
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 

 
Moreton, Fiona Catherine (2016) The pathophysiology of CADASIL: 
studies in a Scottish cohort. PhD thesis. 
 
 
 
http://theses.gla.ac.uk/7533/  
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or study 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any format 
or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given 
 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/7533/


 

 
 
 
 
 
 
 
 

The Pathophysiology of CADASIL: 
Studies in a Scottish cohort 

  
 
 
 
 
 

Fiona Catherine Moreton 
BSc (Hons), MBChB (Hons), MRCP (UK) 

 
 

 
 
 

Submitted in fulfilment of requirements for the Degree of Doctor of Philosophy 
Institute of Neuroscience and Psychology 

University of Glasgow 
January, 2016 

  



2 

 

 

 

 

 

 

 

“For what purpose humanity is there should not even concern us: why you are 

there, that you should ask yourself: and if you have no ready answer, then set 

for yourself goals, high and noble goals, and perish in attempting the great and 

the impossible.”  

Friedrich Nietzsche 
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Abstract 

Since identification that mutations in NOTCH3 are responsible for cerebral 

autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy (CADASIL) in the early 1990s, there has been extensive 

characterisation of the clinical and radiological features of the disease. However 

therapeutic interventions remain elusive, partly due to a limited understanding 

of the vascular pathophysiology and how it leads to the development of strokes, 

cognitive decline and disability. The apparent rarity and heterogeneous natural 

history of CADASIL potentially make conducting any longitudinal or therapeutic 

trials difficult. The role of disease biomarkers is therefore of some interest.  

This thesis focuses on vascular function in CADASIL and how it may relate to 

clinical and radiological markers of disease. Establishing the prevalence of 

CADASIL in the West of Scotland was important to assess the impact of the 

disease, and how feasible a trial would be. A mutation prevalence of 10.7 per 

100,000 was demonstrated, suggesting significant under diagnosis of the disease 

across much of Scotland.  

Cerebral hypoperfusion is thought to be important in CADASIL, and it has been 

shown that vascular abnormalities precede the development of brain pathology 

in mouse models. Investigation of vascular function in patients, both in the brain 

and systemically, requires less invasive measures. Arterial spin labelling 

magnetic resonance imaging (MRI) and transcranial Doppler ultrasound (TCD) can 

both be used to obtain non-invasive and quantifiable indices of vascular 

function. Monitoring patients with MRI whilst they receive different 

concentrations of inspired oxygen and carbon dioxide can provide information on 

brain function, and I reviewed the practicalities of this technique in order to 

guide the design of the studies in this thesis.  

22 CADASIL patients were recruited to a longitudinal study. Testing included 

peripheral vascular assessment, assessment of disability, neurological 

dysfunction, mood and cognition. A CO2 reactivity challenge during both TCD and 

arterial spin labelling MRI, and detailed MRI sequences were obtained.   
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I was able to demonstrate that vasoreactivity was associated with the number of 

lacunes and brain atrophy, as were carotid intima-media thickness, vessel 

stiffness, and age. Patients with greater disability, higher depressive symptoms 

and poorer processing speed showed a tendency to worse cerebral vasoreactivity 

but numbers were small. This observation suggests vasoreactivity may have 

potential as a therapeutic target, or a biomarker.  

I then wished to establish if arterial spin labelling MRI was useful for assessing 

change in cerebral blood flow in CADASIL patients. Cortical grey matter showed 

the highest blood flow, mean (SD), 55 (10) ml/100g/min and blood flow was 

significantly lower within hyperintensities (19 (4) ml/100g/min; p <0.001). Over 

one year, blood flow in both grey matter (mean -7 (10) %; p 0.028) and deep 

white matter (-8 (13) %; 0.036) declined significantly. Cerebrovascular reactivity 

did not change over one year.  

I then investigated whether baseline vascular markers were able to predict 

change in radiological or neuropsychological measures of disease. Changes in 

brain volume, lacunes, microbleeds and normalised subcortical hyperintensity 

volume (increase of 0.8%) were shown over one year. Baseline vascular 

parameters were not able to predict these changes, or those in 

neuropsychological testing.  

NOTCH3 is found throughout the body and a systemic vasculopathy has been 

seen particularly affecting resistance vessels. Gluteal biopsies were obtained 

from 20 CADASIL patients, and ex vivo myography investigated the response to 

vasoactive agents. Evidence of impairment in both vasodilation and 

vasoconstriction was shown. The addition of antioxidants improved endothelium-

dependent relaxation, indicating a role for oxidative stress in CADASIL 

pathology. Myography measures were not related to in vivo measures in the sub-

group of patients who had taken part in both studies.  

The small vessels affected in CADASIL are unable to be imaged by conventional 

MR imaging so I aimed to establish which vessels might be responsible for 

lacunes with use of a microangiographic map overlaid onto brain images 

registered to a standard brain template. This showed most lacunes are small and 

associated with tertiary arterioles.  
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On the basis of this thesis, it is concluded that vascular dysfunction plays an 

important role in the pathophysiology of CADASIL, and further assessment of 

vascular measures in longitudinal studies is needed. Arterial spin labelling MRI 

should be used as it is a reliable, non-invasive modality that can measure change 

over one year. Furthermore conventional cardiovascular risk factor prevention 

should be undertaken in CADASIL patients to delay the deleterious effects of the 

disease.  
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Chapter 1 - Introduction 

1.1 Introduction 

Cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy, known by the acronym CADASIL, is a rare inherited small 

vessel vasculopathy (Joutel et al., 1996). It is caused by mutations in the 

NOTCH3 gene, and inherited in an autosomal dominant pattern. The mutation is 

ubiquitous in small vessel smooth muscle cells throughout the body. 

Symptomatology however is confined to the brain, with stroke, executive 

cognitive impairment, depression and apathy occurring, usually manifesting in 

young to mid-adulthood. The condition can have devastating effects, not only on 

the affected individual, but on their extended family, many of whom will also be 

at risk of developing the disease. This chapter will commence with a brief 

review of the clinical characteristics, and then focus on vascular pathophysiology 

and imaging methods for examining disease status in vivo. 

1.2 Clinical characteristics of CADASIL patients 

New diseases are identified by identifying a pattern of repeated clinical or 

pathological features. Otto Binswanger, a prominent German neuropathologist, 

described an insidious clinical condition characterised by weakness, disinhibition 

and cognitive impairment, which correlated with brain atrophy and blood vessel 

degeneration. “Binswanger’s disease” was proposed to be due to chronic 

hypertension resulting in small vessel disease and stroke (Caplan, 1995). The 

1955 description of a similar disease in two sisters, but in the absence of 

hypertension, is thought to represent the earliest description of CADASIL in the 

medical literature (Van Bogaert, 1955). Several other families with an apparent 

autosomal dominant inherited condition resulting in stroke, neuropsychiatric 

disease and headache, in the absence of conventional cardiovascular risk 

factors, were identified across Europe over the next 40 years, and classified 

under a variety of eponyms (Sourander and Walinder, 1977, Sonninen and 

Savontaus, 1987, Salvi et al., 1992). In 1991, a large French pedigree was 

described where members experiencing stroke-like episodes demonstrated 

neuroimaging evidence of small infarcts and leukoencephalopathy (Tournier-
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Lasserve et al., 1991). Shortly afterwards the affected gene was identified as 

NOTCH3, found on chromosome 19 (Joutel et al., 1996). The authors proposed 

the acronym CADASIL, to describe the genetic, radiological and histological 

features.  

Whilst CADASIL has only been recently described, it has subsequently been 

proposed to be the cause of illness in both the philosopher Friedrich Nietzsche 

(1844 – 1900)(Hemelsoet et al., 2008), and the art critic and writer John Ruskin 

(1819 – 1900)(Kempster and Alty, 2008). Both wrote poetically about their 

thoughts and their illness, and their medical records were preserved.  

Nietzsche, a philosopher with significant influence on 20th century politics, 

suffered severe headaches throughout his life time diagnosed as migraine, along 

with depression and periods of hypomania. An acute cognitive and psychiatric 

collapse prompted his admission under the care of Otto Binswanger in 1889.  

Diagnosed with tertiary syphilis, despite an absence of supportive physical 

symptoms, and evidence that Nietzsche was celibate (Sax, 2003), he lived 

another 11 years developing subcortical dementia (Butler, 2013). Several strokes 

prior to his death from pneumonia in 1900 left him bedbound and mute. His 

father, suffered headaches, depression, seizures and dementia, dying aged 36, 

and his paternal grandfather was also reported to have had similar symptoms 

(Hemelsoet et al., 2008). Butler et al, argued that Nietzsche’s writing was 

influenced by his disease: his concise and distinctive style was necessitated by 

periods of inactivity brought about by severe migraines and depression (Butler, 

2013).  

John Ruskin was a prominent and well respected writer of the 19th century, 

whose writing was more verbose and evocative: 

“Just before dinner, zigzag frameworks of iridescent light fluttered by 
in my eyes, and I could no longer read even large print” John Ruskin 

Accompanying his migraines was a “relapsing encephalopathy” characterised by 

delusional thinking, hallucinations, agitation and confusion, associated with 

vomiting and pyrexia. Eventually his mental status declined, and he lost the 

ability to write. A history of mood disturbance and headache were also described 

in his father (Kempster and Alty, 2008).  
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Such cases, whilst remaining genetically unproven, give an idea of the symptoms 

that can be seen in CADASIL.  

1.2.1 Subcortical ischaemic events 

Stroke and transient ischaemic attacks (TIA) are a common manifestation of 

CADASIL, with a wide distribution in age of onset, but classically in early middle 

age (mean 46 years)(Chabriat et al., 2009). It may be the presenting feature. 

Recurrent ischaemic events occur in the absence of, or out of proportion to, 

conventional vascular risk factors, and may lead to progressive disability with 

impaired gait, pseudobulbar palsy and urinary incontinence (Opherk et al., 

2004). Strokes are proposed to be due to small vessel disease affecting the white 

matter resulting in subcortical infarcts, although large territorial infarcts, and 

cortical microinfarcts have also been reported (Rubio et al., 1997). Intracerebral 

haemorrhage has been described (MacLean et al., 2005, Pradotto et al., 2012), 

associated with hypertension (Choi et al., 2006) and anticoagulant use 

(Werbrouck and De Bleecker, 2006).  

1.2.2 Migraine 

Migraine prevalence in CADASIL is significantly higher than in the general 

population at around 50% (Guey et al., 2015). This may vary according to the 

prevalence of migraine in the general population from which the patients 

originate as migraine has been found to be less common in Asian patients (Wang 

et al., 2011). The majority of patients with migraine have an associated aura, 

which is often atypical, characterised by prolonged or severe neurological 

disturbance (Liem et al., 2010). Migraine is often the first symptom a patient 

experiences. They may decrease in frequency or disappear entirely after the 

first ischaemic event (Dichgans et al., 1998).  

A rare clinical event, termed “CADASIL coma” has been described in patients 

with a history of migraine (Schon et al., 2003). Patients experience a typical 

migraine, but then become confused with fever, behavioural change, 

hallucinations and seizures. Encephalitis may be suspected, but complete 

recovery is the norm, and stereotyped recurrences can occur (Schon et al., 

2003).  
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1.2.3 Psychiatric disturbance 

At least a quarter of CADASIL patients experience psychiatric or mood 

disturbance, depression being the most frequent complaint (Valenti et al., 

2008). Depression is common in patients with stroke and theories for its 

aetiology include ischaemic interruption of frontal pathways, disruption of 

serotonin metabolism, or functional limitations and fear about the future 

(Spalletta et al., 2006). Depression in CADASIL can affect a patient’s quality of 

life, and can contribute to apparent cognitive impairment (Peters et al., 2010). 

Adjustment disorders, substance dependence and suicide have all been 

reported, along with bipolar disorder (Valenti et al., 2011).  

Psychotic presentations suggestive of schizophrenia have been described in 

CADASIL, including auditory hallucinations, grandiose delusions and catatonia 

(Harris and Christopher, 2001, Lagas and Juvonen, 2001). Given the prevalence 

of schizophrenia is around 0.5 – 1% (McGrath et al., 2008), co-existent diagnosis 

of the two diseases, rather than CADASIL being causative must be considered. 

Acute psychosis has been described, including post-partum (Pantoni et al., 

2005), highlighting the manifest possible neuropsychiatric presentations.  

Apathy, a reduction in goal-driven behaviour, is reported to be a major problem 

in CADASIL, present in 41% of patients (Reyes et al., 2009). Associated with older 

age, lack of education, and disability, it is often concurrent with depression.  

1.2.4 Cognitive impairment 

Cognitive impairment in CADASIL has been described as mainly affecting 

executive function, and is similar to the pattern seen in sporadic small vessel 

disease (Amberla et al., 2004, Buffon et al., 2006, Charlton et al., 2006). 

Progressive difficulties with decision-making, concentration, planning or 

judgement are seen. Patients may display inappropriate behaviour, such as 

aggression or personality change.  

Deficits in working memory and processing speed may be found in asymptomatic 

patients (Amberla et al., 2004). Post-stroke, patients have been shown to 

develop further deficits in verbal fluency, error monitoring and visuospatial 
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skills, possibly caused by subcortical damage occurring at critical sites (Amberla 

et al., 2004). Deficits accrue slowly over time, and demented patients show 

impairments across multiple cognitive domains, but in contrast to Alzheimer’s 

disease, episodic memory is well-preserved. One study suggested over 60% of 

patients over 60 years were demented, due to a progression of global cerebral 

damage, including atrophy (see Figure 1-1)(Buffon et al., 2006). Such figures 

need to be seen in the context of increasing diagnosis of CADASIL, which may 

result in the identification of milder disease phenotypes.  

Many of the diagnostic criteria and standardised neuropsychological tests used 

for evaluation of cognition were developed for the detection of memory 

impairment characteristic of Alzheimer’s disease, and may have less sensitivity 

for conditions like CADASIL. Testing for vascular cognitive impairment both 

clinically, and in trials, should therefore focus on tests of mental speed and 

executive function, in order to detect subtle early change, which may not be 

detectable in more global measurements of cognition such as the mini-mental 

state examination (Dichgans, 2009, Hachinski et al., 2006).  

 

Figure 1-1 Theory of cognitive impairment in CADASIL 

 

1.2.5 Other clinical manifestations 

Seizures occur in approximately 10% of CADASIL patients probably as a 

consequence of subcortical damage (Dichgans et al., 1998). Status epilepticus 

has been described as the presenting feature of CADASIL in an 80 year old 
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female (Haddad et al., 2015). Auditory problems like sudden onset sensorineural 

hearing loss and tinnitus can occur, which may be related to pathology within 

the labyrinth artery (Phillips et al., 2005) or brainstem ischaemia.  

Given that NOTCH3 is found throughout the body, it is surprising that clinical 

manifestations remain limited to the brain. Whilst case reports of systemic 

abnormalities occur, there has been no consistent evidence of clinically relevant 

end-organ damage, despite histological abnormalities. Retinal studies have 

demonstrated pathological abnormalities such as narrowed vessels and loss of 

vascular smooth muscle cells (Haritoglou et al., 2004), along with reduced 

retinal blood flow (Rufa, 2004). These changes may result in direct damage to 

the retinal nerve cells (Rufa et al., 2011), but functional complications of this 

have rarely been reported.  

1.2.6 Natural history and phenotypic variability in CADASIL 

Migraine is often the first presenting feature at around 30 years of age, with 

ischaemic stroke occurring in the 5th-6th decades, accompanied by psychiatric 

disturbance (see Figure 1-2). Cognitive deterioration follows these changes, and 

progresses over time (Chabriat et al., 2009).  
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Figure 1-2 Natural history of the main clinical manifestations of CADASIL 
The exact age at the earliest onset of first MRI abnormalities is uncertain (dotted line). The 
frequency of T2-white matter abnormalities increases progressively. Reprinted from Lancet 
Neurology; 8(7), Chabriat et al, CADASIL, 643-653, copyright (2009), with permission from 
Elsevier. 

Despite well-described clinical features, there is a wide variation in severity and 

age of onset of clinical symptoms, even within families. Thus the natural history 

in CADASIL is unpredictable and longitudinal studies have demonstrated that 

patients can remain stable or even improve over significant periods of time 

(Opherk et al., 2004). As patients are so inherently variable, and definitive 

clinical events, such as stroke, are infrequent, demonstrating the effectiveness 

of any potential treatment would be difficult. Peters and colleagues calculated 

an average incidence rate of stroke of 10.4 per 100 person years in CADASIL 

patients. Power calculations demonstrated that for this endpoint and a minimum 

treatment effect of 20%, 2646 patients would need to be recruited, a 

prohibitively large number for a relatively uncommon disorder (Peters et al., 

2004a). 

1.2.7 Factors influencing disease progression in CADASIL  

The natural history might be modified by conventional cardiovascular risk 

factors. Current smoking has been associated with an increased risk, and earlier 

onset of ischaemic events (Singhal et al., 2004). Hypertension may increase 
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stroke risk (Adib-Samii et al., 2010). Gender is relevant: migraine with aura is 

more frequent in women, and stroke more frequent in men before the age of 51 

(as per the general population), but subjects become more similar after 

menopausal age (Gunda et al., 2011). Ovarian hormones may influence the 

natural history of CADASIL, although there is insufficient evidence for their 

therapeutic use (Gunda et al., 2011). Apolipoprotein E (APOE) genotype, a major 

risk factor for Alzheimer’s disease and haemorrhages in amyloid, was thought 

not to be associated with structural MRI lesions in CADASIL (van den Boom et al., 

2006). However a recent study of 448 CADASIL patients has suggested APOE ε2 

was associated with a higher volume of white matter disease (Gesierich et al., 

2016).  

Genetic factors have also been proposed to influence disease phenotype, but in 

a prospectively recruited study of 127 subjects from 65 families, no association 

between site of mutation and stroke, dementia, migraine or MRI lesion load was 

shown (Singhal et al., 2004). The study was hampered by only recruiting small 

numbers from each family. Genome-wide association studies have suggested 

multiple genes may have small effects on white matter disease burden (Opherk 

et al., 2014).  

1.2.8 Health burden of CADASIL 

Given the significant clinical manifestations secondary to CADASIL, patients can 

become severely disabled and may represent a significant health and social care 

burden. It is thought that CADASIL is rare (Razvi et al., 2005b), but as more is 

known about the disease, it is likely a wider spectrum of cases will be identified 

and the prevalence will increase. Dementia and disability are common, and 

indeed inevitable in CADASIL if a patient lives long enough. A better appreciation 

of the prevalence of CADASIL will be important in directing healthcare 

resources, and in planning the design of any therapeutic trials. The rare nature 

of the disease is however likely to necessitate any clinical trials being run 

internationally over multiple sites, and consortiums have already been 

developed to facilitate this (Gesierich et al., 2016) 

 



Chapter 1  28 

1.2.9 The need for biomarkers in CADASIL 

A biological marker, or biomarker, is defined as: 

A characteristic that is objectively measured and evaluated as an 
indicator of normal biological processes, pathogenic processes, or 
pharmacologic response to a therapeutic intervention. 

     (Biomarkers Definitions Working Group, 2001) 

The variable and infrequent nature of clinical endpoints such as stroke or death 

in CADASIL, make studies of factors which influence disease progression, and are 

thus potentially amenable to intervention more difficult. Therefore biomarkers 

which may represent pathogenic processes may be helpful in furthering 

understanding of this disease.  

1.3 The molecular basis of CADASIL 

1.3.1 The NOTCH3 receptor 

CADASIL is caused by mutations of the NOTCH3 gene on chromosome 19p13, 

which encodes a single pass heterodimeric transmembrane receptor, with a large 

extracellular domain comprised of 34 epidermal growth-factor (EGF) like repeats 

(Figure 1-3) (Joutel et al., 1996). NOTCH3 is a member of the highly conserved 

Notch signalling family, first identified in Drosophila melanogaster, where 

haploinsufficiency of Notch resulted in notched wing margins (Mohr, 1919). The 

Notch signalling pathway is essential for cell fate decision-making in the 

metazoan embryo via local cell-to-cell interactions (Artavanis-Tsakonas et al., 

1999). 

 

Figure 1-3 The NOTCH3 receptor 
The extracellular domain is comprised of 34 epidermal growth factors (EGF) like repeats and 
3 Notch-LIN12 repeats (LNR). The intracellular domain consists of a transmembrane zone 
(TM), 6 ankyrin repeats (ANK), and a PEST sequence (proline, glutamate, serine, threonine) 
degradation domain, which has a role in NOTCH receptor turnover (Rogers et al., 1986).  
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Produced by the endoplasmic reticulum (ER), the NOTCH3 receptor undergoes 

proteolysis in the Golgi apparatus, and is then expressed on the cell membrane. 

Here it interacts with transmembrane ligands such as Delta or Jagged, via its 

ligand-binding domain (EGF like repeats 10 and 11 in NOTCH3). This results in 

conformational change and cleavage of the receptor, with shedding of the 

extracellular domain (ECD), which subsequently undergoes transendocytosis 

(Parks et al., 2000). The remaining segment is a substrate for further proteolysis 

resulting in release of the NOTCH3 intracellular domain and its translocation to 

the nucleus (De Strooper et al., 1999). Interaction with the DNA transcription 

factor RBPJ-κ, results in activation of primary gene targets including the hairy 

and enhancer of split related (HESR) genes (Jarriault et al., 1995). Despite a 

relatively simple core pathway, Notch receptors have enormous context specific 

versatility. The pleiotropic effects of signalling is likely introduced through 

interactions with ancillary proteins, other signalling pathways and atypical 

ligands (Hofmann and Iruela-Arispe, 2007).  

1.3.2 NOTCH3 mutations causing CADASIL 

The secondary structure of each EGF-like repeat in the NOTCH3 extracellular 

domain consists of a 2-stranded β-sheet stabilised by 3 disulphide bonds between 

6 cysteine residues (Campbell and Bork, 1993). Mutations which result in an 

uneven number of cysteine residues in one of the EGF-like repeats cause 

CADASIL. Initially these were all thought to be missense mutations (Joutel et al., 

1996), but splice-site (Joutel et al., 2000b), deletions (Dotti et al., 2004) and 

insertions (Mazzei et al., 2008) have subsequently also been identified (Federico 

et al., 2005). Alterations in disulphide bond formation is thought to result in 

aberrant protein folding and distorted secondary structures (Figure 1-4) 

(Dichgans et al., 2000).  
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Figure 1-4 3D Model of NOTCH3 first EGF-like repeat domain  
(A) A 2-stranded beta-sheet is followed by a double hairpin. The 6 cysteines form 3 
disulphide bonds (yellow), which stabilise the beta-sheet and hairpin. (B) A mutated side 
chain at position 49 which represents the missense mutation Cyrs49Tyr. The stabilising 
disulphide bond is lost leading to loss of secondary protein structure. Modified with 
permission from Macmillan Publishers Ltd: [European Journal of Human Genetics, 
Dichgans et al, Small in-frame deletions and missense mutations in CADASIL: 3D models 
predict misfolding of Notch3 EGF-like repeat domains. European Journal of Human 
Genetics (2000); 8: 280-285.] 

Mutations in NOTCH3, which do not involve cysteine residues, have been 

identified in families with similar clinical phenotypes, brain imaging and skin 

biopsy changes to CADASIL, which suggests the spectrum of mutations 

responsible for CADASIL may well be extended (Wollenweber et al., 2015).  

Specific genotype-phenotype patterns have been proposed in CADASIL, 

particularly in those mutations which involve the ligand-binding domain. The 

Cys455Arg mutation in EGF-like repeat 11, was proposed to result in an earlier 

onset of stroke in patients (Arboleda-Velasquez et al., 2002). It is likely 

however, that due to the low prevalence of CADASIL and huge number of 

mutations, international databases of patients will be the only way to identify 

reliable genotype-phenotype correlations.  
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1.4 The vascular basis of CADASIL and disease 

biomarkers 

1.4.1 The role of NOTCH3 in vascular development 

The Notch signalling pathway has a key role in the development of the 

embryonic cardiovascular system, where endothelial cell precursors are 

remodelled into a complex system of arteries, veins and capillaries. As reviewed 

by Hofmann and Iruela-Arispe, loss of function mutations of key components of 

the Notch signalling pathway such as Notch1, Notch4 , DLL4, JAG1 and 

Hey1/Hey2 genes results in embryonic lethality due to failure of vascular 

remodelling (Hofmann and Iruela-Arispe, 2007).  

Notch3 null mice are viable and fertile suggesting that Notch3 is not essential for 

the development of the cardiovascular system in utero (Domenga et al., 2004). 

The blood vessels of new-born Notch3 null mice are indistinguishable from 

wildtype littermates; both are immature, with a loose network of mural cells. If 

Notch3 has a role in the development of the embryonic vascular system, it 

appears to have functional overlap with other Notch receptors.  

Postnatally the vascular system continues to develop based on genetic 

preprograming, but also in response to environmental cues including flow and 

shear stress. The arterial vascular smooth muscle cells (VSMCs) of Notch3 null 

mice at postnatal day 28, display abnormal orientation and morphology, with a 

disorganised VSMC layer and a venous pattern of maturation (Domenga et al., 

2004). This suggests Notch3 is required to maintain the phenotypic specification 

of arterial VSMCs. Notch3 is proposed to act as part of a sensor, transducing 

changes in pressure and flow into rearrangements of the VSMC cytoskeleton, in 

order to maintain arterial phenotype whilst adapting to circulatory changes. 

Cyclic circumferential strain induced in vitro has been shown to downregulate 

Notch signalling in vitro, and hence reduce VSMC proliferation (Morrow et al., 

2005). Examination of renal arterial tone in Notch3 null mice, demonstrated a 

failure to adapt to changes in blood pressure (Boulos et al., 2011). Notch3 is 

therefore proposed to act as a signal transducer of biomechanical signals within 

vessels via regulation of VSMC differentiation, maturation and apoptosis 
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(Sweeney et al., 2004) potentially through the expression of key vascular 

components such as smooth muscle α-actin and platelet-derived growth factor 

(Noseda et al., 2006, Jin et al., 2008). There is also evidence for Notch3 being 

involved in blood vessel repair (Linder et al., 2001).  

1.4.2 Histological abnormalities in CADASIL 

The macroscopic appearance of the brain shows atrophy. White matter 

rarefaction is seen in the centrum semiovale and periventricular white matter, 

with lacunes and enlarged perivascular spaces (Ruchoux and Maurage, 1997). 

Multiple lacunes are also seen in deep grey matter and brainstem.  

Microscopic abnormalities affect the small penetrating arterioles and are 

characterised by a thickening of the arterial media with deposition of a granular, 

electron dense substance, termed granular osmiophilic material (GOM) 

(Baudrimont et al., 1993). Found within VSMC indentations (Figure 1-5), GOM is 

considered pathognomonic of CADASIL (Tikka et al., 2009) and the NOTCH3 

extracellular domain is a key component (Joutel et al., 2001, Ishiko et al., 

2006). VSMCs show significant abnormalities including swollen mitochondria, thin 

cells and multiple infoldings (Ruchoux et al., 1994). There is loss of tight 

junctions and VSMCs may be completely destroyed leaving ghost cells.  
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Figure 1-5 Electron microscopy of a dermis arteriole in a patient with CADASIL 
Multiple accumulations of granular deposits in the broadened and reduplicated basal lamina 
(arrows). X 15800. Reproduced with permission from Springer Science and Business Media, 
J Neurol 246 (1999); 526-532, Mayer et al, Figure 4. Muscle and skin biopsies are a sensitive 
diagnostic tool in the diagnosis of CADASIL.  

Endothelial cells display subtle abnormalities which may be secondary to VSMC 

dysfunction (Ruchoux and Maurage, 1998). Morphometric vessel analysis has 

been conflicting: Miao and colleagues suggested penetrating vessels have an 

increased wall thickness and narrowed lumen, which may lead to impaired 

cerebral blood flow (Miao et al., 2004), whereas Brulin and colleagues found 

vessel walls were not thickened but rather VSMC were destroyed and replaced by 

extracellular material (Brulin et al., 2002). This may lead to “earthen pipe” 

status where the vessel is devoid of autoregulation (Okeda et al., 2002).  

Cortical grey matter was initially thought to be unaffected in CADASIL but vessel 

wall changes, GOM and cortical microinfarcts have now been demonstrated 

(Miao et al., 2004). Neuronal apoptosis, associated with subcortical white matter 

disease, has been demonstrated in cortical layers 3 and 5, subsequent to 

retrograde neuronal degeneration (Viswanathan et al., 2006a).  
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1.4.3 Putative mechanisms of vascular dysfunction 

Typically genetic mutations which affect receptors result in haploinsufficiency or 

neomorphic gene function, and both have been proposed as the mechanism of 

CADASIL. The theories about the pathogenesis of CADASIL are outlined below.  

1.4.3.1 Theory 1: Hypomorphic function 

Mutation of a receptor may lead to loss of function of that receptor, and 

subsequent reduction in downstream signalling, called hypomorphic function. 

CADASIL mutant mice do not however, display the same vascular phenotype as 

mutant mice lacking Notch3. The differences are shown in Table 1-1.  

Table 1-1 Summary of differences between Notch3 knock-out and Notch3 mutant CADASIL 
mouse models 

 Notch3 null model-* Notch mutant models^ 

Embryonic 
development & viability 

Normal Normal 

Fertility Normal Normal 

Histology Thin & disorganised VSMC Age dependent GOM 
deposits & Notch3 
aggregation 

Reduced capillary density 

Blood pressure Normal Normal 

Resting CBF Normal Low 

Vasoreactivity Impaired 
vasoconstriction 

Impaired vasodilatation 

Parenchymal pathology Nil In some models 

*(Krebs et al., 2003, Domenga et al., 2004); ^(Ayata, 2010, Joutel et al., 2010) 

Young CADASIL mutant mice are able to rescue a Notch3 null mouse phenotype, 

arguing signalling and Notch3 function is preserved in mutant receptors (Monet 

et al., 2007). However, expression of another CADASIL mutant (Arg1031Cys) in 

older Notch3 null mice, failed to rescue the stroke susceptibility phenotype, 

which may suggest this mutation displays a weak hypomorphic nature more 

evident with age (Arboleda-Velasquez et al., 2011). In vitro studies have 
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demonstrated that most mutations, show preserved ligand binding and retain 

their ability to activate normal signalling (Joutel et al., 2004, Low et al., 2007, 

Haritunians et al., 2002). The insidious onset of CADASIL also suggests that 

absence of normal signalling is unlikely to be responsible for the clinical picture.  

However, mutations within the ligand-binding domain do result in reduced ligand 

binding and decreased downstream gene transcription (Joutel et al., 2004, 

Arboleda-Velasquez et al., 2011). They are unable to rescue a Notch3 null 

phenotype (Monet-Lepretre et al., 2009). GOM deposits still form with these 

mutations, suggesting ligand binding is not a prerequisite for its formation. Some 

authors have proposed that mutations within the ligand-binding domain are 

associated with different clinical phenotypes, but this is not consistently 

reported (Monet-Lepretre et al., 2009, Arboleda-Velasquez et al., 2002).  

More recently families have been described with nonsense NOTCH3 mutations of 

exon 3, resulting in a truncated, non-functional protein (Rutten et al., 2013, 

Moccia et al., 2015). Whilst clinical and radiological features were similar to 

those seen in CADASIL and VSMC were abnormal, GOM was not detected, and the 

gene did not appear to be fully penetrant. Therefore whilst loss of NOTCH3 

function is likely to have vascular significance, and may represent a different 

inherited cerebral small vessel disease, it is unlikely to be the driving force of 

CADASIL (Joutel, 2013).  

1.4.3.2 Theory 2: Gain of function 

Leu1515Pro is a gain of function mutation of exon 25, out with the EGFR, which 

results in over activation of the NOTCH3 receptor, and produces similar clinical 

effects to CADASIL (Fouillade et al., 2008). However it does not cause the 

accumulation of GOM, and therefore represents a novel small vessel disease 

rather than CADASIL.  

1.4.3.3 Theory 3: Disordered receptor trafficking and recycling 

The abnormal protein structure caused by mutations (Dichgans et al., 2000) is 

proposed to result in abnormal processing and trafficking of the receptor within 

the cell.  
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Once formed within the ER, NOTCH3 undergoes post-translational modifications, 

which modulates NOTCH ligand preference. In vitro models of several CADASIL 

mutations demonstrated a reduction in FRINGE glycosylation of the receptor, 

thought to affect receptor maturation and cleavage (Arboleda-Velasquez et al., 

2005). Impaired S1 cleavage of Arg142Cys demonstrated in a mouse model, 

further suggested problems with receptor maturation, although experimental 

methods were criticised (Joutel et al., 2004, Karlstrom et al., 2002).  

A human in vitro model of NOTCH3Cys542Tyr suggested the mutation resulted in 

improper cell surface presentation and impaired signalling (Joutel et al., 2004), 

but most evidence suggested the amount of cleaved receptor presented at the 

cell surface is preserved (Arboleda-Velasquez et al., 2005). However this may 

reflect both impaired delivery and clearance. The NOTCH3 ECD accumulates at 

the plasma membrane suggesting impaired clearance (Joutel et al., 2000a) and 

the ratio of uncleaved:cleaved NOTCH3 is higher than normal (Peters et al., 

2004b). Watanabe-Hosami and colleagues, found NOTCH3Cys185Arg was degraded at 

the cell surface more slowly than wild-type NOTCH3, with impaired 

transendocytosis, and proposed this as the mechanism for ECD accumulation 

(Watanabe-Hosomi et al., 2012). 

Proteome analysis of CADASIL human VSMC, demonstrated upregulation of 

proteins involved in ER quality control system and oxidative stress, suggesting 

the presence of misfolded proteins requiring recycling (Ihalainen et al., 2007). 

Saturation of protein degradation systems can result in the generation of 

reactive oxidative species and ER stress. Mitochondrial abnormalities have been 

described which may be due to the effect of oxidative free radicals (Annunen-

Rasila et al., 2006).  ER stress may be exacerbated by the formation of protein 

aggregates, and mutant receptors are known to show enhanced dimerization 

(Opherk et al., 2009). Expression of mutant CADASIL proteins in human 

embryonic kidney cells resulted in impaired protein degradation, and protein 

aggregation within the ER. This had a cytotoxic effect which resulted in reduced 

cellular proliferation (Takahashi et al., 2010). 

Of note, impaired trafficking and accumulation of abnormal protein in the Golgi 

is a recognised pathogenic mechanism seen in Marfan’s syndrome, where 
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mutations in the number of cysteine residues in EGF repeat of elastin, result in 

its accumulation in the ER (Aoyama et al., 1993).  

Thus a hypothetical model is of impaired post-translational modification with 

abnormal secondary folding, impaired receptor cleavage and protein 

aggregation. Aggregation of abnormal protein both within and out with the cell, 

result in undetermined cytotoxic effects. The NOTCH3 ECD may act as a seed for 

formation of multiprotein aggregates (see Figure 1-6). However development of 

GOM alone is probably insufficient to explain vascular abnormalities seen as 

changes in VSMC are seen prior to the detection of GOM in murine models 

(Ruchoux et al., 2003).    

 

Figure 1-6 The NOTCH3ECD cascade hypothesis of CADASIL 
A hypothetical model for extracellular domain of the NOTCH3 protein/granular osmiophilic 

material deposits formation. (a) Wild‐type and mutant NOTCH3 receptors are expressed at 
the plasma membrane as heterodimers surrounded by proteins of the extracellular matrix. 
(b) The unpaired cysteine residue promotes the formation of multimers of the extracellular 
domain of the NOTCH3 protein. (c) When the extracellular domain of the NOTCH3 protein 
aggregates reach a given size or concentration, proteins of the extracellular matrix, such as 
TIMP3, are recruited, that in turn (d) can favour the recruitment of additional proteins, such 
as vitronectin. Reproduced with permission from Anne Joutel, The NOTCH3ECD cascade 
hypothesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy disease, Neurology & Clinical Neuroscience (2014); 3(1): 1-6, with 
permission from John Wiley and Sons 
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1.4.3.4 Theory 4: Interactions with other pathways 

NOTCH3 does not work in isolation and has been shown to interact with other 

key pathways involved in the vascular system. NOTCH3 signalling influences 

expression of platelet-derived growth factor gene, and feedback between the 

two pathways may regulate VSMC expression (Jin et al., 2008). Interactions of 

the NOTCH3 with other signalling pathways remain to be explored.  

1.4.3.5 Theory 5 – Protein elimination failure angiopathy 

The brain does not have lymphatic vessels. Instead perivascular pathways 

surrounding cerebral capillaries and arterioles exist, which allow drainage of 

solutes and interstitial fluid out of the brain, including unwanted or toxic 

proteins (Iadecola, 2013). Failure of these drainage pathways to eliminate 

protein may be a feature of many neurodegenerative diseases including 

Alzheimer’s disease, cerebral amyloid angiopathy and prion diseases. These are 

termed protein elimination failure angiopathies (PEFA) (Carare et al., 2013). 

The mechanisms of failed elimination include abnormalities in the capillary 

basement membrane, resulting in trapping of proteins. The movement of fluid 

along the drainage pathways is thought to require normal blood flow pulsating 

through the vessels, and reduced blood flow, stiffened blood vessels or abnormal 

vascular smooth muscle cells may result in reduced motive force for drainage.  

In CADASIL, GOM accumulates around capillaries and small arterioles, and is 

likely to create a physical barrier to drainage of solutes. Degenerating VSMCs 

will also lead to reduced force for drainage. The congestion of drainage 

pathways is likely reflected in the enlarged perivascular spaces seen in many 

CADASIL patients. These changes may also result in the disruption of the blood-

brain barrier, and leakage of toxins or inflammatory cells.  

It is likely that rather one of these theories being the explanation, a combination 

of different mechanisms leads to the pathophysiology, and the contribution of 

each may affect how the disease is expressed in individual patients. 
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1.4.4 The effect of CADASIL on the vascular system 

1.4.4.1 Mouse models 

A transgenic mouse model of CADASIL arteriopathy was created to express low 

levels of the mutant human NOTCH3, Arg90Cys. Its expression was driven by a 

SM22α promoter. Histological abnormalities were seen in this model. Tail 

arteries were particularly affected, showing age-dependent morphological 

abnormalities of VSMC and endothelial cells from 10 – 12 months. At around 14-

16 months GOM and NOTCH3 deposits were detectable, suggesting these are not 

required for cell damage. Cerebral and systemic vessels also showed GOM and 

NOTCH3 deposits, but there was no evidence of parenchymal damage (Ruchoux 

et al., 2003). Tail vessels exhibited an increase in pressure-induced contraction 

and a decrease in flow-induced dilation and these changes were present before 

any evidence of histological abnormalities. In contrast, changes to chemical 

stimuli were not affected, suggesting they function through different pathways 

(Dubroca et al., 2005).  

A more recent mouse model expressed high levels of Arg169Cys rat Notch3 in 

arteries and capillaries, showed vascular deposits from an early age. From 

around 18 months old, mice developed extensive white matter disease, although 

no motor deficits were seen. Resting cerebral blood flow was reduced by 16% in 

white matter and 13% in grey matter. There was rarefaction of capillaries but 

the blood brain barrier remained intact and there were no overt changes in 

arterial structure. From age 5 – 6 months there was attenuated pressure-induced 

contraction with preserved responses to sodium nitroprusside and 

phenylephrine.  This implied an impaired vasodilator reserve, which preceded 

the development of overt vasculopathy or parenchymal lesions (Joutel et al., 

2010). It is proposed therefore that VSMC dysfunction leads to disordered 

autoregulation and chronic hypoperfusion. This results in ischaemic rarefaction 

of white matter and lacunes, with subsequent clinical effects. How the 

overexpression of NOTCH3, required for models to develop evidence of brain 

damage, affects the accuracy of the model for human disease is not known. 

Whilst mouse models provide useful observations, the lack of reproduction of 

clinical endpoints is problematic (Ayata, 2010).  
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Mouse models have some limitations including different brain architecture, 

shorter life span and gene overexpression. NOTCH3 knock-out mice are viable 

but postnatal vessel maturation suggesting a role for NOTCH3 in arterial 

specification. Different histological and functional changes are seen in 

transgenic mice expressing a NOTCH3 mutation, which demonstrates that 

CADASIL is not due to a loss of function of NOTCH3. Mouse models have 

therefore provided important information on the mechanisms of disease and 

continue to highlight possible therapeutic targets. Human studies 

Human studies confirm that impaired vascular function and resulting chronic 

hypoperfusion is a fundamental problem. PET and SPECT studies of brain 

perfusion show that cerebral blood flow is globally reduced, particularly in white 

matter, and that this reduction precedes both symptoms, and in some cases 

development of overt white matter hyperintensities on brain MRI (Mellies et al., 

1998, Tuominen et al., 2004). 

Vascular reactivity is also impaired in peripheral vessels in CADASIL patients, 

including abnormal responsiveness of small gluteal resistance vessels to 

angiotensin II (Hussain et al., 2004). In vivo impairment of endothelial vasomotor 

function has been demonstrated with peripheral arterial tonometry (Campolo et 

al., 2011), and impaired peripheral vasoreactivity is correlated to 

cerebrovascular reactivity when measured with acetazolamide and SPECT in 

CADASIL patients (Fujiwara et al., 2012).  

Carotid intima-media thickness (CIMT) is associated with atherosclerosis, and has 

been shown to predict the risk of future cardiovascular events (O'Leary and Bots, 

2010). However it is also associated with a number of different diseases, and 

may also be associated with changes in blood pressure and endothelial function. 

Higher CIMT was shown to be independently associated with lower cognitive 

scales, with a non-significant trend towards an association with disability (Mawet 

et al., 2011). It is proposed that measures that examine the severity of 

atherosclerosis may also be related to clinical outcomes in CADASIL. Other 

studies have shown no difference between CIMT and measures of arterial 

stiffness such as augmentation index between CADASIL patients and controls 

(Stenborg et al., 2007) 
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1.4.5 Role of vascular abnormalities as biomarkers 

Vascular dysfunction is a fundamental problem in the pathogenesis of CADASIL. It 

is thought to precede the development of histological abnormalities and brain 

lesions and therefore is potentially a target for both disease monitoring and 

therapeutic intervention. Much of the research has been performed in mouse 

models, but these often fail to fully recapitulate human disease. The vascular 

pathophysiology in human models needs to be explored if our understanding of 

the disease is to be furthered.  

1.5 Imaging in CADASIL 

Structural brain imaging in CADASIL typically identifies abnormalities some years 

in advance of clinical manifestations of cerebral ischaemia. Hyperintensities in 

white matter are seen from the third decade (sometimes younger), and are 

often confluent and dramatic in appearance even in asymptomatic individuals. 

However while the extent of these abnormalities correlates broadly with age 

(and therefore with scores of disability), the very wide variation among 

individuals (even within families) and slow rate of progression (Peters et al., 

2004a) renders them of little value as a biomarker of disease progression over 

time scales that would be feasible for clinical trial use. Similarly lacunes 

generally appear later, and their clinical importance likely depends more upon 

location than load. Cerebral microbleeds occur later in the natural history of the 

disease, often in a different distribution to lacunes. Brain atrophy also occurs in 

CADASIL but is a common terminal pathway for many brain diseases, and has 

limited potential as a biomarker in presymptomatic CADASIL patients 

(Viswanathan et al., 2010).  

1.5.1 Anatomical MRI markers 

1.5.1.1 Subcortical hyperintensities 

Abnormal hyperintensities on T2-weighted MRI imaging are a characteristic 

finding in CADASIL, although by no means diagnostic, as they are seen in a wide 

range of diseases, as well as being present in the asymptomatic elderly 
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population (Schmidt et al., 2003). Hyperintensities are usually present before 

the age of 35, and precede symptoms (Chabriat et al., 1998). Initially presenting 

as discrete lesions in periventricular regions, abnormalities increase and 

coalesce, to form confluent white matter hyperintensities (WMH). Lesions also 

form within the basal ganglia and brainstem, although the cerebellum is 

infrequently involved (van den Boom et al., 2003b)(Figure 1-7). Localisation to 

the anterior temporal pole and external capsule offers a high specificity for 

CADASIL in European populations (O'Sullivan et al., 2001), although this may be 

less common in other racial groups (Wang et al., 2011). The lesions may be due 

to chronic hypoperfusion of white matter secondary to dysfunction or 

destruction of perforating arteries or alternatively due to tissue oedema (De 

Guio et al., 2015). Collectively when including white matter, subcortical grey 

matter and brainstem lesions, they are termed subcortical hyperintensities (SH).  

The radiological load of hyperintensities increases over time, and is correlated 

with age (Chabriat et al., 1998, van den Boom et al., 2003b). In a longitudinal 

study of 62 CADASIL patients over 2 years, a statistically significant increase in 

hyperintensities was demonstrated, and power studies demonstrated that if this 

measure was used in clinical trials as a surrogate marker, fewer patients would 

be needed that for clinical endpoints only (Holtmannspotter et al., 2005).  

Early work in CADASIL imaging suggested that hyperintensity load was correlated 

with disability and cognitive dysfunction (Chabriat et al., 1998, Dichgans et al., 

1999). These studies may have been limited by inclusion of patients without 

CADASIL (as they preceded full genetic screening) and an unclear distinction 

between hyperintensities and lacunes. More recent studies, adjusting for age 

and other radiological lesions, have failed to find a correlation between 

hyperintensity load and measures of disability or neuropsychological function 

(Liem et al., 2009b, Viswanathan et al., 2010). The likely reason hyperintensities 

fail to correlate with clinical measures is that it is purely visual measure of 

“brightness” and fails to give any information regarding the function of white 

matter tracts, but is rather a non-specific marker of “end-organ damage”.  
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Figure 1-7 Characteristic radiological findings in CADASIL - Subcortical hyperintensities 
Subcortical hyperintensities visible on T2 FLAIR are usually the earliest radiological 
manifestation of CADASIL arteriopathy. (A) Involvement of the anterior temporal lobe and 
(B) external capsule are highly specific for CADASIL (arrowed).  

Hyperintensities are therefore a sensitive radiological marker of CADASIL, but 

fail to correlate longitudinally with clinical measures thus negating their 

potential use as surrogate markers in clinical trials.  

1.5.1.2 Lacunes and Subcortical infarcts 

A lacune is a cavity within brain tissue filled with cerebrospinal fluid which is 

proposed to be due to subcortical infarct or haemorrhage in the territory of a 

single perforating artery (Wardlaw et al., 2013). There is no gradation of 

lacunes: it is a lacune or not (Filippi and Grossman, 2002), although size criteria 

of between 3 and 15mm in the axial plane have been suggested (Wardlaw et al., 

2013).  Supratentorial lacunes are usually visible in the 4th decade particularly 

within the centrum semiovale, basal ganglia and thalamus. Typically by the 5th 

decade, lacunes have increased in number and are found in infratentorial 

regions such as the pons (van den Boom et al., 2003b, Chabriat et al., 1999a) 

(see Figure 1.8). The cause of lacunes in CADASIL is not entirely clear, but 

theories include vasospasm or abnormal vascular tone resulting in localised 

ischaemia (Duering et al., 2013).  
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Subcortical infarcts refer to neuroimaging evidence of recent infarction in the 

territory of a single perforating artery, usually <20mm in the axial plane 

(Wardlaw et al., 2013). Subcortical infarcts can result in clinical stroke 

syndromes with resultant neurological and functional disability, and are visible 

on diffusion weighed imaging (DWI). Over time these will usually transform into 

lacunes, but may alternatively become hyperintensities or disappear entirely 

(Wardlaw et al., 2013). Silent subcortical infarcts also occur. In a small study, 2 

out of 19 CADASIL patients undergoing DWI-MRI demonstrated changes consistent 

with recent silent infarction (O'Sullivan et al., 2003). The proposition that the 

detection of silent infarcts on DWI could be used as surrogate markers for trials 

in CADASIL may have been premature due to lack of longitudinal or clinical 

correlation.  

 

Figure 1-8 Characteristic radiological findings in CADASIL – Lacunes, microbleeds and 
perivascular spaces 
(A) Lacunes occur in the basal ganglia, centrum semiovale and brainstem (lacune in left 
centrum semiovale shown). (B) Cerebral microbleeds, visible on T2* weighted sequences 
may be demonstrated (bilateral thalamic microbleeds shown), and (C) multiple perivascular 
spaces occur which are marked in the basal ganglia (demonstrated) or in the subcortical-
cortical junction, where they are termed subcortical lacunar lesions. 

Lacunes have more promise as a marker of disease severity and progression. 

Liem and colleagues undertook a cross-sectional study of 40 CADASIL patients 

and 22 controls performing MRI and a battery of neuropsychological tests. They 

demonstrated in a regression model that lacune load was correlated to 

dysfunction in most cognitive tests, whereas white matter hyperintensities, age, 

and microbleeds were not. They postulated that lacunes may account for the 

stepwise decline in cognition proposed in CADASIL. A further cross-sectional 

study of 138 patients using MMSE and MDRS as measures of cognitive dysfunction, 
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suggested that normalised lacune volume and age were independently related to 

both disability and cognition (Viswanathan et al., 2007).  

A small longitudinal study demonstrated that lacune load was one of the factors 

(along with atrophy and microbleeds) that contributed to cognitive decline, 

whereas white matter hyperintensities did not (Liem et al., 2009b). This study 

was affected by multiple statistical testing. A cross-sectional multimodal 

analysis proposed lacune load accounted for 13% of disability and 7% of cognitive 

dysfunction, as measured by the modified Rankin Scale. It is also suggested 

lacune load is more important earlier in the disease, with brain atrophy 

becoming the key determinant of function later on (Viswanathan et al., 2010). 

Recently MRI scans from 215 patients have undergone voxel-based lesion-

symptom mapping in a study examining the importance of lesion location (both 

lacunes and hyperintensities) in predicting cognition (Duering et al., 2011). 

Significant clusters for cognitive performances were found in the anterior 

thalamic radiation and forceps minor, and in multivariate testing regional 

ischaemic load in these locations predicted cognitive performance whereas 

global volume did not. Severely disabled patients were less able to complete 

cognitive testing, and registration of MRI scans was more difficult, which biased 

these results. This detailed study supports the argument however, that 

ischaemic lesion location is more important than load.  

Lacune load therefore changes with time, and likely correlates with clinical 

outcomes, although any correlation remains small. In order for lacunes to be 

used as a surrogate marker the method for measuring load needs to be 

quantitative and reliable. Lacunes present early in the disease, often before 

symptoms, and therefore their prevention may be possible with therapeutic 

interventions. However the biological relationship between lacunes and the 

pathophysiology of CADASIL remains incompletely understood.  

1.5.1.3 Cerebral microbleeds 

The rupture of small perforating blood vessels supplying white matter can result 

in cerebral microbleeds. Usually clinically asymptomatic, they can be visualised 

on T2* gradient echo MRI or susceptibility-weighted imaging (SWI) which detects 
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paramagnetic haemosiderin. Haemosiderin is released from lysed erythrocytes 

and stored within macrophages. Microbleeds appear larger on gradient echo/SWI 

due to a “blooming effect” meaning comparison of microbleed volume is 

difficult as it is influenced by MRI extrinsic parameters.  

Microbleeds are seen in a variety of diseases and detected in asymptomatic 

patients in population studies (Roob et al., 1999). They are more common with 

age, hypertension, concomitant aspirin use, and lobar microbleeds are a key 

diagnostic marker of cerebral amyloid angiopathy  (Greenberg et al., 2009).  

First described in CADASIL by Lesnik Oberstein and colleagues, the detection of 

microbleeds in CADASIL has ranged from 25 – 69% (Lesnik Oberstein et al., 2001, 

Dichgans et al., 2002). They represent a later stage of the radiological natural 

history of CADASIL, tending to appear in the 5th decade (van den Boom et al., 

2003b). They are associated with older age, higher blood pressure and elevated 

HbA1c (Viswanathan et al., 2006b). Their distribution is different to lacunes and 

subcortical hyperintensities, tending to be concentrated in the thalamus, 

cortico-subcortical junction and occurring within the cerebellum (Figure 1.8). 

Dichgans et al proposed that this differential distribution was evidence that 

microbleeds represent an independent complication of vasculopathy. This may 

be due to a different pathological processes, or differences in local 

cytoarchitecture (Dichgans et al., 2002). Microbleeds may also be associated 

with risk of intracerebral haemorrhage (Choi et al., 2006). Cases with massive 

and confluent microbleeds have also been described (Oh et al., 2014)  

Cross-sectional studies have demonstrated that number of microbleeds is an 

independent predictor of neurological disability (Viswanathan et al., 2006b). 

Liem and colleagues demonstrated in a small longitudinal study that microbleed 

load could be correlated with executive and global cognitive function (Liem et 

al., 2009b). It is postulated that focal damage caused by a microbleed in a 

strategic area leads to disruption of cortico-subcortical circuity which may result 

in disability. 

However microbleeds may also be a proxy indicator of the severity of other 

pathologies, or of the age of the patient. The presence of microbleeds in 

CADASIL is in itself associated with a higher load of hyperintensities and lacunes. 
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In multivariate analysis microbleeds show an independent but small contribution 

to disability (Viswanathan et al., 2010). They seem to represent a later stage in 

the natural history of CADASIL and may therefore not be an ideal marker for 

therapeutic trials for the prevention of CADASIL complications in younger 

patients. It is also difficult to account for the volume of microbleeds due to the 

“blooming effect”. As a successful clinical trial in CADASIL would need to be 

multi-centre, there may be differences in scanners and sequence parameters 

which affect comparability between centres. If lacunes and microbleeds 

represent different consequences of the same vascular pathology, then both may 

need to be taken into account in clinical trials.  

1.5.1.4 Perivascular spaces and subcortical lacunar lesions 

A perivascular space is filled with interstitial fluid and surrounds a blood vessel 

in the brain. With normal aging they can dilate to become visible on brain 

imaging (Zhu et al., 2011), where they may be mistaken for lacunes. They may 

be due to shrinkage of perivascular cerebral tissue, or an abnormality of the 

blood brain barrier of perforating vessels, resulting in leakage of plasma proteins 

and expansion of the extracellular space. Perivascular spaces were seen in 78% 

of 50 patients with CADASIL, concentrated in the lentiform nucleus and temporal 

white matter (Cumurciuc et al., 2006) (Figure 1.8). Dilated perivascular spaces 

were more common with increased age but did not correlate to disability 

measures or risk factors. They were not related to other ischaemic 

manifestations.  

Van den Boom and colleagues detected subcortical lacunar lesions (SLLs) in 20 

out of 34 patients with CADASIL and in none of 4 control groups giving a 

specificity for CADASIL of 100% (van den Boom et al., 2002). They described this 

apparently novel radiological finding as  

“linearly arranged groups of rounded, circumscribed lesions just below 
the cortex at the junction of grey and white matter with a signal 
intensity identical to CSF” 

Neuropathological correlation suggested they represent dilation of perivascular 

spaces around perforating vessels, with atrophy of the surrounding parenchyma. 

They increase in number with age. The authors suggested that the distinct 
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anatomical distribution of these lesions implied they were not perivascular 

spaces, however other authors disagree (Cumurciuc et al., 2006).  

It can be concluded from limited cross-sectional data that dilated perivascular 

spaces are common in both normal aging and CADASIL, thus lacking disease 

specificity. Whether SLLs are a novel marker for CADASIL, or a perivascular 

variant, there is currently insufficient longitudinal data to consider them an 

appropriate MRI marker. Neither has yet been shown to correlate with clinical 

outcome measures.  

1.5.1.5 Brain atrophy 

The brain atrophies with age but the speed at which this occurs is influenced by 

a variety of factors including gender, drugs, diet, alcohol and the presence of 

brain disease (Enzinger et al., 2005). In CADASIL, age and male gender were 

independent predictors of normalised brain volume, but age and systolic blood 

pressure predicted rate of brain volume loss (Peters et al., 2006). Lacune load 

and white matter tract damage were also related to brain volume (Jouvent et 

al., 2007). More recently it has been suggested that large volumes of 

hyperintensities may actually increase brain volume, due to fluid accumulation 

(Yao et al., 2012).  

The annual rate of brain volume in loss in CADASIL patients has been reported as 

0.56%, twice that of healthy people of a similar age (Peters et al., 2006). 

However others have reported slower rates. Over a 7 year period brain volume 

reduced from 82.6% to 81.8%, with a similar volume in controls (80.8% to 80%) 

(Liem et al., 2008). This slow decline may limit its use in shorter clinical trials, 

although it has been suggested to reduce the numbers needed in a trial 

compared to clinical outcomes (Peters et al., 2004a, Peters et al., 2006)  

A large (n = 147) cross-sectional study demonstrated that brain volume 

correlated with clinical outcome measures (Jouvent et al., 2007). Viswanathan 

et al calculated brain volume explained 35% of the variance in cognitive scores 

and 38% of the variance in disability scores (modified Rankin score), which was 

the largest contributor to variance (Viswanathan et al., 2010). 
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Increase in ventricular volume may have more relevance than brain volume per 

se, as it represents central brain atrophy which may have more functional 

relevance (Liem et al., 2008). In a 7 year study, ventricular volume increased in 

CADASIL patients from 2.5% to 2.9% (controls 1.9% to 2.1%).  

1.5.2 Imaging brain function in vivo 

One of the limitations of using measures of abnormal appearing tissue is that it 

does not really tell us what is happening within the tissue. Subcortical 

hyperintensities represent a spectrum of neuronal dysfunction, from minor 

structural change to neuronal loss, and this variation in function likely explains 

the minimal correlation with clinical markers, as well as the clinical picture in 

individual patients. Therefore there is increased interest in techniques which 

study tissue function or integrity.  

1.5.2.1 Diffusion weighted imaging (DWI) and Diffusion tensor imaging (DTI) 

Diffusion describes the movement of water molecules, which in solution, will 

diffuse randomly in any direction (isotropic). In brain tissue, structural features 

such as cell membranes and large molecules restrict the movement of water. 

Diffusion is partially restricted within white matter tracts, where ordered 

arrangement of axons encourages the water to diffuse in a direction parallel to 

the axon. White matter tissue is thus termed anisotropic tissue.  

Diffusion weighted imaging (DWI) allows the visualisation of diffusion within 

brain tissue, and is derived from the apparent diffusion coefficient (ADC) – a 

measure of the movement of molecules across an area of tissue per second. A 

low ADC indicates an area of restricted diffusion, such as may be seen after an 

acute stroke, where swelling of ischaemic cells results in reduced extracellular 

space for water diffusion.  

Diffusion tensor imaging (DTI) allows the quantitative analysis of white matter 

tract integrity by visualising the 3-D movement of water molecules. The 

technique uses at least 6 co-linear directions to derive two key parameters. 

Mean diffusivity is a measure of the amount of diffusion occurring in a region, 

and fractional anisotropy is a measure of water direction, taking any value from 
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0 (no preferred direction) to 1 (diffusion in one direction only). These 

quantitative measures are reproducible and can be used to produce global or 

localised readings. 

Chabriat and colleagues used DTI in 16 CADASIL patients to demonstrate 

diffusivity changes in WMH compared to normal appearing white matter in age-

matched healthy controls (Chabriat et al., 1999b). Diffusion measures correlated 

with changes in disability (modified Rankin scale, mRS) and cognition (mini 

mental state examination, MMSE). Abnormal diffusion was proposed to be due to 

loss of axons and myelin, with disorganisation of white matter and expansion of 

extracellular space. Diffusion was also higher in “normal appearing white 

matter” (NAWM) indicating that the functional abnormalities were not restricted 

to areas that appear abnormal on T2. This study did not adjust for other 

measures such as lacune load or brain atrophy, but created interest as a 

potential surrogate marker.  

Using DTI and regions of interest, cross sectional studies demonstrated that 

increased diffusion in frontal white matter networks (O'Sullivan et al., 2005), 

grey matter (Molko et al., 2001) and the thalamus (O'Sullivan et al., 2004), could 

all be correlated to cognitive and executive dysfunction. The authors suggested 

that damage within cortico-subcortical circuits leads to executive dysfunction 

with several papers suggesting a key role of the cingulum bundle in relaying 

connections (O'Sullivan et al., 2005).  

Whole brain histograms derived from diffusion imaging give a measure of global 

microstructural damage and are both quantitative and reproducible. Molko and 

colleagues demonstrated that the shape of the diffusion histogram was different 

in CADASIL patients (n = 22) compared to controls (n = 12) with a greater mean 

diffusivity and a wider distribution of the diffusivity curve (Molko et al., 2002). 

This suggested widespread white matter damage. 14 patients went on to 

complete a second MRI study, offering longitudinal information. Mean diffusion 

increased in patients but not controls. At baseline and subsequent scanning 

mean diffusion correlated to mRS and negatively correlated with MMSE.  There 

was no significant change in the clinical measures between the examinations 

however, highlighting their short-term insensitivity. The study had several flaws: 

there was no adjustment for other MRI parameters and the time between MRI 
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scans was variable (21 months +- 6 months). Control patients were slightly 

younger (mean 51 years +/- 11 years) compared to patients (54 years +/- 11 

years).  

Holtmannspotter and colleagues extended this work in a longitudinal study of 62 

CADASIL patients (Holtmannspotter et al., 2005). Changes in mean diffusivity 

(but not white matter hyperintensity load) correlated with clinical outcome 

measures including mRS and Barthel index longitudinally, and power studies 

indicated the use of diffusion histograms would require fewer patients in clinical 

trials. Brain atrophy was not controlled for, and relatively crude 

neuropsychological measures were used, but the technique undoubtedly 

demonstrated potential as a surrogate marker by showing both longitudinal 

changes and clinical correlation.  

Despite its potential there are some limitations to DTI. It is not specific to a 

particular pathological process and changes may represent a variety of causes of 

white matter dysfunction. It required coupling with conventional MRI in order to 

measure diffusivity in particular regions of interest (e.g. NAWM). It has a limited 

spatial resolution and thus we cannot easily identify where white matter tracts 

actually are. This may be aided by the use of more complex DTI imaging 

techniques such as tractography, which allows the visualisation of individual 

tracts. Finally standardisation of DTI acquisition parameters over the multiple 

sites required for a clinical trial would be difficult. However, the correlation of 

DTI with cognitive and disability measures over time does suggest it has a 

potential role. Interestingly, multi-modal analysis by Viswanathan of 147 

CADASIL patients suggested however that whilst mean diffusivity correlated to 

cognitive measures (MDRS) it did not explain variance in disability measures 

(mRS) (Viswanathan et al., 2010).  

1.5.2.2 Magnetisation transfer ratio (MTR) 

In tissues there are protons that are bound (e.g. to myelin or macromolecules) 

and those that are free (e.g. in tissue water). The bound pool protons have a 

very short T2 and are usually invisible to direct imaging. If a saturation pulse is 

applied which saturates the bound protons, the magnetisation is quickly 

transferred to the free protons, and the observed MR signal is reduced. This is 
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referred to as magnetisation transfer and is thought to indicate the structural 

integrity of tissue. The amount of signal loss can be characterised by the 

magnetisation transfer ration (MTR) (McRobbie et al., 2007).  

A low MTR represents a state in which macromolecules are less able to exchange 

magnetisation due to tissue damage. Studies in multiple sclerosis have suggested 

the technique produces data which are not only quantitative and reproducible 

but sensitive to change over a short period. It also has some clinical correlates 

(Filippi et al., 2000).  

One study has used MTR in patients with CADASIL. A cross-sectional study of 33 

CADASIL patients and 12 healthy unmatched controls (8 years younger on 

average) measured MTR metrics both globally and in lesions. CADASIL patients 

had lower MTR values in most areas compared to controls, suggesting tissue 

damage both within lesions and normally appearing tissue. Multivariate analysis 

demonstrated that average lesion MTR was associated with disability (mRS) once 

corrected for age (Iannucci et al., 2001).  

MTR requires a reasonably long acquisition time, and is scanner characteristic 

dependent, meaning its multi-centre use may be limited by standardisation 

requirements. The 2-proton model may be over simplistic. DTI is thought to 

correlate better with clinical outcome measures than MTR in other neurological 

conditions (Schiavone et al., 2009).  

1.5.2.3 MR spectroscopy 

MR spectroscopy is a technique which uses MRI to investigate the chemical 

composition of tissues and characterise metabolic abnormalities. Some research 

in CADASIL has used MR spectroscopy to demonstrate widespread metabolic 

abnormalities in both WMH and NAWM suggestive of axonal injury and myelin loss 

(Auer et al., 2001). Changes may been seen in pre-symptomatic patients 

(Stromillo et al., 2009), and levels of N-acetylaspartate, which suggests 

demyelination and axonal injury, correlated with disability (measured by mRS) 

(Auer et al., 2001).  
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MR spectroscopy is time-consuming and methodologically complex with problems 

in quantification and result reproducibility. As such, at present it is unlikely to 

represent a viable option as a biomarker in longitudinal studies.  

1.5.3 Imaging perfusion, haemodynamics and metabolism 

The normal functioning of the brain is dependent on its perfusion (a measure of 

the vascular supply to a tissue) and its ability to alter perfusion in response to 

various insults or demands (cerebrovascular reactivity). Measures such as 

cerebral blood flow, cerebral blood volume, transit time and cerebrovascular 

reactivity  may potentially be investigated with brain imaging techniques, 

sometimes in combination with a vasoreactivity challenge (see Table 1-2).  

CADASIL is characterised by damage to VSMC and this is postulated to result in 

functional impairment with failure of autoregulation, therefore there has been 

much interest in using measures of perfusion and reactivity to investigate 

disease pathophysiology and predict disease progress. Imaging techniques may 

measure perfusion, reactivity and metabolism. Their advantages and 

disadvantages are in Table 1.3.  
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Table 1-2 Definitions relating to brain perfusion 

   

Cerebral blood 
flow  

CBF The volume of blood passing through brain tissue in 
a defined time i.e. rate. This is usually defined in 
units of millilitres per 100 grams per minute.  

Cerebral blood 
volume 

CBV The fraction of tissue volume occupied by blood.  

Cerebral 
metabolic rate 
for oxygen  

CMRO2 The amount of oxygen consumed by 100g of brain in 
one minute.  

Oxygen 
Extraction 
Fraction 

OEF The difference between the partial pressure of 
oxygen leaving a tissue and the partial pressure of 
oxygen entering the tissue.  

Cerebrovascular 
reactivity  

CVR Cerebral blood flow (CBF) changes in response to 
stimuli (usually measured as a percentage). 

Mean transit 
time 

MTT Represents the time taken for blood to pass through 
a tissue. The ratio of cerebral blood volume to 
cerebral blood flow. MTT = CBV/CBF. 

Cerebrovascular 
resistance 

 The resistance to the passage of blood created by 
arterioles and capillaries. 

Autoregulation  Cerebral vascular bed alters vascular resistance to 
maintain blood flow in the face of changes in 
systemic blood pressure to match metabolic needs.  

Vascular steal  A stimulus results in the redistribution of blood flow 
from regions of exhausted cerebrovascular reactivity 
(maximally dilated vessels) to areas with preserved 
vasodilatory capacity.  
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Table 1-3 Summary of methods for examining cerebral blood flow 

Technique Principal Advantages Disadvantages 

Positron 
emission 
tomography 
(PET) 

Radiolabelled tracer 
injected or inhaled, 
and tracers detected 
with tomographic 
scans.  

 Measures multiple 
haemodynamic 
parameters 

 May be quantifiable 

 Reproducible 

 Expensive 

 Specialised 
centres only 

 Technically 
demanding 

Single 
photon 
emission 
computed 
tomography 
(SPECT) 

Injection of a 
radioactive tracer, 
which travels to brain 
and emits gamma-
rays, which are then 
detected to create a 
3D image of flow.  

 Whole brain 
coverage 

 Fairly reproducible 

 Radioactivity 
required 

 Specialist 
equipment 

 Can have poor 
spatial resolution 

Arterial spin 
labelling 
(ASL) 

Radiofrequency pulse 
applied to blood 
passing into brain 
tissue, where it 
causes a reduction in 
magnetization 
proportional to flow. 
Compared to a non-
labelled image.  

 Good spatial 
resolution 

 No contrast or 
radiation 

 Repeatable 

 Quantifiable 

 Flexible 

 Poor SNR 

 Less accurate at 
low flow rates 

 Sensitive to 
motion artefact 

 

Transcranial 
Doppler 
ultrasound 
(TCD) 

Measurement of blood 
flow velocity via 
Doppler ultrasound. 

 Safe 

 No contrast or 
radiation required 

 Very limited 
spatial resolution 

 Operator 
dependent 

Dynamic 
susceptibility 
contrast MRI 
(DSC-MRI) 

Non-ionizing contrast 
(gadolinium) causes 
magnetic field 
inhomogeneities and 
T2 signal attenuation 
which is dependent 
on flow.  

 Measures of relative 
CBF, CBV and MTT 
available 

 High spatial 
resolution 

 Whole brain 
coverage 

 IV contrast 

 Nephrogenic 
systemic fibrosis 

 Lack of 
standardization in 
interpretation/ 
quantification 

Phase 
contrast MRI 
(PC-MRI) 

Measures moving fluid 
and hence total CBF 
entering the brain, 
using vessels as 
regions of interest.  

 No contrast 

 No radiation 

 Images of blood 
vessels 

 No assessment of 
smaller vessels 
(i.e. those 
affected in 
CADASIL).  

Perfusion CT Injection of iodinated 
contrast with 
continuous CT scan, 
and identification of 
first pass of contrast 
into tissue.  

 Widely available 

 Quantifiable 

 Use of radiation 
and contrast. 

 Less additional 
sequences can be 
obtained  
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1.5.4 Positron Emission Tomography (PET) and Single Photon 

Emission Computed Tomography (SPECT) 

Positron Emission Tomography (PET) provides quantitative information on brain 

haemodynamics and metabolism by imaging the distribution of a radioactive 

tracer. Useful studies have been performed in CADASIL patients. A 58 year old 

asymptomatic patient with white matter changes but no infarcts demonstrated a 

40% diffuse decrease in cerebral blood flow (CBF) within the cortex and white 

matter, with a preserved oxygen consumption rate (CMRO2) and increased 

oxygen extraction fraction (OEF). A demented patient, with numerous infarcts, 

had a 65% decrease in CBF and CMRO2 in white matter. These results suggested 

low CBF preceded metabolic depression, and that infarcts may result in 

metabolic depression responsible for dementia (Chabriat et al., 1995). Tuominen 

and colleagues performed 15O-PET in 14 CADASIL patients and 25 controls 

(Tuominen et al., 2004). Reduced CBF was demonstrated in white matter after 

age 30 years, and the amount was inversely proportional to WMH load. Cortical 

perfusion was however preserved and in some cases hyperaemic. No clinical 

correlation was performed, and the patients were young (mean age 32.8yrs, SD + 

6.7). Tatsch performed PET with18F-FDG to examine glucose metabolism (Tatsch 

et al., 2003). 11 patients had reduced CMRGluc globally compared to controls.  

Single Photon Emission Computed Tomography (SPECT) is a method requiring the 

introduction of a radioactive compound, usually Technetium-99m when 

measuring CBF. A SPECT study in CADASIL patients demonstrated global 

hypoperfusion in 6 subjects which appeared worse in the older and more 

severely affected patients. This was particularly within the frontal and temporal 

regions (Mellies et al., 1998). The relationship between CBF, radiological 

measures and clinical outcome is not straightforward: a study using SPECT 

showed the demented patient had the highest CBF and fewest radiological 

lesions, whereas the functionally independent patient had the lowest CBF and 

was cognitively normal (Scheid et al., 2006).  



Chapter 1  57 

1.5.4.1 Contrast-enhanced MRI 

MRI uses a different mathematical model to calculate haemodynamics based on 

the dynamic imaging of “tagged” arterial blood as it passes through the brain. 

Specific sequences are used to maximise the effect of the contrast on the 

microvasculature and a signal decay curve is generated, from which relevant 

perfusion parameters are calculated. In dynamic-susceptibility contrast (DSC) 

MRI, an agent such as gadolinium is injected into the patient and passes through 

the capillary bed of the brain. The agent causes a decrease in T2 or T2* signal 

and images are obtained before, during and after contrast injection. Relative 

measures of brain haemodynamics (rCBV, rCBF, rMTT) can be obtained. Two 

studies have used DSC-MRI in CADASIL to examine brain haemodynamics. 

Bruening and colleagues used a susceptibility-weighted imaging sequence to 

image 24 CADASIL patients (Bruening et al., 2001). Relative CBV (rCBV) in NAWM 

was 4.4 + 1.3mL/100g (mean + SD) and 2.7 +0.8/100g in WMH. Lacunes had an 

rCBV of 0ml/100g. There was a trend towards reduced rCBV in patients with 

higher disability scores and in patients dichotomised on the basis of their 

cognitive results (MMSE), patients with dementia had significantly lower rCBV. 

No evidence was found of blood-brain-barrier abnormality. The correlation of 

rCBV with even crude disability measures is encouraging for DSC-MRI use in 

prospective studies. Chabriat and colleagues used spin-echo planar imaging (EPI) 

to track a gadolinium bolus, before and after the administration of 

acetazolamide (Chabriat et al., 2000). Both mean relative and absolute values 

were calculated and rCBV and rCBF were reduced in CADASIL patients in the 

centrum semiovale, WMH and occipital cortex (compared to 10 healthy 

controls). Cortical perfusion was preserved, but there was a reduced response to 

acetazolamide in WMH. 

DSC-MRI has confirmed flow abnormalities in CADASIL and some correlation with 

clinical measures. However perfusion MRI has not been used to measure brain 

haemodynamics longitudinally; which in part may be due to lack of 

standardisation of results. For the indicator-dilution theory to be applied the 

blood-brain-barrier must be intact, but recent work using contrast-enhanced MRI 

in CSVD has suggested this is associated with increased BBB permeability in 

lesions and NAWM (Topakian et al., 2010). If this is the case in CADASIL, the 
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model of indicator-dilution would need modification, further complicating 

quantification of perfusion.  

1.5.4.2 Phase-contrast MRI 

An alternative method to calculate total CBF is by measurement of flow entering 

the brain by delineating the internal carotids and basilar artery as a region of 

interest. This method is a global measure of total CBF based on 

extraparenchymal vessels and does not required injection of contrast. Van den 

Boom and colleagues found a reduction in total CBF in CADASIL patients 

compared to non-age matched controls, but no difference in CVR as measured by 

response to acetazolamide (van den Boom et al., 2003a). This finding was 

replicated in a study of 14 CADASIL patients and 9 controls, with CADASIL 

patients having a lower total CBF but similar CVR (Liem et al., 2009a). Patients 

with a lower CVR were found to have a faster rate of WMH lesion progression 

than those with preserved CVR, which suggested a role for CVR as a predictor of 

disease progression. 

This method offers a global measurement of CBF and suggests global 

hypoperfusion but does not replicate changes suggested by SPECT studies in CVR. 

This may be as the method uses larger intracranial blood vessels not affected by 

CADASIL. 

1.5.4.3 Arterial spin labelling ASL 

An alternative method of imaging perfusion using MRI is termed arterial spin 

labelling (ASL). Here water molecules in arterial blood act as the contrast 

material and are “tagged” by an inversion or saturation pulse when entering the 

brain (see Figure 1.9).  
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Figure 1-9 Arterial spin labelling (ASL) technique 
Arterial blood flows into the tissues being imaged and contains water molecules with 
positive nuclear spins (red arrows). In the labelled image, an inversion pulse applied below 
the area to be imaged alters the spins of the water molecules. These spins then enter the 
tissue and cause an attenuation of brain signal proportional to the flow. A control image, 
without an inversion pulse, is also obtained. The control image can be subtracted from the 
labelled image producing an image which reflects brain perfusion. Further quantification is 
required to obtain absolute values from this image.  

There are various methods to undertake ASL which has several advantages (see 

Table 1.3). No studies using ASL have been used in CADASIL but it has been used 

in several other neurodegenerative diseases. Bastos-Leite demonstrated a 

reduction in global CBF in patients with confluent compared to punctiform WMH 

(Bastos-Leite et al., 2008). Murphy and colleagues used ASL in healthy volunteers 

to establish its reliability and potential use in clinical trials. Using power 

calculations they suggested that to detect a 15% decrease in CBF between two 

groups 20-40 people would be needed per group, and confirmed that ASL had 

acceptable reliability (Murphy et al., 2011). The use of ASL in CADASIL in both 

cross-sectional and longitudinal studies warrants further investigation.  

1.5.5 Transcranial Doppler ultrasound (TCD) 

An alternative method used in CADASIL to examine haemodynamics is 

transcranial Doppler (TCD) ultrasound. It is non-invasive, inexpensive, and easily 

performed even in more disabled individuals. It has established value in 

detection of vasospasm after subarachnoid haemorrhage, monitoring carotid 

endarterectomy and reactivity testing using either CO2 or acetazolamide (Sloan 

et al., 2004, Markus and Harrison, 1992). However it is highly operator 
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dependent. It also measures flow velocity, and indirect marker of altered CBF in 

downstream vessels.  

TCD has been used to study CADASIL patients. In a study of 29 CADASIL patients 

and controls, MFV declined with age and CVR, tested with CO2 challenge, was 

impaired in patients (Pfefferkorn et al., 2000). However Singhal et al studied 

CVR and autoregulation in 24 non-demented CADASIL patients and 20 controls. 

Whilst resting MFV was lower in CADASIL patients, there was no impairment of 

CVR or autoregulation (Singhal and Markus, 2005).  These differences may be 

caused by technical differences, or different patient characteristics in the 

recruited cohorts.  

TCD has been used as a biomarker however in therapeutic drug trials in CADASIL 

(Peters et al., 2007).  

1.6 Summary and aims of thesis 

CADASIL is well-defined genetically, radiologically and phenotypically, but 

patients still show a wide variation in natural history which cannot currently be 

predicted by examining genotypes or cardiovascular risk factors. For 

investigation of any possible therapeutic agent in these patients, more accurate 

measures of disease progression are needed. 

A number of different MRI based methods have been proposed to function as 

biomarkers of disease progression in CADASIL. Some authors have demonstrated 

that measures such as T2 hyperintensity load, atrophy and DTI diffusion 

parameters, may allow smaller numbers of patients to be included in clinical 

trials than those required when using clinical measures alone. However these 

still exceed a realistic number of patients for a disease with low prevalence. 

Vascular dysfunction is thought to represent an earlier stage of pathophysiology, 

and may precede clinical features and anatomical radiological abnormalities. 

Better understanding of vascular pathophysiology in human CADASIL patients, 

may highlight which measures have potential as biomarkers.  

This thesis aims to improve understanding of vascular pathophysiology in 

CADASIL, particularly with reference to using vascular measures as markers of 
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disease progression (see Figure 1-10).  In order to facilitate this, investigations 

into how common CADASIL is and how vascular function can be measured non-

invasively were performed.  

 

Figure 1-10 Summary of thesis aims 
Whilst the genetic diagnosis and clinical endpoints are well defined, understanding of 
vascular and radiological biomarkers remains incompletely understood and are a target for 
research.  

The aims of the thesis are:  

1) investigate how best to measure vascular reactivity using MRI and non-invasive 

techniques which would be most useful in longitudinal clinical trials;   

2) determine how common CADASIL is in the west of Scotland, and how this 

compares to other neurological diseases;  

3) establish how vascular reactivity relates to traditional measures of disease 

status including MRI anatomical markers and neuropsychological measures; 

4) assess the change in cerebral blood flow and reactivity in CADASIL patients 

over 1 year;  

5) determine if vascular function predicts changes in radiological or disease 

status over time;  
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5) investigate if in vivo vascular function and reactivity measures relate to ex 

vivo studies of arterial function;  

6) establish if non-invasive MRI can be used to determine which the vessels 

responsible for lacunes in CADASIL. 

  



Chapter 2 – Materials and Methods 

This chapter provides a description of the materials and methods used for the 

study, “Cerebral and peripheral perfusion and reactivity in CADASIL: A 

longitudinal pilot study”, which comprises the bulk of this thesis.  

2.1 Funding 

This study was funded by: 

 Project Grant ETM/244, Chief Scientist Office, Scotland. 

2.2 Ethics 

Ethical approval was obtained from the West of Scotland Research Ethics 

Service; project reference WS/12/0295. The study was sponsored by NHS 

Greater Glasgow and Clyde Research and Development Service (reference 

GN12NE144). The study is registered on the UK Clinical Research Network (ID 

13794). Written informed consent was obtained for all study participants in 

accordance with the Declaration of Helsinki.  

2.3 Patient recruitment 

Recruitment of subjects was performed between May and November 2013. 

Patients who attended the Neurovascular Genetics Clinic at the Southern 

General Hospital, and fulfilled the inclusion criteria, were considered. Potential 

participants were contacted by letter with a follow up telephone call.  

2.3.1 Inclusion criteria 

Inclusion criteria were as follows: 

 Diagnosis of CADASIL confirmed with a characteristic mutation in exons 2 – 

24 of the NOTCH3 gene on chromosome 19.  

 Over 18 years of age. 
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 Capacity to give informed consent.  

 Able to participate in the study, and willing to comply with all 

procedures, either alone or with the aid of a responsible care giver. 

2.3.2 Exclusion criteria  

Exclusion criteria were as follows: 

 Any condition contraindicating an MRI scan including recent surgery with 

metallic implants, intracranial metallic implants, metallic fragments in 

the eyes or body, pregnancy.  

 A history of co-existent disease that may interfere with participation in 

the study e.g. chronic alcohol or drug abuse; untreated major depression; 

any medical condition with an expected life expectancy of less than 12 

months; a diagnosis of another progressive neurodegenerative condition 

(such as Alzheimer’s disease or Parkinson’s disease). 

 Any medical condition contraindicating the administration of carbon 

dioxide: respiratory illness; heart failure; haemodynamic instability; 

uncontrolled hypertension; history of subarachnoid haemorrhage, 

intracranial aneurysm or arteriovenous malformation.  

 Conditions/medications that may affect the results of peripheral vascular 

tests: Raynaud’s disease; peripheral arterial disease; current use of 

calcium antagonists or ACE-inhibitors.  

2.3.3 Withdrawal of participants 

Participants could be withdrawn from the study for the following reasons 

 withdrawal of consent;  

 intolerance of carbon dioxide administration;  

 deemed necessary for clinical reasons.  
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2.4 Management of participants 

All study participants were allocated a unique study number, which served as an 

individual identifier for all clinical data and biological samples. Clinical research 

files were kept in a secure location in the Southern General Hospital. Biological 

samples were kept securely at the British Heart Foundation Glasgow Clinical 

Research Centre (BHF GCRC). Transport was provided for the participants for all 

visits if required.  

2.4.1 Study Protocol 

Study participants were reviewed at baseline, year 1 and year 2. The study 

schedule is shown in Table 2-1. Visit 1 was also the first visit. Visits 2, 3, 4 and 

(6, 7, 8 and 10, 11, 12) could occur in any order. It was planned that visits at 

baseline, year 1 and year 2 should occur within a 2 month period.   
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Table 2-1 Study schedule 

Month Baseline 

(0 + 2 mth) 

6 
mth 

Year 1 

(12 + 1 mth) 

18 
mth 

Year 2 

(24 + 1 mth) 

VISIT 1 2 3 4 5 6 7 8 9 10 11 12 

Eligibility X            

Consent X            

Medical 
history 

X    X X   X X   

Demographics X    X X   X X   

Medication X    X X   X X   

NIHSS X     X    X   

mRS X    X X   X X   

Bloods/ urine  X        X   

Height/ 
weight 

 X    X    X   

HADS  X    X    X   

Vascular 
studies 

 X    X    X   

Neuro 
psychology 

  X    X    X  

TCD X       X    X 

MRI    X    X    X 

End of study            X 

Abbreviations: NIHSS – National Institute of Health Stroke Scale; mRS – modified Rankin 
score; HADS – Hospital Anxiety and Depression Scale; TCD – transcranial Doppler 
ultrasound; MRI – magnetic resonance imaging. X represents a visit where an activity 
occurred.  

2.5 Clinical assessment 

For each subject, information on demographics and medical history, including 

past and current diagnoses, living circumstances and concomitant medication 

were collected on their first visit using a data collection form.  
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2.5.1 Clinical definitions 

Hypercholesterolaemia was recorded if there was documentation of a 

cholesterol > 5.2mmol/L in previous medical records. Hypertension was defined 

as a systolic BP >140mmHg or a diastolic BP >90mmHg on more than 2 occasions, 

or use of antihypertensive medication together with a past diagnosis of 

hypertension. Patients on hypertensive medication for migraine prophylaxis were 

not given a diagnosis of hypertension solely based on medication use.  

Stroke was defined as a neurological deficit of sudden onset with focal 

dysfunction and symptoms lasting more than 24 hours presumed to be vascular in 

origin. Transient ischaemic attacks (TIA) was defined as above but lasting less 

than 24hours and without symptoms typical for migraine with aura.  

Cognitive disturbance was recorded if it was self-reported by the patient, or 

recorded in clinical history, as was psychiatric disturbance.  History of migraine 

was recorded if patients description matched that of the International Headache 

Society (IHS) of migraine with or without aura (Headache Classification 

Committee of the International Headache Society, 2013).   

2.6 Clinical Scales 

2.6.1 National Institute of Health Stroke Scale (NIHSS) 

The National Institute of Health Stroke Scale (NIHSS) is a standardised 

measurement of neurological deficit (Table 2-2). This 0 – 42 point non-linear 

scale was designed as a research tool for acute stroke trials, but now has 

widespread clinical use in many stroke units (Brott et al., 1989).  It can be used 

to predict survival and functional recovery in patients in the first week following 

an acute ischaemic stroke (Weimar et al., 2004).  

Whilst not designed specifically for longitudinal assessment, the NIHSS offers a 

structured and rapid neurological assessment of patients which identifies 

potentially disabling deficits.  

Investigators performing the NIHSS had completed online video training in 

administration of the scale and received certification of competency.  
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Table 2-2 National Institute of Health Stroke Scale 

Region  Definition 

Level of consciousness 
0 
1 
2 
3 

Alert 
Aroused by minor stimulation 
Not alert; required repeated stimulation to attend 
Responds only with reflex effects or unresponsive 

Level of consciousness 
questions 

0 
1 
2 

Answers both correctly 
Answers one correctly 
Answers neither correctly 

Level of consciousness 
commands 

0 
1 
2 

Performs both correctly 
Performs one correctly 
Performs neither correctly 

Gaze palsy 
0 
1 
2 

Normal  
Partial gaze palsy 
Forced deviation 

Vision 
0 
1 
2 
3 

No visual loss 
Partial hemianopia 
Complete hemianopia 
Bilateral hemianopia 

Facial palsy 
0 
1 
2 
3 

Normal movements of face 
Minor paralysis of face 
Partial paralysis of face 
Complete paralysis of one or both sides 

Motor Arm 

 

Score for individually 
left and right arm 

0 
1 
2 
3 
4 
UN 

No drift to bed in 10 seconds 
Drifts during 10 seconds but does not hit bed 
Some effort against gravity but drifts to bed 
No effort against gravity 
No movement 
Amputation or joint fusion 

Motor Leg 

 

Score individually left 
and right leg 

0 
1 
2 
3 
4 
UN 

No drift to bed in 5 seconds 
Drifts during 5 seconds but does not hit bed 
Some effort against gravity but drifts to bed 
No effort against gravity 
No movement 
Amputation or joint fusion 

Limb ataxia 
0 
1 
2 
UN 

Absent 
Present in one limb 
Present in two limbs 
Amputation or joint fusion 

Sensory 
0 
1 
2 

Normal 
Mild-to-moderate sensory loss 
Severe or total sensory loss 

Language 
0 
1 
2 
3 

No aphasia 
Mild-to-moderate aphasia 
Severe aphasia 
Mute 

Dysarthria 
0 
1 
2 
UN 

Normal 
Mild-to-moderate dysarthria 
Severe dysarthria or mute/anarthria 
Intubated or other physical barrier 

Extinction and 
inattention 

0 
1 
2 

No abnormality 
Inattention or extinction to one sensory modality 
Hemi-inattention or extinction to >1 sensory modality 
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2.6.2 Modified Rankin Scale (mRS) 

The modified Rankin Scale (mRS) is a global measure of disability and handicap, 

designed for use in trials as a clinician-reported measure of functional outcome 

after stroke (Rankin, 1957, van Swieten et al., 1988). It is a 7 point scale ranging 

from 0 (total independence), to 6 (death) which assesses the ability of an 

individual to perform tasks such as walking, dressing and managing finances 

(Table 2-3).  

Table 2-3 Modified Rankin Scale (mRS): An assessment of disability after stroke.  

Score Definition 

0 No symptoms at all 

1 No significant disability despite symptoms, able to carry out all usual 
duties and activities.  

2 Slight disability; unable to carry out all previous activities, but able to 
look after their own affairs without assistance.  

3 Moderate disability; requires some help for more complex tasks (e.g. 
finances) but able to walk without assistance. Able to manage at home 
for at least 1 week.  

4 Moderate severe disability: unable to walk without assistance and 
unable to attend to own bodily needs without assistance. Able to be left 
alone for a few hours during the day.  

5 Severe disability: bedridden, incontinent, requiring constant nursing 
care and attention.  

6 Dead 

 

2.6.2.1 Rankin Focussed Assessment Tool (RFA) 

The Rankin Focussed Assessment (RFA) tool (UCLA Stroke Center, Los Angeles, 

California) was developed to provide a clear and practical assessment of the mRS 

(Saver et al., 2010). It was required as there is subjectivity between several mRS 

grades and limited inter-observer agreement, with improvement shown with the 

use of structured interview approaches (Wilson et al., 2002).  It has been 

demonstrated to have a high interrater reliability in comparison to other 

methods (Quinn et al., 2009). Ratings of disability for Rankin levels 2,3,4 and 5 

were based on all the patient’s medical conditions, not just prior strokes; 
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whereas Rankin level 1 was based on symptoms caused only by prior strokes 

(Saver et al., 2010).  

The pre-stroke RFA was used in all cases with reference to guidance available 

from the authors. Investigators performing mRS assessments had undertaken 

online training in the administration of mRS.  

2.6.3 Hospital Anxiety and Depression Scale (HADS) 

The Hospital Anxiety and Depression Scale (HADS) was developed by Zigmond 

and Snaith to provide a practical and simple screening tool to detect anxiety and 

depression in medical patients (Zigmond and Snaith, 1983). The aim was to 

distinguish psychiatric disorders from symptoms of sadness and tension in people 

suffering from a physical illness. Physical indictors associated with depression 

such as weight loss or pain, are avoided as they are likely to be symptoms of the 

illness itself rather than psychological distress. The scale is designed to be 

sensitive to mild symptoms, withstand situational influences, and be 

representative of a prolonged rather than a transient state. 

It is a self-rating 14 item scale which takes less than 5 minutes to complete. It 

has an excellent response rate and reliability (Herrmann, 1997) and is widely 

used in hospitals across the UK (Figure 2-1).  

The HADS has clear cut off scores which can distinguish depression and anxiety. 

The depression subset (D-scale) comprises 7 items expressed both positively and 

negatively, giving a maximum score of 21. The anxiety subset (A-scale) also 

comprises 7 items with a maximum of 21. For both subsets, scores of 0-7 are 

regarded as normal, scores of 8-10 indicate a ‘possible’ case and scores of 11 

and more indicate a ‘probable’ case. 

The HADS scoring sheet (GL Assessment Limited, London) was given to the 

subject with a brief reinforcement of the instructions stated at the top of the 

sheet. Subjects were asked to underline the answer that best reflected their 

feelings over the past few days (Snaith and Zigmond, 1994). 
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A D     A D 

   I feel tense or ‘wound up’ I feel as if I am slowed down    

3   Most of the time Nearly all the time   3 

2   A lot of the time Very often   2 

1   From time to time, occasionally Sometimes   1 

0   Not at all Not at all   0 

  
 I still enjoy the things I used to 

enjoy 
I get a sort of frightened feeling 
like ‘butterflies’ in the stomach 

 
  

 0  Definitely as much Not at all  0  

 1  Not quite so much Occasionally  1  

 2  Only a little Quite often  2  

 3  Hardly at all Very often  3  

  
 I get a sort of frightened feeling 

as if something awful is about to 
happen 

I have lost interest in my 
appearance 

 
  

3   Very definitely and quite badly Definitely   3 

2  
 Yes, but not too badly I don’t take as much care as I 

should 
 

 2 

1  
 A little, but it doesn’t worry me I may not take quite as much 

care 
 

 1 

0   Not at all I take just as much care as ever   0 

  
 I can laugh and see the funny 

side of things 
I feel restless as if I have to be 

on the move 
 

  

 0  As much as I always could Very much indeed  3  

 1  Not quite so much now Quite a lot  2  

 2  Definitely not so much now Not very much  1  

 3  Not at all Not at all  0  

  
 Worrying thoughts go through 

my mind 
I look forward with enjoyment to 

things 
 

  

3   A great deal of the time As much as I ever did   0 

2   A lot of the time Rather less than I used to   1 

1   Not too often Definitely less than I used to   2 

0   Very little Hardly at all   3 

   I feel cheerful I get sudden feelings of panic    

 3  Never Very often indeed  3  

 2  Not often Quite often  2  

 1  Sometimes Not very often  1  

 0  Most of the time Not at all  0  

  
 I can sit at ease and feel relaxed I can enjoy a good book or radio 

or television programme 
 

  

0   Definitely Often   0 

1   Usually Sometimes   1 

2   Not often Not often   2 

3   Not at all Very seldom   3 

        

      A D 

    TOTAL    

Figure 2-1 Hospital Anxiety and Depression Scale - Scoring Sheet  
(GL Assessment Limited, London) 
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2.7 Neuropsychological Testing 

2.7.1 General Testing Conditions 

Neuropsychological testing was performed at the Southern General Hospital, by 

Dr Breda Cullen, a trained clinical neuropsychologist.  

Testing took place in a quiet room and lasted approximately 2 hours including 

time for a break.  

A summary of results was provided to the participant’s General Practitioner 

after testing and filed in their case notes. If it was felt further clinical 

assessment or input by a clinical neuropsychologist was required this was 

discussed with the participant’s health care provider.  

Testing aimed to establish baseline premorbid intellectual ability and global 

cognitive ability, but was directed at eliciting subtle deficits in executive 

function. Table 2-4 summarises the tests used.  
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Table 2-4 Summary of cognitive tests used in this study 

Test name Ability assessed Test details 

TOPF Estimated 
premorbid 
intellectual ability 

An initial estimate of premorbid intellect and 
memory using 70 words.  

ADAS-Cog Global cognitive 
function 

Global assessment covering memory, 
orientation, language and praxis.  

Symbol digit 
modalities test 
(SDMT) 

Processing speed Pairing of geometric figures with specific 
numbers.  

Digit Span forwards 

 

Digit Span backwards 

Verbal working 
memory 

Examiner reads a sequence of numbers; 
subject recalls numbers in same order.  

Examiner reads a sequence of numbers; 
subject recalls numbers in reverse order.  

WMS-IV Symbol Span Visual working 
memory 

Subjects recall sequences of symbols, 
increasing in size with each correct 
completion. 

Category fluency 

Letter fluency 

Word generation / 
executive function 

Subject generates the maximum numbers of 
words from a specific category or with a 
specific letter in a set time.  

Trailmaking Test Executive function  Subjects connect numbers (part A) and 
numbers and letters (part B) in a specific 
order as quickly as possible.  

Stroop Test Executive function Subject must say either the written word, or 
name the ink colour the word is written in.  

WAIS-IV Similarities Verbal reasoning Subject presented with two words that 
represent common objects or concepts, and 
must describe how they are similar.  

WAIS -IV Block Design Visuospatial ability Subject views a model and a picture, or a 
picture only, and uses blocks to recreate the 
design.  

WMS -IV Verbal Paired 
Associates 

Verbal memory Subjects must recall or recognize a word 
when prompted by an unrelated word that 
was paired with it during the presentation of 
word pairs. 

BMIPB Design 
Learning 

Visual memory Subject uses visual memory to recall abstract 
shapes.  

TOPF = test of premorbid function; BMIPB = Birt Memory and Information Processing 
Battery; ADAS-Cog = Alzheimer’s Disease Assessment Scale – Cognitive; WMS = Wechsler 
Memory Scale; WAIS = Wechsler Adult Intelligence Scale 
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2.8 Vascular Studies 

2.8.1 Training of the Investigators 

All vascular tests included in this thesis were performed by the author, who had 

undergone training over 3 months in the principles and techniques of all the 

tests. The author examined patients with the same methodology as part of 

another study “Target organ damage in predicting cardiovascular risk” prior to 

this study commencing.  

Vascular tests were performed as per a standard operating procedure and data 

collected in a vascular case report form.  

2.8.2 General testing conditions 

All vascular tests took place at the BHF GCRC in temperature controlled rooms 

(between 22 and 24oC). A trained staff nurse was available at all times. 

Equipment used in the study was maintained by staff at the BHF GCRC.  

Participants attending for vascular studies were asked to refrain from taking 

alcohol or caffeine for 4 hours prior to the study visit. Vascular studies were 

performed with reference to published guidelines (Van Bortel et al., 2002) (see 

Table 2-5). Height and weight were recorded at the start of the study, and a 

questionnaire administered to identify any issues that may affect or prevent 

testing (e.g. previous mastectomy, menstrual cycle). Supine blood pressure and 

heart rate were measured following 10 minutes of rest (OMRON 705IT, Omron 

corporation, Kyoto, Japan). Blood pressure was measured 3 times, and the mean 

of the last 2 results taken.  
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Table 2-5 Recommendations for standardization of subject conditions*  

Confounding Factor In practice 

Room temperature Temperature controlled room (24 degrees Celsius) and 

temperature documented in case report form.  

Time of day Similar time of day for repeated measurements.  

Smoking, eating Patients asked to refrain from drinking caffeine or 

smoking for 4 hours prior to measurements.  

Food intake was recorded.  

Alcohol Patients asked to refrain from drinking alcohol for 10 

hours prior to measurements.  

Speaking Patients were asked not to speak during studies.   

Position Supine ideally; position recorded.   

Cardiac arrhythmia Any disturbance recorded as may affect results and have 

clinical relevance.  

Menstrual cycle (for 

women) 

Stage in menstrual cycle recorded; similar stage in cycle 

for repeat measurements.  

*adapted from (Van Bortel et al., 2002).  

2.8.3 Pulse Wave Analysis 

2.8.3.1 Background 

Arterial stiffness partly depends on smooth muscle tone, and can be assessed 

non-invasively with pulse wave analysis (PWA). The arterial pressure waveform is 

a summation of the forward pressure wave created by ventricular contraction, 

and a reflected wave. The waveform is modified along the arterial tree, as the 

degree of reflection varies. In elastic vessels, the speed of the reflected wave is 

slow, and thus the wave arrives during diastole and augments diastolic flow to 

the heart. In stiff vessels, reflection is quick, and the wave arrives prematurely 

during systole. This augments the systolic pressure and increases the demand on 

the heart (O'Rourke and Gallagher, 1996).  

If a measure of the peripheral radial waveform is obtained, a mathematical 

model can be used to generate a measure of the aortic waveform. The 

augmentation phenomenon can then be quantified by the augmentation index: 

the difference between the second and first systolic peaks (P2 – P1) expressed as 

a percentage of the pulse pressure (Skinner et al.). The augmentation index is 

influenced by heart rate, age, aortic PWV, diastolic blood pressure, and height. 
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Augmentation index has been demonstrated to be related to cardiovascular risk 

and mortality (Mancia et al., 2009).  

2.8.3.2 Method and Analysis 

Pulse wave analysis was performed with a SphygomoCor® system (AtCor Medical 

Pty Ltd, Sydney, Australia). A micromanometer-tipped probe (Millar®) was 

placed on the surface of the skin overlying the radial artery. For accurate 

readings, this was applied with a light pressure so that the transmural forces 

within the vessel were perpendicular to the arterial surface. The peripheral 

radial pulse wave was continuously recorded and 10 pulse waves were analysed. 

The right radial was chosen unless there was a contraindication.  

Integral SphygomoCor® software used a validated transfer function and radial 

artery waveform to calculate the aortic pulse waveform and aortic systolic and 

diastolic blood pressure (Chen et al., 1997). The augmentation index was 

normalised to a standardised heart rate of 75 beats per minute (AI@75; Figure 2-

2. The mean of 2 pulse wave readings with an operator index of >80% was taken.  

 

Figure 2-2 Pulse wave analysis 
Screenshot of Clinical Report Screen showing Quality Control area (top right) and radial and 
derived aortic pulse wave forms. Aortic augmentation index at 75bpm was 36%.  
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2.8.4 Pulse Wave Velocity 

2.8.4.1 Background 

Arterial stiffness reflects the pressure on the heart, and has clinical relevance in 

epidemiological studies of cardiovascular risk (Laurent et al., 2001). The gold-

standard measurement is carotid-femoral pulse wave velocity (PWV) which is 

measured along the aorto-iliac pathways (Laurent et al., 2006). PWV is measured 

in metres/second and derived as follows: 

PWV=
distance between carotid and femoral measurement site (metres)

transit time (seconds)
 

Usual values are between 6 and 10 m/s. A 1.0 m/s increase in carotid-femoral 

PWV is associated with a 7% increase in vascular events (Ben-Shlomo et al., 

2014).  

2.8.4.2 Method and Analysis 

3 ECG stickers were placed on the chest. An applanation tonometer (Millar®) 

was used to identify the pressure wave by sequentially placing over the femoral 

artery (distal site), and then the common carotid artery (proximal site). The 

surface distance between the 2 recording sites was determined with a measuring 

tape. 

The systolic upstroke, or foot, of the pressure wave was identified by an integral 

algorithm within the SphygomoCor® software and used as the reference point. 

The time between the R wave of the ECG and the proximal carotid pulse was 

subtracted from the time between the R wave and the distal femoral pulse to 

obtain a pulse wave transit time, ∆t. PWV was then automatically calculated 

(Figure 2-3).  

The mean of 2 readings with a standard deviation of <10% was taken. If only one 

reading with <10% standard deviation was available, it was used alone. 
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At year 1 the distance measurements from baseline were used, as the error 

introduced by user repetition was felt to likely exceed the potential difference 

in placement of the tonometer.   

 

Figure 2-3 Carotid-femoral pulse wave velocity 
Screenshot from Clinical Screen. Femoral and radial pulse waveforms are shown with ECG 
readings below. The pulse wave velocity, with a standard deviation of <10% is shown.  

2.8.5 Flow-mediated dilatation of the brachial artery (FMD) 

2.8.5.1 Background 

Shear stress is a major regulator of vascular tone. Increased blow flow leads to 

shear stress which opens potassium channels and hyperpolarises the cell (Olesen 

et al., 1988). Calcium enters and nitric oxide is generated. Nitric oxide causes 

smooth muscle cells to vasodilate to accommodate the increased blood flow 

(Pohl et al., 1986). 

Increased blood flow can be generated in response to ischaemia. A BP cuff is 

placed which results in forearm ischaemia and dilatation of downstream 

resistance vessels in the hand. When the cuff is deflated, blood rapidly flows 

into the low resistance dilated downstream vessels. This creates shear stress, 

nitric oxide release, and dilatation of the brachial artery. This dilatation can be 

measured by ultrasound, and the process termed flow mediated dilatation of the 

brachial artery (FMD). 
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Measurement of this response is the gold-standard technique for non-invasive 

measurement of endothelial function (Celermajer et al., 1992). FMD is inversely 

related to age, blood pressure, body mass index, lipid lowering medication and 

smoking (Benjamin et al., 2004). However it adds little additional information 

when attempting to stratify cardiovascular risk, so its clinical utility remains 

undetermined (Yeboah et al., 2009). Due to its non-invasive nature it is 

repeatable but is highly technician dependent, and guidelines for its assessment 

should be followed (Corretti et al., 2002). Baseline responses in healthy 

populations are generally 5 – 8% depending on the baseline brachial artery 

diameter (Anderson and Phillips, 2015).  

2.8.5.2 Method 

The subject was supine with their right arm extended in a comfortable position. 

A blood pressure cuff was placed on the right forearm (Hokanson SC12, DE 

Hokanson, Inc, Bellevue, WA, USA). ECG leads were attached. The brachial 

artery was identified 5-15cm above the antecubital fossa in a 2-D longitudinal 

plane using a 7MHz linear array transducer (Acuson, Sequoia). A segment with 

clear lumen-intima boundaries on both near and far wall was required for 

imaging. The probe was then held in position with a stereotactic clamp (Figure 

2-4A). At baseline this was an in-house clamp. At year 1 and 2 a clamp produced 

by Rose & Krieger (RKC 80/189, Rose & Krieger, Potsdamer, Germany) was used.  

After a rest period, a baseline image was obtained including a mid-artery flow 

velocity. A 3 minute baseline clip of brachial artery diameter triggered by the R 

wave of the ECG was then obtained (Figure 2-4B). In 1 patient, the left arm was 

used due to previous breast surgery. 

Arterial occlusion was created by cuff inflation to 50mmHg above systolic 

pressure or at least 200mmHg, maintained with a constant pressure regulator. 

After a 5 minute period the cuff was released. A further mid-artery pulsed signal 

was obtained on cuff release to assess hyperaemia velocity. A 5 minute clip of 

the brachial artery was obtained. 
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Figure 2-4 Flow mediated dilatation of the brachial artery 
(A) FMD set up. (B) Brachial artery identified with ultrasound. The ROI is visible with the 
pink lines outlining the vessel borders.  

2.8.5.3 Analysis 

Flow-mediated dilatation offline analysis was performed with specialist software 

(Brachial Analyzer, MIA LLC, Coralville, IA, USA). The principle measurement is 

flow mediated dilatation (FMD) calculated as the percentage maximum change 

in diameter from baseline: 

FMD=
Brachial diameterPeak post occlusion‐Brachial diameterBaseline

Brachial diameterBaseline
×100 

All measurements were performed by a single reader (FM). Ultrasounds were 

graded as poor, average or good based on the ability to visualise the vessel walls 

and the degree of vessel movement. Poor ultrasounds were not included in the 

results. An ROI was placed in a region where the near and far brachial artery 

borders were clearly visualised. Automated optimal graph search-based 

segmentation was used to determine the vessel wall borders then the analysis 

was run for each clip. Analysed images were reviewed and edited where 

required to ensure image did outline the intima-lumen interface (Medical 

Imaging Applications, 2006). Images where the diameter measurement 

confidence was less than 70% or those which were on the incorrect interface 

were rejected. The baseline diameter was determined as the mean of 30 

baseline images. The highest diameter (within the first 3 minutes post 

dilatation) was determined and the mean of the 3 readings around this was 

taken as the “peak” diameter (see Figure 2-5 for an example of FMD). Analysis 

was repeated twice, more than 1 month apart, and the average used.  



Chapter 2  81 

 

Figure 2-5 Example of FMD result 
A 5 minute period of occlusion (not shown in real time) preceded and followed by, 
measurements of brachial artery diameter.  

2.8.6 Peripheral artery tonometry 

2.8.6.1 Background 

An alternative method of assessing endothelial function is peripheral arterial 

tonometry (PAT). This requires the use of a finger plethysmograph to sense 

changes in the volume of blood in a finger with each pulse. Following a period of 

arterial occlusion, a hyperaemic response should occur. This is due to release of 

nitric oxide from endothelium subsequent to an increase in shear stress within 

the microcirculation of the finger. This hyperaemic response has been shown to 

correlate with brachial FMD measurements and with the presence of 

cardiovascular risk factors and coronary artery disease (Kuvin et al., 2003). 

2.8.6.2 Method and Analysis 

Endothelium-mediated vasodilatation elicited by a downstream hyperaemic 

response, was measured with a non-invasive plethysmographic method (Endo-
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PAT2000, Itamer Medical Ltd, Caesarea, Israel). The device records changes in 

the digital pulse waveform, known as the PAT signal.  

A blood pressure cuff (Hokanson SC12, DE Hokanson, Inc, Bellevue, WA, USA) was 

placed on 1 upper arm (study arm) while the contralateral arm served as a 

control (control arm). The forearms were supported with arm supports. The 

index fingers of both hands were placed in probes, which were inflated (see 

Figure 2-6A) 

 

Figure 2-6 Reactive hyperaemia index using Endo-PAT® 
(A) Endo-PAT set up shown. (B) An example output with normal reactive hyperaemia 
following blood pressure occlusion. (C) A subject with impaired reactive hyperaemia.  

 
After a 10 minute equilibrium period, signal recording started. Changes in 

pulsatile volume were sensed by a pressure transducer in the probe, which 

relayed the signal to a personal computer for analysis and display. After 5 

minutes, the blood pressure cuff on the study arm was inflated to 50mmHg 

above systolic pressure for 5 minutes (minimum 200mmHg). The cuff was then 

deflated to induce reactive hyperaemia. Signal was recorded for a further 5 

minutes.  
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The PAT score output known as the reactive hyperaemia index (RHI), was 

automatically calculated as the ratio of the PAT signal averaged post and pre-

occlusion. The value was normalised to measurements in the contralateral arm 

which serves as a control for non-endothelium dependent systemic effects (for 

example increased sympathetic nerve outflow due to pain from hyperaemia). An 

RHI of <1.67 is thought to represent impaired endothelial function (Itamer, 

2015). Normal values are thought to be about 2.0 (Anderson and Phillips, 2015) 

(Figure 2-6). Patients were excluded if there was incomplete occlusion or 

excessive movement artefact.  

2.8.7 Carotid intima-media thickness (CIMT) 

2.8.7.1 Background 

Clinical carotid ultrasound is used in the assessment of patients with stroke or 

TIA to evaluate for the presence of occlusive carotid plaques, and to assess 

blood flow. However visualisation of 2 echogenic lines, representing the 

interfaces between the lumen and adventitia, allows measurement of the 

intima-media thickness of the carotid wall (CIMT). Increased CIMT in the 

common carotid represents an adaptive hypertrophy to shear stress and changes 

in blood flow, and is a marker of generalised atherosclerosis. It signifies an 

increased risk of cardiovascular and cerebrovascular disease (Bots et al., 1997, 

O'Leary and Bots, 2010).  

CIMT increases with age but is also associated with sex, blood pressure, BMI, 

cholesterol, and diabetes (O'Leary and Bots, 2010). A measurement of >0.9mm is 

regarded as definitely abnormal, although the relationship between thickness 

and cardiovascular risk is thought to be a continuous one (Mancia et al., 2007, 

Lorenz et al., 2007).  

Change in CIMT in individual patients over time is very small (0.0147 mm/year) 

and for individual patients the error in measurement, likely exceeds the change 

(O'Leary and Bots, 2010). However, changes can be used in clinical trials with 

larger numbers of patients to assess the effect of therapeutic interventions.  
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The widespread application of CIMT has been limited by the requirement for 

comprehensive training, and technical variations across protocols. The 

development of a consensus document aims to standardise CIMT readings (Stein 

et al., 2008) 

2.8.7.2 Method 

B-mode ultrasonography of the right common carotid artery was performed with 

a 7-MHz linear array transducer (Acuson, Sequoia). Depth was set at 40mm and 

frequency 8MHz. 3 ECG leads were attached to the patient to allow R-wave 

synchronisation.  

The patient was positioned supine with their head extended and positioned 

slightly towards the left. A Meijer Carotid Arc© (Meijer Medical Ultrasound, 

Netherlands) and head rest was used to position the patient. The participant’s 

nose was at 240o.  

A longitudinal image of the carotid was displayed, with the anterior (near) and 

posterior) far walls of the carotid artery evident as bright lines separated by a 

hypoechogenic space. The carotid bulb and the distal 1cm of the common 

carotid artery were visualised (see Figure 2-7).  

2 static images (synced to the R wave of the ECG) and a loop image with 3 heart 

beats were recorded with the ultrasound probe at 90o and 135o.  

Finally an assessment of internal carotid velocity was made. If this is >1.25 m/s 

this may indicate significant upstream carotid stenosis and therefore the 

magnetic resonance angiography image was reviewed. In 1 patient at baseline 

(aged 36) velocities over 1.25m/s were recorded, but no carotid lesion was seen 

on MR angiography.  

The above process was then repeated on the left carotid.  

2.8.7.3 Analysis 

CIMT was calculated by off-line analysis with dedicated software (Siemens 

Syngo® Arterial Health Package). This uses automatic border detection. The 
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distal 1cm of common carotid was selected, and the borders automatically 

detected with manual correction if required. Readings were taken from R-wave 

synchronised images at 90o and 135o where available. All readings were repeated 

twice. The mean of both studies at 90o and 135o on both sides was calculated to 

give a single overall CIMT.  

Single measures intraclass correlation coefficient for average CIMT at baseline 

was 0.96 (0.90 – 0.98) and 0.98 (0.95 – 0.99) at year 1. In 3 patients, only the 

right carotid was imaged at baseline. These were included as there was no 

significant difference between right and left carotids at baseline or year 1.  

 

Figure 2-7 Carotid intima media thickness (CIMT) 
The left carotid has been identified at angle 135 degrees. The intima-media layers of the 
posterior arterial wall are clearly seen and are shown with white arrows. The start of the 
carotid bulb is marked with +.  
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2.9 Transcranial Doppler Ultrasound 

2.9.1 General Testing Conditions 

Transcranial Doppler ultrasound was performed at the Southern General Hospital 

by the author. Recommendations for vascular studies were followed where 

possible (Van Bortel et al., 2002). Patients were asked to avoid caffeine and 

cigarettes for 4 hours prior to the procedure. The test was performed in a quiet 

room with the patient semi-supine.  

2.9.2 Procedure 

The procedure was performed as per a standard operating procedure (Appendix 

2). Transcranial Doppler studies were performed with a ST3/Model PMD 150 

(Spencer Technologies, Seattle, WA). PMD provides 33 gates of continuous 

Doppler information over a 6mm wide and 66mm deep volume, which allows for 

rapid vessel location and image acquisition. 

Blood pressure was recorded after a 5 minute rest period whilst supine. A pulse 

oximeter was attached and pulse rate, oxygen saturation and respiratory rate 

were measured continuously during the course of the study (IntelliVue MP30, 

Philips Medical Systems, Netherlands). Data every 12 seconds were recorded. 

Inspired and end expiratory gases were also measured. If this monitor was not 

available ETCO2 was recorded with a capnograph (Handheld Capnograph, 

Nellcor, Tyco Healthcare Group).  

The middle cerebral artery (MCA) was identified in the transtemporal ultrasound 

window, by placing a lubricated 2Hz ultrasound probe over the zygomatic arch 

and angling towards the contralateral ear. Depth was set at 50mm and modified 

to get maximum spectrogram signal. Once identified, the ultrasound probe was 

secured to a probe fixation head frame (Marc Series, Spencer Technologies, 

Seattle, WA). The left middle cerebral artery was then identified with the same 

procedure.  The vessels were labelled with RMCA (right middle cerebral artery) 

or LMCA (left middle cerebral artery). Once an adequate spectrogram trace was 

obtained an envelope trace was activated which tracked the maximum blood 

flow velocity in the spectrogram.  
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Once a signal was obtained the patient was allowed to rest for several minutes 

whilst other equipment was set up. An anaesthetic mask (QuadraLite Mask, Ref 

7193, Intersurgical Ltd, Wokingham, Berkshire, UK) and filter (Clear-Therm 3 

HMEF, Luer Lock Port, Ref 1541, Intersurgical) were attached to the patient with 

a latex-free harness (Ref 2224, Intersurgical Ltd).  

A catheter mount (Ref 3514, Intersurgical Ltd), filter (Clear-Therm 3 HMEF, Luer 

Lock Port, Ref 1541, Intersurgical Ltd) and unidirectional breathing circuit (Ref 

2013014, Intersurgical Ltd) were attached with oxygen tubing to a cylinder 

containing 6% CO2/air mixture (BOC Medical, Manchester, UK, Medical Special’s 

Licence Number ML/0735/01).  

The subject breathed normal air for 3 minutes and then the anaesthetic mask 

was connected to the hypercapnia circuit and 6% CO2/air mixture was 

administered for 3 minutes. The patient was then administered normal air for a 

further 3 minutes. 

TCD data was continuously monitored by the Data Stream Output function and 

digitally recorded for off-line analysis. The data included 

 Data time stamps 

 Doppler settings: Vessel label, Depth, Power, Sample 

 Spectrogram envelope derived peak, diastolic, and mean velocities each 

second for each channel.  

2.9.3 Analysis 

If both MCAs were successfully recorded, the mean of the 2 sides was used for 

analysis; otherwise a single MCA was used. Traces were excluded if end-tidal 

carbon dioxide was not maintained during the hypercapnia challenge suggesting 

a circuit leak. EtCO2 readings that were clearly outliers (>1kPa from average) 

were excluded from calculation of mean EtCO2.  

Peak systolic velocity (PSV), diastolic flow velocity (DFV) and mean flow velocity 

(MFV) were automatically calculated by integral software.  
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Cerebrovascular reactivity (CVRTCD) was calculated as percentage change in 

mean flow velocity in hypercapnia compared to normocapnia per kPa: 

CVRTCD=
MFVhypercapnia- MFVnormocapnia

MFVnormocapnia

 x 
100

EtCO2 hypercapnia- EtCO2 normocapnia

 

2.10 Magnetic Resonance Imaging 

2.10.1 General Testing Conditions 

Magnetic Resonance Imaging (MRI) took place in the Neuroradiology Department 

of the Southern General Hospital. Recommendations for vascular studies were 

followed where possible (Van Bortel et al., 2002). The participant was asked to 

remove any metal objects and make up. Medical staff supervising the MRI scans 

had undergone training in MRI safety from a Clinical Physicist.  

2.10.2 MRI screening 

A brief MRI screening assessment was performed on the participant’s first study 

visit in order to identify any possible contraindications to MRI scanning. Allergies 

to contrast and recent eGFR were also recorded, and this record was passed on 

to the MRI radiographers in advance. On the day of each MRI scan a full 

screening was performed by a trained neuroradiographer.  

2.10.3 MRI procedure 

The participant was asked to lie on the MRI scanner. A standard 8-channel head 

coil (GE Medical Systems, Milwaukee, Wisconsin) was placed around their head. 

The participant was given earplugs and a hand-held alarm which they could press 

if they were distressed or unwell. The patient was continually under observation 

and could be communicated with via the intercom. The set-up of the MRI room is 

shown in Figure 2-8. 
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Figure 2-8 MRI room set up 
The patient and monitor were in the magnet room. Medical staff and neuroradiographers 
could observe the patient. Gas tubing was passed through the wave guide from gas 
cylinders kept in the MRI control room.  

The MRI scanning protocol was divided into 2 sessions lasting approximately 30 

minutes each. This was to improve patient comfort and reduce movement 

artefact that might occur with one hour of MRI scanning.  

After the first scanning session the participant was allowed a short break. MRI 

scans which required patient monitoring and gas administration were then 

performed (further details below). On the first MRI visit a venflon was then 

inserted into the antecubital fossa for the administration of gadolinium. 

2.10.4 Imaging protocol  

Tables 2-6 and 2-7 give details of the MRI sequences which were performed on a 

3.0 Tesla (3T) scanner (General Electric Signa® Excite). At 1 year and 2 year 

follow up scans, MRA and gadolinium perfusion was not performed. Not all 

sequences have been analysed as part of this thesis.  
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Table 2-6 MRI sequence parameters – Part 1 

Seq. Localiser 
T1 
sagittal 

T2 
FLAIR 

3D 
T1 

ASSET SWAN DTI fMRI  MRA 

TR 5 2500 10000 9 150 
Min 
full 

9000 2000 8.6 

TE 1.2 Min full 140 3.6 2.1 25 
Min 
full 

30 3.5 

TI - 920 2250 450 - - - - - 

Flip angle 30 90 90 12 50 15 90 78 8 

NEX 1 1 1 1 1 1 1 1 0.629 

No slices 15 30 27 156 36 84 37 40 329 

Slice 
thickness 

10 3 5 1 7 3.6 3.5 3.5 1.2 

Space 
between 
slices 

15 5 6.5 1 7 1.8 4.5 4.5 0.6 

Matrix 
256 x 
128 

320 x 
224 

384 x 
256 

320 x 
320 

64 x 
64 

320 x 
224 

64 x 
64 

64 x 
64 

320 x 
224 

Ф FOV 1 1 1 0.8 1 1 1 1 0.9 

FOV 
240 x 
240 

240 x 
240 

240 x 
240 

240 x 
240 

300 x 
300 

240 x 
240 

224 x 
224 

224 x 
224 

260 x 
260 

Orientation 3 plane AC-PC AC-PC 
AC-
PC 

Axial Axial AC-PC AC-PC Sagittal 

Time 0:12 1:31 3:20 4:28 0:06 02:15 05:15 10:12 3:11 

TR = repetition time, TE = echo time, TI = inversion time, NEX = number of 
excitations, FOV = field of view, DTI = diffusion tensor imaging, fMRI = functional 
MRI, MRA = magnetic resonance angiography, SWAN = susceptibility weighted 
angiography.  
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Table 2-7 MRI sequence parameters – Part 2 

Seq. Localiser 
T1 
sagittal 

3D ASL 
(air) 

3D ASL 
(CO2) 

PWI (air) PWI (CO2) 

TR 5 2500 4864 4864 2000 2000 

TE 1.2 Min full 10.1 10.1 25.9 25.9 

TI - 920 - - - - 

Flip angle 30 90 155 155 78 78 

NEX 1 1 3 3 1 1 

No slices 15 30 40 40 ?22 ?22 

Slice thickness 10 3 3.5 3.5 3.5 3.5 

Space between 
slices 

15 5 3.5 3.5 5.5 5.5 

Matrix 256 x 128 320 x 224 512 x 8 512 x 8 128 x 128 128 x 128 

Ф FOV 1 1 1 1 1 1 

FOV 240 x 240 240 x 240 240 x 240 240 x 240 240 x 240 240 x 240 

Orientation 3 plane AC-PC Axial Axial Axial Axial 

Details   pCASL pCASL 
Half dose 

gadolinium 
Half dose 

gadolinium 

Post Label 
Delay 

- - 2025 2025 - - 

Gas   Air 6% CO2 Air 6% CO2 

Time 0:12 1:31 04:42 04:42 03:00 03:00 

TR = repetition time, TE = echo time, TI = inversion time, NEX = number of 
excitations, FOV = field of view, ASL = arterial spin labelling, PWI = perfusion 
weighted imaging, pCASL = pseudo continuous ASL.  
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2.10.5 Gas administration and equipment 

Subjects were monitored with an MRI compatible anaesthesia patient monitor 

(Veris® Vital Signs Monitor, MEDRAD, Indianola, PA) (Figure 2-9).  

 

Figure 2-9 MRI patient monitor interface 
Heart rate, respiratory rate, oxygen saturation and inspiratory and expiratory O2 and CO2 
could all be measured. Blood pressure and ECG was not monitored during these 
experiments.  

A face mask (Ref 1141, Intersurgical Ltd) was placed on the subject’s face. The 

expiratory ports were closed with tape, and the mask secured to the patients 

face with tape to improve seal. The mask was then connected to a specially 

designed unidirectional breathing circuit (Ref 2013014, Intersurgical Ltd) via a 

catheter mount (Ref 3514, Intersurgical Ltd) and filter (Clear-Therm 3 HMEF, 

Luer Lock Port, Ref 1541, Intersurgical). Bubble tubing (ID 3mm, Ref 032-10-067, 

Flexicare Medical Ltd, UK) was attached to the circuit with a 22M connector (Ref 

1968, Intersurgical Ltd), and then fed through the waveguide into the MRI 

control room (Figure 2-10). Here it was attached to a cylinder containing 

medical air or 6% CO2/air mix (BOC Medical, Manchester, UK, Medical Special’s 

Licence Number ML/0735/01). Both gases were administered by a common 

tubing system to avoid change of mask or tubing during the scan. 
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Figure 2-10 Gas administration set-up 

 
If the face mask was not tolerated (1 patient) a single use dual nare nasal 

cannula with gas monitoring was used (Ref 032-10-127, Flexicare Medical Ltd, 

UK) and attached to the bubble tubing via a connector. The first 3 patients at 

baseline had gas delivered via a Quadralite anaesthetic face mask (Ref 7193, 

Intersurgical Ltd) attached with a CPAP harness (Ref 2224, Intersurgical Ltd) as 

per TCD testing. These patients underwent perfusion imaging with the 

Neurovascular head coil. After 3 patients this was switched to the head coil for 

improved signal-to-noise ratio.  

2.11 MRI image processing 

MRI scans were anonymised and then transferred to University of Glasgow XNAT 

(open source imaging informatics platform). Scans were then downloaded in 

DICOM format and transformed to NIFTI using dcm2nii from MRIcron (Rorden et 

al., 2007). Image analysis took place on either a Dell PC with “WindowsTM” 7 

platform, with an Intel Core i7 processor; or a Linux based platform on a Dell PC.  
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2.11.1 Lesion definitions 

White matter hyperintensities were defined as signal abnormality of white 

matter showing hyperintensity on fluid-attenuated inversion recovery images 

(Wardlaw et al., 2013). Where lesions in the subcortical grey matter or 

brainstem were included the term subcortical hyperintensities (SH) was used 

(Wardlaw et al., 2013).  

Lacunes were defined as: round or ovoid, subcortical, fluid-filled cavities (signal 

similar to CSF) of between 3-15mm in diameter, consistent with a previous acute 

small subcortical infarct or haemorrhage in the territory of 1 perforating 

arteriole (Wardlaw et al., 2013). 

Subcortical lacunar lesions were defined as groups of rounded, circumscribed 

lesions just below the cortex at the junction of grey and white matter with a 

signal intensity identical to CSF (van den Boom et al., 2002).  

Cerebral microbleeds were defined as small (usually 2-5mm in diameter but up 

to 10mm) areas of signal void with associated blooming seen on susceptibility 

weighted imaging (Wardlaw et al., 2013).  

Perivascular spaces were defined as fluid-filled spaces (similar signal intensity to 

CSF) which follow the course of a vessel as it passes through brain tissue. They 

appear linear when imaged parallel to the course of a vessel, and round when 

imaged perpendicular to the vessel course. They do not have a hyperintense rim 

(unless passing through white matter hyperintensity) (Wardlaw et al., 2013). 

They were defined as <3mm in diameter, unless they were in region of the 

anterior commissure where giant perivascular spaces can be seen (Saeki et al., 

2005).   

2.11.2 Visual examination of scans 

Visual examination of scans took place on a Dell workstation using the PACS 

system. Scans were reviewed twice, at least one month apart, without reference 

to previous results. Scans were inspected for hyperintensities, lacunes, 

subcortical lacunar lesions and enlarged perivascular spaces.  
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2.11.2.1 Scheltens score 

This semi-quantitative scale examines anatomical regions, taking into account 

both lesion size and number (Scheltens et al., 1993). It scores 3 periventricular 

regions, 4 white matter lobar regions, 5 basal ganglia structures and 5 

infratentorial regions (Table 2-8). The scale was also modified for CADASIL 

patients by including assessment of the following areas: external-capsule-insula 

and corpus callosum. Involvement of the temporal lobe was also categorised by 

location: anterior, posterior or anterior-posterior. The posterior margin of the 

amygdala was taken as the boundary between anterior and posterior portions 

(O'Sullivan et al., 2001). Scans were scored 3 times by the same reader and the 

median of the last 2 runs taken at baseline. At year 1, scans were scored twice, 

and the median taken.    
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Table 2-8 Scheltens scale 

Periventricular Hyperintensities (PVH 0 – 6) 

Caps – Occipital 
Caps – Frontal 
Bands – Lateral ventricles 

0 = absent 
1 = <5 mm 
2 = >5 mm and <10 mm 

White matter hyperintensities (WMH 0 – 24) 

Frontal 
Parietal 
Occipital 
Temporal 

0 = absent 
1 = <3mm, n < 5 
2 = <3mm, n > 6;  
3 = 4 – 10mm, n < 5 
4 = 4mm – 10mm, n >6;  
5 = >11mm, n >1 
6 = confluent 

Basal Ganglia Hyperintensities (BG 0 – 30) 

Caudate nucleus 
Putamen 
Globus pallidus 
Thalamus 
Internal capsule 

0 = absent 
1 = <3mm, n < 5 
2 = <3mm, n > 6;  
3 = 4 – 10mm, n < 5 
4 = 4mm – 10mm, n >6;  
5 = >11mm, n >1 
6 = confluent 

Infra-tentorial foci of hyperintensity (ITF 0 – 24) 

Cerebellum 
Mesencephalon 
Pons 
Medulla 

0 = absent 
1 = <3mm, n < 5 
2 = <3mm, n > 6;  
3 = 4 – 10mm, n < 5 
4 = 4mm – 10mm, n >6;  
5 = >11mm, n >1 
6 = confluent 

CADASIL modified (0 – 12) 

External capsule-insula 
Corpus callosum 
 
 
Temporal lobe location (anterior, 
posterior, ant/post) 

0 = absent 
1 = <3mm, n < 5 
2 = <3mm, n > 6;  
3 = 4 – 10mm, n < 5 
4 = 4mm – 10mm, n >6;  
5 = >11mm, n >1 
6 = confluent 

 

2.11.3 Lacune number and volume 

3D T1 image was loaded into Analyze® with equalisation of voxels. Lacunes were 

identified visually and a seed placed within the lacune. If present lacunes were 

counted in the following areas on both sides of the brain: brainstem, 

cerebellum, caudate, globus pallidus, putamen, thalamus, internal capsule, 

external capsule, corpus callosum, deep and periventricular white matter, and 

frontal, parietal, temporal and occipital lobes. Lacunes were subdivided into 

two size categories: 3-<10mm and 10-15mm. 3D seed-based thresholding tools 

were then used to outline the lacune (Analyze v 11.0, Analyze Direct Inc., 
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United States). This was repeated for each lacune creating an object map. The 

volume of lacunes was calculated. Lacune volume was normalised to intracranial 

cavity volume (NLV, %).  

This was performed twice on scans at baseline. Single measures intraclass 

correlation was 0.935 (0.845 - 0.973). However as lacunes are binary, i.e. 

present or not present, only the second score was taken for analysis.   

2.11.4 Subcortical lacunar lesions 

Presence or absence of these lesions was recorded in the following areas: 

anterior temporal, posterior temporal, frontal, parietal, and occipital lobe. 

2.11.5 Cerebral microbleeds 

Identification of cerebral microbleeds was assisted by the current recommended 

criteria detailed in Table 2-9 (Greenberg et al., 2009). 

Table 2-9 Recommended criteria for identification of cerebral microbleeds*  

 

Black lesions on T2*-weighted MRI (or susceptibility weighted imaging) 

Round or ovoid lesions (rather than linear) 

Blooming effect 

Devoid of signal hyperintensity on T1-weighted or T2-weighted sequences.  

At least half of lesion surrounded by brain parenchyma 

Distinct from other potential mimics such as iron, calcium, bone or vessel flow 

voids.  

Clinical history excluding traumatic diffuse axonal injury 

*(adapted from Greenberg, 2009) 

SWI scans were inspected for assessment of microbleeds, with reference to 

anatomical scans (T1 and FLAIR) to exclude mimics. The Microbleed Anatomical 

Rating Scale (MARS), a validated rating scale for cerebral microbleeds, which has 

shown good intra-rater agreement over time, was used to classify microbleeds 

on the basis of certain/uncertain, location, size and number (Gregoire et al., 

2009). As recommended for research studies, only definite microbleeds were 
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included in the final count, but uncertain microbleeds were recorded for 

longitudinal comparison (Charidimou et al., 2012).  

The rater (FM) received training in microbleed detection from a senior 

neuroradiologist, Dr C Santosh. At baseline, microbleeds were counted on scans 

3 times. If there was disagreement between the 2nd and 3rd review, a second 

reviewer (Dr Dani) was asked to decide if a microbleed was present or not. At 

year one, scans were scored twice and the same process followed.   

2.11.5.1 Perivascular spaces 

The number of perivascular spaces was assessed on T2 FLAIR and T1 sequences 

using the Enlarged Perivascular Spaces (EPVS) scale (Potter et al., 2014). This 

was designed for use on T2 weighted images although these were not available. 

This rates EPVS in 3 areas: basal ganglia (including the insular cortex but 

excluding the anterior perforated substance), midbrain and centrum semiovale.  

Both sides of the brain were reviewed and the side with the higher number of 

EPVS was counted.  The rating categories are shown in Table 2-10.  

Table 2-10 EPVS Scale 

 Rating Description 

Basal ganglia and centrum 

semiovale 

0 

1 

2 

3 

4 

No EPVS 

1-10 EPVS (mild) 

11-20 EPVS (moderate) 

21-40 EPVS (frequent) 

>40 EPVS (severe) 

Midbrain 0 

1 

No EPVS visible 

EPVS visible 

 

The scans were scored 3 times and the median taken. The weighted kappas 

between the second and third runs were: good for basal ganglia, 0.63 (0.39 – 

0.88); moderate for centrum semiovale 0.54 (0.14 – 0.94); and good for 

midbrain, 0.77 (0.34 – 1).  
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2.11.6 Subcortical hyperintensity segmentation 

There are a variety of techniques used to outline or segment subcortical 

hyperintensities (including grey matter and brainstem hyperintensities). Several 

were investigated in this project. 5 randomly selected scans were used as 

practice scans to validate method reliability.  

2.11.6.1 Method1: Manual segmentation 

Manual maps were drawn by hand using the paint tool in FSL on the original 

FLAIR image. This was entirely manual and not based on thresholds.  

2.11.6.2 Method 2: Manual maps with thresholding 

The FLAIR image was loaded into the software package “Medical Image 

Processing, Analysis and Visualisation” (MIPAV, National Institutes of Health, 

Bethesda, MD, USA). Hyperintensities were identified and a seed placed within 

the region. The “lasso” feature was then used to vary the threshold of the seed 

to best outline the hyperintensity. This was repeated in all areas of 

hyperintensity.  

2.11.6.3 Methods 3 and 4: Thresholding  

T1 3D scans were co-registered to FLAIR using optimized automatic 3D 

registration in MIPAV (affine 12, trilinear interpolation, cost function – 

correlation ratio, search algorithm: Powell’s calling Brent’s, no weight). The 

transformed T1 image was then skull-stripped in FSL using BET (-“B” f 0.1) 

(Smith, 2002, Smith et al., 2004). Manual modification of brain mask was used if 

required. The skull stripped scans were then segmented using FAST in FSL (Zhang 

et al., 2001). Mixed type partial volume effect map was binarised; manually 

modified if required and then was used to mask the FLAIR to create a brain 

parenchyma image. This was edited if required. 

Two options were then investigated. In method 3, the mode of the masked FLAIR 

image was multiplied by 1.3 and this number used to threshold the image. Once 

maps were created, manual modification to remove single or cortical voxels was 
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used. In method 4, two areas of normal appearing white matter (NAWM) were 

identified and a region of interest drawn. The mode of these two regions was 

multiplied by 1.45 and used to threshold the image. These techniques were 

based on the segmentation method described by Smart et al (Smart et al., 

2011), but the mode was different to ensure optimal thresholding in a different 

cohort of patients. 

The different methods and two example patients can be seen in Figure 2-11.  

 

Figure 2-11 Subcortical hyperintensity segmentation methods 
Method 1 is a manual method, Method 2 manual with lasso tool to outline SH and methods 3 
and 4 based on thresholding. Examples of patients 09 and 20 can be seen. NAWM= normal 
appearing white matter, SH = subcortical hyperintensity, FLAIR = fluid attenuated inversion 
recovery.  
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2.11.6.4 Choice of method 

Entirely manual segmentation (method 1) was very labour intensive and was felt 

likely to introduce excessive user dependent error in longitudinal analysis. 

Method 2 was used as gold standard as was manually derived, to compare to 

methods 3 and 4, and when masks were overlapped the median percentage of 

shared voxels was 71% for both methods 3 and 4. Method 3 was chosen as it 

could be difficult to identify NAWM on some patients (for example 09 in Figure 

2-11) and also this was felt to introduce more individual user variability. This 

method was repeated in 5 patients and it showed a high level of repeatability as 

this method was mainly automated (Figure 2-12). SH maps were therefore 

created with method 3 at baseline (Figure 2-13).  

 

Figure 2-12 Subcortical hyperintensity thresholding repeatability 
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Figure 2-13 Examples of subcortical hyperintensity segmentation 

 

2.11.7 Other imaging processing 

Details of other image processing methods are contained in individual chapter 

methods sections.  



Chapter 3 – Epidemiology of CADASIL in the West of Scotland 

3.1 Introduction 

Whilst CADASIL is proposed to be the most common cause of inherited stroke and 

exist in all ethnic groups, accurate epidemiological data remain limited. In 2004, 

the prevalence of confirmed CADASIL in adults in the west of Scotland, was 

estimated at 1.98 per 100,000 with an estimated mutation prevalence of 4.15 

per 100,000 population (Razvi et al., 2005b). The study was hampered by 

incomplete genetic screening, and the prevalence data were felt to be an 

underestimate of the true disease prevalence. Contributing factors identified as 

likely to lead to an under diagnosis of CADASIL included a high local burden of 

confounding differential diagnoses including multiple sclerosis and conventional 

cerebrovascular disease, and recognition of the disease only in large pedigrees 

with typical imaging findings (Razvi et al., 2005a). The first two pedigrees 

diagnosed with hereditary vascular dementia (subsequently confirmed as 

CADASIL) in our unit in 1986, had over 100 members at the time of formal 

diagnosis (St Clair et al., 1995).  

Recent changes have led to the proposition that a higher prevalence of CADASIL 

may now be identifiable. These include the capacity for full genetic screening 

for typical cysteine involving mutations in exons 2 to 23 of the NOTCH3 gene, 

available locally since 2007. Atypical mutations have also now been proposed to 

cause CADASIL, including those which do not involve a cysteine residue 

(Wollenweber et al., 2015). The development of a specialist clinical service 

based at a single centre in the west of Scotland, allows the opportunity for near 

complete capture of cases. Improved awareness amongst clinicians of the 

manifestations of the disease, along with wider use of brain MRI aiding 

identification of specific radiological features such as external capsule 

hyperintensity (O'Sullivan et al., 2001) may lead to increasing numbers of 

diagnosed cases over time. 

Given that knowledge of the epidemiology of a disease is vital for planning of 

clinical services, as well as social care cost planning, I aimed to investigate the 

epidemiology of CADASIL in the west of Scotland. The aims of this chapter are:  
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1) to calculate the disease prevalence of CADASIL in 3 health boards in the West 

of Scotland; 

2) to estimate the disease prevalence (heterozygote frequency) within the 

Glasgow area.  

3.2 Methods 

3.2.1 Identification of cases 

A neurovascular genetics clinic was established in 2002 in association with local 

clinical genetics services, to facilitate the diagnosis and management of patients 

with CADASIL. Referrals are accepted from stroke physicians, neurologists, 

general practitioners and family members across Scotland. Subjects were 

included if their diagnosis of CADASIL was prior to 31st December 2012.  

Individuals were classified as having confirmed CADASIL if they had a pathogenic 

mutation on analysis of exons 2-23 of the NOTCH3 gene. First, second and third 

degree relatives (symptomatic or asymptomatic) of confirmed CADASIL cases in 

whom genetic testing had not been undertaken were defined as having a 50%, 

25% or 12.5% a priori risk of CADASIL.  

Clinical records from the neurovascular clinic and genetic records from the West 

of Scotland Clinical Genetics Service were reviewed. Pedigrees were constructed 

and drawn using Progeny CLINICAL Version 8 (Progeny Software LLC, Delray 

Beach, FL, www.progenygenetics.com). 

3.2.2 Population and Geographical area 

Although clinic attendees came from a wide geographical area, the majority of 

patients were from west and central Scotland (represented by Greater Glasgow 

and Clyde [GGC], Lanarkshire and Forth Valley Health boards). This population is 

predominantly of Scottish and Irish origin. The 2011 mid-year population 

estimates of total residents (all ages) for GGC, Lanarkshire and Forth Valley 

health boards were 1,210,254, 563,185 and 295,541 respectively. The combined 

total population in GGC and Lanarkshire was 1,773,439. The adult age (18 and 

above) populations were 974,040, 443,821 and 234,237 respectively (National 

https://mail.campus.gla.ac.uk/owa/redir.aspx?C=d72f2443b0f243e8abe3f176c84e4c31&URL=http%3a%2f%2fwww.progenygenetics.com%2f
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Records of Scotland, 2012).  The total and adult population for Scotland was 

5,254,800 and 4,218,391. To estimate mutation prevalence I recorded the 

location and status of all known living family members from pedigrees from the 

GGC and Lanarkshire health boards, and excluded those known to be living out 

with this area. The number of people ‘at risk’ was then multiplied by the 

percentage risk to give an estimate of affected people:  

Mutation prevalence

= No of known CADASIL cases + (No of 1stdegree at risk relatives 

×  0.5) + (No of 2nddegree at risk relatives × 0.25)

+ No of 3rd degree at risk relatives ×  0.125) 

3.2.3 Statistics 

For prevalence estimates where the number of subjects was less than 100, 95% 

confidence intervals were derived from the Poisson distribution. If the number of 

subjects was over 100 the normal approximation was used: 

Number of cases

Population
±Zα/2((

√Number of cases

Population
 

where Ζα/2 is the α/2-level for the normal deviate (e.g. 1.96 for 95% confidence 

intervals) (Washington State Department of Health, 2002).  

3.3 Results 

3.3.1 Disease prevalence 

49 families with CADASIL were identified. 105 subjects (52 male, 52 female) 

were identified to have had CADASIL, of whom 15 were deceased. Status was 

unknown in 3 patients. All were of White ethnicity. The cumulative number of 

pedigrees diagnosed over time is shown in Figure 3-1. 21 different mutations 

were identified in 49 pedigrees with 61% of mutations occurring in exon 4 (Table 

3.1). The spread of mutations was similar to that previously reported in UK 

populations (Markus et al., 2002).  
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Figure 3-1 Cumulative number of CADASIL pedigrees diagnosed in Scotland 

 
  



Chapter 3  107 

Table 3-1 Mutations detected in the Scottish population 

Exon Mutation Site* Amino acid change  Number of 

pedigrees 

2 c.160 C>T Arg54Cys 3 

3 c.239 A>G^ Asp80Gly  1 

3 c.328 C>T Arg110Cys 2 

4 c.397 C>T Arg133Cys 4 

4 c.421 C>T Arg141Cys 9 

4 c.457 C>T Arg153Cys 3 

4 c.505 C>T Arg169Cys 5 

4 c.544 C>T Arg182Cys 2 

4 c.547 T>C Cys183Arg 2 

4 c.580 T>A Cys194Ser 2 

4 c.619 C>T Arg207Cys 2 

4 c.664 T>C^ Cys222Arg  1 

5 c.683 T>G^ Phe228Cys  1 

5 c.733 T>A Cys245Ser 2 

5 c.778 T>C Cys260Arg 1 

5 c.779 G>A Cys260Tyr 1 

6 c.994 C>T Arg332Cys 3 

6 c.931 T>A Cys311Ser  1 

8 c.1336T>G Cys446Gly 1 

18 c.2956 T>C^ Cys986Arg  1 

22 c.3664 T>G^ Cys1222Gly  2 

*Mutation description at the DNA level in coding sequence of NOTCH3. Nucleotide 
number starting from as of the AGT translation initiating methionine(Dunnen and 
Antonarakis, 2000). ^Previously unreported mutations 

 

87 people with CADASIL were confirmed as alive and resident in Scotland across 

a number of health boards (Figure 3-2). For the 3 relevant health boards, the 

number of living adults with confirmed CADASIL was 45 (GGC), 15 (Lanarkshire), 

and 8 (Forth Valley), giving a prevalence of 4.6 (95% confidence intervals 3.4 – 

6.2), 3.4 (1.9 – 5.6) and 3.4 (1.4 – 6.7) per 100,000 adults respectively. Average 

disease prevalence across the 3 regions was 4.1 per 100,000 adults (3.2 – 5.2). 
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Figure 3-2 Location of CADASIL probands 
Location of probands for 47 pedigrees across health boards in Scotland (black dots). The 
position of the Southern General Neurovascular Clinic is shown (red dot).  

3.3.2 Mutation prevalence 

Previous estimates of mutation prevalence in the west of Scotland were based 

on establishing the location of “at risk relatives” (Razvi et al., 2005b). Due to 

the large number of living relatives establishing exact location of all individuals 

was problematic. 27 pedigrees were mainly resident in GGC and Lanarkshire 

health boards, with 637 living family members. 51 were definitely not resident 

within GGC or Lanarkshire health boards. For the remaining family members 

there were 141 at 50% risk, 191 at 25% risk and 93 at 12.5% risk, with the 

remainder at less than 12.5% risk. Estimated gene prevalence was 190 (130 
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estimated + 60 confirmed) NOTCH3 mutation carriers, with a predicted mutation 

prevalence of 10.7 per 100,000 population (9.2 – 12.2). 

3.3.3 Projected affected cases in Scotland 

If the prevalence of CADASIL in the west of Scotland (4.1/100,000 adults) is 

extrapolated to Scotland in general (4,213,391 adults) it can be estimated that 

there are 173 (135 – 219) adults with CADASIL in Scotland.  

3.4 Discussion 

The minimum disease prevalence in CADASIL in Glasgow is 4.6 per 100,000 adult 

residents, a figure more than twice that calculated in 2005. Estimated mutation 

prevalence is approximately 1 per 10,000 people. This figure exceeds recent 

estimates in the North East of England of an “at-risk” population that included 

only first degree relatives of 6.11 per 100,000, although this study lacked 

complete exon screening and only included a small number of pedigrees 

(Narayan et al., 2012).  

Out with the screening for genetic diseases in the newborn, estimation of the 

prevalence of rare diseases is difficult. Levy and Feingold discussed a number of 

rules necessary for study design when determining prevalence including a well-

defined geographical area (GGC Health board), homogenous diagnostic criteria 

(NOTCH 3 mutation), accurate denominator details based on official statistics 

(2011 population estimates) and careful evaluation of family members (Levy and 

Feingold, 2000). In fully penetrant autosomal dominant diseases, such as 

CADASIL and Huntington’s disease, where homozygotes are negligible in 

frequency, the disease frequency and heterozygote frequency should be the 

same. However, many heterozygotes will be symptomless for most of their life, 

and thus not all are recognised as affected (Harper, 2002). Systematic screening 

of asymptomatic family members in order to calculate mutation prevalence is 

neither ethical nor cost-effective, and uptake of presymptomatic screening in 

other genetic neurodegenerative diseases has been shown to be low (Harper et 

al., 2000).  
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Some support for this figure for mutation prevalence may be gained from 

examining the experience in Huntington’s disease. Estimates of the heterozygote 

frequency in Huntington’s disease (using those with CAG frequencies in the 

definite range) suggested the frequency was between around 2.5 times the 

prevalence estimate (Conneally, 1984). Whilst the two diseases are not entirely 

equivalent, both are adult onset autosomal dominant diseases with high 

penetrance. If applied to this CADASIL population in GGC and Lanarkshire, the 

heterozygote frequency (mutation prevalence), would be estimated at 10.3 per 

100,000 population, very close to my estimate.  

There are some limitations to this study. The large number of relatives of the 27 

pedigrees in GGC and Lanarkshire meant determining the exact location of all 

was unfeasible. Pedigree information was often recorded when the index patient 

was first seen, and only updated periodically. Thus I cannot be sure that all 

relatives included in mutation estimation remain in the defined geographical 

areas. 

A further criticism is the use of crude risk percentages which are based upon 

knowledge of the rules of autosomal dominant inheritance. This method is 

believed to overestimate prevalence, and whilst methods have been suggested 

to correct for this, they require a defined age- related risk (Harper, 2002). Given 

the variable natural history of CADASIL, this is difficult to establish.  

Overestimation is possible, but under ascertainment of CADASIL cases may also 

have occurred. Neurological services at this hospital cover GGC and Lanarkshire, 

and cases of CADASIL in Forth Valley are also routinely referred. Therefore, I am 

unlikely to have missed any known CADASIL cases in these health boards. 

However in other Scottish health boards, patients may be managed within their 

local neurological services or by their General Practitioner. There is also likely to 

be a larger pool of cases of CADASIL that are undiagnosed or misdiagnosed, 

particularly in older patients presenting with symptoms who do not undergo an 

MRI. Some patients, particularly those with conventional cardiovascular risk 

factors will also be assumed to have conventional small vessel disease. Accurate 

family histories are also not always available (Razvi et al., 2005a), and in 

particular the importance of psychiatric disease may not be appreciated.  
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This is implied by extrapolation of the GGC prevalence to Scotland, which 

suggests only around half of the cases of CADASIL are actually diagnosed.  

Why does the prevalence of a disease matter? CADASIL remains, by the European 

Union definition of less than 50/100,000 population, a rare disease (European 

Commission, 2008). However 1 in 17 of the population will suffer a “rare 

disease” at some point in their life (www.raredisease.org.uk). Knowing how 

common a disease is will undoubtedly influence health and research resource 

allocation.  

2% of the UK population is disabled by a neurological condition (The Neurological 

Alliance, 2003). The burden of neurological disease is underestimated by 

epidemiological statistics based solely on mortality rates. The Global Burden of 

Disease study (Murray et al., 1996) measured both premature mortality and 

disability (disability-adjusted life years), and highlighted that neurological 

diseases posed a significant burden on health care, which will increase with an 

ageing population (World Health Organisation, 2006). Disability not only incurs 

the direct costs required by provision of services by health and social care, but 

often leads to the loss of a person from the work force. CADASIL causes stroke 

and disability in patients of working age, with minimal effect on life expectancy 

(Opherk et al., 2004) and thus incurs a significant burden on resources. The 

National Service Framework for Long-term conditions, developed with input from 

patients with neurological diseases, aims to improve services for these patients 

and address the unmet need in the UK (Department of Health, 2007). However 

CADASIL remains a disease that is poorly understood by many of the providers of 

such services and thus patients suffering from this disease have a further barrier 

to their care. Furthermore the cognitive changes associated with the disease, 

including apathy and poor organisation, means patients may not be the most 

effective advocates of their own care. 

Providing accurate estimates of disease prevalence, particularly in comparison 

to other neurological diseases (Table 3.2), as well as increasing awareness of the 

disease, may lead to increased provision of services for patients with CADASIL 

and similar disorders.  

 

http://www.raredisease.org.uk/


Chapter 3  112 

Table 3-2 The prevalence of neurological diseases  
(modified from a table from the Neurological Alliance (The Neurological Alliance, 2003) and 
The National Service Framework for long-term conditions (Department of Health, 2007).  

Neurological conditions Prevalence (cases per 

100,000 population) 

Approximate total 

numbers in the UK 

Alzheimer’s disease 1000 700,000 

Epilepsy 430  - 1000 182,750 – 425,000 

Stroke 500 300,000 

Parkinson’s disease 200 120,000 

Charcot-Marie-Tooth disease 40 23,600 

Huntington’s disease 13.5 6000 – 10,000 

CADASIL (estimated) 10.7 6750 

Motor neurone disease 7 4000 

Progressive supranuclear palsy 6 3600 

Multiple system atrophy 1 600 

Ataxia-telangiectasia 0.3 200 

Variant Creutzfeldt Jacob 

disease 

127 cases since 1995 NA 

 

However, evidence of need does not always result in provision, and allocation of 

resources can be driven by a variety of pressures including those from high-

profile patient advocacy groups (for example International Huntington 

Association, Motor Neurone Disease Association), which CADASIL currently lacks.  

3.5 Conclusion 

CADASIL is more common than originally supposed, and should no longer be 

regarded as a footnote in Neurovascular textbooks. The prevalence is likely to 

rise, but what is important for patients is that awareness of the disease, 

amongst neurologists, clinicians and resource allocators, matches this increase. 



Chapter 4 - Respiratory Challenge MRI: Practical Aspects 

4.1 Introduction 

Changes in cerebral blood flow can be caused by alterations in the concentration 

of oxygen (O2) and carbon dioxide (CO2) in the bloodstream (Kety and Schmidt, 

1948a). When used in combination with imaging techniques, this response can be 

used to investigate brain physiology (Aaslid et al., 1989, Battisti-Charbonney et 

al., 2011, Novack et al., 1953). Magnetic resonance imaging (MRI) is a non-

invasive, repeatable technique which allows detailed structural and functional 

information about the brain to be obtained. “Respiratory challenge MRI” can be 

defined as the modification of the concentration of arterial oxygen (PaO2) 

and/or carbon dioxide (PaCO2) to induce a change in cerebral function or 

metabolism which is then measured by MRI. Investigation of brain 

pathophysiology including cerebral blood flow, oxygenation, metabolic rate and 

microvascular function in diseases such as stroke (Dani et al., 2010), dementia 

(Cantin et al., 2011), epilepsy (Kalamangalam et al., 2012) and brain tumour 

(Yetkin and Mendelsohn, 2002, Hsu et al., 2010) has been undertaken. 

A number of respiratory challenge approaches have been attempted. These can 

range from modification of respiratory rate, including breath hold (Hsu et al., 

2010) and hyperventilation, to complex modelling of both respiratory parameters 

and brain signal change (Shen et al., 2011, Mutch et al., 2012). There are 

significant practical challenges to undertaking this technique however.  

The aims of this chapter are to: 

1) review the rationale for respiratory challenge MRI in brain disease; 

2) discuss techniques, equipment, monitoring and planning such experiments; 

3) propose some recommendations for optimization of these studies; 

4) discuss the potential use of this in cerebrovascular disease.   
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4.2 Rationale 

The human brain employs an elegant system of regulation of cerebral blood flow 

(CBF) to ensure adequate delivery of O2 and nutrients to brain tissue, according 

to need and regardless of changes in blood pressure, oxygenation or other 

factors. CBF is determined by the following equation: 

CBF =
cerebral perfusion pressure

cerebrovascular resistance
 

Normal global CBF is around 50mL/100g/min (Kety and Schmidt, 1948b) with 

higher values found in grey matter than white matter (Leenders et al., 1990). 

CBF varies according to age, time of day, anatomical area and neuronal activity 

in order to maintain adequate nutrient delivery. The principle mechanism by 

which CBF is adjusted according to demand is by changing cerebrovascular 

resistance. This is governed by small cerebral vessels, particularly pre-capillary 

arterioles (<100µm)(Wei et al., 1980), which are able to change calibre in 

response to a number of stimuli, a process known as cerebrovascular reactivity 

(CVR). Capillaries may also have an important role through the action of 

pericytes. Dilation of pericytes may account for the majority of CBF 

augmentation in response to neuronal activation (Hall et al., 2014). If CVR is 

impaired, then autoregulation of CBF may fail.  

Whilst a variety of methods exist for measuring CBF, there are difficulties in 

obtaining accurate, quantifiable CBF measurements, including inter-individual 

variability (Leenders et al., 1990), external factors(to be discussed further 

below)(Laurent et al., 2006),  and inaccuracies in modelling methods (Eskey and 

Sanelli, 2005). Large patient cohorts may be required to detect differences in 

CBF in disease states.  

Measuring cerebrovascular reactivity (CVR) is an alternative technique. CVR may 

be measured by applying a “challenge” such as the vasodilator acetazolamide 

(Vagal et al., 2009) or modification of arterial gas concentration. The use of a 

challenge uses the individual as their own control and negates some of the 

problems of direct measurement (Eskey and Sanelli, 2005). CBF, and hence CVR, 
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can be measured by MRI sequences including arterial spin labelling (ASL) or 

dynamic susceptibility contrast perfusion MRI (Wintermark et al., 2005).  

Changes in vessel calibre in response to a challenge can lead to changes in other 

parameters. This includes oxygenation and cerebral blood volume (CBV) which 

are then measurable by other MRI techniques. Therefore the change in signal is 

defined as: 

% change=
MRI parameterpostchallenge‐ MRI parameterbaseline

MRI parameterbaseline
 × 100 

For standardization of signal change, it should be corrected for the change in gas 

concentration delivered to, or expired by, the subject, Therefore the general 

formula for defining CVR in respiratory challenge MRI is: 

CVR=
MRIparameterpostchallenge- MRIparameterbaseline

MRIparameterbaseline
 ×

100

[Gas]postchallenge- [Gas]baseline
  

4.2.1 Gases 

O2 and CO2 have well described effects on cerebral vessel calibre and blood flow 

in health (Kety and Schmidt, 1948a). These effects are rapid and reversible, with 

minimal side effects. Rapid initiation and cessation of a gas challenge allows 

repeated measurements during MRI.  

4.2.1.1 The physiology of gas transport 

Air, comprising 21% O2 and 0.04% CO2, is inhaled through the mouth and nose, 

and conducted to the lungs by the trachea and bronchi, which form anatomic 

dead space (i.e. they do not take part in gas exchange). Inspired air mixes with 

expired gas in the conducting airways and the concentration of O2 falls, and CO2 

rises. In the alveoli, O2 diffuses into capillaries and is transported to the heart. 

The majority of O2 (>98%) is carried bound to haemoglobin within red blood 

cells, as oxyhaemoglobin, but the remaining amount is transported in arterial 

blood as a dissolved gas (referred to as the PaO2). The total amount of O2 

delivered to the tissues is a combination of dissolved and bound O2 and is the O2 

content (CaO2).  
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The CaO2 can be calculated as follows: 

CaO2=(1.34 ×Hb × 
 SaO2

100
 )+(0.023 × PaO2) 

Where:  

SaO2 = arterial oxygen saturation (%) 

PaO2 = arterial partial pressure of oxygen (kPa) 

CaO2 = arterial oxygen content (mL/dL) 

Hb = Haemoglobin (g/dL)  

 

Once arterial blood is delivered to tissues, the more acidic and hypercarbic 

environment causes O2 to be released from oxyhaemoglobin for use in tissues. 

Metabolising tissues release CO2 which diffuses from tissue capillaries into the 

venous circulation. It is transported as dissolved gas, bicarbonate, and bound to 

blood proteins. In the lungs, CO2 diffuses along its concentration gradient into 

the alveoli, and is expired where it can be measured as end-tidal CO2 (EtCO2; 

Figure 4-1). Normal EtCO2 is 4.0-5.7kPa, and is 0.3-0.7kPa lower than PaCO2 due 

to the mixture of gas in alveolar dead space. In normal healthy individuals, the 

difference is negligible but this becomes more marked in cardiac and pulmonary 

disease due to increased dead space. This is also the case for differences in EtO2 

and PaO2 (Bengtsson et al., 2001). 
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Figure 4-1 Physiology of gas transport 
Oxygen (O2) is inspired into the alveoli and passes into the arterial blood for delivery to 
tissues. Carbon dioxide (CO2) produced by metabolizing cells is carried in the venous 
system and expired through the lung. PVO2 and PVCO2 is the partial pressure of oxygen and 
carbon dioxide in venous blood. For other abbreviations see Table 1-3. 

4.2.2 Carbon dioxide 

CO2 is one of the most important modulators of vascular tone, with increased 

CO2 (hypercapnia) leading to a relaxation of vascular smooth muscle and 

increased CBF. For each 1mmHg increase in PaCO2, CBF increases by 1-

2ml/100g/min (Brian, 1998, Kety and Schmidt, 1948a). This relationship is 

characterized by a sigmoidal curve, with attenuated responses at the extremes 

(Reivich, 1964) (See Figure 4-2). Resistance arterioles (40-100µm) are more 

responsive to hypercapnia than larger arterioles (up to 400µm), but responses to 

hypocapnia are independent of vessel size.  Recent evidence has suggested that 

even major vessels, such as the middle cerebral artery, demonstrate diameter 

change in response to altered CO2 concentration (Coverdale et al., 2014). CBV 

has a similar sigmoidal relationship to changes in PaCO2 (Grubb et al., 1974).  

CO2 is proposed to exert its effects after dissociating into the vasoactive agents 

H+ and HCO3
-. Increased H+ concentrations lead to activation of potassium 

channels and endothelial hyperpolarization (Ainslie and Duffin, 2009) which is 

relayed to vascular smooth muscle cells. Intracellular calcium concentration 
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reduces and vasorelaxation occurs (Edvinsson and Krause, 2002). Alterations in 

CO2 were originally thought not to affect metabolic O2 consumption (Kety and 

Schmidt, 1948a) but more recent evidence suggests hypercapnia may lead to 

altered neuronal activity (Hall et al., 2011).  

Rapid CO2 diffusion across alveoli allows CBF change within 6 seconds of a rise in 

CO2 with a CBF plateau being obtained within 45 seconds (Poulin et al., 1996).  

However, the fall in CBF following restoration of normocapnia occurs within 

seconds (Poulin et al., 1996). Adaptation to sustained hypercapnia does occur, 

with gradual restoration of normal CBF despite sustained hypercapnia. This is 

thought to occur within hours, although others have argued this can occur within 

10 minutes (Ellingsen et al., 1987).   

Side effects such as nausea, flushing, hyperventilation, and transient 

neurological symptoms (Spano et al., 2013) may occur with hypercapnia along 

with anxiety, sensory stimulation and a panic-like disorder (Colasanti et al., 

2012). Hyperventilation induced by hypercapnia may increase motion artefacts 

(Taylor et al., 2001). Ainslie and Duffin (Ainslie and Duffin, 2009) recommended 

limiting delivery of FiCO2 to 8% for both subject safety and comfort. Despite side 

effects most subjects tolerate hypercapnia experiments. A review of 434 CVR 

MRI examinations using a rebreathing circuit and targeted EtCO2 of 50mmHg 

(6.7kPa), reported transient symptoms in 11.1% of studies, no major 

complications and successful CVR map generation in 83.9% of studies (Spano et 

al., 2013). Examined patients had a variety of diagnoses including 

atherosclerosis, Moyamoya vasculopathy, arteriovenous malformation, vasculitis 

and dissection.  

Hypercapnia is a potent stimulator of minute ventilation and can increase 

systemic blood pressure (BP) (Kety and Schmidt, 1948a), due to activation of the 

sympathetic nervous system, which may affect CVR measurements (Hetzel et al., 

1999, Ainslie and Duffin, 2009). The vascular response to hypercapnia is lost 

when vessels are maximally dilated in response to low systemic BP (e.g. 

hypovolaemia), in an effort to maintain CBF (Grubb et al., 1974) . There is 

therefore a limit on the capacity to autoregulate. CVR to breath-hold and 6% CO2 

breathing showed improved correlation when changes in blood flow velocity 

(measured by transcranial Doppler ultrasound) were corrected for changes in 
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blood pressure, and therefore monitoring BP  during MRI experiments should be 

considered (Prakash et al., 2014).  

 

Figure 4-2 The effect of O2 and CO2 on cerebral blood flow 
Graphs A and B represent the principle of the effect of O2 and CO2 on CBF. Cerebral blood 
flow (CBF) in the normal physiological range of O2 (red line) is stable, but CBF increases in 
response to hypoxia and decreases in response to hyperoxia. Rising CO2 causes a linear 
increase in CBF (blue line) except at the extremes, producing a sigmoid curve, as 
vasoactive properties of the vessels are exhausted. The graphs represent the theoretical 
effect of altered gas on CBF rather than representing numerical values.  

4.2.3 Oxygen 

Within normal physiological values, changes in PaO2 have little effect on vessel 

calibre or CBF (see Figure 4-2)(Watson et al., 2000). Once PaO2 drops below 

6.7kPa, metabolic signals such as adenosine, along with the  direct action of 

hypoxia on vascular smooth muscle, results in vasodilation and increased CBF, 
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allowing O2 delivery to remain constant (Golanov and Reis, 1997). MRI 

experiments using hypoxia have been performed, usually in young healthy 

individuals (Noth et al., 2008, Xu et al., 2012). Hypoxic experiments require well 

controlled experimental conditions and may be inappropriate in patients with 

cerebrovascular disease.  

The effects of hyperoxia are slightly less clear but most studies have suggested 

that it causes a reduction in CBF. In young healthy subjects, blood flow 

measured using phase-contrast MR angiography, decreased by up to 25% when an 

FiO2 100% challenge was administered (Watson et al., 2000). Bulte and 

colleagues using ASL proposed that CBF decreased even with mild levels of 

hyperoxia, and continued to decline with higher FiO2 (Bulte et al., 2006). The 

“on” and “off” response times to changes in PaO2 are longer than those of PaCO2 

(Ellingsen et al., 1987). Hyperoxia is proposed to have a direct vasoconstrictive 

effect on vessels partly by attenuation of the effects of nitric oxide (Demchenko 

et al., 2000). This is more marked with hyperbaric O2 (Omae et al., 1998). 

However the effect of hyperoxia is complicated by two major factors. Firstly 

hyperoxia leads to a small but significant reduction in EtCO2 probably due to 

increased tidal volume. Reduced EtCO2 leads to vasoconstriction, and this may 

be responsible for the change in CBF. When changes in EtCO2 were corrected for 

in a phase-contrast MRI experiment, changes in FiO2 did not have a significant 

effect on CBF, suggesting the EtCO2 decrease is the predominant modulator of 

CBF change (Xu et al., 2012). The second factor is that hyperoxia also changes 

the MR properties of tissue, specifically reducing the T1 of arterial blood and 

tissue, which may have profound effects on CBF measurements. Adjustment for 

this may be required for the accurate quantification of CBF (Pilkinton et al., 

2012).  

Studies using hyperoxia may therefore need to consider the role and 

measurement of EtCO2, and correct for changes in T1, which adds to the 

complexity of the experimental paradigm. Hyperoxia can be used alone, or in 

combination with CO2 (carbogen), in respiratory challenge experiments. 

Carbogen increases both CBF and PaO2 availability.  

As well as affecting CBF, O2 has important effects on the BOLD signal in fMRI. 

With a FiO2 of 21% and normal atmospheric pressure, arterial haemoglobin (Hb) 
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is almost saturated with O2 (creating diamagnetic oxyhaemoglobin). Elevated 

FiO2 increases the amount of gas dissolved in plasma in linear proportion to the 

partial pressure (Kalamangalam et al., 2012). This dissolved paramagnetic O2 

alters the susceptibility between blood and tissue. It also has an effect via the 

oxygen-haemoglobin dissociation curve. Due to increased PaO2 in capillaries, 

there is a reduction in the dissociation of O2 from haemoglobin as the PaO2 does 

not fall sufficiently to allow its release. In conditions of hyperoxia therefore, the 

amount of deoxyhaemoglobin is nearly constant during capillary transit. This 

results in an increased T2* signal and hyperoxic BOLD contrast (Schwarzbauer 

and Deichmann, 2012).  

Hyperoxia is associated with the release of oxygen free radicals, which may 

overwhelm endogenous antioxidant mechanisms, and lead to lipid peroxidation 

and plasma membrane breakdown particularly in the lungs (Jamieson et al., 

1986). Human glioblastoma cells exposed to graded hyperoxia demonstrated 

membrane blebbing which was reduced by co-application of antioxidants 

(D'Agostino et al., 2009). Reversible alveolar changes after 17 hours of >95% 

oxygen suggested changes in alveolar-capillary barriers (Davis et al., 1983). 

Subjects may develop substernal pain, tracheobronchial irritation and tissue 

destruction and pulmonary oedema. This is thought to occur only if FiO2 >50% is 

used, but “safety thresholds” for oxygen administration remain unclear 

(Jackson, 1985, Martin and Grocott, 2013). Hyperoxia may also lead to nitrogen 

washout and airway collapse (Duggan and Kavanagh, 2005). These effects occur 

only after several hours to days of hyperoxia, although they are enhanced by 

elevated atmospheric pressure (Jackson, 1985). The duration of hyperoxia given 

within the context of an MR experiment are not thought to have any detrimental 

effects.  

4.2.4 Acetazolamide 

Acetazolamide is often used as an alternative “challenge” to assess 

cerebrovascular reactivity. It is thought to work by causing inhibition of 

erythrocyte carbonic anhydrase resulting in impaired clearance of CO2 and 

acidosis which causes vascular smooth muscle relaxation. This causes an increase 

in CBF, without affecting CMRO2 (Vorstrup et al., 1984). Usually administered 
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with a standard dose of 1000mg, it is safe and usually well tolerated, without 

changes in systemic parameters (Vagal et al., 2009). A 30-60% increase in CBF is 

achieved in healthy volunteers, but there is variability in response among 

individuals (Fierstra et al., 2013)  

There are a number of disadvantages however. Reported side effects include 

paraesthesia and headaches, and once the drug has been given these are not 

reversible until the drug has been excreted. It has a number of drug interactions 

and must also be used with caution in subjects with hepatic or renal dysfunction 

or electrolyte disturbances, limiting its use in some patient groups (Eskey and 

Sanelli, 2005). It requires IV access and can only be repeated once in the 

experimental period which makes it less useful for applying recurrent challenges 

in a single MRI session. Reports of reversible neurological deficits thought 

secondary to ischaemia have been reported in response to acetazolamide 

(Komiyama et al., 1997), but it has been used in a large number of patients with 

chronic cerebrovascular disease without clinical ischaemic consequences (Vagal 

et al., 2009, Choksi et al., 2005). 

4.3 Technique 

4.3.1 Preparation 

Subjects with cerebrovascular disease may have difficulties with informed 

consent and comprehension of protocols. Well-planned exclusion criteria 

accompanied by thorough and early screening for any contraindications to MRI, 

may prevent subject drop out, avoid scanning delays and enhance data quality.  

4.3.1.1 Exclusions 

Normal MRI exclusion criteria should be followed (Kanal et al., 2013). Subjects 

with claustrophobia or anxiety may struggle with MR scanning, and use of a face 

mask within the confines of the scanner bore may exacerbate this.  Panic 

disorder patients may be hypersensitive to the anxiety inducing effects of CO2 

(Colasanti et al., 2012). Patients with significant pulmonary or cardiac disease 

may need to be excluded from studies due to difficulties tolerating abnormal gas 

concentrations, issues with monitoring (see Monitoring below), and altered 
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cerebral haemodynamics, such as in atrial fibrillation (Lavy et al., 1980, 

Petersen et al., 1989).  

4.3.1.2 Oxygen 

Patients requiring continuous O2 such as those with pneumonia (relevant in acute 

research such as stroke) may not tolerate periods of normoxia. Due to the 

potential risk of pulmonary atelectasis from hyperoxia, patients with 

bronchiectasis should be excluded. Subjects with type II respiratory failure have 

inadequate ventilation, causing a rise in resting PaCO2; hence the respiratory 

centre becomes driven by hypoxaemia. Hyperoxia can reduce ventilation leading 

to rises in PaCO2. Therefore patients with certain types of chronic obstructive 

pulmonary disease or respiratory muscle weakness (e.g. uncontrolled myasthenia 

gravis) should be excluded.   

4.3.1.3 Carbon dioxide  

Subjects with known type II respiratory failure should not be subjected to 

hypercapnia in order to avoid further increase in PaCO2. Hyperventilation (to 

induce hypocapnia) should be avoided in those with a history of epilepsy as it 

may induce seizures (Guaranha et al., 2005). In subjects with unruptured 

intracranial aneurysms, conditions that cause alterations in the aneurysm’s 

transmural pressure gradient, such as hypertension or sudden alterations in 

intracranial pressure secondary to hyperventilation, are proposed to increase the 

risk of rupture during aneurysm surgery (Chowdhury et al., 2014), and therefore 

these patients should be excluded if respiratory MRI challenge designs are likely 

to cause this.  

4.3.2 Standardisation of testing conditions 

Factors that may influence CBF and CVR include time of day (Strohm et al., 

2014), nicotine (Shinohara et al., 2006), food (Tsai et al., 2004), alcohol 

(Gundersen et al., 2013), body mass (Selim et al., 2008) , haematocrit (Hudak et 

al., 1986) and hormonal cycles (Bartelink et al., 1990). Visual stimulation and 

speaking will result in increased CBF to active brain regions (Ito et al., 2001), 

but sleep can reduce the cerebrovascular response to CO2 (Ainslie and Duffin, 
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2009), so studies may be best performed on awake, silent subjects with closed 

eyes. Numerous medications may influence cerebral haemodynamics including 

statins (Murakami et al., 2008), angiotensin-receptor enzyme inhibitors (Walters 

et al., 2004), calcium channel blockers (Kuridze et al., 2000) and hormone 

replacement therapy (Ohkura et al., 1995), and patients may need to be 

excluded or medication withheld.  

Caffeine reduces CBF (Lunt et al., 2004) and thus abstinence for a short period 

prior to a study may be advisable. However chronic caffeine use may lead to 

upregulation of vascular adenosine receptors to preserve CBF, and abstinence 

prior to a study could lead to a “withdrawal” rebound increase in CBF (Addicott 

et al., 2009). As this is only likely to occur in patients with very high caffeine use 

(>600mg/day or 4 – 7 cups of coffee) it has been suggested that these subjects 

should be excluded from perfusion studies (Addicott et al., 2009) but the exact 

dosage of caffeine intake can be difficult to ascertain due to the variety of 

sources including tea, coffee, energy drinks and other soft drinks.  

Temperature is known to alter cerebral blood flow (Kuluz et al., 1993). The 

temperature within the bore of a magnet may increase as scanning progresses 

due to radiofrequency energy (Westbrook et al., 2011). For studies using repeat 

imaging or prolonged scanning sessions, an increase in temperature could 

therefore potentially influence perfusion characteristics of the subject in the 

bore as there may be an increase in CMRO2 (Edvinsson and Krause, 2002). 

Standardised testing conditions designed for peripheral vascular function tests 

are similarly applicable to cerebral perfusion studies, although potentially 

harder to implement (Table 2-5) (Van Bortel et al., 2002, Laurent et al., 2006). 

4.3.3 A trial run 

A trial run of the challenge outside the MRI with close monitoring of the patient 

and inspired and expired gases allows priming of the subject to the experience 

of the respiratory challenge in a less claustrophobic environment. This allows 

the subject to ask questions and notify the clinician of side effects. Safety 

concerns such as alterations in heart rate or blood pressure may also be 
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identified. Compliance and experimental success is likely to be increased (Taylor 

et al., 2001).  

4.3.4 The respiratory challenge 

For highly accurate monitoring and modulation of PaO2 and PaCO2 a completely 

closed circuit between patient, monitor and gas delivery system is required, i.e. 

an intubated and ventilated patient, which is clearly inappropriate for the 

majority of these studies. Therefore exact accuracy of gas measurement has to 

be sacrificed in order to undertake a respiratory challenge that is practical and 

tolerable to patients, whilst still giving reliable gas concentrations.  

4.3.4.1 Ventilatory techniques 

Ventilatory techniques, in their simplest form, do not require additional 

equipment, but do require patient compliance, limiting their use in cognitive 

impairment or confusion. Breath-holding causes hypercapnia and increased CBF, 

comparable to that achieved with 5% CO2 (Kastrup et al., 1999, Ratnatunga and 

Adiseshiah, 1990). Breath hold may occur at the end of inspiration or expiration. 

End-expiration breath hold leads to an immediate rise in EtCO2, but the 

tolerable duration is shorter (due to hypoxia) and it may be more unpleasant for 

the patient thus increasing motion artefacts (Ratnatunga and Adiseshiah, 1990). 

In comparison, end-inspiration breath hold is longer and more comfortable but 

changes in intrathoracic pressure result in a biphasic change in BOLD signal 

(Thomason et al., 2007, Thomason and Glover, 2008). Both techniques are 

simple and practical for use in MRI. There are concerns  about experimental 

repeatability due to variations in breath-hold duration (Thomason et al., 2007). 

However if EtCO2 is measured breath hold duration need not be the same for 

accurate and repeatable measurements (Bright and Murphy, 2013). Additions to 

the technique include visual cueing, measurement of compliance with an 

abdominal pneumatic belt and paced breathing (Thomason et al., 2005, Scouten 

and Schwarzbauer, 2008), all of which add complexity and may reduce subject 

acceptability.  

Voluntary hyperventilation causes hypocapnia and reduced CBF (Raichle and 

Plum, 1972). A period of more than 60 seconds can induce a fall of around 25% 
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(Rostrup et al., 2005). Subjects are asked to modify their breathing rate and 

depth via visual cues, for a certain period or to a target EtCO2, which require 

training outside MRI (Vogt et al., 2011). Hyperventilation may increase motion 

artefacts(Naganawa et al., 2002) .  

4.3.4.2 Fixed inspiratory challenge 

Delivery of a fixed gas concentration via a non-rebreathing mask is passive, 

repeatable and straightforward. It requires a constant gas supply and a delivery 

method. Premixed gas cylinders can be used to deliver fixed gas mixtures, or gas 

blenders may allow more variation in gas concentrations. 5% CO2 is proposed to 

raise CBF by 50% (Kety and Schmidt, 1948a) and 100% O2 reduce CBF by up to 25% 

(Watson et al., 2000). Fixed inspiratory challenge is effective for steady-state 

measures, including arterial spin labelling MRI (Figure 4.3), or those with a block 

design, where a stimulus is given for set periods on several occasions in order to 

allow summation of results, usually with a continuous imaging method 

(Kalamangalam et al., 2012) (Figure 4.4). 

Gas delivery systems must be of a high enough flow rates to support increased 

tidal volume seen with hypercapnia. The flow rate may depend on circuit design, 

and whether or not reservoir bags are used. An undershoot in EtCO2, may be 

seen in hypercapnia experiments as patients hyperventilate to expel excess CO2 

(Wise et al., 2007). A fixed FiO2 or FiCO2 does not necessarily equate to a 

specific arterial concentration as this depends on ventilation, metabolic rate, 

and the adequacy of the delivery circuit (Fierstra et al., 2013). End-tidal gas 

concentrations should therefore be monitored to allow accurate signal 

quantification.  
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Figure 4-3 Fixed inspiratory challenge 
Arterial spin labelling (ASL) MRI performed whilst receiving air (A) and 6% CO2/air mixture 
(B) in a patient with CADASIL, demonstrating an increased CBF in response to hypercapnia. 
Delivery of 6% CO2 caused a change in end-tidal CO2 (C).   

Ventilatory responses to a fixed challenge may result in change in gas 

concentration despite an unchanged inspired concentration e.g. increased 

ventilation in response to hypercapnia may lead to elevated EtO2, which may 

influence MRI signal (Wise et al., 2007). 
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Figure 4-4 Repeated challenges during continuous imaging 
(A) BOLD signal change is measured throughout an 11 minute MRI sequence, during which 
changes in inspired oxygen are reflected by the end-tidal oxygen concentration (B). Figure 
A courtesy of Dr K Dani.  

4.3.4.3 Rebreathing  

Rebreathing of exhaled gas will result in equilibration of alveolar and arterial 

gases and a gradual increase in PaCO2. It is performed with a simple breathing 

circuit, with or without additional gases, and is generally well tolerated 

(Saunders, 1980). However the speed and values of PaCO2 are not predictable 

and a plateau is difficult to achieve. Partial rebreathing circuits with fixed 

inspiratory challenges are proposed to achieve more stable EtCO2, but require 

significant patient cooperation (Vesely et al., 2001). Rebreathing techniques 
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allow the measurement of dynamic changes to a range of EtCO2 (Ainslie and 

Duffin, 2009).   

Rebreathing in a closed circuit will lead to a fall in delivered FiO2. Isooxia should 

be maintained for CVR measurement and to prevent the patient receiving a 

hypoxic gas mixture. Rebreathing methods where isooxia is achieved and EtCO2 

is representative of PaCO2 have been described (for a recent review see Fierstra 

and colleagues (Fierstra et al., 2013)).  

4.3.4.4 Dynamic end-tidal forcing  

More precise control of EtCO2 and EtO2 has been advocated to permit more 

accurate adjustment of changes in MRI signal responses. Dynamic end-tidal 

forcing uses breath-by-breath computer control of inspired gas to achieve target 

EtCO2 and EtO2. This may increase repeatability both between subjects and 

sessions, and allows more complex variations of respiratory challenges to be 

performed (Wise et al., 2007). It is more expensive and complex to run than 

fixed inspiratory challenges, and breath-by-breath analysis can be hampered by 

the need for long gas sampling lines in MRI. It requires a high flow rate and there 

is the potential for the delivery of an anoxic mixture although this is avoided 

with use of the correct circuit (Wise et al., 2007). Even with this technique, 

issues with the accuracy of using EtCO2 to predict PaCO2 remain (Fierstra et al., 

2013). 

4.3.4.5 Prospective end-tidal targeting.  

Prospective end-tidal targeting has been a developed as a method to permit 

more accurate correlation of changes in EtCO2 with MRI signal responses (Ito et 

al., 2008). A tight-fitting mask is attached to a 3-valve circuit with inspiratory 

and expiratory reservoirs. Gas flow to the mask moves through a computer-

controlled gas blender (Respiract; Thornhill Research, Toronto, Canada) which 

supplies O2, CO2 and nitrogen to achieve target EtCO2 and EtO2 independent of 

breathing pattern. Its advantages are that it allows rapid changes in gas 

concentration and that the end-tidal gases are equivalent to that of alveolar 

ventilation, and thus more accurately reflect tissue concentrations (Fierstra et 

al., 2013). A more detailed explanation of the method is available in Fierstra et 
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al (Fierstra et al., 2013). It has been used to study cerebral physiology in a 

number of different disease states (Heyn et al., 2010, Mikulis et al., 2005, 

Fierstra et al., 2011). This method in theory could allow the inclusion of patients 

with pulmonary disease as the EtCO2 will continue to accurately reflect PaCO2 

(Ito et al., 2008), although the danger of exposure to hypercarbia or hyperoxia in 

these patients remains.  

4.3.5 The Environment and equipment 

Use of respiratory challenge adds complexities to the already difficult MR 

environment. As subject safety is paramount, all staff should undergo MRI safety 

induction training as per local guidelines (Farling et al., 2002).  

4.3.5.1 Monitoring 

Monitoring of gas concentrations is important for calculation of CVR, but is also 

required for subject safety. Access to subjects is limited as the head is placed in 

a tight-fitting receiver coil (to enhance signal), padded and secured to limit 

movement. This complicates the delivery of gas, monitoring of subjects and 

verbal communication. Additional equipment must be MR safe or MR conditional 

and effective, and close liaison with anaesthetists is recommended. Standard 

monitoring equipment must be correctly positioned to avoid the formation of 

inductive loops which may cause burns (Dempsey and Condon, 2001). ECG leads 

are prone to interference (Farling et al., 2002) and fibreoptic  MR connections 

preferred. Anaesthetic guidelines recommend that remote MR monitoring in the 

control room is available to reduce occupational exposure to magnetic fields and 

hearing damage (Farling et al., 2002, Farling et al., 2010).  

Whilst respiratory challenge MRI aims to modify cerebral tissue O2 and CO2, this 

is difficult to measure directly, and whilst arterial concentrations are 

representative they also require invasive monitoring. Non-invasive measurement 

of end-tidal gases is a more straightforward, if indirect, measurement. Sampling, 

which allow the measurement of delivered and end-tidal gases, should be as 

close to the subject’s expired air flow as possible. The long sample lines 

necessitated by MRI will increase the time delay between sampling and recording 

(up to 20 seconds) (Farling et al., 2002). Secretions may block lines, and water 
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traps dry out the sampled air, giving a dry value for expired gas. In normal 

atmospheric pressure a wet gas correction value of 0.94 can be applied to dry 

gas measurements (Bengtsson et al., 2001). Capnography involves both the 

measurement and display of the EtCO2 value and waveform. It offers the 

advantage of assessment of circuit integrity (i.e. a reasonable seal) and allows 

identification of leaks or unplanned build-up of CO2.  

There does however remain some question as to the accuracy of end-tidal 

measurements. Use of EtCO2 may only be appropriate with use of regression 

equations to adjust for changes in tidal volume, as ventilation will increase with 

a rise in delivered carbon dioxide (Ainslie and Duffin, 2009). Use of prospective 

end-tidal targeting may offer advantages over unadjusted end-tidal gas readings 

(Slessarev et al., 2007, Ito et al., 2008).  

4.3.5.2 Gas delivery 

The simplest form of respiratory challenge e.g. hyperventilation or breath hold 

does not require a gas delivery method. For other types options include nasal 

cannula, mouth piece and nasal clip and face masks. The choice will depend on 

tolerability versus the need for accurate delivery and monitoring. The options 

are summarised in Table 4-1. 
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Table 4-1 Methods for delivery of gas 
 Mouth piece and 

nasal clip 
Nasal cannula Standard face 

mask 
Non-vented face 
mask 

 

 
 

  

Use Variable FiO2 (will 
be affected by 
entrained air) 
 
Fixed 
concentrations of 
CO2 mixture 

FiO2 24-44%(1 – 
6L/min) 
 
Fixed 
concentrations of 
CO2 mixture 

FiO2 up to 60% 
 
Fixed 
concentrations of 
CO2 mixture 

FiO2 up to 100%  
 
Fixed 
concentrations of 
CO2 mixture 

Pros Simple 
 
Cheap 
 
Well tolerated 
 

Simple 
 
Cheap 
 
Well tolerated 
 
Unimpeded 
communication 

Fit most subjects 
 
Higher O2 
concentrations 
 
Generally well 
tolerated 

Improved seal 
 
Reduced mask 
volume 
 
Controlled gas 
delivery and 
sampling 
 
May improve test 
reliability 

Cons Communication 
hampered 
 
Entrain air around 
mouth piece 

 

Drying of nasal 
mucosa 
 
Can still mouth 
breath 

May not fit/be 
tolerated in tight 
head coil 
 
Room air 
entrained through 
vents diluting the 
delivered gas 

Less malleable 
and tighter so less 
tolerated 
 
Harder to fit in 
MRI coil 
 
Risk of 
rebreathing so 
must be used with 
appropriate 
breathing circuit 
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4.4 MRI sequences and examples of use in 

cerebrovascular disease 

4.4.1 BOLD signal 

Functional MRI using gradient-echo echoplanar imaging with strong T2*-weighted 

imaging measures the blood-oxygenation level dependent (BOLD) signal. 

Oxyhaemoglobin is diamagnetic and has limited effect on T2*-weighted signal. 

Deoxyhaemoglobin is paramagnetic and leads to a reduction in T2*-weighted 

signal. The BOLD signal depends on CBF, CBV, CMRO2, haematocrit and PaO2 

although in healthy subjects the signal is dominated by CBF (Shiino et al., 2003). 

Hypercapnia-induced rises in CBF, “washes out” deoxyhaemoglobin causing an 

increase in T2*-weighted signal (Shiino et al., 2003). The signal difference 

between normocapnia and hypercapnia can be used to measure CVR. In 25 

patients with arterial steno-occlusive disease there was a strong correlation 

between hemispheric CVR using BOLD MRI and ASL MRI (Mandell et al., 2008). In 

Moyamoya disease, CVR correlated with disease severity and the presence of 

collaterals (Heyn et al., 2010). CVR mapping performed pre and post-operatively 

showed that areas of vascular steal which correlated with severe stenosis, 

resolved following successful revascularization. This suggested CVR mapping 

could be used for pre-operative planning (Mikulis et al., 2005) (Han et al., 2011).  

In hyperoxic states, the O2 remains bound to haemoglobin in tissues, reducing 

the concentration of deoxyhaemoglobin , and thereby increasing T2* signal. Dani 

and colleagues investigated respiratory O2 challenge T2*-weighted MRI in 

subjects with stroke within 24h of onset. The putative infarct core showed 

diminished T2*-weighted signal increase compared to normal tissue, signifying 

this technique may be able to tease out changes in metabolic activity (Dani et 

al., 2010).  

BOLD imaging allows the use of continuous measurements and assessment of 

dynamic responses to altered gas concentrations. In patients with Alzheimer’s 

disease, where vascular function is thought to be abnormal, maximal BOLD signal 
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took longer to achieve than in normal controls implying some vasomotor 

impairment (Cantin et al., 2011).  

BOLD imaging with respiratory challenge has therefore been used to: 

demonstrate physiological impairments such as reduced vascular reserve and 

vascular steal phenomenon; correlate with clinical outcome measures; and to 

plan and predict outcomes of surgical revascularization.  

4.4.2 Cerebral blood flow 

ASL involves magnetically labelling protons in the arterial blood supply. As this 

blood passes into the brain, it causes a small signal loss in brain tissue compared 

to non-labelled images, which allows measurement of CBF (see Chapter 1). When 

used with a challenge, paired blood flow measurements, i.e. a baseline and then 

a stimulus, can be obtained allowing calculation of CVR. ASL offers the 

advantages of being non-invasive, repeatable, and quantifiable, but has the 

disadvantage of low signal-to-noise ratio in comparison to dynamic susceptibility 

weighted contrast methods for investigating perfusion (Wintermark et al., 2005).  

Brain perfusion in dementia has been investigated using ASL and a 5% CO2 

challenge in 49 patients. Regional CBF (rCBF) was lower and CVR impaired in 

frontal cortices of Alzheimer’s disease patients, compared to lower white matter 

rCBF in vascular dementia (Gao et al., 2013). Transcranial Doppler ultrasound 

(TCD) failed to demonstrate any difference in blood velocity or CVR in these 

patients however. If regional patterns distinguish different types of dementia, 

this may offer an advantage over global measures of flow such as TCD. A 

rebreathing challenge was used to demonstrate an association between high 

cardiovascular risk profile and impaired hippocampal vasoreactivity in mild 

cognitive impairment (Glodzik et al., 2011), which was more sensitive than 

baseline CBF or brain volume. ASL performed with hypocapnic hyperventilation 

and CO2 rebreathing (95% O2, 5% CO2) challenge in 39 chronic large territory 

stroke patients, demonstrated reduced ipsilateral CBF but widespread impaired 

vasodilatory capacity beyond the infarcted region. The continuous ASL technique 

used  has been shown to be quantifiable, although the long transit times seen in 

stroke may lead to underestimation of blood flow in stroke patients (Zhao et al., 
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2009). This is because the flow is so slow, that the signal decays by the time it 

has reached the tissue being imaged.  

Perfusion imaging with gadolinium bolus tracking is less commonly used in 

respiratory challenge experiments due to it being less easily repeated, requiring 

IV access, and gadolinium contrast having safety concerns in the face of 

extravasation or impaired renal function. MRI bolus tracking and acetazolamide 

challenge was used in 15 patients with CADASIL (cerebral autosomal dominant 

arteriopathy with subcortical infarcts and leukoencephalopathy) to show 

impaired perfusion and reactivity in white matter hyperintensities (Chabriat et 

al., 2000). DSC accompanied by BOLD imaging has also been proposed as a 

technique for calculating CMRO2 (Shiino et al., 2012).  

4.4.3 Dual echo imaging (BOLD and perfusion) 

BOLD and ASL can be used in sequence to provide information about the 

cerebrovascular system. Using both methods can permit the assessment of 

multiple measures of cerebral haemodynamics including CBF, CVR, BOLD CVR, 

oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2). 

In a study of patients with internal artery occlusion, BOLD CVR signal was lower 

in the affected middle cerebral artery territory (De Vis et al., 2015).  

Vessel-specific labelling of blood, known as vessel encoded ASL (VE-ASL) has also 

been used in combination with BOLD in patients with cerebrovascular disease. 

BOLD signal change and CBF reactivity correlated significantly in response to 

carbogen, and was able to identify disease lateralisation in steno-occlusive 

carotid disease, although its application remains complex (Faraco et al., 2015) 

4.4.4 Cerebral blood volume 

Cerebral blood volume (CBV) has a linear relationship to changes in PaCO2 but a 

non-linear relationship to changes in CBF (Grubb et al., 1974). The vascular 

space occupancy (VASO) technique is a CBV-weighted imaging technique where 

blood water signal is nulled and extravascular tissue recorded. Decrease in tissue 

signal represents an increase in blood volume seen with neuronal activity 

(Donahue et al., 2012). It has better spatial resolution than BOLD, but a poor 



Chapter 4  136 
 

signal to noise ratio. It has been used to demonstrate signal decreases 

(suggesting increased intravascular blood volume) in grey matter in response to 

short periods of breath-hold in normal individuals (Hsu et al., 2010). More 

negative response to VASO reactivity in response to breath-hold challenge was 

seen in patients with internal carotid artery stenosis compared to controls, 

proposed to represent haemodynamic impairment (Donahue et al., 2009). Using 

VASO with BOLD techniques may help extract the influence of CBV on the BOLD 

signal in disease states.  

4.5 Recommendations 

Despite the variety of techniques available, application of respiratory challenge 

MRI may benefit from some standardization. Subject withdrawal may be reduced 

by ensuring the recruitment of subjects without MR or gas exclusions and 

undertaking a trial run of the procedure outside the MR scanner (Taylor et al., 

2001). Whilst centres will vary in the availability of equipment or expertise to 

use certain challenges or MR sequences, recording subject parameters and 

standardizing testing conditions may reduce testing variability and allow studies 

to be compared more readily. Some proposed recommendations for the conduct 

of respiratory challenge MRI studies are outlined in Table 4-2. 

Table 4-2 Proposed recommendations for conducting respiratory challenge MRI 

Recommendations 

Perform a trial run of gas delivery with the subject outside the scanner to assess 
tolerability and optimize compliance.  

Standardize testing conditions by following published guidelines for performing 
vascular tests such as those outlined in Table 2-5. 

Record delivered and end-tidal gases, along with respiratory rate and heart rate 
to ensure patient safety and to allow correlation with signal change. These 
values can then be used to for quantification of the change in MR parameter.  

Liaise with anaesthetists and MR physics department to ensure breathing 
apparatus and monitoring equipment is safe and MR appropriate 

Exclude patients with significant cardiac or pulmonary disease. 

Ensure the gas supply is sufficient to support increases in minute ventilation.  

For fixed inspiratory challenges use a maximum FiCO2 of 8% to avoid subject 
discomfort (Ainslie and Duffin, 2009) or target to a specific change in EtCO2. 

 



Chapter 4  137 
 

4.6 Conclusion 

Respiratory challenge MRI has the potential to be used widely in the assessment 

of cerebrovascular disease due to its safety, tolerability and repeatability. 

Whilst problems remain with reliable gas administration, it has been used to 

provide valuable insights into brain pathophysiology. For such techniques to 

function as biomarkers to assess disease progression or treatment response, 

standardisation of testing is important but must still be realistic for clinical 

situations.



Chapter 5 – Impaired cerebral and peripheral vasoreactivity are 

associated with higher numbers of lacunes in CADASIL.   

5.1 Introduction 

Both animal and human studies have demonstrated that impaired vasoreactivity 

may have a role in the pathophysiology of CADASIL. In animal models, impaired 

vascular function is thought to precede both histological and clinical evidence of 

disease (Ayata, 2010). Impaired cerebrovascular reactivity has been 

demonstrated to be related to increased progression of WMH in a 7 year study, 

but the clinical relevance of WMH remains unknown (Liem et al., 2009a). More 

conventional markers of vascular dysfunction, such as CIMT and blood pressure 

are also postulated to have a role in disease severity (Mawet et al., 2011, 

Viswanathan et al., 2006b).  

Much of the research in CADASIL has focussed on the role of structural brain 

abnormalities including hyperintensities, lacunes, microbleeds and atrophy. 

These have limited use as biomarkers of disease progression in clinical trials, due 

to their wide inter-individual variation and slow progression (Peters et al., 

2004a). They may also represent a late stage of the disease process, and 

vascular dysfunction may be an earlier manifestation of the disease. The long 

asymptomatic or preclinical phase in CADASIL (Oberstein et al., 2003), along 

with the ability to identify affected individuals with genetic testing, offers the 

potential for early intervention to delay ischaemia or disability. Given the need 

for biomarkers in an uncommon disease with a varied natural history, clear 

characterisation of peripheral and cerebral vascular function and reactivity in 

CADASIL patients is needed. Associating these markers with relevant clinical and 

neuropsychological measures may allow us to identify correlations which may 

direct us to which factors could prove useful in monitoring disease progression 

and the effect of therapeutic intervention. Initially cross-sectional associations 

should be investigated.  

Using a variety of techniques to characterise peripheral and cerebral 

vasoreactivity the aims of this chapter are: 
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1) characterise cerebral and peripheral vascular function measures in adult 

patients with CADASIL;  

2) investigate how vascular measures relate to conventional MRI markers;  

3) investigate how vascular measures relate to clinical and neuropsychological 

markers of disease. 

The main hypothesis of this study is that there is a relationship between cerebral 

vasoreactivity and the neuropsychological markers of disease.  

5.2 Methods 

5.2.1 Study cohort 

Patients were recruited as stated in Chapter 2. Patients attended for 4 baseline 

study visits: (1) transcranial Doppler ultrasound (TCD) and clinical assessment, 

(2) peripheral vascular tests, (3) MRI, and (4) neuropsychology. Visit 1 took place 

first but otherwise the visits were in any order.  

5.2.2  Study procedures 

5.2.2.1 TCD 

Mean flow velocity (MFV) in the middle cerebral artery and cerebrovascular 

reactivity CVRTCD were calculated as Chapter 2.  

5.2.2.2 Peripheral vascular tests 

Peripheral vascular tests were performed as stated in Chapter 2. Measures 

included systolic blood pressure (SBP), augmentation index at 75bpm (AI@75), 

pulse wave velocity (PWV), carotid intima media thickness (CIMT), flow 

mediated dilatation of the brachial artery (FMD), and reactive hyperaemia index 

(RHI). History of smoking was dichotomised into: (1) never smoker or <20 pack 

years; and (2) current smoker or >20 pack years.   
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5.2.2.3 MRI  

In this chapter data from the following scans obtained at baseline were used: 

axial T2 FLAIR, axial 3D T1 BRAVO, axial SWAN, sagittal Inhance 3D velocity MR 

angiography (carotid and vertebral arteries), 3D ASL air and 3D ASL hypercapnia. 

Sequence parameters can be found in Chapter 2.  

5.2.2.4 Neuropsychological assessment 

Assessment in this study focussed on processing speed and executive function as 

the primary cognitive domains affected in CADASIL. Composite scores were 

calculated as the mean of the domain-specific individual tests after conversion 

of raw scores to standardised scores (z-scores, corrected for age or age and 

education, with reference to published normative tables). These calculations 

were undertaken by Dr Breda Cullen (neuropsychologist). Subjects included in 

the analysis had no known visual disabilities that would impair performance but 

one subject was unable to complete some tests due to dysarthria and inability to 

hold a pen.  

5.2.3 MRI analysis 

5.2.3.1 Visual inspection 

MR angiograms were inspected by a Consultant Neuroradiologist (Dr Celestine 

Santosh) for evidence of carotid or vertebral stenosis. Scans were scored for 

hyperintensities, perivascular spaces, subcortical lacunar lesions (SLLLs), 

microbleeds and lacunes as detailed in Chapter 2. The total perivascular space 

score was calculated.  

5.2.3.2 Brain tissue volume and intracranial cavity volume 

Brain tissue volume, normalised for subject head size, was estimated with 

SIENAX (Jenkinson and Smith, 2001, Smith, 2002) part of FSL (Smith et al., 

2004). SIENAX started by extracting brain and skull images from T1 3D image, 

using a brain extraction tool (BET) with an f 0.1 value. This was chosen after 

multiple f values were trialled with visual inspection of results. The brain image 
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was then affine-registered to MNI152 space (Jenkinson and Smith, 2001) to 

permit normalisation for head size. Tissue-type segmentation with partial 

volume estimation was carried out in order to calculate the total volume of 

brain tissue (this includes estimates of grey matter, white matter and 

ventricular CSF volume) (Zhang et al., 2001). The normalised brain volume was 

used in analysis (NBV, L).  

Intracranial cavity (ICC) volume was calculated using the brain extraction tool 

(BET; f 0.5) on the SWI image (see Figure 5-1). A binary ICC mask was created 

and the voxels counted.  

 

Figure 5-1 Calculation of intracranial cavity (ICC) volume 
The SWI image was skull stripped using brain extraction tool. The brain region is shown 
outlined on the original image displayed in FSLview.  

5.2.3.3 Lacune count and segmentation 

Lacune number and volume were calculated as described in Chapter 2. Volume 

of lacunes was then normalised to ICC to give normalised lacune volume (NLV, 

%).  

5.2.3.4 Subcortical hyperintensity segmentation 

Subcortical hyperintensity (SH) maps were created by a thresholding the FLAIR 

image as detailed in Chapter 2. After the volume of the SH map was calculated, 

this was normalised to ICC to give normalised subcortical hyperintensity (NSH, 

%). 
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5.2.3.5 MRI marker stratification 

MRI markers were stratified according to their baseline median value (or their 

presence or absence) to give categorical outcome variables.  

5.2.3.6 ASL – creation of CBF maps 

Anatomical MRI and ASL images were co-registered (Analyze version 11). 

Quantitative CBF maps were then generated using an in-house ‘macro’ for Image 

J (Rasband, W.S., ImageJ, U.S. National Institutes of Health, Bethesda, 

Maryland, USA, http://imagej.nih.gov.ij/, 1997-2014) with the following 

equation (operator manual for optima edition 23 based software, GE 

Healthcare): 

𝐶𝐵𝐹 = 6000∗𝜆
(1 − exp (− 

𝑆𝑇
𝑇1𝑡

)) 𝑒𝑥𝑝 (
𝑃𝐿𝐷
𝑇1𝑏

)

2𝑇1𝑏 (1 − 𝑒𝑥𝑝 (− 
𝐿𝑇
𝑇1𝑏

)) 𝜀∗𝑁𝐸𝑋𝑃𝑊

(
𝑃𝑊

𝑆𝐹𝑝𝑤𝑃𝐷
) 

Where:  

CBF = Cerebral blood flow, ml/100g/min. 

T1b = T1 of blood, assumed to be 1.6 seconds at 3T.  

T1t = T1 value obtained on grey matter, set at 1200ms. 

ST = Saturation time, set at 2 seconds. 

λ = Partition coefficient, set at 0.9.  

ε = Efficiency: a combination of both inversion efficiency (0.8) and background 

suppression efficiency (0.75), resulting in an overall efficiency of 0.6.  

PLD = Post labelling delay of 2025ms.  

LT – Labelling duration (1.5 seconds) 

http://imagej.nih.gov.ij/
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SFPW = Scaling factor of the PW sequence 

NEXPW = the number of excitations for the PW images (3).  

Examples of CBF maps are shown in Figure 5-2.  

5.2.3.7 ASL – brain masks 

The T1 image that had been transformed into ASL space was masked with a 

skull-stripped SWI and then segmented to create parenchyma, grey matter and 

white matter images using FSL (Zhang et al., 2001). SH maps were transformed 

into ASL space to create an SH mask. SH pixels were then removed from grey 

matter and white matter images, creating grey matter (GM) and white matter 

(WM) masks (see Figure 5-2).  All masks were applied to normocapnia and 

hypercapnia CBF scans for measurement of CBF (see Figure 5-3).  
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Figure 5-2 Perfusion and CBF maps created from ASL MRI 
Raw perfusion maps (greyscale) and CBF maps (quantitative maps in colour) of three 
patients. Scans whilst breathing air and 6%CO2/air mixture are shown. The age and gender 
of each patient is shown.  
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Figure 5-3 Creation of masks 
SWI, T1, FLAIR, ASL hypercapnia and SH masks were all registered to ASL proton density 
normocapnia space using Analyze 3D voxel registration. The T1 image was then masked by 
a BET skull stripped SWI image. The stripped T1 image was then segmented into grey 
matter, white matter, and mixed type binary images. SH mask pixels were removed from 
grey and white matter masks to produce grey matter and white matter masks. All masks that 
were applied to ASL are shown surrounded by a red box.  
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Figure 5-4 Applying masks to CBF maps 
Generated CBF maps were then masked with brain, GM, WM and SH masks. The average 
CBF in these masks was recorded.  
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5.2.3.8 ASL –calculation of %ΔCBF and CVR 

For each mask percentage change in CBF (%ΔCBF) was calculated in Microsoft 

Excel: 

%∆CBF =
CBFhypercapnia − CBFnormocapnia

CBFnormocapnia
 × 100 

Expiratory gas data was used if EtCO2 whilst breathing air was between 3.5 and 

6.5%, suggesting reasonable mask seal. Where expiratory gas data was available, 

%ΔCBF was corrected for change in end tidal CO2 to calculate cerebrovascular 

reactivity (CVRASL)  

CVRASL =
%∆CBF

∆EtCO2
 

As brain masks were created in an automated manner, repeatability was not 

assessed.  

5.2.4 Statistical analysis 

Statistical analysis was performed with IBM SPSS Version 21 (IBM Corp, Armonk, 

NY, USA). CBF or CVR in different brain regions in individual patients were 

compared with paired t-tests. Continuous variables were compared to 

Spearman’s rank correlation. Radiological variables were dichotomised by their 

median. For categorical outcome variables, normally distributed continuous 

variables were tested with independent t-tests, and non-normally distributed 

continuous variables with independent samples Mann-Whitney U tests. Normality 

was tested with Shapiro-Wilk. Results are expressed as mean (standard 

deviation, SD) unless otherwise stated.  

Although multiple comparisons were used as this is an exploratory study 

significance was set at p <0.05.  
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5.3 Results 

22 patients (11 female) from 19 pedigrees were recruited. There were 9 

different mutations in this cohort, in 5 exons, with Arg169Cys the most common 

mutation (7 patients). Patient demographics, vascular risk factors, clinical 

measures and imaging characteristics are reported in Table 5-1. All patients 

attended all study visits over a mean of 79 days (standard deviation 26 days). 

There was no evidence of extracranial vessel disease on MRA in 20/22 (one 

patient age 30 did not undergo MRA and one patient had artefact at the 

carotids, but no carotid abnormalities on ultrasound). 
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Table 5-1 Baseline characteristics of CADASIL cohort (n = 22) 

Characteristics Cohort (n =22) 

Demographic characteristics   

 Age, mean (SD) (years) 49.6  (11.2) 

 Female, n (%) 11  (50) 

 Body mass index, median (IQR) (kg/m2)  28 (5.7) 

Clinical scores   

 NIH stroke scale, median (range) 0  (0 - 3) 

 Modified Rankin Score, median (range) 0 (0 - 3) 

 Anxiety score, median (range) 6 (2 - 16) 

 Depression score, median (range) 4  (0 - 18) 

Clinical Features, n (%)   

 Stroke or TIA 11  (50) 

 Migraine 21  (95) 

 Depression 10  (45) 

 Urinary incontinence 4  (18) 

 Seizures 0  (0) 

Vascular Risk Factors, n (%)   

 Current or ex-smoker 11 (50) 

 Hypertension 0  (0) 

 Hypercholesterolaemia 13  (59) 

 Diabetes mellitus 0  (0) 

Medication, n (%)   

 Statin 16 (73) 

 Antiplatelet 18 (82) 

 Antidepressant 8 (36) 

 Beta-blocker$ 2 (9) 

Imaging characteristics, mean + SD, range, median* 

 No. of lacunes  9 + 1, 0 – 34, 5 

 No. of microbleeds 2 + 3, 0 – 10, 0 

 NLV, %  0.04 + 0.04, 0 – 0.15, 0.02 

 NSH, %  6.0 + 3.8, 1.0 – 15.5, 5.2 

 NBV, L  1.55 + 0.09, 1.40 – 1.75, 1.55 

              Total EPVS score 4 + 1, 1 – 6, 3 

 Presence of SLLL, n (%) 7 (35) 
$Not prescribed for hypertension. *n = 21 for all imaging characteristics except 
microbleeds where n =20.  
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5.3.1 MRI markers at baseline 

MRI markers are shown at baseline. CADASIL modified Scheltens score correlated 

with NSH (n = 21, rs = 0.826, p <0.001).   

5.3.2 Blood flow and reactivity 

Resting CBF measured by ASL was available in 19 subjects. In one subject ASL 

was not performed due to body habitus and 2 were excluded due to movement 

artefact. %ΔCBF was available in 18 subjects (1 patient could not fit a face 

mask), and CVRASL in 13. 5 patients did not have reliable CO2 readings due to 

poor mask fit or issues with the monitor.  

21 patients underwent TCD (in one patient neither middle cerebral artery could 

be detected). Study cohort vascular measurements are shown in Table 5-2.  

Table 5-2 Study cohort vascular measurements 

Measurement Mean (SD) Number 

SBP, mmHg 120  (11) 22 

AI@75, bpm 17 (13) 22 

PWV, m/s 7.5  (1.1) 21 

RHI, % 2.1  (0.7) 20 

CIMT, mm 0.64  (0.1) 21 

FMD, % 4.1 (1.9) 18 

MFV, cm/s 40 (9.5) 21 

Brain parenchyma CBF, ml/100g/min 46 (8.6) 19 

GM CBF, ml/100g/min 51 (9.4) 19 

WM CBF, ml/100g/min 43 (7.6) 19 

SH CBF, ml/100g/min 30 (5.6) 19 

 

CBF was highest in the GM mask. CBF and MFV were not significantly related to 

age (GM CBF, n=19, rs = -0.383, p = 0.106; MFV, n = 21, rs = -0.370, p = 0.099) 

(Figure 5-4).  
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Figure 5-5 Cerebral blood flow, mean flow velocity and age 
(A) Grey matter CBF and (B) MFV compared to age. The solid line represents the line of best 
fit, and the dashed lines the 95% confidence intervals of the mean.  

 
CVRASL and CVRTCD varied widely among patients but intra-subject measures in 

individual brain regions were highly correlated with each other (see Table 5-3).  

Table 5-3 Hypercapnia and cerebrovascular reactivity  

 

CVRTCD was not associated with MFV (n = 21, rs = -0.371, p = 0.099). %ΔCBF (GM, 

n = 18, rs = -0.094, p = 0.711) and CVR were not associated with CBF in any of 

the brain masks (GM, n = 13, rs = 0.121, p = 0.694).  

AI@75, PWV and CIMT were associated with increasing age. Reactivity measures 

(CVRTCD CVRASL, RHI, FMD) were not. Brain reactivity was better in patients with 

higher systolic blood pressure (SBP) (Table 5-4; Figure 5-5).  

 

n 

CVR, %, 
median 
(range) 

 

Paired 
correlation to 
brain 
parenchyma CVR 

Paired sample t-
test to 
parenchyma CVR, 
p value 

TCD 21 6.3 (2 to 18)   

Brain parenchyma 13 6.2 (-3 to 22)   

GM mask 13 6.2 (-4 to 28)  0.965, 0.000 0.303 

WM mask  13 5.9 (-3 to 26) 0.972, 0.000 0.277 

SH mask 13 5.7 (0 to 23) 0.961, 0.000 0.606 
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Table 5-4 Brain and peripheral reactivity compared to age and blood pressure 

  Age (years) Systolic blood 

pressure (mmHg) 

AI@75 rs 

p 

n 

0.529 

0.011 

22 

-0.087 

0.702 

22 

PWV rs 

p 

n 

0.561 

0.008 

21 

-0.165 

0.475 

21 

CIMT rs 

p 

n 

0.584 

0.005 

21 

-0.27 

0.236 

21 

RHI rs 

p 

n 

0.091 

0.704 

20 

0.013 

0.956 

20 

FMD rs 

p 

n 

-0.203 

0.42 

18 

0.33 

0.181 

18 

GM CBF rs 

p 

n 

-0.389 

0.100 

19 

-0.400 

0.09 

19 

TCD CVR rs 

p 

n 

-0.038 

0.869 

21 

0.462 

0.035 

21 

GM %ΔCBF rs 

p 

n 

-0.080 

0.754 

18 

0.521 

0.026 

18 

GM CVR rs 

p 

n 

-0.305 

0.31 

13 

0.567 

0.043 

13 

SH CVR rs 

p 

n 

-0.395 

0.181 

13 

0.671 

0.012 

13 
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Figure 5-6 Systolic blood pressure compared to cerebrovascular reactivity 
(A) Subcortical hyperintensity CVR and (B) TCD CVR were positively correlated to systolic 
blood pressure. (Solid line represents line of best fit and dashed lines the 95% confidence 
interval of the mean). 

CVRASL was positively correlated with FMD (parenchyma, n =13. rs = 0.615, p = 

0.033; GM, n =13, rs = 0.566, p =0.055; SH, n = 13, rs = 0.455, p =0.138) but not 

RHI (GM, n = 12, rs = -0.231, p = 0.471). CVRTCD was not correlated with either 

FMD (n = 17, rs = 0.121, p = 0.643) or RHI (n = 19, rs = 0.076, p = 0.756).  

FMD was negatively correlated to the diameter of the brachial artery (n = 18, rs 

= -0.472, p = 0.048) and was higher in females than males (female, n = 7, 5.3% 

(1.4) v male, n = 11, 3.3 (1.7); p = 0.02). Measures of peripheral endothelium 

dependent vasoreactivity (brachial FMD and RHI) did not correlate with each 

other (n = 17, rs = 0.184, p =0.479).  

Current smokers or those with a greater than 20 year pack history, had higher 

RHI than those who had never smoked (1.9% (0.5) v 2.6 (0.8); p = 0.032). 

Subjects not on statins tended to be younger (42yrs (13) v 52 (9); p = 0.049) but 

other vascular measures did not vary.  

5.3.3 Is peripheral and cerebral vessel function associated with 

conventional MRI markers? 

A lower NBV was associated with increased PWV and CIMT, and lower CVR. It 

showed non-significant trends towards association with lower CBF. The presence 

of many lacunes (> 5) was associated with higher age, increased CIMT, lower 



Chapter 5  154 

FMD and lower CVR (Figure 5-6). Higher NLV was also associated with older age 

and lower FMD, but also higher RHI (Table 5-5). The number of microbleeds and 

NSH was not significantly correlated with age or any measures of peripheral or 

cerebral vessel function. SLLLs were more found in older people (no SLLLs, n = 

14, 46yrs (13) v SLLL, n = 7, 55yrs (4); p = 0.03). Gender and smoking history had 

no effect on MRI markers.  

 

Figure 5-7 Factors associated with number of lacunes 
(A) SH CVR was lower in patients with more lacunes, as was FMD (B). Conversely, CIMT (C) 
and age (D) were higher in those with more lacunes. 



Table 5-5 MRI outcomes variables compared to vascular measures 

  No of Lacunes No of Microbleeds NBV (L) NSH (%) NLV (%) 

  0-4 >5 Absent Present <1.548 >1.548 <5.23 > 5.23 <0.024 >0.024 

Age n 

mean (SD) 

10 

41 (10) 

11 

57 (5) 

11 

46 (11) 

9 

53 (11) 

11 

46 (11) 

10 

53 (12) 

10 

46 (14) 

11 

53 (7) 

10 

44 (11) 

11 

55 (10) 

p value <0.001  0.080*  0.191  0.165  0.016* 

PWV n 

mean (SD) 

p value 

10 

7.2 (0.9) 

10 

7.9 (1.1) 

11 

7.4 (1.2) 

8 

7.8 (1.1) 

11 

7 (0.9) 

9 

8 (0.8) 

10 

7.4 (1.0) 

10 

7.7 (1.1) 

10 

7.2 (1.0) 

11 

7.9 (1.1) 

0.109  0.513  0.01  0.540  0.197 

CIMT n 

mean (SD) 

p value 

10 

0.57 (0.07) 

10 

0.70 (0.81) 

11 

0.63 (0.11) 

9 

0.65 (0.10) 

10 

0.59 (0.09) 

9 

0.69 (0.09) 

9 

0.61 (0.11) 

11 

0.66 (0.08) 

10 

0.60 (0.09) 

10 

0.67 (0.10) 

0.001  0.547  0.025  0.260  0.170 

RHI n 

mean (SD) 

p value 

10 

1.9 (0.5) 

9 

2.4 (0.7) 

10 

2.2 (0.7) 

9 

2.3 (0.6) 

10 

2.0 (0.6) 

9 

2.3 (0.8) 

8 

2.3 (0.7) 

11 

2.1 (0.7) 

10 

1.9 (0.5) 

9 

2.5 (0.7) 

0.080  0.739  0.549*  0.476  0.035 

FMD n 

mean (SD) 

p value 

10 

4.9 (1.4) 

7 

2.9 (2.1) 

11 

4.1 (1.4) 

6 

3.4 (2.1) 

11 

4.5 (1.7) 

6 

3.3 (2.2) 

9 

4.1 (1.8) 

8 

4.1 (2.2) 

9 

4.9 (1.4) 

8 

3.1 (2.0) 

0.034  0.396  0.218  0.991  0.044 

GM CBF n 

mean (SD) 

p value 

10 

55 (9) 

9 

47 (8) 

0.065 

10 

52 (8) 

7 

47 (9) 

0.235 

10 

55 (9) 

9 

47 (8) 

0.076 

10 

53 (8) 

9 

49 (10) 

0.418 

10 

53 (9) 

 

9 

39 (10) 

0.334 

GM 

%ΔCBF 

N 

mean (SD) 

9 

16 (15) 

9 

5 (8) 

10 

12 (15) 

6 

12 (10) 

10 

15 (15) 

8 

6 (8) 

9 

14 (15) 

9 

8 (11) 

9 

15 (13) 

9 

7 (12) 

p value  0.074  0.941  0.181  0.388  0.225 

GM CVR n 

mean (SD) 

p value 

8 

14 (9) 

5 

2 (4) 

7  

11 (10) 

4 

8 (7) 

  8 

13 (8) 

5 

3 (3) 

7 

11 (11) 

6 

8 (7) 

7 

12 (7) 

6 

6 (6) 

0.013  0.609  0.021  0.644  0.181 

SH CVR n 

mean (SD) 

p value 

8 

13 (8) 

5 

3 (3) 

0.008 

7 

11 (9) 

4 

8 (5) 

0.528 

8 

13 (8) 

5 

3 (3) 

0.009 

7 

11 (9) 

6 

7 (5) 

0.372 

7 

11 (7) 

6 

6 (8) 

0.280 

*Non-parametric test used. SBP, AI@75 and TCD CVR not shown as all p values over >0.1. P values <0.05 shown in bold typeface.  



5.3.4 Does vasoreactivity relate to clinical and psychological 

markers of disease? 

Subjects with depressive symptoms (HADS >8) had reduced %ΔCBF but changes in 

CVRASL did not reach significance (see Table 5-6). Disabled patients showed 

similar results but group numbers were very small (see Table 5-6). All patients 

with a mRS >2 had HADS depression scores or 8 or more. Vascular measures did 

not vary with neurological impairment (NIHSS) or HADS anxiety score. 

Table 5-6 Depression and disability compared with vascular measures 

  Depression (HADS) mRS 

  <8 >8 0-1 >2 

Age n 

mean (SD) 

12 

49 (11) 

9 

49 (13) 

15 

49 (12) 

7 

52 (10) 

p value 0.949   0.583 

A@I75 n 

mean (SD) 

p value 

12 

18 (14) 

9 

15 (13) 

15 

16 (13) 

7 

18 (14) 

0.657 0.806 

PWV n 

mean (SD) 

p value 

12 

8 (1) 

8 

8 (1) 

15 

8 (8) 

6 

8 (2) 

 0.956  0.918 

CIMT n 

mean (SD) 

p value 

12 

0.6 (0.1) 

8 

0.7 (0.1) 

15 

0.6 (0.1) 

6 

0.7 (0.1) 

0.230 0.161 

RHI n 

mean (SD) 

p value 

12 

2.1 (0.7) 

7 

2.2 (0.8) 

15 

2.2 (0.7) 

5 

2.0 (0.5) 

0.732 0.583 

FMD n 

mean (SD) 

p value 

12 

4.2 (2.1) 

6 

3.7 (1.2) 

14 

4.1 (2.1) 

4 

3.9 (1.1) 

0.543 0.831 

GM CBF n 

mean (SD) 

p value 

12 

51 (9) 

6 

51 (11) 

0.961 

15 

50 (10) 

4 

54 (8) 

0.554 

TCD CVR n 

mean (SD) 

p value 

11 

20 (12) 

9 

17 (10) 

14 

22 (12) 

7 

14 (8) 

0.573 0.094 

GM 

%ΔCBF 

N 

mean (SD) 

12 

14 (14) 

5 

2 (4) 

14 

14 (13) 

4 

0.1 (3) 

p value  0.01  0.054 

GM CVR n 

mean (SD) 

p value 

10 

12 (9) 

3 

1 (5) 

11 

11 (9) 

2 

-0.9 (4) 

0.086 0.083 

SH CVR n 

mean (SD) 

p value 

10 

11 (8) 

3 

2 (2) 

0.076 

11 

11 (7) 

 

2 

1 (1) 

0.105 
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Processing speed declined with high NLV and lower NBV (see Table 5-7). 

Processing speed was associated with lower CIMT and higher %ΔCBF and non-

significantly with CVRASL. Executive function was non-significantly associated 

with NBV (n = 19, rs = 0.441, p = 0 .059) but no other radiological or reactivity 

measures.  

Table 5-7 Vascular and radiological markers compared to processing speed 

  Processing speed 

Age rs 

Sig (2 tail) 

N 

-0.253 

0.268 

21 

CIMT rs 

Sig (2 tail) 

N 

-0.463 

0.04 

20 

GM %ΔCBF rs 

Sig (2 tail) 

N 

0.507 

0.038 

17 

GM CVR rs 

Sig (2 tail) 

N 

0.500 

0.082 

13 

SH CVR rs 

Sig (2 tail) 

N 

0.429 

0.144 

13 

NLV rs 

Sig (2 tail) 

N 

0.667 

0.001 

20 

NBV rs 

Sig (2 tail) 

N 

0.512 

0.021 

20 

*SBP, AI@75, PWV, RHI, FMD, Grey matter CBF and TCD, NSH, microbleeds not shown as 

all p values >0.1.  
 

5.4 Discussion 

In this cross-sectional study, it was identified that indices of cerebral and 

peripheral vascular function correlate with key radiological and clinical features 

of CADASIL. Impaired peripheral and cerebral vasoreactivity was significantly 

associated with a higher number of lacunes, a feature known to relate to poorer 

clinical status (Liem et al., 2007). Patients with greater disability, higher 

depressive symptoms and poorer processing speed, showed a tendency to worse 

cerebral vasoreactivity but group numbers were very small. Lacunes and 

normalised brain volume also showed associations with CIMT, vessel stiffness 
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(PWV), and age. Clearly there are complex interactions between these factors 

which require larger group numbers to unravel than are included in this study. 

However the observation that impaired vasoreactivity is associated with lacunes 

suggests it may have potential as a therapeutic target. 

Reduced CBF, attenuated cerebrovascular responses to hypercapnia and 

acetazolamide, and abnormal cerebral autoregulation have been demonstrated 

to precede the development of vascular and brain lesions in transgenic mouse 

models (Lacombe et al., 2005, Joutel et al., 2010). Whilst mouse models fail to 

recapitulate human CADASIL entirely, as they do not develop lacunes, the 

models  suggest that functional impairment of VSMC and hence cerebral vascular 

pathophysiology, leads to the development of brain lesions in CADASIL (Joutel 

and Faraci, 2014). Increasingly there is evidence that capillary dysfunction, 

secondary to loss of pericytes, may also have a key role, due to their role in 

cerebral autoregulation (Hall et al., 2014). Impaired blood-brain barrier integrity 

may also contribute (Henshall et al., 2015). A number of human studies have 

suggested impairment of cerebral vascular function (Chabriat et al., 2000, 

Pfefferkorn et al., 2001, Peters et al., 2008). Reductions in CBV and CBF have 

been associated with worse clinical or radiological outcomes (Chabriat et al., 

2000, van den Boom et al., 2003a), and impaired TCD CVR with CO2 has been 

associated with disability (Pfefferkorn et al., 2001). Over a 7 year follow up, a 

lower CVR in response to acetazolamide was associated with a larger increase in 

WMH, but not microbleeds or lacunes (Liem et al., 2009a).  

The trend towards association of vasoreactivity markers with disability, 

depression and delays in processing speed is interesting and warrants further 

assessment in longitudinal studies. Whether this is a state preceding or following 

the development of lacunes and atrophy is unclear.  

Cerebral and peripheral reactivity were associated in this study as has previously 

been shown in other studies in CADASIL (Fujiwara et al., 2012). Peripheral 

vascular function has previously been demonstrated to be impaired, particularly 

in resistance vessels (Gobron et al., 2006, Stenborg et al., 2007, Campolo et al., 

2011). Peripheral vascular tests may offer some advantages by being less 

expensive, and generally easier to undertake, particularly in disabled 

individuals, and with a demonstrated role as disease biomarkers in 
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cardiovascular studies (Mancia et al., 2007, Laurent et al., 2001, Celermajer et 

al., 1992). FMD is known to be lower in patients with lacunes compared to 

healthy controls, although this likely reflects their cardiovascular risk factors 

(Pretnar-Oblak et al., 2006). Previous studies have not demonstrated differences 

in FMD between CADASIL patients and controls (Gobron et al., 2006, Stenborg et 

al., 2007) whereas this study found it to be associated with lacunes. Non-

continuous measurement of FMD diameter (Gobron et al., 2006) and limited time 

for measurement (Stenborg et al., 2007) may have hampered the ability of these 

previous studies to detect peak diameters, particularly as there is evidence that 

post-occlusion hyperaemia profiles in CADASIL patients may have a delayed time 

to peak (Gobron et al., 2006).  In this study, brachial artery diameter was 

measured on every R wave from around 20 seconds post cuff deflation to 5 

minutes, enhancing my ability to detect peak diameter. FMD does vary with 

gender and size of vessel, and this would need to be factored into larger studies. 

Interestingly, the RHI, an alternative measure of endothelial function, was 

higher in those with a current or significant history of smoking, and those with 

higher NLV. The reason for this is unclear and FMD and RHI did not correlate. 

In this study no participants had co-existent hypertension, diabetes or carotid 

stenosis, but 11 (50%) patients were current or ex-smokers, and a similar number 

had a history of hypercholesterolaemia (59%). Exclusion of those on treatment 

with calcium channel blockers or angiotensin converting enzyme inhibitors 

restricted the recruitment of hypertensive patients. PWV, a reflection of large 

artery stiffness (Laurent et al., 2001) and CIMT, a surrogate marker of 

generalised atherosclerosis load (O'Leary and Bots, 2010), were also associated 

with number of lacunes. Increased CIMT has been associated with an increased 

risk of stroke and coronary disease (Lorenz et al., 2007). This indicates that in 

CADASIL a combination of large vessel disease presumably resulting from 

smoking and hyperlipidaemia, and small vessel dysfunction, caused by CADASIL, 

is particularly damaging to patients. This study highlights the importance of 

encouraging a healthy lifestyle in order to potentially delay complications of 

CADASIL.  

This is, as far as I am aware, the first study using arterial spin labelling MRI in 

CADASIL to investigate CBF and CVR, and has demonstrated its feasibility and 

potential utility. Global CBF of 46ml/100g/min is compatible with the literature 
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(Kety and Schmidt, 1948b). CBF within specific brain regions can be studied: CBF 

was lowest within subcortical hyperintensities which suggests either that CBF 

falls as a consequence of the pathology underlying hyperintensities, or that 

hyperintensities tend to occur in arterial end zones initially, where CBF is likely 

to be lowest (Duering et al., 2013). However it may also due to difficulties 

accurately measuring white matter CBF (van Gelderen et al., 2008).  

One unanticipated finding was that patients with lower resting SBP had lower 

CVR. The resting SBP was obtained in a temperature-controlled environment, on 

a different day to both the TCD and MRI.  Alterations in BP dynamics have been 

described in CADASIL. In transgenic mouse models, the lower limit of CBF 

autoregulation is shifted to a higher mean arterial blood pressure (MABP), 

although BP does not rise to compensate for this (Joutel et al., 2010). A lower 

BP profile is seen in CADASIL compared to normal controls, due to reduced 

daytime values (Rufa et al., 2005). Daytime MABP has been positively correlated 

to cognitive impairment as measured by the MMSE, suggesting either that low 

blood pressure is harmful or that it reflects more severe disease (Rufa et al., 

2005). Low BP profiles are also associated with dementia in elderly non-CADASIL 

populations (Guo et al., 1996). Alterations in BP may be explained by 

impairments in autonomic function, due to central damage to autonomic or 

circadian control centres (Rufa et al., 2007).  

An alternative hypothesis is that tissue in CADASIL patients has worsened 

capillary transit time heterogeneity (CTTH) and CBF (and perhaps BP) is reduced 

as a protective mechanisms to minimise heterogeneity and preserve oxygen 

extraction (Jespersen and Østergaard, 2012). In this study, however baseline CBF 

was not related to CVR, unlike SBP. CTTH in CADASIL is currently the source of 

ongoing research (Engedal et al., 2015). The role of BP remains complex as 

hypertension appears to have deleterious effects in CADASIL being associated 

with both a higher risk of stroke (Adib-Samii et al., 2010), and more microbleeds 

(Viswanathan and Chabriat, 2006).  

Patients with more lacunes were older but otherwise age did not correlate to 

other measures of MRI damage such as microbleeds or SH, unlike other studies 

(van den Boom et al., 2003b). Whilst the age range was 26 to 67 years, half the 
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patients were between the age of 50 and 60. This study may be underpowered to 

detect the effect of age.  

5.4.1 Strengths 

Strengths of this study include a CADASIL population with a wide age range, and 

a number of affected exons, who lacked conventional risk factors for stroke such 

as hypertension, diabetes or carotid disease, meaning any cerebral pathology is 

likely to predominantly reflect CADASIL alone. All tests were performed by a 

single, trained rater and attendance at 100% of visits was achieved. High quality 

MRI scans were available, with hypercapnic challenge undertaken with 

monitoring of inspired and expired gases allowing accurate calculation of CVR.  

5.4.2 Limitations 

There are limitations to this study which must be noted. First, the number of 

subjects is small, largely due to the comprehensive assessment and multiple 

visits required. Whilst patients were asked to refrain from nicotine, caffeine and 

alcohol for 4 hours prior to study visits, they were not fasted and medications 

were not stopped. Testing also took place at multiple visits over a maximum of 3 

months, although participants experienced no new strokes or hospital admissions 

between visits. Ideally tests would have taken place over a shorter time period. 

All MRI vasoreactivity testing occurred between 10am and 2pm, and 18/21 TCD 

tests between 10am and 12pm. There was more variation in the time of 

peripheral vascular assessment. Time of testing is known to affect vasoreactivity 

measurements, and I cannot exclude that this is relevant in my results.  

One important limitation of this study is the lack of a control group. The study 

was designed as a longitudinal study examining for disease biomarkers in this 

specific patient group, relating vascular markers to clinical progress. It has been 

demonstrated that CADASIL patients are different from healthy controls in a 

number of other studies. The number of visits required for this study, time-

consuming image analysis requirements, and financial constraints, necessitated 

the decision not to include control subjects. This limits the interpretation of CBF 

and CVR in these patients. It is therefore not known if these findings are specific 

to CADASIL. This is a major limitation of this study, and is also relevant in 
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Chapters 6 and 7. It may be that control patients could be obtained as part of 

different studies performed by researchers at the University of Glasgow, which 

may allow more direct comparison.  

Dichotomising radiological measures is arbitrary but given the number of 

statistical tests it was felt sensible to simplify the outcomes measures. Indeed it 

is unlikely any damage caused by impaired reactivity would occur in a linear 

relationship; instead there may be a threshold at which impaired vasoreactivity 

has a deleterious effect.  

A large number of statistical tests and multiple comparisons were used in this 

study without correction for this. This raises the possibility that any significant 

results were purely by chance. Whilst the results are consistent with what we 

would expect knowing about the pathophysiology of the disease, a more defined 

primary hypothesis would have improved the robustness of the results.  

Additionally it would have been beneficial for a number of the tests for 

examples FMD analysis or lacune volume counting to include a second, or an 

entirely independent rater, particularly as these are the results which have 

shown some significant relationships. A rater blind to study hypothesis and all 

clinical information is more scientifically rigorous although the amount of 

analysis required for this to be done is significant. Whilst the author made every 

attempt to avoid any reference to previously obtained results, when repeating 

analysis, bias may have been introduced during analysis. A blind rater may also 

have been more stringent in applying quality control to scans. In a small study 

there is a desire to maximise inclusion of results but quality must also be 

paramount.  

5.5 Conclusion 

Impairment of cerebral and peripheral vasoreactivity is associated with number 

of lacunes, an important established correlate of clinical severity. Ageing, 

cardiovascular risk factors and large vessel disease may also play a crucial role. 

To establish if vasoreactivity could function as a potential biomarker in CADASIL, 

further longitudinal analysis is required. The finding of lower BP being associated 
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with impaired vasoreactivity may warrant the further investigation of the 

changes in BP of CADASIL patients over time.   

 



Chapter 6 – Changes in CBF and CVR in CADASIL as measured 

by TCD and ASL over 1 year.  

6.1 Introduction 

In order to develop a feasible imaging biomarker, techniques need to be reliable 

and repeatable over the time period used in clinical studies i.e. months to years. 

ASL MRI has proved attractive for longitudinal studies of changes in CBF, as it is 

quantifiable, and does not require the use of radiation or intravenous contrast, 

making it safe.  

Inter-subject variability in CBF is very high. Intra-subject measures are more 

consistent. In 34 subjects continuous ASL (CASL) was used to make repeated 

measurements of CBF, in controlled conditions, and CBF was stable (Parkes et 

al., 2004). Using 3D pseudo-continuous ASL (pCASL) with a post-labelling delay of 

2.5 seconds, high repeatability was shown even using different scanners in 8 

healthy patients (Wu et al., 2014). Intra-class correlation for global CBF has 

shown to be >0.90 for elderly subjects at risk of Alzheimer’s disease using pCASL 

(Xu et al., 2010).  

The advantages and disadvantages of both ASL and TCD have been reviewed in 

Chapter 2. No studies have used ASL to study CBF or CVR in CADASIL patients, 

either in cross-sectional or longitudinal studies. TCD has been used to study 

CADASIL patients but with conflicting results (see Chapter 2). As discussed in 

Chapter 3 administering a CVR respiratory challenge has difficulties, and 

establishing if the techniques used can give reliable and repeatable results is 

important before deciding whether the technique has promise as a biomarker. 

Changes in CBF and CVR in CADASIL may well have relevant clinical implications, 

but as inter-subject variability of CBF is so high, this may well be more 

identifiable by change in CBF over time. The main hypothesis of this chapter is 

that cerebral blood flow and cerebrovascular reactivity will decline in CADASIL 

patients over one year.  

 



Chapter 6  165 

Therefore the aims of this chapter are:  

1) confirm CBF is variable in different brain regions;  

2) establish if CBF, velocity or CVR changes in 1 year in a cohort of CADASIL 

patients;  

3) assess the repeatability of ASL and TCD measurements of CBF, velocity and 

CVR.  

6.2 Methods 

6.2.1 Study cohort 

Subjects recruited in this study were recruited as described in Chapter 2. Data 

include baseline and year 1 measurements.  

6.2.2 Experimental procedures 

Procedures including TCD and MRI were undertaken as described in Chapter 2.  

6.2.3 TCD analysis 

TCD were analysed as described in Chapter 2 and 5.  

6.2.4 ASL analysis 

CBF maps were generated and percentage change in CBF (%ΔCBF) and CVR were 

calculated as detailed in Chapter 5.  

Year 1 ASL, T1 and FLAIR maps were co-registered with baseline ASL normoxia 

maps. Where this was not available or had been excluded, Year 1 T1 and FLAIR 

was registered to the ASL year 1 image.   

Three methods were used to analyse the ASL: (1) whole brain masks; (2) single 

slice masks through centrum semiovale, (3) regions of interest.  
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6.2.4.1 (1) Whole brain masks 

3D-T1 images were skull-stripped and segmented as described in Chapter 5. SH 

maps were created using an automated method which used the original SH maps 

(see Chapter 2) as a reference. More detail on this method is provided in 

Chapter 7. This method was used to create masks at baseline and year 1.  

SH masks were then transformed into ASL space using the FLAIR matrix. The 

FLAIR was 27 slices and the ASL map 40 slices, and this led to some distortion of 

the SH mask. The SH mask was a probability map with values of 0 -1, and was 

thresholded at 0.5 and binarised, to ensure only definite hyperintensities were 

included.  

SH mask pixels were removed from grey and white matter images, to create GM, 

WM and SH masks. Baseline ASL data were reanalysed using these new masks.  

6.2.4.2 (2) Single slice centrum semiovale masks 

As whole brain masks include brain regions such as the cerebellum and pons, a 

more localised measure of CBF was also created. CBF and CVR were measured 

from a single segmented slice above the centrum semiovale (CS). These are 

referred to as brain_CS, GM_CS, NAWM_CS and SH_CS.  

Due to the problems identified with GM pixel leakage into WM voxels, a deep WM 

mask was created for analysis at this stage.  A brain slice just above the 

ventricles was identified on the WM mask (as above). Holes in the WM mask were 

filled and then the mask underwent two erosions (Image J, Rasband, W.S., U.S. 

National Institutes of Health, Bethesda, Maryland, USA, 

http://imagej.nih.gov.ij/, 1997-2014). This mask of deep WM included both 

normal appearing and abnormal WM, and was applied to CBF maps (Figure 6-1).  

http://imagej.nih.gov.ij/
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Figure 6-1 Deep white matter mask 
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6.2.4.3  (3) Regions of interest 

The following 10 regions of interest (ROI) were identified with reference to the 

anatomical images: cortical grey matter, putamen, caudate, corpus callosum, 

internal capsule, anterior temporal lobe, cerebellum, pons, normal appearing 

white matter (NAWM) and centrum semiovale white matter hyperintensity 

(WMH) (Figure 6-5). ROI manager in Image J was used. The ROIs were then 

applied to the CBF maps, and average of right and left used. 

Within each ROI percentage change in CBF (%ΔCBF) was calculated in Microsoft 

Excel: 

%∆CBF =
CBFhypercapnia − CBFnormocapnia

CBFnormocapnia
 × 100 

To investigate repeatability, ROIs were drawn for a second time in 5 randomly 

selected individuals without reference to the original ROIs. The single measures 

intraclass correlation for normocapnic CBF was 0.720 (95% confidence intervals 

0.61 – 0.80) and for %ΔCBF 0.11(-0.09 – 0.30; Figure 6-2). %ΔCBF (and CVR) 

within individual ROI was therefore not further investigated due to poor 

repeatability.  

 

Figure 6-2 Repeatability of ASL region of interest measures in 5 individuals 
(A) Cerebral blood flow. Line represents best fit line, dashed lines the individual 95% 
confidence intervals. (B) Percentage change in CBF.  

The ROIs were also applied to the year 1 CBF maps. The average of right and left 

was again used. If baseline NAWM was now a WMH, this ROI was repositioned 

into a NAWM area for year 1 analysis.  
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6.2.5 Other radiological measures 

6.2.5.1 Percentage brain volume change (PBVC) 

Percentage brain volume change (PBVC) between baseline and year 1 was 

estimated on T1 3D images using SIENA (Smith, 2002),  part of FSL (Smith et al., 

2004).  This was compared to change in CBF.  

6.2.6 Statistics 

Statistical analysis was performed with IBM SPSS Version 21 (IBM Corp, Armonk, 

NY, USA). Normality for continuous variables was tested with Shapiro-Wilks test. 

Difference in CBF or CVR between baseline and year 1 in individuals was tested 

with a paired t-test for normally distributed data, with Related Samples 

Wilcoxon Signed Rank Test. Correlations between paired samples were tested 

with paired samples correlations. For the effect of gender and smoking, Chi-

squared test was used. Significance was set at p <0.05. Data is expressed as 

mean (SD) unless otherwise stated.  

6.3 Results 

6.3.1 Subjects 

21 subjects underwent TCD at baseline, and 20 at year 1. 21 subjects underwent 

ASL MRI at baseline and 22 at year 1. There were 345 (25) days between baseline 

and year 1 scans. The exclusions for analysis are shown in Figure 6-3 and 6-4.  

At baseline MRI and TCD took place on a different day, while at year 1, they 

generally took place on the same day. Time of day, caffeine use, smoking, and 

pre-test blood pressure are shown in Table 6-1. The median difference in time of 

scan between baseline and year 1 was 53min (0 – 90min), and for TCD 105min (0 

– 330min). 
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Figure 6-3 Exclusions for ASL  
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Figure 6-4 Exclusions for TCD 
TCD = transcranial Doppler ultrasound; MFV = mean flow velocity; MCA = middle cerebral 
artery 

 

 

 

 

 



Table 6-1 Subject characteristics at baseline and year 1 

 ASL MRI TCD 

 Time of day* Caffeine Smoking Blood pressure Time of day* Caffeine Smoking Blood pressure 

 Base Yr1 Base Yr1 Base Yr1 Base Yr1 Base Yr1 Base Yr1 Base Yr1 Base Yr1 

1 9:30 10:30 0 0 0 0 NA 107/70 09:00 10:00 0 0 0 0 130/84 120/76 

2 13:15 13:30 0 0 0 0 NA NA 10:30 13:00 1 0 0 0 112/71 109/67 

3 12:15 12:15 0 1 0 0 NA 107/72 10:00 11:45 0 1 0 0 125/85 107/72 

4 13:30 14:00 0 0 0 0 124/79 135/70 11:45 14:00 1 0 0 0 127/72 117/71 

5 11:00 12:30 0 0 0 0 133/64 107/59 10:00 12:45 0 0 0 0 120/71 107/59 

6 13:45 13:00 0 0 0 0 134/78 106/63 11:45 12:30 0 1 0 0 135/77 104/63 

7 12:30 11:15 0 1 0 0 117/87 137/61 15:00 11:45 1 1 1 0 116/69 137/61 

8 13:30 12:00 0 0 0 0 110/67 NA 12:45 NA 0 NA 0 NA 119/74 NA 

9 11:45 10:45 0 0 0 0 116/68 125/70 15:45 10:15 0 0 0 0 102/53 125/70 

10 NA 13:30 NA 1 NA 0 NA 126/69 12:00 11:15 1 1 0 0 110/61 126/69 

11 13:45 13:30 0 0 0 0 124/82 129/77 10:55 13:00 0 0 0 0 120/75 129/77 

12 12:30 13:30 0 1 1 0 132/69 129/77 11:30 NA 0 NA 1 NA 116/69 N/A 

13 12:30 12:45 0 1 0 1 116/67 107/58 12:00 11:30 1 1 1 0 96/58 107/58 

14 11:30 10:45 0 1 0 0 134/81 125/70 10:30 10:00 0 1 0 0 131/76 125/70 

15 13:30 13:30 0 0 1 1 124/69 110/62 12:15 13:00 0 0 0 0 99/57 110/62 

16 12:30 13:15 0 0 0 0 119/54 122/74 16:30 14:00 0 0 1 0 112/74 122/74 

17 13:30 14:30 0 1 1 1 96/68 89/59 11:45 14:00 0 0 1 0 109/62 89/59 

18 13:15 13:30 0 1 0 0 127/82 NA 11:30 11:30 1 0 0 0 127/71 118/76 

19 13:30 14:30 0 0 0 0 120/68 137/83 11:45 14:00 0 0 0 0 116/62 137/83 

20 12:45 11:45 0 0 0 0 143/71 115/68 10:15 11:00 0 0 0 0 125/72 115/68 

21 12:30 14:00 1 1 0 0 133/88 122/63 11:45 12:30 1 1 0 0 128/82 122/63 

22 10:45 11:15 0 0 0 0 140/96 145/77 11:45 10:45 0 0 0 0 133/77 145/77 

*Stated to the nearest 15minutes. Base = Baseline; Yr1 = year 1



6.3.2 Cerebral blood flow – ASL 

6.3.2.1 CBF in different brain regions 

As all 22 patients had CBF data at year 1, this is displayed in Table 6.2. CBF was 

highest in cortical GM at 55 (10) ml/100g/min and lower in NAWM and WMH (see 

Figure 6-5). All ROI had significantly lower CBF than the cortical GM ROI (all p 

values <0.003). There was no significant difference between striatum and 

thalamus (p = 0.215) or NAWM and corpus callosum (p = 0.179) or internal 

capsule (p = 0.067).  

Table 6-2 CBF in brain regions measured by ASL and ROI 

  CBF 

(ml/100g/min) 

Mean (SD) 

Region of interest n 

Cortical GM 22 55 (10) 

NAWM* 20 25  (4) 

WMH 22 19  (4) 

Striatum 22 48  (11) 

Thalamus 22 46  (10) 

Internal capsule 22 38  (27) 

Corpus callosum 22 39  (27) 

Anterior temporal lobe 22 36  (9) 

Cerebellum 22 46  (11) 

Pons 22 39  (8) 

*2 patients had no NAWM. 
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Figure 6-5 Cerebral blood flow 
(A) Regions of interest were identified on anatomical images. In this slice cortical grey 
matter, corpus callosum, striatum, thalamus and internal capsule on right and left are seen. 
(B) CBF within grey matter was the highest, followed by white matter  and then white matter 
hyperintensities (WMH) NAWM = normal appearing white matter.  
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6.3.2.2 CBF at baseline and year 1 

The correlations and differences between blood flow at baseline and year 1 can 

be seen in Table 6-3; Figure 6-6.There was correlation between baseline and 

year 1 CBF except in some ROI (NAWM, pons, internal capsule). Parenchymal CBF 

was lower at year 1 compared to baseline (n = 17, mean reduction of 6% + SD 

11%). 

CBF was lower at year 1 in both cortical and central GM (striatum). CBF was also 

lower in the deep WM at year 1 (year 1 25 + 4ml/100g/min v baseline 27 + 

5ml/100g/min; p = 0.036). There was no relationship between change in CBF 

between the two time points and age (GM change n = 17, rs = -0.032, p = 0.903) 

or brain volume change (n = 17, rs = -0.221, p = 0.395).  

Table 6-3 Correlation and difference in CBF between baseline and year 1 

  
CBF 

(ml/100g/min) 
Paired 
T-test 
p value 

Paired 
samples 
correlation P value 

  
Baseline  Year 1 

Whole 
brain 
masks 

Brain 46 (9) 43 (7) 0.015 0.817 <0.001 

GM 50 (10) 46 (8) 0.007 0.845 <0.001 

NAWM 42 (8) 40 (6) 0.078 0.759 <0.001 

SH 23 (5) 21 (3) 0.074 0.740 0.001 

        
Centrum 
semiovale 
mask 

Brain 45 (9) 42 (7) 0.028 0.788 <0.001 

GM 52 (11) 47 (9) 0.015 0.838 <0.001 

NAWM 40 (7) 38 (6) 0.218 0.676 0.003 

SH 21 (4) 20 (3) 0.172 0.643 0.005 

Deep WM 27 (5) 25 (4) 0.036 0.745 0.001 

        
ROI 

Cortical GM 60 (12) 55 (11) 0.026 0.749 0.001 

NAWM 26 (5) 25 (5) 0.334* 0.287 0.299 

WMH 20 (4) 19 (4) 0.361 0.665 0.004 

Cerebellum 51 (14) 47 (11) 0.122 0.780 <0.001 

Pons 41 (8) 40 (7) 0.926 0.186 0.474 

Anterior 
temporal 38 (9) 36 (10) 0.252 0.895 <0.001 

Striatum 54 (10) 48 (9) 0.005 0.692 0.002 

Thalamus 49 (13) 45 (10) 0.191 0.568 0.017 

Internal 
capsule 27 (5) 27 (5) 0.619* 0.218 0.402 

Corpus 
callosum 30 (8) 27 (5) 0.038 0.737 0.002 

*Non-normally distributed - tested with Related Samples Wilcoxon Signed Rank Test 
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Figure 6-6 CBF at baseline and year 1 in grey matter and deep white matter in centrum 
semiovale 
CBF declined between baseline and year 1 in whole brain, grey matter and deep white 
matter masks in the centrum semiovale. Baseline is shown with complete line, year 1 with 
dashed line. 95% error bars shown. 

Age correlated with year 1 GM_CS CBF (n = 22, rs = -0.492, p = 0.020; Figure 6-

7A) but no other region (GM, rs = -0.390, p = 0.073). Gender did not affect CBF in 

any brain region at either time point (women GM CBF, 47 (8) v male GM CBF 45 

(7); p = 0.614).  

There was a significant relationship between baseline CBF and change in CBF 

over 1 year, with patients with higher baseline CBF showing higher rates of CBF 

decline over one year (n = 17, rs = -0.556, p = 0.020; Figure 6-7B). Percentage 

decline in CBF was not related to CVRASL (GM, n = 11, rs = 0.173, p = 0.612) or 

CVRTCD (GM, n = 16, rs = - 0.044, p = 0.871).  
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Figure 6-7 Cerebral blood flow compared to age and change over 1 year.  
(A) Year 1 GM CBF was correlated to age in the centrum semiovale slice. (B) GM CBF 
decreased more in patients with a higher baseline CBF.   The solid line represents the line of 
best fit and the dashed lines the 95% confidence interval of the mean.  

6.3.3 %ΔCBF and CVR – ASL 

%ΔCBF did not demonstrate significant paired samples correlations between 

baseline and year 1 in any mask. There was no significant difference between 

the two time points (Table 6-4).  

Table 6-4 %ΔCBF at baseline and year 1 

  %ΔCBF 
Paired 
T-test 

p value 

Paired 
Samples 
correlations P value 

  

Baseline  Year 1 

 

Whole 
brain mask 

Brain 13 (12) 18 (14) 0.320 0.452 0.105 

GM  13 (12) 17 (14) 0.320 0.393 0.164 

WM 14 (13) 18 (15) 0.192 0.494 0.073 

WMH 16 (9) 18 (14) 0.580 0.399 0.157 

  

     

 

Centrum 
semiovale 
mask 

Brain 13 (12) 18 (15) 0.305 0.410 0.146 

Grey 
matter 13 (13) 17 (14) 0.312 0.373 0.189 

WM 14 (13) 19 (17) 0.307 0.455 0.102 

WMH 13 (7) 18 (15) 0.234 0.233 0.422 

Deep WM 13 (10) 18 (15) 0.285 0.337 0.238 

 



Chapter 6  178 

There was a paired samples correlation in CVRASL in NAWM mask. The other 

masks did not show significant correlations but they were closer to significance 

than %ΔCBF had been. There was no significant change in CVRASL between 

baseline and year 1 (Table 6-5; Figure 6-8). 

Table 6-5 CVR (%) at baseline and year 1 

  
CVRASL (%) 

T-test 
p value 

Paired 
samples 
correlations P value 

  
Baseline  Year 1 

Whole 
brain 
masks 

Brain 13 (10) 12 (11) 0.770 0.596 0.052 

GM  13 (10) 12 (10) 0.767 0.560 0.073 

NAWM 13 (10) 13 (11) 0.794 0.637 0.035 

SH 14 (8) 11 (10) 0.409 0.543 0.084 

 

 

     

Centrum 
semiovale 
masks 

Brain 13 (9) 12 (10) 0.772 0.569 0.068 

GM 13 (10) 12 (10) 0.798 0.542 0.085 

NAWM 13 (10) 12 (11) 0.768 0.596 0.053 

SH 11 (5) 12 (12) 0.751 0.508 0.110 

Deep WM 12 (7) 11 (11) 0.875 0.573 0.065 

 

 

Figure 6-8 Cerebrovascular reactivity at baseline and year 1.  
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6.3.4 TCD – MFV and CVR 

2 patients had one probable ACA insonated instead of MCA so these vessels were 

not included in mean MFV at year 1. Mean MFV showed a statistically significant 

paired sample correlation (n = 19, correlation = 0.620, p = 0.005). There was no 

difference in average MFV between baseline and year 1 (baseline 42 (10) v year 1 

43 (12); p = 0.536, Related Samples Wilcoxon Signed Rank test). 

Baseline and year 1 TCDCVR were correlated (0.474, p = 0.047; Figure 6-9). There 

was no difference between TCDCVR at baseline and year 1 (baseline 17 (10), year 

1 17 (11); p = 0.889). Age correlated with year 1 MFV (n = 19; rs = -0.457, p = 

0.049).  

 

Figure 6-9 Transcranial Doppler ultrasound cerebrovascular reactivity baseline and year 1 
Solid line represents line of best fit, and dashed lines 95% confidence interval of the mean.  
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6.3.5 Correlation between TCD and ASL reactivity 

At baseline CVRTCD correlated with CVRASL in grey matter (n = 11, rs = 0.682, p = 

0.021) and to %ΔCBF (n = 16, rs = 0.979, p <0.001). However at year 1, this 

relationship was not seen with either CVRASL (n = 12, rs = -0.091, p = 0.779) or 

%ΔCBF (n = 15, rs = -0.118, p = 0.676) (Figure 6 -10).  

 

Figure 6-10 Cerebrovascular reactivity at baseline and year 1.  
Whilst at baseline (A) ASL and TCD CVR was correlated, this relationship was not seen at 
year 1 (B). Solid line is line of best fit; dashed lines are 95% confidence interval of the mean.    

6.4 Discussion 

This study examined CBF, MFV and CVR with two methods at two time points in a 

cohort of CADASIL patients. Grey matter CBF declined by 6% over 12 months 

which was not explained by age, brain atrophy or CVR. Faster rates of decline 

were seen in patients with higher baseline CBF. CBF between baseline and year 1 

was correlated despite the overall decline. MFV and CVRTCD correlated at 

baseline and year 1, but did not change over a one year period.  

Decline in CBF of 6% over 12 months in CADASIL patients far exceeds the values 

stated for normal aging of 0.45% per annum (Leenders et al., 1990). In some 

respects this value seems high, and further longitudinal assessment will be 

needed. Decline in CBF seen with normal aging is partly explained by thinning of 

the brain cortex, as CSF voxels contaminate the grey matter (Firbank et al., 

2011). As individual masks were created at baseline and year 1, this is unlikely 
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to have had an effect in this experiment. Whilst brain atrophy in CADASIL 

exceeds that of healthy individuals (Peters et al., 2006), it did not correlate to 

change in CBF, so does not explain the change alone. Decline in individual 

patients with CADASIL has not previously been demonstrated, although 

hypoperfusion with worsening disease severity has been described (Chabriat et 

al., 1995).  

No gender difference was seen in CBF values at either time point. In healthy 

individuals CBF is higher in women than men by around 10ml/100g/min in grey 

matter (Parkes et al., 2004). In this cohort this lack of a difference may be 

explained partly by the fact women were slightly older than the men (52 years 

+10 v 48 years + 12). 

One finding of interest is that rates of decline in GM were higher in those with 

higher baseline CBF. This may reflect the theory that presymptomatic patients 

may have higher than normal cortical GM blood flow (Tuominen et al., 2004), 

which may reflect an attempt to compensate for abnormal small vessel function 

with increased flow rates (Østergaard et al., 2015). At some point this 

compensation may fail and lead to more dramatic drops in CBF. Indeed 3 out of 

the 4 patients with the lowest CBF actually showed an increase in CBF between 

baseline and year 1 of up to 10%, which may reflect a degree of inter-individual 

variability.  

In order to enhance repeatability patients were asked to refrain from smoking or 

drinking caffeine prior to testing. This request was generally, although not 

always followed, which may reflect the cognitive problems some of these 

patients have. However both TCD and ASL MRI took place at least 60 minutes 

after the visit began, so no patient had taken caffeine or a cigarette 

immediately before testing. I aimed to undertake testing at the same time of 

day at baseline and year 1. Exact timing of experiments was not always possible, 

usually due to patients work or childcare commitments.  

ASL can be used to identify regional differences in CBF in CADASIL patients. 

However ASL has disadvantages. Poor spatial resolution means alignment is 

difficult, and small errors in alignment may produce changes in CBF values, 

particularly in ROI analysis as the ROI is much smaller than in masks. Given the 
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lack of CVRASL repeatability in individual ROI at one time point, use of small ROI 

may have limited utility for CVR measurements.  

White matter is the area which is thought to be most abnormal in CADASIL, but 

is also the most difficult to measure with ASL (van Gelderen et al., 2008). White 

matter signal is only just above background signal because arterial transit time is 

longer and CBF is lower. This can make it difficult to detect hypoperfusion in 

white matter (van Gelderen et al., 2008). Further division into NAWM and WMH 

may be problematic as WMH tend to be deeper and therefore have lower flow 

and less GM contamination than NAWM. This could lead to the potentially false 

conclusion that WMH have reduced flow due to being hyperintense, rather than 

it being the most “at risk” tissue. Some authors have however suggested the use 

of white matter as a reference value, and use of grey matter/white matter 

ratios. Mutsaerts and colleagues suggested using eroded white matter masks 

avoided grey matter contamination, and as the signal in these maps was 

different to that outside the brain, it suggested the presence of white matter 

signal (Mutsaerts et al., 2014). In this study using an eroded “deep white 

matter” mask, which included both normal appearing and hyperintense white 

matter, allowed us to demonstrate a decline in CBF over 1 year of 8% (SD 13%). 

Dynamic contrast MRI has shown basal perfusion is reduced in white matter 

hyperintensities (van den Boom et al., 2003a, Chabriat et al., 2000).  

Transcranial Doppler ultrasound also showed significant correlation between 

baseline and year 1. The difficulties of ensuring repeatability of baseline MFV 

are that different parts of the vessel (e.g. M1 or M2) may have been selected at 

baseline and year 1. Keeping a more standard depth could have enhanced the 

chance of identifying the same vessel each year.  Average MFV was around 

42m/s, which is lower than values stated as normal in the literature: for healthy 

individuals between 50 and 59, average MFV was 51 + 9.7m/s (Ringelstein et al., 

1990) . This finding, along with the negative correlation with age, is in keeping 

with previous studies in CADASIL using TCD (Pfefferkorn et al., 2001).  

CVR correlation at baseline and year 1 was better with TCD. This may reflect 

that more data was available for TCD repeatability (n = 17) compared to ASL (n = 

11) probably due to better facemask fit (use of an anaesthetic mask), with 

higher CO2 delivery and more accurate gas monitoring. This results in more 
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accurate adjustment of CVR. In the MRI scanner, a standard gas mask with 

sealed ports and with fit enhanced with swabs and tape was used, as the 

anaesthetic mask was too rigid to fit in the confines of the head coil. Some MRI 

scanners with more open head coils will be more amenable to improved mask fit 

but may allow more patient movement. Alternatively a respiratory challenge 

method like Respiract®, which relies less on mask fit and more on breath-by-

breath analysis, could be used (Mandell et al., 2011). This equipment is not 

widely available however.  There is a concern that unless the reliability of CVR 

measurements can be improved, it is not currently useful as a biomarker for this 

disease. This is particularly the case when any trials are likely to still be reliant 

on small numbers, and therefore data dropout is concerning.  

At baseline, CVR using ASL and TCD correlated but this relationship could not be 

demonstrated at year 1. This may reflect the effect of outliers on small study 

numbers or the loss of ASL data due to smaller subject numbers.  

This study demonstrates the problem of using change in CBF without correcting 

for change in EtCO2. %ΔCBF actually non-significantly increased between 

baseline and year 1. This is probably due to the fact investigators were more 

skilled in fitting the mask, which may have led to either more accurate gas 

recording, or better delivery of gas. Failing to correct %ΔCBF by ΔEtCO2 

therefore leads to inaccuracies between time points. 

Healthy age matched controls using the same scanner and same CVR technique is 

not available. However as ASL is quantifiable, these values should be comparable 

to those in the literature obtained in other ASL experiments. 

As mentioned in Chapter 5, this study did not include control subjects for these 

experiments using either the same scanner or the same CVR technique. This is a 

limitation to this study as it does not allow us to directly compare the changes to 

those seen with healthy individuals. Scanner drift, which is change occurring 

over time in the superconducting magnets field, can cause differences in the 

acquired signal over time, and thus potentially the recorded CBF. Including 

healthy controls, or using specific quality control procedures on the scanner, 

limits our ability to adjust for this.  
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Also images were not assessed for quality by an independent assessor, and no 

additional corrections for movement artefact were made (out with that made by 

the MRI scanner programme itself). Asymmetric coil sensitivity due to poor head 

positioning was inspected for by examining the images but again by the author 

alone. To improve the robustness of these results, independent analysis of all 

scans by a researcher blinded to all other clinical information and study 

hypothesis, would be best practice.  

Whilst CBF measured by ASL is thought to have reasonable repeatability between 

sessions in individuals, this is not known for CVR. It would have been useful to 

re-test several individuals. This could either be done by doing ASL at the 

beginning of the session and the end, or repeating all scans the following week. 

This would have allowed assessment of the test-retest reliability of a number of 

scans, but most importantly ASL and CBF, which may well be very variable. We 

do not know if CADASIL patients show more variability in resting CBF than 

healthy individuals for example. Repeating all sequences after a short time, 

would allow assessment of whether measures such as atrophy and SH volume are 

also stable when using this combination of MRI scanner, sequence and analysis 

techniques.   

The study also uses a number of statistical tests and multiple comparisons. Use 

of Bonferroni correction may have been appropriate. Adjustment for age and 

gender for example were considered, but small numbers of subjects prohibited 

these adjustments.  

6.5 Conclusion 

ASL can be used in CADASIL patients to identify a significant decline in CBF over 

one year. This appears to be higher than normal rates of decline in the 

literature. CVR measured with ASL poorly correlates between baseline and year 

1 suggesting problems with methodology. TCD CVR however shows correlation 

over 1 year, suggesting a role in CVR monitoring. However, this may be due to 

more effective gas delivery and monitoring allowing the inclusion of higher 

numbers of patients.  



Chapter 7 – Progression of vascular, radiological and clinical 

markers in CADASIL over 1 year 

7.1 Introduction 

CADASIL is a disease that can result in disability in young adults, or be detected 

radiologically in asymptomatic elderly patients. This variability makes 

prognostication for patients difficult, and exacerbates problems in using clinical 

endpoints in any potential therapeutic intervention. Chapter 5 identified 

vascular and radiological correlates of disease severity in CADASIL, but for these 

to function as a biomarker, they must correlate over time.  

The ideal characteristics of biomarkers in central nervous system disease have 

been stated as (Jain, 2013):  

 non-invasively (or minimally invasively) detectable in living subjects;  

 reproducible;  

 positively correlated to the cause or progression of the disease.  

Over a short time period, in small numbers of patients, change in disability 

measures or number of incident strokes, are unlikely to give sufficient change to 

allow comparison to potential biomarkers. Cognitive impairment however can be 

detected early in CADASIL, even prior to ischaemic manifestations (Buffon et al., 

2006). Standardised tests are available for its assessment, and impairment of 

cognition is a major factor, along with depression, in the patient’s quality of 

life. It also represents cumulative damage to the brain.  

In other neurodegenerative conditions, such as cerebral amyloid angiopathy, 

altered vascular reactivity to visual stimulation has been demonstrated and 

shown to be partly reversible. This suggesting its possible role as a potential 

biomarker, with the advantage of having a mechanistic role in disease 

development (Greenberg et al., 2014).  
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The association of peripheral and cerebral vasoreactivity, along with CIMT and 

PWV with radiological measures of disease, may suggest a role for these as 

biomarkers. This was assessed over one year in the cohort of CADASIL patients.  

The main hypothesis is that vasoreactivity at baseline will predict changes in 

neuropsychological markers of disease.  

Therefore the aims of this chapter are to:  

1) examine which baseline measures predict changes in radiological markers of 

disease;  

2) examine which baseline measures predict changes in neuropsychological 

markers of disease.  

7.2 Methods 

7.2.1 Study cohort 

Subjects recruited in this study were recruited as described in Chapter 2. Data 

include baseline and year 1 measurements.  

7.2.2 Experimental procedures 

Procedures including TCD, MRI, vascular studies and neuropsychology were 

undertaken as described in Chapters 2 and 5.  

7.2.3 Neuropsychological assessment and analysis 

Methods for calculation of cognitive measures are detailed in Chapter 5. 

Processing speed and executive function was again used as the key outcome 

variables.  

Differences in baseline and year 1 in these variables were dichotomised by 

whether they improved or declined over one year.  
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7.2.4 MRI analysis 

7.2.4.1 Intracranial cavity volume 

Intracranial cavity (ICC) volume was calculated using brain extraction tool (f 0.5) 

on the SWI image at baseline and year 1. A binary ICC mask was created and the 

voxels counted. ICC volume between baseline and year 1 was highly correlated 

(n = 22, Pearson = 0.993, p <0.001). 3 scans had different slice thickness at 

baseline from year 1. When these patients were excluded correlation improved 

(n = 19, Pearson = 0.996, p = <0.001; Figure 7-1). ICC measurements were 

therefore robust. Year 1 ICC volume was used to normalise baseline and year 1 

lacune and SH volumes. In one patient, with a large head size, there was a small 

amount of missing cerebellum at year 1, so his baseline ICC volume was used.  

 

Figure 7-1 Intracranial cavity volume at baseline and year 1 
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7.2.4.2 Percentage brain volume change (PBVC) 

Percentage brain volume change (PBVC) between baseline and year 1 was 

estimated on T1 3D images using SIENA (Smith, 2002),  part of FSL (Smith et al., 

2004).   

7.2.4.3 New lacunes 

Number of lacunes and lacune volume were calculated at baseline, and 

normalised to the new ICC (NLV, %). In order to avoid human error in recounting 

lacunes that were already present, a method was designed to identify new 

lacunes. SWI images were registered to T1, skull stripped, and then used to mask 

the T1 image to create a brain image (using FSL tools). This was done at baseline 

and year 1. The baseline brain image was registered to Montreal Neurological 

Institute 1mm brain template with 6 degrees of freedom. The brain year 1 image 

was then registered to this image with 12 degrees of freedom. The images were 

then bias corrected. The MNI registered maps were subtracted from each other 

to create a T1 difference map (see Figure 7-2).  

This image was reviewed at intensities -500 to 500 and -1000 to 1000 to identify 

new areas of abnormality. Reference was then made to original scans to ensure 

the new abnormality was a lacune and not a new perivascular space or 

hyperintensity. Images were reviewed twice. Once lacunes were identified on 

the intensity map, the equivalent new lacune on the original T1 image was 

identified and outlined with seed-based thresholding as per baseline to calculate 

the volume. This was added to baseline lacune volume, and normalised to the 

ICC (NLV, %).  
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Figure 7-2 Creation of T1 difference maps for new lacune identification 
MNI  = Montreal Neurological Institute, dof = degrees of freedom 
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7.2.4.4 Automated SH volume calculation  

5 year 1 images were analysed with the baseline method to calculate SH volume, 

but varying image intensities meant the results were inconsistent. It was 

therefore decided to use an automated method to avoid error induced by 

manual correction, and to correct for changes in image intensity.  

SH volumes created by thresholding at baseline using the mode of the 

parenchymal image (see Chapter 2) were affine registered to Montreal 

Neurological Institute (MNI) standard space to generate a probability map of SH. 

This map was used in combination with voxel location and intensity on FLAIR to 

automatically generate SH volumes at baseline and follow-up (coding for this 

procedure was written by Dr D. Dickie). Once the SH map was created it was 

then viewed in MRIcron whilst overlaid on the FLAIR. The ideal threshold for best 

delineation of SH was identified and recorded. The SH mask was thresholded to 

this using FSL maths (ref). The volume of this mask was then calculated and 

normalised to ICC (NSH, %).  

The correlation between the threshold-derived and manually corrected volumes 

(Chapter 2) and automatically generated volumes was high (r = 0.952; p <0.001; 

Figure 7-3). Example images are shown in Figure 7-4.  
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Figure 7-3 Threshold SH volume compared to automated method 
The thresholded SH volumes created at baseline were highly correlated to those created by 
the automated method.  



Chapter 7  192 

 

Figure 7-4 Automated subcortical hyperintensity segmentation of baseline and year 1 FLAIR 
images 
Year 1 FLAIR images (Bi) were co-registered to baseline FLAIR (Ai). Overlaid SH masks are 
shown at a threshold of 0.05. In this subject, at baseline SH volume was 126ml and 143ml at 
Year 1, an increase of 17ml over 1 year. Areas of previously discontinuous SH at baseline 
(Aii) have merged to become continuous at Year 1 particularly in the left frontal lobe (Bii).  

 

7.2.4.5 ASL  

Masks of whole brain, grey matter, and white matter were created as per 

Chapter 5. Pixels from SH masks created above were removed from the grey and 

white matter images. In this chapter only GM mask was used.  

Deep white matter masks were created as described in Chapter 6.  

Baseline and year 1 masks were applied to their appropriate CBF map and CBF, 

%ΔCBF and CVR calculated.  



Chapter 7  193 

7.2.4.6 MRI marker stratification 

For analysis, MRI markers were dichotomised either by their median (NLV, NSH, 

PCBV) or;  

 no new lacunes or new lacunes;  

 no new microbleeds or new microbleeds.  

7.2.5 Baseline predictors  

The following factors at baseline were investigated as potential predictors of 

radiological or neuropsychological decline: age, gender, PWV, CIMT, RHI, FMD, 

GM CVR, deep WM CVR, and CBF.  

7.2.6 Statistics 

Statistical analysis was performed with IBM SPSS Version 21 (IBM Corp, Armonk, 

NY, USA). Results are expressed as mean (SD) unless otherwise stated. Normality 

was tested with the Shapiro-Wilk test. Continuous variables were compared to 

by Spearman’s rank correlation. 

For categorical outcome variables, normally distributed continuous variables 

were tested with independent t-tests, and non-normally distributed continuous 

variables with independent samples Mann-Whitney U tests. For the effect of 

gender and smoking, a Chi-squared test was used.  

Significance was set at p <0.05.  

 

7.3 Results 

7.3.1 Patient characteristics 

All 22 patients were followed up at Year 1 and underwent MRI, 

neuropsychological testing and vascular tests. 3 patients did not undergo TCD (1 
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unable to find MCA, 2 declined due to the length of the visit). Vascular 

parameters at baseline and year 1 are shown in Table 7-1. SBP and BMI increased 

over 1 year but other parameters did not change.  

The time between baseline and year 1 visits was: MRI 350 (25) days; vascular 

visit 404 (29) days; neuropsychology 398 (96) days.   

3 patients had a new stroke or TIA, 3 self-reported new depression and 7 

reported worsening cognition. Despite this there was no change in overall HADS 

depression or anxiety scores. 3 patients had a worsening of their mRS. Due to 

the small numbers affected by new clinical outcomes at year 1, these were not 

compared to baseline measures.  

Table 7-1 Clinical and vascular measures at baseline and year 1 

 Baseline Year 1  P value 

mRS, median (range), n 0 (0-3), 22 0 (0-4), 22  

NIHSS, median (range), n 0 (0-3), 22 0 (0-4), 22  

HADS anxiety, mean (SD), n 8 (5), 21 8 (5), 19 0.554* 

HADS depression, mean (SD), n 6 (5) 6 (6) 0.874* 

SBP mmHg, mean (SD), n 120 (11), 22 125 (12), 22 0.023 

BMI kg/m2, mean (SD), n 29 (7), 22 29 (7), 21 0.043 

AI@75 bpm, mean (SD), n   17 (13), 22 20 (15), 21 0.164* 

PWV m/s, mean (SD), n,  7.6 (1.1), 21 7.6 (1.1), 19 0.783 

CIMT mm, mean (SD), n 0.64 (0.1), 21 0.64 (0.1), 19 0.190 

RHI %, mean (SD), n  2.1 (0.7) ,20 2.0 (0.5), 20 0.114 

FMD %, mean (SD), n  4.1 (1.9), 18 5.0 (2.6), 17 0.403 

*Non-parametric 

7.3.2 Radiological change over 1 year 

7.3.2.1 Normalised subcortical hyperintensity volume (NSH) 

Baseline and year 1 NSH were correlated (n = 21, paired sample correlation = 

0.990, p <0.001; Figure 7-5) with an increase of 0.82 % (SD 0.45%, median 0.75%; 

p = <0.001). 1 patient, who had the highest baseline NSH, showed a reduction in 

NSH. The probability maps for baseline and year 1 are shown in Figure 7-6.  
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Figure 7-5 Baseline versus Year 1 normalised subcortical hyperintensities 
20 patients showed an increase in NSH, 1 a decrease (baseline data missing for one). The 
solid line represents the reference line y = x.  
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Figure 7-6 Subcortical hyperintensity probability maps 
(A) Baseline and (B) year 1, showing increased probability of periventricular 
hyperintensities at year 1. Hyperintensities involving the anterior temporal lobes can be 
seen at both time points.  
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7.3.2.2 Percentage brain volume change (PBVC) 

PBVC was -0.44% (0.56; median -0.45, range -1.84 to 1.08). 3 patients showed 

increase in PBVC and 18 a decrease (1 missing baseline data). Age (n = 21, rs = - 

0.276, p = 0.225) and gender (male -0.42% (0.36) v female -0.46% (0.72); p = 

0.896) did not affect PBVC (Figure 7-7).  

 

Figure 7-7 Percentage brain volume change (PBVC) over 1 year compared to age 

 

7.3.2.3 Lacune number and volume 

11 patients had new lacunes on MRI after 1 year (median 1, range 0 – 7; p = 

0.002). Examples of lacune difference maps are shown in Figure 7-8. 10 did not 

have new lacunes, and 1 did not have a scan at baseline to compare. NLV 

increased by median 0.003% (range 0 – 0.02%; p = 0.003). NLV was not 

dichotomised for testing as it divided subjects the same as lacune number.   
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Figure 7-8 T1 difference maps 
(A) A difference map with no change between baseline and year 1. (B) New right centrum 
semiovale lacunes (black areas). (C) Central atrophy shown by increased ventricle size 
(black rim surrounding ventricles. (D) Lacunes can shrink: a lacune lateral to the left 
ventricle is shown as white. Whilst present on both images, the lacune at year 1 appeared 
smaller than at baseline.  

7.3.2.4 Microbleed number 

7 out of 20 patients had new microbleeds, median 1 (range 0 – 6, n = 20; p = 

0.103). 2 patients had different slice thickness at baseline and year 1 so 

comparison could not be made.  

7.3.3 Change in processing speed and executive function.  

Overall there was no significant change over one year in processing speed or 

executive function. Individual values can be seen in Figure 7 – 9.  
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Figure 7-9 Neuropsychological measures 
(A) Processing speed and (B) executive function at baseline and year 1. The solid line 
represents x = y.  
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7.3.4 Predictors of change in MRI markers 

No baseline vascular marker significantly predicted change in any MRI marker. 

Smoking and gender did not have an effect. Patients with new lacunes had 

higher baseline CIMT than those without new lacunes, but this did not reach 

significance (no new lacunes 0.59 (0.99); new lacunes 0.68 (0.86); p = 0.063).  

7.3.5 Vascular predictors of neuropsychological decline 

No baseline vascular marker significantly predicted change in processing speed. 

Patients with deterioration in processing speed had a lower baseline RHI (n = 6, 

2.4 (0.7)) than those with improved speed (n = 13, 1.8 (0.4); p = 0.087) but this 

did not reach significance (Figure 7-10A).  

No baseline vascular marker significantly predicted change in executive function 

parameter over one year. Patients with deterioration in executive function had a 

lower baseline FMD (n = 7, 3.2 (1.8)) than those with improved function (n = 10, 

14.8 (1.8); p = 0.070) but this did not reach significance (Figure 7-10B). 

 

Figure 7-10 Peripheral vasoreactivity and neuropsychological decline 
Whilst neither showed a significant relationship, (A) FMD was lower in patients with poorer 
processing speed over 1 year, and (B) RHI in those with a decline in executive function.  

7.3.6 Radiological predictors of neuropsychological decline 

Patients with a decline in executive function had lower NBV at baseline. Patients 

with a decline in processing speed had higher NSH at baseline (see Table 7-2).  
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Table 7-2 MRI markers and prediction of neuropsychological decline 

  Processing speed Executive function 

  Improved Declined p 
value 

Improved Declined p  
value  Median (IQR) Median (IQR) 

NLV, % 0.02 (0.04)  0.02 (0.05) 0.733  0.02 (0.04) 0.02 (0.05) 0.393 

NSH, %  6.3 (4.4)  9.5 (5.8) 0.033 6.3 (4.9)  7.9 (4.5) 0.604 

No. of 
microbleeds 

0 (4)  1 (8) 0.391 0  (2) 3 (6.5) 0.113 

No. of 
lacunes 

4 (13)  9 (14) 0.659 2 (15)  7 (12) 0.243 

NBV, L 1.57 (0.14)  1.50 (0.23) 1  1.59 (0.14) 1.49 (0.15) 0.013 

 

7.4 Discussion 

In this chapter, change in MRI parameters over 1 year has been demonstrated. 

NSH increased by 0.8%, brain volume decreased by 0.4% and a high number of 

patients had new lacunes and microbleeds. Vascular measures were not able to 

predict which patients showed these changes however. In patients with a decline 

in processing speed, NSH was higher at baseline, and in those with a decline in 

executive function, NBV was lower.  

There was little change in clinical parameters over 1 year. Vascular parameters 

also showed little change although BMI and blood pressure did increase. Given 

what is known about the slow progression of CADASIL, these results are not 

surprising and highlight the need for biomarkers.  

As seen in Figure 7-9, many patients showed minimal difference between the 

two time points. Practice effects, as well as that some patients found testing 

very tiring, may explain some of the variation. Dichotomising change in 

neuropsychological measures is a broad way of assessing change particularly 

when doing being “better” or “worse” may be minimal. Over a longer time 

period of 2 years, I would expect to see greater change in these variables, which 

will allow more detailed assessment of which factors relate to cognitive decline. 
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The mean rate of brain atrophy in this cohort was 0.44%. Peters and colleagues 

stated the annual rate of atrophy was 0.56%, significantly higher than healthy 

people of the same age (Peters, 2006). Atrophy is known to be associated with 

worse cognition in cross-sectional studies (Viswanathan et al., 2010). A recent 

large longitudinal study of 290 subjects has confirmed that baseline brain 

volume to be an important predictor of cognitive decline and clinical events 

(Chabriat et al., 2016). The results of this study relating to executive function, 

may be consistent with this, but require ongoing assessment over time given the 

small overall change over one year in cognition.  

NSH was associated with a decline in processing speed. Whilst hyperintensities 

are known to have clinical implications in the general populations, their 

relevance to the development of disability or dementia in CADASIL remains 

controversial. Given the small change in processing speed, this result may well 

be relevant, and it is important to note that, whilst not statistically significant, 

the number of lacunes and microbleeds were also both higher in patients with 

declining cognitive functions. Thus further assessment of this is needed.  

Difference maps for identification of lacunes has previously been used in 

CADASIL patients (Duering et al., 2013). This approach offers the advantage of 

removing the some of the manual error that may be associated with re-counting 

and re-measuring lacunes at two different time points. As median increase in 

lacunes was only 1, even small errors in lacune identification could be 

significant. A 3D FLAIR image would have been preferable for identification of 

lacunes due to enhanced contrast between CSF and tissue, and this scan has 

been introduced into the final year of this study (Wardlaw et al., 2013).  

The SH maps were created using an automated method which used the original 

maps created at baseline as a template. Its effectiveness at identifying SH is 

therefore based on the adequacy of the original maps. Whilst manual correction 

of the original maps was performed, it consisted only of removing cortical pixels 

or single pixels, rather than adding any missed areas of SH as I felt this would 

introduce error at later time points. Therefore some small areas which may 

appear hyperintense will have been missed by the threshold method. However 

they will have been missed at both time points when using the automated 

method so this is unlikely to be relevant. Registering year 1 images to baseline 
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does introduce interpolation error, and in preference both images should have 

been registered to a different space. This will be done when analysing the year 2 

data. Identifying SH rather than WMH may have its drawbacks, as it will include 

grey matter and therefore may include areas of higher CBF, which may alter 

results.  

Strengths of the study include 100% attendance at all study visits by patients, 

and image analysis techniques which are repeatable. I undertook all the vascular 

tests and administered all CO2 challenges (MRI and TCD). Dr Cullen undertook all 

neuropsychological assessments. This gave consistency to the testing, although 

the technical ability in performing some of the assessments may have improved 

over time.  

Limitations include the short period of follow up and the lack of analysis of the 

effect of drugs. Modelling of the effect of different variables is not possible with 

these small group numbers.  

Use of an independent rater for several of the analyses including lacune 

identification may have been appropriate. Attempts were made to use 

automated methods where possible to avoid introducing bias, but as the author 

was not blinded to knowledge of the expected natural history of the disease, 

there may have been a tendency to over score radiological progression.  

As stated in Chapter 5, the lack of control subjects is a limitation of this study. 

Although we would not expect to see significant changes in healthy subjects over 

one year, their inclusion would allow better modelling of whether or not the 

changes are significant. It would also allow assessment of whether other factors 

such as techniques used for analysis are producing repeatable results, or 

whether changes in the scanner itself may affect results.  

The study uses multiple statistical tests and multiple comparisons to investigate 

changes, without Bonferroni correction. This leads to the possibility that any 

significant results have been produced through chance alone. A more definitive 

primary hypothesis would have allowed more robust assessment of results.  
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7.5 Conclusion 

Progression of radiological features of CADASIL was evident over one year, with 

changes in brain volume, subcortical hyperintensities, new lacunes and 

microbleeds. Vascular measures have not been shown to predict radiological or 

neuropsychological change over 1 year. A longer period of follow up, as well as 

more detailed statistical analysis, may allow any potential relevance of these 

markers to be understood, particularly with regards to peripheral vasoreactivity.  

 



Chapter 8 – Does ex vivo myography correlate with in vivo 

vasoreactivity in CADASIL patients? 

8.1 Introduction 

The NOTCH3 protein is expressed by VSMC throughout the body. Minor vessel 

wall thickening, GOM deposits and loss of VSMC can be seen in systemic vessels, 

and this has formed the basis of skin biopsy as a method for CADASIL diagnosis 

(Ruchoux et al., 1994). Retinal microvascular changes including arteriolar 

narrowing (Pretegiani et al., 2013), nephroangiosclerosis and renal impairment 

(Guerrot et al., 2008), peripheral nerve damage (Schröder et al., 2005) and 

Raynaud’s phenomenon (Bartkova et al., 2010), have all been described in 

CADASIL patients. However systemic clinical effects remain uncommonly 

reported, with symptoms being largely confined to the brain.  

As well as histological changes, there is evidence from in vivo testing that 

peripheral vascular function is impaired. This includes an absence of the 

nocturnal dipping of blood pressure (Manabe et al., 2001), and abnormal 

reactive hyperaemia, which may be due to inadequate vasodilatation (Campolo 

et al., 2011). These tests can vary in response to patient factors such as 

smoking, caffeine or food, as well as environmental factors such as timing of 

experiments and room temperature, necessitating strict protocols to enable 

accurate interpretation.  

An alternative is ex vivo experimentation. This is conducted on tissue from an 

organism in an external environment, with minimum alterations of natural 

conditions. In CADASIL, it is assessment of small arteries that is of most interest. 

Small arteries with internal diameters less than 500µm are referred to as small 

resistance arteries (SRAs) as they contribute significantly to peripheral 

resistance (Mulvany and Aalkjaer, 1990) through their ability to regulate their 

diameter. Vessels of this diameter are those most affected by CADASIL (Okeda et 

al., 2002). Whilst brain tissue is difficult to obtain from living CADASIL patients, 

SRAs can be easily obtained from gluteal or abdominal tissue. Assessment of 

SRAs has been used in cardiovascular research for many years to examine small 

vessel remodelling and function (Intengan et al., 1999).  
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Wire myography is a technique developed to investigate the structure and 

function of these vessels (Mulvany and Halpern, 1977), independent of factors 

such as blood flow or the autonomic nervous system. It involves the dissection of 

vessels from tissue. Vessels are then mounted on a wire myograph and exposed 

to different experimental conditions. The ability of vessels to contract and relax 

can be investigated.  

One study undertook clinical assessment and gluteal biopsy with myography in 10 

CADASIL and 10 control subjects without a history of stroke, matched for age, 

sex and blood pressure (Hussain et al., 2004). Disease severity was assessed in 

patients with the expanded disability status scale, and T2 lesion load on brain 

MRI quantified as a percentage of brain parenchyma. Subjects were asked to 

discontinue antiplatelets and cholesterol lowering drugs for 72 hours before the 

biopsy. Resistance arteries were obtained from gluteal biopsy, stored and 

studied the following day. Concentration response curves to a number of 

vasoconstrictors and vasodilators were obtained. There was a reduced potency 

of noradrenaline contraction, but a greater maximal response to angiotensin II. 

The response to vasorelaxants was similar between controls and patients.  Whilst 

noradrenaline potency was reduced, subjects with higher noradrenaline potency 

had the more severe disease on the basis of both imaging and disability scores. 

Conclusions from this study were that vasoconstrictor abnormalities are 

important in the pathophysiology of CADASIL, and that reduced noradrenaline 

potency may represent a secondary or compensatory response. This study was 

therefore in contrast to in vivo studies which have suggested an impairment of 

vasodilatory response (Stenborg et al., 2007). 

In vivo and ex vivo experimentation may therefore increase our understanding of 

the pathophysiology of CADASIL, but it is not clear if these techniques relate to 

each other, and whether either correlates to disease severity.  

The main hypothesis is that there will be abnormalities in vessel function in a 

cohort of CADASIL patients. 

The aims of this chapter are therefore to:  
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1) correlate ex vivo myography in a group of CADASIL patients to radiological and 

clinical markers of disease;  

2) compare ex vivo myography in a group of CADASIL patients to in vivo 

vasoreactivity measures;  

3) examine the effect of anti-oxidants on vessel responsiveness.  

8.2 Methods 

8.2.1 Funding 

The gluteal biopsy study was funded by project grants from the Stroke 

Association and the Neurosciences Foundation.  

8.2.2 Ethics 

Ethical approval was obtained for the gluteal biopsy study from the West of 

Scotland Research Ethics Service; project reference WS/12/0294. The study was 

sponsored by the NHS Greater Glasgow and Clyde Research and Development 

Service (GN12NE341). Written informed consent was obtained for all study 

participants in accordance with the Declaration of Helsinki.  

8.2.3 Patient recruitment 

Recruitment of subjects to the study took place between September 2013 and 

July 2015. Patients with genetically confirmed CADASIL from Neurovascular 

Genetics clinic at the Southern General Hospital, and who fulfilled the inclusion 

criteria for the study, were considered. Potential participants were approached 

by letter, then with a follow up telephone call.  

8.2.3.1 Inclusion criteria 

Inclusion criteria were as follows: 
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 Diagnosis of CADASIL confirmed with a characteristic mutation in exons 2 – 

24 of the NOTCH3 gene on chromosome 19.  

 Over 18 years of age. 

 Capacity to give informed consent.  

 Able to participate in the study, and willing to comply with all 

procedures, either alone or with the aid of a responsible care giver.  

8.2.3.2 Exclusion criteria 

Exclusion criteria were as follows: 

 Individuals incapable of giving informed consent. 

 Chronic diffuse skin condition without uninvolved areas suitable for 

biopsy. 

 History of keloid scar formation. 

 Known diagnosis of hepatitis B, C or HIV. 

 Known coagulopathy or history of significant bleeding after injury or 

operation.  

 Known myopathy. 

 Known allergy to local anaesthetic.  

 Current treatment with warfarin or other anticoagulant medication. 

8.2.3.3 Patient consent 

Patients who met the inclusion and exclusion criteria were invited to a study 

visit at the BHF Glasgow Cardiovascular Research Centre (GCRC). Written 

informed consent was obtained.  
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8.2.4 Study design 

Information including past medical history, demographics, cardiovascular risk 

factors and medication was collected. Height and weight were obtained. Pulse 

and supine blood pressure were recorded with an Omron Blood Pressure Monitor 

(OMRON 705IT, Omron corporation, Kyoto, Japan). A blood sample was obtained 

and full blood count, urea and electrolytes, HBA1c and cholesterol were 

analysed by NHS Greater Glasgow and Clyde routine laboratories. Urine protein 

was measured on a random urine sample.  

Neurological disability was assessed with NIH Stroke Scale, and functional 

disability with modified Rankin scale (see Chapter 2).  

8.2.4.1 Gluteal biopsy 

Gluteal biopsies were performed by Dr Paul Rocchiccioli and Dr Jane Cannon. 

Surgeons wore a surgical gown, mask, hat and latex powder-free gloves during 

the biopsy. Disposable sterile surgical equipment was used. The patient was 

positioned face down on a bed with the buttocks exposed. The buttock was 

cleaned with Chlorprep® (CareFusion, UK) to produce a sterile field. A 

fenestrated drape (Easidrape® Single drape 75 x 75cm) was used to cover the 

patient but leave the operating field exposed. The upper, outer quadrant of the 

buttock was selected. Typically the right buttock was used unless the patient 

requested otherwise. 10ml of 2% lidocaine was injected using a needle and 

syringe. An incision was made with a scalpel (Disposable Sterile Scalpel, Swann-

Morton, No 15), and a biopsy approximately 2cm x 1cm x 1cm of gluteal skin and 

subcutaneous fat was taken and placed in sterile normal saline solution (NaCl 

0.9%; Figure 8-1). Haemostasis was achieved with manual pressure and wound 

closure. Absorbable sutures (coated VICRYL absorbable sutures, 3/0, 3/8 circle 

reverse, Ethicon) were used to close under the skin, followed by 4 or 5 non-

absorbable sutures (ETHILON non-absorbable sutures, 3/8 circle reverse, 

Ethicon) to close the skin, using an interrupted mattress technique. A sterile 

dressing was then placed over the sutures (Mepore®, Mölnlycke Health Care). 

The biopsy site, volume of local anaesthetic used, number of sutures and any 

immediate complications were recorded in the case report form.  
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Figure 8-1 Gluteal tissue sample in normal saline 

 
Patients were observed for one hour following procedure, and then provided 

with transport home. All patients were given written instructions regarding 

wound care, and contact details in the event of any complications. Patients 

either returned to the BHF GCRC one week post biopsy for wound inspection by a 

member of BHF GCRC nursing or medical staff, or attended their GP and were 

contacted by telephone. All complications were recorded in the case report 

form. If there were any complications patients were followed up until these had 

resolved.  

8.2.5 Vessel dissection 

Dissection of vessels from the gluteal biopsy specimen was performed by 

Elisabeth Beattie or Laura Mcpherson, on the day of biopsy. This was undertaken 

with surgical grade microscopic instruments with the aid of a high powered 

microscope (Stemi 2000, Zeiss). The biopsy was placed in a petri dish. If 

required, the biopsy was secured with entomology pins. The dish was filled with 

physiological salt solution (PSS; 118.4mM NaCl, 4.7mM KCl, 1.2mM MgSO4.H2O, 

1.2mM KH2PO4, 24.9mM NaHCO3, 2.5mM CaCl2, 11.1mM glucose, 0.023mM EDTA) 

which was regularly changed during the dissection process. Dissection took 

between 30 minutes and 3 hours, and a single biopsy yielded none, one or 

several vessels. Care was taken to avoid direct contact with the vessels. Vessels 

were isolated from subcutaneous tissue and placed in a scintillation vial 
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containing physiological salt solution. Vessel length (in mm) and diameter (in 

µm) were recorded. 

8.2.6 Myography 

Myography experiments were performed by Dr Aurelie Nguyen Dinh Cat or Laura 

McPherson. Wire myography was conducted using a Mulvany-Halpern myograph. 

Vessel segments (around 2mm long) were mounted on a pressurized myograph 

(Danish MyoTechnology, Aarhus, Denmark, Figure 8-2). Vessel segments were 

slipped onto 2 glass microcannulas, one of which was positioned until vessel 

walls were in parallel. Once in position vessels were washed with PSS and left to 

equilibrate for 20min to achieve a pH of 7.4 at 37oC.  

 

Figure 8-2 Mulvany-Halpern myograph 
Reproduced from Methods in Molecular Medicine, Vol. 108: Hypertension: Methods and 
Protocols, 2005, page 94, Chapter 7: A guide to wire myograph, Spiers A and Padmanabhan, 
N. Figure 1 (© Humana Press Inc., Totowa, NJ), with kind permission from Springer Science 
and Business Media 

Viability of tissue was assessed by testing contractile response to high-potassium 

depolarisation and noradrenaline. If vessels failed to contract, they were 

discarded. For vasodilatory studies, arteries were precontracted with 

phenylephrine to achieve approximately 80% of maximal response. Endothelium-

dependent relaxations were measured by dilatory responses to acetylcholine 

(ACh, 10-9 to 10-5mol/L). Endothelium-independent relaxations were assessed 

with sodium nitroprusside (SNP, 10-9 to 10-5mol/L). A contraction curve to 
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cumulative increasing doses of phenylephrine (Phe, 10-9 to 10-5mol/L) was 

constructed from arteries with intact endothelium.  

These experiments produced concentration response curves, which are 

logarithmic and usually sigmoidal. Between 20 and 80% of the maximal, the 

response is approximately linear. This protocol was based on that found in “A 

guide to wire myography” (Spiers and Padmanabhan, 2005).  

In patients 13 to 20 the vessels were incubated with the antioxidant N-

acetylcysteine (NAC), and the concentration response curves for acetylcholine 

and phenylephrine were repeated.  

8.2.7 Data from longitudinal study 

Some patients recruited into the biopsy study had also taken part in the study 

detailed in Chapter 2 “Cerebral and peripheral perfusion and reactivity in 

CADASIL: A longitudinal pilot study”. Reactive hyperaemia index, CIMT and FMD 

results were used from the visit closest to the biopsy. This could have been 

either the baseline or year 1 study visit.   

8.2.8 Imaging data 

If an MRI head was available within one year of the biopsy date it was analysed. 

Hyperintensities were recorded using Scheltens score on the T2 FLAIR. The 

number of lacunes was also counted on the FLAIR image. If SWI or T2* gradient-

echo was available the number of microbleeds was recorded. 

8.2.9 Control data 

Data from previous studies have been used to illustrate the differences in small 

vessel vasoreactivity between patients with CADASIL and healthy subjects. There 

are normal vessel data available, and for this study further sampling of healthy 

subjects was not undertaken. The paper used was by Glasgow researchers and 

studied small resistance vessels (<300µm) using a similar protocol (Hillier et al., 

1999). Precontraction prior to vasodilatation studies was with noradrenaline, not 

phenylephrine, however, this was to a similar level of vessel contraction.  
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8.2.10 Statistics 

If more than one vessel was tested per patient, the average response was taken. 

The response of vessels to additives at log 10-5 was chosen for statistical testing, 

as this should be close to maximal responsiveness. Values were reported as mean 

(SD) unless otherwise stated. For comparisons of independent categorical data 

Mann-Whitney tests for independent samples were used. For comparison of 

related samples Wilcoxon signed rank tests were used. For comparison of 

continuous variables, a Spearman rank correlation was used. Although there 

were multiple comparisons, as this was an exploratory study, p value 

significance was set at p = 0.05. 

8.3 Results 

20 patients (11 female) from 20 pedigrees were recruited to the gluteal biopsy 

study. Demographics, past medical history and medication are summarised in 

Table 8-1. 15 subjects had a mutation in exon 4, 3 in exon 5 and one each in 

exon 2 and 6.  

4 patients were on antihypertensive medication but only 1 had a diagnosis of 

hypertension. The other patients were on propranolol for migraine, a diuretic for 

polycystic ovarian syndrome, and in 1 individual an ACE-inhibitor and a diuretic 

since the diagnosis of CADASIL despite never having been hypertensive.  

Vessels were obtained in 17 patients. MRI scans were available for 16 patients. 

11 patients also took part in the longitudinal study described in Chapter 2.  

  



Chapter 8  214 

Table 8-1 Characteristics of gluteal biopsy cohort (n = 20) 

   

Number of patients (female) 20  (11) 

Age, years, median (range)  52 (30 – 62) 

Modified Rankin Scale, median (range) 0 (0 – 2) 

Systolic blood pressure, mmHg, median (range) 129 (100 – 145) 

Diastolic blood pressure, mmHg, median (range) 76 ( 60 – 97) 

BMI, kg/m2 , mean (SD) 28 (4.3) 

Laboratory   

 eGFR >60 mls/min/1.73m2, n (%) 20 (100) 

 Cholesterol, mmol/L, mean (SD) 4.3 (0.6) 

 HbA1c, mmol/mol, mean, (SD) 35  (3) 

 Urine protein <0.1 g/L, n (%)* 18 (100) 

Medical history, n (%)   

 Stroke or TIA 10 (50) 

 Migraine 15 (75) 

 Depression (patient reported) 9 (45) 

 Hypertension 1 (5) 

 Diabetes 1 (5) 

Medication, n (%)   

 Antiplatelet 18 (90) 

 Statin 17 (85) 

 Antihypertensive 

       Beta-blocker only  

       Diuretic only 

       ACE inhibitor and diuretic 

4 

1 

1 

2 

(20) 

(5) 

(5) 

(10) 

Complications   

 Minor wound dehiscence only 2 (10) 

 Infection requiring antibiotics 3 (15) 

Radiological characteristics (median (range)   

 Number of lacunes, n =15 4 (0-18) 

 Number of microbleeds, n = 15 

Modified Schelten’s score, n = 16 

0 

48 

(0-21) 

(26–70) 

Vessel properties   

 Vessel length, mm, mean (SD) 1.9 (0.1) 

 Vessel diameter, µm, mean (SD) 576 (171) 

*2 missing values   
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8.3.1 Concentration response curves 

Examples of curves from healthy patients (in a different study) are shown in 

Figure 8-3. Mean endothelium-dependent relaxation (A), endothelium-

independent relaxation (B), and contraction (C) curves are shown in Figure 8-4 

for CADASIL patients. These failed to show a typical sigmoidal shape as maximal 

responsiveness was limited. Vessels from CADASIL patients failed to obtain 100% 

relaxation or concentration even at very high concentrations of vasoactive 

agents.  
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Figure 8-3 Effect of acetylcholine (a) and sodium nitroprusside (b) on isolated resistance 
arteries from control subjects and patients with chronic heart failure 
Control subjects (open circles), CHF patients (dark circles). Reproduced with permission 
from Clinical Science (1999), 97, 671-679. Hillier et al, Structural and functional assessment 
of small arteries in patients with chronic heart failure. Significance of difference, *p < 0.05 

 

 

Figure 8-4 Concentration response curves in gluteal resistance arteries 
(A) Endothelium-dependent relaxation to acetylcholine, n= 17; (B) Endothelium-independent 
relaxation to sodium nitroprusside, n = 14; (C) Contraction to phenylephrine, n = 17. 
Expressed as mean + standard error of mean. Interpolation line shown.  
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8.3.2 Effect of NAC 

Vessel responsiveness to acetylcholine at 10-5 was improved in the presence of 

NAC (with NAC -53 (13), without NAC -33 (7), p = 0.017). Vessel contraction to 

phenylephrine at 10-5 was not statistically improved by NAC (with NAC 55 (16), 

without NAC 70 (20), p = 0.208). Concentration response curves with and without 

NAC for patients 13-20 are shown in Figure 8-5. 

 

Figure 8-5 Vessel responsiveness with and without N-acetylcysteine (NAC)  
(A) Endothelium-dependent relaxation to acetylcholine was improved by the addition of an 
antioxidant; (B) contraction to phenylephrine was unaffected overall. Significant differences 
shown with *. 

8.3.3 Relationship of vasoactive responses 

There was no relationship between the responses to acetylcholine, 

phenylephrine or sodium nitroprusside (see Table 8-2, Figure 8-6). Endothelium-

dependent and independent vessel relaxation was independent.  
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Table 8-2 Relationship of vasoactive responses 

   Response at 10-5, % 

   ACh SNP Phe 

Response 
at 10-5, % 

ACh rs 
Sig (2 tail) 
N 

 -0.336 
0.240 

14 

-0.188 
0.471 

17 

SNP rs 
Sig (2 tail) 
N 

-0.336 
0.240 

14 

 0.183 
0.532 

14 

Phe rs 
Sig (2 tail) 
N 

-0.188 
0.471 

17 

0.183 
0.532 

14 

 

 

 

Figure 8-6 Endothelium-dependent and independent relaxation at 10-5 
 

8.3.4 Vasoactive responses to vessel diameter 

Vessel diameter was negatively correlated to contraction in response to 

phenylephrine (rs = -0.652, p = 0.005, n = 17; Figure 8-7) but did not affect 

relaxation.  
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Figure 8-7 Vessel diameter and contraction to phenylephrine 

Smaller diameter vessels contracted more in response to phenylephrine.  

8.3.5 Vasoactive responses and clinical outcomes 

Age was not found to be correlated with any measure of vessel responsiveness 

(ACh n =17, rs -0.389, p = 0.123; SNP n = 14, rs = -0.194, p = 0.506; Phe n = 17,  rs 

-0.81, p = 0.757).  Systolic blood pressure was not found to be correlated with 

any measure of vessel responsiveness (ACh rs n = 17, 0.207, p = 0.425; SNP n = 

14, rs = 0.108, p = 0.714; Phe n = 17, rs -0.169, p = 0.517).   

There was no association between gender and either endothelium-dependent 

vessel relaxation (ACh; male (n = 6), -35% + 7; female (n =11), -39% + 16; p = 

0.961) or endothelium-independent relaxation (SNP, male (n = 5), -52% + 16; 

female (n = 9), -38% + 24; p = 0.083). Females contracted more than males (male 

(n = 6), 51% + 12; female (n = 11), 80% + 36; p = 0.007). 
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There was no difference in those patients with a history of stroke compared to 

those without, in any parameters of vessel responsiveness. There was no 

difference between those with an mRS of 0 or 1 compared to 2 or more, in any 

parameter of vessel responsiveness (Table 8-3).  

Table 8-3 Vessel responsiveness compared to clinical parameters 

  Response at 10-5, % 

  ACh 

Mean (SD),  n 

SNP 

Mean (SD), n 

Phe 

Mean (SD), n 

Modified 
Rankin Scale 

 0- 1 -34 (8), 11 -42 (18), 9 63 (21), 11 

>2 -44 (19), 6 -45 (31), 5 81 (47), 6 

p value 0.216 1 0.350 

Stroke No 
stroke 

-32 (6) -33 (11), 5 69 (23), 7 

Stroke -42 (16), 10 -49 (25), 9 70 (39), 10 

p value 0.088 0.190 0.536 

 

8.3.6 Vasoactive responses and radiological outcomes 

16 subjects had MRI scans which took place within 1 year of the date of the 

biopsy (median 50 days, range 6 – 352).  

Table 8-4 Vessel responsiveness compared to radiological measures 

   Lacunes, n Microbleeds, n Scheltens, n 

Response 
at 10-5, % 

ACh rs 
Sig (2 tail) 
N 

-0.057 
0.860 

12 

-0.090 
0.781 

12 

-0.498 
0.083 

13 

SNP rs  
Sig (2 tail) 
N 

-0.638 
0.026 

12 

-0.492 
0.124 

11 

0.063 
0.846 

12 

Phe rs 
Sig (2 tail) 
N 

-0.253 
0.427 

12 

0.141 
0.663 

12 

0.190 
0.535 

13 

 
There was no relationship between vessel responsiveness to acetylcholine or 

phenylalanine and any radiological marker. Vessel responsiveness to sodium 

nitroprusside was negatively correlated to number of lacunes (see Table 8-4, 

Figure 8-8).  
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Figure 8-8 Relaxation to sodium nitroprusside in comparison to number of lacunes 
Patients with a higher number of lacunes showed greater relaxation in response to SNP 

8.3.7 Ex vivo vasoactive responses and in vivo vascular 

assessment 

A subset of patients (11) had also undergone in vivo vasoreactivity tests. There 

were 1 and 5 months between the vascular tests and the biopsy. Unfortunately 

vessels were only available in 8 of these patients. No statistically significant 

relationship was seen between ex vivo vessel responsiveness and FMD, RHI or 

CIMT (Table 8-5). Patients with higher contraction to phenylephrine did seem to 

have higher FMD but this was not significant (Figure 8-9).  



Chapter 8  222 

 

Figure 8-9 Flow mediated dilatation and contraction to phenylephrine 

 

Table 8-5 Ex vivo vessel responsiveness compared to in vivo vessel reactivity 

   FMD, % RHI, % CIMT, mm 

Response at 
10-5, % 

ACh rs 
Sig (2 tail) 
N 

0.371 

0.365 

8 

0.179 

0.701 

7 

0.156 

0.713 

8 

SNP rs 
Sig (2 tail) 
N 

0.198 

0.670 

7 

0.657 

0.156 

6 

0.396 

0.379 

7 

Phe rs 
Sig (2 tail) 
N 

0.611 

0.108 

8 

r0 

1 

7 

0 

1 

8 

 

8.4 Discussion 

This chapter presents the initial results of an ongoing study examining small 

arteries in patients with CADASIL. Concentration response curves to agents which 

cause vasodilation and constriction have been produced under standardised 
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conditions. Whilst at present, control patients collected by the same researchers 

are not available, comparison of these results to control patients from previous 

studies shows evidence of markedly impaired vasoreactivity. Both dilation and 

constriction are affected. These results are in contrast to previous work in 

CADASIL, where only deficits in vasoconstriction were demonstrated (Hussain et 

al., 2004). However confirmation of these results with controls is required.  

There was improved endothelium-dependent relaxation when NAC was incubated 

with the vessels. NAC has antioxidant effects and reduces free radicals, and is 

thought to enhance endothelial function. NAC may improve endothelial 

dysfunction during myography in oophorectomized rats which display vascular 

endothelial dysfunction (Delgado et al., 1999). It has also been demonstrated to 

augment acetylcholine-induced relaxation in human coronary and femoral 

arteries, in patients both with and without atherosclerosis (Andrews et al., 

2001).  

No relationship was demonstrated between in vivo vasoreactivity measures and 

ex vivo testing. This was however limited by small group numbers. Age and blood 

pressure did not appear to play a significant role in vasoactive responses. No 

difference in clinical measures could be detected. Surprisingly the only 

relationship between vasoreactivity and radiological measures was that patients 

with more impaired endothelial-independent relaxation had a smaller number of 

lacunes. This may either reflect small group numbers or multiple testing, or that 

lacunes are not due to impairment of vasodilatation but that another mechanism 

is responsible.  

NOTCH signalling clearly plays a role in vascular function. Notch3 null mice 

display a failure for post-natal arterial remodelling. Arterial vessels at 28 days 

are enlarged, with a thinner VSMC layer and disorganised VSMC, compared to 

wildtype littermates (Domenga et al., 2004). Blockage of NOTCH signalling to 

smooth muscle (all NOTCH receptors) by expression of an inhibitory protein, 

DNMAML1, leads to decreased VSMC contractile and relaxation responses in 

mutant mice arteries. This effect was postulated to be at the level of the 

myofilaments (Basu et al., 2013).  
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Notch3 mutated mice also demonstrate abnormal vasculature (see Chapter 1). In 

transgenic Notch3 Arg90Cys mice, an age-dependent arteriopathy is 

demonstrated. These mice show attenuated responses to vasodilatory 

challenges, which stimulate myogenic responses, and altered CBF 

autoregulation. These findings are present prior to visible brain abnormalities 

(Lacombe et al., 2005). This mouse model shows GOM and NOTCH3 deposits but 

does not demonstrate parenchymal pathology or clinical effects in the mouse. 

Interestingly, the vessels with the most extensive abnormalities are found in the 

mouse tail, rather than the brain (Ruchoux et al., 2003).  

Tail caudal vessels of 10 month old CADASIL mice showed reduced shear-stress 

induced dilatation. This response is endothelium-dependent. Reduced response 

may represent either direct endothelial damage, or abnormal myoendothelial 

communication (Dubroca et al., 2005). Vessels also showed increased myogenic 

tone, suggesting less effective adaptations to variations in blood pressure, 

making the brain more vulnerable to periods of hypotension. These findings were 

detected prior to the detection of GOM. Vessel responses to phenylephrine and 

acetylcholine were not shown to be impaired however. 

Mechanical forces and chemical agents likely function in different pathways, 

reflected in the lack of relationship between the two. It may be that mechanical 

dysfunction is present early in the disease, prior to histological abnormalities, 

but altered responses to chemical agents comes after VSMC degeneration 

(Dubroca et al., 2005). 

The human endothelium both secretes, and is susceptible to, a variety of 

vasoactive substances. It is vulnerable to damage, and its dysfunction is a 

marker of vascular risk (Anderson and Phillips, 2015). Endothelial dysfunction is 

seen in conditions such as hypertension, diabetes and renal impairment. The 

more severe the hypertension the more impaired endothelial function appears to 

be (Benjamin et al., 2004). However it remains unclear if endothelial function is 

a cause, or a consequence, of hypertension (Dharmashankar and Widlansky, 

2010). Probably both are over-simplistic, and there is a complex interaction 

between the two.  



Chapter 8  225 

Vascular inflammation and oxidative stress are thought to be key in the 

development of endothelial dysfunction (Brandes, 2014), both of which have 

been described in CADASIL (Ihalainen et al., 2007, Rafalowska et al., 2004). If 

the results of this study are valid, and systemic small arteries are affected in 

CADASIL as profoundly as those in the brain, the question arises as to why other 

systemic effects are not seen. In this cohort blood pressure was unrelated to all 

measures of vessel dysfunction, and was generally within normotensive limits. 

Renal function also appeared unaffected, with no evidence of proteinuria in any 

patient. Therefore in CADASIL patients, despite abnormal small vessel function, 

hypertension and renal failure are not seen.  

The reasons for this are unclear. Theories have included that as the brain has 

fewer vascular smooth muscle cells than other organs (Heistad, 2001), and less 

capacity to regenerate, it may be more vulnerable to their damage (Rafalowska 

et al., 2004). Another explanation is that endothelial and pericyte dysfunction 

may lead to the breakdown of the blood brain barrier leading to toxic effects on 

the brain (Hall et al., 2014). NOTCH3 has been found to be additionally 

expressed in astroglial progenitors and the choroid plexus (Alberi et al., 2013), 

and is proposed to have a role in neural stem cell development (Alunni et al., 

2013). In RBJK mutations, which lead to loss of NOTCH signalling, there is 

depletion of neural stem cells and early termination of lineages, although this 

has not been confirmed in NOTCH3 mutations (Alunni et al., 2013). The brain 

may therefore be more vulnerable due to co-existent neural cell and vascular 

damage.  

Vessel size varied from 221 to 882µm. Smaller vessels contracted more than 

larger vessels. This may be because larger vessels are in fact flaccid and lack 

functioning VSMC. Some of the vessels were larger than the definition of <500um 

so this may reflect that smaller vessels are more contractile and the source of 

vascular resistance.  

8.4.1 Strengths 

All vascular tests were performed by a single, trained rater. Vascular tests were 

conducted as per published recommendations and established standardised 

operating procedures in the BHF GCRC laboratory. The majority of biopsies (18) 
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were performed by a single surgeon who has completed multiple previous gluteal 

biopsy procedures. The patients were well phenotyped and included a number of 

different mutations. The age range was wide and both male and female patients 

were represented. Very disabled patients were not recruited, usually due to 

difficulties with informed consent or attending the appointments. However the 

included participants still had a range of symptoms and disabilities.  

The number of subjects is limited due to the invasive and highly technical nature 

of the biopsy and post-biopsy procedures. However 20 subjects in this sort of 

study is relatively large (Hussain et al., 2004). Vessels were obtained in 85% 

(17/20) of patients.  

8.4.2  Limitations 

This study does not have concurrent healthy control subjects. This is however 

planned. This will allow more accurate comparison with these subjects as the 

same protocol, equipment and staff will be used. In vivo studies were not 

undertaken in all subjects, and these did not occur on the same day. At the time 

of planning the studies, consideration was taken about combining the 2 studies. 

However some potential participants did not want to take part in a multi visit 

longitudinal study, whilst others did not want to undergo an invasive procedure.  

MRI scans were clinical scans and could be up to a year before or after the 

biopsy. Progression of microbleeds, lacunes and white matter hyperintensities, 

as seen in Chapter 7, is generally slow however. Use of the presence or absence 

of lesions, and the Scheltens score are broad-brush descriptors of radiological 

disease load. However, they do have greater relevance to the clinician than 

more complex measures.   

Patients were not asked to fast or avoid alcohol or cigarettes prior to the biopsy. 

All these factors are known to influence vasoreactivity studies (Anderson and 

Phillips, 2015). It was not considered appropriate to withhold medication in 

patients with a disease which increases the risk of stroke therefore antiplatelets 

were not stopped. ACE-inhibitors and stains are thought to improve endothelial 

function (Dharmashankar and Widlansky, 2010) but given that in general these 

patients responded poorly, presence of these drugs is unlikely to be relevant. In 
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this technique vessels are effectively “washed out” of confounding factors in the 

PSS so reactivity is likely to represent local signalling pathways only.  

There are a large number of statistical comparisons in this study and specific 

primary hypothesis was not established at the start of the study. Using multiple 

comparisons without a correction for this can be criticised and any significant 

results may well be through chance.  

8.5 Conclusion 

Further assessment using myography is needed to establish the vascular 

abnormalities seen in CADASIL patients, and whether these relate to in vivo 

vascular, clinical and radiological measures of disease.  

 



Chapter 9 – Arterial branch order and lenticulostriate artery 

territory lacunes in CADASIL 

9.1 Introduction 

Lacunes are a characteristic manifestation of CADASIL, and cerebral small vessel 

disease (CSVD) in general. Lacunes are proposed to be due to subcortical infarct 

or haemorrhage in the territory of a single perforating artery (Wardlaw et al., 

2013), and are commonly found in the basal ganglia, subcortical white matter or 

brainstem (Duering et al., 2013). They are often associated with characteristic 

neurological syndromes, but can also occur without concurrent clinical 

manifestations (Fisher, 1982). Most subcortical infarcts are thought to be due to 

intrinsic abnormalities of cerebral small vessels (Wardlaw, 2008), and this is 

certainly the proposed cause in CADASIL. Lacunes may also be caused by 

embolism or intracranial atherosclerosis (Futrell, 2004). Research has focussed 

on the mechanisms responsible for subcortical infarcts, rather than the size of 

vessel involved, partly due to limited resolution of in vivo imaging. 

Contrast injection into the basal ganglia microvasculature of 40 cerebral 

hemispheres, demonstrated that basal ganglia vasculature is consistent across 

brains with little overlap between arterial territories (Feekes et al., 2005). The 

medial and lateral lenticulostriate arteries (LSA) originate from the middle 

cerebral artery and supply portions of the caudate, putamen, internal capsule 

and external globus pallidus. These primary vessels subdivide into smaller vessels 

which terminate in defined territories (Marinković et al., 2001). Investigators 

have produced a microangiographic template derived from the arterial maps 

outlined above. This was used to estimate the branching order of vessels related 

to basal ganglia subcortical infarcts in a general acute stroke population using 

FLAIR images (Phan et al., 2013). These investigators concluded that the volume 

and dimensions of subcortical infarct were dependent on the order of artery 

involved. In a heterogeneous stroke population however, with multiple 

cardiovascular risk factors, it is not possible to determine whether the infarcts 

studied were caused solely by CSVD, or whether other mechanisms might be 

relevant. CADASIL patients offer a more homogenous population with 

pathologically pure CSVD. CADASIL has similar radiological findings to CSVD but 
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with a younger age of onset and hence a lower prevalence of confounding 

pathology such as atheroma or cardioembolism.  

The main hypothesis of this chapter is that most lenticulostriate lacunes will be 

associated with tertiary branching order vessels in CADASIL.  

The aims of this chapter are to:  

1) investigate the size of lacunes in CADASIL;  

2) correlate this with the branching order of the LSA using a microangiographic 

template in CADASIL patients.   

9.2 Methods 

9.2.1 Sample 

All subjects underwent imaging, clinical assessment and vascular assessment as 

stated in Chapter 2.  

9.2.2 MRI analysis 

Lacunes were defined as in Chapter 2. Each lacune was identified on 3D-T1 

image and a seed placed within it using Analyze v 11.0 (Analyze Direct Inc., 

United States). Seed-based thresholding was used to define the lacune. 

Segmented lacunes were fused with 3D-T1 scan which was transformed into 

standard MNI 1mm brain space using FLIRT (FMRIB’s Linear Image Registration 

Tool (Jenkinson and Smith, 2001) from the FMRIB software library (FSL v 5.0, 

Oxford University, UK). 

Individual lacunes were transformed into MNI standard space using the matrix 

derived above. The transformed lacune volume was measured using the voxel-

counting method. Coronal slices 125, 130 and 135 were extracted from the 

transformed T1 (FSL slicer) and the LSA template created as part of a recent 

study (Phan et al., 2013) was overlaid onto coronal images using a programme 
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provided by Dr Richard Beare and Prof Thanh Phan from Monash University (see 

Figure 9-1).  

 

Figure 9-1 Lacune and brain on MNI template with overlaid microangiographic template 
A lacune (white area) can be seen on the right with the arterial template overlaid in green.  

Lacune dimensions (axial width and anterior-posterior (AP) length) were 

measured using the boundary of their locations on the standardised brain map. 

Coronal height was measured on the slice with the arterial map. Coronal height, 

axial width and AP length were also measured at the geometric centre of the 

lacune.  

Analysis of microbleeds, calculation of subcortical hyperintensity volume, and 

brain volume has been stated in Chapter 2 and 5.  

9.2.3 Clinical rating 

4 raters (2 neurologists, 1 geriatrician, 1 neurology trainee) who were blinded to 

clinical information, were asked to rate infarcts. Raters were provided with all 

overlaid coronal images where a lacune was visible (see Figure 9-1), along with a 

standardised rating form (Figure 9-2). The scans were labelled 1 to 16.  If a 
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lacune was visible on more than one slice, all slices were included and scored 

(but only the slice closest to the centre of the lacune was included in the 

analysis). Each rater independently assessed whether the vessel likely to have 

been diseased in relation to the lacune was a primary, secondary, or tertiary 

branch of the LSA, or out with the LSA territory. Examples from the previous 

study using the arterial template were provided (see Figure 9-2). Individual 

ratings were averaged to provide a summary score for each lacune. A summary 

score of <1.5 was rounded to 1 (primary), 1.5-<2.5 to 2 (secondary) and >2.5 

rounded to 3 (tertiary). 

Lacunes were excluded if the coronal height in the overlaid slice was over 50% 

different from the coronal height in the geometric centre, as it was felt likely 

that the coronal slice therefore gave an inaccurate visual impression of lacune 

size.  

9.2.4 Statistical analysis 

Differences in MRI characteristics, and lacune dimensions in different orders of 

arteries, were calculated with independent samples Mann-Whitney U Test. The 

relationship between width and volume was determined with Spearman’s 

correlation. Statistical analysis was performed with IBM SPSS Version 21 (IBM 

Corp, Armonk, NY, USA). Differences were considered significant at p <0.05. 

Results are expressed as median (IQR) unless otherwise stated.  
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Figure 9-2 Worksheet for rating of lacunes and arterial branching order 
Picture used with permission from Phan et al, “Dimensions of subcortical infarcts 
associated with first- to third-order branches of the basal ganglia arteries”, Cerebrovasc Dis 
2014; 35: 262-267. Copyright © 2013 Karger Publishers, Basel, Switzerland. 
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9.3 Results 

9.3.1 Patient information 

22 subjects with CADASIL (50% male, median age 53 years, range 26 - 67) were 

included in the study. 10 subjects had one or more discrete lesions in the 

territory of the LSA, and none were associated with blood on SWI. 8 of these 

subjects were male. Subjects with lacunes in LSA territory had a higher total 

lacunes (10 (12) v 2 (11); p =0.051) compared to subjects without LSA lacunes 

although this did not quite reach significance. There was no difference in 

number of microbleeds or NSH. 

There was no evidence of extracranial vessel disease on MRA in 20/22 (one 

patient age 30 years did not undergo MRA and in one patient MRA was degraded 

by artefact but there was no evidence of vessel abnormalities on carotid 

ultrasound). One patient had a known patent foramen ovale and another had 

poor quality 3D T1 scan inadequate for further analysis of lacunes.  The 

demographics and radiological data of the 10 patients with LSA lacunes are 

shown in Table 9-1.  

Table 9-1 Demographics and MRI variables of CADASIL patients with LSA lacunes (n = 10) 

 CADASIL patients with LSA lacunes 

Age in years, median (IQR) 53 (30 - 67) 

Male : Female 8:2  

History of stroke or TIA, n (%) 5  (50) 

Hyperlipidaemia, n (%) 7  (70) 

Ever smoker, n (%) 5  (50) 

Hypertension, n (%)* 0  (0) 

Diabetes, n (%) 0  (0) 

No. of lacunes, median (range) 10  (2 - 29) 

NSH %, median (range) 5.3 (1 - 9) 

No. of microbleeds, median (range) 0 (0 – 10) 

*3 patients were on beta-blockers for anxiety or migraine prevention. 
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16 lacunes on 16 MRI images were scored. Rating of lacunes by individual raters 

is shown in Table 9-2. For lacunes present on more than one slice, the image 

closest to the centre of mass was included in analysis of dimensions. 3 lacunes 

were excluded as the coronal height on the overlaid slice was more than 50% 

different from the coronal height at the geometric centre, meaning the image 

was not representative of the true lacune size for scoring.  Thus 13 lacunes were 

included in analysis of lacune size.  

Table 9-2 Rating of each lacune and exclusions 

  Rater    

Scan 
Lacune 
position 1 2 3 4 

Overall 
Rating Excluded 

Branch 
Order 

1 Right 2 3 3 2 2.5 
 

2 

2 Right 3 3 3 3 3 
 

3 

3 Right 3 3 3 3 3 
 

3 

4 Left 2 3 3 3 2.75 
 

3 

5 Right 2 3 3 2 2.5 Repeated lacune 
 

6 Right 3 3 3 3 3 
Not representative 
of height 

 

6 Left 
Not 
LSA 3 3 3 3 

 
3 

7 Left 3 3 3 2 2.75 
 

3 

8 Left 3 2 3 3 2.75 
 

3 

9 Left 2 2 2 2 2 
 

2 

10 Right 3 3 3 2 2.75 
Not representative 
of height 

 10 Left 2 3 2 3 2.5 
 

2 

11 Left 3 3 3 3 3 
Not representative 
of height 

 

12 
Upper 
left 3 3 3 3 3 Repeated lacune 

 

12 
Lower 
left 3 2 3 3 2.75 

 
3 

13 Left 3 3 3 2 2.75 
 

3 

14 Left 3 3 3 2 2.75 Repeated lacune 
 

15 Left 3 3 
Not 
LSA 3 3 

 
3 

16 Right 3 3 3 3 3 
 

3 

  
 

9.3.2 Lacune dimensions and vessel branching order 

The dimensions for all included lacunes are shown in Table 9-3. No lacunes were 

associated with primary arterial branch vessels, 3 with secondary, and 10 with 

tertiary. Lacunes associated with secondary arterial branch vessels had a 
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significantly greater dimensions than those associated with tertiary arterial 

branch vessels (see Table 9 – 4, Figure 9-3, Figure 9-4).  

Table 9-3 Dimensions of all LSA territory lacunes 

 Volume    (mL) 
Axial width 

(mm) 

Coronal 

height (mm) 

AP length 

(mm) 

Median (range) 0.04 (0.01 – 0.65) 5 (3 - 11) 5 (3 - 17) 4 (2 - 15) 

Mean (SD) 0.14 (0.21) 6 (3) 7 (5) 6 (4) 

 

Table 9-4 Dimensions in secondary and tertiary arterial branch lacunes  

Lacunes Volume    

(mL) 

Axial width 

(mm) 

Coronal 

height (mm) 

AP length 

(mm) 

Secondary, n = 3, 

median (range) 

0.48      

(0.32 – 0.65) 

11 (8 – 11) 14 (12 – 17) 10 (9 – 15) 

Tertiary, n = 10, 

median (range) 

0.03      

(0.01 – 0.14) 

4 (3 – 6) 4 (3 – 9) 4 ( 2 – 7) 

p value 0.007 0.007 0.007 0.007 

 

Axial width correlated significantly to lacune volume (n = 13, rs = 0.630, p = 

0.021; Figure 9-4) as did coronal height (n = 13, rs = 0.900, p<0.001) and A-P 

diameter (n =13, rs = 0.899, p <0.001).  
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Figure 9-3 Width and height in secondary and tertiary arterial branch lacunes 
(A) Axial width and (B) coronal height.  

 

Figure 9-4 Lacune volume 
(A) Lacune volume was significantly correlated to axial width, and other lacune dimensions. 
The line of best fit is shown with 95% confidence interval of the mean (dashed lines). The 
(B) Lacune volume was significantly larger in secondary arterial branch lacunes compared 
to tertiary.  

9.4 Discussion 

The diagnosis of CSVD is based upon imaging and clinical syndromes, and up to 

20% of incident strokes are attributed to this cause. Imaging does not however 

always demonstrate acute brain lesions, but instead evidence of previous 

damage such as lacunes or subcortical hyperintensities. The classification of 

stroke subtype (e.g. cerebral small vessel disease, cardioembolic, large vessel) 
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has therapeutic implications, but classification based on clinical syndromes and 

anatomical imaging cannot always distinguish the diverse aetiologies responsible 

for stroke. In this cohort of CADASIL patients, the majority of basal ganglia 

lacunes were small and likely related to tertiary artery branch disease of the 

perforating vessels. If these lacunes reflect intrinsic vasculopathy due to small 

order branch disease, then further refinement of the dimensional criterion for 

chronic lacunes within the basal ganglia, related to intrinsic CSVD, may be 

required.  

Fisher’s findings were based on autopsy data well after the acute ischaemic 

event (Fisher, 1982). As such, his descriptions are more relevant to lacunes than 

acute subcortical ischaemic events. A range of lacune sizes were observed in his 

studies, with giant lacunes up to 35mm in diameter noted. In that study, cortical 

infarctions were documented to co-exist with lacunes in 26% of patients (Fisher, 

1965). This frequency of concurrent pathology can cause difficulties in assigning 

stroke mechanisms. Subsequent to these earlier studies on giant lacunes, 

investigators suggested these may be the result of embolism (Ay et al., 1999). In 

this study the chances of other stroke mechanisms being involved were 

minimised by the fact none of the patients had hypertension or diabetes. None 

of the patients had documented atrial fibrillation, a known risk factor for 

cardioembolic disease which, in a recent study, was found in one quarter of 

subjects with small subcortical infarct. No patient had significant carotid 

stenosis. One patient had a PFO and had suffered a likely embolic stroke after 

starting on hormone replacement therapy, but this resulted in cortical infarcts. 

Therefore it is likely that most, if not all cases in this cohort represent intrinsic 

CSVD, increasing the confidence in interpreting the involved branching order and 

dimensions in relation to this particular phenotype of CSVD. Nonetheless, the 

possibility of other stroke aetiologies being present cannot be excluded, 

particularly given the high rate of smoking and hypercholesterolaemia. Whether 

CADASIL can truly represent a “pure” model of intrinsic CSVD is debated, as 

whilst radiological measures are similar, there are significant histological 

differences (Pantoni, 2010) which may negate comparisons between groups of 

subjects. The fact that these patients don’t have significant cardiovascular risk 

factors may also restrict the study generalisability. One may speculate however, 

that whilst the mechanisms between CADASIL and sporadic CSVD may be 



Chapter 9  238 

different, the size of the lacune and arterial branch involved are likely to be 

similar. It has been shown in an autopsy study of 3 subjects with cerebrovascular 

disease that the observed lacunes were likely to be due to tertiary branch 

disease (Feekes, 2006). 

The mean axial width of lacunes in this study was 6 + 3mm far below the current 

empirical upper limits of 15mm in sporadic CSVD. This finding is in keeping with 

previous work in CADASIL patients, where 3D segmentation of lacunes showed  

the majority were small (over 95% had a volume of less than 500mm3 (0.5mL)) 

(Hervé et al., 2009). The estimation of coronal heights as 5 + 2mm is consistent 

with that provided in the microangiographic study of the lenticulostriate artery. 

Those authors gave the coronal dimensions of the tertiary arterioles as between 

2 and 12mm but did not provide axial dimensions (Feekes et al., 2005). However 

it must be noted that dimensions in this study are affected by the 

transformation of the scans to an MNI template, thereby changing the 

dimensions of the lacune. This was required in order to apply the template to a 

standardised brain volume.  

9.4.1 Strengths 

The principal strength of this study is a carefully phenotyped CADASIL cohort. 

The arterial template used is derived from preserved and standardized 

microangiographic maps, and presents a novel, if indirect way of examining 

small vessels (Phan et al., 2013). In vivo visualisation of the relevant human 

vasculature requires invasive angiography or high field MRI, but small vessels are 

beyond the spatial resolution of current routine non-invasive vascular imaging. 

Co-registration of the map and brain may be preferable to methods which use 

side-by-side inspection (Duering et al., 2013). The use of 3T MRI gave high 

resolution 3D images, which leads to excellent visualisation in all planes, 

although the study would have benefitted from a thinner slice FLAIR sequence.  

9.4.2 Limitations 

There are several limitations to this study, the most significant being the small 

numbers of patients and included lenticulostriate artery territory lacunes, which 

limits the strength of any statistical tests. It would be important to replicate 
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these findings in a larger cohort of CADASIL patients and CSVD. At present, only 

a microangiographic template of the LSA is available and hence only lacunes in 

this territory were assessed. Using the automated overlay method may mean the 

slice where the lacune is largest in the coronal height is not visualised. A further 

criticism is whether perivascular spaces and lacunes may have been misclassified 

as lacunes and vice versa (Cumurciuc et al., 2006), despite using high resolution 

T1 imaging complimented by T2 FLAIR. As lacunes can shrink over time, a lower 

size limit for lacunes might not be appropriate. Only a single rater identified 

lacunes, and this can also be criticised. Using an independent rater, as detailed 

in other chapters, would have helped prevent bias.  

Another caveat is that only the chronic phase of the lacune was studied. 

Dimensions of acute subcortical infarctions with arterial branching order might 

be more useful for clinicians in accurately identifying the mechanisms used, and 

thus the relevance to acute stroke is unclear. Nonetheless, increasing diagnostic 

use of MRI means that incidental lacunes are a common finding in acute stroke 

presentations and relevant to mechanistic interpretation and therapeutic 

decisions. The same technique could be applied to acute lesions, but the low 

frequency of acute ischaemia in CADASIL means that any acute study in this 

population would require large numbers of patients. 

There are no controls in this study although healthy subjects would be unlikely 

to have lacunes. Patients with cerebral small vessel disease could be used as an 

alternative control group, and this could be explored in the future. We cannot 

be sure that CADASIL patients have the same anatomy as healthy controls as 

there is a possibility that abnormalities in NOTCH3 leads to different vessel 

development.  

9.5 Conclusion 

The dimensions on MRI of LSA lacunes in CADASIL patients are small and likely to 

involve secondary and tertiary arterial branches of the LSA. If CADASIL 

represents a “pure” form of typical CSVD, then current dimensions used to 

define lacunes, at least in the chronic stage, may include infarcts of other 
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aetiologies. However this study is limited significantly by small study numbers 

and needs further investigation in larger groups.  
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Chapter 10 – Conclusions 

10.1 Introduction 

CADASIL is currently not a treatable condition, and it can rob young adults of 

their independence, livelihoods and cognition. The burden on families is 

significant given the age of onset, and the realisation that other family members 

may be equally affected. Given the age group affected, social care is often 

arduous to obtain and patients particularly suffer from a lack of awareness of 

their condition even amongst most medical staff.  

As such, further understanding of disease is required and the investigation of 

vascular dysfunction in this disease was the focus of this thesis. The major 

findings are reviewed below along with how these fit with recent developments 

in the field.  

10.2 Summary of results 

10.2.1 CADASIL is more common than previously thought 

CADASIL remains, within EU definitions, a rare disease. However at any one time 

there may be as many people with CADASIL in Scotland as with motor neurone 

disease. A prevalence of 11/100,000 adults is likely to still represent an 

underestimate of the condition, and certainly out-with the Glasgow and 

Lanarkshire area, there are likely to be many families who have not been 

diagnosed, with more common conditions like multiple sclerosis and 

conventional cerebral small vessel disease being thought responsible. Education 

of clinicians and radiologists will be vital to increase the diagnosis of the 

disease. Whilst individualised services may not be needed for most CADASIL 

patients, this may make it easier for them to access what is already available.  
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10.2.2 Age, impaired vasoreactivity and large vessel disease 

are related to MRI markers of disease 

Impaired cerebral vasoreactivity to hypercapnia, as measured with ASL MRI, was 

shown to be related to number of lacunes and brain atrophy, important 

correlates of clinical impairment. Peripheral vasoreactivity was also impaired in 

those with higher numbers of lacunes. Whether the impaired cerebral 

vasoreactivity pre-exists, or is subsequent to, the development of lacunes and 

atrophy is unclear. The finding of co-existent impaired vasoreactivity does 

suggest that abnormal vessel responsiveness in CADASIL patients is not solely 

secondary to brain damage. This finding is consistent with evidence that CVR 

may be impaired in CADASIL patients (Pfefferkorn et al., 2001).   

Arterial stiffness and increased carotid intima media thickness were also linked 

to more extensive brain damage. This suggests that conventional cardiovascular 

risk factors may contribute to the damaging effects of CADASIL. Smoking and 

hypertension have been shown to be potential risk factors for stroke in patients 

with CADASIL (Adib-Samii et al., 2010). The MILES study, a comparison of 

patients with CADASIL and those with age-related leukoencephalopathy, 

suggested that when adjustment was made for age and gender, the presence of 

hypertension was associated with poor cognition (Ciolli et al., 2014). However, 

blood pressure itself did not show this relationship, suggesting that whilst 

hypertension is detrimental, blood pressure itself does not have a simple linear 

relationship with risk in the disease.  

Despite limited replication of cerebral vasoreactivity as a biomarker for disease 

progression, it has been used as an endpoint in therapeutic trials of oral 

acetazolamide, which improves CVR and CBF in CADASIL patients (Huang et al., 

2010) and of high-dose atorvastatin, which did not alter cerebral haemodynamics 

(Peters et al., 2007). Further studies may need to investigate the role of CVR 

longitudinally in disease progression before there can be confidence that they 

truly represent a biomarker that can be used for assessment of therapies.  
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10.2.3 ASL MRI can be used effectively in CADASIL and 

shows that cerebral blood flow declines even over 1 year.  

This study has demonstrated the effective use of ASL MRI within this cohort of 

patients. The advantage of not requiring contrast or radiation makes it ideal for 

longitudinal assessment. I found that ASL was reproducible over one year but 

was also able to demonstrate change over that time period. The change seen 

exceeded the change in other MRI markers of disease progression. The 

quantifiable nature of ASL as shown in this study highlights that it may be useful 

in multicentre trials. Whilst controversy over the accuracy of white matter 

measurement remains, obtaining and evaluating these results, along with that of 

grey matter, could still potentially provide useful information, even if it 

represents worsening of transit delays. Murphy and colleagues calculated that if 

a 15% increase or reduction in grey matter CBF was to be detected, 17 subjects 

would be needed in each group (Murphy et al., 2011). This thesis suggests this 

could potentially be seen over a 2-3 year period. These numbers fit much more 

comfortably with any potential trial in a rare disease.  ASL should be included in 

future CADASIL imaging based trials.  

 

10.2.4 Vascular predictors of deterioration remain elusive but 

warrant further investigation 

Whilst change in brain imaging parameters including atrophy and NSH in one year 

were demonstrated, vascular measures did not predict clinical decline over one 

year. As expected, more extensive radiological abnormalities at baseline were 

related to deterioration in cognition, but surprisingly, higher subcortical 

hyperintensity volume was related to decline in processing speed rather than 

lacunes or atrophy.  

Within population studies, white matter hyperintensities predict an increased 

risk of stroke, dementia and death (Debette and Markus, 2010). Within CADASIL 

the influence of these often extensive abnormalities on patient outcomes 

remains unclear. Larger volumes of white matter have been seen in patients 

compared with controls (De Guio et al., 2015) and extensive WMH may be 
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associated with an increase in brain volume in CADASIL (Yao et al., 2012). This is 

proposed to be due to intramyelinic oedema, which was shown to be an early 

change in a mouse model of CADASIL (Cognat et al., 2014). However axons 

within these areas were generally normal, although there was evidence of 

impaired clearance of debris. This suggested the white matter could swell 

without damage to the nerves. The proposed mechanism was a defect in ion and 

water homeostasis linked to abnormal function of the astrocytic end feet where 

NOTCH3-expressing pericytes are abundant.  

The proposed mechanisms for the development of lacunes and NSH are therefore 

different. It perhaps makes sense therefore that CVR was related to lacunes and 

not NSH in Chapter 5. The development of lacunes is more likely related to 

disease of tertiary arterioles, where failure of autoregulation may lead to tissue 

hypoperfusion.  

10.2.5 Systemic vessels are abnormal and a role for oxidative 

stress is suggested 

Gluteal resistance vessels obtained from CADASIL patients showed evidence of 

abnormal vasorelaxation and constriction. This is in contrast to a previous biopsy 

study which should defects only in constriction (Hussain et al., 2004). Mouse 

models have failed to show deficits in vessel responsiveness to chemical stimuli. 

This thesis suggests this is in fact found in CADASIL patients, and therefore is an 

important direction of research. Whilst it may represent a later stage of the 

disease than abnormalities in pressure-induced vasodilation, it may therefore be 

more directly linked to the development of lacunes and clinical effects.  The 

improved response of endothelium-dependent relaxation in the presence of N-

acetylcysteine suggested a role for oxidative stress. A recent study of plasma 

levels of aminothiols showed high levels of antioxidants and low levels of 

oxidants in CADASIL patients compared with controls (Campolo et al., 2013). 

Expression of antioxidants may be increased to try and protect the vessels and 

enhance vasoreactivity.  

These results highlight the need for ongoing investigation using human tissue and 

cells, in order to understand the biology of CADASIL. Mouse models have been 
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created which show evidence of disease but these often require overexpression 

of the gene. This study has shown samples are obtainable in CADASIL patients 

and offer important insights into the disease.  

10.3 Place in current literature 

Two recent areas of work have furthered our understanding of CADASIL. Joutel 

et al recently reviewed the role of the “matrisome” – the ensemble of proteins 

constituting the extracellular matrix, which not only physically anchors cells, but 

has a multitude of regulatory effects (Joutel et al., 2016). It has been 

demonstrated that the Notch3 extracellular domain may bind to TIMP3 and 

promote its upregulation. This in turn recruits additional extracellular matrix 

proteins to the abnormal toxic aggregate (Monet-Lepretre et al., 2013).  

TIMP3 inhibits proteins that are involved in the regulation of specific potassium 

channels.  Upregulation of these channels in the CADASIL mouse model 

TgNOTCHR169C causes impaired myogenic responses, which may be responsible for 

altered cerebrovascular reactivity (Dabertrand et al., 2015). This seemed to be a 

brain specific response. It may therefore offer an explanation as to why 

different areas are differentially affected in CADASIL, both within the brain and 

body, as each organ has its own pattern of proteins expressed in the ECM.   

In patients, the results of a 2 centre longitudinal study have just been published 

(Chabriat et al., 2016). 290 patients were recruited over 8 years, and followed 

up for 3 years. Clinical and radiological data were collected, with completion of 

the follow up visit in 236 patients. A composite endpoint of incident stroke, 

incident dementia, moderate or severe disability, or death was observed in 47% 

of patients, and baseline predictors of this included gait disturbance, atrophy 

and >3 lacunes. Change in MDRS cognitive scales was predicted by mRS >3, 

number of lacunes, the presence of microbleeds and brain atrophy. Active 

smoking more than doubled the risk of stroke and dementia. Age and 

hypertension were not associated with disease progression. This study 

highlighted that patients who smoke and are already disabled are likely to do 

badly. Those patients, whose brain imaging shows multiple lacunes and atrophy, 

are also likely to deteriorate.  
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Results of this thesis provide a pathophysiological bridge between these two 

papers. I have shown evidence that reduced vasoreactivity in humans may be 

linked to important MRI markers specifically lacunes and brain atrophy. Recent 

studies show these factors are linked to disease progression. Cerebral blood flow 

decreases over time both in grey and deep white matter to a degree that may be 

measurable in multicentre trials. This thesis also provided evidence that 

addressing cardiovascular risk factors is important (see Figure 10-1).  

 

Figure 10-1 Risk factors and potential biomarkers in CADASIL 
Potential biomarkers in grey boxes.  

The role of hypertension remains unclear, and whilst significant hypertension is 

likely to have deleterious systemic effects, it is postulated that hypotension may 

also be undesirable, given the reduction in cerebral blood flow seen in the 

condition. This area needs further investigation as to the optimal management 

of blood pressure in these patients.  

10.4 Future directions 

The second year of the longitudinal study from which much of this thesis data 

has been derived is due to be completed in February 2016. Analysis of this data 

may reveal more statistically significant results with regards to prediction of 
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deterioration than those seen in Chapter 7. Such evidence would suggest that 

measures including those of cardiovascular dysfunction and small vessel 

reactivity should be included in therapeutic trials to potentially reduce the 

numbers required. The decline in cerebral blood flow will be characterised in 

more detail.  

The gluteal biopsy study has recently been extended to healthy controls and 

hypertensive patients. All these patients will also undergo a comprehensive 

range of peripheral vascular tests including PWA, PWV, Endo-PAT®, FMD and 

CIMT. The 9 CADASIL patients who did not previous undergo vascular tests will 

also be invited back to have these tests conducted. This will allow us to relate 

ex vivo myography results with more confidence to in vivo tests. It will also 

allow more direct assessment of how impaired CADASIL vessels are in comparison 

to healthy or hypertensive vessels.  

It would be important to ensure all future studies are aligned with clinical trial 

methodology, such as those outlined by the Consolidated Standards of Reporting 

Trials (CONSORT) group in order to ensure as reliable and stringent scientific 

methodology as possible (Schulz et al., 2010).  

The advantage of such collaborative work with experts in the field of systemic 

small vessel disease is that there is extensive experience working with these 

vessels and cells. Proteomic characterisation of vascular smooth muscle cells is 

part of the work being undertaken on these samples, and will hopefully reveal 

more biological insights into the pathomechanism of CADASIL.  

Skin samples collected from the patients described in Chapter 8 included 

fibroblasts, which will be transformed into induced pluripotent stem cells.  

Induced pluripotent stem cells are adult cells that have been genetically 

reprogrammed into an embryonic stem cell-like state which are capable of 

propagating indefinitely. They potentially provide an unlimited number of cells 

with which to investigate the disease or to test therapeutics, although, as has 

been shown in other stroke trials, close collaboration between bench and 

bedside is needed for this to be successful.  
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10.5 Closing remarks 

The work detailed in this thesis studies the prevalence of CADASIL and the use of 

a variety of techniques to assess vascular function. Abnormalities in vessel 

function both ex vivo and in vivo have been demonstrated. Whilst longer follow 

up will provide more clarity on potential risk factors, it is clear both 

conventional cardiovascular risk and vasoreactivity have a role to play in 

CADASIL. Understanding of this area will contribute to the development of 

potential therapeutics, and vascular measures should be included in any clinical 

trials.  
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Appendix 1  

Cerebral hyperperfusion on arterial spin labelling MRI 

during CADASIL migrainous encephalopathy 

Authors: Fiona C Moreton, Celestine Santosh, Kate McArthur, Keith W. Muir 

Reproduced from Neurology: Dec 2015 – Volume 85 - Issue 24 – p 2177 - 2179. 

Wolters Kluwer Health Lippincott Williams & Wilkins© No modifications will be 

permitted. 

Migrainous encephalopathy is a rare and poorly understood manifestation of the 

inherited vasculopathy cerebral autosomal dominant arteriopathy with 

subcortical infarcts and leukoencephalopathy (CADASIL). Patients may present 

with migraine with aura, complicated by confusion, fever, and decreased 

conscious level.1 In this case, a patient with migrainous encephalopathy 

underwent cerebral perfusion imaging with arterial spin labelling (ASL) MRI 

before, during, and following admission.  

Case report 

A 27-year-old man with CADASIL associated with the NOTCH3 mutation 

pArg133Cys, diagnosed in 2011, noticed his vision to the right side was like 

“looking through a hole.” Over the next 30 minutes, complete distortion of 

vision to the right along with altered sensation and reduced power in his right 

arm occurred, followed by a severe pulsating bilateral frontal headache 

associated with nausea.  

After 3 hours, he was admitted to the hospital and was drowsy with symmetrical 

weakness in all limbs. Speech was slow but there was no dysphasia, eye 

movement abnormality, or ataxia. Headache was ongoing. Systemic examination 

was normal. He was apyrexial and normotensive. Full blood count, erythrocyte 

sedimentation rate, C-reactive protein, urea, and electrolytes were normal. CT 

head showed no evidence of acute intracranial pathology. CSF examination was 

not performed.  

http://www.neurology.org/content/85/24/2177.full#ref-1
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The following morning, the patient had disconjugate and slowed eye 

movements, profound motor and cognitive slowing, extensor plantars, and global 

motor weakness. CT angiogram was normal. Diffusion-weighted MRI 

demonstrated no evidence of acute ischemia. MRI was unchanged from imaging 4 

months previously, with subcortical and deep white matter T2 hyperintensities 

in both cerebral hemispheres consistent with CADASIL.  

He had a history of migraines with visual aura since age 8 years, but had 

experienced none for several years since starting propranolol, which had been 

stopped recently. He had depression at age 18 years, but had no history of 

stroke or seizure. He was diagnosed with viral meningitis in 2009 (CSF leukocyte 

count 100, no organisms). He was taking part in an observational research study 

examining perfusion in CADASIL (UKCRN ID 13794) and had a normal neurologic 

examination 1 month prior to this admission.  

ASL MRI showed both global and focal hyperperfusion compared to imaging 3 

months previously (gray matter blood flow increased by 34%), with marked 

hyperperfusion in the left parietal lobe (127% increase on left compared to 40% 

on right), left occipital (107% vs 18%), and left posterior temporal lobe (64% vs 

39%).   

The patient's headache fluctuated during admission, and increasing severity of 

the headaches was followed by deterioration in conscious level. The headache 

was partly relieved by dihydrocodeine, and improved over 5 days.  

At discharge, speech remained slow but the patient was mobile with 2 sticks. 

Repeat MRI on discharge showed no new ischemic lesions and resolution of the 

hyperperfusion. Six weeks later, the patient continued to have speech hesitancy 

but MRI showed no new ischemic lesions. Propranolol was restarted.  
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Figure 1 Cerebral blood flow in migrainous encephalopathy 
Cerebral blood flow (CBF) measured by arterial spin labeling (ASL) 3 months prior to 
admission (A, B), during illness (C, D), and 6 days following presentation (E, F). 
Hyperperfusion particularly in the left occipital, parietal, and posterior temporal lobe is 
evident (C, D), which settled during admission (E, F). Diffusion-weighted imaging showed no 
evidence of acute infarction (G, H). ASL was analyzed using an in-house macro written for 
ImageJ (NIH). Scale bar shows CBF in mL/100 g/min.  

Discussion 

Migrainous encephalopathy, or CADASIL coma, presents as an acute 

encephalopathic illness, usually in patients with a history of migraine.1 Migraine 

prevalence in CADASIL is significantly higher than in the general population at 

around 40%, with the majority having an associated aura, which is often 

atypical, characterized by prolonged or severe neurologic disturbance.2 

Encephalopathic features are rare, but are often preceded by headache.1 

Susceptibility to severe migraines in CADASIL is unlikely to be related to chronic 

hypoperfusion or cortical damage, as migraine occurs early in the natural 

history, and appears to recede in patients after the onset of cerebrovascular 

events.2 Instead, NOTCH3 mutations may influence cortical excitability, with 

transgenic mouse models demonstrating enhanced susceptibility to cortical 

spreading depression (CSD).3 Impaired capillary flow regulation as an early and 

diffuse feature of CADASIL may mediate liability to CSD4, and may underpin the 

more extensive propagation and pronounced clinical features compared to 

migraine with aura in the general population.  

http://www.neurology.org/content/85/24/2177.full#ref-1
http://www.neurology.org/content/85/24/2177.full#ref-2
http://www.neurology.org/content/85/24/2177.full#ref-1
http://www.neurology.org/content/85/24/2177.full#ref-2
http://www.neurology.org/content/85/24/2177.full#ref-3
http://www.neurology.org/content/85/24/2177.full#ref-4
http://www.neurology.org/content/85/24/2177/F1.expansion.html
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SPECT perfusion imaging of a patient with CADASIL with prolonged aphasic aura 

has identified increased relative blood flow in the left hemisphere5, similar to 

changes seen in hemiplegic migraine.6 The notable advantages of ASL MRI over 

alternative perfusion methods are lack of requirement for contrast or radiation, 

and quantification. It is therefore ideal for conditions requiring repeated 

measurements.7 By using ASL, we were able to demonstrate regional 

hyperperfusion, which temporally and anatomically correlated with the right-

sided visual aura, in addition to a generalized hyperperfusion compared to our 

patient's premigraine state. Increases in cerebral blood flow are associated with 

encephalopathic features in other hyperperfusion encephalopathies7 and 

hyperperfusion may offer a marker for these conditions.  

Migrainous encephalopathy in CADASIL is associated with hyperperfusion, which 

can be identified and monitored with ASL MRI. Such techniques may allow the 

further investigation of the pathophysiology and response to treatments.  
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Appendix 2 

Transcranial Doppler Ultrasound (with Carbon Dioxide 
challenge) Standard Operating Procedure.  
 
Scope and application 
 
This standard operating procedure describes the procedure for the operation of 
the transcranial Doppler ultrasound system with carbon dioxide challenge.  
Transcranial Doppler ultrasound allows the assessment of blood flow velocity in 
the intracranial blood vessels, and when combined with administration of carbon 
dioxide it allows to measurement of cerebrovascular reactivity.  

 
Summary of method 
 
The patient lies supine. Pulse, blood pressure and oxygen saturation is recorded. 
Ultrasound jelly is applied to the temples. The middle cerebral artery is 
identified bilaterally and the ultrasound probes are secured with the head 
harness. An oxygen mask is applied to the patient, and the gas monitoring line is 
attached to the remote monitor.  
3 minutes of blood flow is recorded whilst the patient breathes normal air. 
Carbon dioxide mixture is then administered to the patient for 3 minutes, with 
continuous recording of blood flow. Pulse and blood pressure is also measured 
half way through and at the end of 3minutes. Then the patient breathes air for a 
further 3 minutes.  
 

Equipment and Supplies 
 
Transcranial Doppler ultrasound machine 
2 ultrasound 4Hz probes 
Ultrasound jelly 
Head harness 
6% CO2/air mixture (BOC Medical, Manchester, UK, Medical Special’s Licence 
Number ML/0735/01).  
Capnograph or Philips monitor 
Blood pressure cuff 
Pulse oximeter 
Gas monitoring line 
Oxygen bubble tubing 
Anaesthetic mask 
Oxygen connector  
Anaesthetic mask harness  
External USB/CD/hard drive 
Timer 

 
Duration of test 
 
Preparation: 10min 
Normocapnia: 3min, Hypercapnia 3min, Normocapnia 3min 
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Health and Safety  
 
This is a non-invasive procedure and transcranial ultrasound is safe. 
Administration of carbon dioxide can cause anxiety, headache and nausea in a 
small number of patients.  
 

Quality Control 
 
The TCD is maintained by the Clinical Physics Department of the Southern 
General Hospital.   
Medical gases are the responsibility of the Pharmacy Department.  
 

Procedure 
 
Pre patient arrival 
Set up carbon dioxide cylinder as instructed 
Ensure patient monitoring equipment is available.  
Attach catheter mount to hypercapnia circuit.  
Attach cylinder to circuit via oxygen tubing and an oxygen stem connector.  
 
Patient Positioning 
Perform with the patient semi-supine.   
Allow the patient to rest in this position for 5min.   
 
Setting up patient monitoring 
Attach the patient to the observation machine.  
Attach blood pressure cuff to patient’s non-dominant arm.  
Attach pulse oximeter to patient’s other finger.  
Record a baseline BP, pulse rate and oxygenation.  
 
Identifying the cerebral vessels 
Start the Examination 
Press POWER button 
Press START (Change patient info/Begin exam) 
Select NEW PATIENT and press ENTER.  
Type in the patient information (initials, study number…CAD001) 
Press ENTER when finished entering patient information.  
Select BEGIN EXAM.  
Set POWER to 50%.  
Set DEPTH to 50mm.  
 
Locate the blood vessel 
Apply ultrasound gel to patient’s temples.  
Place probe above right zygomatous arch and aim slightly upward and anterior to 
the contralateral ear/window.  
Identify MCA flow (toward, 32-82cm/s, depth 45-65mm).  
Adjust DEPTH into the desired flow band.  
Label the vessel with the VESSEL button. Press ENTER to select the desired 
vessel.  
Fix probes to the harness and ensure position is maintained.  
Mark the position on the CRF of the MCA.  
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Repeat to identify the left MCA.  
Increase or decrease POWER as needed but try and use minimum necessary to 
achieve a good signal.  
 
Selecting trend data 
SETUP 
Setup / Analog Output 
Datastream Output Submenu 
Enable “CSV File Output” feature.  
The datastream for the entire exam will be saved as a CSV file.  
 
Recording a Study 
Attach the mask (and filter) to the patient with the harness. 
Attach gas sampling line to filter to record inspired and expired gases.  
 
Normocapnia Baseline 
Go to recording screen.  
Note the time.  
Ensure both MCAs are seen and a steady baseline is being achieved.  
Note the time and set a timer for 3min (3min of NORMOCAPNIA).  
Record a blood pressure during this time.  
 
Hypercapnia Trial 
 
Connect the mask to the circuit.  
Warn the patient you will be starting carbon dioxide.  
Switch on the cylinder and note time.  
Give carbon dioxide and record 3 MINUTES OF HYPERCAPNIA.  
Measure BP at 90 seconds and 3min.  
Observe heart rate and oxygenation during this time.  
Ask the patient how they feel and stop if they feel unwell.  
Stop carbon dioxide at 3minutes.  
 
Normocapnia Baseline 2 
Keep mask on but disconnect circuit.  
Record data for a further 3 MINUTES OF NORMOCAPNIA 
 
Finish 
Remove the mask and the TCD.  
Allow the patient to recover.  
Decide on the basis of patient’s tolerance, BP and pulse whether the patient 
should undergo MRI with TCD.  
 

Data Collection 
 
Saving the TCD data 
Go to the FILES list and ensure internal disk is highlighted.  
Highlight the file you wish to export.  
Press EXPORT.  
Follow the instructions on the system.  
Export to a CD-R.  
Label CD with subject number and visit number (baseline, Y1 or Y2).  
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