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Abstract

There is accumulating evidence that the escape from the phenomenon of in vitro 

senescence, or immortality, is an important step in tumour progression. Senescence is 

tightly linked to terminal differentiation and is genetically programmed; furthermore, the 

genes regulating senescence are candidate tumour suppressor genes.

The work described in this thesis investigates immortality in a human head and 

neck squamous cell carcinoma (SCC) system. Prior to this work there were no cell lines 

available where loss of heterozygosity could be studied in SCC, and few in other systems. 

In addition, most SCC cell lines had been derived from recurrent tumours and/or without 

feeder layers of irradiated mouse Swiss 3T3 fibroblasts. Therefore it was not possible to 

distinguish the genetic events causing the tumour and those resulting from therapy and 

adaptation to tissue culture.

Twenty-two primarily untreated tumours were collected along with blood samples 

and seven immortal cell lines (the BICR cell lines) were isolated. We have also obtained 

several premalignant erythroplakia cultures, so it is now possible to grow all the stages of 

SCC progression from normal keratinocytes through premalignant erythroplakias to 

carcinomas and lymph node metastases.

DNA fingerprinting confirms that blood, fibroblast and cell line DNA came from 

the same patient and each cell line is unique. Similarly keratin & involucrin staining and 

electron micrographs show they are SCCs.

Immortality appears to be a late-emerging phenotype during carcinogenesis as the 

erythroplakia cells eventually senesce and it is difficult to establish cell lines from early 

(TNM clinical stage T2) tumours relative to late (T4) tumours. Erythroplakias and T2 cell 

lines are non-tumorigenic in nude mice, whereas late-stage lines are tumorigenic.



xiv

Human papilloma viruses (HPV) 16 & 18 can immortalise keratinocytes. Their

transforming genes E6 & E7 bind p53 and pRb respectively and thus p53 and pRb may be

involved in senescence. None of the cell lines contain HPV 16 or 18, however loss of
0heterozygosity (LOH) analysis confirms data showing high fluencies of p53 mutation 

obtained by Bums et al (1993). Interestingly, although it had been previously shown that 

SCC cell lines have normal RB mRNA and no abnormalities in pRB size, location or 

phosphorylation status, 3/6 informative cases exhibit LOH at RB.

Chromosomes 1,4, 6 & 9 have been shown by several other groups to induce 

senescence in various target cells when introduced by microcell-mediated chromosome 

transfer. These chromosomes were investigated in the BICR cultures, again by LOH 

analysis. Regions lq, 4p and 6q do not show a significant degree of LOH at any stage, but 

there are high levels of loss at both 9p and separately at 9q in later stage immortal cultures. 

The information allows tentative assignment of a tumour suppressor gene involved in SCC 

progression and possibly in escape from senescence to 9p22-23.
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1.1 Introduction

Senescence is the in vitro phenomenon of limited lifespan exhibited by normal 

human cells (Hayflick and Moorhead, 1961). Many cancers however contain immortal 

variants which in contrast can be subcultured for over 100 population doublings (Barrett, 

1980, Rheinwald and Beckett, 1981, Smith et al, 1987). Yet senescence is poorly 

understood, and the role of escape from senescence in carcinogenesis is controversial 

(Newbold et al, 1982, Newbold and Overell, 1983, Weinberg, 1989, Hunter, 1991). It is 

important to establish this role in order to determine whether senescence will be useful as a 

cancer therapy, and it is difficult to see how this can be achieved without an understanding 

of the molecular and genetic basis of immortalisation. Recently the advent of molecular 

techniques for genotype analysis have enabled the study of the genetic basis of immortality.

1.2 Senescence

Normal cells undergo a limited number of population doublings before ceasing 

proliferation and entering a viable state of growth arrest (Hayflick and Moorhead, 1961). 

The number of population doublings is reproducible within narrow limits for a mass culture 

of a specific cell type, and is inversely proportional to the age of the donor (Dell'Orco et al, 

1973, Harley and Goldstein, 1978). In addition, cells from shorter-lived species proliferate 

for a shorter time in culture, as do cells derived from individuals with premature ageing 

syndromes (Martin et al, 1970, Norwood et al, 1979, Rohme, 1981). Indeed the population 

doubling maxima under similar conditions of normal embryonic fibroblasts in vitro are 

proportional to the mean maximal lifespan of the donor species (Rohme, 1981). This 

process has been proposed as an in vitro model for cellular ageing (Hayflick, 1965) and the 

viable state of growth arrest is known as senescence.
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The phenotypic characteristics of senescent cells are:

a) They do not undergo population doubling within four weeks or more.

b) Incorporation of ^H-thymidine is low (Cristofalo and Sharf, 1973).

c) Nucleusrcytoplasm ratio is low (Hayflick, 1965).

d) Cells enlarge (Hayflick, 1965).

Hayflick and Moorhead (1961) described three growth phases in cells derived from 

fetal tissues. Phase 1 was the early growth phase or primary culture when the cells had been 

freed from the tissue and were establishing themselves in the flask. Phase 2 was 

characterised by exponential growth and cells required continual sub-cultivation. When 

cultures entered phase 3 the cells started to accumulate in the post-mitotic state and 

consequently there were longer time periods between population doubling. At the end of 

this phase the culture gradually dies. Cultures in phase 3 were termed senescent.

Senecent cells are thought to be blocked at late G1 of the cell cycle and this is 

supported by several lines of indirect evidence. They contain the 2n complement of DNA 

characteristic of G1 (Hart and Setlow, 1974). Thymidine kinase activity and thymidine 

triphosphate synthesis are similar upon serum-stimulation of density-arrested cells in 

senescent and young cells, however young cells subsequently initiate far more DNA 

synthesis than old cells (Cristofalo, 1973, Oloshaw et al, 1983). Serum also induces C- 

MYC and C-HA-RAS expression in senescent human diploid fibroblasts (Seshadri and 

Campisi, 1990). As these events are cell cycle-dependent and occur at late G1 we can 

deduce senescent cells may be blocked here. Nuclear fluorescence patterns of senescent 

WI-38 cells are also typical of late G1 (Gorman and Cristofalo, 1984), and flow 

microfluorimetry analysis shows 80% of late-passage keratinocytes are in G1 (Wille et al, 

1984).

Cyclins and cyclin-dependent kinases (cdks) drive the cell cycle, possibly in 

response to signals from growth factors acting at G1 (reviewed in Sherr, 1993). The cell



3

cycle is shown in figure 1. D and E cyclins seem to act at Gl/S, and A and B cyclins at S 

and M phases. Cyclin dependent kinases 2 and 4 are strong candidates for phosphorylating 

pRb-1 and thus allowing exit from G l, possibly targetted by the D and E cyclins (Akiyama 

et al, 1992, Kato et al, 1993, Sherr, 1993). It has been found that both cyclins A and B and 

their associated kinase p34cdc2 (cdkl) are down-regulated in senescent fibroblasts and are 

not expressed on serum stimulation (Richter et al, 1991, Stein et al, 1991). Conversely in 

immortal keratinocytes these same proteins are elevated (Rice et al, 1993). Cdk 2 and 4 are 

also suppressed in senescent fibroblasts, but surprisingly cyclins D1 and E are elevated 

(Lucibello et al, 1993, Dulic et al, 1993). Dulic et al have found that cyclin E is 

unphosphorylated and inactive in senescent fibroblasts, cdk2 is unphosphorylated and 

inactive, and cyclin Dl-cdk2 complexes contained exclusively unphosphorylated cdk2. 

They suggested that the failure to activate cyclin E-cdk2 kinase activity in senescent cells 

accounts for the inability of the cells to phosphorylate pRb-1 in late G l, which then blocks 

expression of late G l genes such as cyclin A (see figure 2).

1.2.1 Theories of senescence

Several theories for the mechanism of senescence are currently thought valid in 

different ways. However none satisfy all aspects of the available data .

1.2.1.1 The error catastrophe theory

It was first proposed by Orgel (1963) that the transcriptional and translational 

apparatus is potentially unstable. Errors in newly synthesised proteins, especially those 

involved in replication, transcription and translation, could feed back and cause additional 

errors. Error levels could then either stabilise at a steady state level or increase until a lethal 

error catastrophe is reached (Orgel, 1970).
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With regard to steady state levels, it is possible that a protein synthesis apparatus 

containing errors can synthesise a new apparatus with fewer errors (Orgel, 1970). In 

addition, there are enzymes which scavenge error-containing proteins (Goldberg, 1972).

Attempts have been made to discover whether error catastrophes do occur in living 

systems. Direct evidence for an error catastrophe comes from the LEU-5 mutant of 

Neurospora, which makes a temperature-sensitive leucyl transfer RNA synthetase. At low 

temperatures the strain grows normally, but at higher temperatures the enzyme incorporates 

incorrect amino acids at leucine codons and death occurs after three days (Printz and Gross, 

1967). Lewis and Holliday (1970) subsequently showed that the accuracy of protein 

synthesis in this mutant falls slightly when the temperature shifts up and then remains 

constant until 70 hours later, when the cells age rapidly. At the same time the 

thermolability of glutamic dehydrogenase increases while its specific activity falls. 

Experiments in E.coli have yielded conflicting results which have not been resolved 

(reviewed in Holliday, 1984).

Attempts to measure error frequencies in mammalian cells have not been successful 

(Holliday, 1984). However some indirect evidence for error accumulation is provided by 

Holliday and Tarrant (1972), who found that as cultures of MRC-5 human fibroblasts age: 

(i) the proportion of thermolabile glucose-6-phosphate dehydrogenase and 6- 

phosphogluconate dehydrogenase increases, (ii) the ratio of thermolabile glucose-6- 

phosphate dehydrogenase to thermolabile 6-phosphogluconate dehydrogenase remains 

constant, (iii) treatments which quiesce cells do not increase the amount of thermolabile 

protein, (iv) cells grown in the presence of 5-fluorouracil (a base analogue which induces 

errors in protein synthesis) age prematurely, accumulating thermolabile protein after only a 

few subcultures, and (v) cultures of cells derived from individuals with Werner's syndrome, 

a premature aging disorder, already contain thermolabile protein when they are placed in 

tissue culture. These experiments agree with the error accumulation hypothesis but it has 

not been proven that the increases in thermolabile protein are due to errors in protein 

synthesis (Orgel, 1973). Fulder on the other hand has shown directly that glucose-6-
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phosphate dehydrogenase mutants are more common in old than young cells (Fulder,

1972). Morley too has shown that numbers of human T lymphocytes resistant to 6- 

thioguanine increase with the age of the donor, and that these resistent cells are mutant 

(Morley et al, 1982, 1983).

Another piece of indirect evidence comes from Curtis' observation that gross 

chromosomal abnormalities increase in frequency with age in cells taken from whole 

animals (Curtis, 1967). They also increase with age in lymphocytes and cultured fibroblasts 

(Saksela and Moorhead, 1963, Jacobs et al, 1964, Thompson and Holliday, 1975).

Finally, DNA polymerase a  from senescent cells is several times less accurate than 

enzyme from young cells (Murray and Holliday, 1981).

Evidence against Orgel's theory comes from the fact that senescent cells can remain 

viable in culture for at least a year (McKeehan et al, 1977, Matsamura et al, 1979). SV40 

large T antigen expression can bypass part of the senescence mechanism in human diploid 

fibroblasts and stimulate replication, so the DNA synthesis machinery is intact (Wright et 

al, 1989). Finally, Seshadri and Campisi (1990) have shown that serum induces C-HA- 

RAS, C-MYC and ornithine decarboxylase mRNAs normally, showing that at least the 

signal transduction pathways for these genes are intact.

The error catastrophe theory provides a straightforward link between cell and 

organismal ageing in that one can understand why organisms can age due to their cells 

accumulating defects (reviewed in Kirkwood, 1991).

The theory also provides a reason for evolutionary development of ageing. Accurate 

macromolecular synthesis depends on many processes which require energy, so organisms 

must balance their energy use and error levels. Resource diversion into reproduction ensure 

overall survival of the species but leads to aging and eventually death (Holliday, 1984, 

Kirkwood, 1991).

However there is no simple way of explaining transformation. Viruses and chemical 

carcinogens cannot increase the accuracy of transcriptional and translational machinery. In
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addition one must explain continued accuracy in the germline, although many oocytes 

which begin to mature eventually degenerate (Orgel, 1973).

Premature ageing syndromes provide an interesting aspect to the error accumulation 

theory. Several diseases of defective DNA repair show features of premature aging, 

examples being Cockayne syndrome and ataxia telangiectasia (Martin, 1978). There is also 

correlation between rates of DNA-excision repair and lifespan in mammals (Hart and 

Setlow, 1974). It is not yet clear whether Werner's syndrome or progeria, which are 

considered models of premature ageing, are more sensitive to DNA damaging agents than 

normal cells. For Werner's syndrome chromosome instability has been reported from both 

cytogenetic studies and mutation frequency studies (Hoehn et al, 1975, Salk etal, 1981), 

but unscheduled DNA synthesis is reportedly normal (Fujiwara et al, 1977, Saito and 

Moses, 1991). In progeria there are conflicting results for responses to ultraviolet radiation, 

gamma rays, X-rays and agents such as bleomycin (Epstein et al, 1973, Regan and Setlow, 

1974, Weichselbaum etal, 1980, Saito and Moses, 1991).

On the other hand in both Werner's syndrome and progeria oxidised proteins 

increase at a much higher rate than is normal (Stadtman, 1992). One important factor in 

longevity appears to be basal metabolic rate, which is higher in species with shorter 

lifespans (reviewed in Ames et al, 1993). Metabolic rate influences quantities of 

endogenous oxidants and mutagens produced as by-products, and the level of oxidative 

DNA damage is roughly related to metabolic rate in several mammalian species (Adelman 

et al, 1988, Shigenaga et al, 1989, Loft et al, 1992). Chronic infection and inflammation 

also contribute to cancer (Beasely, 1987, Marsh and Mossman, 1991, Yu, 1991, Korkina et 

al, 1992), possibly because leukocytes and other phagocytic cells combat bacteria and 

virus-infected cells by destroying them with an oxidant mixture (Ischiropoulos et al, 1992, 

Stamler et al, 1992). Finally, caloric restriction significantly increases lifespan and 

decreases cancer incidence in rodents, possibly by enhancing maintenance functions and 

resulting in less oxidative damage (Roe, 1987, Weraarchakul et al, 1989). These data and



hypotheses tie in with the disposable soma theory in that metabolism has costs and diet 

restriction means resources go to maintenance of the body until food resources are 

available for reproduction (Holliday, 1989).

1.2.1.2 Terminal differentiation

Bell et al (1978) were the first to argue that cessation of proliferation in vitro could 

represent a state of terminal differentiation. Their theory was that a culture of human 

diploid fibroblasts (HDF) consists of cells which are cycling, cells which are prepared to 

cycle, and cells which have further differentiated.

Prepared HDF 7----------- ^Cycling HDF*- Further differentiated HDF

Fibroblasts in culture are stimulated to divide but have a strong tendency to leave 

the cycle and differentiate. Haemopoietic cells (Schofield, 1987), fibroblasts (Smith and 

Whitney, 1980), and keratinocytes are also a non-synchronous population in that different 

clones have different division potential (Barrandon and Green, 1987). Cells in the organism 

have this tendency but less so than in culture where all cells may be ultimately forced to 

differentiate. In development all cell types would undergo divisions and then differentiate 

further. Later in life cells can re-enter the cycle, for example in wound healing, and then 

leave the cycle to complete their differentiation. Adult populations would have a higher 

proportion of further differentiated cells than young populations. Bell et al propose that 

phase 3 cultures are difficult to grow because culture techniques favour proliferating and 

not differentiated cells. For example, aminoguanidine can enhance the survival of terminal 

non-dividing WI-38 cells by four months or more (Duffy and Kremzner, 1977). The fact 

that post-mitotic populations have been kept in culture for over a year supports this 

(McKeehan etal, 1977).



It is common in many different cell types that transformation and reduction in 

expression of the differentiated phenotype occur in parallel (Rheinwald and Beckett, 1980, 

Song et al, 1992, Sparks et al, 1993). Defective terminal differentiation can even be used to 

select malignantly transformed keratinocytes (Rheinwald and Beckett, 1980, Yuspa and 

Morgan, 1981). However there have been instances where limited lifespan and 

differentiation have been uncoupled to an extent. A spontaneously immortalised 

keratinocyte cell line (HaCaT) was established by Boukamp et al (1988) which fully 

expresses the normal keratinization program, and dexamethasone treatment of 

rhabdomyosarcoma cells causes virtually complete block of differentiation, but only causes 

20-30% growth inhibition (de Giovanni et al, 1993). In these cases though differentiation 

may well be slowed. In keratinocytes growing in serum-containing medium where a low 

rate of differentiation is favoured, lifespan is extended (Rheinwald and Green, 1977, 

E.K.Parkinson, unpublished data).

Bayreuther and colleagues (1991) have demonstrated in man and other species that 

fibroblasts in the stem cell system develop and differentiate along an 11-stage sequence 

within five compartments. Three stem cells develop in the stem cell compartment along the 

lineage S1-S2-S3. In the fibroblast progenitor compartment three mitotic fibroblasts 

develop along the sequence MF1-MF2-MF3; in the maturing compartment three post

mitotic fibroblasts develop, and the sequence ends with either apoptosis in the degenerating 

compartment or transformation in the transforming compartment. These phenotypes were 

observed in young primary explant populations and were highly reproducible. Donor age- 

related differences in the frequencies of the cell types, numbers of post-mitotic fibroblasts 

increasing with age, were also highly reproducible (Bayreuther et al, 1992), so it was felt 

that equivalents existed in vivo. It was possible to select for mitotic and post-mitotic types, 

which also exhibited differences in labelled protein patterns (Francz et al, 1989).

The idea of terminal post-mitotic differentiation fits in with Kirkwood and 

Holliday's early proposal of cellular commitment (1975). Their theory proposed that prior 

to the establishment of primary fibroblast cultures all cells are immortal and uncommitted.



During cell division they give rise to committed cells with probability P. Committed cells 

continue to divide but eventually die out, and the number of divisions between commitment 

and death is the incubation period M. It follows that the proportion of uncommitted cells 

eventually dies out as well, and that population size influences longevity. Various 

"bottleneck" experiments where transient reductions in culture size were introduced 

showed that this was indeed the case (Holliday et al, 1977, 1981). However the theory has 

proved untenable (Harley and Goldstein, 1990). Measurements of percentages of dividing 

cells at various stages of replicative lifespan are not those predicted, and the fact that no 

immortal diploid cells have been reported is also at odds with the theory.

1.2.1.3 The telomere hypothesis for cellular aging

Telomeres are the simple G-C-rich sequence repeats at the ends of eukaryotic 

chromosomes. They stabilise chromosome ends, protecting them against illegitimate 

recombination and possibly directing their attachment to the nuclear membrane (Orr- 

Weaver et al, 1981, Agard and Sedat, 1983, Haber and Thombum, 1984). In addition they 

may prevent loss of coding DNA from the chromosome ends resulting from chromosomal 

replication (Greider, 1990). Because DNA polymerase synthesises DNA only in the 5' to 3' 

direction and requires an RNA primer, removal of the primer at the 5' ends of newly 

synthesised strands means that they shorten by at least the length of the primer at each 

division (Walmsley, 1987).

The enzyme telomerase (telomere terminal transferase) was first discovered in 

Tetrahymena (Greider and Blackburn, 1985) and has since been detected in two other 

ciliates, Euplotes and Oxytricha, and in human and mouse transformed cell lines (Zahler 

and Prescott, 1988, Morin, 1989, Shippen-Lentz and Blackburn, 1989, Prowse et al, 1993). 

Telomerase synthesises telomeric repeats using an RNA template which is an essential 

component of the enzyme (Shippen-Lentz and Blackburn, 1990, Yu et al, 1990). Thus 

telomere sequence loss during replication is balanced by de novo addition. Recent evidence
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suggests telomere length may be regulated partly by the processivity of telomerase (Prowse 

et al, 1993), and the large number of yeast genes affecting telomere length may mean 

regulation is a complex process involving telomerase, telomere-binding proteins and other 

components such as rap-1 (Lundblad and Szostak, 1989, Conrad et al, 1990, Lustig et al, 

1990).

Several observations implicate a role for telomere shortening in cellular senescence. 

Telomeres shorten during ageing of cultured human fibroblasts (Harley et al, 1990) and 

other cell types in vivo including skin and colon epithelia and peripheral blood leukocytes 

(Hastie et al, 1990, Lindsey et al, 1991). In somatic cells telomeres may shorten due to the 

absence of telomerase activity: telomerase was not detectable in primary human embryonic 

kidney cells (Counter et al, 1992).

There is increased frequency of dicentric chromosomes due to telomeric 

associations in senesceing fibroblasts (Saksela and Moorhead, 1963, Benn, 1976, Sherwood 

et al, 1989). These abnormalities are typical of terminal deletions (McClintock, 1941).

The presence of telomerase in immortal cells but not in transformed cells which are 

not immortal correlates with the stabilised telomere length over time in such cells (Morin, 

1989, de Lange et al, 1990, Counter et al, 1992).

Finally, sperm telomeres are longer than those of somatic cells and do not decrease 

with donor age (Allsopp et al, 1992). Presumably telomerase is active in the germline.

These data led Harley (1991) to propose that loss of telomere sequence due to 

incomplete DNA replication in the absence of telomerase activity provides a mitotic clock 

that signals exit from the cell cycle. In fact it seems that telomere length is a better 

predictor of replicative capacity in culture for normal cells than donor age (Allsopp et al,

1992). This explains variation in replicative capacity of clones of mass cultures and implies 

a causal role for telomere loss in ageing (Allsopp et al, 1992). In addition, fibroblasts from 

progeria donors had relatively short telomeres at a very young age, consistent with their 

reduced division potential (Allsopp et al, 1992). This tight correlation suggests that
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telomere loss may initiate cell cycle exit once a critical threshold number of telomeric 

repeats is reached, which could represent the Hayflick limit (Allsopp et al, 1992).

It also appears that altering the telomere length equilibrium decreases cell viability. 

Tetrahymena transformed with mutant genes for the telomerase RNA template grow very 

slowly and the cells die after several weeks in culture. The length of the telomeres was 

altered: some were longer and some shorter depending on the introduced mutation 

(Greider, 1990). Yeast EST mutants eventually senesce, which correlates with progressive 

decrease in telomere length as cells divide (Lundblad and Szostak, 1989). It is thought that 

the EST-1 gene encodes a protein component of an essential yeast telomerase (Lundblad 

and Blackburn, 1990). Furthermore, a small proportion of EST-1- cells which survive have 

acquired and amplified subtelomeric fragments (Lundblad and Blackburn, 1993).

Counter et al (1992) showed that SV40 large T antigen and adenovirus 5 El A and 

E1B extend the lifespan of human embryonic kidney cells without directly activating 

telomerase, which was detected only in those rare immortal clones which survived crisis. 

Telomeres continue to shorten during extended lifespan but it may be necessary to 

derepress telomerase for immortality.

It is more difficult to explain the dominance of senescence over immortality in 

hybrids in terms of telomeres. A trans-acting repressor of telomerase may be present in the 

mortal parent (Allsopp et al, 1992).

Mice are interesting in that they are a short-lived species but have very long 

telomeres (Kipling and Cooke, 1990, Starling et al, 1990). Mouse cells do immortalise 

easily in culture and telomerase has been detected in several immortal lines (Prowse et al,

1993). Mouse telomerase adds only one or two repeats onto telomeric primers in vitro, in 

contrast to the human enzyme which under the same conditions adds hundreds of repeats 

(Prowse et al, 1993). This is evidence that telomere length may be controlled by factors 

other than telomerase in vivo.
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1.2.1.4 Senecence is a genetically programmed event

There is increasing evidence now in favour of senescence being genetically 

programmed. For example, quiescence and senescence are biochemically distinct. The RB- 

1 protein, which is phosphorylated after serum stimulation of quiescent fibroblasts, remains 

hypophosphorylated in senescent cells (Stein et al, 1990). Senescent cells continue to 

express fibroblast growth inhibitory protein (GIP) and the 57kd protein statin after serum 

stimulation whereas quiescent cells do not (Wang et al, 1989), and senescent fibroblasts 

express a protein unique to their state, pSEN (Giordano and Foster, 1989).

a). Are stimulatory genes switched off?

C-HA-RAS, C-MYC, and ornithine decarboxylase can be induced normally 

although ornithine decarboxylase shows low activity. Actin is inducible to a lesser extent 

(Seshadri and Campisi, 1990). There are conflicting reports as to whether c-fos can be 

induced in senescent cells (Lucibello et al, 1993, Campisi, 1992). One study has found it 

appears to be under specific transcriptional repression since it was not serum-inducible in 

senescent human diploid fibroblasts and contains the same serum response element 

regulatory sequence as actin, which is inducible (Seshadri and Campisi, 1990).

There are also conflicting reports as to whether genes such as histone H3 and 

thymidine kinase, which are commonly linked to S phase, can be serum-induced (Rittling 

et al, 1986, Chang and Chen, 1988, Seshadri and Campisi, 1990).

As was mentioned earlier (section 1.2) cyclins D and E are inactive as is cdk2, and 

cyclin A is down-regulated.



b). Inhibitory proteins

As was mentioned earlier statin, pSEN and fibroblast GIP are expressed 

constitutively in senescent cells.

Statin is also found in confluent cultures of young fibroblasts (Sester et al, 1990) 

and disappears on entry to S phase (Wang and Lin, 1986). It shows more than 92% 

homology to the elongation factor E F -la  but is distinct from it and regulated differently 

(Ann et al, 1990).

pSEN is homologous to statin (Giordano and Foster, 1989). Using differential 

screening of a cDNA library from senescent WI-38 fibroblasts with probes from senesent 

and young cells Giordano and Foster recognised a pSEN clone with 100% homology to EF- 

la .  Its transcript accumulates towards the end of the lifespan but the processed and 

functional transcript is present in high levels only in early passage cells. Thus the pSEN 

clone may be a senescence-specific form of E F-la .

It has been found that enucleated cytoplasts from senescent fibroblasts inhibit DNA 

synthesis in young cells, and this effect is abolished by treating the senescent cells with 

cyclohexamide prior to enucleation (Dresher-Lincoln and Smith, 1984). Cells constructed 

from WI-38 cytoplasts and nuclei from their SV40-transformed counterparts have a finite 

lifespan, and heterodikaryons of senescent and young cells senesce, implying the presence 

of a diffusible inhibitory factor (Muggleton-Harris and De Simone, 1980). There is also a 

plasma membrane-associated inhibitory protein in senescent fibroblasts since membrane 

preparations have the same effect. Tr/sinising the cells removes the activity (Pereira-Smith
A

et al, 1985).

In addition to the proteins described above, Stein and Atkins (1986) have partially 

characterised a protein found in the cytoplasm of both senescent and quiescent human 

diploid fibroblasts. It does not inhibit cells transformed by DNA tumour viruses but does 

inhibit carcinogen-transformed cells. It also depends on a protein at the cell surface, its
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activity being removed by trypsin. The quiescent inhibitor is regulated differently and 

disappears at late G l.

Recently the gene for prohibitin was cloned (Nuell et al, 1991). This is a 

mammalian antiproliferative protein: microinjection of syntheitic prohibitin mRNA blocks 

entry to S phase in both normal fibroblasts and HeLa cells. It is mutated in approximately 

20% of sporadic breast cancers (Sato et al, 1992).

It is not yet clear whether all the lines of evidence described above involve a single 

protein or several proteins.

In contrast to normal cells, transformed cells have very often escaped senescence to 

become immortal. In vitro models of this process and what we have learned of its genetic 

basis are discussed in the next section.

1.3 Immortality

The role of immortality in carcinogenesis is as yet unknown. Senescence can be a 

mechanism of tumour suppression (O'Brien etal, 1986), and in several systems 

immortalisation is either a prerequisite for full transformation or increases the frequency of 

full transformation (Newbold and Overell, 1983, Steinberg and Defendi, 1983, Rhim et al,y

1985, Strauss et al, 1990). However immortality is separable from tumorigenicity in that 

there are many cell lines which are immortal and yet are non-tumorigenic in a nude mouse 

assay (Namba et al, 1985, Boukamp et al, 1988, Rinehart et al, 1993). There is also a report 

of primary rat embryo fibroblasts transfected with mutant polyoma virus which were not 

immortalised but induced tumours in nude mice (Freund et al, 1992).

If we consider the theory of cooperation of oncogenes for full transformation, or 

tumorigenicity, of primary cells proposed by Weinberg (1985), the idea was that a nuclear 

and a cytoplasmic oncogene were required. The nuclear oncogene often induced 

immortality and the cytoplasmic oncogene led to reduced growth factor requirements, 

morphological changes and anchorage independence. Single oncogenes cannot cause full
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transformation unless the transfected cells are removed from the influence of normal 

neighbours and allowed to proliferate. It is now thought that the action of a nuclear 

oncogene can be replaced by inactivation of tumour suppressor genes involved in control 

of, for example, the cell cycle (reviewed in Weinberg, 1989, and Hunter, 1991).

The relationship of immortality and tumorigenicity may also be complicated by the 

fact that nude mouse assays may not be suitable to all types of cells: for example squamous 

cell carcinoma lines do not easily induce nude mouse tumours in our experience (Edington 

et al, submitted for publication).

Numerous carcinogenic agents and tumour viruses can immortalise normal cells 

(Newbold et al, 1982, DiPaolo, 1983, Rhim et al, 1985, Hawley-Nelson et al, 1989, 

Parkinson, 1989, Hudson et al, 1990, Strauss et al, 1990). Rodent cells can immortalise 

spontaneously in culture (Todaro and Green, 1963, Yuspa et al, 1980, Hermann and Rice, 

1983) but this has only been reported a few times for human cells (Baden et al, 1987, 

Boukamp et al, 1988, Rice et al, 1993). Correspondingly, rodent cells are much more easily 

transformed by carcinogenic agents and viruses (DiPaolo, 1983, Parkinson, 1989). The 

reason for this is unknown. Most studies of immortality have used rodent cells, and since 

rodents seem to be quite different from humans in this respect and for reasons of brevity 

this discussion will be confined to human systems.

Evidence from cell hybrid analysis shows that immortality is a recessive event 

involving gene inactivation. Several investigators have shown that HeLa cells (Bunn and 

Tarrant, 1980, Pereira-Smith etal, 1990), SY40-transformed fibroblasts (Muggleton-Harris 

and DeSimone, 1980, Pereira-Smith and Smith, 1981), fibosarcoma cells (Pereira-Smith 

and Smith, 1983), and glioblastoma cells (Pereira-Smith and Smith, 1983) form hybrids of 

limited division potential when fused with normal diploid fibroblasts. Similar results are 

seen when SV40-transformed fibroblasts are fused with lymphocytes (Pereira-Smith et al, 

1990), normal bronchial cells are fused with bronchial carcinoma cells (Kaighn et al,

1990), HPV-transformed keratinocytes are fused with normal keratinocytes (Chen et al, 

1993), and SCC cells are fused with normal fibroblasts (Berry et al, in press). Taken
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together these observations demonstrate that the process of senescence is dominant to 

immortalisation in human somatic cell hybrids, and that immortalisation is due in part to 

loss of gene function.

Additionally, further hybrid experiments have shown that hybrids between certain 

immortal lines senesce, whereas other cell line combinations do not (Pereira-Smith and 

Smith, 1988, Whitaker et al, 1992). It was thought that such senescent hybrids had 

genetically complemented defective genes in the constituent lines. Pereira-Smith and Smith 

(1988) were able to assign approximately 20 cell lines to one of four complementation 

groups, so it may be that immortality results from changes in a relatively small number of 

genes. However this is still not clear since work from our group (Berry et al, in press) 

showed that two epidermal SCC lines could not readily be placed in one complementation 

group, and Duncan et al (1993) have had similar results for SV40-immortalised cells.

1.3.1 Carcinogenesis is a multistage genetic process

The multistage nature of cancer was first proposed by Foulds (1954). It has now 

been possible to elucidate genetic alterations occurring at different stages in several human 

tumours including colon cancer (Vogelstein et al, 1988), malignant melanoma (Balaban et 

al, 1986), glioma (James et al, 1988) and small-cell lung carcinoma (Naylor et al, 1987). 

These alterations are a combination of mutations which activate cellular proto-oncogenes 

and inactivate tumour suppressor genes.

Proto-oncogenes may be thought of as genes whose products regulate the growth of 

the cell in a positive way. They become activated and thus overexpressed by point 

mutation, amplification or rearrangement, and have been identified by their transforming 

ability in cultured cells. In contrast, tumour suppressor genes in the normal cell suppress 

inappropriate cell growth. Their activities are frequently lost by deletion or mutation in 

neoplastic cells, giving the cells a selective advantage. At least in colon cancer it appears
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that inactivation of tumour suppressor genes predominates over oncogene activation 

(Vogelstein etal, 1989).

There are two human systems where it has been possible to culture cells in vitro 

from various premalignant and malignant stages: colorectal cancer and malignant 

melanoma. Paraskeva et al (1984) were able to derive an immortal cell line from a large 

premalignant colorectal adenoma, and in melanoma lifespan was extended at radial growth 

phase primary melanoma and permanent cell lines were established from the next stage of 

progression, vertical growth phase primary melanoma (Mancianti and Herlyn, 1989). In 

both cases the immortal phenotype was acquired late in the benign-malignant transition.

Thus far it appears that immortality is an important step in progression from a 

benign to a malignant tumour, at least in the two systems described.

Squamous cell carcinoma (SCC) of the head and neck is another excellent system in 

which to study the role of immortalisation in multistage carcinogenesis. It follows clearly 

defined stages of progression (section 1.5.1), there are very good techniques for 

manipulation of keratinocytes in vitro (Rheinwald and Green, 1975), and there are many 

markers of terminal differentiation which are easily measurable (Green, 1977). Finally 

immortal variants are frequent in SCC (Rheinwald and Beckett, 1981)

Several rodent models exist which share some but not all of these features, and will 

not be discussed.

Although adenovirus 5 E l A, Epstein-Barr virus and polyoma virus large T antigen 

can immortalise human cells (Moran et al, 1986, Karran et al, 1990, Strauss et al, 1990), 

the two most popular systems for the study of immortality have been human papilloma 

virus (HPV) infection of primary human keratinocytes and S V40 infection of human 

diploid fibroblasts (HDF) and keratinocytes.
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1.3.2 The human papillomavirus model

Human papillomaviruses cause epithelial hyperproliferation (reviewed in McCance, 

1986). DNA from many HPV types has been identified in genital cancers (HPV 16,18, 31, 

33, 35, 39,45, 51, 52 and 56). Approximately 80% of cervical carcinomas contain one of 

these high-risk HP Vs (reviewed in Howley, 1991). Non-viral factors are likely to be 

required in addition, since benign lesions progress to carcinomas relatively infrequently and 

after a long latency period (reviewed in Pfister, 1987).

Those HPV types most closely associated with cervical malignancies (HPVs 16,18, 

31 and 33) can immortalise normal human foreskin keratinocytes and human cervical 

epithelial cells (Kaur and McDougall, 1988, Woodworth et al, 1988, Schlegel et al, 1989). 

The cell lines contain integrated copies of HPV DNA and express viral proteins (Durst et 

al, 1987, Kaur and McDougall, 1988, Woodworth et al, 1988). The lines are also 

aneuploid, as are cervical carcinoma cells in vivo. Unlike immortalisation by SV40 (see 

section 1.3.3), HPV-infected cells become immortal without an obvious crisis: either the 

papillomaviruses encode enough transforming information to bypass or inactivate all 

mechanisms of senescence, or crisis has not been observed due to escaping clones growing 

out very rapidly, since transfected cultures are usually grown under non-differentiating 

conditions (in defined low-calcium medium without serum or feeder cells). Another 

possibility is that HPV may immortalise via a different mechanism than SV40.

Work on HPV 16 and 18 has shown that the E6 and E7 genes cooperate to 

immortalise human keratinocytes (Hawley-Nelson et al, 1989, Munger et al, 1989a,

Hudson et al, 1990). The immortalising function has not been assigned to a specific gene, 

although HPV 16 E7 leads to hyperproliferation and limited extension of lifespan, and HPV 

18 E7 has been reported to immortalise at very low frequency (Hawley-Nelson et al, 1989, 

Hudson et al, 1990). E6 alone has no immortalising activity. There may be some tissue- 

specificity though since it is reported that HPV 16 E6 and E7 induce hyperproliferation of 

primary human fibroblasts but will not immortalise them (Watanabe et al, 1989), and Shay
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et al (1993) found HPV 16 E7 had no effect on human mammary epithelial cells but E6 

extended their lifespan.

E6 binds the p53 tumour suppressor gene and E7 the RB-1 tumour suppressor gene 

(Munger et al, 1989b, Wemess et al, 1990). In fact in HPV-immortalised cells E6 

stimulates degradation of p53 protein via the ubiquitin pathway (Scheffner et al, 1990). E6 

proteins of both oncogenic and benign HPV types associate in vitro with p53, but only 

oncogenic types target p53 for degradation via N-terminal sequences conserved between 

the E6 genes of these HPV types (Crook et al, 1991). More transforming types of HPV also 

express E7 more efficiently so presumably sequester pRb-1 to a greater extent (Barbosa et 

al, 1991). The functions of p53 and pRb-1 and their possible role in senescence will be 

discussed later (sections 1.3.3.1. A and B).

1.3.2.1 HPV infection of oral squamous epithelium

HPV DNA has been detected in esophageal SCC, with HPV 16 being the most 

common (Perez-Ayala et al, 1990, Benamouzig et al, 1992). Frequency of detection varied 

from 30-40% of tumours. Other types of HPV found at low frequency are 2, 4, 6, 11, 18, 32 

and 57 (Nagashfar etal, 1985, Adler-Storthz et al, 1986, de Villiers et al, 1989). These 

generally occur in benign proliferative lesions of oral mucosa such as papillomas and 

verruca vulgaris. HPV has also been found in head and neck SCC cell lines (Bradford et al, 

1991b). In addition Maitland et al (1989) have detected HPV 16 and Yeudall and Campo 

(1991) have found HPV 18 at very low levels in normal oral mucosa samples.

Due to these results and in parallel with cervical cancer a role has been postulated 

for HPV in the etiology of oral SCC. There is as yet no evidence for viral integration in oral 

epithelium as there is with cervix (de Villiers et al, 1985, Matsukuru et al, 1986, Maitland 

et al, 1987). Importantly, HPV 16 has been shown to immortalise human oral keratinocytes 

in vitro (Parks et al, 1991), and since viral DNA has been detected in normal epithelium its 

role may be to cause an early event such as an increase in cell proliferation or
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immortalisation (reviewed in Yeudall, 1992). However there is no direct data supporting 

this and HPV in SCC development remains controversial.

This system is of course extremely useful in studying mechanisms of 

immortalisation in the HPV-associated cancers and also points out genes involved in 

immortalisation which could be altered in other human cancers. However there will be 

several pathways to immortalisation, some of which may not involve proteins which are 

altered by these viruses.

1.3.3 The SV40 model

Human cells are semi-permissive for SV40 virus production with low frequency of 

transformation and thus relatively rarely give rise to immortal lines (Tooze, 1980, Ozer et 

al, 1981, Huschtscha and Holliday, 1983). Small e ta l (1982) found transformation 

efficiency in human cells increased with the use of a replication-defective virus which had 

a deletion within the origin of replication.

Human cells infected with SV40 express large T antigen, develop altered 

morphology and acquire extended lifespan in vitro (Ide et al, 1984, Neufield et al, 1987). 

The immortalising function of SV40 has been localised to the large tumour antigen and an 

intact T antigen may be required in human cells (Colby and Shenk, 1982, Chang et al,

1985). In fibroblasts lifespan is extended by approximately 20 population doublings 

(Wright et al, 1989) before crisis occurs. During crisis cell number remains constant, cell 

death balancing successful cell division (Stein, 1985). Rare variants survive crisis, giving 

rise to cell lines with unlimited growth potential (Huschtscha and Holliday, 1983, Neufield 

et al, 1987). These cells are still dependent on T antigen expression (Wright et al, 1989).

This two-stage escape from senescence led Wright's group to propose there are two 

mechanisms for senescence, mortality mechanisms 1 and 2 (Ml and M2). M l is active but 

bypassed in T antigen-expressing cells with extended lifespan. It causes loss of mitogen-
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responsiveness and accumulation in G l. M2 then causes failure of cells in division at crisis, 

and variants which survive crisis have genetically inactivated M2 (Wright et al, 1989).

Fusing SV40-transformed cells with normal cells produces hybrids with limited 

division potential, therefore SV40 immortalisation is still recessive (Muggleton-Harris and 

DeSimone, 1980). The viral genome integrates stably and T antigen is functional for 

induction of DNA synthesis in these senescent cells (Pereira-Smith and Smith, 1981). Thus 

T antigen alone is not sufficient for immortalisation, and both M l and M2 inactivation are 

overcome by the normal cell without extinguishing T antigen expression.

T antigen causes karyotypic instability, expressing cells being aneuploid both 

before and after crisis, and this may contribute to genetic inactivation of M2 (Ray et al, 

1990, Ray and Kraemer, 1993). This could explain why not all SV40-transformed cells 

escape crisis, because endoreduplication of chromosomes carrying M2 genes would mean it 

was highly unlikely that M2 would be inactivated (reviewed in Shay et al, 1991).

1.3.3.1 Mortality mechanism 1

As with HPV 16 & 18 E6 and E7, SV40 T antigen binds the p53 and Rb-1 

suppressor gene products (Lane and Crawford, 1979, DeCaprio et al, 1988). E6 & E7 and 

also T antigen can be replaced in extending lifespan by adenovirus 5 E l A and E1B, which 

also bind pRb-1 and p53 (Sarnow et al, 1982, Moran et al, 1986, Whyte et al, 1988). 

Therefore these genes are good candidates for producing M l senescence. In SV40- 

transformed cells p53 protein has an increased half-life, generally a sign of mutant protein 

(Oren et al, 1981). Shay et al (1991) have shown that in SV40-immortalised human 

fibroblasts where the T antigen has been de-induced and the cells senesced, proliferation 

can be stimulated by introduction of T antigen from another source; deletion mutants 

lacking the p53-binding domain do not have this activity.
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A second reason p53 and pRb-1 are implicated specifically in M l is that treatment 

of diploid fibroblasts with both an RB-1 and a p53 anti-sense oligomer extends their 

lifespan and increases their sensitivity to serum (Hara et al, 1991).

A discussion of the role of p53 and pRb-1 in immortalisation and their possible 

functions follows.

1.3.3.1.A The p53 tumour suppressor gene.

Convincing evidence for a role of p53 in limited lifespan comes from studying 

LiFraumeni syndrome. This is an inherited autosomal dominant cancer syndrome, and 

Malkin et al (1990) recently identified the inherited mutation as inactivation of one allele of 

p53. It was then found that fibroblasts from these patients escape senescence in tissue 

culture (Bischoff et al, 1990). The cells acquire altered morphology and chromosome 

abnormalities and then enter a growth crisis from which they escape and grow for over 200 

population doublings. Further, loss of cell cycle control in the LiFraumeni fibroblasts was 

correlated with loss of the remaining wild type allele (Yin et al, 1992).

Fibroblasts from homozygous p53-deficient mice produce cell lines without 

entering any kind of crisis or slowed growth phase (Harvey et al, 1993, Tsukada et al, 

1993), as did lens and mammary epithelial cells. However bone marrow, hepatocyte and 

cardiac muscle cells did not immortalise (Tsukada et al, 1993), and keratinocytes go 

through crisis before immortalising (D.Stuart, personal communication). Fibroblasts from 

heterozygous mice senesced in culture even though they lost the wild type allele early on 

(Harvey et al, 1993). Homozygous fibroblasts were highly aneuploid and heterozygous 

fibroblasts were moderately aneuploid. These results suggest that loss of p53 alone is 

insufficient to confer immortality on a cell and that the primary role of p53 loss is to 

facilitate genetic instability and thus other alterations which influence immortality directly. 

This is consistent with a role for p53 in M l.



23

p53 appears to be a very complex protein with varied roles in the normal cell, many 

of which are compatible with senescence. First, there is evidence that p53 is involved in the 

cell cycle. Steady state levels of p53 are at their highest prior to DNA synthesis in late G1

(Reich and Levine, 1984). Induction of wild type protein in 

growth-stimulated human cells also prevents progression from G1 to S phase (Diller et al, 

1990, Mercer e ta l, 1990, Michalovitz etal, 1990). Finally, fibroblasts from p53-deficient 

mice spend less time in G1 (Harvey et al, 1993).

This cell cycle regulation may involve phosphorylation of p53. Two carboxy- 

terminal sites in mouse p53 are phosphorylated in vitro by p34cdc2 and casein kinase II 

(Samad et al, 1986, Sturzbecher et al, 1990, Herrmann et al, 1991). Several 

phosphorylation sites have been identified at the amino-terminal portion of the mouse 

protein (Wang and Eckhart, 1992). A casein kinase I-like enzyme from 3T3 cells acts here 

and the human enzyme DNA-activated protein kinase is also active on the mouse protein 

(Milne et al, 1992, Wang and Eckhart, 1992). Phosphorylation by cdc2 is cell cycle- 

dependent and mutation of the serine-15 site reduces the ability of p53 to inhibit cell cycle 

progression (Bischoff et al, 1990, Fiscella et al, 1993).

p53 also seems to have some transcription factor activity. It functions as a 

transcription activator when coupled to a heterologous DNA-binding domain (Fields and 

Jang, 1990, Unger et al, 1992), but has DNA-binding activity itself to specific sequences 

(Kern et al, 1991) and activates transcription of reporter genes coupled to these sequences 

(Aoyama et al, 1992, Farmer et al, 1992).

Third, p53 may be important for the stability of the genome (Lane, 1992). Normal 

cells lack the ability to amplify DNA (Tlsty, 1990, Wright et al, 1990), but gene 

amplification is common in tumour cells (Tlsty et al, 1989). Cells retaining one wild type 

p53 allele arrest in G1 as do normal cells when placed in the uridine biosynthesis inhibitor 

N-(phosphonoacetyl)-L-aspartate (PALA). Cells losing the second allele fail to arrest and 

amplify the gene for the enzyme CAD in order to survive in the presence of the drug
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(Livingston et al, 1992). Furthermore, expression of wild type p53 in immortal and tumour 

cells containing mutant p53 restored G1 control and reduced gene amplification (Yin et al,

1992). More recently it was found that alterations in p53 precede and facilitate divergence 

of aneuploid subclones in colorectal cancer (Carder et al, 1993).

Finally, p53 may play a part in terminal differentiation and apoptosis. Wild type 

p53 induces apoptosis in colon cancer and leukaemia cell lines and is important in at least 

one pathway to apoptosis in thymocytes (Yonish-Rouach et al, 1991, Shaw et al, 1992, 

Clarke et al, 1993). p53 was also able to induce expression of B-cell specific markers in a 

murine leukaemia virus-transformed pre-B-cell line (Shaulsky et al, 1991), and induces 

involucrin expression in normal keratinocytes (Woodworth et al, 1993), involucrin being a 

marker of squamous differentiation. Finally, squamous cell carcinomas produced by 

carcinogen treatment of p53 heterozygous and null mice were markedly undifferentiated 

compared to wild type carcinomas (Kemp et al, 1993), and in human head and neck cancer 

patients p53-positive tumour-distant epithelia were less differentiated (Nees et al, 1993).

1.3.3.1.B The RB-1 tumour suppressor gene.

Aside from being bound by viral immortalising proteins, further evidence for a role 

for pRb-1 in senescence comes from experiments by Shay et al (1991) where they de

induced SV40 T antigen in immortalised human fibroblasts and rendered them senescent. 

An alternative source of T antigen restored proliferation but T antigen deletion mutants 

lacking the pRb-binding domain were unable to do so.

Antisense RB and p53 oligonucleotides cooperate to extend the lifespan of human 

fibroblasts as mentioned above (Hara et al, 1991).

This area does remain controversial though because as regards the papillomaviruses 

HPV 16 E6 alone can bypass M l and extend lifespan in human mammary epithelial cells 

(Shay et al, 1993). Additionally these cells may occasionally be immortalised with HPV 16 

E6/E7 plasmids which do not bind pRb as can human epithelial keratinocytes (Band et al,
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1991, Jewers et al, 1992). Other experiments suggested that HPV 16 E7 alone can 

immortalise human keratinocytes at low frequency (Halbert et al, 1991).

Tedesco et al (1993) have suggested these conflicts could be explained by the 

multifunctional nature of the transforming genes. These functions have not only additive 

but partially interchangeable effects.

The role of pRb-1 in the cell cycle is becoming clearer. pRb-1 phosphorylation 

levels vary through the cell cycle (Buchkovich et al, 1989, DeCaprio et al, 1989). This 

phosphorylation appears to regulate its activity in that hypophosphorylated pRb forms a 

complex with the transcription factor E2F at G l, and this complex silences transcription 

from E2F-regulated genes such as DNA polymerase a , C-MYC and dihydrofolate 

reductase (Shirodkar etal, 1992, Weintraub et al, 1992). E2F-regulated genes play an 

important part in cellular proliferation. As the cells enter S phase pRb becomes 

hyperphosphorylated and E2F complexes with pl07, a pRb-related protein, and cyclin A. In 

the absence of pRb E2F is a positive element for the genes described (Schwartz et al,

1993).

SV40 T antigen preferentially binds the hypophosphorylated form of pRb-1 

(Ludlow et al, 1989), and hence may block the G l phase function of pRb (Goodrich et al,

1991). In HPV 16 and 18-immortalised keratinocytes it has been demonstrated that the 

pRb-E2F complexes are disrupted and complexes containing E2F and cyclin A are 

maintained (Pagano et al, 1992).

1.3.3.2 Mortality mechanism 2

Little is known about the gene products involved in M2. The main three changes 

which have been observed at crisis are, first, telomerase is activated (Morin, 1989, Counter 

et al, 1992). Second, the frequency of dicentric chromosomes stabilises (Counter et al,

1992), and third, telomere length stabilises (Counter et al, 1992).
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There are also several chromosomes which have been postulated to carry 

senescence genes mainly by virtue of their ability to produce a senescence phenotype when 

transferred into various cell lines. These genes may be involved in bringing about crisis, 

and the evidence for their existence is described below.

1.3.3.2.A Evidence for senescence genes on specific chromosomes

Several groups have transferred chromosomes 1, 4 and 9 into various cell lines by 

microcell-mediated chromosome transfer and noted signs of senescence. These results are 

summarised in table 1.

Several other studies point to the involvement of chromosome 1 in senesence. 

Firstly, Sugawara et al (1990) fused human diploid fibroblasts with cells of an immortal but 

non-tumorigenic Syrian hamster cell line. Most hybrids senesced, but karyotype analysis of 

those that did not revealed that all these clones had lost both copies of the normal human 

chromosome 1. All the other human chromosomes were observed in at least some of the 

immortal hybrids. Furthermore, application of selective pressure to retain human 1 resulted 

in a higher percentage of senescent clones. Criteria for senescence included cellular 

enlargement and flattening, failure to increase cell numbers within two weeks, failure to 

form colonies at clonal density and lack of significant ^H-thymidine incorporation.

The group then demonstrated that the gene(s) responsible for this effect was located 

on the long arm of chromosome 1. They used normal human fibroblasts with a 

translocation between chromosome X and chromosome 1 such that the HPRT gene on X 

and the region lq23-qter were retained, HPRT being used to apply selection pressure for 

retention of the translocated chromosome. Hybrids between these cells and the hamster 

cells senesced at over twice the frequency.

Paraskeva et al (1989) reported the isolation of an immortal, non-tumorigenic, 

adenoma-derived epithelial cell line by virtue of continuous passage in vitro. At early 

passage the cells were diploid but at late passage every cell had an isochromosome lq. This
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result implies the presence of a suppressor of immortality on lp, but is the only result that 

does so that we are aware of.

There is less evidence for chromosome 4 involvement in senescence and the 

involvement does not appear to be universal. Ning et al (1991) transferred a normal human 

chromosome 4 into immortal lines representative of the four complementation groups for 

indefinite division which they had identified earlier (Pereira-Smith et al, 1988). They found 

chromosome 4 was able to reverse the immortal phenotype of cell lines assigned to 

complementation group B such as HeLa, J82 and T98G. However it had no effect on 

HT1080 cells, amoungst other lines from other complementation groups, and another group 

(Benedict et al, 1984) have found that tumorigenic segregants of hybrids between normal 

human fibroblasts and HT1080 cells had lost chromosome 4. On the other hand it is not 

clear whether the growth suppression observed in group B cells was specifically senescence 

and nor were hybrids with cells from other complementation groups tested for their 

tumorigenicity in nude mice.

Chromosome 6 shows alterations when SV40-transformed fibroblasts pass through 

crisis to become immortal. Hubbard-Smith et al (1992) generated pre- and post-crisis 

SV40-immortalised cell lines and found all the immortal lines had alterations of 

chromosome 6, involving the distal portion of 6q21, as compared with their pre-immortal 

parent cells.

A rare human line of spontaneously immortalised keratinocytes has been observed 

to acquire a single isochromosome 6p along with increases in cell cycle proteins as it 

increased in colony-forming efficiency during the early stages of extended lifespan, 

implying again a role for 6q in suppressing immortality (Rice et al, 1993).

Chromosome 9 has been transferred by microcell-mediated chromosome transfer 

into several different cell lines by different groups (table 1). Using the MTAP gene at 9p21
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as a natural selectable marker Porterfield et al (1992) showed that hybrids without an intact 

9p were not affected, but those with the entire chromosome arm senesced after six 

population doublings.

Chinese hamster embryo (CHE) cells treated with nickel produce a high percentage 

of transformants with non-random deletions of Xq (Conway and Costa, 1990). The 

frequency of Ni-induced transformation is significantly higher in male than female cells, 

leading to the hypothesis that this mechanism of transformation involved a suppressor gene 

on X. Microcell-mediated chromosome transfer of an active hamster X into Ni-transformed 

CHE cells in fact produced 80% senescent colonies (Klein et al, 1991). Control transfer of 

Xp and Xq derived from Ni-transformed lines had no such effect, indicating that it was 

specific to the normal chromosome.

Later the same group found that passage of X in A9 cells (microcell donors) led to it 

being less active in the senescence assay. Treatment of the A9s with 5-azacytidine restored 

activity, showing that X, and particularly putative senescence genes on X, may become 

inactivated epigenetically by methylation.

In a second paper the group reported transferring a human X into the CHE cells led 

to a much lower rate of senescence (Wang et al, 1992), possibly because of deletion of 

important sequences during fusion since human X is more fragile.

Figure 3 summarises information to date about M l and M2 based on the viral 

models of 2-stage escape from senescence.

Since M l involves p53 and pRb-1, and gene inactivation appears to be necessary to 

overcome M2, and in the light of the data above, senescence genes are most probably 

tumour suppressor genes. Thus we may approach their isolation by methods normally used 

for tumour suppressors.



IN VITRO SV40 MODEL OF HUMAN CELLULAR IMMORTALISATION

INACTIV ATION O F  M ORTA LITY 
M E C H A N ISM  1

SV40 T ANTIGEN DEPENDENT 

p53 INACTIVATED 

RB- 1 INACTIVATED

TELOMERES CONTINUE TO 
SHORTEN

EXTENDED LIFESPAN

INA CTIV A TIO N  O F  M O RTA LITY  
M E C H A N ISM  2

SV40 T ANTIGEN INDEPENDENT

( PROBABLY THE RESULT OF SPONTANEOUS 
MUTATION )

LOSS OF ALLELES ON CHROMOSOME 6q 

END TO TELOMERE SHORTENING 

TELOMERASE ACTIVATION 

IMMORTALITY

C R I S I S

F i g u r e  3. Summary of known data for the two-stage S V40 model of escape from 
senescence.
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1.4 Tumour suppressor genes

Work on tumour suppressor genes has realised its importance much more recently 

than that on oncogenes. This may be partly due to their being more difficult to detect and 

functionally analyse. The first evidence for the existence of genes with the ability to 

suppress malignancy came from fusion of malignant and normal cells as described in the 

introduction to section 1.3. The study of karyotypes of various tumours showed that 

specific regions were consistently lost, and cellular proteins which are bound by DNA 

tumour viruses were identified. RB-1 was the first tumour suppressor to be cloned. The 

method by which the mutational mechanism of RB in tumours was detected provides a 

valuable clue to the presence of a tumour suppressor gene locus which is widely used 

today.

1.4.1 Restriction fragment length polymorphism analysis: 
Pinpointing the location of the retinoblastoma gene

Retinoblastoma is a childhood cancer arising in cells of the embryonal neural retina. 

It occurs in both sporadic and familial forms, the latter accounting for 30% of cases.

The incidences of unaffected carriers, unilateral and bilateral retinoblastomas led 

Knudson (1971) to propose a "two hit" model for development of the cancer. His 

hypothesis was that in the dominantly inherited form a mutation is passed through the germ 

line. The second mutation occurs in the somatic cells. In the sporadic form both mutations 

are somatic.

It had been noticed that approximately 5% of retinoblastoma patients had 

constitutional deletions of the long arm of chromosome 13. The region of smallest overlap 

was band 13ql4 (Lele et al, 1963, Orye e ta l, 1974, Francke, 1976). Furthermore, vpon 

analysis of tumour cells from patients with normal constitutional karyotypes, 5% showed 

visible deletions of chromosome 13, including 13ql4 (Balaban-Malenbaum et al, 1981,
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Balaban et al, 1982). However these alterations were obviously not enough to cause the 

disease as they affected such a small proportion of cases. In addition, in cases where there 

was a constitutional deletion not all retinal cells were neoplastic, and there were other 

consistent chromosomal aberrations in retinoblastomas (Squire et al, 1985).

The investigation was assisted by the discovery that the enzyme esterase D was 

linked to the disease locus (Sparkes et al, 1983). The enzyme has several isoforms so 

cosegregation of a specific allele with the disease could be followed within families, and 

activity levels were reduced in patients with deletions of 13ql4 (Sparkes et al, 1980). 

Further substantiation of 13ql4 as a possible disease locus came from cytogenetic analysis 

of a family who carried a constitutional deletion of 13ql4. Unaffected members also had a 

translocation of 13ql4 to chromosome 3 (Strong et al, 1981). Thus family members who 

had two copies of this region and one chromosome with a deletion did not develop 

retinoblastoma, but those with one copy (no translocation) and one chromosome with a 

deletion did. This showed that the deletional event was the predisposing event but was not 

acting in a genetically dominant way. It was possible that the inherited retinoblastoma 

mutation was a recessive allele and inactivation of the normal homologue was required for 

its expression in the tumour.

Bearing Knudson's proposal for two-step mutation in mind, several chromosomal 

mechanisms were discussed which would lead to phenotypic expression of a recessive 

allele (Cavenee et al, 1983). These are depicted in figure 4. Figure 4 initially represents a 

person with a recessive mutation in one copy of the RB gene. This could either be inherited 

or somatic. Any subsequent somatic event resulting in homozygosity for the mutant allele 

produces a mutant clone. Such an event could be any one of figure 4a-f. Firstly, non

disjunction at mitosis with loss of the normal chromosome would result in hemizygosity at 

all loci on chromosome 13. This could be followed by duplication of the mutant 

chromosome producing homozygosity at all loci. Recombination at mitosis between the RB 

locus and the centromere could produce a daughter cell with two copies of mutant RB, with 

heterozygosity at points above the crossover and homozygosity below. Finally, other events
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such as deletion, gene conversion and point mutation can also lead to homozygous mutant 

RB. These last events are more complicated in the effects they would have in terms of 

heterozygosity at and surrounding the RB locus.

Cavenee et al (1983) tested the possibilities using a series of probes homologous to 

regions of DNA along chromosome 13 containing restriction fragment length 

polymorphisms (RFLPs). There are two kinds of variation between alleles which result in 

RFLPs: simple base pair changes within the recognition site sequence of a restriction 

endonuclease lead to alleles of longer or shorter length depending on whether a site is lost 

or gained. Insertion or deletion of varying numbers of segments of similar DNA sequences 

at the locus leads to numerous allele sizes. Each person has two alleles, one inherited 

maternally and the other paternally. If a person is polymorphic at the site in question then 

the alleles can be distinguished on a Southern blot hybridised with an homologous probe.

Using this technique, Cavenee et al (1983) found evidence for non-disjunction and 

chromosome loss, non-disjunction and reduplication, and mitotic recombination at 

chromosome 13 in patients' retinoblastomas relative to their normal constitutional DNA. 

The events seemed to be specific to chromosome 13 since use of markers on other 

chromosomes showed heterozygosity continued at those loci in the tumours. They 

suggested that only homozygosity at RB on chromosome 13 could cause a retinoblastoma 

tumour.

It was later shown that in hereditary cases of retinoblastoma the chromosome 13 

which remained in the tumours was inherited from the afflicted parent, and indeed the 

chromosomal changes detected had uncovered a recessive mutation (Cavenee et al, 1985).

1.4.2 Microsatellites, another type of polymorphic marker

The use of microsatellites as markers has increased enormously in the last few 

years. They are a faster method of analysing loss of heterozygosity than Southern blotting. 

In addition a relatively small quantity of DNA is required.
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Microsatellite sequences are CA-GT repeat regions of unknown function. They are 

highly polymorphic in length and occur approximately every 30-60 kb throughout the 

genome (Hamada and Kakunaga, 1982, Weber and May, 1989). They are inherited in 

Mendelian fashion in the same way as RFLPs (Weber and May, 1989).

Use of the polymerase chain reaction to amplify the sequences and separation of the 

products on a polyacrylamide gel enables the two alleles to be distinguished in 

heterozygous individuals (Weber and May, 1989). Since microsatellite sequences are on 

average 70% polymorphic, they are much more efficient than RFLP analysis. The 

frequency of their occurrence is an added advantage since most regions of DNA can be 

examined in some detail. Their main disadvantages are that it is not easy to judge allele 

copy numbers and their amplification is often complicated by "shadow" bands, making 

interpretation occasionally difficult.

1.4.3 Microcell-mediated monochromosome transfer as another 
method of detection of suppressor genes

This technique refines that of hybrid analysis because it enables transfer of a single 

chromosome into a specific target cell. It has been used recently to search for suppressive 

activity in conjunction with techniques previously described, providing functional evidence 

for tumour suppressors.

Human chromosomes are tagged with a selectable marker and form micronuclei in 

the presence of the mitotic inhibitor colcemid. The micronuclei are isolated by cytochalasin 

B enucleation and fused with the desired cell type in the traditional way with polyethylene 

glycol. A human chromosome library can then be constructed and passaged in mouse cells 

before transfer in a similar way to the appropriate target cell (McNeill and Brown, 1980, 

Saxon et al, 1985).

A previous problem had been how to obtain a selectable marker on the chromosome 

of interest where it did not occur naturally. This has been solved by transfecting human
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cells with plasmids carrying markers such as the bacterial neomycin resistence gene or by 

infection with retroviral vectors. For example, human HPRT- cells have been transfected 

with plasmids carrying E.Coli xanthine-guanine phosphoribosyl transferase (XGPRT). This 

integrates into human DNA and transformants are selected by growth in hypoxanthine- 

aminopterin-thymidine medium (Srivatsan et al, 1984). XGPRT confers resistence to 

aminopterin in HPRT- cells. Transformants containing a single integrated copy are isolated 

and their site of integration determined by in situ hybridisation (Saxon et al, 1985).

It is more difficult to make microcells from human cells than from mouse, and this 

is why the chromosomes are passaged in mouse cells (Shows and Sakaguchi, 1980, Saxon 

et al, 1986). Rodent-human hybrids are very efficient in making microcells (Saxon et al,

1986). Resulting hybrids (target cell plus the chromosome of interest) may contain mouse 

chromosomes as well. These may be discarded (Saxon et al, 1986) but in experiments 

where they have not, no correlation was noted between the presence of the mouse 

chromosome and the phenotypic alterations observed after fusion (Kugoh et al, 1990).

1.4.4 Advantages and disadvantages of loss of heterozygosity 
analysis as a means of locating tumour suppressor genes

Loss of heterozygosity (LOH) analysis as described for RB-1 (section 1.4.1) has 

been widely used both alone and in conjunction with some of the other techniques 

described earlier to look for candidate tumour suppressor genes. It refines cytogenetic 

analysis as it detects changes in kilobase sequences of DNA rather than hundreds of 

kilobases.

LOH itself does not induce malignancy, but reproducible LOH is an indicator of the 

possible location of a gene of interest in pathogenesis. Regions of overlap of deletions in 

areas where LOH has been detected can be relatively small. This lack of complete loss of 

large regions of genetic material indicates the presence of important genes and pinpoints 

areas for further analysis.



However high background levels of LOH can make it difficult to decide which loci 

are important. Not all LOH may constitute inactivation of tumour suppressor genes, but 

may be simply the result of genomic instability. Indeed some are of the opinion that gene 

deletion is a general process in tumour progression and not a specific mechanism of 

carcinogenesis (Chigira et al, 1993). These problems can be avoided to an extent by 

looking at early tumours to see which alterations happen first and are presumably causative 

for abnormal growth.

Contamination of tumour with normal tissue tends to reduce the sensitivity of LOH 

assays (Lasko et al, 1991), resulting in underscoring of LOH frequency. This could be a 

reason to notice lower levels of LOH than would be thought of import when studying cell 

lines or purer material, and underlines the need to look at large numbers of samples. It is 

also important to determine background levels of LOH in the system in use for comparison.

One advantage of LOH analysis over cytogenetics is that some chromosomal 

mechanisms for the allele losses can be distinguished as was described in section 1.4.1. A 

tumour suppressor inactivated by two point mutations would not be detected.

Very recently a novel kind of tumour suppressor gene activity was identified which 

affects stability of specific sequences of DNA. Peltomaki et al (1993) mapped a locus on 

chromosome 2 which predisposes to hereditary non-polyposis colorectal cancer. This 

suppressor gene might be a replication factor and the mutation may cause general 

instability or alternatively instability may be associated only with microsatellite-associated 

genes (Aaltonen et al, 1993). The gene was not detectable by LOH analysis and, further, 

replacing it by chromosome transfer may not suppress the effects of previous damage.

Molecular evidence from LOH, linkage studies, cytogenetics and monochromosome 

transfer is circumstantial and does not provide sufficient functional evidence for the 

existence of a particular suppressor gene. This comes from cloning and subsequent 

transfection into cells which lack the relevant gene to test for suppressor activity. In most 

cases there is no specific assay apart from testing for tumorigenicity in nude mice.
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Once the candidate RB gene had been cloned from chromosome band 13ql4 

(Friend et al, 1986, Lee et al, 1987), tumours were examined to check that the transcript 

was absent and the gene mutated in significant numbers (Fung et al, 1987, Lee et al, 1987, 

Bookstein et al, 1988). Huang et al (1988) then undertook to develop an assay system for 

pRb function by introducing the gene into retinoblastoma and osteosarcoma cell lines 

which had inactivated their endogenous Rb genes. Expression of exogenous RB suppressed 

growth rate in culture, anchorage-independent growth and tumorigenicity in nude mice. It 

also caused the cells to enlarge and flatten. Expression of Rb protein was later shown to 

suppress other types of tumour which tended to have inactivated RB genes such as prostate 

(Bookstein et al, 1990), and also to arrest normal cells (Fung et al, 1993). Finally, 

transgenic mice with no functional RB are non-viable (Clarke et al, 1992, Lee et al, 1992). 

These evidences all support the role of RB as a tumour suppressor gene with an important 

role both in development and the normal cell. Candidate suppressor genes must be 

investigated in this way to be categorised as suppressor genes.

1.4.5 Imprinting and LOH

Genomic imprinting is gamete-specific, differential expression of the two alleles of 

a gene. It has been demonstrated in mice, where parental-specific monoallelic expression of 

insulin-like growth factor 2 (IGF2), small nuclear ribonucleoprotein-associated 

polypeptide, the IGF 2 receptor and H19 have been detected (DeChiara et al, 1991, Barlow 

et al, 1991, Bartolomei et al, 1991, Cattanach et al, 1992, Leff et al, 1992). Functional 

differences between maternal and paternal alleles in humans are demonstrated by disorders 

associated with either all paternal or all maternal genomes (hydatidiform moles of the 

uterus and ovarian teratomas respectively), and also by disorders associated with 

uniparental disomy (UPD) of specific chromosome regions, such as paternal UPD at 1 lp l5  

in 20% of Beckwith-Wiedemann syndrome patients (Linder et al, 1975, Henry et al, 1991, 

Ozcelik et al, 1992).
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There have been many reports of preferential LOH in both sporadic and inherited 

tumours (reviewed in Feinberg, 1993), providing indirect evidence for imprinting 

involvement in cancer. The bias is towards retention of the maternal allele; studies in mice 

have shown that while paternal UPD leads to prenatal overgrowth, maternal UPD of the 

same region causes growth retardation, so imprinted tumour suppressor genes may tend to 

be expressed by the maternal allele (Barton et al, 1991).

One hypothesis is that imprinting could be one of the two hits required to inactivate 

tumour suppressor gene expression (Scrable et al, 1989). LOH then results from loss of the 

active copy, or may not occur if the active gene mutates or is also aberrantly imprinted.

Some evidence against this idea comes from analysis of Beckwith-Wiedemann 

syndrome (BWS). In the 20% of patients with UPD at 1 lp l5  there is 64% incidence of 

embryonal tumours such as Wilms tumour, or pediatric nephroblastoma, hepatoblastoma, 

and rhabdomyosarcoma, which is much higher than the incidence normally associated with 

the disease (Feinberg, 1993). We cannot distinguish two possible effects of the UPD, 

namely overexpression of the duplicated allele (the allele is a growth promoter) or loss of 

expression of the deleted allele where it is a tumour suppressor. Only the latter is consistent 

with the above hypothesis.

In non-UPD BWS patients there are eight known balanced germline translocations 

of 1 lp l5 , and these are of maternal origin. Fourteen of fifteen known germline 1 lp l5  

duplications are of paternal origin (Brown et al, 1990). This would suggest the paternal 

allele is active, the maternal inactive, and BWS is caused by overdosage of the paternal or 

activation of the maternal alleles. One candidate for the BWS gene at 1 lp l5  is insulin-like 

growth factor 2. This gene is imprinted in man and is expressed from the paternal allele 

(Ohlsson et al, 1993).

WAGR syndrome is a hereditary predisposition to Wilms' tumour with other 

associated developmental problems. A minority of tumours from these patients have 

deletions at 1 lp l3  (Francke et al, 1979) and the WT-1 tumour suppressor has been cloned 

from this region (Call et al, 1990, Gessler et al, 1990). Other Wilms' tumours have no
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deletions of WT 1 but have LOH at l ip  15 (Reeve et al, 1989). Finally some tumours show 

no linkage to any region of chromosome 11 (Huff et al, 1988). 70% of Wilms' tumours 

showing no LOH at either region demonstrate loss of imprinting at IGF 2 (Rainier et al, 

1993, Ogawa et al, 1993). In other words both alleles are expressed. This loss of imprinting 

is much more common than the LOH (Wadey et al, 1990, Little et al, 1992).

Thus evidence from preferential LOH and UPD support conflicting hypotheses. A 

final hypothesis which would incorporate both is the idea that preferential LOH could 

involve a tumour suppressor gene on the same chromosome arm as an imprinted growth 

promoter (Feinberg, 1993, see figure 5). The preference arises because loss of the paternal 

allele would also delete the linked active copy of the growth promoter, which would be 

deleterious to tumour growth. In support of this Koi et al (1993) have isolated an 1 lp l5  

fragment which is distinct from IGF 2 and suppresses the growth of rhabdomyosarcoma 

cells. In this case LOH would still indicate the presence of a suppressor gene (see figure 5). 

Alternatively the function of LOH associated with duplication of the remaining allele could 

be simply to allow overexpression of the growth promoter. LOH has been detected in the 

constitutional tissue of some Wilms' tumour patients (Chao et al, 1993). In this case LOH 

would not be related to tumour suppression at all.

Further work is required before any of these theories can be proved or disproved. It 

is likely that some will be appropriate to some situations and others to others.

1.5 Squamous cell carcinoma

A simplified diagram of the structure of the skin is shown in figure 6. Keratinocytes 

proliferate in the basal layer and then migrate outwards. In the spinous layer they lose 

proliferative ability and begin to express markers of differentiation such as involucrin, 

which is a precursor of the comified envelope. In the granular layer proteins are cross- 

linked to form the insoluble comified envelope and the cells enlarge and flatten out. Finally 

at the cornified layer the nucleus begins to disintegrate and the cells die and become
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squames and are eventually sloughed off. Thus in vivo keratinocyte differentiation takes 

place in well-defined compartments. This also occurs in vitro when keratinocytes are 

grown under fairly specialised conditions such that they can form colonies which stratify 

and allow cells at the centre to differentiate and express the markers described above 

(Rheinwald and Green, 1975a, 1975b, Sun and Green, 1976, Green, 1977)

1.5.1 Progression of oral SCC

Oral squamous cell carcinoma (SCC) is a major cause of death in developing 

countries. It comprises 40-50% of malignancies in India and Southeast Asia (Sanghvi, 

1981). In the West it comprises 5% of total malignancies (Vokes et al, 1993) but its 

mortality rate and incidence is increasing (Franceschi et al, 1992, Macfarlane et al, 1992).

A diagram of oral SCC progression and the physiological changes occurring at each 

stage is shown in figure 7. Premalignant lesions which can progress to SCC are papillomas, 

leukoplakias and erythroplakias, erythroplakias having the highest probability of 

progression. Erythroplakias are therefore the only premalignant lesion which are routinely 

removed. Approximately 50% of the time however SCC develops without a prior lesion. 

Spindle cell carcinomas tend to be recurrent or metastatic tumours (Pindborg, 1985).

In India oral SCC is associated with chewing tobacco (Jussawalla and Deshpande, 

1971) and is often preceded by premalignant leukoplakias (Daftary et al, 1990). Western 

SCC is associated with cigarette smoking, the use of snuff and alcohol (Wynder and 

Stellman, 1977) and is more commonly preceded by erythroplakias, but often occurs 

without a premalignant lesion (Binnie, 1976).

Esophageal cancer frequently requires radical surgery so reduces the quality of the 

patients' lives considerably (McCaffrey, 1993).
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Relatively little is known about the molecular events leading to SCC development, 

however several cytogenetic studies have been done. Common alterations include deletions 

of 3p, 8p, lOp, 1 lp, 18q and the short arms of the acrocentric chromosomes (Stacey et al, 

1990, Cowan et al, 1992). Additional copies of 7p are also common. Breakpoints cluster to 

lp ll-3 2 , lq21-44, 2q31, 3 p ll, 4q35, 7p22, l lp l5 , l lq l3 , 12q24 and 17q25 (Jin et al,

1990, Jin et al, 1993, Patel etal, 1993).

The region 3p 14-25 is very often deleted (Latif et al, 1992). Recently three discrete 

regions of deletion at 3p were identified (Maestro et al, 1993) in agreement with work in 

our group (O.Loughran, personal communication). They were 3p24-ter, 3p21.3, and 3pl4- 

cen. These same regions have been described for squamous cell lung cancer, which shares 

the major etiological factors of smoking and alcohol (Hibi et al, 1992). Alterations at each 

of these sites have also been reported in many other cancers such as lung cancer, renal 

carcinoma, breast cancer, tesicular, ovarian and cervical cancers (Whang-Peng et al, 1982, 

Wang and Perkins, 1984, Lothe et al, 1989, Rabbits et al, 1989, Sato et al, 1990, 

Yamakawa etal, 1991, Jones and Nakamura, 1992).

1 lpl3-14 is a site of non-random rearrangement in a subset of SCCs (Bradford et 

al, 1991a). This may be the same suppressor locus associated with Wilms' tumour and 

WAGR syndrome (Wilms' tumour, aniridia, genitourinary anomalies, mental retardation).

Work on primary head and neck SCCs at the Beatson has shown a high incidence of 

LOH at 3p, 5q, 9q, l lq , and 17p (Ah-See et al, in press). These results have been 

confirmed in cell lines derived from such tumours apart from l lq  and 17p, which have not 

been investigated (O.Loughran, personal communication). Abnormalities of both 9p and 9q 

have been noted previously at the cytogenetic level (Patel et al, 1993, Worsham et al,

1993).

Chromosome abnormalities are ubiquitous in SCC and many changes are non- 

clonal (Jin et al, 1990). Interestingly, Jin et al (1993) have found that short-term cultures in
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medium supplemented with fetal calf serum, cholera toxin and epidermal growth factor 

(EGF) had less complex karyotypes than those grown in serum-free medium. Apart from 

rearrangements of lp22, which were only found in cultures in serum-containing medium, 

structural aberrations were similar.

1.5.3 Gene amplifications

Generally in head and neck SCC there are amplifications of the EGF receptor 

(Weichselbaum eta l, 1989), C-MYC, BCL-1, INT-2, (Leonard eta l, 1991) N-MYC, K- 

RAS and N-RAS (Saranath et al, 1989). BCL-1 & INT-2, N-MYC & C-MYC, and N-MYC 

& N-RAS may be coamplified, and multiple amplifications are common. L-MYC, TGF-p, 

C-MOS, C-ERB B2, C-ERB A2 and C-HA-RAS are not amplified. Amplification is not 

associated with degree of differentiation but Field et al (1986) have noted a significant 

difference between C-MYC expression in clinical stages one and two as compared with 

stages three and four of head and neck tumours. Other amplifications have also been 

associated with stages three and four (Saranath et al, 1989).

1.5.4 RAS mutations

In Indian cases of chewing tobacco-associated SCC, 35% have RAS mutations 

(Saranath et al, 1991). They are restricted to HA-RAS codons 12,13 and 61. HA-RAS, KI

RAS and N-RAS mutations have been observed only rarely in oral cancer in the West 

(Chang et al, 1990, Wamakulasuriya et al, 1992).

It is not clear whether a RAS mutation in a keratinocyte gives it a growth advantage 

or not, since it renders the cell more responsive to epidermal growth factor (Henrard et al, 

1990) but also allows amplification of differentiation as well as proliferation signals 

(Corominas etal, 1989). However RAS mutation enables a cell to secrete transforming
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growth factor a  which may then contribute to the clonal expansion of surrounding cells 

(Ozanne et al, 1980).

A recent study of all stages of progression of head and neck SCC has revealed that 

premalignant erythroplakias and papillomas do not carry activating RAS mutations (Clark 

et al, 1993). It was suggested therefore that since the incidence of RAS mutations was high 

in Indian SCC samples from patients who chewed betel quid, this tobacco may contain 

tumour promoters which allow the cells with RAS mutations to gain selective advantage. 

This was not occurring in Western patients who smoked because although the tobacco in 

the U.K. contains carcinogens causing H-RAS activation (Quintanilla etal, 1986), these 

tumour promoters were not present.

1.5.5 Tumour suppressor genes in head and neck SCC

1.5.5.2 p 5 3

It is clear that p53 mutation is an extremely common event in esophageal SCC 

(Hollstein etal, 1990, Sakai and Tsuchida, 1992, Wagata et al, 1993, Yin et al, 1993). In 

many cases mutation correlates with deletion of 17p (Wagata et al, 1993). This was also 

true of epithelial squamous cell carcinomas (Piercall etal, 1991, Moles etal, 1993) and 

immortal epithelial cell lines (Lehman et al, 1993). Work in our laboratory has shown over 

80% of head and neck SCC cell lines have p53 mutations and this correlates with the 

original tumours (Bums et al, 1993 and unpublished data). This is in agreement with other 

findings (Maestro etal, 1992, Sakai and Tsuchida, 1992).

Frequency of p53 mutation may increase with progression of SCC (Boyle et al, 

1993). One study has found stabilised p53 portein in precancerous esophageal lesions 

(Wang et al, 1993), but this contrasts with results for early epithelial lesions (Gusterson et 

al, 1991). Mutant p53 protein has additionally been found in tumour-distant epithelia of
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head and neck cancer patients (Nees et al, 1993). Different mutations were found in 

different epithelia from the same patient in these cases.

1.5.5.2 RB-1

Approximately 50% of esophageal squamous cell carcinomas have loss of 

heterozygosity at the RB-1 locus (Boynton et al, 1991, Huang et al, 1992, Huang et al, 

1993), but so far this has not been correlated with alterations in the Rb-1 protein so it is not 

clear what it represents.

1.5.5.3 Other tumour suppressor genes

Loss of heterozygosity has been reported at several other known suppressor loci in 

esophageal SCCs. These include APC, MCC and DCC (Boynton et al, 1992, Huang et al, 

1992). Again this has not been correlated with mutations in these genes. It does appear that 

oral squamous cell carcinoma, like colon cancer, involves inactivation of multiple tumour 

suppressor genes.

Head and neck SCC is an excellent system for the study of the genetic alterations 

contributing to immortalisation and tumour progression and cancer in general. Progression 

takes place in clearly defined stages and immortal variants are frequent (Pindborg, 1985, 

Rheinwald and Beckett, 1981). There are very good tissue culture techniques available for 

growing all these stages and also normal keratinocytes (Rheinwald and Green, 1975a, 

1975b, Sun and Green, 1976, Green, 1977). Furthermore, differentiation of keratinocytes 

takes place in culture via expression of many easily detectable markers, unlike fibroblasts.
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1.6 Aims

The aims of the work in this thesis were firstly to establish cell lines from various 

stages of untreated head and neck SCCs and to characterise them in terms of differentiation 

status and cellular origin. The cell lines were to be derived under conditions which would 

allow us to determine if immortal populations existed in the tumours in vivo, and in such a 

way as to prevent to the best of our ability the selection of fitter variants. Defining the 

lifespans of the various cultures would enable us to correlate lifespan and genetic 

bakground. The original tumours were to be retained for comparison.

The system should be suitable for the study of inactivation of tumour suppressor 

genes. The genetics of the two-stage model systems (sections 1.3.2 and 1.3.3) for escape 

from senescence could then be analysed in naturally occurring immortal cells and their 

related tumours. Evidence for senescence genes at regions lq, 4, 6q and 9 has been 

discussed in section 1.3.3.2. A. These areas in particular were to be analysed in the system 

to discover if they are altered in vivo in tumour progression. Finally, the cooperation of 

inactivation of the known tumour suppressor genes p53 and RB-1 was to be investigated in 

oral squamous cancer.



Chapter 2

Materials and Methods



2.1 Materials

2.1.1 Tissue culture

Gibco Europe Life Technologies Ltd, U.K.:

Dulbecco's Modified Eagles Medium
Keratinocyte SFM
Fetal calf serum
Sodium bicarbonate
Glutamine
Epidermal growth factor (recombinant)

Beatson Institute Central Services:

Amphotericin B
Penicillin
Streptomycin

Clonetics, U.S.A.:

Bovine pituitary extract

Becton Dickinson U.K. Ltd:

Plastic flasks and plates

A/S Nunc, Denmark:

Cryotubes 
Chamber slides

Flow Laboratories, U.K.:

Mycoplasma Removal Agent 
Donor calf serum

Worthington Biochemical Company, U.K.:

Trypsin 

Unipath Ltd, U.K.:

Phosphate-buffered saline 

Sigma Chemical Company Ltd., U.K.

Hydrocortisone 

Swiss mouse 3T3 cells were obtained from laboratory stocks.



2.1.2 Immunocytochemistry

Sigma Chemical Company Ltd, U.K.:

Tween 80 
Hydrogen peroxide 
Diaminobenzoic acid 
Bovine serum albumin fraction Y 
Hoescht 33258

Boehringer-Mannheim, Germany:

AE1/AE3 monoclonal anticytokeratin antibodies 
Fluorescein-conjugated anti-mouse immunoglobulin

Vector Laboratories, U.K.:

Vectastain ABC kit 

NRK cells were obtained from laboratory stocks.

2.1.3 Cloning

Bibby-Sterilin Ltd, U.K.:

Sterilin bacteriological plates

Gibco Europe Life Technologies Ltd.:

E.coli DH5a competant cells

DIFCO Laboratories, U.S.A.:

Bactotryptone
Agar

Beatson Institute Central Services:

L-broth 

Beta Laboratories, U.K.:

Yeast extract



Sigma Chemical Company Ltd, U.K.:

Ampicillin 
Chloramphenicol 
Lysozyme 
Ethidium bromide

Fisons Scientific Equipment, U.K.:

Magnesium sulphate 
Sodium hydroxide 
Isopropanol 
Sodium acetate

Boehringer-Mannheim, Germany:

DNAse-free RNAse

2.1.4 DNA work

Sigma Chemical Company Ltd, U.K.:

p-mercaptoethanol 
N-sodium lauryl sarcosine 
Bromophenol blue 
Xylene cyanol 
Hepes
Calf thymus hexanucleotides 
Salmon sperm DNA 
TEMED
Poylvinylpyrrolidone 
Dextran sulphate

Bethesda Research Laboratories, U.S.A.:

LMP agarose
Agarose
Protease K
lkb DNA ladder
4>X 174 Hae Dl-digested DNA
Bacteriophage X Hind Ill-digested DNA

Gibco Europe Life Technologies Ltd:

Bam HI 
Eco R1 
Hin f  1 
Hind III

Fisons Scientific Equipment, U.K.:

EDTA (sodium salt)
Sodium chloride 
Sodium citrate



Fluka Chemica-Biochemika AG, Switzerland:

Guanidinium thiocyanate 
Formamide

Boehringer-Mannheim, Germany:

Tris-HCl 
Caesium chloride 
Tris base

Aldrich Chemical Company, U.K.:

Ammonium chloride 
Potassium carbonate

Pharmacia AB, Sweden:

NICK columns 
Ficoll 400 
dNTP set

James Burrough Ltd, U.K.:

Ethanol

Rathburn Chemicals Ltd, U.K.:

Phenol

Whatman International Ltd, U.K.:

Whatman 3MM filter paper

Amersham International PLC, U.K.:

<x(32P)-dCTP, 3000Ci/mmol

Flowgen Instruments Ltd, U.K.:

NuSieve agarose

Northumbria Biologicals Ltd, U.K.:

Klenow enzyme 
Xba 1

Biolabs, New England, U.S.A.:

Dde 1

ICN Biomedicals Ltd, U.K.:

Biotrans^M nylon membrane
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Perkin-EImer Cetus, U.S.A.:

DNA PCR kit

Advanced Biotechnologies, U.K.:

Taq polymerase

Severn Biotech Ltd, U.K.:

40%(w/v) polyacrylamide

Schleicher and Schuell, Germany:

Nitrocellulose membrane

Technical Photo Systems, U.K.:

Fuji RX medical X-ray film

Eastman Kodak Company, U.S.A.:

XOMAT AR X-ray film 
DUP1 duplicating film

Bio 101, Inc., U.K.

Geneclean 2 ^  kit 

Harlan-Olac, U.K.

Nude mice (MF-INu)

All other chemicals were obtained from BDH Analar, U.K.
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2.2 Methods

2.2.1 Tissue culture

2.2.1.1 Culture of human keratinocytes

Normal human epidermal keratinocytes (HEKs) were grown in Keratinocyte-SFM 

supplemented with bovine pituitary extract (50pg/ml) and recombinant epidermal growth 

factor (5ng/ml), which is necessary for growth of normal keratinocytes (Rheinwald and 

Green, 1977). They were kept in a moist atmosphere in a 37°C incubator gassed with air 

containing 5% v/v CC>2 .

SCC cell lines were grown in Dulbecco's modified Eagle's medium (DMEM) 

containing 10% (v/v) fetal calf serum, 3g/l sodium bicarbonate, 2M glutamine, 0.25mg/ml 

amphotericin B, 37.5|ig/ml penicillin, lOmg/ml streptomycin and 0.4|ig/ml hydrocortisone. 

Hydrocortisone makes the colony morphology more orderly and maintains proliferation at 

a slightly greater rate (Rheinwald and Green, 1975b). Cells were grown on a feeder layer of 

lethally irradiated Swiss mouse 3T3 fibroblasts at 1.5x10^ cells/cm^ because keratinocytes 

require proliferation-controlled fibroblasts to initiate colony formation (Rheinwald and 

Green, 1975b), and were kept in incubators as described above.

Cells were passaged by rinsing with phosphate-buffered saline (PBS): 0.14M NaCl, 

27mM KC1, lOmM Na2 HPC>4 , 15mM K2 HPO4  and removing cellsfrom plates or flasks 

with trypsin solution (0.17% {w/v} trypsin, 0.01% {w/v} EDTA in PBS). Trypsin was 

inactivated by adding ten volumes of serum-containing medium and removed by 

centrifugation (3000g, 5 min at room temperature) and aspiration of the supernatant. Cells 

were resuspended in fresh growth medium and replated.
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Population doubling levels at each pass were determined using the formula: 

population doubling level n= 3.32(logjQN-log1QNQ) 

where N= cell yield and Nq= number of colonies

The criterion for immortality was that cells could be passaged for at least 100 

population doublings. A culture was designated as senescent when no colonies of more 

than th i rty cells appeared on the dishes for four weeks and remaining cells were large, flat 

and terminally differentiated. Crisis was distinguishable by the presence of highly 

vacuolated cells and cell death appearing to balance cell division (cell number remaining 

constant).

All cells were frozen down for storage in liquid nitrogen by first trypsinising and 

removing trypsin as above, then resuspending in fresh serum-containing medium, pelleting 

cells and aspirating supernatant. Cells were suspended in 1ml DMEM, 10% serum per 10^ 

cells plus 10% (v/v) dimethyl sulphoxide (DMSO). From this point onwards they were kept 

on ice. Cells were transferred to freezing ampoules and the ampoules wrapped in cotton 

wool and placed in a box at -20°C. After twenty minutes the box was transferred to -70°C 

overnight and then the ampoules were stored in liquid nitrogen.

Cells were thawed for replating by placing the frozen ampoules in water at 37°C, 

adding a large volume of prewarmed growth medium and centrifuging to pellet cells. After 

aspiration of the supernatant containing the DMSO the cells were resuspended in fresh 

growth medium and replated.

HeLa, W12 and SiHa cells were gifts from G.Sibbet and S.Cuthill.
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2.2.1.2 Culture of Swiss mouse 3T3 feeder cells

These were grown in DMEM as in section containing 10% (v/v) donor calf serum 

and 0.23% sodium bicarbonate. They were passaged and frozen down as for keratinocytes 

except that the trypsin solution was 0.17% (w/v) trypsin in PBS.

For irradiation cells were trypsinised and resuspended in fresh growth medium.

They were subjected to 60Gy of y-irradiation from a ^ C o  source in order to prevent cell 

division.

Feeder cells were removed from keratinocyte cultures as required by vigorously 

squirting the dish with 0.02% (w/v) EDTA in PBS, followed by rinsing with PBS.

2.2.1.3 Culture of human fibroblasts

Fibroblasts were grown in DMEM as for keratinocytes but containing 15% fetal calf 

serum. They were passaged as for mouse Swiss 3T3 fibroblasts and frozen down as for 

keratinocytes.

2.2.1.4 Derivation of BICR (Beatson Institute for Cancer Research) squamous cell 

carcinoma cell lines

A piece of the growing edge of the tumour was placed in Dulbecco's modified 

Eagle's growth medium (DMEM) containing 10% fetal calf serum (as described in section 

2.2.2.1) immediately after surgical excision and kept on ice until explanted a few hours 

later. Almost all tumours collected had not been treated previously by chemo- or 

radiotherapy, and were from the head and neck regions. They were provided by 

Mr.D.Soutar at Canniesbum Hospital, Bearsden, Glasgow. Tumour staging information 

was provided by pathologists at the hospital, the presence of malignant SCC cells in each 

biopsy being confirmed independently by two pathologists. TNM (tumour, node,
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metastasis) staging classifies the anatomical extent of disease in a clinical and 

histopathological manner and thus represents the state of progression of the tumour (UICC, 

1987). To some extent it depends on the site but increasing tumour stage represents 

increasing size and/or local extent of the primary tumour. The node status is a measure of 

increasing involvement of regional lymph nodes, and metastasis status represents the 

presence of distant metastases.

To grow out explants the tumour was cut into pieces approximately lmm^ and 

placed in 9cm dishes covered with a thin layer of fetal calf serum. The dishes were left in a 

dry incubator containing 10% CO2  at 37°C for forty-five minutes in order to evaporate 

moisture from the serum and allow the tumour fragments to adhere to the dishes. 5mls of 

DMEM, 5% fetal calf serum and containing 0.5pg/ml mycoplasma removal agent was then 

added gently to each dish, followed by a feeder layer of lethally irradiated Swiss mouse 

3T3 fibroblasts. Low serum levels were used to select for growth of tumour versus normal 

cells (Rheinwald and Beckett, 1981). Otherwise these conditions are appropriate for 

growing normal keratinocytes and thus prevent selection of fitter variants by culture 

(Rheinwald and Green, 1975b, Rheinwald and Beckett, 1981). The feeder layer also 

prevents overgrowth of colonies by fibroblasts (Rheinwald and Green, 1975a)

The dishes were medium-changed twice a week and checked for cell outgrowth. 

When explants reached a size visible to the naked eye they were trypsinised as described in 

section 2.2.1.1 and plated in three T25 flasks in 2, 5 and 10% serum respectively, again 

with a feeder layer and mycoplasma removal agent, to see under which conditions they 

grew best. Media were changed twice a week as before and when colonies reached 

approximately 1cm in diameter they were trypsinised and half the cells frozen down as 

stocks, the other half expanded for preparation of genomic DNA.
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2.2.1.5 Derivation of fibroblasts from human tumours

At the time of explantation half the dishes of tumour fragments were maintained in 

DMEM, 10% fetal calf serum with 0.5|ig/ml mycoplasma removal agent but without a 

feeder layer in order to allow normal fibroblast outgrowth. The higher serum level selected 

for normal cell growth but was not high enough to sustain normal keratinocytes (Rheinwald 

and Green, 1975b). When fibroblast colonies had grown big enough to see with the naked 

eye they were trypsinised (section 2.2.1.2) and plated in T25 flasks, still in DMEM, 10% 

fetal calf serum. After this they were passaged and frozen down as described for the BICR 

lines.

2.2.1.6 Tumorigenicity assays in nude mice

Cells were grown up to appropriate levels and trypsinised, having removed the 

feeders, and washed twice with serum-free DMEM. 3x10^ cells were pelleted separately as 

10? cells and each pellet resuspended in 200ml serum-free DMEM before subcutaneous 

injection into the flank of a four week old nude mouse. A pilot experiment showed that this 

site is better than the back for SCC tumour formation. SCC 12B (Rheinwald and Beckett, 

1981) was used as a positive control and HEK as a negative control. Mice were examined 

weekly for tumour presence and tumour volumes recorded by the animal house staff. When 

a progressively growing tumour remained for three months it was scored as positive.

2.2.1.7 Staining of cell lines 

abstaining for keratin

Cells were grown on glass chamber slides and fixed according to Sun & Green 

(1978).HEKs and fibroblasts were used as a positive controls respectively. Slides were
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submerged in 10% formalin for ten minutes followed by 100% methanol for five minutes 

and 100% acetone for one minute. They were then rinsed in PBS three times. A mixture of 

mouse keratin monoclonal antibodies AE1 & AE3 (Woodcock-Mitchell et al, 1982) were 

applied at 1:1000 dilution in PBS, and the slides left in a humid box for two hours at room 

temperature. Slides were then rinsed in NaCl/Tween/PBS (0.05% {v/v} tween 80, 0.15M 

NaCl in PBS), three times for ten minutes each, and the second antibody (fluorescein- 

conjugated anti-mouse immunoglobulin) applied at 1:30 dilution in PBS. The slides were 

incubated at 37°C in the dark in a humid box to visualise the antibody by fluorescence. 

After rinsing as above with NaCl/PBS/Tween the cells were mounted in non-fade mountant 

(lg/ml p-phenylenediamine in 10% {v/v} PBS, 90% {v/v} glycerol) and coverslips were 

applied and sealed with nail varnish. They were stored at -20°C in the dark.

As a further control the procedure was carried out as described using HEKs but 

omitting the primary mixture of antibodies to show staining was due to the presence of 

keratins.

b).Staining for involucrin

Cells were again grown on chamber slides with HEKs and fibroblasts as positive 

and negative controls respectively but were fixed using 50:50 acetone:methanol for ten 

minutes and allowed to air dry for forty minutes. They were then treated with H 2 O2  diluted 

1:10 in PBS for ten minutes and rinsed three times in PBS for ten minutes each. Goat 

blocking serum from the rabbit peroxidase Vectastain kit at 1:10 in PBS/BSA (0.1% {w/v} 

bovine serum albumin fraction V in PBS) was added for twenty-five minutes at room 

temperature, followed by rabbit anti-involucrin antibody (a gift from F.Watt) at 1:5000 in 

PBS,BS A. This was left overnight at 4°C in a humid box.

The following day the antibody was rinsed away with NaCl/Tween/PBS (as before), 

three times for ten minutes each and goat anti-rabbit second antibody from the kit applied 

(1:200 in PBS/BSA), one hour at room temperature. The rinses in NaCl/Tween/PBS were
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repeated and then kit ABC reagent applied for one hour at room temperature. The 

PBS/NaCl/Tween rinses were repeated again and then diaminobenzoic acid (0.6mg/ml in 

PBS) containing 0.017% (v/v) H2 O2  was added to each slide for 7.5 minutes at room 

temperature, in the dark, to visualise the antibody by the peroxidase reaction. Slides were 

rinsed thoroughly in water, mounted in aquamount and sealed.

An additional control was carried out in that HEKs were also "stained" using 

normal rabbit serum at the same dilution as the involucrin antibody. This showed that 

staining was due to the antibody and not the blocking serum.

2.2.2 DNAwork

2.2.2.1 Preparation of genomic DNA from cell lines

This was carried out essentially as described in Maniatis et al, 1989.

Medium was aspirated from early passage cells growing on 9cm dishes and the cells 

rinsed with PBS. Cells were lysed on the plates using 5M guanidinium thiocyanate, 50mM 

Tris-HCl (pH 7.0), 50mM EDTA & 5% (v/v) p-mercaptoethanol, 1ml per plate. N-sodium 

lauryl sarcosine was added to a concentration of 2% (w/v). Lysates could be stored at - 

20°C at this point.

DNA was isolated using centrifugation (106,400g, 17°C, 48 hours) through a 5.7M 

CsCl, 50mM EDTA step gradient (upper layer CsCl, RI=1.3925, lower layer CsCl,

RI=1.4025). The DNA collects at the interface between the two CsCl solutions.

DNA was precipitated with three volumes of 70% ethanol and spooled out. It was 

then washed in 70% ethanol & 100% ethanol, dried and dissolved in TE buffer (lOmM tris- 

HC1, pH 7.5, ImM EDTA), 0.5% SDS. This solution was made up to 150mM NaCl, 10- 

50mM EDTA & lOOpg/ml proteinase K, and incubated at 37°C for 2 hours.

The resulting solution was extracted twice with an equal volume of 

phenol/chloroform (1:1, phenol:chloroform) and once with an equal volume of chloroform.
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Phases were separated by centrifugation at 3000g at room temperature. DNA was 

precipitated with three volumes 100% ethanol, dried and resuspended in TE buffer (pH 

7.5). Concentrations were determined by measuring absorbance at 260 nm, using the fact 

that an absorbance of 1 unit is equivalent to a concentration of 50p.g/ml.

2.2.2.2 Preparation of lymphocyte DNA from blood samples

a).Erythrocyte lysis method

One to five volumes of erythrocyte lysis buffer (0.83% {w/v} ammonium chloride, 

37mg/l EDTA, lg/1 potassium carbonate) were added to whole blood and the mixture kept 

on ice for ten minutes. Mixture was centrifuged (3000g, 5 minutes) and supernatant 

discarded. Cells were resuspended in PBS and lysis was repeated until a pellet of clean 

lymphocytes was obtained. The pellet was finally washed twice in PBS by centrifugation 

and aspiration of the supernatant as above and could be stored at -20°C.

b).Salting out method for extracting DNA

This was carried out essentially as described by Miller et al, 1988. Cells were lysed 

in lOmM Tris-HCl, 400mM NaCl, 2mM EDTA, pH 8.0, approximately 3mls of lysis buffer 

for lymphocytes obtained from lOmls whole blood. Cell lysates were digested overnight at 

37°C with 0.2mls 10% (w/v) SDS & 0.5mls of protease K solution (lmg protease K in 1% 

{w/v} SDS, 2mM EDTA). After digestion 1ml of approximately 6M NaCl was added and 

the tube shaken vigorously for fifteen seconds, followed by centrifugation (3000g, 5 

minutes) to pellet the protein. The DNA was precipitated from the supernatant with two 

volumes of absolute ethanol, spooled out, dried and resuspended in 100-200}il TE, pH 7.5. 

Concentration was measured as described above.
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2.2.2.3 Transformation of bacterial cells with DNA

25ng of plasmid DNA was used to transform 20p.l E.coli DH5a competant cells. 

DNA and cells were mixed thoroughly and left on ice for 30 minutes. Cells were then heat- 

shocked for 45s at 42°C and returned to ice. 80pl of SOC rich growth medium (2% {w/v} 

bactotryptone, 0.5% {w/v} yeast extract, lOmM NaCl, 2.5mM KC1, lOmM MgC^, lOmM 

MgSC>4 , 20mM glucose) were added and the cells incubated with shaking for one hour at 

37°C. Cells were spread onto two plates each (lOpl & 90|il) containing ampicillin 

(50|ig/ml) and the plates incubated upside-down overnight at 37°C.

2.2.2.4 Preparation of small amounts of plasmid DNA

Minipreparations were carried out using the alkaline lysis method as described by 

Maniatis et al, (1989).

Single colonies of bacteria containing the plasmid of interest were inoculated into 

lOmls L broth containing 50|ig/ml ampicillin and incubated overnight with shaking at 

37°C. Bacteria were harvested from 1.5mls overnight culture by microcentrifugation (30s, 

room temperature). The pellet was resuspended in lOOpl solution 1 (50mM glucose, 25mM 

Tris-HCl pH 8.0, lOmM EDTA pH 8.0). 200pl fresh solution 2 was added (0.2N NaOH, 

1% {w/v} SDS) and mixed gently. Tubes were stored on ice for one minute followed by 

addition of 150|il ice-cold solution 3 (3M potassium, 5M acetate) and vortexing. Tubes 

were then stored on ice for five minutes before centrifuging for 5 minutes. Finally, DNA 

was precipitated from the supernatant by mixing with two volumes of ethanol, standing for 

two minutes at room temperature and microcentrifugation for five minutes. The resulting 

pellet was rinsed with 1ml 70% ethanol at 4 C and air-dried before dissolving in 50fil TE 

containing DNAse-free RNAse (20p,g/ml). DNA was stored at -20°C.



58

2.2.2.5 Large-scale isolation of plasmid DNA

This is a scaled-up version of the mini-preparation described in the previous 

section.

5mls of overnight culture were transfered to 500mls of L broth containing 50|ig/ml 

ampicillin and shaken at 37 C until absorbance at 600nm reached 0.6. Chloramphenicol 

was then added to 100|ig/ml and the cultures grown overnight at 37°C with shaking.

Cells from the 500ml cultures were pelleted at 4225g, 4°C, rinsed in ice-cold 

50mM Tris-HCl pH 8.0 and resuspended in 25mls lysis solution 1 (as section 2.2.2.4) with 

the addition of 0.5g/100ml lysozyme just before use) before leaving thirty minutes at room 

temperature. 40mls of fresh solution 2 (section 2.2.2.4) was added and mixed well, and the 

tubes left on ice for fifteen minutes. 20mls acetate (solution 3 as section 2.2.2.4) was then 

added and the tubes mixed by five inversions and left on ice for another fifteen minutes. 

The flocculates were then spun at 10,810, 0°C, 5 min. The supernatant was filtered through 

gauze. 0.6 volumes of isopropanol at -20 C was added to precipitate the DNA and the 

mixture spun immediately at 10,8 lOg, room temperature, 5 min. After discarding the 

supernatant the pellet was left to drain for ten minutes and then resuspended in 5ml TE pH 

8.0.

Plasmid DNA was then isolated by centrifugation. 7.5g CsCl were added and 

dissolved followed by 5mg ethidium bromide. The refractory index was adjusted to 1.386- 

1.39 with TE pH 8.0, and the solution centrifuged at 146,600g, 40 hours, 20°C. The 

plasmid band was extracted with water-saturated isobutanol until all ethidium bromide had 

been removed, and one volume of water added, two volumes of ethanol were used to 

precipitate DNA at room temperature for fifteen minutes followed by centrifugation 

(1 l,950g, 4°C, 15 min). The pellet was resuspended in 1ml deionised water and 

reprecipitated with two volumes of ethanol & 0.1 volumes 3M NaOAc at -20 C for two 

hours. The pellet was spun down again as above, rinsed with 70% ethanol, freeze-dried and
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resuspended in the appropriate volume of TE. DNA concentration was measured using 

absorbance at 260nm as described in section 2.2.2.1 and the DNA stored at -20 C.

2.2.2.6 Restriction enzyme digestion of DNA

Plasmid DNA was incubated with 5-10 units of enzyme/jig DNA under the 

conditions specified by the supplier, for one to two hours. Eukaryotic DNA for use in 

Southerns was digested with five units of enzyme/(ig DNA under the conditions specified 

by the supplier, overnight. Digestion of amplified DNA was carried out with 10-20 units of 

enzyme/fig DNA, also under the conditions specified by the supplier, overnight.

2 .2 2 .1  Agarose gel electrophoresis

Flat bed apparatus was used. 0.6-4% agarose (w/v) gels were cast in lx TAE buffer 

(40mM Tris base, 16mM acetic acid, ImM EDTA, pH 8.0) and contained 0.5|ig/ml 

ethidium bromide. Low melting point agarose was used to isolate plasmid inserts for use as 

probes and NuSieve agarose for checking PCR reactions. Gels were submerged in lx  TAE, 

0.5fig/ml ethidium bromide and samples were loaded in the wells in bromophenol blue 

loading buffer (50% {w/v} glycerol, 0.25% {w/v} bromophenol blue). Gels for Southern 

blots were run at 30-50V, 20-28 hours, and low melting point (LMP) agarose gels at 80V,

1.5 hours. All other gels were run at 100V, 1/2 -1 hours. The appropriate molecular weight 

markers were run on each gel as a guide in order to achieve good separation of the 

experimental DNA. After electrophoresis the DNA was visualised by illumination with 

short wave (312nm) ultraviolet light and photographed through a red filter using Polaroid 

type 57 high speed film.

2.2.2.8 Isolation of plasmid insert DNA for use as radioactively labelled probes
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3-6|iig of plasmid DNA was digested to completion and the insert separated from 

the plasmid by electrophoresis in low melting point agarose. The insert band was excised 

after visualising and photographing the DNA, and stored at 4 C in the agarose before 

radioactive labelling using the random priming method. Concentrations were estimated to 

be 2-3ng/|il.

2.2.2.9 Generation of random-primed radio-labelled probes

Low melting point agarose containing the DNA of interest was melted at 60 C for 

ten minutes in order to remove a volume containing approximately 50ng. Deionised water 

was added to 30pl DNA was denatured by boiling for seven minutes and labelled in 50pl 

of a solution of 50mM Tris-HCl pH 7.5, 5mM M gC^, 0.4% (v/v) p-mercaptoethanol, 

70pM each of dATP, dGTP, & dTTP, 200mM Hepes, 6 OD units/ml calf thymus 

hexanucleotides and 80p.g/ml bovine serum albumin. Labelling was with 50(iCi (a  JZP)- 

dCTP and 4-5 units Klenow enzyme, for five hours at room temperature.

Unincorporated nucleotides were removed using a NICK column containing 

Sephadex G-50, DNA grade. The agarose reaction was melted and made up to IOOjllI with 

TE before running through the column. The probe was washed into the column with 400|il 

TE and then eluted with the same, l |il of the probe solution was counted Cerenkov with a 

scintillation counter to ensure 10^ cpm/pg DNA before use. The probe solution was boiled 

for five minutes to denature the DNA and used immediately

2.2.2.10 Southern blotting

10-20|ig DNA was digested as described and separated by agarose gel 

electrophoresis as described. Blotting used B iotrans^^ nylon membrane and was earned 

out essentially as described by Rigaud et al, 1987.
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The gel was denatured for thirty minutes in fresh 1.5M NaCl, 0.5M NaOH and then 

neutralised for thirty minutes in 3M NaOAc pH 5.5. The gel was then placed upside-down 

on a raised platform covered with a wick of Whatman 3MM paper soaked in transfer buffer 

(generally 20x SSC: 3M sodium chloride, 0.3M sodium citrate), such that the ends of the 

filter paper reached into a reservoir of transfer buffer. The gel was surrounded by clingfilm 

to ensure the buffer moved only through the gel. The Biotrans^M membrane was then 

placed on the gel and covered with two sheets of 3MM paper, a stack of paper towels and a 

weight. Transfer occurred overnight, after which the membrane was baked between sheets 

of 3MM paper for one hour at 80 C. Membranes could be stored dry at room temperature, 

wrapped in foil.

Where blots were to be used for hybridisation to minisatellite probes the gels were 

treated slightly differently. Gels were denatured in 1.5M NaCl, 0.5M NaOH twice for 

twenty minutes each, and neutralised for one hour in 1M NaOAc, 0.02M NaOH. The 

tranfer set-up was as above except that the transfer buffer was 1 Ox SSC and transfer took 

place onto nitrocellulose membrane. This membrane was soaked in distilled water followed 

by lOx SSC prior to placing on the gel. After transfer the nitrocellulose was washed in 6x 

SSC, five minutes, blotted dry and baked for two hours at 80 C. Filters were stored in 

sealed bags in the dark.

2.2.2.11 Hybridisation of radioactively labelled probes to Southern blots

a).Single copy probes

The pMUC 7 probe consists of a mucin cDNA insert in the Eco R1 site of pBS-SK. 

The sequence is published in and the plasmid was a gift from S.Gendler.

Filters were prehybridised at 42°C in a shaking water bath in sealed plastic bags 

containing approximately 15mls prehybridisation solution (50% {v/v}
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formamide,100jj,g/ml denatured salmon sperm DNA, 5x SSC, 20mM NaP0 4  pH 6.5, lx 

Denhardt's {0.02%, [w/v], each of Ficoll type 400, polyvinylpyrrolidone and bovine serum 

albumin fraction V), 10% {w/v} dextran sulphate, 0.1% SDS), for at least three hours. 

Probes were labelled by the random priming method was then added such that there were at 

least 10^ cpm/ml hybridisation solution. Filters were hybridised overnight, also at 42°C.

To remove non-specific binding filters were rinsed after hybridisation in 2x SSC, 

0.1% SDS and then washed for fifteen minutes at room temperature with shaking in the 

same. They were then washed once in 0.1 x SSC, 0.1% SDS for fifteen minutes at room 

temperature, and four times for thirty minutes each at 65°C in the same in a shaking water 

bath. The washes at 65°C were repeated until background radioactivity levels on the filter 

were low (5-10 cps). Filters were then blotted damp, wrapped in clingfilm and exposed to 

photographic film (either Kodak X-OMAT AR or X-OMAT S, or Fuji RX) with 

intensifying screens at -70°C.

b).Minisatellite probes

The minisatellite probes used were 15.1.11.4, the core minisatellite from phage X 

33.15, and 6.3, the core from 33.6 (Jeffries et al, 1985). They were cloned into the 

ampicillin-resistant plasmid T3/T7-18 in an Eco Rl/H ind  111 site and were gifts from 

K.Brown.

For fingerprinting the DNA was digested with H in fl and run on a 0.6% agarose

gel.

In this case prehybridisation took place in three stages, all at 65°C in sealed plastic 

bags in a shaking water bath. The first step was 1/2 hour in lx  Denhardt's. This was 

followed by 1/2 hour in a filter mix consisting of lx  Denhardt's, lx SSC, 0.1% SDS, 

20ng/ml single-stranded salmon sperm DNA. Salmon sperm DNA was boiled for five 

minutes to denature it before it was added. This was finally followed by fifteen minutes in 

fresh filter mix including 6% (w/v) polyethylene glycol (PEG) 6000.
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For hybridisation the radio-labelled probe was added to the filter mix + 6% PEG 

6000 such that there were at least 10^ cpm/ml solution, and the filter left overnight at 65 °C 

in the shaking water bath.

After hybridisation the membrane was rinsed briefly in lx SSC, 0.1% SDS and 

washed in the same for ten minutes at room temperature followed by five minutes at 65 C. 

Washes at 65°C were repeated until cps at the top of the membrane were approximately 

five. The filter was then blotted damp, wrapped in clingfilm and exposed as for single-copy 

probes.

2.2.2.12 Oligonucleotide synthesis and purification

Oligonucleotides were either ordered from Research Genetics or synthesised on an 

Applied Biosystems 381A DNA Synthesiser or 392 DNA/RNA Synthesiser using the 

manufacturers protocols and Cruachem reagents. Primers from Research Genetics arrived 

ready for use at 20|iM in TE pH 8.0.

Other primers were synthesised with or without ttityl group protection. All these 

primers were firstly deprotected by incubating overnight at 55 C."Trityl on" primers were 

then detritylated using an Applied Biosystems oligonucleotide purification cartridge as 

follows.

5ml of acetonitrile was passed through the column to waste at a rate of 1 drop/s 

using a syringe. This was followed by 5ml of 2M triethylammonium acetate. The 

oligonucleotide ammonia deprotection solution was then diluted with an equal volume of 

distilled water and the diluted solution passed through the cartridge in the same way. The 

eluate was collected and passed through a second time. The cartridge was then flushed 

through with 5ml 10% (v/v) ammonia and 10ml distilled water.

The oligonucleotide was detritylated while bound to the support by passing half of 

5ml of 2% (v/v) trifluoroacetic acid through the column, letting stand for 5 min and passing 

the other half through to waste. The cartridge was flushed with 10 ml distilled water. The
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oligonucleotide was eluted drop-by-drop with 3ml 20% (v/v) acetonitrile, freeze-dried 

overnight and dissolved in 250ml TE pH 8.0. Its concentration was determined by 

measuring absorbance at 260nm and using the standard that a solution of 24-p.g/ml has an 

absorbance of one OD unit at this wavelength. Primers were stored at -20°C.

"Trityl off" primers were either stored after deprotection in ammonia at -20 C and 

purified as needed, or kept at 4 C and deprotected and purified as needed. The purification 

procedure involved desalting the primers by precipitating them with butan-l-ol, 1ml of 

butanol/150|il primer solution, and centrifuging (13,000g, 20 min at room temperature). 

The butanol was removed by centrifuging under vaccuum and the primer redissolved in 

150|li1 TE pH 8.0. Primer concentration was determined as above.

2.2.2.13 DNA amplification by the polymerase chain reaction (PCR)

a).PCR to detect human papilloma viruses types 16 and 18

This was carried out essentially as described by Yeudall & Campo, (1991). As 

described in the reference the primers led to amplification of a sequence spanning the E6 

and E7 genes in each virus. The final reaction volume was 50|nl consisting of 0.5qg DNA 

to be screened, lOmM Tris-HCl pH 8.3, 50mM KC1, 1.5mM M gC^, 0.001% (w/v) gelatin, 

200pM each of dATP, dCTP, dTTP, dGTP, 0.5|ig of each of the four HPV amplimers and 

80nM HPRT amplimers. The reaction was overlaid with 75ml paraffin oil and heated to 

94°C for five minutes to inactivate DNAses and ensure all DNA duplexes were melted. 

While at 94°C 2.5 units of thermostable DNA polymerase from Thermus aquaticus (Taq 

polymerase) were added. The reaction was then subjected to 30 cycles of 94°C for one 

minute , 51°C for one minute to allow annealing of amplimers and 72°C for one minute to 

allow extension of amplimer sequences. This was followed by a seven minute extension at 

72°C and cooling to 4°C. Thermocycling was acheived with a Perkin-Elmer Cetus type 

480 programmable heating block.
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The HGPRT amplification in the same tube acted as an internal control to show that 

the DNA was of sufficient quality in cases where no other amplification was observed. A 

pilot experiment showed that the HGPRT primers were compatible with those for HPV 16 

and 18 (data not shown but see figure 13, lanes for W12 and SiHa). Amplification of 

bacteriophage X DNA with primers from the Perkin-Elmer Cetus DNA PCR kit was carried 

out at the same time under the same conditions for each reaction as an additional control 

for all the components of the reaction apart from DNA and primers. Positive controls for 

HPV sequences were HeLa DNA, containing HPV 18, W12 DNA, containing HPV 16, and 

SiHa DNA, also containing HPV 16.

PCR products were analysed by polyacrylamide gel electrophoresis (see section 

2.2.2.15).

b).PCR of regions of DNA containing restriction fragment length polymorphisms 

(RFLPs)

PCR was carried out basically as described in the previous section, with slightly 

varying conditions according to the original references for the primers. The RFLPs used 

were one within the AT III gene (Dale and Perry, 1990) and thcXba 1 polymorphism in the 

RB-1 gene (McGee et al, 1990). PCR products were analysed by agarose gel 

electrophoresis as described in section 2.22.1.

c).PCR of DNA containing microsatellite sequences

All PCR of microsatellite sequences was carried out the same way and not 

according to the original reference for the primer pair in question, although the primer 

sequences were those described in the references (table 2). Total reaction volumes were 

25|il containing 200ng DNA, lOmM Tris-HCl pH 8.3, 50mM KC1, 1.5mM M gC^, 0.001% 

(w/v) gelatin, 10% (v/v) DMSO, 350ng of each amplimer, 200qM each dNTP and l|il of



Table 2.

D1S243

APOA2

D1S104

pMUC 7

D1S242

D1S212

D1S103

D1S229

D1S245

D1S102

D4S174

GABRB1

D4S175

D6S87 

IGF SR

List of polymorphic microsatellite markers used in this thesis

lp36.3 Weissenbach et al, 1992

lq21-23 Weber and May, 1989

lq21-23 Weber et al, 1990

lq21 1988

lq25 Weissenbach et al, 1992

lq25 Weissenbach et al, 1992

lq32 Weber et al, 1990

lq42 Weissenbach et al, 1992

lq42 Weissenbach et al, 1992

lq42-43 Weber et al, 1990

4pl5-pl 1 Weber et al, 1990

4pl3-12 Dean et al, 1991

4q21-qter Personal communication by

J.L.Weber to the Human Genome 

Mapping Project, 1990

Weber et al, 1990 

Goto et al, 1992

6q22.3-23.1

6q25-27



List of microsatellite markers, continued

D9S54 9p23 Personal communication by

J.L.Weber to the Human Genome 

Mapping Project, 1991 

D9S199 9p23 Graw and Kwiatkowski, 1993

D9S168 9p23-22 Weissenbach et al, 1992

D9S43 9p21 Weber and May, 1990

D9S165 9p21 Weissenbach et al, 1992

D9S50 9p21 Wilkie et al, 1992

D9S55 9pl2 Sharma et al, 1991

GSN 9q33 Kwiatkowski and Perman, 1991

ABL 9q34.1 Kwiatkowski, 1991

D17S520 17pl2 Personal communication by

J.LW eber to the Human Genome 

Mapping Project, 1991

Chromosome 1 marker map positions were taken from the Human Genome Mapping 
Project and Engelstein et al, 1993. Chromosomes 4 and 6 marker positions were taken 
from the Human Genome Mapping Project, and chromosome 9 marker postions from 
Kwiatkowski et al, 1993.



a(32p)dCTP diluted 1 in 30 in deionised water. This solution was heated to 94°C for five 

minutes then cooled to 85°C at which point 2.5 units of Taq polymerase was added. 

Reactions were then subjected to 6 cycles of 94°C for 30s and 60°C for 30s followed by 28 

cycles of 94°C, 30s, 55°C, 30s, 72°C, 30s. After this was completed the reactions 

underwent further extension of seven minutes at 72°C and were cooled to 4°C. 

Thermocyclers were Perkin-Elmer Cetus type 9600. In some cases conditions were varied 

slightly to give a better yield or more specific DNA amplification.

In all cases cell line and normal DNA were amplified at the same time in an 

experiment for comparison.

Prior to polyacrylamide gel electrophoresis the success of the reaction and the size 

of the products were checked by electrophoresis on a NuSieve agarose gel along with 

molecular weight markers in a similar size range (section 2.22.1).

2.2.2.14 Purification of amplified DNA for restriction enzyme digestion

DNA containing an RFLP amplified by PCR was purified to remove excess primers 

and nucleotides and recovered in a small volume of distilled water in order that it could be 

digested and separated by electrophoresis. A Geneclean 2 ^  kit was used according to the 

manufacturer's instuctions.

Three volumes of 6M Nal was added to the contents of the PCR reaction tube 

followed by 5pl glassmilk^, a suspension of silica matrix in water which binds single and 

double-stranded DNA without binding contaminants. The mixture was vortexed and left on 

ice for five minutes to allow binding. The glassmilk was pelleted by brief centrifugation 

and washed by mixing with 300|il NEW wash (a Tris & EDTA-buffered solution of NaCl, 

ethanol and distilled water), pelleting the glassmilk and removing the supernatant. This was 

repeated three times. Finally half of the desired final volume of distilled water was added to 

the clean pellet and the pellet heated to 55 C for two minutes. The glassmilk was again
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pelleted and the supernatant containing the DNA removed. This was repeated to elute the 

rest of the DNA.

2.2.2.15 Polyacrylamide gel electrophoresis

Polyacrylamide gels were used to separate radiolabelled amplified DNAs differing 

in size by approximately 4-20 base pairs. 5-8% (w/v) polyacrylamide gels were cast in lx 

TBE (90mM Tris base, 90mM boric acid, 2mM EDTA) buffer and polymerised using 

420ml 10% (w/v) ammonium persulphate and 42ml TEMED (N,N,N',Nf- 

tetramethylethylenediamine). The ratio of polacrylamide to bisacrylamide was 29.1:0.9. 

Immediately after reagents were mixed the gel was poured between glass plates separated 

by 0.4mm spacers and a well-former was inserted. When the gel had polymerised it was 

placed on a vertical apparatus with each end submerged in a reservoir of lx TBE.

DNA samples were loaded in a 30% (v/v) glycerol, 0.25% (w/v) bromophenol blue 

and 0.25% (w/v) xylene cyanol loading buffer. Gels were of the appropriate percentage 

such that the PCR products ran halfway between the bromophenol blue and xylene cyanol 

in order to achieve maximum separation over the length of the gel and so the position of the 

products on the gel were known. They were run at 25 watts for the appropriate length of 

time (4-6 hours) until the bromophenol blue reached the end of the gel, removed from the 

apparatus, backed with Whatman 3MM paper, covered in clingfilm and exposed to Kodak 

X-OMAT AR or X-OMAT S film with intensifying screens at -70 C.

This type of electrophoresis was also used to analyse the results of screening for 

human papilloma viruses by PCR (section 2.2.2.13a), with slight modifications. Amplified 

regions differed in size by 60 base pairs so a smaller gel was used and run at 50mA, 1.5 

hours. PCR samples were not radioactive so the DNA was visualised by soaking the gel in 

a solution of 0.5|ig/ml ethidium bromide for five minutes, illuminating with short wave 

ultraviolet light and photographing as has been previously described.

4
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2.2.2.16 Scoring of loss of heterozygosity

LOH was scored by observing the number of allele bands in the cell line DNA as 

compared with normal constitutive DNA (lymphocyte or fibroblast). Where two bands 

were clearly visible on the autoradiograph in the normal DNA a cell line was marked as 

informative. If one of these bands was clearly consistently missing in the cell line DNA 

over the course of at least two to three reactions the cell line was said to have lost 

heterozygosity. If in any one of these reactions the cell line showed two bands it was not 

marked as LOH and was not marked as informative in the results. When cell line DNA was 

clearly heterozygous it was marked as such and the reaction was not repeated. Normal 

DNAs and cell lines showing only one allele band were marked as homozygous. If normal 

DNA samples were not either clearly heterozygous or homozygous they were not included 

in the results.

4



Chapter 3

Results



3.1 Derivation of BICR cell lines

69

Seven immortal cell lines were established (table 3) and one culture which enters 

crisis (BICR 7). None of the immortal lines went through a period of slow growth or crisis 

so the immortal cells isolated were present in the original tumour and had not arisen in 

culture. Figure 8 shows phase contrast micrographs of a range of cultures as grown on a 

3T3 feeder layer. The erythroplakia looks very similar to the HEKs in that the cell edges 

are slightly blurred due to stratification. Cultures from later stage tumours grow in 

monolayers and have sharp edges.

Ease of isolation of immortal cells increased with the clinical stage of progression 

of the original tumour (figure 9). Only one cell line was isolated out of three stage T2 

tumours which explanted successfully i.e. viable cells grew out. However 4/5 stage T4 

tumours and 2/2 metastases which successfully explanted gave rise to cell lines. Four 

premalignant oral lesions, erythroplakias, (BICR E l, E2, E4, E5) cultured by E. K. 

Parkinson also did not give rise to continuous lines when grown under the variety of 

conditions described in section 2.2.1.4. Thus it appears that within the limitations of tissue 

culture the immortal phenotype arises late in the transition from a premalignant to a 

malignant SCC.

Immortality is an extremely common phenotype in late-stage, recurrent and 

metastatic head and neck SCC but is not a prerequisite for continuous tumour growth since 

BICR 7 enters crisis.

Cell lines, BICR 31, 56, 63, 66 and 68, were subsequently derived by E.K 

Parkinson in the group using the same techniques and have been included along with the 

erythroplakia cultures in the experimental work described in the following sections.
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Figure 8. Phase contrast micrographs of BICR cultures grown on 3T3 feeder layers. 
A= normal human epidermal keratinocytes, B= premalignant erythroplakia BICR E4, 
C= premalignant erythroplakia BICR E5, D= BICR 3 (T2), E= BICR 6 (T4), F= BICR 
19 (epidermal), G= BICR 18 (lymph node metastasis), H= BICR 22 (lymph node 
metastasis). Bar= 500 p.m.
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3.1.1 Immunocytochemistry

All cultures reacted with monoclonal antibodies recognising stratified epithelial 

keratins (figure 10 A,C,E). HEKs act as a positive and fibroblasts as a negative control. 

Staining is cytoplasmic and the nucleus appears largely unstained. Varying levels of 

keratins are expressed indicating the varying extent of differentiation of the different lines.

In addition the cell lines express the comified envelope precursor protein 

involucrin, characteristic of stratified epithelium, although at much lower levels than their 

normal counterparts (figure 10 B,D,F). Involucrin is also a cytoplasmic marker. As with 

keratin different cell lines express different levels according to their differentiation status. 

Positive cells are at the centres of colonies, consistent with the differentiation pattern of 

keratinocytes in culture (Rheinwald and Green, 1975b)

3.1.2 Electron microscopy

Figure 11 shows electron micrographs of the BICR lines. This work was done in 

collaboration with DrJL.Coggins and Mrs.M.O'Prey.

As indicated in the figure, the ultrastructure of BICR E5 resembles that of human 

epidermal keratinocytes with the exception of reduced numbers of strata in the colonies. All 

cultures did stratify to an extent though and contained tonofilaments and desmosomes, also 

characteristic of squamous epithelium. The free cell surface of BICR E5 has a slightly 

thickened plasmalemma indicating comification.

Taken together, the ultrastructural and immunocytochemical data support the 

conclusion that the cell cultures originated in squamous epithelium.



Figure 10. Detection of keratin and involucrin in premalignant erythroplakia 
keratinocytes. A, C, E: immunofluorescence detection of keratin. A= normal human 
epidermal keratinocytes (positive control), C = BICR E4, E= normal human fibroblasts 
(negative control). B, D, F: immunoperoxidase detection of involucrin. B= normal HEK 
(positive control), D= BICR E5, F= normal human fibroblasts (negative control). 
Arrows point to strong involucrin staining at the centres of colonies.
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3.1.3 Tumorigenicity in nude mice of BICR cell lines

This work was done in collaboration with E.K.Parkinson. The data are shown in

table 4.

The BICR cell lines do not consistently form tumours in nude mice unless they 

were derived from tumours of stage T4 or later.

Keratinocytes from early stage carcinomas are either non-tumorigenic (BICR 66) or 

form slow-growing tumours which eventually regress (BICR 3 & BICR 63). BICR 68, a 

late-stage tumour, also formed tumours which regressed. However all the other T4, 

recurrent and metastatic lines produced large, progressively growing tumours which 

reached a volume of lcm^ within 71-102 days. Normal HEKs, BICR E4 & BICR E5 gave 

rise to squamous cysts which disappeared within 2 weeks, but there were no tumours after 

216 days.

3.1.4 DNA fingerprinting

The BICR lines were to be used for studies on inactivation of candidate tumour 

suppressor genes in the tumours as compared with normal situation. It was crucial then to 

show that the normal DNA obtained from each patient was matched correctly to the cell 

line. DNA fingerprinting is useful for this type of analysis as described in Jeffreys et al, 

1985. Results are shown in figure 12 for all the cultures where the method was applicable 

for cell line and lymphocyte and/or fibroblast DNA.

Firstly it is clear that the patterns of the different patients are unique, showing that 

the cell lines are separate and unique and have not been confused or combined. Secondly 

there are some bands which appear to be lost in the cell lines as compared with the 

lymphocytes and fibroblasts. This has been noted before (Matsamura & Tarin, 1992) and 

could result from large chromosomal deletions or rearrangements in the unstable tumour 

cells. There are also some increases in band intensities which could be explained by
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chromosome duplication since these cell lines are aneuploid (Edington et al, submitted for 

publication). Finally there are rare bands appearing in the cell lines but not in the normal 

DNA. An increase in the size of a band might occur in regions of DNA amplification, and 

smaller bands would result again from deletions and rearrangements.

It was not possible to fingerprint the erythroplakias BICR E l & E2 because the 

DNA from these was obtained from cultures of limited lifespan so was not available in 

sufficient quantities. Similarly there was not enough lymphocyte DNA from BICR 10 and 

16. However polymorphism analysis acts as a fingerprint when several markers are used. In 

the cases of E l, E2 and BICR 10 the allele sizes were consistent between normal and cell 

culture DNA so these cultures were thought to be suitable for analysis.

In all cases except E4 and E5 fingerprinting was repeated, generally both with probe 

6.3 and with 15.1.11.4. For BICR 19 the fingerprint was repeated twice with the same 

probe. In an effort to conserve the limited DNA available for E4 and E5 repetition was not 

thought to be necessary given the high quality of the first fingerprint (see figure 11).

3.1.5 The BICR cell lines do not contain human 
papillomaviruses types 16 and 18.

HPV DNA of various types has been detected in normal oral mucosa, benign 

proliferative lesions and esophageal SCC, with HPV 16 being the most common (Adler- 

Stolz et al, 1986, Maitland et al, 1989, Yeudall and Campo, 1991, Benamouzig et al,

1992). Additionally HPVs 18 and 31 have been infrequently detected in head and neck 

SCCs (Bradford et al, 1991b). High risk HPV types, most commonly HPV 16, 18, 31 and 

33, are present in 80% of cervical cancers (reviewed in Howley, 1991) and facilitate 

immortalisation of keratinocytes (Kaur and McDougall, 1988, Woodworth et al, 1988, 

Schlegel et al, 1988). We therefore screened the BICR cell lines for the presence of the 

most common and most immortalising HPVs, that is HPV 16 and 18.
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Results are shown in figure 13. The band representing the hypoxanthine guanosine 

phosphoribosyl transferase (HGPRT) gene controls for the success of the PCR reaction 

(these primers being added to the same tube as the HPV amplification reaction) since in all 

cases other than HeLa, W12 & SiHa there are no other DNAs which have amplified. Faint 

band which may be visible were not of the predicted product size and in any case were not 

reproducible. Screening of all lines was repeated several times. Therefore within the 

sensitivity limits of the reaction HPV 16 & 18 are not present in the cell lines.

SiHa cells contain one or two copies of HPV 16 per cell (El Awady et al, 1987) 

which was detected easily in the assay used. In a sensitivity experiment where HeLa DNA 

was diluted with 5BR DNA (known not to contain any HPVs: McKeran et al, 1974) a band 

representing HPV 18 was clearly visible on the gel at a 1/10 dilution (data not shown). 

Since HeLa cells contain approximately 50 copies of HPV 18 per cell the dilution is 

equivalent to 5 copies per cell (Schwarz et al, 1985). The cell lines tested therefore have 

less than one copy of HPV 16 and under five copies of HPV 18 per cell. Thus HPV 16 and 

18 E6 and E7 are not continually required for the immortal phenotype in these cell lines.

A "hit and run" action is not ruled out by this result. Papillomavirus DNA may be 

lost from cells over time, especially if it is episomal and the cells are placed in tissue 

culture (DiLorenzo et al, 1992). The DNA used in the screening assay was extracted from 

very early passage cells (approximately pass 3) so it is unlikely that HPV 16 or 18 DNA 

was present in the original tumours. It could have had an effect early in the tumours' 

development.

HGPRT reproducibly does not amplify in HeLa DNA. It is not clear why this 

should be so. One possibility is that high levels of HPV 18 DNA compete heavily for 

dNTPs during the PCR.



74

3.2 Genetic analysis of the BICR cultures

3.2.1 The karyotype of BICR 6

G-band karyotyping was carried out by Mrs.M.Fitchett of the department of 

Medical Genetics, Churchill Hospital, Oxford. A representative karyotype is shown in 

figure 14. Cells were hyperdiploid with chromosome numbers ranging from 56 to 70. 

Consistent abnormalities were noted including a deletion of the short arm of one 

chromosome 8 (8p-), extra material of unidentified origin on the short arms of 

chromosomes 8, 9 and 21 (8p+, 9p+ and 21p+ respectively) and on the long and short arm 

of chromosome 14 (14p+, q+), a Robertsonian translocation {t(14ql4q)}, an 

isochromosome of the long arm of chromosome 5 {i(5q)}, and a translocation between the 

short arm of chromosome 11 and the long arm of chromosome 13 with breakpoints at pl5 

and ql4. This latter event may be affecting the RB-1 gene. There were several other marker 

chromosomes (12mar).

3.2.2 Loss of heterozygosity at the p53 locus

Figure 15 shows the state of the alleles at the D17S520 locus at 17pl2, close to p53 

at 17pl3. This work was done to complement immunostaining and PCR-direct sequencing 

work on the p53 status of the BICR cell lines by other group members. The LOH studies 

show that BICR 3,18 & 31 have reduction to homozygosity of D17S520, and BICR 56, 66, 

68, and E4 & E5 retain heterozygosity. These results agree with previous work (Burns et al,

1993) in that lines 3 and 31 have p53 mutations as shown by PCR and direct sequencing 

(see table 5). BICR 3 has a base change in codon 282, causing an arginine to proline amino 

acid change. Normal sequence was not detected by Burns et al. BICR 31 has a three base 

pair deletion in codons 173-174, causing the amino acid sequence valine, arginine to 

become glycine. Again no normal sequence was detected. As yet no mutations have been
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found in BICR 18; the hotspot regions of codons 2-96, 171-335, and 342-393 were 

sequenced but there could be a mutation outside these regions.

There is a mutation in BICR 56 and the normal allele sequence was not detected by 

Bums et a l  Retention of heterozygosity at D17S520 could be explained by the distance 

between this marker and the p53 locus. The tumour from which BICR 56 was derived 

shows LOH using a microsatellite marker within the p53 gene (K.Ahsee, personal 

communication). This marker was not used in the BICR lines because it did not give 

satisfactorily clear results when tested in these cell lines.

BICR E4 and E5 have normal p53 sequence, E4 being heterozygous due to one 

allele having a proline-proline polymorphism at the RNA level (Bums and Clark et al, 

submitted for publication). p53 has not yet been sequenced in BICR 66 & 68, but 

immunocytochemistry work seems to show that BICR 66 does not have elevated levels of 

p53 protein.

BICR 68 does have increased levels (Berry and Parkinson, unpublished data). 

Elevated p53 protein levels are a sign of a dominant negative or a stabilising type of 

mutation, therefore BICR 68 may well have a dominant negative mutation in one copy and 

retain heterozygosity. Alternatively D17S520 may again be too far from the gene to reflect 

any LOH.

3.2.3 The status of the RB-1 locus

It was important to investigate the RB-1 locus in the BICR lines because 

inactivation of the RB tumour suppressor may be one step in the immortalisation process 

(see section 1.3.3.1.B). pRb-1 staining in the BICR lines shows normal nuclear localisation 

(E.K.Parkinson, personal communication). Previously no alteration in RB mRNA size had 

been found by Northern analysis in other SCC lines (J.Bums, unpublished data), and no 

change in protein size or phoshorylation status of pRb has been found by Western analysis 

in the BICR lines (A.Malliri, personal communication). To date mutations in RB-1 have



1 2 3 4 5 6 7 8 9  1 011 12 13 14 15 16 17
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t

1

1 P X  174 10 BICR 10
2 Kit con tro l 11 BICR 16
3 HeLa 12 blood 18
4 BICR 3 13 BICR 18
5 b lood  6 14 blood  19
6 BICR 6 15 BICR 19
7 b lood  7 16 blood 22
8 BICR 7 17 BICR 22
9 b lo o d  10

a
) b

Figure 16. Digested PCR products of the Xba I restriction fragment length 
polymorphism at RB in the BICR cultures stated and their matched normal DNAs. a= 
allele without restriction site, b= allele containing restriction site. Informative cultures 
show three bands in the normal DNA samples. There is loss of heterozygosity in BICR 
6 , BICR 7, and BICR 22. The kit control was X DNA and <|>x 174 (Hae Ill-digested) 
DNA were the markers.
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usually affected either protein size or phosphorylation status (Horowitz et al, 1990, 

Templeton et al, 1991), but in these SCC lines it appears neither of these are altered. 

However as can be seen in figures 16 & 17, amplification of an Xba 1 restriction fragment 

length polymorphism within the seventeenth intron of the RB-1 gene itself shows there is 

loss of heterozygosity in three (BICR 6,7 and 22) of six informative cases. This reaction 

was repeated three times for all cell lines.

Apart from the idea that there may be a novel kind of RB mutation in SCC which is 

not detectable by Northern or Western analysis, one other explanation could be that there is 

another tumour suppressor gene close to the RB locus, and this other gene is the target for 

the loss of material. Hawthorn et al, 1993, mapped deletions in B-cell leukaemia at 13ql4 

close to the RB locus and found that in 1/5 cases the RB gene was still present but in all 

cases the locus named D13S25 (just distal to RB at 13ql4.3) was deleted. Part of the locus 

can be amplified by PCR so we can tell if at least one allele is present. From figure 18, 

BICR 22 retains the amplified region of D13S25 so, at least in this case, there is a deletion 

involving RB and possibly some material proximal to RB. Any tumour suppressor gene at 

D13S25 which is inactivated by deletion in B-cell leukaemia is retained in BICR 22 

although the possibility remains that it contains a point mutation or is truncated in some 

way not affecting the amplified fragment. This and one other possible explanation 

involving cyclin D1 will be fully discussed in section 4.2.3.

It is interesting that in all three cases of loss of heterozygosity the allele with the 

restriction site is the allele which is lost. In all cases digests were repeated using at least 20 

units of enzyme activity per |ig amplified, purified DNA. This is four times the 

recommended amount of enzyme so it is unlikely that incomplete digestion could have 

been the cause of this result.

One further possibility is that the RB-1 locus becomes methylated. This idea stems 

from the fact that Xba 1 does not cleave DNA when the 3' adenosine residue or the cytosine 

residue of its recognition site are N^-methyladenine or 5-methylcytosine respectively (Well 

and McClelland, 1989). Thus loss of the allele containing the restriction site in the cell line
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could simply represent methylation of the site. This could be distinguished from LOH by 

treating BICR 6 , 7 or 22 cells in culture with 5-azacytidine to demethylate the DNA and 

repeating the reaction. However it is likely that DNA amplified by PCR is not methylated 

anyway.

3.2.4 Chromosome lq

Polymorphism analysis of chromosome 1 concentrated on the long arm for reasons 

discussed in section 1.3.3.2.A. A summary of data obtained is shown in figure 19 and 

results are illustrated in figures 20-22, 33 and 34.

Loss of heterozygosity was not common on chromosome lq. Only three of fifteen 

cultures tested had loss of material, and this was at two different loci (lq21-23 and lq42- 

43) so is less significant. This is confirmed in view of the comparatively high frequencies 

of LOH at 9p and 9q (section 3.2.7). 0/15 informative cases at lq25 and 2/11 at lq42-43 

suggest these regions are not major contributors to the immortal phenotype. Either D1S102 

has shown LOH in two BICR lines by chance or the losses here contribute in some cases to 

SCC development but are not the most common targets, since these losses are appearing 

against a background of heterozygosity.

A microsatellite on lp (D1S243) was used as a control for loss of whole 

chromosomes but was not very informative and in view of the low frequency of LOH on lq 

was not necessary.

The "shadow" bands appearing at constantly larger increments are common in PCR 

of microsatellites (for example, see figure 21, marker D1S245). It is unclear what they 

represent or how they may be eliminated, but one hypothesis is that where there is a vast 

excess of primers the shadows are amplififed, partially denatured product with extra primer 

bound at the denatured molecule ends (D.Black, personal communication)
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Figure 20. Digested PCR products of the Dde I restriction fragment length 
polymorphism within the AT III gene at lq. The 222bp initial product is digested to a 
constant 102bp band and either a 127bp band or a 74 and 53bp pair of bands. 
Informative cultures therefore show four products and non-informative show three.T= 
BICR cell line DNA, N= matched normal DNA.Markers are <t>xl74 (Hae Ill-digested) 
DNA. BICR 19 is the only informative culture and has not lost heterozygosity. AC3A 
DNA acts as a control for complete digestion. += spurious band which was not 
reproducible.
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Figure 21. Autoradiographs of polyacrylamide gel electrophoresis of amplified 
microsatellite sequences on chromosome lq. T= BICR culture DNA samples, N= 
matched normal DNA sample.
D1S104 maps to lq21-23 and shows loss of heterozygosity (LOH) in BICR 63.
D1S229 maps to lq42 and shows a loss in BICR 31.
D1S245 exhibits shadow bands, labelled SI and S2 in BICR E l, in addition to the allele 
bands Al and A2. There is LOH in BICR 31.
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3.2.4.1 Imbalances in allele copy number

There is some evidence for loss of heterozygosity within some clones of these 

polyclonal cell lines. For example in the Southern blot in figure 22, BICR 18 has an 

imbalance of alleles. BICR 31 and 63 show imbalances using the microsatellite marker at 

APO A2 (figure 22B). Finally, BICR 63 also shows an imbalance at DIS 102 (figure 22C).

These differences in allele copy numbers are reproducible from reaction to reaction 

over at least three separate experiments. It is unlikely that they are caused by contamination 

of the DNA by normal keratinocyte or fibroblast DNA since cell lines are relatively pure 

and the culture conditions selected for tumour cell growth. Experiments indicate that 

contamination of up to 10% by normal DNA does not affect the end result (Clark et al, 

1993). Making this assumption one would expect alleles to appear with equal intensity on 

an autoradiograph. Probes hybridising to a Southern are equally radioactive and bind the 

same sequence in each allele, so they should hybridise in equal numbers and signals would 

be of comparable intensity. Similarly in a PCR reaction although one allele is bigger so has 

more radioactivity incorporated, the smaller allele should amplify more times to balance 

the effects. Thus the differences in intensity seen here are probably due to differences in 

allele copy numbers, a result of either amplification, duplication and/or loss of selected 

regions, bearing in mind that the cell lines are aneuploid.

It is harder to assign a mechanism to a result like this, but the situation could be 

clarified at least in terms of whether there is simply loss of heterozygosity in a proportion 

of clones by doing some single-cell cloning and investigating those markers which showed 

the imbalance. Otherwise fluorescence in situ hybridisation would show if amplification 

and/or duplication had occurred at a specific region.
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Figure 22. Illustration of imbalances in allele copy number in BICR cultures. T= BICR 
DNA, N= matched normal DNA.
A. Autoradiograph of Southern blot hybridised with probe pMUC7 mapping to lq21. 
BICR 18 exhibits a reproducible imbalance. BICR 3 and 6  are heterozygous and 19 and 
2 2  are not.
B. Autoradiograph showing microsatellite sequences at APO A2 (lq21-23).BICR 31 
and 63 exhibit imbalances. A shadow band is visible at the top of the gel.
C. Microsatellite at D1S102. BICR 31 and 18 show loss of heterozygosity and BICR 63 
shows imbalance. Alleles are A l, A2 and shadows SI and S2.



3.2.5 Chromosome 4
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A summary of data for chromosome 4 is shown in figure 23 and results are 

illustrated in figure 24. Unfortunately there are few documented markers on 4q, of which 

only D4S175 worked as shown.

Again it appears that losses of material on 4p are uncommon in SCC at any stage, 

since 18 informative cases retained both alleles. There could however be microdeletions 

which have not been located where the markers used have mapped. These would possibly 

become clear with the use of many more markers.

It would be important to utilise any further markers which become available on 4q 

to find how frequent the observed loss at D4S175 is.

3.2.6 Chromosome 6q

Analysis of chromosome 6  concentrated on the long arm for reasons described 

previously (section 1.3.3.2. A). Data are summarised in figure 25 and illustrated in figure 

26.

Using two markers mapping to the long arm of chromosome 6 , there were no cases 

of LOH in 23 informative cases. Any tumour suppressor genes located on this chromosome 

arm are not inactivated by large deletions in SCC. They could be inactivated by point 

mutations in both alleles, however this is not a common mechanism for losing function of 

tumour suppressor genes. Usually one allele is lost by non-disjunction or a large deletion 

(Cavanee et al, 1983)

The lack of LOH at 4p and 6 q show that background LOH levels are lower in SCC 

than in colon cancer (Fearon and Vogelstein, 1990). Thus regions where LOH does occur 

are likely to be important.
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h-CÔrQ

o
£ K

S  35 < 2 O D
*~mm* |—— ’■ "

r u i i i i n i i i i i  ■ I



D4S174

E1 E2 31 63 68  

T T N T T  N T

51
5 2  

A1 
A2

. \ 

£ ! ,

GABRB 1

E1 E2 E4 E5 6 6  6 8  3 31 18 22

N T  N T  N T  N T  N T N T  T T T N T

Figure 24. Illustration of heterozygosity on chromosome 4p as shown by microsatellite 
sequences. D4S174 maps to 4pl5-12 and GABRB1 to 4pl3-12. T= BICR culture DNA, 
N= matched normal DNA. In DIS 174, shadow bands are labelled SI, S2 and allele 
bands A l, A2 in BICR 3 as an example.
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D6S87

Figure 26. Illustration of microsatellite sequences on chromosome 6 q in the BICR 
cultures stated. T= BICR DNA, N= matched normal DNA. D6S87 exhibits shadow 
band amplification. These are labelled SI, S2 in contrast with allele bands A1 and A2 
for BICR 6 8 . All cultures are heterozygous.
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3.2.7 Chromosome 9

Data for chromosome 9 are presented in figures 27-30.

Loss of material on 9p is very frequent (11/26 informative cases).

Chromosome 9 is interesting in that it shows separate LOH on 9p and 9q (figure 

27). This can be concluded because in lines 18, 22 31 and 6 8  there is a region of 

heterozygosity between regions of LOH at 9p and 9q. The marker showing the highest 

frequency of LOH is D9S199 at 9p23, with four out of four immortal informative lines 

having loss. Based on the markers used to date, we can tentatively assign a tumour 

suppressor gene locus to 9p22-23 or distal to this (see figure 31).

It is possible that there are two regions of interest on 9p since BICR 22 has loss of 

material at 9p22-23 (markers D9S199 and D9S168), retains heterozygosity at 9p21 

(D9S43), and has another region of loss at 9pl2 (D9S55). There is a lower frequency of 

loss here but tumour suppressor genes located nearer to a centromere are less likely to be 

lost. This region may or may not be linked to LOH on 9q (figures 27 and 31).

LOH on 9q is also frequent, occurring in 7/22 informative cases (figure 27). 

Porterfield et al (1992) showed that hybrids of melanoma or leukaemia cells and 

chromosome 9 senesced when they contained an intact 9p arm but were not affected when 

9p was not intact. It was not mentioned whether 9q was intact or not, so it is still formally 

possible that there are senescence genes on both arms. Other groups have seen senescence 

upon transfer of whole chromosome 9 in different cell lines (table 1). Figure 32 shows 

graphically that loss of both 9 p and 9 q did not occur in any cultures which were not 

immortal, implying these alterations a possible causative role in escape from senescence. 

Due to lack of time however the 9q analysis was continued by O.Loughran in the group.

The very high levels of LOH on 9p and separately on 9q relative to the other 

chromosomal regions which were investigated imply that 9p and 9q are extremely 

important in SCC development.
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Figure 28. Illustration of microsatellite sequences on chromosome 9p. T= BICR 
culture DNA, N= matched normal DNA.
D9S54 at 9p23 shows loss of heterozygosity (LOH) in BICR 18 and 6 8 . Shadow bands 
are labelled SI, S2 and allele bands A1 and A2 in BICR 18.
D9S199 at 9p22-23 shows LOH in BICR 19,68, 6  and 22.
D9S168 maps to 9p22-23 and shows LOH in BICR 19 and 22.
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Figure 29. Illustration of microsatellite sequences on chromosome 9. T= BICR culture 
DNA, N= matched normal DNA. A l, A2= allele bands; SI, S2= shadow bands.
D9S43 maps to 9p21 and all cultures shown are heterozygous. The two lower bands 
represent the alleles but some shadow bands are visible at the top of the autoradiograph. 
D9S55 maps to 9pl2. There is loss of heterozygosity (LOH) in BICR 6  and 22 although 
the two allele bands at the bottom of the autoradiograph in the normal DNA samples are 
very close together. BICR 6 8  is heterozygous.
GSN maps to 9q33 and BICR 63, 6 , 31 and 22 exhibit LOH.
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Figure 31 Map of chromosome 9p showing regions of loss of heterozygosity 
(LOH) in the BICR cell lines.
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a. Proportions of informative immortal cultures showing loss of 
heterozygosity (LOH) on 9p and 9q.
b. Proportions of informative senescent cultures showing loss of 
heterozygosity on 9p and 9q.



3.2.7 Allele size changes in tumour cell lines
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Occasionally alterations in the sizes of alleles have been seen in the BICR cell lines. 

These have included increases and decreases in length, but in most cases the normal alleles 

have remained. For example, using the microsatellite marker located at D1S245 (figure 33), 

BICR E4 and E5 contain additional larger bands relative to lymphocyte DNAs while the 

original alleles remain. On the other hand in BICR 6 8  the fibroblast DNA has a band which 

has disappeared in the cell line, while another smaller band has appeared. Both these 

changes were reproducible.

One other example was noted: that of BICR El at D1S243 (figure 33B).The marker 

appears non-informative in the lymphocyte DNA but a second, larger band has amplified in 

the erythroplakia. This particular marker was not repeated so may not be reproducible and 

therefore significant.

3.2.8 Extra bands amplifying by PCR

Other groups have reported seeing bands over and above those representing alleles 

after amplification by PCR (Hauge and Litt, 1993, Murray et al, 1993). These were distinct 

from "shadow" bands and in the course of this work have been observed in the cases of 

some microsatellite markers but not others and not where a site of restriction fragment 

length polymorphism was amplified. The two main cases are shown in figure 34. DIS 103 

reproducibly shows faint bands approximately one or two bases smaller than the main 

allele (see lines 18, 22 and 31). A different result showed for D6S87, where one and 

sometimes two larger faint bands appeared above the alleles. These may be one to four 

bases larger in size and matched in normal and tumour samples. It has been suggested that 

they are due to slippage of Taq DNA polymerase during amplification (Litt, 1991, Murray 

et al, 1993).



H  

14 Z

n

m  h
M z
M  Z

Mz
^  H

M Z

* z

£
*§P43C/3
II<N

00

00

P>
'§
e
p

X)
u

*3
iics

<

<
£
Q
13

o
p

’B43
3P
£

<
£
Q

1
p0
o4
<jHH
«
II

H

1 ■<-»
Po
04
uh-1
PQ
P
■s
p

p
b0

43O
PN

r'i
Hi

Po
£o
£
3
p
■S
.£C/3T3S3P
43
P
b0
&
H ’ i3 i
X  ' p
p

&
43

P

Po
aO
£
3
p43C

jn '3W bD S3
TT-j +-> •'_l
1 ^ -S
t  a W;5
P4 f—i 
V

p
*3
bfi

PQ

<N

o O
£ 'g o £
£ cq

w  ^ QJ 
^  P ^<n .£ o

^  ars PQ 
O l  3

9X43 cnP
c/3 vo
n Ph

P P P P
3 - wcroo 
p  vo cnon .
p  P4 <n  
• 3 U ^H h H
1 « Q

2p  on Pc/3 ^
>> P

PC/3
ao

O ^
.2.8
§•§ 
feb ®

1*go3 03

P
&P
C/3

P

P



D
1S

10
3 

D
6S

87

CO
h

Z

CM
CM

h -  

Z  

CO h-  

h
(D

9
m t

9
«

T- 1 -

CO z
OJ 1 -
CM z
0 >

1 -

T - z
1 -

0 0
T “ z

ft >

Fi
gu

re
 

34
. 

Ill
us

tra
tio

n 
of 

ex
tra

 
ba

nd
s 

am
pl

ify
in

g 
by 

PC
R 

alo
ng

 
wi

th 
m

ic
ro

sa
te

lli
te

 
se

qu
en

ce
s. 

T= 
BI

CR
 

cu
ltu

re
 

D
N

A
, 

N 
Q 

D
N

A
. 

SI
, 

S2
= 

sh
ad

ow
 

ba
nd

s; 
A

l, 
A2

= 
all

ele
 

ba
nd

s. 
M

ar
ke

r 
D1

S1
03

 
(lq

32
) 

gi
ve

s 
ad

di
tio

na
l 

ba
nd

s 
of 

on
e 

or 
tw

o 
ba

se
 

pa
irs

 l
es

s 
tha

n 
the

 
al

le
le

s 
(m

ar
ke

d 
by 

sta
rs

). 
D6

S8
7 

(6
q2

2)
 e

xh
ib

its
 e

xtr
a 

ba
nd

s 
on

e 
or 

tw
o 

ba
se 

pa
irs

 l
ar

ge
r 

tha
n 

the
 

all
ele

s 
(m

ar
ke

d 
by 

ar
ro

w
s)

.



82

Throughout the PCR work we did not observe any homozygous deletions. These 

would be notable by allele amplification in the normal DNA in contrast with no observable 

amplification in the cell line DNA, and would also be a symptom of tumour suppressor 

genes.

Figure 35a shows total numbers of genetic alteration in cultures derived from the 

stages shown. LOH increases dramatically with increasing stage of progression. This would 

be expected since larger tumours would be likely to be more highly evolved, and again 

supports the idea that the cultures represent the tumours from which they were derived.

Figure 35b summarises the frequency of LOH on the different chromosome arms 

studied for comparison.
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4.1 The keratinocyte as a cell type for the study of 
senescence and immortalisation.

The keratinocyte is an extremely useful cell type in which to study the genetic 

events leading to the immortal phenotype as well as other events in carcinogenesis.

Like other normal cells it exhibits a limited lifespan in tissue culture (Rheinwald 

and Green, 1975b). Unlike other cells including fibroblasts its in vitro differentiation as 

compared with its in vivo differentiation pattern is well understood, both being very similar. 

The process takes place in defined compartments: keratinocytes leave the proliferative 

basal layer, increase in size and express involucrin as they lose viability. Finally they 

assemble a comified envelope, become squames and are sloughed off (Rheinwald and 

Green, 1975a, 1975b, Sun and Green, 1976, Green, 1977). This process is useful since 

immortalisation may involve a partial block in differentiation.

In addition, immortal variants are frequent in squamous cell carcinoma, the 

malignant form of the keratinocyte (Rheinwald and Beckett, 1981).

Oral cancer has been chosen due to the availability of different types of lesions from 

different stages of cancer development (Pindborg, 1985).

4.1.1 A new in vitro head and neck SCC system

A series of cell lines has been derived from untreated head and neck squamous cell 

carcinomas of varying stages of progression. Matched blood samples and/or normal 

fibroblasts together with cultures of premalignant erythroplakias and the ability to grow 

normal epithelial keratinocytes make this a powerful system to study inactivation of tumour 

suppressor genes and activation of oncogenes in oral SCC, and to assay functionally for 

these gene products. Previously little has been discovered of the genetic events causing 

SCC other than alterations in the p53 tumour suppressor gene (see section 1.5).
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Malignant head and neck SCCs have frequently been reported to contain immortal 

variants which give rise to established cell lines (Easty et al, 1981a, Easty et al, 1981b, 

Rheinwald and Beckett, 1981, Virolainen et al, 1984, Rupniak et al, 1985, Sacks et al, 

1988). Most of these lines were derived from recurrent or irradiated tumours however so 

alterations present in the established lines may not have given rise to the original tumours. 

Additionally, with the exception of Rheinwald and Beckett (1981), they were derived under 

conditions which are sub-optimal, namely without the use of a lethally irradiated Swiss 3T3 

feeder layer. This renders selection of fitter variants likely (Rheinwald and Beckett, 1981). 

Finally these cell lines are not ideal for looking at inactivation of tumour suppressor genes 

by allelic loss since matched normal DNA samples are not available.

The cell lines described in this thesis were established on feeder layers and their 

serum requirements were determined early. Thus it was relatively easy to obtain a large 

number of cell lines (seven lines from ten successful explants). The lines were shown to be 

of squamous epithelial origin by keratin (Sun and Green, 1978) and involucrin (Rice and 

Green, 1979, Watt and Green, 1981) immunocytochemistry and by electron microscopy. In 

most cases keratinocytes from the lesions have also been confirmed as transformed by their 

delayed ability to become post-mitotic and form comified envelopes when suspended in 

methylcellulose (Edington et al, submitted for publication). Normal keratinocytes rapidly 

and irreversibly lose colony-forming ability under these conditions and assemble comified 

envelopes by cross-linking involucrin, among other soluble precursor proteins (Sun and 

Green, 1976, Rice and Green, 1979).

Other groups at the Beatson Institute working on these cell lines have found that in 

terms of several markers their status is identical to the original tumours. Mutations in p53 

are identical (Bums et al, 1993), the lack of RAS mutations in cell lines and tumours 

correlates perfectly (Clark et al, 1993), EGF receptor status is identical (Stanton et al, 

submitted for publication) and cyclin D1 status is identical (Nikolic et al, submitted for 

publication). This encourages us to believe the cell lines are truly representative of at least 

a large portion of the original tumours.
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4.1.2 Oral squamous carcinoma: when do immortal variants 
arise?

Since this work started several other cell lines have been derived in the same 

manner by E.K.Parkinson. These will be included in the discussion in order to provide a 

context for the work described in this thesis. A summary of the relevant characteristics of 

all the cell cultures obtained is shown in table 6. Information for the DOK cell line, a gift 

from S.Chang, is also shown. DOK was derived from dysplastic oral epithelium adjacient 

to a carcinoma of the tongue, so represents a premalignant cell line.

Where an immortal cell line was established there was only one instance where a 

crisis was observed, that is in BICR 7. We have concluded that the cells giving rise to the 

lines were an immortal population present in the tumour and that this phenotype does not 

represent an adaptation to tissue culture. On this basis, immortality is a very common 

phenotype in oral SCC. With reference to table 6, it occurred in 2/4 early stage tumours, 

10/12 late stage and recurrent tumours, and 2/3 lymph node metastases. Although the 

tumour numbers are not large, immortality appears to be increasingly common as tumours 

progress. The overall frequency of senescence in tumours disregarding staging is 54%, 

comparing well to Rheinwald and Beckett's finding of 47% for cultures in similar 

conditions (Rheinwald and Beckett, 1981).

The fact that it was possible to establish two cell lines from four early clinical stage 

(T2) tumours whereas all four erythroplakias senesced leads us to conclude that 

immortality most probably arises late in the transition from premalignancy to malignancy. 

This is a tentative conclusion since we were only able to obtain four erythroplakias, but it 

agrees with findings for melanoma, where indefinite lifespan is commonly seen in vertical 

growth phase tumours with potential for metastasis, but rarely in radial growth phase 

melanoma and never premalignant melanocytic nevus stages (Mancianti and Herlyn, 1989). 

In the colon system cell lines have been derived from premalignant adenomas of types
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having both low and high malignant potential (Paraskeva et al, 1984). Cell lines from 

adenomas with low progression rate require specific passaging conditions. Although it 

would seem immortality is an earlier event in the colon, it is difficult to compare stages in 

different cancers. It is certainly clear however that at later stages of progression the 

immortal phenotype is very common in all three types of cancer.

Although DOK comes from a premalignant lesion and is immortal it does have a 

p53 mutation, which none of the other premalignant lesions have. In addition, since it was 

isolated from a dysplasia adjacient to an SCC it may be further advanced than the 

erythroplakias (Chang et al, 1992).

It is clear that immortality is not crucial for SCC formation, since BICR 7, 59, and 

37 are not immortal. BICR 37 is a metastasis so immortalisation was not required for 

migration and colonisation of a new site in the body. This could be explained by there 

being more than one pathway to tumour formation with one or some not involving 

immortality, or by immortality being a by-product and not an essential event in tumour 

formation. The answer to this question will be found when putative senescence genes have 

been isolated and analysed genetically and functionally in different cancers and in normal 

cells.

4.1.3 The tumorigenicity in nude mice of the cell lines

Most SCC cell lines previously studied form tumours when injected subcutaneously 

into immunosuppressed mice (Easty et al, 1981a, Easty et al, 1981b, Rheinwald and 

Beckett, 1981, Rupniak et al, 1985, Sacks et al, 1988). However the relationship of 

tumorigenicity to the state of progression of the original tumour has not been investigated. 

The tumorigenicity data for the erythroplakia and BICR cultures (table 4) shows that only 

keratinocytes from malignant lesions are consistently tumorigenic. Further, cells from early 

(T2) stage carcinomas are much less tumorigenic. Thus there appears to be a fairly good 

relationship between the extent of progression of the original tumour and the ability of the
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resultant cell line to form experimental tumours. This may be a reflection of increasing 

genetic events in later tumours.

BICR 68 was derived from a late-stage tumour and is non-tumorigenic. This may be 

because it does not display as readily three phenotypes which are generally associated with 

transformation. These are multiplication in low serum, multiplication in agar, and feeder- 

independence (Edington et al, submitted for publication).

The two lines derived from metastases, BICR 18 and 22, were also not as strongly 

tumorigenic as one might expect. Both are capable of growing in low serum levels and 18 

is feeder-independent but neither will multiply in agar.

The SV40 model of cellular immortalisation discussed in section 1.3.3 shows that 

there may be two mortality mechanisms. Ml is bypassed during extended lifespan and M2 

is inactivated by rare genetic events at crisis (Wright et al, 1989). Since SV40 large T 

antigen can be replaced by HPV 16 or 18 E6 and E7 (Hawley-Nelson et al, 1989), and 

since all these transforming genes affect the tumour suppressors p53 and RB-1 (Lane and 

Crawford, 1979, DeCaprio et al, 1988, Munger et al, 1989b, Werness et al, 1990), then p53 

and RB-1 could be part of M l. As part of the investigation of immortality in oral SCC, the 

BICR cell lines were first tested for the presence of HPV 16 and 18.

4.1.4 Human papillomaviruses in oral SCC

None of the cell lines tested contained DNA sequences from the E6 and E7 genes of 

HPV 16 or 18 as determined by PCR. The assay proved to be sensitive to one copy per cell 

of HPV 16 and five copies per cell of HPV 18. Thus these viruses are not contributing in 

any continuous fashion to the immortality of the cells. However other less transforming 

types of papillomavirus are not excluded, nor is a "hit and run" effect (Smith and Campo,

1988).



Other workers have reported HPV 16 and 18 in oral SCCs, some to the extent of 

46% (Milde and Loning, 1986, Maitland et al, 1987, Syijanen et al, 1988). In the latter case 

in all lesions except one the DNA was episomal, contrasting with the situation in cervical 

cancer where the DNA is frequently integrated (Boshart et al, 1984, Durst et al, 1985). 

Another study has found HPV 16 DNA in 50% of biopsies of oral mucosa and cultures 

derived from these (Maitland et al, 1989). Equally Brachman et al (1992) found a 

frequency of only 10%, so average levels are nearer 20-30%.

Using the same primers and very similar PCR conditions to those used in this work, 

Yeudall and Campo (1991) found 25% of oral cancers contained HPV 16 and 20% HPV 18 

DNA. PCR in the study was followed by Southern blotting of the amplified DNA and 

hybridisation to internal oligonucleotides. This procedure increases the sensitivity of 

detection so would explain the higher frequency of viral presence. Only 3/39 cases 

contained one copy per cell or more of virus.

4.2 Genetic analysis

4.2.1 Clues from the karyotype of BICR 6

The karyotype shows several features typical of cell lines derived in a similar 

manner to ours and also primary untreated tumours. First of all it is hypotriploid and has 

many complex changes. SCCs range from diploid to highly aneuploid (Jin etal, 1990, 

Cowan et al, 1992, Patel et al, 1993, Worsham et al, 1993). They often have highly 

complex cytogenetic alterations with many rearrangements and breakpoints.

Abnormalities of chromosome 8p, 9p, 11, 13 and 14 are specific events which are 

consistently found in these lesions (Jin et al, 1990, Cowan et al, 1992, Patel et al, 1993, 

Worsham et al, 1993). These were also found in BICR 6. Some common changes which 

were not seen are breakpoints on both lp and lq, 3p deletions and abnormalities of 

chromosome 7. A lack of one copy of chromosome 3 may tie in with this, and extra copies
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of chromosomes 1 and 7 may have microdeletions or insertions or point mutations which 

were not visible cytogenetically.

The translocation at 13ql4 could be the event which leads to the LOH at RB in this 

cell line. The abnormalities of 9p additionally agree with LOH data. However lack of a 

copy of chromosome 6 would not necessarily lead to detection of LOH at 6q (none was 

found) since the two other copies could carry the relevant information.

It is difficult to draw any firm conclusions from cytogenetics data, especially since 

we only have data for one cell line. Loss of heterozygosity analysis provides additional, 

more specific information about the location of tumour suppressor genes.

4.2.2 p53mutation in oral SCC and its relationship to the 
immortal phenotype

The results of the LOH studies using D17S520 at 17pl2 agree well with work 

describing p53 mutations as discovered using PCR-direct sequencing (Bums et al, 1993). 

They also highlight the importance of using markers close to the target gene for accurate 

information, since a marker within the p53 gene shows LOH in BICR 56, and this was not 

seen with D17S520.

The results agree with several other studies of p53 in both esophageal tumours and 

cell lines. Loss of heterozygosity at p53 has been detected to levels of approximately 50% 

as was found for the BICR lines (Meltzer et al, 1991, Huang et al, 1992). Mutations in the 

p53 gene have also been demonstrated to between 30 and 90% in cell lines and primary 

tumours (Hollstein etal, 1990, Sakai andTsuchida, 1992).

No one else to our knowledge has analysed p53 in erythroplakias. Retention of 

heterozygosity in the erythroplakias agrees with normal immunohistochemical staining

patterns and sequencing data.

Unlike other groups we have been able to correlate LOH and mutation in the same 

cell lines. Table 6 shows how p53 staining and mutation (Bums et al, 1993), compare with
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culture lifespan. Of the eight cultures which had normal p53 staining (most cells being 

negative with the occasional cell staining), seven were senescent. BICR 80 stains normally 

but is immortal, and could represent a subset of tumours which do not require p53 mutation 

to escape senescence. Equally it could contain a mutation downstream of p53 itself.

14/16 cell cultures which had abnormal staining (either high or low: some cultures 

showed no staining whatsoever) were immortal. Those which were not immortal were 

BICR 7, which enters crisis, and BICR 1 which senesces. BICR 7 may not have 

accumulated enough genetic events to escape crisis. Certainly it is clear that at least one 

other event is required. In a tumour such as this immortality may be a late by-product of 

carcinogenesis. There are several other late-stage tumours which are not immortal so this is 

not a precedent.

BICR 1 appears to have a dominant-negative type of mutation from its staining 

pattern and yet senesces. One conclusion from this is that p53 mutation is not the only 

event required to escape Ml, fitting with the idea that the transforming genes SV40 T 

antigen and HPV 16 or 18 E6 and E7 have several effects, not just on p53.

To date there have been no cultures with abnormal staining which have not proved 

to have p53 mutations by sequencing.

We can conclude from these data that p53 mutation is important in escape from 

senescence, but is not the only event and may not be the only pathway to immortality. The 

erythroplakias could represent precursors of tumours with no p53 mutation. They are 

definitely premalignant lesions as three out of four patients from which they came 

developed carcinomas within a year. On the other hand laryngeal papillomas, which have a 

much lower frequency of progression than erythroplakias (less than 1% versus 30-55%), 

contain the HPV 6 or 11 E6 transforming gene, which may inactivate to an extent the p53 

gene (Crook et al, 1991, Bums and Clark et al, submitted for publication). The 

erythroplakias do not contain HPV 6 or 11. This appears to be a paradox since p53 

mutation is so common in SCC. Still, p53 mutation may not be an initiating event in SCC.
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The gene product has a range of functions and it is not clear how its mutation 

influences development and progression. There is evidence for a role in transcription, 

permissivity of gene amplification and stability of the genome, terminal differentiation, and 

as a G1 checkpoint controlling cycling, repair of DNA damage and apoptosis (Kern et al, 

1991, Yonish-Rouach et al, 1991, Aoyama et al, 1992, Kuerbitz et al, 1992, Lane, 1992, 

Livingston et al, 1992). Furthermore, in keratinocytes the different kinds of mutation of 

p53 may have differing effects. Stabilisation of the protein may give keratinocytes a 

selective advantage at an early stage (Gusterson et al, 1991, Dolcetti et al, 1992, Ogden et 

al, 1992, Nees et al, 1993). These are likely to be dominant-negative mutations. But loss of 

function for example in null and heterozygote mice may be more important in progression 

from premalignancy to malignancy (Kemp et al, 1993).

BICR 19 is heterozygous but has a loss of function mutation, deletion of 107 base 

pairs such that codons 332 onwards are out of frame (Bums et al, 1993). Normal sequence 

was detected. It seems to have very few alterations in parameters measured to date. EGF 

receptor levels are normal (Stanton et al, submitted ), and no loss of heterozygosity has 

been found apart from 9p. Since one normal p53 allele can stabilise and prevent gene 

amplification (Livingston et al, 1992), this could explain the lack of abnormalities. Of 

course many more cases like this need to be investigated to support this hypothesis. BICR 

66, an early carcinoma which senesces, also shows no LOH on 9p, 9q, or 3p (section 3.2.7 

and O.Loughran, unpublished data). It has normal p53. This may simply reflect the fact that 

it is an early tumour so has not accumulated many changes or alternatively the lack of p53 

mutation may be the cause.

4.2.3 The retinoblastoma protein in head and neck SCC

Several groups have found loss of heterozygosity at the RB locus in esophageal 

SCC (Boynton et al, 1991, Huang et al,1992, Huang 1993). All were in the range 30-

50% of informative tumours tested. Only one of the groups looked at the RB messenger
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RNA (Huang et al, 1993). They found no alterations in seven SCCs, although there were 

alterations in adenocarcinomas.

From these data loss of heterozygosity at RB is frequent, but the the relationship to 

this of the state of the protein is unknown. We have described loss of heterozygosity in 

three of six informative SCC cell lines. In the same cell lines there is normal staining as 

regards protein quantity and subcellular location (E.K.Parkinson, unpublished data), and no 

change in protein size and phosphorylation state (A.Malliri, unpublished data). In a 

different panel of SCC cell lines (those derived by Rheinwald and Beckett, 1981) RB-1 

mRNA is of normal size (J.Bums, unpublished data). The region D13S25, just distal to RB 

and deleted more frequently than RB in B-cell leukaemia, remains in at least one cell line 

with LOH at RB-1.

Cyclin D is part of the larger family of cyclins which function in the regulation of 

the cell cycle, probably by interacting with kinase catalytic subunits such as cdk 4 

(Matsushime, 1992). The target proteins of cyclin D1 have not been identified but it can 

override inhibition of a human osteosarcoma line by pRb-1 without affecting the nuclear 

localisation of pRb-1 (Hinds et al, 1992). This effect was slightly less than that of cyclins A 

and E. However only D-type cyclins activate cdk4 in insect Sf9 cells such that pRb 

becomes phosphorylated at sites identical to those phosphorylated in human T cells (Kato 

et al, 1993). Cyclins D2 and D3 but not D1 bind pRb strongly in intact Sf9 cells, but 

hyperphosphorylation of pRb leads to their dissociation (Kato et al, 1993). Thus the D 

cyclins may both regulate cdk4 and target enzyme complexes to particular substrates.

The cyclin D1 gene is frequently amplified in squamous cell carcinoma of the head 

and neck (Jiang et al, 1992). Its expression has been detected along with cyclin D3 in 

human epidermal keratinocytes by Northern analysis (M.Nikolic, unpublished data). In the 

BICR lines cyclins D1 and D3 are expressed but again D2 was not detectable (M.Nikolic, 

unpublished data). Since cyclin D1 overexpression may inactivate the pRb-1 growth 

inhibitory pathway and does not affect RB protein localisation or mRNA we thought it was 

possible that in those BICR cell lines without RB-1 LOH cyclin D1 would be
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overexpressed, and in those lines with RB-1 LOH it would not, either because of a 

reduction in pRb expression or an inactivating RB-1 mutation. A comparison of cyclin D1 

protein expression (Nikolic et al, submitted for publication) and the status of the Xba 1 

RFLP of RB-1 is shown in table 7. It is clear from the limited numbers available that there 

is no simple quantitative correlation between the two parameters. In fact BICR 6, which has 

LOH at RB, shows relatively high overexpression of cyclin D l. Thus although these data 

are not simple they suggest that the RB-1 growth inhibitory pathway is disrupted in the 

majority of the BICR lines.

There remain two explanations for the results. Firstly there may be a mutation in 

RB which is not reflected in a change in message or protein size or protein 

phosphorylation. Sequencing the remaining allele or using single-stranded conformation 

polymorphism analysis would resolve this. Preliminary results show there may be generally 

higher protein levels in most BICR lines (A. Malliri, personal communication). Thus there 

may be a stabilising mutation in the remaining alleles in cases of LOH.

Secondly there could be another tumour suppressor proximal to RB (since D13S25 

is distal) which is in fact the target of the LOH.

Two other groups have found that LOH at RB does not correlate with protein 

alterations in breast and bladder cancer (Ishikawa et al, 1991, Borg et al, 1992). Borg et al 

saw LOH in 26% of primary breast tumours which often expressed high levels of protein. 

They found low to absent protein levels in a further 15% which did not show LOH. They 

concluded that RB inactivation was important in breast cancer but the alteration was 

acquired by mechanisms other than the unmasking of a recessive mutation by allele loss, 

and that LOH at RB was a stochastic event reflecting the cells' genetic instability. They 

also suggested the presence of another tumour suppressor gene. Ishikawa et al reported 

similar findings, with inactivation of protein in a subset of bladder cancer lines and primary 

tumours, but in none of the tumours showing LOH. Neither group has as yet established the 

genetic events leading to such findings.



Cell line 3 19 6 10 18 22

RB-1 Xba 1 RFLP status 

p34cycD1 fold overexpression

het n/i LOH n/i n/i LOH

1 13 10 1 9 3
(relative to TFK 104)

Table 7. Comparison of loss of heterozygosity data at RB-1 and cyclin D1 expression in 
the BICR lines stated. TFK 104 are HPV 16 E6,E7 immortalised, non-tumorigenic primary 
keratinocytes. Het= heterozygous, n/i= non-informative, LOH= loss of heterozygosity. 
Cyclin D data taken from Nikolic et al, submitted for publication.
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An interesting observation is that in each case of LOH in the BICR lines the allele 

containing the restriction site is the one which is lost (figures 16 and 17). Apart from being 

a coincidence in a small number of samples, this could represent abnormal DNA 

methylation in the cell lines. It is likely that the matched normal DNAs are genuinely 

heterozygous since abnormal imprinting in the germline would predispose to 

retinoblastoma, and none of the patients from which the BICR tumours came had 

retinoblastoma.

The preferential loss could also be due to an imprinting effect such that the retained 

allele is functionally inactive. However this seems unlikely since Rb expression appears to 

be normal in BICR 6 and 22. In addition it would mean the allele without the restriction site 

was always the imprinted copy. The data regarding RB and imprinting are confusing at the 

moment. In hereditary retinoblastoma the germline mutation is more likely to occur on the 

paternal allele, but there is no corresponding bias in sporadic tumours (Dryja et al, 1989, 

Zhu et al, 1989). Yet in sporadic osteosarcoma, where the predisposing mutation is also at 

RB, there is preferential retention of the paternal allele (Toguchida et al, 1989). One 

conclusion which can be drawn is that the RB alleles in bone differ in a way that they do 

not in retinal tissue (reviewed in Ponder, 1989). This allows that imprinting could also 

occur in epithelial cells.

It is still questionable that RB-1 inactivation is necessary for immortalisation of 

primary human keratinocytes: Jewers et al (1992) have found that mutations which 

abrogate Rb binding by HPV 16 E7 under the control of its homologous promoter in 

keratinocytes do not prevent immortalisation. On the other hand the integrity of the zinc- 

binding domain was essential for this function. It is possible that either E6/p53 binding 

plays a major role in immortalisation or that E7 affects other cellular processes.
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4.2.4 Absence of loss of heterozygosity at lq , 4p and 6q in the 
BICR cell lines

Cytogenetic data for oral SCC agrees with a lack of involvement of 4p and 6q in 

carcinogenesis in squamous epithelium. As has been described in the previous section 

abnormalities of these regions are rarely seen. The lack of LOH at lq  however is puzzling 

given the frequent breakpoints seen here (Jin et al, 1990, Patel et al, 1993). Cytogenetics 

though are relatively crude compared with LOH analysis so would not always identify 

important regions.

The demonstrated lack of LOH at these regions does not necessarily mean that they 

do not harbour tumour suppressor genes. Such genes may not be active in squamous 

epithelium and therefore their inactivation would not benefit the cells concerned in terms of 

growth potential. For example there are thought to be two regions on lq  where senescence 

genes might reside, lq25 and lq42 (J.C.Barrett, personal communication). However the 

work defining the regions was carried out in a breast cancer system and we do not know 

whether the tumours were immortal. The regions may also be tissue-specific and thus not 

applicable to SCC.

Conversely any tumour suppressor may be inactivated in ways which do not lead to 

LOH. Possible mechanisms are:

1) Loss of one active copy of the gene can confer an advantageous phenotype.

2) The second allele is inactivated by imprinting.

3) The two alleles could both be inactivated by point mutation (although this is rare

relative to non-disjunction or deletion).

4) The gene could be rearranged such that the marker region is still intact but

normal expression is prevented.

5) There could be a mutation in a cooperating gene product.
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If the above five mechanisms are important to any great extent lq, 4 and 6q must be 

studied by a different approach to learn whether any senescence genes (or other types of 

suppressor) are located there.

Finally there is a possibility that a senescence gene or tumour suppressor is part of a 

pathway of cooperating gene products. This would mean inactivation of the pathway could 

take place via inactivation of any one of the genes, which could be located throughout the 

genome and would explain low level LOH.

Due to the lack of informative microsatellites on 4q and 6p we cannot draw any 

firm conclusions for these regions. It will be necessary to analyse 4q in more detail as there 

is one case of LOH at D4S175 (4q21-25). It has been postulated however that a senescence 

gene lies on 4p and not 4q in keratinocytes (N.Fusenig, personal communication). At both 

4p and 6q there could be small interstitial deletions which have not been detected by the 

markers used, but it is unlikely that in all the informative cell lines tested it would not have 

been seen.

The background of heterozygosity demonstrated by these results in cell lines and by 

K.Ah-See in primary tumours (in press) show that the mutation pattern in head and neck 

SCC tends towards fewer deletions than in colon cancer where almost every chromosome 

arm is involved (Fearon and Vogelstein, 1990).

4.2.5 83% of informative immortal oral SCC cultures show 

LOH at 9p.

With the markers used to date a candidate tumour suppressor gene can be 

tentatively assigned to the marker D9S168 at 9p22-23 or distal to this (figure 31). The 

marker with the highest frequency of loss (4/4 immortal cell lines) is D9S199 at 9p23 

(figure 27). Loss of heterozygosity has also been found to a level of 25% in vivo in 

untreated tumours of head and neck using the marker D9S54 (K.Ah-See, personal 

communication). This lower frequency could be due to the fact that primary tumours are
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likely to be contaminated with normal material, masking any LOH. It is also possible that 

the primary tumours used were of earlier stage on average than those from which the BICR 

lines were derived.

Figure 36 relates these losses to information on other candidate suppressor genes at 

9p. For oral cancer apart from the data described above, Patel et al (1993) have found 

breakpoints at 9p 12-13 in untreated oral SCC cultures.

There has been a lot of interest recently at the interferon locus at 9p21, where there 

are deletions in lung cancer (Center et al, 1993, Olopade et al, 1993), familial melanoma 

(Fountain et al, 1992, Cannon-Albright et al, 1993, Coleman et al, 1993), malignant 

mesothelioma (Cheng et al, 1993), glioma (James et al, 1993) and acute lymphoblastic 

leukaemia (Olopade et al, 1992). All of these deletions map either at or very close to the 

interferon and MTAP genes. There are abnormalities at 9p22 in chondrosarcoma (Jagasia et 

al, 1993) and a bladder cancer gene maps between 9pl2-13 and 9q22 (Cairns et al, 1993, 

Miyao et al, 1993).

Of more interest to this work is the report that when a normal chromosome 9 is 

transferred into mouse A9 cells by monochromosome transfer it is not tolerated without 

deletions in 9p (R.Newbold and A.Cuthbert, personal communication). This would imply 

that 9p suppresses the lifespan of the hybrids. The deletions have been mapped to the 

region between the markers IFN A and D9S171 (see figure 36), which includes the loci 

deleted in the cancers mentioned above. Upon transfer into dermal cell lines 9p also has 

deletions which from preliminary data appear to match those in A9 cells (A.Cuthbert, 

personal communication). There are additionally more complicated rearrangements of 9p in

dermal cell lines.

The markers from IFN to D9S171 have not been used in the BICR lines so as yet 

we do not know whether the deletions found by Newbold and Cuthbert are also found in 

oral SCC cell lines and whether or not they correspond to the loss of heterozygosity 

described above. Chromosome 9 does reverse the immortal phenotype in several different 

lineages (see table 1) but this could be due to several different genes on the chromosome.
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The second region of LOH on 9p in the BICR cell lines occurs at D9S55 (9pl2). 

This LOH is separate from that at 9p23 in BICR 22 (figure 27) and may or may not be 

linked to LOH on 9q. Thus there is a possibility of two or even three genes of interest on 

9p.

We have no evidence as yet that the region(s) of LOH at 9p in the BICR lines 

describes a senescence gene. The possibilities for how this can be investigated are 

described in section 4.3.

4.2.6 High frequency of LOH at 9q in oral SCC.

With regard to 9q O.Loughran in the group has expanded the work and found that 

there may be more than one region of frequent LOH: there is heterozygosity at D9S60 

(9q33-34.1) in lines with LOH both distal and proximal to this. D9S60 maps between the 

markers GSN and ABL (Kwiatkowski et al, 1993).

9q has not been associated with senescence except when transfer of the entire 

chromosome led to a senescence phenotype in the chondrosarcoma line 105AJ (Jagasia et 

al, 1993). In this case MTAP was used as a natural selectable marker so it is not clear 

whether 9q was intact. However there is evidence for several tumour suppressor genes at 

9q, for example there are deletions and breakpoints in transitional cell carcinoma 

(Linnenbach et al, 1993), non-Hodgkin's lymphoma (Offit et al, 1993), multiple self- 

healing squamous epitheliomata (Goudie et al, 1993), and Gorlin syndrome (Gailani et al,

1992).

4.2.7 The X chromosome and chromosomes 7 and 17.

As has been described in section 1.3.3.2.A, the X chromosome may have a role in 

senescence. It is now being examined for LOH in the BICR cell lines. Breakpoints on the 

short arm of X have been noted in oral SCC along with loss of the Y chromosome (Patel et
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al, 1993), and breakpoints on the short arm of the inactive X were observed in an SCC of 

the vulva (Worsham et al, 1991). Loss of a Y chromosome was also a primary abnormality 

in an SCC of the vocal cord (Worsham et al, 1993). Initially however there seems to be no 

LOH at Xp22-pter (O.Loughran, unpublished data).

Recently chromosomes 7 and 17 have been transferred by microcell fusion into 

immortalised fibroblasts and MCF-7 breast cancer cells respectively. They caused 

symptoms of senescence (Casey et al, 1993, Ogata et al, 1993). The chromosome 17 effects 

were not due to the p53 tumour suppressor. Breakpoints at 7p and 17q have been noted 

before in SCC (Jin et al, 1990, Jin et al, 1993, Patel et al, 1993), but are not among the 

most common abnormalities. Ah-See et al (in press) have not found any LOH in either of 

these regions in primary tumours either so it is not yet clear what significance these 

chromosomes have for oral SCC.

4.2.8 What genetic abnormalities are important for the 
immortal phenotype in head and neck SCC?

From the work described in this thesis and from further investigation of the BICR 

cultures the main areas of alteration in oral SCC with significance for escape from 

senescence are the p53 tumour suppressor gene and 9p. Additionally there are consistent 

losses of heterozygosity at 3p25-pter, 3p21, and 3pl3-14 in the immortal lines 

(O.Loughran, unpublished data). Although preliminary results of microcell transfer of 3pl3 

into SCC lines do not show that hybrids senesce (R.Newbold, personal communication), 

this could mean either that 3pl3 does not contain a senescence gene or that it requires 

expression of a cooperating region to have such an effect.

We also have some evidence for inactivation of growth control by RB-1 via 

deregulation of cyclin D l, and low level loss of material at lq42.

Thus the immortal phenotype appears to be genetically complex and it is not yet 

clear how these data tie in with the complementation group theory described by Pereira-
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Smith and Smith (1988). As discussed in the introduction to section 1.3, they were able to 

assign 20 cell lines to one of four complementation groups for limited lifespan. 

Chromosome 4 microcell transfer caused senescence in several lines of different lineages 

from complementation group B and not in lines from other groups (Ning et al, 1991). From 

this and other chromosome transfer experiments (table 1) we can conclude that single 

chromosomes can in some cases reverse the immortal phenotype. However the number of 

chromosomes identified as carrying putative senescence genes now exceeds the number of 

complementation groups, although it is likely that the effects of some of these will be tissue 

specific.

What is clear is that immortal cells can be complemented by fusion with normal 

cells (Bunn and Tarrant, 1980, Muggleton-Harris and DeSimone, 1980, Pereira-Smith and 

Smith, 1983, Berry et al, submitted for publication). It may be that cells which have 

achieved immortality have accumulated more alterations in many instances than can be 

successfully complemented by other immortal cells. This hypothesis is indirectly supported 

by work showing that some cell lines cannot be assigned to only one complementation 

group using the indicator lines of Pereira-Smith and Smith (Duncan et al, 1993, Berry et al, 

submitted for publication). Also seven different chromosomes have induced senescence 

when transferred singly into various cell lines (Yamada et al, 1990, Ning et al, 1991, Klein 

et al, 1991, Porterfield et al, 1992, Casey et al, 1993, Jagasia et al, 1993, Ogata et al,

1993), but although deletions in chromosome 3p have been consistently found in immortal 

SCC cultures (O.Loughran, unpublished data), transfer of chromosome 3 alone to cell lines 

does not cause senescence. One might also expect from the SV40 model of immortalisation 

that expression of both wild type p53 and RB-1 in immortal cultures would induce 

senescence via mortality mechanism 1. In fact antisense p53 and RB oligomers cooperate 

to extend lifespan in human diploid fibroblasts (Hara et al, 1991). Finally the work 

described in this thesis shows many changes have occurred in immortal variants in head

and neck tumours.
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It is tempting to speculate as to the functions of senescence genes in the light of 

recent developments in the p53 and pRb growth regulatory pathways and in control of 

telomere length. The WAF1 protein provides a molecular link between p53 and cell cycle 

arrest since its transcription is induced by wild type p53 (El-Deiry et al, 1993) and it binds 

cyclin-dependent kinases and inhibits their action including phosphorylation of pRb-1 

(Harper et al, 1993, Xiong et al, 1993). p l6  and p20 are also proteins which are inhibitory 

to cdk action (Gu et al, 1993, Serrano et al, 1993). It could be that these proteins which act 

to inhibit cell cycle progression are senescence genes acting in concert, given the evidence 

for a role for p53 and pRb-1 in senescence.

Several yeast mutants have been dicovered which affect telomere length; the genes 

involved are RAP1 (Conrad et al, 1990), RIF1 (Hardy et al, 1992), EST1 (Lundblad and 

Szostak, 1989), TEL1 & TEL2 (Lustig and Petes, 1986), and PIF1 (Schulz and Zakian,

1994). Particularly since the EST1 mutation leads to a senescence phenotype, and given 

that telomere shortening stops at crisis in immortal variants (Counter et al, 1992) some of 

these genes may also turn out to be senescence genes which are inactivated in immortal 

cells.

4.3 Future prospects

A collaboration is underway to transfer normal chromosome 9 back into the BICR 

lines with LOH at 9p to test for the function of this gene so that senescence can be 

distinguished from suppression of tumorigenicity. It will be important to separate the 

actions of 9p and 9q. The markers used to define the 9p deletions in the A9 and dermal cell 

hybrids will also be examined in the BICR lines in order to define the region of LOH at 

9p23 more closely. The region at the IFN A locus may or may not be lost in oral SCC, and

could be separate or linked to LOH at 9p23.

Another method of distinguishing senescence and more general suppression would

be to use 9p microsatellite markers to find if senescent cultures of both carcinoma and
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metastatic oral SCCs contain this deletion or not. It will be of interest whether BICR 7, a 

culture which enters crisis, has 9p deletions as well. If it has the chromosome 9p gene may 

be grouped with p53 and RB-1 as being involved in mortality mechanism 1. In this case it 

could have a function similar to the cell cycle control proteins described in the previous 

section. If BICR 7 has not lost 9p this gene could be the first of the mortality mechanism 2 

genes to be described apart from th example discussed in section 1.3.3.2.A on chromosome 

6q.

The BICR lines can then be used as a target for functional assay of transferred 

chromosomes or fragments of chromosomes, whether they carry specifically senescence or 

other tumour suppressor genes. This could also be achieved now that the entire human 

genome exists in yeast artificial chromosomes (YACs) and there are techniques enabling 

the fusion of YACs with selectable markers and their transfer into mammalian cells (Traver 

et al, 1989, Markie et al, 1993). Hence it may be possible to clone any suppressors which 

are defined by this process.

Finally we should analyse chromosomes 7 and the rest of 17 for LOH in the system.

This work will go some way towards defining whether or not there are genes whose 

products cooperate to bring about senescence in mammalian cells, and will enhance our 

understanding as to whether their loss of function contributes to tumour development in

vivo.
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