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SUMMARY

The pulsed Nd.YAG laser energy was tested for its effect on carious lesions in 

both primary and permanent teeth. Four individual experiments were designed 

to assess the different effects of this laser wavelength on the hard tissue of the 

teeth.

The first experiment assessed the effect of three different laser energy densities 

on carious dentine. These energies were also tested for their effect on sound, 

unaffected dentine, to clarify the effect of the different laser energies on the 

sound underlying dentine after the dentine caries had been removed. The 

power of 60 mJ at 15 pps (1.25 W) was confirmed to be the optimal power 

setting amongst the powers tested in this study. This laser energy was 

therefore used for the following experiments.

The degree of pulp temperature rise following the exposure of the laser during 

caries removal was evaluated and compared to the routinely used heat- 

producing pieces of equipment in vivo, namely: the conventional drill and the 

polymerising blue light. The temperature rise caused by the laser energy of 

1.25 W for 30 sec was found to be considerably higher than that of the other 

two. However, this peak temperature was shown to drop to lower levels, close 

to the baseline temperature, immediately after the irradiation stopped.
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The changes of the dentine surface following laser/drill caries removal was 

tested by assessing the margins of restorations for the presence of any gap 

and any microleakage. Results showed that the restorations of teeth in both 

laser- and drill-treated groups indicated some degrees of microleakage but with 

no significant differences between the two. The gap sizes measured were also 

found to have no significant differences between the two groups of laser- and 

drill-treated teeth. It was suggested, therefore, that preparation of the cavities 

by the laser can be as efficient as conventional drilling for the adhesion of 

adhesive restorative materials.

And finally, the applicability of the laser for the removal of dental caries in 

anxious children was evaluated. This also permitted observations to be made 

on the in vivo effects of this laser on a group of vital pulps. Patients’ anxiety 

was assessed by employing all three parties involved in the child’s dental 

treatment: operator, child, parent. Results of this study indicated that patients 

had a higher preference for the laser caries removal technique when compared 

to conventional drilling. Both patient and parent were asked as to their views 

about the two techniques of caries removal. In addition, the patient’s reactions 

were recorded before, during, and after each treatment. Each child received 

both treatment modalities to enable the assessment of the effect of individual 

techniques on patients’ anxiety.

Pulps of the treated teeth were assessed by means of ethyl chloride and the 

Electric Pulp Tester, in addition to the radiographic and clinical examination of



the surrounding structures. Results of these investigations revealed that pulpal 

status was not only different in those teeth treated with the laser, when 

compared with the drill, when they were examined after 18 to 24 months follow- 

up. The clinical assessment of restored teeth was also carried out over the 

same period (18-24 months) and indicated comparable success to conventional 

cavity preparation for the laser irradiated teeth. In conclusion, it seems that the 

pulsed Nd:YAG laser, with the energy level of 1.25 W for a maximum of 30 sec 

for each exposure may be used with minimal pulpal damage for the treatment 

of caries in primary teeth. This may provide an acceptable alternative to 

conventional drilling for young, fearful patients and may, therefore, reduce the 

amount of dental fear and anxiety in this group of the society.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Dental caries is one of the most common of human diseases, affecting the 

mineralised dental tissues, and has been studied extensively for many years 

(Kidd and Joyston-Bechal, 1987). Failure to seek dental treatment can 

ultimately lead to pulpal involvement, which in turn will cause pain, abscessing 

and consequent loss of the tooth. Any of these sequealae can increase the 

patient’s emotional stress, leading to fear and anxiety about future dental 

treatment. This fear, especially in younger patients with less experience of 

dental treatment, can lead to the avoidance of essential dental care and an 

increase in oral health problems. The highest level of fear related to dental 

treatment is reported to be from the use of the slow speed handpiece followed 

by the high speed handpiece and lastly, local anaesthesia (Petruzillo and 

McNierney, 1988). The use of a laser has been advocated as an alternative 

method of caries removal, which requires neither drilling nor local anaesthetic 

(Goldman et a!., 1965; Frentzen and Koort, 1990), and therefore offers a new 

approach to dentistry, especially for the treatment of anxious individuals. In this 

study, the potential of laser technology is investigated for treatment of dental 

caries in anxious children. The potential pulpal effects of this particular laser 

wavelength will also be investigated while testing the laser efficacy for removing 

caries, in addition to the suitability of the prepared surface for adhesive 

restorations.
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1.2 The structure of healthy enamel and dentine

Enamel covers the anatomical crown of the tooth, and is the most highly 

calcified tissue of the body. It varies in thickness considerably from different 

parts of the crown and from tooth to tooth. The hardness of enamel decreases 

from the anatomical surface towards the amelo-dentinal junction, both in 

primary and permanent teeth. The thickness of enamel is less in primary teeth 

than in permanent teeth, but is less well mineralised and, therefore, appears 

whiter. The colour of a tooth is based on the degree of translucency of the 

enamel. Enamel translucency permits the transmission of the colour of 

underlying dentine through enamel and, therefore, reflects the colour of dentine 

(Scott and Symons, 1982).

The microscopic structure of sound enamel indicates that enamel is made up of 

prisms or rods, which in turn are made up of crystallites, which run through the 

entire thickness of enamel, from the surface to the amelo-dentinal junction. The 

prisms exist within an organic matrix, which is made up of a mixture of non- 

cDllagenous proteins, defined as amelogenins and enamelins. The orientation 

of enamel prisms in primary and permanent teeth is approximately the same. 

The inorganic component of enamel is made up of 96 to 97% mineral, the 

remainder being made up of organic material and water. The inorganic material 

of enamel consists of a hydroxyapatite-like mineral [Ca10(PO4)6(OH)2] (Scott 

aid Symons, 1982).
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Dentine forms the bulk of the tooth, and is covered by enamel in the crown, 

while cementum covers the root part. Compared to enamel, dentine has a 

higher organic content and is, therefore, more elastic. Hydroxyapatite also 

forms the inorganic part of dentine, which is 75% of the weight of dentine, while 

19 to 21% is collagen, the remainder being water (Scott and Symons, 1982).

Dentine consists of cells, odontoblasts, and an intercellular substance. The 

structure of dentine also has a characteristic feature of its own known as 

dentinal tubules, which house the odontoblastic processes which pass through 

the bulk of the dentine to the dentino-enamel junction, although the distance 

through which these processes go will vary, especially with age. This part is 

considered to be the most sensitive part of dentine which receives stimuli, 

transferring them to the pulp. Dentinal tubules are more closely packed 

towards the pulp than the natural surface, and the amount of intertubular 

inorganic material, therefore, will be higher at the amelo-dentinal junction. This 

means that the outer dentinal surface, close to the ADJ, will be harder than the 

pulpal surface (Scott and Symons, 1982). Dentinal tubules, themselves have 

been introduced as a possible path by which bacteria can invade the pulp 

directly during the carious process, even before there is alteration of the 

dentine structure (Kidd and Joyston-Bechal, 1987).
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1.3 Dental caries - Definition:

By definition, dental caries is an infectious transmittable and progressive 

disease of the tooth structure by microbial activity, causing irreversible damage 

to the dental hard tissue (Pindborg, 1970).

1.4 The initiation of dental caries

Dental caries, like any other human disease, involves initiation and progression 

of the disease. The disease has been known to scientists from the early ages. 

Earlier theories involved in the aetiology of dental caries were: a. The tooth 

worm theory suggested by the Babylonians, b. Endogenous theories including: 

Humoral theory suggested by Glen (Greece), Vital theory by Hippocrates, 

Celcus (Greece) and Avicenna (Persia). While Exogenous theories including 

Chemical (Acid) theory (Robertson, 1835) and Parasitic (septic) theory (Dobus, 

1954) were postulated later (Nikiforuk, 1985a).

1.4.1 Current theories on the aetiology of dental caries:

Several theories have been advocated to help explain the aetiology and 

progression of dental caries, including: 1. Chemoparasitic theory (Acidogenic 

theory) Miller, (1890), 3. Proteolytic theory (Gottlieb, 1944), 4. Proteolysis - 

chelation theory (Schatz and Martin 1962), 5. Sucrose chelation theory 

(Eggars-Lura, 1963). Among these, the most accepted theory is the acidogenic 

theory (Silverstone eta!., 1981).
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The disease occurs in the presence of the following three essential elements: 1. 

the tooth, 2. micro-organisms 3. a substrate for microbial metabolism. Time, as 

a separate element, has been described as an important additional factor in the 

development of dental caries. The interaction of time in the caries process can 

be appreciated better when, if all three other factors come together just for a 

moment, caries will not develop (Figure 1.1).

1. 4.2 Dental plaque and oral microflora:

To have an influence on the enamel surface, micro-organisms require to adhere 

to the tooth surface; they then break down substrate and, as a by-product, they 

produce acid (Acidogenic) for their survival within that environment (Aciduric). 

Plaque is described as a highly efficient environment for such microbial activity 

to occur. The mechanism of initial tooth colonisation by micro-organisms 

include bacterial adhesion to: 1. pellicle or enamel, 2. other bacteria, and finally 

3. defects of enamel (Gibbons and van Houte, 1973). The formation of dental 

plaque continues by the formation of extracellular chains of carbohydrates 

known as glucans and fructans (Dextrans and Levans). These polysaccharides 

are believed to play an important role in reducing the buffering effect of saliva 

thereby inhibiting remineralisation of enamel.

The fermentation of substrate, and in particular refined carbohydrates, by 

plaque bacteria will produce acid, which reduces the plaque pH to a level below 

5.0 within 1 to 3 min (Kidd and Joyston-Bechal, 1987). This lowered plaque pH
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Figure 1.1: Venn diagram, presentation of the factors involved in dental caries 
process and their relationship.



will recover within a period of 30 to 60 min following each episode of 

carbohydrate consumption (Kidd and Joyston-Bechal, 1987).

The major micro-organisms involved in the aetiology of dental caries are 

reported as the Streptococcus species, especially mutans, sanguis, salivarius 

and milleri which have a major role in both caries initiation and progression 

(Fitzgerald, 1968; Druker and Green, 1978; Loesche et al, 1975). Other 

species, such as lactobacillus acidophilus and casei and also actinomyces can 

also be associated with the caries process (Syed et al., 1975).

1. 5 The progression of dental caries:

All four elements of this process are equally essential for the initiation and 

progression of the demineralising process of dental hard tissue. The 

progression of carious activity takes place as a result of subsurface 

demineralisation, leaving a relatively narrow but unaffected layer of surface 

enamel (Darling, 1958). Under the correct circumstances, demineralisation will 

continue in the subsurface area and spread towards the amelo-dentinal 

junction, and eventually into dentine. The structural characteristics of enamel 

will dictate that once a certain degree of demineralisation is reached, the tissue 

becomes weak, the surface enamel breaks down and an open cavity is 

produced. Further progression of demineralisation into the dentine causes a 

reactional activity of odontoblasts, by the secretion of so-called reparative 

dentine at the pulpo-dentinal junction.
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1.5.1 Active and arrested caries:

The progression of dental caries will depend on a number of different factors, 

including the pH of the saliva, which in turn is related to several factors already 

discussed in Section 1.3.2. This process has been divided into two distinct 

types in terms of its activity with respect to acute or active caries, where the 

carious lesion is in either an active phase of destruction, or arrested caries, 

where progression of the carious lesion has been interrupted and the process 

of demineralisation is no longer occurring. Epidemiological studies have shown 

that active caries is more common in children, whilst arrested caries can be 

found mainly in adults. Treatment of acute caries is clearly more important as 

any failure to treat such lesions could lead to spread of the disease, whilst 

arrested caries may stay relatively innocent for some time without treatment 

(Trowbridge, 1981; Silverstone etal., 1981).

1.5.2 Structural changes of the dental hard tissue during the caries 

process:

Since both the chemical composition and the ultramicroscopic orientation of the 

molecules varies a great deal between enamel, dentine and cementum, so their 

reactions to acid attack will differ to a varying degree. Dentine is, however, 

covered by the other two structures, an initial loss of enamel or cementum 

being essential to expose dentine to caries risk.

In general, carious lesions have been categorised in terms of stages of 

development as: 1. initial caries, which includes white and brown spot lesions,
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2. enamel caries commencing with decalcification of the superficial layer of 

enamel followed by breakdown of the enamel matrix and the formation of a 

cavity, 3. dentine caries, which can be associated with minimal enamel 

involvement, or no involvement of enamel, up to the stage of actual cavitation 

of the tooth.

1.5.3 Enamel Caries:

The carious process is a gradual destruction of the tooth structure with loss of 

both inorganic and organic components. Organic acids, responsible for 

demineralisation of the tooth, are believed to be produced within the dental 

plaque from dietary carbohydrates, especially polysaccharides (Geddes, 1991). 

The first stage of the demineralisation appears in the form of a white spot 

lesion, where enamel mineral density is lost. Such early lesions may be 

remineralised if proper and effective measures are implemented (Kidd, 1984). 

The process of demineralisation of enamel will continue to the stage where a 

cavity is formed by massive destruction of the crystals of enamel eventually 

involving the underlying dentine (Silverstone etal., 1981). The carious lesion in 

enamel has been described histologically using polarised light as having a 

surface zone, a body of the lesion, a dark zone and a translucent zone (Kidd 

and Joyston-Bechal, 1987). Both primary and permanent enamel have been 

shown to exhibit these histological features (Kidd and Joyston-Bechal, 1987).
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1.5.4 Dentine caries:

Carious dentine has been described as consisting of two distinct layers of 

firstly, infected soft denatured dentine, showing the presence of micro­

organisms, and secondly, affected, discoloured but hard dentine with the 

presence of only endotoxins of the bacteria (Fusayama, 1979; Fusayama, 

Okuse and Hosoda, 1966; Ohgushi and Fusayama, 1975). The outer layer is 

irreversibly denatured, infected by bacteria and not remineralisable, whilst 

within the inner layer the process appears to be reversible. In the latter, the 

dentine is not infected, it is remineralisable and can be preserved (Miauchi, 

Iwaku and Fusayama, 1978). Caries activity within dentine is also believed to 

be associated with a series of reactions in the pulpo-dentinal complex. These 

reactions include features such as tubular sclerosis, reactionary dentine and 

finally inflammation of the pulp (Kidd and Joyston-Bechal, 1987).

Fusayama and co-workers in several electron microscopic studies of the outer 

layer of carious lesions, have reported a decrease in cross-bands and inter- 

bands, whereas the inner layer demonstrated dense, regularly arranged 

collagen fibres similar to those found in intact sound dentine (Ohgushi and 

Fusayama, 1975; Kuboki, Ohgushi and Fusayama, 1977; Sato and Fusayama,

1976).

The second (inner) layer of carious dentine contains physiologically 

remineralisable collagen fibres and living odontoblast processes (Kurosaki et 

al., 1977). One of the reasons why physiological remineralisation occurs in the



second layer of carious dentine could be due to the presence of odontoblastic 

processes. The character of the collagen fibres as the basis for precipitation of 

calcium and metallic elements may be another reason to explain this 

phenomenon (Kurosaki et al., 1977). This latter finding was discovered 

following electron microscopic observations of the second layer of carious 

lesions, which indicated that the metallic elements of tin and zinc, (but not 

mercury or silver dissolved from amalgam restorations), simply passed through 

the first layer, which had sparsely scattered collagen fibres without definite 

cross bands. These metallic elements accumulated in the second layer, which 

were associated with dense, regularly arranged fibres with characteristic cross 

bands similar to those in the sound dentine (Kurosaki and Fusayama, 1973).

Collagen fibres play an important role in the process of remineralisation of 

carious dentine. A histochemical stainability, in addition to electron microscope 

cross-bands and inter-bands, are described as characteristics of collagen fibres 

in the second layer of carious lesions and not in the first layer (Kuboki, Ohgushi, 

and Fusayama, 1977). No significant difference has been reported in the 

amino acid composition of carious and sound dentine. In the first layer, 

destruction occurs, not only in the cross-links, but also involves intramolecular 

degradation within the collagen molecules (Kuboki, Ohgushi, and Fusayama,

1977).

In 1975, Ohgushi and Fusayama reported that collagen had a partially 

degraded fibrillar structure in carious lesions. The decalcified, superficial
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carious layer with degraded collagen is fuchsin-stainable, whereas the slightly 

demineralised dentine nearest to the sound dentine, containing unchanged 

collagen, does not stain (Fusayama and Terachima, 1972). Micro-organisms 

can occasionally invade the deeper portions of mineralised dentine adjoining 

the lesion (Dorphman, Stephan, and Muntz, 1943). A remineralisation process 

is believed to take place within the dentine beneath the carious lesion during its 

active phase as a reaction to initial dentine attack (Johnson, Taylor and 

Berman, 1969).

1.6 Differences between dentine caries in primary and permanent teeth:

The pathology of the carious process in dentine of primary teeth, and the 

defence mechanisms of the tissue, are similar to those described for permanent 

teeth. Determination of the speed of caries progression on the developing 

defence changes between primary and permanent teeth is not known 

(Johnson, Taylor and Berman, 1969).

Since the thickness of enamel and dentine in primary teeth is considerably less 

than that of permanent teeth, and also that the area occupied by the pulp in 

primary teeth is relatively larger than that in permanent teeth, the chance of 

caries progress to pulpal involvement is much higher in primary teeth 

(Silverstone, 1970; Johnson, Taylor and Berman, 1969).

Featherstone and Mellberg (1981) reported that the progress of artificial carious 

lesions in enamel of primary teeth was faster than that of permanent teeth.
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Extensive demineralisation of the intertubular dentine was reported in 

histological assessment of deciduous dentine caries with the presence of micro­

organisms within the mineralised areas (Lester and Boyde, 1968, Johnson, 

Taylor and Berman, 1969). Work carried out some time ago indicated the 

presence of bacteria remaining on the floor of the dentine cavity, after caries 

removal, was higher in primary teeth than permanent teeth (Whitehead, 

McGregor and Marsland, 1960). However, the fundamental features of carious 

lesions in both primary and permanent teeth are described as being very similar 

(Kidd and Joyston-Bechal, 1987).

1.7 The reaction of the Pulpo-dentinal complex to the carious process:

The intensity of the disease and the period of time the pulpo-dentinal complex 

has been exposed to microbial activity defines the level of defence and possible 

damage. However, the defensive reaction starts quite early, probably when 

enamel is undergoing demineralisation. Changes in dentine represent the 

reaction of the pulpo-dentinal complex to acid challenges on enamel and its 

transmission through the interprismatic region to the amelo-dentinal junction 

(Arends et a!., 1987). Different levels of reaction to carious stimuli can be seen 

in the pulpo-dentinal complex which include: 1. Changes within dentine (tubular 

sclerosis, dead tracts) 2. Changes at the pulpo-dentinal junction 

(reparative/reactionary dentine formation, atubular calcification, odontoblastic 

degeneration), 3. Changes within the pulp (inflammation which appears as the 

effect of bacterial products, pulpitis, necrosis of the pulp) (Levine, 1974; Reeves 

and Stanley, 1966).



1.8 Epidemiology and assessment of dental caries:

Since dental caries is now considered a socio-economically associated 

disease, the need for detailed epidemiological assessment of the disease has 

become mandatory. This will involve both the study of prevalence and the 

incidence of the disease. Prevalence is used to define the quantity and the 

extent of the disease at a particular time, while incidence refers to the changes 

of the rate of the disease within a certain period of time.

The prevalence of dental caries within a population has been examined for 

many years using one of the most commonly used index systems first 

introduced by Klein, Palmer and Knutson, (1938). This index measures the 

sum of decayed, missing, filled teeth or surfaces as DMFT/S for each individual 

member of the population. The prevalence of the disease within the population 

can be presented by the mean value of these sums. To become more 

sensitive, these indices have been modified from a tooth to a surface 

assessment for individual subjects. A modification to the indices for primary 

teeth can be used to eliminate exfoliated teeth, the DEFT/S (Decayed, 

Extracted, Filled, Teeth/Surface) (Doherty, 1988). For a root caries, more 

specified index described as the Root Caries Index (RCI), has also been used 

to assess dental caries in exposed root surfaces (Katz, 1980).

Several methods of assessment are commonly employed in clinical dentistry to 

examine teeth with regard to the different degrees of demineralisation, 

preoperatively. The examination of a dried, clean tooth surface with a good



operating light is probably the most common initial method of caries detection 

at the occlusal pit and fissure regions. Electronic detectors (Rock and Kidd, 

1988), and laser beams (Benedetto and Antonson, 1988) are the most recent 

techniques which are under continued investigation for their reliability and 

clinical applicability. Pitts and Rimmer (1992) reported considerably higher 

caries rate in teeth with tight interproximal contacts. They suggested the use of 

orthodontic separators as a means of obtaining a better direct, clinical view of 

proximal surfaces.

The diagnosis of the initial stages of dental caries and also hidden approximal 

caries has always been of great concern to clinicians. The increased 

prevalence of diagnosed hidden caries under the fissure-sealed, sound 

occlusal surfaces has been reported as 19%, using bitewing radiographs as an 

adjunct to caries diagnosis (Weerheijm et ai, 1992). Bitewing radiographs are 

employed to aid the diagnosis of approximal caries in posterior teeth, while fibre 

optic transillumination (FOTI) is used mainly for the assessment of interproximal 

caries of the anterior teeth (Pitts, 1984; Mitropoulos, 1988; Kidd and Pitts,

1990). Bitewing radiographs are generally accepted as the most reliable 

assessment technique for assessing the presence and also the degree of 

progress of interproximal caries (Kidd and Pitts, 1990). The technique is, 

however, only an estimation as to the depth of the lesion (Espelid and Tveit, 

1986). A bitewing positioning device has also been introduced for use with 

children, to allow accurate placement of the x-ray film intra-orally (Pitts et al.,

1991).



1.9 Caries prevention:

1.9.1 Introduction:

Prevention is implemented in three stages based on the progress and severity 

of the disease including: 1. primary prevention, before the disease occurs, 2. 

secondary prevention, elimination of the disease during its initial stage, 3. 

tertiary prevention, the actual treatment of a well established disease in order to 

prevent further destruction. As with many other infectious human diseases, for 

example bacterial infection of the respiratory system, dental caries can be 

prevented by removing one or more of the initiating factors. The prevention of 

dental caries is an achievable goal which can save considerable amount of time 

and effort for both patient and clinician, in addition to the removal of the need 

for restoring carious teeth.

Different methods of prevention have been investigated to define their ability to 

prevent demineralisation of hard dental tissue with the most common 

techniques routinely used, including: 1. altering the surface structure and 

chemistry of the enamel using fluoride ions (Ogaard, Arends and Rolla, 1990; 

Murray, Rugg-Gunn and Jenkins, 1991), 2. covering the anatomical pits and 

fissures of the tooth, using resin-based sealant materials (Bowen, 1982), and 

finally 3. altering the level of the carbohydrate content of the diet (Nikiforuk, 

1985b). Bibby (1970) has argued, however, that the role of carbohydrates on 

caries activity is considerably less effective than the others.
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1.9.2 Fluoride:

Fluoride is commonly acknowledged as the most effective natural element 

which can influence dental caries before its initiation by altering the enamel 

structure. Only Fluoride, in certain concentrations, 75 to 100 parts per million 

(ppm) at neutral pH, can produce such favourable chemical changes on enamel 

through the production of calcium fluoride (Leach, 1959; Ogaard, 1990). This 

ion, in excess, can cause irreversible damages to the tooth enamel during its 

formation, commonly known as dental fluorosis (mottling). Fluoride is believed 

to have its effect on hard dental tissue both pre- and post-eruptively. It can be 

administered, therefore, at the required concentration at each stage of tooth 

development (Murray, Rugg-Gunn and Jenkins, 1991).

Fluoride is available in several forms including: drops, tablets, mouthrinses and 

toothpastes. The most effective means of delivering fluoride is, however, by its 

addition to the water supply. Milk and salt are two other vehicles for fluoride 

delivery. It is believed that the fluoride concentration of 0.7 to 1 parts per 

million in drinking water is sufficient to reduce the level of dental caries by 50% 

(Dean, Arnold and Evolve, 1942).

The exposure of enamel to fluoride is believed to strengthen the chemical 

structure of the enamel through a series of chemical bonds changing the 

enamel hydroxyapatite to a new chemical structure called fluoroxyapatite 

(Murray, Rugg-Gunn and Jenkins, 1991; Kidd and Joyston-Bechal, 1987). The 

exact mechanism of fluoride’s anticaries activity is, however, still not clear.



Precipitation of compounds such as calcium fluoride are believed to create a 

barrier against acid diffusion and act as a nidus of free fluoride, since calcium 

fluoride is sparingly soluble (ten Cate and Duijsters, 1982).

Ogaard et al. (1986) reported that the level of mineral loss in enamel and 

cementum has been reduced by 80% after fluoride rinsing (Ogaard, Rolla and 

Arends, 1988). Blinkhorn, Hosting and Leathar (1983) investigated the level of 

dental caries experience between secondary school children in Scotland and its 

relation to dental care. A 22% reduction of the level of the DMFT in those who 

used fluoride rinsing during the period of the study was reported when 

compared to the control group.

For some considerable time it has been clear that patients with fluorosed teeth 

have a relatively high resistance to caries attack, even taking into account the 

relatively poorly mineralised surface layer of the enamel. This is explained by 

both the presence of a high level of fluoride and a low level of salivary protein 

adsorption on the enamel surface, reducing the deposition of dental plaque 

(Kidd and Joyston-Bechal, 1987). It has been suggested that a remineralised 

white spot lesion on enamel may be more resistant to a caries attack than 

sound enamel (Koulourides, Cueto and Pigman, 1961). It has been shown that 

fluoride-releasing restorative materials have the potential of inducing 

remineralisation to early enamel lesions by their fluoride exchange capacity 

(Creanor et al., 1994). However, the presence of pellicle and plaque, which is 

considered as a diffusion barrier and is known to cover the glass ionomer



surface soon after placement, may reduce the fluoride exchange level (Creanor 

etal,  1995).

1.9.3 Other methods of caries prevention:

Several other possibilities have been investigated to prevent both the initiation 

and progression of dental caries including: 1. immunisation (Challacombe, 

Guggenheim and Lehner, 1973; Cohen, Colman and Russel, 1979; Aaltonen 

et al., 1985), 2. Alteration of the enamel surface structure using high energy 

laser radiation (Nammour, Renneboog-Squilbin and Nyssen-Behets, 1992; 

Nelson etal., 1986; Nelson, Jongebloed and Featherstone, 1986; Franquin and 

Salomon, 1986; DeRadd, Paschoud and Holz, 1988), 3. The eradication of 

enamel fissures (Bodecker, 1929), 4. Covering the crown using stainless steel 

crowns, usually following an initial repair, (Curzon, Roberts and Kennedy, 

1996), 5. The use of Chlorhexidine as an antimicrobial agent with an inhibitory 

effect on the demineralisation of enamel (Regolati, Konig and Muhlemann, 

1969), 6. Increasing the level of metal ions such as Copper (Cu++), Iron (Fe++), 

Zinc (Zn++) (Emilson and Krasse, 1972; Giertsen, Bowen and Pearson, 1991).

As a conclusion, it is clear that prevention of dental caries can be performed by 

elimination of any one of the four essential factors involved in caries 

development as the easiest approach in practice. However, any attempt to do 

this should be planned carefully.
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1.10 Treatment of dental caries:

1.10.1 Introduction:

The treatment of dental caries involves the removal of the degraded part of the 

dental hard tissue followed by repair of the prepared cavity by an appropriate 

restorative dental material. Several caries removal techniques have been 

studied in dental research which have included both mechanical and non­

mechanical approaches (Anderson and van Praagh, 1942; Goldman and 

Kronman, 1976; Melcer et al., 1984). The next three sections will discuss about 

those caries removal methods which will include the more recent conventional 

method.

1.10.2 Conventional caries removal technique:

The most commonly used technique for the removal of dental caries is the use 

of rotary instruments, that is slow and high speed handpieces. Drilling is 

considered as highly efficient, fast, and reliable in its ability to remove caries. 

Discomfort during the application of such equipment, especially for anxious 

patients, however, may be a problem. Rotary instruments were introduced to 

dentistry in 1870, as before that date cleaving of the enamel and excavation of 

carious dentine were undertaken with hand instruments alone (Stephens, 

1986). The conventional mechanical technique, using rotary instruments for 

caries removal, can cause considerable discomfort, and in some cases results 

in an unpleasant experience, particularly for young patients. In addition, such 

methods are not selective in their ability to remove caries. Rotary instruments, 

due to their friction action on dental hard tissue, will produce heat on the



surface to which they are applied. This heat can then be transmitted to the 

deeper layers of the tooth, and eventually to the pulp and may, therefore, cause 

pulpal damage. Coolants, supplied with these instruments, are designed to 

limit the heat created by this frictional force (Stanley and Swerdlow, 1960), with 

this effect being confirmed as an important factor for pulp safety during 

conventional drill application (Goodis, Schein and Stauffer, 1988a, Goodis, 

Schein and Stauffer, 1988b).

Local anaesthesia is routinely prescribed to reduce the discomfort and pain 

produced by the action of the drill during caries removal. The technical design 

of drills over recent decades has changed, to provide a more efficient and easy 

cutting instrument (Stephens, 1986). But, the removal of sound dental tissue 

remains one of the disadvantages when rotary instruments are being used for 

cavity preparation.

1.10.3 Laser Caries Removal:

The concept behind the use of lasers as a possible substitute for conventional 

rotary instruments for drilling hard dental tissues was first introduced by 

Kinersly et al. (1966). Lasers have been introduced as an optical drilling 

technique and a possible alternative to conventional treatment (Goldman et al., 

1964; Stern, Vahl and Sognnaes, 1972).

The major concern of using lasers as a means of dental hard tissue removal, is 

the effect of the procedure on vital pulpal tissue below the cutting surface. It
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has been reported that most of the present lasers available for dental 

application, including the Nd:YAG, have the potential for producing heat during 

their application to the dental hard tissues (Adrian, 1977; Melcer, Chaumette 

and Melcer 1985). Even the Er:YAG laser, advocated as a non-thermal laser, 

has been reported as producing some degree of temperature rise at the surface 

of the irradiated area (Frentzen and Koort, 1990). Since laser caries removal is 

the subject of this study, further details and different aspects of laser 

applications in dentistry, including caries removal, will be discussed later in this 

Chapter.

1.10.4 Other techniques of removing dental caries:

There have been several other reports on possible alternative techniques for 

removing carious tissues which have had varying degrees of success. The 

following is a brief description of some of these techniques:

a- Air abrasive technique:

An air abrasive was created through the kinetic energy of a high velocity stream 

of fine abrasive particles (crystals of aluminium oxide) in a stream of carbon 

dioxide gas). This mixture of abrasive and gas was delivered through a dental 

handpiece which has a tube with a contra-angle shape designed to ease 

access to different angles of the cavity (Black and Christi, 1955). The 

technique was introduced some years ago, supposedly as an easy, rapid and 

biologically accepted method. The use of rotary instruments continued to be 

used, however, to complete cavity preparation (Nielson, Richards and Wolcott,



1955; Black and Christi, 1955). The air abrasive technique for cavity 

preparation was reported as acceptable to the patient but was limited to those 

teeth which could only be viewed by direct vision; also, the technique had the 

added disadvantage of preventing tactile sensation during the cutting procedure 

(Black and Christi 1955).

b- Ultrasonic technique:

An ultrasonic method for cutting hard dental tissue was evaluated by Oman and 

Applebaum (1955). This method was believed to produce smooth cutting edges 

on enamel or dentine (Nielson, 1955; Oman and Applebaum, 1955). Ultrasonic 

energy was produced by a variable frequency oscillator which supplied a high 

frequency alternating current to the magnetostrictive handpiece through a 

power amplifier. Rapid vibration movement produced the vibration of the dental 

instrument which in turn transmitted an effective cutting action to the abrasive 

liquid mixture (aluminium oxide and water) which was in contact with the tooth 

structure (Oman and Applebaum, 1955). Nielsen, Richards and Wolcott (1955) 

stated that the ultrasonic system was unable to remove soft carious tissue and 

was only effective on cutting surfaces with a hard structure.

c- Chemomechanical Caries Removal:

Chemical caries removal was first introduced by Goldman and Kronman in 

1976. The chlorination of denatured collagen disrupts secondary hydrogen 

bonding resulting in removal of the so-called infected layer of the carious lesion 

(outer layer) (Kronman et al., 1977). Chemical caries removal reagents are



claimed to be effective only on the denatured collagen in the outer layer of the 

carious lesion, with no effect on the inner layer which may, therefore, be 

considered as a technique which has a selective caries removal effect 

(Goldman and Kronman, 1976).

Several clinical and laboratory studies have been carried out to evaluate the 

efficacy of the technique in its ability to remove dental caries, in addition to its 

acceptability for anxious individuals (Ansari, 1994; Zinck et al., 1988). Results 

of both In vitro and in vivo studies on the efficacy of the technique have 

indicated high success rates of 98% and 76% in removing carious tissue 

(Mcnierney and Petruzillo, 1989; Robbins and Ragan 1988), particularly in 

primary teeth (Yip, Beeley and Stevenson, 1991a; Yip, Stevenson and Beeley, 

1995). Patient’s acceptance rate has been reported as being as high as 87% 

by Zinck et al. (1988) and 89% by Ansari, Beeley and Reid (1994). The 

potential ultrasonic effect of the ultrasonic scaling unit supplied by Caridex 

chemical reagent was also tested and resulted in a higher efficacy for caries 

removal in a shorter time (Ansari et al., 1995). However, the clinical feasibility 

of the ultrasonic machine for this purpose is still under investigation.

1.10.5 Caries removal assessment techniques:

It can often prove difficult to estimate the amount of carious dentine that should 

be removed clinically from a cavity. Studies carried out on caries detection 

using different dyes following the removal of caries, as judged by visual and 

tactile criteria, demonstrated the stainability of remaining dentine to some



degree (Anderson, Loesche and Charbeneau, 1985). The deeper the carious 

invasion into dentine, the greater the possibility of basic fuchsin 0.5% staining 

the dentine after caries removal was assessed clinically (Anderson and 

Charbeneua, 1985). To date, several different types of caries detection dyes 

have been tried in an attempt to consistently and accurately detect carious 

dentine especially at the ADJ. These include: 0.5% Basic Fuchsin in propylene 

glycol (Anderson, Loesche and Charbeneua, 1985), 1.0% Acid Red (Boston 

and Graver, 1989; Kidd, Joyston-Bechal and Beighton, 1993), Sodium 

Fluorescein (Van-der-veen and Ten-Bosch, 1993) and Tracer Dye (O'Brien, 

Vazquez and Johnston, 1989).

Fuchsin in propylene glycol solution has been shown to stain the soft carious 

material better than erythrosin solution (Anderson, Loesche and Charbeneua, 

1985). It is important to remember that only erythrosin can be used clinically 

due to the now established carcinogenicity of fuchsin (Brannstrom, Johnson 

and Friskopp, 1980). There was no difference reported in the level of infection 

between stained and non-stained dentine following clinical caries removal 

judged with visual and tactile criteria (Kidd et al., 1989; Kidd, Joyston-Bechal 

and Beighton, 1993). It has been suggested that conventional tactile and visual 

senses are, therefore, satisfactory means of assessments for caries removal 

and that the use of caries detectors dyes on hard and stain free dentine may 

cause unnecessary removal of sound structure (Kidd et al., 1989; Kidd, 

Joyston-Bechal and Beighton, 1993; Yip, Stevenson and Beeley, 1994).
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1.11 Lasers in Dentistry:

1.11.1 Introduction:

The word “laser” is an acronym for Light Amplification by the Stimulated 

Emission of Radiation. The laser has been considered for use in many areas of 

science and technology, including medicine and dentistry. Maimen (1960) 

initiated the idea of light amplification based on a similar idea of microwave 

amplification of stimulated emission of radiation (Maser) introduced by 

Schawlow and Townes (1958). When lasers appeared in the 1960’s, the world 

of dentistry had great hopes that this new technology would remove caries 

more precisely than drilling instruments without vibration, usually responsible 

for most of the patient’s discomfort. If this goal were achieved, the need for the 

use of local anaesthesia would be reduced and, therefore, access to this 

method of caries removal could encourage dental phobic patients to accept 

routine restorative dental treatment.

1.11.2 Laser sources (types):

To date more than 600 laser media are known, with varying wavelengths with 

10 different types used in medicine. The first laser introduced to medicine was 

a Ruby laser made by a crystal of Ruby (Maiman, 1960). Javan, Benet and 

Herriott (1961) introduced the first gas medium laser from a continuously 

operating machine. Next was the C02 laser (Patel, McFarlane and Faust, 

1964) followed by the Nd:YAG laser introduced by Geusic, Marcos and Van 

Uitert (1964). Goldman, Reuben and Sherman (1964) were the pioneers of 

laser application on human dental hard tissues by applying early engineering



lasers to enamel. Dental and medical lasers have been designed to have 

specific effects on tissues, and the reaction of the tissue to the laser beam 

determines the clinical suitability of the particular treatment. Currently, there 

are several types of laser used in dentistry, amongst which four most commonly 

used are namely: 1. Carbon dioxide (C02), 2. Argon ion, 3. Neodymium Yttrium 

Aluminium Garnet (Nd.YAG) and 4. Erbium Yttrium Aluminium Garnet 

(Er:YAG).

Different laser wavelengths are produced by excitation of the emission in 

different laser medium. The laser medium, in the case of the Nd:YAG, is a 

crystal whilst the C02 and Argon lasers are both produced by excitation of gas. 

There has been no report on any alteration in atomic structure of the tissues 

exposed to any of the three laser radiation causing, for example, genetic 

mutation. The ultraviolet range, on the other hand, has demonstrated such a 

potential risk (Pick, 1993). Table 1.1 shows some specifications and details of 

the current lasers.

1.11.3 Nd:YAG laser characteristics:

The Nd:YAG laser which is in the infra red range, 1.06 microns, can not be 

seen and therefore care is required during its application. A Neodimum-Helium 

laser light is supplied by the Nd:YAG lasers as the aiming beam. The Nd:YAG 

laser wavelength is attracted to the darkened pigmented tissue surfaces, 

resulting in varying degrees of optical scattering and penetration with minimal 

absorption and no reflection (Pick, 1993). The laser is available in both



Type of laser component elements mode of energy 
delivered

method of excitation

ArF-excimer Argon-fluorine pulsed High voltage
XeCI-excimer Xenon-Chlorine pulsed High voltage
Nd:YAG Neodymium yttrium aluminium 

garnet
pulsed/ continuous Xenon lamp

Ho:YAG Holium yttrium aluminium garnet pulsed/ continuous Xenon lamp
EnYAG Erbium yttrium aluminium garnet pulsed/ continuous Xenon lamp
ErCrYAG Erbium, Chromium, yttrium 

aluminium garnet
pulsed Flash lamp

co2 Carbon dioxide pulsed/ continuous Tube current flow

Table 1.1: presentation of the source, mode, and excitation method of most 
commonly used laser types in hard tissue research.



continuous and pulsed modes, with the main advantage being its ability to be 

delivered through an optical fibre. The Nd:YAG laser delivery system has been 

designed for two different modes of application, including: contact and non- 

contact modes, with different indications. Depending on the mode of laser 

energy delivery, the Nd:YAG laser wavelength can penetrate into depths of 0.5 

to 4 mm into oral soft tissues (Pick, 1993). Continuous wave Nd:YAG laser 

irradiation, particularly with a non-contact mode, is known to penetrate deeper 

into the tissue causing tissue damage (Miserendino, Levy and Miserendino, 

1995).

The absorption peak of the Nd:YAG laser for enamel and dentine has been 

stated as being 9.6 pm and 2.9 pm respectively (Hibst and Keller, 1989). The 

Nd:YAG laser has a wavelength (1.06 pm) near the infrared part of the 

electromagnetic spectrum, which penetrates the tissue readily and at the same 

time, due to its scattering and reflection properties, may easily damage the 

tissue (Launay et al., 1987; Hillenkamp, 1989). Black initiator dyes have been 

found to provide a sharp demarcation between coated and non-coated areas 

irradiated with the Nd:YAG laser, suggesting a more controlled cut when these 

dyes are used (Hess, 1990).

1.11.4 Mechanism of tissue interaction:

The effect of laser energy on the target tissue is based on the absorptivity of 

the tissue medium and the laser wavelength used (Yellin et al., 1976). As the 

laser energy hits the target tissue, it will either be scattered, reflected, absorbed



or transmitted. Tissue interaction of the laser is based on three important 

characteristic factors in laser radiation including: 1. wavelength, 2. energy 

density, and 3. mode of application (Yamamoto and Sato, 1980). Interaction 

between the laser and the tooth divides into: 1. photochemical, 2. photothermal,

3. photoablative, and 4. photodisruptive mechanisms. Of the four possible 

mechanisms, only the two latter mechanisms are considered suitable for 

removing caries. These actions are produced by 30 pulses per second (pps) or 

less at power densities of at least 1 mJ (Minderman and Niemz, 1993).

a- Ablation and photodecomposition:

The higher the energy of the light photons (shorter wavelengths), the more 

efficient is the photoablation process of dental tissue (Frentzen, Koort and 

Thiensiri, 1992). As the wavelength of radiation increases, direct dissociation 

of molecular bonds may not occur and instead stimulated lattice vibration can 

lead to heat, resulting in thermal decomposition of weaker molecular bonds. 

Thermal decomposition of these molecular bonds will cause vaporisation and 

expansion of the localised tissue superficially. Tissue vaporises as a result of 

thermal interaction with an increase of internal lattice vibration, ending in a 

thermal destruction process (Frentzen, Koort and Thiensiri, 1992). Miserendino, 

Levy and Miserendino (1995) described the thermal effect of the laser on the 

target tissue as either photoablation or removal of tissue by vaporisation. 

Photoablation means dissociation of molecules.
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b- Photochemical decomposition:

Photochemical interaction occurs when long irradiation time and low energy 

densities are employed, which subsequently changes to photothermal action by 

increasing energy densities (Miserendino, Levy and Miserendino, 1995). A 

photochemical process occurs when molecules absorb laser energy; in other 

words, it includes biostimulation by stimulating the normal biochemical and 

molecular processes happening in tissues, for example the healing process. 

The thermal or thermomechanical process happens through absorption 

followed by vibration of rotation bands, which converts light to heat which 

because of its high level, leads to carbonisation of the dental tissue (Minderman 

and Niemz, 1993).

c- Photodisruption:

It has been suggested that short pulsed laser irradiation, with high energy 

densities, causes material ionisation by producing a plasma, which dissipates 

the tissue explosively at a very high pressure, also called mechanical 

destruction (Berlien and Muller, 1989). Photoelectrical interaction or so-called 

photoplasmolysis, which happens following an electrical charge of ions and 

particles of the gas surrounding the target tissue. Plasma has been considered 

as the fourth state of matter in all three types of solid, liquid, and gas 

(Miserendino, Levy, and Miserendino, 1995). Short pulses and high power 

densities are necessary to enable multi-photon absorption. In excess of these 

two characters, photodisruption takes place by generation of a microplasma 

with temperatures of 6,000-10,000°C at the focal point of the laser.



Photodisruption or photomechanical interaction is described as the breaking 

apart of structure following laser application (Minderman and Niemz, 1993).

Several other factors have an influence on the laser-tissue interactions, such as 

the absorption rate of individual laser wavelength by water and other 

chromophores in the irradiated tissue, photoacoustics and photothermal 

capacity of the target tissue (Dederich, 1993). Because of the nature of the 

wavelength, Nd.YAG laser has a high penetration rate with a high absorption 

on pigmented or darkened tissues (Absten, 1990; Yamamoto and Kayano,

1988), while the C02 laser radiation is quite different, having a high absorption 

coefficient in water-containing tissues with small penetration potential (Pogrel, 

McCracken and Daniels, 1990)

Dederich (1993) stated that as soon as charring occurs at the surface of the 

target tissue, the absorption rate will be increased due to darkening of the 

tissue surface. In other words, the charred dentine will play the role of an 

initiator and, thereby, improves the absorption of the specific laser wavelength 

(Dederich, 1993). A combination of the different interactions can appear at the 

same area, especially at high pulse energies (Frentzen and Koort, 1990). An 

example of this combined interruption has been reported in cases irradiated by 

Excimer lasers (Melcher, 1984; Srinivasan, 1986).

It can be summarised, therefore, that factors involving the actual reaction of the 

tissue to the laser light are: 1. power density, 2. exposure duration, 3. nature of
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the tissue 4. wavelength, each of which should be considered carefully and 

selected properly before any laser application.

1.12 Laser effects on dental hard tissues

Dental hard tissues are considered as compound materials consisting of 

mineralised and organic elements which exhibit varying degrees of optical and 

material properties (Frentzen and Koort, 1990). Laser irradiation of dental hard 

tissue causes varying degrees of structural alteration on enamel and dentine 

including: cratering, melting and recrystalisation and finally carbonisation as the 

result of charring (Kantola, 1972; Kantola, Laine and Tarna, 1973; Kantola, 

1973). Every laser has its particular effectiveness on cutting hard dental 

tissues which is also depend on the laser energy level as well as the exposure 

time. In addition, the absorption coefficient of the tissue at the particular 

wavelength of the laser is an important factor in the process of laser/tissue 

interaction (Paghdiwala, 1991). Since the physical properties of enamel and 

dentine are different, lasers will inevitably have differing effects on dentine 

compared to enamel. On the other hand, the crater depth is directly 

proportional to the amount of laser radiation delivered to the target tissue 

(Stern, Renger and Howell, 1969). More details of these effects on enamel and 

dentine are discussed below.

1.12.1 Effects of lasers on enamel:

Different effects of lasers on enamel have been investigated, including its effect 

on acid resistance (Fox et al., 1992a; Fox et al., 1992b), enamel etching



(Nelson, Jongebloed and Featherstone, 1986; Renneboog-Squilbin et al.,

1989), bleaching of enamel (Kinersly et al., 1965) and more importantly, the 

laser’s ability to cut through enamel (Launay et al., 1987; Hillenkamp, 1989). 

Meurman et al. (1992) investigated the effect of different laser radiations, 

including: 1. Nd.YAG, 2. C02, 3. Nd.YAG - C02 combination on the crystalline 

structure changes of synthetic hydroxyapatite. It was concluded that enamel 

acid resistance reduced due to melting of enamel following the rise of surface 

temperature when the tissue was exposed to high energy densities (Meurman 

etal., 1992).

Both Nd:YAG and C02 lasers are shown to be capable of producing alteration 

in enamel structure, resulting in a higher resistance to acid attack and 

subsequent subsurface demineralisation (Yamamoto and Ooya, 1974; 

Yamamoto and Sato, 1980; Boran, Zakariasen and Peters, 1991; Sognnaes 

and Stern, 1965). The enamel acid resistance achieved by a continuous 

Nd:YAG laser radiation was less than that achieved from the pulsed Nd:YAG 

laser radiation (Yamamoto and Kayano, 1988). Quintana et al. (1992) 

suggested that improved enamel resistance to acid attack following laser 

irradiation could be due to microfusion and loss of the surface prismatic 

structure. The best result of increased enamel resistance to acid attack was 

reported to be achieved by irradiation of enamel using acoustooptically Q- 

switch Nd:YAG laser with 10 W output energy for 0.8 sec (Yamamoto and Sato, 

1980).
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Phase changes in inorganic material (Fowler and Kuroda, 1986; Lobene, 

Bhussry and Fine, 1968), permeability changes of enamel (Stern, Vahl and 

Sognnaes, 1972), and finally reduced enamel solubility by chemical changes 

(Nelson et al., 1987), in irradiated areas of the teeth by the C02 laser are 

among some of the explanations given for the reduction of demineralisation 

rate of subsurface enamel. The nature of recrystalisation of melted enamel 

eliminates the prism boundaries and produces homogenous and non- 

homogenous crystals of apatite with larger particles, resulting in reduced acid 

reactivity (Ferreira et al., 1989). The level of fluoride uptake of the irradiated 

area of enamel, using a pulsed Nd:YAG laser with energy density of 750 mJ 20 

pps for 0.5 sec was reported to be higher than non-lased area of the tooth 

(Baharand Tagomori, 1994).

Willenborg (1989) described the Nd:YAG laser as being an effective tool for 

caries removal and preventive fissure sealant therapy. The water content of the 

target area should be boiled off before the laser energy can attain the 

destructive threshold of the tooth structure. As dentine contains almost six
I[
[ times more water than enamel (Sicher, 1986), more laser energy is, therefore,
i
!

required for dehydration of dentine compared to enamel (Peck and Peck, 

1967). The laser penetrated enamel more easily than dentine, causing frank 

destruction in enamel which could be related to the structural and biochemical 

differences between dentine and enamel (Peck and Peck, 1967).
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1.12.2 Effects of lasers on dentine:

The effects of lasers on dentine varies from no effect, disruption of the smear 

layer, to actual melting and resolidification of dentine. Each of these effects will 

be based inevitably on energy densities, exposure time and the degree of 

darkening of the dentine. Another example of recrystalisation as an important 

feature is the observation that lasing of the dentine of the root canal wall 

reduced the level of its permeability to fluids with the presence of needle-like 

crystals as the indication of non-porous dentine (Dederich, Zakariasen and 

Tulip, 1984).

During laser application, a great deal of energy is delivered to a reasonably 

small area, which is converted to heat following absorption in that area. The 

tissue’s reaction to heat will vary depending on a number of different factors, 

which includes the level of the temperature rise. High temperatures produced 

by laser radiation of dentine causes varying features from: burning to melting 

and, more favourably, ablation of the dentine by vaporisation of the organic 

matrix. This former effect is believed to be the most favourable outcome of 

laser radiation with regard to the removal of carious dentine (Melcer et al., 

1984). Pashley et al. (1992) reported the effect of laser radiation of dentine as 

sealing the surface and, therefore, reducing the permeability of dentine, in 

addition to removal of the smear layer.

The natural opacity of intact dentine ranges from 50-91 per cent, while the 

equivalent thickness of intact enamel has an opacity ranging from 21 to 67 per
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cent (Souder and Paffenbarger, 1942). It is clear, therefore, that dentine (due 

to its greater opacity) will absorb more laser radiation and will demonstrate a 

more extensive effect than enamel (Dederich, 1993). The exposure time, in 

addition to the energy density applied to the tooth, will determine the ultimate 

effects of the laser on the tissues (van Breugel and Dop Bar, 1992). 

Application of a dark dye is believed to enhance laser absorption (Yamamoto 

and Kayano, 1988), therefore, increasing its caries removal efficacy, which, 

perhaps, reduces the level of energy travelling through the lesion (Bassie, 

Chawla and Patel, 1994). Cox, Pearson and Palmer (1994) stated that once 

the threshold level for dentine damage has been exceeded, further increases in 

the energy density augments tissue loss and increases the depth of cratering.

Wavelengths between 320 and 500 nm are suggested to provide optimum 

selective ablation of carious lesions, which is about four times less than the 

energy needed for ablation of sound dentine (Clarkson, 1992). Therefore, 

proper laser energy settings might be considered safe for sound, adjacent 

dentine during a caries removal procedure. The procedure of vapourisation of 

dentine is based on the different properties of dentine, including the level of 

water and the collagen content (Cox, Pearson and Palmer, 1994). Laser 

irradiation of dentine has been described as producing three distinct zones of 

destruction: 1. central zone of complete dentinal destruction; 2. a surrounding 

zone of partial dentinal destruction; and 3. a scattered zone of dark speckling 

beyond the first two zones. When dentine is vaporised by laser energy, the 

surface of the dentine becomes darkened by the procedure of carbonisation. It



has been recommended that this superficial discoloured layer be removed, due 

to its potentially poor aesthetic side effect on the colour of restorations (Peck 

and Peck, 1967).

1.12.3 Nd:YAG laser and dentine:

The Nd:YAG laser beam is capable of being transmitted through an optical fibre 

and is absorbed more readily by a dark dentine surface, as stated earlier, 

compared to the C02 laser beam (Schultz et al., 1986; Yamamoto and Kayano, 

1988). This particular wavelength (1.064 pm) is not absorbed by sound enamel 

but it may be absorbed by intact cementum and dentine (Bassie, Chawla and 

Patel, 1994).

White et al. (1991a) suggested that superficial carious dentine was removed 

successfully using a pulsed Nd:YAG laser of 0.3 to 3.0 W and provided a 

suitable dentine surface for restoration via micromechanical retention. Bassie, 

Chawla and Patel (1994) reported that post-operative sensitivity of laser-treated 

teeth was much less compared to conventionally treated teeth, which could be 

due to the fusing effect of the laser on dentine, thereby closing the open 

dentinal tubules. This resulted in a reduction in dentine permeability and thus, 

reduced tooth sensitivity.

Microscopic assessment of the laser’s effect on carious tissue revealed a 

selective deep destruction of coloured carious mass by laser irradiation 

(Goldman, Gray and Goldman, 1965). Scanning electron microscopic views of



the specimens revealed that the Nd:YAG laser punched out the craters 

irregularly followed by the production of melted and recrystalised masses of 

dentine giving an appearance of glazed interconnected droplets, in addition to a 

normal dentine appearance in the areas between droplets (Cernavin, 1995).

Opaque sclerotic dentine, because of its colour and structural quality, absorbs 

the Nd:YAG laser energy in a similar fashion to pigmented tissues. Translucent 

sclerotic dentine, however, is less able to absorb any energy and transmits the 

light through to the underlying structure (Dederich, Zakariasen and Tulip, 1984; 

Dederich, Zakariasen and Tulip, 1988). Even partial absorption of the Nd:YAG 

laser, following a continuous radiation of opaque dentine will eventually heat 

the dentine to its melting point (600-800 °C) (Komrska, 1972) which with further 

exposures, this heat will be transmitted to the deeper points of dentine 

(Dederich, 1993). The clinical point where the tissue effect is noticeable would 

begin when the colour of the surface of treated dentine turns dark, thus 

increasing the absorption rate of the Nd:YAG laser beam. (Dederich, 

Zakariasen and Tulip, 1984; Dederich, Zakariasen and Tulip, 1988).

1.12.4 Other dental hard tissue applications of laser technology:

As the FDA has only approved the clinical use of lasers for soft tissue 

applications, their usage as a means of hard tissue application having not yet 

been granted, research on different aspects of this new approach to dentistry is 

still under investigation. In addition to those discussed earlier, there has been 

several other laser applications on dental hard tissues since its introduction to



dentistry including: a- reducing dentine hypersensitivity (Ronten-Harper and 

Midda, 1992; Stobholz et al., 1995); b- caries detection (Benedetto and 

Antonson, 1988; Longbottom and Pitts, 1993), c- pulp therapy (Zakariasen et 

al., 1986), d- removal of subgingival calculus (Radvar et al., 1995), e- 

sterilisation (Burns, Wilson and Pearson, 1994; Hooks et al., 1980; Adrian and 

Gross, 1979), f- fusing dental porcelain (Peacocke et al., 1988), g- cavity 

restoration by fusing the porcelain powder packed into the prepared cavities 

into the enamel and dentine (Stern and Sognnaes, 1965) and h- polymerisation 

of the light activated dental resins (Potts and Petrou, 1991). It is important, 

however, to consider the problems associated with the use of lasers in any of 

the above applications including potential pulpal damage (see below).

1.13 Side effects of lasers on the dental pulp and periodontal tissues:

Different laser wavelengths have different effects on biological tissues and, 

therefore, behave to a varying extent when they are applied to these tissues. 

The likelihood of a laser affecting underlying tissues depends on its ability to be 

penetrated and transmitted into the underlying tissue (Miserendino, Levy and 

Miserendino, 1995).

Inevitably, lasers have disadvantages including, the possible detrimental effects 

on the dental pulp. Different laser wavelengths have been reported to cause 

varying degrees of pulpal changes. Amongst those, the Nd:YAG laser may 

cause irreversible pulpitis, followed by a sterile necrosis of the pulp tissue. This 

could be due to high temperature rises at the depth of the tissue which directly



effects the pulp (Wigdor et al., 1993). Miserendino et al. (1989) believed that 

pulpal damage usually occurs following either inappropriate power levels or 

exposure times. This concept is supported by Melcer (1986), who suggested 

that a short exposure with low energy laser radiation to an unfocused area 

would not damage the irradiated tissue. Damage of a thermal nature is 

possible during laser cavity preparation of deep cavities. In this respect, a 

minimum of 3 mm thickness of the remaining dentine is necessary, between the 

floor of the cavity and the pulp, to avoid pulpal damage during optimal laser 

irradiation (Jeffrey eta!., 1990).

Results of an in vivo investigation, using a pulsed Nd:YAG laser radiation on 

enamel surface of dogs’ teeth, revealed an acute haemolytic necrosis of the 

pulp which were reported to return to normal within a month following irradiation 

(Bahcall et al., 1993). Serebro et al. (1987) suggested that the duration of 

exposure was significantly more important than the power of the laser energy 

used as shown by the reaction of the dental pulp observed in histological 

assessments. More recent studies on the histology of the pulp following laser 

irradiation of the tooth, using a pulsed Nd'.YAG laser, for 2 min (150 mJ at 20 

pps) indicated no pathological changes to indicate any damage the vital pulp 

(Goodis, White and Harlan, 1992; White, Goodis and Daniels, 1991).

1.14 Aims and Objectives:

This study was designed to investigate the effect of a pulsed Nd:YAG laser on 

dental caries, both in primary and permanent teeth. The clinical acceptability of



the laser technique was also investigated for treating anxious children. The 

aims of these investigations, therefore, were as follow: 

a- Assess the efficacy of the laser on removing carious tissues in comparison 

to conventional drilling both in vitro and in vivo. 

b- Assess any potential temperature changes in the pulp chamber during 

different treatment applications using an in vitro model, 

c- Make an assessment of the microleakage in restored cavities, 

d- Assess any changes in patients’ anxiety towards dental treatment following 

laser caries removal, 

e- Evaluate the long term response of the pulp to laser radiation for caries 

removal.
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CHAPTER II

MATERIALS AND METHODS - GENERAL



CHAPTER 2: MATERIAL AND METHOD - GENERAL

2.1 Introduction

In this Chapter, the methods, equipment and materials employed in the in vitro 

studies (Chapters 3,4,5), and the in vivo trial of the laser (Chapter 6) are 

described. A brief description of general methodology for in vitro and in vivo 

trials will be discussed, also. Further details of these studies will be given in the 

related chapters.

2.2 Methods and materials employed for the in vitro studies:

2.2.1 Tooth selection and preparation

Extracted primary and permanent carious teeth were obtained from the Oral 

Surgery unit at the Glasgow Dental Hospital and School NHS Trust and stored 

in 0.12% thymol at 4 °C before and after experiments. Selected teeth were 

categorised into three groups, based on a clinical judgement on the diameter of 

the carious cavity openings:

1= Small, less than 1 mm (S),

2= Medium, 1 to 2 mm (M),

3= Large, more than 2 mm (L).

This classification was further confirmed using radiographs. A transportable 

Philips Oralix 65 kV, 7.5 mA machine, with a 20 cm cone, was used mounted 

on an adapted Atomscope stand. The radiographs were taken on Kodak Ultra 

Speed dental film DF-56 (Kodak, USA) using a parallel technique of radiation.
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Carious lesions were scored radiographically, according to the following criteria 

(Creanor eta!., 1990):

0: Sound surface

2: Radiolucency in enamel, up to amelodentinal junction 

3: Radiolucency in dentine, but not involving pulp 

4: Radiolucency involving dentine and pulp 

5: Restored surfaces

The score 1 is considered as inapplicable, as the lesion, i.e. superficial enamel 

spot lesions will not normally be seen on radiographs (Creanor et al., 1990). 

The principle behind pre-operative radiographic scoring was to assess the 

accuracy of the initial clinical categorisation of the cavities and also to assess 

the relationship between the pulp and the carious lesion.

The class of the carious lesion on individual sample teeth was recorded based 

on Black’s classification of cavities. This was carried out to provide an 

epidemiological assessment. Teeth with clinical or radiographic pulpal 

involvement were not included in any of the experiments.

2.2.2 Laser caries removal protocol

A pulsed Nd:YAG laser (American Dental Laser, dLase 300, Sunrise 

Technology, Birmingham, Ml) at wavelength of 1.06 pm was employed 

throughout the different studies (Figure 2.1). It has the following specifications:
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Figure 2.1: The pulsed Nd:YAG laser (American Dental Laser, dLase 300, 
Sunrise technology, Birmingham, Ml) employed throughout the different studies 
of this thesis is illustrated above.



1. A power range of 0.3 to 3.0 Watts (W) with an energy range of 30 to 150

millijoules (mJ) per pulse.

2. Number of pulses per second ranged from 10 to 30 Hertz (Hz) and the pulse

duration was 150 ns.

3. Pulse width of 150 microseconds (allowing the transmission of high energy

levels for short periods).

4. A flexible quartz fibre optical cable system terminated in a handpiece with

changeable angulated tips. Two fibre optic sizes (diameter of 200 and 

320pm) are available depending on the area to be irradiated. The 320pm 

fibre was used in the following studies.

6. A red helium-neon laser with emission at 0.63 pm as an aiming beam for 

controlling the laser to the treatment area.

The selected power of laser energy is shown on a control panel of the laser 

machine. Available power outputs, produced by the combination of different 

energy levels at different pulse frequencies of this particular laser, are listed in 

table 2.1.

a- Laser caries removal method:

The laser energy was set between 1 to 1.5 W output, depending on the 

particular experiment. The carious lesion was removed by exposure to a 

maximum of 30 sec bursts of laser irradiation for each episode, until the cavity 

was found to be clinically caries-free (see below). Based on the size of the 

cavity and the nature of carious tissue, i.e. consistency and colour, the number
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Power position̂ / 
pulse rate(pps)->

10 15 20 25 30

1 30 mJ 0.50 W 0.75 W 1.00 w 1.00 w
30 mJ 33 mJ 37 mJ 40 mJ 33 mJ

2 40 mJ 0.75 W 1.00 w 1.25 W 1.25 W
40 mJ 50 mJ 50 mJ 50 mJ 42 mJ

3 50 mJ 1.00 w 1.25 W 1.50 W 1.50 W
50 mJ 67 mJ 62 mJ 60 mJ 50 mJ

4 60 mJ 1.25 W 1.50 W 1.75 W 1.75 W
60 mJ 83 mJ 75 mJ 70 mJ 58 mJ

5 70 mJ 1.50 W 1.75 W 2.00 W 2.00 W
70 mJ 100 mJ 87 mJ 80 mJ 67 mJ

6 80 mJ 1.60 W 2.00 W 2.25 W 2.20 W
80 mJ 107 mJ 100 mJ 90 mJ 73 mJ

7 85 mJ 1.70 W 2.25 W 2.50 W 2.40 W
85 mJ 113 mJ 112 mJ 100 mJ 80 mJ

8 90 mJ 1.80 W 2.50 W 2.75 W 2.60 W
90 mJ 120 mJ 125 mJ 110 mJ 86 mJ

9 95 mJ 1.90 W 2.75 W 2.85 W 2.80 W
95 mJ 127 mJ 137 mJ 114 mJ 93 mJ

10 100 mJ 2.00 W 3.00 W 3.00 W 3.00 W
100 mJ 133 mJ 150 mJ 120 mJ 100 mJ

Table 2.1 : The outcome energy level of American Nd:YAG laser in different 
conditions are illustrated. (Top: displayed power, bottom: energy out put)



of exposures varied from 1 to 5 bursts. The whole surface was treated by 

moving the fibre across the entire carious surfaces of the cavity in a sweeping 

manner. The fibre tip was held about 1 mm from the surface of the target area.

Approximately 10 mm of the laser fibre optic tip was cleaved after each 

application (Figure 2.2) to ensure consistent radiation. This was checked by 

visually evaluating the sharpness of the aiming beam. The output of the laser 

was checked regularly by the laser safety officer.

b- Laser health and safety parameters:

All laser operations were carried out under the direct supervision of the laser 

safety officer of the Glasgow Dental Hospital and School NHS Trust. Local 

rules for safe laser application were met for these operations, details of which 

are presented in Appendix A.

2.2.3 Conventional caries removal protocol

Caries removal was carried out on the control teeth using a conventional slow 

speed handpiece, running on an air motor at 40000 rpm (Kavo Dental Ltd, UK). 

A new sterile round tungsten carbide bur (size 3 to 5) was employed for each 

cavity, in a similar fashion as to routine clinical use. Caries removal was 

stopped when the cavity was found to be caries-free, as tested by conventional 

visual and tactile assessment techniques recommended as efficient for this 

purpose by Kidd, Joyston-Bechal and Beighton (1993). Since the prepared
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Figure 2.2: The method of cleaving the laser fibre optic tip is demonstrated 
here (about 10 mm from the tip).



cavities were to be restored with an adhesive restorative material, no further 

cavity preparation was undertaken.

An air turbine (Siemens 4000 MS, Germany), operating at 275,000 rpm, and a 

diamond fissure bur of size 8 was used in cases where wider access to the 

carious tissue was necessary prior to the laser or drill application.

2.2.4 Caries removal assessment technique:

After the completion of the caries removal procedure, a clinical assessment was 

carried out using conventional visual and tactile criteria. This technique was 

suggested by Kidd, Joyston-Bechal and Beighton (1993) as being both efficient 

and reliable. In this technique, the cavity surface is examined under a 

conventional chair side light source, using a straight blunt probe after the cavity 

is dried.

2.2.5 Histological assessments of in vitro prepared dentine surfaces:

The aim of these histological assessments were to investigate microscopic 

changes of the remaining dentine following caries removal using either laser or 

drill. Four different methods of assessment were employed, including:

1. Microscopic assessment of the ground sections prepared from treated teeth.

2. Microscopic assessment of the demineralised sections prepared from treated 

teeth.

3. Assessment of microradiographs prepared from the ground sections of the 

treated teeth.
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4. Scanning electron microscopic assessment of the dentine surface treated by 

either of the techniques.

a- Preparation and assessment of the ground sections:

Teeth were sectioned into two halves using a diamond saw (Microslice 2, 

Malvern, UK). Ground sections with a thickness of 250 pm were prepared from 

one half to examine the characteristics of the dentine structure remaining after 

caries removal. This was carried out as follows:

1. Treated teeth were embedded in tan wax and mounted on the chuck of the 

Microslice hard tissue saw (Figure 2.3).

2. Longitudinal sections were prepared in such a way as to cut the tooth 

passing through the floor of the cavity towards the pulp and displaying the 

structure between the pulp and the prepared dentine surface.

Prepared sections were hand lapped to a thickness of about 145 pm, using an 

aluminium oxide containing abrasive powder (White Bauxlite 2000, Honing 

abrasive, UK) (Figure 2.4). This process, removed the cutting marks produced 

by the cutting wheel and produced planoparallel section with uniform thickness. 

An electronic micrometer (Digimatic Indicator, Mitutoyo, Japan) was used to 

assess the thickness of different regions of the sections during the procedure 

(Figure 2.4).

The sections were dehydrated using xylene and alcohol with different degrees 

of concentrations and then mounted on microscope slides using Hyolanic
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Figure 2.3: Microslice hard tissue saw used for the ground sections preparation 
is illustrated.

Figure 2.4: The glass pad with the handle used for lowering the thickness of 
the ground sections are shown in addition to the electronic micrometer used for 
thickness measurments.



Synthetic Resin (HSR). Sections were examined under the light microscope 

using x2.5 and x6.3 magnifications. Details of dehydration and mounting 

procedures will be discussed in Chapter 3.

b- Preparation and assessment of Microradiographs:

The purpose of this assessment was to examine the degree of opacity of the 

remaining dentine at the floor and walls of the prepared cavity when compared 

to the surrounding sound dentine. To prepare a microradiographic view, 

ground sections were prepared as described earlier in this Section. Each 

specimen was ground to approximately 150 pm in order to achieve a standard 

thickness for further assessment. Sections were placed between two layers of 

clingfilm (Figure 2.5) to prevent dehydration, as well as permitting easy and 

safe handling during the radiographic procedure. A modified high resolution 

radiographic film (Kodak, USA) was used for this purpose. The film, with 

specimens mounted, was placed in a specially designed plate holder, for 

microradiographic purposes (Figure 2.6). The sealed plate holder including the 

film and sections, was placed inside the Diffractus 582 x-ray unit (Enraf Nonius 

Delft, Holland) set at 20 kV, 30 mA and exposed to the x-ray beam for 20 min 

(Figure 2.7). Films were processed and finally subjected to assessment under 

the light microscope (Leitz, Switzerland). Details of these assessment 

processes are described in Chapter 3.

47



Figure 2.5: The prepared sections are placed between two layers of clingfilm 
prior to microradiography.

Figure 2.6: The film, with specimens mounted on, are placed in this specially 
designed plate holder for microradiographic purposes.



ID COVER

Figure 2.7: Microradiographic machine used for radiographic assessments of 
the sectioned specimens.



c- Preparation and assessment of demineralised sections:

The aim of this microscopic investigation was to examine the condition of the 

remaining collagen fibres following the use of laser radiation. Demineralisation 

was carried out using the second half of the teeth, the first half being used for 

ground sections. In this way specimens for the different assessments would be 

correlated. The thickness of prepared sections was approximately 5pm with 

cutting line through the centre of treated cavities. Each section was then 

processed, stained and then mounted on microscope slides for assessment. 

Sections were then examined under a light microscopic with magnifications of 

x6.3, x10, and x40. Details of the preparation techniques and their assessment 

methods will be discussed further in Chapter 3.

d- Preparation and assessment of SEM specimens:

This investigation was carried out to enable the assessment of the surface 

shape and configuration of the treated dentine surfaces. Sample teeth were 

immediately fixed after laser/drill application using 2.5% glutaraldehyde 

buffered in 0.1 M cacodylate. The procedure was followed by dehydration of the 

teeth using ethyl alcohol which took about 5 days for primary teeth and 7.5 

days for permanent teeth. Details of this procedure will be discussed more in 

Chapter 3. The prepared specimens were mounted on aluminium stubs (Agar 

Scientific Ltd) and coated with a thin film of gold using a sputter coating 

machine (Polaron E 5000). The prepared specimens were assessed using a 

scanning electron microscope (Jeol T 300, SEM) at an accelerating voltage of 

30 kV. Photomicrographs of the specimens were taken from the treated
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cavities at the following magnifications: x35, x500, and x1000, using Kodak 

TP120 film type 6415 (Kodak Ltd. Manchester).

2.2.6 Restoration of prepared cavities and their assessment:

To assess the level of adaptation of the restoration to differently prepared cavity 

walls, restored teeth were subjected to a microleakage investigation. All treated 

teeth were restored by a single restorative material, to eliminate any other 

factor than the effect of the cavity preparation technique on adaptation level. 

The material used was a light cured compomer filling material i.e. Dyract® 

(Dentsply, UK). The main reason for the use of this material was that less 

tissue removal is required, due to its adhesive property, in addition to its fluoride 

releasing property. Dyract®-PSA Prime/adhesive is a single component visible 

light cured cavity primer, sealer and adhesive, which was first applied to the 

prepared surfaces and cured. This was followed by the immediate placement 

of the Dyract® restorative component which was subsequently light cured, 

according to the manufacturers instructions, using an Aristolite curing light 

(Litema halogen, Pluraflex HL 150, Germany).

- Assessment of the restorations:

In order to assess the quality of the restorations different studies were set up, 

including the measurement of the gap size and microleakage level at the 

interface between the restoration and the cavity wall. All the experimental teeth 

were subjected to a series of thermal shocks to simulate temperature change in 

the oral cavity. A thermocycling machine (Figure 2.8) was used for 350 cycles
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with temperatures of 4, 37, and 55 °C as described by Scott, Saunders and 

Strang (1993). The specimens were stored at each temperature for 

approximately 10 sec.

To measure the gap size at the margins of the restoration, each tooth was 

subjected to two separate impressions. Impressions were taken immediately 

before and after the thermocycling, to record the changes caused by thermal 

stimulation of the material. A resin replica was constructed from each of these 

impressions to provide samples of the restored teeth before and after thermal 

cycling. These samples were then subjected to assessment and measurement 

under the light microscope, details of which will be discussed in Chapter 5.

The experiment was continued by the application of a dye (buffered 0.2% 

Methylen Blue, ,UK), to the tooth specimens, to evaluate the microleakage 

resistance of the tooth/restoration interfaces in each cavity. Teeth were, 

therefore, dissected through the centre of the restoration and examined 

immediately under the light microscope with a magnification of x10. The level 

of microleakage was estimated based on the level of dye penetration. Details 

of these measurements will be explained latter in Chapter 5.

2.2.7 Assessment of temperature changes at the pulpodentinal junction

The laser irradiation of the dental structure produces heat which can be easily 

transferred through the bulk of the dentine to the pulp (Arcoria and 

Miserendino, 1995). Due to the dangers involved with a temperature rise of the
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pulp, an experiment was designed to measure the amount of this temperature 

rise at the pulpodentinal junction. Nickel/Copper thermocouple wires were 

inserted into the pulp chamber of carious teeth through the apices of their roots, 

while these were connected to a digital thermometer and a chart recorder.

Temperature rise at the PDJ was recorded during both laser and drill caries 

removal procedures. An additional temperature recording was carried out while 

the visible curing light was applied to the treating teeth before and after caries 

was removed. The effect of remaining dentine thickness between the floor of 

the cavity and the pulp on temperature rise was also considered as an 

important factor. This was assessed by measuring this thickness using a 

radiographic view, in addition to the direct examination of dissected teeth under 

the light microscope at a magnification of x6.3. More details of these 

measurements and the methodology will be discussed in Chapter 4.

2.3 Methods and materials employed for the in vivo trial:

2.3.1 Sample selection and preparation:

Patients were selected from the Consultant clinic at the Child Dental Health 

Unit, Glasgow Dental Hospital and School NHS Trust, based on the following 

criteria:

1. Patients aged between 3 and 12 with at least two primary carious teeth

2. Patients with some degree of dental anxiety

3. No medical condition influencing the patient’s behaviour 

Teeth were selected based on the following criteria:
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1. Fresh carious teeth with no clinical or radiographic sign of pulpal involvement

2. Less than one third of the root resorbed, as assessed radiographically

3. Similar teeth with roughly the same size cavities

2.3.2 Initial assessment and categorisation

Two scoring systems were used for the anxiety assessment of patients prior to 

the treatment including: 1. operator’s judgement using Frankl scoring system 

(Frankl, 1962), 2. Patient’s scoring using a modified assessment technique to 

the pictorial assessment technique suggested by Venham (1979). The pictorial 

form was used with modification on its interpretation for use with laser treatment 

and patient’s feeling towards the technique before and after the treatment. 

Instructions given to patient’s were standardised, taking patient’s age to 

account. This modified Venham’s pictorial form, is demonstrated in Appendix 

B. To examine the effect of the method of caries removal on the patient’s 

reaction, treatment was started randomly with either of the techniques.

A radiographic assessment was conducted pre-operatively, for all proposed 

cases to enable an initial assessment of the extent of the carious lesion with a 

similar fashion as was used for the in vitro specimens. A standard bitewing 

view was used as the radiographic view of choice for posterior teeth and 

periapical view for the anterior region. In cases of poor co-operation for intra­

oral radiographs, extra oral radiographic views were obtained, including 

orthopantomograph and lateral oblique views. However, no radiographic 

assessment was performed for class V carious lesions and the radiographs 

were used for the assessment of the periapical areas. Individual clinical scoring
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of the cavity sizes was also recorded for further comparison as described in 

Section 2.2.1. Teeth were also examined clinically, for the condition of soft 

tissue surrounding the teeth to be treated, to eliminate those with any 

pathological sign of pulpal involvement.

In addition, patients were assessed for the following:

1. The dmfs score for each patient was checked.

2. Any previous dental experience was recorded.

3. Parent’s views on laser caries removal system was evaluated using a 

questionnaire (Appendix C).

2.3.3 Laser caries removal

A similar protocol to the in vitro application of the laser was adopted, in terms of 

the method of laser application. A power of 1.25 W, produced by 60 mJ energy 

at 15 pps, was employed for the clinical trial. This was based on the results of 

the in vitro experiment by testing different energy levels detailed in Chapter 3. 

In order to reduce the chance of damaging the pulp due to heat production, a 

high velocity aspirator was used to reduce the temperature rise of the tooth 

surface during laser irradiation and also to remove smoke produced by charred 

dentine. A second precautionary measure was considered by limiting the laser 

exposures to 30 sec maximum for each with a minimum of 30 to 60 sec rest 

before the second application. The laser fibre optic tip was cleaved after each 

exposure and the contrast of the radiation beam was tested subsequently, as 

described earlier in Section 2.2.2. Caries removal was stopped when the cavity
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was found to be clinically caries-free using conventional tactile and visual 

criteria.

2.3.4 Conventional caries removal protocol

Conventional caries removal was conducted on control teeth using a slow 

speed handpiece on an air motor (Kavo Dental Ltd, UK). A new sterile round 

tungsten carbide bur (size 3 to 5) was employed for each tooth, as necessary. 

The procedure of caries removal was continued until the cavity was found to be 

clinically caries-free, again using tactile and visual criteria. No further 

modifications were performed on the shape of the prepared cavities as an 

adhesive restorative material was to be used. Hand excavation was used as 

necessary, Section 6.7.4.

2.3.5 Caries removal assessment

Prepared cavities were assessed clinically using a conventional straight probe 

under conventional dental chair lighting. Caries removal was considered as 

complete based on clinical judgement using visual and tactile criteria (Kidd, 

Joyston-Bechal and Beighton, 1993). In addition, prepared cavities were 

randomly subjected to an extra caries removal assessment by independent 

calibrated clinicians.

2.3.6 Restoration of prepared cavities:

All prepared teeth were restored with a light cure compomer as the restorative 

material of choice as described in Section 2.2.6. The restoration placement
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and its light exposure time for curing were carried out as recommended by the 

manufacturer. Compomer restorations are suggested as a suitable restorative 

material for restoration of prepared cavities with no additional modification to 

the outline of the cavity, particularly in primary teeth (Croll, 1993), as this 

avoided unnecessary tissue removal which would have been required for non­

adhesive restorations (Elderton, 1986; Kidd, Joyston-Bechal and Beighton, 

1993). Compomers, as a modified formula of glass ionomer, could perhaps 

provide similar bond strength in addition to fluoride releasing capacity 

(Manufacturer’s data).

Each prepared cavity was isolated using rubber dam or cotton wool rolls. To 

achieve maximum wetness of the bonding surface of the dentine, single 

component primer/adhesive was applied to the dentine surfaces following the 

completion of caries removal. The primer was air thinned and then light cured 

for 20 sec. This was followed by the placement of a suitable shade restorative 

material into the cavity and light cured using Visilux™ 2 (3M Dental Products, 

Germany) for 40 sec.

2.3.7 Scanning electron microscopic assessment of clinically prepared 

dentine surfaces:

To allow a more precise assessment of the dentine surface of the in vivo 

specimens following caries removal, teeth with laser/drill prepared cavities were 

subjected to an impression using light body President impression material 

(Coltex®, Switzerland) (Figure 2.9) loaded in nickel chromium crowns as special
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Figure 2.9: President impression material (Coltex®, Switzerland) used is shown 
with a fine syring used to inject the material into the prepared cavities.

Figure 2.10: Impressions taken from prepared cavities using custom trays of 
nickel chromium crowns are shown, with an impression after restoration.



trays (Figure 2.10). Resin replicas were provided by pouring the impressions 

with epoxy resin (Epofix, Struers tech, Denmark). Resin specimens were then 

subjected to a gold coating process using a sputter coater (Polaron E 5000), 

details of which have been discussed earlier in Section 2.2.5. The duplicated 

surfaces were examined under the scanning electron microscope to evaluate 

any differences in the dentine surface following laser and drill application.
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CHAPTER III

LASER CARIES REMOVAL EFFICACY



CHAPTER 3: Laser effect on carious and sound dentine, comparing

three different energy densities

3.1 Introduction:

Most of the currently available lasers have the capacity to produce a range of 

energy output to enable a variety of different applications. A minimum laser 

energy is required for ablation of a subject which will differ between different 

materials. It is, therefore, essential to define the minimum effective level of the 

laser energy to be used for ablation of carious tissue. At the same time it is 

important to make sure that it does not exceed the safe limit for sound dentine. 

This effectiveness depends on several factors, including the optical properties 

of the carious mass i.e. colour, laser energy at the tissue surface, and the 

length of the exposure time (Koorts and Frentzen, 1995; van Breugel and Dop 

Bar, 1992).

The effect of laser irradiation on dental hard tissue can vary from no effect to 

carbonisation of the tissue, perhaps resulting in cracks and even complete loss 

of the inorganic component. This effect depends mainly on the amount of 

energy delivered to the tissue, a function of the laser’s power and duration of 

exposure (Koorts and Frentzen, 1995). The effects of different laser energy 

densities on dental hard tissues have been examined, the major concern being 

the possibility of overheating of the tissue, especially when higher powers and 

longer periods of radiation are employed (van Breugel and Dop Bar, 1992; 

White eta!., 1993).
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Laser power of 3 W has been suggested as the highest safe limit for enamel 

and 1.5 W for dentine, during caries removal for periods of up to 1 min 

(Cernavin, 1995). However, vital dental pulp, which is obviously in close 

association when the tissues are subjected to laser radiation, can only tolerate 

a certain level of energy which will ultimately result in the production of heat 

(Wigdorefa/., 1993).

3.1.1 Factors influencing the laser tissue interaction:

Laser energy acts differently when it is exposed to different structures. The 

effects are influenced by: 1. laser absorption properties of the material, 2. laser 

energy characteristics and 3. exposure time.

Different materials have demonstrated varying degrees of response to a single 

laser wavelength. For example, laser energy penetrates enamel much more 

easily than dentine, causing more severe destruction in the latter tissue (Peck 

and Peck, 1967). The amount of water contained within a tissue has been 

suggested as having an important role on the response of the target tissue to 

certain laser radiations, including C02 laser, whilst this effect is minimum in the 

case of the Nd:YAG. Liesenhoff et al. (1989) showed a higher tissue removal 

ratio in dentine compared to enamel, indicating a higher cutting efficacy of the 

laser radiation in dentine, probably due to the differences in composition of the 

two structures.
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The amount of laser energy delivered to the target surface was shown to have 

a direct influence on the degree of change within the tissue, including the 

crater’s width and depth (Peck and Peck, 1967). Whether the laser beam is 

pulsed or continuous may also cause variation in how the tissue will react, 

pulsed lasers usually causing less damage. The duration of exposure is also 

an important factor, since this effect is directly dependent on the length of 

exposure. The longer the exposure time, then the greater the cutting effect of 

the laser (Koorts and Frentzen, 1995). The effect of laser radiation on hard 

tissue is thought to be unpredictable, in contrast to its effect on soft tissue, 

which is described as predictable due to its high absorption rate (Koorts and 

Frentzen, 1995).

Generally, low intensity laser exposure for a long period is described as less 

destructive with only some photochemical effects. Higher energies using 

shorter exposure times cause a photothermal interaction, the basis of most 

surgical lasers (Koorts and Frentzen, 1995). Tissue dehydration, as a natural 

sequela of heat generated in the bulk of the tissue, is considered as an initiator 

to thermal interaction. The degree of this thermal damage can be reduced by 

choosing the proper laser parameters, including: spot size, exposure duration, 

pulse repetition rate, and the duration of the pulses (Koorts and Frentzen, 

1995).

Dederich (1991) described the reaction of the laser when it hits the target 

tissue as being in one of the following four major forms:
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1. absorption which converts the light directly to heat,

2. scattering which distributes the light over a large volume of tissue, thereby 

reducing any thermal effects,

3. reflection, which by reducing the amount of light entering the tissue produces 

the minimal thermal effect,

4. Transmission of the light through the bulk of tissue with minimal effect on the 

target tissue.

In addition to the main factors involved in laser/tissue interaction, including: 

wavelength, pulse length, peak power and power density, secondary factors 

include reflecting capacity, degree of opacity and the colour of the irradiated 

tissue (Peck and Peck, 1967). It can be concluded, therefore, that the effect of 

the laser on the target tissue will vary from tissue to tissue and from laser to 

laser.

3.1.2 Surface temperature and its effect on surface morphology:

Since the physical properties of enamel and dentine are different; the laser’s 

effect on dentine will vary considerably when compared with enamel (Stern, 

Renger and Howell, 1969). Charred areas of dentine can indicate a high 

surface temperature sufficient to produce carbonisation of the organic matter of 

dentine (Anic et a!., 1992). Hard tissue changes, including cratering and 

recrystalisation have been reported following laser irradiation of enamel and 

dentine, resulting from a rise in surface temperature (Kantola, 1972; Kantola, 

Laine and Tarna, 1973; Kantola, 1973). Excessive heat production at the
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irradiated surface during laser application will cause carbonisation and cracks 

of the surrounding parts of the irradiated cavity (Stern and Sognnaes, 1972; 

Sugawara, 1974; Adrian, Bernier and Sprague, 1971; Launey etal., 1987).

A range of lasers have been investigated as to their ability to raise the 

temperature at the dentine surface. These include Nd:YAG, C02 and Excimer 

lasers with Excimer lasers having a significantly reduced thermal injury-inducing 

effect on enamel and dentine (Liesenhoff et a\., 1989; Frentzen et a!., 1989; 

Matsumoto, Nakamura and Wakabayashi, 1990). However, Arima and 

Matsumoto (1993) reported surface temperature rises of 19 °C after 3 min 

caused by 0.12 W energy ArF:Excimer laser application on the dentine surface. 

In addition, the ultraviolet range laser wavelengths are believed to have the 

potential of DNA and RNA alteration (Frentzen et ai, 1989).

3.1.3 Changes at the dentine surface following laser irradiation:

Dentine, which has been irradiated by a laser will inevitably undergo some 

degree of surface morphology alteration. Microscopic examinations, including 

SEM assessment of the treated dentine was recommended as the most reliable 

technique of assessment of the alterations within the tissue.

As discussed earlier, different laser wavelengths behave differently on tissues 

which will then produce varying degrees of damage to the tissue as explained 

by histological examination. With regard to tissue porosity, Stabholz et al. 

(1995) have reported a marked reduction in the penetration depth of dye
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applied to specimens following laser irradiation. This indicated that the laser, 

under the conditions used in that study, was capable of reducing dentine 

permeability and, therefore, probably hypersensitivity (Stabholz et al, 1995). 

The mechanism for this could have been by occlusion of the dentinal tubules 

after resolidification of melted material.

Bassi, Chawla and Patel (1994) used an Nd:YAG laser with the power of 1 W to 

remove carious dentine and reported a higher micromechanical retention at the 

irradiated dentine surface. Dederich, Zakariasen and Tulip (1984) reported 

varying degrees of laser effects on sound dentine, from no effect, to disruption 

of the smear layer to melting and recrystalisation of surface dentine using an 

Nd:YAG laser with powers of 10 to 90 W for one group and 0.1 to 0.9 W for a 

second group. However, there was no indication of how long the exposure time 

to these different laser energies.

The crater depth is believed to be directly proportional to the amount of laser 

energy delivered to the target surface. Interestingly, some degree of alteration 

in dentine subjacent to the lased enamel has been reported demonstrated by 

dark, pinpoint speckling or a denatured pattern microscopically (Peck and Peck, 

1967). Droplets of resolidified melted dentine covering the lased area of 

dentine is a common appearance which can be observed following Nd:YAG 

laser application with a power of 1.5 W (Cernavin, 1995). Wigdor et al. (1993) 

reported that a glazed dentinal surface was produced following the irradiation of 

the teeth with a 12.5 W continuous wave Nd:YAG laser. This was suggested
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as being the result of high temperature and melting of the surface structure 

following laser radiation. The clinical appearances of those teeth were reported 

as charred surrounded by a basophilic band on the irradiated dentine surface.

The production of a charred dentine surface has been reported following 

exposure to a pulsed carbon dioxide laser radiation of 3 W supplied by a water 

coolant spray, but with no reference to the exposure time (Stabholz et al., 

1992). Dederich (1993) believed that the effect of the Nd:YAG laser 

wavelength on dentine was unpredictable and inconsistent when applied to 

different parts of the dentine because of the variation in tissue colour.

Cox, Pearson and Palmer (1994) have suggested that once the threshold level 

for dentine damage is passed, increasing the energy density of the laser beam 

results in an increase in both tissue loss and depth of cratering. The melting 

and vaporisation process will start as soon as the organic content of dentine 

has disappeared (Cox, Pearson and Palmer, 1994). Scanning electron 

microscopic examination of teeth irradiated by the Nd:YAG laser revealed 

appearances of irregular punched out craters with the presence of melted and 

recrystalised masses of dentine. The appearance of glazed interconnected 

droplets was noted at the irradiated surfaces. The presence of normal dentine 

structure, however, between droplets was also noted indicating no alteration of 

sound dentine (Cernavin, 1995). Further laboratory investigations using x-ray 

diffraction of lased dentine has indicated a higher concentration of minerals at
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the lased area, which was concluded as being due to the formation of tricalcium 

phosphate during recrystalisation (Vahl, 1968).

3.1.4 Microscopic changes of prepared dentine following laser 

irradiation:

There are several methods of assessment for examination of tissue change, 

with histological examination being the most reliable and accepted, particularly 

for changes at the deepest portion of the tissue. The prepared dentine surface 

can be monitored microscopically using the scanning electron microscopy 

(Koort and Frentzen, 1992; Stabholz et al., 1992). In addition, 

microradiographic evaluation of the remaining tissues can be carried out, to 

estimate and measure the mineral content of the remaining tissues (Angmar, 

Carlstrom and Glas, 1963).

To examine the degree of tissue change within the deeper portions of the 

dentine, it is necessary firstly to prepare sections of the specimens, both ground 

and demineralised sections; This permits examination of changes to both the 

organic and inorganic components of the tissue. Generally, among the dental 

hard tissues, dentine will be expected to absorb more laser energy, due to its 

greater opacity compared to enamel and should, therefore, demonstrate a more 

efficient cutting effect (Peck and Peck, 1967). Three different histological 

zones of destruction are described for laser irradiated dentine. These include:

1. a central zone of complete destruction; 2. partial destruction of the 

immediately surrounding tissue to the centre of destruction; 3. partial
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destruction with isolated foci beyond the first two zones. The depth of these 

laser-produced craters seems to be directly proportional to the level of laser 

energy delivered to the target (Peck and Peck, 1967).

The presence of microcracks have been reported during Nd:YAG laser 

irradiation of dentine when employing powers above 100 mJ. However, areas 

of carbonisation, surrounded by necrosed tissue were produce associated with 

microcracks in specimens of teeth irradiated by all four types of laser tested by 

Koort and Frentzen (1992). High temperatures, however, will produce tissue 

melting, which in turn occludes the dentinal tubules during caries removal 

(Nammour, Renneboog-Squilbin, and Nyssen-Behets, 1992). However, the 

laser caries removal technique is believed to prepare a non-smeared surface 

which may produce a better adhesion potential for restorative materials 

(Pashley etal., 1992).

Microscopic examination of sectioned laser-irradiated carious teeth showed a 

selective deep destruction of carious tissues (Goldman, Gray and Goldman, 

1965), in addition to a higher level of calcium and phosphorous compared to 

non-lased surfaces, assessed through microradiographic and electron probe 

microanalysis examinations (Kantola, 1972).
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3.2 Aims:

The major aim of this Chapter is to identify the most effective and least 

damaging power of the Nd:YAG laser to remove dentine caries. The aims of 

this Chapter can be summarised, therefore, as follows:

1. to examine, using various methods, the dentine surface irradiated using 

different power settings on the Nd:YAG laser

2. to examine the effect of these powers on sound dentine

3. to evaluate the efficacy of individual powers in removing dentine caries.

4. to assess the condition of the smear layer and melted material produced 

using different power settings.

3.3 First preliminary study - Efficacy of different laser energies for 

removing dentine caries:

3.3.1 Introduction:

A pilot trial was designed which involved an assessment of carious dentine 

removal using a series of laser energies, in the range recommended earlier 

(Miserendino et al., 1993; White, Fagan and Goodis, 1994), and to identify 

which range of laser energies of the American Dental Laser (Nd:YAG), will 

remove carious dentine efficiently, without damage to surrounding tissue.

3.3.2 Methods and Materials:

Twenty freshly extracted primary carious teeth were selected randomly, which 

included both anterior and posterior teeth with roughly the same size of carious 

cavities. The teeth were stored in 0.12% thymol at 4 °C before and after
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treatment. Four different laser energy levels were tested in this pilot study, 

ranging from 1 to 1.6 W. The experimental teeth were divided into four groups, 

each of which was treated using one of the four energy settings. The laser 

energy settings were:

1. 50 mJ at 15 pps (1.00 W)

2. 60 mJ at 15 pps (1.25 W)

3. 70 mJ at 15 pps (1.50 W)

4. 80 mJ at 15 pps (1.60 W)

The operating time was limited to a maximum of 2 min. Depending on the size 

of the cavities, some of the teeth required further laser irradiation to achieve a 

caries-free status. Half of the carious lesion was irradiated by the laser beam 

while the other half was left untreated to allow a direct assessment of the 

amount of tissue removed.

Ground sections and demineralised sections were prepared from treated teeth, 

and included both treated and untreated parts on the same tooth. 

Demineralised sections were stained with two routine stains. These were 

Haematoxylin and Eosin (H&E) and van Gieson stains. The ground sections 

were examined under the light microscope (Leitz, Germany) under x2.5 and 

x6.3 magnifications while the demineralised sections were assessed under 

x6.3, x10 and x40. The ground sections were then demounted and 

microradiographed for further microradiographic assessment using the 

technique described in detail in Section 2.2.5.
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3.3.3 Results:

Assessments were made from both the ground and demineralised sections. H 

& E was used as a general stain, with van Gieson as a special stain to examine 

the degree of change to the collagen fibres.

a- Findings of the light microscopic assessment of prepared sections:

From the ground sections, the extent of caries removal was assessed. These 

indicated that, when compared with the untreated half of the tooth, carious 

material was completely removed, leaving only carbonised remnants on the 

cavity floor (Figure 3.1).

Examination of the stained, demineralised sections showed widespread 

invasion of the tissue by micro-organisms in the area directly below the carious 

surface of the cavity, accompanied by areas of altered collagen. However, this 

appearance was reduced considerably in the irradiated site of the carious 

dentine, with the major part of the carious tissue being removed completely. 

There were no major differences between the three different energy levels, 

although teeth treated with low energy still demonstrated occasional carious 

material remaining on the irradiated margins, even after several exposures. 

Teeth treated with the high power laser energy showed a continuous band of 

carbonised tissue adjacent to the irradiated surface. A yellow coloured band 

close to the surface of the irradiated dentine was noted in almost all the 

experimental teeth (Figure 3.2).
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Figure 3.1: Microscopic view of the ground section of a sample tooth from the 
pilot study treated by laser power of 1.25 W (60 mJ at 15 pps), note the 
carbonised layer covering the surface of treated dentine (x6.3).

Figure 3.2: Demineralised section of the same tooth, demonstrating the 
alterations in the carious control site with a relatively normal dentinal structure 
at the irradiated site (van Giesen staining) (x6.3).



b- Microradiographic assessment:

The lased area was clearly defined on the microradiographic film (Figure 3.3), 

with the cavity borders (hole shaped) with untreated carious control site 

immediately adjacent to the irradiated area of the cavity. The laser-treated 

surface of the dentine did not show a similar appearance to the carious area, 

with the carious mass being quite clearly radiolucent when compared to the 

sound parts of the dentine. The opacity of the remaining dentine was relatively 

similar to the non-carious, sound dentine. Figure 3.3 illustrates a micro­

radiographic view of a sectioned tooth treated by the laser energy of 1.25 W.

3.3.4 Discussion and conclusions:

Results of this preliminary investigation have shown the potential ability of the 

laser to remove carious dentine with all the powers tested, and a tendency to 

have a higher efficacy when the energy output is increased. However, the 

exposure time has played an important role in caries ablation. This is clearly 

seen in cases where caries was partially removed in short exposures. It would 

appear from this pilot study, however, that the high powers may have caused 

some damage to the sound, underlying dentine. In addition, there is also the 

possibility that such laser power could well be potentially hazardous to the 

vitality of the pulp. The microradiographic evaluation of the sections showed a 

higher opacity of the dentine at the irradiated site compared to the control site, 

similar to that of the sound, unaffected dentine. These findings confirmed the 

efficacy of laser in removing dentine caries and a further confirmation of the 

results obtained by examination of the related ground and demineralised
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sections. The laser’s ability to remove dentine caries was shown to be directly 

related to the energy level employed.

It is difficult to suggest whether the changes observed at the remaining dentine 

at the floor of the cavity were caused by the carious process or as a result of 

the effect of the laser exposure. Since the carious process involves alteration 

of collage fibres by affecting the organic matrix of dentine, it is possible that the 

changes may have occurred prior to laser irradiation, and were caused, instead, 

by microbial products. To establish which was more likely, a second 

preliminary investigation was designed by assessing the effect of the laser on 

sound dentine of non-carious teeth employing similar power parameters.

3.4 Second preliminary experiment - Laser effect on sound non-carious 

dentine:

3.4.1 Introduction:

The aim of this part of the study was to assess the extent of any changes at the 

sound dentine surface when exposed to a similar range of laser energies as 

employed in the previous pilot experiment. The fourth laser energy was 

abandoned, since it was found to be destructive and clearly exceeded the safe 

limit for dentine.

3.4.2 Methods and materials:

Nine primary human extracted caries-free teeth, including canines and both first 

and second molars, were divided into three groups. Three energy levels were
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employed: 1 W, 1.25 W, and 1.5 W. The same protocol was employed for laser 

irradiation of the cavities as in the previous pilot test, following an access 

opening through the sound enamel and into dentine, if necessary, irradiating 

only one half of the cavities. Similarly, all teeth were examined using the same 

three methods of investigation, as discussed in Section 3.2.2.

3.4.3 Results:

Broadly, assessment of the teeth post-irradiation indicated no obvious clinical 

effect on the dentine surface when the first two powers were employed. 

However, the 1.5 W for 30 sec exposure was considered enough to initiate 

dehydration and carbonisation of sound dentine.

a- Findings of the microscopic assessment using ground sections:

Microscopic assessment of the ground sections revealed no obvious effect of 

the low and medium powers on dentine surface while a continuous layer of 

carbonisation was present at the surface of the treated site when the high 

power (1.5 W) was used. Figures 3.4 (a), 3.5 (a), and 3.6 (a) illustrates 

photomicrographs of the ground sections prepared from the sound specimens 

irradiated with each individual laser energies.

b- Findings of the assessment of demineralised sections:

Microscopic assessment of the demineralised sections, which had been 

prepared from the other half of each tooth, revealed no noticeable changes at 

either the dentine surface or deep to the lased areas, when the first two laser
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Figure 3.4: illustrating the lased (L) and non-lased control (C) areas of sound 
dentine prepared from specimens irradiated with low power laser energy (1 W): 
a. Ground section (x6.3) b. Demineralised section of the same specimen (van 
Giesen staining, Mag. x10).



Figure 3.5: Illustrating the lased (L) and non-lased control (C) areas of sound 
dentine prepared from specimens irradiated with medium power laser energy 
(1.25 W): a. Ground section (x6.3) b. Demineralised section of the same 
specimen (VG staining, Mag. x10).
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Figure 3.6: Illustrating the lased (L) and non lased control(C) areas of sound 
dentine prepared from specimens irradiated with low power laser energy (1.5 
W): a. Ground section (x10) b. Demineralised section of the same specimen 
(VG staining, Mag x10)



energies were employed. There was, however, a carbonised layer, which 

appeared to be detached from the surface using the higher power (1.5 W) laser 

energy. Both lased and non-lased halves of the prepared cavities showed a 

normal dentine structure with intact dentinal tubules. Examination of the van 

Gieson specimens showed no signs of collagen modification, as had been 

observed in the laser-treated carious dentine, seen as an amber band close to 

the surface. Figures 3.4 (b), 3.5 (b), 3.6 (b) illustrate photomicrographs of the 

demineralised sections prepared from the sound specimens irradiated with the 

different laser energies.

c- Microradiographic findings:

Microscopic assessment of the microradiographs of the laser irradiated sound 

teeth revealed no general pattern of change, appearing very similar to the 

untreated site in all three groups of teeth irradiated by the different laser 

energies (Figures 3.7 a,b,c).

d- Findings of the assessment of scanning electron microscopy:

SEM evaluation was carried out on these sound teeth in order to enable the 

assessment of any possible surface alteration that may have been caused by 

laser radiation. The SEM photomicrographs of the irradiated surfaces (Figures 

3.8 a,b,c) revealed some degree of surface melting and occlusion of dentinal 

tubules when the highest laser power (1.5 W) was used.
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Figure 3.7 a: Microradiographs of the specimens as figures 3.4, illustrating the 
lased (L) and non-lased control (C) areas of sound dentine irradiated with low 
power iaser energy (1 W) (x6.3).

Figure 3.7 b: Microradiographs of the specimens as figures 3.5, illustrating the
lased (L) and non-lased control (C) areas of sound dentine irradiated with
medium power laser energy (1.25 W) (x6.3).



Figure 3.7 c: Microradiographs of the specimens as figure 3.6, illustrating the 
lased (L) and non-lased contrl (C) areas of sound dentine irradiated with high 
power laser energy (1.5W) (x10).



Figure 3.8a: SEM views of the specimens as figure 3.4, illustrating the lased 
area of sound dentine irradiated with: low power laser energy (1 W) (x270).

Figure 3.8b: SEM views of the specimens as figure 3.5, illustrating the lased
area of sound dentine irradiated with medium power laser energy (1.25 W)
(x270).



Figure 3.8c: SEM views of the specimens as figure 3.6, illustrating the lased 
area of sound dentine irradiated with high power laser energy (1.5 W) (x500).



3.4.4 Discussion and conclusion:

Results of this further pilot experiment revealed some degrees of thermal 

damage to the sound dentine surface following 30 sec laser exposure with a 

laser power of 1.5 W. The carbonised tissue was observed in teeth treated with 

the high energy level by all three methods of investigation. There were no 

obvious changes in the dentine irradiated by the other two lower laser energies.

Examination of the van Gieson-stained specimens showed no signs of the 

amber coloured band immediately below the prepared dentine surface, as was 

observed previously in the carious dentine cases. It may be concluded, 

therefore, that the affected layer of carious dentine was partially altered prior to 

laser exposure. However, in higher magnifications (x10 and x40), cases 

irradiated with the high power presented some degrees of staining at the 

superficial layers, with accompanying disruption at the dentine surface.

3.5 Principal study - Evaluation of the effect of laser energies on 

removing dentine caries:

The aim of this experiment was to assess in greater detail at both the dentinal 

surface and subsurface regions when irradiated by the three laser energies of 

1, 1.25, and 1.5 W. Based on the results achieved from the first two preliminary 

experiments, these laser energies were concluded as being the most 

appropriate range of energies produced by this laser for the principal 

experiment.
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3.5.1 Methods and materials:

3.5.1.1 Tooth preparation and assessment:

Thirty extracted human carious primary teeth were selected randomly, and 

included incisors, canines and molars. Teeth were placed into three groups 

based on their cavity size, as determined by clinical and radiographic 

assessment techniques described previously in Section 2.2.1. Each tooth was 

then mounted in modelling wax blocks as shown in figure 3.9 for safe and easy 

handling. Only half of the cavity was irradiated by the laser, leaving the other 

half untreated as control.

3.5.1.2 Laser parameters:

Three different power settings of 1 W (50 mJ 15 pps), 1.25 W (60 mJ 15 pps),

1.5 W (70 mJ 15 pps) were applied to the teeth, in a similar fashion to the pilot 

studies. Local Health and Safety rules were adhered to strictly, as detailed in 

Appendix A.

3.5.1.3 Caries removal protocol:

The laser was applied in a sweeping manner to the experimental half of the 

cavity, whilst the laser probe being held in close association to the tissue. Each 

episode of laser application did not exceed 30 sec, since this was 

recommended as being in the range of safe application for adjacent normal 

structures (White, Fagan and Goodis, 1994). The fibre tip was cleaved after 

each application (Figure 2.2), to achieve the desired radiation beam contrast.
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Figure 3.9: Experimental teeth were held in modelling wax during the cavity 
preparation stage as shown above.



3.5.1.4 Clinical assessment of the cavities pre and post operatively:

Clinical assessment of the cavities was carried out prior to the treatment, both 

by evaluation of radiographs, and a clinical judgement of the size of the cavities 

(Table 3.1) as detailed in Section 2.2.1. The anatomical tooth type was also 

recorded (Table 3.2). Assessment of the prepared cavities was performed 

using conventional tactile and visual criteria described in detail in Section 2.2.4. 

The time taken for each individual cavity preparation was recorded in seconds.

3.5.1.5 Ground section preparation:

Ground sections were prepared as described previously in Section 2.2.5. 

Sections were examined using a light microscope, to assess any differences 

between lased and unlased sites of the specimens, and between the three 

different power settings.

Ground sections were prepared from each specimen based on the technique 

described in Section 2.2.5. The thicknesses of the sections were then 

measured using a digital micrometer (Digimatic Indicator, Mitutoyo, Japan) 

(Figure 2.4), in three areas surrounding the floor and walls of the cavity in each 

section. Sections were subsequently ground to 150 pm thickness, using an 

aluminium oxide abrasive powder (White Bauxlite 2000, Honing abrasive, UK) 

(Figure 2.4). The thickness of each specimen was measured intermittently 

throughout the grinding procedure to avoid excessive tissue removal. Sample 

sections were then selected for microradiographic assessment using the
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Table 3.1: The distribution of the number of teeth in each cavity class based 
on Black’s classification of the cavities for both experiments.

Experiment
Cavity class

I II III IV V
Different powers No. of teeth 12 11 6 0 1

percentage 40% 37% 20% 0 3%
Different cavity sizes No. of teeth 6 18 5 0 1

percentage 20% 60% 17% 0 3%

Table 3.2: The distribution of the number of teeth in each category based on 
their anatomical classification, for both experiments.

Type of teeth
Experiment A B C D E

Different powers No. of teeth 1 1 3 16 9
percentage 3.33% 3.33% 10% 53.33 30%

Different cavity sizes No. of teeth 1 2 4 16 7
percentage 3.33% 6.67% 13.33% 53.33% 23.33

%



Diffractus 582 (Enraf Nonius Delft, Holland) (Figure 2.7) with exposure settings 

set at 20 kV, 30 mA, and an exposure time of 20 min.

3.5.1.6 Demineralised section preparation:

The other half of each tooth was demineralised, using a similar procedure to 

that employed in the pilot experiments. This was carried out as follows:

Each specimen was fixed initially in phosphate buffered formalin (10%). The 

procedure was continued by decalcification of the specimens in a 20% formic 

acid for a period of 3 to 4 days for the primary teeth (This period was longer, up 

to a maximum of 7 days, for permanent teeth). The specimens where then 

radiographed using a modified laboratory x-ray machine (Philips, UK) to 

examine whether the decalcification process has been complete. This 

examination stage would also help to avoid over exposure of the tissue to the 

decalcification process, which may inadvertently cause damage to the 

specimen. A processor machine (Tissue Tek Vip 1000, Bayer Pic, UK) was 

employed to prepare the tissue for mounting in wax blocks for sectioning. The 

stages of tissue processing are given in detail in Appendix D.

Specimens were then sectioned using a microtome (Leitz 1512, Leitz GMBH, 

Austria) set on 5p thickness. Sections were placed on microscope slides and 

stained immediately using two methods of staining, namely: 1. Haematoxyllin 

and Eosin (H&E) as a general purpose staining and 2. van Gieson (VG) specific 

for staining collagen fibres.
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Since sectioned specimens may pull off the slide, subslides were used. Slides, 

for this purpose were placed on a rack (holds 25) and immersed in a strong 

commercial cleaning solution (i.e. Neodisher) overnight. The slides were 

removed from the cleansing solution after 12 hours and washed for another 12 

hours in running water. This was followed by immersing the slides in distilled 

water for another 24 hours. Specimens were finally dried at 40 °C using a dust 

free rack. The subbing solution, 0.5% Gelatine in 0.05% Chrome Alum 

(Chromic Potassium Sulphate) was prepared as follows: Gelatine was first 

dissolved in a hot oven and then Alum added, allowed to cool, and then filtered 

into a Coplin Jar. At this stage, slides were dipped into the solution for 2 to 3 

sec followed by wiping the back of the specimen with a paper towel to leave 

only one side covered. Finally, the specimen was allowed to dry in a dust free 

cabinet. Sections were then mounted on microscope slides using HSR 

mounting medium as described in detail in Section 2.2.1. The demineralised 

sections were then examined under a light microscope (Leitz, Switzerland) 

using objectives x6.3, x10, and x40 magnifications.

3.5.1.7 Method of preparation for microradiographic examination:

As described previously, sections were grounded to a thickness of between 145 

to 165 microns. Thickness measurements were carried out on three points of 

dentine surrounding the cavity, approximately 1 mm distant from the cavity 

surfaces using an electronic micrometer (Digimatic indicator, Mitutoyo, Japan).
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This measurement was repeated frequently, during the grinding process, to 

avoid excessive tissue removal.

Sections were then dried using a paper pad and placed between two layers of 

clingfilm. This prevented dehydration of the specimens and also permitted 

easier handling (Figure 2.7). The Clingfilm with the sections included were then 

placed over a piece of microradiographic film (Kodak, USA); this was then 

placed within the film holder and sealed (Figure 2.6). The film was 

subsequently exposed to x rays of 20 kV and 30 mA for 20 min. The films were 

then assessed under the light microscope with similar magnification to the 

ground sections.

3.5.1.8 Scanning Electron Microscopy:

Three treated teeth were selected from each group for SEM investigation. All 

specimens were immediately fixed after laser application in ice-cold 2.5% 

glutaraldehyde buffered in 0.1 M cacodylate, with a pH of 7.4 for a period of 2 

hours. The specimens were then subjected to a dehydration procedure, 

initiated with a rinse through a 0.1 M sodium cacodylate buffer followed by the 

actual dehydration procedure using different degrees of ethyl alcohol, with 

gradually increasing concentrations. The procedure took about 7.5 days (33% 

for 4 hours, 50% for 4 hours, 67% for 12 hours, 95% for 48 hours and 100% for 

72 hours). Lastly, specimens were immersed in hexamethyldisilazane for 36 

hours. This procedure was followed by air drying for 24 hours.
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The specimens were then mounted on aluminium stubs (Agar Scientific Ltd, 

UK) using a conductive carbon cement (Leit C, TAAB Laboratories Equipment 

Ltd, UK). At this stage, each specimen was individually subjected to sputter 

coating (Polaron E 5000, UK), by placing the specimen inside a vacuum 

chamber. An Argon beam, which is electrochemically neutral with a lesser 

chance of interrupting the gold coating procedure, was aimed at the specimen, 

while the chamber was still pumping down to the desired vacuum level. A thin 

film of gold was placed on the surface of the specimen after it was evaporated 

from its source, at a voltage of 1.2 kV. for a period of 5 min.

Specimens were examined under the scanning electron microscope (Jeol T- 

300 SEM, UK), at an accelerating voltage of 30 kV. Photomicrographs of the 

all specimens were taken at the following magnifications: x35, x250, and x500 

using Kodak TP 120 film type 6415 (Kodak Ltd., UK).

3.5.2 Results:

3.5.2.1 Findings of the clinical assessment of prepared cavities:

Clinical examination of the teeth treated with different laser energies 

demonstrated varying degree of carbonisation at the irradiated site of the 

cavities in all three groups. Clinical signs of tissue ablation were noticed slightly 

later than the actual start point of the irradiation when low energy was 

employed. This was followed by shrinkage of the superficial layer of carious 

tissue without smoke production. Further irradiation of the tissue caused a 

burning reaction associated with ablation of carious tissue. The ablation
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process was started much quicker in the other two groups treated by medium 

and high powers.

The mean time recorded for individual groups of teeth with different laser 

energy densities demonstrated a direct relationship between the level of laser 

energy and the time required to achieve a caries free cavity. The higher the 

level of laser energy, the quicker the process of caries ablation. Clinical 

evaluation of the treated dentine surface by the power of 1.5 W exposure 

revealed generalised charring and carbonisation appearances at the irradiated 

dentine surface. Application of the low power (1 W) revealed initial shrinkage of 

the irradiated tissue followed by eventual ablation. The laser appeared to 

produce a crater by removing carious tissue, leaving sound dentine covered 

with products of evaporation and carbonisation.

- Time taken for a complete caries removal:

Caries removal required a shorter exposure time (mean = 93 sec ± 49) in 

cases treated with the high power, compared with the other two energy 

settings. In this respect, those cases treated by the low power laser energy still 

required a longer period of exposure to achieve a caries-free cavity (mean = 

137 sec ± 70) than those treated by the medium power (mean = 130 sec ± 47). 

Figure 3.10 demonstrates the relationships between the laser power and the 

time taken to complete caries removal process, and figure 3.11 represents the
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Figure 3.10: The length of time taken to achieve caries free cavities in three 
groups of cavities,(Bars indicate individual teeth).
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Figure 3.11: The length of time taken to achieve caries free cavities in 
three groups of teeth are presented using different levels of laser energy, 
(Bars indicate individual teeth).



sum of the time taken to achieve caries-free cavities in the three different cavity 

size groups.

A One-way ANOVA test was carried out to examine whether there was any 

significant difference between the time taken by the three different laser 

energies for ablation of carious tissue. Findings of this comparison showed that 

there was no significant differences (p=0.128) between the length of time 

required to achieve a caries-free cavity using these different laser powers 

(Table 3.3). A similar test was carried out between the three groups of teeth 

with different size cavities while they have been all treated by medium power 

(1.25 W). The result of this comparison indicated a highly significant difference 

(p=0.000) between the three groups of teeth for the time required to remove all 

caries (Table 3.4).

3.5.2.2 Light microscopic assessment:

a- Microscopic assessment of the prepared ground sections:

The ground sections were examined under the light microscope, using x2.5 and 

x6.3 magnification. Varying degrees of caries removal success were 

demonstrated in teeth treated by the low power laser energy. This included a 

few cases where the remaining carious tissue was seen to be associated with a 

superficial carbonised layer, covering the remaining carious tissue. Complete 

caries removal was observed in those specimens exposed to the high power 

(1.5 W), again with some degree of carbonisation close to the prepared floor of 

the cavities. The group treated with the medium power also demonstrated

81



Table 3.3: The mean value time recorded to achieve caries free cavities when 
three different laser energies were used, with the result of a One-way ANOVA 
test on their differences.

Different Laser 
powers

No. of 
teeth

Mean time taken (sec), 
(SD)

P F

1 10 137.5 ±70.17 0.128 2.22
2 10 140 ±47.14
3 10 92.80 ±48.96

SD= Standard Deviation Laser Powers:
1= Low (1.00 W),
2= Medium (1.25 W), 
3= High (1.50 w)

Table 3.4: The mean value time recorded to achieve caries free cavities in 
three different cavity sizes scored clinically with the result of a One-way ANOVA 
test on their differences (Medium power laser energy).

Cavity size No. of teeth Mean time taken (sec), SD P F
1 10 46.80 ±17.89 0.000 11.05
2 10 140 ±47.14
3 10 147.5 ±77.47

SD= Standard Deviation Cavity sizes:
1= Small, 
2= Medium, 
3= Large



complete caries removal, with the presence of some carbonised tissue close to 

the surface of the irradiated dentine.

Figures 3.12 (a), 3.13 (a), 3.14 (a) are photomicrographs of ground sections of 

the teeth treated by the three different energy settings. Of note, is the degree 

of tissue removal in the lowest power and the level of carbonisation produced in 

the highest power.

b- Results of microscopic examination of demineralised section:

Haematoxylin and Eosin staining is routinely used for general purpose 

illustration of organic material. Micro-organisms were present in some of the 

specimens of this study, which were disclosed by the H&E staining method. 

The extent to which they had invaded the dentinal tubules could be estimated 

using these sections (Figures 3.12 b, 3.13 b, 3.14 b).

Two distinct halves of the cavities were clearly defined through the examination 

of the demineralised sections, which corresponded well with the ground 

sections. The crater produced by laser irradiation adjacent to the carious half of 

the cavity was obvious by its characteristic punched-out appearance. The 

remaining dentine under the lased area was relatively normal with comparable 

structural features to the sound areas of dentine. The pattern of dentinal 

tubules and collagen fibres of the irradiated sites represented a normal 

appearance when compared to the non-lased carious area (Figure 3.13 b).
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The presence of invaded micro-organisms associated with massive destruction 

of the dentinal structure in the controlled, untreated carious half of the cavity is 

clearly demonstrated in figure 3.12 (b). Occasional particles and bundles of 

disrupted collagen fibres were still present at the irradiated site of the teeth 

treated by the low power, which appeared similar to features of the remaining 

carious dentine at the control site. In comparison, no such structural pattern 

was found in dentine of the irradiated surface in teeth treated by either medium 

or high powers. Micro-organisms were not present in the dentine remaining at 

the irradiated site, treated by the medium and high powers.

Examination of the van Gieson-stained sections showed a band, amber in 

colour, close to the surface of the irradiated site in all three groups of teeth 

irradiated by different laser energies. The presence of altered collagen, an 

indication of remaining carious tissue, was clearly visible in these sections at 

the irradiated site of teeth treated with the low power laser energy (Figure 3.12 

b). An apparently intact collagen structure was present at the laser irradiated 

site of dentine in those teeth treated with the medium power (Figure 3.13 b). 

The presence of the amber coloured tissue close to the irradiated surface of 

dentine was observed in sections of most of the specimens irradiated by the 

high power (Figure 3.14 b).

Massive destruction of the collagen matrix of the control carious site can be 

seen in all specimens. Enlargement of intertubular spaces on the carious mass 

left at the control half of the cavity may be explained by the effect of acid
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produced by the micro-organisms within these targeted dentinal tubules. 

Colonisation and multiplication of these micro-organisms involved in the 

process of dentine destruction during caries development can be seen clearly in 

figure 3.15 (a,b).

c- Microradiographic findings of the prepared sections:

The level of radio-opacity on the lased dentine was considerably higher when 

compared to that of the carious tissue at the control site from an assessment of 

the microradiographic films. The level of opacity of the remaining dentine at the 

lased area was found to be close to the opacity of sound, unaffected dentine. 

The carious lesion (Figure 3.16 a,b,c) appeared to exhibit a higher degree of 

radiolucency when compared with the sound dentine. This radiolucency 

reduced gradually closer to sound underlying dentine. Some defused 

radiolucent areas were found at the irradiated site of the dentine irradiated by 

the low power (Figure 3.16 a). However, this appearance was not found in the 

other two groups of teeth treated with the medium and high powers. The 

remaining dentine surface was found to be radiographically similar to the 

sound, unaffected part of the dentine.

3.5.2.3 Scanning electron microscopy:

The SEMs indicated that there was variation between the appearances 

produced at the dentine surfaces irradiated by the different laser energies. The 

presence of recrystalised, melted material on the surface of all three groups 

indicated degrees of effect and surface temperature. Examination of those
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Figure 3.16a: Illustrating the microradiographic view of the specimen as figure 
3.12, note the lased (L) and non-lased control (C) areas of the specimen 
irradiated with low power laser energy (1 W) (x10).

Figure 3.16b: Illustrating the microradiographic view of the specimen as figure
3.13, note the lased (L) and non-lased control (C) areas of the specimen
irradiated with medium power laser energy (1.25 W) (x10).



Figure 3.16c: Illustrating the microradiographic view of the specimen as figure 
3.14, note the lased (L) and non-lased control (C) areas of the specimen 
irradiated with high power laser energy (1.5 W) (x10).



teeth treated with the high power revealed the presence of a higher level of 

melting material, which covered almost all the irradiated dentine surface. In the 

case of those samples treated with the high laser energy, large globules of 

resolidified melted material were seen to occlude the openings of the dentinal 

tubules. The extent of this coverage was reduced in specimens exposed to the 

lower powers, having areas with open dentinal tubules and gaps present 

between the droplets of resolidified materials. Figure 3.17a is an SEM view of 

the carious site of the same sample as figure 3.17b. Figures 3.17 b,c,d are 

photomicrographs of the SEM observations from the dentine surfaces prepared 

with the three different laser energies (x500).

It is clear, therefore, that specimens exposed to all three laser energies 

produced varying levels of caries removal, with some degree of accompanying 

recrystalisation. There were more open dentinal tubules in cases treated with 

the medium power, indicating a lower temperature rise at the surface with less 

melted products. Cracks observed on the specimens were due to the 

preparation procedure as these were found to be present in all the specimens.

3.5.3 Discussion:

Removing carious tissue selectively, whilst leaving adjacent sound dentine 

undamaged is the major goal of any caries-removal technique. With the 

Nd:YAG laser, the energy output and the exposure time dictate the laser’s 

effect on dentine. Before this instrument may be used clinically, both its safety 

and efficacy have to be assured.
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Figure 3.17a: SEM view of the carious iesion from the specimen as fiqure 3.12 
(x500).

Figure 3.17b: SEM views of the specimen as figure 3.12, illustrating the lased
area of sound dentine irradiated with low power laser energy (1 W) (x500),



Figure 3.17c: SEM views of the specimens as figure 3.13, illustrating the lased 
area of sound dentine irradiated with low power laser energy (1.25 W) (x500).

Figure 3.17d: SEM views of the specimens as figure 3.14, illustrating the lased
area of sound dentine irradiated with high power laser energy (1.5 W) (x500).



In this study, the lowest power (1 W) appeared to be unable to remove carious 

tissue effectively. However, the teeth treated by the high power (1.5 W), 

demonstrated complete caries removal, with an accompanying thick layer of 

carbonised tissue at the prepared surface of dentine. It is not easy to assess 

whether sound dentine has also been removed merely from the clinical 

appearance of the specimens. When the ground sections were viewed, 

however, the interface between the carious and sound tissue, could be viewed 

(Figures 3.12 a, 3.13 a, 3.14 a). These indicated that the higher power had 

been quite effective in removing carious tissue as well as having uncontrolled 

ablation effect on the underlying sound dentine.

Varying degrees of caries removal were observed in microscopic examination 

of the ground sections, with a lower caries removal efficacy of the lowest laser 

energy tested in this experiment. This was demonstrated by the presence of 

some remaining carious tissue, even after several laser applications. 

Examination of the prepared sections from the treated teeth with the other two 

laser energies, revealed complete efficacy of the medium and high powers 

which was shown by the absence of any remaining carious tissue at the 

irradiated site of the treated teeth.

The presence of the carbonised layer at the surface of almost all specimens 

treated with the high power was quite remarkable, when compared with those 

specimens treated with the medium power. The medium power produced a
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caries-free surface with only occasional elements of carbonised tissues on the 

treated surface. The result of a single laser exposure on sound dentine for 30 

sec, discussed earlier in Section 3.3.3, indicated that only the high power 

produced charring of the dentine. In this respect, Koort and Frentzen (1992) 

stated that the production of a carbonised layer at the operating surface may 

increase the absorption level of the laser energy which in turn causes an 

increase in its cutting effect with the production of higher temperature rises, 

leading to unwanted side effects.

Microradiographic evaluation of the teeth treated in this experiment showed a 

similar opacity at the irradiated site of the treated cavities in both medium and 

high powers. This opacity was comparable to that of sound, unaffected 

dentine. It was also noted that sections of the irradiated cases by the low 

power laser energy had some degree of radiolucency at the irradiated site 

indicating the presence of remaining carious tissue. This investigation did not 

show any increased radiodensity of the dentine surface reported earlier 

(Kantola, 1973), presumably the result of deposition of condensed, resolidified 

material at the irradiated surface. This is due, probably, to the laser’s inability 

to produce resolidification and recrystalisation as such when using the energy 

levels tested in this study.

The stained demineralised sections showed some interesting features. On the 

van Gieson stained specimens, a basophilic yellow band covering the lased half 

of the sections was considered as being a representation of the thermal side-
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effect of the laser on the remaining dentine surface. This was not confirmed, 

however, when the laser was exposed to sound, non-carious teeth. It was 

concluded that this appearance was due, in part, to the layer of carious dentine 

that is not soft, but is partially decalcified.

SEMs of the three different powers showed a remarkable difference in the level 

of coverage at the surface of irradiated dentine by melted products. This was 

probably the result of the degree of temperature rise at the surface produced by 

the three laser energies. A higher degree of covering of the surface was 

achieved as a result of higher melting production when the specimens were 

exposed to the high power when compared to the other two powers. Surface 

melting did occur in both the other laser powers, but not to the same degree. 

Interestingly, there was no smear layer present at the lased area of the cavity, 

as is commonly seen in the case of mechanical cavity preparation using a 

conventional bur. This could perhaps be due to the lack of any physical contact 

with the surface of the dentine. In some of the cases it was noted that the low 

power laser energy used in this experiment may only cause melting of the 

superficial carious tissue, without ablating. This layer may then become 

resolidified at the superficial aspect of the carious mass, giving a false 

sensation of complete caries removal on probing the irradiated surface.

Cracks observed on the SEM specimens were due to the preparation 

procedure and not because of the laser, since they were seen to extend over 

the entire tooth and were even seen in non-lased areas. This conclusion has
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been confirmed by other work carried out within this laboratory (Radvar et a/., 

1995).

3.5.4 Conclusions:

1. The optimal laser power for effective caries removal was found to be 1.25 W.

2. This power also produced a lower level of damage to the sound dentine.

3. The prepared dentine surface did not have a smear layer, but was covered to 

a considerable extent with melted products.

4. The length of time required for complete caries removal was not significantly 

different (p= 0.128) between the three powers tested in this study, but there 

was a significant difference (p<0.001) between the time required for the 

completion of caries removal in different cavity sizes.

Further investigation is required to assess if this surface would effect the bond 

strength at the interface of tooth/restoration using adhesive restorative 

materials and it is this question which forms the basis of Chapter 5.
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CHAPTER IV

PULP TEMPERATURE CHANGES 
FOLLOWING LASER/DRILL CARIES

REMOVAL



CHAPTER 4: Temperature changes at the pulpodentinal junction

during laser/drill caries removal

4.1 Introduction

The potentially harmful effects of heat on dentine and the dental pulp in vital 

teeth during restorative procedures are well known, and precautions such as 

water-cooled handpieces are routinely employed in clinical practice. Heat 

generated at the superficial layers of the tissue is usually transmitted to the 

deeper tissues. The speed of this process is dependent on the thermal 

conductivity of the tissue. In the case of dental hard tissues, heat generated at 

the surface of enamel or dentine following routine cutting procedures passes 

through the bulk of dentine to the pulp (Taylor, Shklar and Roebor, 1965) and 

concern relating to heat transfer has been expressed ever since lasers were 

introduced as a means of removing carious tissue (Adrian, Bernier and 

Sprague, 1971). It has been suggested that measuring the temperature by 

using the time-temperature relationship can be used to identify possible 

changes within the dental pulp (Fanibunda, 1986).

4.2 Current techniques for the assessment of the dental pulp sensitivity:

4.2.1 Clinical pulpal sensitivity techniques:

There are several techniques used currently for the assessment of the pulp. 

These include: 1. Thermal test, 2. Electric pulp test, 3. Laser doppler 

flowmetery, 4. Soft tissue examination, 5. Radiographic examination. The 

pulp’s response to thermal stimuli, such as cold (ethyl chloride) or hot (heated
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gutta perchae) are commonly used pre-operatively to indicate the pulpal 

condition. Electric pulp testing has also been used, although there has been 

concern as to its reliability (Fuss et al., 1986). The concept of assessing pulpal 

blood flow is a relatively new method and involves measuring the speed of 

blood flow passing through the pulp (Aars et al., 1993).

The indications for a cavity test as a means of assessing sensitivity are strictly 

only before the placement of a restoration, and where caries is involved. 

Finally, radiographic assessment of the surrounding structure of the tooth is 

considered a complementary aid to the assessment of the condition of the pulp 

and is used mainly when there is severe damage to the pulp, as in pulpal 

necrosis.

4.2.2 Laboratory assessment techniques of the dental pulp pathology:

4.2.2.1 Pulp histology assessment:

Clearly, histological examination of the pulp is the most reliable technique for 

the evaluation of the pulp cells following any stimuli, including restorative 

procedures. Unfortunately, the tooth requires to be extracted before this 

method can be employed. To avoid any changes in the pulp condition, this 

examination should be carried out immediately after the completion of the 

procedure. Like any other method of pulp assessment, pulp histology has 

limitations including: lack of reproducibility, not being quantitative, and only 

applicable to clinical conditions. In this respect, measurement of the 

temperature within the pulpodentinal complex can be used as an indicator of
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events happening within the pulp (Beveridge and Brown, 1965; Van Hassel and 

Brown, 1969).

4.2.2.2 Measurement of the pulp temperature rise:

There have been several studies which have evaluated the level of pulpal 

damage following routine restorative dental procedures which resulted in an 

increase in pulpal temperature (Smail et al., 1988; Goodis, White and 

Watanabe, 1991; Hansen and Assmusen, 1993). Although the measurement 

of pulpal temperature is unable to indicate serious damage to the pulp, it can 

indicate the risks and possible injuries which may occur. Like other restorative 

procedures, laser irradiation of the tooth will produce heat within the tissue and 

may well effect the pulp.

The critical threshold for pulpal temperature rise has been suggested as 5.6 °C. 

A rise of this level is thought to initiate a pulpal reaction (Zach and Cohen, 

1965), whilst a temperature rise of 8.3 °C is thought to cause irreversible 

changes (Shoji, Nakamura and Horiuchi, 1985). There were no indications 

given in those studies as to the duration of the temperature rise. In contrast, 

destruction of odontoblasts and oedema after 24 hours with healing of the 

lesions 2 months later with the formation of irregular dentine has been reported 

following a rise in pulp temperature caused by the application of a hot metal 

probe (Lisanti and Zander, 1952).
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4.3 Methods of assessing temperature changes of the pulp

A range of equipment has been used for assessing the level of temperature 

changes of the dental pulp during routine restorative procedures. These 

include: 1. thermocouple wire (Goodis et al., 1989) 2. thermistor (Neiburger and 

Miserendino, 1988) 3. photothermal camera (Marchesini et al., 1985) 4. infrared 

camera (Anic et al., 1993), 5. digital thermometer (Anic et al., 1993), and 6. 

Thermovision (Arima and Matsumoto, 1993). Of these techniques, the 

thermocouple wire has been used most commonly (Goodis et al., 1989; 

Anderson and van Praagh, 1942).

4.4 Common causes for pulp temperature changes:

During routine dental procedures, heat is produced either by physical frictional 

forces, particularly in dry conditions, or following the absorption of light from 

either a polymerising light unit or a laser beam. Temperature rises of the pulp 

has been investigated both in vitro and in vivo to estimate the level of damage 

to the pulpal structure (Marchesini e ta i, 1985; Goodis et al., 1993; Miserendino 

et al., 1993).

4.4.1 Pulp temperature rise during conventional cavity preparation:

Excessive heat, produced by the cutting action of the drill, is more likely to 

occur when sound, healthy tissues are being removed to provide, for example, 

mechanical retention (Anderson and van Praagh, 1942). The amount of pulp 

temperature rise during conventional caries removal will depend on: 1. the 

sharpness of the bur, 2. proximity of the cavity to the pulp, 3. The use of
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air/water coolants, 4. Pressure applied to the bur during cutting procedure 

(Walsh and Symmons, 1949; Peyton, 1955; Peyton, 1958; Hudson and 

Sweeney, 1954). A temperature rise of 10 °C has been reported within the pulp 

after 1 min of continuous dry drilling of dentine without the use of a coolant 

(Goodis, Schein and Stauffer, 1988). A sharp decline in pulp temperature was 

reported as soon as the cutting procedure stopped, for about 2 min with a 

gradual decline thereafter (Goodis, Schein and Stauffer, 1988).

During conventional drilling, inner tooth temperatures of 5.8 °C and 10.5 °C at 

the pulpo-dentinal junction and dentino-enamel junction respectively have been 

recorded in the absence of a coolant, while temperature drops have been 

reported when air or water coolants have been used during conventional cavity 

preparation (Goodis, Schein and Stauffer, 1988). Temperature changes 

resulting from conventional operative procedures have been reported as within 

the tolerated limit of the pulp and are, therefore, considered as safe (Lisanti and 

Zander, 1952; Lefkowitz, Robinson and Postle, 1958).

4.4.2 Pulp temperature rise during light curing the restorative materials

Polymerisation of light activated restorative dental materials causes a rise in 

temperature of the material which in turn, will be conducted to the rest of the 

tooth. This temperature rise is due to both exothermic reaction processes and 

the absorption of energy during irradiation (McCabe, 1985; Lloyd, Joski and 

McGlynn, 1986; Masutani etal., 1988). Heat produced in the dental pulp during
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the application of a curing light can be as high as 12.1 °C after 30 sec, which 

would be potentially damaging to the pulp (Smail eta!., 1988).

Different light sources cause varying degrees of temperature rise at the dental 

pulp (Hansen and Asmussen, 1993; Goodis et al., 1993). The highest 

temperature rise of the pulp was reported as 4.8 °C after 60 sec light exposure 

of the tooth using a Fiber-lite machine (Dolan-Jenner Industries, Rochester, 

NH) (Goodis et al., 1989). The shade and colour of the restorative material 

may also influence the degree of temperature rise, with darker shades tending 

to take longer to set. In addition, the time required for full setting of the material 

has been shown to be a major factor in the production of heat (McCabe, 1989; 

Watts, Amer and Combe, 1984). The thickness of the material will also dictate 

both the exposure time of the irradiation and, therefore, the temperature rise 

within the bulk of the material (Lloyd, Joski and McGlynn, 1986). However 

there remains a possibility for pulpal damage with the present polymerising light 

sources as the temperature produced could be sufficient to affect pulp vitality 

(Strang eta!., 1988; Goodis etal., 1989).

4.4.3 Laser irradiation and the pulp temperature changes:

Laser energy, either pulsed or continuous, will produce different levels of heat 

with a higher temperature being produced when continuous wave lasers are 

applied and, therefore, with a higher potential to cause pulpal damage (Serebro 

et al., 1987; Miserendino et al., 1989; Jeffrey et al., 1990). In a pulsed system, 

the beam energy is high, but since it is intermittent, less heat is produced
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(Lanzafame et al., 1988). In pulsed lasers, the total heat energy produced 

within the irradiated tissue is calculated as the sum of the energies of the 

pulses. The temperature distribution, therefore, depends on both the energy 

level and the number of pulses (Hibst and Keller, 1990).

The Nd:YAG laser beam is described as being able to be transmitted through 

enamel and dentine and into the pulp, as a result of the low absorption 

coefficients of these structures. This was thought to cause an increase in the 

level of heat near the pulp (Launay et al., 1987). Also, the deposition of 

charred debris during laser application (as witnessed in Chapter 3) has been 

reported to reduce the temperature rise within the pulp (Marchesini et al., 

1985). The use of an air flow for removing smoke and debris from the 

irradiated area, has been shown to cause a slight reduction in heat production 

(Marchesini etal., 1985).

4.5 Factors influencing temperature rise of the pulp during laser 

irradiation:

Several factors are believed to influence the accuracy of temperature 

measurements within the dental pulp. One of those factors is clearly the 

presence of pulpal tissue during the measurement. There have been few in 

vivo trials assessing the level of changes within a vital pulp (Schuchard and 

Watkins, 1961; Zach and Cohen, 1962; Bhaskar and Lilly, 1965; Carlton and 

Dorman, 1969). Apart from the ethical issue, measurement of a vital pulp is not 

recommended, as the tissue itself will prevent the thermocouple tip to come into
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proper contact with the pulpal wall of the dentine (Goodis, Schein and Stauffer, 

1988b).

The extent of a thermal effect of laser irradiation on different dental structures is 

dependent on the absorption coefficient of the tissue, thermal diffusivity, and 

thermal expansion of the target tissue. Of these factors, the absorption 

coefficient of the irradiated material is considered to be a major factor 

influencing the extent of temperature rise (Lobene, Bhussry and Fine, 1968). 

Dental tissues, which are heterogeneous in structure, react differently to 

thermal stimuli (Lobene, Bhussry and Fine, 1968). Light intensity distribution 

has also been suggested as being responsible, in part, for temperature rises of 

the irradiated tissue (Marchecini etal., 1985).

The remaining dentine thickness and the length of the laser exposure will 

determine the level of temperature rise within the dental pulp. Since frequent 

laser irradiation is believed to cause substantial temperature rise, due to 

summation of the energies (Jeffrey etal., 1990).

In conclusion, the exposure time, as well as the energy delivered to the tooth 

are considered major factors which will influence pulpal response to laser 

irradiation. The clinical application of pulsed lasers has been advocated as 

more reliable than the continuous wave lasers. The thickness of the remaining 

dentine at the floor of the cavity will also have an influence on the degree of 

temperature rise.
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4.6 Suggested techniques for pulp protection from thermal damages:

Like other dental cutting instruments, some of the laser manufacturers have 

also supplied their products with a cooling system (Launey et al., 1987). The 

use of an air/water spray, has been shown to reduce effectively the heat 

produced within the dental tissues and, therefore, reduces the possibility of 

thermal damage to the vital pulp (Miserendino et al., 1993).

4.7 Lasers and pulp histology:

Different lasers will have varying effects on the pulp. For example, the first 

generation laser, the Ruby laser (over 2 kJ/cm2), has been shown to cause 

coagulative necrosis of the pulp following caries removal (Adrian, Bernier and 

Sprague, 1971), while controlled energies of a pulsed neodymium laser, up to

6.5 KJ/Cm2, was reported as causing no thermal damage to the pulp (Adrian, 

1977).

4.7.1 C02 laser and pulp histology:

Coagulative necrosis was reported as a consequence of the high temperature 

rise caused by direct irradiation of the pulp, using a C02 laser (Shoji, Nakamura 

and Horiuchi, 1985). New dentine formation was detected on the pulpal wall of 

the dentine adjacent to the irradiated area when a C02 laser radiation of less 

than 20 W for maximum of 0.5 sec was used. No cellular deformity of the pulp 

tissue one month after laser irradiation was detected (Serebro et al., 1987).
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4.7.2 Nd:YAG and pulp histology:

Shoji and Horiuchi (1989) described the effects of Nd’.YAG laser irradiation of 

5.0 W for 0.3 sec on the pulp. These were described as mild dilatation of 

vessels with some calcified tissue formation 4 weeks after laser irradiation. 

However, temperature rise of the pulp following laser irradiation of enamel, 

using an Nd:YAG laser of 1-3 W for 12 sec, was considered high enough to 

cause localised pulpal inflammation with possible irreversible damage, 

occurring only at the site of irradiation (von Fraunhofer and Allen, 1993). 

Bahcall et al. (1993) reported that irradiation of dog’s teeth with a pulsed 

Nd:YAG laser beam (100 mJ at 10 pps for 30 sec), caused acute haemolytic 

changes of the pulp 24 hours after laser irradiation. However, a return to 

normality was reported 15 to 30 days later.

It can be concluded that short laser exposures, with controlled energy levels 

may cause only localised changes in the pulp and that these changes are 

reversible and will return to normal a month after treatment.

4.8 Aims and Objectives

The aims of this experiment were:

1. To evaluate the influence of the remaining dentine thickness between the 

floor of the cavity and the roof of the pulp on temperature rises of the pulp.

2. To assess the level of temperature rise at the pulpodentinal junction following 

laser irradiation of the dentine caries using an in vitro model.
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3. To assess the level of temperature rise at the pulpodentinal junction following 

conventional caries removal.

4. To estimate the degree of temperature rise at the pulpodentinal junction 

following the application of a curing light before and after caries removal.

4.9 The effect of thickness of dentine slices on temperature reading - A 

preliminary investigation:

4.9.1 Introduction:

A preliminary investigation was carried out initially, to assess the influence of 

dentine thickness, using dentine slices, on the amount of heat produced and 

transferred through varying thicknesses of tissue.

4.9.2 Methods and Materials:

Dentine slices with a thickness of 1 mm, 2 mm, 3 mm from both primary and 

permanent teeth were prepared using a LabCut 1010 hard tissue microtome 

(Agar Scientific Ltd, UK). The thickness of all prepared sections was measured 

using an electronic micrometer (Digimatic Indicator, Mitutoyo, Japan) to ensure 

reproducibility of specimen thickness. Those specimens which were 

excessively thick were hand lapped to reduce the thickness of the specimens to 

the desired level. This technique was described in detail in Section 2.2.5.

Prepared specimens were stored in 0.12% thymol. A Polymerising blue light 

(Aristolite, Germany) was used to measure the differences of temperature rise 

of the dentine surface at the opposite side to that which was irradiated. A
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Copper / Copper / Nickel thermocouple wire (type T, RS Components Ltd, UK) 

was employed for these measurements (Figure 4.1). The fibre tip of the 

polymerising unit was in direct contact with the tooth surface .

The exposure time for all experimental teeth was 60 sec, and the irradiation 

was carried out while the tip of the thermocouple was in contact with the other 

side of the dentine slab. Temperature rises were recorded for each group of 

dentine specimens using a digital thermometer (Comark Electronics Ltd, UK) 

and a chart recorder (Bryans Southern Instruments, Mitcham, England). Figure 

4.2 illustrates the temperature measurement set up.

4.9.3 Results:

There were varying degrees of temperatures recorded at the dentine surface 

which were primarily based on the thickness of the slabs. The lowest 

temperature was recorded with the 3 mm thick specimens (3.8 °C for the case 

of dentine slice of permanent teeth and 1.75 °C for dentine slice of primary 

teeth). However, the rise in temperature recorded from the 1 mm thick dentine 

slices was slightly higher in the permanent teeth (4.5 °C), this change was quite 

obvious when the curing light passed through the dentine slice of 1 mm from a 

primary tooth (6.25 °C). Table 4.1 demonstrates the mean temperature values 

recorded for the 3 dentine specimens, with the different thickness of slices, for 

both primary and permanent teeth.
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Figure 4.1: The thermocouple wire used in this experiment for measuring the 
temperature changes at the PDJ is illustrated while it is inserted into the pulp of 
a deciduous molar, fixed in a wax block.

Figure 4.2: Illustrates the temperature measurement set up with chart recorder
(left), electrical thermometer (middle), the curing light source (right) and the
specimen on laboratory stand.



Table 4.1: Mean peak temperature rises recorded following the PBL application 
on dentine slices with different thickness, from both primary and permanent 
teeth.

thickness of dentine slices
Type of the sliced dentine 1 mm 2 mm 3 mm

Primary

OoCO 2.5 °C 1.8 °C
Permanent 4.5 °C 5 °C 3.8 °C

PBL = Polymerising Blue Light



Figure 4.3 (a,b) shows the temperature rises recorded during the light exposure 

of the dentine specimens of primary teeth with 1 and 3 mm thicknesses. Figure

4.4 (a,b) represents the level of temperature rises recorded for the dentine 

specimens of permanent teeth with 1 and 3 mm thicknesses.

4.9.4 Discussion and conclusion:

The distance between the heat source and the subject was shown to be well 

correlated with the degree of temperature rise. Based on the results of this 

preliminary investigation, the thickness of the dentine is now thought to play a 

crucial role in the amount of energy passing through dentine. There was only a 

slight difference between the recorded temperature rises following the exposure 

of dentine slices of similar thicknesses from primary and permanent teeth by 

the curing blue light. The readings of temperature rise from the dentine slices 

of permanent teeth demonstrated, by and large, a smaller degree of change 

than the dentine slices of primary teeth within the different thicknesses. 

However, it is not clear as to why the primary dentine specimens exhibited a 

higher temperature rise under identical conditions. In conclusion, it is clear that 

the thickness of remaining sound dentine between the floor of a prepared cavity 

and the pulp has a crucial role in reducing the chance of pulpal overheating. 

This thickness seems to be more important in the case of primary teeth. The 

mean peak temperature for specimens of primary teeth fell as the dentine 

thickness increased. There was no difference in the mean peak temperature 

for permanent teeth between RDT of 1mm and 2mm. This could be possibly 

due to the increased calcific content of permanent teeth.
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Figures 4.3: Show the temperature rises recorded during the PBL exposure of 
the dentine specimens of primary teeth with a. 1 mm (top) and b. 3 mm 
thickness (bottom) (b=baseline, s= starting point of PBL application and e= end 
of application).
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Figures 4.4: Represents the level of temperature rises recorded for the dentine 
specimens of permanent teeth a. 1 mm (top) and b. 3 mm thickness (bottom) 
(b=baseline, s= starting point of PBL application and e= end of application).



4.10 Methods and Materials - Principal study:

4.10.1 Tooth selection and preparation:

Forty primary and 40 permanent carious human teeth were stored in 0.12% 

thymol prior to any experimental procedure being carried out. Teeth were 

selected based on the cavity size of ‘2’ (medium size), using the clinical scoring 

system described previously in Section 2.2.1. A radiographic assessment, 

using the scoring system described in the same Section (2.2.1), was carried out 

for further evaluation as to the extent of the carious lesions within the dentine 

before treatment. Teeth were included in the experiment if they exhibited 

carious lesions with a radiographic score of ‘3’. Teeth were divided into 4 

groups of 20 teeth: 20 primary and 20 permanent teeth were laser treated, 

while another 20 primary and 20 permanent teeth were treated using the 

conventional drill.

It was decided that the thermocouple tip had to be in direct contact with the 

pulpal wall of the dentine. No medium, such as gel, etc. was employed as an 

intermediate medium. To facilitate this in a reproducible manner, access was 

obtained from the apical area of the largest root of each tooth using a high 

speed handpiece (Siemens 4000 MS, Germany) fitted with a fissure diamond 

bur. Since the roots of primary teeth are generally narrow, access was gained 

through the furcation area of these teeth. For permanent teeth, the apical third 

of the root was amputated and the pulp canal subsequently enlarged using the 

same bur, to provide easy access to the pulp chamber to facilitate insertion of 

the thermocouple. Pulpal tissue was extirpated using a barbed broach.
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4.10.2 Thermocouple insertion:

The thermocouple (type T, RS components Ltd., UK) was inserted into the pulp 

chamber from the prepared radicular access until it came into contact with the 

roof of the pulp chamber. The root portion of the tooth, with the thermocouple 

in place, was then embedded in red wax to ensure the whole set-up remained 

stable and secure during the caries removal and temperature recording 

procedures. The other end of thermocouple was connected to a calibrated 

digital thermometer (Comark Electronics Ltd, UK), and a chart recorder (Bryans 

Southern Instruments, Mitcham Ltd, England). Teeth embedded in wax blocks 

were held by a laboratory clamp on a stand (Figure 4.5) during all subsequent 

procedures. Temperature changes at the pulpodentinal junction (PDJ) caused 

by the application of a polymerising blue light (PBL) (Aristolite, Germany) was 

also measured when caries removal had been completed. This ensured that 

firstly, the position of the thermocouple tip had not changed and secondly, to 

measure the temperature during carious removal.

4.10.3 Calibration of the thermocouple positioning:

To ensure stability of the position of the thermocouple and its contact with the 

surface of the dentine in the pulp chamber, the temperature rise at the PDJ was 

recorded in two stages using the light produced from a conventional PBL. 

Firstly, the thermocouple was fixed in wax block following its initial insertion into 

the pulp chamber and temperature changes were recorded as the index. The 

thermocouple was then removed from the tooth completely followed by
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Figure 4.5: The position of teeth, embedded in wax blocks, while fixed on the 
laboratory stand during all subsequent procedures is demonstrated.

(



insertion of a second thermocouple into the pulp chamber. A second 

temperature rise was recorded which was compared to the initial reading.

Where there was considerable differences between the two measurements, a 

third temperature assessment was carried out. It was decided that the highest 

reading within the recorded temperature values was considered as the value 

representing the peak temperature.

4.10.4 Caries removal protocol

Carious tissue was removed from the experimental teeth using a pulsed 

Nd:YAG laser (American Dental laser, USA), specifications detailed in Section

2.2.2 (Figure 2.1), with an energy level of 60 mJ at 15 pulses per second (1.25 

W). The laser fibre optic tip was held in close contact to the surface and moved 

across the cavity in a sweeping manner in close contact with the cavity surface. 

The exposure time of 30 sec was employed for each application and repeated 

as necessary. Any further application of the laser was carried out at least 60 

sec after the completion of the previous exposure, to achieve, once again, a 

stable baseline temperature for further recording.

Experimental teeth were exposed to the laser on a varying number of occasions 

depending on the extent of caries within the cavity, ultimately to achieve a 

clinically caries-free cavity. The fibre was cleaved after each application as 

described in Section 2.2.2. The accuracy of this procedure was assessed by 

checking the sharpness of the aiming beam on a clean, flat white surface,
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about 3 cm away from the fibre tip. This cleaving procedure was considered 

essential as scattered light will result in diminution of the laser energy at the 

cutting surface. In addition, there may be damage to adjacent tissue.

Carious tissue was removed in the control group using a conventional slow 

speed handpiece acting on an air motor with a rotational speed of 40,000 rpm 

(Kavo Dental Ltd, UK) supplied with an air spray. To ensure reasonable 

consistency, all teeth were prepared by the same operator (GA), on all 

occasions with the use of a new bur for each cavity. Each cavity was prepared 

for a maximum of 30 sec, with further drilling being performed after a 60 sec 

rest period, similar to the experimental group. Caries removal assessment was 

carried out as described in Section 2.2.3. The temperature measurement set 

up is illustrated in figure 4.2. The chart recorder, used in this study, provides 

graphs, examples of which are illustrated in figures 4.6 (a,b,c,d,e).

4.10.5 Measurement of remaining dentine thickness (RDT):

As the size of the cavities, based on their proximity to the pulp, were different 

radiographically, it was decided to categorise the cavities by measuring the 

remaining dentine thickness. Two methods of assessment were carried out as 

follows: 1. Microscopic assessment of the remaining dentine thickness (RDT) 

using radiographic views, 2. Microscopic measurement of RDT using sectioned 

teeth directly.
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Figure 4.6 a: Sample graph from the temperature rise of the PDJ caused by
the polymerising blue light application on carious tissue, (b=baseline, s=
starting point of PBL application and e= end of application).
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Figure 4.6 b: Sample graph from the temperature rise of the PDJ caused by
the laser irradiation of carious tissue, (b, baseline, s= starting point of Laser
application and e= end of application).
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Figure 4.6 c: Sample graph from the temperature rise of the PDJ caused by 
the conventional drilling of carious tissue, (b= baseline, s= starting point of Drill 
application and e= end of application).
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Figure 4.6 d: Sample graph from the temperature rise of the PDJ caused by
the polymerising blue light after caries being removed, (b=baseline, s= starting
point of PBL application and e= end of application).
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Figure 4.6 e: Sample graph from the temperature rise of the PDJ caused by
the polymerising blue light after restoration was placed, (b=baseline, s= starting
point of PBL application and e= end of application).



Radiographic views (RG) were prepared from each tooth before and after 

caries removal as described in detail in Section 2.2.1. Radiographic views were 

assessed under a light microscope (Leitz, Germany) connected to an IBM 

computer using a custom made image analysis programme. A calibration 

process was carried out using a stage micrometer (Leitz, Germany) before the 

measurement of the RDT in microns. Figure 4.7 shows an example of the 

computer image imported from the radiograph.

Accuracy of the RDT measurements using RG’s was further confirmed by the 

second measurement using the direct assessment of the sectioned teeth. 

Teeth were sectioned using a LabCut machine (Agar Scientific ltd, UK), through 

what was considered to be the deepest part of the cavity. The RDT 

measurement was assessed as the distance between the pulp and the deepest 

part of the cavity as assessed by both direct and radiographic procedures.

Teeth were placed into three groups, based on their RDT level. Teeth with 

RDT of less than 1 mm (Group 1); Group 2 had between 1 to 2 mm and the 

third Group had more than 2 mm thick. This enabled a comparison to be made 

between the influence of the RDT and the temperature rise at the PDJ.

4.10.6 Methods of statistical analyses:

Statistical advice was sought from Mr Harper Gilmour from the Department of 

Public Health and Statistics. Two statistical tests were employed for these test 

conditions: One-way ANOVA and the students t-test. Results of the of the RDT
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Figure 4.7: Examples of computer image achieved from a. the radiograph b. 
sectioned tooth, used for RDT measurement, (R=Restoration, D=Dentine and 
P=Pulp).



measurements were compared between the two techniques including the use 

of radiographic views and direct measurement, using the sectioned teeth, with a 

two sample t-test. The differences were tested between the pulp temperature 

caused by laser, the drill and the curing light with different RDT’s, using One­

way ANOVA. The differences between primary and permanent teeth were 

compared using both One-way ANOVA and two sample t-tests. Finally, the 

differences between the level of temperature rises caused by each application 

of the curing light, in the presence and absence of caries and a restoration, 

were tested using One-way ANOVA test.

4.11 Results:

In general, temperature changes at the pulpal surface of the dentine in laser 

irradiated teeth were found to be considerably higher than those treated by the 

drill. An appreciable temperature rise was also recorded during the application 

of the polymerising blue light. Details of the results are described below:

4.11.1 Findings of the RDT measurements:

Table 4.2 represents the number of teeth within different ranges of RDT, which 

were measured using radiographic and direct measurements. The mean 

values for the RDT’s are presented in table 4.3. The mean value of peak 

temperature rises of the PDJ measured in primary and permanent teeth while 

irradiated by different heat sources are presented in table 4.4.
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Table 4.2: Distribution of the number of primary and permanent teeth with 
different RDT, measured radiographically using the periapical radiographs and 
direct using the sectioned teeth.

Remaining Dentine Thickness
measurement teeth type < 1 mm 1-2 mm > 2 mm total No. of teeth
Radiograph Primary 19 18 3 40

permanent 11 15 14 40
Direct Primary 6 23 11 40

permanent 2 18 20 40
RDT= Remaining Dentine Thickness



Table 4.3: Comparison between two methods of measuring RDT (jn), 
Radiographically and Direct (see text for details), in primary and permanent 
teeth, in addition to the test and control groups, using two sample t-test.

Teeth type Measurement No of teeth Mean RDT (p) P DF
Primary Radiographic 40 1697 ±693 0.014 36

Direct 40 1042 + 553
Permanent Radiographic 40 2377± 1141 0.046 37

Direct 40 1774± 1159
Laser group Radiograph 40 2231 ±1135 0.013 77

Direct 40 1594± 1100
Drill group Radiograph 40 1842 ±809 0.0009 77

Direct 40 1222 ±802
RDT= Remaining Dentine Thickness 
DF= Degree of Freedom



Comparison between the findings of the two methods of measuring the RDT 

showed a significant difference (p= 0.014) between the values achieved 

radiographically and those achieved following the direct measurement, using 

two sample t-test. Generally, it was noted that a higher level of reading was 

achieved when the radiographic views were used for estimation of the RDT (i.e. 

1697 ± 693 fim from radiographic assessment of primary teeth while 1042 ± 

553 pm from direct measurement of the same specimens). The mean of the 

recorded values from the remaining dentine thickness are presented in table

4.3 with the p value of the differences between the two techniques of 

measurement using two sample t-test. These results indicated that the direct 

measurement is more reliable and realistic.

4.11.2 Temperature rise of the pulpodentinal junction (PDJ) following the 

application of a polymerising blue light (PBL):

Figure 4.6 (a,d,e) illustrate example curves recorded following the exposure of 

the polymerising blue light on carious dentine, after caries had been removed 

and finally, during the polymerisation of the restoration. Mean temperature 

rises of 4.4 °C ± 0.28 for primary and 2.8 °C ± 0.22 for permanent teeth were 

recorded when the polymerising blue light was applied before removing carious 

tissue. Temperature rises of the PBL were 4.7 ± 1.9 °C and 2.6 ± 1.7 °C after 

removing caries for primary and permanent teeth, respectively. Table 4.4 

demonstrates the mean values of peak temperature rises in each individual 

group of cavities, based on their different RDT.
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Table 4.4 : Relationship between the RDT and temperature rise using different 
heat producing sources, (P value from One-way ANOVA test).

Heat Source RDT
(Direct)

No. of 
teeth

Mean peak temp 
(°C), SD

P F

Laser <1 mm 12 18.85 ± 6.7 0.017 4.55
1-2 mm 16 14.06 ±6.7
>2 mm 12 10.32 ±7.4

Drill <1 mm 18 0.06 ± 0.7 0.133 2.13
1-2 mm 17 0.08 ±0.9
>2 mm 5 0.9 ±0.7

C. Light before CR <1 mm 30 3.71 ± 1.7 0.131 2.09
1-2 mm 33 3.74 ± 1.7
>2 mm 17 2.75 ± 1.8

C. Light after CR <1 mm 30 4.58 ± 1.6 0.15 4.47
1-2 mm 33 4.37 ±2.0
>2 mm 17 3.03 ±1.7

RDT= Remaining Dentine Thickness 
SD = Standard Deviation 
C. Light = Curing Light 
CR = Caries Removal



One-way ANOVA-test showed a highly significant difference (p<0.001) between 

the temperature rise caused by the polymerising blue light in primary and 

permanent teeth. However, these differences were not statistically significant 

(p= 0.17) before and after caries being removed.

Results of the recorded temperatures during the polymerisation of restorative 

materials showed smaller values compare to the values prior to the restoration. 

This may have been due to the thickness of the restoration which absorbed 

some of the light before it reached the cavity floor. The mean value 

temperature rises of 4.16 ± 1.7 °C was recorded for primary teeth and 2.99 ± 

1.4 °C for permanent teeth. One way ANOVA test showed that there was a 

highly significant difference between these temperature rises of primary and 

permanent teeth irradiated with the PBL following the placement of the 

restorative material (Table 4.5). The overall comparison of the temperature 

rises of the PBL showed an increase from the light application prior to caries 

removal compared to after caries was removed, while it was associated with a 

further decrease when the restoration was placed into the prepared cavities.

4.11.3 Temperature rise of the pulpodentinal junction (PDJ) during laser 

radiation:

Figure 4.6 (b) illustrates a typical curve produced by the chart recorder following 

laser radiation of carious dentine. High values of temperature rises (ranging 

from 1.7 °C to 28 °C in primary teeth and 3.25 °C to 30 °C in permanents) at 

the PDJ were recorded following caries removal using the laser. However, the
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Table 4.5: Mean peak temperature rise of the PDJ following the application of 
curing light in four different occasions are presented, with the differences 
between the two groups of primary and permanent teeth (p value from One-way 
ANOVA test).

Heat source Tooth type No. teeth Mean peak 
temperature (°C),SD

P F

C Light 1 Primary 40 4.47 ± 1.7 0.000 16.24
Permanent 40 2.98 ±1.6

C Light 2 Primary 40 4.44 ± 1.8 0.000 20.47
Permanent 40 2.80 ± 1.4

C Light 3 Primary 40 4.72 ± 1.9 0.006 7.84
Permanent 40 3.61 ±1.7

C Light 4 Primary 40 4.16 ± 1.7 0.001 11.66
Permanent 40 2.99 ± 1.4

C Liqht= Curing Light SD= Standard Deviation
C light 1= initial curing light application,
C light 2= immediately before caries removal,
C light 3= after caries removal,
C light 4= after restoration was placed



mean temperature rise was higher in primary teeth compared to the permanent 

teeth (mean values of 17 ± 1.5 °C and 12 ± 2 °C, respectively) (Table 4.6). The 

remaining dentine thickness (RDT) was found to have an influence on the 

degree of temperature rise at the PDJ, when the laser was applied. This was 

shown by a One-way ANOVA-test which indicated a significant difference (p=

0.017) between the three groups of teeth with different RDT thickness (Table

4.4). The differences between the primary and permanent teeth was tested 

using One-way ANOVA, results of which revealed a significant difference (p=

0.04) between the two groups of teeth (Table 4.6).

4.11.4 Temperature rise of the pulpodentinal junction (PDJ) during drill 

application:

Temperature rises were small and in some cases negative temperatures were 

recorded. The latter may be explained by the cooling effect of the air flow from 

the handpiece on the prepared dentine surface, which could then be transferred 

through the dentine to the thermocouple tip. The temperature continued to rise 

a little after the conventional caries removal procedure had stopped and then it 

started to return to the baseline, an example of which is demonstrated in figure

4.6 (c).

One way ANOVA test on the effect of different remaining dentine thickness 

revealed no significant difference (p=0.133), between the three groups, both in 

primary and permanent teeth, treated by the conventional drilling. The 

temperature changes of the PDJ caused by conventional drill was not
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Table 4.6 : Mean peak temperature rises of the pulp in primary and permanent 
teeth using different heat producing sources.

Heat source Tooth type No. of 
teeth

Mean peak 
temp (°C)

P
t-test

DF P
ANOVA

F

C. L before CR Primary 40 4.44 ± 1.8 0.000 25 0.000 21.61
Permanent 40 2.80 ± 1.4

Drill Primary 20 0.29 ± 0.6 0.36 28 0.363 0.85
Permanent 20 0.05 ± 1.1

Laser Primary 20 16.82 ±6.6 0.039 36 0.039 4.58
Permanent 20 11.93 ±7.8

C. L after CR Primary 40 4.72 ± 1.9 0.006 76 0.006 7.84
Permanent 40 3.60 ± 1.7

C. L after Res. Primary 40 4.16± 1.7 0.001 75 0.001 11.66
Permanent 40 2.99 ± 1.4

C.L= Curing Light,
CR= caries removal 
Res= Restoration 
SD= Standard Deviation 
DF= Degree of Freedom



significantly different between primary and permanent teeth (p=0.363), using 

two sample t-test (Table 4.6).

4.11.5 Comparing the level of temperature rises at PDJ caused by laser, 

drill and the polymerising blue light:

Results of a student t-test revealed a highly significant difference between the 

two methods of caries removal (p= 0.000), with the drill producing only a minor 

rise in temperature (mean of 0.29 °C and 0.05 °C in primary and permanent 

teeth, respectively). The differences between the temperature rises caused by 

the laser and the PBL on the same series of teeth was found to be statistically 

significant (p= 0.000) using a two sample t-test. The mean value of the peak 

temperature rises recorded at the PDJ, produced by all three potential sources 

of heat, including the polymerising blue light before and after removing caries, 

are presented in figure 4.8 in the form of a histogram. The results of the two 

sample t-tests with mean values of each test group are presented in table 4.7.

The differences in temperature rise detected at the PDJ caused by the 

application of the PBL were not significantly different before or after caries 

removal (p= 0.41) when caries was removed by laser radiation. These 

differences, however, were significant in the drill treated teeth (p = 0.04), using 

a two sample t-test (Table 4.8). A One-way ANOVA-test, on the effect of the 

remaining dentine thickness (RDT) following laser/drill caries removal showed 

that the temperature rises at the PDJ, had no significant differences between
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Figure 4.8: Histogram of peak temperature increases measured 
at the pulpal level of the teeth exposed to different heat sources 
with three different RDT.



Table 4.7: The mean peak temperature rise of the PDJ caused during laser and 
drill caries removal in addition to the overall application of the curing light before 
and after caries removal is presented with their differences using two sample t- 
test.

Heat Source No of Mean peak P DF
teeth temperature (°C), SD

Laser 40 14.38 + 7.6 0.000 39
Drill 40 0.17 ±0.8

Laser 40 14.38 ±7.6 0.000 45
Light after caries removal 40 3.95 ± 2.23

Light before caries removal 80 3.62 ± 1.8 0.062 157
Light after caries removal 80 4.16 ± 1.9

DF= Degree of Freedom 
SD= Standard Deviation

Table 4.8: The mean peak temperature rise of the PDJ caused by the 
application of a curing light before and after caries removal is presented for 
each group of laser and drill treated teeth. The differences of the temperature 
rise in presence and absence of carious layer was tested using a two sample t- 
test.

Experimental
group

Light application time No of 
teeth

Mean peak 
temperature (°C), SD

P DF

Laser before caries removal 40 3.55 ±2.1 0.41 77
after caries removal 40 3.95 ± 2.2

Drill before caries removal 40 3.69 ±1.5 0.036 77
after caries removal 40 4.38 ± 1.4

DF= Degree of Freedom 
SD= Standard Deviation



Wheater et al. (1991) described three main patterns of pulp tissue necrosis, 

including: 1. Coagulative, Colliquative and 3. Caseous. Within those, 

coagulative necrosis of the pulp is described when much of the cellular 

structure and tissue architecture is retained histologically, though the cell 

contents are dead. This condition was reported to be produced by 25 °C 

temperature rise at the PDJ following laser irradiation of the teeth (Marchesini 

et al., 1985). Coagulative changes of the soft tissues have also been reported 

in oral mucosa, following the production of excessive heat caused by biting the 

current cable (MacDonald, Avery and Lynch, 1987). In the case of the present 

study, the mean temperature rise caused by laser radiation was recorded as 14 

°C which is well below the level reported by Marchesini et al. (1985). It is clear 

that with the dry laboratory conditions used for these measurements, still higher 

temperature are produced than what can be expected in a clinical condition, 

where other factors, including pulpal blood flow, influence the temperature rise 

of the pulp.

Any heat produced at the tooth surface will be reduced as it conducts through 

the enamel and dentine, (15 °C at the DEJ compared to 4.5 °C at the PDJ) 

(Renneboog-Squilbin et al., 1989). Also, the duration of exposure is known to 

be more important than the level of laser energy in producing heat in the dental 

pulp (Miserendino et al., 1989; Shoji, Nakamura and Horiuchi, 1985; Serebro et 

al., 1987). In this respect, a surface temperature rise of over 1000 °C has been 

reported to be associated with only 2 °C temperature changes at the pulpal 

level (Boehm, Chen and Blair, 1976).
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The remaining dentine thickness beneath the cavity floor is a very important 

factor to control the degree of pulpal temperature rise during any operative 

procedure (Stanley and Swerdlow, 1964; White, Goodis and Daniels, 1991). 

However, findings of the present study have revealed that only high 

temperature changes, caused by laser have a statistically significant difference 

between the three RDT’s, and not significant in the other test groups (Table

4.4).

The direct effect of the laser on the thermocouple tip has been suggested to be 

a possible cause for a false rise in temperature reading (Lobene and Fine, 

1966; Nowak et al., 1964), however, von Fraunhofer and Allen (1993) believed 

that since the temperature rise continues for a few seconds after the end of 

laser radiation, it is therefore clear that the thermocouple itself has not been 

directly affected by the laser radiation and the actual heat transmitted through 

the tooth substance was the only recorded temperature.

The rise in temperature within the dental tissue will return to a baseline very 

slowly, and further exposures may produce further temperature rises. It is, 

therefore, essential to apply short laser exposures with reasonable resting 

periods between exposures (Lenz Von, Gilde and Walz, 1982; Launay et al., 

1986). A minimum of 60 sec appears to be essential as the resting gap, to 

allow the heated tissue to cool down before any further temperature recording 

can be made accurately. This indicates that in a clinical situation, insufficient
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resting periods may cause pulpal overheating, even with controlled energy 

levels as the accumulated heat will go above the tolerating limit of the pulp.

By comparison, very small temperature rises were recorded during 

conventional drilling of the cavities in the control group with no differences also 

between primary and permanent teeth. The temperature continued to rise for a 

short period after drilling had stopped, indicating thermal conductivity of dentine 

by continuation of the heat transference to the thermocouple. This was more 

evident in small cavities, where there is a thicker layer of sound dentine 

between the floor of the cavity and the roof of the pulp chamber. It may be that 

the greater the dentine thickness, the greater the chance of thermal diffusion 

throughout the entire tooth structure and, therefore, consequent reduction in the 

amount of energy reaching the pulp.

The application of the PBL as the standard basic heat source on the primary 

and permanent teeth revealed a highly significant difference in temperature rise 

which may be explained by smaller thickness of enamel and dentine in the 

primary dentition with a larger size pulp chamber (Figure 4.9). This higher 

temperature rise in primary teeth indicates the higher risk of this group to pulpal 

overheating. Interestingly, comparison between the recorded values of 

temperature rise at the PDJ, caused by the blue light, before and after 

removing caries showed no significant differences. Slight differences were 

noted in individual cases, suggesting that the carious layer may act as an 

insulator in these individuals.
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It has been suggested that controlled laser exposures may result in merely 

minor temperature rises, which fall within the physiological limits of pulpal 

tolerance (Miserendino et al., 1989). Thermal conductivity of enamel and 

dentine may, however, delay the process of heat transferring to the pulp 

(Miserendino et al., 1989). It is concluded, therefore, that controlled laser 

exposures may be used safely since temperature rises were shown to fall within 

the tolerance limit of the pulp. It is important to note, however, that the 

temperature rises measured within this model were produced under dry 

conditions and in the absence of any coolants during laser exposure. Such 

conditions will vary considerably in an in vivo model, as the presence of blood 

circulation and dentinal fluid, for example, would compensate the heating effect 

on the pulp.

The laser radiation, due to its higher absorption rate compared to the PBL 

produces a greater degree of heat within the dental hard tissue, but this 

temperature rise returns to baseline very quickly. The effect of heat is directly 

related to the length of its exposure on the biological tissues, including the 

dental pulp. In the case of pulsed lasers, this exposure duration is calculated 

from the width of each individual pulse over the period of exposure 

(Miserendino et al., 1989). It can, therefore, be concluded that the laser 

irradiation of hard dental tissues for short fragments of a sec, even with the 

temperatures recorded in this study, can be carried out with minimum damage. 

In the case of PBL, used routinely in clinical practice, also seems that the
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temperature rises could not effectively influence the pulp status and, therefore, 

no evidence of any adverse effect of this temperature producing source has 

been reported. However, no histological study has been reported on the effect 

of the PBL applications on pulp of the irradiated teeth, to indicate the exact 

pulpal status following the rise in temperature of the pulp.

4.13 Conclusions:

1. A dramatic temperature rise at the pulpo-dentinal junction was recorded 

following laser irradiation of dentine carious.

2. There was, by comparison, only a minimal increase in temperature at the 

pulpo-dentinal junction following conventional caries removal.

3. A considerable rise in temperature, particularly in primary teeth, was 

observed at the pulpo-dentinal junction, when a polymerising blue light was 

applied.

4. The extent of the temperature rise caused by the polymerising blue light at 

the pulpo-dentinal junction did not vary with the presence or absence of 

caries.

5. Overall, there was a significant difference between the laser- and drill- 

produced temperature rises, as well as between the laser and the PBL.
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CHAPTER V

RESTORATION ASSESSMENT FOLLOWING 
LASER CAVITY PREPARATION



CHAPTER 5: An in vitro valuation of restorations of cavities

prepared by laser/ conventional drilling

5.1 Introduction:

Most restorative materials have the common complication of microleakage at 

their cavosurface margins (Bergenholtz et ai, 1982). This is mainly related to 

the physical properties of the restorative materials, including their adaptability to 

the prepared walls of the cavity. The method of cavity preparation can play an 

important role on the level of retention and adaptation of the material at the 

tooth/restoration interface, by producing surface features including: undercuts 

and a smear layer which may influence bond strength (Pashley et a!., 1983; 

Boyer and Svare, 1981).

The presence of a smear layer at the prepared dentine surface has been 

shown to reduce the level of adaptation of the restorative material to this 

surface, which is particularly important for resin-based restorations as it 

reduces the bond strength. Therefore, chemical treatment of these surfaces is 

recommended prior to restoration placement (Buonocore, 1955; Hotz et ai., 

1977; Levine, Beech and Garton, 1977 Munksgaard et ai, 1984). By 

comparison, little concern has been stated for this problem in glass ionomer 

restorations, perhaps due to the potential of these materials to adhere by a 

chemical mechanism to the untreated dentine surface (Hotz et at., 1977; 

Levine, Beech and Garton, 1977).
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5.2 Classification of currently used restorative materials:

There are several restorative materials used in dental practice, including dental 

amalgam, composite resins, gold (inlay), porcelain (inlay), glass ionomer and 

compomers. These materials can be divided into two general groups of 

adhesive and non-adhesive as detailed below:

5.2.1 Non-adhesive conventional restorative materials:

Non adhesive restorative materials have been used to restore hard tissue 

defects of dental structures for many years. Amongst these, amalgam is still 

the most commonly used restorative material for restoration of posterior teeth 

both in primary and permanent dentitions. However, like any other restorative 

material, amalgam has its limitations, including: 1. Excessive tissue removal 

required for mechanical retention (Elderton, 1986), 2. High marginal leakage 

due to the lack of any adhesion property (Elderton, 1975; Chan and Glyn 

Jones, 1994), 3. Corrosion and its soft tissue effect (causing Oral Lichen 

Planus) (Molin, 1992), 4. Mercury release and its potential hazards including 

toxicity and allergic reactions (Eley and Cox, 1993; Bruce, MacDonald and 

Sydiskis, 1993; Koppel and Fahron, 1995) and finally 5. unacceptable for 

restoration of anterior teeth due to poor aesthetics. In this respect, adhesive 

restorative materials have been suggested for use as an alternative material to 

amalgam (Chan and Glyn Jones, 1994).
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5.2.2 Adhesive restorative materials:

Two types of adhesive restorative materials are available for use in dental 

practice, including: a. those which require the use of an additional bonding 

agent, i.e. composite resins, b. Materials with a direct chemical bonding 

property, i.e. glass ionomers.

5.2.2.1 Composite resin restorations and dentine bonding agents (DBA):

Acrylic resin restorative materials are categorised into three generations: 1. 

unfilled resins as generation I, 2. filled resins as generation II, and finally 3. 

microfil, macrofil and hybrid as generation III (Curzon, Robertz and Kennedy, 

1996). Between these, only generation I and II, which contain filler particles, 

can be termed composite. Acid etching of enamel margins can improve the 

retention of these restorations and also reduces the chance of microleakage 

(Buonocore, 1955; Erikson and Pears, 1978). Present composite resins are 

either chemically polymerised or photopolymerised.

Dentine bonding agents (DBA’s) are mainly used to enhance the retention of 

composite resin restorations by bonding to the particles of composite from one 

side and to the dentine or enamel surface from the other side. DBA’s have 

been used for many years with the main concern on adaptability of the material 

at the tooth/restoration interface. Despite the wide usage of composites in 

operative dentistry, their common complications of Shrinkage during the 

polymerising phase (Donly etal., 1987), excessive wear (Harrison and Draught,
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1976), discolouration and marginal leakage (Derkson, Richardson and 

Waldman, 1984) still remain.

5.2.2.2 Glass ionomers:

Today’s restorative dental materials should posses ideal properties, strength, 

durability and compatibility, while also adhering to tooth structure. Glass 

ionomer cement, which is a mixture of calcium aluminosilicate glass and 

polyacrylic acid, is capable of bonding to dentine by its free hydrophilic carboxyl 

groups, promoting surface wetting to hydrogen bonds at the tooth surface. 

Glass ionomer cements are described as being very vulnerable to water, 

especially in their initial setting stage (Donly, 1994). The hydrogen ions are 

produced by ionisation of the calcium aluminosilicate glass, which also contains 

fluoride, resulting in fluoride release (Skartveit et at., 1990). Light cure glass 

ionomers, also known as resin-modified glass ionomers, are claimed to have a 

better marginal adaptation with a more acceptable colour match, in addition to 

their reduced problems with water (Barnes et ai, 1995). It is, perhaps, more 

advisable to use these materials for the restoration of primary teeth in patients 

with poor co-operation. Within these materials, compomers are suggested as 

the improved formula of glass ionomer materials which are shown to have 

acceptable clinical survival rates (Peters, Roeters and Frankenmolen, 1995).

5.2.2.3 Compomers:

Compomers are newly introduced restorative materials recommended for use in 

restoring primary teeth (Croll, 1993). It contains the essential components of a
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glass ionomer cement, but below the level required to activate acid-base cure 

reactions in the absence of light and considered as a poly-acid modified 

composite resin (McLean, Nicholson and Wilson, 1994). Compomers were 

developed to improve the physical properties and clinical handling of glass 

ionomers. Compomers are also designed to be light-activated and used as 

restoratives or liners. This new generation of restorative materials provide 

clinical results comparable to those recorded for composite resins after 12 

months (Barnes e ta i, 1995).

Compomer, which is a combination of composite and glass ionomer, is 

demonstrated to have the capability of chemical bonding to dentine. Cortes, 

Garcia-Godoy and Boj (1993) studied the bond strength of two glass ionomers, 

namely Fuji II LC (GC American, USA), Photac-Fil (Espe, Germany) and a 

compomer, Dyract (Dentsply, Germany), with and without acid etching and 

showed that Dyract had a significantly higher bond strength than the other two, 

with no significant differences between the etched and non-etched groups 

(Cortes, Garcia-Godoy and Boj, 1993).

5.3 Advantages and disadvantages of compomers:

Compomer restorative material, like any other restorative material has been 

tested for its properties with the following results: fast and easy to use, good 

colour match with tooth, single component primer/adhesive, available in 

compule/ syringe system, high wear resistance, good finishing and immediate 

polishing capacity, fluoride release and finally enhanced shelf stability (Clinical
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Research Association, News Letter, 1995). This material is water resistant 

compared to other glass ionomer materials and does not require any protective 

cover immediately after it is set. It has a primer/adhesive component which 

reduces the time required for restoration of teeth in children.

Compomers have also some fluoride releasing capacity, in high levels which 

helps protect both the immediate and surrounding tooth structure from carious 

attack (Swartz, Phillips and Clark, 1984; Skartveit et ai, 1990). The maximum 

level of fluoride release after the placement of restoration in the prepared 

cavity, has been reported as being mainly during the first day of its placement 

(El Mallakh and Sarkar, 1990; Creanor et ai, 1994) but this process may 

continue for about 2 months (Cooley and McCourt, 1991) and even until one 

year after restoration was placed (Swartz Phillips and Clark, 1984; Hatibovic- 

Kofman and Kock, 1991). However, no significant difference has been reported 

between the level of fluoride release from light activated and conventional 

chemically activated materials (Momio and McCabe, 1993).

Limitations of compomers can be listed as: a. Limited stress tolerance, only 

suitable for non-stress bearing areas, b. Instability of prime/bond component 

during application, c. Unknown long-term prognosis, only studied for maximum 

of two years, d. limited range of colour. Overall, the limitations of this material 

can be ignored in certain cases, including restoration of primary teeth in 

uncooperative young patients where an easy and quick technique of restoration 

is required.
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5.4 Choice of material:

Glass ionomer base restorative materials including the latest generation, 

compomers, have been demonstrated to be effective as an alternative to 

conventional amalgam and composite resin bonding systems particularly for 

restoring carious primary teeth (Croll, 1993; Peters, Roeters, and 

Frankenmolen, 1995). To select any material it is essential to assure the 

physicochemical properties of the material including its shrinkage and 

expansion potential causing microleakage. It has been demonstrated that poor 

adaptation of the restoration to the margins of the prepared cavity leads to a 

gap between the wall of the cavity and the body of the restoration. This defect, 

known as microleakage, allows the bacteria to ingress and subsequently 

activate a demineralisation process of dental structure, considered as a major 

factor in the failure of restorations (Kidd, 1976).

5.5 Common causes and the prevalence of the failure of restorations:

One in every three existing restorations has been reported to meet the criteria 

of failure. This high prevalence indicates that every individual restoration can 

be considered as a possible failure within a few years of restoration placement 

(Elderton, 1976a). Several factors have been described as being responsible 

for these failures and the long-term prognosis of restorations, including:

1. Cavity design (Healey and Philip, 1949; Elderton, 1975; Elderton, 1976b)

2. Properties of the restorative materials (Elderton, 1975)

3. Faulty restorative techniques (over/underfilled) (Gilmor and Sheiham, 1971)

4. Residual/recurrent caries (Allan, 1969)
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5. Traumatic occlusion (Healey and Philip, 1949)

Scientists and manufacturers have been attempting to improve the quality of 

restorative materials by changing the properties of the materials as well as 

improving the prepared surface by altering the cavity preparation technique. As 

the method of cavity preparation and its effect on the property of the restoration 

was of interest of this study, it will be discussed in further detail in the following 

sections.

5.5.1 Effect of the method of cavity preparation on the marginal 

adaptation of restoration:

Different cavity preparation techniques have been reported to produce different 

features on the prepared enamel or dentine surfaces. For example, rotary 

instruments cut thoroughly even sound enamel and dentine and leave a rough, 

uneven surface with undercuts (Boyer and Svare, 1981). A smear layer forms 

immediately after the completion of the cavity preparation procedure as a result 

of the cutting action of the bur on dentine, regardless of the type of material, 

carbide or diamond (Boyer and Svare, 1981). Cutting dentine with different 

rotary instruments produces generalised blockage of the dentinal tubules with 

debris, which in turn considerably reduces the permeability of the dentine 

(Boyer and Svare, 1981). Removal of carious tissues using hand excavators 

leads to the formation of a smear layer as in the case of rotary instruments 

(Gwinett, 1984).
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5.5.2. The smear layer and its role on a restoration’s failure:

The smear layer is believed to be responsible for excluding bacteria from 

dentinal tubules by occluding the surface and reducing the surface area 

available for the diffusion of micro-organisms (Vojinovic, Nyborg and 

Brannstrom, 1973; Pashley and Livingston, 1978). As it has been suggested 

that the smear layer hinders the achievement of optimum dentine bonding, the 

current bonding agents are designed to either modify, remove or partially 

remove and modify the smear layer.

In comparison, laser irradiation of carious dentine produces different features 

on the surface of prepared dentine, including resolidification of melted tissue 

with the absence of such a smear layer as in the case of conventional drilling. 

However, occasional pieces of debris from carbonisation of the irradiated tissue 

may be seen in temperatures higher than the safe limit (Koort and Frentzen, 

1995). Laser irradiation causes melting of the surface by producing excessive 

heat, followed by a resolidification process. The organic material of the smear 

layer, irradiated by C02 laser radiation, has been reported to have been 

vaporised with fusion of the mineral components, and therefore improving the 

cohesive strength (Pashley et ai, 1992). Earlier studies had indicated that the 

shear bond strength of composite to dentinal surface treated with a C02 laser 

radiation had significant improvements compared to the bond strength of non- 

lased areas of dentine (Cooper etal., 1988; Featherstone and Nelson, 1987).
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It is concluded, therefore, that the laser prepared surface could have a potential 

advantage to the conventionally prepared surfaces by providing more suited 

surface characteristics for bonding to adhesive restorative materials, including 

glass ionomer group.

5.6 Current methods of assessing restorations:

To ensure achievement of maximum properties of restorations, any newly 

introduced material should be approved through a series of tests prior to its 

clinical use. In general, several tests have been suggested for assessment of 

the properties of restorations, including: 1. Bond strength to dental hard tissue 

(Aboush and Jenkins, 1986; Scott, Strang and Saunders, 1992), 2. Wear 

resistance (Lutz et ai, 1984), 3. Compressive and tensile strength (Harrison 

and Draught, 1976), 4. Marginal adaptability and integrity (Chan and Glen- 

Jones, 1994). In addition to the assessment of microleakage level on restored 

teeth, a complementary assessment technique has also been carried out by 

means of measuring the gap sizes at the margins of restorations as an 

indication of microleakage and restoration failure (Reid et ai, 1994). As cavity 

preparation technique could only influence the level of adaptation at the 

tooth/restoration interface, measurements were carried out of microleakage and 

gap size, in this experiment.

Several laboratory methods have been introduced to investigate the presence 

and the extent of microleakage at the interface between the tooth and the 

restoration, including: 1. Dyes and radioactive isotopes (Grossman, 1939;
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Going, Massler and Dute, 1960), 2. Air pressure (Harper, 1912), 3. Bacteria 

(Fraser, 1929), 4. Neutron activation analysis (Going, Myers and Prussin, 

1968), 5. Artificial caries (Ellis and Brown, 1967), and finally 6. Scanning 

electron microscopy (Boyde and Knight, 1969).

Thermal cycling has been suggested, in conjunction with the use of the dye, to 

simulate conditions within the oral cavity, during the in vitro experiments 

(Nelsen, Wolcott and Paffenbarger, 1952; Saunders, Strang and Ahmed, 1991; 

Crim, Swartz and Phillips, 1985, Wendt, Mclnnes and Dickinson, 1992). In 

recent years thermal cycling has been used routinely as an essential part of 

microleakage studies. It is suggested that the thermocycling machine, by 

producing a series of thermal shocks, as occurs in the mouth (Michailesco etai., 

1995), produces such alterations, at the tooth/restoration interface, detectable 

by the dye penetration depth (Crim, Swartz and Phillips, 1985).

In this experiment, restorations of laser- and drill-prepared cavities were 

evaluated by means of their microleakage level, using a disclosing dye 

following thermocycling. This enabled the evaluation of the potential quality of 

laser prepared cavity surfaces for bonding to the adhesive restorative material 

used, i.e. Dyract®. In addition, a further microscopic investigation for the 

presence of a gap at the margins of restorations was performed by means of 

measuring the size of the gaps before and after thermocycling.
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5.7 Aims and objectives:

The suitability of laser cavity preparation for a higher adhesive strength of 

restorative materials was tested by means of:

1. Assessing the level of microleakage on both primary and permanent teeth.

2. Comparing the level of microleakage between laser- and drill-prepared 

cavities.

3. Assessing the gap size at the tooth/restoration interface for both primary and 

permanent teeth.

4. Assessing the gap size at the tooth/restoration interface of laser- and drill- 

prepared cavities.

5.8 Methods and Materials:

5.8.1 Introduction:

Restorations of laser- and drill-prepared cavities were assessed in this 

experiment by means of investigating the presence and size of the gaps at the 

restoration margins, in addition to the assessment of the level of microleakage 

around the restorations.

5.8.2 Tooth selection and preparation:

40 primary and 40 permanent human extracted teeth were stored in 0.12% 

thymol before and after caries removal procedure. Teeth with medium size 

occlusal cavities, based on the clinical scorings detailed in Section 2.2.1, were 

selected for this experiment. This allowed the elimination of any of other factors



than cavity preparation technique which could influence the restoration’s 

behaviour during the experiment.

5.8.3 Caries removal protocol:

Carious tissue was removed in test teeth using the pulsed Nd:YAG laser as 

detailed in Section 2.2.2. Control teeth were treated using a conventional slow 

speed handpiece on an air motor (Kavo Dental Ltd, UK) with a new round 

tungsten carbide bur (size 3-5) for each cavity. Caries removal was stopped 

when the cavity was found to be caries-free, using visual and tactile criteria, 

details of the techniques having been described earlier in Section 2.2.4. To 

avoid any disturbance of the prepared surfaces, cavity shape and outline was 

not altered further. In any case, the use of an adhesive restorative material, 

obviated the need for further cavity preparation.

5.8.4 Restoration protocol:

All test and control teeth were restored using a light cured compomer i.e. 

Dyract® (Dentsply, UK). The commercial Dyract® restorative material package, 

used in this experiment, is illustrated in figure 5.1.

Each cavity was thoroughly washed and air-dried using an air/water spray prior 

to restoration. Adhesive/primer was applied to the prepared dentine surface 

and then air-dried for 15 sec. This was followed by a 20 sec light application 

using the Aristolite blue light source (Pluraflex HL 150, Germany). A single 

compomer, shade A2, was used for all restorations to eliminate influences of
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Figure 5.1: The commercial Dyract® restorative material package, used in this 
experiment.



colour and opacity. The restorative material was then inserted into the 

prepared cavities and light cured for 60 sec in a routine manner.

5.8.5 Thermal cycling method:

To simulate the clinical situation in this in vitro study, all restored teeth were 

thermal cycled to apply a series of thermal stress to the restoration as occurs in 

the mouth (Michailesco et ai., 1995), using a thermocycling machine (Figure 

2.8) with the following set up:

1. The temperatures of the baths were set at 4 °C, 37 °C and 55 °C which then 

provided the following series of temperatures: 5 °C, 37 °C, 55 °C, and 37 °C.

2. The number of cycles was set for 350 cycles.

3. The period of time for the specimen to remain in each bath was 10 sec.

5.8.6 Methods used for the assessment of restorations:

Two techniques were employed to assess the tooth/restoration interface: 1. gap 

size measurement, if present, 2. microleakage evaluation by assessing the 

penetration depth of the dye.

5.8.7 Sample preparation for gap size measurement:

The presence of any gap at the tooth/restoration interface was assessed using 

light microscopic assessment of the specimens. As the same teeth should be 

assessed regarding microleakage study, impressions of the restored teeth were 

taken to make resin replicas of each specimen. Impressions were taken in two 

stages, with the initial impression being taken immediately after the restoration
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was set, using a two stage impression technique, employing a polyvinylsiloxane 

impression material (heavy & light body President, Dentsply, UK). A second 

impression was taken following the completion of thermal cycling, to allow the 

measurement of the gap size at the restoration margins, following thermal 

cycling. Impressions were poured with epoxy resin (Epofix, Struers tech, 

Denmark).

The resin replica was prepared from specimens as follows:

Two segment resin liquids were mixed immediately before use and mixed until 

a homogenous texture was achieved. Each impression was filled with the resin 

liquid and left for at least 48 hours to set. Care was taken to avoid any contact 

with the restored surface of the tooth replica, in order to keep the model as 

close to the original specimen as possible. Samples of resin replica were then 

assessed using light and scanning electron microscopy. Figure 5.2 shows 

sample impression from the experimental teeth with its corresponding resin 

replica.

5.8.8 Gap size assessment techniques:

5.8.8.1 Light microscopy:

To enable microscopic assessment of these prepared resin samples, it was 

essential to choose a suitable microscope to provide sufficient light for 

transillumination through the bulk of the resin specimen to produce an accurate 

microscopic image. Each resin replica was positioned on the slide of the 

microscope used (Leitz, Germany), and investigated as usual. A video camera
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Figure 5.2: Illustrates the impression taken from a restored tooth (a) with its 
related resin replica (b) used for the assessment of the gaps at the restoration 
margins.



mounted on the microscope allowed images to be shown in an IBM compatible 

PC (Figure 5.3) using the method described in Section 4.9.5. An Image 

Analysis programme was used for measuring the gap distance. Calibration was 

achieved using a stage micrometer (Leitz, Germany). The imported picture on 

the computer screen was printed using a video graphic printer (EU-850, Sony, 

Japan) samples of which are presented in figures 5.4 (a,b). An estimation as to 

the border of the restoration was considered as the first point of measurement 

at the widest area of the gap. The second point was at the edge of the cavity 

surface, on the cavosurface line, in a butt joint angle. As only the maximum 

gap size was measured, these measurements were recorded only at the 

highest values achieved following repeated measurements.

5.8.8.2 Scanning electron microscopy:

Resin replicas were first mounted on Aluminium stubs (Agar Scientific Ltd) 

using a conductive carbon cement (Leit C, TAAB Laboratories Equipment Ltd.) 

and coated with a thin layer of gold using a sputter coating machine (Polaron E 

5000). Details of the coating procedure are given in Section 2.6.4. Specimens 

were then examined using the scanner (Jeol T 300 SEM) to estimate the gap 

size at the restoration margins of replicas from before and after thermocycling. 

Figures 5.5 (a, b) and 5.6 (a,b) demonstrate sample SEM views of the existing 

gap on the specimens before and after thermocycling, in both experimental and 

control groups. The anatomical landmarks of the crown were used to re­

establish the location of the gap.
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Figure 5.3: Computer measurement set up for assessing the gap size.



Figure 5.4: A sample print of the restoration margin of the specimen provided 
by the PC printer a. before and b. after thermocycling (Arrow points to the 
existing gap, R= Restoration, T= Tooth).



5.8.9 Sample preparation for microleakage assessment:

To prevent the dye penetration from any routes other than the restoration 

margins, which was left uncovered, all specimens were sealed using two layers 

of nail varnish (Diamond Hard, 829, Maxfactor International, UK). The apical 

foramen, which is a wide path to the pulp chamber, was initially sealed with a 

layer of Cyanoacrylate adhesive prior to the application of nail varnish. The 

varnish was applied to the whole tooth surface leaving 2 mm around the 

restoration margins (Figure 5.7).

5.8.9.1 Dye application:

In order to allow the dye solution to travel through the potential gap existing 

between the restoration and the wall of the cavity, if any, teeth were immersed 

in 2% aqueous solution of buffered Methylene Blue for a period of 15 hours. 

Specimens were washed thoroughly under running water, for 5 min, to remove 

excess dye. Teeth were now ready for sectioning.

5.8.9.2 Teeth dissection:

A diamond disk on a laboratory microtome (Agar Scientific Ltd, UK) (Figure 5.8) 

was used to cut through the restored tooth. Only one longitudinal cut was 

made on each tooth, with the cutting line being located as near as possible to 

the centre of the restoration. Figure 5.7 demonstrates the cutting line through 

the centre of the restoration.
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Figure 5.5: Photomicrograph of the existing gap on the margin of a restoration: 
a. before (Mag. x500) and b. after thermocycling (Mag. x22) (SEM), sample 
from laser treated group (Arrow points to the existing gap, R= Restoration, T= 
Tooth).



Figure 5.6: Photomicrograph of the existing gap on the margin of a restoration: 
a. before (Mag. x22) and b. after thermocycling (Mag. x22) (SEM), sample from 
drill treated group (Arrow points to the existing gap, R= Restoration, T= Tooth).

L
'J



Figure 5.7: Demonstrates the cutting line through the centre of the restoration.

Figure 5.8: The microtome with diamond saw used for dissecting the restored 
teeth for the assessment of the dye penetration depth (microleakage level) 
around the restorations.



5.8.9.3 Assessing the penetration depth of the dye:

Sectioned teeth were assessed using a light microscope (Zeiss, Germany) with 

10 and 20 times magnifications. The degree of dye penetration was scored 

based on the following criteria (Saunders Strang and Ahmed, 1991):

0 = No leakage

1 = Dye penetration up to half way along the wall of the cavity

2 = Dye penetration to full depth of the wall of cavity

3 = Dye penetration on pulpal floor

4 = Extensive dye penetration towards pulp

Different scores of microleakage of restorations are illustrated in figures 5.9 

(a,b,c,d,e).

5.8.10 Statistical analysis :

A two sample t-test was carried out to assess the differences of the gap size 

before and after thermocycling. Mann-Whitney tests were carried out to 

compare the level of microleakage in primary and permanent teeth of both 

laser- and drill-treated groups.

5.9 Results:

Findings of measurements on the gap size changes, in addition to the levels of 

microleakage following thermocycling are described below:
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Figure 5.9a: Score 0 of microleakage around the restoration (right side of the 
restoration) (see text for details).

Figure 5.9b: Score 1 of microleakage around the restoration (right side of the 
restoration) (see text for details).



Figure 5.9c: Score 2 of microleakage around the restoration (left side of the 
restoration) (see text for details).

Figure 5.9d: Score 3 of microleakage around the restoration (both sides) (see 
text for details).



Figure 5.9e: Score 4 of microleakage around the restoration (see text for 
details).



5.9.1 The effect of thermocycling on the gap size:

The mean maximum gap size before and after thermocycling for both primary 

and permanent teeth are presented in table 5.1, in addition to the differences 

from before and after thermocycling. The changes of mean maximum gap size 

(A) were calculated from data achieved for each sample before and after 

thermocycling. The measured gap sizes showed a wide range between groups 

and even within each group. The mean maximum gap size of the restorations of 

laser and drill prepared cavities (Table 5.2) were 90.3 ± 45.3 pm and 62.2 ±

56.3 pm, respectively, prior to the thermocycling. These values were 75.8 ±

28.1 pm and 78.9 ± 56.2 pm after thermocycling, indicating a reduction in gap 

sizes of restoration in the laser-treated teeth while these values showed an 

apparent increase in the conventionally treated teeth. However, statistically no 

significant difference was found between the gap sizes of restorations of laser 

and drill prepared cavities following thermocycling (Table 5.3).

5.9.1.1 Differences of the gap size on restored teeth treated by laser or 

drill:

Comparing the results of the gap size measurements in the two groups of laser- 

and drill-treated teeth (Table 5.2) revealed that restorations in the laser-treated 

group had a higher score of gap size compared to that of the control group, 

both in primary and permanent teeth. However, this difference was more 

marked in primary teeth than in permanent teeth. The mean maximum gap 

sizes measured on samples before and after thermocycling, presented in tables
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Table 5.1: The mean maximum gap size at the restoration margins, before and 
after thermocycling, for different treatment methods, both in primary and 
permanent teeth with the differences from before to after thermocycling.

caries removal type of No. of mean MGS mean MGS A (p)
method teeth teeth before Tc. (p) after Tc. (p)
Laser primary 5 80 ±41 91 ±32 11 ±13

permanent 5 75 ±79 100 ±74 -40 ±42
Drill primary 5 100 ±52 60 ± 14 26 ±60

permanent 5 49 ±22 57 ±22 8 ±33
MGS= maximum gap size 
Tc. = thermocycling 
A= Differences in means



Table 5.2: The mean maximum gap size of the tooth/restoration margins for 
different treatment methods, both before and after thermocycling (p value from 
two sample t-test).

Measurement point Caries Removal 
Method

No. of 
teeth

Mean MGS 
00,SD

P DF

Before Thermocycling Laser 10 90.3 ±45.3 0.24 17
Drill 10 62.2 ±56.3

After Thermocycling Laser 10 75.8 ±28.1 0.88 13
Drill 10 78.9 ±56.2

M3S= maximum gap size 
Tc. = thermocycling 
D"= Degree of Freedom

Table 5.3: The mean maximum gap size of the tooth/restoration margins for 
two treatment methods, both before and after thermocycling (p value from two 
sample t-test).

Caries Removal 
Method

Measurement point No. of 
teeth

Mean MGS 
04 SD

P DF

Laser Before Thermocycling 10 90.3 ± 45.3 0.40 15
After Thermocycling 10 75.8 ±28.1

Drill Before Thermocycling 10 62.2 ±56.3 0.52 17
After Thermocycling 10 78.9 ±56.2

M3S= maximum gap size 
SD = Standard Deviation 
Dr= Degree of Freedom



5.4 and 5.5, were found to have no significant difference between primary and 

permanent teeth treated by either laser or drill.

Results of two sample t-tests on the overall gap size values measured before 

and after the thermocycling showed no significant difference in any of the two 

control and test groups (p= 0.40 and p= 0.52, respectively) (Table 5.3). The 

same test was carried out on the effect of treatment method and the type of 

teeth on gap size. Results showed no significant differences (p= 0.24) 

between the gap size of restorations of laser and drill prepared cavities, prior to 

the thermocycling, with larger mean maximum gap size recorded in the laser 

group (Table 5.2).

5.9.1.2 Differences in the existing gap sizes in restorations between 

primary and permanent teeth:

The mean maximum gap size of restorations of primary and permanent teeth, 

before thermocycling, were 78 ± 59 pm and 75 ± 46 pm, respectively (Table 

5.6). These values were increased to 83 ± 57 pm in primary teeth while 

decreased to 54 ± 18 pm, in permanent teeth (Table 5.6). Two sample t-tests 

showed no significant differences between the two groups of primary and 

permanent teeth, both before and after thermocycling (p= 0.90 and p= 0.17, 

respectively) (Table 5.6). These results indicate that perhaps both primary and 

permanent teeth, with similar histochemical structures, have a similar level of 

adhesion and adaptation properties to the restoration used in this study.
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Table 5.4: The mean maximum gap size at the restoration margins for laser 
and drill treated teeth with the p value of the differences between the MGS 
before thermocycling, in primary and permanent teeth (p value from two sample 
t-test).

caries removal 
method

type of teeth No. of teeth mean MGS 
beforeTc. (p)

P DF

Laser primary 5 80 ±41 0.52 7
permanent 5 75 + 79

Drill primary 5 100 ±52 0.52 4
permanent 5 49 ±22

MGS= maximum gap size 
Tc. = thermocycling 
DF= Degree of Freedom

Table 5.5: The mean maximum gap size at the restoration margins for laser 
and drill treated teeth with the differences between the MGS, measured after 
thermocycling, in primary and permanent teeth (p value from two sample t-test).

caries removal 
method

type of teeth No. of teeth mean MGS 
after Tc. (p)

P DF

Laser primary 5 91 ±32 0.10 5
permanent 5 100 ±74

Drill primary 5 60 ± 14 0.28 5
permanent 5 57 ±22

MGS= maximum gap size 
Tc. = thermocycling 
DF= Degree of Freedom



Table 5.6: The mean maximum gap size of the tooth/restoration margins for 
tvo groups of primary and permanent teeth, both before and after 
thermocycling (p value from two sample t-test).

measurement point teeth type No. of teeth Mean MGS (p) P DF
Before Thermocycling primary 10 77.7 ± 59.4 0.90 16

permanent 10 74.8 ±46.1
After Thermocycling primary 10 83.1 ±57.3 0.17 10

permanent 10 54.9 ± 18.4
M3S= maximum gap size 
T(. = thermocycling 
Dr= Degree of Freedom
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Figure 5.10: The differences of maximum gap size measured before 
and after the thermocycling are presented for restorations of laser 
treated teeth.
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Figure 5.11: The differences of maximum gap size measured before 
and after the thermocycling are presented for restorations of drill 
treated teeth.



5.9.1.3 Differences in the gap sizes before and after thermocycling:

Comparison between the gap sizes measured before and after thermocycling 

revealed that there was an overall tendency of reduction in the size of the gap 

of the restorations in laser treated group (Table 5.3). However, this difference 

was tested for its statistical significance using a two sample t-test, the results of 

which indicated that there was no significant differences between the changes 

in gap size of restorations before and after thermocycling in two groups of 

differently prepared cavities (p= 0.40 in laser group and p= 0.52 in drill group) 

(Table 5.3). Figures 5.10 and 5.11 show the individual values of the gap sizes 

following thermocycling, in the form of histograms.

5.9.2 Findings of microleakage assessments:

The level of microleakage was found to be generally higher in the case of drill- 

treated primary teeth than those treated with the laser. While these results 

were contrary to those found in permanent teeth with the laser-treated teeth 

showing higher microleakage of restorations (Table 5.7). Details of the 

comparisons between these groups of differently prepared cavities and the 

differences between primary and permanent teeth, after thermocycling, are 

presented in the following sections:

5.9.2.1 Finding the level of microleakage in differently prepared cavities:

Comparing the results of microleakage in primary teeth between the two groups 

of laser and drill treatment revealed no significant difference (p= 0.933) using a 

Mann-Whitney test. However, in permanent teeth this comparison between the
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Table 5.7: Presents the number of primary and permanent teeth with their 
relevant degree of microleakage in both laser and drill prepared cavities.

type of teeth Treatment method No. teeth 0
Microleakage Score 
1 2 3 4

Primary Laser 20 4 5 9 0 2
Drill 20 4 8 1 3 4

Permanent Laser 20 4 5 1 5 5
Drill 20 6 9 4 0 1



Table 5.8: The differences between the level of microleakage of restorations in 
laser and drill treated teeth were tested in individual groups of primary and 
permanent teeth, using Mann-Whitney test for the degree of microleakage.

type of teeth Treatment No. Mean MLS Median Cl P
method teeth Score, (SD) MLS

Primary Laser 20 1.55 + 1.15 2.00 -1.00,1.00 0.933
Drill 20 1.75 ± 1.48 1.00

Permanent Laser 20 2.10 + 1.55 2.50 0.00,2.00 0.039
Drill 20 1.05 ±0.99 1.00

MLS= Microleakage Score 
Cl= Confidence Interval

Table 5.9: The differences between the level of microleakage of the 
restorations following laser/drill caries removal (p value from Mann-Whitney 
test).

Treatment method No. of teeth Median MLS Cl P
Laser 40 2.00 0.00,1.00 0.137
Drill 40 1.00

MLS= Microleakage Score 
Cl= Confidence Interval 
Mann-W= Mann-Whitney



two groups of laser and drill was found to be significant (p= 0.0176) using the 

same test (Table 5.8). Permanent teeth showed a lower level of microleakage 

when they were treated conventionally compare to those treated by the laser 

with a reverse result in primary teeth. An overall comparison was carried out 

between the level of microleakage of restorations in laser- and drill-treated 

teeth, the results of which indicated no significant differences between the two 

techniques (Table 5.9). This could perhaps indicate that the laser caries 

removal method might be as efficient as conventional drilling.

5.9.2.2 Comparing the level of microleakage in two groups of primary and 

permanent teeth:

Comparison between the level of microleakage of restorations in primary and 

permanent teeth treated by laser or drill revealed no significant difference 

between primary and permanent teeth treated by drill (p= 0.176) using a Mann- 

Whitney test. The difference was also not significant (p= 0.286) between the 

lased groups of primary and permanent teeth (Table 5.10). Similar results were 

achieved when these differences were tested by a Kruskal-Wallis test (Table 

5.11).

5.10 Discussion:

The use of a microleakage assessment technique, in addition to a microscopic 

evaluation of the margins of restorations for the presence of any gap was 

performed for this part of the study, since this was the most common technique 

for this purpose. Other techniques for assessing restoration properties e.g.
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Table 5.10: The differences between the level of microleakage of restorations 
in primary and permanent teeth, treated by laser or drill are presented with the 
p value from the Mann-Whitney test.

Treatment type of teeth No. Mean MLS Median Cl P
method teeth Score, (SD) MLS
Laser Primary 20 1.55 ±1.15 2.00 -2.00,1.00 0.286

Permanent 20 2.10 ±1.55 2.50
Drill Primary 20 1.75 ±1.48 1.00 0.00,1.00 0.176

Permanent 20 1.05 ±0.99 1.00
MLS= Microleakage Score 
Cl= Confidence Interval

Table 5.11: The differences between the level of microleakage of the 
restorations in primary and permanent teeth following laser/drill caries removal 
using Kruskal Wallis test.

Treatment method type of teeth No. teeth Median MLS P df
Laser Primary 20 2.00 0.280 1

Permanent 20 2.50
Drill Primary 20 1.00 0.172 1

Permanent 20 1.00
MLS= Microleakage Score 
Cl= Confidence Interval 
df= Degree of Freedom



wear and compressive strength, were not within the limit of this experiment. 

The use of thermocycling was decided to be included as it has been supported 

strongly in the literature to be able to simulate closely the environment of the 

mouth (Crim, Swartz and Phillips, 1985). It has been shown that the degree of 

dye penetration does not appear to differ significantly between specimens 

subjected to 100 or 1500 thermal cycles and, therefore, within this range the 

effect would not be different (Crim and Garcia-Godoy, 1987). It was decided, 

therefore, to set the thermocycling machine on 350 cycles which was within the 

recommended range.

The complementary microscopic investigation of the margins of restorations for 

the presence of marginal gap was to identify any technical failure during the 

restoration stage. This was shown by comparing the presence of the gap prior 

to thermocycling, which in certain situations can be the main cause of 

microleakage (Reid et a!., 1994). Bearing in mind that each fast setting 

restorative material including the light cured series, have the problem of 

shrinkage during polymerisation (Donly etal., 1987), it is, therefore, important to 

evaluate the changes in the gap size following thermal shocks similar to those 

within the mouth.

Since Buonocore (1955) first introduced the acid etch technique for enhancing 

the retention of resins, most research has concentrated on formulating a 

material which will give a strong and permanent bond to calcified tissues.
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Dertine, due to its higher water and organic content, provides a more 

problematic bond than enamel. An initial shrinkage occurs as the result of 

polymerisation of resin-containing restorative materials which produces gaps at 

the tooth/restoration interface (Torstonson and Brannstrom, 1988). These gaps 

allow an ingress of micro-organisms, bacterial products, ions, enzymes, a 

process known as microleakage (Kidd, 1976). Elderton (1976a) in a literature 

revisw, reported the result of overall assessment of the existing restorations as 

showing a high prevalence (one third) of unsatisfactory restorations. It is, 

therefore, necessary to improve both the quality of restorative materials and the 

method and quality of cavity preparation to improve bonding. Poor adaptation 

of the restoration to the margins of the prepared cavity leads to a gap between 

the wall of the cavity and the body of the restoration. This defect allows 

baceria to ingress and subsequently activate a demineralisation process (Kidd, 

1973).

Different factors may influence microleakage, including: 1. Cavity design 

(Healey and Philip, 1949; Elderton, 1976b), 2. Properties of the restorative 

materials ( Elderton, 1975 ), 3. Faulty restorative techniques (over/under filled) 

(Gilnor and Sheiham, 1971), 4. Residual/recurrent caries (Allan, 1969), 5. 

Traumatic occlusion (Healey and Philip, 1949).

Basd on the findings of the present investigation, there was no statistically 

sigrificant difference (p= 0.933) between the level of microleakage in the 

groups of laser- and drill-treated primary teeth. However, the difference was
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significant (p= 0.039) between the two groups of laser- and drill-treated 

permanent teeth with laser group showing higher microleakage levels. This 

may suggest that only laser caries removal in primary teeth may be capable of 

producing a similar result to that of the drill. In conventional drilling, results 

demonstrated a varying degree of dye penetration, indicating a difference 

between the structure of dentine and enamel of primary and permanent teeth. 

Comparison of the microleakage result in the laser-treated teeth indicated 

similar surface characteristics with no obvious difference between the two 

groups of primary and permanent teeth.

It is believed that the process of melting causes the dentinal tubules to occlude 

(Stabholz e ta i, 1995; Pashley eta!., 1992) and, therefore, after resolidification 

the resultant surface would not have any undercuts to hold the restoration in 

place. Changes in the dentine surface due to high temperature, causing 

melting of the surface, may also affect the crystalline structure of this surface 

and, therefore, reduce the bonding property of the treated surface (Kantola, 

1973; Cernavine, 1995).

The presence of a microscopic gap was common in both groups of treated 

teeth. The restorations of the laser-treated teeth presented a higher mean 

maximum gap size at their margins compared to those of the conventionally 

prepared teeth. However, this difference was not found to be significant and, 

therefore, it is possible to conclude that the laser technique tested in this 

experiment is capable of producing a prepared surface similar to that of the
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conventional method. No differences were also found between the two groups 

of primary and permanent teeth, indicating that perhaps with a similar material 

and similar tooth structure, cavity preparation technique, as the only difference, 

did not have a significant influence on the presence and change of gap size 

following thermocycling. However, comparing the individual groups showed 

that gap sizes were reduced after thermocycling in laser-treated teeth while 

these values were increased in conventionally treated teeth. It is not quite clear 

why the thermocycling process produced these different effects on the two 

groups. Further investigations with larger number of samples are required to 

clarify the differences and reasons for these differences.

5.11 Conclusion:

The following conclusions can be made from the results of this study:

1. There were no significant differences in the gap sizes of restoration margins 

between primary and permanent teeth following either laser/drill cavity 

preparation.

2. Microscopic gaps were present around the restorations of both laser- and 

drill-treated teeth, with no significant differences between the mean 

maximum gap sizes of the two groups.

3. A significant difference was observed between the level of microleakage of 

restorations in permanent teeth following laser/drill treatment with higher 

microleakage evident in lased teeth.
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4. No significant differences were found between the level of microleakage in 

restorations in primary teeth following laser/drill treatment with slightly higher 

microleakage in drilled teeth.
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CHAPTER VI

CLINICAL TRIAL: LASER EFFECT ON 
PATIENT’S ANXIETY AND THE DENTAL

PULP



CHAPTER 6: Clinical applicability of the laser for removing dental

caries in anxious children.

6.1 Introduction

Treatment of dental caries has always been one of the major concerns for 

patients attending dental practices. Dental fear can appear both in childhood 

ard adulthood. Uncertainty and stress prior to the dental appointment will 

attomatically influence the patient’s attendance and behaviour during the 

ccurse of treatment. In paediatric dentistry, a child’s first impression is very 

irrportant, as this can build up and establish a good relationship between 

patient, dentist and even parents which will then provide an adequate level of 

cc-operation (Kent and Blinkhorn, 1992). It is well acknowledged that 

unpleasant experiences from past dental treatment, particularly the painful 

application of rotary instrument, affects directly the future behaviour of the 

ycung patient, which may result in avoidance of further treatment. In this 

Chapter, the clinical applicability of an Nd:YAG laser radiation will be discussed 

as an alternative method of caries removal. Patients’ acceptance level of this 

te:hnique is tested in a young population in addition to its long-term effects on 

the pulp status of irradiated and control primary teeth.

62 Importance of restoration in primary teeth:

Tiere are several reasons why primary teeth should be preserved until their 

natural physiologic exfoliation, including: the physiological growth of the jaws, 

pevention and pain relief, chewing function, preventing malocclusion,
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aesthetic, phonetic, and finally the child’s emotional stability. To avoid these 

clinical complications, primary teeth should be treated and maintained until their 

natural physiological exfoliation. Treatment becomes much easier to deal with 

if the carious defect is treated at an early stage which will save both time and 

material, as well as preventing pulpal involvement. The problem of speech 

defects caused by early loss of primary incisors has been described as 

temporary which will be restored spontaneously by eruption of permanent teeth 

(Curzon, Roberts and Kennedy, 1996). It is very important to avoid 

unnecessary extraction of primary teeth as early extraction can cause space 

loss and, therefore, crowding due to disruption in the normal eruption process 

(MacDonald, Henon and Avery, 1987). It can, therefore, be concluded that 

restoration of carious primary teeth is essential as primary teeth facilitate 

normal eruption of the permanent dentition.

6.3 Prevention and pain relief:

Amongst the reasons discussed earlier in Section 6.2, prevention and pain 

relief are considered to be the most important issues in the treatment of dental 

caries in children. Prevention of dental caries is a cost effective, easy, and 

commonly applicable approach to children which removes the need for 

providing active treatment services. Negligence of receiving prevention and 

lack of treatment due to the fear of the dental environment may result in 

progression and extension of caries to the pulp causing pulpal pathology and 

pain. Lack of sleep and distress, caused by a painful tooth, may influence a 

patient’s behaviour and, therefore, makes any further treatment difficult. It is
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clear, therefore, that if pain can be relieved without any additional distress, it will 

result in the patient’s future co-operation for dental treatment.

6.4 Dental anxiety:

Terms like anxiety, apprehension, fear and panic all indicate uncertainty and 

uneasiness of a forthcoming event (Sinclair et a/., 1994). A “phobia” is an 

excessive fear, which can be described as an unreasonable or an irritational 

fear of a subject or a place i.e. the dental surgery. Fear is an emotion and 

normal response which is derived from the Middle English word “Faer”, 

meaning sudden danger (Kroeger, 1987). It seems, therefore, that “dental 

phobics” are those who refuse/ or hardly accept any dental visit, while “anxious” 

and “apprehensive” patients are those who eventually accept treatment, but are 

in stressful condition (Friis-Hasche and Hutchings, 1990).

Anxiety towards dental treatment is commonly expressed by most patients 

attending the dental surgery. About 10-12 million Americans have been 

reported to be dental phobic with an additional 35 million of the population 

suffering from excessive anxiety during the course of dental treatment (Ayre et 

al, 1983). These figures indicate the considerable magnitude of the problem in 

providing dental care.

Different levels of anxiety are seen in patients, even with varying degrees on 

different occasions. Young patients are more easily frightened, due to their 

uncertainty and lack of experience of dental treatment. Painful dental treatment
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is one of the most common reasons why a child will refuse further treatment 

(Curzon, Roberts and Kennedy, 1996). Fear of dental treatment may occur in 

children following the reaction of another child who is receiving treatment. 

Mismanagement by the dentist has been described as the most common 

reason for fear of dental treatment, and it is believed that most of the 

behavioural problems in children can be managed by proper personal 

interactions (Ayre et al., 1983). Highly anxious mothers can have a negative 

influence on their child’s behaviour in the dental practice (Johnson and Baldwin, 

1969; Wright, Alpern and Leake, 1973).

It is important to overcome the patient’s anxiety and fear before treatment can 

be carried out. This is where the treatment of anxious patients becomes 

highlighted. In this respect, the origin and the nature of the fear, including 

childhood and adulthood anxiety, should be differentiated, as they may respond 

differently to varying techniques of anxiety control employed by the dentist, 

simply due to the level of their understanding.

6.4.1 Dental anxiety in children:

Dental phobia is more predominant in youngsters and seems to be the starting 

point for adulthood fear of dentistry, which in about 85% of cases follows a 

traumatic experience (Ayre et al., 1983). In young children, the dental 

personnel are considered as the most important factor in establishing fear, 

whereas in older age groups, pain is described as the most important factor 

(Berggren and Meynert, 1984). Kleinknecht, Klepac and Alexander (1973)
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have reported that the sight of the anaesthetic needle and the sight, sound, and 

sensation of the drill are the main factors causing an increase in fear in a dental 

practice, with females rated more fearful than males. Todd and Walker (1980) 

reported that 43% of patients do not attend the dentist unless they were 

experiencing dental pain.

6.4.2 Current scoring systems for assessing dental anxiety:

In order to accurately deal with the anxiety of individuals, it is important to 

diagnose the aetiology of the fear with some kind of estimation as to the level of 

anxiety, which will, therefore, lead to the most appropriate method of 

behavioural management. Several anxiety assessment techniques have been 

suggested prior to and during the course of dental treatment. These methods 

involve either the operators judgement of the level of patient’s anxiety at the 

dental visit (Frankl, Shiere and Fogel, 1962; Melamed et al., 1975), or a 

patient’s self assessment by expressing their feeling using pictorial charts 

(Venham, 1979), and answering questions provided on those occasions which 

were thought to be fearful moments and subjects, in older patients (Gale, 1972; 

Corah, 1969; Klenknecht, Klepac and Alexander, 1973). In addition, parents of 

the child may be asked to judge their child’s attitudes and behaviour before or 

during dental treatment (Klingberg et al., 1995).

6.4.3 Current techniques for management of anxious patients:

Psychologists have developed several different techniques, to overcome 

management problems in the dental practice. These techniques are described
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as behaviour modification techniques, which is achieved by using the principles 

of learning theory (Wright, Starkey and Fardener, 1987). Each of the currently 

used techniques of behaviour management has its own particular indications 

and also certain limitations. Following are some of the most commonly used 

behavioural management techniques in dental practice: 1. behavioural 

modification techniques including: Modelling, tell-show-do, voice control 

(Wright, Starkey and Fardener, 1987), 2. pharmaco-therapeutic techniques 

using barbiturates and relaxants (Ayre et al., 1983), and 3. hypnosis 

(Lampshire, 1975).

If desensitisation therapy is practised by trained therapists, it can dramatically 

help fearful individuals to receive adequate dental treatment (Gale and Ayre, 

1969). In addition, development of new drugs, such as intravenous 

benzodiazepines, and behavioural techniques have enlarged and improved the 

choice for dentists (Ayre et al., 1983). These anxiety-reducing and sedation 

techniques can be used individually or together to decrease the patient's 

discomfort prior to and during the course of dental treatment (Ayre et al., 1983). 

To avoid problems and risks involved i.e. administration of relaxant drugs, in 

addition to the simplicity of the technique, there remains a need to research and 

develop atraumatic and painless techniques for caries removal.

6.5 Laser treatment of dental caries:

The use of dental lasers as a non mechanical technique for removing caries 

has been advocated as a potentially pain-free technique which can be used in
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the absence of local anaesthetic (Bassie, Chawla and Patel, 1994), and 

therefore, may be considered as an alternative for treating dental caries in 

patients with a needle phobia. The Nd:YAG laser beam, has been shown 

histologically to be effective enough to remove carious dentine as efficiently as 

conventional drilling (Myers and Myers, 1985a). However, the potential for 

pulpal damage following the production of high temperatures still remains a 

problem (Adrian, 1977).

6.5.1 Laser analgesic effect:

Laser radiation has been advocated to be capable of inducing some degrees of 

analgesia during operative dental treatment, including caries removal (Parkins 

and Miller, 1992). In this respect, the Nd:YAG laser has been suggested to 

induce pulpal analgesia prior to caries removal and thus reduce the need for 

local anaesthetic (Bassie, Chawla and Patel, 1994). However, only a slight 

analgesic effect was reported to be achieved following the application of an 

Nd:YAG laser irradiation of enamel (Whitters et al., 1995). More research is 

required to clarify appropriate laser parameters and the exposure times should 

be selected to achieve the desire level of anaesthesia of the pulp for cavity 

preparation.

6.5.2 Hazards of laser application in clinical dental practice:

Laser radiation is a high intensity light energy which can be damaging to the 

biological tissues, particularly eyes, if viewed directly. Precautionary measures 

should be taken for all people present in the operating room during laser
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irradiation. Properly selected protective glasses, suitable for use with the 

operating laser, should be worn during the whole procedure. It is essential to 

operate the laser in an isolated surgery where enough protective measures can 

be provided. It is also important to apply the laser beam carefully to the target 

area and avoid directing the laser radiation or its reflected radiation from the 

dental mirror or any shinny surface to the surrounding structures, as this can 

cause unexpected tissue damage (Miller and Truhe, 1993). Surprisingly, micro­

organisms are believed to be able to remain viable in laser produced smoke, as 

HIV virus has been found viable within the smoke sample taken immediately 

after production and even after 14 days of culturing (Baggish e ta i, 1991).

6.5.3 Effects of laser radiation on the dental pulp:

Thermal damage of the pulp is considered to be the main complication 

associated with the clinical use of lasers for removing dental caries. This may 

lead to irreversible changes of the pulp tissue. Different lasers act differently 

when they are exposed to the dental hard tissue, due to their varying 

absorption coefficients, and are directly related to the laser wavelength as well 

as the irradiated tissue. The Nd:YAG laser, for example, has been reported to 

penetrate easily through the thickness of enamel and dentine and into the 

dental pulp. Therefore, care should be taken during laser irradiation of a vital 

tooth to avoid damaging the pulp.

Pulp and periodontium can suffer from injuries caused by laser irradiation by 

wavelengths greater than 390 nm due to heat production or even transmission
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and scattering of the laser beam through enamel and dentine (Arcoria and 

Miserendino, 1995; Dederich, 1991). Dilation of pulpal blood vessels, as an 

acute haemolytic response, has been reported due to the production of 

extensive heat during laser irradiation of the teeth (Nyborg and Brannstrom, 

1968).

Miserendino et al. (1994) examined the pulp of laser-irradiated teeth of rhesus 

facicularis and showed that no histological changes had occurred within the 

dental pulp following irradiation of dentine for removal of caries. No significant 

differences have been reported between the histological condition of the pulp in 

laser- or drill-treated teeth during the six month follow up period of the teeth 

(Goodis, Schein and Stauffer, 1988). This may be due to the nature of 

pulpodentinal complex which is dynamic and, therefore, has a potential of heat 

compensation due to the presence of the dentinal fluid and blood circulation. 

The amount of heat conducted to the pulp is considerably reduced due to the 

low conductivity of dentine and also the effect of blood circulation of the pulp by 

absorbing the generated heat (Schuchard and Watkins, 1961). It is suggested 

that necrosis may occur rarely in young teeth due to the low thermal 

conductivity of dentine, in addition to the high pulpal blood supply (Bahcall et 

al., 1993).
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6.6 Aims and Objectives

The aims of this experiment were:

1. To assess patients’ acceptance level of the laser caries removal technique 

compared to the conventional drilling method.

2. To evaluate the long-term laser effect on the pulp of irradiated primary teeth.

3. To assess the parents’ views on the suitability of the technique for their 

children.

4. To assess the bonding capacity of differently prepared cavities and the long 

term prognosis of these restorations in vivo.

6.7 Materials and Methods:

6.7.1 Ethical approval and laser safety considerations:

Ethical approval was obtained from the Area Dental Ethics Committee at 

Glasgow Dental Hospital and School NHS Trust for clinical application of the 

Nd:YAG laser for caries removal in primary teeth (Appendix E). Local safety 

rules were observed during the whole procedure of laser application as detailed 

in Appendix A. In addition, all parents were asked to sign an informed consent 

form supplied with the information sheet, prior to the treatment (Appendix F).

6.7.2 Patient selection and assessment

Fifty patients age ranged between 3 to 13 years, 22 males and 28 females, 

were selected over a six month period with varying degrees of anxiety. Table

6.1 demonstrates the distribution of patients in each sex group with their mean 

age. Patients were referred either by their General Dental Practitioner or from
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Table 6.1: Distribution of the patients sex and their mean age value are shown 
in addition to the rate of the caries in each sex group.

sex No. of Patients mean age (yrs) mean dmfs
Male 22 5.43 + 1.7 12.05 ±5.19

Female 28 7.14 ±2.6 11.39 ±6.43

Table 6.2: Percentage of patients with different degrees of anxiety before and 
after the treatment using laser or drill caries removal (Scores 1 to 4 from highly 
anxious to highly co-operative, details of each are described in section 6.10.1).

Anxiety Scores 1 2 3 4
Laser before treatment 

after treatment
12 (24%) 
1 (2%)

31 (62%) 
12 (25%)

7 (14%) 
27 (56%)

0
8(17%)

Drill before treatment 
after treatment

10(21%) 
4 (8%)

32 (67%) 
24 (50%)

5(10%) 
18 (38%)

1 (2%) 
2 (4%)



the Accident and Emergency Department at Glasgow Dental Hospital and 

School NHS Trust, for treatment of dental caries. Patients were mainly referred 

because of their anxiety towards dental treatment and/or lack of co-operation. 

Treatment of each patient was started with either the laser or drill caries 

removal techniques in an alternating sequence. Patients with at least two 

freshly carious primary teeth were selected for this trial. Either two or four teeth 

in each patient were selected, where available, with only the first two being 

used for the anxiety assessment, while all treated teeth were used for long term 

pulpal assessment and the survival rate of restorations. Epidemiological caries 

assessment of individual patients was performed using the dmfs scoring system 

(Table 6.1). In addition, the patient’s anxiety assessment before and after the 

two treatment methods was recorded (Table 6.2) based on the details 

described below:

- Anxiety Assessment:

Patient’s anxiety was assessed in two stages: 1. Prior to the treatment as the 

baseline for anxiety level, 2. Immediately after the completion of treatment to 

assess the effect of treatment method on the level of anxiety. A combination of 

patient, parent and operator’s assessment methods of anxiety was employed in 

the present trial, the results of which are presented in tables 6.2 and 6.3. The 

results of the three anxiety assessment techniques are also presented in 

figures 6.1, 6.2 and 6.3. In this respect, patient’s anxiety scoring was carried 

out by the operator (GA) using four point scoring system of anxiety, introduced 

by Frankl, Shiere and Fogel (1962), as detailed overleaf:
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Table 6.3: Changes of the anxiety of patients towards the treatment based on 
the patient’s self assessment using the modified pictorial chart (see Appendix B 
for details).

1 2 3 4 5 6 7 8
Patient’s 

Anxiety Score
2

(5%)
18

(41%)
3

(7%)
18

(41%)
1 0

(2%)
1

(2%)
1

(2%)
Scores 1 to 4 = reduced anxiety, 
Scores 5 to 8 = increased anxiety.

Table 6.4: Number of patients with complaint during laser and drill caries 
removal.

YES NO
Complaint during treatment Laser 27 (56.25%) 21 (43.75%)

Drill 30 (62.50%) 18 (37.50%)



Number of Patients

mDefinitly negative 
^Slightly negative 
^Slightly positive 
IS Definitely positive

A nxie ty  b e fo re  la se r  A nx ie ty  afte r  la s e r  tr e a tm e n t A nx ie ty  b e fo re  drilling  A nxie ty  a fte r  drilling

Figure 6.1: Anxiety score of patients before and after treatment 
using laser or conventional drilling are demonstrated in the 
form of histograms.

Q N o  improvement 
S  Little improvement
■  improved a lot
■  increased anxiety

23%

23%

Figure 6.2: Pie chart shows the number of children with different 
levels of improvement in anxiety stated by parents.



1 = H igh ly  a n x io u s  : H ig h ly  im p ro v e d

2 = M o d e r a n x io u s  : H ig h ly  im p ro v e d

3 = S lig h tly  a n x io u s  : M o d e ra te ly  im p ro ved

4  = A n x io u s  : H ig h ly  im p ro v e d

5 = A n x io u s  : S lig h tly  im p ro v e d

6 = A n x io u s  : M o d e ra te ly  im p ro v e d

7 = A n x io u s  : H ig h ly  a n x io u s

8 = A n x io u s  : H ig h ly  a n x io u s

U 1 
m2  

HD 3 

B4  
□  5 

■ 6 
mi  
0 8

Figure 6.3: The distribution of patients with different anxiety 
scores.



1= Definitely negative: Refusal of treatment, over resistance, extreme fear, 

forceful crying, and massive withdrawal with isolation or both.

2= Slightly negative: Minor negativism or resistance and minimal to moderate 

reserved fear, nervousness or crying.

3= Slightly positive: Cautious acceptance of treatment, but with some 

reluctance, questions or delaying tactics, moderate willingness to comply 

with dentist.

4= Definitely positive: Good rapport with operator, no sign of fear, interested in 

procedures and appropriate verbal contact.

In addition to this objective assessment method, a complementary self 

assessment method was employed using a pictorial chart (Appendix B). This 

was performed, following the completion of the treatment, by asking the child to 

pick the most representative pair of pictures for his/her feeling towards the laser 

treatment. This modified pictorial assessment chart includes both the child’s 

feeling before and after the treatment, results of which are shown in table 6.3. 

Parents were also asked about their impression of the laser technique for 

removing dental caries and its effect on their child’s reaction towards the 

treatment, using a questionnaire (Appendix C). Patient’s reaction during the 

cavity preparation procedure was finally recorded during treatment to enable 

the comparison between the frequency of reactions during laser treatment and 

conventional drilling (Table 6.4). All complaints were recorded including pain, 

smoke, heat, vibration, sound.
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6.7.3 Tooth selection and evaluation:

Carious primary teeth were selected for this study, including both anterior and 

posterior teeth with all classes of cavities (Table 6.5). Teeth with relatively the 

same size cavities were selected, as judged clinically and radiographically, 

based on the scoring system described in Section 2.2.1 (Table 6.5). This was 

followed by pulpal assessment using thermal and electrical tests associated 

with a radiographic assessment of the periapical area. Assessment of pulpal 

status was carried out using: 1. Ethyl chloride (Syntex pharmaceutical Ltd, 

England), 2. Electric Pulp Tester (Analytic technology, USA), 3. Clinical 

examination of soft and hard tissue for any abnormalities, including abscesses. 

The level of pulpal response was recorded before and immediately after the 

treatment in addition to three follow up assessment stages of 1, 6 and 12 

months. The clinical examination was carried out based on palpation, 

percussion, assessment of gingival texture and colour of the surrounding area. 

An initial radiographic evaluation of the periapical region and surrounding 

tissues was also performed to confirm the suitability of samples for this 

investigation.

As primary teeth have a phase of physiological root resorption which may 

influence the pulp response, attempts were made to choose only teeth with no 

or minimum root resorption. A maximum of less than two third of the original 

radiographic root length was considered as the limit to include the tooth for the 

trial, as this would also enable the proposed 24 month follow-up assessment.
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Table 6.5: The distribution of different primary teeth, included in this study, 
class of the cavities (Black’s classification), cavity size and the initial 
radiographic score are presented in this table (see section 2.2.1 for scoring 
details).

1 2 3 4 5
Tooth 

Laser Cavity class 
Cavity size 
RG Score

11 (14%) 
12(15%) 
9(11%) 

0

12(15%) 
24 (30%) 
48 (59%) 

3 (5%)

20 (25%) 
25 (31%) 
24 (30%) 
40 (62%)

20 (25%) 
1 (1%)

21 (32%)

17(21%) 
19 (24%)

Tooth 
Drill Cavity class 

Cavity size 
RG Score

13(16%) 
14(17%) 
10(12%) 
1 (2%)

12(15%) 
20 (25%) 
44 (54%) 

5 (8%)

18 (22%) 
24 (30%) 
27 (33%) 
46 (70%)

23 (28%) 
1 (1%)

13 (20%)

15(19%) 
22 (27%)

Type of teeth: RG: radiographic score
1=A, 4=D,
2=B, 5=E
3=C,

Table 6.6: The number of patient’s with a history of dental treatment with the 
radiographic views achieved for radiographic assessment.

1 2 3 4 5
Past Dental History 12 (25%) 19 (40%) 8(17%) 6(13%) 3 (6%)

Radiographic technique 5(10%) 15(31%) 15(31%) 1 (2%) 12 (25%)
Past Dental History 
1= restoration,
2= extraction,
3= none,
4= both,
5= treatment under general anaesthesia

Radiographic view 
1=Periapical 
2= Bitewing
3= Orthopantomograph 
4= Lateral Oblique 
5= None



Teeth with history of pulpal pathology or root resorption of more than one third 

were not included.

The extent of the carious lesion was assessed on radiographs using the scoring 

system described in Section 2.2.1. Bitewing radiographs were considered as 

the first choice for posterior teeth and periapicals for anteriors if adequate co­

operation was achieved. In cases where the patient’s co-operation was poor, 

extraoral views, including OPT or lateral oblique were obtained. Table 6.6 

demonstrates the number of different radiographic techniques employed for the 

patients of this study.

6.7.4 Caries removal protocol:

All treated teeth were isolated using either rubber dam or cotton wool rolls. 

Rubber dam, without any clamps, was used for the isolation of the anterior 

teeth (Figure 6.4), in association with a high velocity aspirator to remove smoke 

and debris from the treating area, which had an additional cooling effect on the 

irradiated teeth.

An access to the carious lesion was opened where necessary using a high 

speed handpiece (Siemens 4000 MS, Germany) with a diamond fissure bur of 

size 8 as detailed in Section 2.2.3. Gross caries were excavated where 

indicated in both experimental and control groups. The laser radiation source 

used in this study was a pulsed Nd:YAG laser (Sunrise Technology Inc., USA) 

details of which are described in Section 2.2.1. Laser radiation of the carious

159



Figure 6.4 (a,b): Laser protective glasses used for the patients, with the use of 
rubber dam without clamp to isolate the anterior teeth is shown above.



tissue was carried out with exposures of maximum 30 sec, in a sweeping 

manner while the conventional caries removal was performed in a routine 

manner. More details of the technique and equipments, used in this study, 

have been described in Section 2.2.3. Time taken for the removal of caries was 

recorded for each technique, starting from the beginning of the caries removal 

procedure to its completion.

6.7.5 Caries removal assessment:

Conventional tactile and visual criteria were employed for assessment of the 

prepared dentine surfaces in treated cavities using a straight probe under the 

conventional chairside lighting while the tooth was dried. Independent 

cinicians were asked, on different occasions, to assess the prepared cavities 

as to the success of caries removal following judgement by the operator (GA).

67.6 Scanning Electron Microscopic examination:

Hstological examination of the dentine and the pulp is the most reliable method 

o' assessment of changes in these dental structures following an operative 

pocedure. However, this is a destructive method which requires extraction of 

the tooth. In this respect, and to enable the microscopic assessment of the 

dentine surface without any critical tissue damage, impressions were taken of 

tfe prepared cavities using light body President impression material (Coltex®, 

Switzerland) loaded in Ion® Ni-Chro crowns (3M Dental Products, USA) as the 

special tray (Figure 2.11).
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Resin replicas were produced from the prepared cavities by pouring the 

impressions with epoxy resin (Epofix Resin, Struers, Denmark) as described in 

detail in Section 2.3.7. The entire surface of the resin replica was then coated 

with a thin layer of gold using a sputter coater (Polaran E 5000). This early 

assessment technique was employed to allow the surface examination of the 

treated cavities before any alteration caused by restoration or development of 

secondary caries. Each specimen was examined under the SEM (Jeol T 300) 

for surface changes of dentine following laser or drill treatment, as detailed in 

Section 2.2.5.

6.7.7 Tooth restoration protocol and its subsequent assessment method:

Prepared cavities were restored immediately using Dyract® (Dentsply, UK), a 

compomer restorative material as the material of choice. A Visilux™ 2 (3M 

Dental Products, Germany) light cure machine was used for curing the 

restorative material, adjusted for 40 sec exposures. Restored teeth were then 

polished using enhance polishing disks (3M Dental Products, USA). Individual 

teeth were assessed for possible changes around the margins of restorations 

after 1, 6 and 12 months after placement, using the following simplified system 

of scoring:

1. Absence of any gap with no probe retention around the restoration margins

2. Probe retention and discoloured margins

3. Lost restorations.
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Time taken for the restoration procedure was recorded for both experimental 

and control groups, including the time taken for the application of bonding agent 

and its setting.

6.7.8 Patient’s follow up:

Patients were reviewed after one month, 6 months and 12 months following 

treatment. Treated teeth were tested at each visit for their pulpal status using 

conventional clinical methods of assessment, including thermal and electrical 

pulp tests, in addition to a soft tissue examination of the surrounding structures 

for any pathological changes of dental origin, as described in Section 6.7.3. At 

the second review visit (6 month), both experimental and control teeth were 

radiographed for the assessment of the possible changes at the periapical 

region.

Exfoliated and extracted experimental teeth were collected for further 

histological assessment. Teeth were placed in 10% buffered formalin as soon 

as they were received.

6.7.9 Assessing the parents views on laser therapy:

Parents were asked to answer a series of questions about the laser and its 

effect on their child’s attitude to receive further dental treatment in the form of a 

questionnaire. Appendix C is the questionnaire given to the parents for the 

assessment of the parent’s views on the laser and its dental applications.
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6.7.10 Statistical analyses:

Two sample t-test was used for the comparison between the differences in the 

effect of laser and drill techniques on a patient’s anxiety level. The period effect 

was also tested using two sample t-test to find out if the order in which each of 

the two techniques was given, had any effect on the patient’s anxiety 

expressed for the second approach. A Mann-Whitney test was used to compare 

the level of anxiety of the patients prior to the two caries removal techniques. 

The differences between the time taken by each technique was tested using a 

two sample t-test. Pulpal response to EPT was compared between the test and 

control teeth using a two sample t-test on raw data. Chi-square tests were 

used to assess the differences in the pulp response to EC and also the results 

of clinical examination of the surrounding tissues, in each assessment time, 

between the laser- and the drill-treated teeth.

6.8 Results - Anxiety and knowledge

6.8.1 Operators assessment:

Table 6.7 illustrates the mean anxiety score of the operator’s assessment of the 

patients before and after treatment using both the laser and the conventional 

drill. Taking the laser and drill results together, there was a highly significant 

difference (two sample t-test, p=0.001) between the level of anxiety before and 

after the dental treatment with a much lower level of anxiety after the 

completion of treatment. In addition, a student t-test showed a highly significant 

difference (p= 0.0009) between the effect of the two techniques of caries 

removal, with the laser being associated with less anxiety. Further t-tests
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Table 6.7: The mean value of the operator’s judgement of anxiety score of the 
patients prior to and following the treatment (Anxiety scores: from 1= the 
highest, to 4 = the lowest anxiety level, see section 6.7.2 for details).

sex mean anxiety mean anxiety mean anxiety mean anxiety
Score before laser Score after laser score before drill score after drill

Male 1.86 + 0.6 2.77 ± 0.7 1.91 +0.7 2.27 ± 0.7
Female 1.93 ±0.7 2.96 ± 0.6 1.90 ±0.6 2.46 ± 0.7

Table 6.8: Differences between the level of anxiety prior to the laser and drill, in 
patients with and without any history of past dental treatment (Kruskal-Wallis 
test).

Test group Past Dental Treatment Median Anxiety Score P df
Laser Yes

No
2.00 0.718 1

Drill Yes
No

2.00

p value adjusted for ties.



indicated that the order of treatment had no effect on the results. Figure 6.1 

shows the number of patients in each scoring category before and after 

treatment for both the laser and the drill.

6.8.2 Patient’s self assessment:

Results of the data from the patients’ replies to the pictorial assessment 

technique (Table 6.3) revealed a consistent preference towards the laser 

technique. This was concluded from the number of patients who had selected 

boxes 1 to 4, representing a reduction in anxiety, compared to those who 

selected boxes 4 to 8, indicating an increase in anxiety. The different anxiety 

scores and detailed description of corresponding pictures are explained in 

Appendix B.

An assessment of parents’ comments also revealed varying degrees of 

discomfort during both techniques with a higher level during the drill application 

(63%) compared to that of the laser (56%) (Table 6.4). Three out of fifty 

patients refused treatment, two of which had to be referred for treatment under 

general anaesthesia. The third patient, who refused the laser because of the 

need for using protective glasses, accepted treatment, using appropriate 

protection, following two introductory visits. The main complaints during laser 

treatment were the production of smoke and heat. The main complaints of 

patients with regard to the use of conventional rotary instruments were 

vibration, noise and pain.
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6.8.3 Patient’s previous dental treatment:

Figure 6.5 illustrates the number of patients, with their range of past dental 

experience. No patient reported to have any previous dental laser experience. 

Kruskal-Wallis test of the effect of past dental experience on the level of anxiety 

prior to the laser and drill treatments revealed that there was no significant 

difference (p= 0.718) between individuals with and without a history of past 

dental treatment (Table 6.8). Twelve out of 48 (25%) of these patients refused 

any sort of radiographic examination on the first visit due to initial fear and 

anxiety (Table 6.6).

6.8.4 Assessment of the parents’ reply:

The response rate to the questionnaire distributed between the parents of the 

patients treated in this study was high (89.5 %), being mainly returned at the 

second review visit. Results of the answers to question 1 (How much do you 

know about the laser?) indicated that 72 % of parents had little or no knowledge 

about lasers (Figure 6.6). Analyses of the replies to question 2 (How much did 

you know about lasers in dentistry before?) are shown in figure 6.7. More than 

95 % of parents had little or no knowledge about dental lasers. Parents’ 

responses to question 3 (How much information did you receive before 

treatment?) is shown in figure 6.8. Only four out of the total of forty three (9 %) 

respondents stated that they did not receive sufficient information prior to the 

treatment while 39 (91 %) said they received enough information about the 

dental laser. A few parents expressed concern about the safety of the laser 

radiation, question 4 (Did you search for more information about laser after it
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Figure 6.5: The distribution of the different past dental 
treatment received by patients of this study.
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Figure 6.7: Pie chart shows the level of parents’ knowledge 
on dental application of lasers.



was suggested for your child?). On this particular issue results indicated that 

10 out of the 43 (23.26%) parents who replied, had searched for more 

information about dental lasers. The results of question 5 (where did you first 

hear about lasers in dentistry?) were the two expected sources of the operator 

(37%) and the consultant (44%) at the Dental Hospital. Details of these 

numbers are presented in table 6.9. Answers to question 9 (What was the 

reason for referral of your child to the Dental Hospital?) showed that the 

majority of patients on this trial were those who had been referred because of 

dental anxiety and difficulty of dental treatment (Table 6.9).

The parents’ responses to questions 6 and 7 regarding the acceptability of the 

laser technique as an alternative technique for treatment of dental caries are 

presented in table 6.9 . Fifty four percent of the parents stated that the child’s 

attitude towards dental treatment had greatly improved while 46% of them 

reported little or no difference (Figure 6.2). A significantly high number of 

parents, 38 (88 %), preferred the laser technique for treatment of the child to 

the conventional caries removal technique with and without local anaesthetic 

administration, with a high number 36 (83 %) of the total 43 respondents 

recommending the technique to other members of their family and friends. 

However, 7 parents (16%) reported that they were not sure (Figure 6.9). No 

post-operative pain, hypersensitivity or any other complication was reported 

following the use of the laser for removing dental caries. Five teeth were 

reported as having developed pulpal necrosis and abscessing within the first 12 

months (Table 6.10).
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recommended the laser caries removal technique to others.



Table 6.9: The source of information for laser treatment and parent’s 
preference to the treatment technique are presented here in addition to the 
reason for patient’s referral to the Dental Hospital.

1 2 3 4 5 6
source of 0 2 4 2 16 19

information (5%) (9%) (5%) (37%) (44%)
Preferred technique 2 (5%) 1 (2%) 38 (88%) 0 2 (5%) 0

Referral reason 13 (30%) 8(19%) 6 (14%) 8(19%) 3 (7%) 5(12%)
Source of information 
1= Radio/TV 
2= Newspaper 
3= Friends
4= Local dentist (GDP)
5= Dental Hospital Consultant 
6= Operator

Preferred technique 
1= Drilling with injection 
2= Drilling without injection 
3= Laser
4= Treatment under 

general anaesthesia 
5= No preference

Referral Reason 
1= Dental anxiety 
2= Specialist Hospital 
3= High caries rate 
4= Dental Hospital patient 
5= More convenient 
6= Medical reasons



Table 6.10: The number of positive and negative responses to Ethyl Chloride 
by both laser and drill treated teeth in five occasions before and after the 
treatment with related findings of the clinical examination.

Number of responses (throughout the study period)
before after 1 month 6 month 12 month

treatment treatment later later later
laser Pos 68 (84%) 64 (79%) 70 (86%) 61 (76%) 61 (81%)

Ethyl Neg 13(16%) 17(21%) 11 (14%) 19 (24%) 14(19%)
Cilorid drill Pos 73 (90%) 66 (81%) 63 (78%) 65 (83%) 63 (83%)

Neg 8(10%) 15(19%) 18(22%) 13(17%) 13(17%)
laser N 81(100%) 81 (100%) 81(100%) 77 (96%) 72 (97%)

Cinical A 0 0 0 3 (4%) 2 (3%)
Coidition drill N 81(100%) 81 (100%) 81(100%) 77 (99%) 75 (99%)

A 0 0 0 1 (1%) 1 (1%)
Pos=Positive, 
Nep Negative 
N=Normal, 
A=Abnormal



6.9 Result - Pulp assessment:

6.9.1 Electric pulp test:

Table 6.11 demonstrates the distribution of the number of pulpal responses to 

EPT in both the laser-irradiated teeth and those treated with the drill in five 

different observation stages. Nine out of the forty treated patients (19 %) 

refused to be assessed by EPT in the first visit, which was to be expected given 

their anxiety problem. The data in table 6.11 only represents those who were 

assessed. A wide range of pulpal responses to the Electric Pulp Tester was 

recorded. Repeated measurement of a random selection of the cases showed 

similar values. Individual responses to EPT with time are shown in figures 6.10 

to 6.13 for laser-treated teeth, and in figures 6.14 to 6.17, for teeth treated by 

the drill. Summarised data using a cut-off point of EPT values of 60 are shown 

in figures 6.18 and 6.19. It was noticed that the number of teeth responded 

below 60 were decreased following the caries removal procedure both using 

the laser irradiation and the conventional drilling. The pulpal responses to EPT 

was found to be highly significant (p= 0.001) between the groups of teeth 

treated by laser and drill when they were tested using a Chi-squared test (Table 

6.12). However pulp responses were shown to have returned to values below 

60 within the first month of treatment, in both groups of teeth. There was no 

significant difference (p= 0.1) between the two groups of laser- and drill-treated 

teeth in their recovery rate after 6 and 12 months, post operatively. The result 

of a Chi-square test on the response rate of the pulp before, immediately after 

treatment and one month later showed a significant difference in both laser (p= 

0.04) and drill treated teeth (p= 0.04) (Table 6.12). The sequences of the pulp
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Table 6.11: Number of positive and negative responses to EPT by both laser 
and drill treated teeth in five occasions before and after the treatment.

Electric Pulp Testing
Test time 1 -20 21 -40 41 - 60 61 - 80 >80 (none)

Before treatment 0 20 22 14 20
After treatment 3 9 15 10 39

Laser After 1 Month 2 14 15 19 27
After 6 Month 1 13 19 16 28
After 12 Month 1 10 18 22 21

Before treatment 5 12 21 15 16
After treatment 3 10 10 16 30

Drill After 1 Month 1 14 16 17 29
After 6 Month 4 11 14 22 24
After 12 Month 2 11 18 14 26

Table 6.12: Results of Chi-square test on the pulp response to EPT before, 
immediately after and 1 month after caries being removed, using laser/drill.

Examination Test time Treatment xz df P
Laser 6.565 2 0.04

before/after/1 m Tr. Drill 6.660 2 0.04
Electric Pulp Test Laser/Drill 33.134 5 0.001

Overall times Laser 6.852 4 0.2
Drill 26.796 4 0.001

X* = Chi-square, 
df = degree of freedom,
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responses in individual teeth can be seen in figures 6.10 to 6.17. The 

distribution of teeth in each category of pulpal responses to EPT are 

demonstrated in table 6.11, for all five examination points. The pulp response 

of both groups, did not show a dramatic change thereafter.

6.9.2 Thermal test:

Table 6.11 details the response rates of the pulp to ethyl chloride, as the

thermal stimuli, with their related percentages. The results recorded from the

thermal test of the laser-treated teeth showed an 84% positive response before 

treatment declining to 79% immediately after irradiation and rising to 86%, one 

month later. Statistical analysis (X2 test) on the pulpal response rate before 

and after laser and drill treatment showed no significant differences in any of 

the comparisons. The probability values for laser treated teeth was p= 0.2 

while this value was p= 0.1 for drill treated teeth and p= 0.2 when both groups 

were compared before and after the treatment (Table 6.13).

6.9.3 Clinical Examination:

Apart from those necrosed cases, mentioned above, clinical and radiographic 

evaluation of the teeth did not show any particular pathology or complication 

associated with either of the techniques. The results of the clinical evaluation 

of the surrounding soft tissue of the treated teeth are presented in table 6.10. 

Only two of the cases from the laser-treated teeth and one following drill cavity 

preparation resulted in pulp necrosis within the first six month following

treatment. It was not clear to whether the necrosis was caused by the
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Table 6.13: Results of Chi-square test on the pulp response to ethyl chloride 
before and after caries removal using laser/drill, in addition to the results of the 
clinical examination.

Examination Test time Treatment x2 df P
Laser 1.643 2 0.2

before/after/1 m Tr. Drill 4.636 2 0.1
Ethyl Chloride Laser/Drill 6.279 5 0.2

Overall times Laser 3.804 4 0.2
Drill 4.640 4 0.2

Laser 0.194 1 0.2
6/12 v 12/12 . Drill 0.000 1 0.2

Clinical Examination Laser/Drill 1.489 3 0.2
Overall times Laser 8.218 4 0.1

Drill 3.173 4 0.2
X* = Chi-square, 
df = degree of freedom, 
v= versus



preparation process, i.e. laser radiation, or to the carious activity close to the 

pulp. Of the 38 patients seen at the 18 month review, again no further pulpal 

complication had been noted.

Clinical evaluation of treated teeth showed only a 6 % failure rate in teeth 

treated by the laser and 3 % in drill-treated teeth after 6 to 12 months (Table 

6.10). Chi-square test was also carried out for the clinical findings, results of 

which represented no significant difference (p=0.2) between the response rates 

before and after treatment using laser or drill (Table 6.13).

6.9.4 Radiographic Examination:

Radiographic evaluation of the treated cases after six months showed only 4 

laser treated cases (5%) with radiolucencies at either the furcation or periapical 

areas, while this figure was 5 (6%) in the drill group, results of which are 

presented in table 6.14.

From all the diagnostic information available, only 3 teeth (2 laser-treated and 1 

drill-treated teeth) were diagnosed as having pulpal necrosis within the first six 

months following treatment. This diagnosis was confirmed after extraction of 

the teeth by further histological examination. No other teeth developed pulpal 

necrosis during the 6 to 18 months follow up period.
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Table 6.14: Findings of the radiographic assessment of the pulp reaction after 
6-18 months.

Radiographic review
Treated group Normal Abnormal (X") P df

Laser 74 (95%) 4 (5%) 0.132 0.2 1
Drill

772— --- ------ rrm—:—
72 (94%) 5 (6.5%)

X z= Chi-square, df= degree of freedom

Table 6.15: The number of cases required the use of high speed for access 
opening, cases which hand excavator was used and the number of cases 
received indirect pulp capping.

Test group High speed used Hand excavation Base CR success
Laser yes 20 (25%) 48 (59%) 79 (98%) 65 (80%)

No 61 (75%) 33 (41%) 2 (2.5%) 16 (20%)
Drill yes 19 (23%) 37 (46%) 80 (99%) 72 (89%)

No 62 (77%) 44 (54%) 1 (1%) 9(11%)
CR= Caries removal
Base= Setting calcium hydroxide



6.10 Results - Preparatory criteria:

6.10.1 Laser caries removal efficacy:

Clinical assessment of laser-treated cavities, using conventional, visual and 

tactile criteria, revealed that caries had been removed efficiently. In patients 

with poor co-operation, caries removal was performed, with both methods, in 

association with the use of a hand excavator or, in two separate visits. 

Recorded data shows that in 40% of the cases a hand excavator was used for 

gross caries removal during the laser caries removal compare to 54% of those 

treated by drill (Table 6.15).

6.10.2 Assessment of prepared dentine surface using SEM:

Scanning electron microscopic observation of the replica of the specimens 

revealed that laser irradiated surfaces produced a completely different 

appearance compared to that of the drill or untreated carious lesion. A solid 

feature of a bulbous appearance was observed at the dentine surface as a 

result of the high surface temperature in laser-treated teeth, while cutting marks 

and lines indicated the use of the drill in control teeth (Figures 6.20 and 6.21). 

No smear layer was observed at the laser-prepared surfaces, while a superficial 

layer of debris was present on dentine surfaces prepared by the drill.

6.10.3 Differences of the length of treatment period between laser and 

conventional drilling:

Table 6.16 demonstrates the mean time taken for completion of caries removal 

procedure using either of the techniques based on the clinically judged size of
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Figure 6.20: Scanning Electron Microscopic view of a laser treated cavity, in 
vivo, a solid feature of bulbous appearance is seen at the dentine surface as 
the result of high surface temperature (x250).

Figure 6.21: Scanning Electron Microscopic view of a conventionally prepared 
cavity, in vivo, note the cutting marks and lines caused by the application of a 
carbide round bur (x250).



Table 6.16: The length of time taken to achieve caries free cavities using either 
of the technique in addition to their restoration time.

Treatment Cavity No of Caries Removal SD for Restoration SD for
technique size teeth Time (sec) CRT Time (sec) RT

small 10 51 25 82 16
Laser medium 44 85 35 104 31

large 27 92 45 118 31
small 9 28 20 79 11

Drill medium 48 57 49 107 30
large 24 69 55 119 36

CRT= Caries Removal Time, 
RT= Restoration Time,
SD= Standard Deviation



the cavities. A mean time of 79 sec (SD= 31) was taken for laser caries 

removal compared to the mean time of 57 sec (SD= 50) taken for conventional 

drilling of the cavities. One-way ANOVA showed a significant difference (p= 

0.015) between the time taken for removing caries in each cavity size group of 

teeth when treated by laser. The larger the cavities, the longer the time 

required for the completion of caries removal. However, for the drill, no 

significant difference (p= 0.113) was found between the time taken for caries 

removal in the different size cavities.

To find out the differences between the time required for each of the two caries 

removal techniques to achieve complete caries removal, Two sample t-tests 

were carried out between each of the two cavity size groups. The results 

indicated that there was a significant difference (p= 0.035) between the two 

groups with the small size cavities treated by laser or drill, with the laser taking 

longer to complete caries removal. The results of the same test on the other 

two cavity sizes showed a highly significant difference (p= 0.002) between the 

time taken for the two groups with medium size cavities and no significant 

differences (p= 0.11) between the groups with large size cavities.

There was no difference in the time required for the restoration procedure, with 

a mean time of 106 sec (SD= 30) for restoring laser-treated teeth compare to 

108 sec (SD= 31) for drill-treated teeth (Table 6.17). Not surprisingly, highly 

significant differences were shown between the different size cavities in both
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Table 6.17: Findings of the restorations assessment after 6-18 months.

Clinical review of ________ Leakage_________________ Retention
restorations Yes No p (X̂ ) Yes No p (X*)

Laser treated teeth 
Drill treated teeth

11 (14%) 
6 (7.5%)

53 (66%) 
53 (66%)

64 (80%) 
59 (73.5%)

16 (20%) 
21 (26%)

Xz= Chi-square



the laser and drill groups (One-way ANOVA, p= 0.007 and p= 0.005, 

respectively).

6.11 Restoration - Longevity:

The results of the leakage and retention clinical scoring are shown in tables 

6.17. There was no significant difference between the level of retention of 

restorations in the two groups of laser- and drill-treated teeth (Chi-squared test, 

p= 0.2). The same result was achieved when the two groups were tested by a 

Chi-square test for the microleakage level after a 6 to 12 months following the 

restoration placement (p= 0.2). Eleven teeth (13.58%) in the laser group were 

found to have clinical probe retention as the sign of leakage with 6 teeth 

(7.41%) in the drill group. However, the number of teeth which had presented 

with total loss of restoration were 16 (19.75%) in the laser and 21 (25.93%) in 

the drill treated teeth after 6 to 12 month of restoration placement. There was 

no further report of any failure of the restoration after the third six month review 

and restorations of both groups were found satisfactorily retained up to 18 

month follow up of this study.

6.12 Discussion:

Since pain and discomfort during caries removal have always been the main 

reason for a patient’s poor co-operation, particularly in children, several 

research groups have tried to develop alternative pain-free techniques for 

removing dental caries (Black and Christi, 1955; Sherrer, Mullis and Pashley, 

1989; Clarkson, 1992). Amongst those, laser irradiation of the carious tissue
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has been suggested as a potentially effective means for removing caries 

without causing pain (Bassie, Chawla and Patel, 1994) which removes the need 

for local anaesthetic, the main fearful subject. However, despite the FDA 

approval for soft tissue applications of the Nd:YAG laser for several years 

(Midda and Renton-Harper, 1991; Miller and Truhe, 1993), its hard tissue 

application is still awaiting approval. This in vivo trial investigated the 

acceptability of the technique for treating anxious children in addition to its 

clinical effect on dental structure, including pulp tissue.

6.12.1 Patients’ anxiety and laser:

The initial assessment of the patients’ anxiety levels were found to be on the 

high side, based on the results achieved from the operator’s assessment. This 

was further confirmed by analysing the data collected from the patient’s self 

assessment method. This anxiety was found to be even higher prior to the use 

of the conventional drilling method compared to the laser. The pictorial 

assessment, however, was not performed for the drill as there was concern as 

to its repeated use on the same patient, hence this measurement was 

concentrated on the laser.

The laser technique was found to have a significantly higher level of 

acceptance with a lower potential for causing anxiety in the patients involved in 

this study. The analysis of the data indicated a high decrease in patients’ 

anxiety level following the use of the laser for caries removal. This high 

improvement was also confirmed by the patients, as a high preference was
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demonstrated for the laser treatment. Pulpal stimulation was reported much 

less, by patients of this study, during laser application compare to that of the 

dirill. This lower stimulation would directly effect on patient’s feeling throughout 

the treatment period which in turn could provide higher level of patient’s co­

operation.

The effect of the present pulsed Nd:YAG laser energy has been previously 

investigated by Whitters et al. (1995) result of which has indicated a level of 

ptulpal analgesia being induced following 3 min irradiation using 113 mJ at 15 

pps with an increase in the pulpal threshold to electrical stimuli. It is important 

to note that no local anaesthetic was administered for any of the cases treated 

by laser or the conventional drilling as to eliminate its effect on patients level of 

pulp stimulation. In addition, further monitoring the patient’s reaction to the 

treatment method in terms of their anxiety would be interrupted in presence of a 

local anaesthesia.

There was no effect from the order of treatments on patient’s reaction to the 

second treatment. This was shown by a two sample t-test for treatment effect 

adjusted and unadjusted for period effect, which showed exactly similar p 

values (p= 0.0016).

Parents reported a significantly high improvement in their child’s anxiety level 

when laser was used for removing carious dentine. Their reply to the 

questionnaire also indicated that these parents recommend the use of laser for
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removing dental caries. Overall, the laser treatment in absence of any local 

anaesthetic was found to be efficient to gain a reasonably high level of patient’s 

co-operation with a considerable reduction of original anxiety of these patients 

from dental treatment.

6.12.2 History of previous dental treatment and dental anxiety:

It has been established that dental phobic children have often experienced a 

traumatic dental treatment at younger age (Wright, 1980; Holst et ai, 1988). 

One of the obvious risks involved with the dental fear is the fact that these 

patients may avoid receiving sufficient dental care both in adults (Berggren, 

1984) and children (Bedi et a/., 1992). Assessment of the patients’ anxiety 

level revealed that there was a difference between the two groups of patients 

with and without previous dental experience prior to the drill caries removal but 

comparing these results with when they were receiving the laser the differences 

were not significant statistically, using two sample t-test. In addition there was 

no difference between the two occasions of laser and drill treatment for patients 

who had a past dental history. However the overall level of anxiety was much 

higher in patients with history of restoration or extraction.

6.12.3 Assessment of the pulp status:

6.12.3.1 Method of assessment:

Assessment of the pulp was carried out using a series of investigations detailed 

in section 6.8.2. In children, and particularly for primary teeth, there are 

limitations and uncertainty on the level of reliability and accuracy of the patient’s
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responses to the pulp test. In the other hand, laser doppler flowmetery, which 

has been introduced as a more reliable method of pulp assessment (Evans, 

1995), was not carried out due to its high sensitivity level and the degree of co­

operation required. In conclusion: the repeated measurements associated with 

the use of combination of the current methods of assessments was considered 

as sufficient to provide enough information on the pulp status.

6.12.3.2 Laser and the pulp:

Thermal damage of the pulp following laser irradiation of the hard dental tissue 

is minimised due to the presence of blood circulation and fluid within the pulpo- 

dentinal complex (Burke et al., 1985; Goodis, Schein and Stauffer, 1988a). 

However, uncontrolled laser irradiation of the pulp can pass the tolerance limit 

of the pulp causing irreversible pulpal damage. However, continuous dentine 

preparation using conventional rotary instruments can also cause severe 

damages to the pulp, in a dry condition, due to excessive heat production. This 

can be more dangerous when a local anaesthetic has been administered 

(Anderson and van Praagh, 1942) which reduces the patients responses and 

therefore no reflection would be received from patient even in high 

temperatures.

The laser radiation has been shown to be capable of inducing some degrees of 

local anaesthesia on the pulp (Bassie, Chawla and Patel, 1994) and therefore 

care should be taken during the clinical use of the laser by controlling the laser 

exposure length in addition to the overall number of exposures, to minimise the
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risks (Taylor, Shklar and Roebor, 1965; Adrian, Bernier and Sprague, 1971). In 

this respect, a maximum of 30 sec was decided for the application of laser 

energy on the carious dentine of this experiment. A minimum of 60 sec rest was 

given to each laser irradiated tooth before any further exposure to reduce the 

risk of pulp overheating.

Cooling effect of an air water spray in conjunction with the use of an aspirator 

has been shown earlier to be sufficient to prevent thermal damages of the vital 

pulp during laser treatment (Miserendino et ai, 1993). To facilitate the use of 

coolant systems, laser manufacturers have modified their products since first 

they were introduced in dentistry by adding an air/water coolant system which 

had been shown to be efficient in protecting the tissue and surrounding 

structures from thermal damage (Miserendino et ai, 1994).

As the present laser machine used in these studies was not supplied with any 

coolant system, it was decided to use a high velocity aspirator associated with 

the use of an air spray in order to help the cooling process of laser irradiated 

teeth. Based on the results of the in vitro experiment on pulp temperature rises 

following laser irradiation, see chapter 4 of this thesis, it was concluded that a 

short exposure of 30 sec with a 60 sec rest immediately after laser irradiation 

can significantly effect on reducing the temperature rise of the pulp. However, 

in the event of patient’s complaint laser irradiation was stopped even earlier 

than the complete 30 sec as to avoid any further pulpal stimulation.
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6.12.3.3 Histologic effects of laser:

Earlier histologic assessments showed that the Nd:YAG laser irradiation of the 

teeth causes reversible changes when the energy and exposure time are 

controlled (White et ai, 1991; MacDonald, Stevenson and Whitters, 1995). 

White et ai (1991) reported that no pulpal disruption had occurred in cases with 

remaining dentine thickness of even as small as 0.3 mm irradiated by 1 W laser 

energy for maximum of 20 sec. However, Funato, (1989) reported dilatation of 

the blood vessels at the lased area of the pulp following the application of the 

Nd:YAG laser in addition to the loss of tone in vessels. A mild inflammatory 

response was also reported in the pulp, adjacent to the irradiated area of 

dentine, with no evidence of similar pattern in the rest of the pulp indicating a 

focal response of the pulp to laser radiation (Adrian, 1977).

Temporary pulpal disruption has been reported in the form of haemorrhage 

adjacent to the exposure site following the exposure of teeth to a pulsed 

Nd:YAG laser radiation (100 mJ at 10 pps for 30 sec) with complete recovery 

15 days after irradiation (Bahchall et al., 1993). It may therefore be suggested 

that the laser treated teeth of this clinical trial would have minimal or no damage 

as they had a minimum of 1 mm remaining dentine thickness, with exposures of 

no longer than 30 sec. The RDT was estimated using radiographic views taken 

prior to the treatment. In addition, a minimum of 60 sec after each exposure 

was considered as helpful to reduce the temperature of the pulp before any 

further application.
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6.12.3.4 Clinical observation:

Previous reports indicated that the Nd:YAG laser irradiation of the vital teeth 

had no adverse effect after three years follow up (Sectos et ai, 1994; White et 

aL, 1993). Follow up of the treated teeth of the present study after 18 to 24 

months, revealed that there was no significant difference between the failure 

rate of the experimental (laser) and control (drill) teeth. These results suggest 

that the laser energy used within the limits of this study, 1.25 W for maximum of 

30 sec, can be considered safe for treatment of carious primary teeth, in 

agreement to the results reported earlier by white et a/. (1993) and Sectos et ai

(1994). The two laser treated cases and one case of drill group with periapical 

abscess are suggested to be due to the existing pre operative pulpal disease 

and not the caries removal procedure.

6.12.4 Laser effect on dentine surface:

6.12.4.1 Efficiency of the method of preparation and assessment:

As the SEM assessment of the in vivo treated teeth was impossible and 

extraction of these teeth was unethical, it was therefore decided to use the 

resin replica of the irradiated surfaces. In comparison, the preparation of the 

resin replica is much easier than the actual tooth as the dehydration stage 

would no longer be required, resulting in absence of artificial cracks which could 

interrupt the interpretation of the surface examination (Radvar et ai., 1995). 

The method used for assessing the in vivo prepared dentine surfaces using the 

resin replica was found to be efficient with producing reasonable details of the
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prepared surface. The technique is therefore recommended for clinical 

investigation of the changes at the dentine surfaces.

6.12.4.2 Changes of dentine surface and its effect on restorations:

The melted materials, produced as the result of surface overheating following 

laser irradiation, covered the opening of the dentinal tubules. This coverage 

could perhaps help to reduce post operative sensitivity of the restored teeth by 

protecting the fluid’s movement within the tubules, believed to be the cause of 

dentine pain (Brannstrom, 1963). In the other hand, no smear layer was found 

on the prepared dentine surfaces when laser was used compare to the 

conventionally prepared surfaces as shown in figures 6.20 and 6.21. The 

absence of smear layer has been advocated as being in favour of the adhesive 

restorative materials. This has been shown by the results of several studies 

investigating the effect of removing the smear layer of dentine on the bond 

strength of different adhesive restorations (Pashley, Michelich and Kehl, 1981; 

Pashley e ta i, 1983).

The clinical assessment of the restorations carried out using the modified 

scoring system as detailed in Section 6.7.7. As to simplify the system, the 

score 2 and 3 of the system was considered as score 2, and therefore the 

restorations were either with no fault, retained but showed the gap, or lost. 

Results based on this assessment method revealed that there was a higher 

leakage rate of the restorations following laser treatment (13.58%) compare to 

that of the drill group (7.41%). However, the retention rate was higher in laser
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group (19.75% in laser treated teeth compare to 25.93% in drill treated teeth). 

Statistical analysis, however, showed that the differences were not significant. 

These results indicate that perhaps the laser caries removal can be as efficient 

as the conventional drilling in preparing a suitable dentine surface for bonding 

the adhesive restorative materials.

6.12.5 Clinical feasibility of laser treatment:

The pulsed Nd:YAG laser used within the limits of this study was found to be a 

suitable alternative to conventional drilling in anxious children. This was based 

on the following characteristics: 1. simple and easy clinical application, 2. 

effective for removing carious tissue 3. safe for sound underlying dentine and 

the pulp, 4. reasonably quick, and finally 5. safe clinical use. The technique was 

highly accepted and preferred to the conventional drill by these young fearful 

patients. Overall two year follow up of these patients suggested that the laser 

caries removal had no adverse effect on the pulp and surrounding tissues. The 

restorations were also found to have a similar survival rate to the conventionally 

treated teeth. It is therefore concluded that the anxious patients may benefit 

from the laser to remove caries in primary teeth. The patients co-operation was 

improved with the use of laser therefore these patients were keen to come back 

for further treatments which is a great achievement in this area. It seems that 

the laser caries removal technique even as an intermediate treatment, by 

treating carious primary teeth, can be employed to gain patient’s confidence 

and therefore providing treatment of permanent teeth with a more relaxed 

situation, in later visits. As far as the caries removal time is concerned, laser
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technique was found to be as short as the conventional method particularly 

when the co-operation is poor.

Further histological examination of the pulp condition is necessary before any 

definite statement can be made on the condition of the pulp of these laser 

irradiated teeth.

6.13 Conclusion:

1. The pulsed Nd:YAG Laser, within the conditions tested in this study, can be

considered an efficient tool to remove dental caries.

2. The laser caries removal causes less anxiety in young patients.

3. Laser takes slightly longer time than the drill (mean time for medium size

cavities: laser= 85 sec, drill=57 sec).

4. Laser effect on the pulp was found to be comparable to that of the 

conventional drilling the primary teeth, within the conditions of this study.

5. Restorations of laser treated teeth are comparable to the drill prepared 

cavities.
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CHAPTER 7: GENERAL DISCUSSION AND CONCLUSION:

7.1 Introduction:

The need for an alternative technique for caries removal to the conventional 

system has become highlighted in recent years. Caries prevalence continues 

to be a problem due to wide continuation of a high carbohydrate intake. 

Untreated carious teeth lead to pain, which causes more difficulty in the 

treatment period particularly on the level of patient’s co-operation. Some 

patients, including children, do not seek treatment perhaps due to anxiety and 

fear. The studies documented in this thesis, were carried out to assess the 

potential of an Nd:YAG laser (ADL) to remove carious dentine, as well as its 

acceptability for treating young, dental phobic patients. The four experiments 

are discussed here.

7.2 Laser effects on the irradiated dentine surface:

The effect of laser radiation on dentine of both primary and permanent teeth 

was examined using light microscopic assessment of ground and demineralised 

sections prepared from the same specimen. Microradiographic examinations 

were also performed. The findings of these investigations indicated that laser 

energy of 1.25 W was efficient at removing of dentine caries without damage to 

the underlying sound dentine. Altered collagen was observed close to the 

prepared surfaces in some demineralised sections. There was concern that 

this may have been the result of laser-induced overheating of the tissue. 

However, examination of laser-irradiated non-carious dentine revealed that
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such changes could not occur with the range of laser energies used here. It 

was concluded, therefore, that such mild alterations were due to caries rather 

than the laser.

Scanning Electron Microscopic examination of laser-irradiated surfaces 

revealed resolidified globules of melted material covering the dentine surface, 

presumably the result of the high surface temperature produced by the laser. 

This covering layer of dentine is thought to be advantageous as it may prevent 

invasion of the dentinal tubules by micro-organisms or even the penetration of 

micromolecules of restorative material (Pashley et ai, 1992). High surface 

temperature, in itself, may also have a bactericidal effect, as reported earlier 

(Whitters et ai, 1994; Hooks et ai, 1980; Bassie et ai, 1994), therefore, 

reducing the potential risk of recurrent caries.

7.3 Pulpal temperature changes following laser cavity preparation:

When the tissue is irradiated, the surface temperature will rise as a result of 

absorption of the laser beam, which in turn will generate heat, which will then 

travel through the bulk of the target tissue. In the case of teeth, the heat 

produced at the surface may cause an increase in pulpal temperature which 

could be potentially damaging to the pulp (Zach and Cohen, 1965). It is, 

therefore, important to ensure that a safe range of power is used during laser 

application. In vitro measurement of the pulp temperature showed relatively 

high rises in temperature in the pulpal cavity following laser irradiation of 

carious dentine.

184



The effect of the laser on the pulp is due to a previous rise in temperature 

produced at the surface of this tissue. To estimate the magnitude of these 

effects clinically, several methods have been employed, including measurement 

of temperature at the tooth surface (Hibst and Keller, 1990) or even measuring 

the temperature at the pulpodentinal junction using an animal model (Goodis 

and Rosenberg, 1991). Direct measurement of temperature changes was 

carried out at the pulpodentinal junction in vitro, the results of which 

demonstrated a mean peak temperature rise of 15 ± 7 °C following laser 

irradiation of a carious lesion for a maximum of 30 sec bursts (2 mm RDT). The 

resting time following each irradiation was important, as this permitted time for 

the irradiated tooth to cool. The resting time was also important, particularly 

when frequent laser applications were required, since heat accumulation 

occurred following each exposure and resulted in a rise of the baseline 

temperature.

Since all the laser parameters were fixed, temperature rises between samples 

could not be due to the laser energy or duration of exposure. Only the 

remaining dentine thickness could have had a potential influence on the value 

of the recorded temperature of the PDJ in individual teeth.

Temperature rises of 16.8 ±1.5 °C were recorded following laser irradiation of 

primary teeth, while in permanent teeth these temperatures were 11.9 ± 1.8 °C. 

It was expected, however, that such temperature rises would not be as high in 

vital teeth, as pulpal blood circulation would effectively reduce the rise in
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temperature within the pulp chamber It seems, therefore, that controlled laser 

irradiation may be used safely for the treatment of carious lesions. By 

comparison, little temperature change was associated with the use of rotary 

instruments, probably because of the use of an air coolant.

It was of particular interest that rises in pulp temperature were recorded 

following the use of PBL, with little difference being evident whether caries was 

present or not (3.7 ± 1.7 °C in presence of caries and 4.6 ± 1.6 °C after caries 

removal). In an earlier study, it was advised that routine application of a curing 

light should be used with caution, due to heat production at the pulpal level 

when used for polymerising restorative materials (Strang et a\. 1988). 

However, the findings of this thesis on the recorded temperature rises of the 

pulp following a 60 sec application of the PBL were not above the pulp 

threshold suggested by Zach and Cohen (1965). In addition, as stated 

previously, it is likely that the temperature rise would be lower in a vital tooth 

due to the presence of the systemic circulation.

7.4 Restorations following laser cavity preparation:

Evaluation of restored cavities prepared by either the laser or the drill revealed 

that the laser prepared surfaces were as suitable as conventionally prepared 

surfaces for adhesion of Dyract® restorative material, and perhaps in some 

cases even better than the control group. This was demonstrated by a higher 

degree of microleakage around the restorations of the conventionally prepared 

cavities in primary teeth.
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There is a wide range of temperature around the mouth, especially whilst 

consuming a daily meal (Michailesco et ai, 1995) and, therefore, any in vitro 

test should be carried out under a similar range of temperatures. 

Thermocycling of the restored teeth prior to the application of dye is commonly 

used for in vitro evaluation of the margins of restorations. This technique was 

employed for the assessment of restored teeth in vitro in this study to simulate 

oral conditions and, therefore, assess the changes of the restoration margins 

following a series thermal shocks.

The effect of temperature changes on the gap size at the margins of 

restorations were not significant in either experimental or control groups, in both 

light and electron microscopic examinations. The number of gaps present at 

the margins of restorations was higher in conventionally treated teeth compared 

to the laser-treated group. The changes of the size of these gaps were not 

significantly different between before and after thermocycling which support the 

work of Chan and Glen-Jones (1994) as thermocycling being ineffective on the 

restoration behaviour as such.

7.5 Clinical applicability of the laser radiation for removing dentine 

caries:

The findings from the clinical trial confirmed that the pulpal effects from the 

selected laser energies were minimal, as only two cases within the 

experimental group showed pulpal necrosis. There was one case, however,
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showing necrosis from the control group, perhaps indicating preoperative pulpal 

involvement. Laser caries removal also appeared to be efficient in reducing the 

pre-operative anxiety of patients, as well as being effective at removing dentine 

caries. The long term pulpal status following laser caries removal was found to 

be uneventful in this study, which was followed up for the full length of this 

study (two years).

Patients’ attitudes towards dental treatment was improved significantly following 

the laser treatment. It appeared that since the laser technique did not involve 

any physical contact, and works only by means of evaporation of the carious 

tissue, the procedure seemed more tolerable. Sensations of vibration and 

noise associated with the use of rotary instruments, and particularly pain (when 

used without local anaesthesia) associated with the mechanical cutting, would 

be avoided when the laser is used. Some, patients did express some concern 

over the heat and smoke produced by the laser.

Pulpal status was monitored before and after the application of laser radiation 

on teeth using conventional electric and thermal pulp tests. The reliability of 

these two currently used pulpal assessment techniques have recently been 

confirmed on primary teeth when patients of 7 to 10 years old were tested 

(Asfour, Miller and Smith, 1996). However, general concerns has been raised 

regarding the reliability of these tests (Bender et al, 1989; Robinson, 1987), 

and also changes of the level of pulp sensibility to EPT during the different 

stages of root formation (Brandt, Kortegaard, and Poulsen, 1988), clinical
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examination of the surrounding tissues, along with periapical radiography of the 

treated teeth were performed as complementary tests. The pulsed Nd:YAG 

laser using the parameters which were found to be safe, showed no destructive 

effect on the irradiated tissues when used for caries removal in primary teeth. 

The side effects of the laser on the pulp and surrounding tissues can be 

minimised if at least 60 sec rest is given between exposures. The long-term 

assessment of the restorations of laser-treated teeth showed comparable 

success to the conventionally prepared teeth. It was possible to prepare the 

dentine surface without the production of a smear layer which should, therefore, 

provide a higher bond strength (Pashley et a\., 1992).

7.6 Conclusion:

1. The pulsed Nd:YAG laser, used in this study, with the power of 1.25 W was 

found to be effective in removing dental caries.

2. The remaining dentine thickness was found to be an important determinant 

on the amount of heat reaching the pulp with lower temperatures in higher RDT.

3. It is suggested to use the high velocity aspirator and an air spray during the 

laser caries removal procedure, as it helps to prevent pulpal overheating,

4. The clinical application of this laser wavelength was found to cause no 

pathologic pulpal changes when used for maximum exposure time of 30 sec 

bursts. This was clarified by a series of examination of the treated teeth within 

two years follow up.

5. Patient’s lowered anxiety level towards laser treatment suggest that the laser 

can be an acceptable alternative to drill for treatment of anxious children.
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APPENDIX A:

Local rules suggested for a safe laser application in clinical dental practice:

Safety requirements during the laser operation controlled by the direct 

supervision of the laser safety officer of the Glasgow Dental Hospital and 

School NHS Trust:

a- Laser protective glasses were worn by all personnel in the operating room, 

b- All access windows to the outside of the operating room were sealed with 

thick paper pads, which were carefully checked, 

c- A notice of “Laser in operation - Do not enter” was placed at the entrance to 

the operating room.

d- The operating room was checked preoperatively in order to ensure that there 

were no combustible materials (explosive anaesthetic gas) present at the 

time of laser operation.
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APPENDIX B:
Patient’s anxiety scoring using the modified Venham’s pictorial form.

Score (Before treatment)

1 = Highly anxious
Moderately anxious 
Slightly anxious 
Anxious (Uncertain) 
Anxious (Uncertain) 
Anxious (Uncertain) 
Anxious (Uncertain) 
Anxious (Uncertain)

(After treatment)

Highly improved 
Highly improved 
Moderately improved 
Highly improved 
Slightly anxious 
Moderately anxious 
Highly anxious 
Highly anxious

2 2 1



APPENDIX C:
Questionnaire by which parents views on laser caries removal system was 
evaluated. No:  .......

Dear parent:
Could you please answer these questions, related to your child’s treatment at 
the Dental Hospital. Your help in answering the questionnaire is highly 
appreciated:

1. How much do you know about the lasers:
NonedD Little| | Enough dD  A lot | |

2. How much did you know about lasers in dentistry before it was offered to your child
None □  Little dD  Enough Q  A lot d ]

3. How much information did you receive at the dental hospital before the treatment. 
None dD  Little dD  Enough dD  A lot dD

4. Did you search any more for information about laser treatment after your child had 
been treated: Yes I I No I I

5. Where was the first place you heard about lasers in dentistry? __
Radio/TV d l l  Newspapers d ]  Friends d ]  Local Dentist d J
Dental hospital Consultant dD  Surgeon who treated your child d l l
None of the above dD  (please specify) .................

6. Which technique for removing decays do you prefer for your child now?
Drilling with injection I I Drilling without injection dD  Laser dD
Treatment under General Anaesthetic dD  No preference dD

7. What do you think about your child’s attitudes towards dental treatment after laser 
visit:
Improved Slightly dD  Improved a lot d ]
Increased the anxiety Q  No difference d ]

8. Would you recommend the present technique to the other members of your family 
or friends. Yes dD  No dD  Not quite sure dD

9. Why was your child referred to the Dental Hospital for treatment (you may tick more 
than one):
Dental Anxiety dD  Specialised Hospital dD  Lots of Decays d ]  
Already treated at the Dental Hospital dD  More Convenient d |
Medical reason dD  Other Reasons dD  Please state.............................

10. Did your child complaint or had any complication after being treated by laser 
Yes dD  No[dD D° not remember dD  W yes P'ease specify).................

*Please return completed questionnaire to the Dental Hospital in envelop enclosed.

With many thanks: Dr. G. Ansari, CDH/ Glasgow Dental Hospital and School, 378 Sauchiehall
St., Glasgow G2 3JZ
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APPENDIX D:
Demineralised section preparation:

1. Fixation: 24 hours in Buffered formalin.

2. Decalcification: immerse in 20% formic acid in distilled water for 5-7 days, 

confirmed radiographically, and washed thoroughly in tap water.

3. Dehydration: put in a sequence of: Methanol (70% Alcohol), Absolute alcohol 

x2, Xylene x2, then followed by mounting in paraffin wax for sectioning.

4. Sectioning: position in microtome for sections of 5p Thick, and air dried in 60 

°C for an hour.

5. Staining: Rehydrated (Xylene, Alcohol, Water) and then stained using the 

specific stain (H&E or van Gieson).

6. Mounting: sections were mounted on glass slides using HSR mounting 

medium.
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APPENDIX E:
Ethical approval obtained for the clinical laser trial:

GLASGOW DENTAL HOSPITAL
AND SCHOOL-

478 SAUCHIEHALL STREET, CLASCOW G2 3JZ 
TELEPHONE; 041 331 7010 FAX. 041 353 1180

H AC /M M C C/04 

6 M ay 19S4

D r  G A n s a r i
D e p t, o f  C h ild  D e n ta l H e a lth  
F lo o r 4
G lasgow D e n ta l H o s p ita l

D ear D r  A n s a r i

A re a  D e n ta l E th ics  Com m ittee

P ro to c o l: "Rem oval o f ca ries  in  p r im a ry  te e th  u s in g  the  d e n ta l la s e r . "

I  w r ite  to  in fo rm  you  th a t  y o u r  p ro to c o l f o r  a H in -im i re s e a rc h  p ro je c t 
has now  been a p p ro v e d  b y  th e  A re a  D e n ta l E th ics  Committee s u b je c t 
to  th e  s ta n d a rd  consen t fo rm  b e in g  u s e d . In  th e  in fo rm a tio n  s h e e t, 
th e  p h ra se  "D e n ta l H o s p ita l S ta f f"  s h o u ld  be changed to "o u r  
o p i j i io n " . The name o f  a l l in v e s t ig a to rs  s h o u ld  be added to  the  
consen t fo rm  and  a stam ped a d d rs s e d  enve lope sh o u ld  be enclosed so 
th a t  p a re n ts  can send  th e  te e th  to  the  H o s p ita l.  These am endm ents 
sh o u ld  be made and  th e  p ro to c o l s h o u ld  be s e n t to  th e  C ha irm an f o r  
a p p ro v a l. The  Com m ittee d id  n o t g iv e  a p p ro v a l f o r  e x tra c t io n  o f 
te e th  in  th is  p ro je c t.

The  Committee w o u ld  be g ra te fu l i f  y o u  w o u ld  in fo rm  them o f  the  
: p ro je c t and  a n y  e th ic a l p rob lem s en cou n te re d  w hen  
om ple te .

(jflainnan
A re a  D en ta l E th ics  Com m ittee



APPENDIX F:
Parent's consent form

UNIVERSITY OF GLASGOW DENTAL HOSPITAL AND SCHOOL 
DEPARTMENT OF CHILD DENTAL CARE 

378 S a u c h ie h a ll S t r e e t ,  G lasgow  G2‘ 3JZ 
(041 -  332 7020 E x t 217)

A NEW PROCEDURE FOR THE REMOVAL OF TOOTH DECAY

T h is  l e t t e r  i s  t o  e x p la in  a new m ethod t o  rem ove decay fro m  te e th .  
In s te a d  o f  rem ov ing  th e  decay  by  d r i l l i n g ,  t h i s  m ethod in v o lv e s  a p p ly in g  
a la s e r  l i g h t  to  th e  to o th  t o  remove th e  d e c a y . U n lik e  th e  d r i l l ,  t h i s  
la s e r  l i g h t  removes o n ly  th e  d e c a y in g  p a r t  o f  th e  to o th ,  and in v o lv e s  no 
v ib r a t in g  n o is e s .

L a se r l i g h t  has been d e v e lo p e d , ap p ro ved  f o r  t h i s  use in  th e  USA. No 
adverse  e f f e c t s  have been o b se rve d  o r  r e p o r te d .  B e fo re  t h i s  tre a tm e n t 
can become r e a d i ly  a v a i la b le  in  th e  UK, i t  i s  n e c e s s a ry  to  assess i t s  
e f fe c t iv e n e s s  and success  on a t r i a l  b a s is .  We cure now re a d y  to  o f f e r  
t h is  t re a tm e n t to  a l im i t e d  number o f  c h i ld r e n  who have s u i ta b le  decayed 
te e th .  In  o u r  o p in io n ,  t h i s  i s  a s a fe  and e f f e c t i v e  way to  remove decay 
from  c h i ld r e n s  te e th .

I f  y o u r c h i ld  has a s u i ta b le  decayed to o th  f o r  t h i s  t re a tm e n t,  the n  a 
member o f  s t a f f  w i l l  e x p la in  t h i s  p ro c e d u re .  Y our c h i ld  may’ be o f fe r e d  
an in je c t io n  to  a n a e s th e t is e  th e  to o th  and th e  decay w i l l  be removed as 
f a r  as p o s s ib le  w ith  th e  a p p l ic a t io n  o f  t h i s  la s e r  l i g h t .  A f i l l i n g  
w ould th e n  be in s e r te d  in  th e  no rm a l way. T hen , when th e  to o th  i s  shed 
in  due c o u rs e  we w ou ld  be g r a t e f u l  i f  you  c o u ld  save i t  c a r e f u l l y  and 
b r in g  i t  back o r  p o s t  i t  t o  The D e pa rtm en t o f  C h i ld  D e n ta l Care a t  th e  
D e n ta l H o s p ita l .  In  th e  e v e n t o f  th e  t o o th  n e e d in g  to  be e x t ra c te d  
p le a s e  ask  th e  d e n t is t  t o  save i t  and send i t  to  th e  D epartm ent o f  C h ild  
D e n ta l Care a t  th e  above a d d re s s . When you  r e tu r n  th e  t o o th ,  p le a s e  do 
so in  th e  stamped add re ssed  e n ve lo p e  p ro v id e d  m arked "L a s e r  p r o je c t " .

P lease  c o n ta c t  th e  C h ild  D e n ta l H e a lth  D e p a rtm e n t i f  th e re  a re  any 
p rob lem s f o l lo w in g  t re a tm e n t .

I f  you a re  a g re e a b le  to  y o u r  c h i ld  r e c e iv in g  t h i s  t re a tm e n t p le a s e  
in d ic a te d  t h is  b y  s ig n in g  th e  s ta te m e n t b e lo w .

Yours s in c e r e ly

Dr J S R e id  D r S C reanor D r G A n s a r i

I  have u n d e rs to o d  and re a d  th e  above and t h i s  p ro c e d u re  has been 
e x p la in e d  to  me.

I  ag ree to  my c h i ld  ............................................................. r e c e iv in g  t h i s  t re a tm e n t.

P a re n t/G u a rd ia n  Name ( i n  b lo c k  c a p i t a ls )  ........................................................................

Address .......................................................................................................................................................

Telephone No .............................................................................................

S igned .............................................................................................. D ate
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APPENDIX G:
Clinical proforma

THE UNIVERSITY OF GLASGOW 
DEPARTMENT OF CHILD DENTAL CARE AND ORAL SCIENCES 

CLINICAL TRIAL OF CARIES REMOVAL USING DRILL/ND:YAG LASER IN PRIMARY
TEETH

Surname :
Date of Birth: 
Age at this visit:

Initials' GDH Case Record No:
Sex* Date*
Serial Number: Group (Cont./Exp.):

Number of tooth (FD\)Y Radiographic Score of the Surface: | |
1. Periapical 0. Sound 4. Dentine and Pulp
2. OPT 2. Enamel 5. Restored
3. Bite Wing 3. Dentine

Anxiety Scores before treatment: | |
1. Definitely Negative
2. Slightly Negative
3. Slightly Positive
4. Definitely Positive
Past Dental experience: i---1

1. Restoration
2. Extraction:
3. None

caries Removal technique: I I
1. Drill----------------------------- 1---1
2. Laser

Caries Removed Completely: | |
1. Yes
2. No

Complain during treatment | |
1. Yes 2. No 1---1

Pulp assessment Bef/aft Trea
1. Ethyl Chloride
2. Electric Pulp Test
3. Clinical Condition (N/A)

ment:

Cavity Size:
1. Small
2. Medium
3. Large

□ Time Taken for Caries Removal:

Time Taken for Restoration:

Turbine Used for Access: I I
1. Yes 1--- 1
2. No

PulpalTreatment: | 1 Cavity class: I I
0. None 4. Pulpectomy
1. Indirect Pulp Cap 5. Extraction
2. Direct Pulp Cap
3. Pulpotomy

Local Anaesthesia:
1. Yes
2. No

Isolation: | |
1. Rubber Dam
2. Cotton Roll

Treatment order: I I 
1. Laser first 2. Drill first

Patients attitude Score After Treatment: I I
1. Definitely Negative 3. Slightly Positive
2. Slightly Negative 4. Definitely Positive

□ Hand Excavator used: | |
1. Yes 2. No

Restoration (6/12) RA/: | I
1. perfect
2. leaked
3. lost
Radiographic View (6/12):
1. Normal
2. Abnormal

□
Pulpal Response (1/12) after treatment Pulpal Response(6/12 & 12/12) after
1. Ethyl Chloride
2. Electric Pulp Test
3. Clinical Condition(N/A)

1. Ethyl Chloride
2. ElectricPulp Test
3. Clinical Condition(N/A)

Date of extraction/exfoliation: 
Date tooth Received:

Tooth Removal: [ | Pathology report: | |
1. Extraction 1. Normal
2. Exfoliation 2. Abnormal
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