not in tension like the 

truss systems which were common from the 19th century in Scotland (Oldrieve and Scot, 

1916). These roofs found in the nave and choir of Glasgow cathedral (figure 1.7) are 

very similar to designs seen in France at Bayeux Cathedral (figure 1.8) and Tours 

Cathedral (figure 1.9) which have been suggested to be the predecessors of hammer 

beam roofs in England (Courtney, 1999, p.100).These French roofs are similar to 

hammer beam roofs in that they allow space for stone vaults to be constructed below 

them, although they are simpler in design.  The triangle at the base of the rafters was 

supported by the walls as at Glasgow (Fawcett, 2002, p.244; Oldrieve and Scot, 1916; 

Hay, 1974, p.28). Further rafters were then placed between the principals to support 

the roof covering (Oldrieve and Scot, 1916). This, along with a sole plate, allows the 

load to be spread evenly along the head of the wall (Hay, 1974, p.28).  A design feature 

which did not survive the test of time was the triangle at the base of the rafters on top 

of the main supporting wall. This rested on the sole plate which was actually built into 

the masonry, which allowed water to become trapped around the timbers and rot to set 

in, causing some of these roofs to be destroyed (Fawcett, 2002, p.246). 

 

 

 

 

 

 

 

 

 

 Figure 1.7: Design of Glasgow cathedral choir and nave 
roofs (Fawcett, 2002, p. 243) 
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Figure 1.8: Roof of Bayeux cathedral (Courtney, 
1999, p. 99) 

Figure 1.9: Roof of Tours cathedral (Courtney, 1999, p.108) 
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There is evidence in Scotland for evolution in roof design as the desire for wider halls 

developed. An example of this is at Randolph’s Hall in Darnaway Castle (1387), where 

tie beams were used in conjunction with crown posts (Hay, 1974, p.29). However there 

is some debate over whether Darnaway is considered to be a hammer beam roof or not, 

as the hammer beams appear to be only decorative items (Gomme, 2002). 

These roofs then evolved into the ornate hammer beam roofs which are often 

considered to be uniquely English (Courtney, 1999, p.89). The number of surviving 

hammer beam roofs in Scotland is small as they were very rare in Scotland to begin with 

(Gomme, 2002), and they were restricted to large castle halls and churches as they 

were very expensive and ornate (Brunskill, 2004, p.72). The development of the 

hammer beam roof in Scotland is thought to have arisen from the desire for halls that 

were becoming wider as well as taller (Courtney, 1999, p.94). The restricted availability 

of timber in Scotland also may have driven this move towards hammer beam roofs, as 

tie beam roofs cannot be made any wider than the logs used for the tie beam (Hay, 

1974, p.29). But in a hammer beam roof the longest member is actually the rafters, 

whereas the rest of the structure is made up of short heavy timbers which are often 

curved.  

The hammer beams roofs of this period were reserved for ornate purposes in buildings 

of high status (Russell, 1993; Yeomans, 2009, p.174). Hammer beam roofs (figure 1.10) 

were complex. It was necessary to find a way to support the arcade plate. This is the 

longitudinal beam attached as a wall plate in truss systems. One solution was to support 

the arcade plate on short posts known as the hammer posts, which rest on a short 

beam, the hammer beam. This has a cantilevered effect inward from the top of the 

outside wall and braces against it (Harris, 2010, p.10-11; Gomme, 2002). Most hammer 

beam roofs are double framed systems in which the common rafters are supported by an 

inner framework, composed of pairs of strong rafters called principals to which purlins 

are attached and which are further strengthened by braces (Raphael, 1877, p.20; 

Courtney, 1999, p.90).  

 

 

 

 

 

 

 

 

 

 
Figure 1.10: Hammer beam roof of the great hall 
at Edinburgh castle (RCAHMS, 1999) 
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These are extremely complex structures with a series of complex stresses working 

within them. The joints between the timbers are very costly due to their complexity 

(Courtney, 1999, p.90) and repairing or replacing an element within this structure will 

need to be done with extreme care so as not to distort the rest of the structure. If the 

replacement timber used in a repair had different MFA and as a result differential 

shrinkage compared with the original, this would potentially have a warping effect on 

the whole roof structure.  

 

1.3.4 Post-Medieval roofs 

 

From the 16th century onward, Scottish roof design tended to become simpler with 

gabled ends and closely spaced rafters, often using an A-frame design made from 

timbers which had a square uniform scantling with no obvious difference between 

principal and common rafters. The whole structure was hidden behind plaster ceilings, 

which were often decorated in state buildings by painting (Serafini and Gonzalez-Longo, 

2015; Hanke, 2008a, p.13). An exception to this was the roof of Parliament Hall, built in 

false hammer beam design; it was an extremely elaborate complex design where two 

elements of the roof act independently (Gomme, 2002). 

These roofs were reliant on the gable wall ends for their longitudinal rigidity, having no 

wall plate, tie-beams or purlins. The rigidity of the structure also relied on the sarking, 

usually two layers of sawn wood that ran horizontally and vertically, separated by 

insulation which usually consisted of fleece. (Serafini and Gonzalez-Longo, 2015; Hanke, 

2008; Dixon, 2002). 

The common rafter form of building was extremely persistent in Scotland and can be 

found in buildings constructed up until the 18th century, when other countries such as 

England had moved to king and queen post truss systems (Serafini and Gonzalez-Longo, 

2015). 

The first record of the king post truss system appearing in Scotland was drawn by 

William Adam in 1720 for the New College library in Glasgow (figure 1.11), (Serafini and 

Gonzalez-Longo, 2015; Hanke, 2008) but this was never put into place. It is thought that 

the local carpenters had no idea how to construct a roof to this design (Serafini and 

Gonzalez-Longo, 2015).  

 

 

 

 

 

 



Chapter 1 – Introduction  

27 

 

 

 

 

 

 

 

 

 

 

 

More complex trusses began to appear in the mid-18th century in Scotland and are 

believed to show English influence in their design (Serafini and Gonzalez-Longo, 2015; 

Dixon, 2002; Harris, 2010, p.81). There are many different variants of the truss system. 

The two main designs seen in Scottish timber roofs during the mid-18th century are the 

king post truss and the queen post truss (Russell, 1993). The king post truss (figure 1.12) 

gives direct support to the roof by having the king post rise from the tie beam. The 

principal rafters then rise from each side of the tie beam into the king post. The purlins 

are usually slender and are trenched into the principal rafters (Harris, 2010, p.81; 

Serafini and Gonzalez-Longo, 2015; Hanke, 2008a, p.20). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Queen post trusses (figure 1.13) have vertical posts supporting the main roof plate or 

purlin, but instead of reaching to the ground they are supported on the tie beam (Harris 

2010, p.85). The principal rafters support the purlins and are joined by a collar. The 

joint between the tie beam and queen posts is often enlarged (Harris, 2010, p.86).   

 

 

 Figure 1.11: Adams design for the Glasgow New 
College Library, 1720 (Serafini and Gonzalez-Longo, 
2015) 

Figure 1.12: Example of a King post truss system 
(Harris, 2010, P.78) 
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The earliest truss roof known to be built in Scotland was a queen post truss at Oakshaw 

Trinity Church in Paisley (1750). It has been suggest that this actually inspired the use of 

truss system in Scotland, leading to the roof of Auchinleck house (1758) being built in 

the king post truss style (Serafini and Gonzalez-Longo, 2015). Adoption of these was 

gradual, and common rafter roofs were still being built throughout the same time 

period, although there are some cross overs between the two designs (Serafini and 

Gonzalez-Longo, 2015; Hanke, 2008a, p.13).  

The truss systems came into favour because they were light in weight and could replace 

the need for traditional purlins and ceiling joists. Often the trusses could be assembled 

before installation (Desch and Dinwoodie, 1996, p.195). In many buildings they were 

covered by plaster and lath ceilings (Raphael, 1877, p.18-19; Hay, 1974, p.31). 

These highly engineered truss systems are believed to have become popular not only for 

design reasons but also due to the new possibility of getting great lengths of imported 

softwood timber from North America. This allowed larger spans to be bridged in timber 

and introduced the possibility of low pitched roofs (Russell, 1993). In Scotland from the 

mid 18th century through to the 19th century and beyond these became the most 

favoured system. In consequence, the craft of traditional carpentry came to an end in 

the late 18th to early 19th century (Harris, 2010, p.3; Dixon, 2002), although the 

hammer beam roof made a short comeback in the Victorian high gothic period for use in 

elaborate halls and churches (Russell, 1993; Yeomans, 2009, p.174). 

 

1.3.5 Ceilings and flooring 

 

In the 15th century elaborate ceilings were used to hide the structural timbers of the 

roof in high status buildings such as churches and castles. One of the more common 

Figure 1.13: Example of a Queen post truss 
(Harris, 2010, p. 84) 
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features in smaller churches was the timber barrelled ceiling (figure 1.14) (Fawcett, 

2002, p.239). 

 

 

 

 

 

 

 

 

 

 

 

 

During the 16th century Renaissance, coffered ceilings were also used in high status 

buildings to hide the heavy beams supporting the roof (Hanke, 2008a, p.24; Raphael, 

1877, p.16). A temporary scaffold platform was used to fix the ceiling panels and the 

framing ribs to the load bearing structural beams. This operation demanded 

considerable skills and precise work to be successful, and to avoid distorting the 

decorative works on the ceiling (Hanke, 2008a, p.28). The most famous example of a 

coffered ceiling in Scotland is from Stirling Castle (Hanke, 2008a, p.25; Hanke, 2008b). 

A lesser version of these decorated timber ceilings was widely popular from the 1580s. 

These were constructed simply by nailing painted boards onto the structural joists of 

the floor above (Hanke, 2008a, p. 29). During this time period it was becoming expected 

that the flooring would provide a decorative ceiling for the room below (Brunskill, 2004, 

p.75-76).  

Most of the simpler floors were constructed from boards laid directly on floor joists 

spanning the gap between the walls (Brunskill, 2004, p.76). Huntingtower Castle (figure 

10) is a fine example of this floor design and had an elaborate painted ceiling 

underneath, the joists and the panels between them being elaborately painted. 

Alternatively the joists could be supported by binder or bridging joists, which were 

larger timbers that spanned the width of the building from wall to wall (Brunskill, 2004, 

p.99).  

Figures 1.15 and 1.16 show different ways in which floor joists were supported. Figure 

14 shows a stone ledge built out of the left side of the wall, for a timber wall plate on 

which the joists would rest. Figure 1.17 shows holes left in the masonry to house the 

ends of the floor joists. A third alternative was to support a timber wall plate on corbel 

stones seen in figure 1.18. This alternative allowed a freer flow of air around the 

 Figure 1.14: Coffered ceiling of the Great Hall 
of Stirling Castle (Hanke, 2008a, p.25) 
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vulnerable ends of the joists and reduced the chance of decay. The timber samples 

made available for this project are from these types of timber joists (figure 2.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unfortunately many timber structures and roofs have been lost through neglect and 

decay, because they were not seen as an important part of the building and were 

hidden away behind plastered ceilings. Further, many roofs and floors have been 

subject to inappropriate repair, replacement or in some case even demolition (Cestari 

et al., 2011). This is a very different view from that of their historical builders, when in 

the medieval period the timber parts of the building were by far the most valuable 

(Grant, 1961, p.142).  

Mechanical failure requiring repairs, within roofs and other timber structures, is usually 

caused by movement such as twisting of the timber frame, which placed excessive loads 

on some part of the structure. Problems like this may be caused by failure in the 

Figure 1.15: Painted ceiling of the Lord’s 
hall, Huntingtower Castle; Scotland’s oldest 
surviving example (Tabraham, 1986, p.57) 

Figure 1.16: Painted joists from Old Gala 
House (RCAHMS, 1957) 

Figure 1.17: Ledge on left side of the 
building to support floor joists at Skipness 
Castle (RCAHMS, 1971) 

Figure 1.18: Holes in the masonry for 
supporting the floor joists at Tarbert Castle 
(RCAHMS, 1971) 
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bracing of the frame or by movement of the foundations (Russell, 1993), but most often 

by decay when the timber is not sufficiently dry and well ventilated. Joist ends inserted 

into sockets in cold, damp stone are a typical problem. 

Other structural problems can be caused by bad interventions, where for example the 

load-bearing timber members have been cut through to insert extra floors, doors and 

windows or for adding services to the building (Russell, 1993). 

1.4 Wood Anatomy 

 

Wood and woody plants are extremely abundant in the world with over 20,000 different 

species, each having different properties and value depending on the slight differences 

within their anatomy and extractives leading to their suitability for different uses 

(Wiedenhoeft, 2010). 

The first thing to remember about wood is that it does not grow for our use. Everything 

about wood and its anatomy serves its function as the trunk of a tree and is specialised 

to support and protect the tree (Paris, et al., 2010; Wiedenhoeft, 2010). The structure 

of wood is the result of continuous growth of a living organism. Before we can 

understand the properties of historic wood and the effect of aging we have to 

understand how it is produced and how it once functioned in a living tree (Wright, 2005, 

p. 14). 

The tree trunk consists of bark (phloem) and woody tissue (xylem). Both xylem and 

phloem cells are produced by the vascular cambium which is located between the wood 

and the inner bark and is too thin to be visible to the naked eye. Here in the cambial 

zone new cells are produced by repeated cell division (Wilson and White, 1986, p. 11). 

These tube-like cells, glued together along the middle lamella, form the structural basis 

of the tree (Varner et al., 2012). 

Both the xylem and the phloem, produced from the cambium, are known as vascular 

tissues (figure 1.19). The primary cambial cells become differentiated into the two 

types of vascular tissue. The secondary growth stage is where the tree begins to add 

thickness by making these new tissues (Esau, 1977, p.101).   
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The role of the wood (xylem) is critical to the survival of the tree as it provides 

mechanical support for the tree, which needs to carry branches whilst the tree is 

growing in height to compete for light (Spicer and Groover, 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

The growth of the xylem occurs with annual growth rings. There are two stages of 

annual growth, the earlywood which grows during the spring and latewood which is 

produced in summer. The earlywood has wide cells for the fast transport of water and 

nutrients when the tree is in the first and quickest part of the growing season (Esau, 

1977, p.106). The latewood gives the tree structural support. The latewood cell walls 

become thicker and the wood becomes more dense and stiffer (Wilson and White, 1986, 

p. 12).  

Figure 1.20: Knots in Pine 
wood (Desch and Dinwoodie, 
1996, p. 13) 

Figure 1.19: Cross section of the trunk of a tree 
(Britannica, 2006) 
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Figure 1.21: A: Pine earlywood tracheid, B: pine 
latewood tracheid and C: hardwood vessel cell 
(BP: bordered pits and SA slit appiture) (Unger et 
al., 2001, p.12) 

 

In the secondary xylem there are two distinct types of tissues. The axial system is 

vertical and makes up the main body of cells in the trunk (Esau, 1977, p.101).  The ray 

cells are orientated radially from pith to bark (Varner et al., 2012; Hiziroglu, 2009). 

Knots (figure 1.20), form at the base of live or dead branches and are considered a 

problem in wood working and in assessing the quality of wood. There are different types 

of knot in that the knot from a living branch cannot be pushed out of the wood whereas 

dead knots are loose and likely to fall out. Loose knots can be very undesirable 

depending on how the wood is to be used (Wilson and White, 1986, p. 18). 

1.4.1 Differences between hardwood and softwood 

 

The axial system includes tracheary cells which are the most specialised cells in the 

xylem. Their function is the conduction of water. There are two unique types of these 

cells, the tracheids found in softwoods and the vessel cells found in hardwoods (figure 

1.21) (Unger et al., 2001, p. 12).  The vessel and tracheid cells act like the blood 

vessels of the tree, transporting water and inorganic nutrients from the roots to the 

crown (Thibaut et al., 2001). These cells differ in the way they transport water. The 

tracheids are cells with closed ends, which transport water through what are called 

bordered pits in the sides of the cells. The pits pass water from one cell to another 

(figure 1.22). The pits are bordered to prevent them from acting as weak points in the 

cell wall and in times of drought they can be closed by a torus to stop loss of water and 

to prevent air from entering the cells (Carlquist, 2010).  

 

 

 
Figure 1.22: Bordered pits, 
x150 magnification (Desch and 
Dinwoodie, 1996, p.16) 
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The vessel cells found in hardwoods, on the other hand, are cells which are open at 

each end and connect together to allow a continuous flow of water (Unger et al., 2001, 

p.12). 

Softwoods and hardwoods are also differentiated by density. Softwoods tend, on 

average, to be less dense than hardwoods, although this does not mean that every 

hardwood is harder than softwoods (Desch and Dinwoodie, 1996, p. 78). 

Due to the difference in density softwoods are sometimes easier to work than the more 

dense hardwoods (Jackson and Day, 1989, p.17), but some hardwoods such as oak have 

the advantage of being particularly resistant to decay (Wright, 2005, p. 13). 

Identifying both hardwood and softwood species taken from a historic building is done 

mainly through light microscopy. A trained person can identify species by the way in 

which pores in the wood are distributed throughout the growth rings in the latewood 

(Desch and Dinwoodie, 1996, p. 61). Due to chemical differences between the 

hemicellulosic polymers in softwood and hardwoods is it possible to distinguish between 

the two using Fourier transform infrared (FTIR) spectroscopy (Barker and Owen, 1999; 

Pandey, 1998).  

 

1.5 Wood cell wall structure 
 

1.5.1 Wood cell anatomy 

 

Wood cells (figure 1.23) form a wide variety of shapes, sizes and wall thickness to 

service the current needs of the tree (Burgert, 2006; Fratzl et al., 2004). 

Wood cell walls are made up of several different layers centred round the lumen, the 

cavity originally occupied by the living cell, and the organisation of the cellulose 

microfibrils and matrix material differ with each cell wall layer. The outermost layer of 

the cell wall is known as the primary wall. It contains cellulose microfibrils in thin 

aggregates which cross over each other. One of the main roles of the primary wall is to 

stand up to the internal pressures of the living cell and control the expansion of the cell 

during its growth (Burgert, 2006, Thomas et al., 2013). The secondary wall is divided 

into three layers, the S1, S2 and S3 layers (figure 1.24) (Unger et al, 2001, p. 13; 

Cowdrey and Preston, 1966). 
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The S1 layer is made up of laminations, in which the microfibrils are arranged in a flat 

helix. This helix changes direction in every lamination. The S1 layer itself is so thin that 

it usually cannot be seen under light microscopy (Ridout, 2000, p.6), generally around 

0.1-0.35 µm in thickness. It has been observed that the microfibrils in this cell-wall 

layer are orientated at a large angle, around 60°–80°, to the long axis of the tracheids 

(Khalili et al., 2001; Tabet and Aziz, 2013; Rusinb and Tulika, 2005; Donaldson, 2008). 

Figure 1.23: The layers of a wood cell wall (Ridout, 2000, p. 6) 

Figure 1.24: Scanning Electron 
Microscope image of wood cell walls 
(Tabet and Aziz, 2013) 
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The cellulose chains in the S2 layer of the cell wall are laid down approximately parallel 

to the cell axis, which gives the wood greater mechanical strength and stiffness along 

the grain (Simonović et al., 2011; Ricardo et al., 2011; Bjurhager et al., 2012). Although 

they are roughly parallel to the cell axis they wind helically around the cell, at a helical 

angle called the microfibril angle (MFA), as shown in figure 1.25 (Bader et al., 2012; 

Krauss et al., 2011; Burgert, 2006; Verrill and Kretschmann, 2011; Fratzl et al., 2004; 

Donaldson, 2008; Altaner and Jarvis, 2008; De Borst et al., 2013). The S2 layer is the 

thickest cell wall layer, usually between 1 and 10 µm thick and making up 75–85% of the 

total cell-wall thickness. As a result the S2 layer has an important role in mechanical 

support. The microfibril angle of this layer is small and usually will never exceed 30° 

(Rusinb and Tulika, 2005). 

 

 

 

 

 

 

 

 

 

The S3 layer of the cell wall is thinner than the S1 layer, usually between 0.5–1.0 µm. 

The cellulose microfibrils in this layer are in a parallel arrangement but not so strictly 

as in the S2 layer, at an angle between 60°–90° to the cell axis (Rusinb and Tulika, 

2005; Barnett and Bonham, 2004). The innermost surface against the lumen in some 

species has a warty appearance (Unger et al., 2001, p.14). 

The cells being layered in this manner give wood its unique stiffness for its weight. The 

microfibril orientations in the S1 and S3 wall layers are also important and are believed 

to prevent the cell from bursting. The S1 layer in particular is thought to have the main 

role in protecting the cell from water tension forces and crushing (Donaldson, 2008). So 

although the microfibril orientation in the S1 and S3 cell-wall layers is not as significant 

for the mechanical properties, these layers still have a crucial role to play in the tree’s 

overall survival and success. 

These layers make up the wall of a single wood cell. The cells are attached to one 

another by a matrix known as the middle lamella, but this is hard to distinguish under 

the microscope from the primary cell wall, which often leads to them being classed 

together. The middle lamella is lignin rich. This lignin is chemically linked to the 

Figure 1.25: View of the MFA by Scanning Electron microscopy (SEM). The 
MFA can be seen from the bordered pits which appear as slits in the cell wall 
following the direction of the microfibrils (Tabet and Aziz, 2013). 
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hemicellulose polysaccharides acting as a binding matrix holding the wood cells 

attached to one another (Ridout, 2000, p.7).  

It is the unique microfibril orientation and cell wall structure that makes wood such a 

desirable material in terms of its mechanical properties, perfect for a building material. 

Yet wood, once it has been dried, also has a low density relative to its strength and 

stiffness (Fratzl et al., 2004). 

 

1.5.2 Wood Polymers 

 

Wood cell walls are made up of three main polymer classes: cellulose, hemicellulose 

and lignin. Cellulose and the hemicelluloses are sugar based polymers whereas lignin is 

an aromatic polymer (Barker and Owen, 1999; Tabet and Aziz, 2013; de Borst et al., 

2013; Varner et al., 2012). 

The main polymer responsible for the strength of wood cell walls is cellulose. Cellulose 

is made up of glucose units joined together in a chain. The chain structure of cellulose 

is almost exactly the same as starch, bar one difference; every alternate glucose in the 

sequence of cellulose is joined upside down (Hinterstoisser et al., 2001; Zabler et al., 

2010). This subtle difference in the chain structure makes cellulose an entirely different 

polymer with a completely different range of properties, making cellulose the strongest 

of the wood polymers (Varner et al., 2012; Ridout, 2000, p. 5). 

Cellulose forms microfibrils. What gives cellulose its great stiffness and strength is the 

structure of the microfibrils. The crystalline cellulose at their core has great rigidity in 

the direction parallel to their axis (Krauss et al., 2011; Fernandes et al., 2011). 

Cellulose microfibrils are tightly held together by hydrogen bonds which tie the 

adjacent chains together forming the crystalline structure of the microfibril (Altaner 

and Jarvis, 2008; Tabet and Aziz, 2013). Cellulose microfibrils are often referred to as 

being crystalline but they do not form a perfect crystal. They also contain disordered 

domains, the structure of which is still not fully understood (Fernandes et al., 2011; 

Thomas et al., 2014).  

The microfibrils aggregate together to form microfibril bundles. These are the principal 

structural unit of the cell wall, differing between softwoods and hardwoods (Thomas et 

al., 2014; Fernandes et al., 2011). Between the bundles of microfibrils are the 

hemicellulosic matrix polymers (figure 1.26). These are of lower molecular weight. 

Although they resemble cellulose in structure they are branched and do not form 

crystalline microfibrils.  
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The hydrogen bonding between the cellulose polymer and the hemicellulose polymers is 

also one of the key factors controlling the mechanical properties of wood (Hinterstoisser 

et al., 2001; Aydin, 2007).  

Hemicelluloses are the second most abundant polymer group in wood and can comprise 

10-30 % of the dry biomass depending on the species (Schädel et al., 2010). 

Hemicelluloses are more affected by the moisture content than lignin or cellulose. This 

has been seen even at normal humidity levels when hemicelluloses have more tendency 

to rearrange than cellulose (Salmén, 2004).  

There are three main sugar units that form hemicelluloses in wood. These are xylose, 

glucose and mannose and they differ in amount in hardwoods and softwoods. Xylans 

(glucuronoxylans) are the most abundant hemicelluloses in hardwoods and can make up 

23-33% of the dry mass of the wood (Gabrielii et al., 2000; Marchessault, 1962). The two 

main hemicelluloses in softwoods are glucomannans and xylans 

(glucuronoarabinoxylans). Some observations have shown that softwood xylans are more 

associated with lignin and glucomannans are associated with the cellulose polymers 

(Schädel et al., 2010; Fratzl et al., 2004). The hemicellulose chains are thought to 

cross-link cellulose microfibrils (Fratzl et al., 2004; Aydin, 2007) or microfibril bundles 

(Fernandes et al., 2011). It has recently been revealed that glucuronoxylan has an 

acetylated backbone which forms a flat-ribbon; 2-fold helix when it bonds to the 

cellulose polymer at its hydrophilic faces (Busse-Wicher et al., 2014; Bromley et al., 

2013; Cosgrove and Jarvis, 2012). It is thought that the acetyl groups are on the outside 

Figure 1.26 Structures of the two main hemicelluloses found 

in softwoods (Dutta et al., 2012) 



Chapter 1 – Introduction  

39 

 

of the chain, attached at the 2-OH and 3-OH positions of alternate xylose units, while 

the inside is hydrogen bonded to the cellulose polymer (Cosgrove and Jarvis, 2012; 

Busse-Wicher et al., 2014). Glucoronoxylan chain segments between those that are 

bound do not have this pattern of aceylation. The two kinds of segments within one 

chain, permit crosslinking of cellulose by the glucuronoxylans in hardwoods (Pinto et 

al., 2005; Kulkarni et al., 2012). So far this has not been found in softwoods but it is 

likely to occur in softwoods as well.  

The final main polymer is lignin. Lignin is a complex polymer. It forms a 3D network in 

the cell walls, binding to the hemicelluloses. Lignin is not formed from sugar like the 

polysaccharides; it is formed from three cinnamyl alcohols, 4-coumaryl alcohol, 

coniferyl alcohol and sinapyl alcohol. The proportions of these three building blocks are 

different in softwoods and hardwoods; in softwoods lignin is mainly formed from 

guaiacyl units and results from the polymerisation of coniferyl alcohol, whereas 

hardwood lignin, a guaiacyl-syringyl polymer, is the result of co-polymerisation of 

coniferyl alcohol and sinapyl alcohol (Fratzl et al., 2004; Unger et al., 2001, p. 18; 

Aydin, 2007).  

 

1.6 Structural Origins of the Mechanical Properties of Timber 

 

For a long time in wood science, density was considered to be the key property 

determining mechanical properties, until routine methods became available to 

determine microfibril angle (MFA). Although MFA is now known to be the principal 

factor controlling mechanical qualities of wood such as stiffness and strength; density 

still plays a major role (Evans and Ilic, 2001; Rinn et al., 1996; Roszyk et al., 2010; 

Dutilleul et al., 1998; Vavrčík et al., 2009; Ricardo et al., 2011).  

Density varies greatly, not just in different species but also within each tree (Treacy et 

al., 2000). It depends on the growth history of the tree (Reiterer and Stanzl-Tschegg 

2001; Zhang, 1993; Machado et al., 2014; Treacy et al., 2000). The growth history 

determines anatomical factors such as the proportions of early and latewood in each 

growth ring. In softwoods, latewood cells have much thicker cell walls than earlywood, 

resulting in a higher density (Bergés et al., 2008; Cown et al., 2005; Rinn et al., 1996; 

Vavrčík et al., 2009; Mansfield et al., 2009; Hein et al., 2013). These growth features 

depend on silivculture and on the proportion of mature and juvenile wood in a tree, 

which in turn varies with genetics, growth rate and height within the stem (Gapare et 

al., 2012; Dutilleul et al., 1998; Cown et al,. 2005). Wood density has also been found 

to be sensitive to the climate in which the tree is grown and any changes in climatic 

stress in the growing season (Bouriaud et al., 2003; Auty et al., 2014; Kellomäki et al., 

1999; Silva et al., 2014a).  
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Hardwoods and softwoods differ in density properties due to their anatomy. In ring 

porous hardwoods such as oak the density and the width of seasonal growth in each ring 

change from pith to bark. Density tends to increase with ring width as the amount of 

porous latewood is lower, but it decreases with ring number from the pith leaving the 

central part of the tree having the highest density (Vavrčík et al., 2009; Knapic et al., 

2007; Guilley et al., 1999; Kellomäki et al., 1999; Miyajima, 1955). In contrast 

softwoods with wider ring width give lower density wood, resulting in denser wood 

toward the bark of the tree (Kellomäki et al., 1999; Dutilleul et at., 1998; Beets et al., 

2001; Krauss et al., 2011). In Scots pine, after the initial slow growth leaves a few dense 

rings near the pith, density is low in juvenile wood, then it tends to increase before 

becoming more stable within the mature wood (Auty et al., 2014; Hannrup et al., 1998). 

Pine has a general tendency to increase in density as the tree grows, whereas this 

gradient in hardwood species has been seen to be smaller (Evans et al., 2000; Repola, 

2006). 

Although MFA and density work together to dominate wood properties such as stiffness 

and strength, there is not much correlation between them. This shows that they are 

most likely controlled independently by the tree to serve different needs. It may then 

be possible to breed trees to be better in one of the two properties (Evans et al., 2000; 

Alteyrac et al., 2006; Tabet and Aziz, 2013). Density is still considered to be a key 

property of wood especially in the forest industry, as it has a major impact on the 

quality of the wood and the value of wood products, as well as showing an inverse 

relationship with yield (Alteyrac et al., 2006). 

MFA is believed to be the dominant property for the longitudinal stiffness of wood, not 

density (Penttilä et al., 2013). There have been experiments using polarised FTIR 

spectroscopy to find out the relative orientation of the hemicellulose and lignin 

polymers in relation to the microfibrils and the cell axis (Stevanic and Salmén, 2009; 

Simonović et al., 2011). Some of these polymers appear to have a parallel relationship 

with the microfibrils. It is assumed that the peak at 1160cm-1 is derived from cellulose, 

but as some chemical bonds within hemicelluloses are the same it is logical that 

hemicelluloses might also contribute to this peak. It has also been suggested the lignin 

follows the parallel orientation of the cellulose microfibrils, but data presented in 

Chapter 5 of this project showed no polarisation of the lignin peak at 1510cm-1 which 

would suggest a contradiction to the experiments described by Stevanic and Salmén, 

(2009) and Simonović et al., (2011). 

The strength and flexibility of microfibrils are remarkable; they stretch elastically to a 

small extent when a load is applied but thereafter the matrix polymers experience some 

more permanent rearrangement allowing the microfibrils to slide past one another. The 
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cell wall then shows what is known as plastic deformation (Burgert and Fratzl, 2009; 

Fernandes et al., 2011; Roszyk et al., 2010).  

It has been observed that the MFA correlates broadly with the mechanical stresses that 

are present in the different stages of the tree’s growth. For example juvenile wood 

needs to be flexible and bend without breaking, which is made possible by it having a 

higher MFA than mature wood. Mature wood needs to have a lower MFA to be able to 

withstand the compression force exerted by the weight of the tree (Chaffey, 2000; Via 

et al., 2009; Burgert, 2006). The higher MFA in juvenile wood leads to it being 

considered inferior to mature wood for many purposes. Juvenile wood is usually the first 

5 -25 annual rings, depending on the species, produced by a tree during its initial period 

of rapid growth (Chaffey, 2000; Altaner and Jarvis, 2008).  Although the juvenile wood 

has lower strength and stiffness than the rest of the heartwood, the cells known as the 

sapwood, laid down later by the growing tree, are also less durable than the heartwood 

cells (Mansfield et al., 2009; Wiedenhoeft, 2010).  

Sapwood consists of cells which are physiologically active and transport water. Although 

many of the cells are dead, the parenchyma cells which reside in the rays remain alive 

until they are no longer needed for storage (Desch and Dinwoodie,1996, p. 19) whereas 

the heartwood cells are normally dead (although not always nor in every species) (Unger 

et al., 2001, p. 9; Wiedenhoeft, 2010).  

 

 

 

 

 

 

 

 

 

The heartwood of a tree was historically the most desirable part and in a lot of species 

it is easy to locate in the tree because the cells are darker in colour in comparison to 

the sapwood (figure 1.27) (Wilson and White, 1986, p.13).  

The colour of heartwood is thought to be produced when extractives such as tannins, 

produced in the sapwood close to the heartwood-sapwood boundary, infiltrate the 

heartwood causing it to become more strongly coloured. Dark colour is part of what 

Figure 1.27: Colour change from 
sapwood to heartwood. (General Botany 
Laboratory, 2011) 
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makes certain woods, for example mahogany, more desirable in decorative functions 

such as furniture (Grabner et al., 2005; Brazier, 1985; Wiedenhoeft, 2010). High 

extractive content can also make some wood species more durable, which for some 

functions makes them a more desirable choice (Grabner et al., 2005). The sapwood of 

the tree is traditionally considered inferior and in a lot of work with wood, especially 

furniture making, it is cut away as it is more susceptible to biological decay by insect 

pests and fungi (Jackson and Day, 1989, p.11) The sapwood contains more residual 

nutrients than the heartwood, and this is why it is more easily attacked by beetles and 

fungi. Part of the seasoning process in medieval times involved stripping the sapwood 

from that heartwood (Wright, 2005, p. 16). This process has also been done in standing 

buildings as a method of stopping infestation by deathwatch beetle, as the beetles 

cannot attack the heart wood if it has not already been attacked by micro-organisms 

(Ridout, 2000, p.50). 

The shrinkage and distortion of wood are also a concern in timber conservation and are 

influenced by wood anatomy. Certain growth characteristics can affect the distortion of 

wood such as MFA, areas of compression or tension wood, spiral grain and the presence 

of knots. These factors do not affect the living tree but once the wood goes through the 

drying process to produce useable timber the loss of moisture causes deformation, as 

shown in figure 1.28 (Cave, 1972).  

            

Figure 1.28: The different kinds of distortion of wood (Encyclopaedia Britannica, 2000) 

It is not the cellulose microfibrils which shrink but the matrix materials. This results in 

the MFA having an impact on the direction of distortion (Yamamoto et al., 2001). 

Shrinkage is known to be uneven for the different wood directions. Typical shrinkage 

levels from green to dry are generally believed to the about 0.5% longitudinally, 4% 

radially and 6% tangentially. Much research has gone into why shrinkage in the radial 
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and tangential directions are so different but the reason is still unclear today (Patera et 

al., 2013; Leonardon et al., 2009; Babinski, 2011; Kifetew et al., 1998). 

Changes in humidity within a historic building will allow the wood’s moisture content to 

increase or decrease (Desch and Dinwoodie, 1996, p. 87). This, when coupled with 

natural differences in the wood on opposite sides of a piece of timber, such as MFA and 

knots, can cause distortion of various kinds shown in figure 1.12. Shrinkage of wood is 

also a problem in conservation when differential movement between two joined pieces 

of timber results from fluctuations in relative humidity. When a new piece of timber is 

fastened to a historic piece in a repair, and the old and new pieces have different 

shrinkage properties, this would put extra stress on the new joint at the interface 

between old and new material.  

1.7 Timber Seasoning.  

 

 It is thought that until the later 15th century wood was felled and then used green. The 

custom of seasoning and drying came after this; however it is not known exactly when it 

became the custom to dry wood before using it (Zwerger, 1997, p. 20).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Seasoning is the traditional process in which moisture in the felled wood is removed by 

slow air drying (figure 1.29). Prior to air drying some timbers were seasoned by soaking 

the wood in fresh or salt water, and in some cases even in peat bogs. It is thought these 

methods were used to remove soluble nutrients from the wood (Tredgold, 1985). 

 Modern day timber is rarely seasoned but is usually dried in kilns to remove the 

unwanted moisture.  

To many people who work with wood today it is an obvious fact that the presence of 

moisture in wood will result in rotting amongst other problems. Even without all the 

science known today, wood workers in history also knew this fact which is why they 

Figure 1.29: Air drying of timber (Ridout, 2000, p.121) 
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began to season wood (Wright, 2005, p.17). The process of removing the sapwood as the 

wood was being prepared for seasoning also went out of practice at an early date 

(Wright, 2005, p. 17).  

The simplest traditional way to season timber was by air drying. Timber would be cut 

into planks or beams and then stacked on the ground in piles with spacers (‘stickers’) 

between the layers of wood. It was sheltered from the rain and allowed to dry out by 

the natural air flow through the piles. It would take about 1 year to dry hardwoods 

boards 25mm thick to a moisture content of 14-16%. The wood was then often moved to 

the site in which it was to be used, to allow it to acclimatise to the area before use 

(Jackson and Day, 1989, p. 13). 

1.8 Timber durability 

 

Degradation of dead wood in a forest is a natural process but when it occurs in a 

building it is in most cases through human negligence, either in buildings that have been 

abandoned or fallen into disrepair, or due to poor maintenance routines (Bucşa and 

Bucşa, 2008; Kisternaya and Kozlov, 2007). Decay occurs when wood is exposed to 

conditions favourable to fungal growth, usually damp conditions, although some fungi 

can survive with very little water (Blanchette, 1995; Clausen, 2010). 

Wood is a unique material and some wood species can stand up to biological decay 

better than others. As with everything the level of resistance can also depend on the 

individual tree and its properties. No two pieces of wood are ever the same, even from 

the same tree (Bader et al., 2012; Ridout, 2000, p. 3).  

For example the extractives found in oak allow it to be less susceptible to fungal decay 

in comparison to pine (Carvalho et al., 2009; Clausen, 2010). When fungal decay sets in, 

the wood will in some cases lose mechanical strength sooner than it loses density. The 

traditional way of assessing decay is through mass loss but in some cases this may not be 

enough (Bader et al., 2012; Oberle et al., 2014; Green, 2001; Curling et al., 2001). 

Although finding mechanical issues with the wood may not be simple, they can still be 

present and problematic, whereas trying to find chemical changes to the wood can be a 

more difficult process (Fackler and Schwanninger, 2012). Decay in the microstructure of 

wood can affect macroscopic mechanical properties (Bader et al., 2012). Once fungi 

have penetrated into the wood, incubation experiments have shown that the risk of 

mechanical degradation rises extremely fast if the conditions for fungal growth are 

allowed to continue (Brites et al., 2013; Hastrup, et al., 2012). 
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1.9 Microbial degradation of timber 

1.9.1 Wet waterlogged wood: 

 

Wet waterlogged wood found in sunken ships such as the Mary Rose and the Vasa can 

survive under sea bed conditions for hundreds or even thousands of years. Natural 

changes are expected to be seen in the structure of the wood, depending on the species 

and burial length (Passialis, 1997; Esteban et al., 2010; Greaves, 1971).  

Changes in the chemical composition of wet waterlogged wood are due to slow 

enzymatic hydrolysis of the carbohydrate polymers of the wood, which leads to the loss 

of these polymers, a higher lignin content and a lower density (Čufar et al., 2008; 

Passialis, 1997). Wet waterlogged wood will also contain inorganic materials such as 

salts, and thus far more ash than recent wood (Passialis, 1997). In wet environments 

hemicelluloses are found to be degraded far more than cellulose (Gelbrich, et al., 

2008).  

 

 

 

 

 

 

 

 

 

 

Although, unlike historic wood, waterlogged wood is not degraded by fungi due to the 

anaerobic conditions, tunnelling bacteria (figure 1.30) or erosion bacteria can be causes 

for concern in waterlogged wood. They can be seen in the transverse section of the 

wood and show a chequered pattern of decay (Greaves, 1971; Passialis, 1997; Björdal et 

al., 2005; Čufar et al., 2008). They attack from the cell lumen and penetrate through 

the S3 layer of the cell walls. The S2 layer is slowly turned into amorphous material 

which is thought to be a combination of bacterial slime, bacteria and left-over lignin. 

They get into the wood fibres via the pits in the ray cells (Björdal et al., 2005; Lionetto 

Figure 1.30: Damage done by erosion 
bacteria, scale bar 3 µm (Blanchette et 
al., 1985) 
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et al., 2013; Kretschmar et al., 2008; Greaves, 1971). The decayed regions align 

themselves with the microfibrils and the erosion is usually seen following these. The 

bacteria attack the S2 layer more due to its elevated cellulose and hemicellulose 

content (Björdal et al., 2005; Lionetto et al., 2013; Čufar et al., 2008). This leads to a 

spongy material which is likely to collapse if the wood is allowed to dry out (Lionetto et 

al., 2013). 

Allowing this wood to dry out without some form of treatment will result in large 

dimensional changes. Almost double the amount of shrinkage compared to recent wood 

can be seen in these cases (Kolař et al., 2014). This problem is usually controlled with 

the use of an impregnation solution which controls the level of shrinkage. PEG or 

polyethylene glycol is the most commonly used solution in the UK. PEG can be obtained 

in different molecular weights of 200-4000 grams per mole, and is adjustable for species 

and amount of decay as calculated by a programme called PEGcon (polyethylene glycol 

concentration) (Babinski, 2011). But this system is not without its faults as it does not 

take into account the differential shrinkage seen within untreated wood (Babinski, 

2011). For the treatment to be successful it requires prior removal of the salts left by 

the sea water from the wood. Salts and iron acquired from the environment can cause 

huge problems in the treatment of waterlogged wood (Macchioni et al., 2013).  

1.9.2 Archaeological (buried) wood:  

 

In buried wood, decay generally leads to the loss of the carbohydrate polymers and a 

relative increase in lignin (Kolař et al., 2014). There is also an increase in the porosity 

of buried wood resulting from microbial degradation (McConnachie et al., 2008). The 

degradation also depends on the soil conditions and in some cases on the history of the 

wood and its use (Čufar et al., 2008). It has also been found that the outside surface of 

buried wood has a much higher content of ash infiltrating from the surrounding soil, 

together with higher nitrogen and phosphorus content (Macchioni et al., 2013; Gelbrich 

et al., 2012; Kretschmar et al., 2008; Gelbrich et al., 2008). The pH of the soil has also 

been found to influence the decay of the wood, which is worst at a slightly alkaline pH 

7-8.3. This is the optimum pH range at which soil bacteria and fungi can flourish 

(Kretschmar et al., 2008). 

Erosion bacteria attack archaeological wood in areas such as foundation piles where the 

oxygen content of the soil is too low for wood-degrading fungi to attack. There, 

bacterial degradation can be identified by the checked pattern of decay seen in the 

transverse section of the wood, and by increased moisture content and lower density 

(Esteban et al., 2010; Björdal et al., 2005; Čufar et al., 2008; Gelbrich et al., 2008). As 

in bacterial attack on wet wood, they invade from the cell lumen aligning themselves 

with the microfibrils in the S2 layer and attack from the ray cells through the bordered 
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pits (Greaves, 1971; Macchioni et al., 2013). When degraded samples were compared to 

sound wood they showed a reduction in phenolic compounds and soluble sugars and a 

higher content of lignin (Gelbrich et al., 2008; Gelbrich et al., 2012). The breakdown of 

hemicellulose has also found to be more severe in archaeological wood compared to the 

breakdown of the cellulose (Gelbrich et al., 2008). 

Bacterial degradation of wood is very slow in comparison with fungal decay and it is 

questionable whether bacteria perform any important role in the degradation of wood 

in oxygenated conditions (Greaves, 1971). Shrinkage can be almost doubled compared 

to recent wood if buried wood is allowed to dry without prior treatment (Kolař et al., 

2014). 

1.9.3 Historic wood 

 

It is widely agreed that the most common forms of decay to timber in historic buildings 

are dry rot and decay caused by the deathwatch beetle. For wood to be affected by 

fungi, insects or bacteria there have to be specific conditions. Decay organisms are 

living things and like all living things they need a certain environment to survive in. 

Timber decay is closely linked to conditions suitable for these types of biological decay 

(Feilden, 2003). 

 

 

 

 

 

 

 

  

 

 

Fungi do not survive to attack wood if the moisture content is below 22%, but most 

wood boring insects are able to survive in moisture contents low as 12 %. It is believed 

that some insects can even attack the wood in moisture levels as low as 8% (Ridout, 

2000, p.23).  The moisture available in wood equilibrates with atmospheric moisture, 

which is quantified as relative humidity (RH). RH is the ratio of the actual partial 

pressure of water vapour to the equilibrium vapour pressure of water at the same 

temperature. 

Figure 1.31: Dry rot on roof beams 
(Ridout, 2000, p.190) 

Figure 1.32: Brown rot, identifiable 
by the cube-like degradation 
pattern (Deacon, 2005) 
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Dry rot (figure1.31) can easily be controlled at the right moisture content, but in 

historic buildings it is not always simple to put that concept into practice, especially in 

church buildings which are only in use a few days a week. Dry rot can also be hard to 

find in church buildings as it attacks the wood panelling from behind, destroying the 

wood while the occupants are none the wiser (Cullen, 1996). 

Most conservators will aim to keep historic and archaeological wood in conditions which 

allow a temperature between 18-20 ̊ C, and a relative humidity between 50-55% +/-5, 

(Gerrish, 2011). This however is difficult to do in conditions outside a museum, such as 

in historic ships and buildings. It is important when trying to analyse the possibility of a 

biological decay problem, that the timbers people are concerned about should not just 

be checked for moisture content at the surface, but the timber should also be checked 

internally, in case there are any voids that are concealing moisture which could lead to 

decay (Demaus, 1995).  

All fungi grow first by producing hyphae which enter the cell lumina and push into the 

S2 layer. Under the microscope these hyphae look like tiny strands of hair (Clausen, 

2010). White rot fungi are unique in removing the lignin as well as the holocellulose. 

They successfully decompose the entirety of the cell wall polymers, starting with the 

lignin as it impedes access to the more nutritious carbohydrate polymers (Blanchette et 

al., 1985; Faix et al., 1991; Hastrup et al., 2012). White rot fungi do not break down 

cellulose as much as the other wood polymers, so in white rots the modification of 

lignin and the depolymerisation of the hemicellulose are the principal changes (Fackler 

and Schwanninger, 2012; Yilgor et al., 2013). White rot fungi have a greater tendency to 

attack hardwoods than softwoods, but will attack both in the right conditions. They are 

known as white rots because, by degrading lignin, they leach the colour out of the wood 

leaving it white. If the wood is white it is beyond repair (Clausen, 2010). 

Brown rot fungi (figure 1.32) are the most destructive form of fungi towards buildings in 

the UK and in most of the northern hemisphere. Brown rot fungi will attack and break 

down the polymer structure of cellulose and hemicelluloses. The worst damage caused 

by these fungi can be seen in the S2 layer, although the fungal mycelium will have 

mostly grown in the lumina of the wood cells (Xu and Goodell, 2001; Enoki et al., 1988, 

Curling et al., 2001; Hastrup et al., 2012).  

Although these two classes of fungi work in very different ways in the breakdown of the 

wood structure, they all do considerable damage to the strength of wood (Srpčič, 2008; 

Hastrup et al., 2012). The dry rot fungus Serpula lacrymans (Wulfen: Fr.) Schroeter is a 

type of brown rot which holds a special notoriety in the built environment due to its 

vitality, its destructive potential and the huge costs involved in rectifying the damage 

caused (Strätling et al., 2008). 
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The most common place to find decay is where a beam end enters a stone wall. Here 

the wood can get damp from the masonry and rot sets in. However the most 

problematic and dangerous place to get rot is in the joints between members of a wood 

structure. If these become weakened the whole structure will become unstable, 

particularly if it was built without diagonal reinforcement (Brites et al 2013). In this 

way, problems can spread throughout a timber structure very quickly (Sousa et al., 

2014). 

1.10 Timber degradation: from pests 

 

The deathwatch beetle (figure 1.33) causes huge amounts of damage in timber. The 

flight holes left are extremely large and very distinctive. Unlike other types of wood-

boring beetle it can be hard to tell if an infestation has been remedied, as the 

deathwatch beetle will use existing flight holes.  

 

 

 

 

 

 

 

 

 

 

It is not the beetles themselves that cause the damage; it is the larvae that eat through 

the wood. Once they have fed enough, which can take anything from 5-7 years, the 

larvae develop into pupae and emerge as beetles. The beetles do not live long, usually 

around two weeks, in which time they mate and the female will then lay 50-100 eggs 

again in the timber to begin the life cycle over again (Unger et al., 2001, p.66), 

providing another 50-100 larvae which will feed off the wood for another 5-7 years.  

One of the main reasons why the deathwatch beetle causes the most damage is its 

mating requirements. A female beetle will not mate with a male beetle unless the male 

has enough weight, as the male beetle will transfer its spermatophores to the female to 

provide the nutrients needed for the development of their eggs. Therefore if the male 

larvae have not eaten enough to reach a suitable weight for the female they will not be 

able to mate (Ridout, 2000, p.46). 

A series of tests were done concerning the deathwatch beetle by Ridout, B (2000) which 

showed that when given a choice the deathwatch beetle would attack medieval wood in 

preference to modern wood. This was thought to be due to the combination of fissures 

Figure 1.33: The deathwatch 
beetle (Ridout, 2000, p.37) 
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in older oak, providing easier access, and the greater incidence of fungal decay which 

makes it easier for the beetle to attack (Ridout, 2000, p42-43).  

The heartwood of a tree is not readily affected by attack from beetles as it retains the 

extractives, the tree’s natural defences stored when it was living. These usually prevent 

beetles from attacking the wood any further than the sapwood, but they can be 

degraded. Certain types of fungi and bacteria attack the heartwood allowing it to 

become more susceptible to beetle attack. Figure 1.34 shows where the pith region of a 

beam has been attacked by pests. This is unusual and occurs only if the tree was 

infected before it was cut down. In a growing tree the pith is more susceptible to fungi 

that can overcome the heartwood’s defences. Once the tree is cut down this allows the 

pest to continue the decay (Ridout, 2000, p. 44).The microbial attacks can be stopped 

by controlling the environment but once the protection from the extractives in the 

heartwood has been destroyed it will not recover, leaving the heartwood more open to 

attack (Ridout, 2008, p.162).  

 

 

 

 

 

 

 

 

 

 

 

Experiments have shown that wood which has been eaten by insects (xylophages) will 

absorb higher amounts of water, which favours pest development, deteriorating the 

wood faster (Sandu et al., 2003).  

 

 

 

 

 

 

 

 

 

 Figure 1.35: Rotten beam end at the base 
of a wall (Pizzo and Schober, 2008) 

Figure 1.34: Pith attacked by 
pests (Ridout, 2000, p.44) 
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It takes a great deal of moisture to keep fungi and beetles alive and able to continue 

their consumption of the timber, therefore poorly maintained buildings are a key 

target. To insects, wood in a damp building is just the same as a forest floor. Therefore 

having a good maintenance programme and the correct environmental conditions 

around the timber is essential to ensure that biological attack will not occur (Ridout, 

2005).  

If historic wood ever becomes wet, which is likely as it is a building material suitable for 

roofs and ships, it is essential that the wood is allowed to dry out again as quickly as 

possible. If wood remains wet for long periods of time then the effect of decay becomes 

far worse and harder to control (Zwerger, 1997, p.23). This happens particularly to 

beam ends housed directly in sockets in the masonry as the surrounding stone will hold 

enough moisture for the timber to rot (figure 1.35). 

Biological attack on wood and the resulting decay can be prevented by keeping historic 

buildings weather-tight and in a good state of repair. This can be the key to their 

preservation (Newton, 2011, p.27), but it is not a simple process, especially concerning 

beam ends that are directly inserted into stone. In Scotland a historic system known as 

harling was used to keep buildings weather proof (Fisher, 1976, p17). Harling is a slaked 

lime coating over rubble stonework, to both decorate the surface of the building and 

provide a waterproofing system (Frew, 2013)  but the harling has been lost from a large 

and uncertain proportion of Scottish buildings (Frew, 2013). 

1.11 Timber degradation: chemical changes 

Degradation of wood has been researched in depth when it has concerned insect pests, 

fungi and bacteria. If the wood has not been affected by any of these, there is little 

known about its degradation during aging.  

Wood, like many other materials, suffers from physical and chemical decay. One of 

these forms of decay is through visible light and ultra violet (UV) degradation. This 

degradation only affects the surface of the wood as UV light can only penetrate around 

0.05 to 0.5 mm (Ridout, 2000, p.32). Lignin suffers most from this form of degradation, 

which causes the silvery grey appearance of aged wood (Unger et al., 2001, p.47; 

Kisternaya and Kozlov, 2007).  

In UV radiation, cellulose undergoes auto-oxidation which leads to a weakening effect 

on the wood. The cellulose itself does not absorb the UV. The lignin acts as a photo-

sensitizer, transferring the energy to the cellulose. This causes some of the long 

cellulose chains to break and lowers the degree of polymerisation, weakening the wood 

but only at the surface (Ellison, 2000; Unger et al., 2001, p. 47). UV degradation can be 

monitored by FTIR. The degradation of lignin as a function of duration of UV exposure 

can be monitored by the loss of intensity from lignin bands at 1506cm-1 and 1601cm-1 in 

the FTIR spectra, which represent a vibration of the aromatic rings in lignin (Evans et 
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al., 1992; Tolvaj, 2009). Other effects of weathering have been monitored by FTIR 

spectroscopy as it is sensitive enough to detect small changes in the composition of the 

weathered surface layer. Lionetto et al (2012) used FTIR in this way to show that 

cellulose crystallinity increased at the expense of amorphous cellulose. 

One of the concerns arising from the chemical degradation of wood is the production of 

acetic acid. The problem of wood releasing acetic acid has been known by conservators 

for years, although it has not previously been considered as causing a problem for the 

wood itself. For conservators currently the problem is that the acid produced from the 

wood actively corrodes metals, therefore any metal objects in wooden cases are at risk 

(Zelinka et al., 2008). Acetic acid is released by hydrolysis of the acetyl groups from the 

hemicellulose polymers and the resulting acid conditions can catalyse the 

depolymerisation of the hemicellulose chains, and probably also cellulose (Hosseinaei et 

al., 2012). The effect on the chemical aging of wood is one of the key things that this 

research aims to uncover and is discussed in Chapter 11.  

1.12 Timber conservation 

 

The current conservation methods available for timber structures are traditional 

carpentry repairs, steel repairs and resin repairs.  It is well known that the green wood 

used in most oak framed historic buildings will shrink with age from loss of moisture, 

loosening joints in the timber frames (Zwerger, 1997, p.18).                                                        

In the past conservators tended to think that these loosened joints needed to be 

strengthened. This had bad effects on certain structures which needed the freedom to 

move. For example bell frames were designed to shrink to get a better swinging motion 

for the bell ringing. If at any time they became too loose, they used to be stiffened a 

little by wedging small wooden pieces in the gaps. The modern method of strengthening 

with steel has affected the way the frame works, which can even change the way the 

bells were meant to sound (Morton, 2009). Gaps between the joints can allow moisture 

to pool, which will allow the correct conditions for biological decay (Brites el al., 2013, 

Pizzo, 2008). Biological decay at loose joints can be extremely damaging, as loss of 

strength from decay can cause buildings to settle, removing support from the whole 

structure. Shrinkage is a key consideration as different pieces of wood shrink 

differently. Therefore it is logical that historic and modern wood will move differently, 

with potential effects on the traditional repairs favoured in conservation. This is 

discussed in Chapter 5.  

In the effort to conserve historic timber ships and buildings, current conservation 

practice is to cut the rotten or damaged piece of wood out of a frame and splice in a 

new piece of timber. This is the standard, accepted approach to repairs but it has never 
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Figure 1.36: Traditional carpentry 
repair with new wood spliced in. 
(Simons, 2007) 

really been scientifically looked at with respect to the impact of mixing historic wood 

with modern wood. 

1.12.1 Traditional carpentry repairs 

  

One of the major problems with the shrinkage of historic wood has arisen as recently as 

the 20th century, with the development of central heating. When this was put into many 

historic houses warping began to be seen, especially in the wooden floor boards around 

the radiator and water pipes. Today the gaps which have been caused by the addition of 

central heating are usually filled by adding new timber pieces, although this is only 

done when completely necessary. Standard practice with floor boards, unlike timber 

frames, is to match the timber with antique or well seasoned pieces (Weldon, 2009). 

How these repairs are carried out to maintain the integrity of the entire timber 

structure, and how findings from this research should be considered in the future, is 

discussed in Chapter 12 with Section 12.3 focusing on how this will affect timber joints. 

Here the current approach to traditional repairs is discussed with respect to historic 

timber.  

Differences in atmospheric temperature cause changes in RH, which affect the moisture 

content of the wood and often need to be taken into account in traditional carpentry 

repairs. There will be a difference in wood shrinkage depending on whether the wood is 

inside or outside the building. Timber roof beams can be partly inside and partly outside 

(Bell, 1992). Timber frames were designed to stand on their own acting as one unit, 

therefore in conservation the preferred option is that any work done to a timber frame 

should keep this unity, resulting in the frame acting as it always has throughout its life 

(Russell, 1993). 

In timber framed buildings it is often found that the sole plate has suffered severe 

decay, due to the fact that it can pick up moisture very easily from the ground causing 

it to be extremely susceptible to fungal and pest decay (Morton, 2009).  
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The other main area in a timber building that is highly susceptible to decay is the ends 

of beams recessed into the masonry. Here the wood is susceptible to moisture diffusing 

from the wet masonry exterior. Masonry can cause a further problem for decay without 

being wet itself. Outside walls are generally colder. Wood can transport moisture in its 

vapour phase through open air spaces. Water vapour may therefore move through the 

wood from warmer areas towards the colder beam ends in their masonry sockets, where 

it will condense. The higher moisture content might then lead to decay. Splice repairs 

to beam ends are most common (Pizzo and Schober, 2008; Pizzo, 2008).  

Current conservation practice is to replace timber at decayed joints with green oak to 

keep the feel of the wooden structure (figure 1.36). It is usually not done using 

seasoned oak as a piece of seasoned oak of the correct size would be extremely 

expensive (Russell, 1993), but as the green oak shrinks after installation, stresses may 

arise. 

As in all methods of conservation it is the ethical responsibility of the conservator not to 

remove any of the historic material unless completely necessary, or unless the material 

is so damaged that it can no longer carry out its purpose (Tomback, 2007, p.209). In 

these cases the standard practice is to try and keep the complete timber structure 

where possible but if this is not possible the decayed part of the timber will be cut 

away and a new piece of timber will be spliced on to the end, at least keeping the 

species the same. It is also necessary to assess why the timber has decayed. In buildings 

the major cause is that timber beam ends have been built into the wall causing 

moisture to become trapped in them (Morton, 1999). 

The reason why these splice repairs are so highly regarded in building conservation is as 

an answer to the problems caused by decayed timber, allowing the impact of the 

conservation measures to be kept to a minimum and avoiding diverting people’s 

attention from the historic importance of the object. By using these forms of splice 

repairs to a building a lot of the original timber structure can be retained and if the 

timber selected for the new, spliced-in piece is chosen carefully it can even be matched 

so closely in colour as not to detract from the original appearance of the building 

(Hayden and Lund, 1998). 

Problems can occur with these types of repairs. For example buildings with a complete 

timber frame, rather than just a timber roof, are able to cope with the load put on 

them in extraordinary ways. If a timber component has decayed the frame will often 

change its load pattern throughout the building to compensate for this. Therefore when 

the conservators go in and add a fresh splice while removing the decay from the timber, 

the older structure of the building will now need to change its load pattern again, which 

can cause more damage to the foundations (Morton, 2007). There is also the question of 
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instability occurring due to differential shrinkage between the historic and new timber 

members (Kozlov and Kitsernaya, 2013; Buck, 1952).  

The aim of the splice joint is to leave much of the original structure in place. Some 

repairs to historic buildings are done using green oak which is then stained to make it 

appear closer to the colour of the historic wood, making the repairs less visible to the 

public and thus less likely to detract from the original historic material (Hayden and 

Lund, 1998). 

A lot of people love the weather-worn look of old buildings and timbers with the natural 

patina they develop over time. The splice joints aim to keep as much of this intact as 

possible, trying to retain the authenticity and historic importance of the original 

timbers (Knut and Marstien, 2000, p. 12). 

Many splice joints involve the use of synthetic resins as a form of adhesive. Most 

commonly used for these repairs is epoxy resin to stabilise the stainless steel pegs used 

to hold the joint together (figure 1.37). It is also widely argued that we don’t know the 

long term effects of these synthetic materials nor how stable they will be over time. 

Although epoxy resin has been widely tested some conservators are still not convinced 

of its utility (Charles and Charles, 1990, p.12).Resins have to provide structural support 

for the wood-wood bonded area as well as having safe and stable interaction with very 

different materials, and are expected to behave well with all of them. Careful surface 

preparation is needed before the resins are applied (Custodio et al., 2009). 

Traditional carpentry repairs may involve a lot of stripping back of material to get 

access to the decayed areas. They may also involve cutting away enough of the historic 

timber to get rid of all the decayed material and to provide a good bond surface for 

repairs with resins. These drastic carpentry repairs may be the most obvious choice but 

they can be the least conservative (Brentnall, 2008, p. 172). 
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1.12.2 Resin repairs  

 

The impregnation of wood with resins is another method for keeping the historic 

timbers in place rather than removing them, keeping to the principle of maintaining the 

historic fabric intact.  

 

 

 

 

 

 

 

 

 

 

 

 

Using resin impregnation has a number of advantages. It can be useful in preserving 

important evidence of historic techniques such as tool marks from construction, which 

can add historical value to the building (Larsen and Marstein, 2000, p.14; Custodio et 

al., 2009). Although resin repairs have certain good qualities they should always be 

considered with a certain amount of care and, some believe, only where carpentry is 

impractical (Larsen and Marstein, 2000, p.48). They have not been in use in 

conservation for as long as carpentry repairs, but they have been in use for more than 

30 years now. There has yet to be a consistent study of their performance in use when 

compared to more traditional repairs (McCaig, 2006; Pizzo, 2008).  

There are two main resins used in structural conservation, epoxy resins and polyester 

resins. Polyester resin is the cheaper option of the two and it is more used to strengthen 

material in pre-decorated areas where the repair itself can be concealed (McCaig, 2006; 

Custodio et al., 2009).  

Epoxy resins in conservation are being considered more important for structural repairs. 

They have low shrinkage when they cure and are highly resistant to chemicals, as well 

as being very high in strength (Unger et al., 2001, p. 487). The main reasoning behind 

using epoxy is that it has the ability to be used in strengthening the historic timbers 

while leaving them in situ, without too much disturbance of the historic material 

(McCaig, 2006). Epoxy resins have a lower visual impact than steel and timber repairs 

but they do cause darkening of the original material due to saturation of the pores in 

the wood (Horie, 1987, p.175). Depending on the amount of decay in the timber, 

epoxies can be easily used by injecting the resin directly into the decayed material 

Figure 1.37: Resin and steel rod repairs (Schober, 

2008) 
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(Pizzo, 2008), although this is not without problems because frass, which is left by pest 

infestation, can cause blockages when using resin of high viscosity. Lower viscosity 

resins are not without problems if they are not properly cured, as they can leak out 

with temperature changes (Horie, 1987, p.171-172). Epoxy resins have other 

disadvantages as they can cause moisture to be trapped in the wood, which can cause 

decay (Larsen and Marstein, 2000, p.48). Epoxy resin also goes against one of the 

principles of conservation, that repairs should be reversible where possible (Charles and 

Charles, 1990, p.12). In theory epoxy resin treatment is reversible, as in certain solvents 

epoxies will swell and it is possible to remove them mechanically, but once they have 

been used for consolidation it becomes far too difficult to put this theory into practice 

(Horie, 1987, p.173). Although epoxies have their problems, they do leave the wood 

workable so that added strengthening devices can be used, such as wooden pegs, which 

can benefit the structure’s security (Unger et al., 2001, p.481). 

One of the advantages of epoxy resins is that if they fail under a new load put on the 

timber, then the usual timber to timber or steel repairs can take place afterwards, 

although at increased cost (McCaig, 2006). Epoxy repairs are also very sensitive to the 

climate in which they are left to cure. Under optimum laboratory conditions perfect 

setting is possible, and careful application with brushes to impregnate small areas of 

decay can be done very delicately (Lionetto and Frigione, 2012). However when used in 

the field, if the temperature is too cold or too hot the resin will not set correctly, 

especially if there is too much moisture in the wood. Over about 22% moisture the bond 

will not reach its greatest potential (Stoeckel et al., 2013; Broughton and Hutchinson, 

2001; Custódio and Broughton, 2008). Over 30% moisture content there will be no 

bonding at all. Again there are problems with differential movement. Wood will always 

swell and shrink with changing moisture in the environment. Resin does not do this. In a 

building where the RH is allowed to fluctuate this can cause serious damage to the bond 

between wood and resin (Custodio et al., 2009) especially if resins are used to fill large 

voids within in the wood. 

Synthetic resins, such as epoxy resin, have their time and place in the conservation of 

historic wood. For example, epoxy resin can be used successfully by injecting it into a 

beam end entering the wall, so that it can be protected from moisture. The further the 

resin can be injected into the wood, the better the mechanical interlock between the 

wood and the resin (Feilden, 2003, p. 37). 

Traditional carpentry repairs are something that has always been part of standard 

conservation practice, involving the minimum necessary intervention in the building 

fabric (Taylor, 1999). Some believe that our historic structures are like documents from 

the past and should be kept as authentic as possible for the future (Knut and Marstien, 

2000, p. 12). In most historic building repairs this will be the main aim but no one has 
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ever looked into the possible effects of adding new timber to old timber. As new and 

old wood of any one species are thought of as being the same material, in practice they 

are expected to react in the same way, but the author intends to explore what 

differences may be present. After all, the newer wood may be hundreds of years 

younger than the original and may have been grown in completely different conditions. 

Can we just assume that they function identically? The research described in this thesis 

tests both historic and modern wood to find out if differences occur, and if replacing 

‘like with like’ is in fact the best method for the survival of our historic wood heritage.  

1.12.3 Steel repairs 

 

Steel repairs are used today in preference to other techniques because of the strength 

they can provide to historic timber so that it can remain in situ. Many steel repairs fit in 

to one of the main conservation principles of conservation which is, that the work 

should be reversible. The use of steel repairs has been taking place since the 19th 

century with a good success rate in most cases (Larsen and Marstein, 2000, p.49).  

 

 

 

 

 

 

 

 

 

 

Splicing and steel repairs can be used together to strengthen historic timbers. The 

pieces would usually be spliced together and steel pins would be used to secure the 

joint between the new piece and the historic timber (Warren, 2002; Schober 2008). 

Although steel repairs can have an undesirable visual effect on the building, they can be 

covered with oak cladding. An example of this can be seem at Bucknall Church (figure 

1.38), (Warren, 2002), but this approach can also cause problems. Steel repairs can be 

very good when a new load would require a timber far too big to fit in with the building, 

leaving it looking out of scale (Warren, 2002). Although this form of strengthening of 

historic timbers will leave them in situ, therefore preserving more of the historic 

material, problems can still occur where areas of decayed timber have been 

strengthened and a new load has been put back on the historic structure. If this load is 

too much for the timber, it may break but not in the same place as before. As the 

strengthened repair is more rigid, it will result in the historic fabric breaking first 

Figure 1.38: Steel repair to strengthen a 
bell tower (Morton, 2009) 
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(Larsen and Marstein, 2000, p. 49). Other disadvantages of this method are that 

problems can occur when the wood flexes with season and moisture content. Steel does 

not have this reaction as it is not organic and does not absorb moisture. In certain 

climates this can cause damage to historic timbers (Larsen and Marstein, 2000, p. 49). 

Where it is possible steel repairs should be kept accessible for inspection to prevent 

irreversible decay from occuring through trapped moisture (Russell, 1993).  

Repairs with steel wire can be done in a relatively short amount of time and can often 

be done without dismantling the timber structure, but these repairs can fail if they rely 

on adhesive bonds between the wire and the timber. This does not work well in a 

fractured area in the timber, which is most likely to be the point of the repair (Borri 

and Corradi, 2011). 

1.13 Thesis Aims 

 

Little is known about how wood ages and what processes are taking place within the 

wood at cellular level, nor how its age affects its mechanical stability. This PhD 

research was intended to find some of the answers to these questions. It was hoped that 

the outcomes would help to show whether traditional carpentry repairs, used in the 

conservation and restoration of historic structures, are the correct method to keep 

these buildings alive.  

One of the reasons why so little is known about historic wood is that what has survived 

through time is usually part of a structure and is not available for destructive testing.  

The historic samples of Scots pine and Oak were obtained from Historic Scotland, but 

were of much smaller dimensions than was originally envisaged. A full description of the 

samples is given in Chapter 2. They had previously been analysed for Historic Scotland 

by dendrochronologist Anne Crone, and were dated to the 15th and 16th centuries.  

Even with access to some historic wood samples provided by Historic Scotland, the 

testing had to be done on a very small scale to get as much information as possible out 

of the small amount of historic wood that could be spared for experimental purposes. It 

was therefore necessary to greatly reduce the scale of a number of the accepted 

mechanical testing methods, and to validate these methods at the smaller scale used. 

The mechanical tests were chosen to determine if there was any difference in 

mechanical properties between the historic and modern samples. The main test initially 

chosen was the 3-point bend test, which is the industry standard for testing stiffness, 

but after attempting to validate this test on small scale samples it was found that the 

length of the Scots pine samples available was inadequate. Therefore a novel miniature 

compression test was set up. Hardness testing was also carried out on oak, as hardness 

is important in replacement floor boards. It is widely held that oak becomes harder with 

age and this theory was tested quantitatively. 
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A further objective was to compare shrinkage and moisture uptake between historic and 

new samples, because any large differences in these properties could cause serious 

damage to traditional repairs and, in the case of moisture which is discussed in Chapter 

4, could enhance biological decay due to water pooling in joints between old and new 

wood.  

The density and microfibril angle of historic and modern oak and Scots pine were 

compared, with the initial aim to uncover how the original quality of wood might have 

differed in historic times due to different forest management and climate. It was 

expected that any changes with age could only be seen once such differences in quality 

at the time of felling had been taken into account. Microfibril angle and polymer 

composition were measured by FTIR microscopy on sample series from pith to bark. 

Unexpectedly, these measurements made it possible to distinguish between sound wood 

and wood affected by decay. This allowed us to distinguish the effects of decay on 

mechanical properties from any direct effect of age. 

The final aim of these experiments was to provide insights into conservation practice by 

relating chemical and biological degradation to the mechanical properties of wood 

(Grabner and Kotlinova, 2008). Such insight into the material might lead to better 

conservation treatments (Monaco et al., 2013), and make it possible to predict whether 

any treatment could damage the material in the long run (McConnachie et al., 2008).
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Chapter 2  

Sample History 
 

Historic wood is wood which has spent its full life in service within an existing building 

or structure, whereas archaeological wood is wood which has either been buried in the 

soil or discovered through archaeological excavation. Wet or waterlogged wood is wood 

which has been submerged under water, sometimes for hundreds of years. For example 

the structure of HMS Victory (figure 2.1) is historic wood because it has always been in 

service, not buried or waterlogged, while the structure of the Mary Rose (figure 2.2) is 

waterlogged wood removed from the sea bed completely saturated with water, and 

finally the Dover Bronze Age boat (figure 2.3) comprises archaeological wood dug out of 

a main road in Dover.  

Each of these different environments affects mechanical and chemical properties of the 

wood very differently, as degradation depends on the conditions that the wood is 

subjected to (Popescu et al., 2006; Kretschmar et al., 2008). For example historic wood 

has been preserved in aerobic conditions compared to waterlogged and archaeological 

wood which have been preserved in anaerobic conditions, leading to completely 

different decay mechanisms as explained in Chapter 1.  

 

 

 

  

 

 

 

 

 

 

 

 

Figure 2.1: HMS Victory (McGowan, 
1999) 

Figure 2.2: The Tudor warship Mary Rose 
(Cawthorne, 2012) 
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The historic wood samples provided by Historic Scotland were beam ends which had 

previously been given to Dr Anne Crone (AOC Archaeology) for dendrochronological 

analysis. As they had already been analysed by dendrochronology, the dates of the 

samples were known but there was also more information on their history. The 

approximate provenance of the wood can often be determined, and the wood structure 

itself can also tell us a lot about the environment when the wood was still a growing 

tree accumulating rings through the passing years (Nilsson and Rowell, 2007).   

The historic wood beam ends provided for this project are from three different sites in 

Scotland: 

2.1 Abbey Strand Sanctuary – Edinburgh 

 

Abbey Strand Sanctuary (figure 2.4) is a three storey building. It dates back to the late 

15th / early 16th century. The building was partly rebuilt in 1544 and was heavily 

restored in 1916 (Historic Scotland, 2012).   

Abbey Strand is one of the sanctuary buildings located around Holyrood. The sanctuary 

zone was created by the Abbey as a religious sanctuary free from civil law. Most of the 

people coming here to seek asylum were debtors. People wishing to claim sanctuary had 

to apply to the Bailie of Holyrood and pay a booking fee. If you were then accepted you 

received a letter of protection and could live free of threat inside the sanctuary zone. 

The law changed in 1880 when debtors could no longer be imprisoned, and so the need 

for the sanctuary ceased (Davidson, 2014, p. 593).  The wood samples came from floor 

joists from the old Abbey court house, which has a fine example of a refurbished fore-

stair and still bears the arms of Scotland including the monogram of James IV (RCAHMS, 

2013).  

 

 

 

 

Figure 2.3 Dover bronze age boat (Dover 
Museum, 2000) 



Chapter 2 – Sample Information 

 

63 

 

 

 

 

 

 

 

 

 

 

 

2.2 Bay Horse Inn – Fife, Kirkcaldy 

 

Bay Horse Inn (figure 2.5) is a compact two storey domestic building which is dated to 

1583. The building has two painted ceilings which were restored in 1969-70. One can be 

seen in figureFigure 2.6. It is the wood removed from these ceilings from which a 

sample has been provided; with a dendrochronological date in the 16th century 

(Canmore, 2013). 

 

 

 

 

 

 

Figure 2.4: Abbey Strand – Edinburgh (Historic Scotland, 
2012) 

Figure 2.5: Bay Horse Inn (Canmore, 2013). 

Figure 2.6: Painted ceiling 
from Bay horse Inn (Canmore, 
2013). 
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2.3 Carnock House –Stirling  

 

Carnock House (figure 2.7) was originally a simple rectangular building with two stair 

towers, built in 1548 by Robert Drummond. Extensive additions have been made to the 

building starting in 1634 and carrying on through the 17th century. The house was 

eventually demolished in 1941 (Canmore, 2008). 

The samples came from oak beams forming part of a painted ceiling that has been 

dendrochronologically dated to 1588-1589; evidence strongly suggests that the ceiling 

was installed in the house in 1589. The oak beams themselves ranged between 88 and 

272 years old (Crone, 2011). This is the felling age of the tree. There was a little 

difficulty counting all of the outside rings as they became unclear towards the bark 

edge.  

 

 

 

 

 

 

 

 

2.4 Eighteenth century samples 

 

The samples of oak tested from the 18th century were obtained from English town 

churches which were being renovated. The church pews themselves were removed to 

allow the wood to be re-used. The church pew from Norwich was dated to 1830 and the 

church pew from Tunbridge Wells to 1840. Both pews were oak and in extremely good 

condition with no evidence of decay from pest or fungal degradation, making them good 

examples of naturally aged wood from this time period.  

 

 

 

Figure 2.7: Carnock House (Canmore, 2013). 
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2.5 Modern Samples  

Modern samples of green oak were surprisingly difficult to obtain in Scotland, as the 

main commercial timber species grown here are soft woods such as Scots Pine and Sitka 

Spruce. A timber frame building company called Carpenter Oak and Woodland specialise 

in the making of new timber frames in oak and the repair of old timber structures. They 

are based at Loch of Lintrathen, Kirriemuir, and have kindly provided 5 beam ends from 

green French-grown oak for this project. Carpenter Oak and Woodland have been 

involved in a number of projects in the restoration of historic timber framed structures. 

The best known was the reconstruction of the roof of the great hall at Stirling Castle. 

After wood identification the oak species of the modern samples used in this project is 

sessile oak (Quercus sessiflora) as shown in figure 2.8 with the published comparison in 

figure 2.9.  

 

  

 

 

Modern Scots pine for this work was obtained from B&Q Abbotsinch Retail Park, 1 

Washington Road, Paisley, Renfrewshire PA3 4EP and had been sawn by BSW Timber Ltd. 

BSW’s Scots pine is mostly from northeast Scotland and is processed at their Grantown 

on Spey sawmill. 

2.1 Light microscopy of samples  

 

Figure 2.8: Modern oak sample 
identified as Sessile Oak scale bar 

0.5mm. Image: K Hudson-McAulay 

Figure 2.9: Published micrograph 
of Sessile Oak 5 mm scale bar from 
Schoch et al., 2004. 
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The use of light microscopy to examine wood is a powerful tool, not only in the 

identification of wood but also in the diagnosis of fungal attack, when evidence can be 

seen of deterioration of the wood cells (Reffner et al., 1995; Anagnost, 1998). The 

images for this project were taken using a Leica ATC 2000 light microscope with 

objective magnification up to 100x. The microscope was fitted with a Nikon Coolpix 990 

3.34 megapixel camera. The samples were prepared in transverse section 19µm thick 

using a Leica RM2255 microtome fitted with a solid steel blade. Unfortunately it was not 

possible to assess the decay quantitatively by light microscopy on these samples. The 

images here are to show visually some of the effects of decay found in the historic 

samples, as assessed qualitatively in table 2.1. 

Table 2.1: Visual assessment of the decay in the historical samples  

Sample Decay present 

HP-1500-01 

Historic (H) Scots pine 
(P) from the 1500s 
sample 1 (01) from 
Carnock house 

Visible signs of pest damage within the sapwood but no visible signs 
of fungi present 

HP-1500-02 

Historic (H) Scots pine 
(P) from the 1500s 
sample 2 (02) from 
Carnock house 

Visible signs of pest damage within the sapwood but no visible signs 
of fungi present 

HP-1500-03 

Historic (H) Scots pine 
(P) from the 1500s 
sample 3 (03) from 
Carnock house 

No visible signs of pest or fungal decay present 

HP-1500-04 

Historic (H) Scots pine 
(P) from the 1500s 
sample 4 (04) from 
Bay Horse Inn 

Visible signs of pest damage within the sapwood but no visible signs 
of fungi present 

HP-1500-05 

Historic (H) Scots pine 
(P) from the 1500s 
sample 5 (05) from 
Bay Horse Inn 

Visible signs of pest damage within the sapwood but no visible signs 
of fungi present 

HO-1500-01 

Historic (H) Oak (O) 
from the 1500s sample 
1 (01) from Abbey 
Strand 

No visible signs of pest or fungal decay present 
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HO-1500-02 

Historic (H) Oak (O) 
from the 1500s sample 
2 (02) from Abbey 
Strand 

No visible signs of pest or fungal decay present 

HO-1500-03 

Historic (H) Oak (O) 
from the 1500s sample 
3 (03) from Bay Horse 
Inn 

No visible signs of pest or fungal decay present 

HO-1500-04 

Historic (H) Oak (O) 
from the 1500s sample 
4 (04) from Carnock 
House 

Visible signs of pest damage within the sapwood but no visible signs 
of fungi present 

HO-1500-05 

Historic (H) Oak (O) 
from the 1500s sample 
5 (05) from Carnock 
House 

No visible signs of pest or fungal decay present 

HO-1800-01 

Historic (H) Oak (O) 
from the 1800s sample 
1 (01) from Norwich 
Church 

No visible signs of pest or fungal decay present 

HO-1800-02 

Historic (H) Oak (O) 
from the 1800s sample 
1 (01) from Tunbridge 
Wells Church 

No visible signs of pest or fungal decay present 

 

2.1.1 Light microscopy of oak samples 

 

 

 

 

 

 

 

 

Figure 2.10: Historic Oak, HO-15-01 
heartwood. Scale bar 0.5mm  Figure 2.11: Historic Oak HO-15-03 

sapwood showing biological damage. 
Scale bar 1 mm  
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Figure 2.10 shows the heartwood of 15th century oak and figure 2.11 shows the sapwood 

of the same oak sample. It can be seen in these images that the sapwood cell walls of 

the historic wood are in a much more decayed state and that pest and fungal decay 

have destroyed some of the cell walls completely.  

 

 

 

 

 

 

 

 

Images of the latewood (figure 2.12) and the earlywood (figure 2.13), at higher 

magnification show damage to the cell walls. Light can be seen coming through the cell 

walls where areas of the S2 layer have been destroyed by biological decay. This is most 

likely due to fungal decay as insect pests cause larger-scale destruction, as seen in 

figure 2.14, showing a pest hole in one of the oak samples. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12: Image of damage to 
latewood in the sapwood of the 
historic Oak HO-15-02. Scale bar 0.5 
mm   

Figure 2.13: Image of damage to 
earlywood in the sapwood of the 
historic Oak HO-15-4. Scale bar 
0.5 mm 

Figure 2.14: Image of damage 
left by pest infestation. Scale 
bar 1 mm HO-15-01  
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2.1.2 Pine 

 

 

 

 

 

 

  

 

Figure 2.15 shows the heartwood and figure 2.16 shows the sapwood of a 16th Century 

Scots pine sample. The sapwood again is far more extensively destroyed by biological 

attack with many of the cells appearing almost threadbare, where the carbohydrate-

rich layers of the secondary cell walls have been eaten away, leaving behind the 

primary cell walls. 

 

 

 

 

Figure 2.17 shows the latewood of a 16th Century sapwood sample, which can be 

compared with the modern Scots pine sample in figure 2.18. Damage to the latewood 

can easily be seen as the light is shining directly through the cells where the S2 layer 

Figure 2.16: Historic Scots pine HP-
15-01 sapwood. Scale bar 1mm  

Figure 2.17: Image of damage to latewood in 
the sapwood of the historic Scots pine HP-15-03. 
Scale bar 0.5 mm 

Figure 2.18: Image of modern Scots 
pine MP-02 showing no damage to 
its wood cells. Scale bar 0.5 mm  

Figure 2.15: Historic Scots pine HP-15-
02 heart wood. Scale bar 1 mm  
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has been depleted. This is not seen in the modern sample. Again, this is due to fungal 

decay as pest damage leads to complete destruction of the cell walls, as can be seen in 

figure 2.19.  

 

 

 

 

 

 

 

 

Figure 2.19: Image of damage 
left by pest infestation HP-15-04 
scale bar 1 mm  
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Chapter 3 

Analysis of Chemical Changes using FTIR Spectroscopy 
 

There are many different types of spectroscopic analysis applicable to wood. These 

include ultraviolet (UV), near infrared (NIR), mid-range Fourier-transform infrared 

(FTIR) and solid-state nuclear magnetic resonance (NMR). Each of these has its own 

benefits and flaws depending on what we want to discover about historic wood samples. 

Here, as most spectroscopy methods are used on solution state samples, these have 

been adapted for use on solid materials. Due to the density of solid materials the 

sample needs to be either powdered, the most common method, or prepared as thin 

sections which take skill to produce (Fackler and Schwanninger, 2012; Pandey and 

Theagarajar, 1997; Altaner et al., 2010). Infrared spectroscopy is a powerful tool for 

investigating the chemical makeup of wood and has been in use since the early 1950s. 

FTIR has been widely used since the 1960’s, replacing simpler forms of IR due to its 

availability and relative ease of use for testing inorganic and organic compounds (Barker 

and Owen, 1999; Casadio and Toniolo, 2001; Doménech Carbó et at., 1996). FTIR is a 

relatively common analytical technique for wood as it can identify the various 

functional groups on the molecules that make up the polymers of wood. The FTIR 

microscopy method used here has the great advantage of allowing the precision of FTIR 

with solid samples, and being able to set up the area of the wood sample you 

particularly want to test allowing for local changes in the wood, for example between 

ring boundaries (Fackler and Schwanninger, 2012; Reffner et al., 1995; Chang et al., 

2014). 

FTIR microscopy has many advantages in cultural heritage studies, being a very powerful 

tool, yet in most cases needing only very small samples on which to work, as well as 

being non-destructive towards the sample tested. That and the speed of analysis can 

make it outstanding monitoring equipment (Faix, 1991; Derrick et al., 1995, p. 13; 

Gruchow et al., 2009; Pandey and Theagarajar, 1997). FTIR works by stimulating the 

atoms joined by chemical bonds into vibrational motion. At different IR wavelengths, 

different chemical bonds give rise to spectral peaks as their characteristic vibrational 

frequency depends on their rigidity (Fackler and Schwanninger, 2012; Ali et al., 2001). 

The mid-infrared spectral range used to examine wood is between 600 cm-1 and 4000 

cm-1 in frequency. In this range there are specific peaks that have been assigned to the 

different polymers in wood (Sun et al., 2001; Edith and Maryse, 2009; Chang et al., 

2014). 
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Wood is a complex biological material which is made up of the polymers lignin, 

hemicelluloses and cellulose. FTIR has the ability to pick out structural differences 

between these polymers if they break down or change with time. It is even possible to 

pick up subtle differences in polymer structure between different species (Blanchette, 

1995; Barker and Owen, 1999; Pandey, 1998).  

The most informative region of an FTIR spectrum of wood is called the fingerprint 

region (Fackler and Schwanninger, 2012; Marchessault, 1962). The lower-frequency part 

of the fingerprint region below a frequency of 1460 cm-1 is difficult to understand as 

many of the peaks arise from O-H bending and C-O-C stretching vibrations that occur in 

both cellulose and hemicelluloses, making these polymers difficult to distinguish 

(Pandey and Theagarajar, 1997). 

Bands specific for hemicellulosic xylans include the absorption at 1045 cm-1 assigned to 

the stretching of C-O and C-C bonds in the sugar ring with some contribution from O-H 

bonds in the xylan polymer (Sun et al., 2001; Evans et al., 1992). There are other 

wavelengths attributed to other structural features of hemicelluloses, for example the 

ester C=O stretching band at 1738cm-1 associated with acetyl groups (Pandey, 1998; 

Gruchow et al., 2009; Pandey and Theagarajar, 1997; Simonović et al., 2011). 

Lignin has specific bands in the spectrum assigned to aromatic ring stretching 

vibrations, coming from the benzene ring of the lignin polymer, which can been seen at 

around 1505 and 1593 cm-1  (Gruchow et al., 2009; Pandey and Theagarajar, 1997; 

Pandey,  1998; Barker and Owen, 1999). There are also bands at 1265 and 1237cm-1 

which are associated with the C—O stretching region of the lignin polymer (Pandey and 

Theagarajar, 1997; Gelbrich et al., 2008), but these overlap with cellulose bands so the 

1510-1 band is most frequently used. 

Another advantage of using FTIR is the ability to use the spectra quantitatively allowing 

comparison of the chemistry in old and new wood (Leonardon et al., 2009; MacKinnon et 

al., 2006; Sturcove et al., 2006; Faix et al., 1991). As spectra from old and new wood 

are very similar, distinguishing these will depend on good quality of the spectral data 

and on statistical analysis (Esteban et al., 2005; Pandey, 1998; Penttilä et al., 2013; 

Chauhan et al., 2001). 

The data richness gained from FTIR analysis can give conservators the ability to 

diagnose the degradation of cultural materials and provide a better treatment response 

(Doménech Carbó et al., 1997). 
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3.1 Sample preparation 

 

The need for specialised methods of sample preparation for the FTIR microscope is both 

an advantage and disadvantage, for various reasons. Traditionally FTIR spectroscopy 

requires a potassium bromide (KBr) disk in which a tiny amount of the sample material 

is incorporated. KBr is used because it does not absorb in the FTIR spectral range.The 

sample material, usually around 0.5 mg (Doménech Carbó et al., 1996), is ground with 

the KBr into a fine powder and then pressed to make up the disk. This can be laborious 

and due to differences in the particle size of the powder it is not always effective 

(Altaner et al., 2010; Faix and Böttcher, 1992). This technique is appealing for 

conservators because only a very small sample amount needs to be taken from a 

discrete area of a historic object. This form of FTIR is a bulk testing technique, but the 

FTIR microscope used in the present experiments allows for more precise control over 

the location from which the spectrum is obtained in the wood section.  

The FTIR microscope is at its best with thin longitudinal sections of wood. It gives 

unsatisfactory flattened spectra from transverse sections due to the heterogeneity of 

the wood, leading to saturated absorption of the IR beam. Longitudinal thin sections 

have advantages over the other sample preparation methods for precision 

measurements, allowing you to pin point any spatial changes in composition accurately 

throughout the samples, but to prepare the thin sections skill with a microtome is 

needed. The sections need to be cut to around 20 µm or one double cell wall thick for 

good spectra to be obtained. Usually thin sections of softer biological materials are 

prepared after resin embedding of the samples but this causes issues with wood due to 

the resin entering the cell lumen and interfering with the FTIR spectra. Therefore it was 

not used here. Samples were cut without the embedding process (Barker and Owen, 

1999; Altaner, et al., 2010; Gruchow et al., 2009). The spatial precision makes it 

possible to pin point any area of the cells, for example cells in the latewood or 

earlywood, which is why this method is favoured here. 

For this experiment three samples were taken from each of the beam ends; one pith, 

one heartwood and one sapwood. Cubical blocks 5 mm x 5 mm x 5 mm were cut first in 

order to fit in the clamp of the microtome. The blocks were then soaked for 12 hours in 

water to soften the wood (Faix and Böttcher, 1992). Thin sections 19 µm thick were 

then cut from the blocks using a Leica RM2255 microtome fitted with a solid steel blade 

(Casadio and Toniolo, 2001; Fackler and Schwanninger, 2012). Samples were cut in the 

axial-tangential direction. They needed to be as thin as this in order for the IR beam to 

be able to pass through the samples, giving clear spectra without saturation of the more 

intense absorption bands. As earlywood cells are usually about 30 µm in diameter, 
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cutting a section 19 µm thick provides half a cell including two adherent cell walls in 

thickness, and provides a maximum FTIR absorbance usually around 1 in the fingerprint 

region, giving good quality spectra. Thicker samples cause too much saturation making 

quantitative comparisons unreliable. Using pith to bark sequences of blocks can allow a 

series of measurements that reveal any chemical changes that occur across a section of 

the beam.  

3.2 Procedure 

 

The spectra were collected using a Nicolet Nexus FTIR spectrometer attached to a 

Nicolet Continuum Microscope with an MCT detector which is cooled using liquid 

nitrogen. The Nicolet Omnic version 7,2a software was used, both to control the 

spectrometer and to process the spectra. The spectrometer was set to scan 32 times 

per spectrum, with a spectral range of 800cm-1 – 4000cm-1 and a spectral resolution of 2 

cm-1. This FTIR microscope has a theoretical spatial resolution of 3 µm due to the 

wavelength of the radiation, but due to scattering within the microscope optics, in 

practice the spatial resolution is limited to around 10 µm. Using an IR beam with larger 

dimensions than this gives better signal/noise and for these experiments the beam 

window was set at 100 µm square. The spectra were saved in their raw .CSV form and 

then further processed in Microsoft Excel. The FTIR microscope was set up in 

transmission mode where the infrared beam has to pass twice completely through the 

sample (Edith and Maryse, 2009).This is due to the optical geometry of the microscope, 

which has a condenser set up using mirrors rather than lenses. Three different 100 µm 

x100 µm areas of each section were measured to get good coverage of the whole 

sample. Using this method in transmission mode the data produced from the spectra 

could then be analysed in a quantitative manner (Edith and Maryse, 2009). Even though 

the samples were produced using a microtome they still varied in thickness. Therefore it 

was necessary to ratio the absorbances against the total absorbance of the 

representative carbohydrate region within each spectrum. The level of replication that 

was used allowed for better data analysis and results that could be used, with statistical 

analysis, to uncover what was occurring due to age, and what could be attributed to 

biological attack and natural variation between trees.  

3.3 Data analysis  
 

Spectral data obtained from the samples first had to be baseline corrected in Microsoft 

Excel. It is possible to baseline-correct the spectra in bulk so that linear baselines are 

drawn between the same frequencies for each spectrum, resulting in more reproducible 
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analysis of the peaks and normalisation of the spectra (Faix and Böttcher, 1992; Yilgor 

et al., 2013). In contrast, although most software attached to spectrometers has a 

function to baseline correct the samples, due to different end frequencies for each 

segment’s baseline, quantitative analysis of large groups of spectra is inaccurate. In this 

data analysis the spectra were baseline corrected using the equation below in Excel.  

 

3.3.1 Baseline Correction Equation: 

 

OA – (IF(F>FF1, FF1A, IF(F>FF2, FF1A + (FF2A-FF1A) * (F-FF1) / (FF2-FF1), IF(F>FF3, FF2A 

+ (FF3A-FF2A) * (F-FF2) / (FF3-FF2), IF(F>FF4, FF3A + (FF4A-FF3A) * (F-FF3) / (FF4-FF3), 

IF(F>FF5, FF4A + (FF5A-FF4A) * (F-FF4) / (FF5-FF4), IF(F>FF6, FF5A + (FF6A-FF5A) * (F-

FF5) / (FF6-FF5), IF(F>FF7, FF6A + (FF7A-FF6A) * (F-FF6) / (FF7-FF6), FF7A))))))) 

Key: 

OA = Original Absorbance (or lower spectral limit, usually at 800 cm-1 frequency for 

wood) 

IF = Excel comparison command 

F =Frequency 

FF1 = Flattening Frequency1 (for using baseline with wood this is 3764) 

FF2 = Flattening Frequency 2 (for using baseline with wood this is 3003) 

FF3 = Flattening Frequency 3 (for using baseline with wood this is 2635) 

FF4 = Flattening Frequency 4 (for using baseline with wood this is 1810) 

FF5 = Flattening Frequency 5 (for using baseline with wood this is 1538) 

FF6 = Flattening Frequency 6 (for using baseline with wood this is 1186) 

FF7 = Flattening Frequency 7 (for using baseline with wood this is 918) 

FF1A = Flatting Frequency 1 Absorbance (the absorbance level of the spectra 

corresponding to this frequency). 

FF2A = Flatting Frequency 2 Absorbance 

FF3A = Flatting Frequency 3 Absorbance 
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FF4A = Flatting Frequency 4 Absorbance 

FW5A = Flatting Frequency 5 Absorbance 

FW6A = Flatting Frequency 6 Absorbance 

FW7A = Flatting Frequency 7 Absorbance 

 

Figure 3.1: The principle of the baseline correction. The baseline shown coloured in red is 

constructed by running straight lines between fixed frequencies in the uncorrected (blue) 

spectrum and was subtracted from the uncorrected spectrum to produce the baseline-corrected 

(green) spectrum. 

The baseline correction using the equations above was carried out as shown in figure 3.1 

and applied to all of the spectra before further analysis took place. 

3.3.2 Ratio Development: 

After baseline correction it was possible to calculate ratios between significant peak 

areas. The peaks tested here are the C=O stretching band from hemicellulose acetyl 

groups at 1727 cm-1 and the 1509 cm-1 C=C benzene ring vibration band from lignin. 
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These peaks were chosen based on results from the RH testing experiments in Chapter 

4. 

Lignin Ratio: 

To obtain the ratio for the lignin peak firstly the average was taken of the entire 

fingerprint region of the spectra, from the 1186 cm-1peak to the 1586 cm-1 peak (figure 

3.2).  

The average was then taken for the lignin peak between 1504 cm-1 and 1513 cm-1, 

considered as the boundaries of the peak at 1509 cm-1. This peak is assumed to be 

specific for lignin because it corresponds to a stretching vibrational mode across the 

benzene ring, which is mainly seen in the lignin polymer (Faix 1991; Pandey and 

Theagarajar, 1997; Evans et al., 1992).  The averaged fingerprint and 1509 cm-1 

absorbances were then ratioed: 

Lignin Ratio = Lignin Average/Fingerprint Average 

 

Figure 3.2: Spectrum showing the lignin peak between 1504 cm-1 and 1513 cm-1, whose area was 

divided by the area under the fingerprint region from the 1186 cm-1peak to the 1586 cm-1 peak to 

produce the lignin ratio.    
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For the acetyl ratio the same procedure was applied using the average of the fingerprint 

region between 1186 cm-1 and 1586 cm-1, as with the lignin peak (figure 3.3). 

The average was calculated for the acetyl C=O stretching peak of the hemicellulose 

polymers between 1724 cm-1 and 1727 cm-1. There are other peaks in the spectra that 

are related to hemicelluloses, but as the hemicellulosic polymers are so similar to 

cellulose these peaks cannot be used to distinguish between the two polymers. The 

1726 cm-1 peak relates to the acetyl groups which are found on the hemicellulose 

polymers (Faix, 1991; Pandey and Theagarajar, 1997; Evans et al., 1992; Altaner et al., 

2010). These acetyl groups are attached to the 2- and 3- positions on xylose in 

hardwood glucuronoxylans.   In softwoods there are two types of hemicellulose, the 

glucomannans and the smaller glucuronoxylans. It is believed that only the 

glucomannans are acetylated (Parente et al., 2014; Pawar et al., 2013). The absorbance 

ratio was then calculated: 

Acetyl Ratio = Acetyl Average/ Fingerprint Average 

 

Figure 3.3: Spectrum showing the acetyl C=O stretching peak of the hemicellulose polymers 

between 1724 cm-1 and 1727 cm-1, which was divided by the fingerprint region from the 1186 cm-

1peak to the 1586 cm-1 peak to produce the hemicellulose (acetyl) ratio. 

The ratios were then used to plot the following results; 
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3.4 Results 

3.4.1 Oak lignin 

 

Figure 3.4: Box plot showing the difference in relative lignin content, as determined by the 

lignin ratio, in the different sample ages of oak.  

In a box plot the top and bottom of the box represent the first and third quartiles of the 

data and the band inside is the median. The lines extending upward and downward from 

the box, known as whiskers, indicate variability outside the upper and lower quartiles 

and the asterisks represent outliers within the data.  

___________________________________________________________________ 

   Modern Oak  18Th C Oak  Historic Oak  
   ________________________________________________ 

Lignin Ratio  1.054 a  1.024 a  1.175   b 

 

Table 3.1: Mean lignin ratio of oak samples of different ages.  

Means followed by the same letter are not significantly different, Fisher LSD (P>0.05). 

Figure 3.4 shows the FTIR ratios follows the literature finding that the lignin content 

slightly increases with age. The results of one way analysis of variance show that the 

lignin contents of the three age groups contain at least one statistically very significant 

difference (P < 0.001). The Fisher test showed that the lignin content of the modern 
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wood was significantly different (Fisher LSD p<0.05) from the historic wood but not the 

18th C wood. The historic wood was also significantly different from the 18th century 

wood. Therefore there appears to be slightly more lignin in the older oak samples. The 

increase was relatively small. Increased lignin in historic wood samples has been noted 

in the literature (Popescu et al., 2006; Fackler and Schwanninger, 2012).  

 

Figure 3.5: The relative lignin content as determined by the lignin ratio, throughout the cross 

section of the historic oak beams. 

___________________________________________________________________ 

   Pith   Heartwood   Bark  
   ________________________________________________ 

Lignin Ratio  1.134   1.108    1.052 

      

Table 3.2: Mean revised lignin ratio through the cross section of historic oak beams.  

There were no significant differences between the means (ANOVA P>0.05).  

The ratio was then looked at from pith to bark of the historic oak (figure 3.5), to find 

out if the increase in lignin was happening throughout the beams or in a particular area 

which could be linked to biological attack. The one way analysis of variance shows there 

is no significant difference between the different areas (table 3.2). This shows that the 

increase in lignin seems to be spread throughout the wood rather than restricted to the 

sapwood, as would be expected if it was due to biological decay. This increase in lignin 



Chapter 3 - Analysis of Chemical Changes using FTIR Spectroscopy 

 

81 

 

has no obvious explanation but the lignin ratio is compared to the fingerprint region 

which represents cellulose and hemicelluloses. Any loss of hemicelluloses due to age or 

fungi would make it appear that the lignin was increasing. The ratio for lignin was 

therefore re-run using different frequencies to see if this was correct.   

 

Figure 3.6: The revised lignin ratio using the lignin peak between 1504 cm-1 and 1513 cm-1 

divided by the 1425 cm-1 cellulose peak to representing the relative lignin content in the 

different ages of oak.   

___________________________________________________________________ 

   Modern Oak  18Th C Oak  Historic Oak  
   ________________________________________________ 

Lignin Ratio  0.697 ab  0.625 b  0.721   a 

 

Table 3.3 Mean revised lignin ratio of oak samples of different ages.  

Means followed by the same letter are not significantly different, Fisher LSD (P>0.05). 

The analysis of the lignin peak was re-done using the same lignin peak as before but 

comparing this peak with the peak associated with cellulose at 1425 cm-1(figure 3.6). 

The results shown in the box plot above show a slight dip in lignin in the 18th century 

oak. One way analysis of variance showed that there was a significant difference in 

lignin with age with a significant P value < 0.05. Fisher test was carried out at 95% 
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confidence limits showed decreased lignin in the 18th century oak compared to the 

historic oak (table 3.3). This is most likely not due to any aging effect but due to 

natural variation in the trees as there were only two 18th century trees here and they 

only differ significantly from the historic oak. It might be that the 18th century trees in 

the sample set have more tension wood, which has a lower lignin content (Joseleau et 

al., 2004).   

3.4.2 Oak Hemicellulosic Acetate  

Figure 3.7: The difference in relative acetyl content as determined by the hemicellulosic acetyl 

ratio, in the different sample ages of oak. 

___________________________________________________________________ 

   Modern Oak  18Th C Oak  Historic Oak 

Hemicellulose acetyl 1.707  a  1.421 b  1.240   c 
Ratio 
 
 
Table 3.4: Mean hemicellulosic acetyl ratio of oak samples of different ages.  
Means followed by the same letter are not significantly different, Fisher LSD (P>0.05). 

Figure 3.7 shows the relative hemicellulosic acetyl content based on the 1724 cm-1 

absorbance peak. This is the region of the C=O stretching vibration from acetyl groups. 

The box plot and the one way analysis of variance  (table 3.4) show that there was a 

clear loss of acetyl groups with aging of the wood, giving a highly significant P Value 
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<0.001. The Fisher test showed that all the different age groups are significantly 

different from each other (Fisher LSD P<0.05). For oak this seems to mean that it gives 

off acetic acid progressively as it grows older. Any increase in acetic acid being given 

off with age is a concern for conservation as any metal wall mount or display near 

beams may be affected. Acetic acid accelerates the corrosion of metals, especially iron.  

 

Figure 3.8: The relative acetyl content as determined by the hemicellulosic acetyl ratio, 

throughout the cross section of the historic oak beams. 

___________________________________________________________________ 

   Pith      Heartwood   Bark  
   ________________________________________________ 

Hemicellulose Ratio 1.455        1.449   1.401  

 

Table 3.5: Mean hemicellulosic acetyl ratio through the cross section of historic oak beams.  

There were no significant differences between the means (ANOVA P>0.05).  

From figure 3.8 it appears that there was a slight decrease in acetyl groups from the 

pith to the bark but the one way analysis of variance showed this to be non significant 

(table 3.5) due the scatter within the samples. 
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3.4.3 Pine Lignin 

 

Figure 3.9: Relative lignin content as determined by the lignin ratio, in the different sample 

ages of Scots Pine. 

_____________________________________________________ 

   Modern Pine   Historic Pine     
   __________________________________ 

Lignin Ratio            1.408        1.416    

_____________________________________________________ 

Table 3.6: Mean lignin ratio through the cross section of historic pine beams.  

There were no significant differences between the means (ANOVA P>0.05).  

From figure 3.9 it can be seen that there was no evident difference in lignin content 

between the historic pine and the modern pine (table 3.6).  
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Figure 3.10: The relative lignin content as determined by the lignin ratio, throughout the cross 

section of the historic Scots pine beams. 

 

__________________________________________________ 

Pith  Heartwood Bark           
_______________________________ 

Lignin Ratio           1.434  1.426  1.382  

 

Table 3.7: Mean lignin ratio through the cross section of historic pine beams.  

There were no significant differences between the means (ANOVA P>0.05). 

 

Here the results (figure 3.10) suggest that the lignin content in pine increased slightly in 

the heartwood as in the oak samples, but one way analysis of variance confirmed that 

this effect was not statistically significant and was just due to scatter in the data (table 

3.7).  
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3.4.4 Pine Hemicellulosic Acetate 

 

Figure 3.11: The difference in relative hemicellulosic acetyl content as determined by the 

acetyl ratio, in the different sample ages of Scots pine. 

________________________________________________________ 

    Modern pine  Historic Pine   

Hemicellulosic acetyl Ratio 0.84  a   0.36 b   

________________________________________________________ 

Table 3.8: Mean hemicellulosic acetyl ratio of pine samples of different ages.  

Means followed by the same letter are not significantly different, Fisher LSD (P>0.05). 

For Scots pine as for oak it can be seen that acetyl groups have been lost from the wood 

(figure 3.11), whether these were removed from the hemicellulose polymers or whether 

the hemicelluloses themselves were being lost. 
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Figure 3.12: The relative hemicellulosic acetyl content as determined by the acetyl ratio, 

throughout the cross section of the historic Scots pine beams. 

___________________________________________________________________ 

    Pith      Heartwood   Bark  
   ________________________________________________ 

Hemicellulose acetyl  1.455        1.449    1.401  
Ratio 
 
 
Table 3.9: Mean hemicellulose acetyl ratio through the cross section of historic pine beams.  

There were no significant differences between the means (ANOVA P>0.05).  

Here the one way analysis of variance showed that the differences due to position were 

not statistically significant (table 3.9). The loss of acetyl groups was observed all 

through the wood from the pith to bark (figure 3.12) and is therefore likely to be due 

directly to aging rather than just to biological attack, which would have been seen more 

prominently at the bark.  

3.5 Discussion 

 

From the results it can be clearly seen that there was a loss of hemicellulosic acetyl 

groups from the wood cell walls with age, apparently not associated with biological 

decay. There was no additional loss of peak intensity from hemicellulosic acetyl groups 
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in either pine or oak at the sapwood end of the samples. They both showed a uniform 

loss of acetyl throughout, from pith to bark, within the limits of statistical significance. 

This observation suggests that the loss of acetyl groups was to do with chemical 

degradation with age. From the spectra alone it is unclear whether this is a loss of 

acetyl groups from the hemicelluloses or the breakdown of the hemicellulose polymers 

themselves. In Chapter 4 it is shown that there was an increase in soluble sugars within 

the historic wood, evidence that the hemicellulose polymer themselves might be 

breaking down and not just losing the acetyl groups. Loss of acetyl has not been 

documented before, to the author's knowledge. Previous experiments using FTIR on the 

chemical composition of older Pine carried out by Esteban et al (2006) have shown little 

to no chemical change in pine aged 205 years. Esteban et al (2006) used sawdust 

obtained from historic pine, which pressed in to potassium bromide disks. The FTIR 

experiments where done to specifically look at the –OH bands of the spectrum. The 

results showed that the FTIR spectrums were similar for the old and new wood tested 

(Esteban et al., 2006). The fact this experiment found little to no change in FTIR 

spectra between old and new wood may be due to the narrower focus on the regions 

associated with water sorption. But in another paper from Esteban et al (2005) the 

acetyl peak has been found to disappear completely from the spectra in some cases 

with buried and waterlogged wood (Esteban et al., 2005). 

Some observations have been reported of the hemicellulosic acetyl 1740 cm-1 peak when 

looking at fungal degradation. In these experiments, no real change in this peak could 

be seen throughout the destruction of the wood by fungal decay (Faix et al., 1991). This 

implies that the reduced intensity of this peak, observed in this experiment, is more 

likely due to chemical aging of the wood and not to fungal attack alone. It is still 

possible that there may have been other fungi, not present in the experiment of Faix et 

al., (1991), which might take out acetyl groups.  

The chemical loss of the acetyl groups randomly from the monosaccharide units would 

disturb the alternating acetylation pattern that Busse-Wicher et al (2014) have shown to 

be necessary for ordered binding of hardwood glucuronoxylan to cellulose. The loss of 

acetylation would be expected to lead to changes in moisture absorption and 

mechanical properties which might differ between hardwoods and softwoods (Busse-

Wicher et al., 2014; Altaner and Jarvis, 2008; Popescu et al., 2006; Erhardt et al., 1996; 

Chang and Chang, 2002).  

In the oak wood there was a slight increase in lignin in the historic wood. This was 

shown to occur throughout the sample from pith to bark with no significant increase at 

the sapwood edge. If the increase had been only at the sapwood it would be a sign of 

biological decay, which would have removed the cellulose leaving the lignin behind 
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(Fackler and Schwanninger 2012; Yilgor et al., 2013; Faix et al., 1991). The increase in 

lignin throughout the oak samples, turned out to be due to the way in which the 

comparison was run against the FTIR intensity in the fingerprint region which contains 

both cellulose and hemicellulose. When the comparison ratio was re-calculated using 

the cellulose peak at 1425 cm-1 it showed that lignin did not increase with age.   

Overall, FTIR microscopy is a fantastic tool for conservation. Here it has allowed us to 

look at sample composition under a microscope, pin-pointing spectral changes across 

the tree's growth from pith to bark to determine if there were changes in chemical 

structure and if these could be attributed to age or to fungi. Here it has given us clear 

evidence that what was occurring was chemical change through age, resulting from this 

ability to pin-point each growth region and show that the changes were not confined to 

the sapwood region where biological decay was visible (figure 3.13).  

 

 

 

 

 

 

 

 Figure 3.13:  Decayed sapwood in 
historic Scots pine Image: K Hudson-
McAulay. 
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Chapter 4 

Water sorption / Relative Humidity (RH) testing 
 

4.1 Introduction 

 

Relative humidity (RH) is of great concern in conservation, making this a key point 

within the thesis aims in Section 1.13. Every historic object has a set RH range in which 

it has to be kept for its survival. Traditionally this is a lot lower for metal than for 

biological objects like wood. Problems can occur in many different ways but the worst is 

wood picking up enough moisture for fungi and pests to live in and destroy the wood 

(Gerhards, 1980; Popescu and Hill, 2013; Glass and Zelinka, 2010). There are regulations 

concerning building materials which specify moisture buffer values for RH, indicating 

the amount of water vapour that can be transported in or out of the material under 

varying conditions (Abadie and Mendonce, 2009).   

Relative humidity can be very difficult to control in buildings other than museums, as 

the outside RH can vary from 90 % down to 30% depending on the season and region 

(Popescu and Hill, 2013). Although we dry wood to a specific moisture content before it 

is used in construction, it is a hygroscopic material and will always react to the amount 

of moisture in the air. The moisture content and the effects of relative humidity are 

extremely important factors in all of wood science as they affect almost everything 

about wood’s behaviour. The most important question in this research is whether new 

wood would take up more or less moisture than historic wood at the same RH, as 

differential swelling could cause damage to any splice joint used in the repair of 

buildings, especially if resins are used in the repairs. Unfortunately there have been 

very few studies on moisture sorption by historic wood (Esteban et al., 2009).  

Bio-deterioration of wood will occur whenever it is exposed to an environment which 

will encourage the growth of microbes. These are essential for the recycling of wood in 

a forest but in a building, microbial growth can cause serious weakness and damage to 

wooden structural elements (Blanchette, 1995). It is often asked how fungal enzymes 

are able to penetrate the thick dense cell wall to begin the decay process in structural 

timbers, as in dry wood there are hardly any micro-pores to allow fungal enzymes entry, 

but it is believed that the swelling caused by water uptake at high RH allows these 

pores to open and provides the right conditions for the fungus to get a foot-hold and 

begin decaying the wood (Chirkova et al., 2006). As well as being of concern for fungal 

growth the moisture content of wood is an important parameter influencing almost all 
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mechanical properties. It is widely known that the strength properties of wood increase 

with decreasing moisture content (Hiziroglu, 2009).  

When working with wood and wood structures it is generally forgotten that wood comes 

from trees, and trees did not produce this material to provide humans with a good 

building material. Wood in its natural state, working for the tree, is a wet material. It 

grows in a wet state and its main function is the transport of water around the tree. 

The only reason it is dried out is for human purposes as a building material. We do this 

because, once wood is dried out, its durability and mechanical properties greatly 

improve for building and other purposes (Patera et al., 2013; Gerhards, 1980). Freshly 

cut, non-dried wood is still used in this state and is known as green wood. This is where 

wood is above the fibre saturation point, at which the mechanical properties cease to 

be affected by change in moisture (Green, 2001, Engelund et al., 2013, Gerhards, 

1980). Green wood contains both free water in the cell lumina, drawn there by capillary 

action, and bound water which is in direct contact with the polymers of the wood cell 

wall (Engelund et al., 2013, Williams et al., 2010, p.63).  

Fibre saturation point is commonly acknowledged as the point at which there is no free 

water left in the cell lumen, only water bound to the cell wall polymers (Kolin and 

Janezic, 1996). It is the cellulose and hemicellulose polymers that are believed to bind 

most of the water in the cell wall (Zabler et al., 2010; Feilke et al., 2011). Changing RH 

below the fibre saturation point causes shrinkage of the wood, but when the RH 

increases, wood keeps taking in moisture and swells until it reaches its fibre saturation 

point.   

As mentioned before there has been little research on historic wood but there has been 

much done on waterlogged wood. Most archaeological wood has survived through being 

waterlogged, preventing large scale biological breakdown (Lionetto et al., 2013; Čufar 

et al., 2014; Klaassen, 2014). Waterlogged wood has the potential of reaching a 

moisture content of up to 200%. Most of the water is no longer bonded to the polymer 

fibres in the cell wall but is stored in the cell lumen. Diffusion of oxygen is slow in 

water so when the cell lumen contains no air and is completely filled with water, fungi 

cannot grow in the waterlogged wood (Kennedy and Pennington, 2014; Williams et al., 

2010, p.27; Babiński et al., 2014; Tamburini et al., 2014). This area of wood 

conservation has been researched a great deal with large waterlogged ships, like the 

Tudor warship Mary Rose and the Swedish warship Wasa being brought up from the sea 

bed (Preston et al., 2014; Giorgi et al., 2005). 

When wood is exposed to a normal environment, as in a building, or in a ship which has 

remained above water, like the HMS Victory (McGowan, 1999, p.1), the moisture 
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changes in response to the RH, leading to the cell wall matrix swelling and shrinking 

(Zabler et al., 2010). 

Knowing the hygroscopic properties of wood is extremely important in the conservation 

of historic structures; as timber from different environments will have different 

responses to any new environment. For example, waterlogged, archaeological and 

historic wood all react differently to moisture sorption and go through different decay 

systems (Esteban et al., 2010; Kennedy and Pennington, 2014; Blanchette, 2000; Singh, 

2012). 

 The sorption properties of timber are controlled by its chemical components and 

depend greatly on hydrogen bonds from water to cellulose and hemicelluloses. 

Therefore potentially, the degradation of these polymers over time will influence the 

sorption properties of wood (Kozlov and Kitsernaya, 2013).  

In wood polysaccharides there are two potential sites for the absorption of water, at 

the hydroxyl groups and at the carboxyl groups of glucuronoxylans (Olsson and Salmen, 

2004; Mihranyan et al., 2004).The hydroxyl groups, on hemicelluloses and cellulose, are 

the most abundant. Hemicelluloses comprise around 30% of the cell wall mass 

depending on the species (Bikova and Treimanis, 2001; Hosseinaei et al., 

2012).Hemicelluloses are thought of as more closely linked to moisture uptake due to 

their ability to interact with water molecules and become more mobile, even below 

room temperature, whereas lignin and cellulose stay a lot stiffer (Karenlampi et al., 

2003). The extraction of hemicellulose from wood has been shown to reduce the 

amount of water sorption (Ozdemir et al., 2014; Hosseinaei et al., 2012).  

Not all of the hydroxyl groups are accessible to water, due to the way the polymers are 

arranged in the cell wall. Cellulose forms crystalline regions where the chains are held 

together by hydrogen bonding between –OH groups, and are too tightly packed to allow 

water to penetrate between them (Esteban et al., 2006; Engelund et al., 2013; Khali 

and Rawat, 2000; Esteban et al., 2010).  Cellulose microfibril surfaces and 

hemicelluloses are believed to be the key areas for hydrogen bonding to water 

(Fernandes et al., 2011). Cellulose microfibrils form aggregated bundles that differ 

between softwoods and hardwoods (Thomas et al., 2014). 

In softwoods these aggregates are around 10-20 ƞm across. Inside dry aggregates the 

microfibrils are held together by disordered hydrogen bonding between the hydroxyl 

groups on the outside of the microfibrils. Water can penetrate between some of the 

microfibrils, forming hydrogen bonds to their surface hydroxyl groups, but not all of 

their surfaces are accessible to moisture (Fernandes et al., 2011). These aggregates and 

their expansion when water penetrates can be seen using small-angle neutron scattering 

(SANS) (Fernandes et al., 2011). This sideways expansion does not occur over the full 
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length of the microfibril aggregate, because if it did, more volume change would be 

seen on hydration (Fernandes et al., 2011). Other experiments on the sorption of water 

by softwood polysaccharides have been carried out through the use of FTIR spectroscopy 

to detect the contribution of water molecules to the spectrum. Results from these 

experiments show that there is no single location at which water is taken up by the 

wood cell polymers (Olsson and Salmen, 2004). 

Hardwoods also have aggregates of cellulose microfibrils but as mentioned above their 

structure is not quite the same, and the level of aggregation in hardwoods is not as well 

documented as softwoods. The aggregation that has been seen in hardwoods has tighter 

microfibril contact than in softwoods. This results in less access for moisture (Thomas et 

al., 2014).  

Where, inside or on the outside of these aggregates the hemicellulose polymers are 

positioned, also differs between hardwoods and softwoods in addition to the different 

types of hemicellulose present, with consequences for their reaction to moisture 

(Altaner et al., 2014; Akerholm and Salmen, 2004). Within softwoods the hemicellulose 

polymers are outside the microfibril aggregates (Fernandes et al., 2011). The 

glucomannan is more closely associated with cellulose and the glucuronoxylan with 

lignin (Altaner et al., 2010; Akerholm and Salmen, 2004). The wider spacing of the 

aggregated hardwood microfibrils could mean that they are separated by 

glucuronoxylan chains (Thomas et al., 2014) or by very tightly bound water molecules 

resistant to drying (Langan et al., 2014). This causes a difference in swelling between 

softwoods and hardwoods. Lateral swelling in hardwoods occurs only by the penetration 

of water between these microfibril aggregates, but in softwoods water can penetrate 

between the aggregates but also into the aggregates as well. In both hardwoods and 

softwoods water does not occupy pre-existing pores in the wood but physically bonds to 

accessible sites, becoming hydrogen bonded to the polymer chains and forcing them 

apart. Again this shows that a difference in reaction to moisture between hardwoods 

and softwoods can be expected, and differences in mechanical properties (Thomas et 

al., 2014; Altaner et al., 2014a; Akerholm and Salmen, 2004). 

It has been suggested that the sorption properties of wood are possibly affected in 

timber of some species by re-bundling of the aggregates or even the rearrangement of 

the molecules with age, allowing more or less of the –OH groups to become available 

(Esteban et al., 2006; Esteban et al., 2009). 

Relative humidity and the water content of wood have a huge impact on its survival. 

Allowing wood to reach or exceed its saturation water content encourages the rotting 

process. Below 18% moisture content fungi and pests are normally dormant (Ashour et 

al., 2011).  As with most problems concerning wood the equilibrium moisture content in 
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wood at a given relative humidity will depend on the species. It is even possible for its 

past environment to have some small effects on how it will behave with varying RH 

(Fielke et al., 2011).  

In some cases timber members have undergone chemical treatment at some point in 

their lifetime, usually to prevent pest infestation. The treatments often contain salts, 

which alter the sorption properties of the wood (Kozlov and Kitsernaya, 2013). The 

finishes and coatings conventionally used on wood do not change its sorption capacity 

but they do affect the rate at which moisture is absorbed and desorbed by the wood 

(Williams, 2010, p16-6; Gereke et al., 2011). Other finishes tend to protect the direct 

surface of the wood and can have a more decorative effect as well, such as varnishes, 

polishes and stains. Good examples of these for wood are; beeswax, one of the oldest 

known finishes, found on wood discovered in Egyptian tombs (Unger et al., 2001, p.186; 

Horie, 1987, p.150), and shellac, also known as button polish or French polish, a natural 

resin traditionally used from the 19th century to seal and polish wooden furniture 

leaving an attractive finish (Desch and Dinwoodie, 1996, p.287; Unger et al., 2001, 

p.399; Horie, 1987, p.150).  Research into finishes is outside the remit of this project as 

the wood samples available for testing have not undergone any finishing procedures 

allowing for this type of testing.  

There is a common misconception that once wood has been seasoned from the green 

state its response to high moisture becomes fixed, but the RH environment will continue 

to have a great influence on its survival and on the rate at which it can degrade. Wood 

is a hygroscopic, porous material that absorbs and desorbs moisture depending on its 

availability in the surrounding atmosphere (Patera et al., 2013; Buck, 1952; Popescu and 

Hill, 2013). It is constantly struggling to reach equilibrium moisture content with its 

environment. Equilibrium in reality is probably never reached, as this would take a very 

long time and conditions are always changing (Engelund et al., 2013; Esteban et al., 

2005; Chauhan et al., 2001; Buck, 1952). It has also been suggested that the sorption 

history of the wood may influence its ability to reach equilibrium (Popescu and Hill, 

2013).  

When wood is in service it is subject to constant change in environment, causing the 

wood to swell and shrink. The constant changes in RH cause wood to repeat these 

swelling and shrinkage cycles. As a result this constant movement can cause damage to 

wooden objects or structures, or permanent distortion such as sagging of timber 

structures under their own weight. That is why museums have strict rules on keeping 

the RH of an area as constant as possible to limit damage (Patera et al., 2013). 

There have been very few studies on the hygroscopic nature of historic wood (Esteban 

et al., 2005; Esteban et al., 2009; Popescu and Hill, 2013; Kozlov and Kitsernaya., 2013; 
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Buck, 1952) but this is a key feature that needs to be uncovered. If timber components 

with different sorption properties are fixed together it could have disastrous effects on 

the wood dimensional stability (Esteban et al., 2005; Esteban et al., 2009). There are a 

few different ways in which dimensional changes could cause problems after traditional 

‘like for like’ repair. Problems could be caused by the different amounts of water 

absorbed by the two separate pieces, or by them swelling to different extents or in 

different directions at the same moisture content. Differential swelling is likely to occur 

with difference in MFA, which is highly possible as modern softwoods tend to have a 

higher MFA than historic wood due to the way in which they were grown (See Chapter 6 

for more detail on MFA). Trying to understand sorption behaviour will also be the key to 

understanding the degradation of wood (Popescu and Hill 2013). In conservation of any 

historic wood it needs to be clear how the wood will react to the surrounding 

environment (Buck, 1952). 

This chapter discusses how sorption of water by oak and Scots pine changes as the wood 

ages. 

4.2 Experiment 

 

The samples were produced from both new and historic timber. 5mm cubes were cut 

along a line from pith to bark cut using a single edged razor blade, so that as little 

material as possible was lost between each pair of samples, giving a accurate pith to 

bark profile of each timber. 

The RH Chamber was set up as shown in figure 4.1. Boiling water was placed in the 

bottom of the container and the samples were then placed on a perforated shelf above 

the water. The RH sensor was placed inside and the lid was sealed (figure 4.2). The RH 

sensor recorded the RH in the container every hour. The results from the sensor showed 

that the RH remained stable around 95-98% RH throughout the 24 hour testing time.  

The samples were weighed before they went into the chamber, then again after 24 

hours in the chamber to obtain the amount of water absorbed by the sample blocks.  
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Figure 4.2: Overhead view of the samples in the environmental 
chamber. Image: K Hudson-McAulay. 

 

Figure 4.1: The environmental chamber set up with 
samples Image: K Hudson-McAulay. 
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4.3 Results 

4.3.1 Oak 

 

Figure 4.3: Moisture sorption by modern, 1800’s and Historic Oak. One-way ANOVA gave a P 
Value of <0.001 showing that moisture sorption by wood of different ages was significantly 
different. 

 

Figure 4.4: Variation in moisture sorption in oak from pith to bark for the different age 

categories.  
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___________________________________________________________________ 

       Modern Oak  18Th C Oak  Historic Oak  
               _______________________________________________ 

Moisture sorption (%)     80.9%  b  88.7% a  82.4%   b 

 

Table 4.1: Mean moisture sorption (% of dry mass) of oak samples of different ages.                                                      

Means followed by the same letter are not significantly different, Fisher LSD (P>0.05). 

4.3.2 Pine 

                                                                                                                                                               

 

Figure 4.5: Moisture sorption by modern and Historic Pine. A t-test for the difference between 

ages gave a P Value of <0.001. 

______________________________________________________ 

   Modern Pine  Historic Pine     
   ___________________________________ 

Moister sorption (%)  80.9% a  88.7% b   

______________________________________________________ 

Table 4.2: Mean moisture sorption (% of dry mass) of pine samples of different ages.  

Means followed by the same letter are not significantly different, Fisher LSD (P>0.05). 
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Figure 4.6: Variation in moisture sorption in Pine from pith to bark with the different age 

categories.  

Firstly the moisture contents of the pine samples were subjected to a t-test which gave 

a P Value of <0.001, showing that the difference between the modern and historic 

samples was statistically highly significant (table 4.2). The pine samples were not only 

different with age (figure 4.5) but the historic pine samples showed a much larger 

sorption of water than was seen in any of the oak samples (figure 4.6). As there was 

more than one comparison to make with the oak samples these were run through a one 

way analysis of variance to see if the difference between the ages (figure 4.3) would be 

statistically significant. The ANOVA had a highly significant P value of <0.001. To see 

which oak samples differed significantly a Fisher Least Significant Difference test at 95% 

confidence was then calculated (table 4.1). This showed that modern and historic oak 

were significantly different from the 18th C oak (Fisher LSD P<0.05), but not different 

from one another. 

From the data it can be clearly seen that Scots pine had a very different reaction to 

sorption with age compared with the oak. The historic pine wood picked up over double 

the amount of moisture compared with the modern pine, whereas differences in historic 

oak are small. Tests have been published on the sorption of water by oak showing that 

historic oak picks up less moisture than recently felled oaks (Esteban et al., 2010). 

The pith to bark variation showed that the pine wood was picking up excess water 

throughout, whereas oak seems to pick up more moisture towards the sapwood (figure 
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4.4). This is most likely due to biological damage to the cells. Usually pine will have 

more mass of wood per 5 mm cube close to the bark as it increases in density. This 

would also increase its potential intake of moisture as there would be more available 

hydroxyl groups. But within the historic sample the polymer mass per 5 mm cube may 

have been reduced at the sap edge due to loss of material from biological attack.The 

uniformly high moisture uptake from pith to bark tends to imply chemical aging rather 

than effects of biological attack.  

The results show a great difference between the two species suggesting that the 

chemical breakdown is different. This could be a difference between hardwoods and 

softwoods or just between these two particular species. 

Results from the chemical analysis of the two species in Chapter 3 show the loss of the 

acetyl groups from the hemicellulose polymer, which could be causing this difference 

between oak and pine. Another possibility is that over time cellulose or hemicellulose 

molecules may be degrading to water soluble products such as sugars and organic acids  

(Kozlov and Kitsernaya, 2013). The experiment below was done to determine if there 

was more soluble sugar found in the historic pine than in its modern counterpart.  

4.4 Chemical analysis of soluble sugars 

 

As discussed in the previous section of this chapter, historic pine wood absorbed 30-50% 

more moisture than the modern pine samples. This is unique to the historic Scots pine 

as within the historic oak there was no consistent change with age. It was thought that 

this difference in water sorption by historic pine might be the result of an excess of 

soluble sugars in the wood cell as a result of the breakdown of the hemicellulose 

polymers (figure 4.7), (Kisternaya and Kozlov, 2007). 

In this section we aim to find out if soluble sugars are partly the cause of this strange 

phenomenon. The method for determining the amount of soluble sugars present in the 

historic wood samples was the dinitrosalicylate (DNS) reducing sugar method developed 

by Miller (1959).  

The DNS method has been used in carbohydrate science to detect soluble sugars ever 

since it was re-developed by Miller and has been used with good success to determine 

sugars such as xylose, glucose and mannose (Bailey et al., 1992; Khan, 1986; Beck and 

Strickland, 1984). These are the sugars that make up the main body of the 

hemicellulose polymers in softwoods.  
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Figure 4.7: The different sugars that make up wood polysaccharides 

(Gross, 2010). 

 

The Miller DNS method has been shown to be sensitive to these monosaccharides and is 

often used to measure the activity of enzymes that break down lignocelluloses (Breuil 

and Saddler, 1985). This is of great interest when looking into the effects of biological 

attack by fungi such as brown and white rots, and in the biofuel industries where the 

wish is to separate and depolymerise the wood polymers (Ferraz et al., 2003). 

4.4.1 Sample preparation: 

 

Samples were prepared from both historic and modern pine. Unfortunately due to the 

high level of tannins in the oak samples it was not possible to test these. Tannins affect 

colour formation in the Miller reaction leading to artificially high absorbance readings. 

The samples were soaked overnight in water to dissolve the soluble sugars out of the 

samples. The pine samples, both modern and historic were cut from pith to bark into 

5mm cubes to give a higher surface area allowing the water to dissolve out as much of 

the soluble sugar present as possible. Approximately 20 ml of water was added to 10 of 

the 5 mm cubes from each of the wood beams tested. This water was then collected 

and used to determine how much if any soluble sugar was present. 

 

4.4.2 Determination of reducing sugars by the Miller method 

 

The main reagent of the experiment is made up freshly from two components, the main 

DNS solution and a second sodium sulfite solution. These are mixed together to produce 

the full reagent in small quantities when it is needed as the combined solution cannot 

be kept overnight (Lee et al., 2008; Yu et al., 1982; Kong et al., 1992). 

The two components were made up as follows: 
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DNS reagent – main component:  

•3g Sodium Hydroxide  

•0.6g Phenol  

•3g Dinitrosalicylic Acid  

Firstly the sodium hydroxide was dissolved in water using a magnetic stirrer to ensure it 

was thoroughly mixed. After this had completely dissolved, the phenol and 

dinitrosalicylic acid were added, adding as little water as possible to allow the stirrer to 

dissolve them. Once the solid reagents had been fully dissolved more water was added 

to make up a solution volume of 250ml.  

DNS reagent – sodium sulfite component: 

•0.15g Sodium Sulfite  

To make up the second component 0.15g sodium sulfite was dissolved in as little water 

as possible until the solution was clear. Once it had been fully dissolved, water was 

added to make the solution up to 50ml.  

Potassium sodium tartrate reagent: 

     • 40g Potassium sodium tartrate 

The potassium sodium tartrate solution is a colour stabiliser and is made up in the same 

way by adding 40g of potassium sodium tartrate to as little water as possible until it was 

fully dissolved and then adding enough water to the solution to make it up to 100 ml. 

4.4.3 Experimental Procedure. 
 

Before any of the historic samples could be tested sugar standards needed to be set up 

to determine whether the method would work successfully and to produce a calibration 

graph to quantify any results gathered from the historic material. 

The calibration set was made from stock solutions of glucose, mannose and xylose, the 

three main sugars associated with the hemicellulose polymers in softwoods. The 

galacto-glucomannan comprises 60% of the hemicellulose fraction whereas the arabino-

4-0-methylglucuronoxylan comprises about 40% of the hemicelluloses (Curling et al., 

2001). The stock solutions were made up as 1mg per 1 ml solutions of each of the sugars 

in water.  
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Once the stock solution had been made up a 0.1mg to 1.0mg calibration series, with a 

blank of 1.5ml water, (Nagpure et al., 2014) was prepared. The process involves 

adjusting the levels of stock solution to water in each test tube, slowly increasing the 

amount of the stock solution. The first tube contained 0.1ml of the stock solution with 

1.4 ml of water to make 1.5 ml of solution containing 0.1 mg of the sugar. Each test 

tube is then filled with 0.1 ml more of the stock solution and 0.1 ml less of water until 

the last contains 1.0 ml of stock to 0.5 ml of water. 

Now the DNS reagent needs to be added to the stock solution. 5 ml of the sodium 

sulphite component was mixed with 25 ml of the main component, giving 30 ml of the 

final DNS reagent, enough for around 20 tests. As said before mixing the DNS reagent in 

these smaller quantities will prevent the mixture going off before it is used.  

1.5 ml of the mixed DNS reagent was added to each sugar solution in an 18 mm test 

tube. This was then mixed thoroughly before the tubes were put in a boiling water bath 

for 5 minutes. After this the samples were removed from the water bath and cooled 

using a water bath of cool water. Once the samples were cool 0.5 ml of the potassium 

sodium tartrate solution was added to each one and mixed in order to keep the colour 

of the regent stable.  

The samples were then transferred to a polystyrene 1 cm cuvette and the absorbance 

was measured at a wavelength of 575 nm in a Hitachi U-1500  spectrophotometer to 

record the colour produced, which depends on the amount of sugar present.  

The calibration graphs of absorbance against mass of sugar are shown below: 

Calibration graphs  

The calibration graphs in figure 4.8 follow the same pattern as seen in the original 

description of the method (Miller, 1959) but some of the absorbances were above 1, 

which is considered to be too high for accurate measurement by the 

spectrophotometer. The experiment was re-run with a lower concentration, as it was 

expected that the historic sample would not have as much soluble sugar and the lower 

standard concentrations would give a more precise calibration graph. 
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Figure 4.8: Calibration graph for Glucose. 

Dilution calibration graph  

The experiment was re-run in exactly the same manner as before except that the stock 

solutions were of mannose and xylose and were diluted x5 in order to give a better 

calibration graph. The results of this are shown below in figure 4.9 and 4.10. 
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Figure 4.9: Calibration graph for dilute Xylose. 



Chapter 4 – Water sorption/Relative Humidity (RH) testing 

 

105 

 

 

 

The negative intercept on the calibration graph (figure 4.11) is normal for this method, 

although generally in colorimetry negative intercepts are uncommon. It is thought to be 

due to the effect of dissolved oxygen destroying the pigment produced by low levels of 

sugar; therefore it is important to make sure that at least 0.1 mg of sugar is present in 

the analysis. If not, the only result that can be deduced is that less than 0.1 mg was 

present. 

As it was not known which of these soluble sugars, or a possible mixture of them, had 

been extracted from the historic sample, the calibration graph below for glucose was 

chosen as it fitted well with what was expected from the literature (Miller, 1959) and 

because glucose is widely used as a standard for this method (Vats and Banerjee, 2002). 

Other issues could cause error in the interpretation of the breakdown of the 

hemicellulose polymer within the historic samples. It will be unclear if they have broken 

down to monosaccharides, as they may remain as disaccharides or oligosaccharides 

which have only one reducing sugar end. One molecule of each oligosaccharide should 

give approximately the same colour as one molecule of monosaccharide. As the DNS 

method measures the total number of monosaccharides and disaccharide molecules 

released, this is the equivalent to the number of bonds broken within the polymers. 

Therefore there may be more breakdown of the hemicellulose polymers than is 

apparent from the DNS results when calibrated with glucose. 
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Figure 4.10: Calibration graph for dilute Mannose. 
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4.4.4 Testing of the historic samples 

 

The historic samples were tested by adding 1.5ml of the solution that had been 

equilibrated with each historic sample to 1.5ml of the DNS reagent. Four 1.5 ml samples 

were taken from the 20ml solution obtained from each of the historic pine samples and 

were carried through the DNS analysis. As well as the samples made up with the DNS 

solution a blank for each historic sample was made up containing 1.5ml of the historic 

sample and 1.5ml of water, and run through the same treatment to subtract any colour 

which may be coming from the sample itself in the absence of the colorimetric 

reagents. The samples were then all put in the hot water bath for 5 min and cooled 

afterwards in the cold water bath, after which 0.5 ml of the potassium sodium tartrate 

solution was added to stabilise the colour and the absorbance was measured at the 

same wavelength of 575nm. 

A cell containing water was used to zero the spectrometer before testing the sample 

blank to see how much colour absorbance was recorded from the sample itself without 

the colorimetric reagents. A cell containing 1.5 ml water and 1.5 ml DNS reagent was 

used to zero the rest of the samples to remove the absorbance of the colorimetric 

reagent itself.  

4.5 Results  

 

Firstly the blank absorbance for each sample was subtracted from the absorbance 

recorded from the sample and DNS reagent, to remove the minor interference caused 
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Figure 4.11: Calibration graph for diluted glucose. 
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by the original colour of the samples. Then the four replicate absorbances were 

averaged to give one reading for each of the historic pine beam ends tested.  

With this averaged absorbance it was possible, using the calibration graph for glucose, 

to calculate the concentration of sugar detected in the historic samples. This was done 

using the following equation: 

 

                  X = (Y – C) / M 

 

Where X is the glucose equivalent concentration, Y is the absorbance of the historic 

sample, C is the (negative) intercept of the calibration graph and M is the slope of the 

calibration graph. 

Table 4.3 shows the glucose equivalent concentrations calculated using the above 

equation for the historic samples. 

Table 4.3: Sugar concentrations released by modern and historic Scots pine. 

 

 

 

 

 

 

 

 

 

From the concentration of sugar in the solutions it was then possible to work out how 

much sugar was released per 1 mg of wood. This was done using the calculation below: 

 

                      (X x V) / W 

 

Sample 

Concentration 

(mg/ml) 

Historic Pine – 1500-1 0.144 

Historic Pine – 1500-2 
0.151 

Historic Pine – 1500-3 
0.127 

Historic Pine – 1500-4 
0.577 

Historic Pine – 1500-5 
0.121 

Historic Pine – 1500-6  
0.131 

Modern Pine - 1 0.108 

Modern Pine - 2 0.108 
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Where X is the concentration, V is the volume of water collected from the original 

historic sample and W is the oven dry weight of the wood samples used. The results in 

the table 4.4 show how much of the soluble sugar would be found in 1 mg of the wood 

samples.  

Table 4.4: showing the final sugar/wood content.  

 

 

 

 

 

 

 

 

 

 

From table 4.4 it can be seen that more soluble sugar per g of wood was present in the 

majority of the historic samples. 

4.6 Discussion  

This increase in soluble sugar content supports the argument presented in Chapter 3 

where the hemicelluloses were considered to be breaking down. This experiment also 

supports the theory that the hemicellulose polymer chains were breaking down into 

monosaccharides or oligosaccharides, and not just losing acetyl groups. This seems to be 

affecting the pine and the oak very differently, although the oak was not tested through 

the DNS method due to the effect of tannins on the colour. The historic pine seemed to 

be producing more soluble sugars than the modern pine.  On average the amount of 

soluble sugar released from the historic pine was 5 mg/g. Initially there would have 

been 200 mg/g of hemicelluloses as hemicellulose is on average around 20% of 

softwoods content (Schädel et al., 2010).  

In their natural state hemicellulose chains are from 30 to several hundred monomer 

units in length. If hemicelluloses are broken down to chains only 7-8 monomers long 

Sample 

Volume 

(ml) 

Weight   

(g) 

Concentration 

(mg/ml) 

Sugar 

released 

(mg/g)   

Historic Pine – 1500-1 16.3 0.5047 0.144 4.6 

Historic Pine – 1500 -2 
15.8 0.7656 0.151 3.1 

Historic Pine – 1500-3 
14.9 0.7668 0.127 2.4 

Historic Pine – 1500-4 
12.1 0.5972 0.577 11.7 

Historic Pine – 1500-5 
22.4 0.5691 0.121 4.7 

Historic Pine – 1500-6  
13.2 0.5299 0.131 3.2 

Modern Pine - 1 14.2 0.5635 0.108 2.7 

Modern Pine - 2 14.1 0.5744 0.108 2.6 
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they are more soluble. When this occurs the wood can no longer swell as much as the 

loss of hemicelluloses forces the cellulose microfibrils to stick together (Bromley et al., 

2013; Sedighi-Gilani and Navi, 2007).  Therefore it is possible there was much more 

breakdown of the hemicellulose than could be calculated by the DNS method as some 

may have remained insoluble. Alternatively, due to the presence of decay in the 

sapwood samples the sugars may have been consumed by fungi. It is possible that both 

of these mechanisms occurred.  

These free sugars are soluble and can attract water in the way that is characteristic of 

solutes, and is independent of the normal interaction of water with the insoluble 

polymers of wood. The attraction of water by soluble sugars can in theory be 

represented by the Van’t Hoff equation (Bhadusha and Ananthabaskaran, 2011). As an 

example of the theory one hemicellulose chain in solution, if broken down to 40 

individual sugars, would be 40 times as capable of absorbing water. This could be a 

major factor in why the historic pine wood took up 30-50% more moisture than the 

modern pine wood and the oak samples. The acetic acid released by hydrolysis of the 

acetyl groups maybe led to breakdown of the hemicellulose polymer chains as the 

resulting acid conditions can provide catalysis for depolymerisation (Hosseinaei et al., 

2012). What the DNS measurement cannot do is to reveal whether it was sugar 

monomers reacting with the DNS or longer broken chains of hemicellulose, as each 

hemicellulose molecule only has one reducing end that will react with the DNS. The 

reaction with DNS implies breakdown of the polymer but does not identify the chain 

length of the breakdown products (Gabrielii et al., 2000; Sun et al., 2001). Chemical 

depolymerisation by acid catalysis would be at random points in the chain and would 

therefore initially release large fragments. The way in which fungal enzyme mixtures 

break down hemicelluloses is more consistent with the release of monomers from the 

hemicellulose chains (Srivilai et al., 2013; Enoki et al., 1989; Pérez et al., 2002; Szabo, 

2015).
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Chapter 5 

Wood Shrinkage 
 

The manner in which wood swells and shrinks is a complicated function of its anisotropic 

properties and, as a result, of its anatomy. Due to this anisotropic behaviour, wood 

shrinks unevenly in its different planes (Barber and Meylan, 1964). Shrinkage is a widely 

studied area of research today, due to the implications that it has for the quality of 

wood from the forest and the sale of timber. Shrinkage is therefore one of the most 

important concerns for these industries (Badel at el., 2006, Perré and Huber, 2007, 

Burgert and Fratzl, 2009). 

Wood, being a natural material, grows in a wet condition where shrinkage rarely occurs. 

When it does occur it leads to growth cracking or checking, where the standing trees 

have dried out enough to actually crack. This usually occurs in a period of drought 

(Mattheck et al., 1995). It is only once wood is dried out for human utilisation that 

warping and twist occur (Patera et al., 2013). The initial shrinkage of wood, from the 

green state, occurs at fibre saturation point after all the free water in the cell lumen is 

lost. The moisture content at this stage is usually round 24-30%. As the wood begins to 

equilibrate with a drier environment and dries out further, water is lost from the cell 

walls themselves and the wood becomes dimensionally unstable (Rosner et al., 2009, 

Buck, 1952). Drying of wood in kilns forces distortion to happen. Unrestrained softwood 

can warp and twist badly during drying (Kifetew et al., 1998). Wood is generally dried 

down to 12% moisture (Koponen and Virta, 2004) on the Continent, but in the UK it is 

dried to 20%. This can lead to issues where the wood will continue to dry and distort 

once it is placed in a building with central heating.  

Wood changes its dimensions in reaction to the surrounding Relative Humidity (RH) 

(Popescu and Hill, 2013), and will vary in how it reacts to RH depending on the species, 

as with all issues related to shrinkage. The influence of the direction of shrinkage, 

radial or tangential, can again be different between species (Silva et al., 2014a, 

Williams, 2010, Badel at el., 2006). The effects and control of moisture in wood are 

discussed further in Chapter 4.  

Distortion is a conservation problem in buildings which do not have a well controlled RH 

environment.The swelling and shrinking of wood will also have a bad effect on wood 

panelling, wood paintings and polychrome sculptures, as movement can cause the paint 

layer to flake off the wood surface as well as causing micro-cracking or craquelure 

(Mazzanti, 2012, Buck, 1952, Gereke et al., 2011). If repair work on old wood with new 
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wood causes more difference in shrinkage, the wood species needs to be taken into 

account when areas of wood are replaced, especially with wooden art panels. 

Understanding shrinkage comes from understanding the structure of the wood itself 

(Badel at el., 2006). One of the controlling forces behind shrinkage is the microfibril 

angle (MFA).  The measurement of the MFA is discussed in detail in Chapter 6. But it is 

not the microfibrils themselves that absorb the water which causes swelling and 

shrinkage. The microfibrils act as a semi-crystalline skeleton holding the matrix 

material between them in place (Yamamoto et al., 2001). The matrix polymers between 

the microfibrils are believed to cause the shrinkage forces, but these do not have a 

uniform direction as water is removed and it is the direction of the constraint from the 

microfibrils that causes the differential pattern of shrinkage in wood (Yamamoto et al., 

2001).  

Shrinkage is known to be uneven for the different wood directions. Typical shrinkage 

levels from green to dry are generally believed to the about 0.5% longitudinally, 4% 

radially and 6% tangentially. Much research has gone into why shrinkage in the radial 

and tangential directions are so different but the reason is still unclear today (Patera et 

al., 2013, Leonardon et al., 2009, Babinski, 2011, Kifetew et al., 1998). 

The cellulose microfibrils restrict how much the wood can shrink (Cown et al., 2005, 

Harris and Meylan, 1965, Treacy et al., 2000, Tabet and Aziz, 2013). For example 

longitudinal shrinkage decreases with decreasing MFA. But tangential shrinkage 

increases as the MFA lowers (Donaldson, 2008, Treacy et al., 2000, Verrill and 

Kretchmann, 2011, Leonardon et al., 2009). Figure 5.1 gives a clearer idea of this. 

Although the MFA does affect the longitudinal shrinkage, wood still shrinks less 

longitudinally than in either of the transverse directions, as it is always fairly 

constricted by the cellulose microfibrils running in this direction.  
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Figure 5.1: Relationship of MFA to longitudinal and transverse shrinkage of wood.The grain 

direction is vertical in both diagrams. Longitudinal (vertical) and transverse (horizontal) 

shrinkage directions are represented by the red lines. The cellulose microfibrils, whose 

orientation (MFA) is represented by the diagonal black lines, have a restrictive effect on 

shrinkage. Image: K Hudson-McAulay 

The relationship between MFA and radial shrinkage is less obvious, as radial shrinkage is 

less then tangential. If it was simply to do with the MFA, there logically should not be 

this difference. Other factors may influence shrinkage in this direction, including 

anatomical features like the ray cells and pits (Harris and Meylan, 1965, Treacy et al., 

2000, Patera et al., 2013). The reduced level of radial shrinkage has been suggested to 

result from the constriction provided by the ray cells or by pit fields where the MFA is 

higher. These pit fields form between a ray cell and the adjoining tracheids (Barber and 

Meylan, 1964, Patera et al., 2013). It has also been suggested that there are swelling 

differences between the early- and latewood cells in softwoods. Latewood contains a 

much larger volume of tangential cell walls than earlywood (Engelund et al., 2013, 

Koponen et al., 1989, Harris and Meylan, 1965). None of the possible given reasons for 

the different shrinkage between the radial and tangential directions are proven, and no 

single one really gives a convincing argument for this occurrence.  

Shrinkage is also different between hardwoods and softwoods. One of the biggest 

problems in oak is known as shake. Shakes are large cracks or splits that can occur in 

oak longitudinally up the stem of the tree. Shake is thought to be due to a combination 

Higher MFA restrains the 

cell walls across the grain 

and decreases shrinkage in 

the transverse direction  

Lower MFA restrains the cell 

walls along the grain and 

decreases shrinkage in the 

longitudinal direction  
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of large earlywood vessels (Mather et al., 1993, Mather and Savill, 1994) and the 

difference between the longitudinal and radial shrinkage. The difference between these 

two shrinkage directions causes tangential stress on the drying wood causing it to split 

(Badel and Perré, 2002, Yang and Normand, 2012). Great effort goes in the breeding of 

oak to reduce shake by selecting for small vessel cells in the early wood (Mather et al., 

1993, Mather and Savill, 1994). Oak also has superior radial strength compared to 

softwoods due to the larger volume of rays (Bjurhager et al., 2010). This may constrain 

swelling and shrinkage in the radial direction in oak. 

Softwoods have been shown to shrink less than hardwoods (Barber and Meylan, 1962). 

They also do not suffer from shake as readily as oak due to the lack of vessel cells 

(Babinski, 2011). However compression wood in softwoods shows more longitudinal 

shrinkage, which can lead to curvature (Leonardon et al., 2009) 

Density of wood is also something which affects the shrinkage and swelling of wood. The 

more dense the wood is, the slower water penetrates into the wood and the more 

slowly it swells (Alteyrac et al., 2006, Treacy et al., 2000). 

It is the availability of hydroxyl groups that causes the swelling and shrinkage of wood 

(Patera et al., 2013, Engelund et al., 2013). As the cellulose hydroxyl groups are only 

accessible on the outside of some of the microfibrils, water does not penetrate between 

the crystal planes (Fernandes et al., 2011). Therefore the cellulose microfibrils do not 

swell themselves, and access for water is limited to the matrix material between 

them.Binding sites for waterare generally provided in the matrix by the hemicellulose 

polymers (Leonardon et al., 2009, Hein et al., 2013). The hemicelluloses are probably 

located largely between the microfibril bundles so that swelling between the bundles 

forces them apart, as well as swelling between the microfibrils in each bundle (Thomas 

et al., 2014). The deformation seen when wood is dried is due to the loss of water from 

the matrix material, which then shrinks (Barber and Meylan, 1964). 

The swelling and shrinkage is dominated by the movement of water in and out of the 

thickest S2 layer of the wood cell wall. But it is believed that swelling from moisture 

uptake is not only controlled by the MFA of the S2 layer but by the S1 and S3 layers of 

the cell wall, thus preventing the cell walls from excessive swelling in thickness that 

might lead to the cell bursting (Patera et al., 2013, Kifetew et al.,1998, Meylan, 1972). 

The restraint by the S1 and S3 layers is believed to have a greater effect in the 

earlywood than the latewood and also more effect on the juvenile than the mature 

wood (Harris and Meylan, 1965), leading to yet more heterogeneous shrinkage within 

the wood.  

Although much has been discovered about shrinkage not all of the relationships are fully 

understood, especially the difference between radial and tangential shrinkage 
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(Hittmeier, 1967, Barber and Meylan, 1964). Much applied research still goes into this 

area to reduce loss of revenue from timber that warps and twists during the drying 

process, making it unable to be sold into the building trade. When wood swells as a 

result of raised RH in a building it is subject to restraint from the frame it is placed in 

(Ispas, 2013). Differential shrinkage between old and new timber in sensitive areas 

could cause damage to the building structure. There is a separate problem with 

differential shrinkage in heritage items, which is not caused by the anatomy of the 

wood but is due to coatings, paint and other finishes which are known to cause 

differential shrinkage of panels when moisture can only get to the panels from one side, 

causing them to warp (Gereke et al., 2011, Buck, 1952, Chauhan et al., 2001).This 

problem is outside the remit of this project. 

5.1 Experiment 

 

5.1.1 Sample preparation 

 

5mm cubes were cut from pith to bark from each of the beam ends using razor blades in 

order not to lose too much of the original material.The intention was to obtain a 

detailed assessment of how shrinkage changes throughout each beam end and to allow 

comparison with the modern samples. 

5.1.2 Procedure 

 

The samples were first fully saturated to above fibre saturation point. Then they were 

measured longitudinally, tangentially and radially with digital callipers (Powerfix Profi 

+) reading to 0.01 mm. Once this first measurement was complete the cubes were oven 

dried at 108°C for 6 hours to drive out all moisture. To assess shrinkage, they were then 

measured again with digital callipers longitudinally, tangentially and radially. 

5.2 Data analysis and results 

 

To calculate shrinkage in each direction the fractional change in that dimension was 

calculated by the equation below: 

 

Fractional Shrinkage = (SW-OD)/OD 
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Where SW is dimension of the saturated wood and OD is the dimension of the oven dried 

wood.  

5.2.1 Oak 

 

 Figure 5.2: The relationship between tangential and radial shrinkage in all of the oak samples. 

The r value of the correlation for the modern oak was -0.345, the 18th C oak had an r value value 

of 0.658 and the historic oak had an r value of -0.465. 

From the results seen in figure 5.2 there seems to be a very weak relationship between 

the radial and tangential shrinkage of oak samples. This is unexpected, as due to 

influence of microfibril angle (MFA) on shrinkage in both transverse directions they 

might be expected to have a much stronger positive relationship (Yamashita et al., 

2009, Yao, 1969). The reason for this is outside the limits of this research, but that is 

why the shrinkage directions are looked at separately. 
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5.2.2 Tangential shrinkage of oak.  

 

Figure 5.3: The pith to bark variation in tangential shrinkage of oak in the different age ranges. 

Figure 5.3 plotting tangential shrinkage against distance from the pith shows a slight 

difference between the age groups of oak tested. One way variance of analysis (table 

5.1) showed this difference to be highly significant with P <0.001, but there is still a 

great deal of scatter. The Fisher test showed that shrinkage was lower in the modern 

samples compared to both the 18thC and historic oak (Fisher P<0.05) but the 18th 

century and historic oak samples were not significantly different from each other. 

___________________________________________________________________ 

    Modern Oak  18Th C Oak  Historic Oak  
   ________________________________________________ 

Tangential Shrinkage  0.080 a  0.104 b  0.095  b 

                 

Table 5.1: Mean tangential shrinkage of oak samples of different ages.  

Means followed by the same letter are not significantly different, Fisher LSD (P>0.05) 

To eliminate the possibility that the different shrinkage was just due to the decay of 

the sapwood, the heartwood samples alone were run through a one way analysis of 

variance (table 5.1), showing that there was a difference between the heartwood 

shrinkage in the different ages of oak with a significant P value of <0.05. A further 
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Fisher test revealed that this difference was between the modern and historic oak 

(Fisher LSD P<0.05). There was no significant difference between the historic and 18thC 

oak (table 5.2). 

___________________________________________________________________ 

    Modern Oak  18Th C Oak  Historic Oak  
   ________________________________________________ 

Tangential Shrinkage  0.083 a  0.093 ab  0.098  b 
(heartwood) 

                  

Table 5.2: Mean tangential shrinkageof oak heartwood at different ages.  

Means followed by the same letter are not significantly different, Fisher LSD (P>0.05) 

5.2.3 Radial shrinkage of oak 

 

 Figure 5.4: The pith to bark variation in radial shrinkage of oak in different age ranges. None of 

the differences between different ages of oak samples were significant (P >0.05) 

Figure 5.4 shows that shrinkage in the radial direction was fairly constant from pith to 

bark with a very slight decrease at the bark. The difference between the different age 

ranges of oak was not significant (table 5.3), as can be seen in the P value of >0.05. 
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___________________________________________________________________ 

   Modern Oak  18Th C Oak  Historic Oak  
   ________________________________________________ 

Radial Shrinkage 0.078   0.074   0.089   

              

Table 5.3: Mean radial shrinkage of oak samples of different ages.  

There were no significant differences between the means (ANOVA P>0.05) 

The heartwood samples alone were run through one way anaylsis of variance which 

showed no significant difference in radial shrinkage between the different ages of oak 

(table 5.4). 

___________________________________________________________________ 

   Modern Oak  18Th C Oak  Historic Oak  
   ________________________________________________ 

Radial Shrinkage 0.07   0.08   0.076 
(heartwood) 
             

Table 5.4: Mean radial shrinkage of oak heartwood at different ages.  

There were no significant differences between the means (ANOVA P>0.05) 

 Sample Tangential  Radial  T/R Ratio means 

Historic 
oak 
 
 
 
 
 
 
18th C 
oak 
 

HO-15-01 0.073 0.073 1.06 

HO-15-02 0.079 0.09 1.3 

HO-15-03 0.072 0.068  1.17 

HO-15-04 0.097 0.083 0.99 

HO-15-05 0.105 0.082 0.77 

HO-18-01 0.089 0.069 0.78 

HO-18-02 0.116 0.07 0.6 

HO-18-03 0.096 0.075 0.66 

Modern 
oak 

MO-01 0.117 0.078 1.55 

MO-02 0.101 0.067 0.65 

MO-03 0.128 0.067 2.01 
 
Table 5.5: Tangential (T) and Radial (R) fractional shrinkage and T/R Ratios: means for each Oak 

sample. 

Wood in general shrinks more in the tangential direction than in the radial direction 

(Perré and Huber, 2007, Lionetto et al., 2013). The oak samples in this experiment show 
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this effect (figure 5.2). We also wanted to find out if the size of the effect was different 

between the historic and modern oak. Firstly the ratio T/R was calculated between 

tangential and radial shrinkage. 

 

Ratio T/R = (Mean Tangential Shrinkage) / (Mean Radial Shrinkage) 

 

This ratio was transformed to its natural logarithm in Microsoft Excel. An ANOVA then 

showed a significant difference in the T/R ratio between the age ranges with a highly 

significant P value of <0.001. Figure 5.5 above shows the overall difference in the T/R 

ratio in the oak age ranges.  

The Fisher test showed that the 18thC oak had a significantly lower T/R ratio than both 

modern and historic oak (Fisher LSD, P<0.05) but there was no significant difference 

between the historic and modern oak (table 5.6).   

___________________________________________________________________ 

   Modern Oak  18Th C Oak  Historic Oak  
   ________________________________________________ 

T/R Ratio  1.236 a  0.696 b  1.034  a 

              

Table 5.6: Mean T/R ratio for shrinkage of oak samples of different ages. Means followed by the 

same letter are not significantly different, Fisher LSD (P>0.05)
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Figure 5.5: The shrinkage Ratio T/R between tangential and radial shrinkage in the historic, 

18th Century and modern oak. 

5.2.4 Pine 

 

Figure 5.6: The relationship between tangential and radial shrinkage in all of the pine wood 

samples. The correlation line for the modern pine has an r value of -0.359, and the historic pine 

has an r value of -0.042  
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From figure 5.6, tangential and radial shrinkage in Scots pine were as weakly correlated 

as in oak. 

5.2.5 Tangential shrinkage of pine

 

Figure 5.7: The pith to bark variation in tangential shrinkage of pine for the different age 

ranges. 

From the scatter graph (figure 5.7) of tangential shrinkage against distance from the 

pith, there was little difference in the shrinkage pattern between the historic and 

modern samples. Both increased in shrinkage for a short distance away from the pith. 

Linear regression is a poor model for this behaviour but the regression statistics for the 

historic pith to bark samples gave a highly significant P value of <0.001 whereas the 

modern samples gave no significant increase.  The tangential shrinkage matched what is 

normally seen in softwoods where shrinkage increases outward with decreasing MFA, 

which levels off close to the bark (Leonardon et al., 2009). 

________________________________________________________ 

        Modern pine  Historic pine    
       ___________________________________ 

Tangential Shrinkage  0.066   0.071    

 

Table 5.7: Mean Tangential shrinkage of pine at different ages.  

There was no significant difference between the means (ANOVA P>0.05) 
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One way analysis of variance shows that there were no statistically significant 

differences between the age groups as in Scots pine, but figure 5.7 clearly shows the 

pattern from pith to bark.  

A second one way analysis of variance on just the heartwood showed that there was a 

difference with a very significant P value of <0.01 between the tangential shrinkage in 

the heartwood of the modern and the historic wood. 

_______________________________________________________ 

        Modern pine  Historic Pine    
       __________________________________ 

Tangential Shrinkage      0.067 a  0.027 b   
(heartwood) 
 
 
Table 5.8: Mean tangential shrinkage of pine heartwood at different ages.  

Means followed by the same letter are not significantly different, Fisher LSD (P>0.05) 

5.2.6 Radial Shrinkage of pine 

 

Figure 5.8: The pith to bark radial shrinkage of pine for the different ages of samples tested. 

Figure 5.8, radial shrinkage from pith to bark shows a different pattern from oak and 

from the tangential shrinkage. The one way analysis of variance showed that in the 

radial direction there was more shrinkage in the modern wood than the historic. Radial 

shrinkage in the historic samples decreased from pith to bark with a significant P value 
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of 0.05 and an R2 value of 0.084. The difference for modern pine was non-significant. 

From figure 5.8 it can be seen that the historic pine appears in general to shrink less in 

this direction than the modern samples. This can be seen in the ANOVA in table 5.9. 

_______________________________________________________ 

        Modern pine  Historic Pine    
       __________________________________ 

Radial Shrinkage  0.048 a  0.031 b   

 

Table 5.9: Mean radial shrinkage of pine at different ages.  

Means followed by the same letter are not significantly different, Fisher LSD (P>0.05) 

 

The pine samples showed more tangential shrinkage than radial shrinkage (figure 5.6). 

The ratio T/R between tangential and radial shrinkage was calculated. 

 

Ratio = (Mean Tangential Shrinkage) / (Mean Radial Shrinkage) 

 

The ratio was transformed to its natural logarithm using Microsoft Excel. ANOVA on the 

transformed data showed that modern pine and historic pine differed with a significant 

P value of <0.05. After running only the heartwood samples through ANOVA there was 

again a significant difference in shrinkage ratio between the historic and modern 

samples, so this was not just caused by the decay in the sapwood. Figure 5.9 shows this.  
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 Figure 5.9: The shrinkage ratio T/R between tangential and radial shrinkage in the historic and 

modern pine. 

 

Table 5.10: Tangential (T) and Radial (R) fractional shrinkage and T/R Ratios: means for each 

pine sample. 

5.3 Discussion 

 

The swelling and shrinkage of wood is still a highly researched topic and is not fully 

understood. It is complicated due to the anisotropy and anatomical structure of wood 

cells. Because wood is an anisotropic material, shrinkage is different in the three 

 Sample Tangental Radial T/R Ratio means 
Historic 
pine 

HP-15-01 0.057 0.025  0.62 

HP-15-02 0.062 0.051 0.46 

HP-15-03 0.07 0.045 0.85 

HP-15-04 0.087 0.048 0.7 

HP-15-05 0.075 0.036 0.5 

Modern 
pine 

MP-01 0.069 0.013 0.52 

MP-02 0.069 0.025 0.45 
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different directions (Piazza and Riggio, 2008, Barber and Meylan, 1964, Patera et al., 

2013, Harris and Meylan, 1965). In this chapter we tested both historic and modern 

wood in the different planes to see if there was any effect of aging on shrinkage.  

The results showed that in pine there was a difference in shrinkage with age. The 

historic pine shrank more in the tangential direction, as the samples got closer to the 

bark, than the modern pine. But the real difference between the two wood species 

appeared in the radial direction where there was a significant difference between the 

two wood ages, with the historic pine shrinking less than the modern. The ratio T/R 

between tangential and radial shrinkage was also different between the two age groups 

and this ratio was higher in the modern pine.  

From the results for the pine wood it can be seen that modern and historic pine shrink 

differently. This could be damaging when the two are used together in traditional 

repairs. If the RH environment is not controlled, it is possible for fluctuating RH to 

cause serious damage.  

Comparing only the shrinkage of the heartwood samples of the historic and modern pine 

wood, the difference was not just due to changes with age but also the damaging 

effects of biological attack making the shrinkage response worse. 

The results for the oak samples also showed a difference in shrinkage with age, 

although there is a lot of scatter. Statistical analysis showed that modern oak shrank 

less, in the tangential direction, than either the 18th C or the historic oak samples. In 

contrast to pine, oak did not show significantly different shrinkage in the radial 

direction with age. There was no noticeable increase at the sap edges of the oak, unlike 

pine. This may be due to oak being more resilient to biological attack (Carvalho et al., 

2009, Clausen, 2010). The T/R ratio was significantly different in oak but after running 

the Tukey and Fisher tests this difference was significant only for the 18th C oak, which 

may be just down to this age range having a smaller range of samples.  

The anatomical structure of wood controls its shrinkage capabilities. Different cell types 

have a different role in each different dimension. It has been observed that the length 

of the cells (Perré and Huber, 2007) as well as the density and the microfibril angle 

(Alteyrac et al., 2006) influence shrinkage. Therefore it might be suggested that the 

loss of density and its influence on the mean MFA of the residual cell wall, after 

biological attack (Faix et al., 1991, Hastrup et al., 2012, Harris and Meylan, 1965), 

might influence shrinkage. 

Ray cells and tracheids have similar cell structure but they differ in the orientation in 

which they are laid down within the xylem. Trachieds are vertical whereas rays are laid 

down horizontally, resulting in a different shrinkage pattern. The radial shrinkage in 

both pine and oak decreased towards the bark. This was more prominent in the historic 
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pine. Radial shrinkage is controlled by wood anatomy but particularly by the ray cells 

which may not be as damaged by biological attack as the tracheids (Patera et al., 2013, 

Harris and Meylan, 1965, Leonardon et al., 2009), resulting in a less dramatic change in 

shrinkage between the old and modern samples.  

No swelling and shrinkage can happen without the influence of moisture moving in and 

out of the wood polymer structure. This is what causes the dimensional changes in wood 

(Schniewind and Cal, 1968). Decay from biological attack might cause the wood to 

become more porous as the fungi and pests have eaten through the S2 layer of the walls 

leaving cavities where more water can collect. Pests also destroy the microfibrils 

(Engelund et al., 2013, Tabet and Aziz, 2013), which can have a huge effect as the 

microfibrils are the skeleton of the cells, controlling how far they can swell. From the 

results above in figure 5.2 it can be seen that at the sap edge, where there is evidence 

of pest attack, there is more shrinkage which is likely due to loss of cellulose 

microfibrils. 

The shrinkage forces acting on the wood also need to be taken into account. The 

outside of a beam equilibrates to atmospheric moisture at a different rate from the 

middle of the beam, which will shrink eventually but will take longer for equilibration, 

resulting in minor tensile forces from the swollen wood acting on the dry interior 

(Hittmeier, 1967). This might be made worse by the extra swelling in the historic wood. 

Skilled carpenters and cabinet restorers already understand that wood is a material 

which changes dimensionally under the effect of moisture.  Many will seek out seasoned 

or even historic wood to repair delicate areas, trying to avoid damage from differential 

shrinkage (Mansfield et al., 2009, Buck, 1952). Careful selection of timber with a MFA 

closer to that of the historic wood would control the amount of differential shrinkage 

within the repair (Treacy et al., 2000) especially when looking to repair Scots pine 

where the matching could be essential to the repair's success. This is a process which 

should be under consideration for traditional repairs to beams although it is unrealistic 

to get pieces of historic timber in the size often needed for these repairs; therefore 

careful consideration of new wood replacement pieces is needed to prevent differential 

shrinkage which, as seen in the results here, needs more careful selection between 

historic and modern Scots pine than in oak. It must always be remembered that even 

though the wood is hundreds of years old it still has the ability to change in dimensions.  
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Chapter 6 

Microfibril Angle (MFA) 
 

Density was once considered the most important factor in wood quality but it is not the 

only wood property that needs to be taken into account. The microfibril angle controls 

the mechanical and shrinkage properties of the wood cell walls, specifically those of the 

S2 layer which is known to determine the wood stiffness (Alteyrac et al., 2006; Krauss 

et al., 2011; Evans and Ilic, 2001; Chaffey, 2000; Burgert, and Fratzl, 2009; Paris et al., 

2010; Verrill and Kretschmann, 2011; Bjurhager et al., 2012; Stevanic and Salmén, 

2009). Both density and MFA need to be considered carefully when trying to carry out 

traditional, "like for like", repairs on historic structures. 

Microfibril angle, like other wood features, differs between softwoods and hardwoods 

due to their different anatomy. In softwoods the MFA shows wide variation, usually with 

a larger MFA at the pith and smaller towards the outside of the tree (mature wood) 

(figure 6.1). Although the MFA is larger at the pith of hardwoods there is much less 

variation (Donaldson, 2008). Work on Scots pine has shown that the variation in MFA 

from earlywood to latewood is more prominent in the mature wood of the tree (Auty et 

al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

More extensive studies have shown that MFA in conifer (softwood) trees is higher at the 

base and decreases up the tree. Unfortunately hardwoods have not been studied as 

thoroughly as softwoods. The studies that have been done show a much lower variation 

in MFA within the tree. In the few studies on hardwood species oak has been shown to 

Figure 6.1: The meaning of microfibril angle 
(Logan, 2013). 
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generally have MFA below 20° (Donaldson, 2008; Tabet and Aziz, 2013; Treacy et al., 

2000).  

Studies on the variation of MFA from latewood to earlywood have also shown a 

difference between hardwoods and softwoods. Some softwood species, such as 

lodgepole pine, show a slow decline of MFA in earlywood and steeper in latewood with 

maturity, whereas spruces and hardwoods show a similar trend but much less variation 

(Tabet and Aziz, 2013; Donaldson, 2008; Treacy et al., 2000; Mansfield et al., 2009). 

Some studies have even shown variation of MFA in one tracheid (Krauss et al., 2011; 

Khalili et al., 2001).  

All structural properties of wood are tied together in influencing the responses of many 

mechanical properties. MFA is inversely related to the longitudinal stiffness or modulus 

of elasticity (MOE) of wood (Donaldson, 2008; Ricardo et al., 2011). MFA also is said to 

be one of the controlling factors in the shrinkage of wood (Ricardo et al., 2011). Again 

this is one of the qualities which determine the value of wood for the timber industry. 

Wood cells are normally rectangular in shape although some may appear to be more 

hexagonal. The typical diameter of the whole wood cell is usually 20-80 µm (De Borst et 

al., 2013). 

The microfibril angle varies within each tree due to a number of factors such as cambial 

age, growth rate and the height to which the tree grows to, as well as genetic 

characteristics (Rusinb and Tulika, 2005; Treacy et al., 2000). 

Forestry can also influence wood properties such as MFA, which can potentially affect 

the wood’s value. The art of forestry, or silviculture, involves planting and in some 

cases thinning to provide the correct amount of space for each tree to get the required 

sunlight and nutrients needed for strong growth, as competition between trees can 

affect their growth (Adams, 2014, p. 27; Berges et al., 2008). Some experiments have 

shown that planting trees in close stands significantly reduced the microfibril angle 

(Lasserrea et al., 2009). 

Climate also has a strong impact on tree growth. Wind, precipitation and soil type can 

affect wood quality, although temperature has been suggested to affect MFA most 

(Kostiainen et al., 2009; Adams, 2014, p. 28).  

Radial growth is affected by the same ecological factors (Berges et al., 2008; Mäkinen 

et al., 2003; Čejková and Kolář, 2009), and there is a tendency for high MFA to 

correlate with high growth rate as well as cambial age (Moore et al., 2014; Auty et al., 

2012). Moore et al (2014) have found that 68% of the variation found in MFA could be 

predicted from the radial growth (ring width) variation between different trees (Moore 

et al., 2014).  This radial variation needs to be taken into account when comparing MFA 

between the historic and modern samples examined in this chapter.  
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As MFA is a very variable quality within just one single tree (Treacy et al., 2000; Moore 

et al., 2014), it is essential to understand which part of the tree has been used when 

part of a historic structure has to be replaced, and to try and make up the new piece of 

timber with mechanical properties similar to the old. 

This chapter aims to measure the MFA for the historic wood using a new quantitative 

technique derived from polarised FTIR microscopy. Most MFA testing techniques require 

extensive sample preparation and most of the instruments used are very sophisticated 

or expensive, making MFA a difficult wood property to measure (Long et al., 1999). This 

method was developed for this project to allow the MFA of the historic Scots pine and 

the modern pine to be measured, so that its contribution to the mechanical properties 

determined in Chapters 8 and 9 could be accounted for and to see if any difference 

could be detected between wood from silviculture today and wood from historic forests.  

6.1 Currently used methods 

 

There are a number of different methods for measuring the MFA of wood. Some are 

more commonly used than others; these are X-ray diffraction and microscopic methods 

such as polarized light or direct and indirect light microscopy (Khalili et al., 2001; Tabet 

and Aziz, 2013; Ricardo  et al., 2011; Barnett and Bonham, 2004). 

These methods can also be separated into groups according to how the samples are 

processed. The first group requires a single cell for measurement and the second is 

done by bulk measurements (Donaldson, 2008). 

6.1.1 Microscopy methods  

 

Under the classification of microscopy there are two main techniques used. One 

includes various methods of microscopy to visually see the MFA and record it. The other 

is polarised light microscopy (Khalili et al., 2001; Donaldson, 2008; Long et al., 1999). 

 

Light microscopy 

 

There are a number of different light microscopy methods for determining the MFA of 

wood cells. These are considered to be labor intensive techniques due to the sample 

preparation needed for light microscopy. Usually microtome thin sections around 20 µm 

(Roszyk et al., 2010) are needed for microscopy of this kind on wood. It takes skill with 

the microtome to be able to produce thin enough sections for the work required.  

Depending on the need for accuracy, the MFA can be seen by a technique called 

fracturing where the individual microfibrils themselves are not visible, but a cluster at a 
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fracture zone can be seen under the light microscope, as if it were the grain of the cell 

indicating the MFA (Khalili et al., 2001; Donaldson, 2008). Images for better accuracy in 

determining MFA can be obtained by confocal microscopy or scanning electron 

microscopy at high magnification which can reveal the microfibril bundles and make it 

possible to measure the MFA (Treacy et al., 2000; Donaldson, 2008).  

The use of both these forms of microscopy takes further sample preparation. For MFA 

measurement by confocal microscopy the samples need to be first subjected to iodine 

precipitation. The iodine crystals collect within cavities in the cell wall. This technique 

can be unreliable as not all samples react in the same way, making the crystal pattern 

patchy or preventing it from appearing at all (Donaldson, 2008; Khalili et al., 2001). 

Fluorescence microscopy techniques rely on the use of a dye such as Congo red or 

Acridine orange, as these dyes tend to become oriented with the fibrils after they have 

been absorbed. These dyes are di-fluorescent so that the direction of polarisation is 

related to the alignment of the dye (Long et al., 1999; Donaldson, 2008). 

Bordered pits  

One method to determine the MFA is from the angle of the elongated axis of the pits on 

the radial cell walls (Lehringer et al., 2009). This method is generally used under a light 

microscope and in some cases the use of computer image analysis can help to quantify 

the MFA (Roszyk et al., 2010). In some cases for studying the MFA, the cell walls have 

been delignified first and then rinsed before being separated onto a microscope slide 

for the analysis (Treacy et al., 2000). The use of pit apertures is considered to be a semi 

direct method of obtaining the MFA as the measurements taken from it might not refer 

to the average MFA, because inside the pit fields the MFA tends to be higher than 

outside (Khalili et al., 2001; Long et al., 1999). 

Soft rot 

Soft rot cavities have been used to get a better view of the MFA. Soft rot cavities are 

aligned along the S2 secondary wall layer (figure 6.2). The technique relies on this 

association. If the rot is left too long the cavities form larger voids in the cell wall. 

These are useless for the measurement of MFA so careful control is needed (Khalili et 

al., 2001; Blanchette, 1995). When using the cavity method more cavities are found in 

the latewood cell walls (Khalili et al., 2001). 
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One of the main problems with this technique is uncertainty about how closely the 

fungal hyphae follow the MFA. Another problem is that it takes much longer to prepare 

the samples, as it can take up to 14 weeks for the fungi to grow and create the cavities 

needed (Donaldson, 2008). This technique can be considered as more of a sample 

preparation to make the cavities expose the MFA, making it easier to analyse.  The 

actual measurement of the MFA is usually done in conjunction with polarised light 

microscopy, which is discussed further below (Bergander et al., 2002; Khalili et al., 

2001). 

Polarised light microscopy  

 

Using polarised light to assess the MFA is one of the earliest techniques. Birefringence is 

produced from the parallel crystalline cellulose fibrils, and can be seen by changing 

between two polarising angles (Palviainen et al., 2004; Donaldson, 2008; Page, 1969). In 

some cases this method is also used with visual assistance from image analysis and video 

or CCD camera imaging as with light microscopy (Ye et al., 1994).   

Polarised light microscopy takes advantage of the natural birefringence of cellulose 

through which cellulose fibrils of a given orientation transmit more intense light when 

the direction of the polarised light is aligned with them. To measure MFA with this 

technique a single cell wall needs to be isolated, because if the light passes through the 

opposite wall of the cell, this will cancel out the polarisation effect from the first. It 

takes careful sample preparation to remove one half of the cell, usually with skilled use 

of a microtome (Palviainen et al., 2004; Long et al., 1999; Donaldson, 2008; Leney, 

1981). Some older measurements were done by filling the cell lumen with mercury so 

that the incident light would only pass through the upper cell wall and would be 

reflected back by the mercury to give the MFA reading (Page, 1969).  

Figure 6.2: SEM view of cavities 
in wood cell walls caused by rot 
(Blanchette et al., 1985). 
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Once prepared the sample is illuminated using polarised light. The transmitted light is 

passed through an analyser crossed in orientation with the polarisation direction of the 

incident light. The fibre is rotated until the light is extinguished. The angle of the fibre 

axis at maximum extinction of the polariser is considered to be the MFA (Long et al., 

1999; Donaldson, 2008; El-Hosseinu and Page, 1973). 

There are other methods of polarised microscopy which do not require the hard task of 

singling out one fibre, but they do not take into account the effect of the S1 and S3 

layers on the final result. But all polarised microscopy needs to be done with care as the 

error from these S1 and S3 layers can lead to misinterpretation of the end result (El-

Hosseinu and Page, 1973).  

 

6.1.2 Wide angle X-ray scattering (WAXS) 

Wide angle X-ray scattering, carried out using an X-ray diffractometer (figure 6.3), has 

been commonly used to determine both MFA and the crystallinity of cellulose fibrils, 

and even in some cases to find out the shape of a cell (Bjurhager et al., 2010; Hastrup 

et al., 2012; Park et at., 2010; Sarén and Serimaa, 2006). It has been used on historic 

samples. The oak from the Vasa ship has been analysed using this method (Svedström et 

al., 2012). 

This method has the benefit of being able to measure larger samples, making sample 

preparation less labour intensive (Donaldson, 2008). It is also a very fast technique 

allowing the whole process of determining MFA to be much quicker. The major time is 

then spent in the interpretation of the data itself (Treacy et al., 2000). As well as being 

rapid due to the ability to use larger samples it is possible to test the MFA from the pith 

to bark on a sample strip of the wood provided that the samples have been cut in that 

manner (Fernandes et al., 2011; Tabet and Aziz, 2013). 

WAXS is not a direct method as the process leads to an indirect MFA from which an 

estimate of the MFA can be given with appropriate interpretation of the data (Treacy et 

al., 2000; Evans et al., 2000). The data collected by WAXS is the distribution of the 

microfibril orientation in all the cell wall layers, not an average as used in spectroscopy. 

Appropriate analysis of the data gives the MFA of the S2 layer. 
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Samples still need to be made up correctly for this method to work, but the procedure 

can be less intensive than trying to cut thin sections or isolate a single fibre cell wall. 

WAXS samples are usually prepared in strips along the radius of the tree. It is essential 

that the samples are not tilted in any way during the process as this could alter the 

result by over estimating the MFA (Evans et al., 2000; Tabet and Aziz, 2013). 

The X-ray diffraction method works by firing a monochromatic X-ray beam through the 

sample, perpendicular to the grain (figure 6.4). A diffraction pattern, oriented 

identically with the crystal structure of the cellulose, is created when the X-ray beam 

interacts with a microfibril, (Evans et al., 2000) and is then recorded by an electronic 

detector (Tabet and Aziz, 2013; Burgert, 2006). 

This method requires a type of X-ray diffractometer which is set up to use single-crystal 

not powder samples. Ideally it should have an image plate detector so that an image is 

produced directly, not reconstructed by rotating the sample. WAXS requires a great deal 

of experience for use on wood. In the UK we initially had access to one of these 

machines at the University of Bath but it unfortunately broke down, which led to the 

development of the polarised FTIR method used in this project.  

6.1.3 Silviscan 

 

The Silviscan X-ray diffractometer/densitometer is a desirable instrument for obtaining 

MFA as it not only measures this but can also record other information such as density, 

Figure 6.4: Basic view of how the 
X-ray beam records the MFA of the 
wood fibrils through diffraction 
(Burgert, 2006). 

Figure 6.3: Photograph of a XRD 
machine. 



Chapter 6 – Microfibril Angle (MFA) 

 

134 

 

and can put density and MFA together to calculate MOE (Donaldson, 2008; Downes et al 

2002). The problem with the Silviscan is there are only three in the world, as each 

instrument costs over a million pounds. The cost of getting samples run on a Silviscan 

can be tens of thousands of pounds depending on sample numbers. This amount of 

money is out of reach for many research projects. 

Apart from the amount of information that can be obtained from Silviscan 

measurements it is useful that, as with other X-ray techniques, the measurements can 

be carried out on larger samples with limited sample preparation. The sample required 

is a small strip cut tangentially to very precise dimensions, usually 2 mm thick and cut 

from pith to bark of the tree to get as much information as possible (Evans and Ilic, 

2001; Long et al., 1999; Bjurhager et al 2012). 

 

 

 

 

 

 

 

 

 

To obtain information on MFA takes around 7 seconds for a reading at one point on the 

sample strip. The machine is able to calculate the MFA from the diffraction pattern 

while moving on to collect the next diffraction pattern so it is a much quicker process 

than other X-ray methods (figure 6.5),(Evans and Ilic, 2001; Lachenbruch et al., 2010). 

The diffraction pattern recorded is analysed with software which is purposely designed 

for the Silviscan (Bjurhager et al., 2012). 

As with the other techniques for measuring MFA the Silviscan does have disadvantages. 

It can have less precision when measuring higher MFAs, due to weaker diffraction at 

high angles (Donaldson, 2008; Long et al., 1999). This can make its use on hardwoods 

such as oak a little less reliable than on softwoods. But on the whole the speed and 

overall accuracy make this a favoured technique in acquiring MFA data (Ricardo et al., 

2011; Evans et al., 2000; Alteyrac et al., 2006). 

Figure 6.5: The Silviscan X-ray beam path through 

the sample. (Auty, 2011) 
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6.1.4 Spectroscopy Methods  

 

The method used here to obtain MFA data is through polarised FTIR microscopy, but 

other forms of spectroscopy have also been used to obtain MFA. Raman and Near 

Infrared are the main two (Ji et al., 2013; Long et al., 1999; Schimleck et al., 2005; So 

et al., 2013).  

In Raman and FTIR spectroscopy, characteristic peaks appear in the spectrum caused by 

the absorption of infrared light by vibrating covalent bonds (Stevanic and Salmén, 2009; 

Fackler and Schwanninger, 2012; Long et al., 1999).The greatest absorption of the 

polarised IR beam is when its polarisation direction is geometrically parallel to the 

vibration of the bond (Altaner et al., 2014b).  The peak that is most useful in the FTIR 

spectrum is at about 1160 cm-1, and is associated with the stretching of the glycosidic C-

O-C linkage between successive glucose units in the cellulose chain (Ji et al., 2013; 

Simonović et al., 2011; Chang et al., 2014; Long et al., 1999). This is the peak that 

changes most in intensity with the orientation of the cellulose. The 1120cm-1 peak is 

considered to be less connected with orientation so that a ratio between the intensities 

of these peaks can be used to correct for variation in sample thickness. 

As well as the orientation of cellulose, polarised FTIR has been used to assess the 

orientation of the other wood polymers in relation to the cellulose microfibrils and the 

cell axis. It was discovered that in softwoods the hemicellulose chains, especially 

glucomannans, have a close link to cellulose (Simonović et al., 2011; Stevanic and 

Salmén, 2009). This is different from hardwoods as these do not contain much 

glucomannan, but they have been studied very little in comparison to softwoods 

(Donaldson, 2008). Lignin is different in many ways but was still suggested by Simonović 

t al., (2011) and Stevanic and Salmén, (2009) to have a similar orientation to the cell 

axis (Simonović et al., 2011; Stevanic and Salmén, 2009). 

Determining MFA by use of NIR, on the other hand, is claimed to work by using a 

correlation with the air dry density of the wood to determine MFA (So et al., 2013, 

Schimleck et al, 2005). They again use bulk wood samples so less precision and labour is 

need in preparing samples, using the radial- longitudinal face of the wood strips (So et 

al., 2013, Schimleck et al, 2007, Schimleck et al, 2005).  

There are disadvantages with both NIR and Raman. They are both relatively new 

techniques for determining MFA, and with NIR in particular the underlying fundamentals 

of each process have still to be found out, even whether it is in fact MFA that is being 

analysed (Schimleck et al, 2007; Schimleck et al, 2005). For Raman the sample 

preparation can be limiting, because the sample needs to be de-lignified before use to 
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prevent lignin fluorescence from interfering with the spectra (Ji et al., 2013; Long et 

al., 1999). 

6.2 Methods 

6.2.1 Polarised FTIR microscopy 

 

The currently preferred methods of determining MFA are through either the Silviscan or 

solid state XRD. Both also have a range of problems making them inaccessible to some 

research groups in the wood science field. Due to these problems the decision was made 

to develop the use of polarised FTIR microscopy to determine MFA. This method has 

been used before to determine MFA but only qualitatively (Fackler and Schwanninger, 

2012; Simonović et al., 2011; Stevanic and Salmén, 2009). In this chapter a way to 

calibrate and quantify the FTIR procedure was achieved and applied to historic timber. 

By comparison with Silviscan data for Scots pine it was then possible to calibrate the 

FTIR and gain quantitative MFA results.  

The spectra were collected using a Nicolet Nexus FTIR spectrometer attached to a 

Nicolet Continuum Microscope with an MCT detector which is cooled using liquid 

nitrogen. The Nicolet Omnic version 7,2a software was used both to control the 

spectrometer and to process the spectra. The spectrometer was set to scan 32 times 

per spectrum, with a spectral range of 800cm-1 – 4000cm-1 and spectral resolution of 2 

cm-1. Spectra were recorded through a window set at 100 µm square. The spectra were 

saved in their raw .CSV form and then further processed in Microsoft Excel. A 

Continuum ZnSe IR polariser 0045-347 was added which needed to be changed between 

45° and 135° manually to give the parallel and perpendicular polarisation angles.  

Spectra were recorded with the infrared beam passing through the polariser at two 

different angles, one parallel to the grain (Longitudinal or L) and one perpendicular to 

the grain (Transverse or T). Due to the angle at which the polariser sits in the FTIR 

microscope used, these angles were 45° and 135°.  One of the angles will have a 

greater absorbance than the other due to the alignment of the C-O-C glycosidic bonds 

with the plane of polarisation of the IR beam. The ratio is then obtained between the 

two absorbance figures. This ratio L/T depends on the MFA and is known as the dichroic 

ratio (Marchessault, 1962; Stevanic and Salmén, 2009). The 1160cm-1 peak has the 

highest dichroic ratio in the spectrum (Simonović et al., 2011; Stevanic and Salmén, 

2009; Chang et al., 2014). 

During this process the transmitted infrared beam passes through both front and back 

walls of each cell, as well as the side walls which are parallel to the beam’s path. Each 
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layer of the cell wall that the beam passes through contributes to the MFA. A calibration 

is then needed to calculate the MFA from the dichroic ratio. 

6.2.2 Sample preparation: Silviscan samples for calibration 

 

For this MFA experiment to work a calibration needed to be made using a sample set of 

Scots pine for which the MFA was already known. A set of Scots pine samples which had 

been previously analysed using the Silviscan (Auty et al., 2013) was kindly donated by Dr 

David Auty. With his permission, access was allowed to his samples to re-use them for 

our calibration.  

The Silviscan samples are prepared in a different way from those required for FTIR. 

They are strips 2mm in thickness cut longitudinally on the radial plane from pith to bark 

using precision sawing with twin circular saws. The samples were then soaked in 

acetone, three times for 24 hours to remove the extractives, and any bark was 

removed. Before use in the Silviscan the samples were conditioned to 7.8% moisture 

content by keeping them at 22°C and 40% relative humidity (RH) for 24 hours (Auty, 

2011). 

As 2 mm thickness is far too thick for use on the FTIR microscope (Evans and Ilic, 2001; 

Long et al., 1999; Bjurhager et al., 2012), the samples had to be re worked. 

Firstly the Silviscan sample was cut in half lengthwise to preserve part of the sample for 

the original Silviscan collection. As this half was then too long to be safely cut in the 

microtome, it was divided into 2.5cm sections that would fit in the microtome clamp 

giving good contact with the steel blade. This was done using a flat edge razor to avoid 

losing any of the material, as ring number is essential for the calibration to work 

correctly. Each sample was marked in order to keep it in the correct orientation from 

pith to bark. As the samples are only 2 mm in thickness they needed to be attached to 

bigger blocks of wood in ordered to be safely clamped in the microtome. These blocks 

were cut to 3 cm by 0.5 cm (figure 6.6). To allow for a good bond between the support 

blocks and the samples they were firstly oven dried to remove any moisture, then the 

Scots pine samples were bonded to the surface using Araldite epoxy resin at a hardener 

to resin ratio of 1/1. 
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Silviscan strip. Silviscan strip cut in two. 

Strip cut into sections and attached to 

block to safely fit in the microtome. 
Microtomed thin section for polarised 
FTIR microscope. 

Figure 6.6: Preparation of Silviscan samples for polarised 
FTIR. Scale bar 3 cm. Image: K Hudson-McAulay. 
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Once the resin had hardened the samples were cut on a Leica RM2255 microtome fitted 

with a solid steel blade, as the thickness of the sample must be tightly controlled 

(figure 6.7). When using wood samples on an FTIR microscope they need to be around 

half a cell thick (Roszyk et al., 2010) to obtain useable spectral data. The microtome 

was set to cut sections of 19 µm thickness, (Faix and Böttcher, 1992; Gruchow et al., 

2009; Krauss et al., 2011). With thicker samples saturation of the 1160 cm-1peak occurs 

causing the dichroic ratio to be inaccurately measured.  It is still possible to find 

spectra from latewood with too high an absorbance (above 1). Such spectra were 

removed before averaging. In the light of this the sample needs to be thin enough or the 

data produced will be unusable. Five sections from each sample were taken in case of 

uneven thickness or loss. 

 

 

 

6.2.3 Sample preparation: historic samples  

 

Samples for this experiment needed to be carefully prepared in order to gain correct 

results. Firstly samples were taken from each of the timber beam ends using scalpels in 

order to not lose too much of the material. One 5mm by 5mm cube was made from the 

pith, one from the heartwood and one from the sapwood. As the samples for FTIR need 

to be no bigger than half a cell thick for the data to be useable, samples were taken 

from this block using a microtome. The sample had to be cut along the longitudinal 

 

Figure 6.7: The Leica microtome used. The close up image shows a historic 
sample in the vice. Image: K Hudson-McAulay. 
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radial plane of the wood in order to get a clear MFA from the wood cells. The 

microtome was set up to take 19µm sections from the original block, as for the 

calibration set. Five sections of each block were taken (figure 6.8). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.3 Calibration procedure  
 
With the use of polarised FTIR microscopy (figure 6.9) is it possible to measure 

differences on a chemical level, giving a good idea of the relative abundance of the 

wood polymers as well as their orientation within the cell wall (Chang et al., 2014).  

The calibration Scots pine samples were measured from pith to bark making sure that 

each ring was accounted for. To enable good coverage of each sample a spectrum was 

taken every 0.5 mm. This spacing was measured using a vernier scale on the microscope 

stage. Three spectra were taken at each 0.5 mm point: one in normal light, one in 

polarised light at 45° and one at 135 ̊ throughout the entire length of the sample. Each 

sample was measured four times on different paths along its length to produce the large 

data set needed for a calibration.  

Each time a spectrum was taken it had to be made sure that the sample was in the 

correct position in order to get an accurate measurement of the MFA. The cells must be 

correctly aligned before taking the spectra so the reading taken will be true to the MFA, 

not affected by misalignment of the cells. 

 

Figure 6.8: Thin sections cut from the 5mm 

block of historic wood for use on the FTIR 

microscope Image: K Hudson-McAulay. 
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Figure 6.9: The FTIR microscope Image: K Hudson-McAulay. 

A total of approximately 4000 FTIR spectra were taken in non polarised, 45 °and 135° 

polarised light. The spectra were processed in Microsoft Excel where they were baseline 

corrected. This was done in Excel rather than using the Omnic software due to the large 

volume of spectra needing to be processed in exactly the same way. Full details of how 

the baseline correction was done and the equation itself can be seen in Chapter 3. After 

baseline correction, the spectra that were unclear due to the samples being too thick 

and their absorbance too high were identified using a correlation coefficient to compare 

each individual spectrum to the average of the spectra. If the correlation coefficient 

was lower than 0.95 the spectrum in question was regarded as being different from the 

rest of the results and was removed. 

 

 

 

 

 

 

 

 

 

Figure 6.10: The fingerprint region of the spectrum and the difference in absorbance of the 
1160 cm-1 peak between parallel and perpendicular polarisation. This give the MFA ratio.  
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The MFA ratio was defined as the dichroic ratio L/T for the key 1160cm-1 cellulose peak 

(figure 6.10). In both the 45° and 135° spectra the average absorbance was taken from 

1153 cm-1 to 1169 cm-1 using Excel. 

Once the average absorbances had been obtained for the 1160cm-1 peak range in both 

the 45° and 135° spectra, these were used to produce the MFA ratio using Equation 6.1: 

 

Equation 6.1 

MFA Ratio = (A45/A135) 

 

Where A45 is the average for the 1160 peak range in the 45° spectra and A135 is the 

average in the 135° spectra.  

The MFA ratios at 0.5 mm spacing from the pith to the bark were then put in order for 

the four separate runs for each sample. From this data set it is then possible to separate 

the measured spectra according to which came from each separate annual ring, 

corresponding to the data from the Silviscan.  

Once the spectral data set from each sample had been separated into rings, the data 

for each ring was averaged across the four replicate measurements to give a MFA value 

for that ring. These averages where then taken and plotted against the MFA for each 

ring from the Silviscan data (Auty et al., 2013). 

By a linear fit to the calibration graph produced in this way it was possible to develop 

the calibration equation to obtain the MFA of the historic Pine (figure 6.11).  

 

 

 

 

 

 

 

 

 

Figure 6.11: The dichroic ratios obtained with the FTIR microscope against the MFA obtained by 

the Silviscan. 
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Equation 6.2 

FTIR ratio y = 2.2778 – 0.0386x 

Where x = MFA from Silviscan 

Therefore rearranging this equation  

MFA = (2.2778 – FTIR ratio)/0.0386 

 

6.4 Testing Historic Material 

 

With the calibration being successful it was then possible to obtain a semi-quantitative 

MFA from FTIR microscopy of the historic Scots pine samples. Microtome samples were 

taken from three of the 5 mm cubes one from the pith, one from the heartwood and 

one for the sapwood. They were then run through the same procedure as the calibration 

standards, taking a spectrum in un-polarised mode and with 45 ̊ and 135 ̊ polarisation 

every 0.5 mm along each 5 mm thin section with four replicate paths. Each path was 

covering a new section of the sample allowing for good coverage of the cells. Each run 

was averaged separately and this average was then used with the average from the 

other 3 runs on the same sample to produce an overall average for the whole sample 

which was then used to calculate the final average dichroic ratio and produce the MFA.   

 

6.5 MFA determined from the dichroic ratios for Scots Pine 

 

The spectra were then processed in the same manner as for the calibration samples. 

The dichroic ratios were inserted into the calibration equation to give the estimated 

microfibril angle. 
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Figure 6.12: MFA in Historic pine sample HP-1500-1. The one way ANOVA shows that differences 
between radial positions are significant with a P value of <0.001. The Fisher test showed that all 
three positions were significantly different from each other.  

 

Figure 6.13: MFA in Historic pine sample HP-1500-2. The one way ANOVA shows that differences 
between radial positions are significant with a P value of <0.001. The Fisher test showed that all 
three positions were significantly different from each other.  
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Figure 6.14: MFA in Historic pine sample HP-1500-3. The one way ANOVA shows that differences 
between radial positions are significant with a P value of <0.001. The Fisher test showed that all 
three positions were significantly different from each other.  

 

Figure 6.15: MFA in Historic pine sample HP-1500-4. The one way analysis of variance showed 
that the differences between the radial positions were not statistically significant in this case. 
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Figure 6.16: MFA in Historic pine sample HP-1500-5. The one way ANOVA shows that differences 
between radial positions are significant with a P value of <0.001. The Fisher test showed that the 
pith was significantly different (P < 0.05) from the heartwood and sapwood, but there was no 
significant difference between the heartwood and sapwood 

 

Figure 6.17: MFA in Historic pine sample HP-1500-6. The one way ANOVA shows that differences 
between radial positions are significant with a P value of <0.001. The Fisher test showed that all 
three positions were significantly different from each other.  
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_________________________________________________________ 

MFA (degrees)  Pith  Heartwood  Bark    
  

HP-1500-1    25.2 a  7.7 b  26.5 c 

HP-1500-2  27.1 a  2.6 b  16.3 c 

HP-1500-3  26.   a  10.1 b  15.1 c 

HP-1500-4  16.2 a  20.8 a 

HP-1500-5  31.5 a  12.9 b  10.1 b 

HP-1500-6  26.5 a  11.9 b  17.4 c 

__________________________________________________________ 

Table 6.1: MFA of historic Scots pine in different radial positions. 

In each row, means followed by the same letter are not significantly different, Fisher LSD 

(P>0.05). 

 

Figure 6.18: The trend of MFA from pith to bark averaged for the collective historic Scots pine 
samples. 
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______________________________________________________________ 

   Pith      Heartwood  Sapwood   

            ____________________________________________ 

MFA        27.3 a      10.6  b  17.7   c 

______________________________________________________________ 

Table 6.2: Mean MFA of historic Scots pine in different radial positions. 

Means followed by the same letter are not significantly different, Fisher LSD (P>0.05). 

 

Figure 6.19: The trend of MFA from pith to bark in the modern Scots pine samples, obtained 
from the Silviscan data. 

_______________________________________________________________ 

   Pith      Heartwood  Sapwood   

            _____________________________________________ 

MFA        21.4 a      14.1  b  14.0   b 

_______________________________________________________________ 

Table 6.3: Mean MFA of modern Scots pine in different radial positions. 

Means followed by the same letter are not significantly different, Fisher LSD (P>0.05). 



Chapter 6 – Microfibril Angle (MFA) 

 

149 

 

Figure 6.18 shows the variation in the MFA from pith to bark in the historic wood, with 

all historic samples combined (figures 6.12-17). The highest MFA was at the pith as in 

the modern pine samples but, compared to the heartwood, there was an increase in 

MFA at the sapwood in historic pine (table 6.1). One way analysis of variance shows that 

the difference with radial position was significant. Least significant difference Fisher 

criteria (LSD with p<0.05) showed that each radial position was significantly different 

from the others. 

This did not occur in the modern pine (figure 6.19).  One way analysis of variance 

showed there was a highly significant difference with tree age but the Fisher test 

showed that the significant difference was between the pith and the heartwood (Fisher 

LSD P<0.05) and there was no significant difference between the heartwood and 

sapwood in the modern samples (table 6.3).  

The literature states that most commonly in softwoods the MFA will decrease from pith 

to bark (Evans et al., 2000; Tabet and Aziz, 2013; Moore et al., 2014). Scots pine in 

particular follows this rule (Auty et al., 2013). It can be seen in figure 6.19 that the 

results from the modern Scots pine samples also follow the changes in MFA with the 

known growth pattern.  

The results from the MFA testing of the historic wood seem to be following this trend 

until the sapwood, where the MFA greatly increased. Statistical analysis through one 

way analysis of variance and Fisher test (table 6.2) showed that this increase in MFA in 

the sapwood was statistically significant (Fisher P<0.05). This increase is not paralleled 

in the literature on modern pine. 

There are natural variations in tree growth that cause variation in MFA (Kostiainen et 

al., 2009, Adams, 2014 Berges et al., 2008, Mäkinen et al., 2003), and forest 

management techniques such as thinning have been shown to cause an increase in the 

MFA (Ulvcrona and Ulvcrona, 2011), but these increases are only a temporary (Moore, 

2011; Moore et al., 2009a) unlike the observations on the historic samples. 

This increase in MFA at the sapwood could be explained by the biological decay of the 

S2 cell wall layer by fungi. Evidence of biological attack can be seen in figure 6.20 and 

in more detail in the microscopy images in figure 6.21. 
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6.5.1 Light microscopy analysis of Scots pine samples 

 

A Leica ATC 2000 light microscope was used with objective magnification up to 100x. 

The microscope was fitted with a Nikon Coolpix 990 3.34 megapixel camera to provide 

images of the wood sections. Light microscopy can show early cell damage from 

biological decay (Anagnost, 1998).Thin sections from Chapter 2 were examined by light 

microscopy, to see if visible biological damage was present (figures 6.22-27). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.21: Published image of brown 
rot damage to wood cells. Scale bar 25 
µm (Anagnost, 1998). 

Figure 6.20: The decayed sapwood 
of the historic Scots pine Image: K 
Hudson-McAulay. 
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Figure 6.27: Sample HP-1500-6, 
showing damage from fungus. 
Scale bar 0.5 mm. Image: K 
Hudson-McAulay. 

Figure 6.22: Sample HP-1500-01, 
showing damage from fungus. 1 
mm scale bar. Image: K Hudson-
McAulay. 

Figure 6.23: Sample HP-1500-02, 
showing damage from fungus. 
Scale bar 0.5mm. Image: K 
Hudson-McAulay. 

Figure 6.24: Sample HP-1500-03, 
showing damage from fungus. Scale 
bar 1 mm. Image: K Hudson-
McAulay. 

Figure 6.25: Sample HP-1500-04, 
showing damage from fungus scale 
bar 1 mm. Image: K Hudson-
McAulay. 

Figure 6.26: Sample HP-1500-05, 
showing damage from fungus. Scale 
bar 0.5 mm. Image: K Hudson-
McAulay. 
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Brown rots are well known to cause thinning of the cell wall, starting from the S2 layer 

and working towards the middle lamella (Blanchette et al., 1985). There can be 

different patterns of cell thinning depending on the fungal species. One is known as 

general erosion where the hyphae of the fungus grow through the lumen. The other is 

known as local degradation where damage seems to be more localised to a certain spot 

in the cell wall and middle lamella (Yilgor et al., 2013). 

If the S2 layer is depleted, the FTIR spectra may be derived principally from the S1 

layer and the compound middle lamella, as these have much higher lignin content than 

the S2 layer and therefore stand up better to biological attack, especially from brown 

rots (Curling et al., 2001). The Scanning Electron Microscope image in figure 6.24 

(Blanchette et al., 1985) shows the fungus preferentially attacking the S2 wall layer, at 

higher resolution than is possible by light microscopy. 

 

 

 

 

 

 

 

 

 

With the evidence from the results of the MFA experiment and the images from the 

microscope and the literature (figure 6.28), (Yilgor et al., 2013; Blanchette et al., 1985; 

Curling et al., 2001), it can be said that the increased MFA seen in the historic samples 

is most likely due to the degradation of the S2 layer, causing the FTIR results to be 

influenced by the more disorganised microfibril orientation in the S1 and primary wall 

layers. The increase in MFA appears to be unique to historic pine sapwood as a result of 

biological decay, since it is not paralleled in modern softwoods (Evans et al., 2000; Auty 

et al., 2012; Moore et al., 2014).  

From the data in figure 6.18 and 6.19 it can be seen that generally the historic Scots 

pine had lower MFA than the modern Scots pine. This was to be expected as the historic 

samples date from the 15-1600’s. At this time pine used in construction was taken 

directly from historic forests that had been subjected to a different climate and 

different management factors. Scotland’s historic pine forests are considered to be 

semi-natural and were mostly managed for the casual extraction of timber, rather than 

Figure 6.28: SEM image of the S2 layer being destroyed by 
fungus (Blanchette et al., 1985). 
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for commercial forestry as in modern times (Edwards and Mason, 2006; Mills and Crone, 

2012). Scotland also began in import wood from Scandinavia and the Baltic regions long 

before England, and the dendrochronological data from the historic timbers tested here 

is consistent with Baltic sources as discussed in Chapter 2. In the Baltic states large 

forest areas went without much management, allowing the trees to grow to much older 

ages, producing slower grown wood of large diameter and high quality (Kisternaya and 

Kozlov, 2006; Tabet and Aziz, 2013). Although the samples tested here showed the 

modern heartwood MFA to be higher than the MFA of the historic pine, it is not difficult 

to get modern Scots pine with an MFA between 10° and 15°  (Auty et al., 2013), so that 

with careful selection of timber, problems caused by differences in MFA could be 

avoided. 

6.6 MFA determined from the dichroic ratios for Oak. 

 

Figure 6.29: The variation in MFA with radial position in Historic Oak sample HO-1500-1. The one 
way analysis of variance shows that there is no significant difference in MFA between the radial 
positions. 
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Figure 6.30: The variation in MFA with radial position in Historic Oak sample HO-1500-2. The one 
way analysis of variance shows that there is no significant difference in MFA between the radial 
positions. 

 

Figure 6.31: The variation in MFA with radial position in Historic Oak sample HO-1500-3. The one 
way analysis of variance shows that there is no significant difference in MFA between the radial 
positions. 
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Figure 6.32: The variation in MFA with radial position in Historic Oak sample HO-1500-4. The one 
way analysis of variance shows that there is no significant difference in MFA between the radial 
positions. 

 

Figure 6.33: The variation in MFA with radial position in Historic Oak sample HO-1500-5. The one 
way analysis of variance shows that there is no significant difference in MFA between the radial 
positions. 
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Figure 6.34: The variation in MFA with radial position in Historic Oak sample HO-1500-6. The one 
way analysis of variance shows that there is no significant difference in MFA between the radial 
positions. 

______________________________________________________ 

MFA (degrees)  Pith       Heartwood Bark      

 

HO-1500-1  42  27.4   29.8 

HO-1500-2  40.9  44.7  42.5 

HO-1500-3  40.8  20.8  40.4 

HO-1500-4  47.4  40.8  40 

HO-1500-5  42.3  41.1  37.2 

HO-1500-6  38.5  29.9  22.5 

______________________________________________________ 

Table 6.4: MFA of historic oak in different radial positions. 

There were no significant differences between the radial positions for any of the oak samples 

(ANOVA P>0.05). 
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Figure 6.35: The MFA at different radial positions in Oak, averaged across the historic samples. 
One way analysis of variance showed that there was no significant difference in MFA between 
pith, heartwood and sapwood. 

_______________________________________________________________ 

   Pith      Heartwood  Sapwood   
            _____________________________________________ 

MFA   38.6       34.5  38.4 

_______________________________________________________________ 

Table 6.5: Mean MFA of historic oak in different radial positions. 

There were no significant differences between the means (ANOVA P>0.05). 

 

Figure 6.35 shows that there was no significant variation in the MFA of oak with radial 

position (table 6.4). Although the normal tendency in oak is towards little variation in 

MFA with radial position, it is usually slightly higher at the pith (table 6.5).  

Due to the calibration being set for using Scots pine, its use with oak was only semi 

quantitative. As mentioned before hardwoods have not been as widely studied as 

softwoods (Donaldson, 2008) so it was not possible to obtain any Silviscan samples that 
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could be used, destructively, for FTIR calibration. Although the calibration was only 

semi quantitative and the measured dichroic ratios are a little high, the results fit with 

the literature in showing that there was very little pith to bark variation of MFA in oak 

(Tabet and Aziz, 2013; Donaldson, 2008; Treacy et al., 2000; Mansfield et al., 2009). 

Unlike the historic pine sample the historic oak sample showed no significant increase of 

the MFA at the sap edge (figures 6.29-34), showing that the biological decay of the 

historic oak was not as severe. Oak is known to have better defences against biological 

attack due to increased level of extractives (Bader et al., 2012; Ridout, 2000, p.15). 

The MFA results published on oak are not without problems, due to the fact that most 

have been taken from the Vasa ship and the polyethylene glycol (PEG) treatment 

previously carried out on the wood had to be reversed before the samples were run on 

the Silviscan, so some interference from this treatment may still be present in the wood 

samples (Bjurhager et al., 2010). 

Microfibril angle, like other wood features, differs between softwood and hardwoods 

due to their different anatomy. In softwoods the MFA has wide variation with usually a 

larger MFA at the pith and smaller in the heartwood (mature wood) whereas even 

though the MFA is larger at the pith of hardwoods there is much less variation 

(Donaldson, 2008). This can be seen clearly form the results obtained (figure 6.31) from 

the wood tested in this experiment.  

6.8 Discussion 

 

From the MFA experiment done within this research, there was a difference in MFA 

between historic and modern pine. This had nothing to do with the age of the samples, 

but was partly the result of how the trees were grown and partly due to decay. 

MFA is of importance to the timber industry as it is a factor in wood quality. This topic 

has been well investigated for softwoods but little work has been done at that level on 

hardwoods (Donaldson, 2008). There is very little literature on MFA of historic oak 

except what was once part of the Vasa ship with the added issue of the influence of the 

PEG treatment. The limited variation within the tree found in this research matches 

what is known about hardwoods (Tabet and Aziz, 2013; Donaldson, 2008; Treacy et al., 

2000; Mansfield et al., 2009). There seemed to be little difference between the modern 

and historic oak. This may be due to the calibration being artificially high so that the 

difference may not be as clearly seen. The increased MFA in the historic pine sapwood is 

unlike the modern pine where the MFA in higher at the pith then falls in mature wood 

(Evans et al., 2000; Auty et al., 2012). The increased MFA observed in the sapwood is 

believed to be a result of biological decay, from the evidence in the literature of the 
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preferred fungal decay of the S2 layer (Yilgor et al., 2013; Blanchette et al., 1985; 

Curling et al., 2001). 

All wood properties are interlinked and MFA, in sound wood, can be a good indicator of 

not only stiffness but also shrinkage (Treacy et al., 2000). This quality has been 

previously discussed in Chapter 4. The modulus of elasticity (MOE) and MFA are also 

strongly linked which can make it possible to predict the MOE from the MFA and density, 

as in the Silviscan analysis (Alteyrac et al., 2006).  

MFA is an important factor in the use of wood for a variety of reasons and should be 

considered prior to timber repairs in the conservation world, although at present testing 

for MFA is not possible in situ. Only a small sample is needed but sampling is necessarily 

destructive. It is a key principle for the success of any repairs to wood, whether a 

beam, picture frame or sculpture, that the MFA should be matched to the original wood 

by one means or another. This will be discussed further in Chapters 12 and 13.
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Chapter 7  

Density 

 

Density of conventional solids is mass per unit volume (Unger et al., 2001, p.32; Decoux 

et al., 2004). In this thesis density is referred to as the mass at a given moisture content 

/ volume at the same moisture content. Normally density is considered to be the oven-

dry mass / volume at current moisture content and basic density refers to the oven-dry 

mass / green volume, this being the volume above the fibre saturation point. The 

density of wood depends on the mass of the cell walls and the middle lamella, and will 

therefore depend on the thickness of the cell walls and the size and shape of the wood 

cells (Roszyk et al., 2010; Decoux et al., 2004; Vavrčík et al., 2009; Leal et al., 2011). 

As density is a key property influencing the mechanical performance of wood it is 

important that the density for the samples used here was measured, not only to assess 

if there were changes in density with age, but also to account for density when 

assessing other properties as it will have an impact on how these are calculated (Evans 

and Ilic, 2001; Müller et al., 2002; Anjos et al., 2008). Density can also be used to 

predict some wood properties such as strength (Aydin, 2007).  

The density of wood and biomass is not just important to the heritage and construction 

world but it is also key in the biofuel, paper and wood fibre industries. As a result wood 

density has been heavily researched as it affects the final product quality produced 

from these industries (Auty et al., 2014; Repola 2006; Hannrup et al., 1998; Machado et 

al., 2014; Roszyk et al., 2010).  

Variation in density has an impact on the mechanical properties of each piece of wood 

and has a direct, linear effect on modulus of elasticity (MOE). Therefore density should 

always been taken in account when trying to determine the MOE of wood, as well as the 

MFA. The two together control wood stiffness. Density and MFA are determined at the 

same time by the Silviscan instrument, which uses both measurements to predict the 

MOE (Evans and Ilic, 2001; Auty et al., 2014; Machado et al., 2014; Hein et al., 2013). 

The tensile strength of wood has been commonly predicted as a combination of these 

two properties and the analysis has shown that these vary between early and latewood. 

Earlywood is laid down during fast growth in spring; therefore the cells have a wider 

lumen and less cell wall material making them less dense, whereas latewood has a 

smaller lumen and thicker cell walls making this denser (Taylor and Franklin, 2014).     
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Wood density and all other wood properties are interlinked and density is one of the 

most important wood properties for the correct utilisation of timber (Vavrčík et al., 

2009; Auty et al., 2014; Farruggia and Perré, 2000). That is why this chapter is 

concerned with finding out the density of historic wood in relation to modern wood to 

see if, and how, this property is affected by age. 

 7.1 Experiment 

 

7.1.1 Sample preparation  

 

The samples were produced from the beam ends described in Chapter 2. To get 

representative data for the density throughout the beam ends 5mm cubes were cut 

from pith to bark using a single edged razor blade to avoid losing too much material 

between the cubes. This allowed accurate determination of how density changes 

throughout each beam end; as well as allowing good comparison to the modern samples. 

7.1.2 Procedure 

 

There are different ways to measure wood density. One of the most accurate is the 

Silviscan which uses x-ray densitometry to gauge the density of each ring (Bergsten et 

al., 2001; Knapic et al., 2007; Mansfield et al., 2009; Rinn et al., 1996). This technique 

is very expensive and due to this is out of reach for many researchers. Another method 

is the use of the Itrax wood scanner which also works using x-ray densitometry. As with 

the Silviscan, the Itrax requires a very strictly dimensioned 2mm thick sample strip to 

be prepared and this was not possible on the historic material. The most common way 

to measure density, and the one used here in this chapter, is by measuring mass and 

volume on small cubes of oven dried wood (Unger et al., 2001, p. 33; Buck, 1952; 

Korkut and Guller, 2008). This is the most appropriate estimate of the true density of 

wood and is used to calibrate x-ray methods (Decoux et al., 2004; Unger et al., 2001, 

p.157; Hannrup et al., 1998). 

The oven-dry density was measured by placing the cut samples into a fan oven at 110 ̊ C 

and leaving them to dry for 4 hours. Once all the moisture was driven from the samples 

they were taken out of the oven and put directly into a dry, sealed environment 

chamber containing silica gel to prevent them from picking up any moisture from the 

atmosphere. As they are small samples moisture uptake would have occurred rapidly 

without this step. 
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Each sample was then weighed on a four-figure balance to 0.1 mg accuracy and was 

measured using digital callipers reading to 0.01 mm to determine the oven dried volume 

of each cube. 

7.2 Results 

 

Once the samples were weighed and measured, the oven dried density was obtained 

using equation 7.1 to get the oven dried volume: 

Equation 7.1 

 

V=H*W*D  

 

Where V is volume (mm3), H is the height (mm) of the sample, W the width (mm) and D 

the depth (mm).  

This was then used in the equation 7.2 below to obtain the oven dried density of the 

samples. 

 

Equation 7.2 

 

 

ρ = (W/ (V/1000)) 

 

 

Where ρ is the density (mg/mm3), W is the oven dried weight (mg) of the sample and V 

is the volume (cm3) of the samples.  

Once the density of the samples is known it can be used to compare the historic wood 

samples to their modern counterparts. 
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7.2.1 Oak 

 

Figure 7.1: Mean density of the different ages of the oak samples. 

 

Figure 7.2: Variation in density from pith to bark of the different ages of oak. 
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___________________________________________________________________ 

   Historic Oak  18th C Oak  Modern Oak  
   ________________________________________________ 

Denisty  0.622   0.614   0.639 

 

Table 7.1: Mean density of oak samples of different ages. 

There were no significant differences between the means (ANOVA P>0.05).  

The density results were run through a one way analysis of variance (table 7.1). This 

showed that there was no statistically significant difference between the different ages 

of oak tested, as can be seen in figure 7.1 above.  These results were then put into a 

regression model which showed that in the 15th Century and 18th Century oak samples, 

densities are higher at the pith and get lower towards the sapwood (figure 7.2). Oak is 

known to decrease in density towards the sapwood but there can also be naturally 

varying density within each tree (Knapic et al., 2007).  The regression model does not 

fit perfectly due to the data showing a kinked line, but the P value for the slope of the 

regression line for the historic oak is highly significant at <0.001 which means that 

density decreased with maturity. Many of the historic oak samples dropped in density at 

the bark edge. This was most likely due to loss of mass through pest infestation. The 

slope of the regression line for the 18th C oak has a significant P value of <0.05, but this 

may be just the density levelling out from the high values at the pith. The modern 

counterpart has a fairly even density throughout as it has not suffered any damage 

through biological attack. The slope of the regression is significant (P = <0.05) due to 

the slightly increased density in the mature wood.  

Generally the biological decay of wood is confined to the bark and sapwood. This can 

been seen clearly in figure 7.3 below, which shows the sudden drop in density at the 

outer end where mass loss has occurred due to biological attack. Pest infestation is 

easily observed but the extent of damage caused by fungi is not, due to their ability to 

selectively break down wood polymers in the S2 cell wall layer through the use of 

enzymes.  
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Figure 7.3: Variation in the density of historic oak from pith to bark. 

_______________________________________________ 

   Heartwood  Sapwood     
   ____________________________ 

Density  0.713 a  0.617 b 

___________________________________________________ 

Table 7.2: Difference of mean densitybetween the heartwood and sapwood.  

Means followed by the same letter are not significantly different, Fisher LSD (P>0.05). 

A t-test was then run to compare the density of the heartwood and the sapwood, as 

figure 7.3 shows a drop in density in the sapwood, attributed to pest action. The t-test 

showed that the difference had a highly significant P value of <0.001. 
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7.2.2 Pine 

 

Figure 7.4: Variation in density from pith to bark of the different ages of Scots pine. 

___________________________________________________ 

   Historic Pine  Modern pine     
   ________________________________ 

Density  0.41 a   0.44 b    

___________________________________________________ 

Table 7.3: Mean density of pine samples of different ages.  

Means followed by the same letter are not significantly different, Fisher LSD (P>0.05). 

The density data from the historic and modern pine samples were compared in a t-test 

giving a higly significant P value of <0.001. This shows a more significant difference in 

density between the modern and historic pine than between modern and historic oak 

(table 7.3). Plotting the density from pith to bark in figure 7.4, it appears that the 

density of the historic pine gets slightly lower towards the bark. The P value from this 

regression line shows that this trend was not significant in either the historic or the 

modern samples. As linear regression does not detect slopes if the trend line has a kink 

like the one at the end of this graph, the test is not rigorous. The graph does show that 

the modern samples have more uniform density, which is generally higher than in the 

majority of the historic pine samples. A second t-test on the heartwood samples alone 

showed that there was no significant difference between the historic and modern 
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samples (table 7.4). Therefore the difference is most likely due to the mass loss from 

the pest infestation seen at the bark end in the historic Scots pine. All the modern pine 

samples were slightly higher in density than the historic pine samples but there was 

considerable tree to tree variation in the historic samples. 

________________________________________________ 

   Heartwood  Sapwood     
   _____________________________ 

Density  0.713   0.617  

_____________________________________________________ 

Table 7.4: Mean density of pine heartwood and sapwood. 

There was no significant difference between the means (ANOVA P>0.05).  

7.3 Using density to reveal decay.  

 

Pest damage on the historic sample can be easily detected visually. The tunnels left by 

the pest will obviously reduce the density of the sample. Discovering fungal decay 

within a historic building is extremely difficult without seeing visual signs of the fruiting 

bodies of the fungus, but by that time the wood will have been severely weakened 

(Unger et al., 2001, p. 150; Ridout, 2000, p. 90; Desch and Dinwoodie, 1996, p. 238). 

Only under laboratory conditions can incipient decay be discovered. Traditionally this is 

done using density, as biological decay causes mass loss (Bader et al., 2012; Brites et 

al., 2013; Curling et al., 2001). Microscopy is also commonly used to detect fungi but 

this is unreliable for accurate detection of decay as it only gives a qualitative pattern 

rather than any form of quantitative measurement (Gelbrich et al., 2008; Clausen, 

2010; Pandey and Pitman, 2003 ; Gelbrich et al., 2012).  
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7.3.1 Pine 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5: The loss in density of HP-15-1 matching the image of the biological decay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: The loss in density of HP-15-2 matching the image of the biological decay. 
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Figure 7.7: The loss in density of HP-15-3 in some areas without visible sign of 
biological decay. 

Figure 7.8: The loss in density of HP-15-4 matching the image of the biological decay. 
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7.3.2 Oak 
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Figure 7.9: The loss in density of HP-15-5 matching the image of the biological decay. 

Figure 7.10: The loss in density of HO-15-1, without visible sign of biological decay. 
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Figure 7.11: The loss in density of HO-15-2, without visible sign of biological decay. 

 

Figure 7.12: The loss in density of HO-15-3, without visible sign of biological decay. 
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Although the results from the density show mass loss in both the historic pine (figures 

7.5-9) and oak (figure 10-14), associated with both visible pest infestation and non 

visible fungal decay, mass loss is considered to be an inefficient way to detect incipient 

decay. Once mass loss has occurred significant loss of strength has already occurred 

(Bader et al., 2012; Brites et al., 2013; Curling et al., 2001). This can be seen in figure 

8.4 where the loss in MOE is occurring well before loss of density can be seen in figure 

7.3. There are currently more accurate methods for detecting the first signs of decay, 

one of which is with the use of ultrasonics in which differences in wave speed can be 
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Figure 7.13: The loss in density of HO-15-4, the only historic oak sample containing visible 
pest decay. 

Figure 7.14: The loss in density of HO-15-4, without visible sign of biological decay. 
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used for the early detection of loss in stiffness due to decay (Reinprecht and Hibký, 

2011; Ross and Pellerin, 1993).  

 7.4 Using Density and MFA to estimate the MOE of Scots pine 

 

As the major properties of wood are interlinked it should be possible to calculate the 

modulus of elasticity (MOE) of a wood sample from its density and microfibril angle 

(MFA), if both are obtainable. Both density and MFA in their own right influence the 

mechanical properties of wood. Together they comprise most of the information 

necessary to predict wood stiffness (Hein and Lima, 2012). 

The direction of the microfibrils strongly influences the stiffness of the cell wall, in 

particular the S2 layer which contains most of the cell-wall mass and where the 

microfibril angle (MFA) is defined (Cave and Hutt, 1968; Roszyk et al., 2010). The 

stiffness along the microfibrils of the cell wall is closely related to the stiffness of 

cellulose itself (Barnett and Bonham, 2004). When the microfibrils are at an angle (the 

MFA) to the grain and the stress, however, the stiffness of the wood is more complex 

than would be simply calculated by geometry (Wagner et al., 2013; Tabet and Aziz, 

2013; Cave and Hutt, 1968).  

The density has a simpler relationship to stiffness as it specifies how much cell wall 

mass there is within a volume of wood (Unger et al., 2001, p. 37; Decoux et al., 2004; 

Vavrčík et al., 2009). The natural variation in both density and MFA within the cell wall 

is inconsistent as the tree grows. There is no strong correlation between density and 

MFA (Yang and Evans, 2003; Treacy et al., 2000; Roszyk et al., 2010).  

MOE is routinely determined by the Silviscan wood scanner (McLean et al., 2010; Cown 

et al., 2005; Downes et al., 2002) but this is done directly from the X-ray diffraction 

patterns, not by the use of density and MFA, although these are calculated separately 

from the same diffraction patterns (Alteyrac et al., 2006; Hein et al., 2012; Evans and 

Ilic, 2001; McLean et al., 2010). A number of different equations have been described to 

utilize the data the Silviscan obtains, although the exact calculations used by the 

Silviscan in routine commercial operation are not published. Silviscan data were used 

here to help calibrate the estimation of the MOE of Scots pine from density and MFA. 

The data set used for this calibration was the same data set as was used in the original 

MFA calibration in Chapter 6, and was kindly provided by Dr David Auty.  

 
7.4.1 Calibration   

There are a few different equations in the literature for determining the MOE from 

Silviscan data (Evans and Ilic, 2001; McLean et al., 2010), but these would have required 
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data measured directly on historic samples with the Silviscan rather than modern Scots 

pine, and these data could not be obtained for this project.   

Equation 1 was taken from a D/MFA graph published by Hein, et al (2013). Their data 

were for Eucalyptus, therefore the Slope (0.20) and the Intercept (0.43) would be 

incorrect for Scots pine.   

Equation 1 

EL (GPa) = 0.20 *ρ/MFA + 0.43  

 

In the notation of Hein et al (2013).  EL is equal to the MOE and ρ is the universal symbol 

for density.  

Equation 1 works on the principle that stiffness is directly proportional to density, as 

would be expected and that it is also inversely proportional to MFA. Thus a linear 

relationship with D/MFA is expected 

This can be set out as in Equation 2 below, where the notation has been changed to be 

in keeping with the rest of this thesis.  

Equation 2 

MOE = k1D/MFA + k2 

Where k1 and k2 are constants and D is density. 

To adapt Equation 2 to work for Scots pine the slope k1 and the intercept k2 of the 

relationship between MOE and D/MFA need to be determined. This was done using the 

Silviscan data for modern Scots pine samples for density, MFA and MOE; available from 

the data given by Dr David Auty which can be found in Auty (2013). This can then be 

used to construct Equation 3 and applied to the historic samples. 

The Silviscan data is plotted in figure 7.15 below: 
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Figure 7.15: The relationship between MOE and D/MFA for the Scots pine samples measured by 

Silviscan. 

 

Equation 3 

MOE= 0.3 * D/MFA + 2.2 

 

Where MOE is the modulus of elasticity, 0.3 is the slope k1 taken from figure 7.15, D is 

the density, MFA is the microfibril angle and 2.2 is the intercept k2 again taken from 

figure 7.15. This equation was then used on the historic samples, taking the density and 

MFA from the measurements on the historic samples and using the slope and intercept 

from the Silviscan calibration.  

7.4.2 Results 

The results below show the variation in predicted MOE for each of the historic samples 

from pith to sapwood. 
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Figure 7.16: The MOE at different radial positions in historic Scots pine sample 1500-1. 

  

Figure 7.17: The MOE at different radial positions in historic Scots pine sample 1500-2. 
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Figure 7.18: The MOE at different radial positions in historic Scots pine sample 1500-3. 

 

Figure 7.19: The MOE at different radial positions in historic Scots pine sample 1500-4. 
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Figure 7.20: The MOE at different radial positions in historic Scots pine sample 1500-5. 

 

Figure 7.21: The MOE at different radial positions in historic Scots pine sample 1500-6. 

From figure 7.16 to 7.21, the MOE for the pith and heartwood of most of the historic 

pine samples are within the range of MOE seen in good quality modern Scots pine. This 

excludes sample HP-15-2 which has a recorded MOE that is exceptionally high (figure 

7.17). This is due to the very low measurement for the MFA for this sample, which was 

beyond the range of the Silviscan calibration. This may have caused the MOE for this 

sample to be overestimated, as going beyond the calibration range can introduce 

considerable uncertainties. The uncertainties are due to there being no assurance that 

beyond the range of the calibration the relationship is still a straight line. If it curves, 

this will result in over-estimation of the MOE.  
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The historic Scots pine also, in general, shows a lower MOE at the pith than in the 

heartwood, as is found in modern Scots pine. As can be seen from figure 7.16, 7.17, 

7.18, 7.19 and 7.21 (figure 7.20 is the exception), the majority of the historic Scots pine 

samples have been predicted to drop in MOE at the sapwood. 

The drop in the MOE of the historic pine sapwood is not normally seen in modern Scots 

pine, which in general increases in MOE towards the bark edge (Wagner et al., 2013; 

Auty et al., 2012; McLean et al., 2010; Moore et al., 2009b; Cowdrey and Preston, 

1966). This difference may correspond to fungal damage in the sapwood which has 

caused the predicted MFA to increase through loss of the S2 cell wall layer as described 

in Chapter 6. The MFA used is being obtained from other cell wall layers which have a 

more disordered microfibril orientation and may be having a much smaller effect on the 

longitudinal stiffness.  

The calculation of the MOE as described here is certainly not enough for the accurate 

prediction of MOE for historic Scots pine. Lower MOE is expected in decayed timber, but 

although Sample 1500-5 (figure 7.20), suffered from decay through pest infestation 

which is clearly visible in figure 7.22, a drop in MOE was not detected using this method 

of obtaining MOE. Also the MOE given for the sample 1500-06 in figure 21 is much higher 

than would be expected with the level of pest infestation seen in the sapwood of this 

beam end in figure 7.22. The presence of pest holes is erratic and if they are distributed 

over the sample they could induce large random errors in the measurement of density 

and the calculation of MOE. This is consistent with the theory that while fungal decay 

destroys the S2 layer affecting the average MFA, pests leave nothing behind so that the 

MFA recorded is from unaffected neighbouring cells. Figure 7.23 shows no apparent 

decay by pests, yet figure 7.21 has the same drop in MOE at the sapwood showing that 

even though fungal decay may not be visible it can still be doing considerable damage 

to the sapwood.  

 

 

 

 

 

 

 

 
Figure 7.22: Image of pest infestation 
on sample 1500-05 Image: K Hudson-
McAulay. 
 

Figure 7.23: Image of sample 
1500-06 with no pest infestation 
present Image: K Hudson-McAulay. 
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7.5 Discussion  

 

From the results it can be seen that in both historic pine and oak there was a decrease 

in density towards the bark. Although a decrease in density towards the bark is usually 

seen in oak, due to it being a ring porous hardwood, it is not normally as steep and, in 

this case, can to some extent be accounted for by mass loss due to biological attack 

(Unger et al., 2001, p. 157; Sousa et al., 2014). 

Pest infestation will cause other forms of weakness in the mechanical properties of 

wood and there have been reports of loss of strength towards the outside of the beam 

where biological attack has taken place (Grabner and Kotlinova, 2008). The mechanical 

properties of timber may change with age and in addition, how loss of density due to 

pest infestation weakens timber will be discussed further in Chapter 11. But further 

damage from fungal attack could weaken the wood and be less easily visible through 

loss of density. Fungal enzymes cutting the cellulose chains may degrade mechanical 

properties but this will not be as easily seen on the surface, as is discussed further in 

Chapter 11.  

Although the results show that both species of historic wood decreased in density from 

pith to bark, the significance of the difference with age was not as strong in oak. This 

may be due to the large variation in density naturally found within each tree, and the 

quality of the wood, especially the latewood, of each tree (Machado et al., 2014; 

Dutilleul et al, 1998; Vavrčík et al., 2009; Zhang 1993; Krauss et at., 2011). Density 

depends largely on how the trees were grown, their genetics and their ages. The 

historic wooden beams came from trees that were grown in historic forests, grew slower 

and were felled at a much greater age, whereas today trees are produced by careful 

silviculture to maximise wood yields (Cown et al., 2005; Gryc et al., 2011; Gapare et 

al., 2012; Guilley et al., 2004; Hannrup et al., 1998; Berges et al., 2008; Mather and 

Savill, 1994). 

Many things in a tree's growth can also affect its density, such as the ratio of juvenile to 

mature wood and the frequency of knots. This again emphasises the need for careful 

selection of wood for repair work to historic timbers (Beaulieu et al., 2006; Lasserre et 

al., 2009). In the case of some wood species such as beech, density and other quality 

characteristics have not been studied as closely and need to be more carefully 

considered when sourcing replacement material for traditional repairs (Bouriaud t al., 

2003). 

The aim of this chapter was not only to compare the density of the historic and modern 

wood but also to look at density as a key factor influencing many other properties 

(Knapic et al., 2007; Vavrčík et al., 2009; Korkut and Guller, 2008). It is already well 
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known that density alone cannot explain the mechanical behaviour of wood (Hein et al., 

2013), but it works in conjunction with the microfibril angle of the cellulose fibres to 

give the wood its stiffness (Treacy et al., 2000). Therefore density will also be 

important for correctly determining many of the other wood properties throughout this 

research.  

The methods used here for measuring both density and MFA are destructive. However in 

some cases it may be worth sacrificing the small amount of historic timber needed for 

the test to provide a more accurate match between new and old wood in traditional 

repairs. This would be unnecessary for every timber but for the main structural beams, 

the closer it is possible to match the current timber the more success the repair will 

have in prolonging the life of the building.  
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Chapter 8 

3-point Bend Testing 
 

Longitudinal stiffness, more accurately described as the longitudinal modulus of 

elasticity (MOE), is one of the most important qualities of wood and is greatly desired 

for wood in modern buildings. The longitudinal MOE (longitudinal Young's modulus) is 

important for wood in historic buildings to continue to meet the building regulations in 

place to determine their safety, because it is required for all calculations of load-

bearing capacity in structural members.  

Longitudinal stiffness is controlled by a combination of density and microfibril angle 

(MFA) (Evans and Ilic, 2001; Koponen and Virta, 2004; Bjurhager et al., 2012). Bending 

tests actually expose the beam at the same time to different types of stress, which all 

contribute to its MOE. With a downward load, the top part of a beam is under 

compression stress whereas the bottom part is under tensile stress. These tensile and 

compressive stresses cause a band of shear stress running through the middle of the 

beam. Shear stress running parallel to the grain, such as this, is known as horizontal 

shear (Varner et al., 2012). The structural characteristics of the wood affect its 

longitudinal bending stiffness just as they affect the other mechanical properties of 

wood. These characteristics are to do with the anatomy of wood whilst the tree is 

growing, such as ring width, cell structure, density and the proportion of latewood to 

earlywood (Alteyrac et al., 2006). 

During deformation of wood the load is carried principally by the cellulose microfibrils. 

Therefore the elastic (reversible) stiffness is dependent on the angle at which the 

microfibrils are laid down, relative to the axis of the wood. This is known as the 

microfibril angle. As discussed in Chapter 6 microfibril angle has a huge effect on the 

mechanical properties of wood. MFA particularly affects the stiffness of wood. Wood 

will always be stiffer in the direction of the microfibrils than in the transverse direction 

(Kärenlampi et al., 2003). This often dictates the design of timber structures as stiffness 

properties are critical to how the wood is used in the design (Varner et al., 2012). Any 

change in stiffness from old wood to new within a splice or joint will have a critical 

effect on its success. 

The MFA in the wood of a sapling is large, to allow the young tree to flex. As the tree 

grows the MFA becomes smaller to allow the mature wood to be stiff against the wind. 

This affects the mechanical properties found throughout the tree and results in varying 
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properties within a piece of timber, with less stiffness at the central pith and more 

stiffness in the older wood immediately under the bark (Altaner and Jarvis, 2008). 

Although wood is an elastic material, the tensile behaviour  of isolated single wood cells 

is not wholly elastic, but has been shown to involve an irreversible ‘molecular velcro’ 

effect above its yield stress, as it does not show any loss of strength on elongation. A 

single cell can actually stretch further than wood without fracturing. The hemicellulose 

polymers are responsible for this molecular ‘velcro’ effect by detaching, one hydrogen 

bond at a time from a microfibril, allowing it to slide further without failure and then to 

reattach once the strain has stabilised (Altaner and Jarivs, 2008). Alternatively plastic 

(irreversible) deformation may be caused by shearing of the hemicellulose and lignin 

matrix between the microfibrils leading to viscous flowing of the matrix material 

(Keckes et al., 2003; Fratzl et al., 2004; Bjurhager et al., 2010; Bjurhager et al., 2012).  

The modulus of pure, crystalline cellulose fibres has been estimated at 134 GPa 

(Burgert, 2006) but this figure, often quoted in the literature, is too high for wood 

cellulose. It relates to crystalline cellulose which comprises less than 50% of all wood 

cellulose (Thomas et al., 2014). The matrix polymers only have MOE of around 40 MPa 

for hemicellulose and possibly about 2GPa for lignin, demonstrating again that wood 

stiffness is derived from the cellulose microfibrils (Burgert, 2006). Through FTIR 

experiments cellulose has been shown to have a more elastic response than the other 

wood polymers when measured by stretching the links between the glucose rings 

(Altaner et al., 2014a; Hinterstoisser et al., 2000). 

The stress strain graph for wood shows an initial steep slope after the slack has been 

taken up. After the initial steep linear phase, the wood breaks or goes into permanent 

plastic deformation where the strain flattens out. With increasing load applied beyond 

this yield point, damage is caused to the material (Burgert, 2006; Lipovszky and 

Raczkowski, 1971; Schneeweiß and Felber, 2013). 

Tensile testing of wood is more difficult than for materials like metals, because of 

practical problems in attaching the ends of the sample without weaknesses due to 

splitting or crushing. Bending tests avoid these problems. 

Within the literature there are different ways to carry out bending tests on wood. These 

include 3-point bending, 4 point bending and central loading tests (Schneeweiß and 

Felber, 2013). Bend testing measures the stiffness of wood using an adapted tensile 

testing machine.  

It is common to calculate the tensile stiffness from the results of a three-point bending 

test neglecting the shear component and assuming that the tensile and compression 

moduli are equal. The result is often expressed as the Young’s modulus, meaning the 

elastic stiffness. Elastic properties are measured at low stress levels applied to the 
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wood, which can completely recover once the load has been removed. If the wood has 

been loaded to higher stress level the elastic limit is exceeded. The sample then moves 

into plastic deformation, after which samples cannot recover fully and cannot be re-

tested. Finally it leads to wood failure (Kretschmann, 2010; Green, 2001).   

One of the important things in 3-point bend testing is to make sure that the sample is 

aligned in a fixed direction when tested, as the cell-wall structure of wood changes 

between the radial and tangential directions (Green, 2001).  

Bending stiffness is a much needed property in timber. In structural design, new or old 

beam sizes are calculated based on the stiffness and strength of the wood in question. If 

a beam has inadequate stiffness for its span it could bend so far as to allow the ends to 

come out of their recesses in the walls, whereas lack of strength in a beam could result 

in it breaking in the middle (Kuilen, 2006; Yeomans, 2003). A new piece spliced onto the 

end of a beam needs to meet the same stiffness requirement as the existing member 

(Divos et al., 1998).The aim is to produce a new joint which has similar stiffness to the 

one it has replaced. Different stiffness in replacement joists and rafters could result in 

unfair stress being applied to the whole structure. This problem could be more serious 

with rafters as a difference in stiffness could allow local distortion from the weight of 

the roof and lead to leaks.   

Due to the small scale of the samples used here, 3-point bending tests were the most 

appropriate and had the most available comparisons with previous studies. The static 3-

point bending tests are easier to perform than tensile tests and lead to equally good 

results when calculating the longitudinal modulus of elasticity (Varner et al., 2012) 

although the bending and tensile moduli are not identical. They also allow for a direct 

comparison between the historic and modern wood samples to determine if any changes 

are occurring in MOE with age. The oak and pine samples tested here were expected to 

show different bending stiffness due to the different characteristics of the species. That 

is why timber repairs are generally done like for like, but here it was also of interest to 

see if the difference in stiffness between modern and historic wood could be related 

not only to age but also to different growing conditions.  

MOE determination through 3-point bend testing is based on the deflection between two 

fixed points, usually with a small actual deflection (Holmqvist and Boström, 2000; 

Helge, 2000). 

The 3-point bend testing experiments are traditionally carried out on wood samples 

made from what is known as clear wood: that is, areas of the wood which do not 

contain any knots, splits or any other growth defects. Clear wood samples are usually 

considered homogeneous in wood mechanics (Kretschmann, 2010; Aydin, 2007). These 

wood samples are usually a standard size known as small clears, the dimensions of 



Chapter 8 – 3-point Bend Testing 

 

185 

 

which are 20 mm x 20 mm x 350 mm (Ilic, 2003; Boey et al., 1985; Fukuta et al., 2011). 

Small clear samples therefore give an idea of how well the best quality wood from the 

tree will perform (Straze and Gorisek, 2011; Bendtsen, and Ethington, 1975). But, as the 

timber beams we were able to obtain were nowhere near this length, a new method 

using 'micro clears' had to be developed.  

There are many reports on the use of conventional small clears in bend tests (Ilic, 2003) 

but not 'micro clears' of shorter length and proportionate thickness. A prior test needed 

to be carried out to discover how short we could go before the results were affected by 

the increase in the depth to span ratio and the resulting shear distortion within the 

samples (Schneeweiß and Felber, 2013). 

8.2 Method Development: 

 

8.2.1 Sample preparation 

 

Micro samples were cut from the historic and modern oak baulks by first cutting a 3 mm 

strip down the grain. From this strip smaller samples were cut from pith to the bark. 

These micro samples were standardised at 60 mm x 2 mm x 2 mm after preliminary 

experiments (see 8.2.2 below) and were cut using a single edge razor and a Japanese 

pull saw to avoid losing too much of the wood material (Dinh et al., 2008; Farruggia and 

Perré, 2000). The multiple samples were intended to show the range of properties that 

change in wood due to the changing MFA and density from pith to bark in growing trees. 

The samples were made out of clear wood as the effect of any defects in the samples 

would be exaggerated when using samples as small as this (Straže and Gorigek, 2011; 

Bohannan, 1966). A consequence of the 2 mm x 2 mm sample dimensions was that many 

samples comprised mainly earlywood or mainly latewood, especially in the juvenile 

wood where the growth rings were wide. Due to the greater density of the latewood this 

led to variation in stiffness from one sample to the next, reflecting the ring structure of 

the beam. For samples such as this with only a few growth rings the average is easier to 

deal with (Schneeweiß and Felber, 2013; Farruggia and Perré, 2000). 

8.2.2 Procedure  

 

The samples were left for 3 months to equilibrate fully with their environment, which 

was set at 20 ̊ C and 65% RH, and to allow for uniform moisture content over the whole 

sample set (Yoshihara and Tsunematsu, 2007; Alteyrac et al., 2006). 
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The samples were first tested at length 100mm and then reduced in length successively 

in 20 mm intervals and tested again. The cross section of the specimens was kept the 

same. It was only the length of the samples that was altered. This resulted in a change 

in the span to depth ratio (Schneeweiß and Felber, 2013). 

The 3-point bend tests done here were carried out with the two ends of the samples 

being supported while the downward load was placed on the middle of the sample 

(Lopez-Anido et al., 2003; Straže and Gorigek, 2011; Lachenbruch et al., 2010; Wahab 

and Jumaat, 2014; Lipovszky and Raczkowski, 1971; Schneeweiß and Felber, 2013). 

These tests were carried out on a Tinius Olsen tensile testing machine with a 250 N load 

cell. The tests were set up to apply enough force to bend the samples to a deflection of 

3mm which is still within the elastic region; they were not tested until breaking point as 

they were needed for further testing at the shorter lengths. In the load-deformation 

plots below there is little change to the apparent bending modulus until the sample is 

below 60 mm. The apparent decrease in the bending modulus at shorter sample lengths 

could be due to the fact that the bending probe comes to a rounded point which, at the 

smaller lengths, compresses the wood as well as bending the sample (figure 8.1). From 

this experiment we were able to discover that it was possible to do 3-point bend testing 

on the historic oak beam ends as they were around 60-70 mm in length, but 

unfortunately the majority of the Scots pine samples were less than 40mm and could 

not be used for this type of testing without the risk of artefacts. 

Once the samples were prepared they were tested in the same manner as in the 

preliminary test using the Tinius Olsen tensile testing machine with a 250 N load cell. 

The tests were set up to apply enough force to bend the samples to a deflection of 3 

mm.  

 

 

 

 

 

 

 

Figure 8.1: Bending modulus of 2 x 2 mm thick oak samples as they were being shortened from 
an initial length of 100 mm. The bending modulus remained approximately constant until the 
samples were shortened to 40mm or less. 
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8.2.3 Final Method: 

 
The final method used on the historic samples was carried out by cutting samples to 

2mm by 2mm with a length of 60 mm. As stated above, for this reason only the oak 

could be tested using this method. They were then set up on the bending rig (figure 8.3) 

on the Tinius Olsen tensile machine. The samples were placed on 5 mm diameter end 

supports which were free to rotate as the sample deflected. The probe had a 0.5 mm 

radius tip and each sample was tested at a deflection rate of 0.002 mm per second to a 

final deflection of 3mm.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

8.3 Results 

 

The results were directly recorded and the load-deformation data were later exported 

as ASCII files into Excel. The modulus of elasticity was calculated from the linear 

portion of the graph (Yoshihara and Tsunematsu, 2007) using the following equation 8.1: 

Equation 8.1: 

MOE= (F/S) (L3/4BH3) 

Figure 8.2: The tensile testing machine set up 
with 3-point bending rig Image: K Hudson-
McAulay. 
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Where MOE is the modulus of elasticity, S is the deflection, F is the load, L is the length 

(span) of the test piece between the supports, B is the width of the sample and H is the 

depth of the sample (Wahab and Jumaat, 2014; Ouis, 2002). F/S was taken as the slope 

of the linear part of the load vs deflection curve. 

Equation 8.1 does not take into consideration the shear stress which occurs in bending 

resistance. To take the effect of shear into account needs much more complicated 

theory. The value observed for the bending stiffness is dependent on the span to depth 

ratio of the samples used. Whichever way the MOE calculations are done, this factor 

always needs to be included (Schneeweiß and Felber, 2013). The method of calculation 

chosen is based on ease of use and sometimes not all correlations are perfect (Ouis, 

2002). 

The samples were not tested to failure as the modulus of elasticity was all that we 

required to compare stiffness between the old and the new samples, although some did 

fail during the testing where the grain of the wood was at a steep angle and the samples 

fractured (Schneeweiß and Felber, 2013). The fracture here occurs near the centre 

point where the wood sample is reaching its maximum stress (Schneeweiß and Felber, 

2013) made worse by the large slope of the grain. Small fractures start from tension 

stress in the fibrils on the lower edge of the sample which eventually lead to failure 

(Varner et al., 2012). 

After the results were run through the above equation to obtain the modulus of 

elasticity they were then corrected for the density of each of the samples. Density is 

known to have a large impact on the stiffness of wood so accounting for it allows a 

different view of the MOE data. The MOE is divided by the density (Bohannan, 1966). 

These results were then plotted against radial position (figure 8.4) to compare the 

stiffness of historic oak with modern oak. 

The results from the 3-point bend test on oak shows, that once the MOE was 

compensated for density there was no significant difference between ages after 

assessing with a one way analysis of variance. The variation in stiffness is primarily due 

to the density scatter within the samples, with one historic sample in particular having 

a much higher density and stiffness than the others tested.  
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Figure 8.4: Variation in the MOE/D ratio of historic oak from pith to bark. 

 

 

Figure 8.3: Variation in stiffness in oak of different ages from pith to bark. 
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The scatter graph (figure 8.3) of the modulus of elasticity shows that even though there 

is a large amount of scatter there does seem to be a loss of stiffness toward the bark in 

the historic oak samples. When a regression model was fitted to this it showed the 

difference to be highly significant with a P value of <0.001 and an R2 Value of 0.259, 

whereas the slight decline in the 18th C oak from pith to bark was not significant.  There 

was an increase in the MOE/D of the modern oak samples towards the bark end. This 

again was run through a regression model and came out to be statistically significant 

with a P value of <0.05 and an R2 Value of 0.341. 

Figure 8.4 shows the MOE again but corrected for density, the drop in the MOE/D ratio 

at the sapwood can also be seen, although less abrupt than for density (figure 7.3). A t-

test used to compare the MOE/D ratio of the sapwood and the heartwood showed that 

there was a difference in the MOE with a very significant P value of <0.01. There was 

clear weakening by fungi as evidenced in both the density and the MOE even though 

there were no visual signs on the surface of the wood. 

The loss of stiffness in the historic oak samples toward the sapwood is most likely due to 

biological damage toward the bark edges of the historic beams. But due to the small 

sample set used this could also be due to the natural variation found in the pith to bark 

range in the MFA of individual trees. If genuine, the loss of stiffness in historic oak is not 

down to loss of density alone, but was still observed after correcting for density. The 

biological decay here is due to fungal decay rather than pests as only one of the historic 

oak samples has visual evidence of pest decay.  
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Figure 8.5 shows that the average density in each of the beam ends was approximately 

the same. Sample HO-15-5 was in question here as it had an unusually high stiffness 

when corrected for density. It was initially thought that this might have been an 

anomaly if the density had been lower than expected, but it appears this was just an 

extremely stiff piece of oak.  

The relationship between the MOE/D and the MFA shown in figure 8.6 had as expected a 

negative trend in stiffness with increasing MFA, although with oak the slope is not 

significant.   

8.4 Discussion 

The results show that there was no real difference in stiffness between the historic and 

modern oak. This is consistent with the literature on historic oak where little difference 

other than genetic variation between trees is seen between age groups (Gereke et al., 

2011; Aydin, 2007; Wahab and Jumaat, 2014). The difference between the age groups 

only became apparent when looking at the stiffness of the samples from pith to bark. 

The regression models showed that the historic wood declined more in stiffness towards 

the bark of the tree. This is probably due to biological decay (Grabner and Kotlinova, 

2008). Usually wood gets stiffer towards the outside of the tree due to increasing 

density and decreasing MFA, although oak tends to be more even in density than most 

softwoods (Altaner and Jarvis, 2008). This can be seen in more detail in Chapter 6. 
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The large amount of scatter in the results is due to genetic variation and other 

anomalies within individual trees. This is always seen in mechanical testing as no tree or 

even section of a tree is homogenous (Wahab and Jumaat, 2014; Holmqvist and 

Boström, 2000). 

Adding the load perpendicular to the grain has resulted in splitting along the grain in 

some of the samples where the grain angle was particularly steep. This is another 

consideration when examining timber for structural integrity.  

Tests on the stiffness of waterlogged wood have shown it has almost half the stiffness of 

modern wood. Different decay mechanisms in this environment severely degrade its 

stiffness and strength (Bjurhager et al., 2012), showing again that these two types of 

wood need to be researched independently. Although historic oak lost stiffness towards 

the sap edge its overall stiffness was no different from modern wood and it would be 

perfectly capable of continuing its life in service if properly cared for.  
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Chapter 9 

Compression Testing 
 

The beam ends for the Scots pine were too short along the grain to run a successful 

bending or tensile test. Their stiffness was measured here using compression testing 

(Schneeweiß and Felber, 2013). Compression tests on smaller scale pieces of wood have 

been done regularly on modern clear wood samples. The compression test involves 

placing the sample end grain up onto a flat surface and then applying downward 

pressure to the sample (Xavier et al., 2012).  

Compression testing of historic wood is of direct importance where the posts supporting 

a timber frame are loaded in compression. Compression tests can also substitute 

directly for tensile tests because the tensile and compression moduli are usually 

considered to be equal, if no fracture or irreversible deformation has occurred. The 3-

point bending tests carried out on oak in Chapter 8 measured the stiffness of the top 

cells in compression and the bottom cells in tension, assuming that the moduli were 

equal. Therefore the stiffness of the wood can also be measured in compression testing 

(Yoshihara and Oka, 2001; Hoffmeyer and Davidson, 1989).  

Within this chapter we are testing again for wood stiffness not wood strength. To 

measure wood strength you need to define a mode of fracture. With little material to 

test we were not testing the historic wood to failure (Le and Nairn, 2014). 

It is possible to test compression strength at the nano-scale where the compression test 

system is so small that the test can be carried out on the S2 layer of a wood cell (Zhang 

et al., 2010). These nano-scale tests only show the compression strength of the S2 layer 

as it is the only cell-wall layer thick enough. Considering that nano-scale testing 

requires an atomic force microscope and that there is little or no information on its 

application to historic wood, the tests carried out here will be on a larger scale, looking 

at the wood structure as a whole, not just the S2 layer.  

All mechanical properties of wood, when tested on the macro scale are influenced by 

different factors. For example wood anatomy and slope of grain, microfibril angle (MFA) 

and density will effect the compression strength of any wood species (Müller et al., 

2002).  
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Mechanical properties of wood are affected by sample orientation. As with other forms 

of mechanical testing it is also important to consider things such as, distance from the 

pith and knots, which can all affect the results obtained (Nairn, 2005; Augustin and 

Schickhofer, 2006). The tests carried out in this chapter were done on a smaller scale 

than previous work due to the small dimensions of the historic material, but this also 

enabled us to do more localised testing and see if there was any change in compression 

stiffness from pith to bark. 

Compressive strength and compression failure 

Compression strength is a key property of timber when loaded in any compressive 

direction and is taken into account when designing timber structures (André et al., 

2014).  

Due to the lack of material available for the compression tests they were restricted for 

this project to measurements in the linear region of the load deformation curves before 

any irreversible deformation of the sample could take place.  

It is to be expected that compression strength is much greater parallel to the grain than 

the perpendicular, (Aydin, 2007) which is why posts in timber frames are able to carry 

such heavy loads.   

9.1 Experiment  

9.1.1 Sample preparation: 

 

As with many forms of mechanical testing there are universal standards for the testing 

of modern wood which is intended for building construction. The ASTM 2010 standards 

for compression tests are set out using a sample size of 50 x 50 x150 mm (Basta et al., 

2011). However the samples for the tests here were made much smaller, both to 

conserve the amount of material used and to give a good overview of possible changes 

in stiffness from pith to bark (Reiterer and Stanzl-Tschegg, 2001). The samples were cut 

using a razor blade, again to limit the amount of material lost and, with compression 

tests, to keep the surface contacting the pressure plates as square, flat and smooth as 

possible so that distortion, if only part of the surface was in contact, would not 

interfere with the results (Low, 2001). 

Micro samples for this experiment were cut from each of the historic and modern oak 

and pine samples. They were cut to 5mm x 5mm x 5mm cubes using a single-edge razor 

blade and scalpel to get the dimensions correct as measured using a digital caliper 

reading to 2 decimal places (10 µm).   
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Before testing the samples were left to equilibrate with their environment to ensure 

uniform moisture content across all the samples. They were left for 3 months at 17.5°C 

and RH 55% giving a moisture content around 12% (Müller et al, 2002). This process of 

equilibrating the samples to the same moisture content is important as increasing 

moisture can increase the plasticity of the wood (Ellis & Steiner, 2002; André et al., 

2014), and an increase in temperature has been found to decrease the compression 

strength of wood (Kutnar and Kamke, 2010) both of which would distort the result.  

9.2 Method Development 

 

9.2.1 General Procedure: 

  

The Tinius Olsen H1KS tensile testing machine with a 250N load cell, used in this part of 

the experiment (Tinius Olsen 6 Perrywood Business Park, Honeycrock Lane, Salford, 

Surrey RH1 5DZ, England) applies pressure via a load cell above the top of the sample.  

The sample was placed between 2 flat-ended steel bolts (figure 9.1). The top bolt, 

directly attached to the load cell measured the amount of force applied as the bottom 

bolt was pushed up at constant speed of 1 mm per minute, compressing the sample 

between the two flat faces.   

 

 

 

 

 

 

 

 

 

Figure 9.1: Compression testing on the Tinius Olsen machine Image: K Hudson-McAulay. 
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The data were first recorded from the machine using the Qmat 5.36 software from 

Tinius Olsen 6 Perrywood Business Park, Honeycrock Lane, Salford, Surrey RH1 5DZ, 

England and then they were transferred in ASCII format into Excel, where the modulus 

of elasticity was calculated after selecting the most linear region of the graph as shown 

in figure 9.2 below.  

 

Figure 9.2: Stress/ strain graph showing the linear section from which the MOE is calculated and 

the plateau where failure has occurred. 

The modulus was calculated using Equation 9.1: 

Equation 9.1: 

 

MOE=S*H/ (W*D) 

 

Where S is the slope in N/mm  averaged for the linear portion of the graph, H is the 

height of the sample in mm, W is the width of the sample in mm and D is the depth of 

the sample in mm (Farruggia and Perré, 2000; Anjos et al., 2014; Lourenço et al., 2007; 

André et al., 2014).  

 

Linear portion of the graph used to obtain 
the MOE 

Plateau region where the strain continues 
but the stress does not rise due to cell 
bucking in to the lumen (Kärenlampi et al., 
2002; Fratzl et al., 2004) 
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9.2.2 Potential problems 

 

Wood is a complex material. Compression testing can be affected by variables such as 

the relative proportions of latewood and earlywood of different density. The orientation 

of the samples was kept constant (Lourenço et al., 2007). In all the tests described here 

the stiffness was measured along the grain. As the radial dimension was so small that 

the samples only included a few growth rings, the ratio of earlywood to latewood and 

hence the density, showed random variability between samples. This reduced the 

precision of the measurements. 

Compression tests have been criticised in the literature for problems with friction and 

barrelling effects on the samples. Barrelling effects can occur with any size of sample 

when it is crushed to near the material's maximum compression strength. As the sample 

size here was so small and no test was anywhere near the total compression strength of 

the wood, problems due to the height/width ratio affecting the plateau stress did not 

occur (Reiterer and Stanzl-Tschegg, 2001). Friction occurs where there are problems at 

the ends of the samples, such as if there is an unknown substance on the surface or if 

the surface connecting with the testing machine is uneven. Making sure that the sample 

is loaded with uniform compression over the whole surface (Leijten, 2010; André et al., 

2014; Xavier et al., 2011) appears to be more of a concern when working with smaller 

samples and this is another possibility affecting the results from the compression tests 

carried out here.  

9.2.3 Initial Procedure 

 

Figure 9.3: Average stiffness for each of the beam ends tested. 
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These first results implied a range of modulus of elasticity far lower than what would be 

expected from oak or pine (figure 9.3), for example when related back to the MOE of 

the oak samples measured in the 3-point bending test in Chapter 8. To investigate what 

might be causing this problem, the first thing done was to try to overcome the problem 

of the machine not being stiff enough and the samples' surface not being flat enough, a 

problem noted in the literature (Dinh et al., 2008; Xavier et al., 2011).   

 9.2.4 Machine Deflection 

 

The first issue that was tested, in trying to uncover the problems with the compression 

results, was the machine deflection that would occur due to the smaller machine's 

frame not being able to stand up to the larger force required in the compression test, 

causing this movement of the machine to be recorded within the results. Firstly, to test 

if this could be an issue, the samples were tested on a larger machine which has little 

machine deflection due to its size.  

 

Figure 9.4: MOE of modern Scots pine when tested on the alternate machine. 

The Zwick/Reoll Z2.90 with a 2 KN load cell was used to produce the above graph 

(figure 9.4). Results were recorded by Test Xpert 2 and then transferred into Excel and 

run through the same process to calculate the MOE. As the samples here were tested to 

failure the linear part of the graph had to be used to calculate the MOE. Each block was 
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tested individually at a speed of 0.5 mm per min. A slower speed than on the Tinius 

Olsen machine was used due to the larger maximum force on the samples. The 

calculated MOE values were higher than before but still lower than would be expected. 

This allowed us to assume that surface unevenness is a problem, and that the Tinius 

Olsen machine first used was not the key problem, although it required a correction for 

machine deflection and maybe the sample dimensions needed to be changed.   

Before the problem of sample dimensions could be faced the deflection of the machine 

needed to be characterised and accounted for. To do this a steel bolt was used as a 

mock sample as it is completely rigid and cannot be compressed by the small load 

exerted by this machine. Any deflection recorded will then be deflection of the machine 

itself. The bolt was tested in the machine three times to give an average result for the 

deflection as a function of load. The straight part of the stress strain graph recorded by 

the machine was transferred to Excel. The slope was calculated in the same way as the 

original results. 

This gave a machine deflection factor (machine deflection / Force) of 0.000173 mm/N 

which could then be included in the Excel spreadsheet to remove the deflection from 

the machine. This was done using the equation 9.2 below: 

Equation 9.2: 

 

E-F*MD=CE 

 

Where E is the machine recorded compression, F is the force, MD is the machine 

deflection factor and CE is the corrected compression. The calculation was done on 

every compression point recorded by the machine for each sample and the slope of the 

linear part of the resulting, corrected compression vs force plot was used to calculate 

the MOE.  

9.2.5 Flatness and hardness of the sample ends  

 

The bigger machine also allowed for the testing of another of the key problems pointed 

out above, the issue of the ends of the sample being uneven and deforming flat before 

the whole sample was evenly compressed. As the machine is bigger and can apply much 

more force with the larger load cell it was possible to apply enough force to completely 

flatten the ends of the samples. As the Tinius Olsen only has a load cell of 250N it was 

not possible to compress the sample enough to make the surface flat, so the bigger 
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machine was needed. Each block was tested individually on the Zwick/Reoll Z2.90 

machine. 

The machine's software recorded the stress strain curve shown in figure 9.2. The linear 

part of the graph was used, after the discrepancies in the sample's surface had been 

flattened out. The results in figure 9.3 show that this method along with the correction 

for machine deflection increased the measured MOE of the samples.  

The samples were then re-tested on the Tinius Olsen machine using longer, narrower 

samples to try and limit the surface in contact with the machine and bring down this 

error by reducing the surface area over which imperfections could occur. 

To discover which sample size would give us the best results a strip was made from one 

piece of modern Scots pine on which there has been much previous research using the 

Silviscan which shows the range of MOE to be expected, approximately 6000-15000 MPa 

(Auty, 2013). This data can be compared to the results obtained here.  

The strip was made 80 mm in height along the grain by 2 mm width and 2 mm in 

thickness. This sample was then tested 4 times on the Tinius Olsen machine using dips in 

the bolt heads to keep the samples as straight as possible and finding an average. This 

sample was then cut from 80 mm into two 40 mm sections then retested, then four 20 

mm sections which were tested and finally eight 10 mm samples which were individually 

tested. The results show a decreasing measured MOE with decreasing length, consistent 

with end effects distorting the measurements, but with a huge standard deviation 

between samples (table 9.1).  

 

Table 9.1: Relationship of compressive stiffness of Scots pine to sample length, showing the 

large standard deviation in the first compression testing results. 

Sample 
Length 

Average 
MPa 

Standard 
Deviation 

80mm 11804 1563 

40mm 7604 3464 

20mm 5170 3275 

10mm 4266 2579 

 

As the historic beam ends are so short in length only the results below 40mm are 

applicable to them. As the 20 mm samples appear to be almost in the correct range of 

MOE, it was decided to try and deal with the unevenness in the ends to see if this would 

bring the measured MOE into the expected range. This was done by coating the ends 
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with epoxy resin enabling them to be sanded down more accurately within a specially 

made jig (figure 9.5).  

 

 

 

 

 

 

 

Figure 9.5: The tool used to flatten the sample ends Image: K Hudson-McAulay. 

The samples were re-made starting at 80 mm and the ends were covered in Araldite 

epoxy resin (Ciba-Geigy) at a ratio of 1/1 hardener to resin, and filed down to make 

sure they were flat and perpendicular to the axis of the sample.  

Table 9.2: Effect on the standard deviation using epoxy resin on the sample ends. 

Sample 

Length 

Average 

MPa 

Standard 

Deviation 

80mm 5049 895 

20mm 10185 5200 

 

The use of epoxy greatly improved the results from the 20mm samples and brought the 

MOE into the range expected from modern pine (table 9.2). However, although this 

greatly improved the result the standard deviation was still much too high, so efforts 

were then made to improve the stability of the machine itself. 

9.2.6 Machine Stability 

 

Force-deflection curves for the deflection of the machine were measured again using a 

solid steel bolt roughly the same dimensions as the 20 mm x 2mm x 2mm samples 

tested. The bolt was tested 12 times in different positions. When the results were run 
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through the machine deflection calculation they showed quite a large standard 

deviation, as for the samples. Since this result was for a solid bolt it showed that there 

was too much random deflection coming from the machine itself see table 9.3. 

Table 9.3: Random deflection of the machine itself.  

 

 

 

 

The machine was then stabilised further by adding a stronger compression attachment 

bolt which was more tightly fastened onto the load cell. When the bolt was tested 

following the same method the standard deviation was greatly lowered as shown in 

Table 9.4.  

Table 9.4: Lowered machine deflection resulting from stabilising the machine itself. 

 

 

 

 

After all this testing to improve the method it was finally decided to test 20mm x 2mm 

x 2mm specimens of one historic wood sample and one modern sample to see how well 

the improvements all together would work. 

Both the modern and the historic samples were then tested 12 times rotating the 

sample orientation for each test.  The MOE was calculated as described above.  

Table 9.5: Compression MOE of historic and modern pine. 

Modern 

pine 

Average 

MPa 

Standard 

Deviation SEM 

Historic 

pine 

Average 

MPa 

Standard 

Deviation SEM 

 8564 2145 646  3418 519 156 

 

From table 9.5 it can be seen the standard deviation has been lowered by at least half 

but is still relatively high, and is higher still for the modern samples. Although this 

standard deviation is still high, this method can be used to compare the historic samples 

Machine 

Deflection Factor  

mm/N 

Standard 

Deviation 

Standard Error 

of the Mean 

(SEM) 

0.0025 0.000573 0.000173 

MachineDeflection 

Factor  mm/N 

Standard 

Deviation SEM 

0.001829 0.000047 0.000014 
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to the modern samples when tested in the same way. From this first preliminary 

experiment it can already be seen that the historic samples appear to have half the 

stiffness of the modern samples.    

9.3 Final Method 

 

Using all the experimental modifications and corrections described above, all of the 

historic pine samples were tested using this method. Four 20 mm x 2 mm x 2 mm 

samples were cut between the pith and the bark from each of the beam ends and these 

samples were tested in the fashion described above, along with two modern wood 

samples for comparison. 

 

Figure 9.6: Compression MOE of historic and modern Scots pine. 

____________________________________________________ 

   Historic Pine  Modern Pine     
   _________________________________ 

Compression MOE 7239 a  2991 b  

____________________________________________________ 

Table 9.6: Mean compression MOE of pine samples of different ages.  

Means followed by the same letter are not significantly different, Fisher LSD (P>0.05). 
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The box plot above clearly shows there was a big change in the MOE of Scots pine wood 

with age using this particular compression test. Although the standard deviation is still a 

little high the difference is clear: Scots pine does lose stiffness with age (table 9.6). The 

result was also run through a one way analysis of variance which showed that the 

difference due to age was statistically highly significant with P value of <0.001. A 

further t-test was run using just the heartwood samples of the historic and modern 

wood to eliminate the weakness caused by biological decay. This gave a very significant 

P-value of <0.01 showing the historic pine was less stiff than the modern pine, 

independent of decay (table 9.7).  

  

Figure 9.7: Variation in mean stiffness of the historic samples from pith to bark. 

__________________________________________________________________ 

   Pith  Heartwood  Heartwood Sapwood  
   _______________________________________________ 

Compression MOE 1592 a  4196 b  3731 b  2445 c 
(radial position) 
 
 
Table 9.7: Mean compression MOE of pine samples in different radial positions.  

Means followed by the same letter are not significantly different, Fisher LSD (P>0.05). 
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The line graph above (figure 9.7) shows the changing stiffness of the historic samples 

from pith to bark. Although the pith region of a softwood tree is normally observed to 

have lower MOE than the mature wood (Wagner et al., 2013; Macdonald et al., 2009; 

André et al., 2014) this is still a low value. As expected the MOE increased moving out 

towards the bark end of the beam, but there was a decrease in the sapwood. These 

results were then run through a Fisher test for least significant difference, to see where 

the significant differences were located in the one way analysis of variance. The test 

showed that the pith MOE was significantly different from the first heartwood MOE 

(Fisher P<0.05). The Fisher test showed that the second heartwood sample was 

significantly different from the pith. It also showed that the pith and the sapwood had 

no significant difference between them, but there was a significant difference between 

the heartwood samples and the sapwood. This shows that there has probably been a loss 

of stiffness in the sapwood.  

The stiffness of softwoods generally increases from pith to bark (Macdonald et al., 

2009), as was observed for the heartwood samples from the historic beams. Normally 

the pith to bark increase is steep close to the pith and levels out beyond approximately 

the 15th annual ring. A decrease in MOE in the outward direction is not usually observed 

except where plantation-grown trees have been severely thinned (Moore et al., 2012; 

Moore et al., 2009a). The decreased stiffness of the sapwood is most likely due to the 

influence of biological attack on the sapwood.  

9.4 Discussion 
 

The compression tests showed that the old and new wood were significantly different 

from each other with the historic pine reduced to nearly half the stiffness of the new in 

some cases. This observation is unusual. Lourenço et al, (2007) showed that there was 

not much difference in stiffness between old and new chestnut samples. Their old 

samples had only been in service for 50 years, young compared to the historic samples 

used in this thesis. Chestnut, like oak, is a ring porous hardwood that might not suffer 

the same chemical degradation as the historic Scots pine samples here, and is perhaps 

more likely to show little change in stiffness with age like the historic oak samples 

tested in Chapter 8 (Sousa et al  2014). Also looking at chestnut, the same authors 

showed that decay can cause a large decrease in compression stiffness. A similar drop in 

stiffness, apparently due to decay was found here in the sapwood, but also there was a 

general decrease in the stiffness of the historic pine wood from pith to bark in 

comparison to the new wood. As Scots pine loses considerable stiffness with age, after 

aging over five centuries it could be seen as undesirably low in stiffness for a building 
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material by modern standards. When pine was beginning to be more widely used in the 

1500s in Scotland, it was almost the only wood available in long enough lengths for 

builders to use. They had no alternative, nor could they know how this material would 

age, nor even that the buildings they were working on would survive this far into the 

future.  
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Chapter 10 

Hardness Testing 
 

Carpenters for years have commented on the difference in hardness between green and 

historic oak. This experiment aimed to objectively assess the hardness of modern and 

historic oak and Scots pine to see if any quantitative difference in hardness attributable 

to age could be shown.  

Hardness is considered one of the key properties of wood, especially in historic buildings 

when used as floorboards. Hardness testing can, for example, be based on the use of 

ridged indenters that act as if causing wear to a floor (Helińska-Raczkowska and 

Moliński, 2003). Hardness testing can be used to indicate the appropriate use for 

different timbers. For example, woods that test harder are better for flooring (Silva et 

al., 2014b). As mentioned throughout this thesis no one wood property stands alone. 

They all have different impacts on each other. Hardness is very closely linked to the 

density of wood. Generally speaking the higher the density of the wood the harder it 

will be (Hoadley, 1990, p.49). 

Hardness is not routinely tested by any single method. There are a number of different 

ways in which is it measured, which correspond to different ideas of the nature of 

hardness. The choice of method is constrained by national guidelines. The two main 

types of procedure used are based on the Janka and Brinell tests (Miyajima, 1955), but 

there are many others based on three main principles. The first is measuring the 

reaction to a sudden indentation force and the plastic deformation that occurs under 

the testing implement as a continuous load is applied to the area. The second is known 

as the rebound hardness test, where an object is dropped directly onto the wood and 

the height to which it bounces is recorded, testing the elasticity of the material (Oberle 

et al., 2014; Riggio and Piazza, 2010; Green et al., 2006). The final method is the 

scratch test where a sharp object - or even your thumbnail, with wood - is dragged 

down the surface of the grain to see how deeply it will indent the wood. The deeper the 

scratch the softer the wood (Hoadley, 1990, p.49; Riggio and Piazza, 2010; Doyle and 

Walker, 1985). This is not commonly used in comparison with the indentation 

techniques as these are easier to control, give better results and can be done relatively 

fast (Riggio and Piazza, 2010). 
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Choosing a hardness testing method suitable for wood:  

There are different ways in which the hardness of wood is measured. There is the Meyer 

(or Piazza and Turrini) hardness method which the Pilodyn instrument is based on, the 

Brinell hardness test and the Janka test which was developed from the Brinell test 

method (Riggio and Piazza, 2010). Finally there are nanoindentation tests which test the 

hardness of a single cell wall (Wimmer et al., 1997).  

Brinell hardness test 

The Brinell hardness test measures the width of the indentation left behind by a probe 

driven into the surface by a set fixed force. It was first employed in 1932 by Mörath. It 

measures the diameter of the depression left behind in the wood by a 10 mm steel ball 

which is normally forced in by a fixed load of 10 kg (Miyajima, 1955). This load is 

reached in a minimum of 15 seconds and then kept constant for 30 seconds; then 

reduced back to zero in a further 15 seconds. The indentation left behind in the wood is 

measured and its diameter is taken as the hardness result for the wood (Knapic et al., 

2012; Riggio and Piazza, 2010; Wimmer and Lucas, 1997). This is the test generally used 

to determine the hardness of flooring (Miyajima, 1955). 

Rockwell (Janka) Hardness test  

The Rockwell hardness test or Janka test was developed from the Brinell test. It is 

accredited by the American Society for Testing and Materials (ASTM) and is a standard 

test procedure used in Europe (Korkut and Guller, 2008). This test is mainly for use in a 

laboratory on solid wood with dimensions of 2in by 2in (50 x 50 mm) and a length of 6 in 

(150 mm), with hardness being tested on the end and side grain of the wood. Testing 

involves a steel hemisphere with a diameter of 0.444in (11.3 mm) embedded 0.222in 

(5.7 mm) into the wood. The force recorded from this is the measure of hardness 

(Green et al., 2006, Riggio and Piazza, 2010, Doyle and Walker, 1985, Salca and 

Hiziroglu, 2014). For this test the machine needs to be calibrated and set up with the 

correct testing cycle and indenter (Low, 2001). 

Piazza and Turrini (monotron, Mayher) Hardness test  

The main method used on timber is the Piazza and Turrini hardness test (Riggio and Piazza, 

2010). This is a modified version of the Janka test described above but works more like the 

Mayer standard of hardness. The force is recorded when a 10 mm cylindrical steel pin is forced 

5mm into the wood surface. To obtain a representative measure of the hardness of the entire 

piece of wood, 5 measurements are averaged over the longitudinal face of the wood. This 
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method has been specifically developed for the testing of timber on site (Riggio and Piazza, 

2010). The same general principle lies behind the Pilodyn instrument commonly used to test 

the hardness of wet waterlogged wood and to detect decay in standing trees and structural 

timbers (Clarke and Squirrell, 1985). 

Nano Indentation 

Micro- or nanoindentation tests are a useful tool in testing the hardness of wood at the 

cellular level, measuring the hardness of the cell walls and their constituent layers. 

These tests are more used in biologically based research than in testing of structural 

timbers, as it is difficult to scale up the data and predict macroscopic properties 

(Wimmer et al., 1997; Riggio and Piazza, 2010).  

The indenter itself forms part of an atomic force microscope, which is suspended on a 

pneumatic anti-vibration table to isolate it from building vibrations. With a minute 

pyramid shaped indenter it can penetrate around 0.16µm into the cell wall and is able 

to determine hardness at the level of a single cell wall (Wimmer and Lucas, 1997). 

10.1 Experiment 
 

When testing for hardness there are many things that need to be taken into account. 

The method used here was based on the Piazza and Turrini test, as it uses the same 

general principle as Pilodyn testing, the main way in which on-site timber members are 

tested in conservation (Riggio and Piazza, 2010). This method has been adapted to be 

used on the small scale samples available from historic material. Because the actual 

Pilodyn instrument could not be used, the testing principle of the Pilodyn was re-

developed for use on the Tinius Olsen H1KS tensile testing machine with a 250N load 

cell, making it possible to test hardness on a smaller scale.  

By reducing the scale of the procedure it was possible to test the samples from the pith 

to the bark to see if there were any noticeable changes in the level of hardness across 

the changing anatomy from the pith, through the heartwood and then sapwood if 

present in the sample. As with most hardness tests it is safe to presume that when the 

probe is pressed into the flat surface of the test blocks, the applied force increases with 

the depth of penetration (Miyajima, 1955) allowing the calculation of hardness for each 

of the samples and wood species.  

The hardness of wood can be influenced by many factors such as anisotropy, 

heterogeneity and moisture content. The test results can also be affected by the type 

of tool forced into the wood surface. For example sharper tools will increase the level 

of friction and splitting beneath the indenter compared to a blunter tool. Also on the 
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macro scale the tool is usually big enough to encompass both early and latewood, giving 

better averaged results over the annual rings (Wimmer and Lucas, 1997; Riggio and 

Piazza, 2010). The tool for the machine used here was made on the pin principle of the 

Pilodyn. On this smaller scale test the shape of the leading edge of the tool is key and 

the pin used had a hemispherical end. 

10.1.2 Sample preparation: 

 

5mm cubes were cut from pith to bark from each of the beam ends using razor blades in 

order not to lose too much of the original material, and to keep the surface as flat and 

clean as possible for the best contact with the probe on the machine (Low, 2001). 

Samples were also cut from modern pine and oak, both of which were well seasoned. 

Both modern and historic wood samples were left to equilibrate with the environment 

at a final temperature of 17.5°C and RH 55% for just over a year to make sure that the 

moisture content was uniform, as changes in moisture content are known to change the 

hardness results (Low, 2001; Oberle et al., 2014). 

10.1.3 Procedure: 

 

First, an adaptation for the tensile testing machine needed to be devised that would 

mimic the workings of the Pilodyn instrument. A probe pin with a tip 1.3 mm in 

diameter rounded to 0.5 mm height was attached to the load cell of the tensile testing 

machine. This probe was then used in the same way as the pin in the Pilodyn. Unlike the 

Pilodyn in which hardness is measured from the depth of penetration of the pin when 

fired into the wood with an energy of 6 joules (J), the tensile testing machine drove the 

pin 0.5 mm into the surface of the wood and the force that was required to do this was 

recorded. 

Each of the samples were tested 3 times in different areas on the surface of the blocks 

(Doyle and Walker, 1985; Silva et al., 2014b; Helińska-Raczkowska and Moliński, 2003). 

This was done because the probe was not small enough to test each growth ring, and 

because latewood is denser, and as a result harder, than earlywood (Miyajima, 1955; 

Wimmer and Lucas, 1997). Testing one face of the sample 3 times in different places 

gave a good average of the different densities over the test area.  

Each time the test was carried out the indenter had to be checked to make sure that it 

was correctly in line and in the correct area of the sample to ensure that the 

indentation was discrete (Yoffe, 1982) and did not interfere with the other tested 

areas. 
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All tests were carried out on the wood samples as seen in figure 10.1. The longitudinal-

radial surface was tested, as this surface is most commonly tested with the Pilodyn and 

is the main surface accessible in most historic structures. The end of the beam is 

generally harder to access than the side (Riggio and Piazza, 2010; Helińska-Raczkowska 

and Moliński, 2003) as the end is built into the wall or joints. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.1: The testing probe and wood surface used in hardness testing Image: K Hudson-

McAulay. 

10.2 Data analysis and results:  

 
Force-displacement data were recorded using the machine software Qmat 5.36 and then 

transferred in CSV format into Microsoft Excel. Once in Excel, the force recorded on 

reaching the depth of 0.5 mm for each of the 3 indentations on each sample was taken. 

These 3 forces were then averaged and assembled in order from pith to bark for each of 

the beam ends.  

 

 

 

longitudinal-radial testing surface 

End grain 
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10.2.1 Oak 

 

Figure 10.2: Scatter graph with a best fit correlation line showing the relationship of density to 

hardness in historic and modern oak. 

__________________________________________________________________ 

   Modern Oak  18th C Oak  Historic Oak  
   ________________________________________________ 

Hardness (N)  38.01  a  33.86 b  41.47 c 

 

Table 10.1: Mean hardness of oak samples of different ages.  

Means followed by the same letter are not significantly different, Fisher LSD (P>0.05). 

The results from the hardness test for oak were run through a one way analysis of 

variance comparing ages. This showed that the difference between the hardness of the 

different ages of oak was statistically highly significant (table 10.1). The data was then 

run through a Fisher test for least significant differences. The Fisher tested implied that 

each age of sample was significantly different from the others (Fisher LSD P<0.05). 

Figure 10.2 shows that hardness increased as the density of the samples increased. The 

different aged woods where run separately through the correlation producing figure 

10.2 which shows that the R2 value was 0.276 and P value for the historic samples was 

<0.001, showing that the increase in hardness with density was statistically highly 

significant. The 18th C oak had an R2 value of 0.427 and the P value was also <0.001 
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making this relationship statistically highly significant as well. The modern samples on 

the other hand had R2 = 0.069 and P = >0.05 making this non significant. In the modern 

oak there was a smaller range of low densities, reducing the R2 -value. This would be 

expected as there is no biological attack to cause lower density areas as with the 

historic oak. Loss of density through biological decay of the historic oak may also be 

causing some of the scatter within the samples.   

 

Figure 10.3: Variation in hardness from pith to bark in Oak of different ages.  

The scatter graph (figure 10.3) representing the hardness of oak from pith to bark 

seems to show a slight rise in hardness of the historic oak samples towards the bark, but 

after running all the different aged samples through a regression model none of them 

showed a significant trend in hardness from the pith to the bark. This was probably due 

to the large amount of scatter, as well as oak generally having a rather uniform density 

from pith to bark. This is discussed further in Chapter 7. 
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10.2.2 Pine 

 

Figure 10.4: Relationship of density to hardness in historic and modern Scots pine. 

_____________________________________________________ 

   Modern Pine  Historic Pine     
   __________________________________ 

Hardness (N)  18.46    20.39  

_____________________________________________________ 

Table 10.2: Mean hardness of pine samples of different ages.  

There were no significant differences between the means (ANOVA P>0.05). 

The t- test comparing the historic and modern pine samples showed a P value of >0.05 

so there was no significant difference between the two age groups in hardness, unlike 

the oak samples (table 10.2). This may be due to the large amount of scatter found in 

the modern samples due to the uneven mix of early and latewood in the area directly 

tested. There was a larger proportion of low-density earlywood in the modern samples 

as discussed in Chapter 7.   

The comparison of the density and hardness of Scots pine shows that with increasing 

density the hardness of the wood increased. For the historic pine samples the 

correlation showed a R2 Value of 0.677 and a P value of <0.01 but the modern samples 

show a R2 Value of 0.043 and P value of 0.475 which is not significant. This may be due 

to the narrower range of density in the modern samples as they have not lost density 
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due to decay. The regression line for the pine shows less scatter than the oak. This may 

be due the fact that density in oak varies less in general than in pine from pith the bark, 

as is discussed in Chapter 7  The pine sapwood density has already been seen in Chapter 

7 to have been reduced by biological attack. This accounts for some of the low densities 

in figure 10.4. 

 
Figure 10.5: Variation in hardness from pith to bark in Scots pine  

The scatter graph (figure 10.5) of hardness from the pith to the bark shows no obvious 

linear relationship in either the modern or the historic samples, and the regression 

model showed no significant effect of radial position in either age group. This again may 

be due to the large scatter discussed above, but some of the historic pine samples 

showed very low hardness which could be explained by loss of material, and hence 

density, from biological attack.  

Hardness, like most wood properties, is affected clearly by density but there is an 

added possibility that the MFA is affecting the hardness results. If the results had been 

gathered when testing the samples parallel to the grain, MFA would definitely have 

been important but when the testing is perpendicular to the grain, MFA is not always 

considered. Figures 10.6 and 10.7 show the difference in hardness that might be 

expected between low and high MFA, when testing in this direction. The hardness across 

the grain would then decrease as the MFA decreased, due to the reduced influence of 

the more parallel microfibrils.  
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10.3 Discussion 

 

The results of this experiment showed, as expected from the literature, that the 

hardness of wood increases with density (Hoadley, 1990; Low, 2001; Oberle et al., 

2014). This is what makes this method useful as a way to test indirectly for decay. 

Although the differences found in wood hardness can be linked to density, this does not 

mean that other factors do not play a role. For example hardness can also depend on 

differences between species, such as wood chemistry and anatomy. Cellulose microfibril 

angle and void space distribution also vary among species (Oberle et al., 2014; Williams 

et al., 2010, p.42; Silva et al., 2014a), as well as the mass loss due to damage caused by 

biological attack. All these have different effects on the hardness of the wood. This can 

be clearly seen from the different hardness measured for the oak and pine samples.  

It has been seen that overall, wood has a higher tolerance to the small scale local 

compression that occurs during hardness tests, than to actual compression testing which 

can be seen in Chapter 9 (Helińska-Raczkowska and Moliński, 2003). This shows yet 

Figure 10.6: Effect of higher MFA on 
measured hardness when the test probe 
indents the sample perpendicular to the 
grain. Diagonal lines show the MFA Image: 
K Hudson-McAulay. 

Figure 10.7: Effect of lower MFA on 
measured hardness when the test probe 
indents the sample perpendicular to the 
grain. Diagonal lines show the MFA Image: K 
Hudson-McAulay. 
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again how remarkable wood is as a building material and as a material in nature. 

Damage to a few structural cells does not completely compromise the strength and 

function of wood. This is why wood damaged by pest infestation can still have a long 

working life if the infestation is prevented from spreading.  

Many believe that oak gets harder with age but in the wood tested here the difference 

in hardness with age, although statistically significant, was in fact very small. An 

alternative to this accepted idea may be that green wood is softer than historic wood so 

that possibly, once the green wood has been seasoned and has lost most of the 

interfering effect of moisture, it shows much the same hardness as historic oak.  

It is widely accepted that density has the greatest effect on the hardness of wood 

(Doyle and Walker, 1985; Riggio and Piazza, 2010). As can be seen from the above data, 

decay leads to a wider range of low densities in historic wood, causing a loss of hardness 

that is not seen in sound modern wood. This relationship between hardness and density 

will change with moisture content and level of decay. Therefore it can be used only 

qualitatively to assess wet waterlogged timbers (Oberle et al., 2014; Helińska-

Raczkowska and Moliński, 2003). The Pilodyn and Resistograph instruments are widely 

used to test for hardness in this qualitative manner, with the aim of finding any pockets 

of decay, which will have very low hardness (Sousa et al., 2014; Niemz et al., 2008). For 

this purpose that form of test is more than adequate and is currently one of the most 

common ‘non destructive’ tests used on historic timbers.  
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Chapter 11  

Discussion 
 

Published research on historic wood is very limited compared to that on archaeological 

or wet waterlogged wood. It is generally assumed that if in situ historic wood is visibly 

free from biological decay, it is sound (Grabner and  Kotlinova, 2008; Feio et al., 2008), 

but wood itself is a biological material and might therefore be subject to aging like any 

other. This thesis is concerned with natural aging of wood and how historic wood comes 

to be different from modern wood, as these differences could make the traditional ‘like 

for like’ timber replacement repairs unsuitable, indeed potentially dangerous in some 

cases. When this thesis was first proposed it was hoped to get access to the entire 

timber beams from a number of painted ceilings that had been salvaged during the 

demolition of late Medieval Scottish buildings, and were stored in the care of Historic 

Scotland. Unfortunately this was not possible. In the end I only had access to sections of 

a few cm in length from the beam ends. This led to the development of more novel, 

miniaturised methods to enable the testing of the mechanical properties of the timber. 

There is a constant problem when trying to assess the aging characteristics of historic 

wood due to lack of material available for scientific testing. Some of the methods 

developed here will be useful for future researchers in this area.   

Any chemical changes that occur with age are likely to change the mechanical 

properties of historic wood, and as a result cause differences in how it interacts with 

modern wood. Differences in wood stiffness could cause a repaired joint to be 

mismatched under load, causing added stress. Differential shrinkage between the 

modern and historic wood in a joint, under varying humidity, would also put it under 

stress. Distinguishing between natural aging and effects of biological decay can be 

difficult towards the sap edge of the wood, as fungal decay, in particular, causes 

damage much further into the wood than the visible signs. To overcome these issues the 

experiments were carried out using series of samples from the pith to the bark as 

biological decay in wood is, in most cases, confined to the sapwood. Therefore, 

covering the whole period of a tree’s growth represented in the cross-section of a beam 

can allow us to distinguish between changes occurring throughout the wood and changes 

at the sapwood caused by decay rather than age.  
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11.1 Differences between historic and modern wood originating from 

forestry practice. 

 

Before differences to do with any effect of aging are discussed; the natural differences 

between historic and modern wood need to be taken into account.  Both forestry 

techniques and climate are different today from those in the past. Trees are sensitive 

to the climate they are grown in. Varying climate will change the properties of the 

wood (Feilke et al., 2011). This is one of the fundamental tenets of dendrochronology 

and is used in trying to reconstruct the palaeoclimatic record. Therefore slight 

differences in the properties of historic and modern wood are expected.  

Historic wood generally came from forests which were either natural or slower grown 

than the plantation trees used for commercial timber production today, giving the wood 

different properties such as, in most conifers, a higher density and lower microfibril 

angle (MFA), which are considered to imply better quality wood (André et al., 2014). 

The historic samples which have been used in this project are all from within the 1500s 

and 1600s. Matching these timbers to the best modern day equivalent is bound to be 

difficult, as many of the forests that these trees were taken from do not exist today 

(Crone, 2011).   Dendrochronological evidence from these samples showed that they 

were from slower grown trees. Wood from slow-growing trees has a smaller annual ring 

width in comparison to fast-growing trees, as can be seen in figure 12.6. The trees used 

to produce the beams that the samples were taken from ranged between 88 and 272 

years old (Crone, 2011). For the wood samples used in this project the average ring 

width for historic oak is 1.3 mm, compared to the modern oak with a ring width average 

of 2.7mm. The historic Scots pine had an average ring width of 0.8 mm whereas the 

modern pine samples had an average of 3.3mm. It would be expected that this would 

have a direct impact on the quality of wood produced from these trees. Slow growth in 

softwoods normally improves wood quality, giving higher density and lower MFA which 

leads to high stiffness and strength. The effects of slow growth in oak are not as well 

understood with respect to MFA or mechanical properties, but slower growth in oak 

leads to lower density (Taylor and Franklin, 2014).     

Overall there was no significant difference between the densities of historic and modern 

oak, from the results shown in Chapter 7 (figure 7.1). The MFA values of modern oak 

and historic oak are more difficult to compare, as the MFA for oak was produced from a 

calibration made for Scots pine so that all the MFA values in figure 6.29-34 are very 

high. These high values may be a result of extractives in oak which influence the 

baseline correction of the FTIR spectra and which could be changing with age. However 

it can be seen that the relative MFA of historic oak follows the pattern seen in modern 
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oak, slightly higher at the pith but then remaining almost constant throughout the 

tree’s growth.  

Although there was a difference in overall mean density between the historic and 

modern pine samples, this was due to decay in the sapwood leading to the lowering of 

the mean density of the historic wood samples. The heartwood density of the historic 

Scots pine was not significantly greater than that of the modern wood. This was 

unexpected in view of the narrow ring width in the historic samples. 

Figure 6.18 shows that the MFA in the heartwood of historic pine averaged 

approximately 10 ̊. The modern wood shown in figure 6.19 had an average MFA of 14 ̊, 

which is not unusual for present-day commercially grown Scots pine. The lower MFA 

shows that the slow grown historic wood was originally of better quality than most wood 

produced today. With careful selection it should be possible to select modern Scots pine 

with similar MFA. The C24 structural grade of Scots pine probably approaches an 

average MFA of 10 ̊ and Scots pine exceeding this grading can be obtained to order from 

some Scottish sawmills. However in some circumstances it might be preferable to select 

timber with higher MFA, to compensate for loss of stiffness in the historic timber being 

matched. That is, it could be worth considering matching the stiffness of historic timber 

rather than matching its MFA. 

One area of concern with traditional repairs is the difference in MFA between the 

modern and historic wood and its effect on swelling and shrinkage. MFA strongly affects 

shrinkage and the results from Chapter 5 show that there were statistically significant 

differences between the shrinkage of old and new pine and of old and new oak. 

In Chapter 5 only the radial and tangential shrinkage were measured, because 

longitudinal shrinkage is minimal and cannot be measured on such small samples. Figure 

5.1 shows that lateral (tangential and radial) shrinkage is expected to become less with 

increasing MFA whereas longitudinal shrinkage becomes less at low MFA. Some of these 

predictions match the shrinkage data in Chapter 5. The tangential shrinkage followed 

the expected behaviour where the samples had not been affected by biological decay. 

But the radial shrinkage did not correlate with the tangential shrinkage. The reasons for 

different patterns of radial shrinkage are unknown but it has been suggested that the 

ray cells, where the microfibrils run in the radial direction, could be causing different 

shrinkage patterns (Harris and Meylan, 1965; Treacy et al., 2000; Patera et al., 2013). 

11.2 Mechanical weakening of wood through pest infestation. 

 

It is well known that decayed wood is weaker than sound wood, and that pest 

infestation causes the most damage to wood cells. Pests are usually contained inside 
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the sapwood (Ridout, 2000, p.180; Unger et al., 2001, p. 62; Desch and Dinwoodie, 

1996; p. 251). Within this thesis pest infestation damage can be seen in microscopy 

images of the historic wood samples (figures 2.14 and 2.19) showing pest holes in both 

pine and oak sapwood samples. 

Loss of density and consequent mechanical weakening from visible pest infestation 

(although there will also be fungal damage within this) can be inferred from the density 

data in Chapter 7. Figures 7.6, 7.7, 7.9 and 7.10 show a drop in density due to damage 

matching the visible decay caused by pest infestation in the sapwood samples of both 

oak and Scots pine. The drop in sapwood density is reflected in both the compression 

stiffness of the historic Scots pine samples and the 3-point bending stiffness of the 

historic oak samples. Figure 9.6 shows the drop in compression stiffness of the historic 

Scots pine sapwood. This is not seen in modern wood as the sapwood is usually the 

stiffest region in softwoods, as it has the lowest MFA. Therefore the loss of compression 

stiffness can be put down to the damage and loss of density resulting from both pest 

and fungal decay. Figure 8.3 shows the decline of bending stiffness in the historic oak 

sapwood. This was not quite so sharp as for the historic pine samples and the oak 

suffered less from pest infestation, having more effective natural defences (Carvalho et 

al., 2009; Clausen, 2010).  

11.3 Polymer breakdown of wood from fungal decay. 

 

Figure 8.4 shows that the MOE/D ratio in oak decreased significantly towards the bark, 

although with considerable scatter. This is evidence of decay in the sapwood and just 

beyond the heartwood/sapwood boundary. It did not occur throughout the entire 

sample and therefore was not a result of natural chemical aging of the wood. As the 

MFA data in figure 6.35 shows a linear pattern, this loss of stiffness is not due to MFA. 

Pest damage would be expected to cause weakening in wood as pests completely 

destroy wood cells. However pest damage will cause loss of density at the same time as 

loss of stiffness, and the calculation of MOE/D allows for this. Fungal decay is capable of 

causing loss of stiffness before any loss of density is seen (Bader et al., 2012; Brites et 

al., 2013; Curling et al., 2001), so that any changes in the MOE/D ratio are most likely 

due to fungal decay not pest damage. The reduced MOE went deeper into the wood 

than the loss of density, which can be visibly matched to the pest infestation as is 

evident from figure 7.3 and figure 8.4. 

These graphs show that the effect of fungal decay extends into the wood deeper than 

can be seen without detailed investigation (Bader et al., 2012; Brites et al., 2013; 

Curling et al., 2001), and that loss of density alone is not enough to indicate the full 
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extent of biological damage. This can be seen in figure 8.4 where the lower MOE/D can 

be seen occurring from sample 20 outward. As each sample is a 5 mm cube this is 40-50 

mm from the edge of the beam, which may show that the weakening extends just inside 

the heartwood/sapwood boundary, although this is not conclusive due to the large 

amount of scatter within the samples. Therefore incipient decay appears to lower the 

stiffness of wood before any noticeable mass loss occurs. This can be deduced from my 

own data but also from experiments carried out by Reinprecht and Hibký, (2011).   

Enzyme degradation cuts the polymer chains of cellulose and hemicelluloses, especially 

if the enzymes are from brown rot fungi (Reinprecht and Hibký, 2011; Ridout, 2000, 

p.30). The loss of cellulose will obviously result in loss of stiffness because the 

microfibrils that govern wood stiffness consist of cellulose. In the incipient stage of 

decay the hemicelluloses are the first polymers to be attacked (Curling et al., 2001). 

Other studies have shown that the loss of hemicelluloses could also be contributing to 

the loss of stiffness of wood (Bader et al., 2012). 

Chapter 4 shows that there were wider effects of polymer breakdown caused by the 

enzymes produced in the decay mechanisms of fungi, especially in the breakdown of 

Scots pine. Aside from weakening the wood, the enzymes caused the polymers to be 

converted to monomeric sugars which the fungi would be expected to metabolise for 

their own growth and respiration, but some of these sugars may be left in the wood. As 

these are soluble they are one of the possible causes for increased uptake of moisture.  

Chapter 4 also shows that historic Scots pine had the ability to absorb 30 – 50% more 

moisture than modern pine, as can be seen in figure 4.6. In comparison, for oak there 

was no significant difference in water sorption between modern and historic wood 

(figure 4.3). Further experimentation into the increased water sorption in historic pine 

showed that there was a higher concentration of soluble sugars in comparison to modern 

pine (table 4.2). There are two possible reasons for the higher sugar concentration. One 

is the preferential breakdown of the hemicellulose, and possibly cellulose, chains by 

enzymes produced by the fungi. The other potential reason is the hydrolysis of the 

hemicellulose polymers into monomers by the increased trapped acetic acid in the pine 

following the detachment of acetyl groups. This is discussed in Section 11.4 below. 

Further evidence for the breakdown of cellulose in the S2 layer of the wood cell wall by 

fungal decay comes from the MFA experiment in Chapter 6. Figure 6.18 shows an 

increase in MFA in the sapwood of the historic Scots pine samples. This did not occur in 

modern wood, where the MFA was high at the pith but then became lower throughout 

the rest of the tree’s growth. From the evidence in Chapter 6 it is concluded that the 

fungi had preferentially attacked the S2 layer which is lower in lignin. The destruction 

of the S2 layer resulted in the mean MFA being determined mainly by the S1, S3 and 
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primary wall layers, which have a microfibril orientation much less aligned with the 

cells. This must be due to fungal breakdown rather than pests, as pests would have 

completely destroyed many of the cell walls, not just the S2 layer, so that no change in 

MFA would be predicted.  

11.4 Mechanical weakening of wood through age, without biological decay. 

 

All the results showed that with oak there was no statistically significant difference in 

density or mechanical properties between the modern and historic samples, aside from 

the damage caused by biological decay. Historic Scots pine on the other hand was 

different in both density and stiffness from the modern samples. The change in density 

can be put down to biological decay but the change in stiffness cannot be attributed to 

decay alone, as it was occurring throughout the entire beam from pith to bark, and not 

just in the sapwood. Reduced stiffness in the Scots pine heartwood is unexpected as the 

MFA for historic Scots pine was lower than modern, and thus it would be expected that 

the stiffness would be higher. Therefore the historic Scots pine has lost stiffness over 

time. This reduced stiffness in the historic pine heartwood may be due to the effect of 

acetic acid which is discussed further in section 11.5 below.   

Hardness testing of the oak samples also showed no statistically significant difference 

between the different ages of oak tested. Therefore the widely held notion that oak 

gets harder with age was not confirmed for the samples tested here. Based on the 

results of this project (figure 10.3) it can be suggested that oak becomes harder not 

because of aging, but due to the seasoning process. The prediction that seasoned oak is 

harder than unseasoned green wood could be tested using methods similar to those used 

here.  

11.5 Chemical breakdown of wood polymers during aging 

 

From this project there is substantial evidence that the hemicellulosic polymers in both 

the softwood Scots pine and the hardwood oak were degrading with age. The results in 

Chapter 3 show that both historic oak (figure 3.7) and historic pine (figure 3.11) had a 

decrease in the acetyl groups associated with the hemicellulose polymers. This is 

assuming that there was originally a constant amount of acetyl within the wood. There 

is some evidence supporting a relatively constant amount of acetyl groups with the main 

difference being between early and latewood (Gorzsas et al., 2011; Kim and Daniel, 

2012). From figure 3.8 and 3.12 it can be seen that reduced acetyl content was not a 

product of decay as the low levels were not localised within the sapwood but occurred 

throughout the entire wood beam from pith to bark.  
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Although a reduction in acetyl content occurred in both the oak and the Scots pine it 

appeared to affect the two species of wood very differently. The breakdown of these 

acetyl groups by chemical hydrolysis forms acetic acid, which would be released into 

the wood. Although acetic acid is considered to be a weak acid and does not completely 

ionize in water, when concentrated in the limited available moisture within wood it 

may still allow acid hydrolysis of the glycosidic bonds between monomer units in 

hemicellulose chains. Xylans are more susceptible to acid hydrolysis than glucomannans 

although all hemicelluloses are more susceptible than cellulose. Studies on historic 

paper have demonstrated its breakdown with aging due to the effect of acetic acid 

hydrolysing the cellulose polymers (Dupont and Tétreault, 2000; Tétreault et al., 2013). 

Acetic acid increases the acidity of the paper, leading to degradation of its mechanical 

properties (Menart et al., 2014). Therefore, it is logical that acetic acid could have a 

similar effect on wood. The mechanical testing data on the historic Scots pine do show a 

loss of stiffness in the historic pine in comparison to the modern pine, as can be seen in 

figure 9.6. As previously mentioned it would be expected that the historic pine would 

be stiffer due to its lower MFA. The reduced stiffness therefore shows that the 

weakening of the Scots pine was due to age, as the loss of stiffness was not confined to 

the sapwood where it was caused by biological decay.  

In oak there was no significant difference in stiffness between the ages tested. It is 

suggested that due to the large vessel diameter in oak, the acetic acid can escape from 

the wood structure much more easily than in pine, where it becomes trapped and then 

acts as a catalyst in the further breakdown of the hemicellulose polymers. This possibly 

caused the pine wood to lose stiffness and its hemicellulose chains to break down into 

smaller sugar units. These sugars could be one of the causes of the increased water 

absorption in the historic pine recorded in Chapter 4. However this experiment showed 

that hydrolysis by fungal enzymes may be another cause for the increase in free sugars 

within the historic pine, as well as acid hydrolysis by acetic acid. There was no 

significant difference in either density or moisture sorption between historic and 

modern oak. 

Another observation in the literature (Popescu et al., 2006; Fackler and Schwanninger, 

2012) is that lignin content has been seen in some spectroscopic studies to increase with 

age. Figure 3.4 does show an increase in the lignin content with age in oak, when its 

FTIR peak area was ratioed against fingerprint peaks for cellulose and hemicelluloses 

taken together. The calculation was re-done using only a cellulose peak, and figure 3.6 

shows that there was then no significant increase in the relative lignin content with 

age. The relative increase in lignin content may simply have been due to the loss of the 

hemicellulose polymers.  
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11. 5 Conclusions 

 

Evidence was found for both mechanical and chemical differences between historic and 

modern wood, additional to those resulting from the effect of biological decay due to 

pests and fungi. Some of these differences originate from the slower growth of the 

historic samples which were used in this project, leading to lower MFA and hence 

greater predicted stiffness in the historic pine, but not in oak.  Some of the changes 

with age affected the hardwood oak and the softwood Scots pine in different ways. 

Chemical degradation of the wood polymers over time could be clearly seen in both oak 

and pine, which lost acetyl groups from the hemicellulose polymers to form acetic acid. 

Although the acetic acid appears to have had no real effect on the historic oak, the 

historic pine lost stiffness compared to the predictions from MFA, probably due to the 

degradation of the hemicellulose polymers by acid hydrolysis.  

The breakdown of the hemicelluloses in decayed Scots pine sapwood, by fungal 

enzymes, led to further loss of stiffness and also possibly released soluble sugars, 

allowing the wood to absorb 30-50% more moisture than its modern counterpart. 

The added effect of the destruction of the S2 layer in the sapwood by fungal enzyme 

attack caused the MFA to be recorded as higher than expected, as the measured MFA 

reflected the microfibril orientation for the other cell wall layers. The loss of the 

microfibrils from the S2 layer might have an effect on the shrinkage of wood but that is 

unclear from the evidence in this project. 

Overall this project produced evidence of changes to the mechanical and chemical 

properties of wood with age, some of which could impact the effectiveness of current 

conservation practice and repair work involving timber replacement.  
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Chapter 12 

Conclusions for Conservation  
 

Conservation science is a fairly new field. The outcomes from projects in conservation 

science need to be understood by practical conservators to be of use in the conservation 

field. This chapter aims to put the scientific data from this project into the context of 

practical conservation issues. As previously mentioned there is very little published 

research on historic wood, the main reason being that most of the historic wood left in 

the UK today is part of historic structures or objects, and needs to be preserved for the 

future, not destroyed by scientific testing. The author was fortunate to obtain some 

genuine historic oak and pine samples from Historic Scotland, allowing a new look into 

the aging of historic wood. Determining how historic wood ages is complex as it is 

necessary to distinguish between biological decay and breakdown of the wood through 

the direct effect of age (Popescu and Hill, 2013). 

Historic wood is often presumed to be stable with time, with nothing happening to 

affect its properties that is not caused by biological decay (Grabner and Kotlinova, 

2008; Feio et al., 2008; Gereke et al., 2011). The first thing that conservators ought to 

know from this research project is that in both Scots pine and oak, acetyl groups are 

lost from the hemicellulose polymers with age. Thus like any biological material, wood 

suffers from chemical breakdown with age, but this effect has very different 

consequences in oak and in Scots pine. 

12.1 Conservation impact on Oak 
 

The array of different tests carried out here showed that oak, despite this chemical 

breakdown with age, is extremely stable in its mechanical properties. It behaved in 

mostly the same manner as modern oak without recognisable changes in stiffness or 

hardness other than the natural variation expected within and between trees. 

Chemically there were changes, but these were not affecting oak in a physical manner. 

There is a slight difference in the amount of water that historic oak absorbs in 

comparison to new oak. This is most likely due to the loss of acetyl groups. Although 

there is a difference in sorption between the modern and historic oak it is not large and 

it would only cause damage through differential shrinkage of the two parts of a repaired 

joint in the most extreme RH fluctuations. When taking into account the variation 

between trees it is probably negligible within a well cared for building environment. 
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One other concern about the chemical changes occurring in oak is not so much a 

concern for the wood repairs themselves, but for surrounding objects. It is common 

knowledge within the conservation world that oak gives off acetic acid no matter what 

its age. This is why museum cases are no longer made of wood as metals, especially 

iron, suffer severe corrosion when in contact with acetic acid (Zelinka et al., 2008). 

Timber repairs today are not done using iron for these reasons. The concern for 

conservation here is illustrated by the display of weapons shown in figure 12.1. It is 

possible that mounting this high up close to the oak panelling could cause corrosion to 

the metal. It might be an idea to investigate how far the acetic acid produced by oak 

can spread: in a well ventilated building it might not be an issue. 

 

 

 

 

 

 

 

 

 

Figure 12.1: Weaponry displays which may be vulnerable to acetic acid released from wood into 

their surroundings (Marsden and Winterbottom, 2010, p. 8).  

12.2 Conservation Impact on Scots Pine: 

 

The problems implied by the results for Scots pine are of more concern for 

conservation. The chemical changes to the wood polymers affect Scots pine more than 

oak. Firstly, the mechanical properties of aged Scots pine were found to be inferior to 

equivalent modern wood, throughout the beams studied and not just at the sap edge 

where the changes could be put down to mass loss through pest infestation.  

Historic Scots pine not only had lower stiffness but also, at high humidity, absorbed 30-

50% more moisture than modern wood. This could have a major impact on the 

traditional splice joints used to repair historic timber structures, where the atmosphere 

was not well controlled. Excess moisture attracted by the older wood could lead to 
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water pooling in the joint. This could result in biological decay (Pizzo, 2008) setting in 

and destroying the new joint. Also the different levels of moisture taken up by the 

differently aged wood members may cause differential shrinkage between the two and 

apply even more added stress on the new joint. Both historic oak and historic Scots pine 

were shown to shrink and swell differently from the modern wood. In modern wood, 

shrinkage is controlled by MFA (Mansfield et al., 2009; Esteban et al., 2010; 

Kretschmann, 2010). As there is already a significant difference in their equilibrium 

shrinkage due to age, this could cause differential movement within a timber repair, 

and possibly unwanted stress within the joint.  

Rigorous control of RH and temperature in a building should be enough to control any 

problem with the dimensional stability of oak wood and also to control the moisture 

sorption problem in pine, but ‘like for like’ pine repairs to joints need to be carefully 

considered as historic Scots pine is not as invulnerable as people are led to believe. 

Although it is perfectly capable of completing its service life, repairs need to be done 

with care making sure that no unnecessary stress is introduced. This requires good 

control over the building environment and very careful selection of the replacement 

timber piece for the new joint.  

12.3 Consequences for the conservation of joints 

 

Joints are the key to the functioning of timber structures and need to be considered 

with care (Branco and Descamps, 2015) whether they are old or new. When replacing 

part of a decayed timber, the new joint between the old and new timber is commonly a 

scarf or splice joint (figure 12.2). This kind of joint is today usually fastened using both 

resin adhesive and steel pins, although where possible wooden pegs may be preferred as 

this was how scarf joints were fastened historically (Brunskill, 2004, p.156).  

In Scottish historical timber structures the most common existing joints are dovetail 

joints (figure12.4), lap and half lap joints (figure12.5) and mortise and tenon joints 

(figure 12.3). Each of these joints needs careful consideration when one of the joined 

timbers is to be replaced. For example it is relatively easy to repair a joint if the loads 

on the structure will be pushing the joint together (under compression). Joints are 

harder to repair when there are tension forces pulling the joint apart e.g. the joint 

between a tie or collar beam and a rafter.  

 

12.3.1 Scarf or splice joints 

The scarf joint is typically used in repairs where new timber is inserted, for example 

when a decayed beam end is cut back to remove a short length weakened by decay and 
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a new piece of timber is scarfed onto the sound part of the beam to make up the lost 

length.  Existing scarf joints (figure 12.2) are also occasionally found in historic 

structures when a long timber member is made from two or more pieces. There are 

different types of historical scarf joint but all are pegged together (Brunskill, 2004, 

p.144) and are never as strong as a continuous solid beam (Branco and Descamps, 2015).  

Further strain will be put on a scarf joint if the new and old timbers are not compatible. 

From this research we can say that very strong forces along the grain will develop if one 

part of the joint swells or shrinks longitudinally more than the other in changing levels 

of humidity. The force produced from this mismatch is capable of destroying a pegged 

joint or even bending a whole timber if it has been glued. Differences in longitudinal 

shrinkage will occur if the timber members making up the joint are responding 

differently to moisture, or if one is wet and the other dry. Unfortunately this research 

cannot say more about matching new to old in this respect, as longitudinal shrinkage 

was not tested due to the small scale of the sample material.  

 

 

 

 

 

 

12.3.2 Mortise and tenon Joints 

In a mortise and tenon joint (figure 12.3), the tenon formed on the end of one timber 

slots into the mortise cut into the other. Both of the timbers are weakened as the joint 

is cut into them (Brunskill, 2004, p.140). There are a number of variations of the joint 

and the tenon can be formed one- or two-shouldered (Brunskill, 2004, p.143; Branco 

and Descamps, 2015). If the fit is slightly slack, these joints undergo a little movement 

and rotation when under load, and work like hinges (Bulleit et al., 1999; Sangree, et al 

2008). The tenon can be pinned into position to prevent it from coming out once it is 

positioned. The dovetail tenon joint also achieves this but without the need for extra 

pinning (Brunskill, 2004, p. 143; Branco and Descamps, 2015). A mortise and tenon was 

generally favoured for beam to column joints between load bearing timbers. When 

these joints fail, it is generally a result of flexing in the beam itself away from the joint 

(Bulleit et al., 1999). Lateral shrinkage is the key to the success of a repaired joint. This 

research shows that lateral shrinkage changes with age. Although the detail is 

Figure 12.2: Example of a typical historic scarf joint 
(Brunskill, 2004, p. 145). 
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complicated it can be said that lateral shrinkage will cause this type of joint to slacken 

if the timber member that is forming the tenon shrinks more than the mortise. If the 

member that contains the mortise shrinks more it could split as a result of the pressure 

from the tenon. There are several ways to mismatch timber in lateral shrinkage: (1) 

Difference in moisture content between the old and new timber pieces when the new 

piece is being shaped for the repair; (2) Changes in shrinkage due to the different ages 

of the samples; (3) Any difference in MFA between the two pieces will result in a 

difference in lateral shrinkage; (4) The difference between longitudinal and transverse 

shrinkage or between tangential and radial shrinkage.  

 

 

 

 

 

 

 

 

12.3.3 Dovetail joints 

The dovetail joint (figure 12.4) was traditionally used in Scotland as the favoured joint 

in the jointed cruck frame. A dovetail joint is commonly used between collar and rafter 

beams or between struts and other members. It is one of the very few older joints 

which can deal with tensile as well as compression forces (Kunecký et al 2015). The 

dovetail joint relies on an exact fit: if the contact area becomes small and the gaps 

large it can slip under tension (Branco and Descamps, 2015; Kunecký et al., 2015). 

Another common type of failure in a dovetail joint is the splitting of one of the 

members due to forces produced by the wedge shape of the joint under tension (Branco 

and Descamps, 2015).  The same shrinkage issues found with the mortise and tenon 

joints apply to dovetail joints. The only key difference is that the dovetail joint must 

stay tight if it is to work correctly in tension.  

 

 

Figure 12.3: Example of a typical 
mortise and tenon joint (Brunskill, 
2004, p. 142). 
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12.3.4 Lap joints 

Lap joints (figure 1.6) and half-lap joints again have variations but are generally used 

when one lighter timber member is passing over another. For example when a brace 

meets a rafter, usually one member will be rebated to allow the other to slot in 

(Brunskill, 2004, p.142). Lap and half-lap joints are usually held together with pins. 

Occasionally one member will be dovetailed into the other, which is another way to 

reinforce this joint against tensile forces (Branco and Descamps, 2015). Otherwise, as 

the joint is heavily reliant on the strength of the pins its efficiency can be very low. The 

wooden pins need to fit perfectly in the joint for it to function well, but over time the 

pins can slacken due to movement of the structure (Branco and Descamps, 2015). The 

pins will suffer from extra shear stress produced by differential shrinkage if a new, 

mismatched piece of timber is substituted on one side of the joint (Sjödin and 

Johansson, 2007). Loosened pins need to be repaired or replaced, otherwise shear 

failure can occur reducing the load capacity of the joint (Branco and Descamps, 2015). 

Gaps between timbers mean that the members are not in full contact with each other 

and will need reinforcement to avoid failure within the frame. Traditionally this was 

done with wooden wedges or additional pegs (Branco and Descamps, 2015). Well 

matched timber and good control of the surrounding RH environment will reduce stress 

on the new joint from differential shrinkage between the old and new wood, but the 

difficultly of assessing old timber to facilitate a good match needs to be overcome by 

future research (Branco and Descamps, 2015). 

 

 

Figure 12.4: Example of a typical 
dovetail joint (Brunskill, 2004, p. 
141). 
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12.4 Suggestions for improvements in current conservation methods 

 

A new timber joint requires careful selection of the replacement piece. There are many 

things that should be taken into account to provide the best match for both oak and 

Scots pine, but this is both more difficult and more important for Scots pine. Even in 

oak, it is obvious that the moisture content of the new wood should be matched with 

the old. For example, due to difficulties in sourcing seasoned oak in large dimensions, 

green wood is sometimes used to repair a historic structure, and having an initially high 

moisture content it dries out once it is in service. This can cause loosening of joints, 

particularly mortise joints, when the green wood shrinks as it dries over time in contrast 

to the historic wood which is already completely seasoned. 

One of the key things to be taken into account is the microfibril angle (MFA) of the 

wood. The MFA, as discussed in detail in Chapter 6, governs the stiffness and shrinkage 

of timber (Lachenbruch et al., 2010; Bader et al., 2012). The MFA changes through the 

growth of a tree. That is why it is important to match the MFA of the historic material. 

Juvenile softwood has a higher MFA as it needs to bend with the wind. The MFA then 

gets smaller as the tree matures, to provide support for the larger crown (Auty et al., 

2014; Gryc et al., 2011). Therefore, if a piece of juvenile wood is inserted into a joint 

along with mature wood it will cause a huge amount of stress to the structure.   

MFA is also important when the replacement of a whole structural timber is needed. As 

MFA governs the stiffness of each piece of timber, it needs to be matched as closely as 

possible to the timber removed, as a piece of new timber with a large difference in 

stiffness, added into a structure, could lead to the loads within the historic structure 

being badly distributed and cause unwanted movement and stress in the other 

supporting timbers. An example of this is the replacement of floor joists, if the 

replacement timber is stiffer or less stiff than the original, the floor will deflect 

unevenly under load and there will be local bending stress on the floorboards. 

As mentioned in Chapter 6 MFA is difficult and expensive to measure, out of reach of 

most conservation budgets, but the approximate MFA can be gauged by looking at the 

growth rings on the end grain of the timber, and seeing which part of the tree the 

original beam was cut from and how wide the growth rings were. The replacement 

piece can then be cut from the same part of a similar tree. As the average MFA 

recorded from the historic Scots pine was 10 ̊ it is possible to achieve a similar MFA by 

careful selection of good quality modern Scots pine, even though trees were generally 

grown more slowly in the past producing a higher average quality of wood than today. 

Much present-day Scots pine contains a large amount of fast grown juvenile wood which 

is easily spotted from the wide growth rings (Gryc et al., 2011). 
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Figure 12.5: Comparison of growth rings between the slow grown wood on the left and the fast 

grown wood on the right (Science Photo Library, 2013). 

 

It is possible to select for both density and MFA as these are separately governed by the 

physiology of the tree (Wagner et al., 2013). However, finding the best match for 

historic timber can be very difficult today for the above reasons and because many 

trees from medieval forests were of much greater diameter. Trying to find wood to 

match even the thickness of some historic beams is difficult to start with, but close co-

operation with UK saw millers would be helpful in sourcing suitable Scots pine. 

Wood will always continue to draw water into its structure, no matter what its age but 

depending on the environment surrounding it.  Water absorption may become slower as 

in the case of historic oak, but wood never loses the ability to absorb and desorb water 

(Buck, 1952). Control of RH and temperature is the best course of action for any 

wooden material. Wood tolerates natural fluctuation in RH just as a tree tolerates 

seasonal change, but constantly changing RH is like going through thousands of seasonal 

changes in a short space of time, which can be damaging to the wood structure and to 

joints (Erhardt et al., 1996; Kozlov and Kitsernaya, 2013). Differential movement in 

historic wood is not a problem except in joints, but it is also a concern for the survival 

of historic wooden artefacts, especially polychrome statues, painted wooden panels and 

anything else with a paint coating that does not move with the wood, leading to 

susceptibility to a whole range of issues including cracking, paint flaking and hidden 

moulds developing on the back or under paint layers. Maintenance is a key thing for 

both historic buildings and museums (Buck, 1952). 
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12.5 Summarised implications for conservation. 

 

The original aim of this thesis was to discover if there were any differences in quality 

between historic and modern wood which could have been caused by the different 

growing conditions in medieval forests compared to today’s forests. From the results it 

could be seen that there are differences resulting from different growing conditions, 

but these were not large enough to require changes to the current conservation practice 

of sourcing modern timber for traditional repairs using ‘like for like’ replacement, 

provided that the replacement timber has properties similar to those of the historic 

timber when it was felled.  

However, unexpectedly it was discovered that the mechanical performance of Scots 

pine deteriorates with age, caused by a chemical mechanism that is not connected with 

fungal decay or pest damage, but is caused by the natural aging of the wood. The loss 

of stiffness in pine is described in Chapter 9, but the results of this research project can 

only suggest what practical conservation problems might result. It was out of its remit 

to test large timbers or timber structures, and the pine samples were only tested for 

stiffness, not strength. Calculations of the structural safety factors for historic floor or 

roof structures using stiffness figures published for modern Scots pine may therefore be 

unreliable, but further testing of larger samples would be needed before stiffness and 

strength data for historic pine could be derived.  A suggested alternative which may be 

more appropriate is to measure the sag of pine floors in situ. None of these problems 

were demonstrated to apply to oak. 

Both historic pine and historic oak show differential shrinkage in comparison to their 

modern equivalents (Chapter 5). Differential shrinkage can potentially cause a range of 

problems, discussed in Section 12.3, in joints between old and new timber. The most 

important recommendation is to make sure the moisture content of wood used in a ‘like 

for like’ repair is similar that of the historic timber. This means not using green oak in 

such repairs as it will cause added strain on the joint, as one side of it dries out. 

Matching the timber as closely as possible in grain direction and microfibril angle (MFA) 

(discussed in Chapter 6) is also recommended if possible.  

Matching moisture content and MFA is more difficult in repairs using Scots pine than in 

oak, due to the loss of stiffness in pine over historic time, and because historic Scots 

pine can absorb 30-50% more moisture than modern pine (Chapter 4) whereas in oak the 

difference in moisture-absorbing capacity with age is very small. 

Careful matching of new timbers in MFA and moisture content will improve the future 

success of repairs. These measures need to be backed up with proper maintenance and 

monitoring of the humidity environment of historic buildings, making sure that relative 
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humidity does not fluctuate to extreme values. This will keep the wood’s moisture 

content constant and therefore restrict movement via swelling and shrinkage to a 

minimum. 

For these reasons, an understanding of the behaviour of aged and new wood is crucial to 

carrying out successful conservation on historic wooden structures. Applying the findings 

of this thesis will give appropriate longevity to conservation treatments carried out on 

historic wooden structures. 

12. 6 Future Research 

 

In the course of the research done during this PhD project, a number of areas were 

identified that were out of reach in terms of both time and resources, but would justify 

further research.  

As already mentioned in Chapters 8 and 9 all the tests described here were carried out 

on micro scale samples, due to lack of material. Although it could be difficult to make 

larger samples available, it would be important to carry out mechanical testing of 

historic Scots pine timber on a larger scale. The miniaturised compression test 

described in Chapter 9 showed that pine loses stiffness with age, in relative terms, but 

it cannot reliably estimate the absolute remaining stiffness for pine of any particular 

age. To calculate the remaining stiffness of historic timber structures, structural 

engineers need MOE data validated according to the Eurocode system (EN 14081-1). The 

industry standard bending test needs ‘small clear’ samples 30 cm long. Because a clear 

loss of stiffness was demonstrated in the results of this thesis, historic Scots pine 

material of sufficient dimensions should be released to allow these tests to go forward, 

for reasons of public safety. As stated before, only stiffness testing was carried out and 

breaking  strength was not measured,  but if the hemicellulose and cellulose polymers 

suffer from degradation due to acetic acid trapped in the wood this might reduce the 

strength of the wood as well as its stiffness. Strength and stiffness can be measured 

simultaneously in the standard bending test on 30 cm ‘small clear’ samples. Testing for 

loss of strength in historic wood, especially pine should be done urgently. In addition, it 

maybe possible to load test existing Scots pine timber present in buildings. 

Acoustic and ultrasonic testing are non-destructive methods which can used to measure 

the stiffness of straight beams (Tsang and Chan, 2008; Bucur, 1985). They are best 

suited to beams which have their ends exposed, but these are hard to find in situ. There 

have been a number of experiments using acoustic and ultrasonic methods to test 

timber in situ but the measurements are difficult to calibrate due to interference from 



Chapter 12 – Conclusions for Conservation 

 

236 

 

holes cut into the wood for joints (Kandemir-Yucel, 2007; Chapman et al., 2006). Joints 

make the sound wave paths difficult to determine due to interference effects.    

Load testing is another form of non-destructive testing. This can be done in a variety of 

ways but the principle is to weigh down the timber with either buckets of water or 

people. The amount of deflection is measured for a known load and the stiffness can 

then be calculated (Hume, 1998).  

There needs to be far more research into the use of ‘like for like’ repairs to structural 

timbers especially Scots pine. As a result of this project it can be said that more 

research is needed into possible alternative species or the use of different repair 

methods such as resins. This project alone cannot determine what conservation strategy 

would be best. 

Some of the ‘like for like’ matching problems are due to modern and historic timbers, 

both oak and Scots pine, having different densities, ring widths and MFA from their 

modern counterparts. This is due to historic wood being extracted mostly from slower 

grown, natural or semi-natural forest. Matching the properties of historic timber rather 

than, or as well as, the species could help maintain the same structural stability, after  

repair, but the properties of historic timber need to be researched in more detail. It 

may be easier find suitable matches for oak than for pine, as the properties of historic 

and modern oak differ less than Scots pine. This can be looked at as a possible 

approach, starting with the literature on modern oak. There are further issues in terms 

of locating the best piece from vast amounts of planting and then the time it would 

take to season new oak from green to the same moisture content as that of the historic 

timber. There is an argument for using re-purposed timber from Victorian buildings, and 

mechanical testing could be done on this material to see if it would be appropriate.  

Scots pine needs more research due to the more complicated nature of the aging 

properties.  

Hardness of oak is something that has been commented on for years. Carpenters 

generally say that historic oak is a lot harder than green oak. In the research here 

quantitative measures were used to see if science would back this up (Chapter 10). It 

was found that there was no difference in hardness between modern and historic oak, 

but by the time of testing, the blocks cut from the green oak would have seasoned. 

Therefore maybe the difference is between unseasoned green oak and seasoned oak. 

Further research could look at this question using a range of hardness testing methods 

to see if they concur. 

Further research into production of soluble sugars and acetic acid in Scots pine would 

provide more understanding of the large increase in moisture sorption that was 

observed. It would be worthwhile further research to look into the breakdown of 
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hemicelluloses to produce small sugar units, and determine their molecular size and 

osmotic potential. More research in this area would be required to determine if the 

problem is widespread or serious and could also be applied to modern timber 

technonlogy as there is little research in both modern and historic wood in the area.  

During this research a calibration enabling MFA to be measured using FTIR spectra was 

developed for historic Scots pine. It would be fantastic for research and conservation if 

more of these calibrations could be made on different species of wood used in timber 

structures in Europe. This would allow matching for MFA in like for like repairs without 

expense outside the reach of a conservation budget. 
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