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INTRODUCTION



Summary

M
any epileptologists believe that the new antiepileptic drugs as 

a group constitute a major advance in the treatment of 

epilepsy. Even their fiercest proponent, however, could not 

convincingly argue that they are the ideal treatment for all patients with 

epilepsy. It is widely accepted that if the ‘magic bullet’ for epilepsy exists, then 

we have still to find it. Given that the development of new antiepileptic 

compounds is an expensive, time-consuming gamble, then it may be more 

beneficial to expend our energies on a quest for better ways of using those 

compounds already available. Combination therapy is commonplace in other 

conditions such as hypertension, Parkinsons disease, cardiac failure, or 

infections such as tuberculosis, and there should be no reason why specific 

treatments should not be combined with particular efficacy in the treatment of 

epilepsy.

Polypharmacy with antiepileptic drugs (AEDs) has fallen out of favour in 

recent times. For some years, the prevailing opinion has been that AED 

combinations merely maximise the incidence of drug-related adverse events 

while conferring little benefit in terms of seizure control. While this may have 

been true of the established drugs, phenytoin, carbamazepine, and valproate 

we should be open to the possibility that the newer AEDs are more suited to 

use as polypharmacy.

We know that the newer AEDs have different mechanisms of action, have 

fewer pharmacokinetic interactions, and cause less sedation than their older 

counterparts, while pre-clinical trials would also suggest that they are more



specific in their actions. These qualities may suggest that there will be a 

reduction in the frequency and / or severity of pharmacodynamic interactions 

when they are used simultaneously.

Aside from chance observation, how else can we begin to plan our treatment 

combinations? The results of basic in-vitro research may suggest certain 

possibilities, but these will only be relevant in our clinics if we are aware of the 

key issues involving each new AED. Most importantly:

• What is/are the relevant mode(s) of action of each drug?

To anticipate pharmacodynamic interactions and therapeutic synergy, we 

need to have a comprehensive view of the actions of each individual drug. For 

example, vigabatrin is known to inhibit GABA-transaminase, but what changes 

does it exert on the metabolism of glutamate? Does it have other important 

effects on GABA? Remacemide, another AED in development was known to 

be a non-competitive n-methyl-d-aspartate (NMDA) receptor antagonist, but 

recent evidence has proven its effect on sodium channel conductance. What 

effect will it have on the GABAergic system?

Even once we have a fuller picture of each drug’s neurochemical effects (and 

we cannot even do this convincingly for those drugs that are licensed in the 

UK!) then how do we proceed in planning the treatment of refractory epilepsy? 

Should we combine drugs which target the same system (e.g. two GABAergic 

drugs)? Or should we aim to manipulate two different systems (e.g. one drug 

acting on the GABAergic system, and one on the excitatory system)?

• Are there any pharmacodynamic or pharmacokinetic interactions between

2



the two drugs? Are these effects beneficial or deleterious?

The answer to this can only be gleaned from proper testing during preliminary 

clinical trials. Each new AED firstly has to undergo clinical trials as add-on 

therapy; pharmacokinetic interactions are usually picked up at this relatively 

early stage of investigation. During each trial, it may also be rational to carry 

out meta-analyses to investigate which co-therapies are particularly well or 

poorly tolerated. Despite the relative ease with which this might be 

accomplished in this age of computerisation, no such analyses have been 

carried out (or at least not been published!) for any of the emergent 

treatments, and possible reasons for this will be discussed later.

Once both questions are satisfactorily answered, and we suspect that a 

particular combination of drugs may have some particular merit, then further 

testing against appropriate controls will be required. The difficulties involved 

in this will be addressed.

The experiments described in this thesis investigate different aspects of some 

of the newer AEDs. Animal experiments are used to investigate the 

neurochemical actions of remacemide, gabapentin, tiagabine, and vigabatrin 

at varying doses with particular emphasis on the GABA shunt. Following the 

clinical observation of good additive effect with combined tiagabine and 

vigabatrin, the same parameters were used to look at this particular 

combination. Culture of rat astrocytes and neurones are used to delineate the 

dose-related effects of vigabatrin on GABA uptake, a phenomenon previously 

described in our laboratory. The specific combination of vigabatrin and

3



tiagabine is also used to search for additive or synergistic effects on this 

system.

One set of double-blind clinical studies attempts to investigate interactions 

between remacemide and the established AEDs, while another investigates 

the cognitive effects of add-on gabapentin.

The issues faced by clinicians in the formation of a rational plan for AED 

polypharmacy are discussed, and the scope for further investigation is 

explored.

4



New antiepileptic drugs - the Search For Synergy

introduction

Epilepsy is a common neurological condition, with a lifetime prevalence of 

between two (Goodridge and Shorvon 1983a, Goodridge and Shorvon 

1983b), and five (Shorvon 1990) percent of the general population, and a 

point prevalence of between 4 and 80 per 1000 (Brodie and Dichter 1996). 

There are an estimated fifty million cases world-wide, and even today the 

disease remains both disabling and stigmatising (Shorvon 1990). Even in the 

best centres, full seizure control is not guaranteed; most recent studies still 

suggest that around 30% of all patients will be inadequately controlled when 

using maximum tolerated doses of currently available AEDs (Beghi et al 1986, 

Schmidt 1984, Brodie and Dichter 1996).

Epilepsy has been recognised as a clinical entity for thousands of years, the 

name deriving from the ancient Greek word epilambanein meaning ‘to seize’ 

or ‘to attack’, and should correctly be regarded not so much as a disease, but 

as a symptom with myriad causes. The dysfunction which leads to clinical 

seizure activity may arise as a result of some primary, local event such as 

traumatic damage, inflammatory change or ischaemic events, or there may be 

an innate predisposition to seizure activity by virtue of a genetically-driven 

change in neuronal membrane activity. The relative contributions of nature 

and nurture to the ictal tendency will vary from patient to patient. The 

excessive discharge which is the root cause of the ictal phenomenon may 

remain localised, producing partial seizures, or may spread, producing 

generalised seizures.
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The earliest writings on epilepsy date back to the Babylonians and the 

Chinese in 700 BC (Kinnier Wilson and Reynolds 1990, Lai and Lai 1991). 

Although early civilisations such as the Babylonians correctly associated 

epilepsy with physical illness such as head trauma (Gross 1992), the disorder 

was more usually ascribed to forces as irrelevant as evil spirits or lunar 

phases. Cautery, skull trephination, dietary manipulation, phlebotomy and 

good old-fashioned exorcism were therefore regarded as reasonable

remedies until well past the middle ages.

Despite the ready availability of scientific explanations for it’s basis, western 

societies continue to harbour a widespread ignorance and superstition about 

epilepsy which is all too familiar to sufferers and their families. At least this is 

an improvement. In ancient times, stigmatisation was endorsed by physicians: 

Pliny’s advice included spitting on afflicted patients to “throw off the 

contagion” (Tempkin 1971), a practice that would hopefully not be condoned 

today!

The first physician to attempt a rational as opposed to supernatural

explanation for epilepsy was Hippocrates in around 400 BC: he considered 

that there was an "excess of phlegm (that) overspilled into the bloodstream" 

(Tempkin 1971a). By the end of the second century, seizures were being 

classified according to their clinical manifestation, and around that time, 

Galen recorded the symptoms associated with the onset of seizure activity, 

calling them ‘auras’ a name by which they still go today. He had tried to fuse

his observations on the nature of auras with the prevailing theories of

interactions between body humours in an attempt to provide answers to the

6



clinical questions that confronted him (Tempkin 1971b).

Probably fuelled by it’s association with divine intervention in the New 

Testament (Gospels of Mark and Luke), the direction of epilepsy management 

in the ‘civilised’ world remained with the clerics rather than the medics right up 

until the Enlightenment. The Middle Ages did not constitute one of medicine’s 

golden eras, and little progress was made in the development of rational 

thinking in terms of epilepsy.

By 1780 Home had recognised the failings of modern medicine to counteract 

the superstitions of the day, and he was part of a general attempt to look 

closer to earth for an explanation of epilepsy aetiology, and a rational basis 

for it's cure. Leuret and Moreau (Gross 1992) disproved the idea that lunar 

phases were a significant factor in epilepsy aetiology, and useful observations 

were made by physicians such as Bright and Todd in linking focal seizures 

with focal central nervous system pathology (Gross 1992). Hughlings Jackson 

was able to relate these observations with the contemporary experiments that 

showed that electrical stimulation of discrete areas of cortex was related to 

specific motor effects. In doing this he was able to state that:

"A convulsion is but a symptom, and implies only that 

there is an excessive and disorderly discharge of nerve 

tissue on muscles” (Jackson 1873)

The cause of seizures was still not well understood, and most authorities 

believed that hysteria and onanism were important factors in the development
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of an ictal tendency. Work by Fritsch and Hitzig (De Villiers 1993) was pivotal 

in establishing the link between epilepsy and localised cerebral pathology. 

The discovery of weak electrical currents from the brains of rabbits and 

monkeys preceded the development of electroencephalography in 1929, and 

with the association of electrical activity and neuronal dysfunction confirmed, 

not only was the organic nature of epilepsy asserted, but the development of 

animal models would allow for more efficient preclinical testing of potential 

AEDs.

Despite the proven organic causes of this common disorder, the social stigma 

which still surrounds epilepsy is among the many factors which leads to the 

perception of disablement of some epilepsy patients. Surveys have shown 

that even among contemporary physicians, there is an erroneous belief that 

(Beran et al 1981) people with epilepsy lose more time off work than non- 

sufferers, and that they would rather their children did not play alongside 

children with epilepsy (admittedly, this latter answer may reflect a desire not 

to see their children’s friends afflicted by epilepsy).

The continued stigma is as much as anything testament to the relative lack of 

efficacy and imperfections of the established agents. As will be discussed in 

later chapters, the treatment of seizures has advanced enormously in recent 

years, and in the space of around eighty years we have progressed from 

using glorified sedatives to using specifically designed complex antiepileptic 

molecules. We have entered a new era in the treatment of epilepsy.
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A brief history of antiepileptic drug treatment

Even while Hippocrates was trying to rationalise the condition, a regime of 

drugs and dietary manipulation was formulated to treat the disease. The 

(then) rational treatments were placed alongside (still) superstitious remedies: 

the former suited for those rich enough to afford the considerable costs, the 

latter to give the impoverished masses a quick, inexpensive attempt at cure. 

In many different cultures, skull trephination was carried out in an attempt to 

let ‘evil spirits’ escape from the skull (Gross 1992).

The passage of time from ancient times to the mid eighteenth century saw no 

real advance in the treatment of epilepsy. Many animals were sacrificed at 

one time or another in an attempt to provide body parts which would abate 

seizure activity. An unhealthy (and rather unappetising!) interest in other 

species’ genitals was demonstrated for their suggested pharmacological 

properties. Fortunately for the seals, hippopotami, hares, boars and rams 

(among others), the antiepileptic effect of their pudenda has not been proven, 

and their use is thankfully not routine in today’s epilepsy clinics.

Even well into the nineteenth century, the development of rational treatments 

for epilepsy lagged some way behind the knowledge of epilepsy 

pathophysiology. Silver nitrate was commonly used in hospices around 

England, but it was not until the late 19th century that the first steps towards 

effective anticonvulsant pharmacology were made. Working on the 

assumption that epilepsy was a manifestation of either hysteria or sexual 

frustration, bromide salts were prescribed. These were a mixture of 

potassium, sodium and ammonium bromide, and they did, admittedly, possess
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previously unprecedented anticonvulsant properties according to Sir Charles 

Locock’s presentation to the Royal Medical Chirurgical Society in 1857 

(Sieveking 1857), and by the last quarter of the 19th century, 2.5 tonnes of 

bromide salts were being used annually at the National Hospital for Nervous 

Diseases (Holmes 1954). Clouston in the introduction to his open trial of 

bromide salts in 1868, included an elegant plea for evidence-based medicine.

"What asylum physician ... has any approach to a feeling of 

certainty that drugs will have the effect he anticipates? ...

We have statements of individual authors in regard to the 

right mode of giving some drugs, but after all these are 

merely opinions founded on most limited observations, and 

lack the exactitude of research, and the numerical basis on 

which alone scientific truth is based"

This early study of what has transpired to be the first largely GABAergic drug 

showed not only a reduction in seizure frequency, but also changes in seizure 

morphology on treatment with up to 50 grains of bromide salts daily. In 

asylums round the country, bromide-induced stupor and skin abcesses were 

thought to be preferable to poorly controlled epilepsy, but were enough to 

render the bromides obsolete once a we 11-tolerated alternative had been 

discovered.

1912 saw the first use of the sedative barbiturates in epilepsy thanks to a 

chance observation by Hauptmann (Cereghino and Penry, 1995). Although
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less sedative than bromide salts, the barbiturates are far from ideal as AEDs, 

but they remained the only man-made compounds in use as first-line 

anticonvulsants, unrivalled for almost 30 years. With the work of Putnam and 

Merrit on animal seizure models, the modern age of epilepsy treatment had 

begun.

Phenytoin is an effective anticonvulsant drug which was introduced in 1938. 

Phenytoin possessed previously unrivalled antiepileptic properties without 

being overtly sedative, and this advance in the therapy of epilepsy helped to 

fuel a wave of optimism. The emphasis for epilepsy care was to move from 

colonisation to integration. Patients progressed from being ‘epileptics’ to 

being 'people with epilepsy’ and education programmes were set up to 

remove the stigma which accompanied the diagnosis of seizure disorder. It is 

testimony to its efficacy that despite its well recognised adverse event profile, 

phenytoin remains one of the most commonly used AEDs in many parts of the 

developed world, particularly the USA.

After almost 30 years of relative quiescence, following the introduction of 

phenytoin, the 1960's saw the introduction of carbamazepine and sodium 

valproate which, for the moment at least, are the two first-line antiepileptic 

drugs in the UK in terms of both tolerability and efficacy.

Some benzodiazepines, particularly clobazam and clonazepam, did gain in 

popularity in the mid-seventies, although their use was limited by the 

tolerance which develops even with short-term use. Detailed discussion of the 

benefits and drawbacks of each antiepileptic drug will be covered in the next 

chapter, putting the search for new anticonvulsant compounds in context.
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By the late seventies, it was still apparent that more effective, more tolerable 

antiepileptic drugs were still needed. The increasing knowledge of the role 

played by amino acids in neurotransmission allowed us to search for drugs 

with discrete, well defined neurochemical actions. The majority of the newer 

AEDs are a product of this search, and we may at last be moving away from a 

reliance on glorified sedatives which constitute the established 

anticonvulsants. We can only hope that any increased specificity of the new 

generation of AEDs will maintain or improve anticonvulsant efficacy while 

avoiding the array of non-specific side effects associated with the older 

agents. Four new AEDs have been granted a licence for use as add-on 

therapy in the UK in the last 5 years, and there is an unprecedented range of 

compounds which are awaiting further clinical and pre-clinical trials to support 

their claims as effective anticonvulsants. This relatively rapid progress 

contrasts with the slower advances of bygone years (Figure 1), and there may 

be as many as eleven new AEDs on the market by the end of the century 

(Brodie and Dichter 1996) - giving us a potentially bewildering array of 

therapeutic options for patients with epilepsy.
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Seizure classification

It is pertinent to discuss seizure classification at this point, prior to the 

discussion of each anticonvulsant agent. Understanding the indications for, 

and the failings of, each AED depends in part on the definitions of seizure 

type. In 1981, the International League Against Epilepsy (ILEA) devised in a 

classification which relied on the symptomatology and third party witness 

history of seizures. Eight years later an updated classification was adopted 

by the ILAE (Commission on Classification and Terminology of the ILAE 1989) 

providing a more complex and unyielding classification of seizures which has 

largely superseded the 1981 version.

The 1989 version takes account of syndromic classifications and possible 

aetiologies, and creates a rigorous distinction between epilepsies that are 

idiopathic (“no predisposing cause other than an hereditary disposition”), 

symptomatic (“the consequence of a known or suspected disorder of the 

CNS”), and cryptogenic (“presumed to be symptomatic, but often lack well 

defined electroclinical characteristics”). Within the localisation-related 

epilepsies, the classification also described variants dependent on their 

proposed anatomical localisation. This classification was not intended to be 

exhaustive, and with constant updating of the technologies available for 

structural, electrical and metabolic imaging, our understanding of seizure 

morphology it will undoubtedly require constant updating.
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1 Localisation-related epilepsies and syndromes
1.1 Idiopathic (with age-related onset)

•  Benign Childhood epilepsy with centrotemporal spikes
• Childhood epilepsy with occipital paroxysms
• Primary reading epilepsy

1.2 Symptomatic
• Temporal lobe epilepsies
• Frontal lobe epilepsies
•  Parietal lobe epilepsies
•  Occipital lobe epilepsies
• Chronic progressive epilepsia partialis continua of childhood

(Kojewnikow’s syndrome)
•  Syndromes characterised by seizures with specific modes of precipitation 

(eg reflex epilepsies)
1.3 Cryptogenic

•  As in 1.2, but lack of aetiological evidence.

2 Generalised epilepsies and syndromes
2 .1 Idiopathic (with age-related onset - listed in order of age of onset)

• Benign neonatal familial convulsions
• Benign neonatal convulsions
• Benign myoclonic epilepsy in infancy
• Childhood absence epilepsy
•  Juvenile absence epilepsy
• Juvenile myoclonic epilepsy
•  Epilepsy with grand mal seizure on awakening
• Other generalised epilepsies
• Epilepsies precipitated by specific modes of activation

2.2 Cryptogenic or symptomatic (in order of age of onset)
• West syndrome (infantile spasms)
• Lennox-Gastaut syndrome
• Epilepsy with myoclonic astatic seizures
• Epilepsy with myoclonic absences

2.3 Symptomatic
2.3.1 Non-specific Aetiology

• Early myoclonic encephalopathy
• Early infantile epileptic encephalopathy with suppression burst
• Other symptomatic generalised epilepsies not defined above

2.3.2 Specific syndromes
• Seizures as presentation of other diseases

3 Epilepsies and syndromes undetermined to be focal or
generalised

3 .1 With both focal and generalised seizures 
Neonatal seizures
Severe myoclonic epilepsy in infancy 
Epilepsy with continuous spike-waves during S W  sleep 
Acquired epileptic aphasia 
Other undetermined epilepsies not mentioned above

3.2 Without equivocal features of generalisation or focal seizure

4 Special syndromes
4.1 Situation-related seizures

• Febrile convulsions
• Isolated seizures or isolated status epilepticus
• Seizure only in the presence of an acute metabolic or toxic event

1989 ILAE Classification of seizures and syndromes
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Characteristics of seizures with anatomical localisation

• Temporal lobe epilepsies

Temporal lobe syndromes characteristically cause a range of seizure types 

from simple partial (SP) seizures, complex partial (CP) seizures or secondary 

generalised seizures. Onset is frequently in childhood or young adulthood, 

and there is often a history of febrile convulsions and / or a family history of 

epilepsy.

SP seizures typically involve autonomic or psychic symptoms without 

disturbance of consciousness. These may take the form of auditory or 

olfactory hallucinations. An epigastric ‘rising’ sensation is frequently the first 

symptom to be reported.

CP seizures often begin with motor arrest which is quickly followed by 

primitive automatisms. Other more complex automatisms may follow. Attacks 

usually last longer than 1 minute, and recovery is gradual with post-ictal 

confusion and subsequent amnesia. EEG in temporal lobe epilepsy may be 

normal, or may show slight asymmetry of the background activity. Temporal 

spikes, sharp waves, or slow waves may be bilateral or unilateral, and may be 

better defined by intracranial recordings.

Seizures from specific areas.

Amygdalo-hippocampal seizures (mesiolabial limbic or rhinencephalic) 

Hippocampal seizures are the most common, with features as described 

above except that auditory hallucinations are uncommon. Seizures are 

characterised by rising epigastric discomfort, nausea, autonomic signs and



symptoms such as belching, borborygmi, pallor, facial flushing, pupillary 

dilatation, fear, panic, and olfactory-gustatory hallucinations.

Lateral temporal seizures 

Epileptic foci in this area causes simple seizures characterised by auditory 

hallucinations, illusions, or dreamy states. Visual misperceptions or language 

disorders may occur where the language dominant hemisphere is involved. 

These may progress to complex partial seizures as described above. EEG 

occasionally localises temporal spikes which are most prominent in the lateral 

derivations.

• Frontal Lobe epilepsies.

Epileptic foci in the frontal lobe cause one or more types of SP, CP, or 

secondary generalised (SGTC) seizures. Seizures are frequently nocturnal 

and may be easily mistaken for psychogenic seizures. Status epilepticus is 

more common than with other areas of abnormality.

Frontal lobe foci may be suggested when seizures are short, involve a rapid 

recovery, or may undergo rapid secondary generalisation. Motor 

manifestations are prominent and may be bizarre, with complex gestural 

automatisms frequent at the onset of seizure. If the discharge is bilateral, then 

falls are frequent. Secondary generalisation is more common than with 

temporal lobe foci, and tends to occur more rapidly.

Seizures from specific areas.

0 Supplementary motor seizures
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Patterns of this seizure type involve focal tonic seizures with vocalisation, 

speech arrest, and fencing postures.

0 Cingulate

Cingulate seizures tend to be CP seizures with complex motor gestural 

automatisms at onset. Autonomic signs occur commonly as do changes in 

mood and affect.

0 Anterior frontopolar region

Patterns in this area include forced thinking or initial loss of contact and 

adversive movements of head and eyes. These may evolve into contraversive 

movements and axial clonic jerks, with falls and autonomic signs.

0 Orbitofrontal

The characteristic pattern is of CPS with initial motor and gestural and motor 

automatisms, olfactory hallucinations, illusions and autonomic signs.

0 Dorsolateral

Usually a tonic seizure pattern, less commonly clonic seizures with versive 

head and eye movements and speech arrest.

Opercular

Include mastication, salivation, swallowing, laryngeal, speech arrest, 

autonomic symptoms. Secondary sensory changes may consist of numbness 

particularly in the hands. Gustatory hallucinations are particularly common.

0 Motor cortex

Mainly characterised by simple partial motor epilepsies. The nature of these 

will vary depending on the size and topography of the area involved. In the 

pre-rolandic area, there may be speech arrest, vocalisation, dysphasia, tonic
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clonic movements of the contralateral facial muscles, or swallowing. Foci in 

the rolandic area cause partial motor seizures without march, particularly 

occurring in the contralateral extremities. Todd’s paralysis is frequent.

In frontal lobe epilepsies, the EEG may well be normal, or may show spikes 

sharp waves or slow waves, unilaterally or bilaterally. Intracranial recordings 

may provide more information.

• Parietal lobe epilepsies.

Foci in this region usually cause SP and SGTC seizures. CP seizures may 

evolve from SP seizures with outward spread. Seizures are predominately 

sensory, with positive or negative phenomena which may be confined or may 

spread in a Jacksonian manner. The areas usually affected are those with the 

largest cortical representation (hand, arm, face), and there may be lingual 

crawling, stiffness or coldness affecting the face bilaterally. Occasionally 

abdominal sinking, choking or nausea may be reported, and rarely there may 

be sensation of pain. Parietal visual symptoms may consist of formed 

hallucinations and visual distortions. Inferior parietal lobe involvement may 

cause negative phenomena such as severe vertigo or disorientation in space. 

Paracentral involvement may cause genital sensations, and foci in this area 

have a greater tendency to secondarily generalise.

Occipital seizures

Seizures from this area are usually characterised by SP and SGTC seizures, 

although CP seizures may occur with outward spread. Clinically the seizures
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usually involve visual manifestations which may be negative (scotoma, 

hemianopia, amaurosis) or more commonly positive (sparks, flashes, 

phosphenes). Perceptive illusions may involve a distortion of perceived 

distance, shape, or size of objects. Illusional and hallucinatory visual seizures 

involve discharges at the temporoparieto-occipital junction. Versive 

movements may occur. Frontal lobe seizures may be mimicked if forward 

spread occurs to the suprasylvian convexity or the mesial surface.
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The physiological and biochemical basis of seizures

T
he last forty years have seen enormous advances in our 

understanding of neurotransmission, but despite this the basic 

mechanisms underlying epileptic seizures are still to be fully 

defined. Elucidation of the biochemical defects and effects 

surrounding epileptogenesis has helped to point the way towards newer more 

effective AEDs, and in the future will be essential in highlighting the most 

promising directions for development of future therapies.

Normal neurotransmitter actions

Amino acid neurotransmitters have long been recognised as being of import in 

the propagation and cessation of epileptic activity (Horton 1989). In terms of 

their role in neurotransmission, amino acids can be subdivided into those that 

are excitatory (glutamate, aspartate) and those that have inhibitory actions 

(GABA).

Normal ionic fluxes in neurones.

When an excitatory input arrives at a section of neuronal membrane, the 

membrane potential initially shifts from it’s resting value of -70mV. If the sum 

of all co-incident excitatory post-synaptic potentials (EPSP) is sufficient to 

diminish the membrane potential to around -60mV (the ‘threshold potential’), 

there is a resultant large increase in both Na+ influx and K+ efflux, which is a 

requirement for the generation of a propagated action potential.

Inhibitory factors can diminish the effect of an EPSP, via an increase in Cl"
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conductance which causes the membrane potential to become more negative 

(hyperpolarise). This hyperpolarisation is a result of what is (unsurprisingly) 

termed an inhibitory post synaptic potential (IPSP).

In addition to these ‘fast’ responses in ionic conductance, there are slower, 

neurotransmitter-dependent responses which occur as a result of electrical 

stimulation.

Gamma aminobutvric acid (GABA)

GABA concentration has been shown to be highest in the hypothalamus, 

globus pallidus and substantia nigra (Fahn 1976, Enna 1981). Although 

activation of GABAa receptors inhibits individual neurones, it has been shown 

that the relationship between GABA and the prevention of convulsions is far 

from uniform (Gale 1989, Gale 1992), and while in some brain regions 

localised enhancement of GABA levels may be proconvulsant (eg. pontine 

reticular formation), depletion of GABA in others may not affect seizure 

activity (eg. substantia nigra) (Gale 1992).

GABA formation and metabolism

GABA is formed by the decarboxylation of glutamate (Figure 2), a process 

catalysed by 2 isoforms of the enzyme glutamic acid decarboxylase (GAD) 

(Martin and Rimvall 1993).
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Other routes of synthesis are thought to be of little import in neurological 

tissues under normal conditions, and the immunocytochemical staining for 

GAD is used as a marker for GABAergic neurones (Snead 1983).

As with other decarboxylase enzymes, GAD requires the presence of a 

cofactor, pyridoxal phosphate, for maximal activity. Physiological changes in 

glutamate and adenosine nucleotides may alter enzyme activity in vivo, 

although in mammals, there is no feedback inhibition of GAD activity by GABA 

concentrations (Horton 1989).

It has been shown that GAD undergoes calcium-dependent binding to cell 

membranes, which is itself inhibited by Cl', Zn2+, and sulphydril agents 

(Horton 1989), although the clinical significance of this is unclear. GABA 

release occurs in response to electrical and K+ stimulation of GABAergic 

neurones (Horton 1989). This release is calcium-dependent and blocked by 

tetanus toxoid. An increase in extracellular GABA concentrations, or the 

presence of GABA agonists, inhibits further release of GABA (Horton 1989), 

suggesting that autoreceptors play a part in regulating the extent of 

GABAergic inhibition.

There are two main types of GABA receptors, GABAa and GABAb (Enna and 

Gallagher 1983). Activation of the GABAa receptor leads to Cl' influx into the 

cell with associated hyperpolarisation and resultant diminishment of epileptic 

activity (Enna and Gallagher 1983).

Each GABAa receptor requires five subunits to combine, forming a chloride- 

selective ion channel (Olsen 1982, Levitan et al 1988, Olsen and Tobin 1990), 

with additional binding sites for BDZs (Ehlert 1986), barbiturates (Willow and
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Johnston 1983), picrotoxin (Olsen 1981), penicillin (Twyman et al 1992), and 

neurosteroids (Majewska 1986). At least thirteen different GABAa receptor 

subunit isoforms have been described, although fewer than ten are likely to 

be of importance (McKernan and Whiting 1996). Many GABAa receptor 

subtypes are found only in selected regions of the brain (MacDonald and 

Kelly 1993), which may account for each drug’s specificity of action.

Less is known about the GABAb receptor. It was initially thought to be purely a 

presynaptic autoreceptor, mediating negative feedback of GABA release from 

the presynaptic neurone. It is now clear that GABAb agonism has other effects 

and it’s physiological role is less clear (Enna and Gallagher 1983).

GABA uptake is undertaken by a structurally-specific high affinity active 

transport mechanism which is present in both astrocytes and neurones 

(Iversen and Kelly 1975) presumably to limit the inhibition mediated by 

synaptic GABA. There are four GABA transport structures described (Borden 

et al 1994), one of which (GAT-1) would appear to be the main site of action 

of known uptake inhibitors such as nipecotic acid. The derivatives also 

demonstrate a lesser inhibition of uptake of GABA by the GAT-3 transporter 

mechanism (Clark and Amara 1994). The transport mechanism is 

temperature-dependent, and requires the presence of extracellular Na+ 

(Borden et al 1994). There is a recognised high correlation between GAD 

activity and the rate of GABA uptake, suggesting that, for neurones at least, 

the extent of GABA uptake is related to the GABAergic activity of the cell 

(Horton 1989).

Once inside the cell, GABA is broken down (Meldrum 1975) by GABA-
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transaminase (GABA-T) to succinic semialdehyde (SSA). Subsequent 

breakdown of SSA occurs via the dehydrogenase enzyme (SSADH), a 

reaction that is preferentially inhibited by sodium valproate (Harvey et al 

1975).

Glycine

Glycine is probably of most importance in inhibiting neuronal firing at the level 

of the spinal cord and brainstem. It’s concentration in grey matter is uniformly 

low, although glycine-mediated inhibition has been reported in some higher 

brain centres, such as the substantia nigra, cerebellum and cortex.

Like GABA, it is known to cause hyperpolarisation via an increase in Cl" 

conductance (Horton 1989), although this effect is mediated by different 

receptors. Glycine is metabolised to serine by serine 

hydroxymethyltransferase (SHMT), and also to glycoxylate by glycine 

aminotransferase. Glycine receptors are selectively antagonised by 

strychnine and other related alkaloids (Horton 1989).

Excitatory Amino Acids

Glutamate and Aspartate

These two dicarboxylic acids have similar kinetics, undergo mutual inhibition, 

and are inhibited by the same structural analogues, indicating that they are 

probably taken up by the same carrier (Figure 3). The metabolism of both is 

tied up with the intermediaries of the tricarboxylic acid cycle: aspartate can be 

formed by transamination of oxaloacetate or from C02 fixation with pyruvate.
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Most of the glutamate available as neurotransmitter is derived from neuronal 

de-amination of glutamine, but it can, however, also be formed by the 

transamination of a-oxoglutarate, or direct amination of oxoglutarate by 

ammonia (Peng et al 1991). Like GABA, glutamate is released by electrical or 

potassium-induced depolarisation. This release is Ca2+-dependent, and is 

inhibited by Mg2+ (Horton 1989, Nicholls and Attwell 1990).

Glutamate receptors may be divided into those that are ionotrophic and those 

that are metabotropic (Watson and Girdlestone 1995). The ionotrophic 

glutamate receptors are further divided by their selective agonists, NMDA, 

kainate and AMPA (Monaghan et al 1989). Activation of these receptors is 

thought to make the channels permeable to Na+, K+ and (in the case of the 

NMDA subtype), Ca2+ (Mayer and Miller 1990). The resultant Na+ influx, Ca2+ 

influx, or K+ efflux is thought to be the basic mechanism by which glutamate 

effects cell death (Watkins and Evans 1981). The metabotropic glutamate 

receptors are G-protein linked (Schoepp et al 1990), and there are currently 

thought to be at least 7 subtypes of this (mGIUi-mGluy) (Watson and 

Gridlestone 1995).

Both glutamate and aspartate are removed from the synapse into glial cells 

and neuronal dendrite endings via a high affinity, sodium dependent uptake 

system (Drejer et al 1982). In glial cells, glutamate is converted to glutamine, 

via glutamine synthase (GS) which is then transported out of the astrocyte 

and taken up by neurones, and again de-aminated to form glutamate: the so- 

called glutamine cycle (Watkins and Evans 1981).
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Abnormalities demonstrable in epileptic brain tissue

The exact delineation of the cause and effects of epileptic activity on 

neurones’ structure and function has still to be carried out. The picture is still 

confused, with no real cohesion between proponents of various theories 

involving disturbance of neuronal networks, altered amino acid metabolism, or 

genetic membrane abnormalities.

It is sensible to assume that different seizure types have, at their root, 

different biochemical and pathological changes, and for this reason, these 

seizure types will be considered separately. Gloor and Fariello (1988) in their 

work on feline generalised epilepsy were supportive of the notion that the 

underlying abnormalities in primary generalised epilepsies were different from 

those in focal seizures.

The Focal Epilepsies

Focal seizures are currently better understood than generalised seizures, and 

in localisation-related seizures there are thought to be two different primary 

cellular events, which result in the abnormal activity that produces either ictal 

or interictal discharges (Dingledine et al 1990, Meldrum 1988). The distinction 

between the two types of discharges is made, by definition, on whether it is 

sustained enough or severe enough to produce any clinical sequelae.

Burst firing in single neurones is the basic electrical event underlying the 

appearance of interictal discharges on EEG, having been observed in acute in 

vitro models, as well as in chronic seizure foci in animals and man (Meyer et 

al 1986). The cellular mechanisms responsible for these episodes are
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discussed below. During interictal discharges, intracellular recording has 

shown there to be a paroxysmal depolarising shift (PDS) in the resting 

membrane potential, consisting of a short but sustained period of 

depolarisation, which facilitates a burst of action potentials (Ayala et al 1970). 

Inhibitory interneurone input (Meldrum 1988), then brings about a phase of 

hyperpolarisation which helps to prevent the rapid re-occurrence of a further 

PDS. The PDS in each individual neurone contributes to the extracellular field 

potential which manifests as the interictal spike on surface EEG tracings 

(Matsumoto and Ajmone-Marsan 1964).

Horizontal spread of these interictal events within the same class of neurones 

can result in the progression from involvement of a single cell to multiple burst 

firing within the same neuronal aggregate (Meyer et al 1986). Inhibitory 

mechanisms are responsible for limiting the space and time over which this 

recruitment can continue (Meldrum 1988). These inhibitory mechanisms will 

certainly be synapse mediated (Traub et al 1987), and may also involve gap 

junctions between neurones, extraneuronal ionic changes, and ephaptic 

spread (Dichter and Ayala 1987).

Interictal firing spreads to a variable degree, but the rate of spread increases 

as the abnormal events become more intense and rhythmically recurrent 

(Meldrum 1988). The strength of local inhibitory control mechanisms is an 

important controlling factor determining the rate and extent of any spread.

In projection areas, during this initial activity, there is enhanced inhibitory tone 

which inevitably fades with repetition. Where seizure activity occurs, 

excitatory neurotransmission is predominant, resulting in synchronised burst
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firing in subsequent synaptically-linked neuronal aggregates (Meldrum 1990). 

Collingridge and Singer (1990) asserted that this spread relies on the 

phenomenon of frequency-dependent inhibitory fade.

Where discharges fail to progress to a stage where clinical seizure activity 

occurs, then the event is an interictal discharge. The termination phase of this 

episode involves the onset of sustained hyperpolarisation (Meldrum 1990), 

mediated by inhibitory processes. Why only a proportion of interictal 

discharges progress to frank seizure activity is, like many aspects of basic 

epileptogenesis, a mystery, but it may be the result of frequency-dependent 

depression of local inhibition (Prince 1985).

Disinhibition has two results. Not only will the interictal discharge be 

propagated to the neuronal aggregate, but there is a marked reduction in the 

duration of the hyperpolarisation phase. Increased excitation and decreased 

inhibition combine to give perfect conditions for an increase in frequency of 

interictal discharges and an increase in their propagation. This situation has 

been likened to a fusion of successive PDSs with resultant lack in any 

intervening repolarisation (Meldrum 1988). Ayala et al (1970) characterised 

the prolonged depolarisations with accompanying bursts of action potentials. 

With accompanying disinhibition, this abnormal electrical activity will be 

sufficiently sustained to propagate to the descending motor tracts, resulting in 

clinical seizure activity.

Burst firing, as defined above, could occur in several ways. It may either be 

the result of activity in an abnormal ‘epileptic’ neurone, or may occur in a 

normal neurone either as a response to abnormal input at the nerve terminal-
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dendrite interface, or secondary to an alteration in the local ionic micro­

environment (Meldrum 1989).

Other theories on the basic mechanisms of epileptogenesis include, as a 

prerequisite, some event causing damage to the affected brain tissue. This 

event may be ‘subclinical’ such as minor head injury, or neonatal hypoxia, and 

may excite no clinical interest at the time of occurrence. Pathological 

examination of epileptic foci in human brain has shown some underlying 

neurodegeneration (Schwartzkroin 1994), and this may be a feature of all 

secondary epilepsies. Meldrum (1989) described the appearance of 

histological changes arising from cellular microdysgenesis, congenital 

vascular malformations, neoplasms, ischaemia / infarction, traumatic brain 

lesions, infarcts, abscesses, and cysts. Also implicated was the diffuse 

degeneration associated with diverse neurological disorders, such as 

Huntington’s chorea and Alzheimer’s disease

Whether localised injury preferentially affects GABAergic neurones is a point 

of some debate. There is evidence in animals to suggest that, in infancy, 

hypoxia can selectively damage cortical GABA neurones (Sloper et al 1980). 

Ribak et al (1979) showed that local application of alumina gel to cerebral 

cortex in monkeys prompted the appearance of an epileptic focus which 

demonstrated a selective loss of GABAergic nerve terminals. Babb and 

colleagues (1989) on the other hand, showed that neurones staining for 

glutamic acid decarboxylase (GAD) were not selectively affected in human 

epileptic hippocampus.

Ischaemic lesions of the spinal cord have been related to the selective loss of
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inhibitory glycinergic interneurones (Meldrum 1989), a decrease in inhibition 

and resultant spasticity. Potential mediators of this specific cell loss have 

been associated with cellular microdysgenesis, ischaemia / infarction, 

traumatic injury, and focal neoplasia. Meldrum (1989), however, felt there was 

an equal reduction in both excitatory and inhibitory neurones from epileptic 

foci.

Whatever the cause of loss of GABAergic neurones, when their number or 

function is impaired, the balance tips towards excitation, and other neurones 

are predisposed to burst firing (Miles and Wong 1987). When GABAergic 

interneurones can induce adequate hyperpolarisation, the soma is well 

protected against invasion by burst firing and PDSs from the nerve terminal 

dendritic interface (Meldrum 1989). Where GABAergic neurones have 

incomplete input, the reduced hyperpolarisation is not enough to resist 

electrical changes, and somal recordings will show evidence of PDSs and 

burst firing (Schwartzkroin and Wyler 1980). The loss of excitatory neurones 

may be a direct result of seizure activity, as has been shown in electrically 

kindled seizures in animals (Sutula 1990).

Is it possible that a seizure-induced alteration in neuronal glutamate 

sensitivity may also predispose to epileptic activity? Meldrum (1989) 

described secondary phenomena occurring with cell loss induced by local 

neuronal degeneration which may increase the predisposition to spontaneous 

neuronal discharge. Neurones which are postsynaptic to the degenerating 

cells ‘upgrade’ their receptors and show supersensitivity to the 

neurotransmitter which is lacking. The hippocampus of kindled rats will
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demonstrate this under experimental conditions. Kindling-induced loss of 

excitatory pyramidal neurones is followed by supersensitivity of CA1 dendritic 

zones and the dentate molecular layer to excitatory amino acid (EAA) 

neurotransmitters such as aspartate and glutamate (Mody and Heineman 

1987). Interestingly, Louvel et al (1992) found an alteration in responsivity to 

NMDA in slices of neocortices from patients with epilepsy, a finding that would 

be consistent with this hypothesis. This may predispose to an exaggerated 

response to normal extracellular concentrations of EAA, perhaps sufficient to 

precipitate burst firing. There is further evidence to support this theory, where 

neocortex which has been deafferented by undercutting shows an enhanced 

tendency to display epileptiform “afterdischarges” following electrical 

stimulation (Meldrum 1989). Some animal models suggested that the 

development of this supersensitivity develops over a similar length of time as 

can be taken to develop focal epilepsy. In patients developing epilepsy 

secondary to focal pathology, however, the time course is variable and often 

much longer than the time required to upgrade receptors (Meldrum 1989). 

Where synaptic degeneration occurs, adjacent dendrites can ‘sprout’ and 

grow to form new synapses in the vacant spaces. These synapses can 

provide inappropriate input (Meldrum 1989), as discussed below. Neuronal 

degeneration will inevitably lead to some degree of sprouting and 

supersensitivity, and the combination may provide the basis for all 

symptomatic epilepsies (Meldrum 1989).

The use of silver staining techniques shows neuronal changes which are 

universally seen in histologically examined epileptogenic tissue. The
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architecture of the hippocampus and neocortex becomes simplified. There is a 

progressive loss of the complex dendritic trees, with a loss of spinous 

processes. The reasons for this degeneration are unclear, although it may be 

at least in part due to supersensitivity to n-methyl-d-aspartate (NMDA), as is 

observed in electrophysiological studies (Meldrum 1989). Such simplification 

has been observed experimentally, in the region of an alumina-induced 

epileptic focus in the monkey cortex (Ribak et al 1979). How this can occur 

alongside the occurrence of sprouting is not fully understood, and it should be 

said that sprouting is a process which is not specific to epilepsy, having been 

reported in a wide range of other neurodegenerative disorders (Meldrum 

1989).

Simplification of epileptic tissue may correlate with an enhanced tendency to 

develop PDSs, either via an increased instability of the degenerating neurone, 

or an increased susceptibility of the soma to invasion due to electrotonic 

shortening (Meldrum 1989).

The role of glial cells in the development of epilepsy

Glial cells are the predominant cell type in the CNS, outnumbering neurones 

by a factor of ten in mammalian brain (Kimelberg 1983). Around half of all glial 

cells are astrocytes, and these are now subdivided into type I and type II 

astrocytes. Traditionally, as the name suggested, it was believed that glial 

cells were the glue in the CNS, being a sophisticated scaffolding around 

which neurones are draped. At their most sophisticated, astrocytes were 

thought to act out a ‘housekeeping’ role (Montgomery 1994). The evolution of
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astrocyte culture techniques has allowed selective culture of type I and type II 

astrocytes, and thereby permit differentiation of their physiological function. 

Type I astrocytes are the more common, and among other functions, are 

involved in potassium homeostasis. They are known to accumulate amino 

acid transmitters, express receptors for a multitude of neurotransmitters, and 

play a role in calcium signalling (Juurlink and Hertz 1992).

Type II astrocytes, by contrast, demonstrate many properties that are 

traditionally ‘neuronal’ in nature. They have been shown to synthesise and 

take up GABA, and there is evidence that they may release GABA in 

response to glutamatergic stimulation. They possess intense basal glutamine 

synthase activity which may signal that they play a major role in nitrogen 

homeostasis and / or neurotransmitter inactivation (Juurlink and Hertz 1992).

In some brain areas, astrocytes comprise up to half of the total tissue volume 

(Kimelberg 1983), and given the complexity of their role (Montgomery 1994), 

and the frequency with which they appear in the CNS, it would seem 

reasonable to assume that astrocytes play some part in the development of 

epilepsy.

One long-observed characteristic of epileptic pathology is a localised increase 

in the number of fibrous or reactive astrocytes, or gliosis (Meldrum 1990). 

Gliosis is seen in epileptogenic foci and in diffuse degenerative disorders, and 

is known to develop secondary to seizure activity. It has been suggested that 

these reactive astrocytes may be functionally inept, and that they may fail to 

carry out the normal protective ‘housekeeping’ duties of the functional 

astrocyte. Walz (1989) discussed the capacity of the astrocyte to act as a
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“potassium sink”, postulating that any impairment of this capacity could 

theoretically contribute to spontaneous neuronal discharge. Studies of 

astrocyte function in epileptic foci, however, have actually demonstrated an 

enhanced ability to regulate extracellular potassium concentrations (Meldrum 

1989), so the role of gliosis in basic epileptogenesis remains to be evaluated. 

The role of the astrocyte in maintaining and perhaps initiating neuronal output 

is becoming clearer (Juurlink and Hertz 1992). As further work is carried out 

on astrocyte subpopulations, they may be found to have an increasingly 

important part to play in initiation and limitation of seizure activity.

Changing neuronal networks and seizure propagation 

One further approach to the rationalisation of localisation-related seizures 

involves development of theories in changes to neuronal networks. Since the 

days of Gowers, it has been known that seizures beget seizures. Clinical 

experience would suggest that the more epileptic activity that a patient 

experiences, the more chance there is that further seizure activity will occur in 

the future.

Why this should happen is not entirely clear, but two recent histologically- 

based theories have been formed (Shin and McNamara 1994) which may 

explain this tendency.

The normal function of neuronal networks is shown in diagrammatic form 

below. ‘G’ represents the cerebellar granule cell which receives excitatory 

input from the dendrites above. When ‘G’ depolarises, this exerts positive 

effects on the basket cell (‘B’) both directly and indirectly via the mossy cell
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(M ). The basket cell produces inhibitory effects on ‘G’ which causes a 

hyperpolarisation, inhibiting further depolarisation as part of a negative 

feedback loop. In animals with epilepsy, it is known that continued excitotoxic 

stimulation causes degeneration of memory cells, and it is thought that this 

feedback is disrupted in one of two ways (see Figure 5).

1) The dormant basket cell theory

Seizure induced death of ‘M’ leads to a dormancy of basket cells. Any 

excitatory activity by ‘G’ therefore fails to provoke inhibitory input from ‘B’, and 

leaving ‘G’ more susceptible to continued depolarisation following excitatory 

input from synapses.

2) The Mossy Fibre Sprouting Theory

As a response to the loss of M  by exposure to exitotoxins, the mossy fibres 

from ‘G’ sprout and synapse to replace ‘M’s input to ‘G’s dendrites. This 

positive feedback loop, also lacking the excitation of inhibitory basket cells, 

leads to a predisposition towards excessive epileptic activity. Masakuwa et al 

(1992) suggested that the degree of excitability of human hippocampal slices 

is directly correlated with the extent of mossy fibre sprouting seen 

histologically.
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The idiopathic generalised epilepsies

Despite some earlier expectations, we have not yet found a single molecular 

defect which can on its own account for the development of the primary 

generalised epilepsies (PGEs). This section will deal with the evidence of 

specifically disordered neuronal structure and function related to PGE in 

animal models and in their human counterparts.

Given the pattern of distribution of animal seizure models such as the 

audiogenic seizures or the GAERS, and allowing for the strong family 

histories which occur in many cases of PGE, it would be fair to assume that 

any defects which lead to PGE are genetic in origin. The progress in 

elucidation of specific genetic abnormalities which correlate with clinically 

well-defined epilepsy syndromes adds further weight to this assumption.

The pathological processes have been best demonstrated in the absence 

epilepsies, where the ‘spikes’ of the characteristic rhythmic synchronised 

activity on surface EEG represent excitatory postsynaptic potentials 

superimposed on action potentials, and the ‘waves’ represent prolonged 

inhibitory postsynaptic potentials (Gloor and Fariello 1988). In this form of 

primary generalised seizure at least, therefore, inhibitory processes must by 

definition be intact, so the simplistic notions of epilepsy arising from excesses 

of excitation or paucity of inhibition which serve us well in explaining 

localisation-related epilepsies, must (unfortunately!) be laid to rest.

Evidence for qualitative changes in neuronal tissue in the primary

generalised epilepsies.
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Samples of brain tissue prone to epileptic activity have been shown to 

manifest defects in adenosine triphosphate (ATP) hydrolysis mechanisms 

which drive the cell membrane ionic pumps (Grisar et al 1992). In DBA/2 

mice, a species prone to audiogenically induced seizures, both Na+-Kf 

dependent and Ca2+-activated ATPase systems were reduced in neuronal 

membranes (Palayoor et al 1986). Rosenblatt et al (1977) confirmed the 

presence of abnormalities in membrane ATPases in strains of other species 

such as chicks and gerbils prone to induced seizures. Meldrum (1989) and 

Grisar and Delgado-Escueta (1986) described abnormalities in Na+-hC and 

Ca2+-dependent ATPases in human epileptogenic tissue. Significantly, 

however, reductions in Na+-K*-dependent ATPase have been shown even 

where the seizure focus has been induced by experimental work, raising the 

possibility that changes in ATP-ase activity may be a secondary phenomenon. 

Other alterations have been described in genetic models of epilepsy. Age- 

dependent changes in density of GABAa subunit labelling have been found in 

the GAERS strain of rats by autoradiography (Spreafico et al 1993), with no 

demonstrable changes in GABAb receptor density. Significantly, this decrease 

in the distribution of B2-B3 GABAa-R subunits is demonstrable only at the age 

where absence epilepsy becomes apparent, again raising the possibility that 

GABAa-R expression is altered by seizure activity.

GAERS also have alterations in glutamatergic transmission, demonstrating 

less sensitivity to glutamate receptor blockade by CNQX than a control 

population (Pumain et al 1992). Staining of glutamate receptor subunits, again 

in GAERS, showed a decrease in proportion of GLU-R2 and GLU-R3 subunits
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compared to control rats (Avanzini et al 1996) underlying these qualitative 

changes.

To understand how changes in calcium channels may predispose to the 

seizure generations, the role of calcium currents in normal thalamic neurones 

has to be defined. Different types of thalamic neurones play different roles in 

thalamic function. Curtis and Avanzini (1994) summarised the roles played by 

thalamocortical relay (TCR) neurones, local circuit interneurones (LCI), and 

neurones that form the reticularis thalami (RT neurones).

Chief among the differences between TCR, RT and LCI neurones is a 

variation in voltage-dependent ion channels (Curtis and Avanzini 1994) which, 

at least in part, control neuronal firing. Curtis and Avanzini (1994) described 

five key voltage-dependent currents: the inward T-type calcium channel (lT), 

the outward calcium-activated cationic channels (lC) U p, and ICan), and the 

hyperpolarisation-activated cationic current (lh). When the thalamic neuronal 

membrane potential is depolarised by neuromodulatory activity, lT is 

inactivated, and the single spiking, relay mode of activity is promoted. 

Hyperpolarisation, however, de-inactivates lT channels, producing a burst of 

action potentials superimposed on a low-threshold calcium spike. This 

depolarisation inactivates lh channels, while the associated calcium entry 

promotes the activation of Ca+-K+ currents. These events lead to a GABAb- 

mediated hyperpolarising overshoot which is suitable for reactivation of the lT 

current, i.e. conditions suitable for a repeating pattern. This cycle can be 

broken by, for example, acetylcholine or monoamines which shift the 

membrane potential away from that required for reciprocal interactions, and
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into a range which leads to the tonic firing mode.

On comparison with control populations, qualitative changes have been 

described in thalamic calcium channel activation of GAERS. Thalamic T-type 

Calcium currents (lT) are specifically increased in GAERS (Curtis and 

Avanzini 1994), which may predispose to the rhythmic oscillatory activity 

described above. The dysfunction of calcium channels leading to oscillatory 

thalamic activity is a reasonably attainable target for putatively anticonvulsant 

drugs, assuming that the actions are specific enough. Certainly the 

anticonvulsant actions of at least one drug, ethosuximide, are probably due to 

a blockade of T-type calcium channels (Dichter and Brodie 1996).

Evidence for changes in neuronal interaction in generalised epilepsies

While basic properties of neuronal cell membranes are known to be altered in

some seizure types, the site of the neuronal changes is also important for the 

development of a primary generalised epilepsies. Because of its functional 

connections, the thalamus is known to be important in primary generalised 

epilepsies. Why should a disorder of thalamic function cause such 

generalised regularised pathological behaviour?

As defined above, TCR and RT neurones are driven by inputs from excitatory 

synapses. In addition, TCR neurones are inhibited by RT and LCI neurones. 

LCI neurones are responsible for local feedback and feed-forward circuits 

within the thalamus, while RT neurones exert a more diffuse generalised 

inhibition, whose extent varies with the functional state of activation of the 

thalamus. Activation of RT neurones, therefore will lead to an inhibition of,
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among others, TCR neurones.

Given the connections described, bursting behaviour in TCR neurones will 

therefore lead to excitation of, and subsequent inhibition from the RT system 

in a cyclical pattern which could account for the characteristic synchronous 

EEG changes.

The role of LCI neurones in synchronisation of thalamic activity is less well 

understood, and they are known not to be essential in the maintenance of 

spindle rhythm generation. The function of LCI neurones may be to control 

TCR neurone excitability during the relay mode (Curtis and Avanzini 1994). 

The state of activation of the thalamus both influences and is dependent on 

the activity of the RT neurones. The sleeping, oscillatory mode of activation is 

associated with rhythmic burst firing, while the relay mode (where the 

thalamus is processing sensory information) is associated with tonic firing, or 

a desynchronised state. Any switch from relay to oscillatory function, and vice 

versa, depends on alterations in membrane and synaptic properties of the 

thalamic neurone. These changes come about as a result of intrathalamic and 

cortico-thalamic interactions and by the influence of brainstem 

catecholamines and cortical afferents (Curtis and Avanzini 1994). That the 

physiology of normal sleep associated changes should be so closely linked 

with the pathophysiology of generalised seizures would come as no surprise 

to the doctors of the nineteenth century who were quick to spot an association 

between fatigue or sleep deprivation and seizures. Recently Niedermyer 

(1996) among others has stressed the importance of arousal and sleep 

deprivation on all forms of PGE and their electrophysiological counterparts.
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Summary

The development of PGE is not a simple process which can be ascribed to the 

deviant action of one simple molecular or membranous defect, or even a 

defect at one specific site. Each clinical manifestation of PGE will probably 

prove to be due to a number of factors, including multiple gene defects which 

lead to the gross changes of increased neuronal excitability.

A multifactorial basis for seizures may play an important role in determining 

our therapeutic approach to the generalised epilepsies. Given the degree of 

complexity, simply decreasing the effects of excitatory neurotransmission will 

not in itself prove sufficient. Likewise, this multifactorial aetiology will go some 

way to explaining why an increase in GABAergic tone may merely aggravate 

primary generalised epilepsies in both human (Michelucci and Tassinari 

1989) and animal models (Coenen et al 1995). The occasional AED-related 

increase in seizures (observed at some point with almost every known AED) 

may prove to be a result of the multiplicity of actions of each of these 

complicated compounds.

This wide range of pathological processes involved in epileptogenesis should 

at least reinforce the concept of carefully examining the effects of all new 

AEDs on every potential convulsant and anticonvulsant mechanism. An 

anticonvulsant effect at one site is no guarantee against convulsant actions at 

another. Only through further work to elucidate the genesis of partial and 

generalised epilepsies, and to fully assess the effects of each AED will we be 

able to accurately predict the reaction of individuals to specific AEDs.
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Is disturbed amino acid neurotransmission the root cause of epilepsy?

Evidence for the role of decreased inhibition as a cause of epilepsy

• Epileptogenic foci in primates show a selective loss of GABAergic inhibitory 

terminals (Ribak et al 1979), implying some local deficit in inhibitory 

activity.

• In tissue resected from humans there is a demonstrable decrease in GAD 

activity alongside increased GABA-T activity (Lloyd et al 1985), and a 

decrease in binding to the GABAVbenzodiazepine receptor complex (Savic 

et al 1988).

• CSF GABA levels are reduced in patients with chronic epilepsy (Maynham 

et al 1980).

• GABAergic impairment is the basis for many chemically-induced animal 

seizure models (Fisher 1989).

• Increase in GABA concentrations or GABAergic actions is likely to be an 

important action of some anticonvulsant compounds (vigabatrin, tiagabine, 

valproate) (Schachter 1995).

Evidence for the role of increased excitation as a cause of epilepsy

• Glutamate is known to be epileptogenic when applied directly to 

mammalian brain (Stone and Javid 1983), or when given systemically 

(Bradford and Dodd 1975).

• Kindling (an animal model of epilepsy) is dependent on the presence of 

glutamate (Sutula 1990)
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• An increase in glutamate receptor density has been demonstrated In 

children with generalised seizures, (Represa et al 1989), and similar 

changes have been shown in adults with temporal lobe epilepsy (Geddes 

et al 1990).

• In patients with generalised epilepsy, and in their first degree relatives, 

plasma glutamate has been shown to be increased (Janjua et al 1992).

• In animals (Koyama 1972) and in man (van Gelder et al 1972), there is 

decreased glutamate concentration within epileptic foci, which may explain 

glutamate receptor upregulation.
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Antiepileptic Drug Treatment



The Established Anticonvulsants

As this thesis nears completion, lamotrigine, and to a lesser extent 

vigabatrin, are in some centres considered to have attained the 

status of ‘established’ anticonvulsant drugs. For the purposes of this 

thesis, the word ‘established’ will be used to describe those drugs which were 

licensed for use prior to the late 1980’s. Before we dwell on the qualities of 

the newer agents, it is appropriate to summarise the qualities of the older 

agents at this point.

Phenobarbitone

Phenobarbitone was first widely used as a 

sedative drug, its anticonvulsant efficacy 

being discovered serendipitously. First 

proven to be effective in 1912 by Loewe 

et al (Gallagher and Freer 1985), it is one 

of the family of barbiturate compounds 

that have been synthesised as part of the search for the ideal anticonvulsant 

(Pritchard and Ransom 1995). With the advent of better AEDs, the present 

day use of barbiturates in this country is more usually as a remnant of 

longstanding AED regimes.

Barbiturates have been shown to have a wide range of effects on many 

neurobiological systems (Prichard and Ransom 1995). They have a specific 

binding site on the GABAa receptor, the binding of which increases the 

frequency of chloride channel opening for a given exposure to GABA
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(MacDonald and Olsen 1994). Phenobarbitone has been shown to be 

effective against partial and generalised tonic-clonic seizures, as well as in 

prevention of febrile seizures and treatment of some cases of status 

epilepticus (Painter and Gauss 1995).

The continued use of this landmark in AED development has suffered 

because of its sedative effects (Schmidt 1985), although paradoxically 

hyperactivity and irritability are more important adverse effects in paediatric 

practice (Consensus Statement 1980). The long term irreversible effects of 

these symptoms are not clear (Guest et al 1970).

Another drawback of phenobarbitone is that, unusual among anticonvulsant 

drugs, withdrawal can induce further seizures (Butchal et al 1968), while 

development of tolerance can also prove to be a problem (Gallagher and 

Freer 1985). Patients who remain well controlled on phenobarbitone should 

not have their treatment altered unless there is good reason, because of the 

danger of withdrawal seizures.

Phenobarbitone is a very cheap anticonvulsant, and will remain popular in 

developing countries for that reason. In the developed world, where cost is 

less of a determining factor, it will remain less attractive than its better 

tolerated descendants.

Primidone

Although it has anticonvulsant activity, primidone has now ceased to be used 

as a first line anticonvulsant agent, following the large controlled trial (Mattson 

et al 1985) which showed it to be less effective and less well tolerated than
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carbamazepine, phenytoin or phenobarbitone.

The main side effects leading to 

withdrawal were drowsiness, gastro­

intestinal intolerance and psychosis. 

Physical dependence (Anonymous 1992) 

and, in common with phenobarbitone, 

withdrawal seizures (Norton 1970) are also barriers to long term use. Aside 

from those patients who are already well controlled on primidone, it is widely 

recognised that this drug has no role to play in the formulation of modern 

anticonvulsant regimes (Brodie 1990).

Phenytoin

Phenytoin entered the clinical arena in 

1938 (Merrit and Putnam, 1938), and is still 

considered to be a first line anticonvulsant, 

especially in the USA (Brodie and Dichter 

1996). Its activity against partial seizures, 

until then very resistant to treatment, was one of it’s main advantages over 

phenobarbitone (Jones and Wimbish 1985). Phenytoin was rightly considered 

a breakthrough in AED development because, unlike its predecessors, the 

antiepileptic properties it displayed outstripped its sedative qualities. More 

sophisticated psychomotor testing however, has confirmed that in both 

patients and volunteers, phenytoin causes a deleterious effect on

Phenytoin

Primidone
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psychomotor and cognitive processing (Thomson and Trimble 1981, 

Andrewes et al 1986, Gilham et al 1990). In some patients with a degree of 

learning disability, there is an increase in intellectual function (Goldberg and 

Kurland 1970), although this may be secondary to improved seizure control. 

Phenytoin is one of the most extensively studied AEDs, and laboratory studies 

have demonstrated it’s effect on many facets of neuronal physiology and 

biochemistry. It modifies Na7K* ATPase in-vitro and in-vivo (Delguado- 

Escueta and Horan 1980), inactivates sodium channels (MacDonald and Kelly 

1993), inhibits neurotransmission (DeLorenzo 1986), blocks L-type calcium 

channels (Rivet et al 1990), and affects numerous other neuronal biochemical 

parameters such as chloride permeability, cyclic nucleotide metabolism, and 

metabolism of GABA, glutamine and glutamate (DeLorenzo 1995). It is 

unlikely that any one single action is the source of it’s anticonvulsant activity, 

and more probable that this depends on a combination of it’s many effects. 

Phenytoin has marked activity against partial seizures with or without 

secondary generalisation. In some developed countries, particularly the USA, 

it is also drug of choice for primary generalised epilepsies. Adjunctive 

phenytoin has been found to be of use in patients with multiple seizure types 

if other drugs fail to control the tonic-clonic component. Intravenous phenytoin 

is still considered the treatment of choice for status epilepticus (Wilder 1995). 

The saturable kinetics and multiple drug interactions exhibited by phenytoin 

combine to make it a drug that demands careful monitoring during dose 

titration (Brodie 1990) particularly when it is one of the constituents of 

polypharmacy. In clinical practice this need for monitoring is a distinct
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disadvantage (McKee and Brodie 1994).

Chronic phenytoin use, even at therapeutic concentrations can cause 

hirsutism, gum hyperplasia and facial coarsening. Although not life 

threatening, these cosmetic effects can make the drug unpleasant to use in 

young women. Vitamin D metabolism can be affected, to the extent of causing 

hypocalcaemia or osteomalacia in non-ambulant patients (Ashworth and Horn

1977), and interference with folate metabolism can result in a mild macrocytic 

anaemia of folate deficiency (Jones and Wimbish 1985). There is a 

recognised risk of fetal abnormality with phenytoin treatment (Hanson and 

Smith 1975), although on balance, the risks to the fetus of uncontrolled 

epilepsy would justify phenytoin use in pregnancy in some patients (Brodie 

and Dichter 1996).

In the UK at least, the rise in popularity of valproate has displaced phenytoin 

as the treatment of choice for generalised seizures. In other developed 

countries such as the USA however, phenytoin remains a first-line 

anticonvulsant drug.

Carbamazeoine

Carbamazepine is chemically related to the tricyclic antidepressants, and was 

first used in trials of antiepileptic activity in 1963 by Theobold and Kunz. It has 

become one of the first line anticonvulsants in the UK, with particular benefit 

in localisation-related seizures whether or not there is any secondary
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generalisation (Cereghino et al 1974, Troupin et al 1977).

Like phenytoin, carbamazepine has been 

shown to have a wide range of 

neurochemical and neurophysiological 

actions (MacDonald 1995a). Although the 

blockage of sodium channels, which limits 

sustained repetitive firing, is probably the 

most important effect, other synaptic effects have been described (MacDonald 

1995a). Synaptic effects of carbamazepine include non-competitive NMDA 

receptor blockage (Lancaster and Davies 1992), adenosine-A1 receptor 

antagonism (Skerrit et al 1983), enhancement of effect at the GABAa receptor 

(MacDonald 1992), and inhibition of uptake of norepinephrine by brain 

synaptosomes (Purdy et al 1977), although the clinical importance of these is 

dubious.

In the UK, carbamazepine is considered the drug of choice for any patient 

with partial seizures, whether or not there is any secondary generalisation. It 

has documented efficacy against primary generalised seizures, but not 

against generalised absences, or myoclonic seizures, which may be 

exacerbated by the introduction of carbamazepine (Sheilds and Saslow 

1983).

Although it is generally well tolerated, carbamazepine’s autoinduction and 

multiple pharmacokinetic interactions are disadvantageous in terms of general 

use of the drug (Perucca and Richens 1984, McKee et al 1992), leading to 

marked inter- and intraindividual variation in response. Rashes of variable
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severity occur in up to 15% of patients on carbamazepine, and hyponatraemia 

can occur in some patients (Gram and Jensen 1989). Haematological 

monitoring has been shown to be unnecessary, as the risk of agranulocytosis 

or aplastic anaemia is sufficiently slight (Holmes 1995). Neurological side 

effects can occur, mainly nausea, headache, dizziness, and diplopia. The 

incidence and severity of these correlate with the levels of both 

carbamazepine and it’s active metabolite carbamazepine, 10-11-epoxide 

(CBZ-E) (Patsalos 1985, Gilham et al 1988). The incidence of drowsiness is 

probably less than with some other first line anticonvulsants (Thompson and 

Trimble 1982, Andrewes 1986, Gillham et al 1990), although psychomotor 

testing has shown there to be a discernible negative effect on psychomotor 

function when carbamazepine is administered to both healthy volunteers 

(Macphee et al 1986a) and patients with epilepsy (Macphee et al 1986b). 

Carbamazepine reportedly has positive effects on mood (Loiseau and Duche 

1995), although this is not surprising given it’s chemical similarity to currently 

used antidepressant medicines.

Carbamazepine is a highly successful antiepileptic drug, although it does 

have some limitations. This success has been augmented by the development 

of the slow release preparation, which leads to an increased tolerability via a 

decrease in plasma level variability, while not significantly reducing bio­

availability (McKee et al 1991).

Sodium valproate
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The discovery of the anticonvulsant properties of sodium valproate were 

rather serendipitous. In 1963, valproic acid was being used as a solvent for 

new anticonvulsants undergoing testing (Meunier et al 1963), when it was first 

noted as having antiepileptic effects. Valproate was formally licensed for use 

in 1974, having been tested in most animal models of epilepsy, unlike it’s 

predecessors (Fariello et al 1995).

The exact mechanism by which sodium 

valproate exerts its anticonvulsant effect is 

unknown. It has several effects on neuronal 

GABA metabolism, including inhibition of 

succinic semiadehyde dehydrogenase 

(SSADH) (Harvey et al 1975), and GAD induction (Loscher et al 1991) which 

combine to increase whole brain GABA content (Godin et al 1969). The 

inhibitory effect on depolarisation-induced gamma-hydroxybutyrate release 

(Vayer et al 1988) may be of some importance, as may blockage of voltage- 

sensitive sodium channels (MacDonald and Kelly 1993), an increase in Ca2+- 

dependent K* influx (Francesschetti et al 1986), and a decrease in 

concentration of excitatory amino acids such as aspartate (Schechter et al

1978).

Valproate’s efficacy against generalised tonic clonic seizures (Gram and 

Bentsen 1984, Shakir et al 1981) and partial seizures (Shakir et al 1981) have 

been confirmed. Other seizure types, such as myoclonic epilepsy and 

absence attacks (Sato et al 1982, Gram and Bentsen 1985, Chadwick 1990) 

are ameliorated by valproate, and the drug is considered treatment of choice

Valproic acid
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in both conditions (Brodie and Dichter 1996).

Adverse effects of valproate include tremor, hair loss and weight gain (Gram 

and Bentsen 1985) the latter two causing problems particularly among young 

female patients. Dose reduction may partially solve these, but withdrawal of 

the drug may be necessary in some patients. Rarer, though more serious, are 

the episodes of hepatitis, hepatic failure, pancreatitis, thrombocytopenia, and 

coma (Dreifuss 1989) which have been associated with sodium valproate use. 

The adverse effects, particularly the hepatic ones, are more common in 

children, but their rarity has ensured that valproate is still considered to be 

safe. Use of the compound in countries such as the USA is still limited as a 

result of concerns regarding these adverse effects.

Valproate does have some advantages over other first line agents, including a 

lack of sedation (Thompson and Trimble 1981, 1982, Gillham et al 1991). 

Cognitive effects are less severe than with other AEDs, and valproate use has 

been recommended where psychomotor performance is an important
r

consideration (Gilham et al 1991).

Valproate is not an enzyme inducer, and unlike the other first line AEDs, it 

does not display autoinduction or saturable pharmacokinetics. Neither efficacy 

nor toxicity of valproate can be correlated with plasma levels (Chadwick 1985, 

Brodie and Feely 1988), so serum level monitoring is not necessary in 

patients on valproate monotherapy. Drug interactions are less troublesome 

than with enzyme-inducing AEDs, although valproate has some enzyme 

inhibiting properties (Kapetanovic and Kupferberg 1980, Koch et al 1981). 

This is of clinical significance when the drug is added to existing
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anticonvulsant treatment regimes (Levy and Koch 1982, Leach and Brodie 

1995). In summary, valproate is one of the most important anticonvulsants in 

clinical use, and along with carbamazepine, is one of the most commonly 

used in the UK.

Benzodiazepines

In 1960, Randall and colleagues 

demonstrated the efficacy of the 

benzodiazepine compounds in 

preventing seizure induction by 

maximal electroshock and 

pentylenetetrazol. This family of 

compounds probably exert their anticonvulsant effect on binding with their 

specific binding site on the y-subunit of the GABAa receptor (Ehlert 1986), 

which results in an increased hyperpolarisation of affected neurones (Twyman 

et al 1989).

An additional effect on sodium channels has been described, similar to that 

caused by carbamazepine, phenytoin, and sodium valproate. This blockage 

occurs at concentrations of benzodiazepine attained during treatment of 

status epilepticus, and, as it is not blocked by flumazenil (McLean and 

MacDonald 1988), it would appear to be independent of the effect on GABAa 

receptors. The reported changes in calcium channels (MacDonald 1995b)

occur at concentrations higher than those attained during treatment, and

would appear to have little clinical relevance.

Diazepam Clobazam
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Benzodiazepines still have a place in the immediate, parenteral treatment of 

status epilepticus (Simon 1985). Although diazepam is the benzodiazepine 

most commonly used in this situation, the derivatives clobazam (Shorvon 

1995) and clonazepam (Shakir et al 1979, Mikkelsen et al 1981) have been 

shown to have beneficial effects against a wide range of seizure types when 

given orally as adjunctive long-term treatment. Clobazam is less sedative than 

the older benzodiazepines (Hindmarch and Gudgeon 1980, Trimble and 

Robertson 1986) but as with the barbiturates, tolerance (Trimble and 

Robertson 1986) and withdrawal seizures (Fialip et al 1987, Allen et al 1983) 

can be a problem. Despite this, clobazam can be useful when given as 

intermittent adjunctive treatment, as in the treatment of catamenial epilepsy 

(Feely et al 1982).

Ethosuximide

First introduced in 1958, this drug remains a 

useful compound in paediatric practice in the 

treatment of absence seizures (Brodie and 

Dichter 1996). It acts by blocking voltage- 

dependent calcium conductance in thalamic 

neurones. Side effects of ethosuximide use are either gastro-intestinal 

(nausea, vomiting, abdominal pain) or involving the central nervous system 

(lethargy, dizziness, ataxia).

Ethosuximide does not affect the metabolism of other drugs, but its own

Ethosuximide
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metabolism is affected by enzyme-inducing or inhibiting antiepileptic drugs 

(Pisani et al 1990). The efficacy and safety of valproate has ensured that 

ethosuximide has become a second line treatment for this seizure type (Sato 

et al 1982).

59



Monotherapy or Polypharmacy?

For many years monotherapy has been regarded as the ideal management 

strategy for epilepsy. Publication of a series of studies by Shorvon and 

Reynolds (1977, 1979, Reynolds and Shorvon 1981) led to the view that AED 

polypharmacy was largely useful only in producing more adverse events. 

Noone would argue that anticonvulsant treatment should begin with anything 

other than a trial of monotherapy, as this will suffice for around two thirds of all 

newly diagnosed patients. For the remainder, however, polypharmacy is a 

necessary evil, and it falls to us to formulate a rational strategy to deal with 

those patients who are refractory to first-choice monotherapy. That our 

established AEDs have limited efficacy is attested to by an audit at one 

epilepsy clinic which showed that 42% of patients attending were on long-term 

AED polypharmacy (Schmidt and Gram 1995). In the normal clinical setting, 

which is best, monotherapy or polytherapy?

AED Monotherapy

In patients with newly-diagnosed epilepsy, phenobarbitone, phenytoin, 

carbamazepine, and valproate have shown similar efficacy as monotherapy 

(Verity et al 1995). Newer drugs such as lamotrigine and vigabatrin, as will be 

discussed, also have proven efficacy as monotherapy. Since one third of our 

patients will not be well controlled on monotherapy, what can be done to 

maximise the chances of its success?

To state the obvious, as a first principle every clinician must aim to commence 

what is, for each patient, the right drug at the right dose. Proper history-taking
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and investigation should ensure that patients with primary generalised 

epilepsy (Covanis et al 1982), juvenile myoclonic epilepsy, or absence 

seizures (Chadwick 1990) receive initial treatment with valproate 

monotherapy. Localisation-related seizures would appear to be better 

controlled by carbamazepine. Careful expert assessment may reveal the 

presence of a discrete syndrome, such as Lennox Gastaut syndrome, which 

may indicate that monotherapy is less likely to be adequate to achieve optimal 

control (Dulac and N’Guyen 1993). The correct dose of the chosen AED 

should be used: some studies have shown that increasing the dose of current 

therapy to maximally tolerated levels attains seizure control in almost one 

third of those patients who were ‘refractory’ to monotherapy with phenytoin or 

primidone (Schmidt 1983). Adverse events can be minimised by avoiding 

over-rapid dose titration or by using controlled release formulations, 

particularly with carbamazepine (McKee et al 1991, Persson et al 1990), and 

less convincingly with valproate (Imaizumi et al 1992).

When one monotherapy fails, it need not necessarily follow that polypharmacy 

is an inevitable requirement. Hakkareinen (1980) looked at the success rate 

of alternative monotherapy with carbamazepine or phenytoin when the other 

had failed, and found that one third of the treatment failures were successfully 

controlled by the alternative drug. In the Veterans’ Administration Study 

(Mattson et al 1985), 46% of those who were unsuccessfully treated with the 

first monotherapy chosen, responded to an alternative monotherapy. It should 

be remembered, however, that in this study some were originally treated with 

phenobarbitone or primidone, neither of which would today be accepted as
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reasonable first line monotherapy.

In summary, AED monotherapy will be adequate for a majority of patients with 

newly diagnosed epilepsy. It is obviously of paramount importance that the 

correct steps are taken to ensure that the chances of monotherapy 

succeeding are maximised. Even if the first drug fails at maximally tolerated 

doses, a second choice may well prove to be effective as monotherapy in a 

substantial minority of patients.

Polypharmacy

Polypharmacy has long been held to cause an increased incidence of adverse 

events (Schmidt and Gram 1995), pharmacokinetic interactions (Brodie 1992), 

and teratogenesis (Nakane et al 1980) while conferring, at best a limited 

improvement in efficacy (Reynolds and Shorvon 1981). In one study (Beghi et 

al 1986), treatment with phenytoin or carbamazepine alone produced side 

effects in 28 and 38% of patients respectively. Combination of the two, 

however, produced adverse events in around three quarters of all patients. 

Lammers et al (1995) following a retrospective review, however, were of the 

opinion that it was dosage rather than the number of AEDs used which 

determined the frequency and severity of adverse events.

Despite polypharmacy’s poor image, there can be no doubt that for some 

patients, even when the ‘right’ drug is given at the right doses, under carefully 

controlled conditions, that monotherapy may fail and that polypharmacy will 

be required to gain full seizure control. In the Veterans Administration Study 

(Mattson et al, 1985), 39% of ‘non-responders’ were helped by the addition of
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a second drug, with 11% becoming seizure free. One trial of adjuvant 

valproate in cases where carbamazepine had failed as monotherapy (Dean

1988) showed a similar number of patients improved on combination therapy, 

with 17% becoming seizure free.

There are good reasons why combination of the older agents would not be 

universally successful. As described in earlier chapters, each of these drugs 

has a wide range of actions, while their anticonvulsant efficacy will rely, at 

least in part, on a non-specific blockage of sodium channels. Combination of 

these widely active drugs will therefore merely increase the degree of sodium 

channel blockade while producing a host of more complicated biochemical 

and physiological effects.

Despite the negative aspects of the older drugs, it is still surprising that so few 

studies have been carried out to detail which AED combinations will provide 

maximal benefit with minimal adverse events.

With the advent of a new generation of drugs, there are reasons why 

polypharmacy should be better tolerated and, perhaps, as efficacious. There 

have been a number of studies investigating the efficacy and tolerability of 

specific AED combinations.

Specific combinations

These are discussed in the sections dealing with individual drugs. The 

combination of old and new (lamotrigine/ valproate, carbamazepine/ 

vigabatrin), and two new drugs (lamotrigine/ vigabatrin, tiagabine/ vigabatrin) 

have been attempted with some success, although none has been set out in
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the recommended double-dummy design required to discover particular 

benefit (Richens 1995).

The dearth of trials which examine the optimal combinations of AEDs, may 

itself be testimony to how poorly we understand their basic mechanisms of 

actions. The further preclinical investigation of the new AEDs will be vital in 

this respect. It is probable that the more questions we ask of these drugs, the 

more surprises they will spring on us. Vigabatrin is a case in point: described 

for years as a GABA-T inhibitor, we will see in later chapters how it has other 

actions which may explain some of the drug’s antiepileptic effect. 

Remacemide may be a similar case: having been thought to exert its 

anticonvulsant effect via NMDA antagonism, its significant effects on GABA 

metabolism will be demonstrated in one of our models. The preclinical 

investigation of these two compounds proves that the ancillary modes of 

action of AEDs are not always easy to predict, and that a comprehensive 

investigation of each AED’s in a wide range of models needs to be carried 

out.

Any patient studies investigation drug combinations will be complicated by the 

presence of any pharmacokinetic interactions. Although less prone to initiate 

interactions, the newer AEDs’ metabolism and disposition is affected by the 

enzymic effects exerted by their older counterparts. The positive interaction 

between valproate and lamotrigine which has been described for example 

(Ferrie and Panayiotopoulos 1994, Brodie et al - submitted), although perhaps 

partly a pharmacodynamic interaction, is probably magnified by the inhibition 

of lamotrigine’s metabolism by valproate.
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In summary, monotherapy would be the ideal to which everyone would adhere 

if we had anticonvulsants that were universally efficacious. This is obviously 

not the case at present. As a result polypharmacy is, for a significant minority 

of patients, a necessary evil. With a new generation of drugs available with 

novel anticonvulsant actions, our next challenge is to optimise AED 

combinations to allow improved efficacy and tolerability for patients who are 

currently refractory.
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The new anticonvulsant drugs

T
he following chapter deals with the drugs that have been developed 

in the last fifteen years. With the exception of lamotrigine, they are 

either awaiting full approval in the UK, or remain licensed only for 

use as add-on therapy in refractory epilepsy. The development of new AEDs 

is continuing at an unprecedented rate, and more compounds will certainly be 

licensed for use in this country in the next few years.

This chapter deals largely with the drugs that are either licensed for use in the 

UK (vigabatrin, lamotrigine, gabapentin, topiramate), those that may be 

licensed for use in the near future (oxcarbazepine, tiagabine), those that 

came close to being licensed (felbamate) and those that have undergone 

particular study as part of this thesis (remacemide). There are other 

compounds which are at various stages of development, such as 

levetiracetam, zonisamide, losigamone, stiripentol and CGP33 101 (Stables et 

al 1995). They are not dealt with in any great detail in this thesis.
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Vigabatrin

Vigabatrin (gamma-vinyl GABA) was the 

herald of a new era in the therapy of 

epilepsy, being the first ‘designer’ AED 

(Leach and Brodie 1995). Binding of 

vigabatrin to GABA-transaminase leads to 

an irreversible covalent bonding which inactivates the GABA-T, hence 

vigabatrin’s description as a ‘suicide inhibitor’ of GABA-T (Leach and Brodie 

1995). The increase in whole brain GABA which results from decreased 

GABA-T activity is thought to lead to an increase in synaptic GABA levels and 

an augmentation of GABAergic inhibition. Vigabatrin was granted a licence in 

the UK in 1989.

Mechanisms of action

The S-enantiomer of vigabatrin is a very specific enzyme inhibitor, while the 

R-enantiomer is completely inactive (Haegele and Schechter 1986). In vitro 

studies would suggest that the S-form acts only against GABA-T, being 

essentially inactive against GAD, ornithine transaminase, and aspartate 

transaminase even at high concentrations in-vitro (John et al 1979, Jung and 

Palfreyman 1995). In vivo studies have shown that there is a decrease in GAD 

activity following exposure to high dose vigabatrin, although whether this is 

secondary to the raised GABA or to the vigabatrin itself is a moot point (Leach 

et al - submitted, Jung et al 1977, Horton 1989, Jung and Palfreyman 1995). 

Some studies have shown that concentrations of glutamate, aspartate and
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glutamine may be favourably affected in specific areas of the brain such as 

the hippocampus (Halonen et al 1991), perhaps a sign that vigabatrin may 

exert its effect via other mechanisms.

Other changes in the GABAergic system have been reported. Some inhibition 

of GABA release by vigabatrin has been described (Abdul-Ghani et al 1980), 

although tolerance to this effect has been demonstrated in vitro (Neal and 

Shah 1990). Some work has suggested that some of the anticonvulsant effect 

of vigabatrin may come from a direct effect on the GABAa receptor (Xu et al

1991), although this has not been widely confirmed.

Preclinical testing

Vigabatrin affords good protection against audiogenic seizures in DBA/2 mice 

(Schechter et al 1977), photically induced seizures in baboons (Meldrum and 

Horton 1978), and other reflex-induced seizures in other species (Jung and 

Palfreyman 1995). The duration of absence seizures in Wistar rats is 

increased by vigabatrin, an effect that is antagonised by diazepam 

(Marescaux et al, 1985).

Pharmacokinetics and interactions

Being a small, water soluble molecule, vigabatrin is rapidly absorbed after 

oral administration (Ben Menachem 1995). Peak serum levels occur at around 

2 hours after dosing, and the drug is not significantly protein bound 

(Schechter 1989). Despite the differences in the enantiomers’ 

pharmacodynamic activity, vigabatrin is given as a racemic mixture.
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The majority of each dose is excreted unchanged in the urine, the plasma 

elimination half life being between 5 and 8 hours (Ben Menachem 1995) in 

normal subjects. As a result of the site and mode of action, however, the 

pharmacological effect of vigabatrin is much longer than it’s pharmacokinetics 

would suggest, levels of brain GABA remaining high up to 120 hours post 

dose (Schechter et al 1977). Clinical effects in man last up to 48 hours post­

dose (Ben Menachem 1990). Dose-related increases in CSF GABA levels 

have been observed following vigabatrin administration (BenMenachem et al,

1989), which have been postulated to be related to anticonvulsant efficacy 

(Riekkinen et al 1989).

As would be expected with a drug that is excreted entirely unchanged in the 

urine, no clinically important interactions with other anticonvulsants have been 

described. Vigabatrin has been shown to decrease serum phenytoin via an 

unknown mechanism by a mean of 20% (Rimmer and Richens 1989), but in 

only one (open!) study has this been thought to compromise seizure control 

(Browne et al 1987).

Efficacy

Many studies have confirmed the efficacy of vigabatrin as add-on therapy for 

refractory epilepsy in adults (Browne et al 1987, Gram et al 1985, Remy et al 

1986, Rimmer and Richens 1984, Tassinari et al 1987, Reynolds et al 1991, 

Browne et al 1991, Loiseau et al 1986) and children (Herranz et al 1991, Luna 

et al 1989). On average, 50% of patients had their seizure frequency at least 

halved, and of those who had no change in frequency, the seizure severity
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was often found to be reduced (Sander et al 1990, Tassinari et al 1987). 

When used as add-on therapy, greater efficacy is seen in patients with partial 

seizures (Michelucci et al 1989). The reported effect on generalised seizures 

is variable (Browne et al 1987).

A meta-analysis of the European placebo-controlled studies (Mumford and 

Dam 1989) looked at the 398 patients who had been enrolled in studies in the 

early and mid-1980s. This showed a reduction in seizure frequency 

associated with vigabatrin use, confirming that this was most marked in those 

patients with partial seizures whether or not there was any secondary 

generalisation.

On controlled comparative testing against steroids, vigabatrin has been 

shown to be the superior treatment for infantile spasms (Chiron et al 1991), 

and some authorities have suggested that it has become treatment of choice 

for West syndrome (Appleton 1995)

Withdrawal due to poor tolerability of vigabatrin is much the same as for other 

treatments, i.e. 5 - 15% (Browne et al 1987), and tolerance is not thought to 

be a feature of it's long term use. Long term follow up shows that even up to 6 

years after commencing treatment there is no evidence of tolerance (Tartara 

et al, 1992). The efficacy of vigabatrin may not be improved by dose 

increases beyond 2 grams per day (McKee et al, 1993), possibly as a result of 

the GAD inhibition that occurs.

Specific combinations of drugs are not commonly tested in the field of 

antiepileptic medication. One trial has been published which proves 

vigabatrin’s role as a good add-on drug when combined with carbamazepine
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(Murri and Ludice 1995) in 40 patients with refractory localisation-related 

epilepsy. There was a significant reduction in mean seizure frequency, and 

17.5% of patients became seizure free on the combination. The authors 

conclude that vigabatrin should be an early choice of drug for add-on therapy.

Monotherapy trials

One monotherapy trial has so far been published, comparing vigabatrin 

monotherapy with carbamazepine monotherapy (Kailviainen et al 1995). A 

total of 100 patients were followed for up to 12 months. Sixty percent of both 

treatment groups completed one years treatment being rendered either 

seizure-free or having an acceptably low seizure frequency. Vigabatrin was 

better tolerated, no patients requiring withdrawal because of side effects 

(against 24% of the carbamazepine group). Significantly more patients in the 

carbamazepine-treated group were rendered seizure-free (52% on 

carbamazepine against 32% on vigabatrin), with fewer patients on the 

established drug requiring withdrawal due to lack of efficacy (6% on 

carbamazepine against 26% on vigabatrin).

Toxicity

A review of over 2000 patients on vigabatrin (Grant and Heel 1991) gave the 

incidence of drowsiness at around 10%, with some dizziness, headache, 

diplopia, ataxia and vertigo reported in around 2%. Psychiatric side effects 

such as anxiety, depression, and aggression are well recognised: the 

precipitation of psychosis at high doses or following sudden withdrawal of the
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drug should lead to cautious use of vigabatrin in those with a history of 

psychiatric illness (Brodie and McKee 1990, Sander et al 1991) This 

association of vigabatrin with psychosis is likely to be more than an 

association between the drug and so-called forced normalisation. 

Maintenance at low dose may avoid psychiatric problems while still providing 

some benefit (Brodie and McKee 1990).

Neuronal cytoplasmic vacuoulation, though visible in rodents and dogs after 

chronic dosing (Hammond and Wilder, 1985; Butler et al, 1989), has not been 

seen in human or even primate brain despite extensive searching (Cannon et 

al 1991).

The association of high dose vigabatrin and rapid titration of vigabatrin dose 

with psychosis has probably been damaging for this drug’s prospects. The 

improved tolerability that more cautious use of the drug evokes, however, has 

allowed its use to steadily increase over the last few years, and it is likely that 

the drug will be granted a license for use in the USA in the near future. 

Results from other monotherapy trials are awaited to allow a review of the 

drug’s position in treatment of epilepsy in the twenty first century.
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Lamotrigine

Folic acid was shown to have proconvulsant 

properties in the mid-sixties, and 

anticonvulsant drug development at the 

Wellcome Institute concentrated on modifying 

folate antagonists in order to uncover an 

anticonvulsant compound. Lamotrigine (3,5-diamino-6-[2,3-dichlorophenyll]- 

1,2,4-triazine) was noted to be both a mild folate antagonist and an 

anticonvulsant, although it is now known that these properties are not linked 

(Rogawski and Porter 1990).

Mode of Action

Lamotrigine is a phenyltriazine derivative, and is chemically and functionally 

unrelated to other antiepileptic drugs. The development of burst firing is 

inhibited by lamotrigine in a manner similar to that of phenytoin and 

carbamazepine (Macdonald and Kelly, 1993).

At an early stage of investigation (Leach et al 1986), it was found that 

lamotrigine blocked veratridine rather than potassium-evoked release of 

endogenous amino acids implying that the anticonvulsant effect arose at least 

in part from a blockage of voltage-sensitive sodium channels.

Lamotrigine preferentially inhibits release of glutamate, having a lower ED50 

for this than for inhibition of GABA release after electrophysiological 

stimulation (Leach MJ et al 1995). The blockage of sustained repetitive firing 

by lamotrigine is thought to be a result of the frequency and voltage-

NH,

Lamotrigine
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dependency of sodium channel inactivation (Cheung et al 1992, Lees and 

Leach 1993). This blockage occurs when the channel is at the slow 

inactivated state (Xie et al, 1995), and this selectivity may account for the 

drugs tolerability (Brodie and Dichter 1996).

Recent studies have shown that lamotrigine has a mild calcium channel 

blocking effect: the narrow dose range at which this occurs, however, 

suggests that this is probably of little clinical import (Lees and Leach 1993). 

Lamotrigine does not bind to adenosine, GABAb or opioid receptors (Leach 

MJ et al 1995), although there is some weak binding to the 5-HT3 receptor 

which is of dubious functional significance. Lamotrigine has no effect on either 

GABAa or NMDA receptors (Leach MJ et al 1995).

Pharmacokinetics and Interactions

Oral administration leads to rapid and near complete absorption of 

lamotrigine. The elimination half life is around 29 hours (Cohen et al 1987), 

with metabolism largely by hepatic glucuronidation. The most common 

metabolite (70% of the dose) is the N-2 glucuronide conjugate (Magdalou et al

1992). Interestingly, patients with Gilbert's disease demonstrate a longer 

lamotrigine half life due to a decrease in the activity of diphosphate glutamyl 

transferase (Posner et al 1989).

Lamotrigine does not induce or inhibit hepatic enzymes. Consequently, it has 

no influence on the metabolism of other lipid-soluble drugs, such as the oral 

contraceptive pill and warfarin (Leach and Brodie 1995). There have been 

reports of symptoms of neurotoxicity (headache, nausea, dizziness, diplopia,
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ataxia) in patients when lamotrigine is added to a stable carbamazepine 

regime (Warner 1992). This has since been shown to be a pharmacodynamic 

rather than a pharmacokinetic interaction (Stolarek et al 1994, Pisani et al

1994).

The half life of lamotrigine is more than doubled by concomitant valproate to 

around 59 hours (Yuen et al 1992), while enzyme-inducing anticonvulsants 

such as carbamazepine and phenytoin have the opposite effect, reducing it to 

around 12 hours (Binnie et al 1989).

Preclinical testing

Lamotrigine is active against the tonic phase of both PTZ- and MES-induced 

seizures (Yuen 1991), blocks the development and expression of amygdaloid 

kindled seizures (Miller et al 1986), and reduces electrically-evoked 

afterdischarge duration in the rat, dog, and marmoset (Wheatley and Miller, 

1989). It is, however, ineffective against both threshold and clonic seizures 

induced by PTZ (Rogawski and Porter 1990). The reduction in glutamate 

release is likely to account for the long-term neuroprotective actions of 

lamotrigine shown in animal models whether given before or after the onset of 

ischaemia (Smith et al 1995, Shuaib et al 1995).

Efficacy

Eleven double-blind placebo-controlled studies have been published (Jawad 

et al 1989, Sander 1990; Loiseau et al 1990; Binnie et al 1989; Risner et al 

1990, Dren et al 1991, Schapel et al 1993, Smith et al 1993, Matsuo et al
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1993, Messenheimer et al 1994, Schachter et al 1995), showing success as 

add-on treatment of partial seizures with or without secondary generalisation. 

Only the most relevant will be discussed here.

Messenheimer and colleagues (1994) examined 98 patients with localisation- 

related epilepsy, as part of a double blind placebo controlled crossover trial, 

with patients titrated to a maximum tolerated dose not greater than

400mg/day. 44% of the subjects experienced a reduction in seizure frequency 

of at least 25%, with 20% having their seizures frequency at least halved.

A double-blind placebo-controlled study comparing the efficacy of lamotrigine

at 300mg/day with 500mg/day (Matuso et al 1993) in 216 patients with

refractory partial seizures showed the higher dose to cause a significantly 

greater reduction in seizure frequency compared to both the lower dose and 

placebo. 300mg/day was not significantly better than placebo.

Schapel et al (1993) during a relatively short treatment period showed a 

significant reduction in partial seizure numbers and total seizure numbers with 

lamotrigine titrated up to a maximum tolerated dose not greater than

300mg/day. There was a trend towards reduction in secondary generalised 

seizures, although this did not reach statistical significance. One of the largest 

studies (Schachter et al 1995) involved 446 patients in a six-month treatment 

period, showing a beneficial effect of lamotrigine when used as add-on 

therapy for refractory partial seizures. Alongside its anticonvulsant effect, 

lamotrigine has been shown in one study to have a positive effect on some 

measures of happiness and mastery (Smith et al 1993).

Lamotrigine has been said to work particularly in combination with some other
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anticonvulsant drugs, particularly sodium valproate (Ferrie and 

Panayiotopoulos 1994) and vigabatrin (Robinson et al 1993, Stolarek et al

1994). Schapel and colleagues assessed the vigabatrin\ lamotrigine 

combination in a study of 42 patients. In this refractory population 40% had a 

reduction in seizure frequency of at least 80% compared to baseline, and 69% 

had their seizure frequency at least halved while on both new drugs. Addition 

of one of the new agents did not cause a significant reduction in mean seizure 

frequency, and no one drug was more efficacious than the other. Only on 

addition of the second drug was there a significant reduction in seizure 

frequency, which persisted despite withdrawal, or at least reduction in the 

baseline AED therapy. Perhaps significantly, 30 of the patients were also 

receiving valproate in the third phase, which allowed them to tolerate a higher 

plasma lamotrigine concentration.

Brodie et al (paper submitted) as part of a withdrawal to monotherapy study in 

347 patients, showed a better response to add-on lamotrigine in those 

receiving valproate (n=117) compared to those on carbamazepine or 

phenytoin. This improvement occurred irrespective of seizure type and 

patients on valproate had similar plasma lamotrigine levels. On withdrawal of 

valproate, despite an associated rise in lamotrigine dose to raise the 

lamotrigine levels above those in the add-on phase, valproate-treated 

patients, unlike those on other baseline therapies had a loss in seizure 

control, suggesting that the benefits of combined treatment were greater. 

Experience in some units suggests that lamotrigine also has great success in 

primary generalised epilepsy (Stewart et al 1992, Richens 1994). It has been
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suggested that lamotrigine may have efficacy in the Lennox-Gastaut 

syndrome (Timmings and Richens 1992), juvenile myoclonic epilepsy 

(Timmings and Richens 1993), and Rett Syndrome (Uldall et al 1993). Any 

suggested benefit in neuroprotection during cerebral infarction or Parkinson’s 

disease (Zipp et al 1993), has not yet been substantiated by controlled trials.

Monotherapy trials

Brodie et al (1995) as part of a large double-blind trial comparing efficacy of 

lamotrigine monotherapy with that of carbamazepine monotherapy, followed 

260 patients with newly diagnosed localisation related epilepsy over a 48- 

week treatment period. Doses of both treatments were controlled by an 

unblinded observer on the basis of serum levels, in order to maintain serum 

levels within an arbitrary (for lamotrigine) target range. During the treatment 

period, once doses were stabilised, lamotrigine showed similar efficacy to that 

of carbamazepine when measured by time to first seizure. During the last six 

months, almost identical numbers (38% on carbamazepine, 39% on 

lamotrigine) remained seizure free.

On comparison of tolerability, however, lamotrigine was clearly preferable. 

Fewer patients on lamotrigine withdrew from the study because of adverse 

events (27% of those on carbamazepine, 15% of those on lamotrigine). It was 

mainly as a result of this and other trials that lamotrigine was given a licence 

for use as monotherapy in the UK and elsewhere in 1995. A similar 

comparative trial with phenytoin has been carried out which shows similar 

benefits of lamotrigine treatment compared to phenytoin monotherapy in a
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similar patient group (Steiner and Yuen 1994).

Toxicity

By November 1992, more than 5800 patient years experience had been 

gained with lamotrigine, mostly as add-on therapy (Richens 1994). Skin rash 

occurs in around 5% of those involved in clinical trials with lamotrigine 

(Richens 1994), but requires withdrawal from trial in only 2% of patients 

(Messenheimer et al 1994) a figure substantially lower than the incidence 

during carbamazepine treatment. Rechallenge of patients at lower starting 

dose and slower titration of lamotrigine dose can be successful in avoiding 

reemergence of the rash (Tavenor et al 1995).

As described above, there is a well-defined pharmacokinetic effect of sodium 

valproate on the kinetics of lamotrigine which increases the risk of onset of 

adverse events. This interaction necessitates a reduced starting dose and 

reduced lamotrigine titration rate in patients on regimes containing valproate 

(Leach and Brodie 1995).

Mild central nervous system events, such as dizziness, ataxia, drowsiness, 

headache, and diplopia, occur with lamotrigine use in a dose-dependent 

manner, although the side effect profile compares favourably with that of the 

established anticonvulsants (Richens 1994).
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GABAPENTIN

Gabapentin [l-(aminomethyl)

cyclohenanacetic acid] is an anticonvulsant 

drug which was given a licence for use in the 

UK as add-on therapy in 1993. It was 

developed in an attempt to exploit a 

presumed direct GABAmimetic effect (Ojemann et al 1988). GABA itself does 

not cross the blood brain barrier when given systemically, and work was 

carried out in order to manipulate the structure of GABA to allow a direct 

GABA agonist to do this with ease. Further work has demonstrated 

gabapentin’s lack of binding to GABA receptors (Bartoszyk et al 1986).

Mode of Action

The full effects of gabapentin on specific receptors has not yet been clearly 

defined, although it has been shown that there is no direct action on GABAa 

or GABAb receptors, and no effect on benzodiazepine receptors (Schmidt

1989). There may be a specific, previously undescribed receptor for 

gabapentin, similar to one binding 3-isobutyl GABA (Taylor et al 1993, Hill et 

al 1993).

Enhancement of GABA release may be important in the actions of gabapentin 

(Honmou et al 1995). At therapeutic concentrations, gabapentin increases 

GABA release from neostriatal slices in-vitro, an effect that is blocked by 

GABAa receptor antagonists (Gotz et al 1993). Gabapentin does not alter 

GABA uptake into neurones or astrocytes (Schmidt 1989).
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The activity of GAD is said to be increased by gabapentin (Loscher et al 1991, 

Taylor et al 1992), and other enzymes of importance in the GABA shunt have 

been shown to be affected in the presence of gabapentin, including a minor 

inhibition of GABA-T, and more significant inhibition of glutamate 

dehydrogenase, and branched chain amino acid transferase (Goldlust et al

1995). It was felt that the reduction in glutamate synthesis may be more 

important mechanism of action than an increase in GABA. The effects of 

gabapentin treatment on glutamate levels has yet to be assessed by this 

method.

CSF GABA levels have previously been shown to be unchanged by 

gabapentin after single dose (Ben Menachem et al 1992), or three months 

treatment (Ben Menachem et al 1995). NMR spectroscopy in man, however, 

has suggested that an elevation of GABA occurs on treatment with 

gabapentin which is more marked at higher doses (>3gm/day) than with 

'standard’ doses (1.2-2.4gm/day) (Petroff et al 1996).

The peak anticonvulsant effect of gabapentin lags some two hours behind 

peak serum levels (Welty et al 1993), supporting the theory that enzyme 

inhibition may be the principle mode of action.

Thurlow et al (1993) have shown binding to a site proposed to be a cellular L- 

amino acid transporter, suggesting that gabapentin could affect transport of 

other neurotransmitter amino acids in vivo.

Pharmacokinetics and Interactions

Oral dosing of gabapentin gives rapid absorption, and the drug has a
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bioavailability of 60%. Maximum levels occur 2-3 hours after administration 

and the half life is 5-7 hours (Vollmer et al 1986). There is no significant 

protein binding, and the drug is excreted unchanged in the urine (Vollmer et al 

1986, Stewart et al 1993) with clearance rates equivalent to creatinine 

clearance. This rapid clearance currently would suggest that three times daily 

dosing is required with gabapentin, although some clinicians suspect that 

twice daily dosing may be equally effective.

Unsurprisingly, gabapentin’s pharmacokinetic characteristics are not changed 

with chronic dosing, and the lack of drug interactions with other AEDs (Tyndel 

1994, Radulovic et al 1994, Hooper et al 1991) and the oral contraceptive pill 

(Eldon 1993) has been widely reported. Stewart and colleagues (1993) have 

demonstrated a disproportionately small rise in serum levels on increasing 

gabapentin dosage, possibly because of a saturable intestinal L-amino acid 

transport mechanism.

Preclinical testing

Work in rodents (Bartosyk et al 1986) has shown gabapentin to be effective 

against a wide variety of electrical, physical and chemical stimuli. 

Anticonvulsant effects were apparent against NMDA induced seizures, but not 

those produced by kainate or quisqualate (Bartosyk et al 1986). Gabapentin 

has been shown to have an experimental anticonvulsant profile similar to that 

of sodium valproate (Rogawski and Porter, 1990): the drug is effective against 

tonic seizures induced by a variety of chemoconvulsants including PTZ, 

bicuculline, picrotoxin, and strychnine (Foot and Wallace 1991), and is also
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active in the MES test in rats (Rogawski and Porter, 1990) and against reflex 

seizures in DBA/2 mice, Mongolian gerbils (Foot and Wallace 1991), and 

genetically epilepsy-prone rats (Foot and Wallace 1991). It has weak activity 

in the photosensitive Papio papio baboon and was without effect in the 

kindling model (Foot and Wallace, 1991).

Efficacy

A small double-blind cross-over study (Crawford et al 1987) was the first 

published work to prove the efficacy of gabapentin, comparing an eight week 

period on three different doses (300, 600, or 900mg/day) to a similar length of 

time on baseline observation. At 900mg/day, seizure frequency was 

significantly reduced, most striking was the reduction in secondary 

generalised seizures. No changes in psychometric testing were apparent at 

these doses (Crawford et al 1987).

A later placebo-controlled double-blind study randomised 43 patients to 

receive placebo or one of two doses of gabapentin (Sivenius et al 1991). After 

three months, 900mg/day gabapentin was found to be ineffective, while those 

patients on gabapentin 1200mg/day experienced a significant reduction (57%) 

in frequency of both tonic-clonic and partial seizures. A 4-year follow-up at the 

same centre (Sivenius et al 1994) showed that 25% of those remaining on the 

drug after 4 years had a consistent reduction in seizure frequency.

A later, larger double-blind parallel-group study (UK Gabapentin Study Group

1990) randomised 127 patients to either 1200mg daily of gabapentin or 

placebo. Compared to placebo, more gabapentin-treated patients (25.0%
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against 9.8%) experienced a reduction of >50% in seizure frequency, the 

mean reduction in seizure frequency after the 12-week treatment phase being 

29.2% on gabapentin and 12.5% on placebo.

Anhut et al (1994) used similar doses in their double-blind placebo-controlled 

study of 272 refractory patients. Response rate and percentage change in 

seizure frequency were significantly better with gabapentin treatment of either 

900 or 1200mg/day. The incidence of adverse events, at first sight seems 

high in those on gabapentin, 69% and 64% of patients in the low and high- 

dose groups respectively reporting adverse events. 52% of patients in the 

placebo-treated group also experienced significant events however.

A large study using higher doses has been carried out. The US Gabapentin 

Study Group (1993) had 306 patients in four parallel groups on placebo or 

gabapentin at 600, 1200, or 1800mg/day. A significantly higher number of 

responders were seen in the 1200 and 1800mg/day groups. Mild to moderate 

adverse events were reported in 88% of patients on active treatment, 

compared to 72% of those on placebo.

A pooling of data from double-blind trials (McLean 1995) confirmed 

gabapentin’s efficacy: the ‘response rate’ (>50% reduction seizure frequency) 

was 26% of patients suffering from partial seizures, and 54% of those with 

generalised seizures. The effect on myoclonic and absence seizures does not 

appear promising (Stables et al 1995) and in our clinical experience, the drug 

may even exacerbate or precipitate these seizure types, especially at high 

dose, and in combination with carbamazepine.

Handforth and Treiman (1994) were not alone in suggesting that the drug
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could be used at much higher doses to boost efficacy even further, given how 

well the drug was tolerated at doses used in clinical trials.

Monotherapy Trials

Ojemann et al (1992), as part of an open label trial of gabapentin, 

successfully converted 5 patients from 9 potential candidates on to 

gabapentin monotherapy. A prospective short-term double-blinded in-patient 

study of around 80 patients (Bergey et al 1995) showed that 3600mg/day was 

better tolerated than 300mg/day when used as monotherapy.

Further, more definitive evidence of the efficacy of gabapentin as 

monotherapy is awaited. Several trials are underway, and the results should 

be available shortly.

Safety and toxicity

Gabapentin is a very well tolerated drug, and any drug-related problems are 

usually of early onset, easing after around two weeks. These adverse events 

are relatively rare, but usually manifest themselves as mild CNS toxicity 

(Browne 1993), although few studies have been done to assess the 

psychomotor and cognitive effects of the drug. Gabapentin is not yet licensed 

for use during pregnancy, and any experience of this has been gained on an 

ad-hoc basis.

In the report by the UK study group (1990), 62% of those receiving 

gabapentin reported side effects, the most common being somnolence 

(14.8%), fatigue (13.1%), dizziness (6.6%) and weight gain (4.9%). In the
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placebo group, however, 41% reported side effects including headache 

(9.1 %) followed by dizziness and somnolence (both 4.5%). Of the 11 patients 

who withdrew due to side effects, seven were on gabapentin
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Felbamate

Felbamate is chemically unrelated to the 

established anticonvulsants, and was 

approved for use in the USA as add-on and 

monotherapy in adults with partial seizures 

alone or with secondary generalisation. The 

drug was first marketed there in December 1992 (Brodie and Pellock 1995), 

and subsequently approval was given for use in children with partial or 

generalised seizures associated with Lennox-Gastaut syndrome. The UK 

licensing authorities, with a wisdom commendable in hindsight, refused to 

approve the use of this drug around that time, requesting more proof of 

efficacy and safety. Later developments would prove their reservations to be 

well founded.

Mechanisms of action

The mechanisms of action of felbamate are not completely understood, but at 

therapeutically relevant concentrations it has been shown to reduce voltage 

dependent sodium currents in a use-dependent manner (analogous to 

phenytoin and carbamazepine) (White et al 1992), enhance GABAergic 

inhibition, block the NMDA receptor site (Rho et al 1994), probably with 

significant glycine antagonism (McCabe et al 1993). Each of these 

mechanisms could be wholly or partly responsible for felbamate’s antiepileptic 

effect. Felbamate is effective against animal seizure models, including MES- 

and PTZ-induced seizures. There was a wide separation between therapeutic

Felbamate
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and toxic doses.

Pharmacokinetics and interactions

Felbamate is well absorbed orally and is about 22-25% bound to plasma 

proteins (Perhach and Shumaker 1995). Its plasma half-life is approximately 

20 hours, indicating it could be given twice daily, although three to four 

divided doses are recommended by the manufacturer (Dichter and Brodie

1996). Felbamate undergoes hydroxylation by the liver, although around half 

of each dose is excreted unchanged in the urine (Shumaker 1990).

There are significant mutual drug interactions between felbamate and the 

other established AEDs. Felbamate increases phenytoin levels and can 

precipitate phenytoin toxicity when added to a previously stable regimen 

(Graves et al 1989). Concomitant felbamate decreases serum carbamazepine 

levels while increasing levels of carbamazepine-10,11-epoxide (Wagner et al

1993) theoretically producing toxicity at a lower serum carbamazepine levels 

than would otherwise be expected. Felbamate also increases valproate levels, 

although inconsistently (Wagner et al 1991). Thus, if felbamate is started in a 

patient taking any of the established AEDs, concomitant reduction in their 

dose (by 20-33%) is indicated to prevent toxicity (Dichter and Brodie 1996). 

Phenytoin and carbamazepine (but not valproate) increase felbamate 

clearance (Dichter and Brodie 1996).

Efficacy

Three double-blind, placebo-controlled, add-on studies demonstrated
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felbamate’s efficacy in reducing intractable focal seizures in adults compared 

to placebo (Theodore et al 1991, Leppik et al 1991, Bourgeois et al 1993). In 

two innovative trial designs, utilising monotherapy in patients in whom 

conventional therapy was withdrawn (Sachdeo et al 1992), and in patients 

being evaluated for epilepsy surgery whose concomitant AEDs were being 

discontinued (Faught et al 1993), felbamate was shown to be better than 

placebo or low-dose valproate in preventing the recurrence of seizures. In 

children with the Lennox-Gastaut syndrome (Felbamate Study Group 1993), 

felbamate was demonstrated to be superior to placebo for reducing total 

seizure frequency and reducing atonic seizures.

Within controlled clinical studies, felbamate was considered to be a well 

tolerated compound, many of the documented side-effects being attributed to 

the interaction of felbamate with concomitant AEDs. Felbamate use was 

associated with nausea, decreased appetite, insomnia, agitation and 

headache (Liporace et al 1994, Bebin et al 1995). Post-marketing, however, 

these side-effects appeared to be more prominent and resulted in a significant 

number of patients discontinuing the medication (Wolff et al 1994). Within a 

year, after around 100,000 patients had been exposed to felbamate, two very 

serious problems arose. By 1995, aplastic anaemia had developed in 32 

patients, and hepatic failure in 19 patients (Brodie and Pellock 1995). It has 

been reported that five of those with hepatotoxicity, and ten of those with bone 

marrow suppression have died (Brodie and Pellock 1995).

Felbamate use in the UK is rare, and on a named patient basis only. In the 

USA, however, the FDA have restricted use to those patients refractory to all
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other medications and in whom the risk-benefit relationship is favourable. 

Weekly or bi-weekly blood counts and liver function tests must be performed, 

although it is not known whether early detection of either of these 

idiosyncratic reactions will prevent the most serious outcomes.
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Topiramate

Topiramate [2,3:4,5-bis-0-(1-

methylethylidene)B-D-fructo-pyranose 

sulfamate] is chemically unrelated to other

AEDs, deriving as it does from D-fructose, and

containing a sulfamate functionality (Shank et al 1994). In November 1995,

topiramate received its UK license for use as add-on therapy for refractory

epilepsy.

Mode of Action

The precise mechanisms by which topiramate exerts its anticonvulsant effect 

are as yet unknown. It is likely that, like the established anticonvulsants, 

topiramate has several effects on neuronal physiology and biochemistry, and 

that the anticonvulsant activity depends on a combination of these effects.

Like the established AEDs, topiramate decreases sodium channel 

conductance (Taylor 1993b), an action which occurs at a wide range of doses, 

and which prevents sustained repetitive firing (Coulter et al 1993). As with 

barbiturates and the benzodiazepines, topiramate’s efficacy may depend to a 

degree on the potentiation of GABA’s action on chloride channel conductance 

(Brown et al 1993): topiramate increases the frequency rather than the 

duration of chloride channel opening in response to GABA (Twyman et al - In 

Press), an action which is not blocked by flumazenil (White et al 1995).

A modest block of AMPA and kainate receptors has been described (Coulter 

et al 1993a, Stables et al 1995), although the relative importance of this
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blockade is as yet unknown. The drug is known to have some carbonic 

anhydrase inhibitory activity (Shanks et al 1994), although this is mild across 

several species, and is felt to have little bearing on its anticonvulsant action.

Pharmacokinetics and interactions

In man, topiramate has 80% bioavailability, which is unchanged with 

concomitant food ingestion. It is weakly (15%) protein bound, and is largely 

eliminated unchanged by the kidney. In non-enzyme induced patients, around 

20% is metabolised, and when used as monotherapy, the drug has a half life 

of around 20-30 hours. Pharmacokinetics are linear, the plasma level 

increasing in proportion to the dose. Of the fraction that is metabolised by the 

liver, there are six different metabolites formed: none have any important 

anticonvulsant actions. In patients with renal or hepatic impairment, and in 

whom elimination or metabolism is decreased, lesser doses of topiramate may 

be required to avoid dose-dependent side effects.

The established enzyme-inducing AEDs increase the clearance of topiramate. 

Phenytoin increases the total clearance by a factor of 2 or 3 (Willensky et al 

1989), while carbamazepine increases only the non-renal clearance (Floren et 

al 1989). Concomitant valproate (Floren et al 1989), like phenobarbitone, 

does not significantly affect topiramate clearance.

Topiramate exerts no effects on the metabolism of the established AEDs other 

than phenytoin. In this case topiramate reduces total clearance of phenytoin 

to a variable degree (Floren et al 1989), occasionally by as much as 15%, 

leading to occasional rises in phenytoin steady state concentrations of as
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much as 25%. Notwithstanding this, it is reported that there is usually no 

change in phenytoin dose required in patients commencing topiramate.

In relation to other drugs, it is known that clearance of both digoxin and 

oestrogen are increased by topiramate. This may have important connotations 

for the drug’s usage in old and younger patient groups respectively.

Preclinical testing

In both rats and mice, topiramate has been shown to be efficacious against 

MES one hour after dosing, with a potency similar to that of phenytoin or 

carbamazepine (Shank et al 1994). In the case of treated rats, the 

anticonvulsant effect was still evident 24 hours after dosing. Potency in rats 

was 2-5 times greater than in mice (Shank et al 1994), the converse of the 

situation with phenytoin. In animal models, the D-isoform is between 2 and 5 

times more potent than the L-isoform.

In mice, topiramate had only a weak effect against those seizures provoked 

by PTZ (Shank et al 1994), but had no effect against those induced by 

picrotoxin or bicuculline even 4 hours after dosing with topiramate at 

800mg/Kg. Like phenytoin, topiramate did not block PTZ, or DMCM-induced 

seizures up to 6 hours after dosing.

Efficacy

Double-blind trials of anticonvulsant efficacy in patients with epilepsy have 

been carried out, although fully published information is scanty and most data 

are only available in abstract form. At 400mg daily in 46 patients (Martinez-
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Lage et al 1995), 22% of the topiramate-treated group had their seizure 

frequency reduced by at least 75%, compared to 4% of those in the placebo- 

treated group. The commonly used ‘responder rate’ (>50% reduction in 

seizure frequency) was 35% and 8% for topiramate and placebo groups 

respectively.

In another placebo-controlled study involving 60 patients (Tassinari et al

1995), topiramate at least halved the seizure frequency in 47% of topiramate 

treated patients at 600mg/day (10% placebo). 23% of those on active 

treatment had their seizures reduced by 75% compared to only 3% of the 

placebo-treated group. There were no serious adverse events reported during 

either of these trials.

In another more complex study involving 56 patients (Ben Menachem et al 

1995b), patients were given either 800mg/day or the maximum tolerated dose, 

whichever was the greater. None of the placebo treated group had their 

seizure frequency reduced by 50% or more. In contrast, 43% of the actively 

treated group had their seizure frequency at least halved, with 36% having 

seizure frequency reduced by at least 75%.

Assessment of higher doses has been attempted (Privitera et al 1995). 

Comparison of placebo treatment with topiramate at higher doses showed that 

the ‘responder rate’ was 44%, 40%, and 35% at 600, 800, and 1000mg daily 

respectively compared to only 9% of the placebo treated group.

So far 70 patients have been reported as having been treated with topiramate 

for over five years with no loss of efficacy (Stables et al 1995).
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Monotherapy Trials

A comparison of low (100mg/day) and high (1000mg/day) topiramate when 

given as monotherapy in newly diagnosed patients (Sachdeo et al 1995) 

showed more patients receiving the higher dose remained seizure-free at the 

conclusion of the 112-day study period. More information is required before 

these results can be easily interpreted.

Tolerability

Many of the side effects experienced during the clinical trials are said to be a 

consequence of the rapid titration schedule. Certainly the generally accepted 

titration rates are less than those used during the trial programme, although 

whether this relaxation will ease the side effect profile is still to become 

apparent.

The most commonly described adverse events (Ben-Menachem et al 1995b) 

involved the central nervous system, including ataxia, dizziness, poor 

concentration, asthenia, paraesthesiae and weight loss. Meta-analysis of all 

clinical trials has confirmed that nephrolithiasis occurs more commonly during 

treatment with topiramate (Wasserstein et al 1995a), probably due to a 

treatment-related decrease in urinary citrate excretion (Wasserstein et al 

1995b). Most renal calculi were passed spontaneously and asymptomatically. 

Teratogenesis has been demonstrated at a wide range of doses in mice 

(BenMenachem et al 1995b), but only at the highest doses used in rats 

(500mg/kg/day). No teratogenic effect was seen in rabbits at any dose tested 

(BenMenachem et al 1995b).Oxcarbazepine
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Oxcarbazepine (oxcarbazepine) is the 10-keto analogue of carbamazepine 

whose modifications ensure that it has a different metabolic profile from its 

ancestor, oxcarbazepine is essentially a pro-drug (Dichter and Brodie 1996), 

which is rapidly and completely reduced in the liver to the active moiety,

Oxcarbazepine Carbamazepine

NH •NHj

Reduction Oxidation

(CBZ-E)
HOv

■NH

Conjugation Hydrolysis

Glue - O HO, OH

■NH “NH j

Figure 5: Metabolic pathways for both carbamazepine 
and oxcarbazepine

10,11 -dihydro-10-hydroxycarbamazepine (OHCBZ) (Figure 6). The main 

advantage of oxcarbazepine arises from avoidance of formation of 

carbamazepine 10,11 epoxide (CBZ-E) (Patsalos and Sander 1994) during its

96



metabolism. As described earlier (See Established Antiepileptic Drugs - 

Carbamazepine), CBZ-E accounts for many of the adverse events 

experienced during carbamazepine treatment (Patsalos et al 1985, Gillham et 

al 1988).

Mode of action

There is little specific information available on the mechanism of action of 

oxcarbazepine, as it has always been thought to be closely related to that of 

carbamazepine. Certainly the effect of both compounds on animal seizure 

models is similar, although not identical. The assumption, therefore, is that 

oxcarbazepine has its major effect in preventing repetitive firing of neurones 

by blocking voltage-dependent Na+ channels (Rogawski and Porter 1990). 

There may be some differences between oxcarbazepine and carbamazepine, 

in the way that high-voltage-activated (HVA) calcium currents are affected 

(Stefani et al, 1995), and in the modulation of

corticostriatal synaptic transmission (Calabresi et al, 1995). One trial (McKee 

et al 1994) demonstrated that oxcarbazepine could be added into a regime 

containing carbamazepine without necessarily provoking toxicity, and with 

occasional benefit.

Pharmacokinetics and interactions

Oxcarbazepine is rapidly and almost completely absorbed (96%) after oral 

dosing (Dam and Ostergaard 1995). After a rapid presystemic hydroxylation, it 

is excreted in the urine, 85% of each dose being excreted in the first 48 hours.
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oxcarbazepine is immune to oxidative attack and it is the mono-hydroxy 

derivative of oxcarbazepine (OHCBZ) which accounts for the drug’s 

pharmacological actions. Oxcarbazepine itself is only transiently present in 

the circulation (Theisohn and Heimann 1982). OHCBZ is approximately 40% 

bound to circulating plasma proteins; its elimination half-life ranges from 11 to 

17 hours (Kristensen et al 1983).

Treatment with oxcarbazepine does not result in autoinduction of metabolism 

(Larkin et al 1991). In patients changed from carbamazepine to 

oxcarbazepine, steady-state plasma concentrations of concomitant phenytoin 

and valproate rose by 20-30%. oxcarbazepine had little effect on levels of 

established AEDs when used as add-on therapy suggesting an absence of 

important metabolic interference with these agents (McKee and Brodie 1994). 

The converse does not apply, however, as enzyme induction by 

phenobarbitone (Tartara et al 1993), phenytoin or carbamazepine may 

decrease OHCBZ concentrations. That the efficacy of oxcarbazepine relies on 

the production of OHCBZ may explain why twice-daily dosing may be 

adequate for a compound with a relatively short half life (Arnoldussen and 

Husmann 1991).

Efficacy

A number of clinical trials in which oxcarbazepine was substituted for 

carbamazepine have supported similar efficacy for the two compounds. In a 

double-blind randomised comparative trial with carbamazepine in 235 newly 

diagnosed patients (Dam et al 1989) no significant difference was found

98



between the two agents in terms of seizure control. Like carbamazepine, 

oxcarbazepine is not effective against absence seizures or myoclonic jerks 

(Friis et al 1993). Controlled trials in children are needed, although open 

studies support similar efficacy to that reported in adults.

Tolerability

Side-effects associated with oxcarbazepine are similar to those produced by 

carbamazepine (Friis et al 1993) with dizziness, drowsiness, headache, 

nausea, vomiting and diplopia being the most prominent symptoms. 

Comparative studies (Dam et al 1989) have reported these to be less frequent 

and less severe than with carbamazepine. In addition, oxcarbazepine 

produces fewer rashes and perhaps fewer idiosyncratic reactions. 

Hyponatraemia, probably secondary to an antidiuretic hormone-like property, 

is more common with oxcarbazepine than with carbamazepine (Amelsvoort et 

al 1994). This can occasionally present clinically but is usually mild and 

asymptomatic. There is no evidence yet of teratogenesis with oxcarbazepine. 

Oxcarbazepine has the potential to become a well established first-line 

antiepileptic drug when the current programme of research has been 

completed. Studies to date suggest that it is as effective as carbamazepine, 

but with lower propensity to induce idiosyncratic reactions and drug 

interactions. There is no evidence of teratogenicity so far, and the drug may 

have a less deleterious influence on cognitive function than carbamazepine. 

Placebo-controlled clinical trials are underway investigating the efficacy and 

safety of oxcarbazepine as adjunctive therapy in refractory epilepsy, as
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monotherapy in newly diagnosed patients, in children and in the elderly. 

Finally, further studies on the basic mechanisms of action may dissect out 

important pharmacological differences between oxcarbazepine and 

carbamazepine.
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Tiagabine

Tiagabine [(R-)-N-(4,4-di(3-methylthien-2-yl)but-3-enyl)nipecotic acid 

hydrochloride] like other nipecotic acid derivatives, inhibits GABA

reuptake into both neurons and glial cells in 

rodents (Nielsen et al 1991). The large 

addition to the nipecotic acid molecule acts 

as a lipophilic anchor, helping the compound 

to cross the blood-brain barrier following oral 

administration.

Mode of Action

Tiagabine is a potent GABA re-uptake blocker (Nielsen et al 1991), and the 

resultant increase in synaptic GABA, as demonstrated by microdialysis (Fink- 

Jensen et al 1992), is thought to account for tiagabine’s anticonvulsant

activity. As previously described, there are four GABA liptake transport

mechanisms characterised, and nipecotic acid derivatives have been shown 

to be fairly specific for one of these (GAT-1), with some lesser effects on 

GAT-3 (Clark and Amara 1994).

Tiagabine only very weakly interacts with the BDZ receptor and the chloride 

ion channel of the GABAa receptor, and it does not appreciably bind to other 

neurotransmitter receptors (Rogawski and Porter 1990).

Predinical testing

Tiagabine has been shown to protect against audiogenic seizures, PTZ-

Tiagabine
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induced seizures, and DMCM-induced seizures in mice. In rats, it has activity 

against PTZ picrotoxin and bicuculline-induced seizures as well as against 

amygdaloid kindling. It has some effect against photically induced seizures in 

baboons (Ostergaard et al 1995). Like vigabatrin, tiagabine increases the 

frequency and duration of spike wave discharges in Wistar rats (Coenen et al 

1995)

In rat synaptosomal preparations, tiagabine inhibits the uptake of GABA into 

both neurons and glial cells (Braestrup et al 1990). At 100uM, tiagabine 

weakly (<20%) inhibits the binding of specific ligands for the dopamine D1 

and D2, muscarinic, 5-HT2, GABAa and Glycine receptors. Radiolabelled 

tiagabine also showed saturable and reversible binding to rat brain 

membranes, which was inhibited by known inhibitors of H3-GABA binding. 

There is no change seen in the transport of dopamine or noradrenaline. 

Radiolabelled tiagabine is not a substrate for the carrier process, and does 

not alter the rate of release of GABA from presynaptic neurones.

Interestingly, Honmou and colleagues (1995) have described an intriguing in- 

vitro example of pharmacological synergism. Gabapentin’s action in 

stimulating non-synaptic GABA release is said to be potentiated on exposure 

to nipecotic acid. The mechanism by which this occurs is unknown, but it may 

be a harbinger of an important clinical finding.

Pharmacokinetics and interactions

Tiagabine is easily and rapidly absorbed following oral administration, with 

maximum concentrations occurring in most subjects less than 1 hour after
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ingestion (Ostergaard et al 1995). In healthy volunteers pharmacokinetics are 

linear (Gustavson and Mengel 1995), with a half life between 5 and 8 hours 

(Brodie 1995). One quarter of each dose is metabolised and excreted in the 

urine, with the majority undergoing faecal excretion as two, as yet 

unidentified, metabolites (Ostergaard et al 1995).

Patients on a regime containing enzyme-inducing drugs would appear to 

metabolise tiagabine faster than untreated volunteers or patients on valproate 

monotherapy (Richens et al 1991, So et al 1995). Co-administration of 

tiagabine does not have an effect on the pharmacokinetics of concomitant 

AEDs (Richens et al 1995).

Clinical Studies

Published clinical studies are scanty, but the first fully published clinical study 

showed a positive effect (at least 25% reduction in seizure frequency) in 46 

out of 94 patients with refractory localisation-related epilepsy (Richens et al 

1995) during the open titration phase. Subsequent treatment during the 

placebo-controlled arm showed complex partial seizures to be at least halved 

in 26% of those undergoing double-blind testing against placebo. Of those 

with secondary generalised seizures, 63% had seizure frequency at least 

halved by tiagabine.

Tolerability

Tolerability seems to compare favourably with the established AEDs (Richens 

et al 1995). Ninety of the 94 recruits to the double-blind study (Richens et al
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1995) reported some adverse events, unsurprisingly given that tiagabine dose 

was titrated to maximum tolerated dosage. Most adverse events were mild or 

moderate, with withdrawal being provoked in 14 patients. Of the ten 

considered retrospectively to be treatment associated, six complained of 

fatigue. During the double blind treatment phase, adverse events were slightly 

more common with placebo than with tiagabine treatment (62% and 50% 

respectively). Only one case of overdose has been reported (Leach et al 

1995) which ended uneventfully despite the tiagabine serum level being thirty 

times greater than the mean serum level during treatment with the drug.
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Remacemide

Remacemide is a novel 

antiepileptic agent which 

emerged from a drug discovery 

programme aimed at creating a 

molecule with a 3-dimensional 

structure similar to that of 

phenytoin (Rogawski and 

Porter, 1990). It is chemically unrelated to any other anticonvulsant, and is 

currently undergoing testing to assess its suitability for use as an add-on 

anticonvulsant drug. As well as being an anticonvulsant (Garske et al 1991), 

remacemide hydrochloride may be effective in preventing cell damage in the 

course of ischaemic injury (Bannan et al 1994) or Parkinson’s disease 

(Greenamyre et al 1994).

Mode of action

At least part of the activity of remacemide arises from the active desglycinate 

metabolite, ARL12495XX. This metabolite has a longer half life than 

remacemide, and is commonly used in in-vitro experiments of anticonvulsant 

activity.

In keeping with the structural similarities with phenytoin, remacemide and 

ARL12495XX have been shown to inhibit sustained repetitive firing in cultured 

neurones (Cheung et al 1992) consistent with a blockage on fast sodium 

channels at concentrations which is suggested by the binding of both
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remacemide and ARL12495 to the batrachotoxin-binding site of the sodium 

channel (Clark et al 1995).

Remacemide demonstrated no affinity for receptors to adenosine-1, GABAa, 

benzodiazepines, glycine (Garske et al 1991), or the AMPA subtype of 

glutamate receptor (Hu and Davies 1994).

In-vitro studies have demonstrated no modification of evoked synaptic 

response or penicillin induced bursting in isolated rat hippocampal slices 

(Palmer et al 1992) by remacemide or ARL12495XX. Subsequent work in 

brain slices has demonstrated a change by ARL12495XX in K*- and 

veratridine-mediated glutamate release (Srinivasan et al 1994).

A non-competitive antagonism at NMDA receptors (Palmer et al 1993) has 

also been demonstrated, which is more potent for ARL12495XX than for the 

parent compound, and an inhibition of NMDA-induced currents in cultured 

neurones was shown on exposure to both compounds (Subramaniam et al 

1993). Other NMDA antagonists have been developed for use in seizures and 

ischaemic\anoxic brain injuries, but so far only remacemide has had sufficient 

tolerability to survive phase 1 testing.

Pharmacokinetics

The compound is a diphenyl-ethyl-acetamide derivative, and is rapidly and 

near-completely absorbed within two hours (Muir and Palmer 1991). In 

healthy volunteers, single doses up to 300mg were well tolerated, above 

which light-headedness and gastrointestinal upset became increasingly 

common. The elimination half life of remacemide in healthy volunteers is

106



around four hours, a rate that is independent of dose, with no evidence of any 

autoinduction. About 25% of the drug is excreted in the urine (Muir and 

Palmer 1991), mostly as glucuronide conjugates. The ubiquitous 

aminopeptidases are responsible for producing the main metabolite, 

ARL12495XX. This has a much longer half life (12-15 hours), and is thought 

to be, at least in part, responsible for the efficacy of remacemide. Levels of 

the desglycinate became detectable in volunteers at doses of remacemide 

above 300mg (Palmer et al 1992a). The elimination of ARL12495XX also 

demonstrates first order kinetics.

Preliminary evaluation in a small number of volunteers had suggested that the 

elimination of both remacemide and ARL12495XX was increased in those on 

monotherapy with enzyme-inducing anticonvulsants. There was some 

evidence that oral administration of remacemide hydrochloride had enzyme- 

inhibiting properties, which increased levels of concomitant carbamazepine.

In vitro studies (Riley et al 1995) had confirmed some effect of remacemide, 

albeit at high doses, on CYP3A4 and to a lesser extent CYP2C9. These 

enzymes are responsible for the oxidation of carbamazepine and phenytoin 

respectively.

Preclinical animal testing

In rodents, both the parent compound and ARL12495XX protected against 

MES-induced (Stagnitto et al 1990). After a single dose, this protection was 

sustained for up to 4 hours, longer than any of the established antiepileptic 

agents. After multiple doses, the anticonvulsant effect lasted for 8 hours,
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longer than any of the established agents apart from phenobarbitone. The 

negative enantiomer is more potent at preventing MES induced seizures (Muir 

and Palmer 1991). No anti-seizure effect was found against seizures 

provoked by picrotoxin, strychnine, PTZ, or bicuculline (Muir and Palmer 

1991).

Administration of remacemide to mice prevented NMDA-induced mortality. 

Interestingly, while ARL12495XX offered protection only against NMDA, 

remacemide itself also protected against kainate-induced mortality (Palmer et 

al 1992a).

Efficacy

Seizure frequency was reduced following administration of remacemide 

hydrochloride as add-on therapy in 28 patients with refractory epilepsy 

(Crawford et al 1992). One third of all patients had their seizure frequency cut 

by at least 50%, with a mean seizure reduction of around 33%. The results of 

much larger efficacy studies are awaited, these having ‘unblinded observer’ 

designs to compensate for the effects of pharmacokinetic interactions with 

other AEDs. More information on tolerability is also required.
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MATERIALS

Radioisotopes: y-[14C]-aminobutyric acid was obtained from DuPont (New 

England Nuclear).

Pharmaceuticals

Tiagabine was donated by Novo Nordisk 

Vigabatrin was donated by Marion Merrell Dow 

Remacemide was donated by Fisons Pharmaceuticals 

Gabapentin was donated by Parke Davis

Chemicals: Ammonium dihydrogen orthophosphate (NH4H2PO4),

ammonium sulphate ((NH4)2S04), calcium chloride (CaCI2), glacial acetic acid, 

D-glucose, hydrochloric acid (HCI), magnesium sulphate (MgS04), perchloric 

acid, phosphoric acid, potassium chloride (KCI), potassium dihydrogen 

orthophosphate (KH2P04), sodium bicarbonate (NaHC03), sodium chloride 

(NaCI), di-sodium hydrogen orthophosphate (Na2HP04), sodium hydroxide 

(NaOH), and sodium dihydrogen orthophosphate (NaH2P04) were all obtained 

from Merck.

Para-aminobenzoic acid (PABA), y-aminobutyric acid (GABA), 2- 

aminoethylisothironium bromide (AET), boric acid, bovine serum albumin 

(BSA), cytosine arabinoside (ARA-C), 3'5'-dibutyryl cyclic adenosine 

monophosphate (cAMP), dithiothreitol, ethylene diamine tetra-acetic acid
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(EDTA), DNase I, gabaculline, L-glutamic acid, HEPES, insulin, a-ketoglutaric 

acid (a-KG), 3-mercaptopropionic acid (3-MPA), D,L,-norvaline, 

o-phthalaldehyde (OPA), poly-D-lysine, pyridoxal-5'-phosphate (PLP), soya 

bean trypsin inhibitor (SBTI), trypsin, and nipecotic acid were all obtained 

from Sigma Chemical Company.

Dulbecco’s modified Eagle’s medium (DMEM), Earle’s balanced salt solution 

(EBSS), foetal calf serum (FCS), L-glutamine, horse serum (HS), minimal 

essential medium (MEM), penicillin, phosphate buffered saline (PBS), sterile 

culture water, and streptomycin were all obtained from Gibco BRL. 

Acetonitrile and methanol were obtained from Rathburn Chemicals Ltd. 

Coomassie Brilliant Blue G-250 protein assay dye reagent and Dowex 

AG50Wx8 ion exchange resin were from BIORAD.

A standard balanced salt solution (BSS) was used throughout the 

investigation of GABA uptake. Its composition was as follows: 136mM NaCI, 

5mM KCI, 0.8mM MgS04, 2.6 mM NaHC03, 0.4mM KH2P04i 0.34mM 

Na2HP04, 1.3mM CaCI2, 5.6 mM D-glucose, and 15mM HEPES. The solution 

was adjusted to pH 7.4 with NaOH and warmed to 37°C before use.

Equipment

Centrifugation: A Wifug haemicrofuge was employed for small volume 

samples and a refrigerated MSE Mistral 2L centrifuge for all other samples. 

Eiectroshock stimulation: A Ugo Basile 7801 electroconvulsive therapy

110



(ECT) unit was used.

High performance liquid chromatography: For determination of amino acid 

concentrations, a Waters model 510 pump, a Waters WISP 71 OB injector, a 

Perkin Elmer LS-5 luminescence spectrophotometer, and a computer-based 

Jones Chromatography JCL-6000 integration package were used. Excitation 

and emission wavelengths were 330 and 440 nm respectively, with 

bandpasses of 15 and 20 nm.

Homogenisation: Where preservation of an enzyme was important a glass 

Potter Elvehjam vessel and motor powered teflon pestle were used. The 

alternative method employed a polytron homogeniser and included sonication 

in the homogenisation process. Small volume samples were homogenised by 

sonication alone in a MSE Soniprep 150.

Scintillation counting: A Canberra Packard 2000CA TRI-CARB liquid 

scintillation counter was used.

Spectrophotometry: Protein concentrations were assayed with a Philips Pye 

Unicam PU-8600 UV/vis spectrophotometer incorporating a PU-8605 cell 

programmer. (ELISA)

Statistical analysis: Statistical analysis was performed using the MINITAB 

statistical package (V8) on a Viglen 486DX microcomputer.
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GENERAL METHODS 

Animals used

ICR mice were supplied by Harlan Olac. Studies involving rats used the 

out-bred Sprague Dawley (SD) strain, which were supplied by Bantin and 

Kingman and again latterly by Harlan Olac. Neonatal and foetal animals 

required for cell culture techniques were supplied by the Joint Animal Facility 

at the University of Glasgow from a breeding colony of SD rats. Experimental 

animals were housed in the departmental animal unit. Animals were exposed 

to a controlled temperature and humidity environment throughout with a 12 

hour light/dark cycle and had access to food and water ad libitum.

Brain tissue removal

Animals were sacrificed by a blow to the head followed by decapitation. The 

skin and tissues overlying the skull were incised and then removed. The point 

of a pair of bone cutters or scissors was inserted into the foramen magnum 

and the occipital bone incised, in either direction, in the dorsal plane. The 

occipital bone was then prised free of the underlying cerebellum. Next, the 

parietal bones of the skull were incised down either side, again in the dorsal 

plane, roughly at the level of the base of the brain. The parietal bones were 

prised clear of the brain surface taking care not to damage the underlying 

tissues. The meningeal membranes were cleared from the brain surface. 

Finally, the frontal bones were removed by a sharp fracture in the coronal 

plane just anterior to the olfactory lobes of the brain. Following severance of 

the optic nerves, the intact brain was removed with the aid of spatulas.
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weighed where applicable, and stored appropriately at -70°C until required. In 

studies involving analysis of discrete brain regions, the brain was carefully 

dissected in accordance with the method of Glowinski and Iversen (1966) and 

each region weighed prior to storage.

Determination of protein concentrations

Many of the assays reported in this thesis required accurate and reproducible 

analysis of sample protein content to enable quantifiable calculation of 

experimental results. The BIORAD method is a sensitive test of protein 

concentration of use particularly when small volume samples with low protein 

content are under investigation. The method relies on the colour change of a 

dye (Coomassie Brilliant Blue G-250) in response to protein concentration. 

Standards were prepared, in duplicate, over the range 0.5 - 2.0 pg/ml BSA. 

Samples of unknown protein concentration, also analysed in duplicate, were 

diluted into this range. BIORAD protein assay dye reagent was diluted 1:1 

with water and added, in equal volume, to standards and samples alike. 

Following vortex-mixing, tubes were incubated at room temperature for 5 

minutes and then read in the spectrophotometer. The intensity of the colour 

obtained was proportional to the amount of protein present and after 

construction of a standard curve, the protein content of samples could be 

determined. Results were corrected for dilution, averaged, and expressed in 

mg/ml.

Sample storage
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Plasma and brain samples for drug assay were stored at -20°C until analysis. 

Brain samples for the study of enzyme activities and neurotransmitter levels 

were stored at -70°C until required.

DETERMINATION OF GABA-AMINOTRANSFERASE ACTIVITY

This method was devised from modifications of the methods of White and 

Sato (1978) and Larsson and co-workers (1986).

Reagents

All solutions required for enzyme assay were prepared in deionised water. An 

EDTA buffer was prepared weekly for sample preparation and stored at 4°C. 

The buffer consisted of 0.1 mM EDTA, 0.5 mM dithiothreitol, and 0.1 mM 

KH2P04. PLP was added daily as required (final concentration = 0.2 mM) and 

the buffer adjusted to pH 8.0 with 4 M NaOH. A [14C]-GABA incubation 

medium was prepared every 2 -3  months and stored at -20°C. The incubation 

medium consisted of 0.68 mM GABA (specific activity = 1.46 mCi/mmol), 1.8 

mM EDTA, and 200 mM K H2P04 with the pH adjusted to 6.9 with 1 M NaOH.

Sample preparation

Neurological tissue was thawed and homogenised in 4 volumes (v/w) of EDTA 

buffer. All samples were centrifuged at 2000 rpm for 20 minutes at 4°C. The 

resultant supernatant was decanted and its protein content determined, in 

duplicate, by the BIORAD method (see above: General Methods - 

determination of protein concentration). The volume of the remaining
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supernatant was adjusted with EDTA buffer to give a final protein 

concentration of 1 mg/ml.

Assay for enzyme activity

A 50 pi volume of the adjusted supernatant was added to 25 pi of 0.68 mM a- 

Ketoglutarate (a-KG) and 25 pi of the [14C]-GABA incubation medium to give a 

final assay volume of 100 pi. Assays were performed in duplicate with a blank 

assay included for each sample by replacing the a-KG with 25 pi water. All 

samples were vortex-mixed for 10 seconds and then incubated for 60 minutes 

at 37°C. The reaction was terminated by the addition of 10 pi 2M HCI followed 

immediately by vortex-mixing for 10 seconds. The incubation mixtures were 

transferred to the surface of a resin in small disposable ion-exchange columns 

(Dowex AG50Wx8, pre-washed with deionised water, 0.5 x 3.0 cm, in 9 inch 

glass Pasteur pipettes plugged with a glass bead). Radioactive products were 

eluted directly into glass scintillation vials using 3 portions of 0.5 ml water. 

Each portion was placed in the original incubation tube and transferred to the 

column with the same pipette used to transfer the incubation mixture. Twelve 

ml of Picofluor 40 scintillation fluid was added to each vial and the 

disintegrations per minute (dpm) were counted for 10 minutes by liquid 

scintillation counting.

Calculations

The radioactive content of samples was analysed in comparison to the dpm 

obtained from standard solutions containing known amounts of radioligand.
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Results were corrected for background and blank sample counts and 

quantified in relation to protein content and reaction time. Enzyme activities 

were expressed as nmol/min/mg protein.

DETERMINATION OF AMINO ACID CONCENTRATIONS BY HIGH 

PERFORMANCE LIQUID CHROMATOGRAPHY

This method for the measurement of GABA, glutamate and glutamine was 

devised from a modification of the method of Durkin and colleagues (1988).

Reagents

Stock solutions of GABA (1 mg/ml in distilled water) were prepared monthly, 

stored at 4°C, and diluted to working standard solutions daily as required. The 

derivatization reagent mixture (OPA-3-MPA) was prepared weekly by 

dissolving 50 mg OPA in 4.5 ml methanol and 0.5 ml borate buffer then 

adding 50 pi 3-MPA with the mixture being stored at 4°C in the dark. The 

borate buffer was made weekly by adjusting 0.5 M boric acid to pH 9.5 with 1 

M NaOH.

Mobile phase

Glutamate and glutamine concentrations were determined in mobile phase 

consisting of 75:25 (v/v) 0.57 M acetate buffer (pH 3.75, containing 100 mg/l 

EDTA) / acetonitrile. For GABA analysis the mobile phase was 60:40 (v/v) 0.2 

M acetate buffer (pH 3.80, containing 100 mg/l EDTA) / acetonitrile. Acetate 

buffers were prepared by adding 32.8 ml (0.57 M) or 11.5 ml (0.2 M) glacial
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acetic acid to 925 ml of water, adjusting the pH with 3 M NaOH and diluting to 

1 litre with water. Flow rates were 1.0 ml/min throughout.

Calibration

Calibration curves (in water) were constructed for glutamate (0.5 - 5.0 pg/ml), 

glutamine, and GABA (2.0 - 20 pg/ml) and were seen to be linear (r > 0.930) 

in all cases. Limits of detection for both glutamate, glutamine and GABA were 

found to be 5 ng/ml in a 50 pi sample. Intra- and inter-assay variations for 

GABA were calculated at 2.8% and 7.9% respectively, while for glutamate 

they were 3.4% and 8.7%, and for glutamine, 3.8% and 8.2%.

Sample preparation

Whole brains were homogenised in 10 volumes (v/w) of 1% perchloric acid 

and an aliquot taken for determination of protein content by the BIORAD 

method (see above: General Methods - determination of protein

concentration). All samples were centrifuged at 2000 rpm for 5 minutes, the 

supernatant decanted and diluted 1/10 with water prior to derivatization.

Derivatization

A 50 pi aliquot of the diluted supernatant was reacted with 200 pi methanol, 

200 pi borate buffer, and 50 pi OPA-3-MPA solution. D,L-norvaline (50 pi) was 

added as an internal standard to give a total reaction volume of 550 pi. 

Reaction mixtures were vortexed and allowed to stand at room temperature 

for 4 minutes prior to injection of 10 pi onto the column.
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Calculations

Amino acid concentrations were calculated by comparison of peak height 

ratios of analyte to internal standard and quantified in relation to the wet 

weight of tissue for brain samples and the protein concentration for cell 

culture samples. Results were expressed as pg/g protein.

DETERMINATION OF GLUTAMIC ACID DECARBOXYLASE ACTIVITY

This method was devised from modifications of the methods of Kocchar and 

colleagues (1989), Wolf and Klemisch (1991), and Chakraborty and 

co-workers (1991).

Reagents

A sodium phosphate-AET buffer was prepared weekly for sample preparation 

and stored at 4°C. The buffer consisted of 0.1 M Na2HP04 and 1 mM AET. 

The buffer pH was adjusted to 7.0 with 0.1 M NaH2P04. An incubation medium 

was prepared daily as required and consisted of 50 mM L-glutamic acid, 250 

pM PLP, 0.4% 2-mercaptoethanol, and 57 pM gabaculline.

Sample preparation

Whole brains were thawed and homogenised in 10 volumes (v/w) sodium 

phosphate-AET buffer. Samples were then centrifuged at 2000 rpm for 10 

minutes. The supernatant was decanted and an aliquot taken for
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determination of protein content by the BIORAD method (see above: General 

Methods - determination of protein concentration).

Assay for enzyme activity

Incubation medium (100 pi) was added to each of two 100 pi aliquots of 

supernatant per sample. The reaction in one aliquot (Zero-time) was 

terminated immediately while the other (test) was allowed to continue for a 

period of 60 minutes at 37°C. Termination was performed in both cases by the 

addition of 100 pi 1% perchloric acid. Terminated blank and test reaction 

mixtures were diluted 1/10 with water and assayed for GABA content by high 

performance liquid chromatography (See above: HPLC - derivitization).

Calculations

Enzyme activity was calculated by subtraction of the zero-time GABA 

concentration from the test GABA concentration to give a value for GABA 

production during the reaction period. Results were quantified in relation to 

both reaction time and protein concentration and were expressed as 

nmol/min/mg protein.

PRIMARY CULTURE OF CEREBRAL CORTICAL ASTROCYTES

This method was devised from modifications of the methods of Larsson and 

co-workers (1981) and Bender and Hertz (1984).
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Reagents

A culture medium was prepared which consisted of DMEM supplemented with 

20% (v/v) HS, 2.5 mM L-glutamine, 50 I.U./ml penicillin, and 50 pg/ml 

streptomycin. The medium was further supplemented with 0.25 mM cAMP, 

where indicated, to facilitate differentiation of the cells. The medium was 

prepared under sterile conditions and filter sterilised through a 0.2 pm pore 

filter prior to use and/or storage. Media were stored sterile at 4°C for up to 5 

days.

Tissue preparation

Tissue for cell isolation was removed under aseptic conditions. One day old 

rat pups were decapitated and the skin overlying the skull was peeled away. 

The entire skull surface was removed by inserting the point of a pair of 

scissors into the foramen magnum and incising the skull down either side in 

the dorsal plane, taking care not to damage the underlying cortex. The 

cerebral cortices were removed from either hemisphere with a sharp pinch 

between the points of a pair of curved watchmaker’s forceps. The removed 

tissue was placed in a 55 mm2 culture dish containing DMEM and, with the aid 

of a dissecting microscope, the olfactory bulbs, basal ganglia, hippocampal 

formations and meninges were removed. The dissected neopallia were then 

transferred to a sterile universal tube containing 6 ml of DMEM prior to cell 

isolation.

Cell isolation
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The dissected neopallia were cut into small cubes (0.5 mm3) by two passes 

(at 90°) in a Mcllwain tissue chopper. The chopped tissue was transferred to a 

sterile filter (80 pm nylon mesh) and the filtrate collected in a sterile beaker. 

The chopped material was washed through the filter with culture medium to 

give a final volume of 3 ml per brain. A sterile plastic pipette was used to aid 

this process. The filtrate was passed through a sterile needle (BD Microlance 

21G 0.8 x 40) three times to separate the cells. The volume of the resulting 

suspension was adjusted with culture medium to allow a 3 ml aliquot per petri 

dish with a ratio of 1 brain to 3 dishes. A 3 ml volume of the final cell 

suspension was plated onto 55 mm2 Falcon Primaria culture dishes.

Culture maintenance

The cultures were maintained at 37°C in an environment of 95% 0 2 / 5% C02 

with a humidity of > 90%. The culture medium (3 ml) was replaced every 3 -4  

days throughout. The HS concentration was reduced to 10% at the first 

medium change with a final reduction to 5% at the second change. The HS 

concentration remained at 5% thereafter. Once the cells reached confluence 

(usually after 14 days in culture) the medium was supplemented with 0.25 mM 

cAMP. At this stage penicillin and streptomycin were omitted from the culture 

medium due to possible interference with subsequent experimental 

procedures. Cultures were seen to be fully mature and ready for use between 

day 21 and day 24 and were viable for up to 42 days.
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f,4C1-GABA UPTAKE INTO CULTURED ASTROCYTES

This method was devised from modifications of the methods of Larsson and 

co-workers (1981) and Yu and colleagues (1984).

Reagents

A standard balanced salt solution (BSS) was used throughout the 

investigations of [14C]-GABA uptake. Its composition was as follows: 136 mM 

NaCI, 5 mM KCI, 0.8 mM MgS04l 2.6 mM NaHC03, 0.4 mM KH2P04, 0.34 mM 

Na2HP04l 1.3 mM CaCI2l 5.6 mM D-glucose and 15 mM HEPES. The solution 

was adjusted to pH 7.4 with 1 M NaOH and stored, at 4°C, for up to 1 week. 

BSS was warmed to 37°C prior to use.

Culture preparation

Cultures for investigation were removed from the incubator and the existing 

culture medium aspirated. Cultures were washed twice (2x1 ml neurones, 2 x 

2 ml astrocytes) with BSS (37°C) before being returned to the incubator in a 

further volume of BSS (2 ml neurones, 3 ml astrocytes) for an equilibration 

period of 20 minutes.

[14C]-GABA uptake procedure

The pre-washed cultures were removed from the incubator and the existing 

BSS aspirated. This solution was replaced by BSS (1 ml neurones, 2 ml 

astrocytes) containing the drug concentrations appropriate to the individual 

experiment. Control plates received BSS alone. All culture plates were
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returned to the incubator for a further period of 1 hour. After the incubation 

period, a further 1 ml of BSS (with appropriate control/drug treatment) 

containing 150 pM [14C]-GABA (specific activity = 1 mCi/mmol) was added to 

each plate. Incubation was allowed to continue for 5 minutes before the 

cultures were washed with 5 volumes (2 ml) of warmed BSS. Cells were finally 

removed from the plates by scraping in 1.0 ml 1 M NaOH. Aliquots were taken 

for protein determination by the BIORAD method (see above: General 

Methods - determination of protein concentration) and liquid scintillation 

counting in 8 ml of Picofluor 40 scintillation fluid.

Calculations

Liquid scintillation counting was employed to analyse GABA uptake in 

individual cultures in comparison to the dpm of standard solutions containing 

known amounts of radioligand. Results were quantified by the relation of 

GABA uptake to the protein concentration and expressed as pmol/min/mg 

protein in individual cultures. Tiagabine

Tiagabine [(R-)-N-(4,4-di(3-methylthien-2-yl)but-3-enyl)nipecotic acid 

hydrochloride] like other nipecotic acid derivatives, inhibits GABA

reuptake into both neurons and glial cells in 

rodents (Nielsen et al 1991). The large 

addition to the nipecotic acid molecule acts 

as a lipophilic anchor, helping the compound 

to cross the blood-brain barrier following oral 

administration.

Tiagabine
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Clinical investigation into the interactions
between remacemide hydrochloride and 
phenvtoin. carbamazepine. and sodium

valproate



Clinical evaluation of the pharmacokinetic interactions of

remacemide with established AEDs

Standard development and clinical assessment of new AEDs requires that 

they are initially used and assessed as add-on therapy. The first impression 

gained of any new drug will therefore be affected by any pharmacokinetic or 

pharmacodynamic interactions that occur when the drugs are used alongside 

established AEDs. In remacemide’s case, early assessment is doubly 

important because use in man involves production of an active desglycinyl 

metabolite, ARL12495XX.

In the following set of studies three patient populations undertook a trial of 

oral remacemide hydrochloride. Patients studied were on monotherapy with 

either valproate, carbamazepine or phenytoin. The trial protocol, common to 

all three groups will first be described. The demographics and 

pharmacokinetic responses of each group will then be dealt with separately.

Protocol

The study had a double-blind, random order, placebo-controlled, crossover 

design, preceded by an open, single-dose treatment phase. Patients 

continued to take their baseline AED in their usual dose throughout. One 

week following a screening visit, each patient received a single dose of 

300mg remacemide hydrochloride. Plasma levels of baseline AED, CBZ-E 

(where applicable), remacemide, and ARL12495XX, were measured 0, 0.5, 1,
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1.5, 2, 4,6, 8,10, 12, 24, and 48 hours after dosing.

One week later, patients entered the first arm of chronic treatment, receiving 

either remacemide hydrochloride or matched placebo (100mg twice daily on 

day 1, 200mg twice daily on day 2, and 300mg twice daily thereafter). The 

total treatment period was 14 days, after which remacemide hydrochloride 

was stopped to allow measurement of washout concentrations at the same 

times after dosing as before. Seven days later, the second treatment phase 

was commenced and the whole procedure was repeated. Morning pre-dose 

(trough) samples were taken on the 5th, 12th and 15th day after initiation of 

treatment.

Initially, as with those patients on enzyme inducing AEDs, valproate-treated 

patients were given remacemide at a dose of 300mg BD during the multiple 

dosing phase. Recognising the possibility of a pharmacokinetic interaction 

between remacemide and valproate, the protocol allowed for a dose reduction 

to 150mg BD in the event of any perceived adverse event. After four out of the 

first nine patients on concomitant valproate had required reduction in 

remacemide dose, the dose of remacemide hydrochloride was reduced to 

150mg BD throughout the multiple dosing phase. The doses preceding forty- 

eight hour plasma level monitoring remained 300mg.

All blood samples were taken into heparinised tubes from a cannulated 

forearm vein, which was kept patent between aspirations with normal saline. 

On each occasion, the first 1 ml withdrawn was discarded, and the subsequent 

15ml were chilled until centrifugation. All samples were spun at 3,000 rpm for

10 minutes, and the separated plasma frozen at -4°C for batch analysis.
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The study was approved by both the West Ethical Committee in Glasgow and 

the Research Ethics Committee in Cardiff. Written informed consent was 

obtained from each participant

Assays

All assays were carried out by the laboratories at Astra Pharmaceuticals. 

Remacemide and its desglycinyl metabolite were quantified by high 

performance liquid chromatography (HPLC). This was a modification of a 

previously reported method (Flynn and O’Brien 1992), adjusted to allow 

automated sample preparation and improve selectivity. The method involved 

solid phase extraction followed by separation on a reverse phase HPLC 

system utilising a octadecyl (C-18) HPLC column, an acetonitrile based 

eluent, and ultraviolet (uv) detection at 210 nm. Limits of quantification for the 

two analytes were 10 ng/ml. Only samples from the active leg of the double­

blind phase were analysed for remacemide and ARL12495XX. 

Carbamazepine, phenytoin and CBZ-E were measured by liquid-liquid 

extraction of plasma followed by reverse phase HPLC utilising a C8 column, a 

methanol-based mobile phase, and uv detection at 210nm. Sodium valproate 

was extracted from acidified plasma using chloroform and was analysed by 

flame-ionised chromatography on DB-WAX.

Pharmacokinetics
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The following non-compartmental pharmacokinetic parameters were

computed where appropriate for valproate, phenytoin, carbamazepine and

CBZ-E for all three phases of serial blood sampling:

• area under the concentration-time curve over a dosing interval (AUC0-t) 

calculated using the linear trapezoidal method

• peak concentration (Cmax) over the dosing interval

• trough/pre-dose concentration (Cmin) over the dosing interval

• time to maximum concentrations (Tmax)

• Cmin 5, 12, and 15 days after initiation of multiple dosing with remacemide 

hydrochloride or placebo

For remacemide hydrochloride and ARL12495XX, the parameters calculated

following single dose and multiple dosing were:

• Cmax

• Tmax

• AUC after single dose was extrapolated to infinite time (AUC*,), calculated 

from AUC = AUCt + Ct/kel where AUCt = area under the curve up to the 

last point at which the concentration could be quantified, and kel = the 

terminal phase plasma elimination rate constant. After multiple doses AUC 

was calculated over a 12-hour dosing interval (AUC o-i2h)

• Elimination half-life, (tvs) after the single dose and during washout of the 

multiple dose remacemide hydrochloride treatment phase. This was 

calculated from tVt = 0.693/kel.

• Cmin 5, 12, and 15 days into remacemide hydrochloride treatment.
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Statistics

Statistical comparisons of the pharmacokinetic parameters obtained for 

baseline AEDs and CBZ-E at the end of the two multiple dose phases were 

compared using an analysis of variance with treatment, period, order, group 

and patients as factors. Logarithmically transformed data were used for 

analysis of the AUC, Cmax and Cmin comparisons. Analysis of the trough 

concentrations used ANOVA for the three concentrations per patient (5, 12, 

and 15 days after initiation of multiple dosing) with factors of treatment, 

period, sequences, day number and patient. Single and multiple dose phases 

were compared using a non-parametric procedure, the Wilcoxon matched 

pairs signed rank test. A probability less than 5% indicated statistical 

significance.

Results in carbamazepine-treated patients 

Patients

Of the 14 patients recruited (Table 2), 10 completed the study as per protocol. 

One patient (C018) withdrew a few hours following administration of the single 

remacemide hydrochloride dose because he disliked intravenous cannulation. 

Another (C021) pulled out 5 days after single dose administration because of 

an intercurrent viral illness. One patient (C024) was withdrawn from the study 

because of suspected poor compliance, while a fourth (C016) had the dose of 

remacemide hydrochloride halved following the onset of adverse events 

suspected to be due to the study drug. This last patient's data
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Table 2

of carbamazeoine-treated patients.

Patient Sex Age
(years)

Seizure
type

CBZ dose 
(mg/L)

Dosage
interval
(hours)

C001 M 36 CP, CPGTC 600 8
C 002 M 47 SP, SPGTC 800 8
C 003 M 48 CP, CPGTC 800 12
C 016 F 65 CP, CPGTC 800 12
C 017 F 43 CP, CPGTC 800 12
C 018 M 46 SGTC 400 12
C 019 M 56 SP, SPCP 600 8
C 020 M 39 CP, CPGTC 600 24
C 021 F 57 SGTC 400 12
C 022 F 46 SP, SPCP, 

SPCPGTC
1200 12

C 023 M 57 SP, SPCP, 
SPCPGTC

800 12

C 024 F 51 PGTC 800 12
C 025 F 40 CP, CPGTC 1200 24
C 027 F 40 PGTC 1600 12

CBZ= carbamazepine CP=complex partial, CPGTC=complex partial 
with secondary generalisation, SP=simple partial, SPGTC=simple 
partial with secondary generalisation, SGTC=secondary generalised 
tonic clonic seizures, SPCP=simple partial evolving into complex 
partial seizures, PGTC=primary generalised seizures.____________
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are included in the summary of adverse events, but not in the pharmacokinetic 

analysis.

Carbamazepine pharmacokinetics

There were no changes in mean carbamazepine pharmacokinetic parameters 

following a single dose of remacemide hydrochloride (Figure 6 and Table 3). 

Following 14 days’ treatment, however, the mean AUC0-i2h of carbamazepine 

was increased by 22% (p = 0.12), the mean Cmax by 27% (p = 0.07), and the 

mean Cmin by 22% (p = 0.29). Unsurprisingly, Tmax was unchanged following 

both single and multi-dose remacemide hydrochloride.

Comparison of mean trough carbamazepine levels 5, 12, and 15 days after 

the start of active treatment (40.1, 34.4 and 40.4 umol/L respectively) with 

those on placebo (32.7, 30.5 and 34.5 umol/L respectively) showed a 

statistically significant increase (p=0.0013). Four patients had at least one of 

the pharmacokinetic parameters of carbamazepine increased by more than 

30% during the remacemide hydrochloride treatment phase. None of these 

patients, however, reported any symptoms suggestive of carbamazepine 

toxicity.

CBZ-E pharmacokinetics

The mean AUC, Cmax, and Cmin for CBZ-E (Table 3) were not significantly 

altered by concomitant remacemide hydrochloride following single or multiple 

dosing (Figure 7). After 14 days' treatment, two patients had an increase in 

AUC or Cmax of more than 30%, one being a rise in AUC of 177% and in
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Figure 6
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Figure 6: Mean plasma concentrations of carbamazepine in 10 patients with 
epilepsy over a 12 hour period following single (300mg) or multiple (300mg 
BD for 14 days) dosing with remacemide hydrochloride or placebo.

Table 3
Mean carbamazepine pharmacokinetic parameters (SD) after single and 
multiple doses of remacemide hydrochloride and placebo in 10 epileptic 
patients.

AUC Cmax Tmax Cmin
(umol.hr.M) (umol.M) (hours) (umol.M)

Placebo 367.8 (135.2) 40.5 (8.7) 4.8 (4.6) 34.7 (8.2)
Single dose 392.3(161.1) 43.3(10.1) 7.1 (4.2) 34.0 (7.2)
Multiple doses 425.4 (156.9) 50.6 (12.2) 5.1 (3.5) 40.8(11.6)
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Figure 7
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Figure 7: Mean plasma concentrations of carbamazepine10,11 -epoxide in 10 
patients over a 12 hour period following single (300mg) or multiple (300mg BD 
for 14 days) dosing with remacemide or placebo.

Table 4

Mean carbamazepine 10,11 epoxide pharmacokinetic parameters (SD) after 
single and multiple dose of remacemide hydrochloride and placebo in 10 
epileptic patients

AUC Cmax Tmax Cmin
(umol.hr.M) (umol.M) (hours) (umol.M)

Placebo 53.8 (32.7) 5.6 (2.6) 6.2 (5.1) 5.0 (2.4)
Single dose 46.7 (26.9) 5.0 (2.2) 4.6 (4.6) 4.5 (2.2)
Multiple doses 48.4 (27.5) 5.9 (2.4) 5.2 (4.6) 4.9 (2.2)
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Cmax of 153%. These patients, however, remained symptom-free. There was 

no significant difference in Tmax following acute or chronic remacemide 

hydrochloride dosing. Comparison of mean trough CBZ-E levels 5, 12, and 15 

days after the start of active treatment (5.1, 4.4 and 5.0 umol/L respectively) 

with those during placebo treatment (4.9, 4.1, and 5.0 umol/L respectively) 

showed no significant differences (p = 0.62).

Remacemide and ARL12495XX pharmacokinetics

Mean plasma concentrations following single and multiple dosing are 

illustrated for remacemide in Figure 8, for ARL12495XX in Figure 9, and for 

both in table 5. As anticipated from a drug with a considerably shorter half-life 

than dosing interval, there was little carry-over of remacemide from dose to 

dose, and the steady-state profiles attained were at only slightly higher levels 

than those following the single dose (Figure 8 and Table 5). For 

ARL12495XX, however, consistent with its longer terminal half life, there was 

a greater carry-over during multiple dosing, and the maximum concentrations 

attained at steady-state were approximately twice those following the single 

dose (Figure 9 and Table 5). Steady state peak (Cmax) to trough (Cmin) 

oscillations were much smaller for ARL12495XX than for remacemide.

With both remacemide and ARL12495XX, there was good predictability of 

multiple dose profiles compared with single dose profiles based on linear 

superposition of the concentration data and comparisons of AUCs following
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Mean pharmacokinetic parameters (SD) of remacemide hydrochloride and 
ARL12495XX in 10 carbamazepine treated patients following acute and 
chronic dosing.

Cmax
(ng.mr1)

Cmin
(ng.ml"1)

Tmax
(hours)

AUC**
(ng.hr.ml-1)

t1/2
(hours)

Single Dose
Remacemide 783 (229) NA 1.5(1.0) 2266 (1344) 3.6 (1.3)

ARL12495XX 30.2 (7.6) NA 2.0 (0.7) 395 (125) 10.4 (0.6)
Multiple Dose

Remacemide 1006 (411) 60.9 (74.8) 1.1 (0.4) 2644 (1376) 3.5 (1.4)
ARL12495XX 64.8 (23.2) 25.2 (7.9) 1.6 (0.9) 427 (108) 11.2 (4.1)

**AUC00for single dose profiles, AUC0-i2h for multiple dose profiles 
NA = not applicable
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Figure 8
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Figure 8: Mean (+/-SD) single dose and steady state plasma concentrations of 
remacemide in 10 patients taking carbamazepine who received a single dose 
(300mg) or multiple doses (300mg BD for 14 days) remacemide hydrochloride.

Figure  9
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Figure 9: Mean (+/-SD) single dose and steady state plasma concentrations of 
ARL12495 in 10 patients taking carbamazepine who received a single dose (300mg) 
or multiple doses (300mg BD for 14 days) remacemide hydrochloride.
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single and multiple dosing. This suggests that there was no autoinduction of 

remacemide or ARL12495XX metabolism.

Adverse events

No major adverse events were reported, and no patients were withdrawn from 

the study due to adverse events, although one patient (C016) had his dose of 

remacemide hydrochloride halved 4 days into the multiple-dose phase 

because of dizziness. Overall, more events were reported while patients were 

on placebo (36 adverse events) than following remacemide hydrochloride 

treatment (26 events reported). Similar numbers of patients reported adverse 

events following multiple dosing with active treatment (10 patients) as were 

reported with placebo (9 patients). There were similar numbers of central 

nervous system events (4 on remacemide hydrochloride versus 3 on 

placebo), and gastrointestinal symptoms reported were equal on both 

treatments (2 each).

Discussion

Carbamazepine is a well-known inducer of the hepatic P450 mono-oxygenase 

enzymes (Brodie 1992). This results in marked intra- and inter-individual 

variations in serum concentrations of other antiepileptic drugs during 

polypharmacy, an unpredictability which is exacerbated by variable 

autoinduction of metabolism (Levy and Wurdland 1995). In addition, many 

other drugs have been shown to interact pharmacokinetically with 

carbamazepine (McKee and Brodie 1994). A major pathway involves oxidation
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of carbamazepine to the 10,11-epoxide (CBZ-E), which is itself 

biotransformed by the enzyme epoxide hydrolase to the inert dihydrodiol 

(Eichelbaum et al 1985). These two processes provide a target for 

interactions between carbamazepine and other antiepileptic drugs (Brodie et 

al 1983, Macphee et al 1988, McKee et al 1992). Changes in the epoxide 

concentration may be important because this CBZ-E contributes to the 

efficacy and adverse events associated with carbamazepine treatment 

(Gillham et al 1988). In one study the majority of patients on co-medication 

with remacemide hydrochloride had dose-related increases in trough 

concentrations of carbamazepine, necessitating a reduction in carbamazepine 

dose in a few patients (Clark et al 1995).

Like carbamazepine, remacemide is also eliminated almost exclusively by 

metabolic transformation. Apart from the active metabolite ARL12495, which 

is formed by the ubiquitous aminopeptidase enzymes, there are a number of 

oxidative biotransformation products. In addition, remacemide hydrochloride 

undergoes direct glucuronidation to form a carbamoyl glucuronide metabolite, 

an important pathway in man (Clark et al 1995).

Following multiple dosing with remacemide hydrochloride, there was an 

overall small inhibition of carbamazepine metabolism during active treatment 

compared with placebo. Three patients demonstrated a rise in carbamazepine 

trough levels of >30%. There were no significant changes overall in CBZ-E 

concentrations during treatment with remacemide hydrochloride, although 

there were marked differences in individual response with one patient 

exhibiting an increase in CBZ-E level of more than 100%. No patients had any
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clinical sequelae.

These findings are consistent with the in-vitro experiments using 6-B- 

hydroxylation of testosterone as a marker of CYP3A4 activity (Riley - 

manuscript in preparation), which showed that remacemide is an inhibitor of 

cytochromal activity associated with this isoform. Since the concentrations of 

remacemide required in the in-vitro mixture to achieve inhibition of CYP3A4 

are in excess of those reached in vivo, it is fair to assume that any increase in 

carbamazepine concentrations will be modest. Remacemide has not been 

shown to affect epoxide hydrolase in vitro, in keeping with the findings in this 

study.

This study also offered the opportunity to provide a pharmacokinetic profile of 

remacemide and ARL12495XX in enzyme-induced patients. For both 

compounds, the multiple dose profile was consistent with that predicted from 

the single dose, indicative of linear disposition and the absence of 

autoinduction of metabolism. The terminal half life of remacemide was similar 

to that found in previous clinical studies in human volunteers (Figure 10), 

whereas that of ARL12495XX in enzyme-induced patients was shorter than in 

untreated healthy volunteers (Clark et al 1995). Exposure to remacemide 

based on AUC values was around 60% of that reported previously in non­

induced subjects taking the same dose of the drug, while that of ARL12495XX 

was about 30% (Figure 10).

The most common adverse events reported with remacemide hydrochloride 

were dizziness and mild to moderate gastrointestinal upset (Clark et al 1995).
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Figure 10
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Figure 10: Mean pharmacokinetics of remacemide and ARL12495 in patients 
pretreated with carbamazepine versus healthy untreated volunteers (Data on 
file Astra Pharmaceuticals)
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There were no adverse events precipitating withdrawal from the study, 

although one patient reported dizziness, necessitating a decrease in 

remacemide hydrochloride dose. A greater number of adverse events were 

reported during the placebo phase. In healthy, untreated volunteers, the AUC 

following similar dosing with remacemide hydrochloride (600mg/day) was 

between two and three times higher than the doses used in patients taking 

carbamazepine in this study. Consequently, 600mg per day is unlikely to be 

the maximum tolerated dose of remacemide hydrochloride in patients 

receiving treatment with carbamazepine.

There was considerable inter-patient variability in the pharmacokinetic 

response following the introduction of remacemide hydrochloride suggesting 

differences in individual susceptibility to the interaction. Although vigilance 

should be exercised in adding remacemide hydrochloride to antiepileptic drug 

regimes containing carbamazepine, it is questionable whether a reduction in 

carbamazepine dosage will be required in most patients. Since the presence 

of carbamazepine will result in lower bioavailability of remacemide and 

ARL12495XX, patients pre-treated with an enzyme-inducer such as 

carbamazepine will require higher doses of remacemide hydrochloride than 

non-induced patients. In addition, the remacemide concentration can be 

expected to rise when carbamazepine is withdrawn. Since remacemide and 

ARL12495XX exhibit predictable and linear kinetics in carbamazepine 

patients, with no evidence of autoinduction, there should be little need for 

routine therapeutic monitoring of either drug in this clinical setting. The mutual 

interaction between carbamazepine and remacemide hydrochloride is
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predictable and modest, and should not present a barrier to their clinical use 

in combination.
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Results from phenvtoin-treated patients 

Patients

Of the 11 patients recruited (Table 6), 10 completed the study as per protocol. 

One patient (P011) withdrew consent one day into the second multiple dosing 

phase for social reasons. Patient number P013 underwent single dosing with 

remacemide but was subsequently withdrawn from the trial because one of his 

pre-trial phenytoin levels was found to be below the target range. After 

dosage adjustment, the patient recommenced the study as patient P014.

Phenytoin pharmacokinetics

There were no changes in phenytoin pharmacokinetic parameters following a 

single dose of remacemide hydrochloride (Figure 11 and Table 6). Following 

14 days’ treatment, however, there was a trend towards an increase in the 

mean AU C 0-i2h of phenytoin by 11.5% (p=0.33), the mean Cmax by 13.7 % 

(p=0.32), and the mean Cmin by 22 % (p=0.12). Tmax was unchanged 

following both single and multi-dose remacemide hydrochloride. Comparison 

of mean trough phenytoin levels 5, 12, and 15 days after the start of active 

treatment (76.8, 95.4 and 90.6 ng/ml respectively) with those on placebo 

(72.1, 73.0 and 74.7 ng/ml respectively) showed a treatment associated 

increase which reached statistical significance (p=0.02). No patients, 

however, reported any symptoms suggestive of phenytoin toxicity.
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Table 6

Demographic characteristics of phenytoin-treated population

Patient Sex Age
(years)

Phenytoin dose 
(mg/day)

Dosage interva 
(hours)

P001 M 59 450 12
P 007 M 28 350 24
P 008 M 28 300 12
P 009 M 58 400 12
P010 M 27 300 24
P011* M 22 275 24
P 012 M 31 200 12
P 014** M 54 500 12
P 015 M 26 600 12
P 016 F 41 325 12
P 017 F 24 350 12

* Did not complete study
**Was initially included as Patient number 13, withdrawn and re­
entered as 014.
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Table 7

Mean phenytoin pharmacokinetic parameters (SD) after single and multiple 
doses of remacemide hydrochloride and placebo in 10 epileptic patients

AUC Cmax Tmax Cmin 
(nmol.hr.mr1) (nmol.ml'1) (hours) (nmol.ml'1)

Placebo 
Single dose 
Multiple doses

944 (459) 98.3 (57.3) 4.7 (3.6) 74.7 (34.4) 
917 (315) 90.9(30.2) 3.3 (3.6) 80.0(31.4) 
1047 (533) 108 (55.1) 3.9 (3.6) 87.8(44.2)

Fiaure 11
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Figure 11: Mean plasma concentrations of phenytoin in 10 patients following 
treatment with single (300mg) or multiple (300mg BD for 14 days) dose of 
remacemide hydrochloride.
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Remacemide and ARL12495XX pharmacokinetics

Mean pharmacokinetic parameters for remacemide hydrochloride and 

ARL12495XX following single and multiple dosing are shown in Table 8, and 

are similar to the parameters demonstrated in carbamazepine-treated 

individuals. As anticipated from a drug with a considerably shorter half-life 

than dosing interval, there was little carry-over of remacemide from dose to 

dose, and the steady-state profiles attained only slightly higher levels than 

those following the single dose. For ARL12495XX, consistent with its longer 

terminal half life, there was a greater carry-over during multiple dosing, and at 

steady-state the maximum concentrations attained were almost twice those 

following the single dose. With both remacemide and ARL12495 (Figure 12 

and 13), there was good predictability of multiple dose profiles compared with 

single dose profiles based on linear superposition of the concentration data 

suggesting a lack of autoinduction of remacemide or ARL12495XX 

metabolism.

Adverse events

No major adverse events occurred, and noone required withdrawal from the 

study due to intolerable adverse events. Similar numbers of adverse events 

were reported while patients were on placebo (10 adverse events) as were 

reported during remacemide treatment (9 events reported). An identical 

number of patients (six) reported adverse events following multiple dosing 

with active treatment as occurred on placebo, and there were similar numbers 

of
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Table 8

Mean pharmacokinetic parameters (SD) of remacemide hydrochloride and 
ARL12495XX in 10 phenytoin-treated patients following acute and chronic 
dosing.

Cmax Cmin Tmax A U C * t1/2

(ng.ml'1) (ng.ml"1) (minutes) (ng.hr.ml"1) (hours)

Single Dose
Remacemide 660 (191) NA 60 (20) 1424 (511) 3.0 (0.9)

ARL12495XX 35.5(11.5 ) NA 96 (37) 210 (70 ) 9.1 (1.9)
Multiple Dose

Remacemide 666 (159) 25.1 (15.4) 63 (26) 1651 (529) 2.6 (0.3)
ARL12495XX 52.7 (18.1) 25.7 (12.2) 225 (447) 372 (128) 10.1 (4.9)

* AU C * for single dose profiles, AU C0-i2h for multiple dose profiles 
NA = not applicable
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Figure 12
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Figure 12: Mean (+/-SD) single dose and steady state plasma concentrations of 
remacemide in 10 patients taking phenytoin who received a single dose (300mg) or 
multiple doses (300mg BD for 14 days) remacemide hydrochloride.

Figure 13
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Figure 13: Mean (+/-SD) single dose and steady state plasma concentrations of 
ARL12495 in 10 patients taking phenytoin who received a single dose (300mg) or 
multiple doses (300mg BD for 14 days) remacemide hydrochloride.

147



central nervous system events (8 on remacemide versus 6 on placebo). No 

gastrointestinal symptoms were reported during this study.

Discussion

Phenytoin is a well-known inducer of the hepatic P450 mono-oxygenase 

enzymes (Brodie 1992). This results in marked intra- and inter-individual 

variations in serum concentrations of other antiepileptic drugs during 

polypharmacy. In addition, many other drugs have been shown to interact with 

phenytoin (McKee and Brodie 1995). Its clearance in man is almost 

exclusively by hepatic metabolic transformation, a major pathway involving the 

action of CYP2C9 and CYP2C19 (Levy 1995). In one study a proportion of 

patients on co-medication with remacemide and phenytoin had dose-related 

increases in trough concentrations of phenytoin, although no one required a 

reduction in phenytoin dose (Clark et al 1995).

Following multiple dosing with remacemide hydrochloride, there was a trend 

towards inhibition of phenytoin metabolism during active treatment compared 

with placebo which did not reach statistical significance. No patients 

demonstrated any clinical signs or symptoms of phenytoin toxicity.

This study confirms the effects of enzyme induction on the pharmacokinetic 

profile of remacemide and ARL12495XX. For both compounds, the multiple 

dose profile was consistent with that predicted from the single dose, indicative 

of linear disposition and the absence of autoinduction of metabolism. The 

terminal half life of remacemide was similar to that found in previous clinical 

studies in human volunteers, whereas that of ARL12495XX in enzyme-
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induced patients was shorter than in untreated volunteers (Palmer et al 1993). 

In healthy volunteers, the AUC following similar dosing with remacemide 

hydrochloride was between two and three times higher that in patients on 

phenytoin in this study. Consequently, 600mg per day is unlikely to be the 

maximum tolerated dose of remacemide hydrochloride in patients receiving 

treatment with phenytoin.

The combination of phenytoin with remacemide was well tolerated, with few 

adverse events reported, and no patients requiring withdrawal from the study. 

A similar number of adverse events were reported during the active treatment 

and placebo phases.

There was considerable inter-patient variability in the pharmacokinetic 

response following the introduction of remacemide hydrochloride, suggesting 

differences in individual susceptibility to the phenytoin / remacemide 

interaction. Although vigilance should be exercised in adding remacemide 

hydrochloride to antiepileptic drug regimes containing phenytoin, it is unlikely 

that a reduction in phenytoin dosage will be required in many patients. Since 

the presence of phenytoin will result in lower bioavailability of remacemide 

and ARL12495XX, patients pre-treated with an enzyme-inducer such as 

phenytoin will require higher doses of remacemide hydrochloride than non­

induced patients. In addition, the remacemide concentration can be expected 

to rise when phenytoin is withdrawn. Since remacemide and ARL12495XX 

exhibit predictable and linear kinetics in phenytoin patients, with no evidence 

of autoinduction, there should be little need for routine therapeutic monitoring 

of either drug in this clinical setting. The mutual interaction between phenytoin
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and remacemide hydrochloride is predictable and modest, and should not 

present a barrier to their widespread clinical use in combination.
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Valproate-treated patients

Sixteen valproate-treated patients were recruited (Table 9), each on a regime 

which had been stable for at least three months. All patients had at least one 

plasma measurement of valproate within the target range (345-695umol/L) 

during that period.

Patients

Of the 16 patients recruited (Table 9), 4 completed the study at the higher 

dose of remacemide (see protocol) with ten patients completing the trial 

having received 150mg for at least 9 days. Two patients withdrew from the 

trial due to the onset of adverse events (one at each dose level). One patient 

who was withdrawn during the placebo phase because of intercurrent illness, 

restarted the study and completed the trial at the lower dose.

Valproate pharmacokinetics

Analysis of those patients stabilised on 150mg BD remacemide shows no 

changes in valproate pharmacokinetic parameters following administration of 

single or multiple dosing of remacemide hydrochloride (Figure 14 and Table 

10).



Demographic characteristics of Valproate-treated patients treated with 
remacemide.

Patient Sex Age
(years)

Daily valproate 
intake 

over 2 divided 
doses (mg)

V 002 M 38 2000
V 004 M 20 3000
V 008 F 45 1200
V 009 M 43 2000
V010 M 24 800
V011 M 37 1200
V 012 M 41 2500
V 022 F 24 1000
V 023 F 52 2400
V 024 M 33 3500
V0031 M 54 2600
V0052 M 57 1700
V0072 F 19 700
V0162 F 19 2000
V0013 F 62 1800
V0064 M 45 2000

Completed high dose (300mg BD Remacemide) but results uninterpretable. 
2Completed high dose remacemide regimen 
3Withdrew due to adverse events at 300mg BD 
4Withdrew due to adverse events at 150mg BD
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Table 10

Mean valproate pharmacokinetic parameters (SD) after single and multiple 
doses of remacemide hydrochloride and placebo in 10 epileptic patients 
receiving 300mg final dose after multiple dosing with 150mg BD.

AUC Cmax Tmax Cmin
(ng.hr.mr1) (ng.ml"1) (hours) (ng.ml'1)

Placebo 
Single dose 
Multiple doses

6492.9 (1857.4)
6704.1 (2252.1)
6451.2 (1348.5)

836.3(219.5) 
775.8 (255.7) 
793.1 (193.7)

2.6 (1.4)
4.5 (2.0)
3.6 (2.0)

491.4 (102.9) 
533.0(158.7) 
482.8 (72.6)

Figure 14

Valproate 
concentration 

(umol/L) 800 ~

Placebo
Single dose remacemide 
Multiple dose remacemid

600"

500"

400"

300"

100
0 2 4 6 8 10 12

Time after dose (hours)

Figure 14: Mean plasma concentrations of sodium valproate in 10 patients 
following treatment with single (300mg) or multiple (14 days) dose of 
remacemide hydrochloride.

153



Remacemide and metabolite pharmacokinetics

Mean pharmacokinetic parameters for remacemide hydrochloride and 

ARL12495XX following single and multiple dosing are shown in Table 3V. 

After 14 days treatment, there was no significant difference in any of the 

pharmacokinetic parameters of remacemide or ARL12495XX (Figures 15 and 

16).

Based on linear superposition of the concentration data, there was good 

predictability of multiple dose profiles of both remacemide and ARL12495XX 

compared with single dose profiles, suggesting a lack of autoinduction of 

remacemide or ARL12495XX metabolism.

The half life of both remacemide and ARL12495XX was lower in the 3 

evaluable patients completing the multiple dose phase on 300mg BD (Table 

12) compared to those intolerant of the high dose, although with small 

numbers involved, this did not reach statistical significance.

Adverse events

Of the nine patients started on remacemide hydrochloride 300mg BD, two 

were withdrawn from the study: one immediately, and one following a 

reduction in remacemide hydrochloride dose to 150mg BD. Two other patients 

had the dose reduced to 150mg BD after 4 days, and completed the trial 

satisfactorily at this dose level. The side effects experienced at 300mg BD, 

were central nervous system related (dizziness, drowsiness, headache) with 

one patient experiencing dyspepsia which failed to resolve on reduction of the 

remacemide hydrochloride dose.
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Mean pharmacokinetic parameters (SD) of remacemide hydrochloride and 
ARL12495XX in 10 valproate-treated patients following acute and chronic 
dosing.

Cmax Cmin Tmax AUC* t1/2
(ng.ml"1) (ng.ml-1) (Hours) (ng.hr.ml-1) (hours)

Single Dose
Remacemide 817(257) NA 1.3(0.8) 3282 (899) 4.2 (0.7)

ARL12495XX 76.7 (25) NA 5.2 (2.7) 1310(7583) 15.5 (3.8)
Multiple Dose

Remacemide 706 (380) 46.7 (25.0) 1.2 (0.3) 2644 (1347) 4.2 (0.9)
ARL12495XX 104 (41) 46.4 (14.1) 2.8(1.2) 924 (364) 15.0 (5.6)

* AUCoc for single dose profiles, AU C0-i2h for multiple dose profiles 
NA = not applicable

Mean pharmacokinetic parameters (SD) of remacemide hydrochloride and 
ARL12495XX in 3 valproate-treated patients following acute and chronic 
dosing with 300mg BD.

Cmax Cmin Tmax AUC* t1/2
(ng.ml-1) (ng.ml-1) (Hours) (ng.hr.ml-1) (hours)

Single Dose
Remacemide 934 (408) NA 1.5 (0.5) 3167 (748) 4.3 (2.1)
ARL12495XX 123 (45) NA 3.5 (2.3) 1487 (286) 13.8 (5.9)

Multiple Dose
Remacemide 803 (242) 61.8(50.0) 10(0.5) 2791 (572) 3.5 (0.5)
ARL12495XX 159 (39) 85.4 (15.5) 18(0.3) 1351 (155) 10.3(2.4)

* AUCoc for single dose profiles, AU C0-i2h for multiple dose profiles 
NA = not applicable
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Figure 15
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Figure 15: Mean (+/-SD) single dose and steady state plasma concentrations of 
remacemide in 10 patients taking sodium valproate who received a single dose 
(300mg) or multiple doses (300mg BD for 14 days) remacemide hydrochloride.

Figure 16
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Figure 16: Mean (+/-SD) single dose and steady state plasma concentrations of 
ARL12495 in 10 patients taking sodium valproate who received a single dose 
(300mg) or multiple doses (300mg BD for 14 days) remacemide hydrochloride.
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While on 150mg twice daily, no new major adverse events were reported, and 

as stated, only one patient was withdrawn from the study while on 150mg BD, 

because of an adverse event which had begun while on the higher dose (see 

above).

A similar number of patients on 150mg BD reported adverse events during 

dosing with active treatment (7 patients) as reported events while on placebo 

(5 patients). More adverse events were reported while patients were on 

remacemide treatment (21 events reported) compared to placebo (8 events 

reported), with more CNS side effects during active treatment (10 events) 

compared to the placebo treatment phase (1 event). Two gastrointestinal 

symptoms were reported during active treatment phase, with none occuring 

on placebo.

Discussion

Sodium valproate is a known hepatic enzyme inhibitor (Brodie 1992). This 

results in marked intra- and inter-individual variations in serum concentrations 

of other antiepileptic drugs during polypharmacy (McKee et al 1993). In 

addition, many other drugs have been shown to interact pharmacokinetically 

with valproate (McKee and Brodie 1995).

This interaction study used a placebo-controlled design in order to investigate 

the potential interaction between remacemide hydrochloride and valproate. 

Following multiple or single dosing with remacemide hydrochloride, there was 

no significant effect seen on valproate metabolism.

157



This study also offered the opportunity to provide a pharmacokinetic profile of 

remacemide and ARL12495XX in valproate-treated patients. For both 

compounds, the multiple dose profile was consistent with that predicted from 

the single dose, indicative of linear disposition and the absence of 

autoinduction of metabolism. The pharmacokinetic parameters of remacemide 

and ARL12495XX in a valproate-treated population were similar to that found 

in human volunteers (Palmer et al 1993). The mean terminal half life of both 

remacemide and ARL12495XX in valproate-treated patients after chronic 

dosing (4.16 and 15.03 hours respectively) are not significantly different from 

those in healthy volunteers (3.35 and 12.86 hours respectively) (Palmer et al 

1993).

At 150mg twice daily of remacemide hydrochloride, the drug was well 

tolerated compared to placebo. There was a minor degree of inter-patient 

variability in the pharmacokinetic response following the introduction of 

remacemide hydrochloride suggesting differences in individual susceptibility 

to the interaction. Interestingly, although it did not reach statistical 

significance, patients who completed the study at the higher dose of 

remacemide displayed a shorter half life of both remacemide and 

ARL12495XX than those requiring dose reduction. The kinetics of 

remacemide and ARL12495XX, therefore, are not saturable at anticonvulsant 

doses. A proportion of valproate-treated patients may tolerate remacemide at 

the higher dose.

In this study, a higher number of adverse events were reported during the 

active treatment phase than during the placebo phase. Given the
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pharmacokinetic data, the adverse events reported during remacemide 

treatment may be the result of a pharmacodynamic rather than 

pharmacokinetic interaction. A more complex interaction between remacemide 

and the various long-acting metabolites of valproate cannot, however, be 

excluded at this point.

Although vigilance should be exercised in adding remacemide hydrochloride 

to antiepileptic drug regimes containing valproate, it is likely that when started 

at an adequately low dose, remacemide would be well-tolerated when used 

with concomitant valproate.
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Conclusions

As discussed, the pharmacokinetics of remacemide and its active metabolite 

ARL12495XX are significantly different in a population that is receiving 

enzyme-inducing anticonvulsant medication. There is a trend towards an 

increase in the mean half life of remacemide in those on valproate (4.16 

hours) compared to patients pretreated with carbamazepine (3.39 hours) or 

phenytoin (2.59 hours) which reached statistical significance only in the latter 

case. The half life of ARL12495XX in valproate-treated patients, however, 

was significantly raised compared to patients on monotherapy with either 

carbamazepine (9.06 hours) or phenytoin (9.15 hours).

The effect of remacemide co-treatment on the established AEDs is variable. 

No significant differences were seen in phenytoin or valproate metabolism 

during treatment with remacemide. There was an increase in phenytoin 

concentrations trough concentrations which became significant after the first 

week.

Levels of CBZ-E are also unchanged by concomitant remacemide, but 

carbamazepine pharmacokinetics, are less predictable. Some patients 

experienced a moderate rise in peak and trough carbamazepine 

concentrations. It should be remembered, however, that no patients reported 

symptoms of carbamazepine toxicity, probably as a result of the unchanged 

CBZ-E levels. Further studies which are already underway, which involve 

potential dose altering by an unblinded observer may further elucidate the 

relationship between carbamazepine and remacemide.

Those patients on valproate, although lacking any significant alterations in
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metabolism of remacemide and ARL124954XX are probably more susceptible 

to adverse events than untreated volunteers. This may be due to a 

pharmacodynamic interaction between valproate and remacemide, or it may 

conceivably be a result of a pharmacokinetic interaction between remacemide 

and a long-lasting metabolite of valproate.
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The effects of the new AEDs on rodent whole
brain biochemistry



The use of whole brain biochemistry to examine the new AEDs

As our experience with the new AEDs grows, it is becoming more apparent 

that their effects are more wide ranging than was previously thought. Since 

the metabolism of amino acids is part of a large metabolic loop, and since 

enzyme substrates are structurally similar, it may be naive to think that a 

compound will have significant effects at one point in the chain without 

producing significant effects elsewhere.

In this respect, investigation of enzyme and substrate effects of AEDs needs 

to take a wide view. Further expansion of the enzymes and amino acids 

assayed would be desirable in the investigation of effects on glutamine 

synthase. The model may allow further manipulation to assess the role of 

different combinations of AEDs.

The effects of vigabatrin on levels of whole brain GABA concentrations and 

GABA-T activity have been well documented (Schechter et al 1991). The 

extent of the in-vivo GAD inhibition is less well described. With tiagabine 

possibly working well in combination with vigabatrin (Leach and Brodie 1994), 

we were keen to ascertain if the biochemical effects of combining the two 

compounds may give a rationale for further clinical combinations. Having 

initially used this method to assess these two drugs in combination, we 

subsequently extended the scope of investigation of other AEDs to include 

glutamate and glutamine, both essential precursors to GABA formation. The 

lesson having been learnt with vigabatrin in cell culture, that drugs can often
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have surprising neurophysiological effects, we decided to investigate the 

effects of two new AEDs, gabapentin and remacemide, on the enzymes and 

precursors of the GABA shunt.
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Effect of ARL12495XX on whole brain biochemistry

Remacemide has been thought to have one single mode of action, but as with 

lamotrigine and vigabatrin (Leach and Brodie 1995), the anticonvulsant 

effects may be augmented by related neurochemical effects. The 

neurochemical properties of remacemide have already been discussed, but 

given our experience of other new AEDs, we would contend that it is important 

to assess the effect of remacemide on neuronal amino acid metabolism in- 

vivo. This gives us a fuller understanding of the drug and its possible usage in 

combination.

The desglycinyl derivative, ARL12495, is an important active metabolite of 

remacemide. Routinely, this is the compound that is used in in-vitro 

experiments of remacemide.

This experiment looks at the effect of single and multiple i.p. injections of 

ARL12495AA on GABA metabolism in whole brain. Metabolism of GABA was 

monitored by measuring it’s precursors (glutamate, glutamine), total GABA 

levels, and the activity of the enzymes responsible for the formation (GAD) 

and breakdown (GABA-T) of GABA.

Study design

Acute studies

The first set of mice were given a single dose of either normal saline solution 

or ARL12495AA by i.p. injection. Each treatment group consisted of six mice. 

The dose of ARL12495AA used was 10, 25, 50, or 75mg/Kg. Six hours after
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injection, the brains were removed and assayed for the parameters of GABA 

metabolism as described below.

Chronic Studies

The second set were given a single injection of saline or ARL12495AA at 

identical doses to that described above, for 5 consecutive days. Six hours 

after the final dose, identical procedures were undertaken.

Statistics

Calculations were carried out using the Minitab V10 software package. 

Results were compared using ANOVA with Dunnet correction, to compensate 

for multiple comparisons with control.

RESULTS 

Glutamine levels

No differences were found on comparing glutamine levels of control animals, 

with those receiving ARL12495AA for one or more days (Figure 17).

Glutamate levels

No differences were found on comparing glutamate levels of control animals, 

with those receiving ARL12495AA as a single dose (Figure 18). After 

administration of the higher doses for 5 days, there was a trend towards a 

reduction in glutamate levels, although this narrowly failed to achieve 

statistical significance.
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Figure 17
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Figure 17: Mean (±SEM) glutamine concentrations in mouse whole brain after 
single and multiple doses of ARL12495

Figure 18
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Figure 18: Mean (+SEM) glutamate concentrations in mouse whole brain after 
single and multiple doses of ARL12495,
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GABA Levels

No differences were found on comparing GABA levels of control animals, with 

those receiving ARL12495AA chronically or acutely (Figure 19).
Iij
s
I GAD activity

| After a single dose there were no significant differences in GAD activity
ii

(Figure 20). When ARL12495AA had been administered for 5 days, however, 

at doses of 50 and 75 mg/Kg/day, a significant decrease was noted in activity 

of the enzyme.

GABA-T activity

Following single dose ARL12495AA, no change was noted in GABA-T activity 

(Figure 21). After 5 days' administration, however, at the two highest dose 

levels (50 and 75 mg/Kg/day), the activity of GABA-T was significantly 

increased.

Discussion

The enzyme effects of ARL12495AA have not been previously described for a 

compound that is an effective anticonvulsant. Both the decrease in GAD and 

the increase in GABA-T could be construed as being conducive to a decrease 

in GABAergic inhibition, and at first sight, this might not be the best secondary 

effect for a potential AED to have. We would argue, however, that these
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Figure 19
GABA concentration 
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Figure 19: GABA concentrations in mouse whole brain after single and 
multiple doses of ARL12495
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Figure 20
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Figure 20: Activity of GAD in mouse whole brain after single and multiple 
doses of ARL12495
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Figure 21: Activity of GABA-T in mouse whole brain after single and multiple 
doses of ARL12495
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effects are rendered less important because the levels of whole brain GABA 

remain unchanged by ARL12495AA. Although measurement of whole brain 

GABA is not always a reliable indicator of GABAergic inhibitory tone, the lack 

of a fall in GABA levels is somewhat reassuring.

That the highest doses of ARL12495AA should affect GAD and GABA-T 

activity is perhaps not overly surprising, given it's effects on the hepatic 

cytochrome P450 system in-vitro (Riley et al 1995) and in-vivo (Leach et al, 

submitted). It should be noted that the effects on GABA-T occur only at doses 

approaching those maximally tolerated in rodents (Muir and Palmer 1991).

The diminished GAD activity at higher dose may be related to the decrease in 

concentrations of it’s substrate, glutamate. This decrease in whole brain 

glutamate, though not statistically significant, is of some interest. Glutamate is 

a well recognised excitotoxin (Meldrum 1990). This neurotoxicity is mediated 

mainly by it’s actions at the NMDA receptor (Choi et al 1991). Activation of 

this glutamate receptor predisposes to cationic influx which can cause cell 

death, and ARL12495XX has already been shown to inhibit release of 

glutamate (Srinivasan et al 1995). If further work can confirm that remacemide 

and its metabolites have effects not only on glutamate receptors and 

glutamate release, but also on glutamate levels, then it may form a rational 

basis for the use of the drug in other areas where excitotoxins are thought to 

be of importance, such as ischaemia, Parkinson’s disease, and motor 

neurone disease.

Conclusion
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Like other novel anticonvulsants, remacemide is now being shown to have 

wider neurochemical effects than was first thought. The nature of the effects 

on GABA-T and GAD were unexpected, although their significance may be 

tempered by the lack of an effect on total GABA levels.

Whether the enzyme changes in mice following a short duration of treatment 

are of any relevance to a human population treated for longer periods with 

relatively lower doses is, at the moment, unclear.
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Effects of gabapentin on whole brain biochemistry

This paper looks at the effect on GABA metabolism of different doses of 

gabapentin on rodent brain following single and multiple dosing. GABA 

metabolism was monitored by measuring it’s precursors (glutamate, 

glutamine), total GABA levels, and the activities of GAD and the enzyme 

responsible for GABA breakdown, GABA-transaminase (GABA-T).

Study design

Acute studies

One set of mice was given a single dose of either normal saline solution or 

gabapentin by i.p. injection. Each treatment group consisted of six mice. The 

dose of gabapentin administered was 5, 10, 25, 50, or 75mg/Kg. Four hours 

after injection, brains were removed and assays carried out for GABA, 

glutamate, glutamine, and the activities of GABA-T and GAD.

Chronic Studies

A second set was given twice daily i.p. injections of gabapentin, to a daily total 

as described above, for 8 consecutive days. Four hours after the final dose, 

identical procedures were undertaken.

Statistics

As with the previous study, calculations were carried out using the Minitab 

V10 software package. Results were compared using ANOVA with Dunnet 

correction, to compensate for multiple comparisons with control.
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RESULTS 

Glutamine levels

No differences were found on comparing glutamine levels of control animals 

following chronic administration (Figure 22). Acute administration showed a 

significant increase in glutamine levels after injection of 50mg/Kg, with no 

trends seen at other doses. This would cast doubt upon the importance of this 

single result.

Glutamate levels

Single dose of gabapentin had no effect on glutamate concentrations at any 

dose. After seven days, however, there was a clear trend towards reduction in 

glutamate concentrations, the reduction reaching statistical significance at 

25mg/Kg (Figure 23).

GABA Levels

No significant changes were seen in GABA concentrations after either single 

or multiple dosing (Figure 24).

GAD activity

Measurement of GAD activity showed wide variability throughout all groups. 

There were no trends visible after single or multiple dosing (Figure 25).

GABA-T activity

Acute administration of gabapentin caused no statistically significant 

increases in GABA-T activity (Figure 26). After seven days, there was a clear 

trend towards reduction in GABA-T activity, which became significant at doses 

of 10mg/Kg and above (with the exception of 25mg/Kg, which narrowly failed 

to achieve statistical significance).
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Figure 22
Glutamine 

concentrations 
(%age control)

p < 0.05130 n

120 -

110 -

100 -

90 -

80 -

I 1 1 I 1 1 I 1 1 I 1 ' I 1 ' I
0 15 30 45 60 75 0 15 30 45 60 75

Single Dose (mg/kg) Multiple Dosing (mg/kg/day)

Figure 22: Mean (±SEM) glutamine concentrations in mouse whole brain 
following single or multiple doses of gabapentin.

Figure 23
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Figure 23: Mean (±SEM) glutamate concentrations in mouse whole brain 
following single or multiple doses of gabapentin.
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Figure 24: Mean (±SEM) GABA concentrations in mouse whole brain 
following single or multiple doses of gabapentin.
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Figure 25: Mean (+SEM) GAD activity in mouse whole brain following single 
or multiple doses of gabapentin.

Figure 26
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Figure 26: Mean (+SEM) GABA-T activity in mouse whole brain following 
single or multiple doses of gabapentin.
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Discussion

Gabapentin is an efficacious and well tolerated anticonvulsant (Chapter 2 - 

The new AEDs) which has been widely used as add-on treatment for 

refractory epilepsy. Despite widespread searches, the exact mode of action 

remains unclear (Taylor 1995).

Previous in-vivo studies (Ben Menachem et al 1992) have looked at the 

effects of single dose gabapentin on CSF amino acids in humans, showing 

only that by 72 hours post-dose, the CSF levels of homovanillic acid and 5- 

Hydroxyindoleacetic acid were increased. The significance of these changes 

is unclear. Using MRI spectroscopy, gabapentin is said to increase GABA 

concentrations in human brain (Petroff et al, 1996). This contrasts with our 

findings.

We know that gabapentin does not act as a direct GABA agonist, does not 

bind to GABA receptors (Bartosyck et al 1986), and in fact, appears to have 

it’s own specific binding sites as shown on autoradiography (Hill et al 1993). 

This may be related to a subunit of the calcium channel (Warner Lambert - 

Unpublished Data).

Gabapentin has been associated with various actions on the GABAergic 

inhibitory system. As previously discussed (Goldlust et al 1995) gabapentin 

was known to inhibit both GABA-T and Branched Chain Amino Acid 

Transaminase (BCAA-T), while Kocsis and Honmou (1994) showed that 

gabapentin increased non-synaptic GABA release. Induction of GAD, the 

enzyme responsible for production of GABA and the breakdown of glutamate, 

has also been thought to be of potential importance as a mode of action
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(Silverman et al 1991, Taylor et al 1993, Loscher et al 1991). We found no 

evidence of GAD induction, and can only surmise that the aminooxyacetic 

acid-induced GABA accumulation demonstrated in the presence of 

gabapentin by Silverman and colleagues (1991) was due to an additional 

degree of GABA-T inhibition.

It is widely agreed that gabapentin has the potential to have many effects on 

GABA turnover, and our study is one attempt to further elucidate their relative 

importance. If we can understand how gabapentin alters the GABA shunt, 

then its clinical use alongside other AEDs may be better directed.

Significant inhibition of GABA-T by gabapentin may suggest that it may 

usefully be combined with other GABA-T inhibitors. At higher doses, 

vigabatrin causes an inhibition of both GAD and GABA-T activity (Leach - 

paper submitted). This may account for the plateau of anticonvulsant efficacy 

that has been shown in some trials (McKee et al 1993), and may also account 

for the increase in adverse events at higher doses (Grant and Heel 1992). 

Combination of gabapentin with vigabatrin may allow for optimal inhibition of 

GABA-T with less GAD inhibition, potentially improving anticonvulsant effect. 

The trend towards decrease in glutamate concentrations on treatment with 

gabapentin may be linked to its effect on glutamate dehydrogenase discussed 

in earlier chapters. This decrease in glutamate levels is a desirable effect in 

terms of anticonvulsant and neuroprotective activity, and further work is 

needed to elucidate further the clinical importance, if any, of this effect.

These other associated actions of gabapentin on GABA metabolism are of 

great interest, and may imply that gabapentin has other wider ranging effects
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on the production and breakdown of amino acids in the brain.

Conclusion

Gabapentin is an important new AED, whose mode of action is not yet fully 

understood. This study looks at the effect of gabapentin on the key enzymes 

and substrates of amino acid metabolism which are involved in the 

metabolism of the main inhibitory neurotransmitter GABA.

Although no changes were seen in whole brain levels of GABA during this 

work, gabapentin was shown to have important effects on GABA-T activity. 

There were significant changes in levels of glutamate after chronic dosing 

with gabapentin, which may be of importance in helping to lessen the negative 

effects of chronic refractory epilepsy.

The biochemical actions of gabapentin may allow for useful combination with 

other proven AEDs, particularly vigabatrin. Further clinical and laboratory 

studies are required to investigate the potential for use of gabapentin as part 

of a rational polypharmacy plan for chronic epilepsy.
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Effects of tiaqabine and vigabatrin on cortical biochemistry 

following multiple doses

Both tiagabine and vigabatrin are known to augment GABAergic inhibition. As 

is discussed in previous sections, there may be some additive effect on GABA 

uptake inhibition when both drugs are used together. During one of 

tiagabine’s efficacy trials, we and other investigators felt that those already 

receiving vigabatrin tended to have a greater reduction in seizure frequency 

than other patients once tiagabine was added to their regime. This prompted 

a successful addition of sub-therapeutic doses of vigabatrin in two patients 

who had partially responded to tiagabine (Leach and Brodie 1994).

This experiment examines the effect on GABA metabolism of different 

combinations of tiagabine and vigabatrin in mice. Three parameters of GABA 

metabolism monitored were assayed: total GABA levels, GABA-T activity and 

GAD activity.

Study design

A first set of mice were split into four groups, each receiving once-daily intra- 

peritoneal injection with low dose vigabatrin (10 mg/Kg), low dose tiagabine 

(0.4mg/Kg), a combination of both drugs, or saline. Each treatment group 

consisted of six mice. Two further sets of mice were again subdivided into four 

groups and treated with similar treatment regimes at medium dose (vigabatrin 

50mg/Kg, tiagabine 2mg/Kg), or high dose (vigabatrin 250mg/Kg, tiagabine 

10mg/Kg). After eight days treatment the cerebral cortices were removed and
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assayed for both enzymes and GABA itself.

Statistics

Calculations were carried out using the Minitab V10 software package. 

Results were compared using ANOVA with Dunnet correction, to compensate 

for multiple comparisons with control.

RESULTS

Low Dose Study

Vigabatrin and tiagabine were without effect on cortical GABA concentrations 

when used alone. Combination of the two at low doses however significantly 

increased GABA levels compared to control, although not on comparison with 

vigabatrin alone (Fig WC1). All other low dose treatments were without effect 

on the activities of GABA-T (Fig WC3) and GAD (Fig WC2).

Medium Dose Study

Both vigabatrin and combination significantly increased cortical GABA 

concentrations (Figure 27) compared to control, while tiagabine alone at 

medium dose had no effect. Vigabatrin significantly reduced GABA-T activity 

compared to control (Figure 28). Interestingly tiagabine caused an increase in 

GABA-T activity, while the combination treatment had no significant effect on
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Figure 27: Mean (+/-SEM) GABA levels in mouse brain following treatment 
with different doses of vigabatrin, tiagabine, and a combination for 5 days.

GAD Activity 
%age control values

110 h

90 -

70

50

30

}
1 1 1

*=p<0.005

Control

* *

i {

Low dose Medium dose

Treatment Group

Vigabatrin •  
Tiagabine □  

Combination O

* *

High dose

Figure 28: Mean (+/-SEM) GAD Activity in mouse brain following treatment 
with vigabatrin, tiagabine or a combination of the two for five days.
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Figure 29
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Figure 29: Mean (+/-SEM) GABA-T activity in mouse brain after treatment 
with various doses of vigabatrin, tiagabine or a combination for 5 days.
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GABA-T activity. GAD activity was significantly reduced (Figure 28) by both 

vigabatrin and combination therapy at medium dose, while tiagabine alone 

had no effect.

High Dose Study

High dose vigabatrin and high dose combination significantly increased 

cortical GABA concentrations (Figure 27) and significantly reduced activity of 

both GABA-T (Figure 29) and GAD (Figure 28). Tiagabine at high dose was 

without effect on any of the parameters.

Discussion

If rational polypharmacy is to become the norm, the combined use of two 

GABAergic anticonvulsants would seem a reasonable first step. We have 

used this animal model in an attempt to delineate the biochemical effects of 

vigabatrin and tiagabine when used alone and in combination. Doses for this 

study were defined as high, medium, or low on the basis of response to 

chronic dosing in laboratory seizure models. Medium doses were those which 

were found to be optimally therapeutic, while the high and low doses were 

increased or decreased respectively by a factor of five. Low doses were 

previously shown to be subtherapeutic in our laboratories against MES and 

PTZ-induced seizures in mice.

Despite our earlier beliefs, vigabatrin probably has a number of effects on 

GABAergic function, while tiagabine is currently believed to be more specific. 

The finding that both may act in inhibiting GABA uptake (Leach et al 1996 -
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submitted) may explain the previously noted clinical additive effect (Leach and 

Brodie 1994).

That low dose combination had no effect on enzyme activity, but that it 

increased GABA concentrations compared to control is a curious 

phenomenon. The observation may suggest some interaction between 

vigabatrin and tiagabine at low dose which underpins the additive effect seen 

clinically. Tiagabine has been shown to preferentially block the GAT-1 GABA 

uptake mechanism (Borden et al 1994), and it is not known which uptake 

mechanism, if any, is responsible for vigabatrin uptake. If selective GAT-1 

blockade led to an upregulation of other GABA transport mechanisms, then 

this could theoretically enhance the intracellular uptake of vigabatrin, 

rendering lower doses of vigabatrin efficacious.

Medium dose vigabatrin increased GABA concentrations and decreased 

activity of GABA-T and GAD. The decrease in GAD activity was thought to be 

a result of feedback by increased levels of GABA, although this has not been 

thought to be a factor in mammalian brain (Horton 1989). Some authors, in 

contrast have suggested that vigabatrin has a direct inhibitory effect on GAD 

(Jung et al, 1979). It has been postulated that the effect on GAD may 

contribute to the development of tolerance (Neal and Shah 1990) or the 

limitation of effect of higher doses (McKee et al 1994) of vigabatrin. Medium 

dose tiagabine failed to significantly affect GABA concentrations or GAD 

activity, but caused a significant increase in GABA-T activity when compared 

to control.

At high dose, vigabatrin had a more pronounced inhibition of GABA-T, GAD,
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and increase in GABA than happened at other doses. High dose combination 

did not differ from the actions of vigabatrin alone, suggesting that no 

interactions occur between the two drugs at this high dose level.

Conclusion

Tiagabine and vigabatrin are both effective novel anticonvulsants, which were 

thought to have different, single actions on the GABAergic inhibitory system. 

Both have anticonvulsant efficacy when used with other anticonvulsant 

agents, and some clinical experience has suggested that there is a particular 

benefit in the combination of both compounds. Combining these drugs at low 

dose may avoid the need for high doses to be used, and so decrease the 

incidence of adverse effects.
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The effects of vigabatrin and tiagabine on GABA 
uptake in primary cultures of rodent astrocytes.



The role of glial cell and neuronal culture in the elucidation of basic

mechanisms

Culture of glial cells has been essential in helping to elucidate their normal 

physiological function. As our techniques have been refined, it has now 

become apparent that the two morphological types of astrocytes Type I and II 

have differing biochemical functions.

As a result of the techniques used, most astrocyte cultures have usually 

consisted almost exclusively of Type II astrocytes. Since culture techniques 

can now be carried out to culture either type preferentially (Juurlink and Hertz

1992), there are greater possibilities for further basic research into drug 

mechanisms. The role of tiagabine or vigabatrin in altering GABA uptake in 

each astrocyte type may be important. Could gabapentin affect GABA 

production selectively in one or other astrocyte type?

Neuronal culture is also carried out at our Unit. Preliminary studies have 

confirmed that, like the nipecotic acid derivatives, vigabatrin affects GABA 

uptake into both neurones and astrocytes. Neuronal culture is a more 

challenging procedure in many respects: harvest being required from rodent 

fetal material, cell yield being lower, and the culture failure rate being higher. 

Despite these difficulties, neuronal culture may be as relevant as astrocytes in 

assessing the basic mechanisms of the new AEDs.
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The effect of vigabatrin and tiagabine on GABA uptake in 

cultured astrocytes.

Cell cultures are a well established way of examining the in-vitro biochemistry 

of neurones and astrocytes. Although no-one would argue that any 

conclusions should be directly extrapolated to human populations, these 

techniques can provide useful clues to the mode of action of new drugs. As 

previously discussed, earlier work from our laboratories suggested that 

GABA-uptake in cultured cells may be affected by vigabatrin (Sills et al,

1993).

Aims

Our primary objective was to confirm, and if possible quantify the effect of 

vigabatrin and tiagabine on the rate of GABA uptake by cultured astrocytes. 

The doses at which this process is affected, the rapidity of onset and the 

duration of action will also be examined. The possibility that vigabatrin and 

tiagabine could act synergistically in the inhibition of GABA uptake is also to 

be investigated.

Methods

These are described in detail in an earlier chapter (Materials and Methods). 

The drugs and their doses used are as follows:

1) Tiagabine dose-ranging

Tiagabine at concentrations of 10, 50, 100, 200, 300, 400, or 500 rimol for 

four hours.
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2) Vigabatrin dose-ranging

Vigabatrin at concentrations of 1, 10, 50, 100, 250, 500 pmolar for four hours.

3) Tiagabine time-ranging

200r|mol tiagabine for between 0.5 hours and 24 hours.

4) Vigabatrin time ranging

100p moles vigabatrin solution for times varying from 1 to 24 hours.

5) Combination regimes

Combination of optimal combinations of vigabatrin and tiagabine, with GABA 

uptake measured 4 hours after exposure.

Statistical methods

The experiment was carried out over several batches. Combination of the 

groups was carried out once all results were expressed as a proportion of 

mean control values ± the standard error of the mean. Analysis of variance 

was done, where appropriate using Dunnet (comparison against control data) 

or Tukey's corrections (comparison of variance of each group with all others).

Results

1) Tiagabine dose ranging study

Following four hour exposure of astrocytes to tiagabine at concentrations 

between 100 and 300r|mol, there was a significant reduction in GABA uptake 

into primary cultures of rat cortical astrocytes (Figure 30). Doses outwith this 

range were without effect on GABA uptake.

2) Vigabatrin dose-ranging study

Vigabatrin significantly reduced GABA uptake into astrocytes at 

concentrations between 100 and 250pmol after four hours’ exposure (Figure 

31). All other doses of vigabatrin were without effect.



Figure 30
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Figure 30: Mean GABA uptake (±SEM) in primary cultures of rat astrocytes in 
response to tiagabine for four hours.
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Figure 31: Mean GABA uptake (±SEM) in primary cultures of rat astrocytes in 
response to tiagabine for four hours.
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3) Tiagabine time ranging

Tiagabine (200r|mol) significantly reduced GABA uptake four, eight, and 

twenty four hours post exposure (Figure 32). No effect was seen at earlier 

time points.

4) Vigabatrin time ranging study

Vigabatrin (100nmol) had no effect on GABA uptake at any of the time points 

tested (Figure 33).

5) Combination testing

Tiagabine (200r|mol), vigabatrin (100jamol) and combination treatments 

significantly reduced GABA into primary cultures of rat astrocytes compared to 

control (Figure 34). Analysis showed that combination of the two compounds 

was more effective than either of the drugs used singly.
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Figure 32
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Figure 32: Mean GABA uptake (±SEM) in primary cultures of rat astrocytes.
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Figure 33: Mean GABA uptake (±SEM) in primary cultures of rat astrocytes.
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Figure 34
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Figure 34: Mean GABA uptake (±SEM) in primary cultures of rat astrocytes 
exposed to GABAergic drugs at optimum concentrations for 4 hours.
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Discussion
Both vigabatrin and tiagabine are significant advances in the treatment of 

epilepsy over the last 5 years (Leach and Brodie 1995). We have previously 

suggested that the combination of both drugs may be particularly beneficial 

(Leach and Brodie 1994), and this has also been noted by other clinicians (Dr 

Pam Crawford - Personal communication).

We have shown that the effect of tiagabine on GABA uptake is dose 

dependent. The concentration-effect profile would appear to be U-shaped, 

which makes determination of an IC50 impossible. A similar U-shaped curve 

has been reported using tiagabine in animal seizure models (Nielsen et al, 

1991). Why higher doses of tiagabine are ineffective is unclear, although they 

may be cytotoxic to some degree. No sign of cell death, such as a decrease in 

protein yield was seen at any dose during these studies.

The delay in initiation of tiagabine-related GABA uptake inhibition was 

surprising. In whole animal studies, the anti-seizure effects are soon evident 

following parenteral administration (Nielsen et al, 1991). Further work is 

warranted soon after tiagabine administration to primary cell cultures to 

investigate this anomaly.

The demonstrated inhibitory effect of vigabatrin on GABA uptake confirms our 

earlier work (Sills et al 1993). Strangely, this effect was present at doses 

between 100 and 250 umol, with no effect visible at higher doses. The 

effective concentrations are close to the IC50 for GABA-T inhibition in similar 

models (Larsson et al, 1986). This secondary action might partly explain the 

wide range of animal models in which GABA-T inhibitors are effective 

(Schechter et al, 1979), and may also explain the difference in the time of
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optimal GABA-T inhibition and that of maximal anticonvulsant in animal 

seizure models (Bernasconi et al, 1988).

Given the lack of response at higher doses, the inhibition of GABA uptake by 

vigabatrin is unlikely to be a result of a simple competitive block, despite their 

structural similarity. Previous studies have suggested that vigabatrin is not a 

substrate for any GABA transporter, but is believed to enter cells via some 

high affinity uptake system (Grant and Heel, 1991). With the appearance of 

work defining multiple GABA uptake carriers (Borden et al, 1994) however, it 

is possible to speculate that vigabatrin may have an action at one or more of 

these specific targets. GAT-3 may be a more likely candidate, since a 

secondary substrate of GABA-T, p-alanine (Benuck and Lajtha, 1975) 

selectively blocks this carrier (Clark and Amara, 1994). The structural 

similarities of GABA, p-alanine and vigabatrin may facilitate a common 

binding at active sites of GABA-T and the GAT-3 GABA transporter.

Tiagabine and vigabatrin did show some additive effect on GABA uptake 

inhibition when given in combination. The drugs may have a similar site of 

action, since the increased effect is infra-additive. This may support the 

possibility that the uptake inhibition may occur at GAT-3, since tiagabine has 

a minor role in blocking this transporter (Borden et al 1994).

Conclusions

Clinical experience with tiagabine had suggested that it's effect may be 

enhanced in patients already on vigabatrin therapy, and further studies are 

underway to investigate this. This effect of vigabatrin on GABA uptake may be
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a partial explanation for the usefulness of this combination.

Further characterisation of vigabatrin’s GABA uptake blocking properties may 

help to determine its relative importance as an additional mechanism of 

action. This is one situation where an improved definition of each drug’s 

biochemical actions may pave the way towards a more rational and beneficial 

approach to polypharmacy.

One of the deficiencies in the study is the lack of investigation into the effect 

of these drugs on the levels of cortical glutamate. Further work directly 

correlating this would be justified, particularly following administration of 

vigabatrin. One other direction in which research should be undertaken is in 

the investigation of smaller doses of vigabatrin and tiagabine. Since whole 

brain biochemistry is changed significantly by combined low doses where the 

drugs used singly are ineffective, would the combined use of low dose have 

significant GABA-uptake blocking activity?
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Clinical study of the efficacy and tolerabilitv of 
adjunctive gabapentin in refractory partial

seizures.



Cognition and gabapentin: a double-blind, placebo-controlled 

study in refractory epilepsy

The doses of gabapentin used in previous double-blinded studies are lower 

than would now be commonly used in clinical practice, and in these trials most 

adverse events reported with gabapentin usage are transient and minor 

(Browne 1993). The most common side effects include somnolence, 

dizziness, ataxia and fatigue (Browne 1993).

Using a battery of tests, we have previously shown that treatment with other 

anticonvulsants can alter psychomotor and cognitive testing in a dose-related 

manner (Macphee et al 1986, Brodie et al 1987, Gillham et al 1988, 1990, 

1991, 1993). If newer AEDs such as gabapentin are to attain a satisfactory 

market share, they will have to prove that they are at least as well tolerated as 

the older agents.

Aims

The aim of the study was to assess the efficacy and tolerability of different 

doses of gabapentin in patients with treated refractory epilepsy.

Methods

Twenty seven patients were recruited from the Epilepsy Research Unit at the 

Western Infirmary in Glasgow (Table 13). Details of the study were approved 

by the local Ethical Committee and all patients gave full, informed, written 

consent to their participation. All had epilepsy refractory to at least one of the
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currently available AEDs. Seizures were localisation-related, and all patients 

had a history of adequate compliance, were able to follow dosage 

instructions, and were able to have their seizures fully documented for the 

duration of the trial. All patients were receiving at least one standard AED at a 

dose that had remained stable for at least three months.

Protocol

The study was a double-blind, random-order, crossover, comparison of three 

increasing doses of gabapentin with matched placebo (Figure 35). One month 

after a screening visit, patients were entered into the first 12-week treatment 

phase. Psychomotor and cognitive testing was carried out every four weeks, 

prior to the increase in gabapentin/placebo dose.

After three dose levels had been tested during the first treatment phase, 

patients entered a 4-week washout period prior to commencing the second 

treatment phase. Patients were given individual appointment times, and each 

visit was at a similar time of day to minimise variability in drug levels at each 

visit. Throughout the trial, tablet compliance was checked by tablet counts 

and on history from the patient at each visit. On completion or following 

premature withdrawal from the trial, each patient was given the opportunity to 

continue gabapentin treatment.

Test Battery

A total of eight tests and three self-assessment scales were administered at 

each four-weekly visit. The tests included three psychomotor tests, and five
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memory tests, while the self-assessment scales involved SEALS 

questionnaires, an AED related symptom score, and a visual analogue score 

(VAS) for drowsiness.

Psychomotor tests

The decision time was the time in milliseconds to respond to a light coming on 

by removing the finger from the base button in a choice time reaction task. 

The mean of 30 trials was recorded. The movement time was the time in 

milliseconds to move the finger from the base button to extinguish a light. The 

mean of thirty trials was recorded. Decision and movement times were carried 

out using the Leeds psychomotor tester.

In the threshold detection test, an array of small rectangles was displayed on 

a computer screen. After a brief time, an extra rectangle was added to the 

array. The patient was required to indicate which it was. The ‘threshold’ was 

the minimum time gap in frame units between the presentation of the arrayand 

the additional stimulus that the patient required to perceive that an extra 

rectangle had been added. This test was administered using an Apple lie 

microcomputer.

The stroop test assessed the patients decision making and flexibility. Patients 

were given a card with a list of words written on it, printed in inks of varying 

colours. They were then asked to go through the lists, stating the colour of ink 

used in each word, ignoring what the word says. The number of colours stated 

correctly within two minutes of starting was the basis of the score.
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Memory tests

All memory tests except for the paired associated learning, were performed at 

every visit. The forward digit span test measured the maximum number of 

digits the patient could recall immediately following oral presentation. Patients 

were allowed two trials at each level. The backward digit span measured the 

maximum number of digits that the patient could recall in reverse order 

immediately following oral presentation. Both digit span tests are discontinued 

when two tests at the same level were failed. The forward visual span 

measures the maximum number of squares correctly reproduced in sequence 

as demonstrated by the examiner. The backward visual span assesses the 

maximum number of squares correctly reproduced in reverse order to that 

demonstrated by the examiner. The visual span tests are terminated when two 

consecutive tests are failed.

The paired associate learning test gives a score up to 18 depending on the 

number of attempts required by the patient to name three sets of correctly 

paired words. In the Rivermead behavioural memory test the ‘screen score’ of 

this standardised psychometric battery was used.

Self reporting scales

SEALS I involves 50 questions which the subject answers in order to 

assesses subjective feelings of specific symptoms such as cognitive slowing, 

dysphoria, irritability, fatigue, and worry. The period under assessment was 

the 7-day period immediately prior to the visit.

To calculate the Drowsiness score patients were asked to demonstrate, with
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the help of a visual analogue scale, their degree of alertness. The measured 

distance along the line chosen by the patient was recorded at each visit.

The AED-Related Symptom Score is constructed from patients’ responses to 

a four-point grading score for 10 adverse effects (dizziness, dry mouth, 

flushing, headache, nausea, double vision, ankle swelling, tremor, 

unsteadiness, and palpitations). Only six are associated with AED use, the 

other four being controls.

Drug Assays

Carbamazepine, sodium valproate, phenytoin and phenobarbitone 

concentrations were measured by enzyme immunoassay (Emit, Syva, Palo 

Alto, USA). Vigabatrin was extracted from plasma into ethylacetate, heated 

with dansyl chloride at high pH to form a fluorescent derivative, and measured 

by HPLC with phenylGABA as internal standard. The interassay coefficient of 

variation (CV) over the range 1-100mg/L was 5% and the lower limit of 

detection was 0.1mg/L. Lamotrigine was extracted into ethinylacetate from 

plasma with 2M sodium hydroxide and measured by HPLC with BWA 725C 

(Wellcome Laboratories, UK) as internal standard. The interassay CV over 

the range 0-5mg/L was 6% with a lower limit of detection of 0.25mg/L. A 

recently devised gabapentin assay using HPLC with fluorimetric detection 

(Forrest - in press) was utilised in our laboratories. The inter- and intra-assay 

variations of this method were 3.8% and 2.6% respectively at 5ug/ml, and the 

detection limits were 1 and 10ug/ml.
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Table 13
Demographic data of evaluable patients in gabapentin study

Patient
Number

Sex Age Duration
of

epilepsy
(years)

Baseline 
seizure 

frequency 
(n/28 days)

Treatment Seizure
type

1 M 26 24 5 CBZ, VGB CP/ GTC

2 F 16 13 91 CBZ, SP / GTC

3 F 37 36 42 CBZ, LTG SP / GTC

4 M 35 10 0 CBZ, PHT SP / GTC

5 F 27 19 5 VPA, PRM SPCP

6 M 54 3 5 PHT CP / GTC

7 F 31 17 8 CBZ, PHB CP

8 M 38 24 7 CBZ, VGB CP / GTC

9 F 25 23 212 CBZ, VPA CP/ GTC
11 F 38 36 6 CBZ, PRM CP
12 M 35 18 0 VGB, LTG CP / GTC
13 M 40 5 15 CBZ SP / GTC
15 F 67 62 0 CBZ, CZP CP / GTC
16 M 41 9 28 OCB, SPCP/GTC

18 M 41 34 6 VGB, PHT SPCP/GTC

19 M 46 7 3 CBZ CP/ GTC

20 F 25 13 71 CBZ, VGB CP/ GTC

21 M 44 2 7 VPA CP/ GTC

22 F 39 30 4 CBZ, VGB SPCP/GTC

23 F 30 13 30 CBZ, VPA SPCP

26 F 32 18 7 VPA CP/ GTC

28 F 39 34 8 CBZ, PHT CP

CBZ = carbamazepine, VGB = vigabatrin, LTG = lamotrigine, PHT = phenytoin, PRM 
= primidone, PHB = phenobarbital.VPA = sodium valproate.
CP / GTC = complex partial with occasional secondary generalisation.
SP / GTC = simple partial with occasional secondary generalisation.
SPCP = Simple partial seizure evolving into complex partial.
CP = complex partial.
SPCPGTC = simple partial evolving into complex partial with occasional secondary 
generalisation.
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Statistics

Statistical analysis was carried out by the biometrics unit at Parke Davis Ltd 

using the SAS statistical package. The primary measure of seizure control is 

the comparison of seizure frequency during active (gabapentin) treatment with 

that during placebo treatment phase. Seizure frequencies were normalised 

using a log transformation prior to analysis. Changes from baseline in 

individual cognitive function tests were analysed using the Wilcoxon signed 

ranks test. In addition to the analysis of individual tests, composite scores for 

memory and psychomotor performance were constructed by summation of the 

normalised scores for related assessments.

Composite memory and psychomotor scores were compared using analysis of 

variance. The five SEALS subscores and the visual analogue scale of 

drowsiness were explored using analysis of covariance with the baseline 

measure as covariate. Data for each dose level was assessed separately.

Results

Twenty of the 27 patients completed the study (Table 13). Five patients 

withdrew because of the onset of adverse events (4 on placebo, 1 on 

gabapentin), and two requested withdrawal due to lack of efficacy (1 each on 

placebo and gabapentin). Five of these patients withdrew prior to the onset of 

the second phase, leaving 22 patients who had been exposed to both 

treatment phases and were eligible for analysis.

Seizure frequency
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The frequency of all seizures combined was significantly reduced by 

gabapentin treatment (p=0.02) throughout the active treatment period (Table 

14). Of the 21 patients exposed to all doses, nine (43%) had their total seizure 

frequency reduced by at least 50% while on concomitant gabapentin. Efficacy 

was greatest at 1800 and 2400mg/day of gabapentin. Two patients were 

seizure-free throughout the active treatment phase with none responding 

similarly to placebo.

Seven patients experienced simple partial seizures without secondary 

generalisation during the study. Simple partial seizures were not significantly 

affected by gabapentin, although 2 patients (29%) had the seizure frequency 

reduced by at least half i.e. ‘responded’ to treatment. Complex partial seizures 

without secondary generalisation, noted in 17 patients, were also reduced on 

gabapentin, with 5 patients (29%) ‘responding’ to treatment, although the 

overall reduction did not reach statistical significance. Ten (59%) of 17 

patients experiencing secondary generalised seizures ‘responded’ to 

gabapentin treatment, with the median monthly frequency of this type 

significantly reduced from 1 to 0.3 per month on gabapentin (p=0.01).
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Table 14

Effect of gabapentin treatment on median frequency and interquartile 
range of each seizure type.

n Gabapentin Placebo P
value

Simple Partial 7 Frequency
Range

1.7
0-14.3

1.7
0-14.3

0.80

Complex Partial 17 Frequency
Range

3.0 
2.0-4.3

3.7
1.3-6

0.62

Secondary Generalised 17 Frequency
Range

0.3 
0.3-3.3

1.0 
0.3-7.3

0.01

Total Seizures 21 Frequency
Range

4.3
2.3-16.7

7.0
3.7-19.7

0.02
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Neuropsychological assessment

No order effect was seen in any parameter of psychomotor or cognitive testing 

i.e. there was no improvement in the tests as the trial progressed.

Psychomotor testing

Composite scores of psychomotor function were not altered by gabapentin 

treatment (Table 15). Comparison of composite psychomotor scores and 

individual tests at each treatment level with the corresponding placebo phase 

fails to show any significant difference. Mean psychomotor function results 

during the placebo treatment phase were plotted against seizure frequency, 

showing an interesting negative correlation between frequency of ictal events 

and psychomotor capabilities (Figure 36) which reached statistical 

significance.
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Table 15

Mean (SD) comparative psychomotor, memory and visual analogue
drowsiness scores.

Gabapentin Placebo

Composite Psychomotor Score 0.0 (3.6) 0.0 (2.7)

Composite memory Score 0.2 (3.6) -0.3 (3.6)

Visual Analogue Fatigue Score 43 (28) 39 (28)
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Figure 36: Correlation between seizure frequency and composite 
psychomotor scores throughout placebo treatment phase.
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Memory testing

Composite memory scores showed no impairment on gabapentin (Table 15), 

even at highest dose. Comparison of individual test results between the two 

treatment phases showed only two tests to be significantly altered: the paired 

associate learning test being significantly improved on active treatment 

(p=0.02), while the backward visual was better on placebo treatment (p<0.05). 

No correlation was found between seizure frequency and memory function 

testing (Figure 37).

SEALS-1

SEALS scores were compared for each patient throughout both treatment 

phases. Further comparisons were carried out at each dose level and 

compared with the corresponding placebo dose level. Of the five subscores, 

none were significantly affected by gabapentin even at highest dose, although 

the increases in subscores for tiredness and cognition narrowly failed to reach 

statistical significance (p=0.06, and 0.08 respectively) (Table 16).

Fatigue algorithm

The VAS drowsiness score was significantly greater during treatment with 

2400mg/day of gabapentin compared to the corresponding placebo dosing 

phase (p=0.03) (Table 15). Interestingly, there was a stronger, statistically 

significant correlation between the degree of fatigue reported and seizure 

frequency (r=0.47) (Figure 38).
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Figure 37
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Figure 37: Correlation between composite memory scores and seizure 
frequency throughout placebo-treatment phase.

Table 16
Mean (SD) SEALS Subscores during treatment with 2400mg/day

gabapentin or placebo.

Gabapentin Placebo P value

Cognition 49(12) 51 (13) 0.08

Dysphoria 17(5) 17(5) 0.25

Temper 12(4) 12(3) 0.61

Tiredness 13(3) 14(4) 0.06

Worry 10(4) 10(3) 0.58
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Adverse events

Similar numbers of patients reported adverse events on gabapentin and 

placebo. Five patients withdrew because of the onset of adverse events, four 

while on placebo, and one while on gabapentin (because of a rash). Nineteen 

patients (79%) reported 47 adverse events on gabapentin, compared to the 

placebo phase where 15 patients (63%) reported 30 adverse events.

The AED symptom scores which were constructed showed a statistically 

significant change while on the highest dose of gabapentin (p=0.006). No 

significant differences were seen at the lower two doses. Interestingly, there 

was again a stronger correlation between AED symptom score (Figure 39) 

and seizure frequency (r=-0.72, p=0.0002) than with any form of drug 

treatment.

Drug Concentrations

The median plasma level of gabapentin increased with each dose increase: 

mean levels at 1200, 1800, and 2400mg/day were 4.7+2.6, 6.8±3.8, and 

8.6±3.3mg/L respectively. As would be expected from previous studies, there 

was no change in other AED levels following gabapentin treatment (Table 17).
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Figure 38
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Figure 38: Correlation of VAS scores for fatigue and seizure frequency.
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Figure 39: Correlation of composite adverse event score and seizure 
frequency.
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Table 17

Mean antiepileptic drug concentrations (mg/L) during placebo or 
gabapentin dosing phase.

n Gabapentin Placebo

Carbamazepine 16 8.7 8.0

Lamotrigine 2 6.6 6.1

Phenobarbital 1 27.4 26.1

Phenytoin 4 14.3 15.4

Primidone 2 9.6* 9.6

Sodium valproate 5 77.1 82.5

Vigabatrin 6 25.1 26.0

*Only one patient exposed to gabapentin and primidone.
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Discussion

Cognitive function is an important issue in the treatment of epilepsy. Many 

patients complain of impaired memory and slowed thinking while receiving 

long-term anticonvulsant therapy, and the recent literature on psychomotor 

testing in epilepsy patients is testimony to doctors’ attempts to quantify the 

extent of any drug-related cognitive impairment (Vermeulen and Aldenkamp 

1995). This delineation of the higher mental effects of AEDs is vital: if the 

newer drugs are to thrive, they will have to prove to be better, or at least as 

well tolerated as the established AEDs.

This study has used higher doses of gabapentin than other double-blind trials. 

Despite the refractory nature of the study cohort, the response rates were 

comparable with those in the best of the efficacy studies (Anhut et al 1994, 

Crawford et al 1987, UK Gabapentin Study Group 1990, US Gabapentin study 

group 1992). As with other studies, the effect on secondary generalised 

seizures has been greater than on other seizure types (McLean 1995).

The lack of interaction with other AEDs confirms the findings of other studies 

(Hooper et al 1991, Radulovic et al 1994, Tyndel et al 1994), and is another 

advantage of gabapentin. This is particularly true in a setting where for the 

moment at least, use in the UK is only as add-on therapy.

At doses high enough to produce a significant reduction in seizure frequency, 

gabapentin has demonstrated a relative lack of psychomotor or memory 

impairment. Findings of a lack of psychomotor adverse events with 

gabapentin are consistent with previous reports of gabapentin’s clinical 

tolerability (Browne 1993). There were two measures of fatigue that were
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increased with gabapentin treatment; the fatigue visual analogue scale was 

significantly increased throughout the treatment phase while the SEALS 

subscore for tiredness narrowly failed to achieve statistical significance. 

Although multiple comparisons have a higher chance of providing some 

isolated statistically significant results, the fact that the scores were 

measuring closely allied symptoms may lead us to believe that the findings 

are clinically as well as statistically significant. Other similarly designed trials 

(Gillham et al 1993, Macphee et al 1986) have shown that tolerance can 

develop to fatigue and drowsiness. Were the highest dose levels to be 

observed for longer, the same tolerance may have been observed.

The correlation between seizure frequency and both VAS tiredness and 

composite psychomotor testing is interesting. That patients with more frequent 

seizures have more symptoms and signs of impairment may arise from 

several factors. Whether this change in response represents the workings of 

an innately more ‘damaged’ brain, or the impairment secondary to more 

frequent seizures will be difficult to assess. That the correlation between 

seizure frequency and these two variables was much stronger than the 

correlation with gabapentin levels or gabapentin dosage may imply, however, 

that the paramount consideration in improving cognitive function should be a 

reduction in seizure frequency.
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General conclusions and discussion



General discussion

The last five years have seen welcome additions to our pharmacological 

armamentarium. Prior to the late eighties there were five anticonvulsant 

compounds in common use in the UK. By the end of this century it appears 

likely that there will be up to eleven new AEDs licensed. Meanwhile, progress 

in neuro-imaging and epilepsy surgery also continues apace. In all of history, 

there has never been a time when we could survey the unconquered lands of 

refractory epilepsy with such optimism.

There has, with justification, been a great deal of interest in the new 

anticonvulsants. Despite their introduction, however, most people would agree 

that a significant proportion of our patients remain unsatisfactorily controlled. 

Where the new AEDs have probably been of most benefit is in reducing the 

number of adverse events experienced. If their efficacy continues to equal 

that of the established agents, then, and only then will their future be assured. 

If even our best newest agents leave some seizure types untouched, then 

how are we to increase the number of patients in whom full control is 

achieved? Given the nature of the new AEDs, perhaps it is time to re-evaluate 

the role of combination therapy for epilepsy. As previously argued, the 

rational combinations will require a greater knowledge of the drugs’ actions. 

Do the studies described in this thesis help us in this regard?

Vigabatrin

When tested in cultured cells and whole brain, vigabatrin demonstrated some 

effects other than GABA-T inhibition. GABA uptake was significantly reduced
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in a dose-dependent manner. If vigabatrin increases the optimal GABA uptake 

inhibition in combination with tiagabine, then this may explain the possible 

additive effect noted when the two drugs are given together. When used in 

mice, the effective inhibition of whole brain GABA-T activity was 

demonstrated alongside an equally significant rise in GABA concentrations, 

and a comparable decrease in GAD activity.

Gabapentin

The double-blind clinical study has confirmed earlier impressions that at 

anticonvulsant doses, even as add-on therapy, gabapentin has little 

discernible effect on psychomotor function or on memory. Interestingly, under 

controlled conditions in our study, there was a significant relationship between 

seizure frequency and performance in psychomotor testing.

The effects of gabapentin on whole brain biochemistry failed to show any 

increase in GABA concentrations or GAD activity, but did show significant 

decreases in GABA-T activity and a trend towards a reduction in glutamate 

concentrations after multiple dosing. When placed alongside other in-vitro 

work suggesting positive effects on GABA release and GABA concentrations, 

it seems likely that gabapentin depends, at least in part, on its GABAergic 

effects for its anticonvulsant activity.

Tiagabine

The effect of tiagabine on GABA uptake in cultured astrocytes was quantified, 

and the dose-response curve found to be ‘U’-shaped. Tiagabine had no effect
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on cortical biochemistry when used alone, aside from an increase in GABA-T 

activity of dubious significance. When used in combination with vigabatrin at 

low dose, there was an increase in GABA concentrations demonstrated which 

was not obvious with either drug used alone. At medium and high dose, there 

was no significant difference between the biochemical effects of vigabatrin 

alone and in combination with tiagabine.

Remacemide

The potential for interactions with the older AEDs was investigated in patients. 

Remacemide did not significantly affect the concentrations of valproate, or the 

carbamazepine metabolite CBZ-E. While on oral remacemide, there was a 

trend towards an increase in phenytoin concentrations, which failed to reach 

significance except in the case of the trough concentrations during the 

multiple dose treatment phase. In a minority of patients on carbamazepine, 

co-administration of remacemide hydrochloride significantly increased 

concentrations of the baseline AED. These interactions may be important, but 

are unlikely to be a significant impediment to the use of remacemide 

alongside established agents.

Among valproate-treated patients, the half-life and AUC of remacemide 

hydrochloride and its main metabolite ARL12495XX were similar to that of 

untreated volunteers. In contrast, patients pretreated with an enzyme-inducing 

AED had a significantly lower exposure to remacemide hydrochloride and 

ARL12495XX as measured by AUC, and this patient group may require higher 

doses of remacemide to achieve equivalent plasma concentrations of the two

218



compounds.

On assessment of the effect of ARL12495XX on GABA metabolism in mouse 

whole brain, some surprising findings were made. In addition to the effects on 

sodium channels and NMDA receptors, ARL12495XX would also appear to 

have effects on GABA metabolism. Multiple dosing with ARL12495XX 

appeared to cause a significant decrease in GAD activity and increase in 

GABA-T activity, although the clinical relevance of these actions is unclear.

How can we formulate a rational plan for development of rational 

polypharmacy?

1. Chance observation 

This is traditionally the method by which useful combinations have been 

developed in other branches of medicine. So far, in terms of AEDs, no specific 

drug combinations have been shown to be better than any others. The 

combinations involving the newer agents that have been (incompletely) tested 

are those that have been noted by chance to work in a limited number of 

patients (eg. lamotrigine and valproate, vigabatrin and tiagabine).

All new AEDs have to undergo extensive clinical testing as add-on therapy. It 

would be efficient, and potentially productive if pharmaceutical companies 

testing new AEDs as adjunctive therapy were compelled to carry out further 

analyses to assess the relative benefits in groups of patients receiving 

different baseline AEDs. This type of analysis will not be without its bias, each 

drug being used predominately in different seizure types, but it may provide 

some useful clues for future drug use. The pharmaceutical industry, would
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argue that this would be impractical: every company is understandably keen 

that their new product is seen as a ‘cutting edge’ compound rather than a 

mere cofactor. Meta-analysis of large trials, or of a number of trials, however 

could have advantages with which even the pharmaceutical industry could 

sympathise. Such meta-analyses may, for example, help forewarn us at an 

earlier stage of any important pharmacokinetic interactions involving the new 

compounds.

Y we are to rely on clinical observation to give us hints as to ideal drug 

combinations, then we need regular reviews to improve our yield. For this 

reason among others, it would be helpful if the data upon which drug licensing 

applications are based were made available at an early stage in peer- 

reviewed journals. On researching the chapter on the new AEDs, it became 

apparent that there was a paucity of freely available clinical and pre-clinical 

data, even for those drugs whose licence had been granted. It is far from ideal 

that clinical and biochemical data of compounds on general release have to 

be gleaned from journal abstracts pending full publication of the study data. It 

is unrealistic, and probably unhealthy, for our understanding of such drugs to 

be based solely on the subjective, and often selective data provided by the 

pharmaceutical industry.

2 Rational planning of useful combinations 

In this scientific age, it would be sensible to base our choice of AED 

combinations on the information available to us. With our increasing 

knowledge of neurophysiology and neurobiochemistry, is it more likely that we
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should be able to make that choice?

Perhaps not yet. Despite the fact that we are better informed than ever before, 

there are still large gaps in our knowledge. It would have been naive to 

assume, for example, that remacemide would have no effect on the GABA 

shunt merely because it had already proven to have effects on glutamatergic 

neurotransmission. What we learn from this experiment may be that in terms 

of basic mechanisms of action of the AEDs, nothing should be taken for 

granted.

How will we determine what is best for our patients?

The knowledge of basic mechanisms of action, however complete, does not 

answer all of our questions about anticonvulsant treatment. Even if all the 

neurochemical and neurophysiological effects of all AEDs can be elicited, will 

that help us to decide how drugs should be paired? Should compounds be 

combined with drugs on the same side of the fence (eg two GABAergic drugs) 

or should we be using each one alongside others with actions on different 

systems? Some would argue that multiplicity of action is what has bedevilled 

the use of the older AEDs: according to this view, we should be searching for 

a drug that has one single anticonvulsant effect. In this view, combining drugs 

with different actions merely simulates the administration of an established 

drug.

In answer, having a combination of drugs producing a variety of effects is an 

improvement on having a single multi-active drug. The combination of more 

specific drugs offers a greater flexibility of manoeuvre in response to any
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clinical improvement or the onset of adverse events. For a patient on 

lamotrigine / valproate combination, for example, the relative doses would be 

determined by the patient’s response. If weight gain is a problem, valproate 

dose could be adjusted, whereas the temporary reduction of lamotrigine dose 

may suffice in the prevention of headache.

Just as importantly, could we combine drugs according to their biochemical 

‘side effects’? The pairing of vigabatrin and gabapentin, for example may 

allow for a greater inhibition of GABA-T with little GAD inhibition, so perhaps 

removing the ceiling to effective dosing of vigabatrin’s efficacy (McKee et al 

1993), or minimising any adverse events (Grant and Heel 1991).

Knowledge of the AEDs’ biochemical effects may also warn us of 

combinations to avoid. It would be interesting to assess the effect of a 

remacemide / vigabatrin combination on whole brain GABA-T. Would this 

combination have any efficacy in animal seizure models? Would the dual 

depression of GAD activity produce a high incidence of side effects?

While we concentrate on the novel drugs’ actions in in-vitro experiments, it is 

important that we do not forget the established AEDs. That lamotrigine and 

valproate combine so effectively is probably more than a result of the well- 

recognised pharmacokinetic interaction . Are there any particular aspects of 

lamotrigine’s action(s) that mesh particularly well with the actions of 

valproate? Further work on the established AEDs to further delineate their 

neurophysiological effects would be useful, not only in terms of helping to 

formulate treatment plans, but also in helping to augment our knowledge of
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the basic processes underlying epileptogenesis.

Synergy is an attractive proposition for doctors in all areas of medicine. To 

have drugs producing effects in combination that are supra-additive seems to 

be the biological equivalent of getting something for nothing. Once a 

potentially beneficial combination comes to our attention, by whatever means, 

how can we test its efficacy and tolerability, or determine if any synergism is 

effected? Pharmacologically, use of the isobologram first espoused by Loewe 

in 1953, may be the most effective way forward (Mawer and Pleuvry 1995) 

(Figure 40). The straight line isobologram (A’) charts doses of each drug

required to exert a particular effect if their actions are additive. If there is 

synergy or potentiation, the doses required to produce the same effect will be 

lower, and the curve for potentiation (S’) will be below the straight line. If the
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►
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drug effects are antagonistic, the doses of each drug required will be higher, 

and the curve (IVT) will be above the line.

In theory this principle is useful, and in practice, it has been used 

(unsuccessfully) in the assessment of possible potentiation between 

felbamate and phenytoin (Swinyard et 1989). There are no clinical examples 

where isobolograms have been used to look at seizure effects, but in patients, 

isobolograms were used to examine the additive hypoglycaemic effect 

between salicylates and sulphonylureas. One of the problems in patients 

would be the determination of these ‘equivalent’ doses. Since epilepsy study 

populations are so variable, it would be difficult to decide which dose of 

valproate was equivalent, for example, to a specified dose of lamotrigine. Any 

pharmacokinetic interactions would have to be compensated for using blood 

levels, and yet there is no good correlation between serum levels of 

lamotrigine and its clinical efficacy.

In simpler terms, controlled clinical trials have been suggested (Richens 

1995) which use a double-dummy design, comparing each drug singly with 

placebo, and with a combination of the two active treatments. Having four 

treatment arms, these trials will require large numbers of patients, one quarter 

of which will be receiving placebo. In most countries except the USA, there 

seems to (rightly) be some problems with placebo-controlled monotherapy 

studies. Elsewhere there may also be ethical problems if either of the drugs is 

not licensed for use as monotherapy. Where a drug dose differs between 

arms because of pharmacokinetic interactions (eg lamotrigine and valproate), 

this dose variance could cause some difficulty in interpreting the trial results.
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There has been a fashion for recent reviews to assess the role of drug 

combinations in the treatment of epilepsy (Schmidt and Gram 1995, Richens 

1995, Lammers 1995). That opinion in the last twenty years has tended to 

oppose combination therapy has also meant that little work went into planning 

of rational polypharmacy even before the introduction of the newer AEDs. 

While there are many reasons why the established AEDs don’t mix well, it is 

sad, to say the least, that little effort has been made to provide an objective 

basis to support the use of various drug combinations.
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Suggested Combinations for future investigation.

We now have a shortlist of combinations which would appear to have 

particular promise.

• Valproate \ lamotrigine

The clinical benefits of valproateMamotrigine has been widely noted, and 

further investigation of this additive effect is essential. Both drugs are licensed 

for use as monotherapy in the UK, and there should be no ethical problem in 

having some patients on either of these drugs as monotherapy. The 

pharmacokinetic interaction between the two, however, may necessitate the 

provision of an unblinded observer to intervene where necessary, ensuring 

that plasma levels of lamotrigine, in particular, are comparable between 

groups.

• Lamotrigine and Vigabatrin

This is one of the few drug combinations tested under controlled clinical 

conditions that exclusively involves new AEDs. Previously, before lamotrigine 

had been granted approval for use as monotherapy, there were logistical 

problems in testing this combination. Stolarek et al (1994) used a placebo- 

controlled design and concluded that addition of a new drug was better than 

placebo. Further work by Schapel et al (1993), however confirmed the 

suggestion that the combination may have particular benefit. Studies of these 

two drugs in animal seizure models are being performed in our unit to test the 

efficacy against PTZ and MES-induced seizures in mice. Despite the efforts of 

the investigators mentioned, no properly controlled studies have been carried 

out which gives any scientific evidence of synergism.
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• Vigabatrin and tiagabine

Our in vitro work, alongside clinical observations in our unit and further afield 

(Dr Pam Crawford - personal communication), would suggest that an 

investigation of the use of combined vigabatrin and tiagabine may yield some 

interesting results. Tiagabine will probably be granted a license for use in the 

UK in the near future, which would ease the logistical problems in organising 

this, although the lack of a monotherapy license for either drug would mean 

that the combination may initially'at least be used only in addition to other 

AEDs.

• Gabapentin and vigabatrin

No clinical reports have yet been made to suggest particular clinical benefit in 

combination of these drugs, but our whole brain work may suggest that the 

combined use may lead to more complete inhibition of GABA-T activity while 

GAD inhibition may be kept to a minimum. Again, once one or either of these 

drugs gains a monotherapy license, the required double-dummy trial will be 

easier to design.

• Gabapentin and Tiagabine

Unsurprisingly, given that gabapentin received its license in the UK after the 

main studies of tiagabine efficacy had begun, there are no clinical reports of 

the particular efficacy of this compound. In-vitro studies, however (Honmou et 

al 1995), and the results of our small pilot study, would appear to suggest that 

gabapentin and tiagabine could be of particular benefit in some patients. The 

results of our whole brain biochemistry work might suggest that combinations 

of gabapentin and vigabatrin could be of interest.
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So far, most of these suggested combinations would appear to concentrate 

largely on the GABAergic system. Perhaps as more drugs of uncertain mode 

of action come into daily use, there may be more opportunity for manipulation 

of the excitatory system, which so far is only served by remacemide, 

lamotrigine, and to some degree, topiramate. The formulation of a rational 

plan for the use of AEDs in combination will take many years, and this thesis 

is only a very small step in that right direction.

Conclusions

The history of epilepsy therapy is littered with the remnants of chance 

observations. To a degree they have served us well, and for a majority of 

newly diagnosed patients we have drugs which will control their seizures with 

no or negligible side effects. For a significant minority, however, things are not 

so rosy. The advent of the newer drugs may help a few patients gain control 

of their epilepsy, but as the continued existence of specialist epilepsy clinics 

will testify, the challenge of refractory epilepsy will remain with us for the 

foreseeable future. There is much work to be done in investigating the new 

AEDs, including that needed to investigate their use in combination. The trials 

required will not be easy. They will present difficult logistical problems, such 

as the use of placebo as monotherapy, large numbers of patients, or possibly 

the exclusion of patients who have received either of the constituent drugs. 

Not least among these problems will be funding difficulties. At the moment, it 

seems unlikely that any major pharmaceutical company will be willing to
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subsidise such work, and the cost of setting up such a huge multicentre study 

may be prohibitive for grant funding bodies. Until the clinical studies can get 

underway, then research into AED combinations may need to either involve 

smaller numbers or concentrate on preparing the groundwork by assessing 

the effects of the all AEDs in a wide range of in-vivo and in-vitro studies.
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New antiepileptic drugs—an explosion of activity
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The low therapeutic index of established antiepileptic drugs coupled with a better understanding of the 
pathophysiology of seizure production has led to the development of a range of new therapeutic agents for the 
treatment of epilepsy. In this review, the three drugs recently licensed in the UK (vigabatrin, lamotrigine and 
gabapentin) are profiled, together with several of the more promising up-and-coming compounds (oxcarbaze­
pine, felbamate, tiagabine, stiripentol, remacemide and topiramate). Future avenues for clinical research in 
the pharmacological management of the epilepsies involve their rational use both singly and in combination.

Key words: antiepileptic drugs; epilepsy; interactions; neuropharmacology; side-efects.

INTRODUCTION

Epilepsy is a common condition with a point 
prevalence of just under 1% of a given popu­
lation1. There are, by implication, around 
500 000 people in the UK  alone who have epi­
leptic seizures, fewer than 70% of whom will 
have them fully controlled with the currently 
available antiepileptic drugs2. Many patients, 
particularly those with underlying anatomical 
lesions, respond poorly to monotherapy and are 
treated with combinations of anticonvulsants 
that often cause disabling side-effects with 
only an outside chance of significantly im­
proved seizure control.

Dose-related side-effects and idiosyncratic 
reactions are all too common with existing 
anticonvulsants. The tendency to produce 
headache, nausea, dizziness, drowsiness, cogni­
tive impairment and other central nervous 
system side-effects is almost universal2. Their 
potential for teratogenicity3,4 and for deleteri­
ous drug interactions5 make their long-term 
use problematical. The last few years have 
been exciting times for epileptologists. There 
has been a rush of interesting new antiepilep­
tic drugs into clinical development.

THE BASIS OF SEIZURES

Histologically, epileptic neuronal tissue often 
shows only non-specific changes such as gliosis 
or dendritic degeneration6,7. The biochemical 
interplay at the site of epileptogenesis is more 
interesting, and an understanding of the 
pathogenesis may lead us to alter successfully 
the subtle biochemical imbalances responsible 
for seizure generation and propagation. Recent 
advances in drug development have focused on 
the therapeutic potential of manipulating 
brain neurotransmitters.

Endogenous substances such as gamma ami- 
nobutyric acid (GABA), adenosine and glycine 
are thought to be of importance in inhibiting 
seizure spread7. Stimulation of the GABAa 
receptor results in an influx of chloride ions, 
stabilizing the neuronal membrane and pre­
venting seizure activity. Work in primates has 
demonstrated a selective loss of such terminals 
in epileptogenic foci8, implying a local deficit in 
inhibition. There is decreased binding, also, to 
the GABA/benzodiazepine receptor complex in 
temporal lobe lesions9.

The role of the excitatory amino acids, es­
pecially glutamate and aspartate, has been 
well recognized for a number of years. Recep­
tors for these and other dicarboxylic acids are 
present in altered density in patients with

1059-1311/95/010005+04 $08 00/0 ©  1995 British Epilepsy Association
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Table 1: Pharmacological profile of a range of new antiepileptic drugs

J.P. Leach & M.J. Brodie

Drug Mode of action H alf life 
(hours)

Elimination Concentrations 
affected by...

Effect on other 
AEDs

Felbamate ? Glycine antagonist 
at NMDA receptor

14-22 Hepatic metabolism, 
some renal excretion

Enzyme inducers PHT, VPA j  
CBZ i

Gabapentin ? Inhibition of L-amino 
acid transport

5 -7 Renal excretion N il N il

Lamotrigine Blocks Na channels 
decreasing EAA 
release

25-29 Hepatic glucuroni- 
dation

Enzyme inducers 
and inhibitors

CBZ
(pharmacodynamic
interaction)

Remacemide Non-competitive 
NMDA antagonist

3 -5
(metabolite
12-18)

Hepatic metabolism 
(active metabolite)

Enzyme inducers 
and inhibitors

PHT, CBZ, t

Stiripentol ? Inhibition of GABA 
uptake and 
metabolism

Variable
(saturation
kinetics)

Hepatic metabolism Enzyme inducers 
and inhibitors

PHT, CBZ, PB f

Tiagabine Decreases GABA 
reuptake

4-13 Hepatic metabolism ? N il ? N il

Topiramate Unknown 18-23 Renal excretion, some 
hepatic metabolism

Unknown Unknown

Vigabatrin Decreases GABA 
metabolism

5 -7 Renal excretion N il PHT 1

NMDA, n-methyl-D-aspartate; EAA, excitatory amino acid; AED, antiepileptic drugs; GABA, gamma aminobutyric acid; 
PHT, phenytoin; VPA, sodium valproate; CBZ, carbamazepine; PB, phenobarbitone.

either generalized10 or temporal lobe11 seiz­
ures. This implicates the excitatory system in 
producing a micro-environment conducive to 
epileptogenesis. These processes and their 
interplay are important factors in determining 
the extent of the neurological instability 
underlying the ictal diathesis12.

ESTABLISHED ANTICONVULSANTS

The last two first-line anticonvulsants to be 
introduced in the UK were carbamazepine in 
1967 and sodium valproate in 1974. These are 
still the best drugs for controlling most types of 
seizures. There remains, however, a great deal 
of scope for improving our treatment of epi­
lepsy. Fewer than 70% of patients are ad­
equately controlled with antiepileptic mono­
therapy13. The addition of a second or third 
drug w ill provide substantial improvement in 
only around 10% of the remainder2. The more 
antiepileptic drugs the patient takes, the 
greater the incidence of adverse effects, par­
ticularly cognitive impairment and teratoge- 
nesis.

The modes of action of established antiepi­
leptic drugs are multiple, complex and overlap­
ping14. Their effects on the central nervous 
system are widespread and rather indiscrimi­
nate— a neuropharmacological blunderbuss 
rather than a laser! The introduction of three
new anticonvulsants with novel mechanisms of)'

action in the UK over the last 5 years has revo­
lutionized our approach to refractory epilepsy. 
Vigabatrin, lamotrigine and gabapentin have 
led the way for a plethora of newer agents that 
are being extensively tested in scienifically- 
based studies world-wide.

This review w ill deal with the compounds 
that are breaking through in the routine man­
agement of epilepsy, and will focus also on the 
most promising drugs currently undergoing 
clinical trials. The pharmacological profiles of 
the anticonvulsants featured in this paper are 
summarized in Table 1. Their potential ranges 
of efficacy are outlined in Table 2.

NEW ANTIEPILEPTIC DRUGS 

Vigabatrin

Vigabatrin was licensed in the UK for use as 
add-on therapy for refractory epilepsy in 1989. 
It  is being increasingly used in Europe, Africa 
and Asia, but still awaits regulatory approval 
in North America.

Mode of action

Vigabatrin is a GABA analogue which acts as 
a ‘suicide’ inhibitor of GABA-transaminase 
(Fig. 1). It  binds irrevocably to its target 
enzyme, and so facilitates GABA-ergic inhi-
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and, thus, stabilizing neuronal membranes28. 
This, however, is unlikely to be the whole 
story29

Pharmacokinetics and interactions

Oral administration of lamotrigine leads to its 
rapid and near complete absorption. The elim­
ination half-life is around 29 hours with 
metabolism largely by hepatic glucuronida- 
tion30. Interestingly, patients with Gilbert’s 
disease have a longer half-life due to a decrease 
in the activity of the enzyme bilirubin uridine 
diphosphate glucuronyl transferase31.

Lamotrigine does not itself induce or inhibit 
hepatic enzymes. Consequently, it has no influ­
ence on the metabolism of other lipid soluble 
drugs, including the oral contraceptive pill and 
warfarin. Sodium valproate has been shown to 
lengthen its half-life to around 59 hours, and 
the enzyme-inducing anticonvulsants, carba­
mazepine, phenytoin and phenobarbitone 
reduce it to around 12 hours32. There have 
been reports of symptoms of neurotoxicity 
(headache, nausea, dizziness, diplopia, ataxia) 
in patients taking carbamazepine in whom 
lamotrigine has been introduced33. These dis­
appear when the dose of either drug is reduced. 
This is thought to be the clinical represen­
tation of a pharmacodynamic interaction34.

h 2n

Fig. 2: Structure of lamotrigine.

Sedation is not a prominent manifestation of 
lamotrigine toxicity49.

Double-blind trials to assess the usefulness 
of lamotrigine as monotherapy, using carba­
mazepine and phenytoin as comparators have 
just been completed. Preliminary results 
suggest equal efficacy to carbamazepine and 
phenytoin with better tolerability. Other com­
parative studies in children, in the primary 
generalized epilepsies and in the elderly are 
underway. The starting dose and titration rate 
w ill depend on existing treatment50 when the 
drug is used as adjunctive therapy (Table 3). 
Lamotrigine is usually prescribed twice daily, 
but a single daily dose can be used if  the drug is 
combined with sodium valproate or as mono­
therapy. A low, slow introduction schedule w ill 
reduce the likelihood of rash.

Efficacy and tolerability

Ten double-blind, placebo-controlled, add-on 
studies have been carried out with lamotri- 
gine35̂ 44, nine of which reported success 
against partial seizures with or without 
secondary generalization. Many open studies 
have confirmed these findings45. Clinical ex­
perience also suggests that lamotrigine is ef­
fective for the primary generalized epilep­
sies46. There is anecdotal evidence too to 
support its value in Lennox-Gastaut syn­
drome47. These observations have not yet been 
substantiated in controlled clinical trials.

Lamotrigine is a well-tolerated drug, with 
skin rash being the most common reason for 
withdrawal. This occurs in approximately 3% 
of patients and depends on the rate of introduc­
tion of the drug48. Side-effects such as dizzi­
ness, headache, nausea and vomiting, ataxia, 
diplopia and tremor are other minor problems 
associated with lamotrigine administration.

Table 3: Lamotrigine dosage and titration schedules
1. Add-on in treated adults and adolescents

Valproate Others
Weeks 1-2 25 mg alt die 50 mg daily.
Weeks 3 -4  25 mg daily 50 mg twice

daily
Maintenance 50-100 mg twice 100-200 mg twice

daily daily

2. Add-on in treated children

Valproate Others
Weeks 1-2  0.2 mg/kg 2 mg/kg
Weeks 3 -4  0.5 mg/kg 5 mg/kg
Maintenance 1-5 mg/kg 5-15 mg/kg

3. Monotherapy in newly diagnosed epilepsy

Adults Children
Weeks 1-2 25 mg daily 0.5 mg/kg
Weeks 3 -4  25 mg twice 1 mg/kg

daily
Maintenance 50-100 mg twice 2 -8  mg/kg

daily

Higher doses can be tried if seizures persist and the 
patient is tolerating the drug without complaint.
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Gabapentin

Gabapentin, a chemical analogue of GABA, 
was intended to act as a GABA agonist (Fig. 3). 
It was thought too that, being hydrophilic, 
blood-brain barrier penetration would be fa­
cilitated.

h 3n + C 02"

Fig. 3: Structure of gabapentin.

Mode of action

Interestingly, the. anticonvulsant properties of 
gabapentin are not dependent on any direct 
action on the GABA-ergic system51. The drug 
appears to bind to a membrane site near the 
glutamate receptor, which may represent a 
transport system for L-amino acids52,53. A 
recent study suggests that gabapentin may 
also lim it the rate of firing of sodium-depen­
dent action potentials54.

Pharmacokinetics and interactions

Oral dosing of gabapentin results in rapid 
absorption, and the drug has a bioavailability 
of 60%. A saturable transport mechanism in 
the gut explains the lack of proportionality be­
tween increased doses and levels in plasma55. 
Maximum concentrations occur 2 -3  hours 
after administration and the elimination half- 
life approximates 5 -7  hours56. There is no sig­
nificant protein binding, and the drug is 
excreted unchanged in the urine with clear­
ance rates equivalent to those for creatinine. 
The lack of important drug interactions with 
gabapentin has been widely reported57.

Efficacy and tolerability

A small, dose-ranging, double-blind cross-over 
study was the first to provide evidence for

gabapentin’s efficacy against partial seiz­
ures58. A clear-cut dose-response relationship 
in reducing partial and secondary generalized 
seizures has been demonstrated with the 
drug59. In a large double-blind, parallel group, 
placebo-controlled study involving 127 
patients with drug-resistant partial seizures, 
25% of these taking gabapentin experienced a 
reduction in seizure frequency exceeding 
50%60. The therapeutic effect of gabapentin 
has been shown to persist for up to 24 
months61.

Adverse events with gabapentin are gener­
ally mild and transient62. The most common 
are somnolence, fatigue, dizziness and weight 
gain. Other problems include diplopia, head­
ache, ataxia and nausea. No idiosyncratic reac­
tions have been reported to date. Early reports 
are reassuring also regarding its lack of terato­
genic potential63.

The recommended schedule for prescribing 
gabapentin involves thrice daily adminis­
tration. However, some patients appear to re­
spond to a morning and evening dose. The drug 
should be introduced over the first week at low 
dosage (e.g. 300 mg twice daily) and thereafter 
can be increased more rapidly as necessary to a 
maximum of 2700 mg daily or thereabouts. Its 
use is not currently recommended in children 
under 12 years of age.

Oxcarbazepine

Oxcarbazepine, the 10-keto analogue of carba­
mazepine (Fig. 4), has been licensed for use in a 
number of countries worldwide. Its metabolism 
differs from that of the parent compound and 
this holds out the possibility of a more benign 
side-effect profile with fewer drug interac­
tions64.

NH

Fig. 4: Structure of oxcarbazepine.
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Mode of action

The mode of action of oxcarbazepine is similar 
but not identical to that of carbamazepine65. 
Its major effect, therefore, is in preventing 
burst firing of neurones by blocking voltage- 
dependent sodium channels.

Pharmacokinetics and interactions

Oxcarbazepine is a pro-drug, the main active 
principle being 10,ll-dihydro-10-hydroxy-car- 
bamazepine which is largely eliminated by 
hepatic glucuronidation63. This moiety is 55% 
bound to ̂ plasma proteins and has an elimin­
ation half-life approximating 9 hours. Unlike 
carbamazepine, oxcarbazepine does not 
undergo autoinduction of metabolism66. The 
drug has no effect on the metabolism of other 
anticonvulsants67. However, the area under 
the concentration-time curve of the active 
metabolite is lower in patients taking carba­
mazepine, phenytoin and phenobarbitone than 
in controls suggesting a small, probably clini­
cally irrelevant, induction effect of these drugs 
on its elimination67,68.

Oxcarbazepine has less potential than carba­
mazepine to induce liver enzymes and so influ­
ence the metabolism of other drugs. It  appears 
to induce selectively a single isoform of cyto­
chrome P450, namely IIIA 69. Volunteer studies 
have suggested that it does not interfere with 
warfarin metabolism70, nor w ill cimetidine71 
or dextropoxyphene72 inhibit its breakdown. 
However, decreased bioavailability of the oral 
contraceptive pill has been noted in some 
patients treated with oxcarbazepine73.

Efficacy and tolerability

Several double-blind, add-on studies have con­
firmed comparable efficacy between oxcarbaze­
pine and carbamazepine74"76. In addition, no 
difference in anticonvulsant effect was found 
between oxcarbazepine and carbamazepine in 
patients with newly diagnosed epilepsy77. Like 
carbamazepine, oxcarbazepine has no place in 
the treatment of absence seizures and myo­
clonic jerks69.

Comparisons with carbamazepine have sug­
gested a lower incidence of minor side- 
effects75”77. Those most commonly associated 
with oxcarbazepine are diplopia, nausea, head­
ache, dizziness, drowsiness and ataxia69.

Oxcarbazepine, like carbamazepine, has a pro­
pensity to cause hyponatraemia in some 
patients78. However, it produces fewer rashes 
than carbamazepine79 and perhaps other idio­
syncratic reactions69.

Felbamate

Felbamate is a dicarbamate derivative (Fig. 5) 
which is licensed in the United States and has 
recently gained approval for use in partial seiz­
ures and Lennox-Gastaut syndrome in some 
European countries. It  has been reported in 
animal models as having an unique profile of 
anticonvulsant activity, with little tendency to 
cause neurotoxicity80.

CKOCONH

C  H

Fig. 5: Structure of felbamate.

Mode of action

Felbamate has an interesting effect in de­
creasing the binding of ligands at the glycine 
site of the n-methyl-d-aspartate (NMDA) 
receptor81. This implies that it may act as a 
glycine antagonist, possibly diminishing the 
deleterious influence on neuronal function of 
excitatory amino acids. Several other modes of 
action have also been suggested82.

Pharmacokinetics and interactions

Oral administration of felbamate leads to com­
plete and rapid absorption. Following a single 
dose, the half-life ranges between 14 and 22 
hours in epileptic patients82. A proportion of 
absorbed drug is excreted unchanged in the 
urine, with the rest undergoing hydroxylation 
and conjugation in the liver.

On addition of felbamate, phenytoin, val­
proate and phenobarbitone levels w ill rise by 
around 20-30%, whereas serum carbamaze­
pine will fall by a similar amount83. However, 
this latter effect is offset by greater production 
of the active metabolite, carbamazepine 10,11
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epoxide84. Enzyme-inducing antiepileptic 
drugs will increase the rate of clearance of fel­
bamate85. The effect of valproate on felbamate 
levels is less clear-cut86.

Efficacy and tolerability

The efficacy of felbamate has been established 
in six major clinical trials involving around 
370 patients87-92. Five of these were under­
taken in patients with partial seizures with or 
without secondary generalization. The final 
piece of evidence consists of a major placebo- 
controlled trial in 73 children with Lennox- 
Gastaut syndrome, each of whom had at least 
90 atonic or atypical absence seizures per 
month despite treatment with one or two 
established antiepileptic drugs. Felbamate 
reduced the frequency of atonic seizures as well 
as atypical absences90. Preliminary results in 
the primary generalized epilepsies are also 
promising. Long-term efficacy data with the 
drug, however, are still limited, although early 
observations are encouraging93.

The most frequent side effects with felba­
mate originate from the central nervous 
system and include diplopia, dizziness, head­
ache, nausea and vomiting, diarrhoea and 
ataxia82. Weight loss of around 5% body weight 
has been reported in some patients, probably 
secondary to anorexia and nausea. Both insom­
nia and somnolence have been associated with 
felbamate administration83.

Mode of action

Tiagabine acts by inhibiting GABA re-uptake 
by glial cells and presynaptic neurones95. The 
resultant increase in synaptic GABA concen­
trations is thought to be responsible for its 
anticonvulsant action96.

Pharmacokinetics and interactions

Tiagabine is well-absorbed orally with peak 
levels occurring around an hour after dosing94. 
The elimination half-life varies between 4 and 
13 hours. Elimination is mainly by hepatic 
metabolism, which appears not to be 
influenced by concomitant anticonvulsant 
treatment.

Efficacy and tolerability

Double-blind studies suggest useful efficacy for 
tiagabine against partial and secondary gener­
alised seizures97,98. Monotherapy trials are 
also currently being undertaken99. Side-effects 
so far have been largely confined to headache, 
dizziness and sedation.

Remacemide

Remacemide was designed to affect the excit­
atory component of epileptogenesis. It  has 
recently entered phase I I I  clinical trials in epi­
leptic patients.

Tiagabine

Tiagabine, a nipecotic acid derivative (Fig. 6), 
has a powerful anticonvulsant effect in animal 
seizure models94.

Fig. 6: Structure of tiagabine.

Mode of action

Remacemide is chemically unrelated to any 
other anticonvulsant (Fig. 7) and has been 
shown to be a weak, non-competitive NMDA  
antagonist100. At least part of remacemide’s 
anticonvulsant action is thought to be due to 
its main metabolite, the desglycinate.

Pharmacokinetics and interactions

Oral dosing of healthy volunteers shows 
absorption to be rapid, peak levels being 
attained around 1 hour after administration. 
The parent drug has an elimination half-life 
approximating 4 hours, whereas the active 
desglycinate metabolite has a longer half-life
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Fig. 7: Structure of remacemide.

in the region of 12-18 hours100. This difference 
in pharmacokinetics between parent drug and 
active metabolite is important in determining 
the optimum frequency of dosing.

Though not yet complete, interactions 
studies with remacemide suggest that it may 
act as an enzyme inhibitor, slowing the metab­
olism of both phenytoin and carbamazepine101. 
Clearance of remacemide is increased in 
patients taking phenytoin and carbamazepine 
compared with those treated with sodium val­
proate102.

Efficacy and tolerability

Preliminary results with remacemide suggest 
useful efficacy against partial and secondary 
generalized seizures103,104. In common with 
other centrally acting drugs, lightheadedness, 
diplopia and dizziness have been reported as 
well as gastro-intestinal symptoms such as 
dyspepsia, nausea and vomiting. Aggressive 
behaviour has been noted on rare occasions. No 
evidence of idiosyncratic reaction to the drug 
has so far emerged.

Stiripentol

Stiripentol (Fig. 8) has been shown to be an 
effective anticonvulsant in many animal seiz­
ure models105-107.
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Mode of action

No precise mechanism of action has been deter­
mined, but laboratory studies suggest that 
stiripentol increases GABA levels either by in­
hibiting synaptosomal uptake or by decreasing 
its metabolism108

Pharmacokinetics and interactions

The drug is slowly distributed rendering its 
elimination curve multiphasic. It  is highly pro­
tein bound and undergoes non-linear kin­
etics109. Stiripentol is biotransformed mainly 
by hepatic metabolism110, and this can be ac­
celerated by other antiepileptic drugs111. It  
strongly inhibits the metabolism of other anti­
convulsants, causing a rise in concomitant phe­
nytoin, carbamazepine, sodium valproate and 
phenobarbitone112,113.

Efficacy and tolerability

Most of the studies carried out so far have been 
open label design in patients with partial seiz­
ures with or without secondary generaliz­
ation111,114. A preliminary report supports effi­
cacy in children with atypical absences115. 
Overall, stiripentol is well tolerated with only 
ataxia, nausea, vomiting and lethargy cur­
rently complicating its clinical use.

Topiramate

Topiramate (Fig. 9) is yet another antiepileptic 
compound, which is structurally distinct from 
all other comparable drugs!

33
Fig. 8: Structure of stiripentol. Fig. 9: Structure of topiramate.
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Mode of action

As with many of the new anticonvulsants, this 
is presently uncertain. One study suggests that 
it may enhance GABA-mediated chloride ion 
influx116.

Pharmacokinetics and interactions

Topiramate is slowly absorbed after oral dos­
ing, peak concentrations in plasma occurring 
between 1 and 4 hours after administration. 
The drug is excreted largely unchanged in the 
urine, with an elimination half-life ranging

- from 19 to 23 hours117. Around 5% of a dose
- undergoes hepatic metabolism. Interactions
- with other anticonvulsants have still to be 

fully delineated.

Efficacy and tolerability

~ A number of double-blind, placebo-controlled
* studies have been completed with topiramate 

in adults with refractory partial seizures with
- or without secondary generalization118,119. 

These have shown a good response (defined as a
’ reduction of >50% in seizure frequency) in
* more than half of the patients taking more
- than 200 mg of the drug per day120,121. Prelimi­

nary data also suggest efficacy in the Lennox- 
Gastaut syndrome122. Topiramate appears 
likely to be a valuable add-on treatment in 
refractory epilepsy123.

The most frequently reported side-effects 
with topiramate include ataxia, cognitive dys­
function, dizziness, headache, nausea, nystag-

- mus, tremor and visual disturbance. Less 
common problems include mood lability and 
weight loss. Animal toxicity studies suggest 
that topiramate may be teratogenic.

CONCLUSIONS

- The recent developments in the pharmacother-
- apy of epilepsy are providing formidable chal­

lenges to the clinician. Which patients should
’ receive which drug and for which seizure type?
* So far, most is known about lamotrigine and 

vigabatrin, as these have been in general use
* for some years. Felbamate and gabapentin 
■ have been licensed more recently in the USA 
’ and approved for licensing in some European

countries. Oxcarbazepine, also generally avail-

13

able in some countries, appears to be better 
tolerated than carbamazepine. These drugs are 
undoubtedly valuable in the treatment of 
refractory epilepsy. The early clinical promise 
of tiagabine and remacemide are indicators 
that these compounds too will make the tran­
sition from interesting chemicals to useful 
therapeutic agents. Stiripentol and topiramate 
show a few more problems, but may well prove 
valuable as second-line therapy in refractory 
epilepsy. The drugs touched on in this review 
are merely the tip of a growing iceberg.

For an antiepileptic drug to demonstrate 
efficacy in refractory epilepsy is impressive. 
Their use as adjunctive therapy, however, is 
likely to exaggerate their side-effect profiles. 
The level playing field of double-blind, con­
trolled trials in previously untreated patients 
will demonstrate the true worth of these new 
drugs in comparison with the much less expen­
sive and more established compounds. Mono­
therapy may well prove the newer crop of anti­
convulsants more benign. So far, only 
felbamate has been licensed for this indication, 
although lamotrigipe is likely to be available 
soon as monotherapy in Europe.

The ultimate goal for everyone involved in 
the development of antiepileptic drugs is the 
discovery of effective and safe agents with 
well-defined mechanisms of action. We may 
find it a useful strategy to combine drugs that 
independently influence either excitatory or 
inhibitory processes. As time passes, the best 
combinations are likely to be discovered seren- 
dipitously. The use of two agents acting on the 
‘same side of the fence’, such as vigabatrin and 
tiagabine, may be a logical approach in refrac­
tory single seizure types. Those with different 
modes of action, such as vigabatrin and lamo­
trigine, may be best combined for patients ex­
periencing more than one seizure type. A nar­
rower range of biochemical effects may lead to 
enhanced tolerability during such dual ther­
apy, and ‘selective’ co-prescribing could be the 
key to improving seizure control with . fewer 
side effects. This approach should supersede 
the current empiricism, and lead to the 
rational evolution of combination therapy for 
the treatment of refractory epilepsy.
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Lamotrigine

Clinical Use

John P. Leach and Martin J. Brodie

ia.the 1960s, some anticonvulsants were observed to 
give rise to abnormalities in folate metabolism and a 
lil'le later folate itself was shown to be proconvulsant 
in rodents (17). Around that time, Reynolds and his 
colleagues (30) proposed that antifolate drugs would 
Lye anticonvulsant properties. Lamotrigine, a phenyl- 
triazine compound, was born out of this suggestion 
after a search by Wellcome Laboratories for an appro­
bate folate antagonist. However, its anticonvulsant 
cficacy has proved far greater than its effect on folate. 
These properties are now known to be independent.
At the time of writing, lamotrigine is licensed for use 
as add-on therapy in more than 2 0  countries worldwide 
and is undergoing clinical trials to ascertain its suitabil­
ity for use as monotherapy.

PLACEBO-CONTROLLED T R IA L S

E lev en  placebo-controlled, double-blind trials 
(Table 1), involving almost 1,000 patients, have con­
firmed the efficacy of lamotrigine for partial seizures 
Mh o r  without secondary generalization (6,7,13, 
1922,23,32,35,37,38,40). Most were of crossover 
design, whereas three involved parallel groups (13, 
2337). in some of the early studies (6,7,19), unblinded 
observers were used to control the dose of lamotrigine, 
keeping the circulating concentration within a preset 
ffige. Not all these trials have as yet been published
in M l.

th e  preliminary report by Binnie (6), ten patients 
Wh treatment-resistant partial seizures were recruited 

' Wall completed the study. There was a significant 
^crease in seizure counts with lamotrigine compared 
0p la c e b o . Six noted a decrease in seizure frequency

Antiepileptic Drugs, Fourth Edition, 
edited by R. H. Levy, R. H. Mattson, and
B. S. Meldrum. Raven Press, Ltd.,
New York © 1995.

of at least 50% on lamotrigine, with one patient remain­
ing seizure-free throughout the 7-day treatment period. 
The active drug was well tolerated; side effects oc­
curred in three patients at concentrations above 3 mg/ 
liter and abated following a reduction in lamotrigine 
dosage.

Jawad and colleagues (19) maintained trough levels 
of lamotrigine between 1.5-2 mg/liter. They found a 
significant reduction in seizure days and number of sei­
zures among their 21 patients over 12 weeks of therapy. 
This was most marked after the first month. Two thirds 
of patients had their total seizure count more than 
halved. Seventy-five percent of patients with partial 
seizures responded to lamotrigine, compared with 44% 
with secondary generalization. This reduction was sta­
tistically significant for both seizure types. Lamotrig­
ine was well tolerated, with seven adverse events docu­
mented, two of which occurred during placebo 
administration. Four were reported by one patient, 
who (unsurprisingly!) was withdrawn from the study. 
The most common side effects were headache, diplo­
pia, drowsiness, and ataxia.

In Binnie’s later study (7), 30 patients were given 
lamotrigine as add-on therapy. Although two patients 
reported side effects with lamotrigine, seven experi­
enced these while taking the placebo. Only one patient 
was withdrawn as a result of an adverse event, a macu- 
Iopapular rash. In seven patients the lamotrigine dose 
was reduced, mostly because of headache and dizzi­
ness. The efficacy of lamotrigine was confirmed, with 
12 patients having their total seizure count reduced by 
more than 25% on lamotrigine compared with only four 
on placebo. Twenty of the 22 patients with partial sei-
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TABLE 1, Placebo-controlled trials with lamotrigine

Decrease in
Duration total Patients with Patients with

of seizure Patients with >50% decrease >50% decrease
Reference Patients Patients treatment Dose range frequency >50% decrease in partial in generalized 
number recruited completing (weeks) (mg/day) (%) in total seizures seizures seizures

, 6 10s 10 1 50-400
13 24a 21 12 75-400
7 34a 30 12 75-200

22 25a 23 8 75-300
32 88a NA 12 100-400
35 21a 18 12 100-300
13 • 216b NA 24 500

300
placebo

‘ 37 446b NA 24 NA
38 41a 41 12 300 (non-VPA) 

150 (VPA)
- 40 81a 62 18 100-400

23 191b NA 24 500 (non-VPA) 
300 (VPA) 
Placebo

* Crossover trials. 
b Parallel groups.
NA, data not available.

) zures noted an improvement in seizure numbers. This
■* exceeded 50% in just two.

Loiseau and coworkers (22) found that over an 8- 
week period, 15 of 23 patients reported a reduction in

'■ total seizures while taking lamotrigine compared with 
placebo. Fourteen had the frequency of their partial

- seizures reduced, eight by more than 50%. Three pa­
tients noted vertigo and two experienced some ner­
vousness. Seven other minor self-limiting adverse 
events were documented with lamotrigine, compared

1 with four during the placebo phase. The mean trough 
lamotrigine concentration in patients who responded 
to the drug was 1.5 mg/liter, and, unusually, there was 
a hint of a correlation between efficacy and circulating 
concentration.

Risner (32) and Messenheimer et al. (23a) reported 
) the results of a placebo-controlled, double-blind study 

in 98 patients recruited in seven centers across the U.S. 
Most patients received a lamotrigine dose of 400 mg/

- day. During the 14-week treatment period, the overall 
median seizure frequency decreased 25%, with 20% of 
the patients having a 50% or greater reduction in sei­
zure frequency.

* The results from Sander’s study (35) were the least 
conclusive. Eighteen patients completed the trial. 
Three were withdrawn, one due to a complication of 
a seizure and another following an overdose of baseline 
anticonvulsant. The third patient developed symptoms

1 that eventually resolved on valproate withdrawal. 
There was an overall reduction in seizure numbers, 
which was greater for secondarily generalized events 
in the latter stages of the lamotrigine treatment period.

* Partial seizures appeared unaffected. A maximum of 
I 200 mg lamotrigine daily was prescribed if concomitant

NA 60% 5/8 (62.5%) 5/5 (100%)
59 (median) 67% 12/17 (71%) 7/15 (47%)
17 (median) 7% 2/20 (10%) 2/19 (9%)
23 (median) 30% 8/23 (35%) NA
25 (median) 20% NA NA
18 (mean) 11% NA NA
32 (median) 34%
23 (median) 20% NA NA
14 (median) NA

NA NA NA NA
24 (median) 22% 8/41 (20%) 9/32 (28%)

30 (mean) 18% 12/62 (19%) 10/36 (28%)
36 (median) 34%
20 (median) 20% NA NA
8 (median) 18%

treatment included an enzyme-inducing anticonvul­
sant. Trough plasma levels of lamotrigine were mea­
sured. No dose-response relationship was noted, un­
surprisingly perhaps, given the low concentrations. 
Tolerability was not a problem, with similar numbers 
of adverse events reported on lamotrigine and placebo. 
The lack of efficacy, however, was most likely due 
to a combination of low lamotrigine dosage and the 
refractory nature of the seizure disorder. All recruited 
patients were undergoing institutionalized care. 
Around 50% took at least three anticonvulsant drugs 
daily before entering the study, and 11 had a structural 
brain lesion.

Results from a large parallel-group study of 216 pa­
tients were reported by Dren et al. (13) and Matsuo et 
al. (23). A statistically significant decrease in seizure 
frequency was obtained with a lamotrigine dose of 500 

, mg per day compared with 300 mg daily and placebo. 
The beneficial effect persisted throughout the 24-week 
treatment period, with one third of patients taking 500 
mg lamotrigine daily experiencing a 50% or greater re­
duction in seizures. The overall median reduction was 
36% with the 500 mg dose compared with 20% for the 
300 mg dose and 8% for placebo. No useful correlation 
was found between lamotrigine concentrations and ef­
ficacy.

Schachter and coworkers (37) conducted the largest 
American parallel group study on 446 patients, 112 of 
whom received placebo. The remaining 334 took up to 
500 mg lamotrigine daily for 6 months. The efficacy 
data presented to date are scanty, although 65% of pa­
tients were said to have improved (unspecified criteria) 
on lamotrigine compared with 35% on placebo. More 
details are awaited. The withdrawal rate was 8% f°r
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both groups, all because of side effects, the commonest 
of which was nystagmus, which occurred in 18% of 
patients taking lamotrigine against 11% on placebo. 
Adverse events requiring withdrawal of lamotrigine 
were dizziness (3%), blurred vision, headache, and 
rash (1% each).

Schapel and colleagues (38) undertook 12-week 
treatment with lamotrigine and matched placebo in 41 
patients, all of whom completed the study. The dose 
of lamotrigine was dependent on concomitant anticon­
vulsant therapy. Twenty-six patients reported a de­
crease in total seizure numbers, by more than 50% in 
nine (22%). The median reduction in partial and sec­
ondary generalized seizures was 20% and 46% respec­
tively. Overall, 20% and 47% of patients with partial 
and secondary generalized seizures had these reduced 
by more than 50% with lamotrigine compared with 16% 
on placebo. Although the fall in secondary generalized 
seizures did not reach statistical significance, it became 
more marked when patients with less than four seizures 
a month were excluded. Only one serious adverse 
event was reported, which was thought to be a compli­
cation of a seizure. The mean lamotrigine plasma con­
centrations were 1.95 mg/liter in enzyme-induced pa­
tients and 2.37 mg/liter in those who were not taking 
an inducer. A concentration-effect relationship was 
suggested by comparing levels in responders (>50%  
reduction) and nonresponders.

Smith and colleagues (40) reported on 18-week lamo­
trigine and placebo treatment periods. O f 81 patients 
recruited, 62 completed the trial. Lamotrigine doses 
were relatively high compared with other crossover 
studies— 200 mg daily for those on nonenzyme-induc­
ing drugs and 400 mg for those taking enzyme-inducing 
anticonvulsants. Eleven patients withdrew because of 
adverse events, mostly headache, diplopia, and dizzi­
ness. Eighteen of the completing patients had a modest 

j re s p o n se , reporting a reduction in total seizures of be­
tween 25% and 49% when compared with placebo. A 
fu rther 11 could be regarded as responders (reduction 
> 5 0 % ). On analysis by seizure type, 12 of 62 experi­
enced a marked reduction in partial seizures, with 10 
of 36 demonstrating a similar response in secondary 
generalized seizure frequency. Both observations were 
statistically significant. Seizure severity was amelio­
rated by lamotrigine. This change was thought to be 
independent of the positive effect of the drug on seizure 
fre q u e n c y .

For the first time, “ quality of life” factors were mon­
itored throughout an antiepileptic drug study. Al­
though most of the tests revealed no difference be­
tween lamotrigine and placebo, there were significant 
improvements in “ mastery” (perceived internal con- 
trot) and “ happiness.” Forty-two of the completing pa­
tients chose to remain on lamotrigine, some despite 
little change in their seizure pattern. This was inter­

preted by the investigators as supporting the case for 
psychotropic benefit with the drug.

OPEN-LABEL TRIALS AND CASE REPORTS

A  number of open-label trials with lamotrigine have 
been carried out, and these have played a valuable role 
in exploring the dose requirements and identifying 
common side effects (31). Jawad and coworkers (20) 
gave 23 patients lamotrigine in addition to their usual 
medication for 7 days. Of the 20 who completed the 
study, 18 took two other drugs, the remainder receiving 
three. Eight of the patients (40%) had a reduction in 
seizure frequency exceeding 50%, whereas a similar 
number noted a less striking improvement.

Sander’s open-label study (36) also supported effi­
cacy for lamotrigine in patients already taking one or 
two antiepileptic drugs. A total of 104 patients com­
pleted 12 months of treatment with lamotrigine; 25% 
experienced a reduction in seizure count by more than 
half. Those who developed side effects did so at vary­
ing concentrations. This study did not support the con­
cept of a useful target range of plasma lamotrigine con­
centrations. The drop-out rate was 15%. Of these 19 
patients, 15 experienced side effects associated with 
lamotrigine. As in other studies, the commonest prob­
lems were headache, diplopia, drowsiness, and ataxia.

Betts (4) pooled the results of 27 similar open-label 
studies involving a total of 572 patients. Lamotrigine 
doses varied between 200-400 mg daily in induced pa­
tients and 100-200 mg in noninduced patients. The 
changes in seizure frequency were compared over four 
12-week periods with a 3-month baseline. Of the 211 
patients with secondary generalized seizures, 40% 
showed a substantial reduction in seizure frequency 
after 12 weeks of lamotrigine treatment, with 13% be­
coming seizure-free. The 361 patients with partial sei­
zures did slightly less well, but 29% had their seizure 
numbers cut by more than half.

A report of its intravenous use in status epilepticus 
suggests that the drug also possesses acute anticonvul­
sant properties (28).

Anecdotal reports support benefit for lamotrigine in 
patients with primary generalized tonic-clonic sei­
zures (34,41,44), typical and atypical absences (3), 
atonic (29), and myoclonic seizures (46).

EFFICACY IN CHILDREN

There are few studies with lamotrigine in children 
(50). Current evidence, however, supports similar effi­
cacy in this patient population to that documented in
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| TABLE 2. Percentage of patients with ^50% seizure 
j reduction during the first 12 weeks of lamotrigine

therapy

Seizure type
Children 

(n = 285)
Adult 

(n = 677)
■Total seizures 34 32
All partial 31 30
Simple partial 14 24
Complex partial 34 31
Secondary generalized 33 42
Typical absence 53 34
Atypical absence 50 61
Myoclonic 31 31
Clonic 24 36
Tonic-clonic 30 38
Atonic 38 60
! Data on file at Wellcome Laboratories.

weeks with marked or moderate overall improvement 
seen in eight. A further report suggests that atypical 
absence and complex partial seizures respond best to 
lamotrigine (15). A few children have been established 
on lamotrigine monotherapy (24).

The use of lamotrigine in Lennox-Gastaut syndrome 
has been investigated by three groups (25,39,45). A 
total of 45 affected patients have been treated. Promis­
ingly, 33% demonstrated complete disappearance of 
seizures for up to 2 years of follow-up. Overall, 50% 
of patients reported a decrease in seizure numbers ex­
ceeding 50%. Double-blind studies with the drug in 
therapy-resistant Lennox-Gastaut syndrome are 
awaited. A preliminary report also suggests benefit 
with lamotrigine in children with Rett’s syndrome (47).

adults (Table 2). Chaves and colleagues (11) included 
36 patients aged between 5 and 15 years in a single­
blind trial of lamotrigine preceded by a placebo base­
line phase. Among the 31 completing patients, 12 had 
their seizure counts reduced by at least 50%. An in­
crease in seizure frequency was noted in two children 
and in 17 there was no change.

A total of 249 children aged 2-16 years with refrac­
tory epilepsy were included in an assessment of adju­
vant lamotrigine by Hosking and Spencer (18). The 
drug was well tolerated, with only 26 patients with- 

| drawn due to lack of efficacy or deterioration in seizure 
control. Ten patients experienced a rash, all within the 
first few months of treatment. O f the first 36 patients 
to complete 12 weeks treatment, 15 had their seizure 
numbers cut by more than half. The best responses 
were seen with myoclonic jerks and absence, tonic, 
and atonic seizures. There was a suggestion of im­
proved behavior in some of the children successfully 
treated.

In a review of 59 students attending a special residen- 
| tial school, further details were given regarding 12 chil­

dren who had spike-wave discharges suitable for auto­
matic monitoring (3). Six of these showed a dramatic 
reduction in their spike-wave events with lamotrigine 

I treatment. In some patients this was not accompanied 
I by reduction in overt seizures, but nevertheless con- 
' ferred considerable benefit in terms of improved alert­

ness and behavior.
A review of 120 children treated in Paris (39) re­

ported 40% experiencing at least a 50% reduction in 
total seizures; 10% became seizure-free. The best re­
sults were obtained in patients with generalized sei­
zures, including absences, Lennox-Gastaut syndrome, 
and other types of symptomatic generalized epilepsy. 
In another open study, 18 children between the ages 
of 5 and 11 were given lamotrigine as add-on therapy 
(48). Fifteen remained on the treatment for at least 24

MONOTHERAPY

Eight patients with partial epilepsy, who had com­
pleted a double-blind, placebo-controlled, add-on trial 
with lamotrigine had their concomitant antiepileptic 
medication withdrawn (2). This was successfully 
achieved in seven, who had a reduction or, at least, 
no change in seizure frequency. Only one patient was 
returned to polytherapy. Among the others, the inci­
dence of side effects was much reduced. Avrutsky (1) 
looked at patients at the end of a 6-month lamotrigine 
treatment period. Of the 36 who stayed on the drug, 
eight had their other antiepileptic drugs discontinued.

Timmings and Richens (46) undertook a pilot trial 
in 17 patients with juvenile myoclonic epilepsy, all of 
whom were receiving sodium valproate. After a 4-week 
single-blind, placebo-controlled, add-on period, pa­
tients were randomized to receive either lamotrigine 
or valproate as monotherapy for a further 12 weeks. 
One patient dropped out in the add-on phase due to 
the onset of dizziness. Three patients withdrew during 
the crossover to lamotrigine, one with increased sei­
zure frequency and the other two with rash. Otherwise, 
seizure control was comparable between valproate and 
lamotrigine monotherapy.

A multicenter, open-label trial of lamotrigine as 
monotherapy was conducted in patients whose sei­
zures were uncontrolled by carbamazepine, phenytoin, 
or sodium valproate (10). After a 4-week lamotrigine 
titration phase, the patients were followed up for 12 
weeks to assess the clinical response. The other antiep­
ileptic drug was withdrawn if the addition of lamotrig­
ine produced a decrease in seizure frequency of more 
than 50%. Patients on lamotrigine monotherapy were 
followed up for 12 additional weeks. Eighty-one per­
cent of these patients were sustained successfully on 
lamotrigine monotherapy. On the negative side, there 
were 127 drop-outs. Thirty of these were for lack of 
lamotrigine efficacy and 48 for side effects severe
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enough to warrant lamotrigine withdrawal, 16 of whom 
developed rashes (12).

Preliminary analysis has been made of an open, mul­
ticenter monotherapy trial of lamotrigine versus carba­
mazepine (10). Suitable patients for inclusion were 
aged 16-65 years. They had suffered two or more par­
tial or secondary generalized tonic-clonic seizures 
during the previous 6 months with at least one within 
the past three months. Randomisation was blinded to 
lamotrigine or carbamazepine. Three parallel treat- 

! ment schedules were available. Following a 6-week 
dosage escalation phase, patients were established on 
lamotrigine 100 mg or 200 mg daily or carbamazepine 
600 mg daily. They were regarded as having completed 
the study if they had a further seizure on maintenance 
treatment, or if they finished the 24-week follow-up 
period seizure-free.

Similar numbers of patients have remained seizure- 
I free on all three schedules. Seven receiving carbamaz­

epine were withdrawn due to adverse events compared 
with one on lamotrigine. This latter patient developed 
a rash on the higher lamotrigine dose. Four patients 
treated with carbamazepine also had rashes. Nausea 
and tiredness, ataxia and dizziness, and abnormal men­
struation were the reasons given by the other three 
patients for being unable to tolerate carbamazepine.

Lamotrigine is presently undergoing a program of 
double-blind trials as monotherapy in newly diagnosed 
epilepsy. More than 250 patients have completed com­
parative studies against carbamazepine and phenytoin 
and definitive reports o f these important studies will 
be available soon.

| USEFUL COMBINATIONS

The development of rational schemes for combining 
antiepileptic drugs may be one of the positive spin-offs 
of developing agents with single and specific mecha­
nisms of action. The possibility of manipulating oppo­
site sides of the neurotransmitter balance, involving 
neuronal inhibition and excitation, with, for example, 
vigabatrin enhancing inhibition and lamotrigine antago­
nizing excitation, is an exciting one. Whether this will 
be more effective than combining drugs that influence 
the same side at two different points, such as by using 
lamotrigine with remacemide, will become apparent on 
appropriate clinical testing.

The beneficial effect of combining sodium valproate 
and lamotrigine (26,27) was marked following failure 
of both drugs individually in treatment of a small num­
ber of patients with intractable typical absence and par- 

| tial seizures.
Similarly, increased efficacy has been reported anec­

dotally when lamotrigine was tried with vigabatrin 
(21,42). Stolarek and colleagues (43) carried out a pla­

cebo-controlled, double-blind, crossover trial of addi­
tional lamotrigine in patients receiving vigabatrin as 
part of their anticonvulsant regime. As neither drug 
had a license for monotherapy, it was not possible to 
combine just lamotrigine and vigabatrin. There was a 
reduction by 37% in overall seizure count during the 
lamotrigine treatment period compared with placebo 
among the 20 patients completing the trial. At the high­
est lamotrigine dose (100 mg twice daily) nine patients 
reported a fall in seizure numbers exceeding 50%. Both 
partial and secondarily generalized seizures were re­
duced. The plasma lamotrigine concentrations did not 
correlate with clinical efficacy in this study, in common 
with most others. By manipulating further the thera­
peutic regimes, five patients were subsequently ren­
dered seizure-free on lamotrigine and vigabatrin alone.

This favorable response was supported by two open- 
label studies using combinations containing vigabatrin 
and lamotrigine (14,33). Robinson and colleagues (33) 
looked at 48 patients. In the total group, there was 
a 54% decrease in mean monthly seizure frequency. 
Seventy-three percent of patients with partial seizures 
experienced a reduction of greater than 50%. Forty- 
five percent of patients with generalized seizures, con­
sisting mainly of Lennox-Gastaut syndrome, had their 
seizure frequency reduced by at least half. Froscher 
(14) tried this combination in 12 patients with refrac­
tory epilepsy. Seven remained on the cpmbination with 
good effect, with three being withdrawn due to lack of 
efficacy and two experiencing side effects.

IN IT IA T IO N  AND MAINTENANCE OF THERAPY

The lamotrigine elimination half-life is substantially 
prolonged in valproate-treated patients (49), an effect 
negated by concomitant enzyme-inducing drugs which 
themselves accelerate lamotrigine metabolism (8). In 
addition, there is good, if anecdotal, evidence that a 
low, slow titration schedule will reduce the likelihood 
of rash (12). Accordingly, the starting dose and rate of 
titration for lamotrigine as adjunctive therapy depends 
on existing treatment.

Tablets containing 25 mg, 50 mg, 100 mg, and 200 
mg lamotrigine are available. Chewable tablets con­
taining 5 mg, 25 mg, and 100 mg lamotrigine provide 
an alternative preparation for children and for patients 
who have difficulty in swallowing. These can also be 
dispersed in a small volume of water. Lamotrigine is 
usually prescribed twice daily, but a single daily dose 
can be used in patients taking the drug along with so­
dium valproate or as monotherapy. A parenteral for­
mulation is in development.

Recommended dosing schedules for lamotrigine are
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TABLE 3. Lamotrigine dosage schedules

1. Add-on in treated adults and adolescents
Valproate Others

Weeks 1-2 25 mg every 50 mg daily
other day

Weeks 3-4 25 mg daily 50 mg twice daily
Maintenance 50-100 mg 100-200 mg

twice daily twice daily
2. Add-on in treated children

: Valproate Others
Weeks 1-2 0.2 mg/kg 2 mg/kg
Weeks 3-4 0.5 mg/kg 5 mg/kg
Maintenance 1-5 mg/kg 5-15 mg/kg

3. Monotherapy in newly diagnosed epilepsy
Adults Children

Weeks 1-2 25 mg daily 0.5 mg/kg
Weeks 3-4 25 mg twice 1 mg/kg

daily
Maintenance 50-100 mg 2-8 mg/kg

twice daily
Higher doses can be tried if seizures persist and the pa­

tient is tolerating the drug without complaint.

outlined in Table 3. Higher doses can be tried if the 
drug is well tolerated. Although no definite evidence 
of teratogenicity has accumulated, caution should be 
employed when using lamotrigine in patients with 
child-bearing potential. The drug should only be used 
when, in the opinion of the attending physician, the 
likely benefit outweighs the potential risks.

Like other antiepileptic drugs, lamotrigine appears 
to exacerbate seizures in a small number of patients in 
whom it should be rapidly withdrawn. Reducing the 
dose by 50-100 mg weekly seems a reasonable policy 

| (9). Because the drug is metabolized in the liver, it is 
j sensible to avoid its use in patients with severe hepatic 
| impairment. There is little formal experience with la­

motrigine in babies, in the elderly, or in patients with 
I renal failure.
( At present, it appears that no clinical benefit can 

be obtained by monitoring plasma lamotrigine levels, 
because the concentrations required to elicit an ade­
quate response vary so much between individuals. 
There is no evidence either that subjective side effects 
are more likely to occur in patients with higher concen­
trations (5). Indeed, some patients will derive benefit 
from as much as a gram of lamotrigine daily without 
complaint, whereas others will develop headache or 
nausea and vomiting with doses as low as 100 mg daily. 
Further studies exploring the concentration-effect-tox- j icity relationship with the drug are warranted.

| INDICATIONS

Lamotrigine is licensed in more than 20 countries 
worldwide as add-on therapy for the treatment of re­
fractory partial and secondarily generalized seizures.

Long-term studies up to 3 years have revealed no evi­
dence of tolerance (16). Anecdotal reports suggest effi­
cacy for the drug across the range of idiopathic general­
ized epilepsies. Lamotrigine might, therefore, be tried 
in patients with refractory absence, tonic-clonic, myo­
clonic, tonic, and clonic seizures. Its use in combina­
tion with sodium valproate and vigabatrin shows par­
ticular promise.

Results from comparative double-blind trials in 
newly diagnosed patients with partial and primary gen­
eralized tonic-clonic seizures are imminent. However, 
lamotrigine can be useful in those few patients unable 
to tolerate, for one reason or other, the first-line 
agents. Its efficacy in the elderly is currently being 
evaluated in a double-blind comparative trial against 
carbamazepine and its promise in primary generalized 
tonic-clonic epilepsy is being formally tested against 
sodium valproate. Double-blind, placebo-controlled 
trials in children are also under way.

CONCLUSIONS

Lamotrigine is a potentially important addition to the 
ranks of available anticonvulsants. It has proven effi­
cacy in adults and adolescents for partial and second­
ary generalized seizures. Anecdotal reports also sup­
port particular efficacy in the idiopathic generalized 
epilepsies. Its broad spectrum of activity is wide 
enough to justify using it in patients with more than 
one seizure type. The next important step is for lamo­
trigine to gain acceptance as a first-line drug for use 
as monotherapy in patients with newly diagnosed epi­
lepsy. Data are still required in children, in the elderly, 
and in the idiopathic generalized epilepsies.

The possibility of rational duotherapy with estab­
lished and novel anticonvulsants provides an exciting 
prospect for future clinical research. Combinations of 
lamotrigine with sodium valproate and vigabatrin ap­
pear particularly promising. This will hopefully be con­
firmed in due course in formal double-blind trials. Stud­
ies looking at lamotrigine along with other drugs that 
affect excitatory amino acid neurotransmission are 
also awaited with interest.
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Tiagabine is a novel antiepileptic drug which acts by decreasing gamma aminobutyric acid uptake in astrocytes and 
I neurones. Here the first case of deliberate overdose with this compound in a patient on concomitant phenytoin is 
i reported. On admission to hospital his conscious level deteriorated to grade I I I  coma. No changes in the 

electrocardiogram were noted. Recovery from the initial effects was rapid, and there were no sequelae. Plasma 
levels of tiagabine (3.1 f i g / m l) 4 hours after ingestion were 30 times higher than at typical steady state during, 
therapeutic dosing. The effects of poisoning with current first-line antiepileptic drugs are reviewed. The newer 
agents, particularly those with greater biochemical specificity, may be safer in overdose than the more established 
anticonvulsants.

Key words: tiagabine; overdose; epilepsy; self poisoning.

INTRODUCTION

i
Epileptic patients are at greater risk of self 
poisoning than other patient groups1. Safety in 
overdose should, therefore, be an important 
consideration when choosing an antiepileptic 
drug. Tiagabine is a novel anticonvulsant, which 
is currently undergoing phase III trials 
worldwide2. It is a nipecotic acid derivative with a 
lipophilic anchor, which allows it to cross the 
blood-brain barrier. Tiagabine acts by blocking 
the re-uptake of the inhibitory neurotransmitter 
gamma animobutyric acid (GABA) into glial cells 
and neurones3. The resultant increase in synaptic 
GABA concentration is thought to be responsible 
for its anticonvulsant action4. After oral ad­
ministration, it is rapidly absorbed and metabol- 

( ized in the liver with a half-life of between 4 and 
| 13 hours. Although sedation has been reported,

preliminary data suggest that tiagabine does not 
impair cognition at therapeutic dosage5. We 
report the first case of deliberate overdose with 

| tiagabine.

{ 1059-1311/95/020155 + 03 $08.00/0 ©  1995 British Epilepsy Association

CASE REPORT

DR is a 30-year-old man who has suffered from 
complex partial and secondary generalized seizures 
of unknown aetiology since the age of three. 
Surface electroencephalography demonstrated 
recurrent focal epileptiform discharge in the right 
fronto-temporal area. Computerized tomography 
of the brain was normal. Prior to this episode he 
had been taking tiagabine (64 mg daily) in 
addition to his usual dose of phenytoin (200 mg 
daily) with substantial benefit under an open 
protocol for the previous 9 months.

Following an argument with his girlfriend, the 
patient took 320 mg of tiagabine together with 
400 mg phenytoin. One hour later, he became 
drowsy and he was admitted to the local hospital. 
His conscious level deteriorated rapidly, reaching 
grade III coma overnight. Routine biochemistry, 
liver function tests and full blood counts were all 
normal. No active intervention was undertaken 
and the patient recovered fully. No neurological 
deficit could be demonstrated 12 hours after 
admission. Serial electrocardiograms showed no
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abnormality through his hospital stay. Tiagabine 
and phenytoin plasms concentrations 4 hours 
after ingestion were 3.1 /xg/ml and 22 /xg/ml, 
respectively. Psychiatric review confirmed that 
this was an impulsive overdose with no suicidal 
intent. He was discharged home after 48 hours’ 
observation.

DISCUSSION

The current first-line antiepileptic drugs are all 
potentially fatal in overdose1, perhaps a conse­
quence of their multiple, non-selective mechan­
isms of action6. In a three-year prospective survey 
of overdoses of non-barbiturate anticonvulsants 
reported to the UK National Poisons Service, 
carbamazepine (48%), phenytoin (33%) and 
sodium valproate were the most frequently 
ingested7, perhaps not surprisingly as they are 
regarded as the antiepileptic drugs of first choice8.

The initial features of carbamazepine poisoning 
are those of cerebellar dysfunction. As the 
concentration increases, central nervous system 
depression becomes dominant, progressing to 
respiratory depression in severe cases9. Antichol­
inergic features appear, presumably as a conse­
quence of carbamazepine’s structural similarity to 
the tricyclic antidepressants. An increase in the 
frequency of convulsions has been noted, perhaps 
related to the production of hyponatraemia10. 
The risk of cardiac arrhythmias necessitates ECG 
monitoring for at least 24 hours11.

The saturation pharmacokinetics of phenytoin 
means that the ingestion of even a small dose can 
produce a substantial increase in circulating 
concentration12. The slow rate of hepatic metabo­
lism can make the recovery period as long as a 
week13. The initial features of acute phenytoin 
toxicity are cerebellar dysfunction including 
nystagmus, incoordination, dysarthria and 
ataxia14. Depression of the central nervous system 
(CNS) is common, often progressing to coma. 
This may be accompanied by hypotension and 
respiratory depression.

With sodium valproate, central nervous system 
depression is predominant, although often 
benign15. Coma, however, can occur after inges­
tion of more than 20 mg/kg body weight. 
Seizures16, respiratory failure, bone marrow 
suppression17 and metabolic adverse effects such 
as acidosis and hypocalcaemia can all occur18. 
Fatalities, although uncommon, have been 
reported17,18.

Our patient was receiving treatment with 
phenytoin and tiagabine prior to the event. The 
tiagabine concentration four hours after ingestion

was 30 times higher than at typical steady state 
following therapeutic dosage (Dr LC Lassen, 
pers. comm.). This is equivalent to around 
300 /x mol/litre of carbamazepine or 450 /x mol/ 
litre of phenytoin. At that time the patient was in 
light coma. The phenytoin concentration just 
exceeded the target range, and so was unlikely to 
contribute to the clinical picture. Induction of 
tiagabine’s metabolism by phenytoin might have 
contributed to the patient’s rapid recovery19.

There are no published cases of self poisoning 
with the GABA transaminase inhibitor vigabat­
rin, but current information suggests that the only 
adverse effect is transient drowsiness (Dr J 
Mumford, pers. comm.). There has been one 
report of lamotrigine overdose, in which neurolo­
gical toxicity was a feature20. This is the first 
report of tiagabine taken in overdose in man, and 
the rapid, uneventful recovery is, we believe, 
reassuring for this vulnerable patient population. 
One of the individual benefits of the newer 
antiepileptic drugs may be that their increased 
biochemical specificity augments existing physiol­
ogical processes, even in overdose, rather than 
producing a ‘blunderbuss’ deleterious effect on a 
range of cerebral functions and peripheral tissues. 
Consequently, anticonvulsants with defined 
mechanisms of action may be safer in overdose 
than the more established agents.
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ABSTRACT

A rapid and simple method for determination of the novel antiepileptic compound 

gabapentin (l-(aminomethyl)-cyclohexaneacetic add) in plasma is described. Blank human 

plasma was spiked with gabapentin (1.0 - 10.0 pg/ml) and internal standard 

(l-(aminomethyl)-cycloheptaneacetic add; 5.0 pg/ml). Individual samples were treated 

with 2M perchloric acid, centrifuged and then derivatised with ophthalaldehyde-3- 

mercaptopropionic add. Separation was achieved on a Beckman Ultrasphere 5p reversed 

phase column with mobile phase consisting of 0.33 M acetate buffer (pH = 3.7; containing 

100 mg/1 EDTA) / methanol / acetonitrile (40:30:30). Eluants were monitored by 

fluorescence spectroscopy with excitation and emission wavelengths of 330 and 440 nm 

respectively. The calibration curve for gabapentin in plasma was linear (r = 0.9997) over 

the concentration range 1.0 - 10.0 pg/mL Recovery was seen to be > 90 %. The inter- and 

intra-assay, variations for three different gabapentin concentrations were < 10 % 

throughout. The lower-limit of quantitation was found to be 0.25 pg/mL Chromatography 

was unaffected by a range of commonly employed antiepileptic drugs or selected amino  

adds.

2
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INTRODUCTION

Gabapentin (GBP) is a novel antiepileptic drug (AED) that has recently been approved in 

the UK and USA for the treatment of partial seizures. It is a hydrophilic analogue of the
N

inhibitory neurotransmitter y-aminobutyric add (GABA) and was designed to act as a 

GABAareceptor agonist that could freely cross the blood-brain barrier [1].

Despite its structural similarity to GABA (figure 1), GBP has demonstrated only limited 

effects on the GABAergic system. It is devoid of effect on GABA-mediated ion 

conductances, GABA receptor binding and GABA metabolism [2,3], Although the 

mechanism of GBP action remains to be frilly characterised, substantial evidence now 

suggests that it may interact spedfically with a plasma membrane site proposed to be the 

system L-amino add transporter [4,5].

GBP has an experimental anticonvulsant profile similar to that of valproic acid [6], It is 

effective against tonic seizures induced by a variety of chemoconvulsants [6] and is also 

active in the maximal electroshock test [6] and several rodent models of genetic reflex 

epilepsy [7], Clinically, the drug has demonstrated efficacy against both partial and 

generalised tonic-clonic seizures [8].

GBP is rapidly absorbed and exhibits a dose-dependent bioavailability as a result of a 

saturable uptake process [9]. Maximum concentrations occur 2 - 3  hours after 

administration and the elimination half-life is approximately 5 -7  hours [10]. There is no
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significant binding to plasma proteins, and the drug is excreted unchanged in the urine 

with a clearance rate equivalent to that for creatinine [11]. Despite extensive 

pharmacokinetic investigations, and the report that GBP is free of important drug 

interactions [9], the requirement for a reliable, routine laboratory assay of GBP 

concentration remains, particularly for those who advocate therapeutic monitoring of this 

drug in the treatment of epilepsy [12],

There are currently two published methods for the laboratory measurement of GBP, a 

high-performance liquid chromatographic (HPLC) assay [13] and a gas chromatographic 

(GC) assay [14]. The routine HPLC method, a modified version of a HPLC assay for 

GABA, would appear, however, to have several significant drawbacks. These include a 

multistep derivatisation involving 2,4,6-trinitrobenzenesulphonic acid (TNBS) followed by 

an extraction into toluene, and a methodology apparently incompatible with the use of 

modem, automated HPLC systems.

We have developed an automatable, one step derivatisation method for the determination 

of GBP in plasma by HPLC with fluorimetric detection. This rapid and reliable assay, 

which obviates the requirement for hazardous chemicals such as TNBS and toluene, is a 

modification of the method of Durkin and colleagues [IS] for analysis of neurotransmitter 

amino adds in brain.

4
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EXPERIMENTAL

Reagents

GBP (l-(aminomethyl)-cyclohexaneacetic add) and the internal standard (1- 

(aminomethyl)-cycloheptaneacetic add) were supplied by Parke-Davis Pharmaceuticals 

Resesarch Division, Ann Arbor, Michigan, USA. Methanol and acetonitrile (HPLC grade) 

were from Rathbum Chemicals, Walkerbum, Scotland. All other chemicals (reagent 

grade) were obtained from Sigma Chemical Co, Poole, Dorset, England.

Standards

Stock solutions of GBP (1 mg/ml) and internal standard (1 mg/ml) were prepared in 

de-ionised water and stored at -20 °C for up to 7 days. Working standard solutions of 

GBP (10 - 100 pg/ml) and internal standard (50 pg/ml) were prepared daily in de-ionised 

water. The derivatisation reagent, ophthalaldehyde-3-mercaptopropionic add (OPA- 

MPA), was prepared weekly by dissolving 50 mg OPA in 4.5 ml of methanol and adding

0.5 ml borate buffer and 50 pi 3-MPA. The borate buffer was prepared on a weekly basis 

by adjusting 0.5 M boric add to pH 9.5 with 1N NaOH

Sample preparation

GBP standards were prepared by die addition of 50 pi of the appropriate working 

standard (10 - 100 pg/ml) and 50 pi of working internal standard to 0.4 ml blank human 

plasma. Samples for analysis were prepared by adding 50 pi of working internal standard 

to 0.45 ml unknown plasma. Pooled plasma, spiked at high (5.0 pg/ml), medium (2.5
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pg/ml), and low (0.5 pg/ml) GBP concentrations was used to determine intra- and inter­

assay variations.

Derivatisation

A 200 pi volume of 2 M perchloric add was added to each standard and sample before 

vortex mixing for 10 seconds and centrifuging for 3 minutes at 15,000g at room 

temperature A 50 p i aliquot of the resulting supernatant was reacted with 200 p i of 

methanol, 200 pi of 0.5 M borate buffer (pH = 9.5) and 50 pi OPA-MPA solution. The 

reaction mixture was allowed to stand at room temperature for 5 minutes prior to injection 

of 20 pi onto the column. The derivatised GBP and internal standard were found to be 

stable for between 4 and 12 minutes prior to injection.

High Performance Liquid Chromatography

Chromatography was carried out at room temperature on a Beckman Ultrasphere 

octadecyl silane (ODS) 5p reversed phase column (250 x 4.6 mm; 80A pore; Beckman 

Instruments Inc., Fullerton, California, USA). The chromatography system consisted of a 

Waters 6000A pump (Waters / Millipore UK, Harrow, Middlesex, England), a Shimadzu 

SIL-9A auto-injector (Dyson Instruments Ltd., Houghton-le-Spring, Tyne and Wear, 

England) and a Perkin-Elmer LS5 fluorescence spectrophotometer (Perkin-Elmer, 

Beaconsfield, Buckinghamshire, England). The excitation and emission wavelengths were 

330 and 440 nm respectively with slitwidths set at 15 and 20 nm respectively. The mobile 

phase consisted of 0.33 M acetate buffer (containing 100 mg/1 EDTA) / methanol /
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acetonitrile (40:30:30). The acetate buffer was prepared by diluting 7.5 ml glacial acetic 

add (approx 17.4 M) to 400ml with water, adding 40 mg EDTA and adjusting the pH to 

3.7 with 3 N NaOH. Flow rates were 1.5 ml/mm throughout.

Calculations

Chromatograms were recorded and integrated on a Jones Chromatography JCL6000 

chromatography data system (Crawford Sdentific, Strathaven, Scotland). GBP 

concentrations were determined by comparison of peak height ratios of analyte to internal 

standard, quantified in relation to volume, and expressed as pg/ml. Pearson’s product 

moment correlation coefficient is quoted.

RESULTS

GBP and the internal standard were well resolved from one another and the solvent fiont 

(figure 2). The calibration line (slope = 296.757, y-intercept = 39.44) was shown to be 

linear fiom 1.0 - 10.0 pg/ml (n = 6; r = 0.9997). The intra-assay variations at 0.5, 2.5, and 

5.0 pg/ml were 4.1, 2.2, and 3.8 % respectively. The inter-assay variations for the same 

samples were 10.0, 2.0, and 2.6 % respectively. Recoveries were shown to be > 90 % 

throughout.

There were no interfering peaks fiom any of the following other AEDs:- phenytoin, 

carbamazepine, sodium valproate, phenobarbital, primidone, clobazam, clonazepam, 

lamotrigine, vigabatrin, oxcarbazepine, felbamate, tiagabine or remacemide.

I
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Similarly, there were no interfering peaks fiom any of the following amino acids:- 

L-alanine, L-arginine, L-aspartic add, L-cystine, L-ghitamic add, glydne, L-histidine, 

I^isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, 

L-threonine, L-tyrosine or L-valine.

\

Typical GBP chromatograms are illustrated in figure 2. Samples were taken fiom a patient 

currently undergoing a double blind, crossover trial with GBP and placebo. One sample 

was taken fiom each treatment arm of this study where the daily GBP dose was 2400 mg.

DISCUSSION

This method employed pre-column derivatisation and fluorimetric detection for the 

quantitation of GBP concentrations in plasma. It facilitated clear detection and resolution 

of the drug, and its appropriate internal standard, with intra- and inter-assay variations of 

: an acceptable degree. Chromatography was unaffected by other commonly employed 

AEDs or a variety of endogenous amino adds.

In contrast to previously published assays [13], the methodology proved to be both rapid 

and simple, obviating several complicated steps including the requirement for pH 

adjustment of a relatively small volume. Another important advantage of this method over 

those previously reported [13] was a reduced requirement for the use of hazardous 

chemicals such as toluene and TNBS. Unlike its predecessors, this method also proved 

compatible with modem HPLC systems which facilitate automated pre-column
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derivatisation, thus reducing the number of technical-hours required to analyse a given 

number of samples.

One potential disadvantage of this new assay was an apparent reduction in sensitivity, with 

the lower limit of quantitation observed here being 0.25 pg/ml compared to 10 ng/ml 

previously reported by Hengy and Kolle [13]. However, in our clinical practise the 

expected plasma concentration on the least effective dose (1200 mg daily) exceeds 2 

pg/ml While saturable absorption must be taken into account, this daily dose of GBP is 

relatively low when compared to those of up to 6400 mg now being administered to 

patients with refractory epilepsy. Thus, it would appear that, with the exception of the 

most sensitive pharmacokinetic requirements, the new assay is more than adequate for the 

routine analysis of plasma GBP concentrations in the epilepsy clinic.

In conclusion, the method reported above represents a significant advance in the 

laboratory analysis of the novel antiepileptic drug GBP. In comparison to previously 

published methods [13], this HPLC assay is rapid, simple, safe and readily automatable. In 

addition, it appears to possess a sensitivity more than adequate for the routine monitoring 

of GBP concentrations in patients with intractable epilepsy.
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LEGENDS TO FIGURES

FIGURE 1 : Comparison of the chemical structures of the inhibitory neurotransmitter 

y-aminobutyric acid (GABA) and the novel antiepileptic compound gabapentin (GBP).

FIGURE 2 : Typical chromatograms highlighting gabapentin (GBP) and internal standard 

(IS.) peaks in one patient sample from each phase of a double blind, crossover trial of 

GBP and placebo. Upper chromatogram represents the placebo phase and the lower 

chromatogram the active phase. Daily GBP dose was 2400 mg.
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ABSTRACT

Tiagabine (TGB) and vigabatrin (VGB) are two novel anticonvulsant compounds reported to 

exert their pharmacological effects via an action on the y-aminobutyric acid (GABA) system 

We have investigated the effects of acute exposure of these drugs on the uptake of GABA into 

rat cortical astrocytes in primary culture. Astrocytes were prepared from the cerebral cortices 

of one day-old rat pups by a mechanical dissociation technique and were assayed for GABA 

uptake activity after 21 days in culture. TGB (100 - 300 nM) and VGB (100 pM) reduced 

GABA uptake when compared to control at 4 hours post-exposure. GABA uptake was also 

reduced following 8 and 24 hour exposures to 200 nM TGB. A combination of TGB (200 nM) 

and VGB (100 pM) treatments reduced GABA uptake when compared to both control and 

VGB treated cultures. These results support the efficacy of TGB as a GABA uptake inhibitor 

and suggest that VGB may also exert an effect by this mechanism

Keywords:- Tiagabine, vigabatrin, GABA uptake, cortical astrocytes, cell culture.
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INTRODUCTION

| Epilepsy is one of the most common neurological disorders, affecting an estimated 50 million

j persons world-wide [1]. The majority of the epileptic population can be adequately controlled

| with existing antiepileptic drugs (AEDs), although 20% of patients remain resistant to

currently available treatment [2], Recent additions to the clinician’s armamentarium have, 

however, improved the pharmacological treatment of epilepsy, particularly in terms of side 

effect profiles [3].
I

Two such novel compounds are vigabatrin (VGB) and tiagabine (TGB). Both drugs have been 

| reported to exert their anticonvulsant actions via specific effects on the y-aminobutyric acid

(GABA) system, VGB by an irreversible inhibition of the enzyme GABA-transaminase 

(GABA-T) and TGB by blockade of neuronal and glial GABA uptake [4,5].

While experimental evidence supports a single mechanism of action for TGB [6], a variety of 

reports would suggest otherwise for VGB. The diverse range of experimental anticonvulsant 

profiles exhibited by a variety of neuroactive compounds, all of which are proposed to act as 

inhibitors of brain GABA-T [7], might suggest the contribution of secondary mechanisms of 

action. Similarly, Bemasconi and colleagues [8] demonstrated that the anticonvulsant effects of 

VGB in animal seizure models are not related to the time of maximal GABA-T inhibition 

Perhaps the most pertinent observation, however, is one of rebound seizures immediately upon 

clinical withdrawal of the drug [9], Such an effect would be inconsistent with a compound 

which irreversibly inhibits an enzyme in the brain. As a result of these experimental and clinical
i

observations with VGB, we have investigated its action on GABA uptake into rat cortical 

| astrocytes in primary culture and compared these effects to those obtained with TGB.
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MATERIALS

! One day-old rat pups were obtained from a breeding colony of Sprague Dawley rats housed at

the Joint Animal Facility, University of Glasgow. Dulbecco’s modified Eagle medium 

(DMEM), horse serum (HS), L-glutamine, penicillin and streptomycin were all obtained from 

! Gibco BRL (Paisley, UK). All other chemicals (reagent grade) were obtained from the Sigma

Chemical Company (Poole, UK). Radiolabelled GABA (y-[14C(U)]-aminobutyric add) was 

obtained from NEN Research Products (Stevenage, UK). VGB (D,L-4-aminohex-5-enoic
I

! add) and TGB ((R-)-(-)-l-[4,4-Bis(3-methyl-2-thienyl)-3-butenyl]-3-piperidine-carboxylic
I
I acid, hydrochloride) were obtained from Marion Merrell Dow (Winnersh, UK) and Novo 

Nordisk A/S (Bagsvaerd, Denmark) respectively.

METHODS

Primary culture of cerebral cortical astrocytes

This method was devised from modifications of the methods of Larsson and co-workers [10] 

and Bender and Hertz [11], The cerebral cortices of one day-old rat pups were removed under, 

aseptic conditions and cleared of attached olfactory bulbs, basal ganglia, hippocampal 

formations and meningeal membranes. The dissected neopallia were then cut into small cubes 

! (0.5 mm3) by two passes (at 90°) in a Mcflwain tissue chopper (Mickle Laboratory Engineering 

Company Ltd, Gomshall, UK). The chopped tissue was transferred to a sterile glass filter (80 

pm nylon mesh; Lockertex Ltd., Warrington, UK) and the filtrate collected in a sterile beaker.

I The chopped material was washed through the filter with culture medium (DMEM 

I supplemented with 20% (v/v) HS, 2.5 mM L-glutamine, 100 I.U./ml penicillin, and 100 pg/ml
I

streptomycin) to give a final volume of 3 ml per brain. The filtrate was then passed through a 

i sterile needle (BD Microlance 21G 0.8 x 40) three times. The volume of the resulting
>4

I
4
I
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| suspension was adjusted with culture medium to allow a 3 ml aliquot per culture dish in a ratio

| of 1 brain to 3 dishes. A 3 ml volume of the final cell suspension was plated onto 60 x 15 mm

Falcon Primaria culture dishes (A+J Beveridge, Edinburgh, UK). The cultures were maintained 

J at 37°C in an environment of 95% air / 5% CO2 with a humidity of > 90%. The culture

j medium (3 ml) was replaced every 3 -4  days throughout. The HS concentration was reduced
I

to 10% at the first medium change with a final reduction to 5% at the second change. After 14 

I days in culture the medium was supplemented with 0.25 mM 3'5'-dibutyryl cyclic adenosine

| monophosphate (cAMP) to induce cell differentiation. P enicillin and streptomycin were

j omitted from the medium at this stage following reports that penicillin may interfere with

GABAergic function [12]. The cultures were employed for the study of GABA uptake 7 days 

after supplementation with cAMP.

[14C]-GABA uptake into cultured astrocytes

This method was devised from modifications of the methods of Larsson and co-workers [10] 

and Yu and colleagues [13]. A standard balanced salt solution (BSS) was used throughout the 

investigations of [14C]-GABA uptake. Its composition was as follows: 136 mM NaCl, 5 mM 

KC1, 0.8 mM MgS04, 2.6 mM NaHC03, 0.4 mM KH2PO4, 0.34 mM Na2HP04, 1.3 mM 

CaCt, 5.6 mM D-ghicose and 15 mM HEPES. The solution was adjusted to pH 7.4 with 1 M 

NaOH and stored, at 4°C, for up to 1 week. BSS was warmed to 37°C prior to use. Cultures 

for investigation were removed from the incubator and the existing medium aspirated. Cultures 

were washed twice ( 2 x 2  ml) with BSS before being returned to the incubator in a further 

volume of BSS (3 ml) for an equilibration period of 20 minutes. The pre-washed cultures were 

j then removed from the incubator and the existing BSS aspirated. This solution was replaced by

l BSS (2 ml) containing the drug concentrations appropriate to the individual experiment.
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Control plates received BSS alone. All culture plates were returned to the incubator for a 

further incubation period (1 - 24 hours). After the incubation period, a further 1 ml of BSS

(with appropriate control / drug treatment) containing 150 pM [14C]-GABA (specific activity =
\

1 mCi/mmol) was added to each plate. Incubation (37°C) was allowed to continue for 5 

minutes before the cultures were washed with 5 volumes (2 ml) of BSS. Cells were removed 

from the plates by scraping in 1 M NaOH (1 ml). Aliquots were taken for protein 

determination by the BIORAD method and liquid scintillation counting in 6 ml of Picofhxor 40 

scintillation fluid (Canberra Packard, Pangboume, UK). A Canberra Packard 2000CA TRI- 

CARB liquid scintillation counter (Pangboume, UK) was employed to analyse GABA uptake 

in individual cultures in comparison to the dpm of standard solutions containing known 

amounts of radioligand. Results were quantified by the relation of GABA uptake to the protein 

concentration and expressed as pmol/min/mg protein in individual cultures.

Determination of protein concentration

Protein concentrations were determined by the sensitive BIORAD method which relies on the 

colour change of a dye (Coomassie Brilliant Blue G-250). Standards were prepared over the 

range 5-20 pg/ml bovine serum albumin and samples o f  unknown protein concentration were 

also diluted into this range. BIORAD dye reagent was diluted 1:1 with water and added to 

standards and samples alike. Tubes were mixed and incubated at room temperature for 5 

minutes and then read at 595 nm in a spectrophotometer (MR5000, Dynatech Ltd., Guernsey). 

Results were corrected for dilution and expressed in mg/mL
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j EXPERIMENTAL PROTOCOL

The following studies were designed to investigate the dose- and time-dependent effects of 

I both TGB and VGB on GABA uptake into primary cultures of rat cortical astrocytes.

I Individual studies employed control (untreated) groups and between 12 and 20 plates per
i

group.

Study 1:- The effects of TGB dose (50 - 500 nM) on GABA uptake at 4 hours post-treatment, 

j Study 2:- The effects of VGB dose (1 - 500 pM) on GABA uptake at 4 hours post-treatment.

I Study 3:- The effects of200nM TGB on GABA uptake at 1 - 24 hours post-treatment.
I
[ Study 4:- The effects of 100pM VGB on GABA uptake at 1 - 24 hours post-treatment.

- Study 5:- The effects of200nM TGB and lOOpM VGB, alone and in combination, on GABA

uptake at 4 hours post-treatment.

STATISTICAL METHODS

Statistical analysis was performed using MINITAB for Windows statistical package (Version 

10.1) on a Viglen 4DX266 microcomputer. Results were expressed as the mean percentage of 

mean control values for each group ± the standard error of the mean (SEM). In those 

experiments evaluating dose and time related drug actions (Study nos. 1 - 4) ,  results were 

compared to control values by one-way analysis of variance with Dunnett correction for 

I multiple comparisons. In the combination experiment (Study no. 5), results were compared by 

two sample t-test.

7
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RF,STILTS

Study 1:- TGB (100 - 300 nM) significantly reduced GABA uptake into primary cultures of 

rat cortical astrocytes following a four hour exposure (figure 1). All other doses of TGB were 

without effect.

Study 2:- VGB (100 and 250 pM) significantly reduced GABA uptake into primary cultures 

of rat cortical astrocytes following a four hour exposure (figure 2). All other doses of VGB 

were without effect.

Study 3:- TGB (200 nM) significantly reduced GABA uptake into primary cultures of rat 

cortical astrocytes at 4, 8 and 24 hours post-exposure (figure 3). TGB was without effect at all 

other time points investigated.

Study 4:- VGB (100 pM) was without effect on GABA uptake into primary cultures of rat 

cortical astrocytes at all of the time points investigated (figure 4).

Study 5 TGB (200 nM), VGB (100 pM) and combination treatments all significantly 

reduced GABA into primary cultures of rat cortical astrocytes when compared to control 

(figure 5).

DISCUSSION

The aims of these studies were to investigate the effects of TGB and VGB, alone and in 

combination, on the uptake of [I4C]-GABA into rat cortical astrocytes in primary culture.

8
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These drugs have previously been proposed to exert their pharmacological actions via single 

and specific effects on the GABAergic system [4,5].

TGB belongs to a new class of AEDs, derived from nipecotic add and believed to exert their 

anticonvulsant action by blockade of GABA uptake into neurones and glial cells [6]. Recent 

evidence has suggested that GABA uptake is mediated by 4 distinct transporter proteins [14] 

and that TGB is predominantly active at the transporter termed “GAT-1” and weakly active at 

“GAT-3”. TGB is effective against audiogenic seizures in DBA/2 mice [5], the motor 

manifestations of amygdaloid kindled seizures [15] and the tonic and clonic components of 

pentylenetetrazol-induced seizures in both rats and mice [5]. It has also been proposed to have 

efficacy against tonic seizures induced by maximal electroshock [16], TGB is currently 

undergoing phase HI clinical trial for the treatment of epilepsy and initial reports suggest that 

the drug is active against both partial and secondary generalised seizures [3].

In these studies, TGB reduced GABA uptake into rat cortical astrocytes in a dose-specific 

manner. Its concentration - effect profile appeared to be U-shaped, however, making 

determination of an ICso impossible. A similar dose-related pattern has been reported with 

TGB in whole animal seizure models [5], The reason for this phenomenon remains unknown, 

and although higher drug doses are possibly cytotoxic, no parallel reduction in the protein 

content of cultures was observed in the above studies. Another surprising observation from 

these studies was the latency to onset of TGB action on GABA uptake, with the drug only 

being active after at least 4 hours exposure. This would not appear to concur with the rapid 

onset of TGB action in whole animal seizure models following parenteral administration [5]. 

One might speculate that direct application of TGB to the cell surface should result in
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| immediate effect. Further studies employing a wider range of time intervals from 0 to 4 hours 

are required in an attempt to clarify this apparent discrepancy.

j VGB was the first drug to enter regular clinical use, having been designed specifically for the

| treatment of epilepsy [17]. It has been proposed to exert its anticonvulsant effects by an

irreversible inhibition of GABA-T [4], the enzyme responsible for the metabolic degradation of 

the inhibitory neurotransmitter GABA. VGB has demonstrated efficacy against a range of

j experimental seizures including those induced by picrotoxin [8] and amygdaloid kindling [18]
I

J and is also effective in genetic models of reflex epilepsy [19].

At concentrations of 100 and 250 pM, VGB significantly blocked astrocytic GABA uptake. 

These concentrations are close to that reported as the I C 5 0  for inhibition of GABA-T in the 

| same cell type [20]. This previously unreported mechanism of VGB action might help to

j explain the diverse range of experimental anticonvulsant profiles exhibited by a variety of

GABA-T inhibitors [7]. It may, also underlie the lack of relationship between the time of 

maximal GABA-T inhibition and the anticonvulsant effects of VGB in animal seizure models 

| [8] and the observation of rebound seizures immediately upon clinical withdrawal of the drug

j P L
I

j If one considers the structural similarity between VGB and GABA, it is possible to speculate
I
I that the blockade of GABA uptake afforded by VGB may be the result of a simple competitive 

J reaction between the two molecules at one or more of the 4 reported GABA uptake carriers

| [14]. Although previous studies have suggested that VGB is not a substrate for the “GABA
I V
I transporter” [21], the drug is believed to enter cells via some high affinity uptake system [17],
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With recent evidence proposing the existence of multiple GABA uptake carriers [14], it is 

possible that VGB has a specific action at one or more of these newly discovered targets. The 

GABA uptake carrier ‘GAT-3” might represent the most likely site of VGB action in this 

respect. Beta-alanine, a specific substrate of GABA-T [22], has been shown to selectively

j block GABA transport via the ‘GAT-3” carrier [23], It is possible that structural similarities

I
| facilitate the binding of GABA, p-alanine and VGB at the active sites of both GABA-T and the 

‘GAT-3” transporter.
I

hi cultures exposed to a combination of both TGB and VGB, the inhibition of GABA uptake 

was greater than that observed when either drug was administered alone. This effect did, 

however, appear to be infra-additive and would thus suggest a similar site of action for both 

drugs. If TGB and VGB were to act at independent uptake sites one would expect to observe 

a total inhibition of GABA uptake equal to the sum of inhibitions observed with both drugs 

alone. This evidence might support a contributory role for VGB on the TGB-mediated 

blockade of GABA uptake at the ‘GAT-3” transporter.

In conclusion, these results suggest that both TGB and VGB block GABA uptake into primary 

cultures of rat cortical astrocytes. Further studies to determine the basis of the U-shaped dose- 

response to TGB and its lack of effect prior to 4 hours are required. In terms of VGB, a more

j detailed evaluation of this novel mechanism is planned. Further investigations of its dose- and
I
I time-dependency and cell specificity, together with evaluation of the relationship between this
l

I and the intracellular effects of VGB are clearly required. Characterisation of the GABA uptake

i blockade observed with VGB may help to determine its relative importance as an additional

I mechanism of anticonvulsant action.
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LEGENDS TO FIGURES

Figure 1 Effects of tiagabine (TGB) concentration on the uptake of [14C]-GABA into rat 

cortical astrocytes in primary culture following a four hour exposure. Results (12 < n > 20) are 

expressed as the mean percentage of the control values and error bars denote the standard 

error of the mean (SEM). Statistical significance (*p<0.05) was determined by one-way 

analysis of variance with Dunnett correction.

Figure 2 Effects of vigabatrin (VGB) concentration on the uptake of [14C]-GABA into rat 

cortical astrocytes in primary culture following a four hour exposure. Results (12 < n > 20) are 

expressed as the mean percentage of the control values and error bars denote the standard 

error of the mean (SEM). Statistical significance (*p<0.05) was determined by one-way 

analysis of variance with Dunnett correction.

Figure 3 :- Effects of exposure time (hours) to tiagabine (TGB; 200 nM) on fire uptake of 

[14C]-GABA into rat cortical astrocytes in primary culture. Results (12 < n > 20) are expressed 

as the mean percentage of the control values and error bars denote the standard error of the 

mean (SEM). Statistical significance (*p<0.05) was determined by one-way analysis of 

variance with Dunnett correction.

Figure 4 :- Effects of exposure time (hours) to vigabatrin (VGB; 100 pM) on the uptake of 

[14C]-GABA into rat cortical astrocytes in primary culture. Results (12 < n > 20) are expressed 

as the mean percentage of the control values and error bars denote the standard error of the 

mean (SEM). Statistical significance (*p<0.05) was determined by one-way analysis of 

variance with Dunnett correction.
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Figure 5 Effects of tiagabine (TGB; 200 nM) and vigabatrin (VGB; 100 pM), alone and in 

combination, on the uptake of [14C]-GABA into rat cortical astrocytes in primary culture 

following a four hour exposure. Results (12 < n > 20) are expressed as the mean percentage of 

the control values and error bars denote the standard error of the mean (SEM). Statistical
s.

significance (*p<0.001) was determined by two-sample t-test.



Enclosure (vi)
LEACH/1

i
i
i Mutual interaction between remacemide hydrochloride and carbamazepine:
I two drugs with active metabolites
|
; J o h n  P a u l  L e a c h 1, J a c k ie  B l a c k l a w 1, V i r g i n i a  J a m ie s o n 2, T r a c e y  J o n e s 2,

i A la n  R ic h e n s 3 a n d  M a r t i n  J  B r o d i e 1.
i)
I
II t . . .  ,
; E p ile p s y  R e s e a r c h  U n i t ,  U n i v e r s i t y  D e p a r t m e n t  o f  M e d i c i n e  a n d  T h e r a p e u t ic s ,  W e s t e r n  In f i r m a r y ,

1
G la s g o w , S c o t la n d ,  2A s t r a  C h a r n w o o d ,  L o u g h b o r o u g h ,  E n g la n d  a n d  3U n i v e r s i t y  o f  W a l e s  C o l l e g e  o f  

M e d ic in e , C a r d i f f ,  W a le s .

K e y w o rd s : E p i le p s y ,  C a r b a m a z e p in e ,  R e m a c e m id e  h y d r o c h lo r id e ,  D r u g  in t e r a c t io n
t
i

R u n n in g  t i t le :  I n t e r a c t i o n  b e t w e e n  r e m a c e m id e  a n d  c a r b a m a z e p in e

i

C o r re s p o n d e n c e  to :

^Professor M a r t i n  J B r o d i e

E p ile p s y  R e s e a r c h  U n i t

D e p a r tm e n t  o f  M e d i c i n e  a n d  T h e r a p e u t ic s

;Western Infirm ary
Glasgow G 1 1 6 N T
Scotland
i
i
Tel N o .  + 1 4 1  2 1 1  2 5 7 2  

fax  N o .  + 1 4 1  3 3 4  9 3 2 9i
E -m a il M a r t i n . J . B r o d i e @ c l i n m e d . g l a . a c . u k
I

J

1
i

1

mailto:Martin.J.Brodie@clinmed.gla.ac.uk


Enclosure (vi)
LEACH/2

SUMMARY

A r a n d o m is e d ,  d o u b le - b l in d ,  p la c e b o - c o n t r o l le d  c r o s s o v e r  s t u d y  o f  a d d - o n  r e m a c e m id e  h y d r o c h lo r id e  

was c a r r ie d  o u t  in  1 0  o u t  o f  1 4  r e c r u i t e d  p a t ie n ts  b e in g  t r e a t e d  w i t h  c a r b a m a z e p in e  ( C B Z )  

m o n o th e ra p y . F o r t y  e ig h t  h o u r  c o n c e n t r a t io n  p r o f i le s  o f  C B Z ,  i ts  a c t iv e  e p o x id e  m e t a b o l i t e  ( C B Z - E ) ,  

re m a c e m id e , a n d  i ts  d e s g ly c in y l  m e t a b o l i t e  ( A R L 1 2 4 9 5 X X )  w e r e  a s s a y e d  f o l l o w i n g  s in g le  a n d  

m u lt ip le  d o s in g .  F o l l o w i n g  1 4  d a y s ’ t r e a t m e n t  w i t h  3 0 0 m g  r e m a c e m id e  h y d r o c h lo r id e  t w i c e  d a i ly ,  t h e  

m ean A U C  o f  c a r b a m a z e p in e  w a s  in c r e a s e d  b y  2 2 %  ( p  =  0 . 1 2 ) ,  C m a x  b y  2 7 %  ( p  =  0 . 0 7 )  a n d  C m in  b y  

2 2 %  ( p  =  0 . 2 9 ) .  T r o u g h  c o n c e n t r a t io n s  o f  C B Z  w e r e  s t a t is t ic a l ly  s ig n i f ic a n t ly  h ig h e r  ( p = 0 . 0 0 1 3 )

i

du rin g  a c t iv e  t r e a t m e n t  c o m p a r e d  w i t h  p la c e b o .  L e v e ls  o f  C B Z - E  w e r e  u n a f f e c t e d .  N o  s y m p t o m s  o f  

c a rb a m a z e p in e  t o x i c i t y  w e r e  r e p o r t e d .  T h e r e  w a s  n o  e v id e n c e  o f  a u t o in d u c t io n  o f  r e m a c e m id e  

m e ta b o lis m . H o w e v e r ,  in  th e s e  C B Z - t r e a t e d  p a t ie n ts ,  e x p o s u r e  t o  r e m a c e m id e  a n d  i ts  a c t iv e  

m e ta b o lite  w a s  6 0 %  a n d  3 0 %  r e s p e c t iv e ly  o f  v a lu e s  o b s e r v e d  in  h e a l t h y  v o lu n t e e r s  t r e a t e d  p r e v io u s ly  

with t h e  s a m e  d o s e .  T h u s ,  r e m a c e m id e  h y d r o c h lo r id e  in h ib i t s  C B Z  m e t a b o l is m ,  w h ic h  i t s e l f  in d u c e s  

that o f  r e m a c e m id e  h y d r o c h lo r id e  a n d  i ts  a c t iv e  m e t a b o l i t e .  T h is  m u t u a l  in t e r a c t io n  b e t w e e n  

re m a c e m id e  h y d r o c h lo r id e  a n d  C B Z  is  p r e d ic t a b le  a n d  m o d e s t  a n d  s h o u ld  n o t  p r e s e n t  a  b a r r i e r  t o  t h e i r  

clinical u s e  in  c o m b in a t io n .
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INTRODUCTION
I

R e m a c e m id e  h y d r o c h lo r id e  ( 2 - a m i n o - N - [ l - m e t h y l - l , 2 - d i p h e n y l e t h y l ] - a c e t a m i d e  m o n o h y d r o c h lo r id e ) ,  

ja n o v e l a n t ic o n v u ls a n t ,  is  a  n o n - c o m p e t i t i v e  a n ta g o n is t  a t  N - m e t h y l - D - a s p a r t a t e  ( N M D A )  r e c e p t o r s  

(1). M e t a b o l i s m  in  m a n  in v o lv e s  p r o d u c t io n  o f  a n  a c t iv e  d e s g ly c in y l  m e t a b o l i t e  A R L 1 2 4 9 5 X X  ( 2 ) ,  

w hich  h a s  a  lo n g e r  e l im in a t io n  h a l f - l i f e  ( 1 1 - 1 9  h o u r s  v e r s u s  3 - 4  h o u r s )  t h a n  t h e  p a r e n t  c o m p o u n d  ( 3 ) ,  

and is  a  p o t e n t  a n t a g o n is t  a t  t h e  N M D A  r e c e p t o r  ( 4 ) .  A s  w e l l  a s  b e in g  a n  a n t ic o n v u ls a n t  ( 5 ) ,

.re m a c e m id e  h y d r o c h lo r id e  c o u ld  b e  e f f e c t iv e  in  p r e v e n t in g  c e l l  d a m a g e  ( 6 )  in  t h e  c o u r s e  o f  is c h a e m ic  

jinjury ( 7 )  a n d  in  P a r k in s o n ’ s d is e a s e  ( 8 ) .

C a rb a m a z e p in e  ( C B Z )  is  a  f i r s t  l in e  a n t ic o n v u ls a n t  d r u g  ( 9 ) .  I t s  u s e  is  c o m p l ic a t e d  b y  v a r ia b le  

m to in d u c t io n  o f  m e t a b o l is m  ( 1 0 )  a n d  a  p r o p e n s i t y  f o r  p h a r m a c o k in e t ic  d r u g  in t e r a c t io n s  ( 1 1 ) .

H ep a tic  m e t a b o l is m  o f  C B Z  in  m a n  p r o d u c e s  a n  a c t iv e  1 0 ,1 1  e p o x id e  ( C B Z - E )  m e t a b o l i t e ,  w h i c h  is  

^thought t o  b e  r e s p o n s ib le  f o r  s o m e  o f  i ts  n e u r o t o x ic  s id e - e f f e c t s  ( 1 2 ) .  M e t a b o l i s m  o f  th is  c o m p o u n d  

is a lso  a f f e c t e d  b y  o t h e r  a n t ie p i le p t ic  d r u g s  ( 1 3 ) .  T h e  p r e d i le c t io n  o f  th e  e s ta b l is h e d  a n t ie p i le p t ic  

drugs t o  in t e r a c t  w i t h  o t h e r  c o m p o u n d s  a n d  th e  n e e d  f o r  n o v e l  a g e n ts  t o  b e  u s e d  a s  a d ju v a n t  t h e r a p y  

require e a r ly  a s s e s s m e n t  o f  p o t e n t ia l  p h a r m a c o k in e t ic  in t e r a c t io n s ,  w h ic h  c a n  o b s c u r e  in t e r p r e t a t io n  o f  

trial r e s u lts  a n d  in f lu e n c e  d o s e  s e le c t io n  ( 1 4 ) .  T h is  p h a r m a c o k in e t ic  in t e r a c t io n  s tu d y  w i t h  

rem ace m id e  h y d r o c h lo r id e  w a s  c a r r ie d  o u t  in  p a t ie n ts  o n  C B Z  m o n o t h e r a p y ,  u s in g  a  r a n d o m is e d ,  

d o u b le -b lin d  p la c e b o - c o n t r o l le d  c r o s s o v e r  d e s ig n  ( 1 5 ) .

i

METHODS

P atien ts

\  to ta l o f  1 4  p a t ie n t s  w e r e  r e c r u i t e d  ( T a b l e  1 ) ,  e a c h  o n  a  r e g im e n  o f  C B Z  m o n o t h e r a p y  w h ic h  h a d  

seen s ta b le  f o r  a t  le a s t  t h r e e  m o n th s .  A l l  p a t ie n ts  h a d  a t  le a s t  t w o  p la s m a  m e a s u r e m e n ts  o f  C B Z  

ivithin t h e  t a r g e t  r a n g e  ( 2 0 - 5 0 u m o l / L )  d u r in g  th a t  p e r io d .  T w e l v e  o f  t h e  p a t ie n ts  h a d  p a r t ia l  s e iz u r e s

3
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w ith  o r  w i t h o u t  s e c o n d a r y  g e n e r a l is a t io n ,  w h i le  2  w e r e  t h o u g h t  t o  h a v e  id io p a t h ic  t o n ic - c lo n ic  

se izu res . T h e  s tu d y  w a s  a p p r o v e d  b y  b o t h  t h e  W e s t  E t h ic a l  C o m m i t t e e  in  G l a s g o w  a n d  t h e  R e s e a r c h  

E th ics  C o m m i t t e e  in  C a r d i f f .  W r i t t e n  in f o r m e d  c o n s e n t  w a s  o b t a in e d  f r o m  e a c h  p a r t ic ip a n t

All p a t ie n ts  w e r e  f r e e  f r o m  h e p a t ic ,  r e n a l ,  o r  h a e m a t o lo g ic a l  d is e a s e . T h e y  w e r e  a s k e d  t o  r e f r a in  

fro m  a lc o h o l  a n d  c a f f e in e  t h r o u g h o u t  t h e  s tu d y .  S o m e  p a t ie n t s  w e r e  o n  s ta b le  d o s e s  o f  o t h e r  

m e d ic a t io n , n o n e  o f  w h ic h  w a s  k n o w n  t o  in t e r a c t  w i t h  C B Z  o r  r e m a c e m id e  h y d r o c h lo r id e .  P a t ie n t s  

w ere  r e q u i r e d  t o  k e e p  a  d ia r y  c a r d  d e t a i l in g  s e iz u r e  t y p e  a n d  f r e q u e n c y  a n d  th e  d u r a t io n  a n d  n a t u r e  o f  

any a d v e r s e  e v e n ts  e x p e r ie n c e d .  C o m p l ia n c e  w a s  c h e c k e d  b y  q u e s t io n in g  t h e  p a t ie n t s  a n d  c a r r y in g  

out a  t a b le t  c o u n t .

Protocol
ij

The s tu d y  h a d  a  d o u b le - b l in d ,  r a n d o m  o r d e r ,  p la c e b o - c o n t r o l le d ,  c r o s s o v e r  d e s ig n ,  p r e c e d e d  b y  a n  

open, s in g le -d o s e  t r e a t m e n t  p h a s e . P a t ie n t s  c o n t in u e d  t o  t a k e  C B Z  in  t h e i r  u s u a l  d o s e  t h r o u g h o u t .

One w e e k  f o l l o w i n g  a  s c r e e n in g  v is i t ,  e a c h  p a t ie n t  r e c e iv e d  a  s in g le  d o s e  o f  3 0 0 m g  r e m a c e m id e  

h y d ro c h lo r id e . P la s m a  le v e ls  o f  C B Z ,  C B Z - E ,  r e m a c e m id e ,  a n d  A R L 1 2 4 9 5 X X ,  w e r e  m e a s u r e d  0 ,

0.5, 1 , 1 .5 ,  2 ,  4 , 6 ,  8 , 1 0 ,  1 2 ,  2 4 ,  a n d  4 8  h o u r s  a f t e r  d o s in g .  O n e  w e e k  la t e r ,  p a t ie n t s  e n t e r e d  t h e  f i r s t  

arm o f  c h r o n ic  t r e a t m e n t ,  r e c e iv in g  e i t h e r  r e m a c e m id e  h y d r o c h lo r id e  ( lO O m g  t w i c e  d a i ly  o n  d a y  1 ,

2 0 0 m g  t w i c e  d a i ly  o n  d a y  2 ,  a n d  3 0 0 m g  t w ic e  d a i ly  t h e r e a f t e r )  o r  m a tc h e d  p la c e b o .  T h e  t o t a l  

tre a tm e n t p e r io d  w a s  1 4  d a y s , a f t e r  w h ic h  t h e  f in a l  d o s e  o f  r e m a c e m id e  h y d r o c h lo r id e  w a s  g iv e n  o n  

the m o r n in g  o f  t h e  1 5 t h  d a y  t o  a l l o w  m e a s u r e m e n t  o f  w a s h o u t  c o n c e n t r a t io n s  a t  t h e  s a m e  t im e s  a f t e r  

dosing a s  b e f o r e .  S e v e n  d a y s  la t e r ,  t h e  s e c o n d  t r e a t m e n t  p h a s e  w a s  c o m m e n c e d  a n d  t h e  w h o l e  

p ro c e d u re  w a s  r e p e a t e d .  M o r n i n g  p r e - d o s e  ( t r o u g h )  s a m p le s  w e r e  t a k e n  o n  t h e  5 t h ,  1 2 t h  a n d  1 5 t h  

day a f t e r  i n i t i a t io n  o f  t r e a t m e n t .  A l l  b lo o d  s a m p le s  w e r e  t a k e n  in t o  h e p a r in is e d  t u b e s  f r o m  a  

can n u la ted  f o r e a r m  v e in ,  w h ic h  w a s  k e p t  p a t e n t  b e t w e e n  a s p ir a t io n s  w i t h  n o r m a l  s a lin e . O n  e a c h

4
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o c c a s io n , t h e  f i r s t  1 m l w i t h d r a w n  w a s  d is c a r d e d ,  a n d  t h e  s u b s e q u e n t  1 5 m l  w e r e  c h i l le d  u n t i l  

c e n t r i fu g a t io n .  A l l  s a m p le s  w e r e  s p u n  a t  3 , 0 0 0  r p m  f o r  1 0  m in u te s ,  a n d  t h e  s e p a r a t e d  p la s m a  f r o z e n  

at - 4 ° C  f o r  b a t c h  a n a ly s is .

Assays

R e m a c e m id e  a n d  i ts  d e s g ly c in y l  m e t a b o l i t e  ( A R L 1 2 4 9 5 X X )  w e r e  q u a n t i f ie d  b y  h ig h  p e r f o r m a n c e  

liq u id  c h r o m a t o g r a p h y  ( H P L C ) ,  T h js  w a s  a  m o d i f ic a t io n  o f  a  p r e v io u s ly  r e p o r t e d  m e t h o d  ( 1 6 ) ,  

a d ju s te d  t o  a l l o w  a u t o m a t e d  s a m p le  p r e p a r a t io n  a n d  im p r o v e  s e le c t iv i t y .  T h e  m e t h o d  in v o lv e d  s o l id  

phase e x t r a c t io n  f o l l o w e d  b y  s e p a r a t io n  o n  a  r e v e r s e  p h a s e  H P L C  s y s te m  u t i l is in g  a  o c t a d e c y l  ( C - 1 8 )  

H P L C  c o lu m n ,  a n  a c e t o n i t r i l e  b a s e d  e lu e n t ,  a n d  u l t r a v io le t  ( u v )  d e t e c t io n  a t  2 1 0  n m . L i m i t s  o f  

q u a n t i f ic a t io n  f o r  t h e  t w o  a n a ly te s  w e r e  1 0  n g /m l .  O n ly  s a m p le s  f r o m  t h e  a c t iv e  le g  o f  t h e  d o u b le ­

blind p h a s e  w e r e  a n a ly s e d  f o r  r e m a c e m id e  a n d  A R L 1 2 4 9 5 X X .  C B Z  a n d  C B Z - E  w e r e  m e a s u r e d  b y  

l iq u id - l iq u id  e x t r a c t io n  o f  p la s m a  f o l lo w e d  b y  r e v e r s e  p h a s e  H P L C  u t i l is in g  a  C - 8  c o lu m n ,  a  m e t h a n o l -  

based m o b i le  p h a s e , a n d  u v  d e t e c t io n  a t  2 1 0 n m .

Pharmacokinetics

The f o l l o w i n g  n o n - c o m p a r t m e n t a l  p h a r m a c o k in e t ic  p a r a m e t e r s  w e r e  c o m p u t e d  f o r  C B Z  a n d  C B Z - E  

for a l l  t h r e e  p h a s e s  o f  s e r ia l  b lo o d  s a m p lin g :
i

1) a r e a  u n d e r  t h e  c o n c e n t r a t io n - t im e  c u r v e  ( A U C )  o v e r  a  d o s in g  in t e r v a l  ( A U C o-t )  c a lc u la t e d  u s in g

i

th e  l in e a r  t r a p e z o id a l  m e t h o d
!

2) p e a k  c o n c e n t r a t io n  ( C m a x )  o v e r  t h e  d o s in g  in te r v a l

3) t r o u g h /p r e - d o s e  c o n c e n t r a t io n  ( C m i n )  o v e r  t h e  d o s in g  in t e r v a l

4) t im e  t o  m a x im u m  c o n c e n t r a t io n s  ( T m a x )

5) C m in  5 ,  1 2 ,  a n d  1 5  d a y s  a f t e r  in i t i a t io n  o f  m u l t ip le  d o s in g  w i t h  r e m a c e m id e  h y d r o c h lo r id e  o r  

p la c e b o

5
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F o r  r e m a c e m id e  a n d  A R L 1 2 4 9 5 X X ,  t h e  p a r a m e t e r s  c a lc u la t e d  f o l l o w i n g  s in g le  d o s e  a n d  m u l t ip le  

d osing  w e r e :

1) C m a x

2) T m a x

3) A U C ,  e i t h e r  e x t r a p o la t e d  t o  in f in i t e  t im e  ( A U C * > ) ,  w h ic h  w a s  c a lc u la t e d  f r o m  A U C  =  A U C t  +

C t / k e l  w h e r e  A U C t  =  a r e a  u n d e r  t h e  c u r v e  u p  t o  t h e  la s t  p o in t  a t  w h ic h  th e  c o n c e n t r a t io n  c o u ld  b e  

q u a n t i f ie d ,  a n d  k e l  =  t h e  t e r m in a l  p h a s e  p la s m a  e l im in a t io n  r a t e  c o n s ta n t ,  o r  o v e r  a  1 2  h o u r  d o s in g  

in t e r v a l  ( A U C  o -i2h)

4) E l im in a t io n  h a l f - l i f e ,  ( t « 0  a f t e r  t h e  s in g le  d o s e  a n d  d u r in g  w a s h o u t  o f  t h e  m u l t ip le  d o s e  

r e m a c e m id e  h y d r o c h lo r id e  t r e a t m e n t  p h a s e . T h is  w a s  c a lc u la t e d  f r o m  t<, =  0 . 6 9 3 / k e l .

5) C m in  5 ,  1 2  a n d  1 5  d a y s  in t o  r e m a c e m id e  h y d r o c h lo r id e  t r e a t m e n t .

Statistics

S ta tis tic a l c o m p a r is o n s  o f  t h e  p h a r m a c o k in e t ic  p a r a m e te r s  o b t a in e d  f o r  C B Z  a n d  C B Z - E  a t  t h e  e n d  o f
i

the t w o  m u l t ip le  d o s e  p h a s e s  o f  th e  s tu d y  w e r e  c o m p a r e d  u s in g  a n  a n a ly s is  o f  v a r ia n c e  ( A N O V A )  

jwith t r e a t m e n t ,  p e r io d ,  s e q u e n c e  a n d  p a t ie n t  a s  f a c to r s .  L o g a r i t h m ic a l l y  t r a n s f o r m e d  d a t a  w e r e  u s e d  

■for a n a ly s is  o f  t h e  A U C t , C m a x  a n d  C m in  c o m p a r is o n s .  U n t r a n s f o r m e d  d a t a  w e r e  u s e d  f o r  T  m a x .

A nalys is  o f  t h e  t r o u g h  c o n c e n t r a t io n s  u s e d  A N O V A  f o r  t h e  3  c o n c e n t r a t io n s  p e r  p a t ie n t  ( 5 ,  1 2 ,  a n d  

15 d a y s  a f t e r  in i t i a t io n  o f  m u l t ip le  d o s in g )  w i t h  f a c to r s  o f  t r e a t m e n t ,  p e r io d ,  s e q u e n c e ,  d a y  n u m b e r

land p a t ie n t .  S in g le  a n d  m u l t ip le  d o s e  p h a s e s  w e r e  c o m p a r e d  u s in g  a  n o n - p a r a m e t r ic  p r o c e d u r e ,  t h e

!

W ilc o x o n  m a t c h e d  p a ir s  s ig n e d  r a n k  te s t .  A  p r o b a b i l i t y  le s s  t h a n  5 %  in d ic a t e d  s t a t is t ic a l  s ig n if ic a n c e .
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RESULTS

Patients

O f  t h e  1 4  p a t ie n t s  r e c r u i t e d  ( T a b l e  1 ) ,  1 0  c o m p le t e d  t h e  s t u d y  a s  p e r  p r o t o c o l .  O n e  p a t ie n t  ( 0 1 8  )  

w it h d r e w  a  f e w  h o u r s  f o l l o w i n g  a d m in is t r a t io n  o f  t h e  s in g le  r e m a c e m id e  h y d r o c h lo r id e  d o s e  b e c a u s e  

he d is l ik e d  in t r a v e n o u s  c a n n u la t io n .  A n o t h e r  ( 0 2 1  )  p u l le d  o u t  5  d a y s  a f t e r  s in g le  d o s e  a d m in is t r a t io n  

b e c a u s e  o f  a n  in t e r c u r r e n t  v i r a l  i l ln e s s . O n e  p a t ie n t  ( 0 2 4 )  w a s  w i t h d r a w n  b e c a u s e  o f  s u s p e c te d  p o o r  

c o m p lia n c e ,  w h i l e  t h e  f o u r t h  ( 0 1 6 )  h a d  t h e  d o s e  o f  r e m a c e m id e  h y d r o c h lo r id e  h a lv e d  f o l l o w i n g  t h e  

o n se t o f  a d v e r s e  e v e n ts  s u s p e c te d  t o  b e  d u e  t o  t h e  s tu d y  d r u g .  T h is  p a t ie n t 's  d a t a  w e r e  in c lu d e d  in  t h e  

s u m m a ry  o f  a d v e r s e  e v e n ts ,  b u t  n o t  in  t h e  p h a r m a c o k in e t ic  a n a ly s is .

CBZ pharmacokinetics

T h e re  w e r e  n o  s ta t is t ic a l ly  s ig n i f ic a n t  c h a n g e s  in  m e a n  C B Z  p h a r m a c o k in e t ic  p a r a m e t e r s  f o l l o w i n g  a
i

sing le  d o s e  o f  r e m a c e m id e  h y d r o c h lo r id e  ( F i g u r e  1 a n d  T a b l e  2 ) .  F o l l o w i n g  1 4  d a y s ’ t r e a t m e n t ,  t h e  

m ean AUCo-nh o f  C B Z  w a s  in c r e a s e d  b y  2 2 %  ( p  =  0 . 1 2 ) ,  th e  m e a n  C m a x  b y  2 7 %  ( p  =  0 . 0 7 ) ,  a n d  t h e  

m ean C m in  b y  2 2 %  ( p  =  0 . 2 9 ) .  T m a x  w a s  u n c h a n g e d  f o l l o w i n g  b o t h  s in g le  a n d  m u l t i - d o s e  

re m a c e m id e  h y d r o c h lo r id e .  C o m p a r is o n  o f  m e a n  t r o u g h  C B Z  le v e ls  5 ,  1 2 , a n d  1 5  d a y s  a f t e r  t h e  s ta r t  

of a c t iv e  t r e a t m e n t  ( 4 0 . 1 ,  3 4 . 4  a n d  4 0 . 4  u m o l / L  r e s p e c t iv e ly )  w i t h  th o s e  o n  p la c e b o  ( 3 2 . 7 ,  3 0 . 5  a n d  

34.5 u m o l / L  r e s p e c t iv e ly )  s h o w e d  a  s t a t is t ic a l ly  s ig n i f ic a n t  in c r e a s e  ( p = 0 . 0 0 1 3 ) .  F o u r  p a t ie n t s  h a d  a t  

least o n e  o f  t h e  p h a r m a c o k in e t ic  p a r a m e t e r s  o f  C B Z  in c r e a s e d  b y  m o r e  t h a n  3 0 %  d u r in g  t h e  

re m a c e m id e  h y d r o c h lo r id e  t r e a t m e n t  p h a s e . N o n e  o f  th e s e  p a t ie n ts ,  h o w e v e r ,  r e p o r t e d  a n y  s y m p to m s  

su g g es tive  o f  C B Z  t o x ic i t y .

CBZ-E pharmacokinetics

The m e a n  A U C ,  C m a x ,  a n d  C m in  f o r  C B Z - E  ( T a b l e  3 )  w e r e  n o t  s ig n i f ic a n t ly  a l t e r e d  b y  c o n c o m i t a n t  

re m a c e m id e  h y d r o c h lo r id e  f o l l o w i n g  s in g le  o r  m u l t ip le  d o s in g  ( F i g u r e  2 ) .  A f t e r  1 4  d a y s ' t r e a t m e n t ,
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two patients had an increase in A U C  or Cmax o f more than 30% , one being a rise in A U C  o f 177%  

and in Cmax o f  153%. These patients, however, remained symptom-free. There was no significant 

difference in Tm ax following acute or chronic remacemide hydrochloride dosing. Comparison o f  

mean trough C B Z -E  levels 5, 12, and 15 days after the start o f  active treatment (5 .1 , 4 .4  and 5.0 

umol/L respectively) w ith those during placebo treatment (4.9, 4.1, and 5.00 um ol/L respectively) 

showed no significant differences (p =  0.62).

Remacemide and ARL12495XX pharmacokinetics

Mean pharmacokinetic parameters for remacemide and A R L 1 2 4 9 5 X X  following single and multiple 

dosing are shown in Table 4. M ean plasma concentrations following single and multiple dosing are 

illustrated for remacemide in Figure 3 and for A R L 1 2 4 9 5 X X  in Figure 4. As anticipated from a drug 

with a considerably shorter half-life than dosing interval, there was little carry-over o f  remacemide 

from dose to dose, and the steady-state profiles attained consisted o f  levels only slightly higher than 

those following the single dose (Figure 3 and Table 4). For A R L 1 2 4 9 5 X X , however, consistent w ith  

its longer terminal half life, there was a greater carry-over during multiple dosing. A t steady-state, 

peak (Cm ax) and trough (Cm in) oscillations were much smaller than for remacemide, and the 

maximum concentrations attained were approximately twice those following the single dose (Figure 4 

and Table 4). W ith  both remacemide and A R L 1 24 95 X X , there was good predictability o f  multiple 

dose profiles compared with single dose profiles based on linear superposition o f  the concentration 

data and comparisons o f A U C s following single and multiple dosing. This suggests that there was no 

autoinduction o f remacemide or A R L 1 2 4 9 5 X X  metabolism.

Adverse events

Mo major adverse events were reported, and no patients were withdrawn from the study due to 

adverse events, although one patient (016) had his dose o f remacemide hydrochloride halved 4 days

8
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in to  t h e  m u l t ip le - d o s e  p h a s e  b e c a u s e  o f  d iz z in e s s .  O v e r a l l ,  m o r e  e v e n ts  w e r e  r e p o r t e d  w h i l e  p a t ie n ts  

w e re  o n  p la c e b o  ( 3 6  a d v e r s e  e v e n ts )  th a n  f o l lo w in g  r e m a c e m id e  h y d r o c h lo r id e  t r e a t m e n t  ( 2 6  e v e n ts  

re p o r te d ) .  S im i l a r  n u m b e r s  o f  p a t ie n ts  r e p o r t e d  a d v e r s e  e v e n ts  f o l l o w i n g  m u l t ip le  d o s in g  w i t h  a c t iv e  

t r e a tm e n t  ( 1 0  p a t ie n t s )  a s  w e r e  r e p o r t e d  w i t h  p la c e b o  ( 9  p a t ie n t s ) .  T h e r e  w e r e  s im i la r  n u m b e r s  o f  

c e n tra l n e r v o u s  s y s te m  e v e n ts  ( 4  o n  r e m a c e m id e  h y d r o c h lo r id e  v e r s u s  3  o n  p la c e b o ) ,  a n d  

g a s t r o in te s t in a l  s y m p t o m s  r e p o r t e d  w e r e  e q u a l w i t h  b o t h  t r e a t m e n t s  ( 2  e a c h ) .

DISCUSSION

C B Z  is  a  w e l l - k n o w n  in d u c e r  o f  h e p a t ic  c y t o c h r o m e  P 4 5 0  m o n o - o x y g e n a s e  e n z y m e s  ( 1 1 ) .  T h is  

re s u lts  in  m a r k e d  in t r a -  a n d  in t e r - in d iv id u a l  v a r ia t io n s  in  s e r u m  c o n c e n t r a t io n s  o f  o t h e r  a n t ie p i le p t ic  

dru g s d u r in g  p o ly p h a r m a c y ,  a n  u n p r e d ic t a b i l i t y  w h ic h  is  e x a c e r b a t e d  b y  v a r ia b le  a u t o in d u c t io n  o f  

m e ta b o lis m  ( 1 0 ) .  I n  a d d i t io n ,  m a n y  o t h e r  d r u g s  h a v e  b e e n  s h o w n  t o  in t e r a c t  p h a r m a c o k in e t ic a l ly  

w ith  C B Z  ( 1 4 ) ,  I t s  c le a r a n c e  in  m a n  is  a lm o s t  e x c lu s iv e ly  b y  h e p a t ic  m e t a b o l ic  t r a n s f o r m a t io n .  A  

m a jo r p a t h w a y  in v o lv e s  o x id a t io n  o f  C B Z  t o  1 0 ,1 1  e p o x id e  ( C B Z - E ) ,  w h ic h  is  i t s e l f  b io t r a n s f o r m e d  

by t h e  e n z y m e  e p o x id e  h y d r o la s e  t o  t h e  in e r t  d ih y d r o d io l  ( 1 7 ) .  T h e s e  t w o  p r o c e s s e s  p r o v id e  a  t a r g e t  

for in t e r a c t io n s  b e t w e e n  C B Z  a n d  o t h e r  a n t ie p i le p t ic  d r u g s  ( 1 3 , 1 8 - 1 9 ) .  C h a n g e s  in  t h e  c o n c e n t r a t io n  

of C B Z - E  m a y  b e  im p o r t a n t  b e c a u s e  th is  c o m p o u n d  c o n t r ib u t e s  t o  t h e  e f f ic a c y  a n d  a d v e r s e  e v e n ts  

as s o c ia te d  w i t h  C B Z  t r e a t m e n t  ( 1 2 ) .  I n  o n e  s tu d y  t h e  m a jo r i t y  o f  p a t ie n t s  o n  c o - m e d ic a t io n  w i t h  

re m a c e m id e  h y d r o c h lo r id e  a n d  C B Z  h a d  d o s e  r e la te d  in c r e a s e s  in  t r o u g h  c o n c e n t r a t io n s  o f  C B Z ,  

n e c e s s ita tin g  a  r e d u c t io n  in  t h e  C B Z  d o s e  in  a  f e w  p a t ie n t s  ( 2 0 ) .

L ike C B Z ,  r e m a c e m id e  is  a ls o  e l im in a t e d  a lm o s t  e x c lu s iv e ly  b y  m e t a b o l ic  t r a n s f o r m a t io n .  A p a r t  f r o m  

the a c t iv e  m e t a b o l i t e ,  A R L 1 2 4 9 5 X X ,  w h ic h  is  f o r m e d  b y  u b iq u i t o u s  a m in o p e p t id a s e  e n z y m e s ,  t h e r e  

are a  n u m b e r  o f  o x id a t iv e  b io t r a n s f o r m a t io n  p r o d u c ts .  I n  a d d i t io n ,  r e m a c e m id e  h y d r o c h lo r id e  

u n d e rg o e s  d i r e c t  g lu c u r o n id a t io n  t o  f o r m  a  c a r b a m o y l  g lu c u r o n id e  m e t a b o l i t e ,  a n  i m p o r t a n t  p a t h w a y

9
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in man (20). This interaction study used a placebo-controlled design in order to investigate the 

potential interaction between remacemide hydrochloride and CBZ. Following multiple dosing with  

remacemide hydrochloride, there was an overall small inhibition o f C B Z  metabolism during active 

treatment compared with placebo. A  minority o f patients demonstrated a rise in C B Z  trough levels 

>30%. There were no significant changes overall in C B Z -E  concentrations during treatment with  

remacemide hydrochloride, although there were marked differences in individual response w ith one 

patient exhibiting an increase in C B Z -E  level o f  more than 100%. N o  patients had any clinical 

sequelae.

These findings are consistent with in-vitro experiments using 6-B-hydroxylation o f  testosterone as a 

marker o f  C Y P 3A 4 activity (Riley - manuscript in preparation), which showed that remacemide is an 

inhibitor o f  cytochromal activity associated with this isoform. Since the concentrations o f  

remacemide required in the in-vitro mixture to achieve inhibition o f C YP3 A4 are in excess o f those 

reached in vivo, it is fair to assume that any increase in C B Z concentrations will be modest.

Remacemide has not been shown to affect epoxide hydrolase in vitro, in keeping with the findings in 

the study.

This study also offered the opportunity to explore the pharmacokinetics o f remacemide and 

AR L12495XX in enzyme-induced patients. For both compounds, the multiple dose profile was 

consistent w ith that predicted from the single dose, indicative o f linear disposition and the absence o f  

autoinduction o f  metabolism. The terminal half life o f  remacemide was similar to that found in 

previous clinical studies in human volunteers (Figure 5), whereas that o f  A R L 1 2 4 9 5 X X  in enzyme- 

induced patients was shorter than in untreated healthy volunteers (20). Exposure to remacemide 

based on A U C  values was around 60%  o f that reported previously in non-induced subjects taking the 

same dose o f  the drug, while that o f  A R L 1 2 4 9 5 X X  was about 30%  (Figure 5).

1 0
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The most common adverse events reported with remacemide hydrochloride are dizziness and mild to 

moderate gastrointestinal upset (20). There were few adverse events reported in this study. In  

particular, there was none resulting in withdrawal from the study, although one patient developed 

dizziness, necessitating a decrease in remacemide hydrochloride dose. A  greater number o f adverse 

events were reported during the placebo phase. In healthy volunteers, the A U C  following similar 

dosing w ith remacemide hydrochloride (600mg/day) was between two and three times higher than that 

observed in patients in this study. Consequently, 600mg remacemide hydrochloride per day is unlikely 

to be the maximum tolerated dose in patients receiving treatment with CB Z.

Although vigilance should be exercised in adding remacemide hydrochloride to antiepileptic drug 

regimes containing C B Z, it is unlikely that a reduction in C B Z dosage will be required in most 

patients. Since the presence o f  C B Z will result in lower bioavailability o f  remacemide and 

A R L 12495X X , patients pre-treated with an enzyme-inducer such as C B Z  will require higher doses o f  

remacemide hydrochloride than non-induced patients. In  addition, the remacemide concentration can 

be expected to rise when carbamazepine is withdrawn. The mutual interaction between C B Z  and 

remacemide hydrochloride is predictable and modest, and should not present a barrier to their w ide­

spread clinical use in combination. As remacemide and A R L 1 2 4 9 5 X X  exhibit predictable and linear 

kinetics in C B Z patients, with no evidence o f autoinduction, there should be little need for routine 

therapeutic monitoring o f either drug in this clinical setting.
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Table 1

Demographic characteristics o f  study population

Patient Sex Age
(years)

Seizure
type

CBZ dose 
(mg/day)

Treatment
schedule

001 M 36 CPS/2GTCS 600 tid
002 M 47 SP/2GTCS 800 tid
003 M 48 CPS/2GTCS 800 bd
016 F 65 CPS/2GTCS 800 bd
017 F 43 CPS/2GTCS 800 bd
018 M 46 2GTCS 400 bd
019 M 56 SP/CPS 600 tid
020 M 39 CPS/2GTCS 600 od
021 F 57 2GTCS 400 bd
022 F 46 SP/CPS/2GTCS 1200 bd
023 M 57 SP/CPS/2GTCS 800 bd
024 F 51 1GTCS 800 bd
025 F 40 CPS/2GTCS 1200 od
027 F 40 1GTCS 1600 bd

SP =  simple partial seizures

1GTCS =  idiopathic tonic-clonic seizures

CPS =  complex partial seizures

2G TCS =  localisation-related tonic-clonic seizures

12
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Table 2

M e a n  c a r b a m a z e p in e  p h a r m a c o k in e t ic  p a r a m e t e r s  ( S D )  a f t e r  s in g le  a n d  m u l t ip le  d o s e s  o f  r e m a c e m id e  

h y d r o c h lo r id e  a n d  p la c e b o  in  1 0  e p i le p t ic  p a t ie n ts

A U C

( u m o l . h r . r * )

C m a x

( u m o l . l ' l )

T m a x

( h o u r s )

C m i n

( u m o U ‘ 1 )

P la c e b o 3 6 7 . 8 ( 1 3 5 . 2 ) 4 0 . 5  ( 8 . 7 ) 4 . 6  ( 4 . 8 ) 3 4 . 7  ( 8 . 2 )

S in g le  d o s e 3 9 2 . 3  ( 1 6 1 . 1 ) 4 3 . 3  ( 1 0 . 1 ) 7 .1  ( 4 . 2 ) 3 4 . 0  ( 7 . 2 )

M u l t ip le  d o s e s 4 2 5 . 4 ( 1 5 6 . 9 ) 5 0 . 6 ( 1 2 . 2 ) 5 .1  ( 3 . 5 ) 4 0 . 8 ( 1 1 . 6 )
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Table 3

Mean carbamazepine 10,11 epoxide pharmacokinetic parameters (SD) after single and multiple dose of 
remacemide hydrochloride and placebo in 10 epileptic patients

AUC
(umol.hr.r*)

Cmax
(um ol.rl)

Tmax\
(hours)

Cmin
(umol.l- )̂

Placebo 53.8 (32.7) 5.6 (2.6) 6.2 (5.1) 5.0 (2.4)
Single dose 46.7 (26.9) 5.0 (2.2) 4.6 (4.6) 4.5 (2.2)
Multiple doses 48.4 (27.5) 5.9 (2.4) 5.2 (4.6) 4.9 (2.2)

i
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able 4

lean pharmacokinetic parameters (SD) of remacemide and ARL12495XX in 10 carbamazepine treated patients 
Mowing acute and chronic dosing.

' Cmax
(ng.ml'1)

Cmin
(ng-ml*1)

Tmax
(hours)

AUC* 
(ng.hr. ml**)

t*/2
(hours)

iingle dose
Remacemide 783 (229) NA 1.5 (1.0) 2266 (1344) 3.60 (1.31)
ARL 12495XX 30.2 (7.6) NA 2.0 (0.7) 395(125) 10.44 (0.65)

Multiple doses
Remacemide 1006(411) 60.9 (74.8) 1.1 (0.4) 2644 (1376) 3.54(1.47)-
ARL 12495XX 64.8 (23.2) 25.2 (7.9) 1.6 (0.9) 427 (108) 11.25 (4.11)

*AUCoo for single dose profiles, AUCo-i2h for multiple dose profiles NA = not applicable
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Legends to figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Mean plasma concentrations of carbamazepine in 10 patients with epilepsy following 

single (300mg) or multiple doses (300mg twice daily for 14 days) of remacemide
i

hydrochloride and multiple dose placebo

Mean plasma concentrations of carbamazepine 10,11-epoxide in 10 patients with 

epilepsy following single (300mg) and multiple doses (300mg twice daily for 14 days) 

of remacemide hydrochloride and multiple dose placebo

Mean (±SD) single dose and steady-state plasma concentrations of remacemide in 10 

patients taking carbamazepine who received a single dose (300mg) or multiple (300mg 

twice daily for 14 days) doses of remacemide hydrochloride

Mean (±SD) single dose and steady-state plasma concentrations of ARL12495XX in 10 

patients taking carbamazepine who received a single dose (300mg) or multiple (300mg 

twice daily for 14 days) doses of remacemide hydrochloride 

Mean pharmacokinetic parameters of remacemide and ARL12495XX in 

carbamazepine-treated patients versus healthy untreated volunteers (volunteer data 

taken from reference 20)
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