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SUMMARY

Cytokines are small proteins produced by many tissue types and have wide ranging 

effects on the haemopoietic and immune systems. The cloning of human cytokines 

has facilitated the production of recombinant cytokines in quantities sufficient to 

enable detailed study of their biological properties. An understanding of the 

biological effects of these cytokines has led to their introduction as novel therapeutic 

agents with widespread potential uses, including the treatment of cancer, cytopenias 

and viral infections. The use of heterologous cytokines in domestic species has been 

of only limited success, in part due to the variable degree of interspecies conservation. 

In order to fully realise the potential for cytokines as therapeutic agents and to 

facilitate further studies of the role of cytokines in diseases of domestic species, the 

isolation of species specific cytokines is desirable. This thesis describes the approach 

used to isolate and clone feline stem cell factor (fSCF) and subsequently express the 

recombinant protein and characterise its biological properties.

Stem cell factor is the ligand for the tyrosine kinase receptor encoded by the c-kit 

gene. It has wide ranging actions on cells of the haemopoietic, reproductive and 

nervous systems and melanocytes, in particular promoting the survival and 

development of primitive cells. cDNA clones encoding two isoforms of fSCF were 

isolated using RT-PCR and their sequences determined. The cDNAs encode a 

predicted full length fSCF protein of 274 amino-acids and a shorter isoform of 246 

amino acids. Feline SCF shows a high degree of homology to the SCFs of other 

species at both the nucleic acid and protein level. Feline SCF was expressed as a 

soluble protein using the glutathione S-transferase fusion protein system and purified 

by affinity, anion exchange and gel filtration chromatography. Murine MC/9 and 

human TF-1 cells were used to assay fSCF biological activity. The recombinant 

protein supported the growth of feline granulocyte-macrophage colony forming cells 

in vitro and in combination with feline phytohaemagglutinin lymphocyte conditioned 

medium increased colony numbers and sizes were seen. Administration of the 

recombinant protein to cats produced increases in circulating colony forming cells,



induced extramedullary haemopoiesis in the spleens of treated cats and led to 

increased mast cell numbers at the site of injection.

In order to enable assessment of the effects of frSCF upon primitive haemopoietic 

cells, the production of polyclonal antiserum to CD34 (a transmembrane glycoprotein 

expressed predominantly on primitive haemopoietic cells) was attempted. Rabbits 

were used to raise antisera to conserved intracellular epitopes of the CD34 molecule 

by inoculation with immunogenic peptides. This was of limited success; whilst the 

antisera recognised the synthetic peptides against which they had been raised, they 

showed poor affinity for the native protein.

These studies provide the basis for further investigations of the potential of this 

cytokine in the treatment of feline disease, particularly cytopenias associated with 

neoplasia, chemotherapy or viral disease (e.g. FeLV, FIV) and in the development of 

peripheral stem cell transplantation. The ability of fSCF to synergise with other 

cytokines in vitro suggests that it may be combined with other haemopoietic 

cytokines in vivo to provide more potent haemopoietic stimulation. Furthermore, the 

recombinant cytokine may be usefully employed to support in vitro growth of 

haemopoietic cells in this species and so facilitate their study.
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GENERAL INTRODUCTION

1.1 INTRODUCTION

The cytokines are a large family of proteins with pleiotropic regulatory effects on 

many cell types involved in host defence and repair processes. Cytokines affect cells 

in a complex network of both positive and negative interactions. An understanding of 

the actions of a single cytokine is not possible without consideration of these 

interactions. This concept is encompassed in the following insight by Rene Dubos: "in 

the most common and probably the most important phenomena in life, the constituent 

parts are so interdependent that they lose their character, their meaning and indeed 

their very existence when dissected from their functional whole" (quoted by De 

Maeyer and De Maeyer-Guignard, 1988). Consequently, this chapter aims to give an 

overview of the cytokine family and their role in haemopoiesis prior to considering the 

biological functions and therapeutic applications of the cytokine, stem cell factor, in 

greater detail.

1.2 THE CYTOKINES - AN OVERVIEW

1.2.1 The  CYTOKINES

The rapidly expanding field of cytokine research has arisen from the former 

independent disciplines involving the study of lymphokines, interferons, haemopoietic 

growth factors and the more classical growth factors. The study of soluble protein 

mediators, produced by lymphocytes in response to antigenic stimulation, was 

originally the domain of the immunologist; these substances were termed 

'lymphokines' (Dumonde et al, 1969). The recognition that monocytes produced 

similar proteins soon led to the complementary term 'monokines'. Interferons were 

originally described, in 1957, as proteins able to confer cellular resistance to viral 

infection (Isaacs and Lindenmann, 1957). Eight years later a functionally related, 

virus-inhibitory protein produced by mitogen activated T lymphocytes was described 

(Wheelock, 1965). This later became known as interferon-y and subsequently its 

actions, and those of the other interferons, as regulators of a variety of immunological 

functions were recognised (reviewed by De Maeyer and De Maeyer-Guignard, 1994). 

The haemopoietic growth factors, were initially termed colony stimulating factors due 

to their effects on the promotion of colonies of granulocytes or macrophages from
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bone marrow precursor cells (Robinson et al, 1967); subsequently they have been 

shown to exert additional regulatory effects upon mature cells of the immune system. 

Classical growth factors, such as platelet derived growth factor, whilst having a 

largely different spectrum of activity also have effects which make them comparable 

to proteins within the other groups. In recognition of the role of these proteins as 

mediators between a variety of cell types within the immune system the descriptive 

term 'cytokine' was introduced (Cohen et al, 1974). The term interleukin and a 

numbering system, introduced in 1979, helped to remove some of the confusing 

nomenclature (Aarden et al, 1979).

It is clear that the cytokines form a large group of regulatory molecules with diverse 

functions, such that it is difficult to formulate a precise definition as to what 

constitutes a cytokine. Vilcek and Le (1994) proposed a working definition of 

cytokines as "regulatory proteins secreted by white blood cells and a variety of other 

cells in the body; the pleiotropic actions of the cytokines include numerous effects on 

cells of the immune system and modulation of inflammatory responses". This short 

definition is necessarily vague, however, consideration of key features exhibited by the 

cytokines enhances an understanding of their basic properties (Table 1.1).

Cytokines are polypeptides, which may be glycosylated. They are generally less 
than 30 kDa in size although may form oligomers.
The production of cytokines is not generally constitutive, but is induced by 
altering the level of transcription or translation.
Production of cytokines is generally transient and actions are mediated at close 
range in either an autocrine or paracrine fashion.
Actions are mediated via binding to high affinity cell-surface receptors.
Actions due largely to modulations in gene expression in target cells, leading to 
alterations in cell proliferation, differentiation or function.
Whilst their actions are often diverse, they generally include effects upon 
haemopoietic cells.

Table 1.1: The characteristic features of cytokines.

19
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The production of each cytokine is not generally limited to a specific cell type. The 

range of target cells and spectrum of actions of most of the cytokines is usually broad, 

leading to the description of cytokines as pleiotropic. In addition the spectrum of 

actions of structurally dissimilar cytokines often overlap, leading to a large degree of 

redundancy. These features serve to differentiate the cytokines from the more 

classical endocrine hormones which are produced by specialised cells, act on target 

cells at some distance and typically show distinct and specific effects. The generation 

of specific responses by cytokines may, in part, rely upon their local production and 

sphere of action. Cells producing cytokines are often located close to their target 

cells (Metcalf, 1991a). Cytokines are produced in small quantities and production 

may be directed toward the responder cells (Poo et al, 1988). Following interaction 

with its receptor, the cytokine is generally destroyed by receptor mediated 

endocytosis (Nicola et al, 1988). Additionally, the effects of cytokines may be 

localised due to sequestering by extracellular matrix components or by their retention 

by the producing cell as membrane associated cytokines (Gordon, 1991). Circulating, 

soluble receptors may serve as a 'safety net' to inhibit the actions of cytokines that 

inadvertently reach the circulation or may serve as a mechanism to downregulate 

receptor levels (reviewed by Heaney and Golde, 1996).

1.2 .2  C l a s s if ic a t io n  o f  c y t o k in e s

In order to rationalise the classification of cytokines, a system based upon their three- 

dimensional protein structure has been proposed (Bazan, 1990b; Bazan, 1991b; Parry 

et al, 1991; Young, 1992; Boulay and Paul, 1993; Sprang and Bazan, 1993; reviewed 

by Nicola, 1994). This classification leads to four main groups of cytokines, as 

summarised in Table 1.2. Using this classification system common biological actions 

may be seen within groups of cytokines. This is suggested to arise, in part, due to 

shared receptor subunits (Nicola and Metcalf, 1991; Bazan, 1993; Gearing and 

Ziegler, 1993) or common intracellular signalling mechanisms (Murakami et al, 

1991).

Short chain 4-a-helical bundles cytokines (group 1) show effects involving 

immunohaemopoiesis. Cytokines, within this group acting via the common y receptor

20
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(e.g. IL-2, IL-4 etc.) influence acquired immunity via regulation of T/B lymphocyte or 

macrophage function. Those using the common P chain affect innate immunity via 

modulation of macrophage, neutrophil, eosinophil and mast cell activity. M-CSF and 

SCF affect the development of immature haemopoietic cells within the bone marrow. 

Those cytokines with a long chain 4-a-helical bundle structure are somewhat 

contradictory in nature. In the case of cytokines acting via the shared gpl30 receptor 

subunit (IL-6, leukaemia inhibitory factor, etc.) they are highly pleiotropic. Other 

cytokines within the group are, however, highly specific (e.g. erythropoietin). This 

group also includes growth hormone and prolactin which are more typical of 

endocrine hormones.

Group 2 cytokines (long chain P-sheet structures) such as the nerve growth factor 

(NGF) and fibroblast growth factor (FGF) families are involved in growth and 

differentiation of a range of neural, epithelial and endothelial tissues. The tumour 

necrosis factor (TNF) family and IL-1 family of cytokines, however, are more 

immunomodulatory in action, with particular effects in the acute phase response to 

disease or injury.

The group 3 cytokines (short chain a/p) include the chemokines, the largest sub­

family of cytokines, which act primarily as modulators of the innate arm of the 

immune system, involved in the attraction and activation of macrophages, neutrophils 

and eosinophils. This group also includes the epidermal growth factor class of 

cytokines, involved in epithelial cell proliferation and wound healing.

The group 4 cytokines (mosaic structures) exhibit effects that are reflected by at 

least one component of their mosaic structure. IL-12 has immunomodulatory 

properties typical of the 4-a-helical cytokines whilst the neuregulins (which have an 

immunoglobulin and an epidermal growth factor [EGF] like domain) have EGF like 

functions.

21



LEGEND:

BDNF brain-derived neurotrophic factor
CNTF ciliary neurotrophic factor
CSF colony stimulating factor
CSF-1 colony stimulating factor-1 (M-CSF)
EGF epidermal growth factor
EPO erythropoietin
FGF fibroblast growth factor
Fit fins-like tyrosine kinase
G-CSF granulocyte colony stimulating factor
GGF glial growth factor
GH growth hormone
GM-CSF granulocyte macrophage colony stimulating factor
GRO growth-related oncogene
HGF hepatocyte growth factor
HRG heregulin
IFN interferon
IGF insulin like growth factor
IL interleukin
KGF keratinocyte growth factor
LEF leukaemia inhibitory factor
M-CSF macrophage colony stimulating factor
MCP macrophage chemoattractant protein
MIP macrophage inhibitory protein
NDF Neu differentiation factor
NGF nerve growth factor
NT neurotopin
OSM oncostatin-M
PDGF-A/B platelet derived growth factor
PRL prolactin
RANTES regulated upon activation, normal T cell expressed and secreted
SCF stem cell factor
TGF transforming growth factor
TNF tumour necrosis factor
VEGF vascular endothelial growth factor
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CYTOKINE
GROUP

SUBSET EXAMPLES COMMENTS

Group 1: 4-a 
helical bundle

Short chain 4-a 
helical bundle

IL-2, IL-4, EL-7, IL-9, IL-13. share y-chain receptor 
subunit.

IL-3, GM-CSF, IL-5. share P-chain receptor 
subunit

SCF, M-CSF, flt-3. Tyrosine kinase (III) 
receptor

IFN-y.
Long chain 4-a 
helical bundle

IL-6, LIF, OSM, CNTF, IL- 
11.

share gpl30 receptor 
subunit

EPO, G-CSF.
GH, PRL.
EL-10, IFN-a/p.

Group 2: long 
chain p-sheet

Cysteine knot 
(dimers)

TGFp, activin, inhibin.
PDGF-A/B, VEGF.
NGF, BDNF, NT-3.

P-jellyroll TNF-a, TNF-p, FASL.
P-trefoil IL-la/p. 

FGF, KGF.
Group 3: short 
chain oc/p

S-S rich P- 
meander

EGF, TGF-a.

S-S rich a/p IGF-I, IGF-II, insulin.
chemokines
a/p/y

CXC (a): EL-8, GRO, PF-4. small protein 
mediators, sub­
classified according to 
position and 
number of conserved 
cysteine residues

CC (P): MCP-1/2/3, MIP- 
la , RANTES.
Two cysteine (y): 
lymphotactin

Group 4: 
mosaic

Ig-EGF-TM- 
CYT (cell 
surface)

NDF, GGF, HRGs. Effects generally 
compatible with at least 
one component of 
structure

HGF and IL-12 are 
heterodimers

4-kringle + 
serine protease 
like

HGF.

4-a helical +
haemopoietin
domain

IL-12.

Table 1.2: Classification of the cytokine family based upon structural relationships. 
Adapted from Nicola (1994).
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1.2.3 C y t o k in e  r e c e p t o r s

The ability of cytokines to influence cell growth and differentiation relies upon their 

interaction with specific receptors. Ligand-receptor interaction initiates a cytoplasmic 

signalling pathway which leads ultimately to changes in cellular function (Bazan, 

1990b; Bazan, 1990a). Four major families of receptors have been described based 

upon similarities in protein sequence, predicted structure and biochemical function(s) 

(reviewed by Hilton, 1994): the haemopoietin/interferon receptor family, the receptor 

kinase family, the TNF/NGF receptor family and the family of G-protein coupled 

receptors. The key features of these receptors are shown in Figure 1.1.

1.2.3.1 G protein coupled receptors

A variety of receptors mediate their intracellular actions via interaction with guanine 

nucleotide-binding proteins (G proteins), including those for a number of hormones 

(e.g. LH, PTH), neurotransmitters (e.g. adrenaline) and cytokines (e.g. IL-8). Despite 

this wide divergence, the G-protein coupled receptors show considerable structural 

homology based on the presence of seven hydrophobic areas of 20 - 25 amino acids, 

which form transmembrane a  helices (Lefkowitz and Caron, 1988; Ross, 1989). The 

ligand binding domain may be extracellular or transmembrane in location. (Strader et 

al, 1994). The binding of a ligand to its receptor produces a conformational change 

in the intracellular part of the receptor, permitting it to interact with a G protein. 

Binding of the G protein leads to activation of its a  subunit, associated with the 

exchange of GTP for GDP (Bourne et al, 1990; Bourne et al, 1991). Upon 

activation the a  subunit transduces an intracellular signal, the nature of which depends 

upon the subtype of the a  subunit. Examples include the increase or decrease of 

cAMP levels (the biological effects of which are numerous, including the regulation of 

kinase activity) or the regulation of ion channels (Spiegel, 1992).
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Ig like domains

Tyrosine 
kinase domain

G-protein coupled receptors
Receptors have a transmembrane 
region which traverses the 
membrane seven times e.g. IL-8; 
endothelin receptors.

Receptor kinases
Receptors have cytoplasmic 
catalytic kinase domain which 
phosphorylates either tyrosine or 
threonine/serine residues, 
e.g. SCF, M-CSF receptors, 
(class III tyrosine kinase 
receptor shown)

domain 
SD 100 /  
domain ^

Fibronectin
domains

Box 1 &
Box 2 motifs

Cysteine 
rich domain

'death'
domain

Haemopoietin/interferon receptors
Receptors have common extracellular 
domains composed of 200 a.a. termed ~ ■ 
D200. High affinity receptor generally 
formed as multimeric complex, e.g. IFN, 
IL-2, EPO receptors.

(CNTF receptor shown)

NGF/TNF receptors
Extracellular region contains multiple 
copies of cysteine rich domains 
e.g.TNF-R, CD40, CD30, FAS.

Figure 1.1: Classification of the cytokine receptor families and important 
characteristic features.
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1.2.3.2 The receptor kinases

The receptor kinase family of receptors share a number of conserved structural 

features: a large glycosylated extracellular ligand binding domain, a single 

hydrophobic transmembrane region and a conserved cytoplasmic domain with intrinsic 

catalytic function, which catalyses the phosphorylation of either tyrosine or serine and 

threonine residues (Hanks et al, 1988; Yarden and Ullrich, 1988; Williams, 1989; 

Ullrich and Schlessinger, 1990). The tyrosine kinase receptors may be further sub­

classified based upon sequence and structural similarities (Figure 1.2).

These receptors share a common mechanism of activation and signal transduction 

(Schlessinger, 1988; Williams, 1989). Receptor - ligand interaction induces receptor 

oligomerisation which leads to apposition of the cytoplasmic domains of the 

oligomers and activation of their intrinsic kinase activity (Ullrich and Schlessinger, 

1990). This activation leads to phosphorylation of specific amino acid residues in the 

cytoplasmic domain of the receptor. The phosphorylated residues are then able to 

interact with various cytoplasmic proteins and so initiate an intracellular signalling 

pathway which ultimately results in alteration of cellular function.

1.2.3.3 The haemopoietin/interferon receptor family

The haemopoietin/interferon receptor family comprises the majority of cytokine 

receptors and has thus been named the cytokine receptor superfamily. The family may 

be further subclassified into class I (haemopoietic or cytokine/growth 

hormone/prolactin receptor family) or class II (interferon family) (Bazan, 1990a). 

The receptors are thought to have arisen from a common ancestral gene which has 

been extensively modified and duplicated and so share certain common features 

(Nakagawa et al, 1994). The receptors have a single hydrophobic transmembrane 

domain, a highly variable cytoplasmic domain and an extracellular domain with certain 

conserved features. Many of the receptors contain extracellular immunoglobulin-like 

or fibronectin type III domains, however, the major region of homology lies within 

one or two domains of 200 amino acids (D200). The D200 domain may be further 

divided into homologous sub-domains of 100 amino acids (SD100) (Bazan, 1990a;
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Thoreau et al, 1991). The intracellular domains have regions of limited homology in 

the membrane-proximal region, known as box 1 and box 2 motifs (Bazan, 1990a).

The extracellular domain of the class I receptors is further defined by the presence of 

four positionally conserved cysteine residues and a Try-Ser-Xaa-Try-Ser (WSXWS) 

motif (Bazan, 1990a). The conserved cysteine residues are thought to form 

disulphide bonds which contribute significantly to receptor tertiary structure. The 

function of the WSXWS motif, however, remains elusive, but it may serve to direct 

proper intracellular transport (Yoshimura et al, 1992) or efficient folding of the 

precursor protein (Hilton et al, 1996). The class II receptors show similar 

characteristic cysteine residues, in pairs, at the amino and carboxyl termini of their 

SD-200 domains (Bazan, 1990a)

The members of this receptor family are predicted to adopt a similar tertiary 

conformation, whereby the SD-100 domains form a 'barrel' like structure. The ligand 

interaction site is predicted to be formed by the hinge region connecting two adjacent 

'barrels' (Bazan, 1990a). This prediction was confirmed in the case of growth 

hormone receptor and its ligands, growth hormone and prolactin, upon the discovery 

of the crystal structure of the receptor-ligand complex (De Vos et al, 1992; Somers 

etal., 1994).

These structural studies also served to introduce the concept of receptor 

oligomerisation as a necessary prerequisite to signal transduction; one molecule of 

growth hormone was found to form a complex with two receptor molecules (De Vos 

et al, 1992). Subsequently, receptor oligomerisation has been demonstrated in the 

majority of cytokines within this family. In most cases, receptors consist of a 

multichain complex, formed by different subunits, utilising a ‘private’ ligand-specific 

receptor chain and a ‘public’ class-specific signal transducing chain (Kishimoto et al, 

1994). For example, GM-CSF, IL-3 and IL-5 each bind to a specific a-subunit with 

low affinity. A high affinity receptor complex, capable of signal transduction, is 

formed upon subsequent interaction with a common p-subunit (reviewed by Miyajima 

e ta l, 1992a, Miyajima eta l, 1992b).
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I II III IV

CYS

CYS

PTK KI

EGF-R Insulin-R CSF-l-R FGF-R
HEKl/neu IGF-l-R PDGF-R

SCF-R

Figure 1.2: Classification of the tyrosine kinase receptor superfamily: diagrammatic 
representation of the receptor sub-classes. Examples of the members of each receptor 
subclass are shown. Class I receptors have two cysteine rich extracellular domains. 
Class II receptors have a heterotetrameric structure (0 C2 P2) with similar cysteine rich 
domains. Class III and IV receptors are characterised by the presence of five or three 
extracellular immunoglobulin-like domains, respectively and the presence of a split 
tyrosine kinase domain. Adapted from Ullrich and Schlessinger, (1990). Up to six 
further classes of tyrosine kinase receptor have been recognised, although all the 
cognate ligands have yet to be cloned (Hilton, 1994).

LEGEND:

CYS: cysteine rich domain CSF1-R: colony stimulating factor - 1 receptor
Ig: immunoglobulin like domain SCF-R stem cell factor receptor
PTK: tyrosine kinase domain PDGF-R: platelet derived growth factor receptor
KI: kinase insert. FGF-R fibroblast growth factor receptor

EGF-R: epidermal growth factor receptor
IGF-l-R: insulin like growth factor receptor
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1.2.3.4 TNF/NGF receptors

The TNF/NGF receptor superfamily includes the type I and II TNF receptors, the p75 

subunit of the NGF receptors, and the CD-30, CD-40 and FAS receptors. The 

members of this family exhibit low homology (25 - 30%) but are grouped together 

due to the presence of conserved extracellular cysteine rich domains (CRD) (reviewed 

by Bazan, 1993, Smith et al, 1994, Gruss and Dower, 1995). The receptors have 

variable numbers of CRDs (typically four), each of which has approximately six 

cysteine residues within a stretch of 40 amino acids. In addition, limited sequence 

similarity exists within the cytoplasmic domain of the p55 TNF receptor and FAS over 

a region of 65 - 80 amino acids. This region has been called the 'death domain' due to 

its role in the generation of apoptotic cell death (Tartaglia et al, 1993). Functional 

membrane associated receptors form a trimeric or multimeric structure, stabilised by 

intermolecular disulphide bonds (Banner et al, 1993). In addition many members of 

this family of receptors (e.g. TNFR-I, TNFR-II, CD30, CD40, FAS) also exist as 

soluble moieties. The generation of the soluble isoform may occur via proteolytic 

cleavage of the membrane associated receptor or by the use of alternatively spliced 

mRNAs (reviewed by Heaney and Golde, 1996).
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1.3 HAEMOPOIESIS

Circulating blood cells are generally short lived. The circulating lifespan of 

neutrophils in the cat is approximately 5 - 10 hours (Prasse et al., 1973). 

Haemopoiesis (or haematopoiesis) is the process whereby mature blood cells are 

continuously produced throughout life. During embryonic life haemopoietic cells 

develop within the yolk sac from mesodermal cells. Haemopoiesis occurs in ‘blood 

islands’ which consist of an outer endothelial layer, a central core of haemopoietic 

cells and an inner layer of endoderm. As fetal development progresses the main site 

of haemopoiesis becomes the fetal liver and later the bone marrow. In the adult 

mammal, the primary organ of haemopoiesis is the bone marrow, although the spleen 

and liver retain a capacity for extra-medullary haemopoiesis, which may be required 

during periods of increased demand. These changes in the predominant site of 

haemopoiesis are associated with the migration of immature stem cells and subsequent 

"seeding" of a new site of production (reviewed by Zon, 1995). Mature blood cells of 

all lineages ultimately originate from a select population of pluripotent stem cells. 

These stem cells develop into a series of increasingly specialised progenitor cells by a 

process of clonal proliferation and differentiation. The progenitor cells subsequently 

differentiate to produce mature blood cells which are released into the circulation. 

Thus, within the bone marrow a structured hierarchy of developing cells may be 

envisaged. This is represented diagrammatically in Figure 1.3. These developing cells 

do not exist in isolation within the bone marrow, but are found in association with 

stromal cells which form the haemopoietic microenvironment.
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Figure 1.3: Diagrammatic overview of haemopoiesis. Bone marrow haemopoietic 
cells consist of three main populations of cells: stem cells, progenitor cells and mature 
cells. The stem cells are the least differentiated and have the highest capacity for self 
renewal. The more primitive progenitor cells are capable of differentiation into cells 
of a number of lineages whilst the more committed progenitors are lineage restricted.

LEGEND:

BFU-E burst forming unit erythroid
CFU colony forming unit
CFU-Bas colony forming unit - basophil
CFU-Eo colony forming unit - eosinophil
CFU-E colony forming unit - erythroid
CFU-GEMM colony forming unit - granulocyte erythroid macrophage monocyte
CFU-GM colony forming unit - granulocyte macrophage
CFU-M colony forming unit - monocyte
CFU-Meg colony forming unit - megakaryocyte
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1.3.1 P l u r ip o t e n t  h a e m o p o ie t ic  s t e m  c e l l s

Pluripotent haemopoietic stem cells (PHSCs) have been defined as "cells with an 

extensive proliferative potential and a capacity to develop into cells of all lineages" 

(Quesenberry, 1992; Orlic and Bodine, 1994, and references therein). PHSCs are able 

to proliferate and produce either more stem cells (a process known as self renewal) or 

may differentiate to produce progenitor cells. This potential for self renewal provides 

the capacity for the generation of mature blood cells throughout life. The initial 

evidence for the existence of PHSCs originated from studies on patients with myeloid 

leukaemia. Cells of all lymphohaemopoietic lineages showed an identical

chromosomal abnormality (the Philadelphia chromosome) suggesting that the cells 

were derived from a single leukaemic cell. Subsequently, the existence of normal 

PHSCs was provided by demonstration of an identical, radiation induced 

chromosomal abnormality in all lymphohaemopoietic lineages in mice following bone 

marrow transplantation (Wu et al, 1968).

The study of the biological properties of the PHSC is fundamentally difficult due to 

the low numbers of stem cells present in the bone marrow (about 1 in 104 nucleated 

bone marrow cells) and absence of a distinct morphology. Early studies into stem cell 

biology were prompted by the use of radiation for military and peaceful purposes. It 

was recognised that mice given a lethal dose of irradiation suffered bone marrow 

failure which could be reversed by the injection of non-irradiated bone marrow cells. 

Recovery from lethal irradiation was associated with the development of macroscopic 

nodules within the spleen, consisting of multiple cell lineages. The cells responsible 

for generating these nodules were termed colony forming unit-spleen (CFU-S) (Till 

and McCulloch, 1961). Furthermore, using radiation induced chromosomal markers 

it was demonstrated that all cells within a single colony were derived from a single 

CFU-S (Becker et al, 1963; Wu et al, 1967). Thus the concept of cells with the 

potential to produce large numbers of daughter cells of multiple lineages was firmly 

established. However, it soon became apparent that CFU-S constituted a 

heterogeneous group of cells, some more primitive than others and with different 

degrees of repopulating ability. The CFU-S which produce later appearing colonies 

(day 12 CFU-S) share many of the characteristics of PHSCs. However, they differ
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from PHSCs in several important respects. No study has convincingly demonstrated 

that CFU-S are the progenitors for cells of the lymphoid system and the frequency of 

murine PHSC appears lower than that of day 12 CFU-S (Jones, 1992; Keller, 1992). 

Moreover, studies using the cytotoxic agent, 5-fluorouracil (5-FU) have demonstrated 

that 99.5% of CFU-S are killed by a single injection of 5-FU but that cells with long 

term repopulating ability survive (Orlic and Bodine, 1994).

In vitro assays have provided a great deal of information regarding haemopoiesis in 

general. In long term bone marrow cultures, the long-term culture initiating cell 

(LTC-IC) has been shown to have many of the properties of the PHSC. It can give 

rise to multipotential clonogenic cells for several months in culture and exists in the 

bone marrow at a similar frequency to PHSCs. However, the ability of cultured cells 

to repopulate mice declines in these long term cultures, likely associated with a 

decrease in PHSC number (Orlic and Bodine, 1994).

The study of PHSCs has been advanced further by the development of techniques to 

purify these cells. Methods used include separation based on physical characteristics 

such as cell density, sensitivity to drugs (e.g. 5-FU) and display of surface 

glycoproteins. However the use of monoclonal antibodies to cell surface antigens has 

provided a more potent tool with which to attempt identification and isolation of 

PHSCs. Initial separation techniques used included immune adherence and 

immunomagnetic bead separation, but the development of fluorescent-activated cell 

sorting (FACS) has provided a more powerful method to attempt purification of the 

PHSC. The PHSC population is enriched in cells lacking specific lineage makers [e.g. 

Mac (myelomonocytic cells), CD4, CD8 (T lymphocyte), B220 (B lymphocyte)]. 

Other important markers used to identify PHSCs include Sca-1, CD34, Thy-1, CD33, 

HLA, and c-kit. However the isolation of a definitive PHSC, in terms of phenotype, 

may be impossible due to the heterogeneity of the PHSC population, when assessed in 

this way (Leftwich et al, 1992; Orlic and Bodine, 1994).

An important subset of PHSCs are those present in the peripheral blood at 

approximately 2 - 10% of the levels present in bone marrow (Goodman and Hodgson, 

1962; McCredie et al, 1971). These cells are termed peripheral blood stem cells
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(PBSCs) and are able to successfully repopulate the bone marrow of transplanted 

hosts (Goodman and Hodgson, 1962). The numbers of PBSC are increased following 

high dose chemotherapy and by a number of haemopoietic growth factors. PHSC are 

also present in the adult liver (Taniguchi et al, 1996) and placental and umbilical cord 

blood (Nakahata and Ogawa, 1982).

1.3 .2  P r o g e n it o r  c e l l s

The developing cell population consists of more primitive multipotential progenitor 

cells [e.g. colony forming unit - granulocyte erythroid macrophage monocyte (CFU- 

GEMM)] which differentiate into a series of unipotential progenitor cells [e.g. colony 

forming unit - monocyte (CFU-M)]. These more mature progenitors have a high 

capacity for cell division, with each progenitor cell capable of producing up to 105 

immature cells of a specific lineage (Metcalf, 1989). These immature cells develop 

further to give functionally mature cells. The numbers of precursor cells and their 

high proliferative capacity likely provides the haemopoietic system with a large 

reserve for the generation of mature blood cells, which may be utilised in the event of 

increased demand (Necas et al, 1995).

The study of progenitor cells has been possible due largely to the development of 

techniques to culture the cells in vitro. Progenitor cells can be grown in agar or 

methylcellulose assays in the presence of stimulating factors. These factors were 

initially provided by feeder cells or from culture medium conditioned by the growth of 

certain cells (e.g. lectin stimulated lymphocytes). Subsequently, the production of 

purified haemopoietic growth factors, by purification to homogeneity or more recently 

by recombinant DNA techniques has provided valuable reagents with which to culture 

progenitor cells. Progenitor cells cultured in vitro proliferate and differentiate to 

produce phenotypically and functionally mature cells. Clonal assays may therefore be 

used to define the nature of and quantify numbers of progenitor cells.

As mentioned earlier a development hierarchy of haemopoietic cells exists within the 

marrow. In vitro colony assays have demonstrated the presence of distinct cell types 

with different degrees of differentiation and potential for proliferation. Amongst the
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most primitive of cells to be cultured in this assay system is the high proliferative 

potential colony forming cell (HPP-CFC). These cells are relatively resistant to 5-FU, 

require multiple growth factors for growth support and give rise to large macroscopic 

colonies of macrophages (over 5 x 104 cells). They are able to generate myeloid, 

erythroid and megakaryocytic precursors in culture (Bertoncello, 1992). The 

generation of mixed colonies in culture is also a feature of the primitive progenitor 

CFC-GEMM (CFC-Mix). More differentiated progenitors may give rise to two cell 

types (e.g. CFC-GM) or a single cell type. Erythroid progenitors with high (BFU-E) 

or lower (CFU-E) proliferative potential have also been recognised (Stephenson et 

al, 1971; Heath et al, 1976). The relationship of progenitor and stem cells, as 

identified by different bioassays is shown in Figure 1.4.

The development of cell lines with characteristics of stem and progenitor cells has 

provided a powerful model enabling study of mechanisms of differentiation and self­

renewal (Dexter et al, 1980; Spooncer et al, 1986). Cell lines, designated factor 

dependent continuous cell lines, Paterson Laboratories (FDCP), require growth 

factors for survival (typically IL-3), are non-malignant and can differentiate into cells 

of multiple lineages. In the absence of IL-3, FDCP-Mix cells die by apoptosis 

(Williams et al, 1990). However, when cultured over a layer of feeder cells (3T3 

cells) they can survive and differentiate in the absence of IL-3, the feeder cells 

supplying the necessary survival signals (Yamazaki et al, 1989). Differentiation of 

FDCP-Mix cells into mature haemopoietic cells can be effected by the addition of 

growth factors and the lineage into which these cells develop can be influenced by the 

growth factors used. For example, in the presence of IL-3, EPO and haemin, cells 

develop along the erythroid lineage, whilst IL-3, GM-CSF and G-CSF stimulate 

development of these cells into neutrophils (Kan et al, 1993).

34



GENERAL INTRODUCTION

Progenitor Cells BFU-E, CFU-GM, CFU-GEMM, D8 CFU-S

Stem Cells

In vivo Day 12 CFU-S D12-CFU-S
In vitro Blast cell CFU CFU-BL
High proliferative-potential CFU HPP-CFU
Competititive repopulating unit CRU
Long term culture initiating cell LTCIC

CFU-GM

FU-B,
D12

CFU-S
LTCI< 
. CRU

CFTJ-G
PP-CNC

BFU-E
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Rhodamine dull -----------------------------------► Rhodamine bright --------►
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C D -34+ ---------------------------------------------------------------------------------------------

CD-33* |---------------------- C D -33+ ---------------------------

Figure 1.4: Diagram to show inter-relationships between stem and progenitor cell 
populations as determined by a number of assays. Adapted from Moore (1991).
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1.3.3 T h e  h a e m o p o ie t ic  m ic r o e n v ir o n m e n t

Haemopoiesis within the bone marrow of adult mammals occurs within extravascular 

spaces between marrow sinuses. The sinus wall is composed of an inner luminal layer 

of endothelial cells and an outer layer of reticular adventitial cells. The endothelial 

cells form a complete layer, with adjacent cells overlapping and having distinct cell 

junctions. The adventitial reticular cells have extensively branching cytoplasmic 

processes which envelop the outer wall of the sinus to form an adventitial sheath. 

This sheath provides incomplete coverage of the abluminal surface of the sinus; 

regulation of this coverage may be important in controlling cell egress from the bone 

marrow. The reticular cells provide physical support for haemopoietic cells and may 

have inductive and regulatory functions. Together the endothelium and reticular cells 

form the “blood-bone barrier”. Endothelial and reticular cells belong to a subset of 

non-haemopoietic cells within the bone marrow called stromal cells. Other stromal 

elements include marrow fibroblasts, adipocytes and macrophages (Lichtman, 1984).

Studies of stromal cell cultures have provided evidence establishing their importance 

in haemopoiesis. Long term bone marrow cultures (LTBMC) established in a nutrient 

rich medium with hydrocortisone and horse serum (Dexter cultures) consist of an 

adherent stromal cell layer and adherent and non-adherent haemopoietic cells. The 

stromal cells form a heterogeneous population consisting of cells which 

morphologically resemble endothelial cells, fibroblasts, adipocytes and macrophages. 

The stromal layer supports the growth of mature myeloid cells, multipotent 

myeloerythroid progenitors, progenitors of B and T lymphocytes and even pluripotent 

stem cells (Dexter et al, 1984). Murine lymphoid (B-cell) cultures can be established 

using the system established by Whitlock and Witte (1982), where cultures are 

established in a nutrient poor medium using fetal calf serum with no hydrocortisone. 

It has further been established that the stromal layers established in either culture 

system are able to support the growth of haemopoietic cells supported in the other 

system following appropriate changes in the growth medium. Such cultures are 

termed 'switch cultures'. The development of stromal cell lines have also provided a 

valuable tool to study stromal cells in vitro.
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Stromal cells appear to support haemopoiesis in three main ways: direct cell-cell 

interactions, production of extracellular matrix and production of soluble mediators. 

Direct examination of bone marrow has shown that stromal cells and haemopoietic 

cells are intimately related. Reticular cell processes interact with developing 

granulocytes, whilst developing red blood cells are found in association with clusters 

of macrophages in "erythroblastic islets". Similar associations of stromal and 

haemopoietic cells are seen in LTBMC, where progenitor cells develop in close 

association with the adherent stromal layer. Stromal cells express surface molecules 

such as vascular cell adhesion molecule 1 (VCAM-1), fibronectin and glycoproteins; 

these molecules have been implicated in mediating attachment of progenitor cells to 

the stroma. The attachment of CD34+ cells expressing very late antigen-4 (VLA-4) 

to stromal cell VCAM-1 can be blocked by antibody to VLA-4 resulting in delayed 

myelopoiesis in Dexter cultures (Quesenberry, 1992; Deryugina and MullerSieburg, 

1993). Stromal cells also express membrane associated cytokines including M-CSF 

and SCF. These may mediate attachment of cells expressing the appropriate receptor 

and may also act as growth factors for developing haemopoietic cells. The 

extracellular matrix produced by stromal cell lines contains collagen, laminin, 

fibronectin and proteoglycans such as heparan sulphate and chondroitin sulphate. 

Such components may facilitate adhesion of haemopoietic cells, aid transfer of 

nutrients and result in the local sequestering of cytokines. It has recently been shown 

that the survival of human LTC-ICs in long term stromaless culture (in the presence 

of picogram quantities of cytokines) is greatly enhanced by the addition of purified, 

stromal cell derived, heparan sulphate (Gupta et al, 1996).

Stromal cell lines produce a variety of different cytokines, both constitutively and 

following induction by external factors. Cytokines produced include GM-CSF, G- 

CSF, M-CSF, SCF, IL-6, IL-7, IL-8, DL-11 and TGF-p (Deryugina and 

MullerSieburg, 1993 and references therein). The use of LTBMCs, where the stromal 

layer is physically separated from haemopoietic progenitors by a microporous 

membrane have shown that direct stromal cell contact is not essential for the 

maintenance of haemopoiesis. In fact, primitive progenitors are conserved to a 

greater extent in such conditions, than when cultured in direct contact with the
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stroma. However, absence of contact with a stromal layer results in the accumulation 

of granulocyte-macrophage progenitors at the expense of a decrease in production of 

mature blood cells (Verfaillie, 1992). Additionally, enriched populations of primitive 

human haemopoietic cells (CD34+, HLA-DR) may be maintained in long term 

suspension cultures, in the absence of an adherent stromal layer by the regular 

addition of cytokines such as IL-la, IL-3 and IL-6 (Brandt et al, 1990). Similarly, 

cytokines including IL-3 and G-CSF enhance the survival of CFU-S in suspension 

cultures; an effect which can be specifically blocked by addition of the appropriate 

antibody (Bodine et al, 1991).

1.3 .4  D e v e l o p m e n t  o f  f u n c t io n a l l y  m a t u r e  c e l l s

Committed progenitor cells generate mature blood cells by a process of further cell 

division and cellular differentiation. The developing cells have characteristic 

morphological features that may be identified by light microscopy. The generation of 

mature neutrophils, for example, progresses through a series of morphologically 

distinct cell types: myeloblast, promyelocyte, myelocyte, metamyelocyte, band 

neutrophil and neutrophil. This entire process from myeloblast to mature neutrophil, 

takes approximately 125 hours in the cat (Testa et al, 1983). During maturation the 

cells become functionally mature and show changes in various cellular attributes such 

as cell surface receptor expression, glycoprotein expression, histocompatability 

antigens and elements of the cytoskeleton. Band and segmented neutrophils within 

the marrow constitute the marrow granulocyte reserve. This reserve comprises the 

majority of nucleated cells within feline bone marrow and provides the capacity for a 

rapid response to increased demand for circulating neutrophils. Mature cells exit the 

bone marrow through the endothelial cells of the marrow sinuses. Release of 

neutrophils from the bone marrow is influenced by a number of factors, including 

anatomical location of the cell, reticular cell activity, cell characteristics (e.g. surface 

charge, deformability) and the influence of neurohumoral factors. Mature neutrophils 

show decreased cell surface charge and increased deformability and motility which 

induces their release from the marrow (Jain, 1993 a).
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The development of mature erythrocytes is associated with the extrusion of their cell 

nuclei and phagocytosis by adjacent macrophages (nurse cells). Platelets are 

produced in mammals by cytoplasmic budding from megakaryocytes. Mature, 

productive megakaryocytes extend cytoplasmic processes through the endothelial 

lining of the sinusoids into the lumen and platelets are released by a "pinching-off 

process. The elaboration of mature circulating blood cells in the domestic species is 

discussed further by Jain, (1993b).

1.3.5 C o n t r o l  o f  H a e m o p o ie s is

A number of lines of evidence, discussed above, implicate the importance of known 

cytokines and potentially other, as yet uncharacterised soluble mediators in the control 

of haemopoiesis. In vivo the situation is likely to be extremely complex, with all cells 

in the marrow potentially able to produce cytokines that may modulate haemopoiesis 

either directly or by modulating the cytokine profile produced by other cells. The 

haemopoietic system is able to respond to increased demand for mature blood cells by 

increasing cell production and release appropriately. This modulation of function is 

mediated largely by cytokines. Perhaps the most understood example of cytokine 

control of haemopoiesis is the control of red blood cell (RBC) production by 

erythropoietin (EPO). Tissue hypoxia (for example caused by anaemia or altitude) 

leads to increased EPO production (by peritubular interstitial cells of the kidney) 

resulting in an increased in RBC production and thus an increase in oxygen carrying 

capacity of the blood. A similar modulatory mechanism occurs in response to 

bacterial infections. Infection with gram negative bacteria provides a potent stimulus 

for the production and release of neutrophils from the bone marrow mediated by the 

effect of bacterial cell wall lipopolysaccharide (endotoxin). Endotoxin causes release 

of a number of cytokines including IL-ip, IL-6, TNF-a and G-CSF, the latter of 

which is potent inducer of neutrophil production and release from the bone marrow 

(Hack et al, 1989; Cannon et al, 1990; Dale et al, 1992). The role of cytokines in 

the regulation of haemopoiesis is discussed further in chapter six.

A potential role of the central nervous system in the regulation of haemopoiesis has 

been postulated, based on the observation of afferent and efferent nerve fibres within
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the marrow and their apparent connection to stromal cells. Substance P (SP) is an 

eleven amino acid neural peptide belonging to the tachykinin family. Stromal cells 

display high-affinity SP receptors and SP has been shown to increase stromal 

production of SCF and IL-1. In addition SP promotes the release of EL-3 and GM- 

CSF from bone marrow mononuclear cells (reviewed in R & D Systems Bulletin, 

1995).

1.4 BIOLOGICAL FUNCTIONS OF STEM CELL FACTOR AND 

ITS RECEPTOR C-KIT

Stem cell factor is the ligand for the tyrosine kinase receptor encoded by the c-kit 

gene. Stem cell factor (SCF) has also been named kit ligand (KL), mast cell growth 

factor (MGF) and steel factor (SLF or SF); the term SCF is used throughout this 

thesis. An understanding of the biological importance of SCF and its receptor (SCF- 

R) has been derived from three main areas. The occurrence of spontaneous mutations 

in inbred mice causing multiple defects was recognised long before the cloning of the 

genes for SCF and SCF-R. Subsequent to the cloning of SCF cDNAs it has been 

possible to use recombinant DNA technology to produce large amounts of 

recombinant protein with which to study the effects of SCF both in vitro and in vivo.

1.4.1 H e r e d it a r y  a n a e m ia s  o f  m ic e

The study of mice harbouring mutations at the steel (SI) locus on chromosome 10 and 

the dominant white spotting (W) locus on chromosome 5 has provided great insights 

into the physiological role of stem cell factor and its receptor c-kit. Mutations at each 

locus lead to similar phenotypes, with an array of abnormalities encompassing 

haemopoietic, pigment and germ cells (reviewed by Russell, 1979).

1.4.1.1 Mutations at the SI locus

A mutation at the SI locus causing abnormalities in haemopoiesis, fertility and coat 

colour was first described by Sarvella and Russell in 1956. Homozygous mice have a 

severe macrocytic anaemia that develops prenatally and leads to death in utero. The 

mice lack primordial germ cells (Bennett, 1956) and transplantation experiments have 

shown that their skin is unable to support the growth of melanocytes (Mayer and
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Green, 1968). Heterozygous SI/+ carriers have a mild macrocytic anaemia and diluted 

hair pigment but remain fertile although their gonads are reduced in size. Other 

mutations at the SI locus include S f  (Steel-Dickie); affected homozygotes are severely 

anaemic but survive to adulthood, have black eyes and white hair and are sterile 

(Bernstein, 1960).

1.4.1.2 Mutations at the W locus

Since the first mutation at the IT locus was reported by de Alberle in 1927, a large 

number of mutations have been independently identified at this locus. Mice 

homozygous for the original W mutation die perinatally with a severe macrocytic 

anaemia, lack coat pigment and show failure of germ cell development. Heterozygous 

WI+ carriers have normal haematological parameters and are fertile but may be 

identified by the presence of a white spot, frequently occurring on ventral abdomen. 

Other mutations at the W locus give rise to viable homozygotes with a variable 

phenotype. Mice may show abnormalities in all of skin, haemopoietic and 

reproductive tissues, with varying severity, or may have abnormalities largely confined 

to two of these systems (Little and Cloudman, 1937; Guenet and Mercier-Balaz, 

1975; Geissler eta l, 1981).

1.4.1.3 Haemopoiesis in SI and W mutant mice

Analysis of bone marrow cellularity in W/W  and Sl/St adult mice compared to their 

normal counterparts reveals a reduction in cell numbers affecting all of myeloid, 

erythroid and megakaryocyte precursors. The bone marrow of W/W  or Sl/Sf mice 

shows a reduction in cellularity to between 50% and 75% of normal levels (Ebbe et 

al, 1972; Ruscetti et al., 1976). Despite the pancellular nature of the marrow 

hypocellularity, circulating levels of granulocytes remain normal in affected W/W  

mice (Lewis et al, 1967), whilst Sl/Sf mice show only a modest reduction (Ruscetti 

et al, 1976). Similarly, the number and size of circulating platelets in both W/W  and 

Sl/S f mice is comparable to +/+ mice (Lewis et al, 1967; Ebbe et al, 1972; Ebbe et 

al, 1973). Mast cell numbers are profoundly reduced in both W/W and Sl/Sf mice at 

all body sites, with levels in the skin reduced to less than 1% when compared to +/+ 

mice and mast cells rarely found at other sites (e.g. stomach, bone marrow, liver) 

(Kitamura eta l, 1978; Kitamura and Go, 1979).
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A key property of the haemopoietic system is the ability to respond to alterations in 

the demand for mature circulating cells of all lineages by the appropriate modification 

of bone marrow or splenic activity. This homeostatic function has been investigated 

in W/W9 and Sl/Sf mice with respect to erythroid and megakaryocyte lineages. The 

induction of erythrocyte production by hypoxia, blood loss or phenylhydrazine 

treatment has been demonstrated in mice of both genotypes, although mutant mice 

generally showed a delayed erythropoietic response (Harrison and Russell, 1972). 

W/W9 mice and Sl/Sf mice also show effective regulation of platelet numbers in 

response to the induction of thrombocytopenia by injection of anti-platelet serum 

(Ebbe and Phalen, 1978; Ebbe et al, 1978). These studies show that whilst SCF is 

important in the regulation of haemopoiesis in normal mice, homeostasis is maintained 

to a large degree in mutant mice, presumably due to the presence of other 

compensatory mechanisms.

1.4.1.4 Correction of defects in SI and W mice by tissue transplantation

The injection of histocompatible haemopoietic cells derived from bone marrow, spleen 

or fetal liver into W/W9 mice leads to a permanent resolution of their anaemia (Russell 

et al, 1959). Analysis of these mice, two to four months after marrow 

transplantation, reveals a shift in cell population of haemopoietic tissues to that of the 

donor genotype (Harrison and Cherry, 1975; Harrison and Astle, 1976) and also cure 

of their mast cell deficiency (Kitamura et al, 1978). Conversely, whilst the injection 

of sufficient numbers of W/W9 marrow or spleen cells into lethally irradiated +/+ mice 

was able to prevent death in recipients, surviving mice showed haematological values 

typical of W/W9 mice (Harrison, 1972). Such experiments provided strong evidence 

localising the defect in W/W9 mice to the haemopoietic cells themselves, at or near the 

level of the pluripotent stem cell.

Implantation of histocompatible +/+ marrow cells into Sl/Sf mice does not reverse 

their characteristic anaemia (Bernstein, 1970). However, transplantation of Sl/Sf 

marrow into lethally irradiated +/+ recipient mice resulted in their survival and 

transplantation into W/W9 mice led to cure of their anaemia, suggesting that the 

haemopoietic cells of Sl/Sf mice were normal, but their environment was either
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suppressing or failing to stimulate their development (McCulloch et al, 1964). 

Further studies showed that the anaemia of Sl/Sf mice could be reversed by the 

intraperitoneal implantation of a +/+ or W/W  spleen (Bernstein, 1970); by assessing 

the number of heme-containing nucleated cells, the donor spleen was identified as the 

primary site of the reconstitutive erythropoiesis rather than the native Sl/Sf marrow 

or spleen (Harrison and Russell, 1972).

Such transplantation experiments have also been applied to non-haemopoietic tissues. 

When W/W  skin is grafted onto a Sl/St or +/+ recipient it becomes populated with a 

normal level of mast cells whereas Sl/Sf skin grafted onto W/W  or +/+ mice does not 

support mast cell development (Kitamura and Go, 1979). More recently, Fujita et al 

(1989) suggested that the microenvironmental defect responsible for the abnormal 

development of mast cells in Sl/Sf mice could be localised to fibroblasts. The cloned 

fibroblast cell line 3T3, derived from +/+ mouse embryos, was able to support the 

growth of mast cells in vitro and in vivo, following implantation into Sl/Sf mice. A 

similar cell line derived from Sl/Sf* mice was unable to support such growth.

The reciprocal nature of SI and W mutations, suggested by such transplantation 

experiments, led Russell (1979) to propose that SI and W encoded interacting 

structures such as a receptor and its ligand.

1.4.2 M o l e c u l a r  B io l o g y  o f  t h e  SCF R e c e p t o r

1.4.2.1 V-kit and c-kit genes

The gene encoding the receptor for stem cell factor, kit, was first described as a viral 

oncogene (v-kit) of a feline retrovirus (Hardy-Zuckerman 4 feline sarcoma virus) 

isolated from a feline fibrosarcoma. Partial homology to tyrosine-specific protein 

kinase oncogenes was recognised and the presence of a cellular DNA sequence, 

homologous with v-kit, was demonstrated in feline, human and murine tissues by 

Southern blot hybridisation (Besmer et al, 1986). The viral oncogene was proposed 

to have been generated by transduction of its cellular counterpart, designated as c-kit. 

This was confirmed with the isolation of both murine and human cDNAs encoding the 

protooncogene c-kit (Yarden et al, 1987; Qiu et al, 1988). Analysis of the deduced
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protein sequence revealed features typical of a transmembrane tyrosine kinase 

receptor with significant homology to the receptors for platelet derived growth factor 

(PDGF) and colony stimulating factor-1 (CSF-1).

The receptor has subsequently been assigned as a member of the type III tyrosine 

kinase growth factor receptor superfamily which also includes the CSF-1, PDGF, flk- 

1, flk-2, flt-1 and flt-4 receptors. The members of this family are characterised by the 

presence of five immunoglobulin (Ig) like regions within the extracellular domain of 

the receptor and an intracellular kinase domain which is divided by the insertion of a 

hydrophilic stretch of 70 - 100 amino acids (see Figure 1.2). The extracellular domain 

for the SCF receptor has a signal peptide and a ligand binding domain which likely 

forms five Ig-like domains, with tertiary structure influenced by the presence of 

intramolecular disulphide bonds and A-linked glycosylation. A hydrophobic domain, 

characteristic of a membrane spanning region, separates extracellular from 

intracellular regions. The intracellular region has a kinase domain, an ATP binding 

site, an autophosphorylation site and a hydrophilic kinase insert (KI) domain (Yarden 

et al, 1987; Qiu et al, 1988). The KI domain is thought to function as a binding site 

for the SH2 domain of cytoplasmic signal transduction proteins (discussed in section 

1.4.3). Figure 1.5 shows the structure of the SCF gene and the predicted SCF 

receptor.

A number of alternative SCF-R proteins have been described, generated by alternate 

splicing of c-kit. Analysis of murine mid-gestation placenta and mast cells in vitro has 

shown cells to express two c-kit transcripts, one of which has an in-frame deletion of 

codons 510-513 which encodes Gly-Asn-Asn-Lys, in the extracellular domain of the 

SCF-R (Yarden et al, 1987; Reith et al, 1991). The homologous isoforms have also 

been detected in human cells (Yarden et al, 1987; Giebel et al, 1992). Preferential 

expression of one isoform has been demonstrated in a number of tissues; the shorter 

mRNA transcript predominates in murine mast cells, bone marrow cells and fetal liver 

cells (Reith et al, 1991) and in human erythroleukaemia cells and melanocytes (Giebel 

et al, 1992). Analysis of receptor affinity for soluble SCF has shown that both 

receptor isoforms have similar binding affinities and subsequent levels of 

autophosphorylation and association with both phosphatidylinositol 3’-kinase (P13’K)
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and phospholipase C-yl (PLC-yl). However, the presence of low-level constitutive 

autophosphorylation and association with P13’K and PLC-yl has been shown with 

respect to the shorter, but not the longer isoform. It has been suggested that in some 

cell types, low-level, constitutive, activation of the SCF receptor may provide the cell 

with a necessary survival signal when SCF - SCF-R interaction is lacking and that in 

such conditions, the shorter SCF-R isoform may be preferentially expressed (Reith et 

al., 1991; Williams eta l, 1992).

Alternatively spliced c-kit transcripts are also expressed in the mouse associated with 

gametogenesis. Post-meiotic, haploid spermatids express two shorter c-kit transcripts 

of 3.5 and 2.3 kb rather than the full length 5.5 kb transcript (Sorrentino et al, 1991). 

Cloning of the 3.5 kb isoform showed that the alternative transcript lacked coding 

sequences for the extracellular and transmembrane domains, the ATP binding site and 

part of the kinase domain. Any functional roles must therefore be ligand and kinase 

independent; it has been proposed that the truncated receptor may facilitate the 

interaction of intracellular signalling proteins (Rossi et al, 1992).

The SCF receptor also exists as a soluble isoform in human serum at relatively high 

concentrations (mean +/- SD = 340 +/- 114 ng/ml). The soluble receptor comprises 

the majority of the extracellular domain of the membrane bound receptor. It is 

glycosylated with both N- and O- linked carbohydrates. The soluble receptor can be 

purified by immunoaffinity chromatography and is able to inhibit the binding of SCF 

to membrane bound receptor in vitro. This suggests a possible role for the soluble 

receptor in the modulation of SCF activity in vivo. The generation of the soluble 

isoform in vivo probably occurs via proteolyic cleavage of the membrane bound 

receptor. The soluble isoform may downregulate the activity of SCF by competitive 

binding of the ligand, may interfere with dimerisation (and therefore signal 

transduction) by the membrane bound receptor, may be generated in order to 

downmodulate cellular SCF-R levels or may act as a chaperone for circulating soluble 

SCF(Wypych e ta l, 1995).
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Figure 1.5: Diagrammatic representation of the c-kit gene and structure of the 
predicted SCF receptor. The exons, 1 - 21, of the c-kit gene are shown boxed, with 
the location of the ATG start and TGA stop codons indicated below. Regions of 
particular interest within the predicted SCF receptor are shown above the exons 
which encode them, these include: the signal peptide (SP), immunoglobulin like 
domains (I - V) within the extracellular ligand binding domain, the transmembrane 
(TM) region, and the tyrosine kinase domain (TK1 and TK2) split by the intervening 
kinase insertion region (KI). Alternative isoforms are generated by A. deletion of 
codons 510 - 513 in murine and human tissues and B. use of alternate promoter in 
intron 16 to produce 3.2 kb transcript in mouse spermatids. The location of the 
virally transduced, truncated v-kit oncogene is indicated below the exons. Adapted 
from Galli et al. (1994).
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1.4.2.2 Chromosomal localisation of c-kit - allelism between the murine W 

locus and c-kit

The human c-kit gene maps to the centromeric region of chromosome 4, between 

4qll and 4q21. This corresponds to a conserved area on mouse chromosome 5 

which includes the W gene locus (Yarden et al, 1987). This finding prompted Chabot 

et al. (1988) to investigate a possible relationship between c-kit and W. They showed 

that c-kit mapped closely to the W locus. In addition a radiation-induced W mutant 

mouse, W1911, was shown to have a deletion which included the c-kit protooncogene 

(Chabot et al., 1988; Geissler et al., 1988a). Further evidence for the W locus 

encoding c-kit, was provided by the demonstration that two further W mutants, W44 

and W, had distinct genetic rearrangements of the IT locus (Geissler et al., 1988b). 

The W  mutant showed a likely gene rearrangement within the region encoding amino 

acids 342 - 791. The IT** mutant, however, showed a mutation which resulted in the 

production of a full length (5.5 kb) mRNA, albeit at a greatly reduced level, as 

demonstrated by Northern analysis. Subsequently, further W mutant mice have been 

shown to have mutations in the c-kit gene, including a number comprising single base 

pair mutations in the tyrosine kinase domain of the SCF receptor (Nocka et al, 

1990b; Tan et al, 1990; Tsujimura et al, 1993). Additionally, it has been 

demonstrated that c-kit expression is seen predominantly in tissues that are known to 

be affected by W mutations, namely mast cells, fetal and adult erythropoietic tissues 

and neural-crest derived melanocytes (Nocka et al, 1989).

1.4.2.3 Distribution and regulation of SCF receptor expression

Studies of mutations at the murine W locus have provided evidence for the extensive 

nature of SCF-R expression. However, using immunohistochemical or Northern 

hybridisation methods, SCF-R expression has been demonstrated in a number of 

tissues which are not phenotypically affected in W mutant mice, suggesting a more 

widespread importance for SCF and its receptor. SCF-R expression has been 

implicated as important in the development of cells of the nervous system, placenta, 

heart septum, lung, and kidney during embryonal and fetal development in addition to 

cells of haemopoietic, melanocyte and germ cell lineages (Matsui et al, 1990; Orr- 

Urtreger et al., 1990; Keshet et al, 1991). Such studies have suggested that the
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SCF-receptor - ligand complex provides a homing mechanism for stem cells during 

their migration in early development and affects stem cell proliferation, differentiation, 

or survival in later development.

In adult tissues SCF receptor distribution is again widespread. Within the 

haemopoietic system the majority of cell lineages show SCF receptor expression at 

some point in their development. Studies using 125I-labelled SCF showed the SCF-R 

to be present in high numbers on blast cells and in lower numbers on immature 

granulocytic, monocytic, and eosinophilic cells and some lymphocytes (Metcalf and 

Nicola, 1991). In general, expression of the SCF-R proceeds from low levels on 

primitive, dormant multipotent progenitors to high levels on more mature, actively 

cycling progenitors, and decreases to very low or undetectable levels on most mature 

blood cells (Katayama et al, 1993). However, both mature mast cells (Katayama et 

a l , 1993) and platelets (Grabarek et al, 1994) express the SCF-R and are responsive 

to SCF stimulation. In murine gonadal tissues expression is highest in growing 

oocytes in the ovary and in proliferating spermatogonia and Leydig cells in the testis 

(Manova et al, 1990). Other tissues expressing the SCF-R, in the human adult, 

include brain astrocytes and glial cells, renal tubules, parotid cells, thyrocytes, and 

breast epithelium (Natali et al, 1992).

At the cellular level, a number of stimuli, including various cytokines, are able to alter 

the level of SCF-R expression. TNF-a and TGF-pi, for example, both decrease c-kit 

mRNA stability so shortening its half life and thus decreasing cellular receptor levels 

(Khoury et al, 1994; Heinrich et al, 1995). This effect, however, is only transient, 

lasting for up to 72 hours. The control of basal and cell specific SCF-R expression is 

poorly understood, but appears complex, involving the interaction of a number of 

activators and repressors (Vandenbark et al, 1996). The murine c-kit promoter has 

been cloned and partially characterised (Yasuda et al, 1993). The principal 

transcription initiation site (TIS) is located 58 bp upstream from the translation 

initiation codon (ATG). The main promoter elements are contained within the 

proximal 200 bp of 5' flanking DNA. This region contains no CCAAT or TATA 

elements but includes consensus binding sites for Spl and AP-2 transcription factors. 

Several short GA-rich elements were also identified as putative transcription factor
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binding sites. The human c-kit promoter region contains similar putative transcription 

factor binding sites, including sites for AP-2, Spl, basic helix-loop-helix proteins, 

Myb and GATA-1. The major transcription start sites in the human gene are 62 bp 

and 58 bp upstream of the translation start site (Yamamoto et al, 1993). Whilst these 

proximal elements appear important in directing the general level of c-kit expression, 

more recent studies have suggested that the distal 5' DNA region is more important in 

the regulation of cell-specific c-kit expression. Using promoter-deletion reporter 

constructs, the 5' flanking DNA between -4100 and -5500 bp was identified as 

important in the repression of c-kit expression in c-kit negative cells. This region 

suppresses most of the transcription from the proximal promoter region but complete 

repression requires the complete sequence of the promoter DNA. Additionally, two 

Myb elements were identified at -900 bp (Myb2) and -1329 bp (Mybl). Myb2 is a 

promoter which appears to be essential for c-kit expression, whilst Mybl acts as a 

partial repressor (Vandenbark et al, 1996). The complexity of cis acting sequences 

within the c-kit promoter region implicates different mechanisms as important in the 

transcriptional control of c-kit in different cell types.

1.4.3 In t r a c e l l u l a r  S ig n a l l in g  P a t h w a y s  a c t iv a t e d  b y  c - k i t

The coupling of receptor-ligand binding to modification of nuclear gene expression by 

the SCF receptor is relatively poorly understood. However, it is becoming 

increasingly clear that receptors within both the receptor kinase family and the 

haemopoietin/interferon family utilise many common signalling pathways. Signalling 

by the SCF-R will therefore be discussed within this broader framework.

Typical of the receptors within the tyrosine kinase family, ligand binding induces SCF 

receptor dimerisation (Blume-Jensen et al, 1991; Gordon, 1994). SCF is thought to 

promote the formation of SCF-R dimers by inducing a conformational change in the 

receptor, following ligand binding (Blechman et al, 1995). The SCF ligand exists as 

a non-covalently associated dimer in its soluble form (Arakawa et al, 1991). It has 

been proposed that receptor dimerisation may be mediated by the dimeric ligand 

bringing two receptor chains into apposition (Williams, 1989). However, dimer 

formation appears to require direct interaction between two receptor molecules with
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the fourth immunoglobulin domain of the extracellular portion of the receptor 

identified as a putative dimerisation site. A monoclonal antibody, which inhibits 

receptor dimerisation binds to this domain. Furthermore, receptor mutants lacking 

the fourth immunoglobulin domain do not form dimers. Abolition of dimer formation 

by either mechanism abrogates signal transduction (Lev et al, 1992; Blechman et al, 

1995).

Receptor dimerisation leads to receptor transphosphorylation and enhanced tyrosine 

kinase function (Yarden et al, 1987; Blume-Jensen et al, 1991; Herbst et al, 1992; 

Heldin, 1995). Additionally, the phosphorylation of tyrosine residues outwith the 

kinase domain serves to create docking sites that enable interaction of the receptor 

with downstream signal transduction molecules. Interactions may occur with a 

number of proteins containing a src homology 2 (SH2) domain (reviewed by Koch et 

al, 1991, Pawson, 1994, Schlessinger, 1994). These include growth factor receptor- 

bound protein 2 (GRB2) (Lowenstein et al, 1992), phospholipase-C-y (Anderson et 

al, 1990), the p85 subunit of phosphatidylinositol-3’ kinase (McGlade et al, 1992; 

Rameh et al, 1995) and She (Pelicci et al, 1992). GRB2 is a key signalling protein 

for many receptors, within and without the receptor kinase family (Chardin et al, 

1995). GRB2 may bind either directly to the receptor kinase or may utilise an 

additional adaptor protein such as She (RozakisAdcock et al, 1992; Skolnik et al, 

1993b). GRB2 binds with high affinity to a second protein, son of sevenless (sos) via 

its SH3 domain to form a stable complex (Chardin et al, 1993; Egan et al, 1993; Li 

et al, 1993; Olivier et al, 1993; RozakisAdcock et al, 1993; Skolnik et al, 1993a). 

Sos interacts with membrane-anchored Ras which is activated by the exchange of 

GTP for GDP (Baltensperger et al, 1993; Egan et al, 1993). When activated, Ras 

initiates a kinase cascade involving Raf-1 (Moodie et al, 1993; Vojtek et al, 1993; 

Warne et al, 1993; Zhang et al, 1993) and mitogen-activated protein (MAP) kinase 

kinase (Howe et al, 1992; Kyriakis et al, 1992; Hughes et al, 1993). Ultimately the 

activation of MAP kinase leads to modulation of transcription by the phosphorylation 

of transcription factors (Hunter and Karin, 1992; Nakajima et al, 1993). This 

signalling pathway is depicted in Figure 1.6.
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SCF-R activation has been associated with activation of Ras (Duronio et al, 1992; 

O'Farrell et al, 1996), Rafl (Miyazawa et al, 1991; O'Farrell et al, 1996) and MAP 

kinase (Miyazawa et al, 1991; Okuda et al, 1992; O'Farrell et al, 1996). 

Furthermore the stimulation of a mast cell line with a combination of SCF and IL-3 

produces a synergistic increase in cell proliferation that is correlated with a synergistic 

increase in MAP kinase activity (O'Farrell et al, 1996). This suggests a possible 

mechanism for the synergy between these two cytokines. Activation of MAP kinase 

by the Ras pathway prevents apoptotic cell death in haemopoietic cells and may 

provide the mechanism for SCF mediated haemopoietic cell survival (Kinoshita et al, 

1995).
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Figure 1.6: A simplified overview of the Ras signalling pathway. Activation of the 
tyrosine kinase receptor by its associated ligand mediates receptor dimerisation and 
phosphorylation of cytoplasmic tyrosine residue(s). The phosphorylated receptor 
binds to controllers of Ras exchange factors such as Grb2, either directly or via 
intermediates such as She. In turn, exchange factors such as Sos are recruited which 
convert inactive Ras-GDP to active Ras-GTP. Downstream signalling continues, 
principally through Raf, which once activated initiates a M AP kinase cascade. This 
ultimately leads the phosphorylation of transcription factors and the transduction of 
the signal to the cell nucleus, with a consequent modulation of gene expression. 
Adapted from (Bonfini et al., 1996) and (Egan and Weinberg. 1993).
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SCF also appears to mediate intracellular signalling, at least in part, by the JAK-STAT 

pathway. This signalling pathway was initially described for the interferon receptor 

family and has been reviewed by Darnell et a l (1994), Ihle and Kerr (1995), Schindler 

and Darnell (1995) and Heim, (1996). Subsequently it has been shown that a large 

number of cytokines utilise this pathway. The term JAK is an acronym for ‘just 

another kinase’ (reflecting the discovery of JAKs at a time when a number of novel 

tyrosine kinases were cloned); it is also an abbreviation for Janus kinase {Janus refers 

to an ancient two faced Roman god of gates and doorways). Four members of the 

JAK family of tyrosine kinases have been identified in mammals: Jakl, Jak2, Jak3 and 

Tyk2. The JAKs are believed to interact with the membrane proximal region of the 

cytoplasmic domain of numerous cytokine receptor chains. Mutagenesis studies using 

the EPO receptor (Witthuhn et al, 1993; Miura et al, 1994), prolactin receptor 

(DaSilva et al, 1994), gpl30 (Narazaki et al, 1994; Tanner et al, 1995) or GH 

(Tanner et al, 1995) have implicated the box 1/box 2 motifs as the site of interaction. 

Deletion or mutations of residues in those regions abrogates tyrosine phosphorylation 

of JAK and abolishes receptor mediated effects (e.g. mitogenesis).

Signalling via the JAK kinases is thought to involve their apposition in association 

with ligand mediated receptor chain dimerisation/oligomerisation (Ihle, 1995; 

Schindler and Darnell, 1995). Once apposed the JAK kinases are thought to activate 

each other by reciprocal transphosphorylation, in much the same manner that the 

activation of receptor tyrosine kinases is proposed to occur. JAK activation may 

occur homodimerically where both receptor chains associate with a single class of 

JAK (e.g. the EPO receptor) or heterodimeric activation of JAK may occur. The 

obligate requirement for two different JAKs is illustrated in the case of signalling by 

the interferons. Studies using a series of cell lines that were unable to respond to 

interferon-y established that both Jakl and Jak2 are required for IFN-y signalling. A 

U4 mutant (Muller et al, 1993) lacking functional Jakl, shows no tyrosine 

phosphorylation of Jak2, in response to IFN-y. Conversely, the y-1 mutant (Watling 

et al, 1993) lacking functional Jak2 shows no phosphorylation of Jakl, when 

similarly stimulated. The reconstitution of either mutant results in phosphorylation of
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both kinases in response to IFN-y. A similar requirement for both Jakl and Tyk2 in 

IFN-oc/p signalling has also been demonstrated (Muller et al, 1993).

The unravelling of signalling pathways activated by the interferon receptor family led 

to the discovery of a novel family of proteins, termed STATS (signal transducers and 

activators of transcription). All known members of the STAT family are 750 - 850 

amino acids in size. Conserved features include an SH2 domain between amino acids 

600 - 700, and a single tyrosine residue in the carboxyl terminal region of the SH2 

domain which becomes phosphorylated during activation [reviewed by Shuai et al, 

(1993 a), Shuai et al (1994) and Schindler and Darnell (1995)]. Currently, six 

members of the STAT family are recognised, but more may exist (Schindler and 

Darnell, 1995). All are able to bind to sequence specific elements of nuclear DNA 

upon activation; by binding to the promotors of specific genes they are able to 

stimulate the transcription of these genes by RNA polymerase II (Heim, 1996).

The recruitment of specific STATs as signalling proteins by cytokine receptors is 

thought to be regulated by the interaction of specific receptor docking sites with the 

STAT protein. It has been shown that the SH2 domains of a number of STATs 

interact with receptor docking sites containing phosphorylated tyrosine residues. 

Examples include the interaction of Stat5 with the IL-2 receptor P chain (Fujii et al, 

1995) and the EPO receptor (Quelle et al, 1996) and Stat6 with the IL-4 a-chain 

(Quelle et al, 1995). Following recruitment to a specific cytokine receptor, the 

STAT is believed to be phosphorylated by a receptor associated JAK kinase (Shuai et 

al, 1993b; Darnell, Jr. et al, 1994). Once phosphorylated STATs are thought to 

form dimers via association of the SH2 domain of one molecule with the 

phosphotyrosine residue of a second molecule. (Shuai et al, 1992; Shuai et al, 

1993a; Shuai et al, 1994; Gupta et al, 1996).

The modification of gene transcription by the STAT proteins involves translocation of 

the protein to the cell nucleus followed by binding of the proteins to specific DNA 

sequence elements. An overview of the JAK-STAT signalling pathway is shown in 

relation to IFN-a and IFN-y in Figure 1.7.
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Figure 1.7: Overview of JAK-STAT pathway of signal transduction. Signal 
transduction by the IFN -a  and IFN-y receptors are principally shown. The 
modulation of gene transcription relies upon the production of an active transcription 
factor following a complex series of protein interactions and kinase mediated 
transphoshorylations. The primary transcription factor which controls expression of 
IF N -a  induced genes is IFN -a  stimulated gene factor 3 (ISGF3). ISGF3 is a 
complex o f  a S tatl/S tat2  heterodimer and a 48 kDa protein (p48) related to the 
interferon regulatory factor (IRF) family of binding proteins. After translocation to 
the nucleus, the STAT complex binds to specific DNA response elements (ISREs) 
and stimulates gene transcription (Fu et al., 1990; Kessler et al., 1990). Similarly, 
IFN-y signalling results in the production of a transcription factor consisting of a 
Jak l/Jak2  heterodimer. This initiates the transcription of a family of genes 
containing the GAS (IFN-y activation site) DNA sequence element in their promoter 
region (Shuai et al., 1992). Adapted from Hilton. (1994).
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The SCF-R is constitutively associated with Jak2 and upon SCF binding Jak2 is 

rapidly and transiently phosphorylated. Incubation of cells with Jak2 antisense 

oligonucleotides decreases SCF induced cell proliferation by approximately 50% 

(Linnekin et al, 1996; Weiler et al, 1996). The substrate for activated Jak2 is not yet 

known, however other members of this receptor family (CSF-1, EGF) have been 

shown to activate STAT1 (Silvennoinen et al, 1993). Additionally Jak2 may couple 

SCF-R signalling to the Ras pathway. SCF also induces serine phosphorylation of 

STAT3 in human myeloid cells. Serine phosphorylation alone is not sufficient to 

induce nuclear translocation or DNA binding activity of STAT3. This requires 

additional tyrosine phosphorylation of STAT3, which SCF does not induce (Gotoh et 

al, 1996). Tyrosine phosphorylation of STAT3 is, however, induced by other 

cytokines such as IL-6 or IL-9. Maximal activation of transcription requires both 

serine and tyrosine phosphorylation of STAT3 (Wen et al, 1995). Therefore the 

production of a hyperphosphorylated STAT3 following stimulation by a combination 

of SCF and EL-6 or IL-9, may provide a mechanism for synergy between these 

cytokines (Gotoh et al, 1996).

A number of other signalling proteins, implicated in SCF receptor signal transduction 

are depicted in Figure 1.8.

The downregulation of SCF receptor signalling involves other classes of proteins 

including tyrosine phosphatases and serine/threonine kinases. Protein tyrosine 

phosphatases mediate the dephosphorylation of proteins at specific tyrosine residues 

in direct antagonism to the tyrosine kinases. The protein tyrosine phosphatase Shpl 

may negatively regulate SCF-R signalling by reducing the phosphorylation of 

downstream substrate(s), including She (Paulson et al, 1996).

The autophosphorylation of SCF-R tyrosine residues is inhibited by the 

serine/threonine kinase, protein kinase C (PKC). This protein mediates 

phosphorylation of serine residues in the kinase insert of the SCF-R (Blume-Jensen et 

al, 1995). Inhibition of PKC activity decreases serine phosphorylation of the SCF-R 

and increases its association with and activation of PI3K (Blume-Jensen et al, 1994). 

Specific inhibition of PI3K with wortmannin inhibits SCF induced mitogenicity
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(Blume-Jensen et al., 1994). PKC therefore acts as a negative regulator of mitogenic 

signalling mediated by SCF. However, PKC activity is required for the generation of 

SCF generated changes associated with cell motility, such as actin reorganisation or 

chemotaxis (Blume-Jensen et al, 1993).

The specific transcription factors induced by SCF, and the consequent pattern of gene 

induction remain largely unknown. It has, however, been shown that SCF stimulation 

can lead to a sustained induction of c-myc expression. A stimulatory role for Myc in 

cell cycle progression has been demonstrated in a number of haemopoietic cell lines 

(O'Farrell et al, 1996 and references therein).
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Figure 1.8: Overview of the SCF receptor signalling pathway. Receptor binding 
leads to signalling via the Ras/Raf/MAP kinase, JAK/STAT and inositol pathways as 
discussed within the text. Other signalling proteins include Vav and TEC kinase. Vav 
is selectively expressed in haemopoietic cells and is tyrosine phosphorylated following 
SCF stimulation (Matsuguchi et al, 1995). Tec is constitutively associated with the 
SCF-R and is phosphorylated in SCF stimulated human Mo7e cells (Tang et al, 
1994).
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1.4 .4  H a e m o p o ie t ic  e f f e c t s  o f  S t e m  C e l l  F a c t o r

The aforementioned studies have provided much information about the important 

biological roles of SCF and its receptor. The production of recombinant SCF (rSCF) 

has enabled further characterisation of its potential functions. Due to interest in its 

potential clinical applications, discussed later, most of the studies have been directed 

towards its effects upon the haemopoietic system.

1.4.4.1 Erythropoiesis and myelopoiesis

A number of studies have shown the ability of SCF to support the survival of 

primitive stem cells in vitro and in concert with other cytokines, to promote their 

subsequent differentiation into cells of the erythroid, myeloid or megakaryocytic 

lineages (reviewed by Metcalf, 1993a, Galli et al, 1994, McNiece and Briddell, 

1995).

SCF is able to promote the survival in vitro of murine bone marrow cells with both 

short and long term in vivo repopulating potential. Furthermore this effect is not 

dependent on the induction of cell proliferation as cell survival is unaffected by the 

addition of mitotic inhibitors (Keller et al, 1995). However it is apparent that SCF is 

just one of a number of factors affecting the survival of more primitive stem cells. 

Studies on Sl/Sl mutant mice, which do not express SCF, have shown that the number 

of stem cells in the fetal liver is reduced to 30% of normal levels at days 13-15 post 

conception. However, subsequently the number of stem cells increases, presumably 

indicating the presence of alternative growth factors affecting their survival and 

proliferation (Ikuta and Weissman, 1992). In vitro, the ability of the preadipose cell 

line PA 6, to support the survival of stem cells (capable of long term reconstitution of 

erythropoiesis in W/W  mice) is not affected by the addition of an antagonistic anti- 

SCF-R monoclonal antibody (ACK-2) (Kodama et al, 1992).

The effects of rSCF on the growth of haemopoietic progenitor cells has been 

determined in a number of species using in vitro colony forming cell assays. As a 

single agent the effects of rSCF are generally limited. Murine SCF promotes the 

formation of low numbers of small colonies in agar; the majority of colonies consist of
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granulocytes while approximately 20% of colonies are composed of blast cells 

(Metcalf and Nicola, 1991). Human and canine rSCF show little stimulatory effect 

alone on colony formation from bone marrow cells in agar or methylcellulose cultures 

(McNiece et al., 1991; Shull et al, 1992). However, SCF shows marked co­

stimulatory or synergistic activity when combined with a number of other cytokines 

including erythropoietin, G-CSF, GM-CSF, thrombopoietin and IL-3. The addition of 

SCF, in most cases results in an increase in the number and/or size of colonies formed 

in a given assay, with the lineage of the colonies determined by the interacting 

cytokine. For example, the addition of rSCF to erythropoietin results in an increase 

in number and size of erythroid (BFU-E) and multipotential (CFU-GEMM) colonies 

formed in both murine and human systems (Anderson et al, 1990; Nocka et al, 

1990a; Broxmeyer et al, 1991c; McNiece et al, 1991). Table 1.3 summarises some 

of the synergistic effects of SCF on colony formation in vitro.

Cytokine Effect o f  the addition o f  rSCF to CFC-Assays Reference
EPO Enhances erythroid and multipotential colony 

formation.
Anderson et al, 1990; 
Nocka et al, 1990a; 
Broxmeyer et al., 1991c; 
McNiece et al, 1991.

IL-3 Increased size and number of mixed colonies 
consisting of neutrophils/macrophages and 
megakaryocytes.

Martin et al, 1990; 
McNiece et al, 1991.

G-CSF Increased size and number of neutrophil 
colonies

Martin et al, 1990; 
McNiece ef al, 1991.

GM-CSF Increased size and number of 
neutrophil/macrophage colonies

Martin et al, 1990; 
McNiece et al, 1991.

TPO Increased numbers of megakaryocyte colonies. Broudy eta l, 1995.
IL-7 Enhances formation of mainly granulocytic 

colonies from primitive murine progenitors.
Fahlman etal., 1994.

IL-6 Increased colony formation. Zsebo e ta l, 1990b.

Table 1.3: Interaction of SCF with other cytokines in in vitro colony forming assays.

Another line of evidence for the importance of SCF in the maintenance and 

proliferation of progenitor cell populations comes from studies by Ogawa et al 

(1991). Administration of an anti-SCF-R antibody (ACK-2) to mice results in the 

near complete disappearance of haemopoietic progenitor cells from the bone marrow,
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just two days after injection. Subsequently, mature cells of the myeloid and erythroid 

series disappear from the bone marrow.

1.4.4.2 Lymphopoiesis

Analysis of SI mutant mice suggests that SCF can influence the development of 

lymphocytes. Although Sl/Sf mice have normal levels of circulating peripheral blood 

(PB) lymphocytes, the thymus of 12 week old mutant mice shows reduced cellularity 

when compared to congenic +/+ mice (Medlock et al., 1992). Additionally, a 

number of stromal cell lines derived from thymic tissue express SCF (Williams et al., 

1992). Soluble SCF is able to synergistically increase the proliferation of a subset of 

normal murine immature B lymphocytes (B220+ pre-B cells) in vitro in combination 

with IL-7 (Funk et al, 1993). Mature human circulating peripheral blood 

lymphocytes do not express significant levels of the SCF-R (Matos et al, 1993) and 

SCF has no proliferative effect upon mouse peripheral blood B or T-lymphocytes in 

vitro (Williams et al, 1992). However a subset of human natural killer cells, 

expressing high levels of CD56, show expression of the SCF-R and SCF enhances 

their proliferation in vitro, in response to IL-2 (Matos et al, 1993).

1.4.4.3 M ature haemopoietic cells

1.4.4.3.1 Mast Cells

Mast cells are widely distributed throughout mammalian vascularised tissues, 

occurring particularly at sites in proximity to the external environment (skin, 

respiratory, gastrointestinal and urogenital tracts). They are important effector cells 

in the innate immune system, capable of producing a diverse array of biologically 

active mediators including histamine, proteoglycans, cytokines, chemotactic factors, 

leukotrienes and prostaglandins. Mast cells express the FceRl receptor on their cell 

surface; crosslinking of IgE antibodies bound to the mast cell triggers mediator 

release from the cell. Mast cells therefore have an important role in the generation of 

IgE dependent host responses including anaphylaxis and immunity to parasites.

SCF has multiple regulatory effects upon mast cells, at various developmental stages, 

affecting their proliferation, maturation, migration and function. Mast cell survival in
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vitro is promoted by SCF, which suppresses cell death due to apoptosis (Iemura et 

al., 1994). In vitro, soluble rrSCF induces the proliferation of cloned IL-3 dependent 

mouse mast cells, purified peritoneal mast cells and the proliferation and maturation of 

bone marrow-derived mast cells (BMDMC). After four weeks in culture BMDMC 

acquire multiple characteristics of mature connective tissue mast cells, such as 

increased histamine content and heparin synthesis (Tsai et al, 1991b). SCF induces 

the outgrowth of mast cells from cultured murine (Ulich et al, 1991) or human bone 

marrow progenitor cells (Valent et al, 1992), human fetal liver cells (Irani et al, 

1992) or human umbilical cord blood cells (Mitsui et al, 1993). However, human 

mast cells that develop in SCF supplemented cultures do not develop an identical 

phenotype to that expressed by mature mast cells in vivo. Additionally, the growth of 

human mast cells in vitro, from primitive progenitors is not supported by SCF alone if 

cultures are depleted of accessory cells. In such conditions additional growth factors, 

including IL-3, IL-4 and IL-10 are required for optimal cell growth and 

differentiation. It is likely that the growth and maturation of mast cells in vivo 

involves the interaction of a number of factors, which have yet to be fully defined 

(Rennick eta l, 1995).

SCF also affects the function of mature mast cells. SCF promotes secretion and 

mediator release from murine mast cells both in vitro (Galli et al, 1991) and in vivo 

(Wershil et al, 1992). This effect is mediated specifically via the SCF receptor; W/W* 

derived cloned mast cells are unresponsive to SCF (but are activated by IgE and 

antigen) (Wershil et al, 1992). SCF also augments mediator release in response to 

activation by IgE (Coleman et al, 1993). SCF acts as a potent chemoattractant for 

human (Nilsson et al, 1994) and murine (Meininger et al, 1992) mast cells in vitro.

The membrane associated form of SCF is able to mediate the attachment of mast cells 

to stromal fibroblasts via specific interaction with the SCF receptor (Flanagan et al, 

1991; Adachi et al, 1992). SCF also enhances the attachment of mast cells to 

fibronectin, a component of the extracellular matrix. This attachment is mediated by a 

mast cell integrin receptor; SCF may upregulate integrin receptor expression or its 

affinity for fibronectin (Dastych and Metcalfe, 1994).
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The physiological role of SCF in the regulation of mast cells is likely to be complex. 

Although many of the documented functions of SCF are stimulatory, in some 

circumstances SCF administration may be associated with suppression of mast cell 

secretory activity (reviewed by Galli et al., 1994).

1.4.4.3.2 Platelets

A potential role for SCF in the control of haemostasis via modulation of platelet 

function has been proposed. The SCF receptor can be detected on human platelets, 

following stimulation with ADP, by specific binding of 125I-labelled SCF. SCF 

stimulation of platelets in vitro results in acceleration of platelet aggregation and 

increased serotonin secretion in response to adrenaline/ADP (Grabarek et al., 1994).

1.4 .5  E x t r a -H a e m o p o ie t ic  E f f e c t s  o f  St e m  C e l l  F a c t o r

1.4.5.1 Germ cell development

SCF and its receptor are necessary for the proliferation of primitive germ cells and 

their subsequent migration to the gonads and differentiation into mature gametes. 

Primordial germ cells (PGCs) are first identifiable in normal mice at seven days post 

conception (p.c.) The number of PGCs increases from day 8 - 1 2  p.c., from 

approximately 10 - 100 to 2,500 - 5,000 cells. During this period the cells also 

migrate from the hindgut to the gonadal ridge, which by 12.5 days p.c. has undergone 

differentiation into the male or female gonad. In mice homozygous for severe (lethal) 

SI or W mutations, germ cells can be identified at day 8 p.c., but they do not 

subsequently proliferate and few or none reach the developing gonad (reviewed by 

Galli et al., 1994). In mice with less severe mutations some germ cells may populate 

the gonad but defects can be seen later in germ cell development, often preferentially 

affecting the male or female gonad (Geissler et al., 1981). The expression patterns of 

SCF and SCF-R mRNA supports their attributed functions in germ cell proliferation 

and differentiation. SCF-R mRNA is expressed in primordial germ cells from day 7.5 

to 13.5; it then decreases to undetectable levels as male germ cells enter mitotic arrest 

and female germ cells the prophase of meiosis (Manova and Bachvarova, 1991). SCF 

mRNA is expressed along the pathway of migration of the PGCs and in the gonadal
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ridge and fetal gonads (Matsui et al, 1990; Keshet et al, 1991). SCF-R mRNA is 

also expressed during the second phase of germ cell development in both male and 

female gonads. In the adult male mouse, SCF-R mRNA is expressed in developing 

spermatogonia and Leydig cells, whilst SCF mRNA is expressed by Sertoli cells. In 

the murine ovary increasing levels of SCF mRNA are seen in follicle cells associated 

with growing oocytes, whilst the oocytes themselves express mRNA for the SCF-R 

(Manova e/a/., 1993).

1.4.5.2 The nervous system

The detection of SCF and SCF-R mRNAs in tissues of the central nervous system 

(CNS) was an unexpected finding; amongst the variety of phenotypic abnormalities 

reported in SI or W mutant mice, none were attributable to the CNS. The role of SCF 

in CNS development and function remains poorly understood. However, SCF and its 

receptor may be involved in the formation of certain synaptic connections within the 

CNS. In a number of cases, pairs of neurones which form synaptic connections 

express either the mRNA for SCF or its receptor (Hirota et al, 1992). If SCF and its 

receptor do have such a role, then a number of possible explanations may be 

considered for the lack of CNS abnormalities in SI or W mutant mice. These effects 

may require an intact extracellular domain of either SCF or its receptor (mutants 

lacking this domain in either the receptor or its ligand do not survive to adulthood 

therefore CNS abnormalities may not be apparent). The function(s) of SCF in the 

CNS may be redundant to a degree that other molecules may compensate adequately 

for its absence. Alternatively SI or W mutant mice may have relatively subtle CNS 

abnormalities that have yet to be recognised (Galli et al, 1994).

1.4.5.3 M elanocytes

The SCF-R and its ligand are important for the migration of primitive melanocyte 

precursors from the embryonic neural crest to sites such as the dermis of the skin or 

the ectoderm of whisker follicles. Melanocyte precursors and melanoblasts can be 

shown, by in situ hybridisation, to express SCF-R mRNA in vivo (Orr-Urtreger et al., 

1990; Besmer et al., 1993). Expression is seen initially in presumptive melanoblasts in 

the cervical region of 10 day murine embryos and continues as the cells migrate to 

sites in the epidermis and differentiate into hair follicles after birth (Manova and
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Bachvarova, 1991). Conversely SCF mRNA expression is highest at sites to which 

the melanoblasts migrate, seen in the dorsal region of the somites of 9.5 - 10.5 day 

murine embryos and at later intervals in the dermis and developing hair follicles 

(Matsui et al., 1990). Furthermore, using a monoclonal antibody that blocked 

activation of the murine SCF receptor, Nishikawa et a l (1991) demonstrated that 

SCF and its receptor are also required for the proliferation of murine melanocyte 

precursors in vivo. Mutations of the SCF receptor have also been shown to be causal 

for piebaldism in humans. Piebaldism is an autosomal dominant disorder of 

melanocyte development characterised by congenital white patches of skin and hair 

from which melanocytes are absent. Missense mutations or a single base pair 

substitution within the tyrosine kinase domain of the receptor have been associated 

with the disease (Giebel and Spritz, 1991; Spritz et al., 1992). Interestingly, it is not 

associated with disorders of haemopoiesis or fertility.

1.5 SUMMARY

The observation of white spotting on the fur of mice with mutations at either the steel 

(SI) or dominant white spotting (W) loci was the first important step in the pathway to 

characterising a receptor and associated ligand that have key roles in the migration 

and development not only of melanocytes but also cells of the haemopoietic, 

reproductive and nervous systems. SCF is a particularly pleiotropic cytokine. It 

influences a broad range of target cells, at a number of stages of development, both in 

the developing embryo and in the adult and also exerts a wide range of actions upon 

these cells. SCF is able to affect the survival, proliferation and differentiation of 

immature cells and also modulate the function of mature cells.

1.6 AIMS OF THE PROJECT

As inferred above and discussed elsewhere within this thesis, recombinant SCF has a 

number of potential applications both with regard to the support of haemopoietic cell 

growth in vitro and the manipulation of haemopoiesis in vivo. The availability of 

feline recombinant SCF would therefore facilitate further studies regarding 

haemopoiesis in this species both in normal and diseased states and also provide a 

potentially valuable therapeutic agent.
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The aim of this project was to clone and express the cDNA encoding feline SCF and 

examine the biological properties of the recombinant protein, both in vitro and in 

vivo. This work forms part of a larger project within the Department of Veterinary 

Pathology at Glasgow, which aims to isolate a number of haemopoietic and 

immunomodulatory cytokines within this species. The availability of a number of 

feline specific cytokines should enable the development of new methods for 

prevention and treatment of various feline diseases and assist the understanding of the 

pathogenesis of diseases of the cat.

More specifically, the aims of the project were:

•  To amplify, by the polymerase chain reaction, cDNA encoding feline stem cell 

factor from mRNA derived from feline fibroblast cells (FEA cell line).

•  To sub-clone the PCR product into a plasmid vector and sequence the recombinant 

DNA.

• To express the feline SCF protein in Escherichia coli as a fusion protein with 

glutathione S-transferase.

• To purify the resultant protein using Fast Protein Liquid Chromatography (FPLC).

• To develop a biological assay for feline SCF to enable monitoring of its specific 

activity during expression and subsequent purification.

• To investigate the effects of recombinant feline SCF on haemopoiesis both in vitro 

and in vivo.

• To develop reagents to enable identification of a marker of feline haemopoietic 

stem and progenitor cells, namely CD34.

The following chapters will detail the experimental techniques used to pursue these 

objectives and the results that were obtained.
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MATERIALS AND METHODS

2.1 MATERIALS

Materials in regular use such as equipment, general reagents and solutions are detailed 

in appendix A 1, whilst those used infrequently are detailed in the appropriate 

methods section.

2.2 METHODS

Methods used throughout the thesis are described within this chapter, whilst 

techniques specific to one area are described in later chapters. Many of the methods 

described herein are based on standard techniques, which are detailed in several 

laboratory manuals (Ausubel et a l , 1994; Maniatis et a l , 1982).

2.2.1 GROWTH AND MANIPULATION OF MAMMALIAN CELLS

2.2.1.1 Basic Techniques

All procedures involving manipulation of mammalian cells were carried out using 

standard aseptic procedures. Where possible all procedures were performed in a 

laminar flow hood.

2.2.1.1.1 Cryopreservation o f cells

In order to preserve stocks of cell lines for long term use, cells were stored over liquid 

nitrogen. Cells to be frozen were grown to mid-log phase (as described below) and 

removed into a sterile 50 ml centrifuge tube (using trypsin-EDTA where necessary). 

The cells were centrifuged at 400 x g for five minutes, the supernatant discarded and 

the cells resuspended in freezing medium (appropriate culture medium supplemented 

with FCS to 20% and 10% DMSO) to a concentration of approximately 2 x 106 

cells/ml. The cell suspension was transferred in one millilitre aliquots, to labelled 

cryovials and brought to -70°C in a controlled rate cell freezer (Kryo 10 - Planer 

Products Ltd., Sunbury on Thames, UK). The vials were then transferred to a liquid 

nitrogen freezer. Cell stocks were revived by rapid thawing in a 37°C water bath and 

subsequently cultured using standard techniques (described below).
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2.2.1.1.2 Cell counting

Cells were counted using a haemocytometer (Weber Scientific International), as 

follows. Cell were diluted in PBS to give an approximate concentration of 5 x 105 to 

1 x 106 cells/ml. The cell suspension was introduced to the haemocytometer chamber 

and cells counted under an inverted microscope with 4 x or 10 x objective; cells lying 

on the top and right hand perimeter of each large (one millimetre) square were 

included, those on the bottom or left hand were excluded. Cell concentration 

(cells/ml) was calculated by multiplying the mean number of cells per large square by 

104 and correcting for the dilution factor. Where an estimate of live cell numbers was 

required 0.4% trypan blue (Gibco BRL) was added to the cell suspension (1:1) and 

allowed to incubate for five minutes at room temperature prior to counting; dead cells 

take up the stain thus appearing blue.

2.2.1.2 FEA  cell line

The FEA cell line is a fibroblast cell line derived from whole feline embryos (Jarrett et 

al, 1973); the cell line used had been transformed with FeLV subgroup A (Glasgow 

A). The cells grow as an adherent monolayer in culture. Cells were cultured in 20 - 

30 ml DMEM-10 (DMEM containing 10% FBS, 10 mM HEPES, 2 mM L-glutamine, 

100 iu/ml penicillin, 100 pg/ml streptomycin) in 75 cm2 tissue cultures flasks at 37°C, 

5% C02. Cultures were split, typically 1:3 to 1:4, every three to four days, when sub­

confluent. The medium was decanted from the cell monolayer, the cells washed with 

trypsin-EDTA and then incubated at 37°C with approximately one millilitre of fresh 

trypsin-EDTA for three to five minutes. The detached cells were then washed in fresh 

medium, pelleted by centrifugation at 400 x g for five minutes, prior to resuspending 

in fresh medium and seeding new tissue culture flasks.

2.2.1.3 M C/9 cell line

MC/9 is a murine mast cell line (Nabel et al., 1981; Galli et al, 1982) that responds to 

a number of cytokines including low levels of mouse and rat SCF. It is maintained in 

suspension in rat spleen cell conditioned medium (prepared as described below). Cells 

were cultured in MC/9 growth medium (DMEM with 10% FBS, 2 mM L-glutamine,
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50 [iM 2-ME, 1% NEAA, 100 iu/ml penicillin, 100 |ig/ml streptomycin, additional 32 

mg/L L-arginine, 36 mg/L L-asparagine and 2 mg/L folic acid, and 20 - 45% 

concanavalin-A activated rat spleen cell supernatant) at a cell density of 1 - 5 x 105 

cells/ml in 75 cm2 or 162 cm2 tissue culture flasks at 37°C, 5% C02. The cultures 

were passaged on Monday, Wednesday and Friday to a final concentration of 1 - 2 x 

105 cells/ml.

2.2.1.4 TF-1 cell line

The TF-1 cell line is a human erythroleukaemia cell line which proliferates in response 

to a number of cytokines, including GM-CSF, SCF and erythropoietin (Kitamura et 

al, 1989). Cells were cultured in suspension in RPMI 1640 medium supplemented 

with 5% FBS, 2 mM glutamine, penicillin (100 iu/ml), streptomycin (100 ng/ml) and 

hGM-CSF (2 ng/ml) in upright 75 cm2 tissue culture flasks. Cultures were maintained 

at 37°C in a humidified incubator with 5% C02. Cultures were split every two to 

three days, typically 1:5 to 1:7, when the cell density reached approximately 5 x 105 

cells/ml; after passaging they were refed GM-CSF.

2.2.1.5 Production o f rat spleen cell conditioned medium

Rats were killed by cervical dislocation and the spleens collected aseptically into 10 - 

20 ml DMEM. The spleens were placed in a petri dish containing modified DMEM-4 

(DMEM with 4% FBS, 2 mM L-glutamine, 50 pM 2-ME, 1% NEAA, 100 iu/ml 

penicillin, 100 |ag/ml streptomycin, and additional 32 mg/L L-arginine, 36 mg/L L- 

asparagine and 2 mg/L folic acid) and teased apart using sterile scalpels. To break up 

the spleen further the tissue was forced through a 230 pm pore size wire mesh 

(Sigma) using a 50 ml syringe barrel. The cells were washed in medium, centrifuged 

in 50 ml conical tubes at 200 x g for 10 minutes and the supernatant discarded. The 

cells were then resuspended in ACK lysing buffer, using approximately five millilitres 

per spleen. The cell suspension was incubated at room temperature, with occasional 

shaking, for five minutes, to lyse the red blood cells. The tube was then filled with 

fresh medium, the cells pelleted by centrifugation at 200 x g for 10 minutes and the 

supernatant discarded. The cells were washed once in DMEM-4 and then 

resuspended in medium; the cells were counted and their concentration adjusted to
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1.25 x 106 cells/ml. Concanavalin A (Con-A) was added to a final concentration of 2 

|ug/ml and the cells cultured for 48 hours at 37°C, 5% CO2 . The supernatant was 

collected following removal of cells and debris by centrifugation at 800 x g for 10 

minutes. Residual Con-A was neutralised by adding a-methylmannosidase to a final 

concentration of 0.1 M. The medium was then filter sterilised and stored in aliquots 

at -70 °C until use.

2.2.1.6 Production o f cat lymphocyte conditioned medium

Cats used for this procedure were SPF and between one and four years of age. The 

cats were anaesthetised with a mixture of ketamine (Ketaset - Willows Francis 

Veterinary, Crawley, West Sussex, UK) and xylazine (Rompun - Bayer pic, Bury St 

Edmunds, Suffolk, UK) given by intramuscular injection. After collection of blood 

(for unrelated procedures) by the intracardiac route they were then euthanased with 

pentobarbitone by intracardiac injection. The abdominal cavity was opened and the 

mesenteric lymph nodes removed, using aseptic technique, into 50 ml of RPMI-5 

culture medium (RPMI medium containing 5% FBS, 2 mM L-glutamine, 100 iu/ml 

penicillin, 100 pg/ml streptomycin). The tissue was teased apart using two scalpel 

blades in a 90 mm petri dish, overlain with medium. The cells were then resuspended 

in 10 - 15 ml RPMI-5. Mononuclear cells (predominantly lymphocytes) were isolated 

by centrifugation at 1500 x g for 15 minutes over Ficoll-diatrizoate solution (Ficoll- 

Hypaque - Pharmacia Biotech). Cells at the interface layer were carefully removed, 

washed with an equal volume of fresh medium and then centrifuged at 400 x g for 10 

minutes. The supernatant was discarded and the cells resuspended in approximately 

five millilitres of RPMI-5 medium. The cells were counted and further medium added 

to give a cell concentration of 2.5 x 106 cells/ml. Replicate 20 ml cultures were set up 

with phytohaemagglutinin (PHA) added to a final concentration of 1 (ig/ml. Cultures 

were incubated for 48 hours at 37°C, 5% CO2 . Cells and debris were then removed 

by centrifugation at 800 x g for 10 minutes; the supernatant was collected and stored 

in aliquots at -20°C.
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2.2.1.7 M arrow culture techniques

2.2.1.7.1 Collection o f Bone Marrow

Cats were anaesthetised using 1.5 - 2 ml of alphaxelone/alphadolone acetate (Saffan, 

Pitman-Moore Ltd., Crewe, UK) given by intravenous injection. The left or right 

gluteal area was clipped and prepared aseptically, aspirates of marrow were then 

collected from the femur via the inter-trochanteric fossa using a disposable 18 G 

Jamshidi sternal/iliac aspiration needle (Baxter Healthcare, Glasgow, UK). Aspirates 

were transferred to two millilitres of IMDM containing 100 iu/ml heparin 

(Monoparin, CP Pharmaceuticals Ltd., Wrexham, UK). Bone marrow aspirates were 

also collected from cats following euthanasia; aspirates were collected immediately 

after euthanasia, with the femur being removed and opened with bone cutting forceps, 

if necessary.

2.2.1.7.2 Preparation o f agar

Agar for GM-CFC assays was prepared by adding 33 g of agar (Agar Noble, DIFCO 

Laboratories, Michigan, USA) to 1000 ml of tissue culture grade distilled water. The 

mixture was heated to boiling point, stirring all the time. When the agar had dissolved, 

the solution was autoclaved at 121 °C for 20 minutes, then aliquoted into 50 ml 

centrifuge tubes, cooled and stored at room temperature.

2.2.1.7.3 Cell preparation

Marrow aspirates were layered onto a Ficoll-Diatrizoate gradient (Ficoll-Paque, 

Pharmacia LKB Biotechnology Inc., New Jersey, USA) and centrifuged for 15 

minutes at 1,500 x g. Interface cells were then aspirated and washed in an equal 

volume of IMDM, centrifuged at 400 x g for 10 minutes and resuspended in one to 

five millilitres of IMDM, depending on pellet size. Cells were then counted using a 

haemocytometer.
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2 .2 .2  R e c o m b in a n t  DNA T e c h n iq u e s

2.2.2.1 Storage and growth of bacteria

Plasmids were maintained in E.coli strains DH5a, JM105, or INVaF. To enable 

storage of these E.coli host strains and of transformants obtained during this work, 

glycerol stocks were prepared. The desired bacterial culture was streaked onto a 

1.5% agar plate (1.5% agar in LB medium); in cases where the bacterial stock 

contained a plasmid conferring ampicillin resistance (all vector strains used in this 

project) the medium was supplemented with 50 - 100 pg/ml ampicillin. The plate was 

incubated overnight at 37°C and the following day single colonies were picked using a 

pipette tip, into 10 ml LB medium (supplemented as appropriate with 50 - 100 pg/ml 

ampicillin) in a sterile universal. The culture were incubated at 37°C overnight in an 

orbital incubator. Confirmation that the overnight culture was derived from bacteria 

containing the desired recombinant plasmid was achieved by DNA extraction and 

restriction digest (section 2.2.2.4). Glycerol stocks were prepared by the addition of 

200 pi of 80% glycerol to one millilitre of culture; stocks were stored at -70°C. 

Bacterial stocks were revived for subsequent work by using a sterile platinum wire to 

scratch the surface of the stock, following which it was streaked onto an agar plate as 

outlined above.

2.2.2.2 Extraction and purification of plasmid DNA

Plasmid DNA was isolated using a modification of the alkali lysis technique described 

by Birnboim And Doly (1979).

2.2.2.2.1 Large Scale Plasmid Preparations.

A 10 ml overnight culture of the desired transformant was grown and used to seed a 

500 ml culture which was further grown overnight at 37°C, with shaking. Bacterial 

pellets were obtained by centrifugation at 3,300 x g for 20 minutes at 4°C. The pellet 

was resuspended in 20 ml lysis buffer and left on ice for 30 minutes. The bacteria 

were lysed by addition of 40 ml 1% SDS/0.2 M NaOH and the preparation left on ice 

for a further five minutes. High molecular weight RNA, chromosomal DNA and 

protein/membrane complexes were precipitated on ice for 30 minutes following the
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addition of 30 ml 3M KoAc. The precipitate was separated from the supernatant by 

centrifugation at 3,300 x g for five minutes at 4°C, and subsequent filtration through 

sterile gauze. DNA was precipitated at room temperature for 30 minutes by the 

addition of 0.6 volumes of isopropanol to the supernatant. The DNA was pelletted by 

centrifugation at 3,300 x g for ten minutes, the supernatant discarded and the DNA 

pellet vacuum dried for one hour then resuspended in eight millilitres of TE buffer (pH 

8.0). Following the addition of 9.6 g CsCl and 600 pi of ethidium bromide (3mg/ml) 

the refractive index of the resultant solution was measured using a refractometer and 

adjusted to 1.388 - 1.390. The mixture was transferred to two Quick-Seal tubes 

(Beckman) which were balanced to within 0.05 g and heat sealed. The tubes were 

spun overnight in a Vti65 rotor at 55,000 rpm, 20°C in a Beckman model L8M 

ultracentrifuge. The closed circular plasmid DNA (lower band) was collected using a 

sterile two millilitre syringe and 19 G needle and the ethidium bromide removed by 

four sequential extractions using equal volumes of isoamyl alcohol. The aqueous 

phase was transferred to a collodion bag (Sartorius) that had been pre-soaked in 

dH20  for one hour and the CsCl removed by dialysis against TE buffer (pH 8.0). The 

DNA solution was concentrated by butan-2-ol extraction, then precipitated at -20°C 

following the addition of 0.1 volumes of 3M NaAc and 2.5 volumes of ethanol. The 

DNA was pelleted by centrifugation at 13,000 rpm for 10 minutes, then washed with 

70% ethanol, spun at 13,000 rpm for 10 minutes, and vacuum dried. The DNA was 

resuspended in 0.5 - 1.0 ml of dH20, its concentration determined by 

spectrophotometry (see section 2.2.2.3.1), diluted to a final concentration of 1 pg/pl 

and stored at -20°C.

2.2.2.2.2 Small-Scale Preparations.

One and a half millilitres of an overnight culture of the desired transformant was 

removed to an eppendorf and spun at 13,000 rpm in a microcentrifiige for two 

minutes. The supernatant was discarded and the tubes inverted for two minutes to 

ensure that the pellet was media free. The pellet was resuspended in 150 pi of lysis 

buffer containing approximately 0.5 mg of lysozyme. Lysis was effected by addition 

of 300 pi of 1% SDS/0.2 M NaOH to the resuspended cells; following gentle mixing 

the tubes were left on ice for five minutes. Protein, bacterial chromosomal DNA and 

cellular debris were precipitated by addition of 225 pi of 3 M KoAc; following gentle
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mixing the tubes were left on ice for five minutes. After centrifugation at 13K for five 

minutes the supernatant was removed into a clean eppendorf. The plasmid DNA was 

recovered by addition of 630 pi of 100% ethanol followed by centrifugation at 13,000 

rpm for 10 minutes. The pellet washed with one millilitre of 70% ethanol and again 

centrifuged (13,000 rpm, two minutes). The ethanol was removed and the pellet 

dried in a vacuum desiccator for one minute. The DNA was then resuspended in 20 - 

40 pi dH20.

2.2.2.2.3 Preparation o f DNA for cycle sequencing

Preparation of pure DNA template for use in cycle sequencing reactions was 

facilitated by use of the Wizard™ Minipreps DNA Purification System. This system 

utilises a modified alkali lysis procedure followed by further purification using a resin 

that binds plasmid DNA.

Three millilitres of overnight culture was removed to an eppendorf and spun at 13,000 

rpm in a microcentrifuge for two minutes. The supernatant was discarded and the 

tubes inverted for two minutes to ensure that the pellet was media free. The pellet 

was resuspended in 200 pi of lysis buffer (50 mM Tris-HCl, pH 7.5, 10 mM EDTA, 

100 pg/ml RNAse A). Lysis was effected by addition of 200 pi of 1% SDS/0.2 M 

NaOH to the re-suspended cells; following gentle mixing, protein, bacterial 

chromosomal DNA and cellular debris were precipitated by addition of 200 pi of 

neutralisation solution (2.55 M KoAc). The tube was inverted several times to mix 

and after centrifugation at 13K for five minutes the supernatant was removed into a 

clean eppendorf. One millilitre of DNA purification resin was added to the 

supernatant, mixed and then loaded onto a minicolumn using a two millilitre syringe. 

The column was washed twice with two millilitres of column wash solution (100 mM 

NaCl, 10 mM Tris-HCl, pH 7.5, 2.5 mM EDTA, 42.5% ethanol). The column 

containing the resin was then dried by centrifugation at 13,000 rpm for one minute. 

Plasmid DNA was recovered by applying 50 pi of dH20  to the column; after a delay 

of one minute, the DNA was eluted into a clean eppendorf by centrifugation at 13,000 

rpm for one minute.
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2.2.2.3 Determ ination o f nucleic acid concentration

2.2.2.3.1 Determination by spectrophotometry

The nucleic acid sample was diluted 1:100 by addition of 4 (0,1 of nucleic acid to 396 

(0,1 of dH20. The optical density was measured at 260 nm and 280 nm, in comparison 

to a blank of dH20. An OD reading of 1.0 at 260 nm corresponds to an approximate 

nucleic acid concentration of 50 pg/ml for double stranded DNA, 40 p,g/ml for RNA, 

or 33 |iig/ml for single stranded oligonucleotides. The ratio of the OD readings at 260 

nm and 280 nm (OD26o/OD28o) was used to estimate the purity of the nucleic acid. 

Pure preparations of DNA and RNA have an OD26o/OD28o of 1.8 and 2.0, 

respectively; a lower value suggests possible protein or phenol contamination.

2.2.2.3.2 Estimation o f double stranded DNA concentration via gel electrophoresis

In cases where there was insufficient sample to permit quantification via 

spectrophotometry or where it was desired to verify the purity of DNA fragments of a 

certain size, the concentration of dsDNA was determined by running the sample on a 

polyacrylamide or agarose gel (see section 2.2.2.5) and comparing the intensity of the 

fluorescence of the unknown DNA to that of a known quantity of the appropriate size 

marker (<J)X174 RF DNA/Hae III fragments or X DNA/Hindlll fragments), following 

staining with ethidium bromide and visualisation by UV transillumination.

2.2.2.4 Restriction endonuclease digestion

Typically, 1 - 2 pg of DNA was digested in a 20 p,l reaction mix containing the 

appropriate buffer, 5 mM spermidine and 5 - 1 0  units of the desired restriction 

enzyme. The reactions were incubated at 37°C for a minimum of one hour. Where 

the isolation of restriction fragments was required, larger quantities of DNA, generally 

5 - 1 0  pg, were digested, with the reaction volume and components being increased 

proportionally. When digesting plasmid DNA prepared by the small scale procedure, 

likely to contain significant RNA contamination, this was followed by the addition of 

10 pg of RNAse A with a further 15 minutes incubation at 37°C.
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2.2.2.5 Electrophoresis of DNA

2.2.2.5.1 Agarose gel electrophoresis

DNA fragments of 1.0 - 10 kb were separated and identified by agarose gel 

electrophoresis using a submarine agarose gel kit (Mini the Gel Cicle - Hoefer 

Scientific Instruments, San Francisco, CA). Typically, 0.5 - 0.75 g agarose was added 

to 50 ml of TAE buffer, melted in a microwave and mixed to produce a 1 - 1.5% gel. 

Once the gel mix had cooled to 55°C, the gel was poured into a 100 x 65 mm gel 

support in its casting tray and an appropriate gel comb (eight or twelve well) inserted. 

The gel was allowed to solidify before transferring to an electrophoresis tank; the gel 

was immersed in TAE buffer and the comb carefully removed. DNA samples were 

prepared by the addition of an appropriate volume of 10 x gel loading buffer; 

molecular size standard DNA was prepared similarly and the samples loaded into the 

wells using a micropipette. Gels were run at 40 - 50 volts for 60 - 120 minutes, then 

removed from the gel apparatus and stained in buffer solution containing 0.5 pg/ml 

ethidium bromide for 30 minutes. Following destaining for 30 minutes in dH20, gels 

were visualised on a UV transilluminator and photographed using black and white 

Polaroid film (Type 667 - Polaroid UK Ltd., St Albans, Herts, UK).

2.2.2.5.2 Polyacrylamide gel electrophoresis

In order to separate, visualise and determine the size of DNA fragments under 

approximately 1.2 kb (including PCR products and products of restriction digests), 

non-denaturing polyacrylamide gel electrophoresis was employed. Glass plates of 16 

cm x 16 cm size were assembled with a 0.75 mm spacer in a casting stand (Atto). 

Five to six percent gels were prepared with five to six millilitres of 30%:0.8% 

acrylamide/bisacrylamide solution (Scotlab, Strathclyde, Scotland), three millilitres of 

10 x TBE buffer and dH20  added to 30 ml total volume. Following the addition of 25 

pi of TEMED and 250 pi 10% APS, the gel solution was poured between the 

assembled gel plates and a comb (12 or 20 well) inserted. After polymerisation, the 

gel plates were removed from the casting apparatus, the spacer removed and the 

plates transferred to the gel electrophoresis apparatus. The apparatus was filled with 

1 x TBE buffer, the gel comb removed and the wells flushed with buffer. Samples
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were prepared as described in 2.2.2.5.1 and lpaded onto the gel using 0.4 mm flat 

ended gel loading tips; <()X174 RF DNAHae III fragments were used as a molecular 

size standard. Gels were electrophoresed at 220 V for 45 - 90 minutes then removed 

and stained in buffer solution containing 0.5 pg/ml ethidium bromide for 15 minutes. 

Following destaining for 30 minutes in dH20, gels were visualised on a UV 

transilluminator and photographed using black and white Polaroid film.

2.2.2.6 Purification o f restriction enzyme fragm ents

Where purification of DNA fragments over 500 bp in size was required for 

construction of recombinant plasmids, DNA was purified from agarose gels using the 

Genecleanll Kit (Bio 101 Inc.), which utilises a silica matrix (glassmilk) to bind single 

and double stranded DNA without binding contaminants. The DNA was separated by 

electrophoresis through a 0.8 - 1.5% agarose gel prepared using TEA buffer. 

Following staining with ethidium bromide the gel was visualised by UV illumination 

and the desired band excised using a sterile scalpel. Three volumes of Nal were 

added and the gel slice incubated at 55°C for five minutes or until all of the agarose 

was dissolved. Five microlitres of glassmilk suspension was added to the resultant 

DNA solution, with an additional one microlitre added for each 0.5 pg of DNA above 

5 pg. The DNA was allowed to bind to the silica matrix on ice for 10 minutes. The 

glassmilk/DNA complex was pelleted by brief centrifugation in a microcentrifiige and 

then washed by resuspending in 200 pi new wash (Tris buffered NaCl, ethanol and 

water solution) after which the glassmilk/DNA complex was again pelleted by brief 

centrifugation; this wash step was repeated three further times. After the final wash, 

the pellet was dried briefly in an vacuum dessicator. The DNA was eluted by 

resuspending the pellet in 20 pi of dH20  and incubating at 55°C for 10 minutes. The 

matrix was pelleted in a microcentrifiige and the supernatant containing the DNA 

removed to a clean eppendorf.

2.2.2.7 Ligation of vector and target DNA

Vector and insert DNA were mixed at a molar ratio of 1:1 to 1:5 (typically using 50 - 

100 ng vector DNA), with an appropriate volume of ligation buffer and 4 units DNA 

ligase, in a volume of 10 - 20 pi. Reactions were allowed to proceed overnight at
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14°C and stored thereafter at -20°C if not used immediately. A control ligation, 

omitting insert DNA was generally set up in parallel to the above, in order to check 

for ‘background’ when performing subsequent bacterial transformations.

2.2.2.8 Transform ation o f bacteria with plasmid D N A

When transforming bacteria, by either of the methods described below, in addition to 

the transformation with recombinant plasmid, the bacteria were also transformed with 

a control plasmid (as a positive control) and a ligation reaction from which the insert 

DNA had been omitted (as a negative control).

2.2.2.8.1 Use o f ready-competent bacteria

Transformation ofD H 5a cells: Cells were thawed on wet ice, gently mixed and 20 p 

1 of cells aliquoted to a chilled microcentrifuge tube for each transformation required. 

Unused cells were refrozen in 20 pi aliquots in a dry ice/ethanol bath for five minutes 

before returning them to the -70 °C freezer. One microlitre of ligation reaction or 

control plasmid (pUC18) was added to the cells (1 - 10 ng DNA), moving the pipette 

through the cells while dispensing in order to facilitate mixing. Cells were left on ice 

for 30 minutes then heat shocked in a 42 °C water bath for 40 seconds. Cells were 

then placed on ice for 2 minutes, 80 pi of SOC medium added and the tubes incubated 

at 37°C for 1 hour with shaking at 225 rpm. Cells were plated onto LB plates 

(containing 50 pg/ml ampicillin; 25 pi of X-Gal stock solution was spread on the plate 

one hour prior to use if blue-white colour selection was used) and incubated at 37 °C 

overnight.

Transformation o f INVaF ' cells: The transformation procedure for these cells was 

essentially as described for DH5a cells with minor modifications: one vial of cells (50 

pi) was used for each transformation; 2 pi of 0.5 M 2-ME was added to the cells prior 

to incubation on ice; cells were heat shocked for 30 seconds; 450 pi of SOC medium 

was added to the cells; typically 100 pi of cells was spread on each LB agar plate.
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2.2.2.8.2 Preparation o f freshly competent bacteria and subsequent transformation

JM 105 and BL21 E.coli, used for procedures involving the pGEX plasmid were 

made competent using a modification of the procedure described by Chung et al.

(1989). A single colony was picked from an LB agar plate after overnight growth and 

used to inoculate 50 ml of LB broth. Bacteria were grown at 37°C, with shaking at 

250 rpm, to an OD6oo of 0.4 - 0.5. The cells were then sedimented at 2500 x g for 15 

minutes at 4°C, the supernatant discarded, and then resuspended in five millilitres of 

ice-cold TSS buffer. Cells were kept on ice until used for transformations; within two 

to three hours of preparation.

To 100 til of freshly competent E.coli was added two microlitres of ligation reaction, 

containing approximately 1 - 10 ng of plasmid DNA. After chilling briefly on ice, 900 

til of LBG medium (LB medium supplemented with 20 mM glucose) was added and 

the tubes incubated at 37°C for one hour with shaking at 250 rpm. Cells (50 - 200 (il) 

were plated onto LB AG plates (LB plates containing 50 tig/ml ampicillin; 20 mM 

glucose) and incubated at 37 °C overnight.

2.2.2.9 Screening o f transformants for desired recom binant plasmids

All plasmid strains used in this project conferred ampicillin resistance upon host 

bacteria, allowing selection and maintenance of transformed bacteria with ampicillin 

supplemented media.

2.2.2.9.1 a-complementation

The pCR™II plasmid contains genes encoding the lacZm fragment of p-galactosidase 

and the lac promoter and is thus capable of complementation with the cp fragment 

encoded by the E.coli host strains DH5a and INVaF’, giving active P-galactosidase. 

The incorporation of X-gal into LB agar plates allows the selection of transformants 

based on blue-white screening. Disruption of lacZa expression occurs with the 

cloning of fragments into the multiple cloning site of this vector, hence recombinants 

with plasmid containing insert DNA appear white whilst non-recombinants, 

expressing a functional p-galactosidase, appear blue.
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2.2.2.9.2 Restriction analysis o f small-scale plasmid preparations

Plasmid DNA, isolated as described in 2.2.2.2.2 , was subjected to restriction digest 

with the appropriate enzyme(s), and the resulting products of digestion run on a 

polyacrylamide or agarose gel. Bacteria with plasmids containing inserts of the 

desired size were stored as glycerol stocks as detailed in section 2.2.2.1.

2 .2 .3  P r e p a r a t io n  o f  N u c l e ic  A c id s

2.2.3.1 Preparation o f mRNA

For procedures involving RNA preparation and subsequent manipulation, care was 

taken to avoid degradation by ribonucleases. All plasticware used was either new or 

was treated by soaking overnight in DEPC treated water, followed by autoclaving 

twice at 121°C for 15 minutes. All solutions were prepared using DEPC treated 

water. Gloves were worn and changed frequently.

The preparation of high quality mRNA was facilitated by the use of the Quickprep® 

mRNA kit (Pharmacia). Tissue is disrupted in guanidinium isothiocyanate to ensure 

rapid inactivation of endogenous RNAse activity and dissociation of cell components 

from the mRNA (based on the method of Chirgwin et al, 1979). After adjustment of 

the buffer concentration and pelleting of cellular debris and insoluble proteins by 

centrifugation, polyadenylated mRNA is extracted by binding to oligo(dT) cellulose 

column (Aviv and Leder, 1972.). Finally, following washes to remove DNA protein 

and non-poly A+ RNA the mRNA is eluted from the column.

The manufacturer’s instructions were followed, briefly, as follows. Cultured cells (< 

5 x 107 cells) were pelleted by centrifugation at 400 x g for five minutes. The cells 

were resuspended in 1.5 ml extraction buffer (aqueous solution containing 

guanidinium thiocyanate and N-lauroyl sarcosine) and homogenised by passing 

through a 21 G needle attached to a syringe. To the sample was added three 

millilitres of elution buffer [10 mM Tris-HCl (pH 7.5), 1 mM EDTA]; after brief 

homogenisation the sample was transferred to a sterile polypropylene centrifuge tube 

and centrifuged at 10,000 rpm in a Beckman JA-20 rotor for 10 minutes. An
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oligo(dT)-cellulose spun column was prepared by centrifugation (all centrifuge steps 

involving the spin column were at 350 x g for two minutes) with both top and bottom 

closures removed; the supernatant was then applied to the column and mixed gently 

for 15 minutes. The column was centrifuged with both closures on and the 

supernatant discarded. The column was then washed (followed each time by 

centrifugation) three times with high-salt buffer [10 mM Tris-HCl (pH 7.5), 1 mM 

EDTA, 0.5 M NaCl] and twice with low-salt buffer [10 mM Tris-HCl (pH 7.5), 1 mM 

EDTA, 0.1 M NaCl]. The mRNA was then eluted with three sequential washes of 

0.25 ml elution buffer warmed to 65°C. The mRNA was precipitated overnight at - 

70°C following the addition of 10 pi glycogen solution (5 -10 mg/ml glycogen in 

DEPC treated water), 75 pi 2.5 M KAc solution and 1.5 ml of 95% ethanol. The 

mRNA was then pelleted by centrifugation at 13 K for 15 minutes, the ethanol 

removed, and the mRNA dried for one minute in a vacuum desiccator. The mRNA 

was then dissolved in 20 - 40 pi DEPC treated water and its concentration determined 

by spectrophotometry (section 2.2.2.3.1).

2.2.3.2 First-strand cDNA synthesis

In order to maximise the likelihood of obtaining full-length cDNA copies of mRNA, a 

commercial cDNA synthesis kit was employed (First-strand cDNA synthesis kit - 

Pharmacia Biotech). The kit contains all components required for first strand cDNA 

synthesis, including a preassembled reaction mix containing Moloney Murine 

Leukaemia Virus (M-MuLV) reverse transcriptase (Roth et al., 1985), RNAguard (an 

RNAse inhibitor), RNAse/DNAse free BSA, and dNTPs in an aqueous buffer. An 

oligo-dT primer (Not I-d(T)i8 primer) supplied with the kit was used to prime cDNA 

synthesis; sequence as follows:

5’-d[AAC TGG AAG AAT TCG CGG CCG CAG GAA T18]-3’

Typically, 200 ng mRNA was placed in a microcentrifiige tube and brought to 20 pi 

with RNAse free water. The RNA was denatured at 65°C for 10 minutes then chilled 

on ice. To the RNA was added 11 pi bulk first strand reaction mix, 1 pi of 200 mM 

DTT and 1 pi (0.2 pg) Not I-d(T)i8 primer. The reaction mix was incubated for one 

hour at 37°C, then kept on ice (or stored at -70°C) prior to amplification by the 

polymerase chain reaction.
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2.2.4 A m p l i f ic a t io n  o f  DNA b y  t h e  p o ly m e r a s e  c h a in  r e a c t i o n

The polymerase chain reaction (PCR) is a powerful technique for amplification of 

specific DNA sequences from a complex mixture of DNA. The procedure was 

developed by Mullis and co-workers in the mid 1980s (Mullis et al, 1986; Mullis and 

Faloona, 1987), enabling large amounts of a single copy gene to be generated from 

genomic (Saiki et at, 1985; Saiki et at, 1986) or viral DNA (Kwok et al., 1987). 

The initial method used the Klenow fragment of DNA polymerase I, which had to be 

replenished during each cycle as it is readily denatured by the amplification conditions 

used. The substitution of thermostable Taq polymerase, isolated from Thermus 

aquaticus, circumvented this problem and allowed the automation of thermal cycling 

(Saiki et al, 1988).

PCR enables the amplification of unknown DNA sequence by the simultaneous 

extension of a pair of primers, flanking the unknown sequence, each complimentary to 

opposite strands of the DNA. The uses of PCR are many and it has superseded more 

conventional molecular biological methods in many areas, including sequencing (Innis 

et al, 1988), cloning (Scharf, 1990) and detection and analysis of RNA (Veres et al, 

1987). An extensive overview of PCR, its applications and detailed protocols are 

given in Innis et al (1990). An overview of the procedure is given below, with more 

detail in the appropriate chapters.

2.2.4.1 Prim er design

Primer design was aided by some basic guidelines as suggested by Innis and Gelfland

(1990). Primers were generally 1 8 - 2 8  nucleotides in length, with a G + C 

composition of 50 - 60% where possible. For a given primer pair, the annealing 

temperatures (Tm), were balanced and complementary regions between and within 

primers were avoided; design of primers in this respect was aided by the Oligo primer 

analysis software program (Version 4.1 - Medprobe AS, Oslo, Norway).

2.2.4.2 Preparation o f PC R  reactions

As PCR is such a sensitive procedure it is essential to take stringent precautions to 

avoid PCR contamination from tube to tube or carry over of PCR products (Saiki et
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al, 1988). PCR reactions were set up in a designated area, at a site distant from the 

main laboratory area, where the PCR products were handled. A set of micropippetes 

were kept for the sole purpose of setting up PCR reactions. Filter tip pipette tips 

were used to decrease the risk of carry over of reaction components from one tube to 

the next. A bulk reaction mix was used in order to minimise the number of pipetting 

steps. Reaction components (including primers) were aliquoted prior to use and 

aliquots stored at -20°C.

2.2.4.3 Reaction conditions

The use of high quality reagents is essential to the success of PCR; to facilitate this 

the Gene Amp Kit, containing all necessary reagents, was used. The manufacturer’s 

instructions were followed. Typically a reaction mix was set up in 50 pi volume in 

0.5 pi tubes containing 125 pM each dNTP, 1 x PCR buffer (10 mM Tris-HCl, pH 

8.3, 50 mM KC1, 1.5 mM MgCh, 0.01% gelatin), 2.5 units AmpliTaq® DNA 

polymerase, 0.2 - 2.0 pM each primer and an appropriate volume of DNA or cDNA 

template, as determined experimentally; the reaction was overlain with mineral oil. 

Thermal cycling was carried out in a DNA thermal cycler (Perkin Elmer), with a 

typical cycle consisting of an initial denaturation of 94° C for five minutes, followed by 

30 - 35 cycles of: denaturation at 94°C, for one minute; annealing at 45 - 60°C for 

one minute; extension at 72°C for one minute; with a final extension step of 72°C for 

five minutes. Reaction products were visualised by polyacrylamide gel 

electrophoresis as detailed in 2.2.2.5.2, generally using five microlitres of reaction 

product per well.

2.2.5 DNA S e q u e n c e  A n a ly s is

2.2.5.1 M anual sequencing by the chain termination method

2.2.5.1.1 Sequencing reactions

Manual sequencing used the Sequenase version 2.0 DNA sequencing kit, which is 

based on the chain termination method originally described by Sanger et al. (1977). 

The kit uses Sequenase 2.0 DNA polymerase (Tabor and Richardson, 1989), a
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modified version of the original Sequenase enzyme, described by Tabor and 

Richardson (1987). The enzyme lacks 3’ - 5’ exonuclease activity, present in the wild 

type enzyme, and shows higher speed and processivity. The manufacturer’s 

instructions were followed; the procedure is described briefly below, divided into four 

stages.

Denaturation o f dsDNA template: Double-stranded plasmid DNA, prepared as 

described in 2.2.2.2.2, (approximately six to ten micrograms contained in 36 pi dH20) 

was denatured by the addition of four microlitres of 2 M NaOH followed by 

incubation at 37°C for 15 minutes. Eight microlitres of 5 M ammonium acetate was 

added to neutralise the mixture, and the DNA precipitated with 2 - 2 . 5  volumes 

ethanol at -70°C for 30 minutes. The DNA was pelleted by centrifugation at 13,000 

rpm for 15 minutes, the supernatant discarded and the pellet washed in 500 pi 70% 

ethanol. After a brief centrifuge at 13,000 rpm, the pellet was dried in a vacuum 

desiccator, then dissolved in 14 pi dH20, providing sufficient DNA for two 

sequencing reactions.

Annealing step-. Plasmid DNA, contained in seven microlitres of dH20, was mixed 

with two microlitres of reaction buffer (200 mM Tris-HCl (pH 7.5), 100 mM MgCl2, 

250 mM NaCl) and one microlitre (0.5 - 2.0 pmol) of primer in a microcentrifiige 

tube. The mixture was brought to 65°C for two minutes, then removed to a beaker of 

water at 65°C and allowed to cool slowly to 35°C, at which point the reaction was 

considered complete and the tube placed on ice.

Labelling step: The primer annealed to the DNA template was extended using

limiting concentrations of a mix of dNTPs, including radioactively labelled dATP. 

This step results in the generation of a mix of labelled DNA chains, varying from 

several to hundreds of nucleotides in length. To the above template-primer mix was 

added one microlitre 0.1 M DTT, 0.5 pi of [a-35S]-dATP and two microlitres of 

labelling mix (7.5 pM dGTP, 7.5 pM dCTP, 7.5 pM dTTP) diluted five-fold with 

dH20. Finally Sequenase enzyme was diluted 1:8 with ice cold enzyme dilution buffer
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(10 mM Tris-HCl (pH 7.5), 5 mM DTT, 0.5 mg/ml BSA), two microlitres added to 

the labelling mix, and the reaction incubated for five minutes at room temperature.

Chain-termination step\ DNA synthesis was continued using a mix of dNTPs and a 

dideoxynucleoside triphosphate; this results in the termination of DNA synthesis with 

a known ddNTP. Two and a half microlitres of each termination mix (80 pM each 

dNTP, 50 mM NaCl plus 8 pM appropriate ddNTP) was aliquoted into labelled 

screw-top microcentrifuge tubes and pre-warmed to 37°C for one minute. Three and 

a half microlitres of the above labelling reaction was then added to each tube, mixed 

by gentle pipetting, and incubated at 37°C for 15 minutes. The reactions were 

terminated by the addition of four microlitres of stop solution (95% formamide, 20 

mM EDTA, 0.05% bromophenol blue, 0.05% xylene cyanol FF). Reactions were 

stored at -20°C for up to one week prior to gel electrophoresis.

2.2.5.1.2 Gel electrophoresis

The completed sequencing reactions were run on six percent denaturing 

polyacrylamide gels, incorporating Long Ranger™ polyacrylamide gel solution (AT 

Biochem, Malvern, USA). Long Ranger gel mix contains modified acrylamide 

monomers and a modified crosslinker that results in a gel that produces longer 

readable sequence, is stronger and more elastic than conventional gels, and does not 

require fixing or removal of urea prior to drying. Glass sequencing plates (50 x 22 

cm) were cleaned with 1% SDS, rinsed thoroughly then cleaned with ethanol. 

Repelcote (BDH) was applied to the surface of one plate to ensure that the gel would 

not stick to the glass plate. The sequencing plates were assembled with 0.2 mm 

spacers and plastic adhesive tape. To 50 ml of sequencing gel mix was added 25 pi of 

TEMED and 250 pi of 10% APS; the gel was poured using a 50 ml syringe, a 24 well 

sharkstooth comb inserted in an inverted position and clamped in place using 

‘bulldog’ clips. The gel was then allowed to polymerise in a near-horizontal position 

for at least one hour at room temperature. The tape at the bottom of the gel plates 

was removed, the plates mounted into the sequencing apparatus and the upper and 

lower gel tanks filled with 1 x TBE. The comb was removed, the surface of the gel 

rinsed with buffer and the comb reinserted in the correct orientation. The gel was
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pre-electrophoresed for 15 minutes at 35 Watts. The DNA samples were denatured 

by heating to 75°C for two to five minutes immediately prior to loading two to three 

microlitres of sample per well. Aliquots of each reaction were run at 35 Watts for 

approximately two hours and four hours; this generally allowed 350 - 500 bp to be 

read from each sequencing reaction.

Following electrophoresis, the plates were removed from the sequencing apparatus, 

allowed to cool briefly then separated. The gel was transferred to Whatman 3 MM 

filter paper (Whatman International Ltd., Maidstone, England), covered with Saran 

wrap (Dow Chemical Co.) and dried, gel side uppermost, under vacuum in a gel drier 

for 30 - 60 minutes at 80°C. The plastic wrap was then removed and the top of the 

gel trimmed to fit an autoradiography cassette. A sheet of autoradiography film 

(Biomax HR single sided emulsion film or X-omat AR double sided emulsion film 

(both 35 x 43 cm) - IBI Limited, A Kodak Company, Cambridge, England) was 

placed in contact with the gel and exposed overnight, at room temperature, prior to 

developing in an automated processor. The sequence was read manually over a light 

box, and the data stored on a UNIX computer system. Sequence data was managed 

and analysed using the University of Wisconsin Genetics Computer Group (UWGCG) 

software (notably SeqEd, Bestfit, Lineup and Pileup programs; more detailed 

descriptions follow in Chapter 3).

2.2.5.2 Automated sequencing

During the later stages of this project a Licor model 4000 automated sequencer 

became available, which considerably increased the ease and throughput of 

sequencing. The sequencer utilises an infrared detection system, whereby DNA 

fragments are detected following labelling with IRD41 labelled primers, as they run 

through the denaturing polyacrylamide gel. In addition sequencing reactions were 

performed using a thermostable DNA polymerase (SequiTherm DNA polymerase), 

allowing reactions to be performed in a thermal cycler. This variation on the original 

method of chain termination sequencing, known as 'cycle sequencing', was first 

described by Innis et a l (1988). The method allows direct sequencing of dsDNA 

without alkali denaturation, requires less template and is more efficient at sequencing 

templates that are G/C rich or have high secondary structure.
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2.2.5.2.1 Sequencing reactions

Protocols for cycle sequencing using SequiTherm DNA polymerase were provided by 

Licor. The following were combined in a 0.5 ml microcentrifiige tube: two

microlitres IRD41 labelled primer, 2.5 pi 10 x sequencing buffer (0.5 M Tris-HCl (pH 

9.3), 25 mM MgCl2), one microlitre SequiTherm DNA polymerase, 1 - 2 pg dsDNA 

template, dH20  to 17 pi. Into each of four labelled 0.5 pi microcentrifiige tube was 

aliquoted 2.0 pi of A, T, G, or C long read termination mix (45 pM each of dATP, 

dCTP, dTTP and 7-deaza-dGTP and either 0.03 mM ddGTP, 0.3 mM ddCTP, 0.45 

mM ddATP or 0.45 mM ddTTP as appropriate); four microlitres of the 

template/primer/enzyme mix was then added to each of these tubes and a drop of 

mineral oil placed on top of the complete reaction mix. The tubes were placed in a 

thermal cycler (Perkin Elmer) and subjected to an initial denaturation step of 95°C for 

two minutes followed by 30 cycles of 95°C for 30 seconds; 60°C for 30 seconds; 

70°C for 30 seconds; terminating in 4°C soak. After cycling was complete, four 

microlitres of stop solution (95% (w/v) formamide, 10 mM EDTA (pH 7.6), 0.1% 

xylene cyanol and 0.1% bromophenol blue) was injected into each of the reaction 

mixes, under the mineral oil. Reactions were stored at +4°C for short periods or - 

20°C for up to one week prior to gel electrophoresis; exposure to light was avoided.

2.2.5.2.2 Gel electrophoresis

Sequencing reactions were run on 6% denaturing polyacrylamide gels, as detailed in 

the manufacturer’s instructions, outlined as below. Standard size plates (18 x 33 cm) 

were used in conjunction with 28 well rectangular toothed combs. Glass plates were 

cleaned thoroughly before applying bind-silane to the notched glass plate over the 

area to be in contact with the comb; 170 pi of a solution containing five microlitres of 

10% acetic acid and 165 pi silane solution (50 pi y-methacryloxy- 

propyltrimethoxysilane in 10 ml 100% ethanol) was applied using a pasteur pipette in 

a fume hood. After this had dried, the glass plates were assembled and placed in a 

casting stand. A gel mix was prepared before use with 21 g urea, six millilitres Long 

Ranger™ polyacrylamide gel mix (AT Biochem.), six millilitres 10 x Tong run’ TBE 

buffer (162 g tris base, 27.5 g boric acid, 9.3 g EDTA; to 1 L with dH20) and dH20  

added to 50 ml total volume. To the gel mix was added 270 pi 10% APS. Three
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millilitres of the gel mix was removed to a bijou and 32 pi 10% APS and four 

microlitres of TEMED added; a pasteur pipette was then used to inject the mix 

between the bottom of the glass plates to form a plug. After the plug had 

polymerised, 25 pi TEMED was added to the remaining gel solution, mixed and the 

gel poured. A comb was inserted and clamped in place using two ‘bulldog’ clips; the 

gel was then inclined at approximately 30° from horizontal, and allowed to polymerise 

for a minimum of 90 minutes. The gel was then transferred to the electrophoresis 

apparatus, both buffer tanks filled with 1 x TBE, the comb removed and wells flushed. 

The gel was pre-electrophoresed for 30 - 45 minutes, during which time the scanning 

microscope was focused and the gain controls adjusted. Sequencing reactions were 

denatured at 95°C for three minutes prior to loading; generally 0.8 - 1.5 pi was loaded 

per well. The gel was run at 31.5 W, with the scanner programmed to collect 25 

frames (approximately 800 bp). Sequence data was read automatically, after manually 

defining the lanes; base ambiguities were checked by visual inspection of the gel 

image.

2.2.6 A nalysis of recom binant  proteins

2.2.6.1 Estimation of protein concentrations

In order to estimate protein yields at a number of stages during protein expression and 

purification, a modified Bradford assay (Bradford, 1976) was used. This assay utilises 

the fact that the absorbance maximum for an acidic solution of Coomassie Brilliant 

Blue G-250 shifts from 465 nm to 595 nm following binding to protein. This shift in 

absorbance is linear over a relatively broad range of protein concentrations so allows 

accurate protein quantification within a sample.

A protein standard (bovine serum albumin or bovine gamma globulin) was diluted 

with dH20  to concentrations ranging from 0.2 to 1.4 mg/ml to enable the production 

of a standard curve each time the assay was performed. Samples of protein for 

quantification were diluted in order to give a concentration in the above range. Into 

sterile 15 ml Falcon tubes, 0.1 ml of each solution was aliquoted; 0.1 ml of dH20  was 

added to one tube as a sample blank. The dye reagent was prepared by addition of 4
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volumes of dH20  to 1 volume of dye and filtration through a 0.4 pm syringe filter 

(Acrodisc, Gelman Sciences); five millilitres of this reagent was added to each tube. 

The tubes were vortexed, incubated at room temperature for 5 minutes to 1 hour, and 

the OD595 subsequently measured against the reagent blank. The absorbance of the 

protein standards was used to construct a standard curve from which an approximate 

concentration of the unknown samples could be read.

2.2.6.2 SDS - polyacrylamide gel electrophoresis of proteins

The separation and analysis of proteins was facilitated by one dimensional denaturing 

discontinuous gel electrophoresis, as originally described by Laemmli (1970). 

Proteins are denatured by boiling in the presence of SDS and P-mercaptoethanol. The 

sample is then loaded onto a discontinuous gel consisting of a stacking buffer which 

concentrates the loaded protein sample into a narrow band and a separating gel which 

separates proteins on the basis of molecular size, with smaller proteins migrating 

faster towards the anode.

Minigels (8.0 x 7.3 cm) were formed and run using the Mini-PROTEAN II 

electrophoresis system (Biorad, Herts, UK) as recommended by the manufacturer. 

Glass plates were assembled with 0.75 mm spacers in a casting stand. The separating 

gel was poured to a depth of approximately 5 cm; consisting of 4 ml 30%:0.8% w/v 

acrylamide/bisacrylamide (giving a 12% gel), 3.35 ml dH20, 2.5 ml 1.5 M Tris-HCl 

(pH 8.8), 50 p,l 20% SDS, 100 pi 10% APS and 10 pi TEMED. This was overlain 

with tris-saturated butanol and allowed to polymerise. The butanol was then poured 

off, the surface of the separating gel rinsed with dH20  and the stacking gel poured; 

consisting of 650 pi 30%:0.8% w/v acrylamide/bisacrylamide, 3.0 ml dH20, 1.25 ml

0.5M Tris-HCl (pH 6.8), 25 pi 20% SDS, 25 pi 10% APS and 7 pi TEMED. A 10 

well comb was inserted and the gel allowed to polymerise. The gel was then 

transferred to the electrophoresis tank, both buffer tanks filled with running buffer, the 

comb removed and the wells flushed. Protein samples (typically 5 - 30 pg of protein 

in 5 - 25 pi) were prepared by addition of an appropriate volume of 5 x protein 

sample loading buffer, followed by heating to 100°C for five minutes. Samples were 

then loaded onto the gel using 0.2 mm flat ended gel loading tips. A protein
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molecular weight standard (5-10 jxl) was loaded in one or both outer wells to allow 

estimation of the size of sample proteins.

Gels were electrophoresed at 140V for 60 - 80 minutes until the bromophenol blue 

dye reached the bottom of the separating gel. The gel was then removed from the 

glass plates, the stacking gel discarded, and the protein bands detected either by 

staining with Coomassie blue or by immunodetection (section 2.2.6.3). Visualisation 

of protein bands with Coomassie blue involved staining for two hours in four to five 

gel volumes of protein fix-stain solution, followed by destaining for approximately 12 

-16 hours in destain solution (12% methanol, 7% glacial acetic acid, 81% dH20, with 

four to five changes of solution. Gels were then removed and preserved by drying for 

two to six hours, sandwiched between prewetted cellulose film, in a gel drying 

apparatus (Easy Breeze Air Gel Dryer - Hoefer Scientific Instruments, San Francisco, 

CA).

2.2.6.3 Detection of proteins by immunoblotting

The detection of proteins by immunoblotting (western blotting) is a rapid and 

sensitive, technique that exploits the inherent specificity of antigen recognition by 

antibodies (Towbin et al., 1979; Burnette, 1981). Proteins were transferred to PVDF 

membrane by electroblotting, following electrophoretic separation and detected using 

ECL reagents (Amersham Life Science). This detection system is based on the 

emission of light following the oxidation of luminol by horse radish peroxidase (HRP 

labelled antibodies), in the presence of chemical enhancers such as phenols (enhanced 

chemiluminescence) (Durrant, 1990) and is particularly sensitive (Gillespie and 

Hudspeth, 1991). The light emitted can be detected by a short exposure to blue-light 

sensitive film (Hyperfilm ECL, Amersham).

Following SDS-PAGE, as described in section 2.2.6.2, the gel was removed from the 

glass plates and rinsed in TBS. Hybond-ECL membrane was prewetted in 100% 

methanol for 15 seconds, with distilled water for 2 minutes and then allowed to 

equilibrate with transfer buffer for 10 minutes prior to blotting. Proteins were 

transferred to the membrane using a semi-dry electroblotting system (Transblot SD -
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Biorad Laboratories, Hercules, CA) The gel and membrane were sandwiched in 

close apposition between two sheets of extra thick filter paper (Biorad) pre-soaked in 

transfer buffer, and transferred at 10 V for 45 minutes.

The membrane was then rinsed in TBS and non-specific binding sites blocked by 

immersing the membrane for 30 minutes in 10% low fat dried milk (Marvel - Premier 

Beverages, Stafford, UK) TBS-T (0.1% Tween in tris buffered saline) solution at 

room temperature on an orbital shaker. The membrane was rinsed briefly with TBS- 

T, washed once for 15 minutes then twice for five minutes, with shaking at room 

temperature. The membrane was then incubated with the primary antibody, at a pre­

determined dilution in 5% low fat dried milk, TBS-T, for two hours at room 

temperature, with shaking. The membrane was then washed as detailed above prior 

to incubating with the secondary antibody (HRP labelled), appropriately diluted in 5% 

low fat dried milk, TBS-T, for one hour, at room temperature, with shaking.

The membrane was washed (as above) before detection by the ECL method, which 

was carried out in a darkroom. An equal volume of detection reagent A was mixed 

with reagent B (typically 0.5 ml each). Excess buffer was drained from the membrane 

and the detection solution was pipetted onto the surface of the membrane carrying the 

protein. After incubation for one minute at room temperature, excess reagent was 

drained from the membrane which was then wrapped in plastic film. The membrane 

was placed, protein side up, in a film cassette and a sheet of autoradiography film 

(Hyperfilm-ECL) placed on top, in the dark. The cassette was closed and the film 

exposed for 15 - 30 seconds, before developing in an automated processor. A second 

sheet of film was then exposed, generally for 2 - 2 0  minutes, the time being estimated 

from the appearance of the first autoradiograph.

In order to confirm that the bands seen on Western blots were not due to non-specific 

binding of the secondary antibody, the blots were 'stripped' by soaking in 10 ml 

stripping buffer (6.25 mM Tris-HCl (pH 6.8), 2% SDS, 100 mM 2-ME) for 30 

minutes, at 50°C, with agitation. The membrane was then reprobed, as above, 

however the primary antibody labelling step was omitted. Any non-specific binding of 

the secondary antibody was then detected by the ECL method, as outlined above.
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CLONING OF FELINE STEM CELL FACTOR

3.1 INTRODUCTION

3.1.1 F e l in e  C y to k in e s

At the time of writing the study of feline cytokines is in its infancy. Isolation and 

cloning of cytokines in this species enables determination of their nucleotide sequence 

permitting techniques such as quantitative RT-PCR, Northern assays or in situ 

hybridisation to be applied to the study of the role of cytokines in feline disease. Once 

cloned the cytokine can be expressed in one of a number of expression systems (see 

Chapter 4 for discussion) and antibodies to the cytokines may be produced; both the 

in vitro and in vivo effects of the cytokine may then be investigated. Ultimately a 

number of cytokines are likely to form a hew array of therapeutic agents to treat feline 

disease. The current status of cloned feline cytokines with ascribed DNA database 

accession numbers is shown in Table 3.1.

Cytokine EMBL Accession Number Reference
Interferon- a S62636 Nakamura et al, 1992; Ueda et al, 

1993.
Interferon- y D30619 Argyle et al, 1995.
TNF-a M92061 Daniel eta l, 1992.
IL-lp M92060 Daniels al, 1992.
IL-2 L I9402 Cozzietal, 1993.
IL-4 X87408 Schijns e ta l, 1995.
EL-6 D13227 Ohashi et al, 1993.

Table 3.1: List of feline cytokines with assigned EMBL database accession numbers.

3.1.2 M o l e c u l a r  B io lo g y  o f  SCF

3.1.2.1 Identification as SCF as the SI locus gene product

The establishment of the alleleism between the W locus and c-kit in the mouse and the 

finding that the c-kit gene encoded a receptor prompted a number of groups to 

investigate the possibility that the SI locus encoded the SCF-R ligand. Nocka et al 

(1990) used a mast cell proliferation assay to purify a 30 kDa protein from the
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A partial cDNA encoding ovine SCF has also been cloned (Mclnnes et a l 1995; unpublished 
data, EMBL accession no. Z50743).
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supernatant of Balb/3T3 fibroblast cultures. The purified protein, designated kit- 

ligand (KL), supported the proliferation of normal bone marrow mast cells (BMMCs) 

and peritoneal mast cells but not BMMCs derived from W/W  mice. In addition KL 

promoted the formation of erythroid bursts (BFU-E) from fetal liver or spleen cells in 

conjunction with erythropoietin, increasing both the number and size of colonies 

grown following plating onto methylcellulose. These findings were soon followed by 

the cloning and characterisation of the product of the SI locus, the c-kit ligand, 

reported simultaneously by Nocka et al. and two other groups (Anderson et al., 1990; 

Copeland et al., 1990; Huang et al, 1990; Martin et al, 1990; Zsebo et al., 1990a; 

Zsebo etal., 1990b).

Subsequent to the cloning of human and rodent SCFs (Anderson et al, 1990; Martin 

et al, 1990; Anderson et al, 1991; Flanagan et al, 1991), SCF cDNAs have been 

cloned in a number of other species including porcine (Zhang and Anthony, 1994), 

bovine (Zhou et al, 1994), canine (Shull et al, 1992), brushtail possum (Greenwood 

et al, 1996), chicken (Zhou et al, 1993) and quail (Petitte and Kulik, 1996). In the 

case of chicken and porcine SCF a single isoform is described and only a partial 

cDNA is characterised in the rat. All other species show two major SCF isoforms. 

The full length SCF mRNA encodes a predicted protein of 273 (human/murine), 274 

(porcine/bovine/canine/possum) or 287 (chicken/quail) amino acids. The predicted 

protein has a signal peptide of 25 aa, an extracellular ligand domain, a transmembrane 

domain and a short intracellular domain (Figure 3.1). The shorter isoform has a 

deletion of 84 bp in the extracellular coding sequence, resulting in a protein truncated 

by 28 aa. The deleted nucleotides correspond exactly to exon 6 of the characterised 

human and rat SCF genes (Martin et al, 1990). An additional isoform is described 

for murine SCF, which has a deletion of 48 aa, the 5' boundary of which is the same 

for the 84 bp truncated isoform (Anderson et al, 1990). Each of these isoforms 

encodes a membrane associated form of SCF.

The soluble form of SCF, initially isolated as described above, was further 

characterised by Zsebo et al. (1990), who isolated the protein from Buffalo rat liver- 

conditioned medium. The soluble growth factor consists of the first 164 or 165 amino 

acids of the extracellular domain of the longer, cell membrane associated, SCF
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isoform (Lu et al, 1991) and is generated by proteolytic cleavage at a site that lies 

within the extracellular region encoded by exon 6. This process is analogous to the 

generation of soluble isoform of the structurally related cytokine, CSF-1 from its 

respective membrane associated precursor (Bazan, 1991a). The shorter membrane 

associated SCF protein lacks the proteolytic cleavage site of the longer isoform, 

however the shorter isoform of murine, but not human SCF is cleaved, albeit less 

efficiently, at an alternative site, encoded by exon 7 (Huang et al, 1992; Majumdar et 

al, 1994). The rate of proteolysis of both murine isoforms may be increased in vitro 

by stimulation with phorbol 12-myristate 13-acetate or calcium ionophore A23187 

(Huang et al, 1992). The cleavage of each murine isoform is inhibited by a different 

panel of protease inhibitors, suggesting distinct regulatory mechanisms for each 

(Pandiella et al, 1992).

Regulation of the expression of each isoform may provide a mechanism allowing 

control of the relative amounts of soluble or membrane associated ligand. The 

respective biological functions of soluble and membrane associated SCF have yet to 

be fully elucidated, however a number of lines of evidence support the concept that 

they have different, yet complimentary roles. Using RNAse protection assays, 

expression of the two major SCF isoforms in a number of murine tissues has been 

shown to be tissue specific. In brain and thymus, the longer isoform predominates, 

with the shorter isoform barely detectable. Other tissues express both isoforms in 

variable ratios (e.g. testis 1:2.6, bone marrow 3:1; longer:shorter isoform) (Huang et 

al, 1992). The transfection of a human cell line Sl/Sl4 with expression vectors for the 

shorter (hSCF220) or longer isoform (hSCF248) of human SCF showed that hSCF220 

was mainly membrane associated, whilst hSCF248 expression led predominately to the 

production of soluble SCF. Stable transfectants expressing either isoform are able to 

support the growth of human haemopoietic progenitor cells in vitro. However, 

haemopoietic progenitor cells are maintained in culture for 1 - 2 weeks longer when 

cultured over stromal cells expressing the membrane associated receptor (hSCF220) as 

opposed to hSCF248 expressing stromal cells (or cultures to which soluble 

recombinant hSCF had been added) (Toksoz et al, 1992). Further evidence for the 

importance of membrane associated SCF in vivo is derived from studies on SI mutant 

mice. The S f  mutant has a 4.0 kb intragenic deletion of SCF genomic DNA (Brannan
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et al, 1991). This deletion results in the production of a truncated soluble protein 

which lacks both the transmembrane and cytoplasmic domains. Expression of the 

SCF-S f  gene product in vitro in either yeast or mammalian COS cells produces a 

biologically active protein that supports mast cell proliferation (Brannan et al, 1991; 

Flanagan et al, 1991; Huang et al, 1992). Despite this activity in vitro, S f  mutant 

mice have a relatively severe phenotype; although they are viable, they have a severe 

anaemia, lack skin pigment and are sterile. There are a number of possible 

explanations for the different effects mediated by the soluble and membrane bound 

isoforms, speculated upon by Flanagan et al (1991). Expression of a 'fixed' 

membrane associated cytokine may serve to maintain local levels of the growth factor 

above a critical level. The membrane associated isoform may act as an adhesion 

factor; this has been demonstrated in vitro for mast cells which adhere to COS cells 

expressing membrane associated SCF (Flanagan et al, 1991). More recently, it has 

been demonstrated that membrane bound SCF induces more persistent tyrosine kinase 

activation of the SCF receptor in murine M07e cells than soluble SCF. Furthermore, 

stimulation with soluble SCF is associated with a more rapid downmodulation of cell 

surface SCF-R levels, mediated by receptor-ligand endocytosis, than occurs in 

response to membrane associated SCF (Miyazawa et al, 1995).

Most studies of SCF function have concentrated on the biological properties of the 

extracellular portion of the membrane associated receptor or the soluble protein. 

There is, however, some evidence that the intracellular domain of the membrane 

associated receptor may have important biological functions. The Steel mutant 

mouse, Sl17H produces a splicing defect which leads to a predicted SCF protein with a 

truncated cytoplasmic domain of 28 aa (c.f. 36 aa), with only the first amino acid read 

in the correct frame. The mutation does not affect the level of SCF expression, nor 

the ability of cells transfected with constructs for Sl17H SCF to support mast cell 

proliferation. However, mutant homozygous mice show sterility in male but not 

female mice, a mild anaemia and dilution of coat colour (Brannan et al, 1992). In 

order to clarify the role of the cytoplasmic domain of SCF, further studies are 

required to confirm that tissue specific changes in expression or impaired intra­
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membrane stability of the truncated receptor are not responsible for the phenotypic 

effects seen in Sl17H mutant mice.

Soluble SCF, isolated from Buffalo rat liver conditioned medium, is a heavily 

glycosylated protein with a molecular weight of 28 - 35 kDa, as determined by SDS- 

PAGE. The variability in molecular weight reflects the heterogeneity of A-linked 

glycosylation; removal of A-linked sugars leads to a more homogenous molecular 

weight of 26 kDa. Further removal of O-linked sugar residues leads to a molecular 

weight (on reducing gels) of 18 - 19 kDa (Zsebo et al, 1990b). Purified rat SCF and 

recombinant SCF expressed in either Escherichia coli or Chinese hamster ovary 

(CHO) cells exists as a non-covalently associated dimer under non-denaturing 

conditions (Zsebo et al, 1990b; Arakawa et al, 1991). Consequently, molecular 

weight determination by equilibrium sedimentation reveals molecular weights of 36 

kDa and 53 kDa for E. coli and CHO expressed SCF, respectively (Arakawa et al, 

1991).
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Shorter
Isoform

Longer
Isoform

-25 1

signal
peptide

149 178 191 213

exon 6 transmembrane 
domain

248

soluble protein 

1 164/165

Figure 3.1: Structure of the two isoforms of human SCF. The longer isoform can be 
cleaved at a proteolytic cleavage site which lies within the region of the extracellular 
domain of the protein encoded by exon 6. This results in the release of biologically 
active soluble SCF. The shorter isoform lacks exon 6 and is therefore found mainly as a 
membrane bound protein. The signal peptide serves to target the protein to the 
endoplasmic reticulum and is removed during post translational processing.

99



CLONING OF FELINE STEM CELL FACTOR

3.1.2.2 Genomic organisation of the SCF gene

The SCF gene maps to mouse chromosome 10 and human chromosome 12 (between 

12q22 and 12q24) (Anderson et al, 1991; Geissler et al, 1991). Human and rat SCF 

genes are composed of at least eight exons, with the intron locations conserved 

between the species. Exon 1 encodes approximately 200 bp of 5' untranslated 

sequence and the first five amino acids of the predicted signal peptide. Exons 2 - 7  

encode the extracellular domain, with exon 7 also encoding the transmembrane 

region. Exon 8 encodes the intracellular region and part or all of the long 

(approximately 4 kb) 3' untranslated region (Martin et al, 1990). There is very little 

known regarding the control of SCF gene transcription; the transcription initiation site 

and promotor regions have yet to be characterised. A potential role for the 

transcription factor c-Myb as a positive regulator of SCF gene transcription has been 

identified. Incubation of stromal fibroblasts with c-Myb antisense oligonucleotides 

downregulates c-Myb expression and both SCF and GM-CSF mRNA expression 

(Szczylik et al, 1993).

At the cellular level a number of factors have been shown to modulate the expression 

of SCF. Exposure of bone marrow stromal cells to TNF-a, IL-la, and TGF-pl in 

vitro leads to down regulation SCF mRNA levels (Andrews et al, 1991; Heinrich et 

al, 1995). Further, in the case of TGF-pl this is mediated at the level of gene 

transcription (rather than decreased mRNA stability) and results in decreased SCF 

protein expression (Heinrich et al, 1995).

3.1.3 C lo n in g  o f  N o v e l  C y to k in e s

The earliest of human cytokines to be described and studied in detail were the 

interferons; in particular interferon-a. Studies were initially limited by the availability 

of sufficient quantities of pure preparations of interferon-a, which had to be purified 

from the supernatants of human leukocyte cultures. Interferon-a has subsequently 

been produced in large quantities from Sendi virus infected mammalian cell cultures. 

However, for most cytokines such large scale production was not possible, until the 

advent of recombinant DNA technology. The ability to clone and manipulate genes of
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interest has enabled the production of many cytokines in sufficient quantities to enable 

characterisation of their biologically activities and subsequent advancement to the 

clinic.

The isolation of novel genetic sequences using recombinant DNA technology has 

traditionally relied upon the generation of a genomic or cDNA library followed by 

screening using one of a number of potential techniques. The isolation of a given 

genetic sequence is particularly difficult when the gene exists only rarely, as a single 

copy gene in a complex genome (a 3 kb fragment will comprise only 1 part in 106 of a 

preparation of haploid mammalian DNA) or as a rare mRNA species in an mRNA 

population (Seidman, 1994). Where an mRNA of interest is strongly inducible it may 

represent a much higher proportion of the total mRNA population and isolation may 

be possible using techniques such as subtractive hybridisation. Many of the 

chemokines have been identified in this way; for example RANTES (regulated upon 

activation, normal T cell expressed and secreted) was initially discovered by 

subtractive hybridisation as a T-lymphocyte specific sequence (Schall et al, 1988). If 

one is interested in the regulatory sequences and non-coding (intron) sequences then a 

genomic library must be utilised to isolate the gene of interest whereas if the 

predominant concern is in the transcribed protein, its amino acid sequence and 

potential biological function then a cDNA library will generally be utilised. Whilst 

rare mRNAs can be obtained by screening cDNA libraries, ideally the cDNA library 

should utilise mRNA that contains the mRNA sequence of interest at a high level in 

order simplify the screening procedure and to maximise the chance of obtaining a full 

length clone.

The isolation of a specific gene requires an effective screening procedure that should 

ideally be rapid and simple. The first cytokine genes were isolated using a system of 

hybrid release selection. A population of recombinant cDNA clones is screened by 

hybridisation of mRNA to the recombinant plasmids bound to a solid support (e.g. 

nitrocellulose powder or disks). The hybridised mRNA is then eluted and translated 

in vivo by injection into Xenopus laevis oocytes and the biological activity of the 

translated protein determined. Human p interferon (Derynck et al, 1980) and 

interleukin-2 (Taniguchi et al, 1983) are amongst the cytokines to have been isolated
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using this technique. This method is however technically demanding and requires an 

abundant source of highly active mRNA.

An alternative procedure was used in the cloning of murine IL-4 (Noma et al, 1986) 

and IL-5 (Kinashi et al, 1986); mRNA was synthesised in vitro from a linearised 

pSP6K cDNA library using SP6 DNA polymerase, translated by injection into 

Xenopus laevis oocytes and screened for specific biological activity. This 

modification reduced the need for a high quantity of biologically active mRNA but 

still relied upon translation in Xenopus laevis oocytes. Okayama and Berg (1982) 

introduced the pCD mammalian expression vector which permitted the direct 

expression of cDNAs in a mammalian cell line; this system was first employed to 

isolate the murine IL-3 cDNA by transient expression in COS-7 monkey cells (Yokota 

et al, 1984). The technique of direct expression in mammalian cells has also been 

used to isolate humanGM-CSF (Wong et al, 1985) and EL-3 (Yang et al, 1986). 

This technique was particularly important in the isolation of hIL-3, as attempts to 

isolate the gene by screening human cDNA libraries with a murine IL-3 probe had 

been unsuccessful due to the low interspecies homology (Cohen et al, 1986).

Advancements in protein sequencing techniques have permitted the determination of 

A-terminal amino acid sequence from increasingly smaller quantities of protein. The 

availability of such amino acid sequence data permits the design of degenerate 

oligonucleotide probes which may then be used to screen a cDNA library; this 

technique was used to isolate human G-CSF (Nagata et al, 1986). With the advent 

of the polymerase chain reaction (Mullis et al, 1986), peptide sequence data could be 

used to design degenerate primers for PCR amplification of specific oligonucleotides 

with complete homology to the desired gene; these oligonucleotides may then be used 

as hybridisation probes to screen cDNA libraries. Murine (Anderson et al, 1990), 

rat and human (Martin et al, 1990) stem cell factor cDNAs were isolated in this way.

If a cDNA of interest has already been cloned and sequenced in a limited number of 

species, it is possible to use a probe derived from known sequence data to screen a 

cDNA library of another species under reduced stringency conditions. This technique 

has been widely used, for example in the isolation of chicken SCF (Zhou et al, 1993).
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Use of the polymerase chain reaction may enable the direct amplification of cDNA 

clones from mRNA using the reverse transcriptase - polymerase chain reaction (RT- 

PCR); this technique avoids the often difficult and laborious process of cDNA library 

generation and screening and significantly reduces the quantity of mRNA that is 

required to successfully clone a gene of interest. This approach was used to isolate 

porcine SCF (Zhang and Anthony, 1994) and has recently been used in this 

department to isolate a number of cytokine cDNAs (Curran et al, 1994; Argyle et al, 

1995; Dunham etal., 1995).

Other methods which have been used to isolate cytokine genes include chromosome 

walking, which was used to isolate the ovine EL-3 gene. EL-3 was known to be 

closely linked to GM-CSF in mouse and man, separated by approximately 10 kb on 

the human chromosome 5 (Frolova et al, 1991). Ovine EL-3 was isolated from a 40 

kb cosmid clone following isolation of the ovine GM-CSF gene by ‘walking’ along 

the DNA to find the IL-3 gene, which was identified by homology to human EL-3 

(Mclnnes et al, 1993). The development of techniques such as representational 

difference analysis, which uses a PCR based approach to analyse the difference 

between two genomes (Lisitsyn et al, 1993) or populations of cDNA (Hubank and 

Schatz, 1994) may lend itself to the isolation of novel cytokine genes in the future.

3 .1 .4  T h e  c lo n i n g  o f  f e l i n e  s te m  c e l l  f a c t o r

It was decided to attempt isolation of feline SCF by RT-PCR for the following 

reasons:

i. As one of the ultimate aims of this project was to express a recombinant protein 

for feline SCF it was necessary to obtain only the protein coding sequence (i.e. 

DNA sequence data for introns or non-coding 5’ and 3’ flanking mRNA was not 

required).

ii. SCF shows high sequence homology between species, therefore the use of PCR 

primers, designed from conserved regions flanking the protein coding sequence, 

was considered to have a good chance of success.
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iii. Experience with RT-PCR had already been gained during a previous project 

involving the isolation, cloning and sequencing of canine interleukin-2 (Dunham et 

al, 1995).

iv. It offered a simpler potentially faster approach than techniques involving the 

generation and screening of cDNA libraries.

An important consideration when attempting the isolation of any gene, as mentioned 

above, is the choice of a suitable cell line or tissue. A feline fibroblast cell line (FEA 

cells) infected with FeLV strain A was used as a substrate for the isolation of feline 

SCF by RT-PCR. This choice was based on the knowledge that fibroblasts are a 

potential source of SCF (Fujita et al, 1989) and also that this cell line is known to 

promote the growth of erythroid colonies (BFU-E) in culture (Abkowitz et al, 1986), 

implying the production of haemopoietic growth factor(s). In addition, the use of a 

cell line, in preference to freshly isolated tissue, provides a virtually limitless source of 

mRNA without the requirement for experimental animals.

This chapter describes the cloning and sequencing of both the long and shorter 

isoforms of feline stem cell factor using an RT-PCR based technique. An overview of 

the experimental procedure is shown in Figure 3.2, overleaf.
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Harvest mRNA

cDNA Synthesis

Sequencing of recombinant 
plasmids

Cloning of cDNA 
into PCR II Plasmid

Feline fibroblast 
cultures

Amplification of feline SCF 
by polymerase chain reaction

Figure 3.2: Overview of experimental procedure used to clone cDNAs for feline stem 
cell factor.
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3.2 MATERIALS AND METHODS

3.2.1 I s o l a t i o n  o f  mRNA f r o m  FEA c e l l s

Messenger RNA was isolated from the feline cell line FEA using a Quickprep mRNA 

isolation kit as described in section 2.2.3.1. Cells were harvested from a 162 cm2 

tissue culture flask by applying 1.5 ml extraction buffer directly to the cell monolayer 

following removal of culture medium. Upon completion of mRNA extraction the 

yield and purity of the RNA was measured by spectrophotometry. The harvested 

mRNA was then used as a template for cDNA synthesis.

3.2.2 Sy n t h e sis  o f  cDNA

cDNA was synthesised from FEA mRNA using a First-strand cDNA synthesis kit as 

described in section 2.2.3.2. The completed first strand reaction was heated to 90°C 

for five minutes then chilled on ice immediately prior to use as a PCR template; this 

was performed to denature the RNA-cDNA duplex.

3.2.3 PCR A m p li f ic a t io n  o f  F e l in e  S te m  C e l l  F a c t o r

3.2.3.1 Design of Stem Cell Factor PCR primers

In order to amplify feline SCF it was necessary to design oligonucleotide primers 

which flanked the protein coding sequence. The sequences of porcine, canine, human 

and murine cDNAs were aligned using the ‘Lineup’ and ‘Pileup’ programs (UWGCG 

software) as shown in Figure 3.3. Primers were chosen from conserved areas at the 

5’ and 3’ ends of the protein coding sequence:

5’ primer: 5’-CCA-GAA-CAG-CTA-AAC-GGA-GT-3’ Tm61.3°C

3’ primer: 5’- ATG-AAG-CAA-ACA-TGA-ACT-GT-3’ Tm56.8°C

These were expected to amplify a stem cell factor cDNA of approximately 950 

nucleotides in size, containing the complete protein coding sequence.
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Figure 3.3: Sequence comparison of human, murine, porcine and canine stem cell 
factor sequences.

canine
porcine

human
murine

canine

scf
scf
scf
scf

scf

1 50

CCGCCTCGCG

51

CCGAGACTAG AAGCGCTGCG GGAAGCAGGG 
....GCAACG

ACAGTGGAGA
GCCAAGGACG.

100

porcine scf
human scf GGGCGCTGCG CTCGGGCTAC CCAATGCGTG GACTATCTGC CGCCGCTGTT

murine scf GGGCGCTGCG TTCGAGCTAC CCAATGCTGG GACTATCTGC AGCCGCTGCT

101 150
canine scf

porcine scf ,...GAGCTC CAGAACAGCT AAACGGAGTT GCCACACCGC
human scf CGTGCAATAT GCTGGAGCTC CAGAACAGCT AAACGGAGTC GCCACACCAC

murine scf GGTGCAATAT GCTGGAGCTC CAGAACAGCT AAACGGAGTC GCCACACCGC

151 200
canine scf ...ATGAAGA AGACACAAAC

porcine scf TGCCTGGGCT GGATCACAGC GCTGCCTTTC CTTATGAAGA AGACACAAAC
human scf TGTTTGTGCT GGATCGCAGC GCTGCCTTTC CTTATGAAGA AGACACAAAC

murine scf TGCCTGGGCT GGATCGCAGC GCTGCCTTTC CTTATGAAGA AGACACAAAC

201 250
canine scf TTGGATTATC ACTTGCATTT ATCTTCAGCT GCTCCTATTT AATCCTCTGG

porcine scf TTGGATTATC ACTTGCATTT ATCTTCAACT GCTCCTATTT AATCCTCTCG
human scf TTGGATTCTC ACTTGCATTT ATCTTCAGCT GCTCCTATTT AATCCTCTCG

murine scf TTGGATTATC ACTTGCATTT ATCTTCAACT GCTCCTATTT AATCCTCTTG

251 300
canine scf TCAAAACTAA AGGGATCTGC GGGAAACGTG TGACTGATGA TGTGAAGGAC

porcine scf TCAGAACTCA AGGGATCTGC AGGAACCGTG TGACTGATGA TGTGAAAGAC
human scf TCAAAACTGA AGGGATCTGC AGGAATCGTG TGACTAATAA TGTAAAAGAC

murine scf TCAAAACCAA GGAGATCTGC GGGAATCCTG TGACTGATAA TGTAAAAGAC

301 350
canine scf GTTACAAAAT TGGTGGCAAA TCTTCCAAAA GACTATAAGA TAGCCCTCAA

porcine scf GTTACAAAAT TGGTGGCAAA TCTTCCAAAA GACTATAAGA TAACCCTCAA
human scf GTCACTAAAT TGGTGGCAAA TCTTCCAAAA GACTACATGA TAACCCTCAA

murine scf ATTACAAAAC TGGTGGCAAA TCTTCCAAAT GACTATATGA TAACCCTCAA

351 400
canine scf ATATGTCCCC GGGATGGATG TTTTGCCTAG TCATTGTTGG ATAAGCGTGA

porcine scf ATATGTCCCC GGGATGGACG TTTTGCCTAG TCATTGTTGG ATAAGCGAAA
human scf ATATGTCCCC GGGATGGATG TTTTGCCAAG TCATTGTTGG ATAAGCGAGA

murine scf CTATGTCGCC GGGATGGATG TTTTGCCTAG TCATTGTTGG CTACGAGATA

401 450
canine scf TGGTGGAACA GTTGTCAGTC AGCTTGACTG ATCTTCTGGA CAAGTTTTCA

porcine scf TGGTGGAACA ACTGTCAGTC AGCTTGACTG ATCTTCTGGA CAAGTTTTCC
human scf TGGTAGTACA ATTGTCAGAC AGCTTGACTG ATCTTCTGGA CAAGTTTTCA

murine scf TGGTAATACA ATTATCACTC AGCTTGACTA CTCTTCTGGA CAAGTTCTCA
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Figure 3.3 (continued): Sequence comparison of human, murine, porcine and canine
stem cell factor sequences

canine scf
451
AATATTTCTG

porcine scf AATATTTCTG
human scf AATATTTCTG

murine scf AATATTTCTG

canine scf
501
AATAGTGGAT

porcine scf AATTGTTGAT
human scf TATAGTCGAT

murine scf AATAGTGGAT

canine scf
551
TAAAAAAAGC

porcine scf TAAAAAAATC
human scf TAAAAAAATC

murine scf TAAAAGAATC

canine scf
601
TTCTTTAGAA

porcine scf TTCTTTGGGA
human scf TTCTTTAGAA

murine scf TTCTTTAGTA

canine scf
651
GGTGGCATCT

porcine scf GGTGGCACCT
human scf AGTGGCATCT

murine scf GGTGGCATCT

canine scf
701
ATAAAGATTC

porcine scf AAAAAGATTC
human scf AGAAAGATTC

murine scf AGAAAGATTC

canine scf
751
GCAGCCAGCT

porcine scf GCAGCCAGCT
human scf GCAGCCAGCT

murine scf GCAGCCAGCT

canine scf
801
AAATTCCATT

porcine scf AGATTCCATT
human scf AAATCCCCCT

murine scf AAAGGCCCCT

canine scf
851
CATTCTTTTC

porcine scf CATTCTTCTC
human scf CATTGTTTTC

murine scf CTCTCATTTC

AAGGCCTGAG TAATTATTCT 
AAGGCTTGAG TAATTATTCT 
AAGGCTTGAG TAATTATTCC 
AAGGCTTGAG TAATTACTCC

GATCTTGTGG AGTGCACAGA 
GACCTCGTGG AATGCATGGA 
GACCTTGTGG AGTGCGTCAA 
GACCTCGTGT TATGCATGGA

ACCTAAGAGC CCAGAACTCA 
ATCTAAGAGC CCAGAACCCA 
ATTCAAGAGC CCAGAACCCA 
TCCGAAGAGG CCAGAAACTA

TTTTTAATAG ATCCATCGAT 
TTTTTAATAG ATCCATCGAT 
TTTTTAATAG ATCCATTGAT 
TTTTCAATAG ATCCATTGAT

AAAAGTAGTG AATGTGTGGT 
AAAACTAGTG AATGTGTGAT 
GAAACTAGTG ATTGTGTGGT 
GACACTAGTG ACTGTGTGCT

CAGAGTCAGT GTCACAAAAC 
CAGAGTCAGT GTCACAAAAC 
CAGAGTCAGT GTCACAAAAC 
CAGAGTCAGT GTCACAAAAC

CCCTTAGGAA TGACAGCAGT 
CCCTTAGGAA TGACAGCAGT 
CCCTTAGGAA TGACAGCAGT 
CCCTTAGGAA TGACAGCAGT

GGAGACTCCA ACTTACAATG 
GAAGACTCCA GCCTCCAGTG 
GGAGACTCCA GCCTACACTG 
GAAGACTCGG GCCTACAATG

TCTTGTAATT GGGTTTGCTT 
TCTTGTCATT GGGTTTGCTT 
TCTTATAATT GGCTTTGCTT 
GCTTGTAATT GGCTTTGCTT

500
ATCATAGACA AACTTGTGAA 
ATCATAGACA AACTTGTGAA 
ATCATAGACA AACTTGTGAA 
ATCATAGACA AACTTGGGAA

550
AGGATACTCA TTTGAGAATG 
AGAACACTCA TTTGAGAATG 
AGAAAACTCA TCTAAGGATC 
AGAAAACGCA CCGAAGAATA

600
GGCTTTTTAC TCCTGAAGAA 
GGCTGTTTAC TCCTGAAAAA 
GGCTCTTTAC TCCTGAAGAA 
GATCCTTTAC TCCTGAAGAA

650
GCCTTTAAGG ACTTGGAGAC 
GCCTTCAAGG ATTTGGAGAT 
GCCTTCAAGG ACTTTG...T 
GCCTTTAAGG ACTTT...AT

700
TTCTTCAACC TTAAGTCCTG 
TTCTTCAACA TTAACTCCTG 
TTCTTCAACA TTAAGTCCTG 
CTCTTCAACA TTAGGTCCCG

750
CATTTATGTT ACCCCCTGTT 
CATTTATGTT ACCCCCTGTT 
CATTTATGTT ACCCCCTGTT 
CATTTATGTT ACCCCCTGTT

800
AGCAGTAATA GGAAGGCCTC 
AGCAGTAATA GGAAGGCCTC 
AGCAGTAATA GGAAGGCCAA 
AGCAGTAATA GGAAAGCCGC

850
GGCAGCCATG GCATTGCCAG 
GGCAGCCGTA GCATTGCCAG 
GGCAGCCATG GCATTGCCAG 
GACAGCCATG GCATTGCCGG

900
TTGGAGCCTT ATACTGGAAG 
TTGGAGCCTT ATACTGGAAG 
TTGGAGCCTT ATACTGGAAG 
TTGGAGCCTT ATACTGGAAG
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canine scf 
porcine scf 

human scf 
murine scf

canine scf 
porcine scf 

human scf 
murine scf

canine scf 
porcine scf 

human scf 
murine scf

canine scf 
porcine scf 

human scf 
murine scf

canine scf 
porcine scf 

human scf 
murine scf

canine scf 
porcine scf 

human scf 
murine scf

901
AAGAAACAAC
AAGAAACAAC
AAGAGACAGC
AAGAAACAGT

CAAATCTCAC
CAAACCTTAC
CAAGTCTTAC
CAAGTCTTAC

AAGGACAGTT
AAGGACAGTG
AAGGGCAGTT
AAGGGCAGTT

GAAAATATAC
GAAAATATAC
GAAAATATAC
GAAAATATAC

950
AGATTAATGA
AGATTAATGA
AAATTAATGA
AGATTAATGA

951
AGAGGATAAT
AGAGGATAAT
AGAGGATAAT
AGAGGATAAT

GAAATAAGTA
GAGATAAGTA
GAGATAAGTA
GAGATAAGTA

TGTTGCAAGA
TGTTGCAAGA
TGTTGCAAGA
TGTTGCAACA

GAAAGAGAGG
AAAAGAGAGA
GAAAGAGAGA
GAAAGAGAGA

100 0
GAGTTTCAAG
GAGTTTCAAG
GAGTTTCAAG'
GAATTTCAAG

1001 1050
AGGTGT.AA..............................................
AAGTGT .AAT TGTGGCGTGT ATCAACACTG TTGCTTTCGT ACATTGGGTG 
AAGTGTAAAT TGTGGCTTGT ATCAACACTG TTACTTTCGT ACATTGGCTG 
AGGTGTAATT GTGGAC..GT ATCAACATTG TTACCTTCGC ACAGTGGCTG

1051 1100

GTAACAGTTC ATGTTTG.....................................
GTAACAGTTC ATGTTTGCTT CATAAATGAA GCAGCTTTAA ACAAATTCAT 
GTAACAGTTC ATGTTTGCTT CATAAATGAA GCAGCCTTAA ACAAATTCCC

1101 1150

ATTCTGTCTG GAGTGACAGA CCACATCTTT ATCTGTTCTT GCTACCCATG 
ATTCTGTCTC AAGTGACAGA CCTCATCCTT ACCTGTTCTT GCTACCCGTG

1151 1200

ACTTTATATG GATGATTCAG AAATTGGAAC AGAATGTTTT ACTGTGAAAC 
ACCTTGTGTG GATGATTCAG TTGTTGGAGC AGAGTGCTTC GCTGTGAACC

Figure 3.3 (continued): Sequence comparison of human, murine, porcine and canine 
stem cell factor sequences. Sequences were obtained from the EMBL database with 
the accession numbers M59964, M57647, L07786 and S53329 respectively. 
Sequence alignments were made using LineUp and PileUp programs (GCG software). 
The conserved regions used to design PCR primers for the amplification of feline stem 
cell factor are shown in bold type. The start codons (ATG) and stop codons (TAA) 
are underlined.
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3.2.3.2 Positive controls

In order to assess the efficiency of the PCR process a number of positive controls 

were set up each time PCR amplification of feline stem cell factor was attempted. 

p-actin primers'.

P-actin is a gene that is constitutively expressed at high levels in many cell and tissue 

types, making it a suitable choice for a positive control (Nakajima-Iijima., et al, 

1985). The gene is highly conserved between species, making it possible to amplify 

feline p-actin using primers designed for the amplification of human P-actin (Clontech 

Laboratories Inc., Palo Alto, CA). The following primers were provided at a 

concentration of 20 p,M.

5’ primer: 5’-ATC-TGG-CAC-CAC-ACC-TTC-TAC-AAT-GAG-CTG-CG-3’

3 * primer: 5’-CGT-CAT-ACT-CCT-GCT-TGC-TGA-TCC-ACA-TCT-GC-3 ’

These primers amplify a PCR fragment of 838 bp in size when used to amplify human 

cDNA. In addition a positive cDNA template (human P-actin) was also supplied with 

these primers in order to verify that they were amplifying efficiently under a given set 

of reaction conditions.

Lambda DNA primers'.

A further positive control is included with the GeneAmp PCR reagent kit; whole 

bacteriophage lambda is used as a template for PCR amplification using the primer 

pair:

Primer 1: 5 ’-GAT-GAG-TTC-GTG-TCC-GTA-CAA-CTG-G-3 ’

Primer 2: 5’-GGT-TAT-CGA-AAT-CAG-CCA-CAG-CGC-C-3’

These primers amplify a 500 bp fragment (nucleotides 7131 to 7630) of the lambda 

target DNA.

These “internal controls” ensured that should any PCR failures occur, then the cause 

of failure could be localised further:

i. Should both positive controls fail to amplify efficiently this would suggest a 

problem involving the bulk reaction mix (e.g. Taq polymerase, dNTPs or PCR 

buffer) or the PCR cycler.
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ii. Failure of the p-actin positive control alone (with FEA cDNA template) would 

suggest either that the starting mRNA was of poor quality or had been inefficiently 

reverse transcribed to cDNA (e.g. due to inefficient denaturation of the mRNA 

template or failure of the reverse transcriptase enzyme).

iii. If both positive controls worked efficiently but there was no or poor amplification 

of cDNA using the fSCF primers this would suggest that the reaction conditions 

were inappropriate (e.g. annealing temperature too high/low or PCR primer 

concentration too low), that fSCF was expressed at low levels in the starting 

mRNA or that the PCR primers did not anneal efficiently to feline SCF due to 

mismatches.

3.2.3.3 Negative controls

Each time a series of PCR reactions was set up a number of negative controls was 

also included:

Reverse transcriptase negative control.

In order to determine that the product generated by the SCF primers was derived 

from cDNA and not contaminating genomic DNA a reverse transcriptase negative 

control was included. The template for this control was provided by following the 

protocol for cDNA synthesis without the addition of the bulk first strand reaction mix 

(containing M-MuLV reverse transcriptase); in effect therefore the mRNA was simply 

incubated with DTT and Not I-d(T)i8 primer in a final volume of 33 pi.

Reagent control

A reaction mix was set up containing all PCR components (SCF primers, dNTPs, 

PCR buffer and Taq polymerase) except template. This control was included to check 

that there was no contamination of the PCR reactions with extraneous DNA that 

might serve as a template for PCR amplification.

3.2.3.4 Reaction conditions

All reactions were performed in 50 pi volume in 0.5 ml tubes. A master reaction mix 

was prepared by combining 2.5 units Taq polymerase, five microlitres 10 x PCR 

buffer, five microlitres of dNTP mix (1.25 mM each dNTP) and 4.5 pi dFkO for each 

reaction; 15 pi was then pipetted into each reaction tube containing the primers and 

appropriate DNA template and the volume was made up to 50 pi by the addition of
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dH20. The use of such a master mix minimises losses and inaccuracies associated 

with pipetting and ensures consistency from tube to tube. Table 3.2 shows the 

reactions that were typically set up each time a PCR amplification was performed. 

The complete reaction mix was overlain with mineral oil and the tubes were 

transferred to the thermal cycler.

Primer Pair Primer Concentration DNA template
fSCF 0.5 - 2.0 [iM 10 |iil FEA cDNA
fSCF 0.5 - 2.0 fiM 10 fil RT negative “cDNA”
(3-actin 0.4 nM 10 ill FEA cDNA
(3-actin 0.4 nM 100 attomoles control cDNA template
Lambda 1.0 nM 1 ng lambda control template
Reagent control None None

Table 3.2: Constituents of each PCR reaction. To each template/primer mix was 
added 15 pil of PCR master mix containing Taq polymerase, dNTPs and PCR buffer; 
dH20  was then added to a final volume of 50 pi.

The optimum annealing temperature for the SCF primer pair, as predicted by the 

Oligo primer analysis software (Medprobe AS) was 51.3°C. The thermal cycler was 

initially programmed therefore, to give a PCR cycle consisting of denaturation at 

94°C for one minute, primer annealing at 51.3°C for one minute and extension at 

72°C for one minute, repeated for a total of 30 cycles; followed by a 4°C ‘soak’. PCR 

reaction products were visualised by polyacrylamide gel electrophoresis as detailed in

2.2.5.2, using five microlitres of reaction product per well.

A series of optimisation experiments was carried out investigating the effect of primer 

concentration and annealing temperature on the amplification of feline SCF. It was 

found that a greater yield of a single DNA band of the appropriate size was found 

using an annealing temperature of 48°C. A primer concentration of 1.0 pM was 

associated with consistent amplification of a specific product of the expected size 

(results not shown).
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3.2.4 CLONING OF FELINE SCF PCR PRODUCTS

Products of PCR reactions using the SCF primer pair were cloned into the pCR™ II 

vector. One microlitre of PCR product was added to 50 ng (two microlitres) vector, 

one microlitre 10 x ligation buffer, five microlitres dH20  and four units (one 

microlitre) T4 DNA ligase. The ligation reaction was incubated overnight at 14°C. 

The ligated vector was then cloned into INVocF E.coli cells as detailed in section

2.2.2.8.1. Colonies were selected on LB agar plates containing 50 pg/ml ampicillin; 

white colonies were picked and small scale DNA preparations made. Miniprep DNA 

was subjected to restriction endonuclease digestion using ECoRI and products of 

digestion were run on a 5% polyacrylamide gel. No inserts of the desired size were 

seen following this procedure. It was postulated that the amplified cDNA sequence of 

feline stem cell factor contained an ECoRI restriction enzyme site and was thus being 

digested by the enzyme. The restriction digest was therefore repeated using the 

enzymes ECoRV and BamHI. The digest was initially set up in 15 pi volume using 

Reactll buffer and ECoRV. After digestion for one hour at 37°C the buffer was 

changed by the addition of two microlitres of ReactHI, and the DNA was digested 

with BamHI in 20 pi volume. The products of digestion were then run on a 5% 

polyacrylamide gel; following this alternative procedure inserts of the desired size 

could be seen. Bacterial stocks were made from the isolates that contained inserts of 

the appropriate size.

3.2.5 S e q u e n c in g  o f  f e l i n e  s c f

DNA for sequencing was prepared by the small scale procedure as detailed in

2.2.2.2.2. The DNA was sequenced using a Sequenase version 2.0 sequencing kit as 

outlined in section 2.2.5.1.1 Initial sequencing reactions used M l3 universal primers 

with the following sequence:

M l3(-40) Forward Primer 5’-GTT-TTC-CCA-GTC-ACG-AC-3’

M13 Reverse Primer 5’-TTC-ACA-CAG-GAA-ACA-G-3’

Sequencing reactions were run on six percent denaturing polyacrylamide gels as 

described in section 2.2.5.1.2. After the acquisition of initial sequence data it was 

possible to design internal primers in order to accurately sequence both strands of the
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insert DNA. Primer design was aided by use of Oligo primer analysis software 

(Version 4.1 - Medprobe A.S.); in particular primers were chosen to be stable at their 

5’ ends but less stable at their 3’ end to reduce false priming. Primers were 18-20  

nucleotides in length and were chosen to anneal 30 - 60 bp upstream (5’) to the 

sequence of interest so that a sufficient overlap of sequence generated by adjacent 

sequencing primers was seen. The following primers were used (the annealing site is 

given in parentheses after the primer sequence):

Sense Primers:

SCFU#2: 5 ’-GAT-AAG-CGT-GAT-GGT-GGA-AC-3 ’ (nt 271 - 290)

SCFU#3: 5’-CTA-GTG-AAT-GTG-TGG-TTT-C-3 ’ (nt 546 - 564)

Antisense Primers:

SCFD#2: 5’-GCC-TTC-CTA-TTA-CTG-CTA-3 ’ (nt 678 - 661)

SCFD#3 5’-AGT-TTG-TCT-ATG-ATA-GAA-TA-3’ (nt 375 - 356)

In addition it was necessary to design a further antisense primer as it was found that 

the primer SCFD#2 did not anneal to the DNA template in one of the clones because 

of the deletion of a number of nucleotides in that clone (see results for further details).

SCFD#4: 5’-TAT-GCT-GGA-GTC-TTC-TAT-3 ’ (nt 706 - 689)

Sequencing reactions and gel electrophoresis using these primers were carried out as 

described for the universal primers.

3 .2 .6  V e r i f i c a t i o n  o f  i n i t i a l  s e q u e n c e

Initial analysis of the sequence data revealed a consensus sequence with ambiguity at 

one nucleotide only (nt 261); in order to confirm the likely identity of this base, RT- 

PCR was repeated and two further clones sequenced from each of two separate RT- 

PCR reactions. To minimise the amount of sequencing work required and to simplify 

cloning of PCR products it was decided to amplify a short (230 bp) cDNA fragment 

spanning the region of interest. The primers used were:

Sense primer: 5 ’ -TGG-C AA-AT C-TTC-C AA-AAG-ACT -AT A-AGA-3 ’

(nt 195-221).

Antisense primer: 5 ’-AGA-TGA-GTG-TCC-TTC-CAC-GCA-CTC-3 ’

(nt 424-401).

The procedure and conditions used were identical to those described above except for 

the following modification: the PCR thermal cycler was programmed to give an initial
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denaturation step of 94°C for five minutes, followed by 30 cycles of 94°C for one 

minute, 50°C for one minute, 72°C for one minute, and a final extension step of 72°C 

for 10 minutes. Plasmid DNA was sequenced using a Sequitherm long-read cycle- 

sequencing kit as described in section 2.2.5.2.I. Due to the short length of the DNA 

insert it was possible to sequence both strands completely using M l3 universal IRD41 

labelled primers:

M13 forward (-29) Primer: 5’-CAC-GAC-GTT-GTA-AAA-CGA-C-3’

M13 reverse Primer: 5 ’ -GGA-TAA-CAA-TTT-CAC-ACA-GG-3 ’

The reaction products were run on a Licor Model 4000 automated sequencer as 

described in section 2.2.5.2.2. The sequence data was collected and read 

automatically; nucleotide 261 was checked by inspection of the gel image.

3.2.7 Se q u e n c e  data  analysis

Sequence data was stored and managed on a UNIX computer system using GCG 

software (University of Wisconsin). ‘Raw’ sequence data was handled and edited 

using the ‘SeqEd’ program. The sequences of stem cell factor for other species were 

downloaded from the EMBL database using the ‘Fetch’ command. Sequence 

(nucleotide and amino acid) comparisons were performed using ‘BestFit’ which aligns 

sequences using the algorithm of Smith and Waterman (1981). The protein sequence 

of feline stem cell factor was predicted using ‘Translate’. Predictions of protein 

secondary structure were made using ‘PepPlot’, ‘PeptideStructure’ and 

‘PlotStructure’. The signal sequence was predicted using ‘SigSeq’ (Rockefeller 

University) which predicts signal sequence cleavage sites based on the method of von 

Heijne (1986).

3.3 RESULTS

3.3.1 RT-PCR A m p l i f ic a t io n  f e l i n e  SCF cDNA

The synthesis of mRNA gave yields of seven to nine micrograms per 162cm2 flask; 

purity was generally very good (O D 26o/OD28o = 2.0). Figure 3.4 shows a 

polyacrylamide gel with the PCR products from a typical series of reactions (i.e. 

amplification of feline stem cell factor cDNA and appropriate controls). The product

115



Addendum 

3.3.2 NUCLEOTIDE SEQUENCE OF fSCF ISOFORMS

The full length fSCF cDNA shows 93% homology to the ovine SCF partial cDNA sequence.



CLONING OF FELINE STEM CELL FACTOR

amplified using fSCF primers is approximately 950 bp in size, in agreement with the 

the predicted size. The lambda and P-actin primers both generate strong products of 

the expected sizes whilst no products are seen with the negative controls.

3.3.2 N u c l e o t id e  S e q u e n c e  o f  fS C F  is o f o r m s

Manual sequencing was carried out on three separate clones, taken from two different 

PCR reactions; these were identical except for base changes at nucleotides 16 (A to 

G) and 261 (A to G) in clone 3. A further clone was sequenced and found to be 

identical to clone three except for a deletion of 84 nucleotides (nt. 588 - 671 

inclusive). Due to the concern that a change of nucleotide 261 from A to G would 

lead to a change in the deduced amino-acid sequence of asparagine to serine, four 

further clones were sequenced, as described above; all four clones showed the 

nucleotide G at position 261. Since the change seen at nucleotide 16 was within the 

5’ PCR primer and non-coding, it was felt unnecessary to investigate this ambiguity 

any further; the PCR primer sequence is given in the consensus fSCF sequence. The 

different sequence obtained for each of the two isoforms can be seen by inspection of 

the autoradiographs shown in Figure 3.5A and 3.5B.

The consensus feline stem cell factor sequence and deduced amino acid sequence is 

shown in Figure 3.6; this also shows the deletion of 84 nucleotides seen in one clone. 

Comparison of the full-length fSCF cDNA to published sequences in other species (as 

cited above) shows homology of 95% to canine, 93% to bovine, 93% to porcine, 92% 

to human, 87% to murine and 71% to chicken SCFs.
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Lane No.: 1 2 3 4 5 6 7 8

1.353
1.078

872

603

31 0  
2 7 1 . 281 

234

194

118

72

Size: bp.

Figure 3.4: 5% polyacrylamide gel showing the reaction products o f  a typical PCR 
reaction used to amplify feline stem cell factor cDNA and the control reactions carried 
out concurrently. Lanes 1 and 7: molecular size m arkers ((f)X 174 RF DN A/Hae III 
fragm ents); Lane2: fSCF primers (1.0 pM ); Lane 3: fSCF primers (2.0 pM ); Lane 4: 
fSCF primers (1.0 pM ) - RT negative; Lane 5: P-actin primers - FEA cDNA template; 
Lane 6: lambda primers - lambda DNA template; Lane 8: Reagent control (no added 
tem plate or primers).
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3.3.3 P r e d i c t e d  p o ly p e p t id e  s e q u e n c e

3.3.3.1 Homology and predicted features of feline SCF protein

The predicted amino acid sequence of feline SCF is shown in alignment with those of 

other species in Figure 3.7. The derived protein shows identity of 92% to canine and 

porcine, 91% to bovine, 88% to human, 80% to murine and 53% to chicken 

homologues. The output from the ‘SigSeq’ program is shown in Figure 3.8. This 

clearly shows a predicted signal peptide of 25 amino acids with the predicted mature 

protein beginning KGLCR etc. Feline SCF has four predicted JV-glycosylation sites 

(NXT or NXS), at Asn 65, 72, 120 and 171, which are shown in Figure 3.7. The 

outputs from the programs ‘PepPlot’ and ‘PlotStructure’, showing predictions of 

secondary protein structure, are shown in Figure 3.9, Figure 3.10 and Figure 3.11. 

Structural features of interest shown in Figures 3.7 to 3.11 are discussed below.
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Clone 8C (shorter isoform ) Clone 52C (longer isoform )

U1 U2 U3 D1 U3 (4hr) U3 (2 hr)

Figure 3.5: Autoradiograph o f FSCF sequencing reactions. Reaction m ixes were 
loaded in the order G, A, T, C, G, A, T, C, etc. from left to right. The longer isoform  
(52C) and shorter isoform  (8C) are shown; the nucleotides deleted in the shorter 
isoform  are delineated by the solid line next to the sequence o f  the longer isoform  
and by an arrow on the sequence o f the shorter isoform.
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Figure 3.6: Nucleotide sequence and deduced amino-acid sequence of feline stem cell 
factor cDNA. The nucleotides depicted in bold type and overlined are those deleted 
in the shorter isoform of fSCF, which results in a removal of amino-acids 150-178 and 
the insertion of a glycine residue at this site. Primers used in the PCR are underlined.
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____________ s-p__________ ♦ •
-25 MKKTQTWIVT CIYLQLLLFN PLVKTKGLCR NRVTDDVKDV TKLVANLPKD YKIALKYVPG
- 2 5 -------1 - ------------  I-G K-------------------- -----------
- 2 5 ------- 1 - ----------  H-Q-I-S------------ -------------M-T-----
- 2 5 ------- L - ---------- ------E-I—  NN ---------- -M-T-------
- 2 5 -------- 1 - ----------- EI-G -P N 1  N- -M-T-N— A-
- 2 5  A 1- -FC L -  AQSS-G -P N-I A G N- -L-T K

• * * •
36 MDVLPSHCWI SVMVEQLSVS LTDLLDKFSN I...SEGLSN YSIIDKLVKI VDDLVECVE.
36 --------- -E--------- ----------- ----------- ----------- -------- M—
36 --------- ----------- ----------- ----------- ----------- -------- T—

36 ---------L RD— I---L T-------------------  G-------- L-M—
36 — S— N--L HL— PEF-R- -HN— Q D -SDM-DV----  NN-TR- IN— MA-LAF

* • —>
92 GHSSENVKKS SKSPEPRLFT PEEFFRIFNR SIDAFKDLEM VASKTSECW SSTL.SPEKD
92 E—  F----------------- —  K— G ----------- — P-------1 ----- T----
92 -Y-F A P L ---------- T -----S------------- D—
92 E----------------- Q—  — K— G-- K -------- 1 -----M----1 ---S------
92 EN— KDL F---------   F . V ----E— D--------------
92 ENAPK-I-E- P-R— T-S— -----S ------ F . - --- D— D— L ----- G----
96 DKNKDFI-EN GHLY-EDR-I — N--- L— S T-EVY-EFAD SLD-.ND-IM P— VET— N-

4 4  * <- ________T-M_______
151 SRVSVTKPFM LPPVAASSLR ND SS SSNRKATNPI EDSSIQWAVM ALPACFSLVI
1 5 1 ----------   S D S ------ L--A V ---- F-----

1 5 0 ---------- ----------- ----------- -------K— P G-LH— A -  L----- 1-
1 5 0 ----------    A K A P --- GL— T A - ---- LI----
1 5 5  A TIS F---------— SIGSNT—  N— KE-LGF- SS— L-GISI — TSLL— L-

205 GFAFGAFYWK KKQPN.LTRT VENIQIN..E EDNEISMLQE KEREFQEV 249 FELINE
205 ------L---------------     249 PORCINE
205 ------L---------------     249 CANINE
205 -----------   R-------    249 BOVINE
204 ------L----R— S---- A ------------   248 HUMAN
204 ------L-------SS----A ----------  Q ---------  248 MURINE
215 — IL— I -TH-KSRPES N-T— CHGCQ -E------- Q — K-HLQ- 262 CHICKEN

Figure 3.7: Alignment of the amino-acid sequences of feline, porcine, canine, bovine, 
human, murine and chicken stem cell factor polypeptides. Identical amino-acids are 
indicated by dashes (-) and dots indicate gaps introduced to maintain optimal 
sequence alignment. The likely signal peptide and transmembrane domains are 
indicated by _ S -P _  and _T -M _ respectively. The predicted amino terminus is 
marked Conserved cysteine residues are depicted by and potential N-
glycosylation sites by The amino acids shown in bold type between the
horizontal arrows (-► <-) are those deleted in the shorter isoforms of feline, canine, 
human, murine and bovine SCF; in each case this deletion results in the replacement 
of the 29 deleted amino-acids by a glycine residue. The major proteolytic cleavage 
sites, responsible for generation of soluble SCF are indicated by “4”.
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PREDICTION OF SIGNAL SEQUENCE CLEAVAGE SITES BASED ON THE METHOD OF 
G. VON HEIJNE, N.A.R., 14, 4683(1986)

SEQUENCE NAME: scfpep.txt LENGTH: 274 
SEARCH RANGE: 50 SEQUENCE TYPE: Eukaryotic

WINDOW SUBSEQUENCE
NORMALIZED 
PROBABILITY 
P [i]/Pmax

1 - 15 MKKTQTWIVTCIYA LQ 0.000000
2 - 16 KKTQTWIVTCIYLAQL 0.000008
3 - 17 KTQTWIVTCIYLQALL 0.000000
4 - 18 TQTWIVTCIYLQLALL 0.000019
5 - 19 QTWIVTCIYLQLLALF 0.000007
6 - 20 TWIVTCIYLQLLLAFN 0.000906
7 - 21 WIVTCIYLQLLLFANP 0.024491
8 - 22 IVTCIYLQLLLFNAPL 0.000053
9 - 23 VTCIYLQLLLFNPALV 0.000704

10 - 24 TCIYLQLLLFNPLAVK 0.000020
11 - 25 CIYLQLLLFNPLVAKT 0.000149
12 - 26 IYLQLLLFNPLVKATK 0.002134
13 - 27 YLQLLLFNPLVKTAKG 1.000000
14 - 28 LQLLLFNPLVKTKAGL 0.000033
15 - 29 QLLLFNPLVKTKGALC 0.003902
16 - 30 LLLFNPLVKTKGLACR 0.001254
17 - 31 LLFNPLVKTKGLCARN 0.036330
19 - 33 FNPLVKTKGLCRNARV 0.000138
20 - 34 NPLVKTKGLCRNRAVT 0.000000
21 - 35 PLVKTKGLCRNRVATD 0.000000
22 - 36 LVKTKGLCRNRVTADD 0.000023
23 - 37 VKTKGLCRNRVTDADV 0.000001
24 - 38 KTKGLCRNRVTDDAVK 0.000001
25 - 39 TKGLCRNRVTDDVAKD 0.000000
26 - 40 KGLCRNRVTDDVKADV 0.000000
27 - 41 GLCRNRVTDDVKDAVT 0.000000
28 - 42 LCRNRVTDDVKDVATK 0.000000
29 - 43 CRNRVTDDVKDVTAKL 0.000000
30 - 44 RNRVTDDVKDVTKALV 0.000000
31 - 45 NRVTDDVKDVTKLAVA 0.000000
32 - 46 RVTDDVKDVTKLVAAN 0.000000
33 - 47 VTDDVKDVTKLVAANL 0.000005
34 - 48 T DDVKDVT KLVAN A L P 0.000000
35 - 49 DDVKDVTKLVANLAPK 0.000000
36 - 50 DVKDVTKLVANLPAKD 0.000000

Figure 3.8: Prediction of fSCF signal peptide using the ‘Sigseq’ program (Rockefeller
25 26University). The predicted signal peptide cleavage site is between Thr and Lys .
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« 2 vô^ ^ onO >*0\
*  3  "' S ^
i s  i
i g ^  s § s

0 ^ 0  
a) G
w o ' S  
0 ^ 1  
o P |
S ,§ §
52 S §3<Da
*t3§

£
C/3 -*-» Os

o 3
<+H

B - g - d

^  S 3
aJ O 2Ghed a| I  „
£ «  J£ 3  5
.. & 2O « 3H di C• 3  O

^  G •£

|  & g<b£) o  G•— G o  fe ft o



CLONING OF FELINE STEM CELL FACTOR

HQ

Q h rf ie i-v n b . >• 5.0

1H2

Figure 3.11: Analysis of the fSCF predicted protein using GCG software programs 
PeptideStructure and PlotStructure (Wolf et al, 1987). Overlain on Chou-Fasman 
predictions of secondary structure (i) are motifs indicating regions with predicted high 
ii) surface probability iii) hydrophilicity or hydrophobicity scores.
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3.4 DISCUSSION

3.4.1 A m p l i f ic a t io n  o f  fSCF b y  PCR

The polymerase chain reaction provides an elegant method of isolating novel gene 

sequences, where there is limited information regarding their nucleotide sequence. Its 

utilisation in this project enabled the isolation of feline stem cell factor in a fraction of 

the time that would have been taken to generate and screen a cDNA library. 

However, the use of PCR in this setting is not without potential disadvantages. The 

most significant of these is total failure to amplify the desired cDNA. This may occur 

despite attempts to optimise the PCR by variation of conditions including primer 

annealing temperature, number of PCR cycles and reaction conditions e.g. Mg2+, 

primer concentrations (discussed in Innis and Gelfland, 1990). A number of potential 

causes of PCR failure can be considered:

i. The mRNA of interest may be absent (or degraded) in the starting material. The 

correct choice of starting cells or tissue, need for additional stimulation and 

optimal timing of mRNA harvest must be addressed.

ii. There may be a failure of reverse transcription to synthesise full length cDNA, 

either due to the reaction conditions or because of secondary structure in the 

mRNA. Treatment of mRNA with methylmercury hydroxide to remove secondary 

structure may be helpful in some circumstances.

iii. The oligonucleotide primers may not anneal efficiently to the cDNA due to 

mismatches. This is probably the most important consideration when attempting 

isolation of sequences where the exact sequence is unknown. The design of 

alternative primers or use of degenerate primers may prove successful in such 

circumstances.

iv. Non-specific primer binding may lead to production of multiple PCR products 

(seen as multiple bands or smears on PAGE) or poor yield of specific product. 

The use of 'hot-start' protocols (e.g. using anti Taq antibody or wax beads) may 

improve the yield of a specific product by reducing the extension of primers bound 

non-specifically.
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If isolation by RT-PCR is successful, another inherent disadvantage which must be 

considered, illustrated in the isolation of fSCF, is the misincorporation of nucleotides 

during DNA synthesis by Taq DNA polymerase. The most common error is that of 

single base substitutions, generally occurring with low frequency (around one base 

substitution per 106 nucleotides). The error rate is, however, increased with higher 

than optimal nucleotide and magnesium concentrations, and may approach one per 

thousand nucleotides in unfavourable conditions. Given an error rate of 10'5 per 

nucleotide, after 30 cycles, when amplifying a 1 kb sequence, it may be estimated that 

13% of fragments have a sequence differing from that of the correct (starting) 

sequence (for discussion see Hayashi, 1994). The nucleotide differences seen 

between different clones of fSCF were attributed to such errors; it is possible that they 

represented alternative cDNAs, however, given that the change in nt 261, from A to 

G, would have produced an amino acid change from serine to asparagine (where other 

mammalian SCFs show a serine at the same position) this was considered less likely. 

The sequencing of a number of cDNA clones, from different RT-PCR reactions 

enables a consensus sequence to be elucidated with a relatively high degree of 

confidence. It has been suggested that sequencing of between three to six clones will 

generally suffice in the determination of a consensus sequence at a given allele (Ennis 

et al., 1996). The use of thermostable DNA polymerases with proof reading activity 

(e.g. Pfu polymerase, Vent polymerase) can result in an increase in fidelity over that 

seen with Taq polymerase; the use of such alternatives should be considered in future 

projects.

3.4.2 F e a t u r e s  o f  t h e  p r e d i c te d  f e l i n e  SCF p r o t e i n s

Feline stem cell factor shares a high degree of homology at both the nucleic acid and 

protein level with other mammalian SCFs; this evolutionary conservation suggests a 

similar biological role for stem cell factor in the cat to that described for other species. 

The high sequence homology to the SCFs of other species allows the identification of 

an extracellular domain, a transmembrane domain and an intracellular domain within 

the longer fSCF isoform.
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3.4.2.1 Signal Peptide (aa -25 to -1)

A signal peptide serves to direct ribosomal protein synthesis to the endoplasmic 

reticulum; the signal sequence is then removed on the luminal side of the endoplasmic 

reticulum (Walter and Lingappa, 1986). Signal sequences typically have an N- 

terminal basic region, a hydrophobic core and a polar C-terminal region followed by a 

proteolytic cleavage site (Perlman and Halvorson, 1983; von Heijne, 1983). Using 

the method developed by von Heijne (1986), feline SCF shows a predicted signal 

peptide of 25 amino acids, in common with SCF proteins of other species.

3.4.2.2 Extracellular domain (aa 1 to 190)

The extracellular domains of murine and human SCFs are predicted to form four alpha 

helices that are folded into an anti-parallel structure, stabilised by disulphide bridges. 

The helical cytokine domain is attached by a 12 to 24 amino acid spacer chain to a 

membrane ‘tether’ that is contiguous with the transmembrane domain (Bazan, 1991a). 

The approximate positions of the helical domains are amino acids 5 to 23, 48 to 62, 

80 to 92 and 117 to 135 (Matous et al, 1996). Predictions of fSCF secondary 

structure, using the methods of Chou and Fasman (1978) or Garnier et al (1978) 

shows helices in the feline homologue at similar positions (Figure 3.9 to Figure 3.11). 

This is not unexpected given the overall high level of homology between fSCF and 

SCFs of other mammalian species.

In common with bovine, canine and porcine SCFs, fSCF has an extra amino-acid
130(Glu ) when compared to human and rodent SCF sequences. Four cysteine residues 

(aa 4, 43, 89, 139), implicated as important in forming intramolecular disulphide 

bridges in rat SCF (Lu et al, 1991), are conserved in fSCF. A proteolytic cleavage 

site has been identified in rat SCF between Ala164 and Ala165 and/or Ala165 and Ser166 

(Martin et al, 1990; Lu et al, 1991). The amino-acid sequence in this region is well 

conserved in fSCF suggesting the existence of an analogous site in fSCF, and thus a 

similar soluble form of fSCF.

3.4.2.3 Transmembrane domain (aa 191 to 213)

The transmembrane domain of membrane associated proteins is characteristically 

hydrophobic. Such a region can be seen in the predicted feline SCF protein between
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amino acids 190 and 211 (Figure 3.9 and Figure 3.11); this largely coincides with the 

transmembrane domain predicted by alignment with other species SCFs.

3.4.2.4 Intracellular domain (aa 214 to 249)

The predicted intracellular domain stretches from amino acids 214 to 249. This 

region is mainly hydrophilic in character and its likely function is to anchor the 

transmembrane domain within the lipid bilayer of the plasma membrane. It has also 

been proposed that the intracellular domain may have additional biological function(s) 

(Brannan e ta l, 1992).

3.4.2.5 Post translational modifications

Proteins secreted via the endoplasmic reticulum are often modified by the addition of 

oligosaccharides, a process known as glycosylation. The addition of these moieties 

generally occurs via asparagine (A-linked glycosylation) or by serine, threonine or 

hydroxylysine residues (0-linked glycosylation). Potential A-glycosylation sites 

within the extracellular domain of fSCF are present at amino-acids 65, 72, 120 and
93171; the site corresponding to Asn of human SCF is absent in fSCF. Studies on

native rat stem cell factor, isolated from Buffalo rat liver conditioned medium have
120implicated the site at Asn as being glycosylated, with variable glycosylation of the 

residues at Asn109 (not present in feline SCF) and Asn65 (Lu et al, 1991). In addition, 

native rat SCF has a high degree of O-linked glycosylation (Zsebo et al, 1990b). 

Given the high level of interspecies conservation such modification is likely to be 

present in the feline homologue.

The isolation of feline SCF sequences provides pivotal information enabling new 

investigations into the of the role of SCF in feline haemopoiesis. This information 

also allows the expression of feline SCF in vitro by a number of potential techniques. 

The DNA sequence data appears in the GSDB, DDBJ, EMBL and NCBI nucleotide 

sequence databases with the accession number D50833 and is reported by Dunham 

and Onions (1996).
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EXPRESSION OF FELINE SCF IN E.COLI

4.1 INTRODUCTION

Heterologous protein expression systems are frequently used to produce proteins for 

biological uses. They have the advantages of ease of manipulation and frequently 

enable the production of protein in higher levels than would be achieved by direct 

isolation of the native protein (Olins, 1996). Recombinant proteins have been 

successfully expressed in a wide variety of different systems which include bacterial, 

yeast, fungal, insect, plant or mammalian (including transgenic livestock) (Hodgson, 

1993). This chapter gives an overview of the more frequently used expression 

systems and outlines the factors which affect the choice of system. The expression of 

feline stem cell factor as a fusion protein in Escherichia coli is then described.

There have been a number of reviews of the different expression systems available and 

factors governing the choice of system for a particular application (Goeddel, 1990; in 

Ausubel et a l, 1994). There are no predetermined rules for the expression of a 

foreign protein in a heterologous system. However, the choice of system used can be 

guided by an appreciation of the advantages and disadvantages of each, by a 

consideration of the properties of the protein to be expressed (e.g. size, degree of 

post-translational modification) and by the desired use of the recombinant protein 

(e.g. antigen, structural studies, investigation of biological activity).

4.1.1 Sy stem s  f o r  h e t e r o l o g o u s  g en e  ex pr e ssio n

4.1.1.1 Expression in prokaryotic organisms

A number of different bacteria have been used for the expression of recombinant 

mammalian proteins including Escherichia coli, Bacillus subtilis, Lactococcus lactis 

and Corynebacterium glutamicum (Billman-Jacobe, 1996). Of these, E.coli is the 

most fully characterised and most widely used. E.coli expression systems have the 

advantages of ease of use and simplicity; standard recombinant DNA techniques may 

be used to generate an overexpressing strain in a relatively short time. The bacteria 

may be grown in inexpensive media making the system relatively economical. 

Expression systems using E.coli have been developed to allow the expression of
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foreign proteins at high yields, whereby the recombinant protein may be expressed at 

levels of up to 30% of the total cellular protein production (Brent, 1994).

The expression of foreign proteins in E.coli is not without its disadvantages. Proteins 

which are normally produced as secreted proteins (including the cytokines) are 

synthesised in eukaryotes by ribosomes of the endoplasmic reticulum, whereas their 

synthesis in E.coli takes place in the cytoplasm. This may lead to incorrect folding of 

the recombinant protein and the precipitation of the expressed protein as insoluble 

aggregates called inclusion bodies. The isolation of soluble proteins in such 

circumstances requires solubilisation using denaturing agents (e.g. urea, guanidine 

hydrochloride) and subsequent refolding (Kohno et al, 1990). Such manipulations 

may, however, result in a low yield of properly refolded protein or protein with low 

biological activity; in the case of larger proteins, correct refolding may not be 

possible. Secondly, eukaryotic proteins, produced in E.coli, are not post- 

translationally modified (by glycosylation, sialalylation etc.) as the native protein 

would be; this is an important consideration when contemplating the expression of 

cytokines, as they are generally undergo extensive post-translational processing.

Experience with many cytokines expressed in E.coli has shown that authentic post 

translational modifications are not essential for biological activity, indeed in a number 

of cases the protein expressed in E.coli is more active than its counterpart expressed 

in a eukaryotic system. This is seen with rhSCF, the E.coli expressed form inducing 

greater proliferation of a human megakaryocyte cell (UT-7) line in vitro than the 

glycosylated (COS cell derived) counterpart (Langley et al, 1992). However, the 

absence of such modifications may lead to changes associated with distribution, 

biological half life in vivo or antigenicity of the recombinant cytokine. Human 

interferon-y expressed in E.coli has a reduced circulatory half life compared to natural 

hlFN-y (Bocci et al, 1985). In vitro studies have shown that the presence of glycan 

residues on the recombinant protein protect it from degradation by proteases, 

including crude granulocyte proteases, elastase and plasmin (Sareneva et al., 1995). 

A number of human recombinant cytokines used in clinical trials including hGM-CSF 

and hlFN-a have been shown to be antigenic, leading to the development of
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neutralising antibodies in some patients. Neutralising antibodies to hlFN-a may be 

associated with relapse of disease (Steis et al., 1988; Steis et al, 1991), whilst 

antibodies to rGM-CSF may cross-react with the endogenous cytokine (Wadhwa et 

al., 1996). Such cross-reactivity may potentially lead to a decrease in endogenous 

cytokines and subsequent cytopenia. This has been reported following the 

administration of canine G-CSF to rabbits, for the purpose of antibody production 

(Reagan et al., 1995). In the case of IFN-a, the incidence of neutralising antibodies 

was higher, in one study, in patients treated with E.coli derived rIFN-a compared to 

those treated with natural IFN-a, isolated from lymphoblastoid cells (Antonelli et al, 

1991). Despite these concerns, recombinant human cytokines expressed in E.coli are 

being increasingly used within the clinical field.

A number of features are required to allow efficient expression of cloned genes in 

E.coli:

• a selectable marker to ensure maintenance of the vector in the host strain (e.g. 

ampicillin resistance).

• a strong inducible promoter (e.g. lac, trp or tac); following induction this will 

direct the synthesis of large amounts of mRNA.

• a ribosome binding site that is not blocked due to secondary structure and a start 

codon (ATG).

• polylinker sequences to allow insertion of the gene of interest into the vector.

The efficiency of expression is also influenced by the codon usage within the cloned 

gene, especially at the 5’ end of the gene, notably the second codon (Stormo et al, 

1982); use of non-preferred codons can lead to premature termination of translation. 

This may be overcome by taking advantage of the degeneracy of the genetic code and 

modifying the coding sequence of the cloned gene to use preferred codons. An 

alternative solution is to express the protein as a fusion with a carrier protein. The 

expression vector is designed with the coding sequence of the carrier protein directly 

5’ to the site of insertion of the cloned gene; upon translation an N-terminal fusion 

protein is produced. The carrier protein can be from any gene that is highly expressed 

in E.coli; examples include trpE fusions, histidine-tagged proteins, maltose-binding

133



EXPRESSION OF FELINE SCF IN E.COLI

protein fusions and glutathione S-transferase (GST) fusions. The use of a fusion 

protein system may be associated with additional advantages. Expression of human 

growth hormone in a vector encoding the E.coli signal peptide ompA, results in 

secretion of the recombinant protein into the periplasm, cleavage of the signal peptide 

and facilitates proper disulphide bond formation and folding of the recombinant 

protein (Hsiung et al., 1986). The presence of the fusion partner may enhance the 

solubility of the expressed fusion protein, an advantage associated with the GST gene 

fusion system. The N-terminal sequence may be used as an aid to purification of the 

expressed fusion protein, using antibody affinity purification {trpE or (3-gal fusions), 

affinity to metals in the case of His-tagged proteins or specific affinities such as the 

binding of GST fusion proteins to glutathione sepharose. Antibodies directed against 

the fusion partner may be used to identify expressed proteins by Western blot analysis. 

The presence of the fusion partner may, however, confer disadvantages in addition to 

those discussed above. The biological activity of the recombinant protein may be 

modified or the fusion may interfere with immunological techniques, for example 

protein-A fusions will interact non-specifically with antibodies. Other fusion partners 

may affect the use of the protein as a specific immunogen to raise antibodies to the 

target protein. This problem may be overcome however, by cleavage of the desired 

recombinant protein from its fusion partner by chemical or proteolytic methods 

(Riggs, 1994).

4.1.1.2 Expression of proteins in yeasts

Yeasts have a number of advantages for the expression of foreign proteins. Like 

E.coli, yeasts are unicellular organisms which grow rapidly and are easy to 

manipulate. Additionally, as eukaryotic organisms, they possess much of the cellular 

machinery to perform accurate post-translational processing and modification of many 

mammalian proteins (Buckholz and Gleeson, 1991). Expressed proteins can be 

directed to the secretory pathway, simplifying harvesting and purification (Brake et 

al., 1984). The majority of recombinant proteins produced in yeast have used 

Saccharomyces cerevisiae (bakers yeast) as a host, due to familiarity with its genetics 

and growth characteristics. However, S. cerevisiae based expression systems often 

produce only low yields of protein. Furthermore, the glycosylation patterns of 

proteins produced in S. cerevisiae differ from those of native mammalian proteins in
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that the glycosyl groups are more extensive and composed largely of mannose 

residues. This can lead to a decreased circulating half life of the protein in vivo, 

changes in immunogenicity and function (Eckart and Bussineau, 1996). A number of 

alternative yeast host strains have been developed including Pichia pastoris and 

Hansula polymorpha, which seem less prone to producing such hyperglycosylated 

proteins and may therefore be more suitable for the expression of mammalian 

glycoproteins (Hodgson, 1993; Eckart and Bussineau, 1996).

4.1.1.3 Mammalian expression systems

The expression of proteins from higher eukaryotes in a mammalian system has certain 

inherent advantages. Proteins are usually expressed in the correct cellular 

compartment and appropriately modified. Authentic modifications reduce the 

likelihood of the expressed protein proving immunogenic or having altered biological 

activity or pharmacokinetics. However, mammalian expression systems tend to be 

more technically demanding and expensive to use (Brent, 1994). Transient expression 

systems are commonly used to produce small amounts of proteins to evaluate the 

functional activity of a novel cDNA. COS cells are often used for such short term 

expression. These cells are derived from African green monkey kidney cultures that 

have been transformed with SV40 virus carrying a defective origin of replication 

(Gluzman, 1981). The cells do not, therefore, produce whole virus, but do produce 

large quantities of the viral protein, SV40 large tumour (T) antigen. This protein 

directs the amplification of vectors containing the SV40 origin of replication to high 

levels (10,000 - 100,000 copies per cell) 48 - 72 hours following transfection. 

Plasmids containing a cDNA or genomic DNA insert can therefore direct the synthesis 

of large amounts of protein in a short time, under the control of an appropriate 

promoter. However, because the protein production machinery of the transformed 

cell is effectively 'hijacked', cells generally die after a number of days (Aruffo, 1994). 

Large scale production of proteins in mammalian systems requires the establishment 

of stably transfected cell lines and gene amplification. Chinese hamster ovary (CHO) 

cells have been widely used for the large scale expression of human proteins including 

erythropoietin, granulocyte colony-stimulating factor and growth hormone (Hodgson, 

1993).
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4.1.1.4 Baculovirus expression systems

The baculovirus expression system uses insect cells to propagate a virus into which 

the cloned gene has been introduced, in place of a highly expressed, yet non-essential 

protein. The most widely used baculovirus system utilises the virus Autographa 

californica multiply enveloped nuclear polyhedrosis virus (AcMNPV) belonging to 

the family Baculoviridae, a large dsDNA virus that infects arthropods (Luckow and 

Summers, 1989). Infection with baculovirus leads to production of two types of viral 

particles: extracellular (non-occluded) and polyhedra-derived (occluded).

Extracellular virus is released from the cell by budding (>10 hours p.i.) and leads to 

secondary infection of neighbouring cells and tissues. Polyhedra-derived virus, 

appearing as viral inclusions, is seen after approximately 18 hours p.i. and accumulate 

within the nucleus of infected cells until released by cell lysis (up to five days p.i.). 

Viral inclusions consist of virus particles imbedded in proteinaceous material, the main 

component of which is polyhedrin. In nature the polyhedrin serves to protect viral 

particles from proteolytic digestion as the host tissue decomposes. The occluded 

virus is released in the alkaline conditions of the gut following ingestion of 

contaminated food by a new host, thus resulting in propagation of the virus. Whilst 

the polyhedrin protein is therefore important in nature, the virus is able to survive and 

propagate in tissue culture without it. The baculovirus expression system takes 

advantage of this, whereby recombinant baculoviruses are generated by replacing the 

polyhedrin gene with a foreign gene via homologous recombination. Viruses lacking 

polyhedrin have a distinctly different appearance which provides a method for the 

selection of recombinant virus (reviewed by Miller, 1988, Luckow and Summers, 

1988).

Baculovirus expression has the advantage of allowing high level expression of protein 

which generally remains soluble in insect cells. The system performs many of the 

post-translational modifications occurring in higher eukaryotes. Proteins are generally 

appropriately secreted or targeted to the nucleus, cytoplasm, cell membrane. Post- 

translational modifications such as signal peptide cleavage, removal of hormonal pro­

sequences, glycosylation, myristolation, palmitylation and phosphorylation have all 

been documented. However, whilst V-linked glycosylation is often performed at the
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correct sites, the extent of the glycosylation generally does not approach that of 

higher eukaryotes. Mammalian proteins expressed in baculovirus systems tend to be 

high in mannose, lacking sialic acid, galactose and fucose residues of the native

protein (Luckow and Summers, 1988; van Die et al, 1996). However, it has been

shown that the use of different cell lines, such as Estimene acrea, to those commonly 

used for expression (Spodoptera frugiperda) can produce a glycosylation pattern 

more akin to the native mammalian protein (Wagner et al, 1996)

4 .1 .2  E x p re s s io n  o f  r e c o m b in a n t  f e l i n e  s te m  c e l l  f a c t o r

The choice of system for expression of recombinant fSCF was principally directed by 

ease of use and the ability to produce a sufficient quantity of protein of a relatively 

high purity, within a limited time scale, to enable characterisation of the protein’s 

biological activity. These considerations led to the choice of the E.coli based 

glutathione S-transferase gene fusion system (Smith and Johnson, 1988). This utilises 

one of a series of pGEX plasmids which are designed for high level expression of 

genes as fusion proteins with Schistosoma japonicum glutathione S-transferase 

(GST). The plasmids contain a tac promoter that allows high level expression,

inducible with the lactose analogue IPTG. The presence of an internal lac \q gene

enables the plasmid to be used in any E.coli host. Fusion proteins produced in this 

system are often soluble, increasing the likelihood of them possessing full biological 

function and removing the need for resolubilisation and refolding steps. Purification 

of the fusion protein relies on the affinity of the GST tag to glutathione bound to a 

matrix (Sepharose 4B). Throughout purification mild (physiological) conditions may 

be maintained, thus minimising as far as possible the effects of the procedure upon 

protein antigenicity and functional activity. The plasmids contain either thrombin or 

factor Xa protease recognition sites; this allows the desired protein to be cleaved from 

the fusion product following affinity purification. The presence of the GST tag allows 

identification of the fusion protein using specific anti-GST antibody in Western 

blotting protocols. It also enables estimation of yields of recombinant protein by 

means of the CDNB (l-chloro-2,4-dinitrobenzene) assay (Habig et al, 1974). GST 

has a strong affinity for CDNB and catalyses the conjugation of CDNB to glutathione, 

resulting in a product which shows strong absorption at 340 nm; by measuring the
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change in absorbance at this wavelength, an estimate of the amount of GST fusion 

protein in the sample may be obtained.

This chapter describes the expression of the soluble form of feline stem cell factor in 

E.coli. PCR was used to subclone the coding sequence for amino acids 1 - 165 of the 

mature fSCF protein into the pGEX vector (i.e. the sequence encoding the 5' signal 

peptide and 3' amino acids 166 - 249 were omitted). The protein was then expressed 

and purified by affinity chromatography. An overview of the experimental protocol is 

shown in Figure 4.1.
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Figure 4.1: Expression of soluble rSCF protein using the GST gene fusion system. 
The coding sequence for amino acids 1-165 of the predicted mature fSCF protein 
was amplified using the polymerase chain reaction. This was then cloned into the 
pGEX vector 4-T1. The vector was introduced into E.coli and the protein expressed 
following induction with isopropyl-1-thio-p-D-galactoside. The recombinant protein 
was purified by affinity chromatography and cleaved using thrombin.

139



EXPRESSION OF FELINE SCF IN E.COLI

4.2 MATERIALS AND METHODS

4.2 .1  P r o d u c t io n  o f  r e c o m b in a n t  e x p re s s io n  v e c t o r

The recombinant plasmid fSCF-pGEX (pGEX-4T-l plasmid containing the coding 

sequence for predicted soluble feline stem cell factor) was produced as described 

below.

4.2.1.1 Preparation of cDNA encoding soluble fSCF

Primers were designed for PCR amplification of DNA encoding amino-acids 1-165 of 

the predicted mature fSCF protein, as follows:

5’ Primer: 5’-GCG-CGG-ATC-CAA-AGG-GCT-CTG-CAG-GAA-CCG-35 

3’ Primer: 5’-GCG-CGG-CCG-CAT-TAT-GCA-ACA-GGG-GGT-AAC-3’

The 5’ primer contains a GCGC clamp and a BamHI restriction site at the 5’ end 

whilst the 3’ primer has a GC clamp and a Notl restriction site at its 5’ end. These 

modifications allowed directional cloning of the amplified PCR product into the 

pGEX 4T-1 vector as detailed below. The 3’ primer also encodes a stop codon 

(TAA(T)).

The primers were each used at 1.0 pM concentration in a 100 pi volume reaction mix. 

The template was provided by 40 ng of recombinant pCR™ II vector containing the 

full length feline stem cell factor insert (clone 52C). Cloned Pfu DNA polymerase 

(Stratagene) was used in preference to Taq polymerase. Pfu polymerase is isolated 

from the hyperthermophilic marine archaebacterium Pyrococcus furiosus and unlike 

Taq polymerase it possesses a 3’ to 5’ exonuclease activity or proof reading ability; 

this can lead to an increase in the fidelity of DNA synthesis of 12 fold over Taq DNA 

polymerase. This was used in order to minimise the chance of introducing base 

changes into fSCF during amplification. To the reaction mix was added 10 pi of 10 x 

cloned Pfu buffer (200 mM Tris-HCl (pH 8.75), 100 mM KC1, 100 mM (NH^SO^ 

20 mM MgS04, 1% Triton X-100, 1 mg/ml BSA) and 2.5 units cloned Pfu DNA 

polymerase. Deoxynucleoside triphosphates were included at a final concentration of 

100 pM.
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The reaction mix was overlain with mineral oil and the tubes transferred to a thermal 

cycler. The following cycle was programmed: an initial denaturation step of 94°C for 

five minutes, followed by 30 cycles of: 94°C, for one minute; 58°C, for one minute; 

72°C, for one minute; with a final extension step of 72°C for 10 minutes. The tubes 

were then brought to and held at 4°C until collected. Seven 100 pi reactions were set 

up and run concurrently. Upon completion of thermocycling, the reactions were 

removed from the overlying mineral oil and combined into a single tube. The DNA 

was precipitated overnight at -20°C following the addition of 0.1 volumes of 3M 

sodium acetate and 2.5 volumes of ethanol. The DNA was pelleted by centrifugation 

in a microcentrifuge at 13,000 rpm for 10 minutes, the supernatant removed and the 

DNA pellet dried in a vacuum desiccator. The pellet was then resuspended in 40 pi 

dH20. Ten microlitres of this solution was then loaded onto five lanes of a 1% TEA 

agarose minigel and electrophoresed for two hours. The DNA bands were visualised 

under UV illumination following staining with ethidium bromide, excised using a 

sterile scalpel and the DNA extracted from the gel slices using a Genecleanll Kit (as 

detailed in section 2.2.2.6); the DNA was eluted in 30 pi of dH20.

The purified insert DNA was digested with the restriction enzymes Notl and BamHI. 

Thirty microlitres of plasmid DNA was digested in 50 pi volume using 20 units of 

each restriction enzyme, five microlitres of ReactHI buffer and 5 mM spermidine; 

following incubation for four hours at 37°C the reaction was stopped by the addition 

of 5.5 pi DNA gel loading buffer. The insert DNA was then quantified by 

polyacrylamide gel electrophoresis (loading a 2 pi aliquot). Following staining with 

ethidium bromide and inspection under UV illumination the amount of DNA was 

compared to that of the molecular weight standard DNA (<|)X174 RF DNA/Hae III 

fragments).

4.2.1.2 Preparation of pGEX vector DNA

A working stock of pGEX-4T-l vector DNA was prepared, briefly, as follows. 

JM105 E.coli were transformed with 10 ng of the vector as described in section

2.2.2.8.2. Following selection on LB agar plates containing 50 pg/ml ampicillin and
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20 mM glucose (LBAG plates) a single colony was picked and used for large scale 

DNA preparation by the CsCl method as detailed in 2.2.2.2.1.

In order to prepare the vector for cloning with the fSCF insert, the vector was 

digested with the restriction enzymes Notl and BamHI. Five micrograms of plasmid 

DNA were digested in 50 pi volume using 20 units of each restriction enzyme, five 

microlitres of ReactHI buffer and 5 mM spermidine; following incubation for 2.5 

hours at 37°C the reaction was stopped by the addition of 5.5 pi DNA gel loading 

buffer. The efficiency of restriction digest was checked by electrophoresis of five 

microlitres of DNA through a 1.0% TEA agarose gel for two hours followed by 

staining with ethidium bromide and inspection under UV illumination. The vector 

DNA was purified from the excised insert using a Genecleanll Kit. The procedure 

followed that detailed in 2.2.2.6, however separation of the DNA fragments by prior 

agarose gel electrophoresis was not carried out; this was not considered necessary as 

the excised restriction fragment was too small to bind efficiently to the glassmilk. The 

purification protocol was carried out twice in the same manner followed by collection 

of the purified DNA in 20 pi of dH20. Two microlitres of the DNA was used to 

estimate the DNA concentration by running the sample on a 1.0% TEA agarose gel. 

After staining with ethidium bromide the gel was examined under UV illumination and 

the quantity of DNA present estimated by comparison with a known quantity of 

molecular weight marker (X DNA/Hindlll fragments).

4.2.1.3 Ligation of vector to insert DNA

The insert DNA was ligated to the vector DNA at a 5:1 molar ratio; 60 ng insert 

DNA and 100 ng vector DNA were combined with one unit (one microlitre) T4 DNA 

ligase and four microlitres of 5x ligase buffer in a final volume of 21 pi. The reaction 

was incubated at 14°C overnight.

4.2.1.4 Transformation of bacteria

Competent JM105 E.coli were freshly prepared and transformed with an aliquot of 

the ligation reaction as detailed in section 2.2.2.8.2. Colonies were selected by 

growth overnight at 37°C on LBAG plates. Colonies were picked and small scale
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DNA preparations made using the Wizard Miniprep method (section 2.2.2.2.3). The 

presence of an insert of the correct size (approximately 500 bp) was verified by 

subjecting a quantity of the DNA to restriction enzyme digestion with Notl and 

BamHI enzymes followed by electrophoresis through a 5.0% polyacrylamide gel.

4.2.1.5 Sequencing of recombinant plasmids

Two clones containing recombinant plasmids with the appropriate sized insert were 

sequenced using Sequitherm DNA polymerase and IRD41 labelled primers as detailed 

in section 2.2.5.2. The primers used were:

5’ pGEX primer: 5 ’-GGG-CTG-GCA-AGC-CAC-GTT-TGG-TG-3’

3’ pGEX primer: 5’-CCG-GGA-GCT-GCA-TGT-GTC-AGA-GG-3’

The sequencing reactions were run on a Licor model 4000 sequencer. The fSCF 

sequence in both clones was found to be identical to that previously reported. A 

stock of recombinant plasmid DNA (clone two) was prepared using the caesium 

chloride method (section 2.2.2.2.1).

4.2.2 EXPRESSION OF SOLUBLE FSCF FUSION PROTEIN

4.2.2.1 Transformation of BL21 E.coli

Competent BL21 E.coli were freshly prepared and transformed with the recombinant 

pGEX plasmid containing the fSCF coding sequence (section 2.2.2.8.2); the cells 

were also transformed with the parental pGEX plasmid for use as a control in 

expression studies. Single colonies were picked after overnight growth on LBAG 

agar plates and used for production of recombinant protein.

4.2.2.2 Small scale screening for recombinant protein expression

Prior to large scale production of recombinant protein, a small scale screening 

procedure was carried out. This followed the same protocols outlined in 4.2.2.3 and

4.2.2.4 below, however a final culture volume of 400 ml was used and quantities of 

reagents were reduced accordingly. The presence of fSCF fusion protein in the final 

eluate was verified by SDS-PAGE as detailed in 4.2.3 below.
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4.2.2.3 Large scale production of bacterial sonicate

A single colony of BL21 E.coli containing the fSCF-pGEX plasmid was used to 

inoculate 150 ml of 2YTA medium (2YT medium containing 100 fig/ml ampicillin) 

and grown overnight with shaking at 37°C. A BL21 E.coli colony containing the 

plasmid pGEX-4T-l was used in parallel as a control, bacterial expression and 

purification was carried out identically except that a 50 ml overnight culture was 

grown and subsequent quantities of reagents reduced proportionally. The overnight 

cultures were diluted 1:20 by the addition of fresh 2YTA medium, and divided into 

one litre aliquots. The cultures were grown with shaking at 30°C to an OD60o of 

approximately 1.0 ( for two and a half to three hours). Production of the recombinant 

protein was then induced by the addition of isopropyl-1-thio-p-D-galactoside (IPTG) 

to a final concentration of 0.1 mM; the cultures were incubated at 25°C with shaking 

for further 90 - 120 minutes.

The bacterial culture was transferred to 500 ml centrifuge flasks (Beckman) and 

pelleted by centrifugation at 8,000 rpm for 10 minutes in Beckman JA-10 rotor. The 

supernatant was discarded and the bacterial pellet resuspended in ice cold PBS 

containing 1 mM PMSF (a protease inhibitor). The cell suspension was sonicated for 

approximately 30 - 45 seconds to disrupt the bacteria. A Model XL 2020 sonicator 

(Heat Systems Inc., Farmingdale, NY.) equipped with a standard probe was used for 

sonication; the sonicator was tuned prior to use, following the manufacturers 

instructions. The power level was generally set to between five and six (where level 

10 was maximal) which avoided frothing (which may denature fusion proteins) yet 

produced satisfactory cell lysis. The degree of sonication was judged by a decrease in 

viscosity and slight darkening in colour of the cell suspension. Triton X-100 (20% 

stock solution) was then added to final concentration of 1% and mixed for five 

minutes on ice to aid solubilisation of the fusion protein. Cell debris was pelleted by 

centrifugation in polypropylene centrifuge tubes for 10 minutes at 18,000 rpm in a JA- 

20 rotor (Beckman) The supernatant was then removed to a clean tube prior to 

purification of the fusion protein by affinity chromatography. If purification was not 

carried out immediately then the supernatant was stored at -20°C. After storage a
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precipitate was generally seen which was removed by centrifugation as before; this did 

not appear to affect the yield of recombinant protein.

4.2.2.4 Affinity column purification of fusion protein

Glutathione sepharose 4B was supplied as a 75% slurry in 20% ethanol (Pharmacia 

Biotech). This was used in accordance with the manufacturers recommendations; 

one millilitre bed volume was taken as sufficient to purify the sonicate derived from 

two litres of bacterial culture (approximately five milligrams of fusion protein 

assuming average yields). Prior to use the matrix was resuspended by shaking and the 

required amount of slurry (1.33 ml of slurry per millilitre of required bed volume) 

removed to a 15 ml or 50 ml centrifuge tube. The matrix was sedimented by 

centrifugation at 500 x g for five minutes and the supernatant gently removed. The 

glutathione sepharose 4B was washed by the addition of 10 ml ice cold PBS per 1.33 

ml of the original slurry and the matrix sedimented by centrifugation as before. The 

supernatant was discarded and a 50% slurry of glutathione sepharose 4B prepared by 

addition of one millilitre of PBS for each 1.33 ml of original slurry dispensed.

Three millilitres of 50% glutathione sepharose 4B slurry was added to the sonicate 

derived from three litres of bacterial culture and incubated at room temperature for 30 

minutes with gentle agitation. The matrix was then sedimented by centrifugation at 

500 x g for five minutes, the supernatant discarded and the matrix resuspended in 20 

ml PBS. The slurry was loaded into a disposable PD10 column (Pharmacia) to 

facilitate washing. The matrix was washed with PBS until the OD280 of flow through 

reached zero, compared to blank of PBS. The fusion protein was then eluted using

1.5 ml of glutathione elution buffer (10 mM glutathione, 50 mM Tris-HCl (pH 8.0)); 

the glutathione sepharose 4B was incubated for 10 minutes at room temperature with 

the elution buffer prior to collecting the eluate. Elution and collection steps were 

repeated two further times and the eluates pooled and stored at -70°C.

4.2.2.5 Thrombin cleavage

The concentration of fusion protein in the pooled eluate was estimated by measuring 

the OD280, compared to a blank of elution buffer, and taking one OD unit as equal to 

approximately 0.5 mg/ml (this estimate was derived from the manufacturer’s
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information that 0.5 mg/ml of the GST affinity tag protein has an OD2so of 

approximately one). Ten cleavage units of bovine thrombin (Pharmacia Biotech) were 

added per milligram of fusion protein; digestion was allowed to proceed overnight 

with gentle agitation.

4.2.2.6 Dialysis

In order to remove free glutathione from the eluate the digested fusion protein 

solution was dialysed against PBS. Three batches of fusion protein, prepared as 

described above, were pooled and then loaded into a 15 ml Slide-a-lyzer cassette with 

a 10 kDa molecular weight cut off (MWCO) dialysis membrane (Pierce Chemical Co., 

Rockford, IL, USA). Dialysis was carried out against five litres of PBS, for 

approximately 24 hours, at 4°C, with four to five changes of buffer.

4.2.2.7 Removal of cleaved GST tag

The GST affinity tag was removed from the fSCF protein by affinity chromatography 

using glutathione sepharose 4B. Fifty per cent slurry, prepared as described above, 

was added to the protein solution (using one millilitre of slurry per one and a half 

millilitres of original eluate volume) and incubated for 30 minutes. The sepharose 

beads were pelleted by centrifugation at 500 x g for five minutes and the supernatant 

containing the fSCF protein moiety removed to a fresh tube.

4 .2 .3  A l t e r n a t i v e  p r o c e d u r e  f o r  c l e a v a g e  o f  f u s io n  p r o t e i n

During the latter stages of this project an alternative method of releasing the fSCF 

moiety from the complete fusion protein was employed. The above protocol was 

modified as follows. The fusion protein was produced and purified as detailed in 

4.2.2.4, however the protein was not eluted from the glutathione sepharose 4B 

column following washing. Instead the fusion protein was cleaved whilst still bound 

to the column. This was performed by adding thrombin solution (50 cleavage units of 

thrombin contained in one millilitre of PBS per millilitre of bed volume) to the 

glutathione sepharose matrix and incubating overnight, at room temperature, with 

gentle mixing. The eluate was then collected, removed to a clean tube and stored at - 

20°C prior to further purification, as detailed in chapter five.
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4.2.4 I d e n t i f i c a t i o n  o f  SCF r e c o m b in a n t  p r o t e i n s

4.2.4.1 Identification on Coomassie stained gels

Recombinant proteins were identified by sodium dodecyl sulphate - polyacrylamide 

gel electrophoresis (SDS-PAGE) followed by staining with coomassie blue, as 

outlined in section 2.2.6.2. Typically between 2.0 - 10 pi of each sample was loaded 

into each well of a 8.0 x 7.3 cm gel, when using a 10 well, 0.75 mm thick, comb. This 

was used to estimate the molecular size, yield and purity of the recombinant protein.

4.2.4.2 Identification by Western Blot analysis

In order to confirm the identify of the protein band seen on coomassie stained gels as 

a GST-fusion protein, immunoblotting was performed as outlined in section 2.2.6.3. 

The primary antibody used was a mouse anti-GST IgG monoclonal antibody (kindly 

provided by N. Spibey and T. Dunsford, Department of Veterinary Pathology, 

University of Glasgow); this was used at a 1:50 dilution. The secondary antibody 

used was an HRP conjugated sheep anti-mouse IgG polyclonal antibody (Sigma), 

used at a dilution of 1:1000.

The identity of the recombinant fSCF protein released following thrombin cleavage 

was confirmed similarly, using a primary antibody of anti-human SCF goat polyclonal 

IgG (R & D Europe Ltd., Abingdon, Oxon, UK) at a dilution of two micrograms per 

millilitre. The secondary reagent used was HRP conjugated rabbit anti-goat IgG 

(whole molecule) IgG fraction of antiserum (Sigma Chemical Co., St Louis, MO, 

USA); used at a dilution of 1:2000.

4.2.5 E n d o to x in  A s sa y

Samples of recombinant fSCF were submitted to Q1 Biotech Ltd. (Glasgow, U.K.) 

for assessment of the level of endotoxin contamination. Endotoxin levels were 

measured using a chromogenic Limulus amoebocyte lysate (LAL) assay. The LAL 

assay utilises a natural defence mechanism of the horseshoe crab Limulus polyphemus. 

The horseshoe crab is a marine animal, which is in fact more closely related to spiders
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than crustaceans. In response to injury the animal's haemolymph clots and thus 

provides a barrier to infection. This clotting mechanism is initiated by endotoxin (the 

majority of marine bacteria are gram negative) (Dawson, 1985). The basis of this 

clotting mechanism is the activation of a pro-enzyme by endotoxin to form an active 

clotting enzyme which then catalyses the cleavage of a clotting protein; once cleaved 

the protein becomes insoluble and forms a clot. The simplest LAL endotoxin assay is 

the gel-clot test which (semi-quantitatively) measures the endotoxin level in a test 

sample by comparison of the ability of the sample to form a solid clot, when mixed 

with the LAL enzyme and substrate, compared to known standards. The 

chromogenic method replaces the clotting protein with a synthetic peptide that forms 

a substrate for the enzyme. The synthetic peptide is covalently attached to a 

chromophore, para-nitroanilide (p-NA); following pre-incubation with endotoxin, the 

activated enzyme cleaves p-NA to form a coloured product which can be quantified 

by spectrophotometry (at 405 nm). The colour change is proportional to the amount 

of active enzyme and hence the endotoxin level of the test substance (Novitsky, 

1983).

4.3 RESULTS

Analysis of affinity purified lysates from bacteria expressing SCF-GST reveals major 

products with relative molecular weights of 44 kDa and 28 - 34 kDa (Figure 4.2). 

These major products are confirmed as GST fusion proteins by immunoblotting 

(Figure 4.3). The larger product is the approximate size predicted for the SCF-GST 

fusion protein. The smaller products may have arisen due to the premature 

termination of protein synthesis at 'pause sites' within the fSCF coding sequence or 

from proteolytic degradation of the fusion protein by E.coli proteases. Following 

thrombin cleavage of the fusion protein, a major product of approximately 18 kDa is 

seen (Figure 4.2). This is the expected molecular weight of the expressed frSCF 

protein and its identity is confirmed by immunoblotting (Figure 4.4).

Typically, the total yield of protein, following affinity chromatography, was 1.1 - 1.4 

mg/L of bacterial culture (estimated by Bradford assay, using BSA as a standard). 

However, the purity of rSCF-GST, as estimated by SDS-PAGE (Figure 4.2), was 

generally only 35 - 50%. Following cleavage of the GST moiety, the yield of frSCF
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was estimated as 0.35 - 0.5 mg/L bacterial culture, with a purity of 60 - 70%. 

However, the estimates of yield are based on the use of BSA as a standard for the 

Bradford assay; this results in an approximate two-fold greater absorbance ( A 5 9 5 )  than 

seen with pure frSCF and therefore underestimates the quantity of frSCF by a similar 

factor (Appendix A3). The yield of frSCF may therefore be estimated as 0.7 - 1.0 

mg/L bacterial culture.

Levels of endotoxin contamination in all samples of frSCF protein solution submitted 

for LAL endotoxin assay were above the limits of the assay (reported as 'fail').
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Lane No: M l  2 3 4 5

112
84

53 —

34.9 —

28.7 —

20.5 —

KDa
KDa

Figure 4.2: SD S-PAG E o f  recombinant feline stem cell factor proteins. Lane 1 - 
purified GST protein (2 pi); lane 2 - GST solution following affinity purification over 
glutathione sepharose 4B (10 pi); lane 3 - frSCF following throm bin cleavage prior to 
affinity purification (10 pi), lane 4 - frSCF following throm bin cleavage and affinity 
purification (10 pi), lane 5 - frSCF-GST fusion protein (10 pi), M - molecular weight 
markers.
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84.0 -----

53.2 —

34.9 —  

28.7 —

KDa

GST frSCF

Figure 4.3: Identification o f GST-fusion proteins expressed in E.coli. Proteins were 
detected using a murine anti-GST monoclonal antibody in conjunction with an HRP 
conjugated sheep anti-mouse IgG polyclonal antibody. The western blot was 
developed using ECL detection reagents. recombinant fSCF-GST fusion
protein post affinity purification (10 pi); purified GST (two microlitres).

frSCF hrSCF

Figure 4.4: Identification o f recombinant feline SCF. Proteins were detected using a 
primary antibody o f anti-human SCF goat polyclonal IgG in conjunction with an HRP 
conjugated rabbit anti-goat IgG. The western blot was developed using ECL 
detection reagents. frSCF following thrombin cleavage - approximately tw o 
m icrograms; hrSCF {E.coli expressed) - 25 ng.
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4.4 DISCUSSION

The production of feline stem cell factor as a GST fusion protein was reasonably 

successful, with good yield of the protein achieved. Although there was minimal, 

contamination of the purified product by E.coli proteins, there was significant 

contamination with truncated and/or degraded SCF-GST fusion protein. The 

reduction of these contaminants could greatly improve both the yield and purity of 

expressed frSCF. Techniques which can be used to reduce the proteolytic 

degradation of fusion proteins include the use of alternative host strains which are 

protease-deficient, addition of protease inhibitors to the lysis buffer and reducing the 

induction period following addition of IPTG. The E.coli host strain used in this 

project for protein expression was BL21, this strain lacks the outer membrane 

protease (ompT) which tends to prevent cleavage at exposed basic residues 

(Grodberg and Dunn, 1988). Alternative strains which could be considered in any 

future attempts to optimise expression of fSCF include Ion- strains or Ion htpR double 

mutants (Baker et al, 1984). The serine protease inhibitor PMSF was routinely used 

in this project, although a reduction in protein degradation with its use was not 

consistently demonstrated. Other protease inhibitors which could be used include 

EDTA, aprotinine and benzamidine. Recommended induction periods, following 

addition of IPTG, vary from two to seven hours (GST Gene Fusion System Manual, 

1994; Smith and Corcoran, 1994); the induction period used in this project was 90 - 

120 minutes, this was chosen in an attempt to minimise proteolytic digestion of the 

fusion protein and also because it allowed sufficient time to purify the fusion protein 

by affinity chromatography on the same day.

In order to minimise the premature termination of protein synthesis, codons rarely 

used by E.coli should be avoided. One example of such a rare codon is AUA, 

encoding isoleucine. The feline soluble SCF coding sequence has four of these
28 45 82 76codons (I , I , I and I of the mature protein). Use of such rare codons can lead 

to termination of protein synthesis or errors in translation including amino acid 

substitutions or frame-shifts. These errors arise due to a corresponding rarity of the 

required tRNA molecules leading to a so-called 'hungry codon syndrome' (Kurland 

and Gallant, 1996).
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The yield of fusion proteins expressed in E.coli can also be markedly affected by the 

protein's solubility. Production of insoluble products will lead to their loss as 

insoluble bacterial debris or require the use of resolubilisation techniques to harvest 

the protein. Cultures of frSCF expressing bacteria were grown at 30°C, decreased to 

25°C following induction, as lower growth temperatures have been shown to increase 

the solubility of mammalian protein expressed in E.coli (Shein and Notebom, 1988).

The protocol used gave sufficiently high yields and purity that further optimisation, 

which may have taken considerable time, was not considered appropriate. Should, 

however this expression system be used in the future to produce fSCF on a larger 

scale, optimisation would be warranted; the optimum conditions for large scale 

production may vary quite considerably from those used here. The endotoxin 

contamination of the protein solution was, however unacceptably high, such that 

further purification was deemed necessary prior to extensive evaluation of the 

biological activity of the protein. This is discussed further within the following 

chapter.
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PURIFICATION OF FELINE STEM CELL FACTOR

5.1 INTRODUCTION

The single-step purification of frSCF by affinity chromatography resulted in a product 

that was significantly contaminated both with protein and endotoxin, such that further 

purification was needed. The aims of purification were to remove endotoxin and 

contaminating proteins such as residual cleaved GST, truncated fSCF and native 

E.coli proteins, whilst minimising any reduction in activity of or loss of frSCF protein.

Endotoxins are derived from components of the cell wall of gram-negative bacteria 

and consist of lipopolysaccharide and variable amounts of protein and lipid. The 

biological effects of endotoxin are numerous and include activation of complement 

and coagulation pathways and modulation of the activity of platelets, neutrophils, 

monocyte/macrophages and endothelial cells (Morrison and Ulevitch, 1978). The 

importance of reducing the endotoxin load within recombinant cytokine preparations 

is clearly illustrated by reference to early preparations of erythropoietin (EPO). All 

widely available preparations of EPO were found to contain significant concentrations 

of endotoxin, ranging from 1.0 - 7,692 ng/U EPO. Consequently the in vivo effects 

of some EPO preparations included marked stimulation of marrow granulopoiesis but 

no increase (or even a decrease) in marrow erythropoiesis. Following endotoxin 

removal, EPO administration increased marrow erythropoiesis, with no stimulation of 

marrow granulopoiesis, in accord with the effects of stimulation of endogenous EPO 

production, by haemolysis or phlebotomy (Zuckerman et al., 1979).

An overview of the purification procedure is shown in Figure 5.1. The diagram 

shows the quantity of frSCF solution at each stage of the purification procedure and 

indicates the number of chromatography runs performed.
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Endotoxin absorption with EndX B15 beads

Bacterial Cultures 
18 x 3 L Batch cultures

Dialysis to equilibrate solution with IEX start buffer

SCF-GST Purified by Affinity Chromatography

Ultrafiltration, equilibration with dH20 
and lyophilisation

Ultrafiltration to concentrate solution 
and equilibrate with GF elution buffer

Gel Filtration Chromatography 
Two runs

Anion Exchange Chromatography 
Six runs

Thrombin cleavage and removal of GST 
6x10-15 ml frSCF

Figure 5.1: Flow diagram showing the steps used in the purification of feline 
recombinant stem cell factor. The number of times each major purification step was 
performed is also shown. IEX = ion exchange; GF = gel filtration.
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5.2 MATERIALS AND METHODS

Feline recombinant SCF was purified by sequential anion exchange and gel filtration 

chromatography. This was carried out using a Fast Protein Liquid Chromatography 

(FPLC) system (Pharmacia Biotech) which allowed automation of the majority of the 

procedure, thus maximising accuracy and consistency. All buffer solutions were 

filtered and degassed using a 0.22 pm bottle top filter (Sigma). Protein samples (and 

solvents) were filtered through a 0.22 pm syringe filter (Gelman Sciences) prior to 

loading onto a column.

5.2.1 A n io n  E x c h a n g e  C h r o m a to g r a p h y

Ion exchange (IEX) chromatography is frequently used in the purification of charged 

biomolecules including proteins and nucleic acids, and is included in up to 75% of 

purification protocols (Bonneijea et a l , 1986). Separation of charged substances 

depends upon their differential interaction, with immobilised ion exchange groups of 

opposite charge, due to differences in their charges and charge densities. These 

interactions can be modified by controlling conditions such as pH or ionic strength of 

the solute. Positively charged exchangers associate with negatively charged counter­

ions and are thus termed anion exchangers. For the purification of frSCF a Mono Q 

HR 5/5 anion exchange column (Pharmacia Biotech) was used. This column consists 

of 10 pm polyether beads with substituted quaternary amine groups (hence 'Q') 

packed into one millilitre bed volume (Pharmacia Biotech manual, 1994). The 

conditions used for anion exchange chromatography were modified from those used 

for the purification of murine SCF from buffalo rat liver culture supernatant (Zsebo et 

al, 1990b).

Prior to IEX chromatography the recombinant protein solution was equilibrated with 

start buffer (20 mM Tris-HCl pH 8.0) by dialysis. SCF solution was loaded in 15 ml 

aliquots into a 15 ml dialysis cassette (Slide-A-Lyzer - Pierce & Warriner UK Ltd., 

Chester, UK) and dialysed for 12 - 16 hours against 5 L start buffer, with stirring, at 4 

°C (buffer was changed three times during this period).
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The liquid chromatography controller LCC-500 (Pharmacia Biotech) was 

programmed as detailed in Appendix A2, providing automation of the purification 

procedure. The sample was loaded onto a Mono Q HR 5/5 column previously 

equilibrated with start buffer. Column loading of 7.5 - 10 ml of solution (containing 

less than 10 mg protein) was facilitated using a 50 ml Superloop (Pharmacia Biotech). 

The column was then washed with 30 ml start buffer. SCF was eluted in a linear 

gradient of 0 - 350 mM NaCl (20 mM Tris-HCl pH 8.0) at a flow rate of 1 ml/min; 

the gradient volume was 30 ml. The eluate was collected automatically using a 

FRAC-100 fraction collector (Pharmacia Biotech). This was programmed to discard 

the first 10 ml of eluate and thereafter collect the eluate in 0.5 ml fractions. The 

eluted protein was detected by measurement of its absorption at 280 nm. The elution 

profile was recorded automatically by a chart recorder (REC-482, Pharmacia 

Biotech), with sensitivity set at 2.0 absorbance units full scale deflection (AUFS).

Following each run the column was cleaned by equilibration with 1 M NaCl 20 mM 

TrisHCl (pH 8.0), until the baseline deflection shown by the chart recorder had 

stabilised. After every third run the column was cleaned as recommended by the 

manufacturers. This was carried out by reversing buffer flow through the column and 

applying start buffer at a flow rate of 0.25 ml/min. The column was washed by 

sequentially applying 0.5 ml of 2 M NaCl, 0.5 ml of 2 M NaOH and 0.5 ml 75% 

acetic acid. The column was thoroughly washed with start buffer after the application 

of each solvent until the baseline of the chart recorder had stabilised. Prior to use the 

column was washed with 10 ml 1 M NaCl 20 mM TrisHCl (pH 8.0) to change 

counter ions and then equilibrated with start buffer.

The identity and purity of frSCF in the peak fractions was checked by SDS-PAGE 

following each chromatography run. Fractions composed principally of frSCF were 

pooled and stored at - 70°C prior to confirmation of their bioactivity (see chapter six) 

and further purification.
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5.2.2 G e l  F il t r a t io n  C h r o m a to g r a ph y

Gel filtration (or size exclusion) chromatography separates molecules based on 

differences in their molecular size. The chromatography column is formed by 

spherical beads which contain pores of a specific size distribution. Smaller molecules 

enter the pores of the gel matrix and their flow is retarded, whilst larger molecules do 

not enter the pores and thus pass rapidly through the column (Porath and Flodin, 

1959). To purify frSCF a HiLoad 16/60 column containing Superdex 75 (prep grade) 

was used (Pharmacia Biotech). Superdex is a composite gel which comprises cross- 

linked porous agarose beads to which dextran is covalently bonded. Superdex 75 has 

a fractionation range for globular proteins of 3 - 70 kDa.

The column was washed with one bed volume (120 ml) elution buffer (0.15 M NaCl,

12.3 mM KH2PO4, 37.7 mM Na2HP04, pH 7.0) to remove storage solution (20% 

ethanol), at a flow rate of 0.75 ml/min. The column was then equilibrated with two 

bed volumes of elution buffer at a flow rate of one millilitre per minute. The 

operation of the column was checked by running one millilitre of a sample containing 

the proteins cytochrome c (1.0 mg/ml) and Bovine serum albumin (5.0 mg/ml) (both 

supplied by Sigma Chemical Co.) at a flow rate of one millilitre per minute. The 

eluted protein was detected by measurement of its absorption at 280 nm. The elution 

profile was recorded automatically by a chart recorder, with sensitivity set at 2.0 

AUFS.

The resolution of gel filtration chromatography is affected by the sample volume 

applied. A maximal volume of 0.5 - 4.0% of bed volume (0.6 - 4.2 ml) is 

recommended for the HiLoad 16/60 Superdex 75 column. To minimise the number of 

chromatography runs required, the frSCF protein solution was concentrated by 

ultrafiltration using a Centriplus 10 centrifugal concentrator (Amicon Inc., MA) in 

accordance with the manufacturers instructions. This also enabled the solution to be 

equilibrated with the elution buffer. The purification of frSCF was carried out in a 

similar manner to the calibration procedure, with the liquid chromatography controller 

LCC-500 programmed as detailed in Appendix A2. The column was equilibrated 

with elution buffer prior to use. The recombinant protein (1.2 ml sample containing
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less than 10 mg protein) was loaded using a two millilitre sample loop. The protein 

was then eluted at a flow rate of one millilitre per minute and the elution monitored as 

above. The eluate was collected automatically using a FRAC-100 fraction collector 

which was programmed to discard the first 40 ml of eluate and thereafter collect the 

eluate in 1.0 ml fractions. The identity and purity of frSCF in the peak fractions was 

checked by SDS-PAGE. Fractions composed principally of frSCF were pooled and 

stored at 4°C prior to confirmation of their bioactivity (see chapter six) and further 

purification.

5.2.3 E n d o to x in  R e m o v a l

The further reduction in the endotoxin load of recombinant protein solution was 

achieved by use of a commercial endotoxin removal device (End-X B15 - Associates 

of Cape Cod, Woods Hole, MA). This device consists of endotoxin neutralising 

protein (ENP) immobilised on glass microspheres, contained within a microcentrifuge 

tube. ENP is derived from Limulus polyphemus amoebocytes and specifically binds 

endotoxin thus allowing its removal from solution. The minimal capacity of a single 

1.8 ml End-X B15 tube is stated as 50 ng endotoxin.

Each aliquot of frSCF solution, prepared as described above, was mixed in a 15 ml 

Falcon tube with the beads taken from two EndX B15 tubes. The tube was incubated 

overnight at 4°C with gentle rotation. The tube was then centrifuged at 3,300 x g for 

four minutes to pellet the resin. The supernatant was removed and stored at 4°C prior 

to final processing.

5.2.4 L y o p h i l i s a t io n

In order to accurately quantify the amount of frSCF produced the protein was freeze 

dried. Prior to lyophilisation the protein solution was equilibrated with tissue culture 

grade dH20  (Gibco Life Technologies, Paisley, UK) using a Centriplus 10 centrifugal 

concentrator (Amicon Inc., MA) in accordance with the manufacturers instructions. 

The solution was then transferred in two aliquots to preweighed microcentrifuge 

tubes, frozen in dry ice and lyophilised overnight in an Edwards freeze dryer

160



PURIFICATION OF FELINE STEM CELL FACTOR

Modulyo. The microcentrifuge tubes were then re-weighed to quantify the yield of 

fSCF.

5.3 RESULTS

5.3.1 A n io n  E x c h a n g e  C h r o m a to g r a p h y

The elution profile from a typical chromatography run is shown in Figure 5.2. By 

comparison with SDS-PAGE of the collected fractions (Figure 5.3) it can be seen that 

frSCF is the first major peak to be eluted from the column. The protein was generally 

eluted between 160 - 250 mM NaCl, which varied between runs. Contaminating 

proteins, including GST, were eluted mainly in later fractions.

5.3.2 G e l  F i l t r a t i o n  C h r o m a to g r a p h y

An example of the elution profile seen during calibration of the gel filtration column 

using albumin and cytochrome c is shown in Figure 5.4. The elution profile of fSCF is 

shown in Figure 5.5. This can be compared to fractions analysed by SDS-PAGE 

(Figure 5.6). It can be seen that fSCF has an elution volume (Ve) of approximately 59 

ml. Although the molecular weight of frSCF cannot be accurately determined as the 

void volume of the column is not known, comparison with the elution volumes of 

albumin and cytochrome c suggests that fSCF elutes in a [lower ' volume than would 

be expected for its molecular weight of approximately 18 kDa. This implies that, like 

SCF in other species, frSCF exists in solution as a dimer under non-denaturing 

conditions. This unfortunately limits the separation of fSCF by gel filtration 

chromatography, from the major contaminating protein, GST, as can be seen in Figure 

5.6, due to their similar size under non-denaturing conditions.
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5.3.3 Y ie ld  a n d  P u r i t y  o f  r e c o m b in a n t  p r o t e i n

Figure 5.7 shows the identity and purity of frSCF following the final stage of 

purification. The approximate yields and estimated purity of frSCF after each major 

purification step is shown in Table 5.1. The final yield of protein from an original 

volume of 56 L of bacterial culture was 13 mg, determined by direct measurement of 

dry weight.

Purification Step Yield Protein Estimated Purity ' Endotoxin (EU/mg frSCF)

Affinity Chromatography 40 - 56 mg a 60 - 70% FAIL

IEX Chromatography 23 mg b 85 - 90% 2.0

GF Chromatography ND -90% 3.1

EndXB15 Beads ND -90% 2.0

Lyophilised protein 13 mg -90% ND

ND Not determined.
a Estimated by Bradford assay then corrected for frSCF protein by multiplying by a factor of two. This assay used BSA as a 

standard, which was found to produce approximately 2-fold greater colour change than seen with purified frSCF. 
b Estimated by SDS-PAGE in comparison to known quantity of purified frSCF. 
c Estimated by SDS-PAGE.

Table 5.1: Purification of frSCF. Approximate yield and purity following each 
purification step is given. Yields refer to the total amount of protein obtained at each 
stage; these were obtained from 5 4 L ( 1 8 x 3 L  batches) of bacterial culture.

5.4 DISCUSSION

Although the yields at each stage were measured in different ways and are only 

approximate it can be seen that major losses of protein occurred during the 

purification procedure. The loss of protein following anion exchange chromatography 

occurred mainly due to the limitations in resolution obtained with the procedure, 

which is evident in Figure 5.3 (i.e. fractions containing frSCF were discarded because 

of protein contamination). A loss of approximately 40% of the yield was in the latter 

stages of purification; this may have been due to losses during ultrafiltration or GF 

chromatography. It is also apparent that the GF chromatography step did little to 

increase the purity or reduce the endotoxin concentration of the purified protein.
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Anion exchange chromatography significant improved both parameters, although the 

efficacy of each procedure per se cannot be directly compared as the IEX step was 

performed first. As mentioned above, though, GF chromatography is unable to 

effectively separate frSCF from the major contaminating species (GST) due to their 

similar molecular weights under non-denaturing conditions. Future experiments 

would benefit from attempts to improve the separation efficiency of IEX 

chromatography, which might be achieved by the use of a different elution gradient. 

Additionally the use of a larger chromatography column would reduce the number of 

separate runs required. It is possible that the GF chromatography step may be 

dispensed with in future experiments. Although the final preparation of fSCF has not 

been purified to homogeneity, the major contaminants are likely to be truncated fSCF 

proteins which may possess biological activity. The analysis of variant soluble forms 

of hSCF expressed in E.coli showed that whilst loss of N-terminal amino acids 1 - 5  

abrogated biological activity, loss of the C-terminal amino acids 142 - 165 did not 

(Langley et al, 1994).

The endotoxin content of the recombinant protein solution was effectively reduced by 

the purification procedure. The minimum pyrogenic dose for man, given 

intravenously, is 4 - 8 EU per kilogram, for rabbits the figure is 10 - 15 EU/kg 

(Hochstein, 1987). The maximum dose of frSCF that was expected to be given to 

cats was 200 |ig/kg (see chapter eight); cats receiving this dose would therefore be 

given 0.4 EU/kg which is well within the above limits. Additionally the endotoxin 

content of the purified frSCF is comparable to that reported for rSCFs given in vivo 

to primates (0.033 ng/mg; Andrews et al, 1991), mice (2 ng/mg; Bodine et al, 1993) 

and dogs (0.033 ng/mg; Schuening et al, 1993) (1 ng endotoxin is approximately 10 

EU, but this varies depending on the source of endotoxin). Unfortunately the final 

endotoxin removal step effected little reduction in endotoxin content of the protein 

solution although the theoretical endotoxin binding capacity of the matrix was not 

exceeded. In future experiments it may be worth using a new batch of the same 

product or trying an alternative product to investigate whether this aspect of 

purification can be improved. Additionally, future experiments would benefit from 

screening of buffer solutions for endotoxin content prior to use. This was not
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routinely performed during this experiment and thus endotoxin contamination of 

buffer solutions cannot be ruled out.
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IN  VITRO EFFECTS OF FELINE SCF

6.1 INTRODUCTION

6 .1.1 In  v i t r o  a s s a y s  f o r  s te m  c e l l  f a c t o r

The ultimate aim of this project was to produce feline SCF as a recombinant protein 

that could be used both in the study of feline haemopoiesis in vitro and as a novel 

therapeutic agent in this species. As previously discussed in chapter four, proteins 

expressed in E. coli may have a low biological activity due to aberrant folding or 

absence of authentic post translational modifications. Thus it was necessary to 

confirm the bio activity of the expressed protein prior to further evaluating its effects 

on haemopoiesis in vitro and its potential use as a therapeutic agent in vivo.

A number of types of assay have been used to measure cytokine levels in biological 

fluids and laboratory samples. These may be broadly classified as immunoassays, 

bioassays or receptor binding assays (Wadhwa et al., 1995). Immunoassays are 

generally easier and faster to perform. An ELISA for human stem cell factor is 

available commercially (R & D Systems, Abingdon, Oxon) and is particularly sensitive 

(3-4 pg/ml). However, immunoassays give no indication of the integrity of biological 

activity of a recombinant protein as they may detect inactive denatured or fragmented 

molecules. Due to the specificity of the antibody used in such assays they are 

generally restricted to use within a single species. A radioreceptor assay has been 

used to detect murine and human SCF. The assay measures the ability of SCF to 

competitively bind to the SCF receptor in purified plasma membrane preparations of 

the human erythroleukaemia cell line, OCIM1. The assay can detect 0.3 - 0.5 ng/ml 

of SCF, but is unsuitable for the measurement of SCF levels in serum due to the 

presence of inhibitory substances (Smith and Zsebo, 1993). Whilst highly specific, the 

radioreceptor assay may also identify SCF molecules that are unable to effect signal 

transduction.

Bioassays can be performed using primary cell cultures or, more conveniently, 

continuously growing, cytokine dependent or independent cell lines. Assays may 

measure the ability of a cytokine to induce cell proliferation, death (cytotoxic assays), 

chemotaxis, protection from viral lysis or other parameters such as the upregulation of
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cell surface proteins. A number of continuously growing cell lines can be used to 

detect SCF in vitro, based on its ability to induce cell proliferation. These include the 

human megakaryoblastic leukaemia cell line, UT-7 (Miura et al., 1990) and 

erythroleukaemia cell line, TF-1 (Kitamura et al, 1989) and the murine mast cell line 

MC/9 (Nabel et al, 1981; Galli et al, 1982). SCF shows some cross reactivity 

between species, so the use of these cell lines for bioassays is not species restricted. 

Rat, murine and human SCF are active on human cells in vitro, however, human SCF 

is relatively inactive on mouse cells (Martin et al, 1990; Broxmeyer et al, 1991a). 

The sensitivity of such bioassays to a given cytokine is expressed in terms of its E C 5 0  

(effective concentration required for 50% maximal stimulation). Human TF-1 cells 

show an E C 5 0  to hrSCF of 1 - 2 ng/ml and mrSCF of 5 - 10 ng/ml. Murine MC/9 

cells show an E C 5 0  to mrSCF of 2 - 4 ng/ml but are relatively insensitive to hrSCF, 

with an E C 5 0  of 2 - 3 (ig/ml (Martin et al, 1990). Cell line based bioassays are often 

not cytokine specific, for instance TF-1 cells proliferate in response to IL-3, IL-4, IL- 

5, EPO and GM-CSF in addition to SCF. However, specificity can be demonstrated 

by the ability of a specific neutralising antibody to block cytokine-induced cell 

proliferation (Wadhwa et al, 1995).

Murine MC/9 cells were initially used to assess the bioactivity of frSCF, however TF- 

1 cells were later used and became the preferred bioassay, as discussed below.

6 .1 .2  E f f e c t s  o f  s t e m  c e l l  f a c t o r  o n  h a e m o p o ie s is  i n  v i t r o

The earliest bioassays devised to study colony stimulating factors used their ability to 

generate morphologically recognisable colonies of haemopoietic cells in semi-solid 

media (Pluznik and Sachs, 1965; Bradley and Metcalf, 1966). The colonies generated 

in such assays consist of clones of cells derived from single progenitor cells (colony 

forming cells) (Bradley and Metcalf, 1966). Such assays are poorly suited to the 

accurate determination of cytokine levels but provide a powerful tool to study the 

effects of growth factors on their normal target cells. Furthermore, by using purified 

populations of progenitor cells in serum-free cultures, clonal assays may be used to 

investigate the direct and indirect actions of cytokines in haemopoiesis (Testa et al, 

1995).
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The effects of SCF on haemopoiesis in vitro have been discussed in chapter one. As a 

single agent, SCF shows limited stimulation of haemopoiesis in vitro, but in synergy 

with other cytokines supports the growth of progenitor cells of most lineages. There 

have been only limited studies on feline haemopoiesis in vitro, the majority of these 

have centred around the effects of feline immunodeficiency virus or feline leukaemia 

virus infection on haemopoiesis. These studies have used a variety of experimental 

protocols including long term marrow cultures and erythroid (BFU-E) and 

granulocyte macrophage (CFU-GM) colony forming cell assays (Testa et al., 1983; 

Rojko et al, 1986; Linenberger and Abkowitz, 1992; Linenberger et al, 1995). The 

use of clonal assays in the cat is somewhat limited by the lack of recombinant colony 

stimulating factors (CSFs) with demonstrable activity on feline haemopoietic cells. 

Conditioned medium provides a useful source of such CSFs, but is uncharacterised 

and can suffer from batch to batch variability. Its use therefore introduces further 

inconsistency into an assay which is already prone to inter-assay variability (Grant, 

1995). The choice of assay and protocol for the investigation of the activity of ffSCF 

on the development of feline bone marrow cells in vitro was based on the studies of 

Dr. S. Grant, performed within the Department of Veterinary Pathology, University of 

Glasgow. The GM-CFC assay described herein therefore used an established 

protocol and previously batch tested reagents. Human granulocyte colony stimulating 

factor (hGCSF) and a single batch of feline phytohaemagglutinin lymphocyte 

conditioned medium (fPHA-CM) were used as a sources of colony stimulating 

activity. PHA-CM provides a cocktail of growth factors which likely includes IL-1, 

G-CSF, and GM-CSF (Coutinho eta l, 1993).

6.2 MATERIALS AND METHODS

6.2.1 MC/9 CELL PROLIFERATION ASSAY

The murine mast cell line'MC/9was maintained as described in section 2.2.1.3. Prior 

to performing an assay, the cells were deprived of conditioned medium for 24 hours in 

order to reduce background levels of cell proliferation. This was achieved by washing 

the cells three times with sterile PBS, followed by centrifugation at 250 x g for 10 

minutes. Viable cells were counted as detailed in section 2.2.1.1.2 using trypan blue
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exclusion and the cells resuspended to 4 x 105 cells/ml in complete DMEM-10 

(DMEM with 10% FBS, 2 mM L-glutamine, 50 pM 2-ME, 1% NEAA, 100 iu/ml 

penicillin, 100 pg/ml streptomycin, and additional 32 mg/L L-arginine, 36 mg/L L- 

asparagine and 2 mg/L folic acid).

The cell suspension was prepared for an assay as follows. Cells were pelleted by 

centrifugation at 250 x g for 10 minutes. Viable cells were counted using trypan blue 

exclusion and the cells resuspended to 4 x 104 cells/ml in RPMI-1640 medium 

containing 4% FBS, 2 mM L-glutamine, 100 iu/ml penicillin and 100 pg/ml 

streptomycin.

Assays were prepared in 96 well tissue culture plates (Costar, Cambridge, MA). All 

samples were assayed in triplicate. Human stem cell factor was used as a standard 

with serial two fold dilutions prepared starting from 200 ng/ml. Feline stem cell 

factor was diluted similarly; preliminary assays used a starting concentration of 

approximately 10 ng/ml. A solution prepared from lysates of GST expressing cells, 

and purified in an identical manner to frSCF, was used as a negative control. 

Dilutions were performed directly within the 96 well plate with each dilution 

contained within 100 pi volume. One hundred microlitres of medium was added to 

three wells (to determine background levels of cell proliferation). One hundred 

microlitres of washed cells was then aliquoted to each well. Two hundred microlitres 

of medium was added to each of three wells as a negative control. The plates were 

incubated for 48 hours, at 37°C, in humidified CO2 incubator.

A solution of tritiated thymidine was prepared in a sterile universal by adding 50 pi 

[3H]-thymidine to 2.5 ml of culture medium. Fifty microlitres of this solution 

(containing 0.5 pCi [3H]-thymidine) was then aliquoted to each well and the plates 

incubated for a further four hours. The contents of each well were harvested onto 

microplate filters (Unifilter-96 - Packard Instrument Co. Inc., Meriden, CT) using a 

cell harvester (Filtermate 196 - Packard Instrument Co. Inc.). The filters were then 

dried in an oven at 60°C for 30 - 60 minutes. The underside of the filters were sealed 

with adhesive film and 25 pi of scintillant (Microscint O - Packard Instrument Co.
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Inc.) added to each well. The top of the plate was sealed using adhesive film (Top 

Seal A - Packard Instrument Co. Inc.) and liquid scintillation counting performed 

using a microplate scintillation counter (Parkard Top Counter).

6.2.2 TF-1 CELL PROLIFERATION ASSAY

TF-1 cells were maintained as described in section 2.2.1.4. Cells were taken two to 

three days after passaging and washed three times in RPMI-1640. The washed cells 

were counted, cell viability assessed by trypan blue exclusion and the cells 

resuspended to a final concentration of 1 x 105 cells/ml in RPM3-5 (RPMI-1640 

containing 5% FBS, 2 mM glutamine, 100 iu/ml penicillin and 100 p,g/ml 

streptomycin).

Recombinant feline stem cell factor was serially diluted in 100 til volume of RPMI-5. 

This was performed in triplicate, in 96 well microtitre plates as detailed for the MC/9 

assay. Recombinant murine stem cell factor was used as a positive control, with a 

starting concentration of 100 ng/ml. Demonstration of the specificity of feline stem 

cell factor activity was achieved by pre-incubating the cytokine with anti-human SCF 

goat polyclonal IgG neutralising antibody (R & D Europe Ltd., Abingdon, Oxon, UK) 

at a concentration of 40 (ig/ml for one hour. To each well of the plate was added 100 

(il of washed cells. Controls were included as detailed for the MC/9 assay. The 

plates were then incubated for 48 hours at 37°C in humidified CO2 incubator. 

Tritiated thymidine was added and incorporated radioactivity determined after four 

hours incubation, exactly as described for the MC/9 assay.

6.2.3 GRANULOCYTE-MACROPHAGE COLONY FORMING CELL ASSAY

Feline bone marrow mononuclear cells (BMMC) and fPHA-CM were prepared as 

detailed in sections 2.2.1.7 and 2.2.1.8 respectively. Feline BMMC were resuspended 

at a concentration of 5 x 104 cells/ml in a mixture containing 0.66 ml batch-tested fetal 

bovine serum (FBS Advanced Protein Products Ltd., Brockmoor, W. Midlands UK), 

0.033 ml batch-tested bovine serum albumin (BSA, Sigma Fraction V, Sigma 

Chemical Co, St Louis, USA) and IMDM (containing 100 iu/ml penicillin, 100 |ig/ml 

streptomycin and 4 mM L-glutamine) to a total volume of 2.97 ml. Growth factors
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were included (as single factors or combination) at the following concentrations: hG- 

CSF, 20 ng/ml; frSCF, 100 ng/ml; fPFLA-CM, 5%. Control cultures were set up 

omitting all growth factors. An aliquot of 3.3% agar, was then brought to boiling 

point in a water bath and 0.33 ml added to the cell suspension. The resultant mix was 

then transferred in one millilitre aliquots to three 35x10  mm petri dishes, allowed to 

set and incubated in humidified conditions at 37°C, 5% C02 for 8 days. Unstained 

colonies comprising over 50 cells were then counted using a Leitz Labovert FS (Leitz, 

Wetzlar, Germany) inverted microscope at four times magnification.

6.2.4 S t a t is t ic a l  a n a l y s e s

6.2.4.1 TF-1 cell proliferation assay

Data were analysed by two-way analysis of variance with treatment and concentration 

as fixed effects. The dependent variable was loge(count+l).

6.2.4.2 GM-CFC Assay

Comparison of CFC assay results was performed by a one way analysis of variance 

using a loge(x+l) transformation of the count data. A Newman-Keuls multiple range 

test was carried out to assess pairwise differences between the treatment group 

means.

6.3 RESULTS

6.3.1 C e l l  P r o l if e r a t io n  A s s a y s

The response of MC/9 and TF-1 cells to frSCF is shown in Figures 6.1 and 6.2, 

respectively. Background levels of cell proliferation seen upon growth factor 

deprivation were low. TF-1 cells showed background levels of thymidine

incorporation of 3,173 +/- 155 cpm and MC/9 cells 4,315 +/- 456 cpm (mean +/- 

standard deviation). Control wells containing no cells showed thymidine

incorporation of 100 - 250 cpm for each assay. Each cell line shows a sigmoid dose 

response curve to frSCF. Below a threshold level of approximately 2 ng/ml for TF-1 

cells or 5 ng/ml for MC/9 cells only background levels of cell proliferation are seen.

177



IN  VITRO EFFECTS OF FELINE SCF

A linear dose response is seen between approximately 4 to 30 ng/ml for TF-1 cells 

and 10 to 80 ng/ml for MC/9 cells. Above this limit the dose response curves plateau 

as cell proliferation reaches maximal levels.

MC/9 cells showed an almost ten-fold greater proliferative response to thrombin 

cleaved frSCF compared with the SCF-GST fusion protein. This is greater than the 

two to three fold greater response that would be expected per nanogram, given that 

the molecular weight of frSCF is approximately 18 kDa and that of SCF-GST is 44 

kDa. The difference may be explained in part due to the use of the Bradford assay to 

measure the protein concentration of the solutions used for the MC/9 assay (SCF 

concentrations used in the TF-1 assay were assessed by weight). The assay may have 

underestimated the concentration of frSCF as this protein produces a relatively small 

change in A595 of the Bradford dye compared other proteins (e.g. BSA). However, 

the presence of the GST tag in the fusion protein may have reduced this tendency to 

underestimate the protein concentration of the solution. Another possible explanation 

which may contribute to the observed discrepancy is that the presence of the GST tag 

reduced the biological activity of the SCF fusion partner.

The use of a negative control in the MC/9 assay was important because the protein 

solutions used in that assay contained relatively high concentrations of endotoxin as 

they had not been purified by FPLC. The 'GST' control had been subjected to exactly 

the same purification steps as the frSCF used in the assay and thus could be expected 

to contain a similar level of endotoxin contamination. The MC/9 cells show no 

response to this preparation, thus effectively excluding the possibility that endotoxin 

contamination affected the proliferation of these cells in response to frSCF.

TF-1 cells respond to frSCF with a similar sensitivity to mrSCF showing an EC50 of 

approximately 10 ng/ml. Murine MC/9 cells are a less sensitive bioassay for frSCF, 

having an EC50 of approximately 40 ng/ml. TF-1 cells show a parallel dose response 

to frSCF and mrSCF suggesting that the cells are responding in an analogous manner 

and that other components within the frSCF solution are not responsible for the 

proliferation seen. The specificity of action of frSCF on TF-1 cells was also shown by
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the ability an anti-hSCF neutralising antibody to inhibit the stimulatory effect of frSCF 

(Figure 6.2). This effect is overcome by increasing concentrations of frSCF due to 

saturation of the neutralising capacity of the antibody.

6 .3 .2  GM-CFC A s s a y

The effect of ffSCF, alone and in combination with two sources of colony stimulating 

activity (CSA) on the growth of CFU-GM in agar is shown in Figure 6.3. Growth of 

colonies in the absence of any growth factors is minimal (5 +/- 3 colonies/105 cells). 

Alone, frSCF simulates the growth of CFU-GM in agar (23 +/- 8 colonies/105 cells). 

Human G-CSF showed little stimulation of colony numbers in the assay shown (9 +/- 

6 colonies/105 cells), although this was statistically more than seen in the absence of 

growth factors. Additionally, colonies grown in the presence of hG-CSF tended to be 

larger than those seen in control plates. Feline PHA-CM was a more effective 

stimulant of colony formation than hrG-CSF but promoted fewer numbers of colonies 

than frSCF, at the concentrations used, although these colonies tended to be larger.

The combination of fPHA-CM and SCF resulted in the growth of larger numbers of 

colonies than with either factor alone. The addition of frSCF to hrG-CSF led to a 

marginal increase in colony numbers, but this was not statistically significant. When 

frSCF was combined with either source of CSA the growth of a number of larger 

colonies was promoted; an effect not seen with either growth factor alone (Figure 

6.4). The majority of colonies grown in these assays had morphological 

characteristics typical of granulocyte, macrophage or granulocyte-macrophage 

colonies but a number of smaller colonies consisted of a densely packed 'sheet' of 

larger cells which may have been less differentiated cells.
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2
frSCF increases H-thymidine incorporation by murine MC/9 cells
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Figure 6.1: Incorporation of H-thymidine by murine MC/9 cells in response to both 
frSCF and fSCF-GST proteins. The concentration of frSCF and fSCF-GST is as 
shown on the x axis. Data points for the GST protein solution represent the 
concentration that would have been present assuming the solution had been one of 
fSCF-GST i.e. equivalent volumes were used. The EC5o in response to thrombin 
cleaved frSCF is approximately 40 ng/ml.
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Feline rSCF increases H-thymidine incorporation by the human 
erythroleukaemia cell line TF-1
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Figure 6.2: Incorporation of H-thymidine by the human erythroleukaemia cell line 
TF-1 is increased by stimulation with frSCF. TF-1 cells respond to frSCF with a 
similar sensitivity to mrSCF showing an EC50 of approximately 10 ng/ml. The 
specificity of frSCF induced proliferation is demonstrated by preincubation with a 
neutralising antibody (although the neutralising effect of this antibody is overcome 
with higher concentrations of frSCF). There is a statistically significant treatment x 
concentration interaction (p<0.000) indicating that the response profiles of the fSCF 
and fSCF + anti hSCF IgG groups were different.
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Figure 6.3: Effect of frSCF, alone and in combination with hrG-CSF or feline 
phytohaemagglutinin lymphocyte conditioned medium on the CFU-GM growth in 
agar cultures. Each column shows the mean number of colonies per 105 cells (n = 9) 
with the standard deviation indicated by the vertical line. Letters above the bars show 
where statistically significant differences exist between different treatment groups 
(p<0.05 - Newman-Keuls multiple range test), a. cf. all other treatment groups b. cf. 
groups 1,3,4,6 c. cf. groups 1,2,5,6 d. cf. groups 1,2,5 e. cf. groups 1,3,4,6 f. cf. 
groups 1,2,3,5.
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Figure 6.4: Colonies seen in the GM -CFC assay. A. Sm aller colonies (10 x 
objective m agnification) with characteristics o f m ixed granulocyte - m acrophage 
colonies. B. Larger colony (4 x objective m agnification) consisting o f  cells with 
typical characteristics o f cultured granulocytes.
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6.4 DISCUSSION

6.4.1 U se  o f  c e l l  l i n e s  a s  b io a s s a y s  f o r  f e l i n e  SCF

The results presented in this chapter clearly demonstrate the ability of frSCF to effect 

the proliferation of both the TF-1 and MC/9 cell lines in vitro. The limited ability of 

hrSCF to stimulate proliferation of MC/9 cells is in agreement with previous reports 

(Martin et al, 1990). It is therefore not possible to compare the relationship between 

the dose response of these cells to frSCF and a standard preparation of SCF. Human 

rSCF was not used at higher concentrations in the assay due to limited availability of 

the cytokine. Attempts to repeat the assay at a later stage using mrSCF as a standard 

were unsuccessful despite the consistent use of early passage cells. This may have 

been due to a change in the batches of cell culture media used or the use of a new 

batch of conditioned media to maintain the cell line.

Due to these problems with the MC/9 assay, TF-1 cells were used as an alternative 

bioassay. These cells are not only more sensitive to frSCF, but are also easier to 

maintain as they do not require animal derived conditioned medium for growth. 

Additionally, TF-1 cells are more stable in culture than MC/9 cells and show less 

tendency to become factor independent (A.R. Mire-Sluis, personal communication). 

TF-1 cell proliferation therefore became the preferred bioassay and was used to 

monitor the activity of frSCF throughout purification. The assay was relatively easy 

to perform and showed an acceptably low degree of inter-assay variation. It is 

therefore suitable for routine measurement of frSCF in laboratory samples. Its use in 

for measurement of fSCF in biological fluids, such as serum, may also be considered. 

However, normal serum levels of SCF in man are only 2 - 4  ng/ml (Langley et al, 

1993), which is at the limit of sensitivity for the TF-1 assay.

The poor stimulation of the growth of murine MC/9 cells by human in comparison to 

murine SCF likely reflects differences in receptor binding and subsequent induction of 

receptor dimerisation and signal transduction. The use of interspecies and 

homologous SCF mutant proteins have implicated the predicted first, third and fourth 

SCF alpha-helices as important regions required for full biological function (Matous et
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al., 1996). Of these the fourth helix is largely conserved between species and 

probably contributes little to the differences in specificity of the murine and human 

homologues. In contrast, the first and particularly the third helices have a number of 

amino acid differences that could contribute to the observed specificity. Feline SCF 

shows a high overall degree of homology to the murine and human homologues. In 

the MC/9 assay it is a more potent stimulant of cell growth than hSCF, but less so 

than mSCF. It is possible that any of the observed amino acid changes within the 

feline molecule are responsible for these differences. Interestingly, though fSCF has a 

number of amino acids within the predicted third helix that are conserved in
81 91 97comparison to mSCF but not hSCF (K , E , and N ); it is possible that these 

residues are required for full biological activity of murine SCF; their alteration in 

human SCF may explain its comparative lack of activity on MC/9 cells.

6.4.2 R o l e  o f  SCF in  c o l o n y  f o r m in g  a s s a y s

The effects of ff SCF on the growth of feline CFU-GM in cultures are similar to those 

reported for the human and murine growth factors. Feline SCF promotes the 

development of increased numbers of CFU-GM in combination with PHA-CM 

compared with either growth factor alone. Additionally, frSCF promotes significant 

colony formation as a single agent, although colonies formed were generally smaller 

than seen with a combination of growth factors. This effect is in contrast to the lack 

of stimulation of CFU-GM colony formation by canine (Shull et al, 1992) or human 

SCFs (Martin et al, 1990) but is comparable to the modest stimulation of such 

colonies by murine rSCF (Broxmeyer et al, 1991b; Metcalf and Nicola, 1991). The 

limited stimulation of feline CFU-GM growth by hG-CSF is surprising, in view of its 

documented efficacy, in vivo, in this species (Fulton et al, 1991). However, previous 

studies have shown that hG-CSF is inconsistent in the stimulation of feline CFU-GM 

growth (Grant, 1995). Whilst the reasons for this remain unclear, it emphasises the 

need for feline specific cytokines to enable further studies of haemopoiesis in this 

species.

SCF has also been shown to stimulate the growth of erythroid colonies in vitro in 

combination with erythropoietin, increasing both the size and the number of colonies 

generated (Anderson et al, 1990; Nocka et al, 1990a; Broxmeyer et al, 1991c;
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McNiece et al, 1991). Indeed, purified human erythroid progenitors show an 

obligate requirement for rhSCF for proliferation and differentiation in serum-free 

medium (Dai et al, 1991). It would be interesting to evaluate the effect of feline SCF 

on cells of the erythroid series; given the degree of conservation of the protein, it is 

likely to be similar to that described for other species. Unfortunately, attempts to 

evaluate this aspect of SCF function, using a methylcellulose based assay, previously 

used in this laboratory by Grant (1995), were not successful due to a number of 

factors including fungal overgrowth of cultures and excessive drying of plates. 

Further experience with the assay technique would likely eliminate these problems.

The concentrations of growth factors used for the GM-CFC assay were chosen 

because they were considered likely to elicit maximal stimulation of progenitor cells. 

Whilst this maximised the likelihood of demonstrating colony formation by frSCF it 

may have obscured the potential for growth factor combinations to act in an additive 

manner. The use of lower concentrations of stimulatory cytokines in the CFU-GM 

assay may provide a greater insight into the ability of frSCF and other growth factors 

to act in this way. Indeed, such results are likely to be more relevant to haemopoiesis 

in vivo.

The mechanism for enhancement of colony formation by combinations of growth 

factors has been discussed by Metcalf (1993b). The generation of greater numbers of 

daughter cells (i.e. larger colonies) from single progenitor cells is referred to as 

'synergy'. The ability to increase the number of colonies formed can be termed 

'recruitment'. The combination of two or more growth factors may increase colony 

numbers either because they are acting on two distinct populations of progenitor cells 

which respond exclusively to one factor or because some progenitors require the 

simultaneous stimulation by multiple growth factors in order to proliferate. Feline 

SCF enhanced colony formation in combination with fPHA-CM, by both recruitment 

and synergy, increasing colony size and numbers. In combination with hG-CSF some 

increase in colony size was seen, but no significant increase in colony numbers. This 

could be due to hG-CSF stimulating a sub-population of the SCF responsive 

progenitors. However, the results are in contrast to those reported in other species 

(Martin et al, 1990; McNiece et al, 1991). It seems likely that the limited efficacy of
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hG-CSF in stimulating progenitor cell growth resulted in the failure to demonstrate 

increased colony numbers in combination with frSCF.

SCF and G-CSF both stimulate the development of similar numbers of granulocytic 

colonies of small size from murine BM cells. SCF additionally supports the growth of 

undifferentiated blast cell colonies. When the growth factors are combined colony 

numbers are increased in a less than additive manner. However, the number of cells in 

immature granulocytic colonies and blast cell colonies is greatly increased. The 

increased size of these colonies is thought to be due to the enhanced amplification of 

cell numbers at the level of the committed progenitor, each progenitor cell producing 

a similar number of progeny. Many of the blast cell colonies generated were unable to 

mature further unless stimulated by additional growth factors, a clear example of 

recruitment. This halt in differentiation in response to G-CSF and SCF may be due to 

a downmodulation of cell surface receptors for these cytokines or an acquired 

unresponsiveness (Metcalf, 1993 a).

No attempt was made to confirm the cell type of developing colonies or to quantify 

colony sizes in the assays described herein. Future assays could adopt a more 

objective approach to evaluating colony size, although this is difficult. Replating 

experiments would enable assessment of the number of clonogenic cells supported by 

each growth factor and combination. In order to further investigate the cell types 

supported by frSCF, colonies could by picked from agar plates for cytological 

examination.

6.4.3 HAEMOPOIETIC CELL SURVIVAL AND DIFFERENTIATION

Cytokines may act on haemopoietic cells to promote cell survival, differentiation and 

proliferation. It has been shown that a number of cytokines prevent the death of 

haemopoietic cells by apoptosis (Williams et al, 1990). Many studies do not 

discriminate between the ability of cytokines to affect cell survival and their induction 

of cell expansion or differentiation. However, low concentrations of macrophage- 

colony stimulating factor promote macrophage survival whilst higher concentrations 

permit both survival and proliferation (Tushinski et al, 1982). SCF and its receptor 

belong to the same family as M-CSF which suggests that whilst the target cells of
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SCF differ, an analogous effect may exist for SCF. The potential would therefore 

exist for low levels of SCF to facilitate cell survival whilst higher levels enable cell 

proliferation. To the authors knowledge this aspect of SCF function has not been 

studied. However, it has been shown that the survival of primitive progenitors and 

potentially stem cells themselves is promoted by SCF in the absence of cell division 

(Keller et al, 1995). Furthermore, the respective abilities of soluble and membrane 

associated SCF to promote survival or proliferation may differ.

The majority of stem cells within the bone marrow are dormant during steady-state 

haemopoiesis, in G0 of the cell cycle. Several models have been proposed for the 

mechanism of transition of stem cells from Go to active cell cycling and their 

subsequent self-renewal or differentiation (discussed by Ogawa et al, 1983, Fairbaim 

et al, 1993). The inductive model (Curry and Trentin, 1967) proposes that the 

differentiation of haemopoietic cells is determined by stimuli to which the cells are 

exposed; such stimuli include cytokines, cell adhesion molecules and components of 

the extracellular matrix. The stochastic model (Till et al, 1964) suggests that the 

'decision' of a stem cell to self-renew or differentiate is determined by chance and that 

changes in the stem cell compartment occur by changes in the probability of self 

renewal (p). The role of growth factors in the stochastic model is a permissive one, 

whereby they allow the development and proliferation of 'genetically programmed' 

progenitors. The stem cell competition model proposed by Van Zant and Goldwasser 

(1977) suggests that different growth factors such as EPO and the CSFs compete to 

determine the developmental pathway of stem cells. Such alternate theories are not 

mutually exclusive.

The ability of cytokines to determine the lineage of developing progenitor cells, in 

agreement with an inductive model, has been shown by a number of studies e.g. 

(Metcalf, 1991b). However, the demonstration that paired murine progenitor cells 

can produce colonies of different lineages under identical culture conditions, lends 

support to the stochastic model of differentiation (Suda et al, 1984). The ability of 

haemopoietic cells to survive and differentiate in the absence of cytokines was shown 

by the transfection of FDCP-Mix cells with the human bcl-2 gene (Fairbairn et al, 

1993). This prompted the suggestion that cytokines provide a survival signal to
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haemopoietic cells and that their subsequent differentiation is intrinsically determined 

(although the ability of cytokines to influence differentiation was not excluded). The 

balance of experimental evidence tends to support a stochastic model, with the 

probability of a stem cell following a certain pathway influenced by factors such as 

metabolic state of the cell, cell receptor expression, exposure to growth factors and 

other environmental components (Dexter, 1989; Ogawa, 1993).

Broadly speaking, haemopoietic cytokines may be divided into three categories: late- 

acting lineage specific factors, intermediate-acting non-lineage restricted factors and 

factors affecting the kinetics of dormant stem cells (Dexter, 1989). Late acting, 

lineage specific factors include erythropoietin acting on erythroid progenitors and EL- 

5 affecting eosinophil development. Cytokines which affect the development of a 

variety of progenitor cells include GM-CSF, IL-4 and EL-3 (multi-CSF). Cytokines 

affecting the progression of stem cells from Go to active cell cycling include EL-1, EL- 

3, EL-6, IL-11, EL-12, EL-4 and SCF; indeed a combination of these cytokines seems 

to be required to recruit stem cells into the differentiation pathway (Metcalf, 1993b).

Cytokines may also act upon haemopoietic cells in an inhibitory manner; such 

cytokines include TGF-P, TNF-a, MEP-la and the interferons. Whilst the effects of 

the interferons and TNF-a are not lineage restricted, TGF-P and MEP-la appear to 

act preferentially to inhibit the more primitive precursors and possibly stem cells 

(Ogawa, 1993). TGF-p antagonises the actions of a number of early acting cytokines 

including SCF, IL-3 and EL-1 (Lardon et al, 1994; Jacobsen et al., 1995) and inhibits 

the proliferation of primitive haemopoietic cells (Sitnicka et al, 1996). Such negative 

regulators may facilitate the survival of stem cells (Verfaillie et al, 1994). TGF-P and 

possibly other negative regulators may also safeguard against neoplastic 

transformation of haemopoietic cells due to the activation of intracellular tumour 

suppressor proteins (Serra and Moses, 1996).
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DETECTION OF CD34 ANTIGEN

7.1 INTRODUCTION

CD34 is a transmembrane glycoprotein expressed predominantly on primitive 

haemopoietic cells, vascular endothelial cells and embryo fibroblasts. Cell surface 

expression of CD34 on haemopoietic cells is highest on the most immature 

progenitors and decreases progressively with cell maturation. Whilst only 1.5% of 

bone marrow mononuclear cells express CD34, nearly all haemopoietic colony 

forming cells are found within this population. The function of CD34 remains elusive; 

it may be an adhesion factor, mediating the anchorage of stem and progenitor cells to 

BM stroma and/or may be important in preventing the terminal differentiation of 

immature progenitor cells and thus maintaining the BM progenitor cell population. 

Despite this, the use of anti-CD34 monoclonal antibodies has found widespread 

clinical applications. CD34 expression has been used as a marker for diagnosis of 

leukaemia and sub-classification of the disease. The expression of CD34 in childhood 

acute lymphoblastic leukaemia is associated with a good prognosis, whilst its 

expression in acute myeloid leukaemia correlates strongly with expression of the 

multidrug resistance protein. CD34 is finding increasing utility in the management of 

BM transplantation, allowing quantification of cells with repopulation potential and 

furthermore permitting the purification of such cells from a heterogeneous population 

of cells, an approach which may allow the purging of contaminating tumour cells from 

allogenic grafts or T-cell depletion to prevent graft versus host disease (reviewed by 

Krause et al, 1996).

The aim of this part of the project was to raise antibodies that could be used to 

identify feline haemopoietic cells expressing CD34. The availability of such antibodies 

would aid studies into the in vivo effects of feline stem cell factor. The cDNAs for 

human (Simmons et al, 1992), murine (Brown et al., 1991), and canine (McSweeney 

et al., 1996) CD34 have been cloned and antibodies to the proteins have been raised, 

enabling the study of CD34 expression in these species. The degree of inter-species 

homology is, however, relatively low (the human CD34 protein shows 66% identity 

overall to the murine homologue, with lower homology within the extracellular 

domain) thus the use of such antibodies is species restricted. Since feline CD34 has 

yet to be cloned and time considerations prevented such an approach it was decided
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to attempt to raise antibodies, to conserved intracellular epitopes of the CD34 

molecule, using immunogenic peptides. Unfortunately, the antisera raised, whilst 

recognising the synthetic peptides against which they had been raised, showed poor 

affinity for the native protein.

The use of synthetic peptides to raise antibodies against previously uncharacterised 

proteins was first described in 1980 (Sutcliffe et al, 1980; Walter et al, 1980). Due 

to their small size, linear peptides may not be immunogenic on their own. 

Conventionally, a linear peptide is coupled to a carrier protein such as bovine serum 

albumin or keyhole limpet hemocyanin (KLH). The use of a carrier protein ensures 

that class II T-cell receptor sites are present on the immunogen; the peptide then 

serves as a hapten. The choice of peptide is largely empirical, but certain features may 

be used to predict the likelihood of a given peptide being immunogenic (reviewed by 

Harlow and Lane, 1988). Hydrophilic residues and those with high flexibility are 

more likely to be exposed on the surface of the native protein and form epitopes. 

Similarly amino and carboxy terminal regions are often exposed and thus make good 

choices for synthetic peptides. Peptides are generally chosen to be 10-15 amino acids 

in length, although longer peptides may be used.

The use of peptide-carrier protein conjugates as immunogens has certain inherent 

disadvantages. The peptide comprises only a small portion of the immunogen, thus 

antibodies to the peptide may represent only a fraction of the total antibody response. 

The conjugation procedure may alter the conformation of the peptide so that the 

antibodies raised are less likely to recognise the native protein. The carrier protein 

may also be toxic or suppress the immune response to the epitope of interest (Tam 

and Shao, 1993). To overcome these limitations, the multiple antigen peptide (MAP) 

system was developed (Tam, 1988). MAPs consist of an inner branched matrix of 

lysine residues to which may be attached up to 16 copies of the peptide antigen. The 

inner core is small and non-immunogenic. It is the multiple copies of the peptide that 

forpi the bulk (93% of the mass) of the immunogen. The branching nature of the 

MAP allows mobility of the peptide chains and therefore enhances their 

immunogenicity (Tam and Shao, 1993).
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7.2 MATERIALS AND METHODS

7.2.1 P r o d u c t io n  o f  CD34 p e p tid e s

7.2.1.1 Design and synthesis of synthetic peptides

The cDNA sequences of murine (Brown et al, 1991) and human (Simmons et al, 

1992) CD34 were obtained from the EMBL database. GCG software (Version 7 for 

UNIX) was used to derive the predicted proteins using the ‘Translate’ program. 

Alignment of human and murine CD34 protein sequences was performed using the 

‘BestFit’ program and is shown in Figure 7.1. The antigenicity of the human CD34 

molecule was predicted using the ‘PeptideStructure’ program. This utilises the 

method of Jameson and Wolf (Wolf et al, 1987) to predict an antigenic index, 

calculated by summing a number of measures of secondary structure; the output from 

this program is shown in Appendix A4. Predicted antigenic regions of the human 

CD34 protein are shown graphically in Figure 7.2. Two areas with a high antigenic 

index, conserved between human and murine CD34, situated within the intracellular 

region were found by manual inspection. These directed the choice of two peptides 

for use as immunogens (the amino acid position relative to human CD34 is given in 

parenthesis):

Peptide 55 NGTGQATSRNGHS (aa 350-362)

Peptide 56 SWSPTGERLGEDPYY (aa 304-318)

Peptides were synthesised within the Department of Veterinary Pathology on a 432A 

Protein Synthesiser (Applied Biosystems). Peptide 55 was synthesised as a linear 

peptide and subsequently conjugated to a carrier protein as detailed below. Peptide 

56 was produced as a multiple antigen peptide. Peptides were weighed and then 

dissolved in dFbO. The peptides were then aliquoted into eppendorfs, freeze dried, 

and stored in aliquots at -70°C.
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humCD3 4 1 MPRGWTALCLLSLLPSGFMSLDNNGTATPELPTQGTFSNVSTNVSYQETT 
• 1 • 1 1 II 1 ■ 1 1 1 1 • 1 III III 1 1 1 1 • 1

50
murCD3 4 13 • 1 • 1 • 1 1 1 1 • 1 1 1 • 1 • 1 ••11*1 -III- • • 1 - 1 1 1 • 1 • LPWRWVALCLMSLLH.... LNNLTSATTETSTQGISPSVPTNESVEENI 57
humCD3 4 51 TPSTLGSTSLHPVSQHGNEATTNITETTVKFTSTSVITSVYGNTNSSVQS 

II 1 1 1 1 - 1 • 1 1 1 1 1 1 1 II 1 1 1 • 1
100

murCD34 58 1 • 1 • 1 1 1 1 ■ • 1.... 1 • • 1 • 1 1 1 • 1 1 1 1 • 1 • 1 • | - • • • | -TSSIPGSTSHYLIYQDSSKTTPAISETMVNFTVTSGIPSGSGTPHTFSQP 107
humCD3 4 101 QTSVISTVFTTPANVSTPETTLKPSLSPGNVSDLSTTSTSLA.TSPTKPY 

III • • 1 1 • 1 1 1 1 • 1 1 1 1 1 1 1 1 1 • 1 1 1 1 1 1 149
murCD34 108 III....  1 1 • • • ■ 1 1 • 1 1 • 1 • 1 1 • • 1 1 II • 1 • • • • 1 • • 1 1 1 1 ■ 1 1QTSPTGILPTTSDSISTSEMTWKSSLPSINVSDYSPNNSSFEMTSPTEPY 157
humCD3 4 150 T .SSSPILSDIKAEIKCSGIREVKLTQGICLEQNKTSSCAEFKKDRGEGL 

II 1 1 1 • 1 1 1 1 1 1 1 1 1 1 • 1 1 1 1 1 1 1 III II 1 1 • • 1 1 • 1
198

murCD34 158 ■ -II- 1 * 1 1 • 1 1 1 1 1 1 1 1 1 1 • 1 • 1 1 1 1 1 1 • • • 1 II • 1 1 1 1 • * 1 1 • 1 AYTSSSAPSAIKGEIKCSGIREVRLAQGICLELSEASSCEEFKKEKGEDL 207
humCD3 4 199 ARVLCGEEQADADAGAQVCSLLLAQSEVRPQCLLLVLANRTEISSKLQLM 

-II- 1 • 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 • 1 1 1 1 II- 1 1 1 1 II
248

murCD34 208 • • 1 1 • • 1 • 1 • II 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 • 1 1 1 • 1 1 1 1 • 1 1 •• 1 1 1 1 1 1 IQILCEKEEAEADAGASVCSLLLAQSEVRPECLLMVLANSTELPSKLQLM 257
humCD3 4 249 KKHQSDLKKLGILDFTEQDVASHQSYSQKTLIALVTSGALLAVLGITGYF

- 1 1 1II b 111 1 -1 ••! |-.:|| 1 1 1 1 • 1 1 1 1 II lllbl 1 bll-IIMEKHQSDLRKLGIQSFNKQDIGSHQSYSRKTLIALVTSGVLLAILGTTGYF
298

murCD34 258 307
humCD3 4 299 LMNRRSWS PTGERLGEDPYYTENGGGQGY S SGPGTS PEAQGKASVNRGAQ 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 III 1 1 1 1 1 1 1 1 1
348

murCD34 308 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 1 II 1 1 • 1 1 1 • 1 1 1 1 • 1 • 1 1 1 1 LMNRRSWS PTGERLGEDPYYTENGGGQGYSSGPGAS PETQGKANVTRGAQ 357
humCD3 4 349 KNGTGQATSRNGHSARQHWADTEL 373 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
murCD3 4 358 • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ENGTGQATSRNGHSARQHWADTEL 3 82

Figure 7.1: Alignment of the predicted polypeptide sequences of human and murine 
CD34, performed using the BestFit program using the algorithm of Smith and 
Waterman (1981) (GCG Software - Version 7 for UNIX). The predicted 
transmembrane region is depicted in bold type. The amino acid sequences of the 
peptides chosen for use as immunogens are shown in red.
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7.2.2 C o n ju g a t io n  o f  p e p tid e  55 t o  c a r r i e r  p r o t e i n

Peptide 55 was coupled to the carrier protein KLH using a one-step glutaraldehyde 

method, described by Maloy et al. (1993). Ten milligrams of KLH was dissolved, 

with stirring, in two millilitres of 0.1 M borate buffer (pH 10) in a 20 ml glass 

universal. Fourteen milligrams (10 pmol) of peptide 55 was added to the above 

solution and allowed to dissolve. One millilitre of 0.3% glutaraldehyde was added 

slowly and the coupling reaction was allowed to proceed for two hours, with 

continuous stirring. Unreacted glutaraldehyde was then neutralised by the addition of 

0.25 ml of 1 M glycine, which was allowed to react for 30 minutes. The solution was 

dialysed overnight against three litres of borate buffer (pH 8.5) at 4°C, using a three 

millilitre Slide-a-Lyzer dialysis cassette (Pierce & Warriner UK Ltd.) The following 

morning the buffer was changed and dialysis continued for a further four hours. The 

peptide-protein conjugate was then freeze dried and weighed before it was dissolved 

in dH20, aliquoted into eppendorfs, freeze dried again and stored at -70°C.

7.2.3 P r o d u c t i o n  o f  a n t i - p e p t id e  a n t i s e r a

7.2.3.1 Preparation of Immunogen

In order to maximise the immune response to the injected immunogen, peptides were 

combined with an adjuvant prior to injection. Adjuvants typically have two major 

properties: the ability to maintain high local levels of antigen by preventing its rapid 

catabolism or dispersal and the non-specific stimulation of the immune response. 

Freund's complete adjuvant (CFA) was used for primary immunisations, whilst 

subsequent immunisations used incomplete Freund's adjuvant (IFA). Freund's 

adjuvant (Freund et al, 1937) consists of a water in oil emulsion in which the oils are 

non-metabolisable. CFA is prepared by the addition of Mycobacterium tuberculosis, 

which may be killed or attenuated (e.g. Bacillus Calmette-Guerin (BCG) vaccine); 

IFA lacks this bacterial component. FA is a particularly effective adjuvant and 

produces a strong, persistent stimulation of the immune response. Its use can, 

however, be associated with persistent granulomas and ulceration. The majority of 

such side effects are avoided by using incomplete FA for all booster immunisations 

(reviewed by Harlow and Lane, 1988).
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Peptides were prepared for immunisation immediately prior to use with CFA or IFA 

as appropriate. CFA was prepared by the addition of 0.1 ml of intradermal BCG 

vaccine (Evans Medical Ltd., Leatherhead, UK) to 0.9 ml of aqueous peptide 

immunogen. The aqueous phase was then mixed with two volumes of non-ulcerative 

Freund's adjuvant (NUFA - Guildhay Ltd., Guildford, UK) to produce a stable water 

in oil emulsion, as recommended by the manufacturers. IFA was prepared similarly, 

without the addition of BCG vaccine.

7.2.3.2 Immunisation of Rabbits

Four adult New Zealand white rabbits were used to raise polyclonal antisera; two 

rabbits received peptide 55 and two peptide 56. Prior to immunisation, 20 ml of 

blood was collected from each rabbit to provide suitable control antibody for later 

experiments. Each rabbit was given a primary immunisation of 100 pg of antigen in 

CFA. Booster immunisations were given four weeks later; one rabbit in each pair was 

immunised with 100 pg antigen in IFA (designated A) whilst the other rabbit in each 

pair was given 25 pg antigen in IFA (designated B). The rabbits were subsequently 

given booster immunisations using the same preparations at six week intervals. All 

immunisations were given subcutaneously, in total volume of one millilitre, split 

between four sites.

Blood was collected 10 - 14 days after booster immunisations. Ten to fifteen 

millilitres of blood was collected from the marginal ear vein into sterile glass 

universals. The blood was allowed to stand for several hours at room temperature, 

then allowed to clot overnight at 4°C. The serum was then transferred to a clean 

universal and any residual blood cells pelleted by centrifugation at 5,000 x g for 10 

minutes. The serum was stored in one millilitre aliquots at -20°C.

7.2.3.3 Anti-peptide ELISA

In order to verify that the rabbits had developed an antibody response to the injected 

peptides and to measure the level of response, an indirect antibody enzyme linked 

immunosorbent assay (ELISA) was performed using an ELISA starter kit (Pierce & 

Warriner, UK). ELISAs were initially performed for each polyclonal antiserum using
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a two-dimensional serial dilution protocol, as recommended by the manufacturers 

(Figure 7.3). A solution of each antigen, peptide 55 (not coupled to carrier) or 

peptide 56 containing 5 pg/ml peptide in BupH™ carbonate-bicarbonate buffer was 

prepared. Ninety-six well microtitre plates (Pierce & Warriner, UK) were coated with 

a single antigen by adding 100 pi of antigen solution to each well and incubating for 

one hour at room temperature. The plates were then washed three times with 100 pi 

of wash buffer (modified Dulbecco's phosphate buffered saline containing Tween 20 

and bovine serum albumin). Plates were then incubated for 30 minutes with 100 pi of 

1% BSA solution to block unreacted binding sites in the wells. The plates were then 

emptied and 100 pi of wash buffer added to each well. To each well in row A was 

aliquoted 100 pi of antiserum at a 1/2 dilution. The antibody was serially diluted (1/4, 

1/8 etc.) from row A to G; row H was used as a negative control. After incubation 

for one hour each well was washed three times with 100 pi wash buffer.

Primary f 
antibody — 1:

cccc

1:1

1:2

4

1:8

1:16 
etc.

l
Negative
control

Secondary antibody 

1:1 1:2 1:4 1:8 1:16 1:32 etc.
Negative 

-►  control

• • m© 0 #  © © 0 © 0 o A.

• • m0 0 0 © 0 0 0 © o B

• • • 0 mm m0  0  0 0 o c

• 0 © 0 m0 © 0  0  0 0 o D

mm0 0 0 m m0  0  0 0 o E

© mmm0 0  0 0  0 © 0 o F

mmmm0 0 0 0  0  0 0 o G

o o o o o o o o o o o o H

9 10 11 12

Figure 7.3: Two-dimensional serial dilution ELISA used to measure the level of 
antibody response in rabbits injected with immunogenic peptides.

The secondary antibody used was a goat anti-rabbit IgG (H+L) horseradish 

peroxidase conjugate (Pierce & Warriner, UK). One hundred microlitres of a 1/1000 

dilution were aliquoted to each well in row 1; the antibody was then serially diluted, 

two-fold from row 1 to 11, with row 12 used as a negative control. After incubation 

for 30 minutes at room temperature the wells were washed three times with 100 pi
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wash buffer, followed by a incubation with 100 fil wash buffer for five minutes. The 

final wash was discarded and 100 pi of enzyme substrate [2,2'-azino£zs(3- 

ethylbenzothiazoline-6-sulphonic acid) diammonium salt - ABTS] added to each well. 

After incubation for 30 minutes, the absorbance of the reagents at 405 nm was 

measured using an ELISA plate reader (EL 312 - Bio-tek Instruments Inc., Winooski, 

VT).

In order to determine the degree of specific antipeptide antibody response, in 

comparison to non-specific antibody, a further ELISA was performed. Each 

antiserum was evaluated against the specific peptide used to raise the antiserum and 

another unrelated peptide (peptide 56 for antiserum 55 and vice versa). Additionally, 

pre-bleed serum was used as a negative control. ELISAs were conducted in a similar 

manner to that described above except that a single concentration of secondary 

antibody was used (1/5000 dilution).

7.2.4 P u r i f i c a t i o n  o f  a n t i s e r u m

The immunoglobulin G fraction of antisera 55A and 56B and non-immune sera from 

these rabbits were purified using protein A affinity chromatography. Protein A is a 42 

kDa polypeptide produced by most strains of Staphylococcus aureus. The protein has 

a high affinity for the Fc region of most IgG molecules. However, the protein A - 

immunoglobulin bond may be broken by lowering the pH. The purification of IgG 

was simplified by the use of a commercially available chromatography column 

consisting of protein A coupled to agarose beads (HiTrap protein A column - 

Pharmacia Biotech).

Prior to purification approximately three millilitres of each serum was equilibrated 

with start buffer (phosphate buffered saline, pH 7.4) using a centrifugal concentrator 

with a molecular weight cut off (MWCO) of 50 kDa (Centriplus - Amicon, Beverly, 

MA), as recommended by the manufacturers. The antiserum was then filtered using a 

0.4 pm syringe filter (Gelman Sciences). A five millilitre HiTrap protein A column 

was equilibrated with five column volumes of start buffer, using a five millilitre 

syringe. The serum was loaded onto the column using a syringe and the column

199



DETECTION OF CD34 ANTIGEN

washed with three column volumes of start buffer. The column was then eluted using 

0.1 M citric acid, pH 4.5. Fractions of 0.5 ml were collected into eppendorf tubes 

into which 50 pi of 1 M Tris-HCl, pH 9.0 had previously been aliquoted (to minimise 

acid denaturation of the eluted protein). The immunoglobulin containing fractions 

were identified by measuring the absorbance at 280 nm of the eluted fractions (1 OD 

= approximately 0.8 mg/ml of IgG); fractions containing over ~ 0.5 mg/ml protein 

were pooled. The pooled fractions were concentrated by ultrafiltration using a 50 

kDa MWCO centrifugal concentrator (Centriplus), as recommended by the 

manufacturers, to a final concentration of 5 mg/ml (assessed by measurement of the 

A28o). The purity of each antibody solution was confirmed by SDS-PAGE. After use 

the protein A column was cleaned by sequentially washing with three column volumes 

of 2 M urea, 1 M LiCl and 100 mM glycine (pH 2.5).

7.2.5 D e t e c t i o n  o f  c e l l u l a r  CD34

The ability of the purified antipeptide antibodies to identify cellular CD34 was 

evaluated by immunohistochemistry against a cell line known to express CD34 

(human erythroleukaemia cell line TF-1) and against feline bone marrow mononuclear 

cells (BMMC). Antibodies purified from pre-bleed serum were used as negative 

controls and controls omitting primary antibody were also included. An indirect 

detection method was used, with biotinylated swine anti-rabbit immunoglobulin as the 

secondary antibody. An avidin biotin complex (ABC) staining procedure was used. 

This method uses a biotinylated enzyme which is preincubated with avidin to form 

large complexes. On subsequent incubation with labelled cells a greater enzyme 

concentration is bound to any immobilised secondary antibody thus enhancing the 

sensitivity of the detection method.

TF-1 cells were harvested two days after passaging and feline BMMC prepared as 

described in section 2.2.1.7. Cytospins were prepared within the Department of 

Veterinary Haematology, University of Glasgow. The cells were then fixed and 

permeabilised by immersion in methanol/acetone (1:1) at -20°C for 20 minutes and 

stored at -20°C until use. The slides were thawed slowly prior to use then immersed 

in Tris buffered saline (TBS pH 7.6 - NaCl 0.15 M, Tris-HCl 0.05 M, Tris base 0.05
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M) for five minutes. Cells were then incubated in 100 pi normal swine serum (20% 

dilution in TBS - DAKO A/S, Denmark) for 20 minutes, to block non-specific 

background. The slides were gently tapped to remove excess serum and then 

incubated with 100 pi of rabbit polyclonal antibody (5-10 pg/ml) for one hour. Slides 

were washed twice by immersion in TBS for three minutes. Cells were incubated with 

50 pi secondary antibody (1:300 dilution of biotinylated swine anti-rabbit 

immunoglobulin - DAKO A/S) for 30 minutes and then washed as above. Cells were 

then incubated with 100 pi of ABcomplex/AP, prepared as directed by the 

manufacturers (DAKO A/S). The cells were then washed and incubated for 20 

minutes with 200 pi of alkaline phosphatase substrate (Naphthol AS BI phosphate 40 

mg, N,N-dimethylformamide 0.4 ml, 1M Tris-HCl pH 8.2 19.6 ml, 1M levamisole 200 

pi, to 200 ml with dH20) containing 1 mg/ml Fast red TR. Slides were rinsed in 

dH20, counterstained with Mayer's haematoxylin for 20 seconds, washed in Scott's 

tap water substitute (Na(COs)2 3,5 g, MgS04 20 g, dH20  to 1 L) and mounted in 

aqueous mountant (Aquamount - BDH).

7.3 RESULTS

The result of a typical two-dimensional serial dilution ELISA are shown in Table 7.1. 

At a secondary antibody concentration of 1/16,000 an endpoint of 1/128 (half 

maximal A405) is seen; at higher secondary antibody concentrations an endpoint is not 

reached. The specificity of each antipeptide response is shown in Table 7.2. All 

prebleed sera show no significant antipeptide antibody titre. The antisera raised by 

peptide 55 both generated strong positive results, with endpoints of 1/5120 and 1/320 

for 55A and 55B respectively. However, antiserum 55A also shows a relatively 

strong non-specific response (to peptide 56). Antiserum 56B shows a specific 

response to peptide 56, with an endpoint of 1/160, whilst antiserum 56A shows no 

significant antipeptide antibody titre.

The purity of each antibody preparation following purification of the IgG fraction was 

assessed, by SDS-PAGE, to be over 95% (Figure 7.4).
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TF-1 cells incubated with antibody 55A (raised against peptide-KLH conjugate) 

stained weakly (Figure 7.5). Those incubated with antibody 56B showed no staining. 

Staining of feline bone marrow cells was unsuccessful due to marked non-specific 

background staining, which was seen with both prebleed and immune antibodies but 

not with primary antibody negative controls (results not shown).
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1 2 3 4 5 6 7 8 9 10 11 12
A >3.0 >3.0 >3.0 1.803 0.652 0.446 0.227 0.180 0.132 0.114 0.115 0.083
B >3.0 >3.0 >3.0 >3.0 2.170 1.386 0.627 0.413 0.257 0.163 0.126 0.086
C >3.0 >3.0 >3.0 >3.0 2.810 1.682 0.898 0.513 0.090 0.197 0.146 0.085
D >3.0 >3.0 >3.0 >3.0 2.481 1.392 0.772 0.411 0.232 0.180 0.136 0.087
E >3.0 >3.0 >3.0 >3.0 2.439 1.430 0.863 0.451 0.276 0.182 0.144 0.093
F >3.0 >3.0 >3.0 2.915 2.032 1.254 0.817 0.457 0.268 0.177 0.144 0.088
G >3.0 >3.0 >3.0 2.216 1.459 0.917 0.617 0.328 0.207 0.152 0.119 0.086
H 0.144 0.137 0.114 0.104 0.098 0.089 0.097 0.104 0.089 0.085 0.096 0.085

Table 7.1: Indirect antibody ELISA using antiserum to peptide 56. Primary 
antiserum is diluted down the plate (A to G); dilutions start at 1/2 and continue 1/4, 
1/8 etc. Row H is a negative control. Secondary antibody is diluted across plate with 
serial two-fold dilutions from row 1 - 1 1 ,  starting at 1/1000 dilution; row 12 is a 
negative control. Figures refer to the absorbance of the reagents at 405 nm.

1 2 3 4 5 6 7 8 9 10 11 12
55A-PRE 0.442 0.391 0.332 0.214 0.228 0.142 0.132 0.137 0.118 0.119 0.146 0.205
55A-S 2.665 2.680 2.739 2.723 2.680 2.626 2.527 2.345 1.881 1.601 1.106 0.126
55A-NS 2.508 2.590 2.569 2.262 2.022 1.327 0.844 0.590 0.359 0.213 0.165 0.099
55B-PRE 0.931 0.402 0.492 0.800 0.265 0.171 0.133 0.134 0.120 0.115 0.117 0.114
55B-S 2.693 2.757 2.579 2.278 1.946 1.546 1.003 0.689 0.435 0.290 0.203 0.120
55B-NS 0.744 0.563 0.431 0.304 0.246 0.185 0.162 0.136 0.117 0.102 0.103 0.102
56A-PRE 0.551 0.439 0.314 0.250 0.189 0.136 0.139 0.144 0.111 0.107 0.110 0.102
56A-S 0.676 0.560 0.469 0.291 0.216 0.137 0.120 0.122 0.106 0.107 0.114 0.104
56A-NS 0.692 0.389 0.314 0.265 0.296 0.532 0.488 0.284 0.150 0.143 0.153 0.122
56B-PRE 0.404 0.324 0.342 0.212 0.171 0.123 0.115 0.118 0.104 0.107 0.119 0.108
56B-S 2.480 2.370 2.176 1.925 1.483 0.950 0.579 0.391 0.250 0.173 0.143 0.104
56B-NS 0.692 0.389 0.314 0.265 0.296 0.532 0.488 0.284 0.150 0.143 0.153 0.122

Table 7.2: Results of indirect ELISA to measure antibody titres against peptides 55 
and 56. Primary antibody (antiserum) is diluted across the plate (row 1 - 12); 
dilutions start at 1/10 and continue 1/20, 1/40 etc. Secondary antibody was used at a 
dilution of 1/5000. Pre = prebleed antiserum; S = specific antipeptide ELISA; NS = 
non-specific ELISA (antiserum 55A/B vs. peptide 56 and vice versa). Figures refer to 
the absorbance of the reagents at 405 nm.
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Figure 7.4: Purification o f  rabbit IgG fraction from polyclonal antiserum. Five 
m icrogram s o f each antibody was resolved by SDS-PAGE using a 12.5% gel. The gel 
was subsequently stained with Coomassie blue. M = molecular weight m arkers; SI - 
S4 are four different antisera following purification using Protein A chrom atography. 
The letters H and L refer to the IgG heavy and light chains, respectively.
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W m -i

B .

Figure 7.5: Human TF-1 cell line stained with rabbit antipeptide antibody 55A. A. 
N egative control - prebleed serum. B. Cells show weak staining with anti CD34 
peptide antibody.
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7.4 DISCUSSION

The antibodies generated by three of the four rabbits recognised the peptide against 

which they had been generated, with higher titres seen in sera raised using a KLH- 

peptide conjugate. However, the antibodies showed no, or poor affinity for the native 

protein. There are several possible reasons for this discrepancy. The peptide 

immunogens may have not accurately represented epitopes of the native protein either 

due to their site (e.g. in buried regions of the protein) or due to non-representative 

folding of the peptide. The epitopes may have been inaccessible due to insufficient 

permeabilisation of the cells or their conformation may have been altered by the 

method of fixation; alternative methods (e.g. use of paraformaldehyde) may produce 

better results. Furthermore, it was not proven whether the weak staining of TF-1 

cells by antibody 55A was specific for CD34. Time limitations unfortunately 

prevented any further optimisation of the staining technique.

There have, however, been a number reports of the successful use of this experimental 

approach to raise antibodies to the cytoplasmic domain of human leucocyte markers, 

including CD3 and CD8 (Mason et al, 1989; Mason et al, 1992). Peptides were 

originally used to raise polyclonal antisera which could recognise these antigens in 

fixed tissues, in contrast to monoclonal antibodies available at that time.

Ultimately, the cloning of feline CD34 would be desirable. In particular this would 

allow the production of antibodies against the extracellular domain of CD34. Such 

antibodies could be use to identify CD34 positive cells using flow cytometry, without 

recourse to cell fixation and permeabilisation. This would enable the enumeration and 

sorting of live cells which would facilitate studies on purified progenitor cells in vitro 

and also the development of clinical protocols for marrow and peripheral blood stem 

cell transplantation.
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IN  VIVO EFFECTS OF FELINE STEM CELL FACTOR

8.1 INTRODUCTION

8.1.1 EFFECTS OF RECOMBINANT SCF ON HAEMOPOIESIS IN VIVO

The effects of recombinant SCF on haemopoiesis in vivo have been studied in a 

number of species including mice, dogs, baboons and humans. Administered as a 

single agent, rSCF has more dramatic effects than would be predicted by its in vitro 

effects.

Mice (Fleming et al, 1993), baboons (Andrews et al, 1992b) or dogs (De Revel et 

al, 1994) given rSCF show increases in circulating haemopoietic progenitor cells, 

including those with the ability to repopulate the bone marrow of an irradiated 

recipient. rrSCF given to mice (100 fig/kg/day subcutaneously) produces a six fold 

increase in peripheral blood CFU-S after five days (Molineux et al, 1991). rhSCF 

given to baboons produces a dose dependent increase in circulating progenitors (GM- 

CFC, BFU-E, CFU-Mix and HPP-CFC) at doses of 50 - 200 |^g/kg/day given by 

intravenous infusion (Andrews et al, 1992a). Similar effects have been reported in 

dogs (De Revel et al, 1994). SCF also causes an acute dose dependent neutrophilia 

and lymphocytosis in rats, which peaks four to six hours and subsides between 12 and 

24 hours, after a single intravenous injection (Ulich et al, 1991). Longer term 

administration of rSCF to mice (100 p,g/kg/day) produces a two to three fold increase 

in circulating leukocytes, predominantly neutrophils, after administration for 5 to 14 

days (Molineux et al, 1991; Bodine et al, 1993); levels rapidly return to normal after 

cessation of growth factor administration. Baboons treated with rhSCF show 

increases in PB neutrophils, erythrocytes, lymphocytes, monocytes, eosinophils, and 

basophils (Andrews et al, 1991).

The reported effects of SCF on the bone marrow are variable depending on species, 

dose and duration of treatment. One study showed an increase in BM mast cells, 

accompanied by an overall decrease in marrow cellularity after administration of 

rrSCF to rats for two weeks (Ulich et al, 1991). Molineux et al (1991) reported no 

significant change in BM cellularity after administration of a similar dose of rmSCF to
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mice for two weeks, although an increase in the number of progenitor cells within the 

marrow was seen. Bodine et al (1993) investigated the effect of rmSCF on the 

absolute number of pluripotent haemopoietic stem cells (PHSC) in mice, as measured 

by a competitive repopulation assay. The number of PHSC (per mouse) increased 

three-fold after rmSCF treatment for seven days; more specifically there was an 

increase in spleen and peripheral blood (PB) PHSC of 10 fold or more and a decrease 

in marrow PHSC of three fold. Dogs given 200 pg/kg/day rcSCF for 20 to 28 days 

show an increased BM cellularity associated with a seven-fold increase in 

granulocyte/macrophage progenitors (CFU-GM) (Schuening et al, 1993). Baboons 

given 200 pg/kg/day rhSCF show an increase in marrow cellularity (150 - 200% c.f. 

control animals) and absolute number of granulocyte/monocyte (CFU-GM) and 

erythroid (BFU-E) progenitors in the marrow (Andrews et al, 1991).

Administration of rSCF to mice, rats, non-human primates and humans produces 

increases in mast cells at the site of injection. Increased mast cell numbers are also 

seen at other sites, although the effect is dose dependent and species differences exist. 

SCF seems to be a more potent inducer of mast cell hyperplasia in rats than in other 

species, inducing increases in the number of mast cells in multiple organs including 

bone marrow, spleen, liver and lung, after intravenous administration of 100 

pg/kg/day for two weeks (Tsai et al, 1991a; Ulich et al, 1991).

8.1.2 O b je c t iv e s

The aims of this part of the project were to assess the safety and haemopoietic activity 

of feline recombinant SCF given to cats by the subcutaneous route. To evaluate 

safety, clinical parameters (e.g. demeanour, rectal temperature) and serum 

biochemistry profiles were monitored. The haemopoietic effects of SCF were 

evaluated by measuring peripheral blood haematological parameters and assaying 

granulocyte macrophage colony forming cells in both peripheral blood and bone 

marrow. Additionally, tissues were collected post mortem, enabling histopathology of 

haemopoietic organs and examination of tissues for mast cell infiltration.
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8.2 MATERIALS AND METHODS

8.2.1 T r i a l  D e s ig n

The amount of feline recombinant SCF available limited the scale of the experiment in 

terms of number of cats that could be used, dose of SCF and duration of treatment. 

Seven specific pathogen free cats, aged between 16 and 24 months, were used. Cats 

were assigned randomly to one of three treatment groups or to the control group. 

The three treatment groups received 200 p.g/kg, 100 pg/kg or 25 p.g/kg frSCF and the 

control group 100 pg/kg bovine serum albumin. Each group contained two cats, 

except the 'group' receiving 25 pg/kg which contained one cat. Administration of 

injections, collection and assessment of all samples was carried out without 

knowledge of each animal's specific treatment. Figure 8.1 shows an overview of the 

experimental protocol. Bone marrow aspirates and blood for haematology and serum 

biochemistry were obtained prior to any treatments. Haematology was monitored at 

four, 12 and 24 hours and three and five days after starting treatment. Cats were 

euthanased on day eight, at which time BM aspirates, haematology and serum 

biochemistry were repeated and tissues collected for histopathology.

8.2.2 P r e p a r a t i o n  a n d  a d m i n i s t r a t io n  o f  ’t r e a t m e n t s 1

Feline recombinant SCF was prepared and purified as described previously. Bovine 

serum albumin solution (100 pg/ml) was prepared by dissolving BSA (Fraction V - 

Sigma cell culture, Sigma Chemical Co.) in phosphate buffered saline (pH 7.4). All 

treatments were given in a total volume of one millilitre; the desired dose for each cat 

was obtained by diluting either SCF or BSA solution with an appropriate volume of 

PBS. All injections were prepared prior to the start of the experiment and stored in 

labelled one millilitre syringes at 4°C. Treatments were given by subcutaneous 

injection, once daily, for seven days. Endotoxin content of the frSCF solution was 

approximately 2.0 EU/mg SCF and of the BSA solution 22 EU/mg protein.
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Tissues for Histopathology

Figure 8.1: O verview  o f  experim ental procedure.
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8.2.3 M o n i to r in g  o f  A n im a ls

All cats were examined prior to injections and at intervals throughout the proceeding 

day. The animals demeanour and appetite were assessed and rectal temperature 

measured. In the event of any apparent departure from normal, a full clinical 

examination was carried out.

8.2.4 C o l l e c t i o n  a n d  a n a ly s i s  o f  s a m p le s

8.2.4.1 Blood

Animals were restrained manually and blood collected from the cephalic or jugular 

vein. Pre-euthanasia samples (day eight) were collected by intracardiac puncture 

whilst the animals were under general anaesthesia; a mixture of ketamine (Ketaset - 

Willows Francis Veterinary, Crawley, UK) and xylazine (Rompun - Bayer pic, Bury 

St Edmunds, UK), given by intramuscular injection, was used to anaesthetise the cats. 

Blood for haematology was collected into one millilitre tubes containing potassium- 

EDTA (Bibby Sterilin Ltd., Stone, UK) and for biochemistry into plain two millilitre 

tubes. All haematological analyses were performed in the Department of Veterinary 

Haematology, University of Glasgow by Mr R. Barron and Mr K. Williamson. Cell 

counts were obtained using an automated cell counter (ABX Minos Vet - Roche 

Products Limited) and differential counts performed manually using May-Grunwald- 

Giemsa stained smears. Serum biochemistry analysis was performed by the 

Department of Veterinary Biochemistry, University of Glasgow.

8.2.4.2 Bone Marrow

Pre-treatment bone marrow samples were collected under general anaesthesia and 

post-treatment samples were collected immediately following euthanasia, as detailed 

in section 2.2.1.7.

8.2.4.3 Tissues

Tissues for histopathology were collected immediately following euthanasia into 

formal-saline. Samples were processed and stained with haematoxylin and eosin and 

mounted by Mr I. Macmillan and the staff of the Histopathology Laboratory,
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University of Glasgow. Bone marrow, spleen and liver sections were evaluated by Dr 

S. Toth, Department of Veterinary Haematology, University of Glasgow. Bone 

marrow, spleen, skin at the site of injection (between the scapulae), skin at a distant 

site (ventral abdomen), stomach, duodenum, colon and lung sections were stained 

with astra blue. Cells staining positive for astra blue with a morphology consistent 

with mast cells were counted using a Unilux-12 microscope (Kyowa, Japan) at 400 x 

magnification. Five replicate counts were made from each section with the field of 

view chosen at random.

8 .2 .5  GM-CFC A s s a y s

Bone marrow mononuclear cells were isolated over Ficoll as detailed in section 

2.2.1.7. Peripheral blood was prepared for the GM-CFC assay by lysis of the red 

blood cells with ACK lysis buffer. Ten millilitres of ACK buffer was added to one to 

three millilitres of blood and incubated for approximately five minutes at room 

temperature. White blood cells (WBC) were pelleted by centrifugation at 250 x g for 

ten minutes. The WBC were then resuspended in tissue culture medium and kept on 

ice prior to setting up the GM-CFC assay.

The GM-CFC assays were performed as described in section 6.2.3. BMMC were 

plated at a concentration of 5 x 104 cells/ml and peripheral blood WBC at 1 x 10s 

cells/ml. Growth factors were included at the following concentrations: frSCF, 100 

ng/ml and hrG-CSF, 20 ng/ml; control plates were also set up in which growth factors 

were omitted.

8 .2 .6  S t a t is t ic a l  A n a l y s is

Data from the peripheral blood GM-CFC assays were analysed as follows. Data for 

the single cat receiving 25 ng/kg frSCF was excluded because it would lead any 

analysis of data to be on an unbalanced design and also because data derived from a 

single animal could be non-representative. Pre- and post- treatment values were 

analysed separately in order to ascertain that there were no significant differences 

between the groups prior to administration of treatments. In one group missing a 

single data point, an estimate was inserted based on the mean of the five data points in 

that group. A loge(x+l) transformation was performed on the data prior to analysis
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and a nested ANOVA adopted with treatment as a fixed effect and cat as a random 

effect. When the pre- and post- treatment data were considered together, a nested 

two way analysis of variance with repeated measures and cat as random effect was 

used.

The number of mast cells in the skin of cats treated with frSCF was compared to the 

number of mast cells in the skin of control animals at the injection site and a distant 

skin site. Data was analysed using a three factor analysis of variance with the cat as 

the random factor.

8.3 RESULTS

Administration of fSCF to cats produced few undesirable side effects. Cats receiving 

200 ng/kg frSCF showed mild oedema of the skin of the forelimbs distal to the elbow. 

This occurred five to seven hours after the first injection of frSCF; the degree of 

oedema subsided almost completely overnight and did not recur following further 

administrations of frSCF. No swelling or pain was seen at the site of injection. Cats 

receiving 200 M-g/kg frSCF inconsistently showed mild malaise, manifested as a 

decrease in activity, which was most evident four to eight hour after administration of 

the growth factor. Rectal temperatures, monitored at the time of frSCF (or control 

protein) administration and 4.5 to 6 hours later are shown in Table 8.1. Although, 

individual cats show some increases over normal these are not consistent, nor are the 

changes more evident in cats receiving the higher doses of frSCF. This suggests that 

the relatively mild increases seen may be due to the physiological stress of handling 

and injections rather than a specific effect of the injected preparations. The 

experimental cats used for this trial were poorly accustomed to being handled, 

consequently stress induced pyrexia is not an unexpected finding. Although the 

control injections of BSA contained a higher level of endotoxin than frSCF 

preparations, there is no evidence that this had any effect in recipient cats.

The results of serum biochemistry parameters before and after treatments are shown 

in Table 8.2. Although some of the parameters lie outwith the laboratory reference 

ranges, there is no indication of any significant decrease in renal function (indicated by
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urea and creatinine) or hepatocellular damage (indicated by SAP and ALT) due to 

administration of frSCF. The decrease of serum globulin to zero in one cat (H31) 

post-treatment is likely to be a laboratory artefact. Mild elevations in serum creatine 

kinase are seen in two cats post-treatment, one of which received 100 pg/kg frSCF 

(H31) the other of which received BSA (H45). Creatine kinase is released from 

muscle cells when damaged, such increases are non-specific and mild increases can be 

induced by poor venepuncture technique, injections or minimal exercise (Anderson et 

al, 1976).

Haematology results are shown in Table 8.3. Results at day eight (pre-euthanasia) 

were obtained from blood collected from anaesthetised cats by cardiocentesis and are 

therefore not directly comparable to those obtained at other times. Red blood cell 

parameters show no significant changes in cats which received frSCF or in control 

cats except for the appearance of normoblasts (immature nucleated erythrocytes) in 

cats receiving frSCF. The appearance of normoblasts in the peripheral blood is 

suggestive of increased erythropoietic activity in medullary or extra-medullary sites. 

There was no significant change in platelet numbers in cats receiving frSCF (platelet 

clumping is an artefact commonly seen in feline blood samples). There is a dose 

dependent, acute increase in neutrophil counts in the cats receiving either 200 pg/kg 

or 100 pg/kg frSCF which occurs several hours after injection (Figure 8.2). This 

increase may be due to a mobilisation of the marrow granulocyte reserve or a shift of 

neutrophils from the marginating to the circulating compartments. The latter 

phenomenon is commonly seen in cats associated with physiological stress (Jain, 

1993 a). However, such a cause seems unlikely as minimal elevations are seen in cats 

receiving either 25 pg/kg frSCF or control cats; thus a specific effect of frSCF is 

probable. Subsequent neutrophil counts, in blood collected immediately prior to 

treatments, are within the normal range.

Feline SCF caused a dose dependent increase in circulating granulocyte-macrophage 

colony forming cells (GM-CFC) (Table 8.4). Few circulating GM-CFC were seen in 

cats prior to treatment or in cats following administration of BSA or 25 pg/kg frSCF; 

the colonies derived from these GM-CFC were generally small. Cats receiving 100 to
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200 pg/kg frSCF for seven days showed increases in circulating GM-CFC of 10 to 20 

fold (Table 8.4); additionally these GM-CFC gave larger colonies on culture (Figure 

8.3). Statistical analysis of the data showed that there were no differences in the 

numbers of circulating CFC in the cats pre-treatment (p>0.05). Following treatment 

with either 100 or 200 pg/kg/day frSCF or control preparation, significant differences 

in circulating CFC were seen between each of the treatment groups (p<0.05). 

Additionally, the increases in circulating CFC following administration of 100 or 200 

pg/kg/day frSCF were statistically significant (p<0.000).

GM-CFC assays showed no significant increases in the relative number of CFC in the 

bone marrow of cats following treatment with frSCF (Table 8.4). Histopathological 

examination of bone marrow sections revealed no evidence of altered cellularity in any 

of the cats.

The administration of frSCF produced a dose dependent stimulation of extramedullary 

haemopoiesis (EMH) within the spleens of treated cats. The spleens of cats receiving 

200 pg/kg/day frSCF contained erythroid precursors with high mitotic activity at all 

stages of differentiation, numerous blast cells, small foci of granulopoiesis and 

immature megakaryocytes (Figure 8.4). Cats given lower doses of SCF had smaller 

foci of EMH, mainly erythroid, with some megakaryocytes, whilst these changes were 

absent in control animals. Occasional foci of erythroid precursors were seen in the 

liver of cats given 100 or 200 pg/kg/day frSCF but not in control animals.

The number of mast cells was increased approximately five fold in the skin of cats at 

the site of injection following treatment with 100 or 200 pg/kg/day frSCF for seven 

days (Table 8.5 and Figure 8.5). No significant increase in the numbers of tissue mast 

cells was seen in the skin at a distant site in these cats. Similarly, mast cell numbers 

were not increased in other tissues (Table 8.5).
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Treatment and cat ID No.
Day Time 200 pg/kg

H32
200 pg/kg
H36

100 pg/kg
H33

100 pg/kg
H31

25 pg/kg 
H35

control
H34

control
H45

1 am ND ND ND ND ND ND ND
pm ND 102.3 ND 103.0 101.7 ND 100.6

2 am 101.0 99.4 100.4 100.9 101.2 99.2 100.0
pm 101.5 102.3 100.4 102.6 101.3 100.0 100.0

3 am ND 101.2 ND 100.2 101.7 ND 102.0
pm 100.2 102.0 101.3 102.2 101.8 101.3 100.7

4 am 101.1 101.0 100.5 102.3 102.2 99.6 102.1
pm 101.7 101.4 100.2 102.0 101.3 100.0 101.4

5 am 101.1 101.6 100.7 102.7 101.7 100.2 100.8
pm 102.0 101.5 100.7 101.5 100.6 101.1 100.8

6 am 101.6 100.6 101.3 101.4 101.9 100.3 101.6
pm 102.6 100.9 100.6 102.2 101.0 100.7 101.1

7 am 101.7 99.2 101.4 101.5 101.6 100.7 102.2
pm 102.2 100.8 101.1 102.1 101.5 102.3 101.7

Table 8.1: Rectal temperature of cats during course of the experiment (°F). 
Temperatures were measured between 9am to 10am (AM), just prior to the 
administration of frSCF/control treatments, and between 2.30am to 3.30pm (PM). 
Normal feline rectal temperature is approximately 101.5°F. ND = not determined.
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200 |ng/kg H36 
PRE POST

200 pg /kg H32 
PRE POST

100 pg /kg H33 
PRE POST

100 pg/kgH31 
PRE POST

Urea 10.9 10.9 10.9 11.2 10.1 9.6 11.2 8.7
Creat. 127 115 149 121 107 88 141 115
SAP 55 35 30 31 51 49 36 26
ALT 61 48 47 48 57 58 32 18
TP 61 51 68 59 64 50 64 21
ALB 28 26 28 28 28 27 27 21
GLOB 33 25 40 31 36 23 37 0
A/G 0.85 1.04 0.7 0.9 0.78 1.17 0.73
CK 161 679 238 126 277 821 156 1292

25 pg/kg H35 
PRE POST

control H34 
PRE POST

control H45 
PRE POST

Urea 9.7 8.4 8.9 9.4 10.4 8.4
Creat. 105 116 127 105 114 118
SAP 47 72 37 34 102 108
ALT 35 34 69 57 41 36
TP 63 51 53 43 61 53
ALB 27 28 27 26 30 31
GLOB 36 23 26 17 31 22
A/G 0.75 1.22 1.04 1.53 0.97 1.41
CK 662 447 131 442 596 2030

Laboratory reference ranges
Urea 2.7 - 9.2 mmol/1
Creatinine (Creat.) 91-180 pmol/1
Serum alkaline phosphatase (SAP) < 100 iu/1
Alanine aminotransferase (ALT) < 35 iu/1
Total protein (TP) 60 - 85 g/1
Albumin (ALB) 26 - 36 g/1
Globulin (GLOB) 27 - 45 g/1
Creatine kinase (CK) <150 iu/1

Table 8.2: Serum biochemistry parameters before and after treatment with frSCF. 
Cats received the stated dose of frSCF once daily by subcutaneous injection; control 
cats received 100 pg/kg BSA once daily. Figures in bold type lie outwith the 
laboratory reference range, the significance of which is discussed within the text.
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Table 8.3: Full haematology results (continued overleaf).

H32 Time
200 pg Ohr 4hr 12hr 3d 5d 8d
RBC 8.05 9.04 7.33 6.64 6.64 5.18
Hb 12.70 14.50 11.80 10.60 10.60 3.10
HT 36.80 42.20 34.60 29.90 30.60 23.60
MCV 46.00 47.00 47.00 45.00 46.00 46.00
MCH 15.70 16.00 16.00 15.90 15.90 45.60
MCHC 34.50 34.30 34.10 35.40 34.60 34.30
Retie 1.90 1.60 1.40 0.70 1.20 0.00
Norm 0.28 0.53
WBC 25.40 45.70 34.40 27.70 27.50 26.40
Neu 16.00 40.67 27.52 18.28 13.48 13.99
BNeu 0.25 1.37 0.00 0.00 0.00 2.11
Lym 6.60 2.74 5.16 6.09 10.18 6.86
Mon 0.25 0.91 0.69 1.11 2.75 1.06
Eos 2.03 0.00 1.03 1.94 1.10 1.58
Bas 0.25 0.00 0.00 0.00 0.00 0.26
PLT Clump Clump 100.00 202.00 Clump Clump

H36 Time
200 pg Ohr 4hr 12hr 3d 5d 8d
RBC 7.65 10.06 7.27 7.65 6.36 5.36
Hb 12.50 17.30 12.40 12.90 10.70 8.50
HT 34.30 46.30 34.30 35.30 29.90 24.80
MCV 45.00 46.00 47.00 46.00 47.00 46.00
MCH 16.30 17.10 17.00 16.80 16.80 15.80
MCHC 36.40 37.30 36.10 36.50 35.70 34.20
Retie 0.10 1.00 0.50 0.80 0.10
Norm 0.16 0.91
WBC 11.60 27.40 19.60 16.00 18.10 15.90
Neu 6.03 23.84 12.94 9.60 7.78 8.90
BNeu 0.00 0.00 0.00 0.00 0.18 0.00
Lym 3.83 1.92 6.08 3.52 7.06 6.04
Mon 0.23 1.10 0.20 0.80 0.36 0.16
Eos 1.51 0.55 0.39 1.28 1.63 0.64
Bas 0.00 0.00 0.00 0.64 0.18 0.16
PLT 236.00 165.00 Clump 115.00 Clump 50.00

H31 Time H33 Time
100 pg Ohr 4hr 12hr 3d 5d 8d 100 pg Ohr 4hr 12hr 3d 5d 8d
RBC 7.40 7.75 6.89 6.23 6.86 4.96 RBC Clotted 8.84 7.49 7.68 7.43 5.27
Hb 12.40 13.10 11.90 10.40 11.90 8.00 Hb 14.30 12.30 12.20 12.10 8.00
HT 34.30 36.80 33.30 30.00 33.70 23.60 HT 40.30 34.90 34.30 33.10 23.30
MCV 46.00 47.00 48.00 48.00 49.00 48.00 MCV 46.00 47.00 45.00 45.00 44.00
MCH 16.70 16.90 17.20 16.60 17.30 16.10 MCH 16.10 16.40 15.80 16.20 15.10
MCHC 36.10 35.50 35.70 34.60 35.30 33.80 MCHC 35.40 35.20 35.50 36.50 34.30
Retie 0.30 0.60 0.30 1.20 0.90 Retie 1.00 0.70 0.70 0.80 0.00
Norm 0.20 0.49 0.18 Norm 0.15
WBC 16.70 34.20 23.50 20.20 24.70 18.30 WBC 22.30 20.70 14.90 14.00 11.10
Neu 9.35 30.10 15.28 13.13 11.61 13.73 Neu 18.96 18.21 9.69 8.26 9.10
BNeu 0.00 0.00 0.00 0.00 2.47 0.73 BNeu 0.22 0.00 0.00 0.00 0.22
Lym 6.18 3.08 7.05 5.05 7.16 2.75 Lym 2.68 1.66 4.77 5.18 1.67
Mon 0.00 0.68 0.24 0.61 1.24 0.37 Mon 0.45 0.62 0.30 0.56 0.11
Eos 1.17 0.34 0.94 1.21 1.73 0.55 Eos 0.00 0.00 0.00 0.00 0.00
Bas 0.00 0.00 0.00 0.00 0.00 0.00 Bas 0.00 0.21 0.00 0.00 0.00
PLT 371.00 375.00 200.00 201.00 186.00 136.00 PLT Clump Clump 101.00 237.00 102.00 148.00
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Table 8.3: Full haematology results (continued).

H34 Time
control Ohr 4hr 12hr 3d 5d 8d
RBC 7.78 7.46 7.19 7.40 7.05 5.12
Hb 12.50 12.00 11.70 11.80 11.50 7.60
HT 35.90 35.50 33.90 33.70 33.40 22.00
MCV 46.00 48.00 47.00 46.00 47.00 43.00
MCH 16.00 16.00 16.20 15.90 16.30 14.8
MCHC 34.80 33.80 34.50 35.00 34.40 34.50
Retie 1.40 0.70 1.00 0.70 0.70 0.00
Norm
WBC 18.50 25.40 20.70 15.80 21.50 . 4.40
Neu 9.25 19.56 15.11 9.01 14.62 2.99
BNeu 0.00 0.25 0.00 0.00 0.00 0.00
Lym 8.70 4.06 4.97 6.32 6.45 1.32
Mon 0.19 1.27 0.41 0.47 0.22 0.09
Eos 0.00 0.00 0.00 0.00 0.00 0.00
Bas 0.19 0.25 0.21 0.00 0.22 0.00
PLT Clump Clump 89.00 116.00 Clump 204.00

H35 Time
25 pg Ohr 4hr 12hr 3d 5d 8d

RBC 6.83 7.17 7.05 6.86 6.86 5.09
Hb 11.70 12.60 12.30 11.90 12.20 8.30
HT 33.00 36.20 35.90 34.70 34.00 24.80
MCV 48.00 50.00 51.00 51.00 50.00 49.00
MCH 17.10 17.50 17.40 17.30 17.70 16.30
MCHC 35.40 34.80 34.20 34.20 35.80 33.40
Retie 0.30 0.60 0.50 0.60
Norm 0.21 0.22 0.13
WBC 13.70 19.50 21.20 21.70 14.70 13.20
Neu 6.99 9.36 7.84 12.59 7.06 6.86
BNeu 0.00 0.00 0.00 0.21 0.58 0.26
Lym 4.25 5.85 7.63 6.29 4.41 3.56
Mon 0.00 0.20 0.42 1.09 0.74 0.66
Eos 2.33 3.71 4.88 1.30 1.62 1.32
Bas 0.14 0.39 0.21 0.00 0.15 0.40
PLT Clump Clump 20.00 Clump Clump 21.00

H45 Time
control Ohr 4hr 12hr 3d 5d 8d
RBC 8.35 8.29 7.84 6.52 7.81 5.52
Hb 14.40 14.30 13.60 11.40 13.90 9.20
HT 39.60 40.00 38.40 32.50 38.40 25.50
MCV 47.00 48.00 49.00 50.00 49.00 46.00
MCH 17.20 17.20 17.30 17.40 17.70 16.60
MCHC 36.30 35.70 35.40 35.00 36.10 36.00
Norm
Retie 0.60 0.80 0.90 0.80 0.10
WBC 14.50 20.90 22.90 21.10 20.60 7.40
Neu 8.84 11.50 9.62 10.97 10.71 4.59
BNeu 0.00 0.00 0.00 0.00 0.20 0.00
Lym 4.50 7.73 11.22 8.23 7.62 2.44
Mon 0.00 0.63 0.23 0.63 0.82 0.15
Eos 1.16 0.84 1.83 1.06 1.03 0.22
Bas 0.00 0.21 0.00 0.21 0.21 0.00
P LT Clump Clump Clump Clump Clump 54.00

Parameter Norm al
Range

RBC 7.77+/-1.32
Hb 12.16+/-2.01
HT 33.27+/-4.90
MCV 43.08 +/- 3.00
MCH 15.65+/-1.38
MCHC 36.42 +/- 1.62

Retie
WBC 19.05+/-8.30
Neu 10.38 +/- 6.49
BNeu
Lym 7.08 +/- 3.33
Mon 0.57 +/- 0.49
Eos 0.96 +/- 0.60
Bas 0.089+/-0.12
PLT

R B C  - red blood cell (x  1012/L ); H b - haemoglobin (g/dl); H T  - haematocrit (L /L ); M C V  - 
mean cell volume (fl); M C H  - mean cell haemoglobin (pg); M C H C  - mean cell haemoglobin

9
concentration (g/dl); R etie - reticulocyte; W B C  - white blood cell (x  10 /L ); Neu - neutrophil; 
BNeu - basophillic neutrophil; Lym  - lymphocyte; M on - monocyte; Eos - eosinophil; Bas - 
basophil; P L T  - platelet (x  109/L ).

Table 8.3: Full haematology results. Cat ED numbers and treatment are indicated 
(dose of frSCF in |ig/kg/day or control). Normal values are derived from research 
cats housed in the same facility (Grant, 1995).
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Effect of feline stem cell factor on peripheral 
blood neutrophil counts

a.o

30 -

25 -

20  -

15 -

10 -

10

Time (days)

200 mcg/kg frSCF 
100 mcg/kg frSCF 
25 mcg/kg frSCF 
100 mcg/kg BSA

Figure 8.2: Effect of frSCF upon the peripheral neutrophil counts of cats. There is a 
dose dependent, acute increase in neutrophil counts in the cats receiving either 200 
Hg/kg or 100 pg/kg frSCF which occurs between 0- 12  hours after injection.
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Marrow H32
Pre

200
Post

H36
Pre

200
Post

H31
Pre

100
Post

H33
Pre

100
Post

H35
Pre

25
Post

H34
Pre

C
Post

H45
Pre

C
Post

A 4 NR 2 26 2 18 2 2 0 10 14 4 0 14
8 2 2 12 2 6 4 0 0 4 12 4 0 4
4 8 10 8 8 14 6 0 2 4 4 0 0 2

Mean 5.3 5.0 4.6 15.3 4.0 12.7 4.0 0.7 0.7 6.0 10.0 2.7 0.0 6.7
SD 2.3 4.2 4.6 9.4 3.4 6.1 2.0 1.2 1.2 3.5 5.3 2.3 0.0 6.4
D 60 NR 68 150 84 52 100 56 42 NR 70 30 NR 44

64 36 62 98 48 38 70 36 48 58 70 78 NR 64
40 36 54 108 42 52 80 8 50 28 28 62 NR 46

Mean 54.7 36.0 61.3 119 58.0 47.3 83.3 33.3 46.7 43.0 56.0 56.7 51.3
SD 12.9 0.0 7.0 27.6 22.7 8.0 15.3 24.1 4.2 21.2 24.3 24.4 11.0

Blood H32
Pre

200
Post

H36
Pre

200
Post

H31
Pre

100
Post

H33
Pre

100
Post

H35
Pre

25
Post

H34
Pre

C
Post

H45
Pre

c
Post

A 2 0 0 1 0 1 0 1 0 0 1 0 0 0
0 0 0 2 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0

Mean 1.0 0.0 0.0 1.0 0.0 0.7 0.3 0.4 0.0 0.0 0.7 0.0 0.0 0.0
SD 1.0 0.0 0.0 1.0 0.0 0.6 0.6 0.6 0.0 0.0 0.6 0.0 0.0 0.0

D 0 16 0 16 0 6 0 3 0 NR 0 2 NR 1
2 7 0 14 0 4 0 3 0 1 1 0 NR 0
2 NR 0 6 1 1 0 3 0 0 0 0 NR 0

Mean 1.4 11.5 0.0 12.0 0.4 3.7 0.0 3.0 0.0 1.0 0.3 0.7 0.4
SD 6.4 6.4 0.0 5.3 0.6 2.5 0.0 0.0 0.0 1.0 0.6 1.2 0.6

Table 8.4: GM-CFC counts obtained before and following treatments indicated above 
(C = control; numbers refer to dose of frSCF in (ag/kg/day). A = cells plated in the 
absence of growth factors; D = cells plated with frSCF (100 ng/ml) and hGCSF (20 
ng/ml). Colony counts are given per 10 cells. NR = no results obtained.
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Figure 8.3: Typical colonies derived from circulating colony-form ing progenitor 
cells in A. untreated or control cats and B. cats receiving 100 - 200 pg/kg/day frSCF 
after seven days o f  treatm ent. Both colonies are shown at an objective m agnification 
o f  10 x; colonies are clearly larger in cats receiving frSCF.
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A.

B .

WKM (

Figure 8.4: Extram edullary splenic haemopoiesis is prom oted by frSCF. A. spleen o f 
control cat; B. spleen following administration o f  200 pg/kg/day frSCF for seven 
days. Increased immature nucleated red blood cells and an occasional foci o f 
granulopoiesis and immature m egakaryocytes are seen in B.
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Cat ID/treatment H32 200 H36 200 H31 100 H33 100 H35 25 H34 C H45 C

Tissue examined

Bone Marrow scant scant scant scant scant scant scant

Spleen 1.0+/-1.7 0.4 +/- 0.5 0.4 +/- 0.5 2.2+/-1.9 0.8+/-1.3 1.0+/-1.7 0.2 +/- 0.4

Liver scant scant scant scant scant scant scant

Stomach 4.8+/-1.3 2.6 +/- 0.5 3.8 +/- 0.8 3.6+/-1.5 3.4+/-1.5 1.8+/-1.9 ND

Duodenum 2.4+/-2.1 3.4+/-1.3 2.2+/-1.5 2.6+/-1.3 4.6+/-1.7 2.0+/-1.0 3.2 +/- 3.0

Colon 2.6 +/- 2.3 0.8 +/- 0.4 4.0 +/- 2.5 1.0+/-0.7 2.0+/-1.9 3.0+/-1.9 1.0+/-1.0

Lung: bronchial 3.4 +/- 2.2 2.6+/-1.8 4.0+/-1.2 0.0 +/- 0.0 3.8 +/- 2.6 1.6+/-1.8 1.6+/-2.3

Lung: alveolar 1.4+/-1.3 0.6 +/- 0.9 1.8+/-1.6 0.2 +/- 0.4 0.0 +/- 0.0 0.2 +/- 0.4 0.2 +/- 0.4

Skin: injection site 50.6 +/- 8.2 50.4+/-4.4 66.8 +/- 8.2 34.3+/-4.5 16.4+/-4.7 9.8 +/- 3.9 9.0+/-4.7

Skin: distant site 10.0+/-4.2 6.4+/-1.8 12.0 +/- 3.7 13.0+/-2.2 12.4 +/- 3.3 9.6 +/- 5.0 9.6 +/- 5.0

Table 8.5: Mast cell counts in the tissues of cats treated with rfSCF and in control 
cats. The counts shown are the mean of five counts per high power field of view +/- 
the standard deviation. Numbers of mast cells are significantly increased after seven 
days in the skin at the site of injection in cats receiving 100 or 200 (ig/kg/day frSCF 
(p < 0.05; data analysed using a three way analysis of variance).
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A.
* jtf
'  %

' |  ** X

B.

Figure 8.5: Recom binant fSCF increases the num ber o f  mast cells in the skin o f 
treated  cats at the site o f  injection. A. skin o f  control cat; B. skin o f cat treated with 
200 jag/kg/day frSCF for seven days. M ast cells appear round with blue cytoplasmic 
granules.
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8.4 DISCUSSION

8.4.1 FELINE RECOMBINANT SCF STIMULATES HAEMOPOEISIS IN  VIVO

The administration of recombinant cytokines may produce changes in mature blood 

cell numbers by two distinct mechanisms. Rapid alterations may occur due to the 

redistribution of blood cells between the circulation and other tissue compartments. 

More delayed changes in peripheral blood parameters can arise due to alterations in 

blood cell production i.e. haemopoiesis. Feline rSCF produced a rapid neutrophilia 

following treatment, an effect also seen in rats given mrSCF (Ulich et al, 1991). 

Unlike mrSCF, however, feline rSCF does not produce an acute lymphocytosis.

The effects of rSCF upon haemopoiesis have been studied in a number of species, and 

some differences exist. Baboons given 200 pg/kg/day hrSCF show increases in blood 

neutrophils after one to two weeks with maximal numbers seen after three to four 

weeks, thereafter levels fall slightly. RBC counts increase after one to two weeks, 

peak at three weeks and decrease thereafter; increases in lymphocyte, monocyte, 

eosinophil, basophil and reticulocyte counts are also seen over a similar time scale 

(Andrews et al, 1991; Andrews et al, 1992a). Mice treated with rmSCF show 

increases in neutrophil, lymphocyte, monocyte and reticulocyte numbers after one to 

two weeks (Molineux et al, 1991). Dogs or rats administered rSCF show similar 

changes in neutrophil counts but little change in RBC, lymphocyte, monocyte, 

eosinophil, basophil or reticulocyte counts (Ulich et al, 1991; Schuening et al, 

1993). No significant change in platelet counts is seen in any of these species. The 

failure to demonstrate such increases in mature blood cells following administration of 

frSCF was probably due to the limited time scale of this experiment. The major 

stimulatory effect of SCF is upon primitive progenitor cells; increases in mature cell 

numbers would occur only after these progenitor cells have matured.

In contrast to the variable nature of SCF induced changes in mature blood cell 

numbers, SCF administration consistently produces increases in bone marrow 

progenitor cells of multiple lineages (e.g. BFU-E, CFU-GM and CFU-Mix) 

irrespective of species. More primitive progenitors are also affected, with increases in
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marrow HPP-CFC seen in baboons (Andrews et al, 1992a) and increases in marrow 

CFU-S in mice (Molineux et al, 1991). Despite the lack of increase in blood platelet 

counts, BM megakaryocytes may be similarly increased (Andrews et al, 1991; 

Schuening et al, 1993). Similar increases in BM progenitors have been observed in 

human patients receiving 50 pg/kg/day hrSCF for 15 days (Tong et al, 1993). No 

changes in the relative number of BM colony forming cells was demonstrated in this 

study for cats treated with frSCF. This may have been due to the limited period of 

treatment. Determination of the absolute number of BM progenitors would give a 

more accurate indication of the ability of SCF to stimulate increases in their number. 

Feline SCF induced no changes in BM cellularity, in contrast to the increased 

cellularity seen in dogs (Schuening et al, 1993) and baboons (Andrews et al, 1991) 

following SCF treatment, albeit for a longer time period.

Increased extramedullary haemopoiesis was evident in the spleen and to a lesser 

extent the liver of cats receiving 100 to 200 fig/ml/day frSCF for seven days. 

Developing haemopoietic cells within the spleens of treated animals were mainly of 

the erythroid series, with lesser numbers of immature cells of granulocyte and 

megakaryocytes lineages evident. The appearance of normoblasts in the peripheral 

blood reflects such increased erythropoietic activity. This differential effect is in 

apparent contrast to previous reports of SCF as a multilineage growth factor but 

interestingly reflects the major haemopoietic defect seen in mutant SI and W mice, that 

of reduced erythropoiesis. However, this may be an apparent rather than a genuine 

difference, reflecting the maturation time of the respective cell lineages. The 

development of reticulocytes from stem cells takes approximately seven days in 

humans (Thompson, 1979) whilst granulocytes take approximately fourteen days to 

mature from stem cells (Bainton et al, 1971). Thus a growth factor, such as SCF, 

acting on multipotential progenitors will likely produce changes in numbers of 

immature erythroid cells sooner than changes in cells of the granulocyte series, 

assuming a non-differential effect. It is likely that had frSCF been administered for a 

longer time period a more profound increase in developing cells of the granulocyte 

and megakaryocyte series would have been seen.
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Increased numbers of haemopoietic progenitor cells in the spleen of frSCF treated 

cats may have been due to the direct stimulation of progenitor cells normally present 

within the spleen or may have resulted from the migration of marrow progenitor cells 

to the spleen and their subsequent proliferation therein. The latter mechanism has 

been observed during the recovery of mice from haemolytic anaemia induced by 

phenylhydrazine (Broudy et al, 1996) or treatment with the antibiotic thiamphenicol 

(Goris et al, 1990). It has been postulated that the splenic microenvironment is more 

suited to the rapid generation of erythrocytes, compared to the bone marrow, perhaps 

due to its greater capacity for expansion (Harrison et al., 1994). Conversely, 

recovery of granulocyte numbers following after a treatment of mice with 

thiamphenicol is mainly associated with maturation of granulocyte progenitors within 

the bone marrow rather than the spleen (Goris et al, 1990). Such 

compartmentalisation of haemopoiesis may provide an alternative explanation for the 

observation that the spleens of frSCF treated cats mainly showed evidence of 

increased erythropoiesis. However, this may be a feature peculiar to mice, a species 

in which the spleen contributes significantly to steady state haemopoiesis in the 

normal adult, particularly with regard to erythropoiesis (Jain, 1986). Determination 

of the absolute numbers of primitive CFC in feline BM and spleen would help to 

clarify their relative contributions to haemopoiesis during periods of increased demand 

in the cat.

8 .4 .2  M o b il is a t io n  o f  c o l o n y -f o r m in g  p r o g e n it o r  c e l l s

Feline rSCF stimulated increases in both the absolute (per litre) and relative (per 105 

cells) number of circulating colony-forming progenitor cells in cats given 100 to 200 

M-g/kg/day frSCF. The numbers of circulating GM-CFC in normal dogs (De Revel et 

al, 1994) and baboons (Andrews et al, 1992b) are approximately 3 to 5 per 105 

PBMC and 1 to 8 per 105 buffy coat cells cultured, respectively. The number of GM- 

CFC in normal cats, reported herein, was 0 to 1.4 per 105 blood cells cultured. It 

seems likely that this difference reflects a failure of the clonal assay to support the 

growth of feline GM-CFC rather than a genuine species difference. The availability of 

other recombinant cytokines (especially GM-CSF and G-CSF) should enable these
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cells to be cultured more effectively and enable more accurate determination of their 

numbers; alternatively culture supernatants derived from feline cells could be used as a 

source of colony stimulating activity (e.g. FEA cultures as used by Testa et al., 1983 

and Linenberger and Abkowitz, 1992). Recombinant canine SCF increases circulating 

GM-CFC to 26 to 62 per 105 PBMC when given at 200 pg/kg/day for eight days (De 

Revel et al, 1994). Baboons treated with the same dose of hrSCF for six days show 

increases to 27 to 56 per 105 buffy coat cells cultured (Andrews et al, 1992b). The 

numbers of circulating GM-CFC in treated cats rose by a similar factor, but absolute 

numbers remained lower, again probably due to deficiencies in the assay technique.

The mechanisms responsible for the mobilisation of stem and progenitor cells from the 

bone marrow are poorly understood. It is known, however, that a number of 

cytokines are able to upregulate or downregulate adhesion molecules on both 

haemopoietic and endothelial cells, which may provide a mechanism for the release of 

progenitor cells from the bone marrow. SCF may downregulate progenitor cell 

expression of the SCF receptor and thus disrupt the attachment mediated by 

membrane associated SCF and its receptor (Mauch et al, 1995). It is conceivable 

that the administration of high levels of soluble rSCF may competitively bind to 

progenitor cell SCF-R and disrupt binding to the endogenous cytokine. SCF and its 

receptor are believed to direct progenitor cell migration in vivo during embryogenesis 

(Matsui et al, 1990) and SCF is also a potent chemotactic and chemokinetic factor 

for haemopoietic cells in vitro (Okumura et al, 1996). The mobilisation of progenitor 

cells by SCF may, therefore, be mediated, at least in part, by active induction of their 

migration.

Stem cell factor has been used in baboons (Andrews et al, 1992b), dogs (De Revel et 

al, 1994) and mice (Briddell et al, 1993) to mobilise peripheral blood stem cells 

(PBSC) capable of marrow engraftment. This study suggests that feline SCF may be 

used to develop methods for peripheral stem cell transplantation in this species. The 

development of antibodies to progenitor cell markers (e.g. CD34) or improved in 

vitro assays for more primitive feline progenitor cells would help to establish whether 

frSCF mobilised primitive progenitors are likely to be capable of marrow engraftment.
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Prior to considering the use of such techniques in a clinical setting, it would be 

necessary to demonstrate the ability of mobilised progenitor and stem cells to 

successfully repopulate the marrow of recipient animals. Protocols for the 

mobilisation of PBSC in humans generally use stem cell factor in combination with 

other cytokines such as G-CSF or following chemotherapy due to the ability of such 

combinations to act synergistically (discussed in chapter nine). The development of 

other recombinant feline cytokines will allow investigation of such applications in the 

cat.

8.4.3 POTENTIAL SIDE-EFFECTS OF SCF THERAPY

There were few side effects associated with the administration of frSCF, which is in 

agreement with other studies using animal models. Adverse effects that have been 

reported in other species, following treatment with SCF, appear to be largely 

mediated via its effects upon mast cells. Baboons given 200 pg/kg/day hrSCF, by 

intravenous infusion showed no adverse effects except one animal which developed 

transient wheezing, respiratory distress and facial oedema. Its use in dogs at a dose 

rate of 200 pg/kg/day produced facial oedema during the first few days of therapy, 

which then subsided (Schuening et al, 1993). When used in the same species at 100 

pg/kg/day, no initial adverse effects were seen, but with continued use facial oedema, 

pyrexia, loss of appetite and general malaise were seen after five weeks (Dale et al,

1995). The most frequent abnormalities reported in a Phase I trial in human patients 

with advanced breast cancer were dermatological associated, including urticaria at 

local (injection site) and distant sites. At a dose of 50 pg/kg/day, four out of ten 

patents developed dose-limiting upper respiratory tract symptoms, including cough, 

laryngospasm and hoarseness (Demetri et al, 1993). Thus the maximum tolerated 

dose of rSCF appears less in humans than for animal models. Premedication with 

histamine receptor antagonists and P-agonists may reduce the incidence of serious 

adverse effects (Glaspy, 1996).

Humans also appear to show greater sensitivity to the systemic effects of SCF upon 

mast cell proliferation, exhibiting increased dermal mast cell numbers at sites distant 

to that of the injected cytokine, following subcutaneous injection of 50 pg/kg/day
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hrSCF for fourteen days (Costa et al, 1996). Conversely, administration of 100 

p,g/kg/day of rhSCF to primates for three weeks produces local but not distant 

increases in dermal mast cell numbers (Galli et al, 1993). The effect of frSCF, 

administered to cats, appears similar in this respect, producing only a local increase in 

mast cell numbers. Unlike rhSCF administered to primates at a similar dose (Galli et 

al, 1993), frSCF treatment of cats did not produce an increase in mast cells in the 

liver, spleen or bone marrow. This may reflect a genuine species difference in 

biological activity or distribution or may be due to the shorter period of administration 

of the recombinant cytokine in this study. The local increase in mast cells seen may 

result either from local proliferation of tissue mast cells and/or due to chemoattraction 

of mast cells to the injection site.

8.4.4 S u m m a r y

The limited duration of this experiment likely restricted the extent to which frSCF 

induced increases in haemopoietic activity were seen. However, it is clear from 

studies in other species that recombinant SCF is able to act as a multilineage growth 

factor in vivo. That the effects of SCF in vivo are so marked in comparison to its 

effects as a single agent in vitro, may be due to its ability to act synergistically with 

endogenous growth factors or to the permissive effects of other components of the 

haemopoietic microenvironment (Andrews et al, 1991; Galli et al, 1994). The ability 

of frSCF to stimulate haemopoiesis and to increase circulating haemopoietic 

progenitor cells with no serious adverse effects implicates the growth factor as a 

potentially useful therapeutic agent in the domestic cat. This is considered within the 

proceeding chapter.
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GENERAL DISCUSSION

9.1 INTRODUCTION

The primary aims of this project were to clone the feline homologue of the cytokine 

stem cell factor (SCF), express the recombinant protein and characterise its biological 

activity in vitro and in vivo. These objectives were largely achieved and provide the 

background for future work investigating the role of the cytokine in feline 

haemopoiesis in health and disease. Furthermore, the demonstration that frSCF 

stimulates haemopoiesis and increases circulating progenitor cells in vivo suggests 

that the cytokine may provide a useful therapeutic agent in domestic cats. This 

chapter discusses the progress that has been made in the introduction of cytokines to 

clinical use in veterinary species and then considers the potential clinical applications 

of SCF in both humans and cats.

9.2 THE CLINICAL USE OF CYTOKINES IN DOMESTIC 

ANIMALS

There has been a great deal of interest in the potential applications of cytokines in 

domestic animals, both where the animals are used as models for human disease and in 

the specific treatment and prevention of animal diseases. Due to the limited or non 

availability of species specific cytokines, initial studies used human or murine 

homologues. However, such an approach is limited by two main factors. In the case 

of a number of cytokines, there is restricted or no activity in the non-native species. 

This is particularly evident for cytokines which exhibit low inter-species homology. 

Human and murine interleukin-3 proteins, for example, are only 29% homologous 

(Yang et al., 1986), and show no cross species activity (Gearing et al, 1994); it is not 

unexpected, therefore, that administration of human IL-3 to dogs has no significant 

effects (Ciekot et al., 1991). Where significant cross-species activity does exist, the 

use of a heterologous cytokine may lead to acute allergic reactions (signs of which 

include skin rashes, pyrexia and arthralgia) and prolonged administration can result in 

the production of neutralising antibodies to the cytokine in the recipient animal. 

Neutralising antibodies are seen in approximately 20% of dogs and 30% of cats 

following treatment with recombinant human erythropoietin (EPO). Furthermore, 

these antibodies may cross-react with the animals own EPO, leading to a non-
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regenerative anaemia (Gieger, 1992). Similar problems have been reported following 

the administration of recombinant human granulocyte colony stimulating factor to 

dogs (Lothrop et al, 1988). There is, however, less tendency for animals on 

immunosuppressive drugs to develop such antibodies, a situation which can arise 

when such cytokines are used in combination with conventional chemotherapy for the 

treatment of neoplastic disease (Goodman et al, 1990; Henry et al, 1990). 

Heterologous cytokines may also be considered for short term use, where antibody 

formation is unlikely to occur.

The molecular cloning of species specific cytokines and the subsequent production of 

recombinant proteins largely overcomes these problems, however it should be 

remembered that the choice of protein expression system can also influence both the 

biological activity and immunogenicity of such cytokines, even where a homologous 

cytokine is utilised (discussed in chapter four). Significant progress has been made 

within the last decade in the cloning of cytokines in both large and small veterinary 

species. Following production of the recombinant proteins, a number of experimental 

trials have been performed to evaluate their potential for prevention and treatment of 

disease. The potential range of applications of cytokines to clinical veterinary 

medicine is broad, illustrated by several examples of current interest. Equine 

interferon y has been cloned and its use as a vaccine adjuvant and an antiviral agent 

are being investigated (Nicolson et al, 1994). Recombinant canine G-CSF has been 

used in the dog to reduce the myelosuppressive effects of chemotherapy associated 

with drugs such as mitoxantrone (Ogilvie et al, 1992). Bovine cytokines, including 

IL-2 , IL-lp and G-CSF have been investigated for their potential in the prevention 

and treatment of mastitis (Nickerson et al, 1989a; Nickerson et al, 1989b; Coyle et 

al, 1992).
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9.3 CLINICAL APPLICATIONS OF STEM CELL FACTOR IN 

HUMANS

9.3.1 T r a n s p l a n t a t io n  t h e r a p y

9.3.1.1 Peripheral blood stem cell transplantation

Peripheral blood stem cells (PBSC) are being increasingly used in humans, as a source 

of marrow repopulating cells, in preference to traditional BM transplantation 

techniques. Autologous bone marrow transplantation (ABMT) is frequently used 

following myelosupressive chemotherapy or radiotherapy with the aim of rapidly 

restoring normal haemopoietic function, in patients where allotransplantation is not 

possible. Peripheral blood stem cell transplantation (PSCT) is used in the same 

setting, with identical objectives. PSCT, however, has a number of distinct 

advantages over the use of bone marrow for autologous transplantation (Kanz et al, 

1993; Kessinger, 1993; Molineux and Dexter, 1995):

i. PSCT is possible in patients with abnormalities that hamper attempts to obtain a 

marrow sample by aspiration, including hypocellularity, fibrosis or neoplastic 

infiltration of the bone marrow or tumour metastases within the overlying skeletal 

bone.

ii. PSCT is often associated with more rapid recovery of normal haemopoietic 

parameters (especially peripheral blood platelet and neutrophil counts) following 

transplantation, than is seen with ABMT.

iii. PBSC collection is possible without recourse to general anaesthesia, and can take 

place in an outpatient setting.

Typical methodologies for PSCT comprise a regime for mobilisation of stem cells 

followed by cell collections via leukopheresis. The cells may then be frozen and 

reinfused into the patient following myelosupressive chemotherapy. PBSC may be 

mobilised following chemotherapy alone, by the use of haemopoietic growth factors 

or by a combination of the two techniques. It was initially recognised that PBSC 

were elevated following high dose chemotherapy, coinciding with the recovery of
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WBC and/or platelet counts. Increases in circulating CFU-GM of 7 - 25 fold 

following chemotherapy have been reported, with cyclophosphamide producing 

higher and more predictable increases. A number of colony stimulating factors have 

been demonstrated to produce consistent rises in PBSC. G-CSF increases circulating 

CFU-GM by 4 - 46 fold in healthy humans. GM-CSF produces increases of 3 - 18 

fold, but has a higher incidence of side effects such as aching bones, fever and joint 

pain (reviewed by Craig, 1994). SCF alone produces a variable rise in PBSC or 

progenitor cells, the effect depending upon dose, duration of therapy, method of 

administration and interspecies differences, as discussed in chapter eight. Mobilisation 

of PBSC in humans using SCF alone is constrained by dose-limiting side effects. 

However, in combination with G-CSF, SCF produces marked increases in PBSC, 

with minimal side effects. Low-doses of SCF in humans (~10 fig/kg/day), when 

combined with G-CSF, produce a three fold greater rise in peripheral CD34+ cells 

than G-CSF alone (Briddell, 1994; Glaspy, 1994). In addition, cells mobilised in this 

way appear more capable of successfully engrafting animals following lethal radiation 

than cells mobilised with either agent alone (Andrews et al, 1995). This synergy 

between SCF and G-CSF has also been reported in mice (Yan et al, 1994), dogs (De 

Revel et al, 1994) and baboons (Andrews et al, 1994). The use of combinations of 

growth factors following high dose chemotherapy produces still greater rises in PBSC 

(Craig, 1994). It is likely that hrSCF will be an important component of future 

protocols for PSCT in humans.

9.3.1.2 Bone marrow transplantation

Combinations of growth factors, including SCF, may also be used to improve the 

efficiency of standard bone marrow transplantation procedures. The use of growth 

factors prior to the harvesting of bone marrow for transplantation results in an 

expansion of the progenitor and stem cell populations within the donor marrow. 

Their subsequent utilisation for bone marrow transplantation may facilitate 

accelerated engraftment (Morstyn et al, 1994; Bodine et al, 1996).
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9.3.1.3 E x vivo expansion of progenitor cells

The maintenance and expansion of haemopoietic progenitor and stem cells in vitro has 

been suggested as a method to increase the number of cells available for engraftment. 

Pluripotent haemopoietic stem cells (PHSC) and progenitor cells, derived from 

marrow, peripheral blood or umbilical cord blood may be incubated in vitro with a 

combination of growth factors; following expansion of cell numbers they may used for 

transplantation. Successful transplantation requires sufficient progenitor cells to 

provide short-term haemopoietic reconstitution and also sufficient cells with long term 

repopulating ability (PHSC). A primary concern regarding the use of ex vivo 

expanded cells for transplantation has been the loss of PHSCs in culture due to their 

differentiation into more mature progenitors. However, ex vivo expanded cells have 

been used successfully to produce long term engraftment of mice (Neben et al, 

1994). Additionally, the expansion of cells in this way, by producing more mature 

progenitors, may allow faster recovery of normal haematological parameters 

following engraftment (Han et al, 1993). SCF has been frequently included in the 

combination of growth factors used to expand cell populations in this way, although 

optimum protocols remain to be determined (Molineux and Dexter, 1995). 

Additionally, cell populations expanded in this way are amenable to infection with 

retrovirus vectors and may be suitable targets for gene-transfer therapy (Bemad et al, 

1994; Dunbar et al, 1996). Future possibilities for ex vivo expansion include the 

large scale production of red blood cells for transplantation or dendritic cells for 

immunotherapy (McAdams et al, 1996).

9 .3 .2  T r e a t m e n t  o f  C y t o p e n ia s

The potential use of SCF for the treatment of inherited and acquired bone marrow 

failure syndromes has been investigated. Inherited BM failure syndromes are rare 

disorders which are characterised by a cytopenia affecting one or more haemopoietic 

lineages. They are often associated with an increased risk of myeloid leukaemia. 

Successful treatment has generally resulted from the use of allogenic bone marrow 

transplantation, in those patients where this possibility existed. In other cases, 

treatments such as corticosteroids, androgens and immunosupressive agents have
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been used, but responses are generally short lived and relapses common (Gillio and 

Gabrilove, 1993). Preliminary studies have the cultured bone marrow in vitro that is 

derived from patients with inherited anaemias, including Diamond Blackfan anaemia 

(DBA), Fanconi's anaemia (FA) and dyskeratosis congenita. Despite, the lack of 

abnormalities associated with SCF and its receptor in DBA, a number of these 

patients show improved BFU-E colony formation in response to the addition of SCF 

(Abkowitz et al, 1991; Alter et al, 1992; Gillio and Gabrilove, 1993). Similar 

studies have been performed using BM cells from patients with aplastic anaemia 

(AA). SCF increases colony formation in vitro (especially BFU-E) in synergy with 

other growth factors (Wodnar-Filipowicz et al, 1992). Serum SCF concentrations in 

AA patients show a tendency to low normal levels when compared to controls, 

additionally patients with better clinical parameters (decreased requirement for 

transfusions and increased survival) tend to show higher serum SCF levels (Tong et 

al, 1993). These findings have prompted the suggestion that SCF should be 

considered for treatment of patients with such congenital and acquired disorders, 

regardless of the disease aetiology.

Interest has also been shown in the potential use of SCF in the treatment of cytopenias 

associated with human immunodeficiency virus (HIV) infection. Cytopenias are 

common in patients with acquired immune deficiency syndrome (AIDS), occurring in 

up to 70% of individuals (Brandi et al, 1995). The aetiology of such cytopenias is 

multifactorial. Potential causes include viral infection of progenitor cells or stromal 

cells, drug related effects (e.g. azidothymidine), secondary infections (e.g. 

Mycobacteria spp., Cryptococcus ne o f or mans), nutritional imbalances and 

haematological neoplasms (reviewed by Aboulafia and Mitsuyasu, 1991, Calenda and 

Chermann, 1992). Higher serum levels of SCF have been associated with prolonged 

survival in patients with HIV infection; furthermore decreases in serum SCF levels are 

seen with disease progression (Manegold et al, 1995). In vitro studies have shown 

the ability of hSCF to reduce the inhibition of BFU-E formation by azidothymidine, 

whilst not affecting its inhibition of HIV replication in lymphocytes or monocytes 

(Miles et al, 1991). A concern over the use of SCF in HIV infected patients would 

be the potential for the increased susceptibility of haemopoietic stem cells for infection 

with the retrovirus, due to the induction of cell division. The use of SCF in
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combination with anti-retroviral therapy may preclude this possibility (Harbol et al, 

1994).

9.3.3 R a d io p r o t e c t io n

Recombinant SCF is able to protect haemopoietic cells against otherwise lethal total 

body irradiation (TBI) both in vitro and in vivo (Zsebo et al, 1992; Leigh et al, 

1993). The protective effect in vivo is most marked when SCF is administered both 

before and after irradiation. This effect is thought to be mediated by the recruitment 

of stem cells from Go into an active phase of the cell cycle, presumably S phase 

(McNiece et al, 1993); cells in this phase of the cell cycle (undergoing DNA 

synthesis) are more resistant to the damaging effects of radiation (Sinclair, 1968). 

This influence upon cell cycle in haemopoietic cells also renders the cells more 

sensitive to S phase toxins (e.g. 5-FU) (Molineux et al, 1994); a phenomenon known 

as chemosensitisation. Unfortunately, unless a differential effect exists between 

normal and neoplastic tissue then both radioprotection and chemosensitisation are of 

limited clinical use. However, the use of SCF for chemosensitisation, in combination 

with BM reconstitution may prove a useful therapeutic modality in the future 

(Molineux and Dexter, 1995).

9.3.4 A d ju n c t iv e  T r e a t m e n t  t o  C h e m o t h e r a p y

Aside from its potential use in chemosensitisation, SCF may find clinical application in 

the support of standard dose chemotherapy. Its use in such circumstances would 

likely be in combination with other haemopoietic growth factors that have previously 

been used alone (e.g. G-CSF, GM-CSF). These colony stimulating factors have been 

used both before chemotherapy to reduce the incidence of cytopenias and following 

chemotherapy to treat any cytopenias that develop. Prompt treatment or prevention 

of severe neutropenia is essential in order to prevent the development of life 

threatening infections in such patients. Similarly thrombocytopenia, if untreated, can 

lead to a potentially fatal impairment of haemostasis. Colony stimulating factors may 

also allow escalation of chemotherapy protocols, potentially resulting in increased 

remission rates and survival times (Williams, 1994).
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9.3.5 O t h e r  P o t e n t ia l  U se s

The pleiotropic effects of SCF upon extra-haemopoietic tissues such as skin 

melanocytes or gonadal germ cells may present novel therapeutic opportunities in the 

future. There has been some interest in the use of SCF in the treatment of vitiligo, a 

skin disease characterised by focal hypopigmentation associated with an absence of 

melanocytes (Dippel et al, 1995; Glaspy, 1996). SCF and its receptor likely play an 

important role in normal spermatogenesis and oogenesis (Manova et al., 1993). At 

present there is limited information regarding the role of the SCF - SCF-R axis in 

disorders of spermatogenesis or oogenesis; further studies are required before a 

potential therapeutic role for SCF in their treatment can be suggested. The 

coexpression of SCF and its receptor may be involved the pathogenesis of certain 

germ cell tumours (Izquierdo et al, 1995); studies of SCF ligand or receptor 

expression may help in tumour classification and aid evaluation of prognosis.

9.4 POTENTIAL CLINICAL USES OF RECOMBINANT FELINE 

STEM CELL FACTOR

Potential clinical applications of SCF in cats are as widespread, in theory, as those 

suggested for human disease. However, the treatment of veterinary species is 

governed by economic and practical considerations that are less applicable for human 

patients. This aside, there are a number of areas which should be considered for 

further investigation.

Treatment options for defective haemopoiesis in small animals have previously been 

limited. Lithium carbonate has been used as a non-specific treatment in dogs with 

cytopenias associated with oestrogen therapy (Hall, 1992), cyclic haemopoiesis 

(Hammond and Dale, 1980) and suspected megakaryocytic hypoplasia (Murtaugh and 

Jacobs, 1985). Lithium treatment increases neutrophil and platelet counts in both 

humans (Lyman et al, 1980) and dogs (Hammond and Dale, 1980). Exposure of 

long term BM cultures to lithium leads to a sustained increase in granulocyte, 

monocyte and megakaryocyte production and an increase in colony forming cells 

(CFU-S, CFU-GM, CFU-Meg and HPP-CFC). This effect has been shown to be
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mediated, at least in part, by increases in the stromal cell production of cytokines, 

including GM-CSF, G-CSF and IL-6 (Quesenberry, 1992, and references therein). 

However, administration of lithium to healthy cats produces no increase in neutrophil 

counts, rather it is associated with significant toxicity manifested as anaemia, 

neutropenia and lymphopenia (Dieringer et al, 1990). The availability of recombinant 

haemopoietic cytokines, such as SCF, in small animals could provide the veterinary 

clinician with a new range of treatment options for cytopenias, including those caused 

by iatrogenic drug effects (e.g. oestrogens, griseofiilvin), chemotherapy, infectious 

agents (e.g. FeLV, FIV or feline parvovirus) and those considered idiopathic (causes 

of such cytopenias in cats have been reviewed by Baldwin and Ledet, 1994). Since 

SCF has effects on multiple haemopoietic lineages it may have a broad range of 

applications, regardless of the affected lineage. Given the demonstration of marked 

synergy of SCF with other cytokines in vitro and in vivo, the use of SCF in 

combination with lineage specific cytokines may provide a more rational approach to 

therapy than the use of single cytokines to treat cytopenias.

Feline immunodeficiency virus (FIV) is a lentivirus that is morphologically and 

biochemically related to HIV, but antigenically distinct (Pedersen et al, 1987). The 

virus infects cats, causing a similar range of clinical signs to those seen in humans 

infected with HIV. FIV infection in cats is commonly associated with haematological 

disorders that closely resemble those seen in HIV-seropositive patients. These include 

anaemia, neutropenia, lymphopenia and thrombocytopenia (Shelton et al, 1989; 

Shelton et al, 1990; Callanan et al, 1992; Shelton and Linenberger, 1995). It has 

thus become a valuable experimental model, facilitating studies which are not possible 

in humans. An area of particular relevance to this discussion, is the potential use of 

SCF and other cytokines in the treatment of such cytopenias. Clinical trials in 

experimental or naturally occurring cases of FIV infection could help establish the 

potential value of SCF in this regard. The model could be extended to investigate the 

use of SCF in combination with other haemopoietic cytokines. The effect of 

haemopoietic growth factors upon viral load, alone and in combination with anti­

retroviral drugs could also be determined. Feline rSCF could potentially be used as 

part of combination therapy for clinical cases of FIV with the aim of reducing the 

haemopoietic toxicity of reverse transcriptase inhibitors such as zidovudine.
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Bone marrow transplantation (BMT) has been performed in both dogs and cats. 

Conditions which have been treated in cats include lysosomal storage diseases, 

retroviral infections (Gasper et al, 1992) and myeloid leukaemia (Gasper et al,

1996). Although the actual transplantation procedure is relatively simple, preparation 

of the patient prior to BMT, and management of the immune-compromised patient 

post-transplantation are both difficult and expensive. This has therefore limited the 

use of BMT in feline patients to small numbers of animals, largely on an experimental 

basis. The use of recombinant cytokines such as SCF in BMT protocols may 

accelerate haemopoietic recovery post-transplantation and so simplify the procedure 

(Gasper et al, 1992). This may aid the transition of BMT, from being largely an 

experimental technique, to more widespread use within the clinics. The use of 

peripheral blood stem cell transplantation in animals has again been limited to 

experimental models, where SCF has formed an integral part of most mobilisation 

protocols. The use of both BMT and PBSC in veterinary medicine is restricted by 

such considerations as cost, availability of specialised equipment (e.g. leucopheresis 

equipment for PBSC) and technical expertise. This will likely restrict any use of the 

procedures to limited numbers of referral centres, where the facilities exist and 

intensive support post-transplantation can be offered.

9.5 FUTURE DIRECTIONS

Since cytokines are pleiotropic and interact in a complex manner, the administration 

of one cytokine in vivo may have wide ranging effects, mediated by alterations in the 

activity of other cytokines, that cannot be predicted by its in vitro actions. The 

situation becomes even more complex when considering the simultaneous or 

sequential administration of multiple cytokines. Experimental animal models could 

prove particularly useful in determining the optimum combination of cytokines for use 

in a given clinical procedure (e.g. PBSC mobilisation). The use of cytokines in 

combination will most likely result in the maximisation of their potential therapeutic 

value and minimise the risk of undesired side effects. In order to fully utilise such 

models it is important that a wide range of species specific cytokines are developed 

and also that other necessary reagents are available (e.g. monoclonal antibodies to
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specific cell surface markers such as CD34). With this consideration in mind we have 

been attempting the isolation of a number of other feline cytokines, both haemopoietic 

and immunomodulatory, and have recently cloned and expressed feline G-CSF 

(EMBL accession number Y08558; Dunham and Onions, manuscript in preparation).

These considerations are also applicable in the transition of cytokines from the 

laboratory to useful clinical tools. The development of cytokines as therapeutic 

agents, however, depends on a number of other factors. The commercial viability of 

new veterinary drugs depends upon their range of potential clinical applications, 

efficacy, ease of use, availability of alternative treatments and cost. The commercial 

application of recombinant DNA techniques to clinical veterinary medicine has 

hitherto been limited. A recombinant subunit vaccine for FeLV consisting of the viral 

glycoprotein gp70, expressed in Escherichia coli, has been produced and is now in 

widespread use (Marciani et al, 1991). Vaccines have a wide application, with all pet 

cats being possible recipients. This can offset the potentially high production and 

development costs. In the case of individual cytokines, however, potential clinical 

applications may be more limited, therefore this may constrain the development of 

cytokines for clinical use. SCF may have a broad range of applications such that it 

may prove suitable for exploitation in the veterinary clinic, particularly if combined 

with other cytokines, where lower doses are likely to be effective. Other 

haemopoietic cytokines that may be considered for commercial exploitation include 

feline EPO. Human EPO has been used with some success in the treatment of 

anaemia associated with low levels EPO that arise in cats with chronic renal failure, 

however acute and chronic side effects are possible due to its heterologous nature 

(Gieger, 1992). The development of the feline homologue could therefore provide a 

valuable new agent for the symptomatic treatment of this disease. Furthermore, the 

prevalence of CRF in older cats is relatively high, affecting 8% of cats aged 10 to 15 

years and 30% of cats over 15 years of age in one survey (Krawiec and Gelberg, 

1989). This high incidence combined with the tendency for cats to live longer due to 

improved health care an husbandry may make the cytokine commercially viable to 

produce.
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With regard to feline SCF itself, in order that its potential use in clinical cases can be 

evaluated it will be necessary to increase the scale of production and optimise 

expression of the cytokine. Purification techniques would need to be scaled up and 

validated and the product supplied in a suitable format (likely lyophilised in single use 

vials). The initial use of frSCF in limited numbers of clinical cases would be carried 

out under animal test certificates. Whilst frSCF is unlikely to find widespread clinical 

applications as a single agent, its potential utility in combination with other cytokines, 

both known and as yet undiscovered is difficult to foresee and will require further 

investigations.
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GENERAL ABREVIATIONS

°c degrees Celsius

Ml microlitre(s)

HM micromolar

2-ME (3 -mercaptoethanol

A adenine or adenosine; one letter code for alanine

A260/280/600 absorbance at 260, 280 or 600 nm

AA aplastic anaemia

Ab antibody

ABC avidin-biotin complex

ABMT autologous bone marrow transplantation

ACK ammonium chloride/potassium

Ag antigen

AP alkaline phosphatase

APS ammonium persulphate

ATCC American Type Culture Collection

ATP adenosine triphosphate

AUFS absorbance units, full scale

BFU-E burst forming unit eiythroid

BM bone marrow

BMDMC bone marrow derived mast cells

BMMC bone marrow mononuclear cells

bp base pair

Bq Becquerel

BSA bovine serum albumin

C cytosine or cytidine; one letter code for cysteine

CD cluster of differentiation

cDNA complimentary deoxyribonucleic acid

CFA complete Freund’s adjuvant

CFC colony forming cell

CFU colony forming unit

CFU-Bas colony forming unit - basophil

CFU-Eo colony forming unit - eosinophil

CFU-E colony forming unit - eiythroid

CFU-GEMM colony forming unit -granulocyte erythroid macrc

CFU-GM colony forming unit - granulocyte macrophage

CFU-Meg colony forming unit - megakaryocyte



CFU-Mono colony forming unit - monocyte

Ci curie

CM conditioned medium

Con-A concanavalin A

CPA cell proliferation assay

cpm counts per minute

Da dalton

dATP deoxyadenosine triphosphate

DBA Diamond Blackfan anaemia

dCTP deoxycytidine triphosphate

ddATP dideoyadenosine triphosphate

DDBJ DNA Data Bank of Japan

ddCTP dideoycytidine triphosphate

ddGTP dideoyguanosine triphosphate

ddNTP dideoynucleoside triphosphate

ddTTP dideoythymidine triphosphate

DEPC diethylpyrocaihonate

dGTP deoxyguanosine triphosphate

DMEM Dulbecco’s modified Eagle medium

DMF dimethyformamide

DMSO dimethylsulphoxide

DNA deoxyribonucleic acid

dNTP deoxynucleoside triphosphate

DTT dithiothreitol

dTTP deoxythymidine triphosphate

EDTA ethylenediaminetetraacetic acid

ELISA enzyme linked immunosorbent assay

EMBL European Molecular Biology Laboratory

EtBr ethidium bromide

FA Fanconi's anaemia

FBS/FCS fetal bovine serum/fetal calf serum

FCS fetal calf serum

FeLV feline leukaemia virus

FITC fluorescein isothiocyanate

FIV feline immunodeficiency virus

FPLC fast protein, peptide or polynucleotide liquid chromatography

G gauge; guanine or guanosine; one letter code for glycine

g gravity; gram(s)



GAP GTPase activating protein

GF gel filtration

GST glutathine S-transferase

GTP guanosine 5 ’ - triphosphate

HEPES Ar-2-hydroxyethylpiperazine-Ar’-2-ethanesulphonic acid

HIV human immunodeficiency virus

HRP horse radish peroxidase

IEX ion exchange

IFA incomplete Freund’s adjuvant

Ig immunoglobulin

IMDM Iscove’s modified Dulbecco’s medium

IPTG isopropyl-1 -thio-P-D-galactoside

IU international unit

kb kilobase

kDa kilodalton

KoAc potassium acetate

KLH keyhole limpet haemocyanin

L litre

LB Luria Bertani medium

M molar

MAP multiple antigenic peptide; mitogen-associated kinase

meg microgram

mg milligram(s)

mM micromolar

M-MuLV Moloney murine leukaemia virus

mRNA messenger ribonucleic acid

MWCO molecular weight cut off

NEAA non essential amino acids

nm nanometre

nt nucleotide

NTP nucleoside triphosphate

oligo(dT) oligodeoxythymidylic acid

ORF open reading frame

PAGE polyacrylamide gel electrophoresis

PB peripheral blood

PBMC peripheral blood mononuclear cells

PBS phosphate buffered saline

PBSC peripheral blood stem cell



PCR polymerase chain reaction

PFA paraformaldehyde

PGC primordial germ cell

PHA phytohaemagglutinin

PHSC pluripotent haemopoietic stem cell

PMSF phenylmethylsulphonyl fluoride

poly(A)+ polyadenylated (mRNA)

PSCT peripheral blood stem cell transplantation

RBC red blood cell

RNA ribonucleic acid

RNAse ribonuclease

rpm revolutions per minute

RPMI Rosewell Park Memorial Institute

rRNA ribosomal ribonucleic acid

RT reverse transcriptase

s.c. subcutaneous

SDS sodium dodecyl sulphate

SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis

SI Steel locus

SPF specific pathogen free

STWS Scott’s tap water substitute

T thymine or thymidine; one letter code for threonine

TBE Tris/borate/EDTA

TBS-T tris buffered saline-tween solution

TE Tris-EDTA buffer

TEA Tris/EDTA/acetate

TEMED N ,N ,N ’ ,N ’~ tetramethyl-ethylenediamine

Tm melting (or midpoint) temperature

Tris tris(hydroxymethyl)aminomethane

Tris-HCl Tris hydrochloride

tRNA transfer ribonucleic acid

TSS transformation and storage solution

UV ultraviolet

UWGCG University of Wisconsin Genetics Computer Group

W dominant white spotting locus

WBC white blood cell

Xgal 5-bromo-4-chloro-3-indolyl-(3-D-galactoside



CYTOKINES

BDNF brain-derived neurotrophic factor

CNTF ciliary neurotrophic factor

CSF colony stimulating factor

CSF-1 colony stimulating factor-1 (M-CSF)

EGF epidermal growth factor

EPO erythropoietin

FGF fibroblast growth factor

Fit fins-like tyrosine kinase

frSCF feline recombinant stem cell factor

G-CSF granulocyte colony stimulating factor

GGF glial growth factor

GH growth hormone

GM-CSF granulocyte macrophage colony stimulating factor

GRO growth-related oncogene

HGF hepatocyte growth factor

HRG heregulin

IFN interferon

IGF insulin like growth factor

IL interleukin

KGF keratinocyte growth factor

LIF leukaemia inhibitory factor

M-CSF macrophage colony stimulating factor

MCP macrophage chemoattractant protein

MIP macrophage inhibitory protein

NDF Neu differentiation factor

NGF nerve growth factor

NT neurotopin

OSM oncostatin-M

PDGF-A/B platelet derived growth factor

PRL prolactin

RANTES regulated upon activation, normal T cell expressed and secreted

SCF stem cell factor

SCF-R stem cell factor receptor

TGF transforming growth factor

TNF tumour necrosis factor

TPO thrombopoietin



VEGF vascular endothelial growth factor
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APPENDICES

A 1 MATERIALS 

A 1.1 R a d io c h e m ic a ls

[a-35S]-dATP (specific activity of > 37 TBq/mmol at reference date), for DNA 

sequencing and methyl-3H thymidine (specific activity of 74 Gbq/mmol at reference 

date), for cell proliferation assays were supplied by Amersham Life Science (Bucks, 

UK). [a-35S]-dATP was stored in 2 pi aliquots, in screw-top eppendorf tubes, at - 

70°C, until use. Methyl-3H thymidine was stored at +4°C.

A  1.2 G e n e r a l  C h e m ic a l s

Chemicals used were of analytical or ultrapure quality and were supplied by Sigma 

Chemical Company (Dorset, England), Fisons Scientific Equipment (Loughborough, 

UK) or BDH Ltd. (Poole, England), unless stated otherwise.

Caesium Chloride'. Boehringer Mannheim, UK.

Bacterial agar and tryptone: Oxoid.

Yeast extract and bactopeptone: Difco.

A  1.3 C o m p l e t e  K it s

Sequenase Version 2.0 DNA Sequencing Kit (USB, Cleveland, Ohio) distributed in 

the UK by Amersham Life Science. Stored at -20°C.

First-Strand cDNA synthesis kit, QuickPrep mRNA purification kit and Bulk GST 

purification module supplied by Pharmacia Biotech (Herts, UK).

TA cloning kit supplied by Invitrogen (NV Leek, The Netherlands).

Gene Amp PCR Core Reagents (Roche Molecular Systems Inc., New Jersey, USA) 

supplied in the UK by Applied Biosystems Ltd.

Sequitherm Long-Read Cycle Sequencing Kit (Epicentre Technologies, Madison, 

WI), distributed in the UK by Cambio (Cambridge, England).
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Wizard™ Minipreps DNA Purification System supplied by Promega (Madison, WI).

A  1.4 B a c t e r i a l  S t r a in s

E.coli INVotF' cells (Invitrogen): F' endAX recAl hsdRXlfa, mk+) supE44 thi-\

gyrA96 relAl 4>80/acZAM15 A(lacZYA-arg¥)\J 169 deoR+ X.

E.coli DH5a cells (Gibco BRL): F' <|)80/acZAM15 A(/acZYA-argF)U169 deoR

recAl endAX hsdRXlfa, mk+) supE44 X  thi-1 gyrA96 relAX.

Both of the above strains have the <J)80/acZAM15 marker, enabling blue-white 

screening by a-complementation of p-galactosidase encoded by vector DNA (e.g. 

pCR™ II). The genotypes endAX and hsdRXl give improved quality of miniprep 

DNA; rec AX denotes recombination negative, recommended for stable replication of 

high copy number plasmids.

E.coli JM105 cells (Pharmacia Biotech): thi rpsL end A  sbcR 15 hsdR4 SupE

A{lac-proAB)f¥' [traD36 roAE>+ LacP LacZAM15], Host restriction minus, 

modification plus.

E.coli BL21 cells (Pharmacia Biotech): F' ompT hsdS (rs*, mB’) gal

JM105 were used for cloning and maintenance of the pGEX-4T-l plasmid whilst 

BL21 were transformed with the pGEX plasmid for protein expression.

A 1.5 DNA

Plasmid, molecular weight marker and oligonucleotide DNAs were stored at -20°C.

A 1.5.1 Plasmid Vectors

pGEX-4T-l (Pharmacia Biotech)-. Plasmid designed for inducible, high level 

intracellular expression of genes as soluble fusion proteins with Schistosoma 

japonicum glutathione S-transferase (GST).
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pCR™ II Vector (Invitrogen): Plasmid designed for direct cloning of PCR products 

with 3’ deoxyadenonosine residues (A - overhangs), generated by the non-template 

dependent activity of Taq polymerase. The vector is supplied as linearised DNA with 

single 3’ deoxythymidine (T) residues allowing for efficient ligation of target sequence 

to vector.

pUC18 (Invitrogen)'. Plasmid supplied with TA cloning kit for use as positive control 

for verifying the transformation efficiency of competent bacteria; concentration of 0.1

|Lig/ml.

A 1.5.2 Molecular Size Standards

(|)X174 RF DNA/Hae III fragments (size range 72-1,353 bp) and X DNA/Hindlll 

fragments (size range 125-23,130 bp) were supplied by Gibco BRL.

A 1.5.3 Oligonucleotide Primers

Oligonucleotide primers for use in PCR amplification reactions and chain termination 

sequencing (other than M l3 universal primers) were synthesised by Alta Biosciences 

(Birmingham, UK). They were reverse phase purified and supplied as lyophilised 

DNA. Primers were reconstituted in dH20, quantified by spectrophotometry and 

diluted to a concentration of 20 pM.

P actin primers (Clontech) for use in PCR amplification reactions were supplied by 

Cambridge Bioscience. Primers supplied at 20 pM concentration.

M l3 universal primers (USB) for chain termination sequencing were supplied by 

Amersham Life Science.

IRD41 labelled primers for use with the Licor Model 4000 automated sequencer were 

supplied by Hybaid UK Ltd.

A  1.6 E n z y m e s

All enzymes were stored at -20°C, being removed immediately before use.
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Restriction enzymes and their associated reaction buffers were supplied by Gibco 

BRL.

T4 DNA Ligase was provided by Gibco BRL or Invitrogen (as part of the TA 

Cloning Kit).

Taq DNA polymerase was provided by Perkin Elmer Cetus, Norwalk, C.T.

Pfu DNA polymerase was provided by Stratagene Ltd, Cambridge, UK.

Murine Moloney Virus Reverse Transcriptase Enzyme was supplied by Pharmacia 

Biotech (as part of the cDNA cloning kit).

Sequitherm thermostable DNA polymerase (Epicentre Technologies) was supplied by 

Cambio.

RNAse A was supplied by Sigma.

A 1.7 P r o t e i n  sd s -p a g e  s t a n d a r d s

Prestained SDS-PAGE low range standard (20.5 - 112 KDa) was supplied by Biorad 

(Hercules, CA). MultiMark multi-colored standard (4 - 250 kDa) and Mark 12 wide 

range protein standard (2.5 - 200 kDa) were supplied by Novel Experimentation 

Technology, San Diego, CA. In each case 5 pi of standard were heated to 40°C for 

one minute prior to use to dissolve any precipitated solids.

A 1.8 E q u ip m e n t 

A 1.8.1 Major Equipment

Benchtop centrifuges: Omnifuge 2.0 RS and Megafuge 1.0 (Heraeus Sepatech - 

Germany).

Microcentrifuge: Biofuge 13 (Heraeus Sepatech).

Incubators for tissue culture: supplied by Heraeus Sepatech and Leec Ltd.

(Nottingham, UK).

Water baths: supplied by Grant Instruments (Cambridge) Ltd.(England). 

Spectrophotometer: Model DU640, Beckman.

Vacuum dessicator: Hetovac, Heto Laboratory Equipment, Denmark.

Manual Sequencing Apparatus: Flowgen.

Automatic Sequencing Apparatus: Licor Model 4000 sequencer, sequencing plates 

etc. - Licor Inc., Lincoln, Nebraska.
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Automated Processor: Kodak X-omat processor, model ME-3, Eastman Kodak Co., 

New York, USA.

Gel drier: Model 583 gel dryer, Biorad, Hercules, CA.

Pippetteman (P20, P200, PI000): supplied by Gilson Medical Electronics (Villiers-le- 

Bel, France).

Automatic Sarpette: supplied by Sarstedt.

Ultraviolet Transilluminator: supplied by UV Products Inc. (San Gabriel, CA). 

Autoradiography (Film) cassettes: with intensifying screens (Cronex), supplied by 

Dupont.

A  1.8 .2  C on su m ab les

Bottle top filters (0.22pm pore size) were supplied by Sigma; for sterilisation of tissue 

culture media and degassing and sterilisation of FPLC buffer solutions.

Screw top 1.5 ml eppendorf tubes, 0.5 ml and 1.5 ml flip top tubes were supplied by 

Treff AG (Degersheim, Switzerland).

Pipette tips were supplied by Sarstedt.

Syringes (two, five, 10, 20 and 50 ml) were supplied by Becton Dickinson.

Flat ended gel loading tips were supplied by Sorenson Bioscience Ltd.

Filter tip pipette tips (30 pi and 200 pi) were supplied by Rainin Instrument Co. 

(Woburn, MA); for use in setting up PCR reactions.

Acrodisc syringe filters (0.22 and 0.4 pm) were supplied by Gelman Sciences (Ann 

Abor, MI); used for sterilising of filtering small volumes of solutions.

Petri dishes, bijoux and universals were supplied by Greiner (Stonehouse, Glos., UK). 

Disposable, sterile scalpels were supplied by Swann-Morton (Sheffield, England).

A  1.9 E x p e r im e n t a l  A n im a l s

Cats'. Specific pathogen free (SPF) cats were obtained from a commercial breeding 

unit, housed at Glasgow University and fed a commercial diet. All procedures were 

carried out in accordance with Home Office regulations.

Rabbits'. SPF Rabbits, used to raise polyclonal antisera, were obtained from a 

breeding unit and maintained on a commercial diet in the University of Glasgow,
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Department of Biological Services. All procedures were carried out in accordance 

with Home Office Regulations.

Rats: Ten rats were used to prepare spleen cell conditioned medium for

supplementation of MC/9 growth medium, rats were aged 6 - 1 0  weeks at the time of 

spleen removal. They were obtained from a breeding unit and maintained on a 

commercial diet in the University of Glasgow, Department of Biological Services. All 

procedures were carried out in accordance with Home Office Regulations.

A  1.10 C e l l  C u l t u r e  M a t e r i a l s  

A  1.10.1 Cell Lines

TF-l cell line was kindly provided by Dr T. Mire-Sluis of NIBSC, Herts, UK.

MC/9 cells were supplied by ATCC (Rockville, Maryland, USA)

FEA cells were kindly supplied by M. Golder (Feline Virus Unit, Department of 

Veterinary Pathology, University of Glasgow)

A 1.10.2 Recombinant growth factors

Recombinant human GM-CSF (Sargramostim - Immunex, Seattle, WA) used for 

maintaining the TF-l cell line was a kind gift from Dr T. Mire-Sluis of NIBSC, Herts, 

UK.

Recombinant murine stem cell factor was supplied by Sigma.

Recombinant human G-CSF was supplied by R&D Systems Europe Ltd. (Abingdon, 

Oxon, UK).

Growth factors were typically stored at dilutions of 1 pg/ml in sterile PBS/0.1% BSA 

at -70°C.

A 1.10.3 Plasticware etc.

Tissue culture flasks, 96 well plates etc. were supplied by Costar (Cambridge, MA). 

Cryotubes and 35 mm petri dishes were supplied by Nunc (DK 400, Roskilde, 

Denmark).
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Falcon conical centrifuge tubes (15 and 50 ml) were supplied Becton Dickinson UK 

Ltd. (Oxford, UK).

A 1.10.4 Solutions, media and supplements

All solutions and media for cell culture were supplied by Gibco BRL.

A 1.10.4.1 Media.

All media were supplied as sterile solutions and stored at +4°C.

RPM I1640 medium: without L-glutamine.

Iscove 's modifiedDulbecco’s Medium (IMDM): with L-glutamine, 25 mM HEPES.

Dulbecco’s Modified Eagle’s Medium (DMEM): with L-glutamine, 4500 mg/L D- 

glucose, 25 mM HEPES.

A 1.10.4.2 Supplements.

Fetal Bovine Serum (FBS): virus screened, mycoplasma screened. FBS was heat 

inactivated at 56°C for 30 minutes then stored in 50 ml aliquots at -20°C until use.

L-glutamine: Supplied 200 mM (100 x) stock solution. This was stored in five 

millilitre aliquots at -20°C and routinely added to culture media prior to use.

Penicillin/streptomycin: Supplied as a 100 x stock solution of 10,000 units penicillin 

and 10,000 units streptomycin per millilitre. Stored in five millilitre aliquots at -20°C.

MEM Non Essential Amino Acids (NEAA): supplied as 100 x solution containing L- 

alanine (890 mg/L), L-asparagine (1320 mg/L), L-aspartic acid (1330 mg/L), L- 

glutamic acid (1470 mg/L), glycine (750 mg/L), L-proline (1150 mg/L) and L-serine 

(1050 mg/L). Stored at +4°C.
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L-arginine: Supplied as lyophilised powder; reconstituted in 10 ml of culture medium 

to make solution of 20 mg/ml and stored at +4°C.

L-asparagine: Supplied as lyophilised powder; reconstituted in 10 ml of culture 

medium to make solution of 5 mg/ml and stored at +4°C.

Folic acid: supplied as USP grade powder. Stored at room temperature; dissolved in 

culture medium and filter sterilised prior to use.

Trypsin-EDTA: Supplied as 10 x liquid, stored at -20°C. This was diluted 1:10 in 

sterile PBS prior to use and stored at +4°C.

2-Mercaptoethanol (2-ME): Supplied as 50 mM solution in Dulbecco’s PBS.

A  1.11 B u f f e r s ,  S o l u t i o n s  a n d  G r o w t h  M e d ia  

A  1.11 .1  W a te r

Tissue culture grade distilled water was supplied by Gibco BRL. Ultrapure water (for 

procedures involving recombinant DNA, PCR etc.) was provided by a Millipore Q50 

water purification system (Millipore (UK) Ltd., Watford, UK). A Millipore RO10 

system was used to supply water for preparation of general solutions and media.

A 1.11.2 Antibiotics

Ampicillin (Penbritin™ - Beecham Research (Herts, England)): Solution of 100

mg/ml prepared by addition of 5 ml of dH20 to vial of ampicillin; filter sterilised and 

stored in aliquots at -20°C until use.

Spectinomycin (Sigma): Supplied as powder containing 654(iig active base per mg; 

stored at +4°C.
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A 1.11.3 Buffers and solutions

10 x TBE Buffer. Tris base 216 g, boric acid 110 g, EDTA 16.9 g. pH 8.2/8.3, made 

up to 2 L.

50 x TAE Buffer Solution'. Tris base 484.5g, NaOAc 272.15 g, NaCl 116.8 g, 

Na2EDTA 74.45 g. pH adjusted to 8.15 with glacial acetic acid and made up to 2 L 

volume.

SDS-PAGE Protein Gel Fix-Stain Solution'. dH20  45 ml, methanol 45 ml, HAc 10 ml, 

Coomassie Brilliant Blue R250 0.25g. Filtered through Whatman No. 1 filter paper.

Lysis Buffer. 25 mM Tris HC1 pH 8.0, 10 mM EDTA, 50 mM Glucose.

1% SDS/ 0.2M NaOH: Made up immediately prior to use by combining equal 

volumes of 2% SDS and 0.4MNaOH.

KoAc: 60 ml 5M Potassium acetate, 11.5 ml acetic acid, 28.5 ml dH20.

1M Tris HCl: 121g Tris base, 800ml dH20. Adjusted to desired pH with 

concentrated HCl and made up to 1L.

TE Buffer. 10 mM Tris-HCl (pH 8.0), 1 mM EDTA.

1 x PBS: 140 mM NaCl, 2.7 mM KC1, 10 mM Na2HP04 , 1.8 mM KH2P 04 (pH 7.3).

10 x DNA Gel Loading Buffer: 20% w/v Ficoll 400, 0.1 M Na2EDTA, pH 8, 1.0% 

w/v sodium dodecyl sulphate, 0.25% bromophenol blue, 0.25% xylene cyanol.

Ethidium bromide: made to a working solution of 3 mg/ml with dH20  in a fume 

cupboard. Stored away from light.
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10 x SDS-PAGE Electrode (Running) Buffer, tris base 60 g, glycine 288 g, SDS 20 

g. Made up to 2 L by addition of dH20.

Protein Sample Loading Buffer. SDS Reducing Buffer: 62.5 mM Tris-HCl, pH 6.8, 

20% glycerol, 2% SDS, 5% p-mercaptoethanol. dH20  3.0 ml, 0.5M Tris-HCl, pH 

6.8 1.0 ml, glycerol, 1.6 ml, 10% SDS 1.6 ml, p-mercaptoethanol 0.4 ml, 0.5% (w/v) 

bromophenol blue (in dH20) 0.4 ml; stored at 4°C. Sample diluted at least 1:4 with 

buffer and heated at 100°C for 5 minutes prior to loading gel.

10 x Tris Buffered Saline (TBS) '. Tris base 24.2 g, NaCl 80.0 g, HCl 38.0 ml. pH 7.6. 

dH20  to 1L.

10 x Semi Dry Transfer Buffer. Tris base (48mM) 58 g, glycine (39mM) 29 g, SDS 

(0.01%) 1 g. dH20  to 1L. Working stock was prepared prior to use by the addition 

of 100 ml 10 x stock to 200 ml methanol and 700 ml dH20.

ACKlysis buffer. 8.29 g NH4CI (0.15 M), 1 g KHCO3 (1.0 mM), 37.2 mg Na2EDTA 

(0.1 mM). Dissolved in 800 ml dH20, pH adjusted to 7.2 - 7.4 with 1 M HCl, then 

dH20  added to one litre.

X-gal solution: prepared as 40 mg/ml stock in dimethylformamide; stored at -20°C in 

the dark.

Sequencing gel solution (6%; for manual sequencing): prepared with 21 g ultrapure 

urea, five millilitres 10 x TBE buffer, six millilitres Long Ranger Gel solution (AT 

Biochem, Malvern, PA) and dH20  to 50 ml. This was filtered through a 0.4 (im 

syringe filter, and stored at +4°C for no longer than one week.

A 1.11.4 Bacteriological Media

Media was sterilised by autoclaving at 121 °C for 15 minutes, unless stated otherwise.
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LB Medium-. 20 g tryptone, 20 g NaCl, 10 g Yeast Extract, to 2 L with dH20, pH 

adjusted to 7.0 with NaOH.

SOC Medium: 2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KC1, 10 mM 

MgCl2, 10 mM MgSC>4, 20 mM glucose.

2YTmedium (Gibco BRL): SELECT peptone 140 16 g/L, yeast extract 10 g/L, NaCl 

5 g/L.

TSS (Transformation and storage solution) Buffer, tryptone 1.0 g, yeast extract 0.5 

g, NaCl 0.5 g, polyethylene glycol (MW 3350) 0.8 g, DMSO 5.0 ml, MgCl2 (1 M) 5.0 

ml. Combined in 70 ml dH20, pH adjusted to 6.5 with HCl or NaOH, volume made 

up to 100 ml with dH20  and then filter sterilised. Stored at 4°C for up to six months.
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A  2 FPLC PURIFICATION PROGRAMS 

A  2.1  A n io n  E x c h a n g e  C h r o m a t o g r a p h y

Buffer A = 20 mM TrisHCl (pH 8.0).

Buffer B = 20 mM TrisHCl 1.00 M NaCl (pH 8.0).

A 2.1.1 Column Equilibration

0 . 0  CONC B% 0 .0
0 . 0  ML/MIN 1 . 0 0
0 . 0  CM/MIN 0 . 2 5
0 . 0  VALVE. POS 1 . 1
0 . 0  MONITOR 1
5 . 0  CONC B% 0 .0
5 . 0  CONC B% 100

1 5 . 0  CONC B% 100
1 5 . 0  CONC B% 0 .0
2 0 . 0  CONC B% 0 .0

A  2 .1 .2  SCF Purification

0 .0  CONC B% 0 .0
0 .0  ML/MIN 1. 00
0 . 0  CM/MIN 0. 50
0 . 0  MONITOR 1

10 . 0  CONC B% 0 . 0
10 . 0  VALVE.POS 1 . 1
10 . 0  HOLD (sample loaded into superloop then CONT pressed).
15 . 0  VALVE.POSN 1. 2
10 . 0  CM/MIN 1. 00
4 0 . 0  CONC B% 0. 0
4 0 . 0  VALVE.POS 1 . 1
4 0 . 0  PORT .SE T  6 . 1  (starts Fraction Collector).
70 . 0  CONC B% 35 . 0

The Fraction collector (FRAC-100 - Pharmacia) was programmed with a delay of 10 

minutes and a fraction size of 0.5 ml. The chart recorder was programmed to give 2 

AU280 (absorbance units at 280 nm) at full scale deflection.
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A 2.2 G e l  F i l t r a t i o n  C h r o m a to g r a p h y

Buffer A (storage buffer) = 20 % ethanol.

Buffer B (Eluent) = 0.15 M NaCl, 12.3 mM KH2P04, 37.7 mM N a^PO , (pH 7.0). 

METHOD NO. 1

(equilibrates column with elution buffer prior to use)

0 .0 CONC B% 100
0 .0 ML/MIN 0 . 7 5
0 .0 CM/MIN 0 .0 0
0 .0 VALVE. POS 1 .1

1 6 0  . 0 ML/MIN 1 .0 0
4 0 0 . 0 CONC B% 100

METHOD NO. 2

(purification/calibration protocol)

0 .0 CONC B% 100
0 .0 ML/MIN 1 .0 0
0 .0 CM/MIN 0 . 5 0
0 .0 VALVE. POS 1 .1
0 .0 HOLD (sample loaded
0 .0 VALVE. POS 1 .2
0 . 0 PORT. SET 6 .1
0 .0 MONITOR 1

200 . 0 CONC B% 100
200 . 0 PORT. SET 6 .0
200 . 0 CALL METH 0

METHOD NO. 0

(equilibrates column in 20% EtOH for storage).

0 . 0  CONC B% 0 . 0
0 . 0  ML/MIN 0 . 5 0
0 . 0  CM/MIN 0 . 0 0

4 0 0 . 0  CONC B% 0 .0
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A 3 BRADFORD ASSAY CALIBRATION RESULTS

The graph below shows a typical calibration curve obtained by the Bradford assay as 

detailed in 2.2.6.1. It can be seen that the use of BSA as a standard results in the 

under estimation of the concentration of frSCF in a sample by a factor of 

approximately two, within the concentration range shown.
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A 4 PREDICTED ANTIGENICITY OF THE HUMAN CD34 

PROTEIN

The antigenicity of the deduced hCD34 protein was predicted, by the method of 

Jameson-Wolfe, using the UNIX - version 7 of the GCG program "PeptideStructure". 

The output from the program, which is shown below, also contains predictions of 

hydrophilicity using the method of Kyte and Doolittle, surface probability according 

to Emini, chain flexibility according to Karplus-Schulz, secondary structure according 

to Chou-Fasman, and secondary structure according to Gamier-Osguthorpe-Robson. 

Secondary structure abbreviations: T = turn; B = beta sheet; H = alpha helix.

P o s AA G l y c o S  H y P h i l S u r f P r F l e x P r C F - P r e d GORPred A l - I n d

1 M 1 . 1 5 0 1 . 1 1 1 1 . 0 0 0 0 .  900
2 P 1 . 1 0 0 0 .  914 1 . 0 0 0 T T 1 . 5 5 0
3 R 1 . 0 3 3 1 . 0 3 2 1 . 0 0 0 T T 1 . 7 0 0
4 G 0 . 6 2 9 1 . 0 5 3 1 . 0 0 0 T T 1 . 7 0 0
5 W 0 . 3 5 7 0 . 5 6 2 0 .  975 B T 0 . 7 0 0
6 T . - 0 . 2 2 9 0 . 1 5 4 0 .  952 B B - 0 . 3 0 0
7 A . - 1 . 4 1 4 0 . 1 2 8 0 .  938 B B - 0 . 6 0 0
8 L . - 2 . 0 1 4 0 . 1 0 0 0 .  931 B B - 0 . 6 0 0
9 C . - 2 . 0 2 9 0 . 0 9 3 0 .  931 B B - 0 . 6 0 0
10 L . - 2 . 6 7 1 0 . 0 7 6 0 .  934 B B - 0 . 6 0 0
11 L . - 2 . 9 5 7 0 .  07 6 0 .  939 B B - 0 . 6 0 0
12 S . - 2 . 1 8 6 0 . 2 2 0 0 .  952 B B - 0 . 6 0 0
13 L . - 1 . 7 1 4 0 . 3 5 7 0 .  980 B B - 0 . 6 0 0
14 L . - 1 . 1 1 4 0 . 4 2 8 1 . 0 1 1 B - 0 . 4 5 0
15 P . - 0 . 9 7 1 0 . 2 7 7 1 . 0 3 6 T - 0 . 0 5 0
16 S . - 1 . 3 5 7 0 . 3 3 2 1 . 0 3 9 T - 0 . 0 5 0
17 G . - 0 . 7 0 0 0 . 5 4 0 1 . 0 1 2 T B - 0 . 0 5 0
18 F . - 0 . 7 0 0 0 . 2 8 8 0 .  975 B - 0 . 6 0 0
19 M . - 0 . 4 2 9 0 . 3 5 9 0 .  952 B - 0 . 6 0 0
20 S . - 0 . 0 4 3 0 . 5 8 3 0 .  959 . B - 0 . 3 0 0
21 L 0 . 4 0 0 1 . 0 8 3 0 .  993 . 0 .  45 0
22 D 0 . 8 5 7 1 . 0 8 3 1 . 0 4 3 t T 1 . 5 0 0
23 N 1 . 2 2 9 1 . 1 6 6 1 . 0 8 0 T T 1 . 7 0 0
24 N G 0 . 8 5 7 1 .  428 1 . 0 9 6 T 1 . 3 0 0
25 G 1 . 5 0 0 1 . 2 3 4 1 . 0 9 5 T 1 . 3 0 0
2 6 T 1 . 2 2 9 1 . 1 8 7 1 . 0 7  9 0 .  900
27 A 1 . 2 2 9 1 . 2 7 8 1 . 0 6 4 0 .  900
28 T 0 . 1 8 6 1 . 0 6 5 1 . 0 4 8 0 . 6 0 0
29 P 0 . 3 5 7 1 . 1 4 1 1 . 0 4 0 0 . 6 0 0
30 E 0 . 3 5 7 1 . 6 3 0 1 . 0 3 7 0 . 6 0 0
31 L 1 . 1 1 4 1 .  957 1 . 0 4 4 0 .  90 0
32 P 1 . 0 7 1 1 . 2 5 2 1 . 0 6 6 0 .  900
33 T 0 . 9 4 3 1 . 0 4 3 1 . 0 8 4 T 1 . 3 0 0
34 Q 0 . 0 4 3 1 . 0 9 6 1 .  092 t T 1 . 2 0 0
35 G 0 . 7 0 0 0 .  950 1 . 0 8 5 t 0 .  950
36 T 0 . 9 7 1 1 . 0 5 8 1 . 0 5 8 B 0 .  9 00
37 F 0 . 2 7 1 0 .  453 1 . 0 2 9 B 0 . 4 5 0
38 S . - 0 . 1 1 4 0 . 6 1 4 1 . 0 1 6 B - 0 . 1 5 0
39 N G - 0 . 0 7 1 0 . 6 1 4 1 . 0 1 2 B - 0 . 1 5 0
40 V 0 . 3 2 9 1 . 1 4 0 1 . 0 1 7 B 0 . 6 0 0
41 S 0 . 1 2 9 0 . 6 3 2 1 . 0 2 6 B 0 . 4 5 0
42 T 0 . 1 2 9 0 . 5 2 6 1 . 0 1 9 B 0 . 4 5 0
43 N G - 0 . 1 8 6 1 . 1 1 1 1 . 0 0 5 B 0 . 0 0 0
44 V 0 . 9 1 4 1 . 4 3 6 0 .  991 B 0 . 7 5 0
45 S 1 . 3 0 0 1 . 7 2 3 0 .  985 B 0 . 7 5 0
46 Y 1 . 3 0 0 1 . 5 4 6 0 .  995 B T 1 . 1 5 0
47 Q 0 . 9 0 0 3 . 0 0 7 1 . 0 2 0 B T 1 .  3 00
48 E 1 . 6 0 0 3 . 2 3 8 1 . 0 4 6 T 1 . 3 0 0
49 T 1 . 7 1 4 3 . 1 9 6 1 . 0 6 3 0 .  900
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P o s AA G l y c o S  H y P h i l S u r f  P

50 T 1 . 6 4 3 2 .  473
51 T 1 . 2 4 3 2 . 0 6 1
52 P 0 . 2 0 0 1 . 1 7 8
53 S 0 . 1 5 7 0 .  807
54 T 0 . 1 7 1 0 . 7 5 0
55 L 0 . 1 7 1 0 . 7 0 0
56 G 0 . 0 5 7 0 . 7 0 0
57 S . - 0 . 6 0 0 0 . 4 0 0
58 T . - 0 . 2 4 3 0 .  660
59 S 0 . 5 2 9 1 . 0 3 1
60 L . - 0 . 1 2 9 0 . 5 7 1
61 H . - 0 . 1 2 9 0 . 5 3 0
62 P 0 . 2 7 1 0 . 6 8 5
63 V 0 . 6 1 4 1 . 1 3 1
64 S 1 . 2 1 4 0 . 8 2 2
65 Q 1 . 2 5 7 0 . 8 5 5
66 H 1 . 5 2 9 1 . 9 9 5
67 G 1 . 8 7 1 1 . 5 0 4
68 N 1 . 8 5 7 1 . 2 5 3
69 E 1 . 4 5 7 1 . 3 2 9
70 A 1 . 5 0 0 2 . 1 6 0
71 T 0 . 8 0 0 0 .  942
72 T 0 . 4 0 0 0 . 7 8 5
73 N G 0 . 4 0 0 1 . 3 4 5
74 I 0 . 7 5 7 1 . 3 4 5
75 T 0 . 7 5 7 1 . 3 4 5
76 E 0 . 0 5 7 0 . 6 2 1
77 T 0 . 1 1 4 1 . 7 7 1
78 T 0 . 3 5 7 1 . 0 6 3
79 V 0 . 3 5 7 0 .  886
80 K . - 0 . 0 2 9 0 .  822
81 F . - 0 . 0 2 9 0 .  822
82 T . - 0 . 0 1 4 1 . 4 8 5
83 S . - 0 . 0 1 4 0 . 5 5 1
84 T . - 1 . 2 1 4 0 . 4 4 6
85 S . - 0 . 7 1 4 0 . 4 4 6
86 V . - 0 . 7 0 0 0 . 4 4 6
87 I . - 1 . 4 1 4 0 . 2 2 9
88 T . - 1 . 3 2 9 0 . 2 6 8
89 S . - 1 . 3 8 6 0 . 3 5 8
90 V . - 0 . 2 8 6 0 .  821
91 Y 0 . 4 5 7 0 .  821
92 G 0 . 8 5 7 0 .  985
93 N 0 . 8 5 7 1 . 7 7 8
94 T 1 . 5 7 1 1 . 5 2 1
95 N G 0 . 7 8 6 1 . 1 4 0
96 S 1 . 2 2 9 1 . 2 2 8
97 S 0 . 8 4 3 1 . 1 4 0
98 V 1 . 2 4 3 1 . 2 2 8
99 Q 0 . 8 4 3 1 .  3 23
1 0 0 S 0 . 8 4 3 1 . 3 2 3
101 Q 0 . 1 2 9 1 . 3 2 3
1 02 T 0 . 0 8 6 0 . 5 3 5
1 03 S . - 0 . 3 0 0 0 . 5 3 5
104 V . - 0 . 3 1 4 0 .  446
1 05 I . - 1 . 4 1 4 0 . 2 2 9
1 06 s . - 1 . 9 1 4 0 . 1 4 8
107 T . - 1 . 9 2 9 0 . 2 8 8
10 8 V . - 1 . 2 2 9 0 . 5 9 3
1 0 9 F . - 0 . 3 5 7 0 .  685
1 1 0 T . - 0 . 7 2 9 0 .  4 79
111 T . - 0 . 3 2 9 1 .  0 39
11 2 P . - 0 . 3 2 9 0 .  8 90
1 13 A 0 . 1 8 6 0 .  827
114 N G 0 . 1 8 6 0 .  827
1 15 V 0 . 3 1 4 0 . 8 2 7
1 16 S 0 . 5 8 6 1 . 4 1 7
117 T 0 . 9 4 3 1 . 2 7 2
1 18 P 0 . 5 4 3 2 .  473
1 1 9 E 0 . 6 0 0 1 . 5 2 2
1 20 T 1 . 0 4 3 2 . 1 0 9
12 1 T 1 . 1 7 1 2 . 1 0 9
12 2 L 1 . 0 5 7 1 . 6 3 2
12 3 K 0 . 0 1 4 0 .  932
124 P 0 . 0 2 9 0 .  866
12 5 S 0 . 1 5 7 1 . 6 2 3
12 6 L 0 . 7 5 7 0 .  803
127 S 0 . 7 0 0 0 .  83 5
128 P . - 0 . 1 2 9 0 .  46 3

F l e x P r  C F - P r e d  GORPred  A l - I n d

1 . 0 7 7 0 .  900
1 . 0 8 2 0 .  900
1 . 0 7 7 T 1 . 0 0 0
1 . 0 7 4 T 0 . 8 5 0
1 . 0 6 6 0 .  450
1 . 0 5 9 0 .  4 5 0
1 . 0 6 5 0 .  45 0
1 . 0 6 6 t - 0 . 2 5 0
1 . 0 5 4 t 0 . 0 5 0
1 . 0 3 2 t 1 . 1 0 0
1 . 0 0 0 - 0 . 1 5 0
0 .  979 - 0 . 3 0 0
0 .  976 t 0 . 5 0 0
0 .  986 t 0 .  950
1 . 0 0 3 0 . 7 5 0
1 . 0 1 9 T 1 . 1 5 0
1 . 0 3 0 T 1 .  30 0
1 . 0 4 3 t 1 . 1 0 0
1 . 0 5 2 t 1 . 1 0 0
1 . 0 5 4 0 .  90 0
1 . 0 5 3 b 0 .  900
1 . 0 4 7 b 0 . 7 5 0
1 . 0 4 0 b 0 .  45 0
1 .  037 b 0 .  6 0 0
1 . 0 4 0 b B 0 .  900
1 . 0 4 8 b B 0 .  90 0
1 . 0 5 3 b B 0 . 4 5 0
1 . 0 5 3 b B 0 . 6 0 0
1 . 0 4 1 b B 0 . 6 0 0
1 . 0 2 5 b B 0 . 4 5 0
1 . 0 2 6 b B - 0 . 1 5 0
1 . 0 2 9 b - 0 . 1 5 0
1 . 0 4 9 b 0 . 0 0 0
1 . 0 6 2 t 0 . 0 5 0
1 . 0 4 5 t - 0 . 2 5 0
1 . 0 2 6 - 0 . 4 5 0
1 . 0 0 0 B B - 0 . 6 0 0
0 .  981 B B - 0 . 6 0 0
0 .  982 B B - 0 . 6 0 0
0 .  984 B B - 0 . 6 0 0
0 .  990 B B - 0 . 3 0 0
1 . 0 0 5 B B 0 . 4 5 0
1 . 0 3 0 t 0 .  95 0
1 . 0 6 3 t 1 . 1 0 0
1 . 0 8 7 T 1 . 3 0 0
1 . 0 9 7 T 1 . 3 0 0
1 . 0 8 9 t 1 . 1 0 0
1 . 0 7 4 t 1 . 1 0 0
1 . 0 7 0 B 0 .  900
1 . 0 7 7 B 0 .  900
1 . 0 9 1 B 0 .  90 0
1 . 0 9 0 t B 0 .  8 0 0
1 . 0 6 5 t B 0 . 6 5 0
1 . 0 3 3 B - 0 . 1 5 0
0 .  999 B B - 0 . 3 0 0
0 .  981 B B - 0 . 6 0 0
0 .  981 B B - 0 . 6 0 0
0 .  982 B B - 0 . 6 0 0
0 .  985 B B - 0 . 6 0 0
0 .  998 B B - 0 . 3 0 0
1 . 0 1 7 B B - 0 . 4 5 0
1 . 0 2 9 B 0 . 0 0 0
1 . 0 3 4 t 0 . 0 5 0
1 . 0 2 6 t 0 . 6 5 0
1 . 0 1 3 t 0 .  65 0
1 . 0 1 4 0 .  45 0
1 . 0 2 9 0 .  900
1 . 0 4 7 0 .  900
1 . 0 6 2 T 1 . 3 0 0
1 . 0 6 4 T B 1 . 3 0 0
1 . 0 5 8 B 0 .  900
1 . 0 4 9 B 0 .  90 0
1 . 0 4 2 B 0 .  900
1 . 0 3 9 B 0 .  45 0
1 . 0 3 6 t T 1 .  05 0
1 . 0 3 4 t T 1 . 2 0 0
1 . 0 3 8 0 . 7 5 0
1 . 0 4 4 0 . 7 5 0
1 . 0 4 8 T 0 . 2 5 0
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1 2 9
1 3 0
131
132
1 3 3
134
1 35
1 36
137
138
1 39
1 4 0
141
1 42
1 43
144
1 45
1 46
147
148
1 49
1 5 0
151
1 52
1 53
154
1 55
1 56
157
158
1 59
1 60
161
162
16 3
164
16 5
16 6
167
168
16 9
1 7 0
171
17 2
1 7 3
174
17 5
17 6
177
178
17 9
1 8 0
181
18 2
18 3
184
18 5
18 6
187
188
1 8 9
1 9 0
191
19 2
19 3
194
1 95
1 96
197
198
1 9 9
2 0 0
2 01
202
2 03
204
205
2 06
207
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AA G l y c o S H y P h i l S u r f P r

G - 0 . 1 2 9 0 . 7 5 2
N G 0.  914 0 .  937
V 0 . 2 5 7 0 . 5 0 0
S 0 . 1 4 3 0 .  677
D 0 . 1 8 6 0 .  607
L - 0 . 2 1 4 1 . 1 8 1
S 0 .  5 0 0 1 . 1 8 1
T 0 . 4 8 6 1 . 0 2 1
T 0 . 1 0 0 1 . 6 5 8
S 0 . 1 0 0 1 . 0 2 1
T - 0 . 2 7 1 0 . 7 1 4
S - 0 . 2 7 1 0 . 7 1 4
L - 0 . 2 5 7 0 . 7 1 4
A - 0 . 1 4 3 0 . 7 6 5
T - 0 . 1 4 3 0 .  824
S 0 . 3 0 0 1 .  999
P 1 . 0 7 1 3 . 0 6 0
T 1 . 5 1 4 3 . 3 2 2
K 1 . 5 1 4 3 . 5 7 7
P 1 . 5 1 4 3 . 1 0 0
Y 1 .  40 0 2 .  879
T 1 . 4 1 4 1 .  929
S 1 . 0 8 6 1 .  929
S 0 . 2 1 4 0 .  863
S - 0 . 5 1 4 0 . 4 9 3
P - 0 . 5 0 0 0 . 4 9 3
I - 0 . 1 1 4 0 . 6 1 5
L - 0 . 8 7 1 0 . 3 2 1
S - 0 . 4 2 9 0 . 4 1 6
D - 0 . 9 1 4 0 . 5 9 9
I 0 . 2 2 9 1 . 2 5 8
K 0 . 1 2 9 0 .  658
A 0 . 5 7 1 0 . 7 8 8
E - 0 . 2 8 6 0 . 6 0 3
I 0 . 4 7 1 0 . 4 0 4
K - 0 . 0 2 9 0 . 3 9 6
C - 0 . 4 1 4 0 . 1 6 0
S - 0 . 2 7 1 0 .  447
G 0 . 8 7 1 0 . 3 8 7
I - 0 . 2 8 6 0 . 5 3 7
R 0 . 6 2 9 0 .  801
E - 0 . 0 2 9 0 . 6 6 7
V 0 . 0 1 4 1 . 3 7 4
K 1 . 1 5 7 1 . 2 1 5
L 0 . 5 7 1 0 . 6 9 4
T - 0 . 5 7 1 0 . 6 5 6
Q - 0 . 3 2 9 0 . 1 7 6
G - 1 . 4 2 9 0 . 1 7 6
I - 0 . 3 8 6 0 . 2 1 1
C 0 .  014 0 . 2 1 1
L 0 . 0 1 4 0 . 3 4 3
E 0 . 5 1 4 0 .  977
Q 1 . 2 5 7 2 . 6 3 2
N 1 . 7 2 9 4 . 2 7 6
K 2 . 3 8 6 3 . 3 0 9
T 1 . 5 2 9 1 . 0 2 4
S 0 . 7 7 1 0 . 6 4 3
S 0 . 7 7 1 0 . 5 5 7
C - 0 . 1 8 6 0 . 3 3 4
A 0 . 2 7 1 0 . 4 9 9
E 0 . 7 1 4 0 . 7 4 5
F 1 . 1 0 0 2 . 3 2 0
K 2 . 1 0 0 4 . 4 9 7
K 2 .  414 2 . 5 7 0
D 2 . 4 1 4 5 . 1 4 0
R 2 . 8 7 1 2 . 5 4 3
G 1 . 7 7 1 1 .  04 9
E 0 .  957 0 .  634
G 1 . 1 0 0 0 . 6 3 4
L - 0 . 1 4 3 0 .  476
A - 0 . 7 4 3 0 .  227
R - 1 . 6 0 0 0 . 1 2 3
V - 1 . 6 0 0 0 . 1 4 7
L - 0 . 5 5 7 0 . 2 5 2
C 0 . 2 0 0 0 . 2 2 3
G 0 . 0 5 7 0 . 5 2 1
E 0 .  4 00 0 .  638
E 1 .  4 43 1 .  988
Q 1 . 5 4 3 2 . 0 2 9

F l e x P r  C F - P r e d  GORPred  A l - I n d

1 . 0 5 2 T 0 . 2 5 0
1 . 0 4 6 t 0 .  950
1 . 0 3 6 t B 0 .  65 0
1 .  034 t B 0 . 6 5 0
1 . 0 3 4 B 0 . 4 5 0
1 . 0 3 6 B 0 . 0 0 0
1 . 0 5 3 B 0 .  900
1 . 0 6 8 t 0 . 8 0 0
1 .  080 t 0 . 8 0 0
1 . 0 8 5 0 . 6 0 0
1 . 0 6 4 b - 0 . 1 5 0
1 . 0 4 1 b - 0 . 1 5 0
1 . 0 2 6 b - 0 . 1 5 0
1 . 0 2 4 b - 0 . 1 5 0
1 . 0 4 4 b - 0 . 1 5 0
1 . 0 6 8 0 . 6 0 0
1 . 0 7  9 T T 1 . 7 0 0
1 . 0 7  9 T T 1 . 7 0 0
1 . 0 6 9 0 .  900
1 . 0 6 1 t T 1 . 5 0 0 '
1 . 0 6 4 t T 1 . 5 0 0
1 . 0 8 5 t T 1 . 5 0 0
1 . 1 1 0 T T 1 . 7 0 0
1 . 1 1 3 T 0 .  8 5 0
1 . 0 9 8 t - 0 . 2 5 0
1 . 0 6 2 h - 0 . 4 5 0
1 . 0 2 5 h - 0 . 1 5 0
1 . 0 1 1 h H - 0 . 4 5 0
1 . 0 1 7 h H - 0 . 4 5 0
1 . 0 3 0 h H - 0 . 4 5 0
1 . 0 3 2 h H 0 . 6 0 0
1 . 0 2 8 h H 0 .  45 0
1 . 0 1 8 h H 0 . 7 5 0
1 . 0 0 3 h H - 0 . 1 5 0
1 . 0 0 5 h H 0 . 4 5 0
1 . 0 1 0 h H - 0 . 1 5 0
1 . 0 1 1 h T - 0 . 0 5 0
1 . 0 2 2 T T 0 .  65 0
1 . 0 2 4 T T 1 . 5 5 0
1 . 0 2 1 h - 0 . 1 5 0
1 . 0 2 4 h 0 . 7 5 0
1 . 0 1 9 h T 0 . 2 5 0
1 . 0 1 6 h T 1 . 0 0 0
1 . 0 2 8 h T 1 . 3 0 0
1 . 0 3 5 h T 1 . 1 5 0
1 . 0 4 2 h T - 0 . 0 5 0
1 . 0 4 0 h T 0 . 2 5 0
1 . 0 1 4 B - 0 . 4 5 0
0 .  988 h B - 0 . 3 0 0
0 .  984 h B 0 . 3 0 0
1 . 0 0 0 h B 0 .  45 0
1 . 0 3 7 h B 0 . 7 5 0
1 . 0 7 7 h T 1 . 3 0 0
1 . 0 9 9 h T 1 . 3 0 0
1 . 1 0 6 h T 1 . 3 0 0
1 . 0 9 1 h T 1 . 3 0 0
1 . 0 6 5 T 1 . 1 5 0
1 . 0 2 5 T H 1 . 1 5 0
0 .  981 t H - 0 . 1 0 0
0 .  964 H H 0 . 3 0 0
0 . 9 6 4 H H 0 . 6 0 0
0 .  985 H H 0 . 7 5 0
1 . 0 2 0 H H 0 .  9 00
1 . 0 4 6 H H 0 .  9 00
1 . 0 6 2 H H 0 .  9 00
1 . 0 7 3 H H 0 .  900
1 . 0 7 3 H 0 .  900
1 . 0 5 7 t H 0 .  950
1 . 0 2 8 t H 0 .  950
0 .  992 B H - 0 . 3 0 0
0 .  958 B H - 0 . 6 0 0
0 .  932 B H - 0 . 6 0 0
0 .  927 B H - 0 . 6 0 0
0 .  939 B H - 0 . 6 0 0
0 .  965 B H 0 . 3 0 0
1 . 0 0 4 H 0 .  45 0
1 . 0 3 5 H H 0.  450
1 . 0 4 5 H H 0 .  900
1 . 0 4 1 H H 0 .  900
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208
2 09
2 1 0
211
2 12
2 1 3
214
2 1 5
2 1 6
217
2 18
2 1 9
2 2 0
221
2 22
2 2 3
224
2 25
2 26
227
228
2 2 9
2 30
231
2 32
2 33
234
2 35
2 36
237
238
2 39
2 40
241
2 42
2 43
244
2 45
2 46
247
248
2 49
2 50
25 1
25 2
2 5 3
254
2 5 5
2 56
257
25 8
2 59
2 60
261
2 62
2 63
264
2 65
2 66
267
2 68
2 6 9
2 7 0
2 71
2 72
2 7 3
274
2 7 5
2 7 6
277
278
2 7 9
2 8 0
2 81
2 82
2 8 3
284
28 5
2 8 6
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AA G l y c o S  H y P h i l S u r f P r

A 1 . 9 8 6 1 .  957
D 1 . 2 2 9 1 . 1 4 2
A 0 . 7 8 6 0 .  652
D 0 . 0 2 9 0 .  652
A 0 . 7 8 6 0 .  676
G . - 0 . 3 1 4 0 .  4 97
A . - 0 . 4 1 4 0 . 1 6 0
Q . - 0 . 8 0 0 0 . 2 1 2
V . - 1 . 0 8 6 0 . 1 7 6
C . - 1 . 6 8 6 0 . 1 4 4
S . - 1 . 9 7 1 0 . 0 6 9
L . - 2 . 7 2 9 0 . 0 9 3
L . - 1 . 6 2 9 0 . 3 0 1
L . - 1 . 1 5 7 0 . 3 0 1
A . - 0 . 7 7 1 0 .  633
Q . - 0 . 8 2 9 0 . 5 7 0
S 0 . 3 5 7 1 . 3 5 3
E 1 . 1 2 9 2 . 0 7 1
V 1 . 8 8 6 2 . 0 7 1
R 1 . 0 2 9 0 . 8 2 8
P 0 . 3 7 1 0 . 3 9 5
Q . - 0 . 6 7 1 0 . 4 3 8
c . - 0 . 6 1 4 0 . 1 8 5
L . - 1 . 8 5 7 0 . 0 8 9
L . - 2 . 6 2 9 0 . 0 4 2
L . - 3 . 3 8 6 0 . 0 8 0
V . - 2 . 5 2 9 0 . 1 5 5
L . - 1 . 3 4 3 0 . 3 6 8
A . - 0 . 7 0 0 0 . 6 4 4
N G 0 . 3 4 3 1 . 5 0 3
R 0 . 3 0 0 1 . 2 7 8
T 0 . 9 5 7 1 . 6 9 5
E 1 . 3 2 9 1 . 4 1 3
I 1 . 3 8 6 1 . 4 4 2
S 0 . 2 0 0 0 . 8 2 4
S 0 . 6 0 0 0 . 8 2 4
K . - 0 . 4 4 3 0 .  970
L . - 0 . 0 7 1 0 . 7 1 6
Q 0 . 3 7 1 1 . 0 6 9
L 0 . 8 1 4 1 . 0 6 9
M 0 . 7 1 4 1 . 7 6 3
K 1 . 7 5 7 1 . 7 6 3
K 1 . 3 7 1 2 . 8 6 5
H 2 . 4 1 4 4 . 8 3 5
Q 2 . 1 4 3 1 .  994
S 2 . 1 4 3 1 .  994
D 2 . 1 4 3 2 .  930
L 1 . 1 4 3 1 . 3 9 5
K 0 . 7 0 0 1 . 0 3 0
K . - 0 . 0 5 7 0 .  433
L . - 1 . 1 0 0 0 .  433
G . - 0 . 0 5 7 0 . 3 6 1
I . - 1 . 0 1 4 0 . 1 5 6
L . - 1 . 4 7 1 0 . 2 7 4
D . - 0 . 4 2 9 0 . 4 7 9
F 0 . 0 1 4 1 . 1 8 3
T 1 . 1 5 7 2 . 3 9 6
E 1 . 1 0 0 1 . 0 6 5
Q 0 . 3 4 3 1 . 2 4 2
D 0 . 8 5 7 1 . 1 5 4
V 1 . 2 1 4 0 .  907
A 1 . 2 1 4 0 .  907
S 0 . 8 2 9 0 . 7 2 7
H 0 . 5 1 4 1 . 5 3 6
Q 1 . 2 2 9 2 .  037
S 1 . 9 8 6 2 .  633
Y 2 . 4 2 9 3 .  86 9
S 2 . 0 7 1 3 . 2 2 4
Q 1 . 0 2 9 1 .  984
K 0 . 2 7 1 0 .  888
T . - 0 . 1 7 1 0 .  669
L . - 0 . 8 2 9 0 . 3 1 9
I . - 1 . 9 2 9 0 . 1 1 8
A . - 2 . 3 8 6 0 . 1 1 8
L . - 2 . 3 7 1 0 . 1 9 2
V . - 1 . 7 7 1 0 . 2 7 1
T . - 1 . 3 8 6 0 . 2 7 1
S . - 1 . 6 7 1 0 . 2 7 1
G . - 1 . 6 7 1 0 . 3 0 1

F l e x P r  C F - P r e d  GORPred  A l - I n d

1 . 0 2 1 H H 0 .  900
1 . 0 0 2 H H 0 .  900
0 .  992 H H 0 .  60 0
0 .  985 H H 0 .  30 0
0 .  982 H H 0 .  60 0
0 .  971 H H - 0 . 3 0 0
0 .  958 H H - 0 . 6 0 0
0 .  938 H H - 0 . 6 0 0
0 .  926 H H - 0 . 6 0 0
0 .  920 H H - 0 . 6 0 0
0 .  919 H H - 0 . 6 0 0
0 .  928 H H - 0 . 6 0 0
0 .  936 H - 0 . 6 0 0
0 .  960 H - 0 . 6 0 0
0 .  988 H - 0 . 6 0 0
1 . 0 1 7 H T - 0 . 0 5 0
1 . 0 4 2 H T 1 . 0 0 0
1 . 0 4 4 H T 1 . 3 0 0
1 . 0 3 9 H T 1 . 3 0 0
1 . 0 2 5 H . 0 . 7 5 0
1 . 0 0 4 T 0 .  85 0
0 .  982 B T - 0 . 2 0 0
0 .  954 B B - 0 . 6 0 0
0 .  934 B B - 0 . 6 0 0
0 .  921 B B - 0 . 6 0 0
0 .  918 B B - 0 . 6 0 0
0 .  927 B B - 0 . 6 0 0
0 .  942 B H - 0 . 6 0 0
0 .  966 B H - 0 . 6 0 0
0 .  995 B H 0 .  45 0
1 . 0 1 7 H 0 . 6 0 0
1 . 0 3 3 H 0 .  900
1 . 0 4 5 H 0 .  900
1 . 0 5 4 H . 0 . 9 0 0
1 . 0 6 1 H 0 . 4 5 0
1 . 0 5 8 t H 0 .  950
1 . 0 3 5 t H - 0 . 2 5 0
0 .  996 H H - 0 . 3 0 0
0 .  966 H H 0 .  45 0
0 .  959 H H 0 . 7 5 0
0 .  966 H H 0 . 7 5 0
0 .  997 H H 0 . 7 5 0
1 . 0 2 7 H H 0 .  900
1 . 0 4 4 H H 0 .  90 0
1 . 0 6 0 t H 1 . 1 0 0
1 . 0 6 8 t H 1 . 1 0 0
1 . 0 6 6 t H 1 . 1 0 0
1 . 0 5 5 h H 0 .  900
1 . 0 4 2 h H 0 .  900
1 . 0 1 5 h H - 0 . 1 5 0
0 .  985 h B - 0 . 6 0 0
0 .  961 B - 0 . 3 0 0
0 .  939 h B - 0 . 6 0 0
0 .  940 h B - 0 . 6 0 0
0 .  956 h B - 0 . 6 0 0
0 .  990 h H 0 .  45 0
1 . 0 3 3 h H 0 .  900
1 . 0 5 8 h H 0 .  90 0
1 . 0 6 5 h H 0 . 6 0 0
1 . 0 4 3 h H 0 .  90 0
1 . 0 0 4 h H 0 . 7 5 0
0 .  97 9 h H 0 . 6 0 0
0 .  970 h H 0 . 6 0 0
0 .  97 9 h 0 . 7 5 0
0 .  998 T 1 . 1 5 0
1 . 0 1 9 T 1 . 3 0 0
1 . 0 3 7 t T 1 . 5 0 0
1 . 0 5 8 t T 1 . 5 0 0
1 . 0 7 0 T 1 . 3 0 0
1 . 0 5 4 B 0 . 4 5 0
1 . 0 2 4 B B - 0 . 1 5 0
0 .  97 9 B B - 0 . 6 0 0
0 .  938 B B - 0 . 6 0 0
0 .  927 B B - 0 . 6 0 0
0 .  945 B B - 0 . 6 0 0
0 .  979 B B - 0 . 6 0 0
1 . 0 1 6 B B - 0 . 4 5 0
1 . 0 3 4 t - 0 . 2 5 0
1 . 0 1 9 t - 0 . 2 5 0
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287
2 8 8
2 8 9
2 9 0
2 9 1
29 2
2 9 3
294
2 9 5
2 9 6
297
298
2 9 9
3 0 0
301
302
3 0 3
304
3 0 5
3 0 6
307
30 8
3 0 9
3 1 0
311
31 2
3 1 3
3 1 4
3 1 5
3 1 6
3 1 7
3 1 8
3 1 9
3 2 0
3 21
3 2 2
3 2 3
324
3 2 5
3 2 6
3 27
3 2 8
3 2 9
3 3 0
3 3 1
3 3 2
3 3 3
3 34
3 3 5
3 3 6
3 37
3 3 8
3 3 9
3 4 0
3 4 1
3 4 2
3 4 3
3 44
3 4 5
3 4 6
3 47
3 4 8
3 4 9
3 5 0
3 5 1
3 5 2
3 5 3
3 5 4
3 5 5
3 5 6
3 57
3 5 8
3 5 9
3 6 0
36 1
3 6 2
3 6 3
364
3 6 5
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AA G l y c o S  H y P h i l  S u r f P r  F l e x P r  C F - P r e d  GORPred  A l - I n d

A . - 1 . 3 2 9 0 . 2 1 1 0 .  987 H B - 0 . 6 0 0
L . - 2 . 0 2 9 0 . 1 1 7 0 .  952 H B - 0 . 6 0 0
L . - 2 . 6 8 6 0 . 0 9 7 0 .  928 H B - 0 . 6 0 0
A . - 2 . 6 8 6 0 . 0 9 5 0 .  919 H B - 0 . 6 0 0
V . - 3 . 0 7 1 0 . 0 8 1 0 .  926 H B - 0 . 6 0 0
L . - 2 . 4 2 9 0 . 1 4 2 0 .  944 H B - 0 . 6 0 0
G . - 1 . 8 2 9 0 . 1 3 9 0 .  965 B - 0 . 6 0 0
I . - 1 . 3 8 6 0 . 2 9 3 0 .  986 B - 0 . 6 0 0
T . - 1 . 1 8 6 0 . 3 0 8 0 .  995 B - 0 . 6 0 0
G . - 1 . 1 8 6 0 . 2 5 7 0 .  987 B - 0 . 6 0 0
Y . - 1 . 5 1 4 0 . 3 6 3 0 .  962 B B - 0 . 6 0 0
F . - 0 . 3 7 1 0 .  404 0 .  942 B B - 0 . 3 0 0
L 0 . 1 7 1 0 .  8 00 0 .  935 B B 0 . 3 0 0
M 0 . 7  57 0 .  999 0 .  944 B B 0 .  6 0 0
N 0 . 6 8 6 1 . 5 4 7 0 .  97 5 B T 1 . 1 5 0
R 1 . 2 1 4 1 .  972 0 .  997 T T 1 . 5 5 0
R 1 . 8 7 1 2 .  6 70 1 .  O i l T T 1 . 7 0 0
S 2 . 3 7 1 2 . 5 6 8 1 . 0 2 0 T T 1 . 7 0 0
W 1 . 9 7 1 1 . 8 9 2 1 . 0 1 8 0 .  90 0
S 1 . 3 8 6 0 .  956 1 . 0 3 5 0 . 7 5 0
P 1 . 2 4 3 1 . 2 3 5 1 . 0 5 4 T 1 . 3 0 0
T 1 . 7 7 1 2 . 3 0 1 1 . 0 7 0 T 1 . 3 0 0
G 1 . 1 0 0 1 .  4 16 1 . 0 7 8 t 1 . 1 0 0
E 1 . 0 4 3 0 .  906 1 . 0 6 6 0 . 7 5 0
R 1 . 3 1 4 1 . 0 8 8 1 . 0 5 2 0 .  90 0
L 1 . 7 1 4 1 . 8 3 5 1 . 0 3 9 0 .  90 0
G 1 . 8 8 6 1 .  6 39 1 . 0 4 1 0 .  90 0
E 1 . 5 7 1 1 . 3 1 1 1 . 0 4 1 0 .  90 0
D 1 . 1 1 4 2 .  4 91 1 . 0 3 2 0 .  90 0
P 1 . 7 5 7 3 .  632 1 . 0 2 3 T 1 . 3 0 0
Y 2 . 2 0 0 3 .  632 1 . 0 0 8 T 1 . 3 0 0
Y 2 . 2 0 0 3 . 4 9 8 1 . 0 1 1 0 .  90 0
T 1 . 7 5 7 2 . 2 3 9 1 . 0 3 7 0 .  90 0
E 1 . 5 8 6 1 .  414 1 . 0 6 9 t T 1 . 5 0 0
N 1 . 4 5 7 0 .  893 1 . 1 0 2 t T 1 . 3 5 0
G 1 . 7 7 1 1 . 0 7 2 1 . 1 2 7 T T 1 . 7 0 0
G 1 . 7 2 9 0 . 6 1 2 1 . 1 3 2 T T 1 . 5 5 0
G 1 . 4 1 4 0 . 5 9 7 1 . 1 2 1 T T 1 . 5 5 0
Q 1 . 0 2 9 0 .  808 1 . 1 0 0 T 1 . 1 5 0
G 1 . 0 8 6 1 . 0 9 4 1 . 0 7 7 T 1 . 3 0 0
Y 1 . 0 8 6 1 . 0 9 4 1 . 0 6 7 t T 1 . 5 0 0
S 1 . 2 5 7 0 .  977 1 .  073 T T 1 . 5 5 0
S 0 . 8 1 4 0 .  977 1 . 0 9 1 T 1 . 1 5 0
G 0 . 8 5 7 0 .  900 1 . 1 0 3 T 1 . 1 5 0
P 0 . 7 8 6 0 .  900 1 . 1 1 1 T 1 . 1 5 0
G 0 . 9 0 0 1 . 0 3 8 1 . 1 1 2 T 1 . 3 0 0
T 1 . 2 8 6 1 . 8 1 7 1 . 1 0 1 t 1 . 1 0 0
S 0 . 9 7 1 1 . 1 8 7 1 . 0 9 4 t 1 . 1 0 0
P 1 . 2 4 3 2 .  077 1 . 0 7 7 T 1 . 3 0 0
E 1 . 2 4 3 1 . 4 2 4 1 . 0 6 5 T 1 . 3 0 0
A 1 . 7 0 0 2 . 1 2 6 1 . 0 6 3 h 0 .  9 0 0
Q 1 . 3 2 9 1 . 3 8 9 1 . 0 6 2 h 0 .  900
G 1 . 2 1 4 1 . 0 7 5 1 . 0 6 4 h 0 .  900
K 0 . 1 1 4 0 . 7 9 0 1 . 0 5 0 h 0 .  4 5 0
A 0 . 8 7 1 0 . 7 3 3 1 . 0 2 9 h 0 . 7 5 0
S 1 . 0 1 4 1 . 4 5 1 1 . 0 0 7 h 0 .  9 00
V 1 . 0 1 4 0 . 7 1 8 1 .  000 h 0 .  6 0 0
N 0 . 2 0 0 0 . 7 1 8 1 . 0 0 6 t 0 .  6 5 0
R 0 . 9 5 7 0 .  928 1 . 0 1 8 T 1 . 1 5 0
G 1 . 4 0 0 2 . 5 0 0 1 . 0 3 4 T 1 . 3 0 0
A 2 . 5 0 0 2 . 5 0 0 1 . 0 4 7 0 .  900
Q 2 . 0 5 7 1 . 2 6 3 1 . 0 6 3 0 .  9 00
K 1 . 5 1 4 1 . 8 4 2 1 . 0 8 1 T 1 . 3 0 0
N G 1 . 5 1 4 1 . 8 0 5 1 . 0 9 7 T 1 . 3 0 0
G 2 . 2 7 1 1 . 8 0 5 1 . 1 0 4 t 1 . 1 0 0
T 1 . 5 1 4 0 .  912 1 . 0 9 8 T 1 . 1 5 0
G 1 . 0 5 7 0 .  818 1 .  088 T 1 . 1 5 0
Q 0 . 6 7 1 1 . 1 0 8 1 . 0 7 6 0 .  90 0
A 1 . 2 5 7 1 . 5 0 3 1 . 0 7 1 0 .  900
T 1 . 6 5 7 2 .  44 3 1 . 0 7 7 0 .  90 0
S 1 . 6 5 7 1 . 3 9 6 1 . 0 8 3 t 1 . 1 0 0
R 1 . 6 1 4 1 . 8 8 0 1 . 0 7 6 T T 1 . 7 0 0
N 1 . 9 8 6 1 . 7 4 6 1 . 0 6 2 T T 1 . 7 0 0
G 1 . 6 2 9 1 . 3 1 6 1 .  037 t T 1 . 5 0 0
H 2 . 1 5 7 1 . 3 1 6 1 . 0 1 3 t 1 . 1 0 0
S 2 . 0 1 4 1 . 4 1 8 1 . 0 0 3 h 0 .  90 0
A 1 . 9 7 1 1 .  949 1 .  002 h 0 .  90 0
R 1 . 3 1 4 1 . 0 6 3 0 .  998 h B 0 . 7 5 0
Q 0 . 2 5 7 0 .  5 8 9 0 .  987 h B 0 . 3 0 0
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366 H . - 0 . 1 1 4 0 . 5 8 9 0 .  969 h B - 0
367 V 0 . 6 4 3 0 .  502 0 .  957 h B 0
368 V 0 . 1 0 0 0 .  418 0 .  963 h B 0
369 A 0 . 1 0 0 0 . 5 3 2 0 .  984 h B 0
37 0 D . - 0 . 9 0 0 0 . 5 9 2 1 . 0 0 0 h B - 0
371 T . - 0 . 3 5 0 1 . 0 1 9 1 . 0 0 0 h B 0
372 E 0 . 4 2 0 1 . 2 8 9 1 . 0 0 0 h 0
37 3 L 0 . 9 7 5 0 .  987 1 . 0 0 0 h 0
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SHORT COMMUNICATION

The cloning and sequencing of cDNAs 
encoding two isoforms of feline stem 
cell factor
STEPHEN P. DUNHAM * and DAVID E. ONIONS

Department of Veterinary Pathology, University of Glasgow Veterinary School, Bearsden Road, Glasgow, G61 IQH, U.K. 

Database Accession No. D50833

cDNA clones encoding two isoforms of feline stem cell factor 
(fSCF) have been isolated using RT-PCR and their sequences de­
termined. The cDNAs encode a predicted full length fSCF pro­
tein of 274 amino-acids and a shorter isoform of 246 amino 
acids. Feline SCF shows a high degree of homology to the SCFs 
of other species at both the nucleic acid and protein level.

KEY WORDS: cDNA, feline, kit-ligand, mast cell growth factor, 
polymerase chain reaction, stem cell factor

Stem cell factor (SCF), also known as steel factor 
(SLF), kit ligand (KL), and mast cell growth factor 
(MGF) is a pleiotropic growth factor having impor­
tant roles in melanogenesis, gametogenesis and 
haematopoiesis both during development and in 
adult life (for review see Galli et aI., 1994). SCF is 
allelic to the steel locus (SI) in the mouse (Huang et 
al., 1990; Zsebo et a!., 1990; Copeland et al., 1990) 
and is the ligand for the c-kit proto-oncogene prod­
uct, a transmembrane tyrosine kinase which maps 
to the mouse dominant white spotting (W) locus 
(Chabot et al., 1988; Geissler et al., 1988). The 
haematological effects of SCF have suggested poten­
tia l therapeutic uses including treatment of bone 
marrow failure syndromes, bone marrow support 
during chemotherapy and mobilisation of peripheral 
blood progenitor cells w ith marrow repopulating 
ability (for review see Morstyn et ai, 1994).

Address for correspondence: Dr. Stephen P. Dunham, 
Department of Veterinary Pathology, University of Glasgow 
Veterinary School, Bearsden Road, Glasgow G61 IQH

cDNAs have been cloned for human, rat (Martin 
et a i,  1990), m urine (Anderson et al., 1990), 
porcine (Zhang and Anthony, 1994), bovine (Zhou 
et al., 1994), can ine  (Shull et al., 1992) and 
chicken (Zhou et al., 1993) SCF. In all species (ex­
cept the rat for which only a partial cDNA is de­
scribed) the longer isoform has been cloned, with 
a shorter isoform also described in the case of 
human (Anderson et al., 1991), murine (Anderson 
eta!., 1990; Flanagan eta!., 1991), canine (Shull et 
al., 1992) and bovine SCF (Zhou et al., 1994). Both 
isoforms exist as transm em brane proteins, the 
shorter of which is generated by alternate mRNA 
splicing and, lacking exon 6, this results in an SCF 
isoform 28 amino-acids shorter than the fu ll length 
SCF. A soluble form of SCF is produced by prote­
o ly tic  cleavage o f the transmembrane pro te in , 
largely of the longer isoform. The shorter isoform 
lacks the p ro te o ly tic  cleavage site w h ich  lies 
w ith in  exon 6; th is  isoform  o f mouse but not 
human SCF is cleaved w ith lower efficiency at an 
alternate site (Huang et al., 1992; Majumdar et al., 
1994). The respective roles of soluble and mem­
brane bound forms of SCF have yet to be fu lly elu­
c id a te d . W e here re p o rt the c lo n in g  and 
sequencing of two isoforms of feline stem cell fac­
tor (fSCF).

Messenger RNA (mRNA) was isolated from an 
FeLV-A transform ed fe line  fib rob las t ce ll line, 
us ing a Q u ickP re p  m RNA p u r if ic a t io n  k it  
(Pharmacia P-L Biochem icals). Com plem entary
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DNA (cDNA) was synthesised from  the mRNA, 
primed w ith a Not-dT primer, using a First strand 
cDNA synthesis Kit (Pharmacia P-L Biochemicals) 
and used as a template for PCR amplification. SCF 
cDNA was specifically amplified using Taq poly­
merase (Perkin Elmer Cetus, Norwalk, C.T.) w ith a 
PCR cycle consisting of 94°C for 1 min, 48°C for 1 
min and 72°C for 1 min, repeated for 30 cycles. 
Primers were designed from conserved areas w ithin 
the 5' and 3' non-coding regions of published SCF 
sequences as follows: 5' primer CCAGAACAGC-

TAAACGGAGT, 3 ' p rim er ATGAAGCAAACAT- 
GAACTGT. The PCR product was cloned into a 
pCR™II vector (Invitrogen, San Diego, U.S.A.) and 
sequenced by the d id e oxy  cha in  te rm ina tion  
m ethod using a Sequenase K it (U n ited  States 
Biochemical, Cleveland, Ohio, USA). Three sepa­
rate clones, taken from  d iffe ren t PCR reactions 
were sequenced on both DNA strands; these were 
identical except for base changes at nucleotides 16 
(A to G) and 261 (A to G) in clone 3. A further 
clone was sequenced and found to be identical to
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9 0 9 TGTTACTTTTGTGCCTTGGCGGGTAACAGTTCATGTTTGCTTCAT 9 5 3

Figure 1 Nucleotide sequence and deduced amino-acid sequence of feline stem cell factor cDNA. The nucleotides depicted in bold type 
and overlined are those deleted in the shorter isoform of fSCF, which results in a removal of amino-acids 150-178 and the insertion of a 
glycine residue at this site. Primers used in the PCR are underlined.
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Figure 2 Alignment of the amino-acid sequences of feline, porcine, canine, bovine, human, murine and chicken stem cell factor 
polypeptides. Identical amino-acids are indicated by dashes (-) and dots indicate gaps introduced to maintain optimal sequence alignment. 
The likely signal peptide and transmembrane domains are indicated by _S-P_ and _T-M_ respectively. The predicted amino terminus is 
marked Conserved cysteine residues are depicted by and potential N-glycosylation sites by The amino acids shown in bold 
type between the horizontal arrows (-» <—) are those deleted in the shorter isoforms of feline, canine, human, murine and bovine SCF; in 
each case this deletion results in the replacement of the 29 deleted amino-acids by a glycine residue. The major proteolytic cleavage sites, 
responsible for generation of soluble SCF are indicated by " i" .
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Table 1 Features of interest within the predicted full length feline SCF protein. These are discussed further within the text.

Feature: Position in Predicted Peptide Sequence Comments
Signal Peptide -25-1 Predicted from similarity to other species SCF
Extracellular Domain 1-190 as above
Transmembrane Domain 191-213 as above
Intracellular Domain 214-249 as above
Potential N-glycosylation sites 65, 72, 120 and 171. as above
Conserved cysteine residues 4, 43, 89 and 139. Cysteine residues 4 and 89 and residues 

43 and 139 likely form disulphide bonds.
Proteolytic cleavage site(s) between Ala165 and Ala166 and/or Cleavage results in release

Ala166 and Ser167 of soluble SCF.

clone three except for a deletion of 84 nucleotides 
(nt. 588-671 inclusive). In order to confirm  the 
likely identity of nucleotide 261 (the above change 
would lead to an amino-acid change from Asn to 
Ser), RT-PCR was repeated, as described above ex­
cept for cycling conditions consisting of an initial 
denaturation step of 94°C for 5 min, followed by 
30 cycles of 94°C 1 min, 50°C 1 min, 72°C 1 min, 
and a final extension step of 72°C for 10 mins. The 
primers used were TGGCAAATCTTCCAAAAGAC- 
TATAAGA (5' primer) and AG AT G AGT GT CCTT C- 
CACGCACTC (3 ' p rim e r) re s u ltin g  in the 
am plification of a 230 bp fragment. Two clones 
from each of two independent PCR reactions were 
cloned and sequenced on both DNA strands using 
a Sequitherm  long-read cyc le -sequenc ing  k it 
(Epicentre Technologies, Madison, Wisconsin) and 
M13 universal IRD41 labe lled  prim ers (L icor, 
Lincoln, N.E.); the reaction products were run on a 
Licor Model 4000 automated sequencer. A ll four 
clones showed the nucleotide G at position 261. 
The fu ll length consensus nucleotide sequence of 
953bp is shown in Figure 1. The sequence contains 
an open reading frame of 822 nucleotides that en­
codes a deduced polypeptide of 274 amino-acids. 
The shorter iso form  has a de le tio n  o f 84 nu ­
cleotides (see figure 1) that corresponds to the 
deletions reported for human, murine, canine and 
bovine SCFs.

Comparison of the fu ll- leng th  fSCF cD N A  to 
published sequences in other species shows ho­
mology of 95%, 93%, 93%, 92%, 87% and 71% 
to canine, bovine, porcine, human, murine and 
chicken SCFs respectively. The derived protein 
shows identity of 92%, 92%, 91%, 88%, 80% and 
53% to canine, porcine, bovine, human, murine 
and chicken homologues. The high sequence ho­
mology to the SCFs of other species allows the 
identification of a signal peptide (aa -25  to -1 ) 
that is cleaved to produce the mature protein, an 
extracellular domain (aa 1 to 190), a transmem­

brane domain (aa 191 to 213) and an intracellular 
domain (aa 214 to 249) w ith in the longer fSCF iso­
form. In common w ith bovine, canine and porcine 
SCFs, fSCF has an extra amino-acid (G lu130) when 
compared to human and rodent SCF sequences. 
Four cysteine residues (aa 4, 43, 89, 139), im pli­
cated as im p o rtan t in fo rm in g  in tra m o lecu la r 
disulphide bridges in rat SCF (Lu e ta /., 1991), are 
conserved in fSCF. Potential N-glycosylation sites 
w ith in the extracellular domain of fSCF are present 
at amino-acids 65, 72, 120 and 171; the site cor­
responding to Asn93 of human SCF is absent in 
fSCF. A proteolytic cleavage site has been identi­
fied in rat SCF between A la164 and A la165 and/or 
A la165 and Ser166 (Martin et a i, 1990; Lu et ai, 
1991), the amino-acid sequence in this region is 
well conserved in fSCF suggesting the existence of 
an analogous site in fSCF, and thus a sim ilar solu­
ble form of fSCF.

W ork is in progress to express the fSCF protein 
which w ill then enable characterisation of its bioac­
tivity both in-vitro and in-vivo.

The nucleotide sequence data reported in this 
paper w ill appear in GSDB, DDBJ, EMBL and NCBI 
nucleotide sequence databases w ith the accession 
number D50833.
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