
THE DESIGN AND IMPLEMENTATION

OF

A TRULY INTEGRATED GIS

USING THE PERSISTENT PROGRAMMING LANGUAGE NAPIER88

BY

YING JEAN KUO

VOLUME I

A Thesis Submitted for the Degree of Doctor of Philosophy (Ph.D.)

of the Faculty of Science at the University of Glasgow

Department of Geography & Department of Computing Science
Topographic Science

June 1995

ProQuest Number: 13815529

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13815529

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

h >

(01 ^ I
(-si-) ^

a

GLASGOW
UNIVERSITY
LIBRARY

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to his supervisor, Professor G. Petrie, for
suggesting this topic, for his continuous advice and supervision and for supplying the
materials relevant to the IGIS research and development. Also, his assistance in the writing
up of this thesis is greatly appreciated. Without all this help, this research would never have
come to its present form.

The author also wishes to thank his other supervisor, Dr. R. Cooper, for his advice and
numerous constructive discussions, for providing material about the Napier88 system and
other persistent programming languages and for all his other help.

Thanks and gratitude are also due to Professor M. Atkinson, the initiator of persistent
programming systems, for the enlightenment of the author’s knowledge of Napier88
through his informative lectures and for supplying recent research papers about spatial
indexing techniques.

The author also wishes to acknowledge the assistance received from the research and
support staff of the Department of Computing Science who were always ready to help. In
particular, special thanks are due to Mr. P. Philbrow for his technical support and the
immediate assistance which he gave when problems were encountered using the Napier88
system. Also the assistance given by Mr. D. MacFarlane in making network connections
between the Department of Geography and Topographic Science and the Department of
Computing Science must be acknowledged.

Sincere thanks are also due to:
Mr. T. Ibbs, for his valuable comments on Chapters 1 and 2 of this thesis;
Dr. Q. Cutts and Dr. G. Kirby, members of the Napier88 system development group at the
University of St. Andrews, for their explanations and clarifications of several specific
features of the Napier88 system; and
Mr. B. Shannon of the CAD-X company for loaning the Pericom X-200 terminal and the
Sun SparcStation 1+ workstation for the X-window tests carried out in this research.

The author also wishes to extend his gratitude to Dr. J. Briggs (Head of the Department of
Geography & Topographic Science) and to the Topographic Science staff members for
their help throughout the research period.

Finally, the author wishes to express sincere thanks to his sponsor, the Ministry of
Education of the Taiwan government, for providing the scholarship during the period of his
study.

ABSTRACT

This thesis is concerned with the design and development of an integrated geographical
information system (IGIS) based on the use of a persistent programming language called
Napier88. It reports on the research carried out to implement a wholly new approach to

deal with the problems of constructing a truly integrated GIS.

The main aspects discussed within the context of this thesis are: -

* an overview of the current status and trends in IGIS development;
* the characteristics and functions of the persistent programming language Napier88;
* the design considerations and the definition of the system architecture of an IGIS;
* the integration of vector map data and raster image data in a persistent store;

* the multiple data modelling of geographical data;
* the superimposition and cross indexing of vector maps and raster images;
* the spatial indexing and querying of geographical data;
* the management of geographical data in a persistent database environment; and
* the implementation of a prototype IGIS.

This thesis concludes that the Napier88 language can provide a sound framework for the
construction of a truly integrated GIS, although some current deficiencies in the language
need to be overcome. Since persistent programming languages are still in the stage of
research and development, more research is necessary to investigate other features that
they could provide which may be beneficial to the development of a truly integrated GIS.

Table of Contents

Table of Contents

VOLUME I

ACKNOWLEDGEMENTS ... i

ABSTRACT ... ii

CONTENTS ... iii

CHAPTER 1: INTRODUCTION

1.1 The Importance of the Development of an IGIS .. 1
1.2 The Problems of Implementation of an IGIS .. 4

1.2.1 The Degree of IGIS Integration ... 4
1.2.2 The Methods of Integration .. 6
1.2.3 Problems Occurring in the Partially Integrated Approach................ 8

1.3 The Trend Towards a Fully Integrated GIS .. 11
1.3.1 The New Development Tool - Database Programming

Languages ... 11
1.3.2 Current Status of Research and Development 12

1.4 Research Objectives .. 14
1.5 Outline of the Thesis ... 15

CHAPTER 2 : AN OVERVIEW OF IGIS DEVELOPMENT

2.1 Introduction .. 16

2.2 Digital Representation of Geographical Data .. 16
2.3 Digital Mapping and Vector GIS ... 19
2.4 Digital Image Processing and Raster GIS ... 20
2.5 Convergence to IGIS .. 23

2.6 Representative Commercial IGIS products .. 26
2.6.1 Intergraph MGE ... 27

2.6.2 ESRI ARC/INFO .. 31
2.6.3 Genasys Genamap ... 35

2.6.4 Tydac SPANS .. 37
2.6.5 Smallworld GIS .. 40
2.6.6 Laser-Scan IGIS .. 44

iii

Table o f Contents

2.7 Summary of the Review .. 47
2.8 Recent Progress Made in Advanced DBMS Technology 49

2.8.1 The Extended RDBMS Approach ... 49

2.8.2 The OODBMS Approach ... 51

2.8.2.1 IGN G e02 .. 52
2.8.2.2 CSIRO ONTOS ... 54

2.9 Discussion ... 55

CHAPTER 3 : NAPIER88 AND ITS USE AS THE IGIS DEVELOPMENT TOOL

3.1 Introduction .. 57
3.2 Persistent Programming Languages .. 59

3.2.1 The Concept of Orthogonal Persistence ... 60

3.2.2 The Principles for the Provision of Persistence 61

3.2.3 The Persistent Type System ... 62
3.2.4 Implications for Geographical Data Handling 63

3.3 Napier88 Overview ... 65
3.3.1 Language Design Principles ... 65
3.3.2 Language Characteristics .. 66
3.3.3 The Napier88 Type System .. 69
3.3.4 Persistent Store Environment ... 70

3.4 Important Facilities for IGIS Development ... 74
3.4.1 Running a Napier88 Program ... 75
3.4.2 Vector Graphics .. 77
3.4.3 Raster Graphics ... 81
3.4.4 Bulk Type Libraries ... 84

3.4.4.1 The Lists Library ... 84

3.4.4.2 The Maps Library .. 86
3.4.5 Abstract Data Types ... 87
3.4.6 Making Data Persistent and Reusing Persistent Data 90

3.5 Summary ... 93

CHAPTER 4 : THE IGIS SYSTEM ARCHITECTURE

4.1 Introduction .. 95
4.2 The Persistent IGIS and its Surroundings ... 97
4.3 Design Considerations .. 99

4.3.1 Various Forms of Geographical Data Types Needed for

Table of Contents

Database Integration ... 99
4.3.2 Various Functions of Geo-processing Systems for Software

Integration ... 102

4.3.3 Data Models and Data Structures ... 105
4.3.4 Superimposition and Concurrent Processing of Vector Data

and Raster Data ... 108
4.4 Design Criteria ... 109

4.5 Functional Design ... 110
4.6 Database Design .. 113
4.7 The System Architecture .. 114
4.8 Discussion ... 116

CHAPTER 5 : GEOGRAPHICAL DATA MODELLING AND ORGANISATION

5.1 Introduction .. 117
5.2 Conceptual and Logical Data Modelling .. 118

5.2.1 Conceptual Data Modelling .. 118
5.2.2 Logical Data Modelling .. 119

5.3 Spatial Data Models and the Design of Type Systems 120
5.3.1 The Spaghetti Data Model ... 121

5.3.1.1 The Concept .. 121
5.3.1.2 The Type System .. 121

5.3.2 The Link and Node Data Model .. 123
5.3.2.1 The Concept ... 124
5.3.2.2 The Type System .. 125

5.3.3 The Polygon-based Data Model .. 128
5.3.3.1 The Concept .. 128
5.3.3.2 The Type System .. 130

5.3.4 The Grid Cell Data Model .. 133
5.3.4.1 The Concept .. 133
5.3.4.2 The Type System .. 134

5.3.5 The Linear Quadtree Data Model .. 136
5.3.5.1 The Concept .. 136
5.3.5.2 The Type System .. 137

5.4 Creating An Integrated Geographical Database 139
5.5 Constructing An Integrated Geographical Database 142

5.5.1 Organising Vector Map Data ... 144

5.5.1.1 An Overview of NTF v 2.0 ... 144

Table of Contents

5.5.1.2 Constructing Vector Map Data .. 145
5.5.2 Organising Raster Image Data ... 154

5.5.2.1 An Overview of TIFF v 5.0 ... 155
5.5.2.2 Constructing Raster Image Data .. 157

5.6 Summary .. 160

CHAPTER 6 : SUPERIMPOSITION AND INTERRELATION OF VECTOR
MAPS AND RASTER IMAGES

6.1 Introduction ... 162

6.2 The Separate Display of Vector Maps or Raster Images 162
6.2.1 The Retrieval of a Basemap or Baseimage from the

Processed Database ... 163

6.2.2 The Display of a Basemap or Baseimage on the Display Screen ... 165
6.2.2.1 Viewing and Zooming a Basemap.. 166
6.2.2.2 Viewing and Panning a Baseimage... 172

6.3 The Provision and Arrangement of Colours for the Display of Maps
and Images ... 175

6.4 The Superimposition of Maps and Images ... 182
6.5 The Interrelation of Maps and Images ... 186
6.6 Summary ... 189

CHAPTER 7 : SPATIAL INDEXING AND QUERIES

7.1 Introduction .. 190

7.2 The Conversions between a Peano Key and an xy-coordinate Pair 192

7.3 Spatial Indexing of Geographical Data .. 195
7.3.1 General Aspects of Indexing Vector Map Data 196
7.3.2 The Construction of MBR Tables for Line and Polygon Entities 199

7.3.3 Spatial Indexing of Points ... 201
7.3.4 Spatial Indexing of Polygons ... 204
7.3.5 Spatial Indexing of Lines .. 209

7.4 The Construction of Combined Spatial Indices .. 211

7.5 Spatial Queries of Geographical Data .. 213
7.5.1 Queries and Searches by Pointing ... 214

7.5.1.1 Searching for a Point Entity ... 216
7.5.1.2 Searching for a Line Entity .. 218
7.5.1.3 Searching for a Polygon Entity ..219

Table of Contents

7.5.2 Queries and Searches by Zones ... 221
7.6 Summary ... 222

CHAPTER 8 : THE IMPLEMENTATION OF THE PROTOTYPE IGIS

8.1 Introduction .. 225

8.2 User Interface Design ... 225
8.2.1 The Pop-up Menu Design ... 227
8.2.2 The Dialogue Box Design ... 231

8.3 Designing and Building the Prototype IGIS ...232
8.4 The Prototype IGIS Platform ...241

8.5 Test Data ... 243
8.5.1 Vector Data Sets ... 244
8.5.2 Raster Data Sets .. 244

8.6 Tests and Results ... 247
8.6.1 Constructing Databases... 249
8.6.2 The Spatial Indexing of Vector Map Data.. 250
8.6.3 The Pre-processing of Raster Image Data 252
8.6.4 The Management of Vector and Raster Databases 253
8.6.5 The Display of Vector Maps and/or Raster Images 254
8.6.6 Comparisons Using Various X Servers .. 255

8.7 Analyses and Discussions ...257
8.7.1 The Functionality of the Prototype IGIS .. 257
8.7.2 The Launch Time vs. The Store Size .. 258
8.7.3 The Optimal Thresholds for Indexing Vector Map Data 260
8.7.4 The Use of X Windows ... 262
8.7.5 The Performance of Various X servers ... 263
8.7.6 General Aspects of Using Napier88 in the Development and

Implementation of the Prototype IG IS ... 264
8.8 Summary ... 266

CHAPTER 9 : CONCLUSIONS & RECOMMENDATIONS

9.1 Introduction .. 268
9.2 General Conclusions ... 268
9.3 Recommendations for Future R esearch... 273
9.4 Final Remarks ...275

Table o f Contents

BIBLIOGRAPHY

VOLUME II

APPENDIX A : CREATION OF GIS DATA TYPES

APPENDIX B : CREATION OF DATABASE ENVIRONMENT

APPENDIX C : GENERAL LIBRARY PROCEDURES

APPENDIX D : GRAPHICAL LIBRARY PROCEDURES

APPENDIX E : GIS LIBRARY PROCEDURES

APPENDIX F : THE PERSISTENT IGIS MAIN PROGRAM

276

Chapter 1: Introduction

CHAPTER 1 : INTRODUCTION

1.1 The Importance o f the Development o f an IGIS

The emergence of Geographical Information Systems (GIS) began in the 1960's with a

computer-based technology that allowed the storage, analysis and display of geo-referenced
data. Since then, GIS software packages have usually been developed as being either

vector-based or raster-based, since the vector and raster data formats are the two

fundamental representations of the spatial component of geographical features. Both data
formats have their pros and cons in GIS applications. For example, the vector format suits
those applications involving network analysis, geometric measurement and high-quality
cartographic production, while the raster format is better suited to applications such as
overlay operations, proximity analysis and feature classification [Star and Estes, 1990;
Maguire et al., 1991; Maguire and Dangermond, 1991]. Despite of their equal importance,
a GIS software package requires all data to be stored either in the one format or the other,
since both formats are by their nature incompatible in a database. Quite apart from this, the
specific requirements of digital cartography and the limitations of computer processing and
storage during the early development of GIS packages have resulted in vector-based GISs
being dominant in most application fields.

With the rapid development in both computer and remote sensing technology, the uses of
raster image data have come to the fore in the recent years and are potentially highly useful
in a number of areas. Many researchers feel that the integration of a vector-based GIS and a
raster-based GIS (or image processing system) would lead to important advances in many
kinds of applications [Aronoff, 1989; Ehlers et al., 1989; Fisher and Lindenberg, 1989;
Davis et al., 1991; Estes, 1992]. Such an integration involves bringing together diverse
information from a variety of sources, including maps, field surveys, photogrammetry and
remote sensing, within a single system. Hence, an Integrated Geographical Information
System (IGIS) can be seen as the synthesis of all kinds of geographical information in a
computer system which integrates vector and raster data and technology within the same
working environment [Aybet, 1990; Piwowar and LeDrew, 1990; Shepherd, 1991].

As in any GIS, an IGIS comprises both software and a database. The database component

consists of locational (vector and raster type) and non-locational (attribute type)
information to represent geographical features. The software is made up of various modules
that provide specific functions. There are five essential functions that should be provided in
an IGIS: data acquisition, pre-processing, data manipulation and analysis, data management
and product generation [Star and Estes, 1990].

1

Chapter 1: Introduction

Apart from generating products for particular applications, an IGIS communicates and
interacts with its surroundings - the real world and other systems. On the one hand,
information on the locations and characteristics of geographical features is collected by a

variety of data acquisition devices which produce either vector or raster types of locational
data together with associated attribute data which describes non-locational information.

Vector data, which is in the form of geometric coordinates, is collected by devices such as

total stations, stereo-photogrammetric instruments, cartographic digitisers, global
positioning systems and other instruments, usually with the aid of an operator’s
interpretation of the geographical features concerned. By contrast, raster data, which is in

the form of cells or pixels, is generated by devices such as map scanners, or airborne and
spacebome sensors, all of which are based on an automatic sensing mechanism with an
appropriate sampling technique that detects and records the location and other information
about geographical features. An IGIS must be able to handle both types of data seamlessly
and should be able to communicate and exchange information with other systems such as
CAD systems, digital mapping systems, image processing systems, or another GIS. An

overview of an IGIS with its surroundings is illustrated in Fig. 1.1.

The use of an IGIS has many advantages. A detailed account of the benefits that follow
from the creation of an IGIS is given in Shepherd [1991]. The most significant advantages
can be summarised as: -

1. An IGIS provides a broader range of operations on integrated information than on
disparate sets of data.

2. An IGIS allows users to work in a single information environment without needing to
consider differences in data sources, information types, storage devices, computer

platforms, etc.
3. An IGIS eliminates duplicate data collection and conversion activities, and resolves

the data inconsistency problem.

An IGIS which combines the strengths of both vector and raster technologies is able to

facilitate and deliver more benefits for certain applications. Some gains have already been

achieved by using an IGIS, especially in the areas of DEM (Digital Elevation Model)
generation and terrain visualisation [Kraak, 1993]; change detection and map revision
[Derenyi and Pollock, 1990; Jensen et al., 1994]; the production of digital orthophoto maps
[Grenzdorffer and Bill, 1994] and using vector information as an aid to image classification
[Mason et al., 1988; Janssen et al., 1990; Davis and Simonett, 1991]. These are the most
successful areas in each of which, vector maps have been interwoven with raster images for
analysis and presentation. New applications of an IGIS are emerging such as three-
dimensional spatial modelling for geological exploration, spatial-temporal dynamic
modelling for environmental monitoring, etc. [Fabbri, 1992].

2

Chapter I : Introduction

Products

Statistical
Reports

Graphics on
Paper or Film

Digital Files
etc.

Real

Raster Data
(Image,
Grid DTM,
Attribute)

Vector Data
(Geometry,

Attribute,
Topology)

wmmm
Software

Data Acquisition
Preprocessing
Data Manipulation

and Analysis
Data Management
Product Generation

D atabase

Vector, Raster, Attribute

Machine Human
Sensing Abstraction

& &
Sampling Interpretation

D ata
Collection

Data

Type

Other Systems

CAD
Digital Mapping

Image Processing

GIS
etc.

Figure 1.1 An overview o f an IGIS with its surrounding environment

3

Chapter 1: Introduction

The integration of geographical information gives rise to various issues, including the
removal of data inconsistency, spatial data standards, the decentralising and networking of
spatial databases, generalisation, database management, integrating modelling functions,
integration of multi-media technologies and GIS, linkage between GPS and GIS, and others
[Ehlers, et al., 1989; Petrie, 1989a, 1989b; Flowerdew, 1991; Coleman and McLaughlin,
1992; Newton, et al., 1992; Amaud, et al., 1993; Oosterhoff, 1993]. Many papers have

been published on the development of an IGIS since the late 1980's. Among them, the
integration of vector and raster data with their operating functions into a single system is
seen as a key issue in the fundamental design of an IGIS [Jackson and Mason, 1986; Ehlers,

et al., 1989; Newell and Theriault, 1989]. The success and effectiveness of an IGIS mainly

depends on the strategy and methodology adopted in merging these two heterogeneous
data formats into a single system. There are deficiencies or problems in the existing "so-
called" IGISs. The full integration of vector and raster data within a single database is still a
challenging task for GIS researchers to tackle before a truly IGIS can be created.

1.2 The Problems o f Implementation o f an IGIS

Many attempts have been made to create an IGIS. The most commonly used method is that
where a uni-format based GIS extends its capabilities to deal with the format of its
counterpart, i.e., a vector-based GIS has facilities added for the storage and processing of
data in raster format, or vice versa. As a result, many GIS vendors claim that their software
package is able to support dual-format data. However, the level of integration may be quite
different to that which a user would expect from such a claim.

1.2.1 The Degree of IGIS Integration

An IGIS may achieve different degrees of integration as far as the function of handling
vector and raster data is concerned. The degree of integration can be categorised as being at

one of three levels [Ehlers et al., 1989; Oosterhoff, 1993; Kuo, 1994a] - either at display
level, process level or storage level.

1. Display level: This is the basic function that an IGIS should provide. In this category, a
GIS is composed of two subsystems which process vector and raster data independently
and is able to superimpose the results in a common window. However, only one data
type can be processed or analysed, while the other data type is mainly used as a
backdrop or an overlay for the purpose of feature identification. A dedicated data
conversion or interface program is required to join vector and raster GIS packages
together due to the fact that there is no direct linkage between them. Figure 1.2(a)
illustrates the view of an IGIS with this display level of integration.

4

C hapter 1: Introduction

Superimposition o f
Vector & Raster Data

Separate processing o f
Vector or Raster Data

Functions Achieved

Composite Software
(Discrete Programs)

Discrete
Databases

Raster
DB

Attribute
DB

Vector
DB

Raster GIS

Program

Vector GIS

Program

Data Conversion or
Interface Program

Functions
Achieved

Integrated
Software

Superimposition o f
Vector & Raster Data

Concurrent Processing o f
Vector & Raster Data

(a) Display level

Functions
Achieved

Interface Module

Vector GIS

Module

Raster GIS

Module

Discrete Vector Attribute Raster
Databases DB DB DB

(b) Process level

Superimposition o f
Vector & Raster Data

Concurrent Processing o f
Vector & Raster Data

Consistent Construction &
Main tenance o f Software
and Database

< r
Integrated

System
(Integrated

Software
and

Integrated
Database)

Interface

Vector GIS

Module

Module

Raster GIS

Module

A.
DataBase

Vector
Attribute

Raster

(c) Storage level

Figure 1.2 The degree or level of IGIS integration

5

Chapter 1: Introduction

2. Process level : This is the intermediate function that an IGIS may provide. Unlike the
previous category, a system is developed as having vector, raster and interface modules

which can be integrated in a single software package. Because all modules in a GIS
software are closely linked, this kind of IGIS allows both vector and raster data to be
processed concurrently in addition to the capability of superimposition of vector and

raster data. Although the GIS software itself is an integrated unit, different types of data

(vector, raster and attribute) are stored separately in different databases. Figure 1.2(b)

shows the view of an IGIS with this process level of integration.

3. Storage level : This is the ultimate set of functions that an IGIS will provide. Not only
are software modules combined as an integrated unit, as has already been described for
the process level, but also discrete databases are formed as an integrated unit.
Furthermore, both software and database are united as a single system. This type of
integration provides an integrated database environment which 'hides' the details of
programs and databases from the user, so that it gives the highest degree of integration.
Figure 1.2(c) illustrates the view of an IGIS with this storage level of integration.

In general, the power and sophistication of an IGIS increases as the degree of integration
extends or rises from the display level to the process level, and finally to the storage level

1.2.2 The Methods o f Integration

In order to achieve the goal of integration, there are three methods that could be used in the
development of an IGIS.

1. The composite method is to produce a composite system from two existing GISs,
one of which is vector-based, while the other is raster-based.

2. The extended method is to extend an existing vector-based or raster-based GIS to
handle both vector and raster data.

3. The complete method is to develop a GIS that incorporates both vector and raster
capabilities.

The composite method can be implemented by developing a data conversion or interface
program to join a vector-based GIS and a raster-based GIS (or an image processing system)
together. These two independent software packages may be running on the same or
different hardware with 'links' between them. Using this method, the degree of integration is
often limited to the display level since a data conversion program which is commonly used
for data exchange has no explicit linkage between two systems. Very few systems have
reached the process level since the development of a dedicated interface program demands
close collaboration between the vendors of the two systems being integrated. For example,

6

Chapter 1: Introduction

the ARC/INFO GIS and the ERDAS image processing system have been integrated through
a ‘Live Link’ interface program that permits the dynamic exchange and display of data from
both systems [Stow et al., 1990; Rado et al., 1991].

The extended method is to modify a uni-format GIS to accommodate the co-existence of
vector and raster data. Developers of existing GISs, which basically are either vector-based
or raster-based, have tried to add a variety of raster/vector processing capabilities within a
single software package. Such a system has a common user interface and a simultaneous

display of maps and images, so that not only the display level but also the process level of

integration can be realised. However, the vector and raster data are kept in different
databases, and quite often, an existing proprietary DataBase Management System (DBMS)

such as Oracle, Ingres, Informix, etc. is used to store the corresponding attribute data.
Therefore, the storage level of integration cannot be achieved by this method. Examples of

systems using the extended method are ESRI’s ARC/INFO [Menon et al., 1991], USL’s
CARIS [Derenyi and Pollok, 1990; Derenyi, 1991], etc.

The complete method is to develop a GIS providing both vector and raster capabilities in
the system design from scratch. The need to create a complete GIS is usually driven by the
realisation of the drawbacks of existing systems. The development of a complete system
may either use conventional database technology but with a dual-format system architecture
or it may adopt a new computer technique or an advanced database technology such as an
Extended Relational DataBase Management System (ERDBMS), an Object-Oriented
Programming Language (OOPL), an Object-Oriented DataBase Management System
(OODBMS), or a Persistent Programming Languages (PPL). For example, GIS software
packages such as Intergraph MGE [Intergraph, 1990], Siemens SICAD-HYGRIS [Siemens,
1989; Kaehler and Theissing, 1989], Genasys Genamap [Genasys II, 1993], and Tydac
SPANS [Intera Tydac, 1993] have been designed to support both vector and raster
capabilities, but are based on a conventional database technology. Some software packages

such as Intergraph’s TIGRIS [Herring, 1987], the Smallworld GIS [Chance et al., 1990]

and Laser-Scan’s prototype IGIS [Hartnall, 1993a] have implemented the OOPL technique
in their system design. Some of these systems will be discussed in more detail in Chapter 2.
The complete method can normally achieve a far better integration of the display and
process levels. However, if the data storage is similar to that used in the extended method,
then the storage level of integration cannot be achieved. With the new advanced database
technology, the degree of integration which can be accomplished should reach the storage
level as well as the display and process levels, depending on which technique is used and
how it is implemented. Nevertheless, only very few systems do actually provide a certain
degree of integration at the storage level, and indeed the devising and implementation of a
truly IGIS with complete levels of integration is still a matter of intensive research and
development.

7

Chapter 1: Introduction

It should be noted that there is also a so-called hybrid GIS. This term appears quite often

in GIS literature whenever information integration is discussed. However, there is no clear

definition about what is meant by such a hybrid GIS. A hybrid GIS may refer to a

composite system which is made up of two independent GISs or it may comprise an

independent system where spatial data is held separately from aspatial data. Since almost

always confusion results when a GIS software package is described or referred to as a

hybrid system, therefore, for the sake of clarity, this term will not be used in this thesis.

In order to distinguish differences in IGIS products and their development methods, the

following new terms have been coined to be used in the context of this thesis. An IGIS

which is able fully to achieve all three levels of integration will be called a Fully IGIS

(FIG IS). If this has only been achieved partially, it will be described as a Partially IG IS

(PIG IS). Accordingly, the two approaches of producing a FIGIS and a PIGIS will be

named as the fully integrated approach and the partially integrated approach respectively.

These integration approaches, development methods and their degree of integration for

IGISs are summarised in Table 1.1.

Integrated
System

Approach Development
Method

Degree o f
Integration

Composite display process

PIG IS Partially-Integrated Extended display process

Complete display process storage

FIG IS Fully-Integrated Complete display process storage

* The gray levels indicate the degrees of integration which may be achieved in each level.

: w eak — : in te rm e d ia te . ' : s tro n g

Table 1.1 Integration approaches, development methods and degree of integration for IGISs

1.2.3 Problems Occurring in the Partially Integrated Approach

Traditionally, the partial integrated approach has been used in the development of an IGIS.

Software developers of existing GISs who have tried to take the compatibility and

maintenance of their existing systems into account will almost certainly adopt either the

composite or extended method, whereas a new system developer will consider taking

advantage of the powerful features supported by an advanced technology. In spite of the

considerable effort put into the development of IGISs in the past few years, a number of

problems exist and remain unsolved. These may be described for each method as follows: -

The composite method has to use an interfacing program to join two distinct packages in

order to achieve a higher level of integration. In fact, each software package will need to

Chapter 1: Introduction

have a user interface module built into it. The interface program bridges and communicates
with these two interface modules. In order to process both forms of data in one operation,
data conversion to a single format, i.e. either vector-to-raster or raster-to-vector format

conversion, must take place [Peuquet 1981a, 1981b; Davis and Simonett, 1991]. The
principal advantage of using the composite method is its relative ease of implementation.
However, there are many disadvantages; the major problems are the following [Piwowar

andLeDrew, 1990; Piwowar et al., 1990]:

• The development of an interfacing program requires close collaboration between the

system developers of two GISs because the internal data structure of a software
package is usually proprietary and a commercial secret.

• Data conversion between vector and raster format decreases processing efficiency, and

leads to some generalisation and loss of accuracy.

• Because the choice of a vector or raster function for an application depends on which
format will give the better performance, a composite GIS may end up with having both
vector and raster data for an area. Not only will this increase the use of disk storage, but
it is also very difficult to ensure that both forms of data are always consistent.

• The upgrade of one software package also has to keep the interface program updated,
i.e., system maintenance is difficult and expensive.

The extended method is the most common means used to overcome these problems.
Existing GISs or image processing software will have been extended to allow, for example,
the simultaneous display of vector maps and raster images and to provide processing of
both forms of data in tandem. The extension of existing GISs and image processing
software requires a system to be redesigned to include the capabilities of providing storage
and processing for the additional data format. Although an IGIS developed by this method
provides a more integrated environment than that of the composite method, there are still
some problems [Ehlers et al., 1989; Piwowar et al., 1990]. These are as follows: -

• Existing software and databases have to be restructured in order to add linkages
between vector and raster data. This implies that incompatibilities between upgraded
software and existing databases do indeed exist, so that the task of converting existing
databases or files to suit the updated software version can hardly be avoided.

• The programming language which was used to develop existing systems may not be
able to supply or has limitations to provide the features necessary for this development.

9

Chapter 1: Introduction

• Vector, raster and attribute data are kept in discrete databases or files, thus the effort
needed to keep these databases in a consistent state is laborious and costly.

As for the complete method, it is normally able to create an even better integrated software

package if an appropriate programming language has been used for the system
development. In fact, it is also possible to create an integrated database with the novel
features supported by the advanced database technology which will be described briefly in
Section 1.3.1. Nevertheless, if the conventional database technology is explicitly or

implicitly used for building the databases of an IGIS, the complete system can by no means
be termed a FIGIS. For example, object-oriented programming technology has been
recognised as an effective tool to reduce the large costs involved in the implementation and

customisation of complex integrated software [Chance et al., 1990]. However, they may
still use conventional database technology or file systems to store geographical data, and

not all the data is stored in a single database. Furthermore, the conventional database
technology does not support the data models used in an object-oriented program design.
The structured data needs to be translated (or mapped) as they move from the program
domain to the database domain, and vice versa. In summary, the main problems
encountered in the current development of IGISs that use a software integration strategy
are the following:

• The complete method through which a software integration technique is applied allows
software developers the possibility to develop an integrated software package at a
comparatively low cost. Nevertheless, all data are not kept in an integrated database.
From a user’s perspective, the maintenance of separate databases is still rather tedious
and expensive.

• The capability of an IGIS is limited by the constraints of conventional database
technology. For example, a traditional relational DBMS does not support the storage
and manipulation of complex objects. Software developers have to keep the mapping

between software programs and databases consistent, in which case, the construction
and maintenance of the software is both tedious and costly.

From the above discussion, one can conclude that, with the partial integration approach, the
software component of an IGIS can be developed as a composite or integrated unit, but the
database component cannot be constructed as an integrated unit due to the deficiencies of

the functions available in the conventional database technology.

10

Chapter 1: Introduction

1.3 The Trend Towards a Fully Integrated GIS

From what has been described and discussed so far, it is clear that the central problem in the
design of a FIGIS is the creation of an integrated database which is suitable for holding all
forms of spatial and non-spatial data. The supply of such an integrated database obviously
requires the support of an advanced database technology. In other words, the development

of a FIGIS is totally dependent on the availability of a suitable database technology.

1.3.1 The New Development Tool - Database Programming Languages

Recently, the development of database programming languages which implement the

integration of programming languages and database facilities has advanced to a level where
they can provide a single database environment for storing different types of data with
various data structures. These database programming languages may be generally

categorised as Object-Oriented DataBase Programming Languages (OODBPL) or
Persistent Programming Languages (PPL), depending on the architecture and the data
model implemented in the integration of programming and database facilities. An OODBPL,
which is the meeting of object-oriented programming and database management, provides
both the benefits of the capabilities of modelling and representing the real world as closely
as possible and the traditional facilities of DBMSs such as data persistence, transaction,
recovery, concurrency, etc. [Atkinson et al., 1989; Hamon and Crehange, 1991; Cooper,
1993]. Examples of OODBPLs include 0 2, ObjectStore, Objectivity/DB, ONTOS,
GemStone, and ITASCA. Most of these programming languages have been integrated with
either the C++ or Smalltalk languages or an object-oriented LISP derivative [Cattell, 1991].
By contrast, a PPL is a programming language which treats persistence as an orthogonal
property of data, and this provides an integrated environment for a consistent treatment of
the data used in both programs and database [Atkinson and Buneman, 1987; Morrison et
al., 1993b]. Examples of PPLs include PS-algol, Napier88, Galileo, Amber, Poly, STAPLE
and FAD [Atkinson and Buneman, 1987; Kirby, 1992; Morrison et al., 1993a].

Both OODBPLs and PPLs provide similar capabilities of programming and database

management in an integrated system environment, including support for the persistence of
complex objects in object-oriented databases and powerful mechanisms for the
representation of real world entities in the form of a high degree of object abstraction
[Morrison et al., 1987; Hamon and Crehange, 1991; Cooper, 1993]. However, there are
different features present in these two language systems. For example, in a PPL, the
persistence of data is independent of data types, whereas in an OODBPL, it normally
requires explicit organisation of, or even mention of, data movement by the programmers

[Atkinson et al., 1989; Cattell, 1991]. PPLs are usually developed as a completely new
system and need not be dependent on the features supported by other programming

11

Chapter 1: Introduction

languages, while OODBPLs are generally created by adding database capabilities to existing
object-oriented programming languages. Furthermore, PPLs are program tor process")

centred which means the programmer tends to write procedures which operate over data
rather than treating functions as properties of data. By contrast, OODBPLs tend to be data
centred where the computational aspects of the system have become attributes of the data
[Dearie et al., 1989; Morrison et al., 1989]. It is always worth mentioning that PPLs do not
force users to adhere to an OO programming style; however they allow users to do if they
wish. By contrast, all OOPLs force users to follow the OO programming style.

1.3.2 Current Status of Research and Development

Considerable research has been devoted to the development of application software based

on database programming languages. Typical examples of such systems are computer-aided

design (CAD) packages, office information systems (OIS) and computer-aided software
engineering (CASE) tools. These applications require databases that can manage very
complex data in an effective way [Atkinson et al., 1989; Morrison et a l , 1993a]. Building a
GIS around DBPL technology is another new emerging application in the last few years.
Quite a lot of experimental work is under way, especially the development of object-
oriented geographical databases based on OODBPLs. For example, the French Institut
Geographique National (IGN) has developed a prototype GIS called G e02 which provides
a geographical DBMS that is based on a commercially available OODBMS 0 2 from 0 2
Technology [David et al., 1993]. The CSIRO Division of Information Technology, Centre
for Spatial Information Systems in Australia has developed a prototype GIS with a object-
oriented geographical database which is built on another commercial OODBMS product,

ONTOS [Milne et al., 1993]. The Politecnico di Milano in Italy has also developed a
prototype object-oriented GIS based on the OODBMS OpenDB developed by the Hewlett-
Packard Company [Sacchi and Sbattella, 1994]. With regard to the development of a GIS
using a PPL, very little effort has been made till now because almost all PPLs are

themselves still in the stage of research and development and are not available
commercially. Despite this, an analysis of the characteristics of PPLs shows that they are
very promising in terms of the development of an IGIS.

The benefits of building persistent application systems using a PPL have been described
extensively in the literature [Atkinson, 1992a; Kirby, 1992]. The principal advantages
provided by persistent systems are:

• Persistent systems only require a single mapping from the data model of the real world
to the internal storage structure of a database.

12

Chapter 1: Introduction

• The same mechanisms operate on both short-term and long-term data, avoiding the
traditional need for separate systems to control access to data having different degrees
of longevity.

• Programs such as procedures and modules can be represented by first class values
which reside in the persistent store.

• Type checking protection mechanisms operate over the whole environment to ensure
type correctness in the systems.

These favourable characteristics of PPLs provide an ideal model for building applications in

an integrated data-intensive system, especially those dealing with large amounts of long-
lived data. Given the various advantages listed above, it was felt that the use of a PPL
should be advantageous for the design and development of an integrated GIS.

Abdallah [1990] was probably the first person who has attempted to design and build a
prototype GIS based on a persistent programming language. Abdallah experimented with
the persistent programming language PS-algol, which is a predecessor of Napier88, and
developed a purely vector-based GIS. His research work showed that a persistent
programming language has great potential for developing a GIS. The primary advantages of
using a PPL for GIS development can be summarised as follows: -

1. Data type completeness. Procedure is a first class type, so it is very easy to design a
modular system.

2. It allows the programmer to declare and use names in the same way anywhere in a
program. All aspects of the programs are all written in a consistent style.

3. The availability of ‘picture’ and ‘image’ (vector and raster) construction.
4. Data persistence.

Abdallah concentrated his research into the capability of vector processing in a GIS,
especially for its applications in cartographic production. The investigation of the potential
of the tandem processing of both vector and raster data in a GIS is an obvious consequence
of this original research by Abdallah and motivated this follow-up research with the
persistent programming language Napier88.

Napier88 has been developed at the University of St. Andrews in the UK. The Napier88

system provides some novel features that normally cannot be seen or encountered in
traditional programming languages [Morrison et al. 1993b]. These features, which will be
described in more detail in Chapter 3, provide the capabilities to meet the basic requirement
for developing a FIGIS - the creation of an integrated software and database. Thus this new

13

Chapter 1: Introduction

database technology provides researchers with a quite different tool to explore the design

and implementation of an IGIS. Since Napier88 has significantly enriched the persistent
environment provided by PS-algol [Morrison et al., 1993b], it should be able to provide a
still better environment for the incorporation of various types of geographical data into a
persistent store, which is deemed to be of the essence of constructing an IGIS.

1.4 Research Objectives

Having described the importance, problems and possibilities of developing a FIGIS, this

thesis identifies the main objectives of this research into such a possibility. The intention of

the research is to explore the feasibility of developing a FIGIS based on the persistent
programming language Napier88. The purpose of this research is to build a framework and
to provide the foundation for the development of a fully integrated GIS software package.
In this context, the main research objectives can be defined as follows: -

1. The integration o f vector, raster and attribute data within a single database, and
the concurrent processing o f all o f them within a single workspace.

2. The implementation o f different kinds o f data models within a GIS.
3. The construction of an object-oriented geographical database.

The first two objectives are the key items in this research agenda, and, if they can be
satisfied, then they provide the basis for a FIGIS. If the third objective can be satisfied, then
it will also be possible to implement object-oriented data management which tends to be a
requirement in current GIS development. In more specific terms, the following tasks will be
carried out in the course of this research.

1. Carrying out the design of the system architecture for an IGIS.
=> The system design includes design consideration, design criteria, functional design,

database design and overall system configuration.

2. Implementing multiple data modelling of geographical data in an IGIS.

=> Each type of geographical data can be structured using an appropriate data model
for specific applications, and various different data models which represent multi
scale map data and multi-resolution image data, can all be accommodated within
the same database environment.

3. Organising geographical data in a persistent store.
=> A persistent store is used to comprehensively accommodate geographical

information in a single database environment, no matter what types of data are

14

Chapter 1: Introduction

being stored, and all the data is constructed in the manner required for an object-
oriented organisation.

4. Superimposition and interrelation of vector maps and raster images.

=> Vector maps and raster images are superimposed in a single display window, and
are geographically cross-referenced for the purpose of tandem processing.

5. Spatial indexing and querying of geographical information.
=> A spatial indexing technique is chosen to index the point, line and polygon entities

of geographical features, and different query methods are designed to examine the
computational capabilities of Napier88.

6. Implementation of a prototype IGIS for the evaluation of system capabilities and
performance.
=> Based on the design and framework of the above items, a prototype IGIS is

implemented for the studies of various functions, such as response time of queries,
database updates, system management and others.

1.5 Outline o f the Thesis

The thesis is devised as follows; Chapter 2 presents an overview of current IGIS
development with a review of some existing well-known IGISs which are representative
systems based on conventional database technology. It also conducts a discussion on a
number of relevant research programmes which are being developed on the basis of
advanced database technology. Chapter 3 gives the basic concepts concerning persistent
programming languages and provides an introduction to Napier88, the tool used in the
present project to develop a prototype IGIS. The Napier88 system’s functions and their
suitability for IGIS development are also discussed. Chapter 4 describes the IGIS system

architecture devised for this project. It includes a detailed description of its software
modules and database design. Chapter 5 through to Chapter 7 deal with the methodology
employed in the key areas of the system, namely: Geographical Data Modelling and
Organisation, Vector and Raster Superimposition and Interrelation, and Spatial Indexing
and Queries. Next, Chapter 8 is concerned with the implementation of the prototype IGIS.

Large volumes of real geographical data are used to experiment with and demonstrate
capabilities and performance of the prototype IGIS. Finally, Chapter 9 summarises the
results of the research work and gives recommendations for future work.

15

Chapter 2: An Overview o f IGIS Development

CHAPTER 2 : AN OVERVIEW OF IGIS DEVELOPMENT

2.1 Introduction

In the previous introductory chapter, the importance and some of the problems of
developing a fully integrated GIS (FIGIS) have been discussed. A short introduction

explaining the main trends in the current development of a FIGIS has also been given. In
this chapter, some further discussion of the different types of information system which are

related to IGISs will be conducted and this will be followed by a review of representative
IGIS systems which are currently available on the market. Finally a brief account of a
number of research programmes utilising database programming languages will also be

presented. Because the contents and structures of the database is the most important single
aspect of an IGIS, all the discussions and system overview will centre around the database
issue, including data models, data structures, system architecture, etc.

2.2 Digital Representation o f Geographical Data

Digital representation of geographical data is concerned with modelling the real world and
structuring the modelled data. Numerous data models have been developed for representing
geographical data. These data models can be classified into the two basic types of vector
and raster representation [Aronoff, 1989; Laurini and Thompson, 1992]. The vector
representation perceives the real world as being made up of points, lines, polygons which
are defined by coordinate values, whereas the raster representation uses an ordered matrix
of uniform-sized cells.

In the vector representation, the raw geographical data of the real world can be acquired by
means of field survey including GPS; by analogue, analytical and digital photogrammetry;
and by digitising existing maps. This process is known as data collection or data acquisition.
The raw vector data is then transformed into clean vector files through data pre-processing
including error detection and editing, transformation into a specific map projection, edge

matching, topologic integrity checks, restructuring of data, etc. [Star and Estes, 1990;

Cromley, 1992]. Thereafter, the clean vector files may be organised and constructed in the
form of a graphical data base with appropriate data structures suited for specific

applications. The basic concept of the vector representation of geographical data is
illustrated in Fig. 2.1.

The raster representation has a data flow similar to that of the vector representation, but
quite different data acquisition devices and data manipulation are required due to the

16

Chapter 2: An Overview o f IGIS Development

Real W orld

Data Collection

Representing
Features in

Vector Form at
(Raw Data)

Y

Data Pre-processing

Clean
Vector Files

Vector
Database

Feature
ID

Entity Type Feature Code Coordinates Attribute

1 Point H X, Y House

2 Line R

x>x

Road

3 Polygon S X,, Y l t . . . X i, Y, Swamp

c
»

Spaghetti

or Link and Node

or Topological

or others

Data Modelling
and Structuring

Figure 2.1 Vector representation of geographical data

17

Chapter 2: An Overview o f IGIS Development

Real W orld

Representing
Features in

Raster Form at
(Raw data)

Clean
Raster Files

Raster
Database

1
2

3
4

5

6

7

8

9

10

11

12

c

t4 5 6 * 7 8 9 10 11 12

0 0 0 0 0 0 0 0

I
Simple Array

or Run Length Encoding

or Quadtree

or others

House

Road

Swamp

Data Pre-processing

Index Code Attribute

0 N Null

1 H House

2 R Road

3 S Swamp

Data Modelling
and Structuring

Data Collection

Figure 2.2 Raster representation of geographical data

18

Chapter 2: An Overview o f IGIS Development

disparate characteristics of vector and raster data. The raster data is obtained by means of
airborne or satellite remote sensing, or by scanning aerial photographs and scanning existing
maps. The data pre-processing involves the removal of distortions (geometric and/or
radiometric), ground control registration, image enhancement, image classification, and so

on [Star and Estes, 1990; Cromley, 1992]. The basic concept of the raster representation of
geographical data is shown in Fig. 2.2.

The following discussion describes the information systems dedicated to handle digital
geographical data in either a single (vector or raster) or a dual (vector and raster)
representation.

2.3 Digital Mapping and Vector GIS

Both digital mapping systems and vector GISs are vector-based systems used to capture,
store, manipulate and display geographical vector data. A digital mapping system is a
replacement for the traditional manual cartographic process and is primarily designed for
the production of topographic and thematic maps, whereas a vector GIS is a coordinate-
oriented system in which geographical data is spatially indexed and upon which a set of
procedures operate to answer queries about spatial entities in order to support problem
solving or decision making [Cowen, 1988; Maguire, 1991]. However, each of them has
distinctly different characteristics and applications.

The development of digital mapping systems is usually based on CAD technology. Data in a
digital mapping system is organised by layers which are used to classify map features by
theme such as buildings, communications, land cover, and hydrography, or by essential
elements of cartography such as line weight, line style, colour, texture, and symbols. Map
production can be easily carried out by accessing the relevant layers required for the
production of a general or specific purpose map. Digital mapping systems are so flexible for
map production and so efficient for map editing that they have been playing a major role in

cartographic industry for more than two decades. However, digital mapping systems are not
suited for querying or analysing geographical data because the data structures employed in
these systems are often quite simple, e.g. a spaghetti structure may be used. Furthermore,
spatial relationships among geographical features, known as topology, are not explicitly

defined and stored in the dataset of the digital mapping system. Thus special processing is
required to construct these relationships before any geographical analysis can be performed.
Furthermore, a digital mapping system normally does not provide the capabilities of a
DBMS nor does it support a linkage to a DBMS for the storage of non-graphical data
[Cowen, 1988; Newell and Sancha, 1990; Korte, 1994]. As a result, digital mapping
systems are not capable of efficiently handling the analysis of geographical data.

19

Chapter 2: An Overview of IGIS Development

With regard to vector GISs. the emphasis is placed on the data storage aspects and the
system’s capabilities of analysing geographical data in vector format [Theriault, 1989], In
order to allow interactive analytical operations, a more complex data structure such as a
topological structure is required for the efficient storage and manipulation of geographical
data. Hence, in a vector GIS, the geometries of geographical features as well as the

topology existing between them are stored in a graphical database. Apart from this, a vector
GIS also contains attribute data which provides further descriptive information about
graphical entities. Attribute information is normally held in a conventional DBMS such as a
hierarchical or relational DBMS. Both the graphical and non-graphical databases are cross-

linked by identification keys. In vector GISs, geographical information is partitioned into

features according to some coding schemes which normally have a hierarchical
classification. Each feature has a distinguishing code so that a user is able to search or

analyse specified graphical data and relate it to attribute data and vice versa. Both graphical
and associated attribute information can be analysed and displayed at the same time

[Aronoff, 1989; Newell and Sancha, 1990; Star and Estes, 1990]. This is a capability that a
digital mapping system normally cannot provide without additional customised
programming.

It should be noted that there are other vector-based geo-related information systems which
lie between digital mapping systems and vector GISs, namely, Automated Mapping /
Facility Management (AM/FM) and Land Information Systems (LIS). AM/FM systems
are specifically designed to manage the spatial data associated with utility systems such as
electricity, telephone, gas, water and sewage networks, whereas LISs are specifically
designed to deal with the parcel-based data associated with land ownership, land valuation
and land use. Usually, an AM/FM system is also based on CAD or GIS technology, but
because of the networks of pipes and cables which form the greatest part of the data, it
normally employs a network-like data structure to deal with graphical data, and a DBMS
for handling non-graphical data [Aronoff, 1989; Abdallah, 1990; Korte, 1994]. Regarding a

LIS, the basic concept is essentially similar to that of a vector GIS except that a LIS is more
oriented towards areas rather than the lines of the vector GIS or AM/FM systems, so it

often use a polygon-like data structure to organise graphical data.

2.4 Digital Image Processing and Raster GIS

Digital image processing is concerned with the various operations, including image
rectification, quantization, enhancement, filtering and others, that can be applied to digital
image data. A digital image processing system may be used in a variety of disciplines such
as medicine, criminology, engineering and so on. In respect of GIS applications, the digital
image processing is oriented or specialised towards a particular aspect - the processing and
analysis of geographical image data.

20

Chapter 2: An Overview o f IGIS Development

Both image processing systems and raster GISs are raster-based systems used to store,

manipulate and display geographical data held in a raster format. However, within this
general area, image processing systems are designed mainly for the production of
orthophotos, image maps and thematic maps or the revision of digital maps from remote

sensing or scanned photographic data, whereas raster GISs are primarily designed for the

analysis and display of classified image data or scanned map data with the ability to link

with the attribute information stored in a DBMS. In doing so, image processing systems
place most emphasis on the manipulation of raw data produced by remotely sensed imaging
systems or by scanning aerial photographs, while raster GISs lay stress on the storage and
analysis of the processed data. Therefore, an image processing system often acts as the
front end processor of a raster GIS. However, this distinction becomes obscure since the
capabilities which are offered by either system may be extended by including some or all of
those implemented by the other system. In fact, this is one aspect of system integration and
is discussed further in the next section.

Despite their rather divergent development in their early age, the data structures employed
in both types of system are quite similar. The simplest form is that where the image data is

stored as a two-dimensional matrix of uniform (usually square) grid cells or pixels. Each
pixel is assigned a value which represents the attributes of that pixel such as its soil type,
land use, or slope. The quality and clarity of the raster image depends on the size of the grid
cell, known as its pixel size or image resolution. The smaller the pixel size, the more exact
the information, but the larger the storage space required. A number of techniques have
been developed in order to overcome this storage problem. Run-length encoding and the
quadtree data structure are the two most common forms currently being used in the
structuring and storage of image data [Gunston, 1993].

One excellent feature of raster image systems is that it is very easy to perform Boolean
operations on raster images and raster data structures. For example, overlaying two raster
images is simply a matter of adding or subtracting the values assigned to each individual
pixel. Apart from this, the data capture of raster data is often much easier than that of
vector data [Aronoff, 1989; Star and Estes, 1990]. Nevertheless, the development of raster
image systems has been hindered by the problems of storing and handling vast quantities of
image data and the high demand on computational power. For example, each SPOT

panchromatic scene of 6,000 x 6,000 pixels contains about 36 Mbytes of data; an aerial

photograph of 23 cm x 23 cm format scanned with a 20 pm pixel size generates more than
100 Mbytes of data, and a rasterized map of lm x lm contains about 400 Mbytes of data if
scanned using a 0.05 mm pixel size. Due to the problems associated with these large data
sets, the development of raster image systems has been much slower than that of vector
graphic systems. As a result, till now, raster GISs have not so been popular as vector GISs.

21

Chapter 2: An Overview of IGIS Development

Nowadays, the rapid advances in computing power are beginning to be able to solve the
above-mentioned problems. High performance graphical workstations along with Gigabytes
of storage capacity have become quite commonplace. During the last few years, digital
photogrammetric workstations have probably been the most noteworthy development in
digital image processing. A digital photogrammetric workstation (DPW) is an analytical
plotter which uses computer technology to exploit digital imagery rather than the

mechanical stages, servomotors, and optics used to exploit hardcopy film imagery in the

classic analytical plotter [Kaiser, 1991]. A review of commercially available digital
photogrammetric systems is well described by Matambanadzo [1992]. Digital
photogrammetric workstations can be classified into two categories - the monoscopic (2D)

DPW and the stereoscopic (3D) DPW - depending on whether single or overlapping images

are being utilised.

The monoscopic DPW is mainly designed for the purpose of map revision, updating digital
cartographic information from scanned imagery, whereas the stereoscopic DPW is generally
designed for multi-purposed applications including the measurements of the stereo images
used for producing or updating maps and the production of digital elevation models
(DEM’s) or ortho-images. The implementation of a monoscopic DPW often employs the
digital monoplotting approach because it corrects both the relief and tilt displacements and
gives a better accuracy in the final result. Apart from the development of stand-alone
monoscopic DPWs, the digital monoplotting system has also being integrated into many
GISs and provides basic capabilities for the registration of vector maps and raster images,
and for screen-based digitising [Petrie, 1994].

On the other hand, at present, stereoscopic DPWs such as those developed by Intergraph,
Leica-Helava and Zeiss have proven to be very efficient both for the automated production
of orthophoto and digital terrain model data and for the manual stereo-plotting of vector
data. Also, the image processing suppliers are beginning to produce such products, e.g.
ERDAS’s OrthoMax package. The whole production process is so highly automated that a
digital photogrammetric workstation can be utilised as a front end processor for a raster
GIS [Dowman, 1991]. Another important characteristic of the stereoscopic DPW is that it
is equipped with a stereoscopic display device allowing users to visualise, interpret and
measure digital imagery in 3D [Cogan et al., 1991; Kaiser, 1991]. This is a very useful
feature for the measurement of the geographical features required in 3D GIS applications.
Obviously, the development of digital photogrammetric workstations will make a significant
impact on the role of raster GISs. Especially in the context of remotely sensed imagery,

these raster-based image systems will certainly become more important than ever before.

22

Chapter 2: An Overview of IGIS Development

2.5 Convergence to IGIS

From the above description, it can be seen that the systems designed to handle or deal with

geographical data are divergently developed because the two representations of the real

world are fundamentally very different in their nature and in the approaches that can be
taken when manipulating geographical data. As a result, the use of either a vector or a

raster GIS has been limited to a very specific processing environment by its capabilities. The
trade-offs between the different vector and raster systems chosen for GIS applications have
been comprehensively discussed in the literature [Burrough, 1986; Wallace and Clark,

1988; Aronoff, 1989; Star and Estes, 1990; Davis and Simonett, 1991; Peuquet, 1991;
Gunston, 1993]. The characteristics and the respective advantages and disadvantages of a
vector GIS and a raster GIS are summarised in Table 2.1.

Characteristics/F unctions Vector GIS Raster GIS

Data Capture Slow Fast

Data Volumes Small Large

Geometric Accuracy High Low

Data Structure Complex Simple

Distance and Area Measurement Good Poor

Buffer Zone Analysis Poor Good

Network Analysis Good Poor

Overlay Analysis Poor Good

Data Display Slow Fast

Data Aggregation / Segregation Complex Simple

Data Generalisation Complex Simple

Data Semantics Good Poor

Table 2.1 Advantages and disadvantages of a vector GIS versus a raster GIS

It should be noted that these comparisons are based on the intrinsic characteristics of the

two basic representations and may not apply to certain specific systems which have utilised
a dedicated hardware (such as a graphic accelerator) or special software (e.g. a spatial
indexing scheme) that may result in one data format outperforming the other.

The decision as to whether to use a vector or a raster GIS is largely dependent on the

application requirements and the available data sources. For example, if the data has been
collected primarily by means of analytical photogrammetry and the main application is path
queries concerning emergency vehicle routing which demands network analysis [Laurini and

23

Chapter 2: An Overview of IGIS Development

Thompson, 1992], then a vector GIS will naturally be the better choice. In contrast to this,
if remotely sensed imagery is used for the monitoring of hazardous waste sites for
environmental conservation planning - a task which needs buffer zone and overlay analysis,

then it is advantageous to use a raster GIS. However, most GIS applications often require a
number of thematic layers for a sensible analysis. In fact, a GIS project usually involves the
use of both vector and raster data types in the same area. For instance, following the above

examples, satellite imagery covering a disaster area caused by widespread flooding may be

acquired quickly to help define the area affected and to facilitate the task of urgently routing

rescue vehicles or vessels. Similarly, the locations of waste sites and their ambient
geographical features could be directly extracted from existing digital topographical maps

rather than be identified and digitised via satellite imagery. However, in each case, it would
be necessary to perform a series of data format conversions in order to import data from
these different sources into a uni-format system.

As matter of fact, data format conversion can be seen as the most primitive way of data
implementing integration although the singular nature of the data model tends to limit the
applications to which a particular uni-format system may be put [Piwowar and LeDrew,
1990]. Data format conversion may involve either of the following two operations: -

I. When the foreign data and the system data are in different forms.
One data file is in vector format, the other is in raster format. The conversion process
deals with changing the data from vector to raster form (rasterization) or raster to
vector form (vectorization) [Peuquet, 1981a, 1981b].

II. When the foreign data and the system data are in the same generic form.
Both data files are in either in vector or in raster formats. The conversion process is
primarily concerned with translating the data structure of foreign data to that of
system data.

Almost all GISs provide import/export modules to convert some of the well-known

exchange formats such as DXF, SLF, IGES, DLG, DIME, TIGER, etc. commonly used for
vector data, and TIFF, GIF, PCX, ERDAS, GRASS, PCI, Landsat TM, SPOT, etc. used
for raster data. However, these industrial de facto standards are not able to completely and
accurately convey geographical information between two systems. For example, DXF, SIF
and IGES all lack the capability of explicitly transferring topologic information, whereas

DLG, DIME and TIGER allow the user to do so but are not able to carry object semantics.
Furthermore, none of these formats is able to deliver the inherent data structures employed
within the systems. Hence, a substantial effort is now being made in many countries to

overcome these difficulties through the development of national standards. Recently, some

digital data interchange standards such as SDTS (Spatial Data Transfer Standard) [Fegeas

24

Chapter 2: An Overview o f IGIS Development

et al., 1992], NTF (National Transfer Format) [BSI, 1992], and others [Williams, 1993]
have been developed. Nevertheless, there is no clear indication that any one of these

national standards will be widely accepted in the international community in the short term.
There are also two standardisation efforts in progress. First of all, the CEN TC (Technical
Committee) 287 is producing a European standard for the exchange of geographic
information, which is aimed at the transfer of both vector and raster data, rather than the
purely vector GIS or mapping data covered by existing standards. Initial parts of this

composite standard should be published within the next year. Secondly, ISO has just begun
to consider standardisation procedures in the same field. The standardisation of
geographical interchange format involves various issues, including feature definition and

classification, feature data encoding (both vector and raster formats), relationships between

features, geographic referencing, data quality, symbology, etc. [Evangelatos, 1991]. A great

effort will have to be made to achieve a broad consensus on these issues. Thus it seems
unlikely that a truly universal standard that allows all kinds of geographical information to
be precisely transferred and flexibly shared will become available in the near future.
Therefore, integrating data from different sources into a uni-format GIS can be tedious and
error-prone due to the problems of data conversion. Particularly the Type I {i.e., vector-to-
raster and raster-to-vector) data conversion tends to cause some generalisation and loss of
accuracy, while the demands of the vector-to-raster conversion normally requires
specialised hardware ranging from add-in boards to special parallel processor boxes.

An alternative approach to data integration is to accommodate both vector and raster data
within a system. The concept of this dual-format approach is the coexistence of both data
formats in the same working environment and the ability to operate functions such as those
listed in Table 2.1 with their appropriate data formats. This dual-format approach removes
the need for the Type I data conversion required in the uni-format approach. A significant
benefit arising from the adoption of this approach is that it minimises any loss of data
quality since the data would be left in their native form and in the manner best suited to

their intended use [Piwowar and LeDrew, 1990]. There are three methods of integration

(composite, extended, complete) which could be used in the dual-format approach, and
different degrees of integration could be achieved at the different levels {i.e. at the display,
process, storage levels) which have been described in Sections 1.2.2 and 1.2.1 respectively.
In fact, there is an emerging trend in recent developments which points to the fact that
digital mapping systems, vector GISs, image processing systems and raster GISs are
starting to converge into IGISs. With the advances in computing power accompanied by the
evolving of standards for operating systems, network protocols, graphical interfaces,
programming languages and database management systems, the boundaries between digital
mapping systems and vector GISs are gradually becoming fuzzy. A digital mapping system
tends to provide some of the analytical capabilities of a vector GIS. On the other hand, a
vector GIS is inclined to encompass some of the cartographic functions of a digital mapping

25

Chapter 2: An Overview o f IGIS Development

system. Consequently, a generic vector-based system can be formed to provide the features

of the both systems. The same holds true for the integration of image processing systems

and raster GISs into a generic raster-based system [Ehlers and Blesius, 1991]. On the other

hand, gradually a vector-based system tends to supply some basic raster capabilities, e.g. in

the form of a raster backdrop, and conversely a raster-based system also starts to provide

some essentially vector capabilities. Although inevitably the evolution of the system

development will have to take place over some time, it is already possible to conceive of a

situation where all of these systems will eventually be merged together and fused as a multi

purpose IGIS. This evolution of IGIS development is conceptualised in Fig. 2.3.

Digital Mapping System

. X-. v

Vector GIS

mage Processing System

Generic
Raster-Based

System

J : ■ :

Raster GIS

Figure 2.3 The possible evolution of IGIS development

The following two sections will review some representative GIS systems already available

on the market and several prototype systems implementing advanced database technology.

Each of these reviewed systems has achieved some degree of integration and has shown at

least some of the indications of the tendency towards an IGIS outlined above.

2.6 Representative Commercial IGIS Products

As has been discussed in Section 1.2.3, both the extended and the complete method are

commonly used in current IGIS development. The products developed by the composite
method will not be reviewed here because they are being eliminated through market

competition due to their very low level of integration and the high cost of software

investment relative to their actual performance. Therefore, this section reviews certain IGIS

products which are representative of the systems developed by either the extended or the

complete method. Six software packages are reviewed: Intergraph MGE, ESRI

ARC/INFO, Genasys Genamap, Tydac SPANS, Smallworld GIS, and Laser-Scan IGIS.

Although there are dozens of systems on the market, these six selected products are

sufficient to give a clear profile of the development approaches currently employed in

commercially available products.

26

Chapter 2: An Overview of IGIS Development

The reasons for choosing them as the representative systems are as follows: -
• Both the Intergraph and ESRI companies were founded in the 1960s and have the two

largest shares of the GIS market [Korte, 1994]. Furthermore both the Intergraph MGE
and the ESRI ARC/INFO systems employ conventional database technology. However,
the Intergraph MGE system adopts the complete method but is built on a CAD system,

whereas the ESRI ARC/INFO system utilises the extended method to add raster

capabilities.

• Both the Genasys and Tydac companies were founded in the 1980s and have become
well-known GIS vendors over the last decade. The Genasys Genamap and Tydac

SPANS systems both use the complete method as well as the conventional database
technology. Nevertheless, their database approaches to the achievement of the required
integration are quite different.

• Both the Small world GIS and the Laser-Scan IGIS use the complete method and have
implemented their solutions using the object-oriented technique. Furthermore, both
Smallworld Systems and Laser-Scan have developed their own object-oriented
application development environment and toolkits, namely Magik and Gothic
respectively, to achieve a very high degree of the integration of geographical
information contained in their GISs.

It should be noted that it is not always easy to give a detailed account of the underlying
database architecture for a specific system because most commercial GISs are closed
systems. So detailed information on their database architecture and data structures is
difficult to obtain. Therefore the following review is based on the material published in the
literature, including software overview, conference and journal papers, and technical

reports.

2.6.1 Intergraph MGE

Intergraph is recognised as a major player in digital mapping and GIS technology. Before
the release of the Modular GIS Environment (MGE) product in 1989, Intergraph’s IGDS
(Interactive Graphics Design Software) and DMRS (Data Management and Retrieval
System) have been widely used for digital mapping, AM/FM, and LIS for more than 20
years. IGDS is an interactive graphics system which handles graphical data stored in
Intergraph proprietary design file format (DGN) that essentially has a spaghetti data
structure, whereas DMRS is a hierarchical DBMS which deals with attribute data. IGDS
and DMRS work together to provide an interactive graphical-oriented management
information system capable of supporting a large number of map-related applications
[Abdallah, 1990; Korte, 1994]

27

Chapter 2: An Overview o f IGIS Development

MGE is a family of products which provide GIS management, processing and analysis. The

system architecture of MGE has a quite different design to that of IGDS/DMRS in order to

support efficient data structures for spatial queries and analysis. MGE is built on the top of

the MicroStation CAD program and the so-called Relational Interface System (RIS) which

link to graphical files and to a relational database respectively. MicroStation runs on both

Unix platforms (as MicroStation 32) and PCs (as MicroStation PC) and is a well-known

CAD system used for graphic data collection, editing and output, whereas RIS uses ANSI-

standard Structured Query Language (SQL) to provide a direct link to contain commonly

available relational DBMSs for managing non-graphical data. Specifically, by using RIS,

MGE can link to commercially available RDBMSs including Oracle, Informix, Ingres and

DB2. The particular type of database actually in use is transparent to the user. Apart from

this, MGE and MicroStation can also access graphical files directly or through the relational

database using RIS. It should be noted that unlike the other GIS systems which also will be

discussed in this review, MGE does not have either a vector database or a raster database.

Instead ail the graphical vector data and the raster data are held purely as a set of files. The

MGE system architecture which illustrates the relationships between the software modules,

relational databases and graphical files is shown in Fig. 2.4 [Intergraph, 1989a; 1989b;

Korte, 1994],

(Attribute)

Application
Modules

Graphical

Files
(Vector, Raster)

RDBMS

Relational
DataBases

Figure 2.4 MGE system architecture

28

Chapter 2: An Overview o f IGIS Development

The graphical data in MicroStation is stored in DGN format which is the same as that used
in IGDS. Moreover, MGE also uses the DGN format for its general graphics operations
unless the data has to be restructured for specific geographical applications. For example, in
order to perform geographical analysis, the graphical data is restructured into a topological
file structure using the MGE Analyst module. This arrangement has an advantage of

keeping most graphical files compatible across various packages and different platforms

while tuning them to meet specific requirements by using specialised modules.

The foundation of MGE products is MGE/SX for Unix systems or MGE/PC-1 for PCs. The

former runs both an Intergraph’s own proprietary Clipper-based workstations and on Sun’s

SparcStations, while the latter runs either on an Intergraph’s own brand of PC or on a non
proprietary PC. In each case, this is the core environment for setting up, controlling, and

manipulating data, and serves as a central integrating core for all of the GIS/Mapping

application modules. Each specialised GIS/Mapping application is designed as a module
which can be slotted into the overall MGE system to meet specific user needs. The MGE
system overview is illustrated in Fig. 2.5 [Intergraph, 1990].

The functions of the major GIS/Mapping application modules used in the MGE system can

be summarised as follows [Intergraph, 1990]: -
* Analyst (MGA): Executes the creation, query, analysis, and display of topologically

structured geographical data.
* Network Analyst (MGNA): Generates and manages network data for route planning

and analysis.
* Grid Analyst (MGGA): Performs overlay, cost surface/optimal path, and statistical

analyses, vector/raster conversions, and zone proximity generation of grid data.
* Imager (MSI): Carries out digital enhancement and multispectral analysis of remotely

sensed raster image data integrated with a vector data set.
* Terrain Modeller (MSM): Creates triangle and grid files for use in slope, aspect,

elevation, and intervisibility analyses.
* Map Finisher (MGFN): Feature-based map composition and symbolisation for screen

displays and colour plots.
* Map Publisher (MAPPUB): Converts MicroStation graphics files into screened,

composited raster files for display and the plotting of the colour-separated film
transparencies required for plate making prior to offset litho printing.

* ETI : Transfers field survey the data from data collectors used with total stations and
converts the data into an MGE compatible format.

* Stereoplotter I/F Mechanical (SPI/M): Allows the digitisation of data from a

mechanical analogue stereoplotter.
* Network File Manager (NFM): Organises and manages information transparently

without knowing network location, operating system, or network protocol.

29

Chapter 2: An Overview o f IGIS Development

Textual Data
Existing Records, —
Databases, etc.

Digitized Data
Existing Maps, —
Drawings, etc.

Survey Data
Digital Data from —
Ground Measurement

Digital Data Sources
TIGER, ETAK, D I M E , n
DLG, etc.

Photogrammetric Data
Aerial and Close Range —
Photography

Scanned Data
Existing Maps, —
Drawing, etc.

Image Data
Satellite Imagery,
Video Images, etc.

OS, MicroStation, RIS, RDBMS, Network, DMANDS, DB Acess, etc...

Figure 2.5 MGE system overview [Intergraph, 1990]

* DB Access: Performs queries to multiple databases through data-driven displays.

GeoDatabase Locate (GDL) allows users to locate features based on specific attributes

or characteristics in the associated database. Geoindex Locate (GIL) allows users to

select a working area from a generalised map of the project area.

* Drawing M anagem ent and Distribution System (DMANDS): For the management,

maintenance, and distribution of large-volume drawing and binary images.

It is worth mentioning that Intergraph provides not only software packages but also

supplies a wide range of hardware products relevant to data inputs to GIS. In particular,

Intergraph’s scanners produced by its subsidiary companies, ANAtech and Optronics, are

provided to scan existing maps, photographs, films and documents into raster data. The

raster data can then be converted into vector data in the form of lines, text and symbols

GIS/Mapping
Applications

GIS/Mapping
Applications

Modules

MGE

Reports

Digital Files

Video O utput

Paper Plots
and Maps

Film Plots
and Maps

30

Chapter 2: An Overview o f IGIS Development

using its automatic vectorization (I/VEC MS) and symbol/character recognition (I/SCR
MS) tools. For very high resolution scanning of aerial photographs, Intergraph, in
collaboration with Zeiss, offer the PS-1 which produces raster image data for input to the
company’s Image Station and its Imager modules.

The emergence of the MGE system has shown the trend of the integration of digital
mapping and vector GIS in IGIS development as described in the Section 2.5. The overall

approach of the Intergraph MGE system is therefore based on the graphical capabilities of

MicroStation CAD software; and sets out to provide a set of integrated tools capable of

integrating the diverse representations of geographical information in a common
environment. In particular, it supports the multiple data modelling of graphical data by way

of restructuring data when needed in specific applications. The MGE system integrates the
vector data used by MicroStation and other application modules as well as the raster data
used by the Imager module which provides image processing capabilities. Hence, the degree
of integration has reached the display and the process levels.

2.6.2 ESRI ARC/INFO

The ARC/INFO system is a very well-known GIS package produced by the Environmental
System Research Institute (ESRI). The system runs on a very wide range of platforms from
mainframes through mini-computers to graphic workstations and PCs. Thus it has been
ported to run on a great variety of operating systems. The ARC/INFO system is based on
the tool kit approach which means that it utilises application oriented tools operating on
objects. In ARC/INFO, the objects are the geographically locational and non-locational
data, while the operators are geo-processing commands employed for the editing, analysis
and display of these objects [Morehouse, 1989]. Initially, ARC/INFO was developed as a
vector-based GIS and consisted of two main software components: ARC, which was used
to manage vector geographical data, and INFO, used for managing the attributes of the
geographical features. The ARC component stores graphical data in a topological structure,
while the INFO component stores attribute data in relational tables. These two components
are linked together by feature identifiers and are also linked individually to the software
tools used for various applications. Since then, the system has undergone considerable
development. The later software releases also support a Relational Data Base Interface

(RDBI) to provide an external link to a second commercial RDBMS such as Oracle, Ingres,
Informix and Sybase directly with the ARC part of the system [ESRI, 1992]. The
ARC/INFO system architecture is illustrated in Fig 2.6.

The ARC/INFO family of products is built upon a modular software system. The core of
the system provides the essential features for basic GIS operations including map capture

31

Chapter 2: An Overview o f IGIS Development

Application Modules

JL

GIS Tools

RDBI

Image
IntegratorRDBMS

Attribute
DataBase

(Relational)

Raster
DataBase

(Cell)

Vector
DataBase

(Topological)

Attribute
DataBase

(Relational)

Figure 2.6 ARC/INFO system architecture

and editing, database creation, coordinate transformation and projection, simple map

display, data transfer and communication, etc. Application specific modules are then built

around the core module. As noted above, ARC/INFO has been ported to a great variety of

hardware platforms ranging from mainframes to microcomputers. Depending on the type of

com puter platform, ARC/INFO provides different extended modules for specific

applications. For example, the PC STARTER KIT is the core module for IBM PC

compatible computers. Other modules can be integrated with this core module. These

include ARCEDIT for interactive database creation, update, and management; ARCPLOT

for graphic query, display, and cartographic output; OVERLAY for geographical

information modelling and analysis; NETWORK for addressing geocoding and network

analysis; and so on.

One area of considerable interest in the recent development of the system is the introduction

of ArcCAD which allows the user to directly construct a vector database for the

ARC/INFO system from the digitisation of existing maps on the widely used AutoCAD

systems. The concept of ArcCAD is that it creates an explicit link between the AutoCAD

data model and the ARC/INFO data model in order to provide additional GIS functionality.

With this development, ARC/INFO GIS databases can be linked tightly with the geometry

of the AutoCAD drawing database. This approach is quite different from the commonly

used method which builds a GIS on top of a CAD system. Therefore, geographical data

32

Chapter 2: An Overview o f lG IS Development

created in ArcCAD is identical to that used by ARC/INFO, and the translation of data

between the two systems through exchange file formats such as DXF or IGES is no longer

needed [Artz, 1991]. This development has again shown the trend of the integration of

digital mapping and vector GIS in IGIS development.

Since 1990, W orkstation ARC/INFO has offered the IMAGE INTEGRATOR module for

users to integrate raster images with vector maps. The IMAGE INTEGRATOR allows the

use of images in conjunction with the ARCEDIT or ARCPLOT modules for the registration

of raster data to map coverages so that the raster image can be displayed as the background

to a map edit or query session. This feature extends the capabilities of ARC/INFO to

provide and to utilise backdrop coverages based on the use of satellite images, scanned

maps or raster GIS files imported from other systems. Also it converts raster images into

vector representations using raster-to-vector conversion. The process of integrating raster

images with maps is illustrated in Fig. 2.7 [Nordstrand, 1990].

Air Photos Maps Documents

Scanner

RasterData Image &
Raster GIS

Data

Cellular
Image

DataBase

Raster-to-Vector
Conversion
(ArcScan)

Map Coverage

Vector
Data Base

Registration
Points

Figure 2.7 Integration process of images and maps in ARC/INFO

More recently, ESRI, in collaboration with Erdas Inc. has also developed the ARC/INFO -

Erdas “Live Link” package to combine the ARC/INFO and the Erdas raster image

33

Chapter 2: An Overview of IGIS Development

processing into a form of IGIS. Using the “Live Link” software, the user can process,
overlay or display raster images with vector maps. For example, a land use layer in the
ARC/INFO system can be graphically overlaid on a remotely sensed geocoded image in the
Erdas system for correcting and updating land use data.

The ARC/INFO system was developed as a generic GIS that could be applied to any geo
processing task. The general capabilities of the ARC/INFO system are summarised as
follows [Korte, 1994]: -
* Database generation and management.
* Database query.

* Graphic display and report generation.
* Map overlay analysis.
* Network analysis.
* Map sheet manipulation.

* RDBMS integration (DATABASE INTEGRATOR).
* Network database management (Arc Storage Manager).
* Image integration (IMAGE INTEGRATOR).
* Digital terrain modelling (TIN).
* Raster-to-vector conversion and raster editing (ArcScan)
* The entry of survey data directly into the graphics database(COGO).
* Creation of topological databases from AutoCAD (ArcCAD).
* Visualise databases with a uniform user interface (ArcView).

In summary, the ARC/INFO system is centred on a topological vector model for handling
graphical data and a relational model for managing attribute data. The strength of the
system is generally held to be in its rich variety of analysis tools. The system has recently
been extended to support the integration of raster images, and has been combined with
AutoCAD via the ArcCAD to take advantage of the power provided by CAD technology.

It can be seen from Fig 2.6 that the ARC/INFO system uses two relational DBMSs - an

internal (INFO) and an external (Oracle or Ingres, or other) - for the storage of attribute

data. As a result, the duplication of some information in the databases can hardly be
avoided. Hence, based on the intrinsic characteristics of the system architecture, it is hard to
achieve a high level or degree of data integration. In ARC/INFO, the raster images are
mainly used as a backdrop for editing and updating vector maps. The system itself does not
support image processing capabilities. Therefore, the ARC/INFO system can only reach the
display level of integration. In order to support concurrent processing of vector and raster
data, the ARC/INFO system provides an interface module ‘Live-Link’ which links to the
ERDAS image processing system to achieve the process level of integration using the
composite method (see Section 1.2.2).

34

Chapter 2: An Overview o f IGIS Development

2.6.3 Genasys Genamap

Genamap (formerly Deltamap) was the first commercially available GIS to be offered under

the Unix operating system. Genamap is the core product of the Genasys GIS family.
Genamap was designed specifically to operate in the Unix environment and operates across

a diversity of platforms, including Sun, IBM RS6000, HP, Bull, Data General, Silicon

Graphics and PCs under SCO UNIX. Wherever possible, Genasys uses recognised and de
facto industry standards for software development. For example, it utilises the X Window
system based on OSF/Motif for graphics display; TCP/IP and NFS for communications;
Relational DBMS and SQL for database management. This has allowed the developers to
work with a single copy of the source code for all platforms and the users to choose any
Unix-based hardware on which to run the system. In fact, this is one of the key factors
resulting in Genamap having soon become a popular GIS product ever since Genasys

introduced it in 1986 [Genasys II, 1991; 1994].

Genamap has implemented the concept of spatial views to facilitate spatial queries. A spatial
view is physically implemented as a set of optimised index structures to the main database
and, as such, is a reference to the query and not the data. A spatial view, which is analogous
to a view in an DBMS can be a spatial query using a Select operation on the databases or
can be the result of other spatial or non-spatial data analysis. The view can be zoomed to,
interrogated, queried, reported, tabled, plotted, used for graphical editing and used for any
subsequent analytical operation. Since the views are implemented as direct indexes into the
map data, this eliminates data duplication and irrelevant intermediate operations when
carrying out geographical analysis [Genasys II, 1994]. The mechanism of spatial views
provides fast access to databases and consumes little overhead, as well as maintaining the
integrity of the databases.

Genamap is the core product of the Genasys GIS family. Basically Genamap is a vector GIS

based on a topological data structure. Internally, it provides a spatial (vector/attribute)
database and it can also link to external SQL-based RDBMSs, including Oracle, Ingres,
Informix, Sybase and others. The spatial database, which is continuous without breaking
into map tiles, and can grow or shrink dynamically as storage requirements change. Because
of the implementation of spatial views and the efficient use of the Unix file system,

Genamap can efficiently handle large databases.

Raster functionality is implemented by another complementary product called Genacell.

Genacell uses exactly the same interfaces and command structures as Genamap and can be
accessed from within Genamap with no need to move between modules. This feature allows
the user to seamlessly combine and analyse both vector and raster data at the same time.
Genacell provides a full set of functions for the storage, retrieval, analysis, modelling, and

35

Chapter 2: An Overview of IGIS Development

display of raster data. The integration of Genamap and Genacell forms an IGIS. Application

packages may also integrate with Genamap for specific operations. For example, Genacivil

is designed for civil engineering applications; Genascan and Gcnarave are used for the

scanning, cleanup, and semi-automatic vectorization of raster information; Genindex is a

document management system for various kinds of digital information; and so on. The

system architecture of the Genasys GIS is illustrated in Fig. 2.8.

Application
Packages

RDBMS K

Attribute
DataBase

(Relational)

Vector/Attribute
DataBase

(Topological)

Raster
DataBase

(Cell)

Genacell

Figure 2.8 Genasys GIS system architecture

Some of the more important functions of Genamap and Genacell can be summarised as

follows [Genasys II, 1991; 1994]: -

* Network analysis: Performs districting, shortest path, zones, etc.
* Spatial analysis: Includes overlay, buffering, point-in-polygon, proximity,

reclassification, the generation of Thiessen polygons, etc.
* Raster capabilities: Include slope analysis, visibility, profiling and shading, proximity,

neighbour operations, smoothing, surface generation, etc.
* Format independence: Spatial data can be stored in any projection system, coordinate

system and units. The transformation between the source and the destination formats is

handled dynamically and automatically.

* Svmbology independence: The display of information can use the raw topology or any

combination of point, line and area symbologies. Symbologies can be scale sensitive to

automatically adjust to user defined constraints or they may be fixed to certain scales.

* A friendly graphical user interface (GENIUS): uses OSF/Motif “Look and Feel" as a

standard interface. It allows the user to build complete interfaces easily without needing

to have a knowledge of the OSF/Motif GUI and the X-windows systems.

36

Chapter 2: An Overview of IGIS Development

* A seamless topological database, no space pre-allocation or tiling is required.

* The use of spatial views to query both graphical and attribute data for geographical
analysis.

* Supports context (session! control: Allows the user to store the working environment
such as current data sets, search criteria, spatial views, etc. at any time and resume from
any stored environment.

* Hardware and device independence.

* Based on Open Systems concepts and adherence to de facto industrial standards..

The overall approach of Genasys GIS is based on the use of a topologically structured
database for managing vector data, and of a cellular structured database for storing raster
data. Attribute data can either internally be tightly coupled to the spatial features in the

vector database or be externally linked to commercially available relational databases. The
system provides full database support allowing for both vector and attribute data to be

integrated into a single database. This novel feature allows users to make fully use of vector

and attribute data in an efficient and fast-access form. In other words, the system has
reached the storage level of integration for vector and attribute data. As far as the
integration of vector and raster data is concerned, the display and process level of
integration can be easily be achieved because both data formats have been included in the
initial system design and use the same user interface. However, both types of data are kept
in different databases and therefore do not integrate as a single unit at the storage level of
integration.

2.6.4 Tydac SPANS

The SPatial ANalysis System (SPANS) is a modular raster-based GIS produced by Intera
Tydac Technologies. SPANS runs on microcomputer and graphic workstations under the
DOS, OS/2 and Unix operating systems. The graphical user interfaces implemented in
different operating systems do not use the same de facto industrial standard. For example,
the OS/2 version uses Presentation Manager, whereas the Unix version uses OSF/Motif

[Tydac, 1989; 1991]. In its promotional literature, Tydac places an emphasis on SPANS’s
capabilities for data integration, analysis and modelling. Essentially, SPANS was designed
to address four major tasks [Tydac, 1990]: -

1. Building and integrating spatial data sets.
2. Exploring the relationship between spatial data sets.
3. Querying and identifying suitable locations.
4. Accessing the impacts of decisions through predictive modelling.

37

Chapter 2: An Overview o f lG I S Development

The SPANS approach to data integration is to employ quadtrees to organise and index

spatial and attribute data. SPANS provides a wide variety of conversion routines for all the

major types of data exchange formats which translate all vector and raster data into the

consistent format of the quadtree structure. The quadtree structure enables layers of data to

be stored and manipulated at different levels of resolution, and results in very fast overlay

times. Apart from this, the quadtree structure is an efficient method of organising and

indexing spatial data for the optimisation of data storage and the fast search and retrieval of

data.

The quadtree-structured format is employed with the primary data used for performing

analytical operations and modelling data. SPANS can also store data in both topologically-

structured vector format and cell-structured raster format. Each format has its own inherent

advantages for various types of analysis. SPANS uses the particular format (structure)

appropriate for the specific analytical task. For example, the vector format is used to

compute path lengths within road networks; the cellular raster format is used for rate of

spread calculations; and the quadtree-structured data format is used for fast overlay and

data compression. These different data formats are integrated within SPANS so that they

can be combined in a single analysis operation. For instance, a vector format depicting a

proposed road network could be overlaid on a set of raster elevation data to get the average

slope of each segment of the road. SPANS also can convert a quadtree file into either a flat

raster file or a vector file so that SPANS can be linked as an analytical workstation to other

systems [Tydac, 1990; Intera Tydac, 1993]. The system architecture of SPANS can be

viewed in Fig 2.9.

Application
Modules

Core

SPANS

GLS Builder

Exchange
Files

Data conversion

S p a tia l/A ttrib u te

DataBase
(Quadtree)

Raster
DataBase

(Cell)

Vector
DataBase

(Topological)

Figure 2.9 SPANS GIS system architecture

38

Chapter 2: An Overview of IGIS Development

The core module of the SPANS GIS system is GIS Builder which is a complete set of basic
GIS tools for building databases, constructing analytical models and implementing the
visualisation and querying of data. Additional application modules for analytical functions

are set on the top of GIS Builder. The major features of the SPANS GIS may be
summarised as: -

* It employs quadtrees to organise and index spatial and attribute data.

* It provides the arc-node method for data acquisition and stores it in a fully topological
vector format.

* Network and Overlay analysis tools are provided.

* Neighbourhood analysis, e.g. data smoothing, edge enhancement, texture analysis, etc.
can be carried out.

* The topological relationships between areas (adjacency, containment and boundary
length) may be analysed.

* It provides a variety of modelling and analysis procedures such interaction, multi

criteria, etc.
* DTM contouring and visualisation can be carried out using the TIN method, i.e. it

generates a perspective 3D view model from surface data.

Apart from these GIS analytical functions, Intera Tydac also developed two extended
modules - SPANS MAP and SPANS IMAGE - for the applications of digital mapping and
image processing respectively. Recently a separate software package called SPANS
Explorer has been developed to deal with the integration of vector and raster data under
Microsoft Windows 3.1. SPANS Explorer can transform all the major geographical data
types created by other software products, including those produced by ARC/INFO,
EASI/PACE, ERDAS, Maplnfo, AltaGIS, ArcView2, Lotus 1-2-3 and DBASE III+/IV
into the SPANS quadtree-structured format. The Explorer package can be used to view,

query, update and manage geographical data as well as performing some general analyses,
such as proximity analysis and multiple map overlaying [Tydac, 1994]. This development
again helps to confirm that the integration of GIS, digital mapping and image processing

systems into an IGIS is an emerging trend.

It is worth mentioning that Tydac Technologies has recently been purchased by PCI
Enterprises which produces the well-known image processing software EASI/PACE. As a

result, PCI are committed to an integration of the EASI/PACE and SPANS packages.
Already the exchange of data between EASI/PACE and SPANS has been made increasingly
efficient and compatible. Data derived from remotely-sensed images via EASI/PACE can be
exported to SPANS for further spatial analysis. On the other hand, SPANS format files
(both vector and raster data) can be imported into EASI/PACE and transformed into the
PCIDSK format files. The PCIDSK format was modified from the UNIDSK format which
was originally developed by the Canadian Centre for Remote Sensing (CCRS). In this

39

Chapter 2: An Overview of IGIS Development

format, all image data and all statistical data (termed “segments”, e.g. signatures, training
areas, look-up tables, etc.) are contained in a single file rather than each segment being
stored in a separate file. Thus it is easy to keep track of information relevant to an image

and this arrangement also simplifies the operations of data copying, backup and deletion
required for data management [PCI, 1993]. It can be seen that, using the PCIDSK format,

EASI/PACE has achieved a certain degree of integration for raster data at storage level.

Furthermore, EASI/PACE has the ability to create links to non-PCIDSK image files using

the LINK program. This creates a PCIDSK file header describing the database structural

information and provides pointers to the disk for the raster image being used in other

software packages. The advantage is that the raster data stays in one format and is not
duplicated in another. This feature allows EASI/PACE to “live link” with the SPANS raster
data. However, the “live link” is not a two-way connection, neither does it provide a
linkage between vector and raster data.

The overall approach of Tydac SPANS is that the spatial and attribute data acquired from a
variety of sources can be integrated into quadtree files. As discussed above, a wide range of
import and export routines for vector and raster data are used to perform the data
conversion. The quadtree database approach is able to give a full degree of integration.
However, the data conversion from vector or raster to quadtree format will normally lead
to some generalisation and loss of accuracy. Although SPANS also provides the capabilities
of storing uncompressed forms of data in either vector or raster format, this device has
however resulted in the disadvantages of having to manage disparate databases. Therefore,
it may be said that the SPANS GIS system achieves a full degree of integration at the
expense of data accuracy and the details which can be shown on the display. However,

SPANS cannot be regarded as a FIGIS because it converts all of its data to the quadtree
format instead of actually integrating the vector, raster and attribute data.

2.6.5 Smallword GIS

The Smallworld GIS was launched originally in 1990 and since then has become one of the
leading GIS software packages. At the present time, it dominates a significant part of the
European utility market including electricity, water, gas and cable companies. In Scotland,
it is also being used in land and property information systems. The most distinctive feature
of the Smallworld GIS is that the system is based on an object-oriented data model which
allows real world semantics to be embodied in the user defined objects at a very high level
of abstraction of phenomena, and to be operated in the object-oriented paradigm [Green,

1992; Smallworld, 1992]. The Smallworld GIS also adopts an open systems architecture
which adheres to the system standards accepted by the computer industry. Hence, the

Smallworld GIS can run on a variety of platforms under the Unix or VMS operating
systems as well as accessing data held in different databases (internal and external) using a

40

Chapter 2: An Overview o f IGIS Development

single consistent user interface. The overview system architecture of Smallworld GIS is

illustrated in Fig. 2.10 [Newell, 1992; Yearsley, et al., 1994],

Application
Programs

Core

3rd Party Magik
RDBMS

fcr *

Relational

DataBase

Object DataBase
(vector,raster,attribute;

(Relational Tables)

Figure 2.10 Smallworld GIS system architecture

The overall database approach of the Smallworld GIS is to implement an object-oriented

database across many platforms by combining an interactive object-oriented programming

language, Smallworld Magik, with relational database technology. A low-level interface

between the object-oriented and relational worlds is built to map a table onto an object, a

record onto an instance and a field onto a slot or attribute. The Smallworld GIS provides a

proprietary database which allows three kinds (vector, raster and attribute) of data to be

stored together internally within the system, and provides external linkages to third-party

databases. The fundamental persistence storage is tabular, but using the principle of

encapsulation. The table/record structure is made to look like an object data structure. At

the lowest level, a table looks like an indexed collection, a record looks like a slotted object

and a field is a slot (or attribute). All persistent data is front ended in the object-oriented

environment by a “virtual database” . This virtual database handles all aspects of data

management including data dictionary, integrity, access to the various data sets, and

versioning so that the application environment is insulated from the complexities of external

data structures and interfaces [Chance et al., 1990; Newell, 1992].

The Smallworld GIS is built using Smallworld Magik, which supports both encapsulation

and multiple inheritance. The M agik language provides a seamless environment in which

systems programming, application development, system integration, and customisation are

all written in the same language [Chance et al., 1989]. The Magik object-oriented

41

Chapter 2: An Overview o f lG I S Development

environment is underpinned by a “virtual machine”, written in C, which contains a full and

extensible set of primitives for handling graphics and interaction with the database. Also

they provide remote access to “alien processes” , such as external database systems and

analysis systems. The M agik architecture of Smallworld systems is illustrated in Fig. 2.11
[Newell, 19921.

Magik Virtual Machine

Object

DB

3rd
Party

DB

Version
Manager

Window
Manager

Magik
Compiler

Utilities and Core Classes

OS (Unix / VMS)

Customisation

GIS Applications
and

Toolkits

Magik
UIM

Virtual
Database

Figuer 2.11 Smallworld Magik architecture

In Fig. 2.11, the shaded areas represent the Magik image which is copied into main

memory when the system is initialised. The Magik image consists of a set of object classes

and associated methods including utilities and core classes, GIS class libraries, etc. The

database, which is based on a relational data model, contains system tables and application-

specific tables. The system tables define the data dictionary and the topological objects,

whereas the application-specific tables define the database schema of the particular

application. This object-oriented approach enables the system to display and process

graphic data in mixed raster/vector format, and virtually stores both maps and images in a

single database.

The major features of the Smallword GIS can be summarised as follows: -

* A virtual database integrates vector, raster and attribute data.

42

Chapter 2: An Overview o f IGIS Development

* It defines each geographical feature as a manageable object which is comprised of
topologically structured geometry with semantic classifiers.

* It supports the creation of user data models as objects and allows these objects to have
methods contained within them.

* Analysis functions include network analysis, proximity analysis, buffer zone generation,
polygon overlay, etc.

* Single query environment for a range of existing databases.

* Seamless mapbase with spatial indexing mechanisms.

* It provides version management to handle updates.
* It uses a single programming language for system, application and customisation

development.

* The object-oriented environment provides a comprehensive library of object classes and

methods.
* The object-oriented data model allows the system to be configured to meet the needs of

customisation.

The prominent feature of the Smallworld GIS is that there are two foundations on which to
build an open architecture: (i) a virtual database and (ii) an interactive object-oriented
programming language. The virtual database controls the protocols and communications
which connect objects to their physical representation on the disk. As a result, the
Smallworld GIS is able to access many disparate databases which may be physically
distributed over data servers on a heterogeneous network. The interactive object-oriented
programming language provides a seamless environment for both system development and
user customisation.

Although various data are physically stored in different databases, the Smallworld GIS has
achieved a high degree of integration, i.e., it can truly or virtually reach the storage level

depending on whether either the internal object store or external databases are being used.
However, in order to link to external databases, the software developers have to keep the
mapping between programs and various databases consistent. In principle, the construction

and maintenance of the software must be quite expensive. On the other hand, Smallworld
M agik is a weakly typed language. Inevitably, there is a loss in performance and the
absence of the compile-time checking available in strongly typed systems. Nevertheless,
Smallworld believes that this loss is a price worth paying for the considerable additional
flexibility gained by run-time message evaluation in a polymorphic system [Newell, 1992].

The Smallworld GIS system places an emphasis on vector data processing and management
incorporated with the capability of on-screen digitising or selective vectorization from a
raster image backdrop. Although the system currently does not provide image processing
facilities, they may be easily integrated into the system. It can be seen that the system has

43

Chapter 2: An Overview of IGIS Development

achieved a full degree of the display and the process levels of integration as well as a certain
degree of the storage level of integration.

2.6.6 Laser-Scan IGIS

Laser-Scan, founded in 1969, started with the development of digital mapping systems, but

only later became active in producing geographical information systems. Laser-Scan’s
products such as LITES, VTRAK, LAMPS have been used in a wide range of mapping
applications [Laser-Scan, 1989; 1990; 1991]. Among them, the VTRAK system is
recognised as one of the leading software packages specialised in data acquisition. It
followed on from the earlier very successful Fastrak and Lasertrak semi-automatic line-
following hardware and software system. However VTRAK is designed for interactive and
automated vector data capture from scanned raster images, particularly from existing maps.
The VTRAK system has been widely used in many national mapping agencies around the

world for creating a digital map database [Laser-Scan, 1992]. Laser-Scan also developed
the Horizon and Metropolis GIS systems based on the use of the VAX/VMS platform. This
took a fairly conventional approach with the use of a Laser-Scan developed vector database
and display capability allied to a commercially produced relational database such as Oracle
or Ingres used for attribute data. In recent years, Laser-Scan has been involved in
developing a prototype IGIS for British National Space Centre (BNSC) and this has
resulted in the release of a new product - the IGIS [Hartnall, 1993c].

The Laser-Scan IGIS system has been developed to provide an integrated environment for
handling spatial and non-spatial data, advanced data structures for handling geographical
information and a range of functions allowing data analysis [Hartnall, 1993a]. The IGIS
system is designed to run on a number of Unix-based workstations, including DECstation,
DEC Alpha, Sun SparcStation, IBM RS6000 and others.

The Laser-Scan IGIS system architecture is illustrated in Fig 2.12 [Hartnall, 1993b]. The

system has been built using the application components provided by the Gothic
environment. Gothic is an Open Systems Application Development Environment (ADE)

designed for building information systems that use and process geographical data. The
Gothic ADE is based on object-oriented database management and programming

techniques, and has five layers in its architecture. The functions of each of these five layers
are summarised as follows [Laser-Scan, 1993a; 1994]: -

1. The Operating System supports the hardware and its associated systems.
2. The Operating System Interface holds all operating system dependent functions in

service modules to achieve multi-platform interoperability.

44

Chapter 2: An Overview o f IGIS Development

3. The Gothic Toolkit contains the object database manager and all the spatial and non-

spatial analysis, display, user interaction and manipulation tools required by GIS

developers.

4. The Applications Program m er’s Interface (API) is a programming language which

is independent of the functionality of the system, and provides capabilities for future

extensibility. The API language can access both the toolkit and the data.

5. Application Programs are user programs written using the compiled, structured API

language, ensuring that applications can be ported without recompilation across

different platforms.

Register Analysis M anage

Core

3rd Party
RDBMS

Translate

VTRAKObjectRelational

DataBaseDataBase

Figure 2.12 Laser-Scan IGIS system architecture

In Gothic ADE, an object-oriented database is provided for the storage of both spatial and

non-spatial data. The object database allows the modelled data of real world objects to be

stored in an intuitive way. As a result, collections of objects can be combined into complex

structures which can be used to mimic those found in the real world. The Gothic object

database provides the following key features: -

* A wide variety of data types can be held in an object, including integers, reals, strings,

dates, raster data, vector geometry, etc.
* “References” are used to enable objects to point at one another and this provides a

mechanism for rapid access between related objects.

* It supports encapsulation and multiple inheritance.

* Version management provides multiple version capability with only the modified data

stored in a new version.

45

Chapter 2: An Overview o f IGIS Development

* Supports continuous vector maps and raster images.

The Gothic ADE also provides gateways to access an SQL-based RDBMS such as Oracle

and Ingres. In addition, an object database manager is used for the administration of all user

access to data. The Gothic ADE architecture supporting the IGIS system is illustrated in

Fig. 2.13 [Laser-Scan, 1993a].

Generic Vertical 3rd Party End User
Applications Applications Applications Applications

Tem plate
Applications

Gothic Applications
Development
Environm ent

D isp lay

X £
<

W indow o 3
& M otif o

GUI

Application Developer’s API

Query
Tools

MM1
Tools

Display
Tools

3rd Party
Tools

Task-based
Functions
(Frames)

Development
Tools

Spatial
Tools

Gothic Toolkit

O perating System Interface

Gothic
Object

D atab ase

ctJ
£
<D
ta
a
C /3

2
CQ

Oracle
RDBMS

RDBMS

Figure 2.13 Gothic ADE architecture

The Laser-Scan IGIS system has four main core components: these are the Translate,
Register, M anage and Analysis modules. The Translate module provides the means of

importing and exporting graphical data and associated attributes. The Register module is

used to define transformation parameters between different spaces to enable the geometric

correction and rubber-sheeting of raster image data to be implemented. The M anage
module provides facilities for managing the object-oriented database including user access

control, versioning, and backtracking. The Analysis module provides all the facilities

needed for session management, display, manipulation, analytical queries and the

production of hard copy maps and reports. The IGIS system can also integrates VTRAK

for automated or semi-automated data capture.

46

Chapter 2: An Overview o f IGIS Development

The major features of the IGIS system can be summarised as follows [Hartnall, 1993b;
1993c; Laser-Scan, 1993b; Laser-Scan, 1994]: -

* The integration of vector and raster map data, terrain data, satellite and other digital
imagery and geo-referenced statistical and attribute data.

* A versioned object database with an integral roll-back recovery mechanism.

* Translation facilities for a wide variety of raster and vector formats, resolving data from
various sources and map projections.

* Image classification, filtering and band combination facilities, as provided in image
processing systems used with remotely sensed data.

* Image/Map analysis and manipulation capabilities.
* Continuous mapping and cartographic quality output facilities.

* Analysis functions include raster combinations, DTM processing, slope and aspect map
generation, intervisibility map generation, hill shading, etc.

* All the applications of the IGIS system adopt the same Man Machine Interface (MMI)
based on OSF/Motif and the X-window system which provides a Graphical User
Interface (GUI).

The Laser-Scan IGIS system fully integrates vector and raster data in an object-oriented
database. Within Gothic ADE, both vector and raster data are interwoven for concurrent
processing and analysis. It is clear that the Laser-Scan IGIS system has achieved a full
degree of the display, the process and the storage levels of integration. The system design
emphasises the integration of remotely sensed data into the GIS analysis process. Therefore,
IGIS provides extensive image processing capabilities in addition to its vector and raster
GIS functions. This development again demonstrates the convergence of vector GIS and
image processing systems.

2.7 Summary o f the Review

The previous section (2.6) of this chapter has reviewed the current situation in the
development of commercial IGIS software, taking six well-known GIS vendors’ products
as representative examples to illustrate the different approaches which have been taken to
implement the integration of vector, raster and attribute data. The various approaches to
data modelling, database design, system architecture and integration have been the major

concerns of this review. Other features which are closely related to the database
management issue have also been discussed briefly. In fact, the manner in which many of
these features have been implemented is often regarded as a major factor in the success (or
otherwise) of a system. Common features to all or most of these systems are summarised as
follows: -

47

Chapter 2: An Overview o f IGIS Development

• Vector data is topologically structured, raster data is cellular structured, and attribute
data is organised in relational tables.

• For those systems that use the conventional database technology, vector data and raster

data are stored in disparate databases (or files), while the associated attribute data is
stored either along with vector data (e.g. as in Genamap and SPANS) or in commercial
RDBMSs (e.g. as is done in MGE, ARC/INFO and Genamap).

• For those systems that employ the object-oriented approach, comprising an object-
oriented programming language together with application development tools (e.g.
Smallworld Magik, Laser-Scan Gothic), an integrated environment is developed to
provide for the handling of both spatial and non-spatial data. A proprietary object
database supported by the object-oriented language is used to store the modelled real
world objects, for which the vector geometry, raster image geometry, attribute

description and methods that can apply to them are regarded as properties. An interface
to existing RDBMSs can also be considered as an important function or provision in
such systems.

• System design based on an Open Systems architecture and adherence to recognised or
de facto industrial standards are being widely adopted in the most recent system
development.

It is apparent that those systems which are based on conventional database technology
cannot provide a full degree of integration. A conventional data model, especially the
commonly used relational model, is really too simple for the modelling of complex
geographical data. In addition, conventional database systems do not support the complex
data types found in programming languages so that they cannot hold the graphical elements

of a GIS. As a result, a spatial database has to be constructed separately and this means that
a linkage to the attribute database has also to be provided. Furthermore, conventional

programming languages do not support a feature that allows both vector and raster data to

be coexistent (i.e. encapsulated) within an object data type. Once again, this drawback
results in the separation of vector and raster databases.

Some vendors have succeeded in implementing an IGIS with an object-oriented approach.
The two examples (Smallworld GIS and Laser-Scan IGIS) described in the previous section
have shown a full degree of data integration. The Smallworld GIS system employs an
object-oriented programming language (Magik) and an object-oriented database to achieve
the required data integration. Both of these have been developed in-house. The Laser-Scan
IGIS database is also object-oriented. However, it has been developed using an object-
oriented approach based on Laser-Scan’s Gothic ADE which is not actually a OOPL. Quite

48

Chapter 2: An Overview o f IGIS Development

apart from the GIS vendors’ interest in the use of an OOPL, laboratory researchers are also
tending to adopt this approach. Some typical examples of GIS systems based on the OOPL

approach are: GEOSTAR from Wuhan Technical University [Gong, 1994]; the prototype

GIS from University of Leiden [Oosterom, 1993], etc. However, the persistent data in these

object databases cannot be shared by other systems since the use of a database is system
specific. However, currently this approach is quite pragmatic with regard to providing both

object-oriented handling and an interface to existing RDBMSs. Still it may only be regarded

as a temporary solution to provide a FIGIS. In order to have a shareable database, it is very

desirable to adapt or to apply an advanced DBMS which provides more flexible capabilities
for handling complex geographical data.

Recently, some advanced DBMSs, including extended RDBMSs, OODBMS, and others,
have begun to appear in the marketplace. However, unlike the standard RDBMS, there is
no consensus in the computing community regarding the formal definition of the data
models, query languages, etc. which should be used in such systems. Despite this
disadvantage, a number of organisations have attempted to develop a prototype GIS based
on what is currently regarded as advanced DBMS technology. These pioneer projects have
given some indications of the capabilities and limitations of this advanced DBMS
technology. Hence, a further review of research work in this field is given in the following
section.

2.8 Recent Progress Made in Advanced DBMS Technology

Standard SQL-based RDBMSs are well suited for handling attribute data, but they are
inappropriate for the storage of graphical data. So the most common database design for
GISs which are designed specifically to employ commercial RDBMSs is to store the
graphical data in a proprietary file management system. A complex pointer mechanism is
then required to provide a link between the graphical and the attribute data. As a

consequence, the overall system performance is reduced and the integrity constraints can be
violated. Recently, two approaches based on advanced DBMS technology have been
investigated to overcome these drawbacks. One approach is to extend the capabilities of a
standard DBMS to handle graphical entities, whereas another approach is to implement an
innovative OODBMS in which the spatial extension is completely embedded in the DBMS.

2.8.1 The Extended RDBMS Approach

The extended RDBMS approach is to provide spatial database facilities by adding spatial

data types and associated functions to a standard RDBMS. It can be carried out either by

external attachment or through the built-in method. The external attachment method is to
develop a spatial support layer (or shell is called) above the standard RDBMS, whereas the

49

Chapter 2: An O verview o f IGIS D evelopm ent

built-in method is to embed the additional features into the standard RDBMS [Sinha and

Waugh, 1988; van Oosterom, 1993], The GIS architectures based on these two variants of

the extended RDBMS are illustrated in Fig. 2.14.

GIS Software Modules GIS Software Modules

Spatial SupportLayer Enhanced RDBMS

= Standard RDBMS +
Standard RDBMS Spatial Functio

(a) External attachment method (b) Built-in method

Figure 2.14 The two possible GIS architectures based on the extended RDBMS approach

The basic concept of the external attachment method is that the spatial support layer

translates geographical queries into standard SQL-queries and also provides spatial indexes

which are implemented by means of auxiliary relations. The external attachment method

does not get involved in the internal structures of existing RDBMSs - and the tremendous

development costs which would be involved in altering these - so it has been used in some

research laboratory experiments. Examples of prototypes GISs based on the extended

RDBMS and developed by the external attachment method are GEOVIEW from the

University of Edinburgh [Waugh and Healey, 1987; Sinha and Waugh, 1988] and SIRO-

DBMS from CSIRO in Australia [Abel, 1989]. A commercial product, Geo/SQL from

Generation 5 Technology, which is a well-known vector-based GIS in North America, has

also been developed by this method and is built on the framework of standard RDBMSs and

AutoCAD graphical software [Korte, 1994].

The external attachment method is rather inefficient because geographical data types have

to undergo the mapping from the program domain to the relational tables via the spatial

shell interpreter. Furthermore, the data access system is also inefficient because geographic

queries have to be translated into standard SQL-queries and perform operations of

relational joins. The concept of the built-in method is to remove the need for a spatial

support layer by incorporating spatial data types and access methods into a standard

RDBMS. However, it will not be possible to implement this method in a standard DBMS

unless its internal structure is open. Therefore, several GIS software vendors have

developed their own proprietary RDBMSs which extend spatial capabilities. For example,

the vector-based System 9 GIS from Computer Vision (originally developed by Wild)

utilises a proprietary RDBMS called Empress to manage both graphic and non-graphic data

[van Eck and Uffer, 1989; Abdallah, 1990]. On the other hand, some commercial RDBMS

50

Chapter 2: An Overview of IGIS Development

vendors have also developed general-purpose extended RDBMSs which add facilities such
as complex data types, abstract data types, spatial access methods, object data management,
and others to standard RDBMSs. Examples of these extended RDBMSs are Ingres 6.3,

Sybase and Xidak Orion, all of which have already incorporated limited object data

management extensions, including user-defined types, rules, and programming-language
procedures stored in database attributes [Cattell, 1991]. Perhaps the most powerful

extended RDBMS is the research prototype system Postgres from the University of

California at Berkeley. Postgres is the successor to Ingres. It provides some geometric
types along with user-defined types that allow the users to define geographical data types as
system types, and supports different spatial indexing mechanisms such as B-tree and R-tree.

One research-based GIS development is based on this built-in type of extended DBMS.
This is a prototype GIS called GEO++ from the University of Leiden which has been
developed using Postgres. The GEO++ system provides an extensible DBMS for users to
incorporate the specific functionality which they require, such as raster data types or 3D
data types [Vijlbrief and van Oosterom, 1992; van Oosterom, 1993].

The advantage of the extended RDBMS approach is that the relational RDBMS already
provides well-developed facilities such as the Entity/Relationship (E/R) formalism, the non

procedural language SQL, data transaction and so on for the management of the attribute
component of the database. Nevertheless, the extended RDBMSs are still deficient in
several aspects. In the first place, the data model is too simple for the representation of
complex geographical data. Furthermore the semantic links are lost because the coherent
geographic entities have to be broken into multiple parts in order to fit the data into the
relational tables. Finally the data access is inefficient because mapping between the user
data model and the relational tables is required [Cattell, 1991; Cooper, 1993; van
Oosterom, 1993]. Consequently, in general, the use of an extended RDBMS is not regarded
as a good tool for developing an IGIS.

2.8.2 The OODBMS Approach

As the name suggests, OODBMSs are the database management systems which are based
on the object-oriented data model. These systems have an architecture which is based on

the use of a database programming language. Therefore, OODBMSs are sometimes called

object-oriented database programming languages (OODBPLs). In this thesis, these two
terms (OODBMS and OODBPL) are used interchangeably, depending on which particular
aspect - database management or object-oriented programming - is being emphasised. In an
OODBMS, the data used by the database maps directly onto that used by the programming
language. Consequently the considerable data transformation and data
construction/decomposition operations involved in RDBMSs will be eliminated. Apart from
the advantage of improving efficiency, the data model representing the real world can also

51

Chapter 2: An Overview of IGIS Development

be made to harmonise well with the representation of complex objects in an OODBMS. An
OODBMS provides a query language, object types with inheritance, the caching of objects
in main memory, transaction management and remote data access [The Committee for
Advanced DBMS Functions, 1990; Helokunnas, 1994], Quite a number of OODBMSs are
commercially available, e.g. some well-known systems such as GemStone from the Servio
Corporation; ObjectStore from Object Design; ITASCA (originally called Orion) from

Itasca Systems; 0 2 from 0 2 Technology; and ONTOS from Ontos Inc. [Cattell, 1991].

Although OODBMSs suffer from a lack of standards to allow the portability of systems

developed using them [Cooper, 1993], these systems have provided a popular approach to

the implementation of object data management in CAD and CASE software packages.
Recently, OODBMSs have gained much attention from GIS researchers. In particular, the
OODBMS approach is being used in experiments into the development of an object-

oriented GIS. Two representative prototype systems - IGN’s Ge(32 and CSIRO’s ONTOS -
have been selected for reviewing this particular development. Originally both IGN and
CSIRO developed their prototype GISs based on the extended RDBMS approach. These
were GeoTropics [Bennis et al. 1990] and SIRO DBMS [Abel, 1989] respectively.
Afterwards, their system development was transferred to the OODBMS approach; however
each uses a different commercial OODBMS product as the basis of the system. Currently,
both GeG2 and ONTOS are vector-based systems. However, they can be easily extended to
become IGISs because OODBMSs are capable of handling large attributes, or BLOBs, in
which case, an image may be stored as a single attribute value. The short review of these
two systems conducted below is intended to give a general idea of current GIS research and
development based on the OODBMS approach.

2.8.2.1 IGN G e02

The French Institut Geographique National (IGN) has developed its prototype GIS system
G e0 2 using an OODBMS called 0 2. The 0 2 DBMS was originally developed at GIP Altair,
in Le Chesnay, France and has been transformed into a commercial product marketed by 0 2
Technology. Also 0 2 provides a database whose values can be described in the context of a
class hierarchy of objects. Any object or value of any type can be stored in the database. 0 2
allows a variety of database schemata to be created, and can store many databases against

each of these schemata. 0 2 can be interfaced with a variety of programming languages such
as C 0 2 and C++. Apart from its basic database management facilities, 0 2 also provides the
following important features: a generic graphical interface, 0 2Look; a set of system classes,
provided as the schemata <92Kit; an ad-hoc query language, 0 2SQL; and the incorporation
of a network facility into the OODBMS [Cattell, 1991; Cooper 1993]. On the whole, G2is a
very powerful OODBMS.

52

Chapter 2: An Overview of IGIS Development

The objective of IGN’s Ge(92 is to produce a GIS that is capable of handling different data
structures, and induces independence between these data structures and the GIS operations.
In this way, the GIS operations have to be programmed only once and need not be
modified, even when they will be utilising different data structures. G e02 takes advantage of

the object-oriented aspect, in particular of the inheritance mechanism, of the 0 2 DBMS to

achieve the concept of independence. The conceptual data model used for the Gq0 2
database was based on the data model of the interchange format DIGEST-VPF (Digital

Geographic Exchange STandard - Vector Product Format) which was developed by the
DGIWG (Digital Geographic Information Working Group) [DGIWG, 1992] for the

exchange of military geographical and topographical data. In DIGEST-VPF, four
topological levels are described and each one defines a way of structuring and managing the
geographical information. These four levels are: Cartographic Spaghetti; Non Planar Graph;

Planar Graph; and Full Topology [Williams, 1993]. Using this data model, three types of
data structures: Spaghetti, Network (Non Planar Graph and Planar Graph) and Map (Full
Topology) are defined in G e02. A hierarchy between these three vector data structures is
constructed. Using the inheritance mechanism provided by the 0 2 DBMS, a unique internal
data model is built to provide users with anyone of these three structures in a transparent
way. Hence, it is only necessary to have one implementation of spatial operators for the
unique internal data structure rather than one for each of the different data structures.
[David et al., 1993]. In other words, G eo02 has realised a high-level conceptual data model
which points towards a universal user data model by using the OODBMS approach.

G e02 was written in C 0 2 and has been implemented with the R* tree spatial access method.
G e02 has been operated with a large volume of real geographical data containing about 40
Mbytes. G e02 has also been used as a testbed for evaluating the performance of different
spatial access methods [Peloux et al., 1993]. The system is considered as being efficient in
performance and being extensible in terms of the management of geographical information.

The advantage of the OODBMS approach used in modelling complex geographical data is
very obvious. However, some drawbacks related to the 0 2 DBMS have also been

discovered in the course of developing the Ge(92 system. The 0 2 DBMS lacks an array
constructor which is important to manage intermediate points in polylines and polygons and
an association constructor which is needed to handle inverse references between two

objects. Furthermore, the 0 2 DBMS is not able to define a spatial clustering of objects
[David et al., 1993].

In order to take advantage of the features supported by 0 2 DBMS to develop G e02, IGN
has added the functions necessary to extend the 0 2 system for the specific purpose of
managing geographical data. These include the provision of geometrical data types (point,
line, polygon) to its basic structure; the associated functions (union, distance, rectangle,
e tc)’, and the predicates (cross, adjacency, overlapping, etc.) which are provided for query

53

Chapter 2: An Overview of IGIS Development

languages. Although a lot of efforts have had to be made to provide these extensions and
there still remain some of the disadvantages mentioned above, still the overall features of

the G e02 system have shown that the OODBMS approach is very promising for
development of an IGIS.

2.82.2 CSIRO ONTOS

CSIRO ONTOS is a prototype GIS developed by the collaboration of the Commonwealth
Scientific and Industrial Research Organisation (CSIRO) and the Defense Science and

Technology Organisation in Australia. The CSIRO ONTOS is based on a commercially

available OODBMS called ONTOS [Milne et a l , 1993]. The ONTOS system is a multi

user, distributed OODBMS with a C++ class library interface. ONTOS provides a persistent
object store for the storage and retrieval of objects denoted by the C++ programs. The
persistent store uses the class hierarchy to organise the objects. A library of classes and
functions is provided in ONTOS to aid the mapping of objects between the C++ programs
and the persistent store. However, the programmer has to specify explicitly the persistence
of objects. In addition, ONTOS also has the following important features: a variant of SQL
as a query language; inverse-attribute pairs that represent a single relationship are
automatically maintained; multiple versions of objects are supported; and the provision of

administrative tools for managing the schema evolution and physical data clustering
[Cattell, 1991; Cooper, 1993]. The advantage of ONTOS is that it works with standard
C++ compilers without modification. However, the ONTOS DBMS is generally regarded as
a low level kind of OODBMS due to the fact that the persistence of objects needs to be
explicitly activated by the programmer [Cooper, 1993].

The objective of CSIRO ONTOS is to test the performance of the ONTOS DBMS when

applied to geographical data handling. A contour layer extracted from digital maps was
used for such an experiment. The test data contains 2,568 contours, with a total of 266,029

coordinate points. The conceptual data model used for the ONTOS database design was
based on the data model of the Spatial Data Transfer Standard (SDTS) developed by the
U.S. Geological Survey [Fegeas, 1992; Williams, 1993]. SDTS defines a set of primitive
spatial objects that may be used either individually or in aggregate form to represent any
spatial phenomenon. In the ONTOS database, the chain object type, which consists of a
string of point-coordinates, is used to define a contour class. The same test data was also

used to create two different databases for the standard Oracle RDBMS and the SIRO-

DBMS which is of the external attachment type - as explained in Section 2.8.1. The
comparison of the three DBMSs focused on the capability of each system to handle
composite and complex objects. The results show that the ONTOS system gives the best
overall performance and has the fastest access of objects after the first retrieval resulting in
the advantage of object caching [Milne et al., 1993].

54

Chapter 2: An Overview of IGIS Development

CSIRO concludes that the development of GIS software based on the OODBMS approach
requires less time than that needed when using the standard RDBMS and the extended
RDBMS approaches. The two principal advantages provided by the OODBMS approach

are: (i) no programming effort is required to translate objects delivered at the database
interface; and (ii) it is also likely that previously developed modules can be reused.
Nevertheless, several disadvantages were also found within the ONTOS DBMS. The
object-SQL available in ONTOS does not permit the full power of the relational join to be

realised. Thus some queries have to be implemented by procedural object interaction. In
addition, there was difficulty in implementing the system due to inadequate documentation
and incompatibility between releases. Furthermore, it is a considerable challenge for the

average software engineer to learn the concepts in both C++ and ONTOS and become
productive with these tools.

This prototype GIS system developed by CSIRO has placed an emphasis on the capability
of the ONTOS DBMS to support the definition, creation, update and retrieval of a
geographical database. Although many other characteristics of ONTOS DBMS have not
been exploited or tested in the CSIRO ONTOS, again this research project has
demonstrated that the OODBMS approach has potential for IGIS development.

2.9 Discussion

As mentioned before, the backbone of an IGIS is the database management system. The
database management system should provide a database which is either logically or
physically integrated, allowing it to store various types of geographical information, and to
supply the facilities needed to handle all aspects of data management. The degree of data
integration, to either the display, process, or storage level, depends on the capability of the
database technology selected and used for the system development. In principle, an IGIS
demands a database technology that can provide a fully integrated database environment

and can manage complex geographical data in a very efficient way.

As has been discussed above, most commercial IGIS products are based on the use of
conventional database technology whereby vector and raster data are held separately in

different databases, and attribute data is often stored in a relational database. The
conventional database approach can only provide a certain degree of integration depending
on the specific methodology applied in the implementation, namely the use of either the
composite, extended, or complete method. Few IGIS products have been developed using
an object-oriented programming language. Such an approach utilises an object-oriented
data model and supports the persistence of objects. The object-oriented programming
approach is able to achieve a full degree of integration because vector, raster and attribute

55

Chapter 2: An Overview of IGIS Development

data can be regarded as descriptive information about objects. On the other hand, till now,
approaches based on an advanced database technology have only been used in research
prototype systems, notably the extended RDBMS and the OODBMS approaches. The
extended RDBMS approach takes the available resources of an existing RDBMS into

consideration. Several extended RDBMSs may be able to build an IGIS, but the overall

performance of such systems is generally poor in terms of their data manipulation. With

regard to the OODBMS approach, it appears to be a technique that potentially could take

the place of the current conventional database technology. The OODBMS approach

employs an object-oriented database to model the real world as closely as possible. In
addition, the mapping between the programming language and the database management

system may also be removed. As a result, an OODBMS can not only offer an integrated
database, but it may also perform quite well on geographical queries. Therefore, the
implementation of an IGIS utilising an OODBMS can be considered as a viable approach as
long as the relevant standards of the OODBMS are well established.

From the above discussion, it can be seen that IGIS development will benefit from the
integration of the programming language and the database management system, particularly
if both are object-oriented. Through this approach, a programming language is extended
with database capabilities, while the database management system has the capabilities of a
programming language(s) added to it. The evolution of such an integration results in the
emergence of database programming languages. Analogous to the different levels of
integration achievable in an IGIS, a database programming language may reach different
degrees of integration. In principle, the stronger the integration, the better the working
environment it will provide for an IGIS. There are many existing database programming
languages which may be classified into different categories. A particular category called
persistent programming languages has not yet been exploited or explored regarding its

potential for the development of an IGIS. These persistent programming languages appear
to offer a sound environment for the integration of programs and the database. In theory,
the persistent programming languages should provide a better integrated environment than
other database programming languages. However, building an IGIS involves many other

requirements apart from the need for an integrated database environment. It has also to be
proved that requirements such as multiple data modelling, the handling of multi-scale maps;
the management of multi-resolution images; and the graphical display capability, are viable
using such language systems. Therefore, the major objective of this research is to explore

and exploit the capabilities of persistent programming languages in terms of furthering the
development of an IGIS. Napier88, which is one of the main persistent programming

languages, has been chosen as the development tool in this research. Because persistent
programming languages in general and the Napier88 system in particular are still new to the

GIS community, the basic concepts and the main features of these languages will be
described in the next chapter.

56

Chapter 3: Napier88 and its Use as the IGIS Development Tool

CHAPTER 3 : NAPIER88 AND ITS USE AS THE IGIS
DEVELOPMENT TOOL

3.1 Introduction

During the 1960s and 1970s, programming languages and database management systems
were developed quite separately from one another. However, in order to develop
application software, an interface between the programming language and the database has
to be created or established. The creation of such an interface not only consumes

considerable resources, but it also results in a number of problems. Two main problems are
the semantic gap , which is the difference between the data model used in an application
program and its representation in the database, and the impedance mismatch, which is the
inconsistency of data types existing between the program language domain and the database
domain [Atkinson and Buneman, 1987; Khoshafian and Abnous, 1990; Kim, 1990; Cattel,
1991], These problems become matters of major concern when dealing with complex
applications such as CAD, CAE and CASE, let alone GIS. During the 1980s, the need to
produce an integrated system combining both programming facilities and database
management became widely recognised, and since then many attempts have been made to
construct programming languages which are completely integrated with a database
management system. These languages are termed database programming languages
(DBPLs). Atkinson and Buneman [1987] have given a detailed overview of the
development in DBPLs and have identified the requirements that such a development has to
fulfil in terms of three criteria: data type completeness, persistence, and expressive power.
So far, during the 1990s, the main development of DBPLs has tended also to incorporate
object-oriented concepts in the system design, and this has resulted in the emergence of
object-oriented database programming languages (OODBPLs) or object-oriented
database management systems (OODBMSs). On the other hand, another important
development in DBPLs has been that of persistent programming languages (PPLs) which
adopt a uniform approach to persistence in pursuit of a fully integrated database
programming environment.

Both OODBPLs and PPLs are able to meet the three criteria of a DBPL set out above and

to alleviate most of the problems of the semantic gap and the impedance mismatch.

However, there are dissimilarities between OODBPLs and PPLs. These major differences

can be summarised as follows [Atkinson and Buneman, 1987; Dearie et al., 1989; Cattell,
1990; Atkinson, 1992a; Batty, 1992; Cooper, 1993; Halokunnas, 1994]: -

57

Chapter 3: Napier88 and its Use as the IGIS Development Tool

• An OODBPL is generally formed by extending an existing object-oriented programming
language, usually C++, through the provision of database capabilities, whereas a PPL is
usually developed as a completely new system and is independent of any existing
programming language.

• An OODBPL is based on the object-oriented data model and places its emphasis on the

data management of objects, whereas a PPL centres on a consistent treatment of the
data used both in programming and database management so that it works well with any
kind of data model.

• In an OODBPL, procedures are treated as properties of data. By contrast, in a PPL, the

program and the data have equal rights - procedures are independent and operate on
data, but they can also perform data manipulation for object-oriented management.
Moreover, procedures are first class values in a PPL and this promises more flexibility
for the behavioural aspects of an application.

• An OODBPL may need to deal explicitly with the movement of data between programs
and a database, but this activation is not necessary in a PPL.

• In a PPL, the persistence of data is independent of data types, whereas in an OODBPL,
it may be dependent on certain data types.

• An OODBPL normally provides a structured query language (SQL), object
management toolkits, and interfaces to other programming languages, whereas a PPL
often lacks these features.

• PPLs tend not to support inheritance since no satisfactory match has been found

between this property and the features listed above (i.e. SQL, toolkits, etc.) in terms of
the checking of types.

Perhaps the most important difference, however, is that OODBPLs have been developed
into commercial products. Therefore, as discussed in Section 2.8.2, much of the current
research into GISs has concentrated on the OODBPL approach. However, a PPL can
provide a more flexible environment than an OODBPL. In principle, this elegant feature
should provide an ideal environment for the integration of geographical data. Therefore,
research exploring the capabilities of PPLs for the development of a GIS, particularly an
IGIS, should be encouraged. Although PPLs are still experimental and are not yet available
as commercial products, the firmly integrated programming/database feature of PPLs has
drawn the author’s attention to carry out an exploration into the suitability of the persistent
programming language Napier88 as an IGIS development tool.

58

Chapter 3: Napier88 and its Use as the IGIS Development Tool

In this chapter, firstly the essence of PPLs is described with a discussion of their

implications for geographical data handling. This is followed by an overview of the
Napier88 system, with an emphasis on the language aspects, including the basic design

principles, its main characteristics, the type system and the persistent store environment.
Thereafter, the most important facilities of Napier88 that are relevant to the design of IGISs
and their databases are described.

3.2 Persistent Programming Languages

Persistent programming languages are defined as those languages which allow any of their
values to have lives of any duration [Atkinson and Morrison, 1990]. The concept of

persistent language systems was introduced by Atkinson [1978] as a means of simplifying
the task of programming. The initial motivation for building such systems arose from the

difficulties of storing and retrieving data structures in CAD/CAM research [Atkinson,
1978]. The first data type complete PPL, PS-algol, was successfully implemented in 1980
after some difficulties were experienced during attempts to integrate persistence with the
well known Algol 68 and Pascal languages. Since then, considerable research has been
devoted to the investigation of the concept of persistence and its implementation.
Consequently, a number of other persistent programming systems have been developed
including Galileo, Amber, Poly, Napier88, etc. [Atkinson and Morrison, 1990; Morrison et
al., 1993a]. Currently, work to enhance existing functions and to develop new features (or
both) is continuing. Several persistent systems including Napier88 already have quite a lot
of functions available for practical applications.

Persistent programming systems can be regarded as the appropriate underlying technology
for the construction and maintenance of large, long-lived, object-based application systems.
Morrison et al. [1993a] summarised the advantages of using persistent programming
systems as follows: -

• improving programming productivity as a result o f simpler semantics;
• removing ad hoc arrangements fo r data translation and long term data storage; and
• providing protection mechanisms over the whole environment.

All these benefits come from the underlying principle of orthogonal persistence by which a
persistent programming system is supported. The concept of orthogonal persistence; the
principles used for the provision of persistence; and the persistent type system form the
essential elements of PPLs. Therefore, each of them is described in turn in the following
subsections.

59

Chapter 3: Napier88 and its Use as the IGIS Development Tool

3.2.1 The Concept o f Orthogonal Persistence

The persistence of data is the length of time for which data exists and is usable. In
traditional computer systems, the persistence of data can be described by the following six
categories [Atkinson et al. 1983; Brown, 1989]:

1) data that only exists within the evaluation of an expression.

2) data that is local to the activation of a procedure.

3) data that is global to a program or outlives the procedure that created it,
4) data that exists after the execution of a program,

5) data that exists between versions of a program, and

6) data that outlives the program that created it.

There is an explicit distinction between short-term data (categories 1 to 3) and long-term
data (categories 4 to 6) in terms of data persistence. Short-term (transient) data is only
valid inside a program, and is lost once a program terminates. Long-term (persistent) data is
stored outside the program context. The persistence of short-term data is usually supported
by a programming language, whereas the persistence of long-term data is supported by a
DBMS or a file system. In such systems, the data format translation must be included in any
operation, in the course of which, data needs to be transferred between the programming
and database domains. Not only will many resources have to be consumed on data format
translation, but it is also very difficult for programmers to keep three mappings consistent
between the three domains: the real world, the program representation and the database

representation. In particular, the persistence of the modelled data from the real world into a
database needs to pass through two steps: (i) the modelled data first maps to appropriate
data types provided by a program; and then (ii) these data types in the program domain

again map to the corresponding data types used in a database. Thus, a programmer has to
ensure that the persistent data in the database domain is always kept logically consistent
with the real world domain. Fig. 3.1(a) illustrates the concept of mappings between
different domains in a traditional programming language.

D atabase

data format
translation Consistent?

D atabase

P rogram

data format translation

R eal W orld

P rogram ^ * R eal W orld
data format translation

(a) Traditional programming languages (b) Persistent programming languages

Figure 3.1 The concept o f mappings between different domains in
(a) traditional and (b) persistent programming languages

60

Chapter 3: Napier88 and its Use as the IGIS Development Tool

The required consistency becomes almost unachievable since the actual data and programs

complicate the mappings. As a result, data represented in the three domains are very
difficult to maintain in a harmonious state in the long run.

A persistent programming language eliminates the distinction between short-term and long
term data persistence by integrating a programming language and the database into a single

system. In a persistent programming system, persistence is an orthogonal property of data.
That is, the manner in which data is manipulated is independent of its persistence. The same
mechanisms operate on both short-term and long-term data, avoiding the traditional need
for separate systems to control access to data of differing degrees of longevity [Atkinson,
1992a; Kirby 1992]. Hence, a persistent programming system only requires a single

mapping from the modelled system of the real world to programs since there is no data
translation required between the program and the database domains [Atkinson and

Buneman, 1987]. Fig. 3.1(b) depicts the concept of mappings between different domains in
a persistent programming language.

3.2.2 The Principles for the Provision of Persistence

According to the concept outlined above, a persistent programming system is devised and
constructed with the integration of a programming language and database facilities to
provide a consistent treatment of the data used in both the programs and the database.
There are two esse ntial principles which guide the provision of persistence in the design and
architecture of persistent programming languages [Atkinson et al., 1983; Atkinson and
Buneman 1987; Atkinson and Morrison, 1990; Atkinson, 1992a]:

The Principle o f Persistence Independence
The persistence o f a data object is independent o f how the program manipulates that
data object, and conversely, a fragment o f program is expressed independently o f the

persistence o f the data it manipulates.

The Principle o f Persistent Data Type Orthogonality
In line with the principle o f data type completeness, all data objects, whatever their
type, should be allowed the fu ll range o f persistence.

Based on these principles, the use of all data in a persistent programming system is
independent of its persistent properties, including where it is kept, how long it is kept, and
in what form it is kept. In other words, a persistent programming system removes the need
to explicitly distinguish between the use of short-term and long-term data. Moreover, a
persistent programming system supports data type completeness. This means that any data

61

Chapter 3: Napier88 and its Use as the IGIS Development Tool

type with rich data structures can be constructed, managed and stored in an integrated
programming/database environment.

3.2.3 The Persistent Type System

In persistent language systems, type systems are languages for describing the data types
which programs in the language can manipulate and provide the mechanisms whereby

sentences in those languages can be interpreted. Types are denoted by expressions in the
type algebra provided by the type system. Variables have types which denote the subset of

values they may hold. Each value has a type [Atkinson, 1992a]. Some system types are built

with a regular data structure e.g. an array, a list and a relational table. A new data type can
be constructed by using predefined type constructors. Hence, a user is able to create new

data types with appropriate data structures for a specific application quite easily.
Conceptually, the set of data types in a PPL program is roughly equivalent to a schema in
the context of DBMSs. Similarly, a type system in a PPL represents a data model in a
DBMS. The vocabulary equivalencies between PPLs and DBMSs are shown in Table 3.1.

Persistent Programming Languages Database Management Systems

Type System Data Model

Data Type Schema Element

Variable Database

Value Instantaneous DB Extent

Table 3.1: The vocabulary equivalencies between PPLs and DBMSs [Atkinson, 1992a]

There are two separate but interacting aspects present in type systems: these are the control
o f complexity and the protection o f data. The control o f complexity is the ability to
structure data in a regular form, whereas the protection o f data is the ability to protect data

from accidental or deliberate misuse [Morrison et al., 1990]. The complexity of a type
system is determined by the number of its defining rules. These type rules should be able to
be applied consistently throughout the design of the underlying system. On the other hand,

it is necessary to have data protection and recovery mechanisms to prevent data misuse and
loss from hardware and software failure. Generally speaking, the greater the enforcement
on the protection aspects of types, the less flexibility there will be in the modelling
capabilities of application systems. For example, most language systems employ totally
static checking for types in order to become more secure in type correctness and more
efficient in program execution. These are known as strongly typed systems. However, such

language systems cannot dynamically accommodate any change in types. As a result, the
cost of totally static checking for types is that any alteration to type involves the total re
compilation of the whole system. On the contrary, some language systems perform totally

62

Chapter 3: Napier88 and its Use as the IGIS Development Tool

dynamic checking for types to provide flexibility in controlling complexity at the run-time.
These are known as weakly-typed systems. The drawback of totally dynamic checking for
types is that it results the system being intrinsically less safe and less efficient [Morrison et
al., 1987]. Therefore, the design of type systems needs to have a balance between flexibility
and safety.

3.2.4 Implications for Geographical Data Handling

Geographical data handling deals with complex real world objects which usually comprise

or are represented by a mixture of spatial, attribute, and temporal components.

Geographical objects (features) first map to a conceptual data model through some data
generalisation and abstraction process. This mapping is known as conceptual modelling and

involves identifying the object’s pertinent characteristics, and constructing object
relationships, etc. The design of an appropriate conceptual data model depends on different

geographical data representations, and the intended or required applications. This
conceptual organisation is then translated into programs and a database representation
which is often called logical modelling. This is concerned with the organisation of
geographical data in programs and databases, and in particular with data structures.
However, data persistence in the course of logical modelling is quite different depending on
whether between a traditional database management system or a persistent programming
system is being considered.

For example, Fig. 3.2 illustrates the modelling processes and the differences in data
persistence for rivers between a traditional system and a persistent system. The locations of
rivers in the real world are first captured and stored in digital form and are then
conceptualised as a spaghetti model using the entity-relationship approach. In this instance,
a river is represented as an entity which is composed of (i.e. has a relationship with)

polylines (i.e. entities); a polyline consists of a series of points; and a point has three spatial
components - its X, Y, Z coordinates. It should be noted that the same data model may be

implemented in the form of different data structures. For instance, the spaghetti data model
representing the rivers may be implemented as a List, as an Array, and so on. In the

example shown in Fig. 3.2, both the traditional and the persistent systems use List
structures in their program representation. However, when the programs store data in the
databases, the data retains the same List structure in a persistent system, while it may have

to be translated into other data structures in a traditional DBMS. In this example, it can be
seen that the format translation required in a traditional system results in the problem of
impedance mismatch. In practice, the semantic gap problem may also appear quite readily
since a geographical database normally consists of many types of features and they may be
represented by several data models for different applications. By contrast, in a persistent

63

Chapter 3: Napier88 and its Use as the IGIS D evelopm ent Tool

Real
World

River Reality
(Phenomena)

Conceptual
Model

River

Name

1 -1
\ Polyline 2- N
' ■

polyline_id
r \

Point
pid, x, y, z

Perception
(Data M odel)

Logical

Model

Traditional System

Program
R iver = L ist[P olyline]

P olyline = L ist[Point]

, r
Format

Translation

- 4 —
Database
A R iver =

L ist[L ist[P oint]]
or

A rray[L ist[P oin t]]

or ? .

Persistent System

Program
R iver = L ist[P olyline]

Polyline = L ist[Point]

no format

translation
orthogonal
persistence

Database

A R iver =

L ist[L ist[P oint]]

Representation

(Data Structure)

Fig. 3.2 The differences of data persistence between a traditional
and a persistent system

system not only is data translation for persistence unnecessary, but furthermore any data

can be seen as having the same representation of a data format or data structure which can

be used in both programs and databases.

In summary, a persistent programming system removes the inconsistencies of data

representation in the three domains - the real world, programs, and databases - through the

mechanism of orthogonal persistence. So it can provide the features of persistence, type

completeness and expressive power in a single integrated programming/database

environment. This unique feature is especially useful for the organisation and maintenance

of the integrated database demanded by an IGIS.

64

Chapter 3: Napier88 and its Use as the IGIS Development Tool

3.3 Napier88 Overview

This section gives a short summary of Napier88. A complete functional description of
Napier88 can be found in Morrison et al. [1989; 1993b], Connor et al. [1991] and Kirby et
al. [1994], while the implementation of bulk type aspects is given in Atkinson et al.
[1993a]. It should be noted that Napier88 is still a research language. Thus all the manuals
are rather terse in explaining language features and in describing system functions. In

particular, Napier88 lacks a proper user’s manual that would contain detailed information
on each function and illustration of this by examples. Therefore, any average application

programmer deciding to adopt persistent system technology should not underestimate the

effort required to understand fully the tools described here. At present an alternative source
for learning the basic concepts and features of Napier88 can be found in Atkinson [1992b].

Napier88 and its predecessor PS-algol are persistent programming languages developed at

the University of St. Andrews in collaboration with the University of Glasgow. In addition,
the University of Adelaide in Australia has also participated actively in the system
development. The design of the Napier system began in 1985 [Atkinson and Morrison,
1990], and it was named after the famous mathematician who invented the principle of
logarithms [Morrison et al., 1989]. As the name suggests, Napier88 (Release 1.0) was
introduced in 1988. It was originally designed as a testbed for experiments concerned with
type systems, programming environments, concurrency, bulk data, object stores and
persistence. As a consequence of its status as a research language, the Napier88 system is in
a state of continual evolution. Recently it has been upgraded with a number of new features
in Release 2.0 [Morrison et al., 1993b] as well as bulk type libraries that can be used in both
Releases [Atkinson et al., 1993a].

3.3.1 Language Design Principles

The Napier88 system follows in the algol tradition as did its predecessors S-algol and PS-
algol. These programming languages were designed based on three principles originally
outlined by Strachey [Strachey, 1967]. These can be stated as follows [Atkinson et al.,
1984; Dearie et al., 1989; Morrison et al. , 1989; 1993b]: -

The Principle o f Data Type Completeness
All the data must have the same “civil rights” and the rules fo r using the data types
must be complete, with no gaps.

The Principle o f Abstraction
The process o f extracting the general structure to allow the non-essential details to
be ignored.

65

Chapter 3: Napier88 and its Use as the IGIS Development Tool

The Principle of Correspondence
The rules fo r introducing and using names should be the same everywhere in a
program.

This language design makes for the Napier system having a small number of defining rules

allowing no exceptions and leads to a less complex yet very powerful PPL. The principle o f
data type completeness means that Napier88 is a very rich type system and ensures that all
data types may be used in any combination in the language. All data types have the same

rights to be declared, to be assigned to and to be assigned, to have equality defined over
them, and to persist. The principle o f abstraction is invoked by identifying the semantically

meaningful syntactic categories and providing abstractions over them. This mechanism
allows the control of complexity with a high degree of abstraction. For example, procedures

are regarded as abstractions over expressions and statements; polymorphism as an

abstraction over type; abstract data types as abstractions over declarations; and vectors and
structures are regarded as abstractions over all data types in the store. The abstraction
mechanism is particularly important for software reuse because the code for an abstraction
is only written once, while that written for a particular specialisation may be used many
times [Morrison et al., 1987]. The principle o f correspondence makes Napier88 programs
easy to read, understand and remember using a consistent naming scheme for declaring
names in program blocks, in the parameters of procedures, in the fields of records, and so
on. Based on these three principles, in addition to the provision of orthogonal persistence,
the Napier88 system is able to provide powerful features for the construction and
maintenance of large and long-lived application systems.

3.3.2 Language Characteristics

The Napier88 system consists of the programming language and its persistent environment
located in a persistent store. Initially, the persistent store, also called the stable store, is

populated by standard libraries and the system uses objects within the persistent store to
support itself. Napier88 then allows the extension of the persistent store using the new

values created by user programs. In the persistent store, type systems are used to represent

the data models of both data and programs. In effect, a program fragment is treated as just

another data value. The model of persistence in Napier88 is that the system automatically
determines the persistence of objects by its reachability from a root object. In other words,
when a program terminates, all its data objects may be destroyed except those that the type
program has arranged to be reachable from the root object. The persistent store is also
stable, that is, it is transformed from one consistent state to the next. Therefore, the
persistence of a data object from a program into a persistent store is performed by the user
by ensuring that the data object is reachable from the root object of the store. However, if
the data object is fetched from the store, then when a program terminates, a stabilisation

66

Chapter 3: Napier88 and its Use as the IGIS Development Tool

operation is automatically performed and so the data object still persists [Morrison et al.,
1993b].

The general characteristics of the Napier88 persistent programming language can be
summarised as follows [Dearie et al., 1989; Atkinson et al., 1992b; Morrison et al., 1993b]:

* Block structured: The visibility of an identifier is determined by its lexical scope. This

means that the scope of an identifier starts immediately after the declaration and
continues up to the next unmatched end.

* Procedural language: The order of evaluation is strictly from left to right and top to

bottom except where the flow of control is altered by one of the language clauses.
Parentheses in expressions can be used to override the precedence of operators.

* Strongly typed: The system is mostly statically checked for type correctness except for
two types (env and any) which must be dynamically checked.

* Initialising declarations: Type and identifier declarations are allowed to occur
anywhere in sequences of statements.

* Type inference: The types of declared identifiers are inferred from the initialising
expression, but the types of procedure parameters and results are not inferred and these
must be explicitly stated by the programmer.

* Type completeness: There are no restrictions on constructing types.
* Orthogonal persistence: Models of data are independent of longevity. The lifetimes of

data are determined by the duration of their reachability from a distinguished root, PS().
* A type secure stable store: The system does not allow the types of objects to be

arbitrarily changed, i.e. it does not feature type coercion. The system also has a
mechanism for making locations constant in the store. Type checking is always

performed for the type security of the store over a spectrum of times under user control.
* Reflection: The compiler is callable at run-time and this can be used to construct

programs which extend themselves at run-time to deal with novel data types as they are
encountered [Cooper and Kirby, 1994].

* Automated support of persistence: Data is moved automatically from the persistent

stable store to the active space as it is needed and is returned automatically if it has been
updated at the end of the program or whenever a stabilisation operation is applied.

* Higher-order procedures: Procedures are data objects that can be passed as
arguments to other procedures; be returned as the results of procedures; be components

in data structures; and be assigned to variables.
* Parametric polymorphism allows the sharing of code among data types that have a

common structure, i.e. generic type procedures may be quantified by any number of

types rather than a different one having to be written for each type.
* Abstract (existential) data types: The data object can be manipulated without anyone

being able to discover its implementation or representation. The information hiding

67

Chapter 3: Napier88 and its Use as the IGIS Development Tool

feature of abstract data typing means that objects have a “public” interface, but the

representation and the implementation of these interfaces are “private” {i.e. hidden form
the user).

* Graphical data types are provided for both line drawings and raster images.
* Type equivalence is based on structural equivalence rules, i.e. any aliases, recursion

variables, and operator applications are fully factored out before equivalence is
accessed.

* Localised dynamic binding: A collection of bindings which denotes an environment
(type env) can be added to and removed from another environment. Values from

environments can be used in programs through a dynamically bound and dynamically
type checked mechanism.

* Dynamic binding and deferred type checking: The type any denotes any type and
provides a holder for any value, including those for values not yet defined. This
mechanism permits hidden types, and provides the capacity for handling future types
and incremental type checking.

* Incremental loading mechanisms: Persistent procedures constitute all the Napier88
libraries and are the basis for separate compilation. The incremental loading mechanisms
perform the linking and loading of these libraries and separate compilation units. At the
same time, the linking and loading mechanisms check that all the types match correctly.

It should be noted that several of these characteristics are regarded as novel or unique
features in terms of programming language design, notably the provision of orthogonal
persistence, automated support of persistence, graphic data types, high-order procedures,
and incremental loading mechanisms. Such features will certainly have some impacts on
IGIS development, so they will be described further in the next section. All the above
characteristics apply to both Releases 1.0 and 2.0. Essentially, Napier88 Release 2.0 has
only two changes to the language: (i) a dynamic abstract witness model for abstract types
and (ii) the availability of type operators, but the persistent store environment (which will be

described in Section 3.3.4) has also been significantly enriched and reorganised [Morrison
et al., 1993b].

The Napier88 system is designed as a layered architecture consisting of a compiler, the

Persistent Abstract Machine (PAM) and the persistent storage architecture. All the
structural layers are virtual allowing implementation on any platform [Morrison et al.,
1993b]. The present system is implemented by a compiler written in Napier88, and an
interpreter of the PAM written in C. The interpreter runs under Unix operating systems on
top of a stable store [Atkinson, 1992b]. At present, Napier88 only runs on two kinds of
platform: the Sun SPARC and DEC Alpha graphical workstations. However, porting to
other platforms has been planned [Kirby et al., 1994]. Detailed information about the
Napier88 system and its relevant publications can currently be obtained through the Internet

68

Chapter 3: Napier88 and its Use as the IG IS D evelopm ent Tool

from the World Wide Web (WWW) server (http://www-fide.dcs.st-andrews.ac.uk) of the

Persistent Programming Research Group at the University of St. Andrews.

3.3.3 The Napier88 Type System

As has been described above (See Table 3.1), a type system in persistent programming

languages is equivalent to a data model. The Napier88 type system is based on the notion of

types as a set structure imposed over the value space [Morrison et al., 1993b]. The

Napier88 language provides a set of type rules, including predefined base types and type

constructors. Because the type constructors obey the Principle o f Data Type
Completeness, which has been described in Section 3.3.1, therefore an infinite set of data

types associated with any complexity of structures and any degree of abstraction can be

constructed. This mechanism ensures that the Napier88 type system employs only a small

number (12) of type rules, yet is very powerful in controlling the modelling aspects of

application systems. The Napier88 system consists of three kinds of system types: base (or

elementary) types, compound (or constructed) types, and bulk types. These system types

are the fundamental elements for building application systems. The base types are built-in

and cannot be further decomposed. The base type can be classified into either the

elementary store types or the scalar types according to whether or not they can behave as

stores. The compound types are constructed by supplying types as parameters to type

constructors. The bulk types are provided for the description of regular data structures

through type construction defining instances that are arbitrarily large collections of elements

[Atkinson et al., 1991]. These system types are summarised in Table 3.2 [Atkinson et al.,
1992b].

Type Categories System Types

Base Types
Scalar Types

integer (int), real (real), boolean (bool),
string (string), picture (pic),
pixel (pixel), null (null).

Elementary Store Types file (file), environment (env), any (any).

Compound Types

vector (vector), structure (structure),
image (image), procedures (proc),
variant (variant), ADT (abstype),
polymorphic procedures.

Bulk Types Lists (List), Maps(Map),
Sets, Strings, Vectors.

Table 3.2 : System types provided by Napier88

69

http://www-fide.dcs.st-andrews.ac.uk

Chapter 3: Napier88 and its Use as the IGIS D evelopm ent Tool

On the other hand, Napier88 adopts a mixture of static and dynamic type checking

mechanisms. The env and any types are dynamically checked, but all other type checking is

static. This arrangement allows the user to perform late type checking in order to

accommodate unanticipated type changes during run-time. The Napier88 type system

employs so-called eager type checking where types will be checked as early as possible in

the life cycle [Morrison et al., 1990], In other words, static data types are checked for their

correctness during the compilation time except that the checks on dynamic types are

delayed since they are required to be flexible for type changes during the run-time. The

sensible design of the type checking mechanism ensures that the Napier88 system has the

facilities of type safety and type flexibility, as well as efficiency in program execution.

3.3.4 Persistent Store Environment

In Napier88, all system objects, user programs and data are kept in a persistent store. The

persistent store may contain unlimited numbers of procedures and default variables available

for user applications. All the information in the persistent store is organised in a hierarchical

(tree-like) structure. Each node in the tree represents an environment. The concept of an

environment is similar to that of a block in block-structured programming languages or a

directory in Unix. The environment holds the bindings of the currently visible identifiers,

where a binding is a set of quadruples describing the attributes of identifiers. Each

quadruple comprises an identifier, a type, a value and a variable/constant location indicator.

An environment can be bound into other environments or removed from its bound

environment [Atkinson, 1992b]. The root of the tree represents the whole persistent

environment, i.e. the persistent store. The root environment, which is yielded by calling the

predefined procedure PS (), gives access to various libraries of useful procedures and other

values. The leaves of the tree represent persistent data which may be in the form of any data

type which is supported by the system or has been defined by users. The environment

structure of the persistent store is conceptualised as shown in Fig. 3.3.

Root
Environment

Environment —

Environment

— Procedure or other data type

- Procedure

— Environment —
Procedure

Environment

Figure 3.3 Environment structure of the persistent store

70

Chapter 3: Napier88 and its Use as the IGIS Development Tool

Basically, the persistent store is a single large file located within the operating system. The

contents of the persistent store are invisible to users and are not accessible by other
systems. However, Napier88 provides a store browser for users to view the store contents.
Any data object in the persistent store can be accessed from Napier88 programs by making

the environment holding that data object reachable from the root environment. Similarly,

any data object in Napier88 programs will automatically persist in the persistent store after

the programs terminate provided that the data object has been bound to an environment as
well as one which is reachable from the root environment.

The creation of an initial store can be done by copying an existing store which has been
populated with standard libraries or by setting up an empty store and then running a number
of Napier88 programs for the installation of appropriate libraries. The initial population of

objects in the persistent store forms an important part of the programmer’s facilities
because all of these objects will be heavily used by Napier88 application programs. The
persistent store is intended to provide system programmers, application developers, and
end-users with the means to construct reusable objects including data and software
programs. In principle, the contents of the persistent store will remain reusable and
extensible with the evolution of application software, even if the application programs
which originally created them will no longer be used. Eventually, the persistent store will
contain large bodies of long-lived data and program modules, yet must still have the
capability to support unanticipated applications which will arise in the future. Therefore, the
persistent store created by the Napier88 Release 1.0 system could be used directly in
Release 2.0 as well as any future releases without any change or reconstruction.

However, there are some major changes of the persistent store environment in Napier88
Release 2.0. These include concurrent execution and data access; reflective programming
for system evolution; a new organisation of the initial stable store; and considerable
enhancement of the utility procedures available in the standard library [Morrison et al.,
1993b; Kirby et al., 1994]. As a result, the persistent stores used in the two releases (1.0
and 2.0) are incompatible, mainly because the standard library environment is structured

differently between Release 1.0 and 2.0. The incompatibility between the two releases is
probably a cost that simply has to be paid for to ensure a better persistent system.
Nevertheless, it will be regarded as a major drawback with regard to the use of Napier88 in

this particular IGIS research. Another major difference is that the compilation of Napier88
programs in a batch mode is quite different between both releases. Release 2.0 uses a
compilation module which is written in Napier88 and has been integrated into the persistent
store, whereas Release 1.0 is based on an independent compilation system which is written
in PS-algol [Brown, 1989; Kirby et al., 1994]. Although there are several other differences
between the two releases, the standard library contains the following primary facilities that
generally speaking apply to both releases [Connor et al., 1991; Kirby et al., 1994]:

71

Chapter 3: Napier88 and its Use as the IGIS Development Tool

• A set of procedures supports basic programming activities including arithmetical
operations; I/O control and operations; the control of graphical devices; vector graphic
display; raster image display and operations; mouse and keyboard event control, etc.

• An integrated programming environment supports the interactive development of

Napier88 programs. It allows the user to compose and execute programs and to
examine their effects on the persistent store.

• A window management system (WIN) provides graphic user interface (GUI) facilities
for user interface programming. It allows the creation and manipulation of user

interfaces employing windows, menus, icons, dialogue boxes, a mouse and keyboard
event handling.

• A store browser can display a representation of any Napier88 value in either a graphical
or text mode.

• A set of procedures which forms the Napier88 compiler for compiling Napier88
programs in an interactive mode. This facility supports hvper-programming which
allows the Napier88 programs to contain embedded direct references to values,
locations and types in the persistent store.

In addition to the standard library, a family of bulk type libraries developed at the University
of Glasgow can also be installed in the persistent store. These bulk type libraries provide
data types with built-in data structures and support a set of operations which can be applied
to them. Using bulk types libraries, data objects with regular data structures can be easily
represented by predefined bulk types. That is, any data which may carry a data model can

be constructed as a bulk type and denoted as a single object stored in the persistent store.

Those bulk type libraries which currently have been implemented or are in the process of
being implemented are Lists, Maps, Sets, Strings, Vectors, Conversions. Several other bulk

type libraries such as Trees, Graphs, Rings and Matrices will be added in due course
[Atkinson et al., 1993a; 1993b].

Fig. 3.4 is a typical example that illustrates an initial persistent store populated with the
Napier88 Standard Library Edition 2.2 and the Bulk Libraries Release 1 [Atkinson, et al.,
1993a; Kirby et al., 1994] in which the contents display the names of the main
environments. Each environment may further contain a set of procedures, values, or
environments. For instance, all the procedures in the Outline and Raster environments,
which are used for the manipulation of vector and raster data respectively, are also shown in
Fig 3.4.

72

C hapter 3: Napier88 and its Use as the IGIS D evelopm ent Tool

Erro r

External

L ibrary —

User

P S () -

— Raster—

— Arithmetical

— Browser
— Compiler

— Concurrency

— Device

— Distribution

— Environment

— Event

— FailValues

— Font

— Format

— Graphical —

— InteractiveEnvironment

— 10 --------------------- PrimitivelO

— Lists
— People

Protection

— RasterRules

— String

— System

— Tables
— Time

— Utilities
— Vector -----
— Win ---------

— Outline — makeDrawFunction: proc(string -> drawFunction)

— xDim: proc(im age - » int)

— yDim: proc(im age -> int)

— zDim: proc(im age int)

— pixelDepth: proc(pixel -> int)

— rasterOp: proc(im age, im age, int)

— line: proc(im age, int, int, int, int, p ixel, int)

— getPixel: proc(im age, int, int ^ pixel)

— setPixel: proc(im age, int, int, p ixel)

— lwb: proc[t](*t
— upb: proc[t](*t

■ int)

- int)

— Borders
— CurrentState

— Defaults

— Generators

— Image
— Selection

— Tools
— Utilities

G lasgow Libraries

— BulkTypes
Miscellany.

— Access

— Conversions

— Lists

Maps
— Sets
— Strings

— Vectors

Persistent Store Environment

Figure 3.4 A partial overview of the persistent store populated with the Napier88
Standard Library Edition 2.2 and Bulk Libraries Release 1

N.B. 1) The environment Libraryi given above in the diagram refers to the Standard Library; the
environment GlasgowLibraries refers to the Bulk Libraries as discussed in the text.

2) The environment Vector, which forms part of Library, contains two procedures which
determine the high and low bounds of a vector. The environment Vectors, which forms part
of GlasgowLibraries, contains procedures such as sorting a vector, applying a function to
each element of a vector, etc.

3) The environment Outline is in fact dealing with the drawing of vector graphics, as discussed
in this thesis.

73

Chapter 3: Napier88 and its Use as the IGIS Development Tool

It should be noted that the User environment in the persistent store is reserved for users to
store their information. Thus any programs and data that a user wishes to make

persistent in the store should be organised and kept in the User environment. Hence, in the
course of constructing an IGIS database, all the data, including their associated programs,
will be incrementally accumulated within this environment.

3.4 Important Facilities fo r IGIS Development

Having described the general capabilities of the Napier88 system, it can be seen that
Napier88 is a database programming language designed originally for the purpose of

building persistent application systems in which the construction and maintenance of large,

long-lived data objects is the major concern. GIS applications involve the establishment of
such systems. A geographical database that contains large volumes of maps, images and
attributes has to keep being persistent and consistent over a long period of time. Therefore,
Napier88 may be used as a GIS development tool, particularly for an IGIS. Before carrying
out this research, some of the important facilities that can be considered to be useful for the
development of an IGIS are further summarised as follows: -

• Both the programs and the data are tightly integrated into a single
programming/database environment. A persistent store acts as a single database where
both the software and the data are stored. This facility lays the foundations of a single
working/storage environment for the development of an IGIS.

• The data type completeness and the orthogonal persistence of Napier88 allow the
possibility for any kind of geographical features to be constructed as a data type and
placed in the persistent store. This facility allows any data type to work within an IGIS
without restrictions.

• The bulk type libraries provide programmers with abundant data types for organising
geographical data into a variety of regular data structures depending on the specific

needs of individual applications. This facility allows specific geographical features,
which are particularly complex objects associated with rich semantics, to be stored as
compound objects without the need to decompose them into a number of simple
components.

• Three fundamental data types (pixel, image and pic) are provided to facilitate graphical
capabilities. The pixel and image types are the essential elements required for handling
raster images, while the pic type is the basic element available for dealing with vector

maps [Morrison et al., 1986]. This feature allows both vector and raster types of

74

Chapter 3: Napier88 and its Use as the IGIS Development Tool

geographical data to be organised and manipulated within the same database

environment.

• The abstract data types and the parametric polymorphism provide a powerful
abstraction mechanism for adequately describing geographical objects to a high degree
of abstraction as well as composing new objects out of existing objects. The abstract
mechanism not only allows an implementation of object-oriented data management but

also has the advantage of software reuse. This facility enables programmers to create an
IGIS which has both object-oriented programs and databases.

• The incremental construction mechanism allows programs and data to be incrementally

constructed and enhanced. This facility allows programmers to control the evolution of
programs and data in an IGIS.

• The WIN window management system provides utilities for producing a graphical user
interface and frees the application programmer from the necessity of writing the source
code needed for user interface programming [Cutts et al., 1989]. This facility allows
programmers to create a user friendly IGIS using the user interface tool kits.

The utilisation of these facilities in the development of an IGIS forms an important part of
this research. The subsections which follow give a brief description, by means of examples,
of the syntax of the Napier88 system, emphasising the usage of these facilities in
geographical data handling. These examples are based on the persistent store environment
of Napier88 Release 1.0. Full descriptions of the language syntax of Napier88 and the
user’s libraries can be found in “The Napier88 Reference Manual” [Morrison et a l., 1989;
1993b], “The Napier88 Standard Library” [Kirby et al., 1994] and “Towards Bulk Types

Libraries for Napier88” [Atkinson et al., 1993a].

3.4.1 Running a Napier88 Program

As with any programming languages, a Napier88 program contains the source code which
may be created and edited by a text editor. For example, Fig. 3.5 illustrates a Napier88

program which can be used to compute the distance of a straight line joining the two points

(xj, yO and (x2, y2).

In Fig. 3.5, the words in boldface are reserved in the language. A string of characters which
starts with a ! and terminates by a newline is a comment such as line 1. Line 2 obtains the
Arithmetical and 10 environments from the persistent store and binds them to the clauses
after the in. Line 3 gets a binding, which has the identifier sqrt and the type proc, from the
Arithmetical environment and uses it within the scope following the in. The procedure sqrt

75

Chapter 3: Napier88 and its Use as the IGIS Development Tool

! program name: st_line_dis.N 1
use PS() with Arithmetical, IO: env in 2
use Arithmetical with sqrt: proc(real —» real) in 3
use IO with readReal: proc(—> real); 4

writeReal: proc(real); 5
writeString: proc(string) in 6

begin 7
let distance := 0. 8
writeStringC'Input x coordinate o f the first point:"); let x l = readReal() 9
writeStringC'Input y coordinate o f the first point:"); let y 1 = readReal() 10
writeStringC'Input x coordinate o f the second point:"); let x2 = readReal() 11
writeStringC'Input y coordinate o f the second point:"); let y2 = readReal() 12
distance := sqrt((x2 - x l) * (x2 - x l) + (y2 - y l) * (y2 - y l)) 13
writeString("The distance = "); writeReal(distance) 14

end 15

Figure 3.5 A Napier88 program that computes the distance of a straight line

takes one argument real and yields an argument of the same type real. Similarly, lines 4, 5
and 6 obtain procedures realReal, writeReal and writeString from the 10 environment. All
the bindings are used in the block enclosed by the begin (line 7) and the end (line 15).
Within the block, there is a sequence of clauses and declarations. Line 8 declares an
identifier distance associating it with a value (0.) by a let statement. The assign
operator means that the identifier is a variable which may be updated. The type of the
identifier is inferred by the expression to the right of the assign, which in this case is the
type real. Lines 9 to 12 write a prompt message to the standard output and take a value of
real from the standard input. The equal “=” operator means that the identifiers are constant.
In line 13, the value of the expression to the right of the assign is evaluated to update
the value of identifier distance. Finally, line 14 outputs the result.

The program file st_line_dis.N can be compiled with the command line under the Unix
operating system.

n p c s t _ l i n e _ d i s . N

This will produce a file called stJ.ine_dis.out which can be executed with the command line.
n p r s t _ l i n e _ d i s . o u t

It should be noted that, after the execution of the program, all the data is discarded and is
therefore not placed in the persistent store because all the identifiers used, i.e. x l , y l , x2, y2

and distance, are not reachable from the root object PS(). The way to make data persistent
in the persistent store is explained later in Section 3.4.6.

76

Chapter 3: Napier88 and its Use as the IGIS Development Tool

3.4.2 Vector Graphics

The vector graphic facilities allow the user to produce line drawings in an infinite two-
dimensional real space. A line drawing is represented by the picture (pic) data type in
Napier88. In order to draw a vector picture, a Napier88 program needs to include three
main parts:

1. Initialisation of a graphical device;
2. Definition of a colour map;

3. Construction and drawing of vector pictures.

1. The initialisation of a graphical device is concerned with the selection of the device with
which a picture will be drawn and with the specifications of the initial size and location

of the window if an X-terminal is being used. At the time of writing, Napier88 only
supports a small number of output devices including X-terminals; Tektronix vector

graphic terminals 4010, 4006, 4107; the QMS L800 Laserprinter; the g6320 colour
plotter and the cs4800 printer. Among these, X-terminals are the most commonly used
display devices. Using X-terminals, an X-window can be obtained by the
implementation of the following two statements.

In the first place, a window file object is created by
let w f= open(“WINDOW: XDIM:w, YDIM:h, ZDIM:d, XPOS:x, YPOS:y”, m)

where w, h, d are measured in pixels and are the width, height and depth of the window
respectively;
x, y are measured in pixels and are used to specify the distance of the window
from the left or right and top or bottom edges of the screen, respectively; and
m is the access mode (0 = read only; 1 = write only; 2 = read and write).

In the second place, the window file w f is supplied as a parameter in the procedure
getScreen as follows:

let x_win = getScreen(vv/)
which results in an image, i.e. an X-window.

2. The definition of a colour map is to create a colour look-up table for pixels in an X-
window. Every X-window opened within the Napier system has an associated colour
map. The colour map has 256 entries corresponding to the 256 permutations of eight
bits (on/offs). Basically the system is set up for screens of eight bit-planes. Each entry
contains a 24 bit number corresponding to 256 blue levels by 256 green levels by 256
red levels. Therefore, a colourmap can be created by choosing any 256 colours from
around 16 million. By default, 256 entries are set to the background colour of the X-

77

Chapter 3: Napier88 and its Use as the IGIS Development Tool

window, i.e. black (0). A colour map can be defined by repeating the use of the
colourMap procedure which is used to set one of the entries:

colourMap : proc(fd : file ; p : pixel; i : in t)
where fd is the file descriptor {e.g. wf) of the X-window whose colour is to be adjusted;

p is the particular pixel whose colour is to be changed in the map; and

i is the new colour, e.g. 65,280 = 0 * 256 * 256 + 255 * 256 + 0 would be the
strongest possible green (0 Blue 255 Green 0 R ed).

A Napier image may be set to contain a certain number of bit-planes. A pixel in the
image is defined as the concatenation of the on or off of the pixel in each bit-plane at
the corresponding position. For example,

let a_pixel = off ++ on ++ off ++ off
means that the pixel has 4 bit-planes and the bit values which are numbered from 0 to 3
are 0, 1 ,0 , 0. The colour of the pixel may be assigned by mapping the pixel to an

integer which represents the combination of the RGB intensities. For example, the
assignment of a_pixel to green colour can be done by colourMap{wf, a_pixel, 65280).

3. The construction and drawing of vector pictures is regarded as being the manipulation
of the ‘picture’ data types. The simplest picture is a point. For example,

let point = [x, y]

represents the point (x, y) in two-dimensional space. There are two binary operators on
pictures, namely join ‘A’ and combine ‘++’. The A operator forms a new picture by
joining the first picture to the second by a straight line from the last point of the first
picture to the first point of the second. The ++ operator also forms a new picture by
including all the subpictures of both the operand pictures. For example, a polyline which
consists of 3 straight line segments can be represented as follows:

let polyline = [x l, y l] A [x2, y2] A [x3, y3] A [x4, y4]

And a new picture may be formed as a “set” of the point and the polyline pictures by the
statement

let point_and_polyline = point ++ polyline

The Napier88 system also provides five transformations that can operate on pictures,
including shift, scale, rotate, colour, and text.

Fig. 3.6 is a simple but complete example demonstrating the use of all the vector graphic

facilities described above. First of all, a vector data set, which is a table of coordinates, is
created by means of a data acquisition method. A Napier88 program is then written to use
the data for drawing a vector map in an X-window. It should be noted that this example is
rather simplified. In practice, a data set will usually be read into a Napier88 program by

78

Chapter 3: N apier88 and its Use as the IGIS D evelopm ent Tool

utilising the IO facilities rather than be entered directly into the program. In this example, an

array, i.e. the vector type, is used to hold the data.

Feature
ID Coordinates (x , y)

1 (8 3 . 7 , 7 8 . 3)

2
(5 0 . 9 , 1 0 0 . 0) (5 0 . 9 , 7 3 . 6) (5 4 . 5 , 6 1 . 1)

(7 0 . 6 , 4 9 . 2) (8 3 . 7 , 3 6 . 4) (8 7 . 0 , 1 6 . 5)

(8 0 . 1 , 1 1 . 6) (7 3 . 9 , 9 . 1) (6 4 . 2 , 0 . 0)

3

(1 3 . 0 , 5 6 . 4) (2 9 . 9 , 4 5 . 8) (6 7 . 1 , 4 1 . 5)

(7 7 . 2 , 2 5 . 7) (7 7 . 5 , 1 8 . 5) (5 6 . 7 , 1 7 . 8)

(5 1 . 1 , 1 3 . 4) (2 5 . 9 , 1 2 . 2) (1 6 . 1 , 2 0 . 0)

(1 7 . 6 , 3 2 . 2) (1 3 . 0 , 5 6 . 4)

! P ro g ram nam e: vec to r_graph .N
type dra w F u n c t io n is variant(imageDraw: proc(image, pic, real, real, real, real);

f i le D raw : proctfile, pic, real, real, real, real);
fail: null)

use PS () with G raph ica l , D evice , IO, S ystem , User: env in
use G ra p h ic a l with Outline: env in
use O utl ine with m ak eD raw F u n c t io n : proc(string —» d raw F unc tion) in
use D evice with getScreen: proc(file —» image);

c o lo u rM a p : proc(file, pixel, int) in
use IO with P rim itive lO : env;

rea d L in e : proc(—> string);
w ri teS tr ing : proc (string) in

use P rim it iv e lO with open: proc(string, int —» file);
c lose : proc (file —> int) in

use S y s tem with abort: proc () in
begin
! Par t 1: initialise a graphical dev ice

let w in d o w _ fi le = o p e n (" W IN D O W : X D IM :2 0 0 , Y D IM :2 0 0 , Z D IM :4 " , 2)
if w indow _fi le = nilfile do { w ri teS tr ing ("C anno t open an X w indow 'n"); a b o r t () }
let screen = ge tScreen (w indow _file)
let draw = m a k eD raw F u n c tio n (" im ag e ") ' im ag e D raw

! Par t 2: de f in e a co lo u r m ap
let w hite = on ++ on ++ on ++ on
let b lack = off ++ off + + off ++ off
let red = on + + off + + off ++ off
let green = off + + on + + off ++ off
let blue = off + + off + + on + + off
let gray = off ++ off + + off + + on
c o lo u rM a p (w in d o w _ f i le , white , 255 * 256 * 256 + 255 * 256 + 255)
co lo u rM a p (w in d o w _ f i le , black, 0)
co lo u rM a p (w in d o w _ f i le , red, 255)
co lo u rM a p (w in d o w _ f i le , green, 255 * 256)
co lo u rM a p (w in d o w _ f i le , blue, 255 * 256 * 256)

79

Chapter 3: Napier88 and its Use as the IGIS Developm ent Tool

co lo u rM a p (w in d o w file, g ray , 223 * 256 * 256 + 223 * 25 6 + 223)
! Part 3: cons truc t and d raw vec tor p ic tures

let fea tu re := vector 1 to 3 of nilpic
f e a tu re (l) := colour [83.7, 78.3] in b lue ! house
feature(2) := colour [50.9, 100.0] A [50.9, 73.6] A [54.5, 61.1] A [70.6, 49.2] A

[83.7, 36.4] A [87.0, 16.5] A [80.1, 11.6] A [73.9, 9.1] A
[79 1, 0.0] in red ! road

feature(3) := colour [13.0, 56.4] A [29.9, 45.8] A [67.1, 41.5] A [77.2, 25.7] A
[77.5, 18.5] A [56.7, 17.8] A [51.1, 13.4] A [25.9, 12.2] A
[16.1, 20.0] A [17.6, 32.2] A [13.0, 56.4] in green ! swamp

let border = colour [0., 0] A [0., 100] A [100., 100] A [100., 0] A [0., 0] in black
let vecm ap := border
for i = I to 3 do v e c j n a p := vec m ap + + feature(i)
d raw (screen , vec m ap, -5 .0 , 105.0, -5 .0 , 105.0)
let pau se = r e a d L in e ()
let void = close (w indow file)

end

I

NapterSS Q

Figure 3.6 An example utilising the vector graphic facilities of Napier88

A vector type is very useful for handling geographical data because it provides a method of

grouping together objects of the same type. The elements of the vector can be o f any type.

However all the initial values of the elements must be defined beforehand. There are three

forms to allow different ways of providing these values.

1 The first form specifies the lower and upper bound and initialises every element to

the same value For example:

let feature := vector 1 to 3 of nilpic
This statement declares a variablq feature o f three elements with initial values equal to a
picture with no points (n ilp ic).

80

Chapter 3: Napier88 and its Use as the IGIS Development Tool

2. The second form of vector initialisation supplies the low bound and a list of initial
values, for example:

let feature := vector @ 1 of [nilpic, nilpic, nilpic]
The length of list determines the upper bound.

3. Finally, the third form uses a procedure to provide the initial values, for example:

let feature := vector 1 to 3 using proc(i: int —»pic); nilpic
This form can also be used to represent multi-dimensional arrays. For instance,

let cell := vector 1 to m using proc(i: int —»*int); vector 1 to n of 0
produces a two-dimensional array of m by n elements with initial values equal to ‘O’.

In the program of Fig. 3.6, each feature is constructed as a picture and is also coloured
differently. The three features are then combined as a single picture (i.e. vec_map) using the

“++” operator with the aid of the loop statement (i.e., the for clause). Finally, the resultant
picture is displayed in an X-window. This is carried out by the draw procedure which can
be accessed by supplying a parameter “image” in the procedure makeDrawFunction and
taking a variant imageDraw from the parameter returned. The picture is first mapped to a
bounding rectangle specified by the four real parameters (xmin, xmax, ymin, xmax), and is
then scaled and shifted to fit the X-window. The screen hardcopy shown in Fig 3.5 has been
mapped onto an area slightly bigger than the map coverage, so that all the line drawing,
including the map border, can be seen.

3.4.3 Raster Graphics

The raster graphic facilities allow the user to create and manipulate images. An image is a

rectangular grid of pixels and is represented by the image data type. There are two ways of
initialising images.

1. The first form specifies the x and y dimensions and initialises every pixel to the same
pixel expression. For example,

let cell - image 20 by 15 of on ++ on ++ off ++ on
create an image ce ll with 20 pixels in the x direction and 15 pixels in the y direction.
All pixels have the depth 4 with initial value on ++ on ++ off ++ on. The origin of
the image is in the lower left comer, which has the address 0, 0.

2. The second form of image initialisation supplies the x and y dimensions and uses an
existing image as a background pattern to create an image. For example,

let ras_img := image 800 by 600 using cell

81

Chapter 3: Napier88 and its Use as the IGIS Development Tool

will create an image ras_img of size 800 x 600 pixels and will then copy the image
cell onto it as many times as is necessary to fill it in both directions, starting at the
address 0, 0.

Aliases to parts of images can be set up by using the limit operation, for example:

let sub_img = limit ras_img to 300 by 200 at 400, 300
will set su b jm g to be that part of ras_img which starts at 400, 300 and has size 300 by 200
pixels. This operation does not make a new copy of that part of ras_img but merely copies
the pointer to it. The limit operation is particularly important for performing raster
operations, i.e. ror, rand, xor, copy, nand, nor, not and xnor. For example,

copy limit ras_img to 400 by 300 at 200, 150 onto screen
will write the defined section of the ras_img which is the central part and transfers a quarter
size of the image onto the screen.

Fig. 3.7 is an example which illustrates the use of the raster graphic facilities. As was the
case with vector graphics (see first paragraph of Section 3.4.2), a Napier88 program also

requires three main parts to utilise the raster graphic facilities. The initialisation of a
graphical device and the definition of a colour map are the same as those described in
Section 3.4.2 and Fig. 3.6. This example (in Fig. 3.7) uses the raster data shown in Fig. 2.2
to create a raster image. Essentially it is the raster equivalent of the vector image shown in
Fig. 3.6. The size of the image is 12 x 12 cells. Each cell (or source cell) is defined as being
equivalent to 15 x 15 screen pixels (target pixel). The background colour of the raster
image and the colour of each feature are also defined. This example employs a two-
dimensional array to manipulate the raster data which is also put directly into the program
After the raster image has been constructed, the resultant image is projected onto the
central part of the X-window as shown in Fig. 3.7.

Once again, it should be noted that the raster data used by a Napier88 program generally
comes from raster files. Thus in practice, a raster graphic program should provide the

capabilities to import raster files and construct them as images. In this instance, a blank
image is first created depending on the image dimensions as determined from the file header

(or file descriptor) of an image. The image data is then read into the program and converted
to pixels. Each pixel is set to its correct position in the image using the procedure setPixel
provided in the standard library.

! Program name: raster_graph.N
! Part 1 and Part 2 are the same as those in the program vector_graph.N
! Part 3: construct and display raster images

let m = 12; let n = 12 ! cell dimension
let size = 1 5 ! cell_size = 1 5 pixels

82

Chapter 3: Napier88 and its Use as the IGIS Developm ent Tool

let bg cell = image size by size o f g ra y
let house cell = image size by size of blue
let road cell = image size by size of red
let sw am p cell = image size by size of green
let r a s i m g := image size * m by size * n using bg cell

let cell := vector 1 to m using proc(i: int —» *int); vector 1 to n of 0
! c rea te a ras te r im age
cell(l, 7) := 2
cell(2, 7) := 2
cell(3, 7) : = 2 ; c e l l (3 , 11) = 1
cell(4, 7) := 2
cell(5, 2) := 3; cell(5, 8) :=2
cell(6, 2) := 3; cell(6, 3) := 3, cell(6, 9) := 2
for j = 2 to 8 do cell(7, j) := 3; cell(7, 10) := 2
for j = 2 to 9 do cell(8, j) := 3; cell(8, 11) := 2
for j = 2 to 9 do cell(9, j) := 3; cell(9, 11) := 2
for j = 2 to 6 do cell(10, j) := 3; cell(10, 11) = 2
cellO 1, 9) := 2; cell(l 1, 10) := 2
cell(12, 8) := 2
! display a raster image
for i = 1 to m do

for j = 1 to n do
case cell(i, j) of
0 : { }

1 : copy house cell onto limit r a s i m g at (j - 1) * size, (n - i) * size
2 : copy road cell onto limit r a s i m g at (j - 1) * size, (n - i) * size
3 : copy sw am p cell onto limit ras img at (j - 1) * size, (n - i) * size

default : { }
copy image 200 by 200 of w hite onto screen ! set w hite backg round fo r the X -w indow
copy ras img onto limit screen at 10, 10

" 1

S i i

HPJqi
Figure 3.7 An example utilising the raster graphic facilities o f Napier88.

The map depicted is basically that previously shown in its
vector form in Fig. 3 .6

83

Chapter 3: Napier88 and its Use as the IGIS Development Tool

3.4.4 Bulk Type Libraries

The bulk type libraries support two essential activities. Firstly, they allow regularities in
structure to be described. Secondly, they support powerful and succinct notations for the
execution of computing with such regular structures [Atkinson et al., 1993b]. Typically, a

bulk type describes a value of arbitrary size (i.e. a bulk value) by repeating an element of

some other type as many times as is necessary. The bulk type libraries are designed to

support several families of bulk types. A family is a collection of bulk types that have a

similar set of operations with a similar algebra that relates these operations to one another.

At the time of writing, only a family which has set and sequence-like properties is available;

other families such as graph-like bulk types and totally unordered types are still under
development [Atkinson et al., 1993a]. The set and sequence-like family consists of a
number of members including Lists, Maps, Sets, Strings, Vectors and Conversions. Both

Lists and Maps have been used intensively in this research project, so they will be discussed
separately and in more detail in the following two subsections. As for the other bulk types,
the Sets library is used to deal with ordered sets using a B-tree representation; the Strings
library is provided for the handling of a sequence of characters of an arbitrary length; the
Vectors library extends the facilities for the manipulation of the standard vector type; and
the Conversions library is provided for conversions between the other five bulk types.

3.4.4.1 The Lists Library

The Lists library contains a collection of procedures for the construction and manipulation
of a sequence of homogeneous elements which are in the form of the list data structure. The
list type is essential for the vector representation of linear features such as roads, rivers,
coastlines, etc. For example, a road may be represented as a list of points, where each point
has a structure of x and y coordinates. In fact, point and polygonal features can also be
represented in the list form. A point feature may be represented as a list type of a single

element, whereas a polygon feature can be regarded as a list of line components which close
back on the starting point. Thus all vector-based geographical features can use a single
consistent type list for their data representation. The bulk type List used in the Lists library
is defined by

rec type List[T] is variant(full: Cell[T]; empty: null)
& Cell[Q] is structure(hd: Q; tl: List[Q])

This is a parametric recursive type which can be of any type but which requires that all the
elements in a list should be of the same type. The identifier T enclosed in square brackets
signifies that it is a parametric type. The parametric type, which generally represents
different types, may be specialised for use, such as Zirt[int], Lwr[string], List[List[rea\]],

84

Chapter 3: Napier88 and its Use as the IGIS D evelopm ent Tool

etc. This mechanism of the parametric type is called parametric polymorphism or

polymorphism for short [Morrison et a l., 1987]. Polymorphic procedures which use

parametric types are extremely useful because the same Napier code can be re-used on data

with the same structure but containing different types [Atkinson, 1992b]. The L ists library

provides about 150 list processing functions which are sufficient for any kind of operations

being carried out on data of the L ist type. For example, in order to make a list of coordinate

pairs, an empty list can be created as follows:

type X Y is structure(x, y: real)
let xy_list := l_make[XY] ()

The first statement declares a structure type XY, with two fields x and y of type real. Note

that the structure type is a compound type constructor which can also be used to group

different types together. The second statement uses the procedure I jn a k e to make a new

(empty) list x j i s t . The x y j i s t may then be appended one element at a time, either at the

head or the tail of the list by the procedure I'_prepend or l_append. For example,

for i = 1 to 9 do
begin

let x = r e a d R e a l ()
let y = r e a d R e a l ()
let xy = X Y (x , y)
x y j i s t := l_ p repend [X Y](xy , x y j i s t)

end

The above code fragment reads the coordinate pairs repeatedly 9 times from the standard

input and constructs the list x y j i s t for the line feature 2 given in Fig. 3.6. After a list has

been built, plenty of operations may be applied to the list. For example, a new location of

the feature 2 may be produced by shifting the amount of sx in x-direction and sy in y-

direction. This can easily be implemented utilising the following statements.

let s h i f t j o c a t i o n = proc(pos: X Y —> X Y)
begin

let n ew _ p o s = X Y (p o s (x) + sx, pos(y) + sy)
n ew _ p o s

end
let n e w _ x y j i s t := l_m ap[X Y , X Y] (x y J i s t , s h i f t jo c a t io n)

The procedure I jn a p applies the function s h if tjo c a tio n to every element of the list x y j i s t

and results in the new list n e w _ x y jis t. In this case, the procedure s h if t jo c a tio n is passed

as an argument to the procedure l_m ap. Also the procedure m ake D raw F unction used in the

program vector_graph .N (see Fig. 3.6) can return a procedure for the drawing of the

feature. This characteristic of regarding procedures as data objects in Napier88 is called

high-order procedures.

85

Chapter 3: Napier88 and its Use as the IGIS Development Tool

It is possible to organise a map as a list of geographical features. This arrangement may be
suitable for map production in which data is usually organised sequentially and is operated
on in a batch mode. However, it is inappropriate for querying geographical features due to
the needs for a fast response time and for the processing to be carried out in an interactive
mode. Because the only access to a list is from a pointer to the first element (head) of the

list, so the traversal of a list cannot be avoided in the course of accessing an element.

Hence, the list type may be well suited for the representation of individual features, but the

performance is often poor when a large number of elements are linked together into a long
list. In order to aggregate many geographical features into a bulky yet manageable unit, the
Maps library can be used to achieve this purpose.

3.4.4.2 The Maps Library

This particular Library has nothing to do with maps in the cartographic or GIS sense or use
of the word. In the specific context of Napier88, the term Maps (more properly finite
mappings) is used to describe a generalisation of sets, relations, and sparse arrays. A map is
the stored and updateable representation of a partial function, and may be considered as a
set of pairs of tuples, denoting the domain and range respectively. A map will trivially
represent sets, arrays, sparse arrays, index structures, and relations [Atkinson et al., 1991;
1993b]. The Maps library provides a representation of the mappings required between any
two Napier88 types. The full implementation of the Maps library with all of its features has
not yet completed. However, a particular form of the map type has been implemented and
has been in use for several years. This particular form has a domain and a range, each of one
type. The domain must be a set such that no two elements may have the same value for
their domain. The user provides the equality and ordering tests for the domain. The Maps
library contains a collection of procedures for the construction and manipulation of the data

of the map type. The type of a map for values of type A to values of type Z is represented
as Map[A, Z]. Each pair stored in the map contains one value from the domain of type A
and the corresponding value from the range of the type Z [Atkinson et al., 1992b; 1993a].
For example, a map type may be created for storing the geometry of geographical features
as follows:

let eq = proc(a, b: int —> bool); [if a = b then true else false}
let It = proc(a, b: int —> bool); [if a < b then true else false}
let geometry := m_empty[int, List[XY]](eq, It)

The first two statements provide the equality and ordering tests for the domain of type int.
In this instance, the values in the domain are arranged in an ascending order. The third
statement uses the procedure m_empty to prepare an empty map (geometry) for storing
elements. Each element stored in the geometry object represents a mapping from an integer

86

Chapter 3: Napier88 and its Use as the IGIS Development Tool

value to a list of coordinate pairs XY. For example, each feature in Fig. 3.6 can be
constructed as an element combining a feature identifier (id) and a list of coordinates
(x y j i s t) in pairs. Thereafter, each element may be put into the geometry object in turn using
the statement

m_isu_insert[int, List[XY]](geometry, id, x y jis t)

The procedure m js u jn s e r t inserts an element with domain in t and range List[XY] into the
map (geometry). As a result, the object geometry has a bulk value which comprises three

tuples, each corresponding to a feature. The procedure includes an “Jsw _” in the identifier
which means that this operation will update any instance of the map in situ, without

changing the identifier of the map. In other words, this procedure only updates the content
of an old object and does not result in the creation of a new object in the manner that the
operation of the procedure l_map does in the example of utilising the List library. In fact,

the naming convention, i.e. the use of “_isu_”, will apply to all the procedures provided by
the bulk type libraries. Furthermore, each procedure which belongs to a specific library has
been designed to be associated with a prefix, such as T represents ‘List’, ‘m’ stands for
‘M ap', etc. These naming conventions allow programmers to have a good chance of
guessing the meaning or name of a procedure. In practice, therefore, this convention is very
convenient when planning or executing the utilisation of the bulk type libraries.

An element in a map may be easily accessed by the procedure m jin d . For example, the
statement

let swamp_coords = m_fmd[int, List[XY]](geometry, 3)

will return a list of coordinates representing the feature swamp. Thus the Maps library is
very useful for the modelling and indexing of geographical data - matters which will be
discussed in more detail in Chapters 5 and 7 respectively. In particular, the elements of a
map can be efficiently inserted and accessed because the Maps library has implemented an
adaptive data structure, which is based on both the binary search and the B-tree, in order to
tune itself automatically to the various number of elements present in a map [Atkinson et
al., 1993b].

3.4.5 Abstract Data Types

Abstract data types may be used where the data object displays some abstract behaviour
which is independent of its representation type [Morrison et al., 1993b]. An abstract data
type can be manipulated without any need to discover its implementation or representation.
For example, the procedures for drawing three kinds of entity (point, polyline and polygon)
may be implemented differently, yet they all exhibit the same basic behaviour - that of
drawing an entity.

87

Chapter 3: Napier88 and its Use as the IGIS D evelopm ent Tool

In order to draw a point, the procedure may be implemented as follows:

type X Y is structured, y: real)
type E xten t is structure(xmin, xmax, ymin, ymax: real)
let d raw _ p o in t := proc(pt: X Y ; pt_col: pixel; window : image; extent: Extent)
begin

let po in t = colour[pt(x), pt(y)] in pt_col
d raw (w in d o w , point, ex ten t(xm in) , ex ten t(xm ax), ex ten t(ym in) , ex ten t(ym ax))

end

This procedure makes a picture p o in t from a pair of coordinates p t , colours the picture in

p t_ co l, and displays it within a drawing extent on a window. Similarly, the procedure for

drawing a polyline may be implemented as follows:

let draw _po ly l ine := proc(pl: Lis t[X Y]; pl_col: pixel; w indow : image; extent: Extent)
begin

let poly line := [l_firs t[XY](pl)(x), l_first[XY](pl)(y)]
pi := t l[X Y](p l)
while pi isnt empty do
begin

let xy = hd[X Y](p l)
po ly line := po ly line A [xy(x), xy(y)]
pi := t l[X Y](p l)

end
po ly line := colour polyline in pl_col
d raw (w in d o w , polyline, ex ten t(xm in) , ex ten t(xm ax), ex ten t(ym in) , ex ten t(ym ax))

end

The differences between these two procedures are:

1. the identifier and the type of drawing entity (pt: X Y vs. pi: List[XY])', and

2. the construction of a picture {poin t vs. polyline).

Because the implementation part (i.e. the expressions between begin and end) of the

procedures is invisible to users, so the only difference is the data type (i.e. X Y and L ist[X Y])

used in the interface part.

The use of these two procedures for drawing geographical features is not very convenient,

because the data type of a feature has to be determined before applying one of these

procedures. For example, the drawing of the three features shown in Fig. 3.6 requires the

uses of the d r a w jio in t procedure for feature 1 and the draw _poly lin e procedure for

features 2 and 3. In order to have a general procedure for drawing features independent of

their data types, an abstract data type can be used to achieve this aim. An abstract data type

Feature for such objects can be defined by

type F ea tu re is abstype[coords](id: int;
window: image;
extent: Extent;

88

Chapter 3: Napier88 and its Use as the IGIS D evelopm ent Tool

id_col: proc(int —» pixel);
location: proc(int —> coords);
d isplay: proc(coords, pixel, image, Exten t))

The type co o rd s , known as the witness type, is used to define an abstract data type over

types such as XY, List[X Y], etc. The abstract data type interface is declared between the

round brackets. In the above case, the Feature has six fields: id, w indow , exten t, id _ co l,

loca tion and d isp lay provided for the interface. The implementation of the interface

depends on the requirements of the particular representation types involved. For example,

the field d isp la y can be implemented as d ra w jp o in t or d ra w jp o ly lin e depending on whether

the data type is X Y or List[X Y], and the procedures required for the fields id _ co l and

location may be further implemented as follows:

let id_col := p roc(id : int - 4 pixel)
begin

let col = case id of
1 : b lue
2 : red
3 : g reen

d efau lt : white
col

end

let get_xy := p roc(id : int —> X Y); l_ f irs t [X Y](m _find [in t , L is t[X Y]](geom etry , id))
let get_xy_ lis t := p roc(id : in t —> L ist[X Y]); n i_ f ind[in t , L is t[X Y]](geom etry , id)

where geom etry is a bulk object of type m ap (see Section 3.4.4.2). Thereafter, abstract data

objects of type Feature may be created. For example,

let house = F ea tu re [X Y](1, screen, ex ten t, id_col, ge t_xy , d raw _po in t)
let road = F ea tu re [F is t [X Y]](2 , screen, extent, id_col, get_xy_lis t , d raw _ p o ly l in e)

will create objects house and road which have the same abstract data type Feature.

However, their representations are different; in this particular case, the house object uses

the point type X Y and the road object uses the polyline type L ist[X Y]. Once an object of

type F eature has been created, one can no longer tell the specific representation used for

coords. Based on the abstract data type F eature, a procedure for drawing any type of

feature may be implemented and used as follows:

let d ra w _ fe a tu re = p ro crfe a tu re : Fea tu re)
use fea tu re as F in
begin

let id = F(id)
let w indow = F (w indow)
let exten t = F(ex ten t)
let id_col = F(id_col)

89

Chapter 3: Napier88 and its Use as the IGIS Development Tool

let location = F(location)
let display = F(display)
display(location(id), id_col(id), window, extent)

end

! uses of the procedure
draw_feature(house)
draw_feature(road)

The use clause is a scoping and renaming device. The abstract data type feature is renamed
as F in the clause following the in. By giving the object a constant name F, it can be
assured statically that the interface procedures will only be applied to the objects of the

correct representation [Morrison et al., 1987]. The procedure draw_feature provides a
public interface available for drawing all kinds of features. The important point about this
procedure is that it will operate on objects of the abstract data type Feature irrespective of
their implementation. For example, the change of the procedure id_col to rearrange colours
for features or a change in the representation of a house object from its representation as a
point to that of a polygon when displaying it at a larger scale only needs a change in the
internal representation of abstract data objects. These changes do not result in a change to
the procedure draw_feature.

Thus, abstract data types provide a mechanism whereby a clear separation is made between
the interface and the implementation of the data type. The information-hiding feature of
abstract data types is essential for the development of an object-oriented software and
database for an IGIS.

3.4.6 M aking Data Persistent and Reusing Persistent Data

All the data objects created in the previous programs can be placed into the persistent store,
i.e. they will exhibit orthogonal persistence. The environment User of the persistent store is

reserved for users to organise and manage their persistent data. Initially, the environment is
empty. Both programs {i.e. data objects of proc type) and data of any type may be made
persistent in the environment User. The environment structure in the environment User may

be designed and constructed by the users. A new environment is created by using the
standard procedure environment and it may be added to the environment User by the in ...
l e t ... notation for declarations. For example, the environment User prepared for the storage
of procedures and data may be set up by the following program.

use P S () with 10, User: env; environment: proc(—> env) in
use IO with writeString: proc(string) in
if User contains Programs or User contains Data then

writeString(“User already contains Programs or Data, no action taken.’n”)
else

90

Chapter 3: Napier88 and its Use as the IGIS Development Tool

begin
in User let Programs = environment)
in User let Data = environm ent)

end

In order not to destroy existing valuable information inadvertently, the operator contains is
used to test whether the name already exists in the specified environment. This program

creates two new environments - Programs and Data - in the environment User. Afterwards,
procedures and data may be added to these two environments Programs and Data

respectively also by using the in... let ... notation declarations. For example, adding the
following statements into the program vector_graph.N one line before the last end will

make the vectorjnap persistent in the environment Data.

use User with Data: env in
in Data let vec_map := vec_map

Similarly, the following statements may be added to a program which contains the
procedure draw__point. This arrangement will make this procedure persistent within the
environment Programs.

use U ser with Programs: env in
in Programs let draw_point := draw_point

However, procedures are usually developed independently and will be shared by many
programs. The development of a procedure has to accommodate any future changes, and
these changes must not result in the re-compilation of the program which uses this
procedure. This situation may be realised by using the incremental construction
methodology supported by Napier88’s incremental loading mechanisms. The philosophy
behind this methodology is that of employing the L-value binding which libraries of the
procedure values hold as procedures variables. Thus the amendments to the procedures
should be achieved by assignment to these variables. This methodology is implemented by

setting up the initial procedure variables as stubs. These are variables containing standard
dummy values, and these variables will be given useful values by assignment from separate
programs [Atkinson, 1992b]. For example, the following program sets up stubs for the
procedures draw_point and id_col.

type XY is structure(x, y: real)
type Extent is structure(xmin, xmax, ymin, ymax: real)
use P S () with User, GlasgowLibraries: env; environment: proc(—> env) in
use User with Programs: env in
use GlasgowLibraries with Miscellany: env in
use Miscellany with uninitialised: proc[T](string —> T); uninitialised_void: proc(string) in
begin

in Programs let draw_point := proc(pt: XY; pt_col: pixel; window: image; extent: Extent)

91

Chapter 3: Napier88 and its Use as the IGIS Development Tool

uninitialised_void("draw_point")
in Programs let id_col := proc(id: int —» pixel); uninitialised[pixel]("id_col")

end

The procedure uninitialised or uninitialised_void is used to provide a dummy value for each
“set-up” procedure depending on whether it will return a value or not. It should be noted

that a set of type declarations may also be pre-compiled and saved for reuse. For example,
the type declarations such as XY , Extent, Feature, etc. used in the previous examples may
be collected and saved as a file. This file is then processed by the command n p s which

compiles and saves the type declarations. Once the storage of the type declarations has been
made, a program may be compiled against these available types. The following program is
then used to initialise the procedure draw_point without needing to specify the type
declarations in the program.

use P S () with Graphical, User: env in
use Graphical with Outline: env in
use Outline with makeDrawFunction: proc(string —> drawFunction) in
use User with Programs: env in
use Programs with draw_point: proc(XY, pixel, image, Extent) in
begin

let draw = makeDrawFunction("image")'imageDraw
draw_point := proc(pt: XY; pt_col: pixel; window: image; extent: Extent)
begin

let point = colour[pt(x), pt(y)] in pt_col
draw(window, point, extent(xmin), extent(xmax), extent(ymin), extent(ymax))

end
end

After binding some geographical data and the procedures used in the previous examples,
the environment User will have a structure which is shown in Fig. 3.8.

— draw_point: proc(XY, pixel, image, Extent)

- P rogram s-
— draw_polyline: proc(List[XY], pixel, image, Extent)
— draw_feature: proc(Feature)

- U ser - — id_col: proc(int —> pixel)

p s o - — vec_map: pic
JJala ras_img: image

— geometry: Map[int, List[XY]]

Figure 3.8 The environment User after the binding of procedures and data

The way in which programs and data from the environment User can be retrieved for reuse
is exactly the same as that used with procedures from the standard library. For example, the

92

Chapter 3: Napier88 and its Use as the IGIS Development Tool

procedures draw_polyline and id_col and the data geometry may be retrieved from the
persistent store to draw the feature 3 in a blue colour by using the following statements.

! reuse.N
use User with Programs, Data: env in
use Programs with draw_polyline: proc(List[XY], pixel, image, Extent);

id_col: proc(int —> pixel) in
use Data with geometry: Map[int, List[XY]] in
! identifiers screen and extent declared as before
draw_polyline(m_fmd[int, List[XY]](geometry, 3), id(l), screen, extent)

This program need not be recompiled if the internal representation of the procedures has

been changed. For example, if the colours in the procedure id_col have been rearranged,
then the only requirement is to edit, compile and run this procedure. The program reuse, out
can be used to give a different result without being recompiled.

It should be noted that unwanted procedures and data may be removed from their bound
environments. For example, the statement

drop geometry from Data
will remove the binding (or object) geometry from the environment Data. The effect is that
the binding geometry is no longer reachable from the environment Data. The dropped
binding may still remain in the persistent store if other bindings to the value in the dropped
binding are still valid [Morrison et al, 1993]. The space allocated for unused objects may be
eliminated by performing a garbage collection using the command nprgc, followed by
running the store compaction command npr comp act.

3.5 Summary

For geographical data handling, the support of persistent objects is of the greatest
importance to a GIS. Most programming languages (whether conventional or object-
oriented) only allow certain types of objects to outlive the execution of a program. Once the
program terminates its execution, all objects except those of certain persistent types become
inaccessible. Such programming languages cannot provide a seamless and elegant support
for the persistence of geographical data, due to the already mentioned problems of the
semantic gap and the impedance mismatch. Things become still worse when the program
(and the programmer) is concerned with the integration of various types of geographical

data, as in an IGIS. Therefore, there is a need to treat persistence as an orthogonal property
of data. That is to say, persistence should be independent of data type and the way in which
the data is manipulated. There have been many attempts to add persistence to a
programming language. Now persistent programming languages are being developed as the
technology that will provide an answer to such a requirement.

93

Chapter 3: Napier88 and its Use as the IGIS Development Tool

Napier88 is probably the most prominent of the persistent programming languages. The
Napier88 system allows any object to persist in a persistent store irrespective of the
representation of the object. There is no difference in the usage, referencing or access of
objects that are stored in the memory or in the persistent store. The support of orthogonal
persistence for data objects by Napier88 forms a good basis for the provision of an

integrated programming/database environment. Therefore, the provision of orthogonal
persistence is regarded as the most important facility for the development of an IGIS. Apart

from this, Napier88 has several language features which are novel, including automated
support of persistence, graphic data types, high-order procedures and incremental loading
mechanisms. Napier88 also provides a collection of standard libraries and bulk libraries to
facilitate system development. Some of the facilities provided as standard are in fact
essential for the development of an IGIS. They include vector graphics, raster graphics,
bulk type libraries, abstract data types, WIN, etc. These facilities seem to form the basis for

the creation of an IGIS with a full degree of integration. Thus the suitability of Napier88 as
an IGIS development tool will be examined in detail in the Chapters that follow.

94

Chapter 4: The IGIS System Architecture

CHAPTER 4 : THE IGIS SYSTEM ARCHITECTURE

4.1 Introduction

As has been described in Chapter 3, the fundamental concepts and the design principles of
the persistent programming language Napier88 are quite different to those of conventional
programming languages. In particular, Napier88 treats persistence as an orthogonal

property of data to provide a firmly integrated programming/database environment. In

principle, such an environment is an ideal foundation for building a geographical database

with a full degree of integration. However, because the persistent environment is entirely

supported by the Napier88 language itself, no interface is provided for users to make use of

alien resources, e.g. embedding Unix commands or other languages’ library facilities into a
Napier88 program; providing linkages to commercially available DBMSs, etc. Therefore, in
order to take advantage of the unique feature of the persistent environment, the design and
development of an IGIS needs to start from scratch and depend solely on the resources
provided by the Napier88 system. In other words, the complete method (see Section 1.2.2)
is currently the only approach which may be used to carry out an IGIS development using
Napier88.

The development of an IGIS with full functionality is a relatively complex undertaking and
requires many man-years of effort. In general, a GIS comprises four important components
(hardware, software, database, people) and provides five major functions (input,
manipulation, management, query and analysis, output) for dealing with spatially referenced
data in order to supply information in support of decision making and other activities
[Aronoff, 1989; McRae, 1989; Star and Estes, 1990; Maguire and Dangermond, 1994]. All
these components and functions interrelate and diversify the subsystems forming an IGIS.

Therefore, careful design is vital for the success of a GIS besides having an efficient
implementation. In practice, a GIS design may be subdivided into two major stages: its

institutional (or external) design and its technical (or internal) design. The institutional
design deals with the relationships that exist between the GIS and the world outside the
system. The design phases of this category mainly comprise a user requirement analysis and
a user resource analysis. On the other hand, the technical design is concerned with the
functions, data models and data structures of a GIS. The design phases of this stage
comprise the functional design and the database design [McRae, 1989; Marble, 1994].
These two stages of the GIS design are closely related and need to be conducted in
harmony in order to develop a successful GIS.

The institutional design involves a wide range of issues, including data availability, data
licences and costs, equipment availability and costs, data accuracy standards, data sharing

95

Chapter 4: The IGIS System Architecture

and security, data exchange standards, operational procedures, staff education and training,
and so on [Lauer, 1991]. Many of these issues are administrative, managerial, or even
political in nature. Consequently, it is rather difficult to carry out an institutional design

which is fully comprehensive for an IGIS because of their complexity. Therefore, the

institutional design is often ignored in practice. As a result, quite a number of examples
have been reported in the technical press showing that the failure of a GIS was due to a lack
of an appropriate institutional design. However, in spite of its importance, a discussion of

the institutional design lies outside the main context of this research topic, so it will not be

further discussed in this chapter.

On the other hand, the technical design deals purely with the system functionality, data

models and data structures aspects implemented in an IGIS. Before carrying out the
technical design, the features which are required in an IGIS have to be determined. It has
been pointed out in Chapter 2 that the integration of heterogeneous data from diverse
sources into a single system is one of the primary features needed in a GIS. There may be
other demands to include advanced technical features in an IGIS. These may include
handling the temporal dimensions of data as well as its spatial dimensions. Other
requirements might be to provide version management within a large multi-user IGIS for
long transactions; a seamless geometric and topologic database; and an object-oriented
front-end processor for system customisation. Still other requirements or possibilities would
be the provision of a virtual database allowing access to external databases; distributed
geographic databases over a world-wide network for large-area or global projects; multi-
media presentations of geographical information; the encoding of spatial knowledge into a

database for spatial reasoning, and so on [Newell and Theriault, 1989; Laurini and
Thompson, 1992; Laurini, 1994; Maguire and Dangermond, 1994; Newell, 1994].
However, many of these features are still in the stage of research and development. In
addition, they involve a variety of technologies including database management,
networking, multi-media, object-oriented programming, etc. Therefore, the inclusion of all
of these advanced features in the IGIS design may end up with the system either being too
complicated to implement or too big to handle. Since a fully integrated database is the

backbone of all these advanced features, the IGIS system architecture presented in this

thesis is centred on the issue of the integration of various types of geographical data.
Accordingly, the functional design and the database design are focused on this particular

point.

Since this is the first attempt to develop an IGIS using Napier88, there were no relevant
GIS procedures written in Napier88 available for the system development - although in
Abdallah’s [1990] research, quite a large number of PS-algol procedures had been
developed for his prototype GIS. However, none of these procedures could be reused in the
Napier88 system because the two language systems are incompatible. Furthermore,

96

Chapter 4: The IGIS System Architecture

Abdallah’s prototype GIS was only concerned with the handling of vector data and was
based primarily on a spaghetti data model. It was clear therefore that the system
architecture of Abdallah’s prototype GIS would not be adequate for the development of an
IGIS. Therefore, the system architecture of the new IGIS based on Napier88 has required a
completely new design. Thus the remainder of this chapter is concerned first of all with the

design of the IGIS with its associated data, products and other systems based on the

persistent programming/store environment of Napier88. Thus, the design criteria have been
drawn from a discussion of the design considerations required for the IGIS development.

This is followed by a further discussion of the two designs which form the essential

elements of the IGIS, namely, the functional design and the database design. Finally, the
overall system architecture of the IGIS is presented.

4.2 The Persistent IGIS and its Surroundings

The design of an IGIS based on the persistent programming language Napier88 needs to
identify the individual components of an IGIS and its surroundings. The IGIS is built within
an integrated programming/database environment, i.e. Napier88’s persistent
programming/store environment or persistent environment for short. This persistent
environment provides a seamless condition for running programs as well as storing
persistent data. For convenience, such an IGIS based on the Napier88 system will be
termed a persistent IGIS. This persistent IGIS with its surrounding is conceptualised in Fig.
4.1. It should be noted that this Figure depicts the logical data flow between different
components rather than the physical system configuration.

The persistent IGIS consists of application programs and a persistent store. The application
programs, which are stored as files using the Unix file system (not shown in Fig. 4.1),
comprise a suite of application modules. Each application program is designed for a specific

application. The persistent store contains a specific collection of data objects for IGIS
applications, in addition to the Standard Library and the Bulk Libraries supported by the

Napier88 system (as explained in Chapter 3). These data objects, which normally will be
stored in the User environment, may be classified into two categories: a software library
and an integrated database. The software library is an aggregation of basic GIS modules,
procedures, default constants and variables provided for use in the application programs,
whereas the integrated database is composed of three kinds of data: vector, raster and
attribute. When running or executing the persistent IGIS, an application program is firstly
loaded into the main memory of the computer by the Napier88 system. The application
program then automatically accesses the data objects, which are reachable from the root

object PS(), from the persistent store and copies them into the application program
memory. Conversely, when the program terminates, the data objects used in the program

97

C hapter 4: The IGIS System A rchitecture

Geographical D ata

Existing Files or Digitisation

Data Input

Products

Statistical
Reports

Graphics on
Paper or Film

Digital Files
etc.

Persistent IGIS

Application
Program s

Specific Application
^ Modules

Output I
-

\ Persistent Store

Software Library
Basic GIS Modules,
Procedures, Default

Constants and Variables

DataBase
Vector, Raster, Attribute

Data

Persistent Programming/Store
Environment

Data
Comm. O ther

Persistent
GISs

Figure 4.1 The Persistent IGIS with its surroundings

will be placed in the database if they are reachable from the PS(). It will be seen that the

application program and the database are tightly integrated in the persistent environment

while the Napier88 system is running.

On the other hand, the persistent IGIS needs to communicate and interact with the outside

world for the purposes of data input, data output and data communication. The data input

operations are required for the import of existing digital files and to support the data

acquisition being carried out using various digitising devices. The data output operation is

used to plot graphics, to print reports or to export digital files. As for the data

communications aspect, this has to be provided for the sharing of data with other persistent

GISs.

98

Chapter 4: The IGIS System Architecture

4.3 Design Considerations

From the system design of a persistent IGIS given above, it is apparent that the system

development mainly involves the construction of the relevant software library and of the

database which will be held within the persistent store in order to supply data objects for

application programs. In other words, the construction of the geographical data in the

database and the provision of the associated software library are the main concerns. As has

been mentioned before, the application programs and the persistent store are closely
integrated within the system environment of Napier88. Any data will have the same

representation, including its format and its structure, both in the programs and in the
persistent store. Because the data types stored in the persistent store will be used directly in
the programs, so the software design is quite dependent on the database design, and vice
versa. As a result, care in the design of the organisation of geographical data in the
persistent store is a major factor in ensuring the successful development of a persistent

IGIS. Thus the design of an integrated database in the persistent store is the most critical
issue for the development of a persistent IGIS.

Consideration of the technical requirements for an integrated geographical database and the
associated software library determines the key design criteria for a persistent IGIS. In this
section, only those requirements that are more or less specific to the design of a persistent
IGIS will be discussed. These basic requirements include consideration of

(i) the various forms of the vector, raster and attribute types of geographical data
required for database integration;

(ii) the various functions of geo-processing systems required for software integration;
(iii) the data models and data structures needed for both the software and the database;

and
(iv) the superimposition and concurrent processing of vector data and raster data in a

persistent IGIS.

A detailed discussion of each of these matters will be given in the subsections that follow.

4.3.1 Various Forms of Geographical Data Types Needed for Database Integration

Before the design of an integrated database can begin, the anticipated capability of the IGIS
should be determined. The functions of an IGIS may be confined to the applications of
geographical query and analysis. Alternatively they may be extended to include the
capabilities of relevant digital mapping and image processing systems should these be very
important to the data input aspects of the IGIS. Generally speaking, GISs provide very
limited capabilities for digital mapping or image processing operations. For example, most

99

Chapter 4: The IGIS System Architecture

existing vector GISs support a facility for the digitisation of existing maps. However, often
they do not have a complete set of map editing functions such as those which will be found
in digital mapping systems. In order to acquire some of the capabilities of digital mapping or
image processing, the general practice is for a digital mapping system to be used as a front-

end processor of a vector GIS or an integrated GIS. Similarly an image processing system

may be used as a front-end processor of a raster GIS or an integrated GIS. In this instance,
the output data formats of these front-end processors often need to be translated into the
input data formats of the GIS. In fact, the data conversion and the repetition of some
functions can be avoided if the functions of digital mapping and/or image processing are
integrated into an IGIS. However, different functions of an IGIS may be involved at

different stages in the geographical data handling. This will result in the complexities of data
types in different forms having to be designed and accommodated in the persistent store.

Fig. 4.2 illustrates an overview of the different data types and the various forms of each

data type that may be involved in different systems relevant to geographical data handling.
Having regard to this geographical data handling, each type of geographical data may be

generally classified as falling into one or other of three forms: either raw, processed or
derived data. Each form may contain one or several formats or data structures, each
specifically designed for a particular stage in the data processing. The raw form, which is
often the simplest possible form, may be used with the data which has been newly created
by digital acquisition devices. The processed form can be used when the prerequisite
manipulations such as correcting errors, changing map projections, executing coordinate
transformations, structuring the data, building topology, etc. has been carried out on the
data. As for the derived form, it may be necessary to employ this when the data is generated
from the processed form for specific applications. In general, digital mapping systems and
image processing systems mainly cover the data processing operations carried out between

the raw form and the processed form, whereas a vector GIS, a raster GIS and an integrated
GIS are concerned primarily with the data processing implemented between the processed
form and the derived form.

In each geo-processing system, an interim form - which normally represents the internal
format used in the system - may be required for the efficient processing and storage of the
data. For example, in a digital mapping system, the raw form may be used when the data is
newly created. Then the raw data is edited, pre-processed and restructured into an internal
format which represents the interim form. Finally, the interim data may be converted into
the processed form representing a data format which may be used in other vector-based
systems or for exporting digital files. Similarly, a vector GIS may import digital files from
digital mapping systems which are already in a processed form and then transform them into
the internal format of the GIS. Furthermore, the interim data may be extracted from or

100

C hapter 4: The IGIS System A rchitecture

V

V+A

Digital M apping (DM) System
1......... .̂..... 1..........1..... 1........ ZZZ1

Vector GIS
V / / / / / A / / 7 / / / A L ::..... LIZ-......... I

Integrated GIS

V+R+A

Raster GIS

R+A

Image Processing (IP) System

, Raw , Interim , Processed . Interim . Derived .
I F o r m I F o r m I F n rm ' F n rm I F o r m

Data Types
V : Vector

R : Raster

A : A ttribute

Basic System Facilities

H : GIS

□ : DM or IP

Extended Facilities for GIS

0 : DM

S : IP

Form 1 Form 1 Form 1 Form

D ifferent form s o f data required in the various stages o f data h and ling

Figure 4.2 Geographical data handling may cover different forms of the vector, raster
and attribute data types used in different geo-processing systems

reformatted into the derived form for other applications. In terms of an IGIS, it may not

only accommodate the three data types (vector, raster, attribute), but it may also cover the

processed, the interim and the derived forms required for each type of data processing.

However, if an IGIS extends from basic GIS functions to the image processing functions

associated with digital photogrammetric or remotely sensed data, then the raster data

component needs to include the raw and the interim forms of data which derive from image

processing. The same holds true for the vector data component should an IGIS be extended

to include digital mapping capabilities.

It should be noted that the concept depicted in Fig. 4.2 has been simplified and only

illustrates the major forms involved in a geo-processing system. In practice, such a system

may have to cover all forms of one or several of the data types described above, e.g. a

vector GIS usually includes a data format in the raw form needed for map digitisation, in

addition to the processed form, the interim form and the derived form required for most

operations.

As has been discussed in Section 2.5 and has also been demonstrated by the representative

commercial IGIS products outlined in Section 2.6, the current trend in IGIS development is

to include the functions of digital mapping systems as well as those of image processing

systems. Therefore, the design of data types in an integrated database has to ensure that an

IGIS is able to accommodate all the foreseeable requirements in these respects. Thus the

101

Chapter 4: The IGIS System Architecture

database of a persistent IGIS will contain the three main data types together with the
different forms of each data type required for a whole range of geographical data handling.

4.3.2 Various Functions of Geo-processing Systems for Software Integration

Apart from the different forms of each data type which need to be included in an integrated
database, it is also necessary to consider the associated software modules which will utilise
the integrated database. Because the data flow and the linkages between the various
software modules affect the organisation of geographical data in the database, so the

requirement of ensuring that the various functions of different geo-processing systems can

be integrated within the software has also to be considered. IGIS software can often
comprise or be decomposed into dozens of modules. Each module is available for a specific

application. For example, at the first level of software decomposition, an IGIS may be

broken up into six main modules: the core module, the digital mapping module, the image
processing module, the vector GIS module, the raster GIS module and the attribute
handling module. These modules may be further subdivided into many small modules such
as the vector data import module, the vector data export module, the raster data import
module, the raster data export module, etc. The core module, which comprises a number of
functional modules which provide basic facilities, may be used to link up and communicate
with all other modules. All of these modules may employ different forms of one or several
data types for their operations. Fig 4.3 is a typical example which illustrates the data flow
and the linkages which could exist between different software modules in the situation
described above.

It should be noted that the attribute handling module shown in this example also contains an
import/export function, a processing function, etc., but these have not been further
decomposed into small modules. Different types of data (vector, raster and attribute) may
be imported into or exported from the IGIS through an appropriate import/export module

(or a function in the case of attribute data) in addition to those to be created within the
IGIS using data collection functions which are not shown in Fig. 4.3.

In terms of vector data processing, raw vector data may be created by using the digital
mapping module. The raw vector data is then processed and transformed into the interim
vector data which is structured into the form required for most digital mapping operations.
The interim vector data may be further converted into the processed vector data which is
then restructured and prepared for general vector-based applications. The processed vector
data may join the attribute data, which may be imported from attribute files via the attribute
handling module, to form the interim vector/attribute data required for most vector GIS
applications using the vector GIS module. Furthermore, the interim vector/attribute data

102

Chapter 4: The IGIS System A rchitecture

Vector Data

)igital
apping

Raw Other Vector-
Vector Data Based Systems

-----------;;-----------
____ X____
Vector Data
Exchange 4.

Files

Vector Data
in System

Format

A ttribute
Attribute

Files
H andling 4 - — » to/lrom

M odule other
DBMSs

Raw

Raster Data

Vector Data

An Integrated GIS

Processed

Vector Data

Raster Data
■> Export ♦

Module

Interim
Raster/Attribute

Data

Interim
Vector/Attribute

Data

Attribute
Data

(Various forms)

Derived
Raster/Attribute

Data

Derived
Vector/Attribute

Data

Interim

Raster Data

Vector Data
Export
Module

Raster Data
Import
Module

Interim

Vector Data

Processed

Raster Data

Import

Raster Data
Exchange 4.

Files
A k

1 r Raster Data
Raw Other Raster- in System

Raster Data Based Systems Format

F ig u re 4 .3 D a ta f low a n d l in k a g e s b e tw e e n the m a in m o d u le s in an IG IS

Symbol Description

------- ►

□
Data Flow

Linkage M echanism

Different Forms o f Data

Software M odules

103

Chapter 4: The IGIS System Architecture

may have to be extracted and restructured in order to run specific applications within the
vector GIS module or for transfer to other vector-based systems using the vector data
export module. On the other hand, vector data can be imported from existing files in
appropriate exchange formats by using the vector data import module. Depending on the
status of the data held in an existing file and the capability of an exchange file format, the

vector data may be imported to the IGIS in the form of the raw vector data, the interim

vector data, the processed vector data or the interim vector/attribute data. For example, if a

map has been digitised using a CAD software package, then the digitised data may be

stored as a file in DXF format. If the file has been edited, then the file may be converted

into the form of the interim vector data required specifically for the applications of the

digital mapping module. Alternatively it can be produced in the form of the processed
vector data generally needed for various uses in vector-based software modules. Otherwise
it can simply be supplied in the form of the raw vector data which can be further edited by
the digital mapping module. However, if a digital map has been created by a digital mapping
system, often it will have been stored as a file in a geographical data exchange format, e.g.
DLG, DIME, TIGER, NTF or SDTS. This kind of exchange file format is able to carry
additional information such as data structures, attributes, etc. along with the actual vector
data. Therefore, such a file may be converted into the form of the interim vector data or the
interim vector/attribute data which is used solely in the digital mapping module or the
vector GIS module respectively. In addition, it also may be converted directly into the form
of the processed vector data for general applications of vector data in the IGIS.

The same concept of the data flow and associated linkages utilised in the vector-based
software modules can also be applied to the raster data processing. For example, if a raw
image has been acquired from the scanning of an aerial photograph or recorded from a
remote sensing device and stored as a file employing a format such as TIFF, GIF, SPOT,
Landsat TM, etc., then the image file may be imported into the IGIS and converted into the
form of the raw raster data. The raw raster data can then be accessed by the image
processing module of the IGIS and restructured into the form of the interim raster data
needed for efficient image processing operations. After the image data has been processed,
it can be further converted into the form of the processed raster data used for general raster

operations. However, if the image file has already been handled by an image processing
software package before its import into the IGIS, e.g. an orthoimage file produced by the
ERDAS system, then the file may be converted directly into the form of the processed
raster data. Furthermore, the processed raster data may join the attribute data from other
sources to form the interim raster/attribute data required for most raster GIS applications or
it may be converted into the form of the derived raster/attribute data used for particular
applications.

104

Chapter 4: The IGIS System Architecture

The vector-based modules and the raster-based modules are all linked together by the IGIS

core module to provide either uni-format or dual-format applications. For example, the
superimposition of vector maps and raster images may be carried out by simply accessing

the processed vector data and the processed raster data using the IGIS core module. A

further specific application may be carried out by an appropriate software module such as
using the vector GIS module to perform a network analysis.

In summary, the anticipated functions of software modules in an IGIS have to be considered
in the design stage since the overall capability of an IGIS depends not only on the support

of an integrated database but also the data flow and the linkages between the software
modules in the IGIS.

4.3.3 Data Models and Data Structures

Starting from the real world, the data modelling process is usually divided into four
different levels:

(i) the external model,
(ii) the conceptual model,

(iii) the logical model and
(iv) the internal model.

The external model is arranged so that potential users can define their own subset of the
real world relevant to specific applications. The conceptual model is a synthesis of all the
external models which is realised in the form of the data model. The logical model is the
implementation of the conceptual model in an information system which takes the form of a
data structure. The internal model is concerned with the representation of the data within
the storage media, e.g. in the form of its file structures. The relationship between the
various data modelling levels is illustrated in Fig. 4.4 [Maguire and Dangermond, 1991;
Laurini and Thompson, 1992].

Since the conceptual model and the logical model are in many ways the critical parts of

geographical data modelling, they have been widely discussed in GIS literature [Aronoff,
1989; Star and Estes, 1990; Egenhofer and Herring, 1991; Maguire and Dangermond,
1991; Peuquet, 1991; Cromley; 1992; Laurini and Thompson, 1991]. It should be noted
that, while these two modelling levels are often termed as data models and data structures
in the GIS community, the usage of this terminology may be quite different from the
conventions used within the computing community.

105

Chapter 4: The IGIS System Architecture

Real
World

Externa l
M ode l 1

External
M ode l 2

Internal M odel
or

F ile S truc ture

Logical M odel
or

D a ta S truc tu re

C oncep tua l M odel
or

D ata M ode l

External
M ode l 3

Exte rna l
M o d e l n

Figure 4.4 Data modelling levels

The goal of data modelling in a GIS is to consistently, robustly and efficiently organise

geographical data in a computer system so that it can provide fast user queries and effective

operations. The selection of a particular data model may considerably influence the

processing of geographical data. Various data models have been developed to represent the

three basic types of geographical data: vector, raster and attribute. Table 4.1 shows three

representative data models for each of the data types that are commonly used in GISs

[Peuquet 1991; Egenhofer and Herring 1991].

Data Types Representative Data Models

Vector Spaghetti, Topological, Hierarchical

Raster Regular, Irregular, Hierarchical

Attribute Hierarchical, Network, Relational

Table 4.1 The representative data models used in GISs

Each representative data model may have a number of variants depending on the

complications of the data model required in or generated by a particular application. For

example, the topological model may be further classified into the link and node, the partial

106

Chapter 4: The IGIS System Architecture

topological and the full topological models [BSI 1992]. In addition, the implementation of a
data model may use various data structures. For example, the hierarchical raster model may
be implemented as a quadtree or a R-tree or a derivative of these structures. In general,
vector data commonly uses the spaghetti, the link and node, and the full topological models;

raster data often employs the grid cell and the linear quadtree models; while the attribute

data usually uses the relational model.

These data models differ in their powers and capabilities so that they provide various

possibilities and different suitabilities within applications. In the past, it has been impossible
to accommodate all these data models in a single GIS for use in any potential application. In
the traditional approaches, some compromises between the data models and their potential
applications are usually made in order to determine or define a suitable data model. Thus a

commercial GIS usually dedicates one type of data model to suit general applications, e.g.
the topological model is the most commonly-used data model in vector GISs. However, as

has been discussed in Chapter 3, the design of a data type in a persistent system is similar to
the design of a schema in a DBMS. Thus the provision of a data model in a persistent IGIS
can simply be carried out by designing a suitable type system. In addition, there is no limit
to the number of type systems that can be used in a persistent system. Therefore it is
possible to provide users with a few or many (or even all possible) data models coexisting
in a persistent IGIS.

For example, each main software module shown in Fig. 4.3 can accommodate a different
data model. The digital mapping module may use the spaghetti model; the vector GIS often
uses the topological model; the image processing module may use the regular raster model;
the raster GIS may employ the hierarchical raster model; and the attribute handling module
uses the relational model. Furthermore, each data model may be implemented with several
data structures for the representation of different forms of data types. The implementation

of the various data structures may be carried out by designing appropriate data types in
order to promote the best system performance. Thus each form of data type described in

Section 4.3.1 can be associated with a specific data structure in the data. For instance, the

commonly used raster data structures are arrays (a matrix of integers or bytes), bitmaps (a
matrix of pixels or bits), run length encoding, quadtrees and pyramids [Laurini and
Thompson, 1992]. They can be optimally implemented for each form of the raster data.
Thus the raw raster data may use an array or a run length encoded (RLE) structure; the
interim raster data will often use a bitmap or an RLE structure; the processed raster data
may use either a bitmap, an RLE or a linear quadtree (LQT) structure; the interim
raster/attribute data may employ a LQT along with relation tables; and the derived raster

data will normally use a bitmap structure.

107

Chapter 4: The IGIS System Architecture

The selection of a particular data model to represent a specific kind of geographical data
depends on the requirements of a specific application. The data models used in GIS are

many and varied. However, the optimal data modelling of geographical data for applications
is another complex issue in GIS research and is not the main concern of this particular

research effort. Instead, this research concentrates on how to implement these varied data
models in a persistent store, i.e. taking the representation of geographical data with multiple

data models and the implementation of various data structures into consideration in the

overall design of a persistent IGIS.

4.3.4 Superimposition and Concurrent Processing o f Vector Data and Raster Data

The various considerations discussed in Sections 4.3.1 and 4.3.2 - comprising the database
integration and the software integration respectively - are intended to reach the storage
level of integration. Using the approach - that of multiple data modelling - discussed in

Section 4.3.3, it is possible to store all the required data in a form suitable for use at several
levels of detail. Thus both the necessary multi-scale map data and multi-resolution image
data and the appropriate data models and data structures associated with them can all be
integrated within a single database. However, in order to have a full degree of integration,
the design considerations for achieving both the display level and the process level of

integration should not be neglected.

The superimposition of vector data and raster data requires the provision of capabilities to
access both types of data from large volumes of these data and to superimpose them on a
window-type display. This requirement involves utilising the capabilities of both vector
graphics and raster graphics; the use of spatial indexing mechanisms; the display of multi
scale map data or multi-resolution image data; the overlay of geo-referenced vector and

raster data in a single display; the provision of a graphical user interface; and the allocation

of bit-planes for a graphical display device suitable for both vector and raster data. On other
hand, the concurrent processing of vector and raster data needs the simultaneous use of

multiple data structures and requires the software to support a wide range of spatial queries

and analytical operations. Satisfying these requirements mainly involves the successful
implementation of multiple data modelling (see Section 4.3.3) as well as a spatial indexing

and interrelation mechanism for accessing both vector and raster data.

When considering the design of an IGIS, the spatial indexing and interrelation of
geographical data are major concerns. The role of spatial indexing is to deal with the need
to obtain geographical data based on location. Many factors affect the data retrieval
performance of a spatial indexing technique. These include the organisation of the spatial
data; the characteristics of index keys; the design of the data structures used for building
indices, and so on. As for the interrelation of geographical data, three types of links need to

108

Chapter 4: The IGIS System Architecture

be established: the vector-to-attribute, raster-to-attribute and vector-to-raster links. Each
linkage requires a bi-directional connection. The mechanisms for linking spatial (vector or
raster) data with attribute data are very well developed so this is easier to implement than
the linking of vector and raster data. Various spatial keys are possible for the linkage

between vector and raster data, such as feature identifiers, coordinate values, grid cells, ZIP
code, etc. However, very little research effort has been expended on the subject of linking

vector and raster data. As a result, there is no well established method currently available
for this purpose. Therefore it is necessary to adopt a spatial key and to develop a scheme of

linkages between the vector and raster data.

4,4 Design Criteria

Based on the various design considerations discussed in the previous section (4.3), the key
criteria for the design of a persistent IGIS may be summarised as follows: -

• The provision of an integrated geographical database and an integrated GIS software

library.
- Three types of geographical data (vector, raster and attribute) as well as different

forms of each data type must be stored in a single database within the persistent

store.
- All modules, procedures, default variables and constants, etc. relevant to the use of

the database must also be organised as a software library and stored in the same
persistent store.

• The coexistence of multiple geographical data models which are capable of being

implemented with various data structures.
- Different kinds of data models representing different types of geographical data will

be coexistent within the same database.
- Each data model can be implemented with the several types of data structure

required for different applications.

• The capability of superimposition and interrelation of vector maps and raster images.

- Multi-scale map data and multi-resolution image data will be spatially indexed and

linked in the same database.
- The persistent IGIS must be able to display vector maps, raster images or a

superimposition of both.

It should be noted that this outline is centred specifically around the integration of vector
map data and raster image data into a persistent store and it is by no means exhaustive for
the development of a fully-fledged IGIS. Instead, the list of the design criteria given above

109

Chapter 4: The IGIS System Architecture

has been chosen specifically in order to attempt the constructing of a truly integrated
geographical database so as to provide a framework for the later development of a fully
integrated GIS.

4.5 Functional Design

The functionality of a GIS is closely related to the needs of its actual or potential

applications. Because of the nature of its highly diverse applications, it is impossible to
develop a scheme of GIS functionality which is completely comprehensive. However, the

functional design of a persistent IGIS may include the most important and widely used

generic functions. Further specific functions may be individually extended and combined to
produce the relevant software modules. A functional classification scheme has been
designed for the persistent IGIS based on the work presented by Aronoff [1989], Maguire
and Dangermond [1991] and Hartnall [1993a]. Within the software component, six main
modules can be identified or categorised for the major types of functions that need to be
implemented in the persistent IGIS. Each of these main modules is further divided into
several sub-modules. Each sub-module represents a collection of functions grouped
together for a definitive application. Fig. 4.5 shows a hierarchical classification of the major
types of functions designed for the persistent IGIS. Each main module is briefly described
as follows:

1. Capture & Manipulate
This module comprises the digital mapping and the image processing sub-modules
available for the data input aspects of the persistent IGIS. They mainly contain the
functions needed for data acquisition and basic data processing and manipulation. The
data acquisition functions involve collecting geographical data from a variety of
devices; whereas the data manipulation functions deal with the removal of errors and
inconsistencies and the pre-processing of digitised and scanned data in order to
provide clean and appropriate data sets for the other modules.

2. Transfer & Transform
The transfer functions deal with the import/export of geographical data to/from other
systems using exchange file formats and the need for direct communication with other
persistent GISs. The transform functions perform the required scaling, rotation and
translation between two data sets using different coordinate systems or projections in
order to provide geo-referenced data so that all data sets can be handled in a common

coordinate system.

110

Chapter 4: The IGIS System Architecture

Main Modules Sub-Modules Main Functions

Capture &
Manipulate

Validate &

&

Image Processing

Plot

P rint

Entity Query

Zone Query

M easurem ent

Overlay Analysis

ation

— vector data acquisition

cartographic production

— digital files, DEM, etc.
raster data acquisition

 contrast stretching

 image filtering, classification, etc.

DXF, NTF, FBFF, TIFF, etc.

DXF, NTF, FBFF, TIFF, etc.

another persistent store

- map projections

— con formal, affine, bilinear, etc.

— basic integrity constraints

— topological integrity checking

- point, line, pixel, attribute, etc.

- point, line , pixel, attribute, etc.

- point, line, pixel, attribute, etc.

- maps

- images

 overlay of maps and im ages

— maps, images or overlay o f them

— statistical graphs

— reports

- by point

- by line

— by polygon

- by attribute

— by rectangle

— by circle

- distance

- area

 perim eter

— create

— delete

— restructure

— create

 delete

— update

Database

Indexing

Figure 4.5 Functional design of the software component of the persistent IGIS

Chapter 4: The IGIS System Architecture

3. Validate & Edit
The validate functions are concerned with applying integrity constraints to the data in
order to ascertain that data consistencies such as range checks for attributes (basic

integrity constraints) or topological checks for geometric primitives (spatial data

checking) have been met. The edit functions allow the user to add, delete or modify
geographical data.

4. Display & Output
The display functions provide the capability for the presentation of the results in many

forms, including maps, images, overlays of maps and images, graphs, statistical
reports, tables and so on. The output functions comprise the generation of maps,

images, graphs, reports, etc. in hard copy form or as digital files.

5. Query & Analyse
The query functions deal with the retrieval of attribute data about spatial features or
vice versa such as querying the attribute information of geographical features by
pointing to entities or by specifying a search region. The analyse functions provide the
ability to analyse geographical patterns and relationships through the operations of
spatial searching and overlay such as network analysis, overlay analysis, etc.

6. Manage & Maintain
The manage and maintain functions are concerned with the management and
maintenance of the databases, the spatial indexing of the databases, and the software
library. Other operations, such as changing the data structure to suit a specific
application, updating a spatial indexing key to react the changes of a database, etc.
will also be included in this module.

As has been discussed in Section 4.2, the basic GIS modules, procedures, default variables

and constants relevant to IGIS functions can be organised as a software library within the
persistent store. All the items in the software library may be classified into three categories -
General, Graphical and GIS - so that each of them can be stored in a separate environment
in the persistent store. The General library contains those items available for general
programming such as converting a string of digits into an integer; the Graphical library
consists of procedures relevant to graphical manipulation such as drawing a point, drawing

a line string, zooming a map, etc.-, and the GIS environment comprises all the other items
except those contained in the General and the Graphical libraries. The environment for the
storage of the software component in the persistent store is illustrated in Fig. 4.6.

112

Chapter 4: The IGIS System Architecture

- User - - General
p s o - -Library - - Graphical

-G IS

Figure 4.6 The software Library environment of a persistent IGIS

4.6 Database Design

The design of the database component required for a persistent IGIS involves two parts:

(1) the set-up of the database environment needed to hold geographical data in the

persistent store; and
(2) the creation of type systems to represent a variety of geographical objects.

The first part of the database design is concerned with the organisation of store
environments for the various forms of the three basic data types. Four forms (raw, interim,
processed and derived) of each data type, which have been discussed in Sections 4.3.1 and
4.3.2, may be considered for inclusion in a persistent IGIS. Each form of data can be
grouped together in an environment, i.e. three basic data types of the same form are
integrated into a database. Therefore, four databases, entitled respectively Raw, Interim,
Processed and Derived, may be created in the Database environment. The Raw database
can be used to store the data which requires further editing and pre-processing; the Interim
database may hold the data in the form suitable for digital mapping or image processing; the

Processed database, which is the core database, is used to store the data in the form
available for most GIS applications; and the Derived database can be used to store the data
which has been restructured for particular applications. Apart from these databases, an

Index database may be used to store data such as the mbr (minimum bounding rectangle)
tables, index tables, etc. required for the indexing of the above four databases. The
environment for holding geographical databases in the persistent store is illustrated in Fig.
4.7.

- Raw

— User - - Interim
p s o - - Database - - Processed

- Derived

- Index

Figure 4.7 The Database environment of a persistent IGIS

113

Chapter 4: The IGIS System Architecture

The second part of the database design deals with the declaration of data types (schema)

forming a number of type systems (or data model) which may be used selectively in the
persistent IGIS. The design of a type system involves the selection of a data model and the

implementation of the selected data model with appropriate data structures. As has been

discussed in Section 4.3.3, multiple data models are required for the representation of

different kinds of geographical data and multiple data structures are also needed to

implement the various forms of a particular kind of data. Unlike conventional IGISs, which

often employ a uniform data model for each kind of geographical data, the persistent IGIS
is intended to provide several data models for various applications. In other words, the
representation of vector map data at different scales may employ an appropriate data model
to tune the IGIS to a specific application. The same applies to the representation of multi
resolution raster image data. For example, vector map data at a small scale often requires
the link and node model for the applications of network analysis or the fully topological

model for the applications of overlay analysis; whereas, at a large scale, the spaghetti model
may be employed for map production. Therefore, as in the functional design, the database
design can contain the most important and widely used generic data models and it may also
be extended for certain specific data models. However, because of the complexities in the
design of the type systems required for the many varied types of geographical data, it is
inappropriate to discuss this in this section. Instead, the detailed design of data types for
various data models will be discussed when dealing with geographical data modelling and
organisation in Chapter 5.

4.7 The System Architecture

Based on the functional design (Section 4.5) and the database design (Section 4.6), the
architecture of a persistent IGIS may be developed. The overall system architecture of the
persistent IGIS developed by the present author is illustrated in Fig. 4.8. The software
component and the persistent store, which closely interrelate in the persistent
programming/database environment of Napier88, form the core of the persistent IGIS. The
software component consists of the six modules provided for basic geographical data

handling which were discussed in Section 4.5. Most reusable procedures employed in these

modules are organised and stored in the software library of the persistent store. On the

other hand, the database component comprises the five databases required for the
integration of the different forms of geographical data as well as the index data. The

software modules required for specific applications i.e. the applications modules, may be
developed utilising the underlying core of the persistent IGIS. Furthermore, the persistent
IGIS communicates with its surroundings through exchange file formats or by direct data
transfer using the transfer and transform module.

114

Chapter 4: The IGIS System Architecture

Application
Modules

Core

IGIS Software
I

Exchange
Format Files

Other
Persistent

GISs

— General(Software)

— Library - Graphical

- C I S

— User —
— Raw

P S () -
(Integrated) — Interim

— Database Processed

— D erived

— Index

Persistent Store

Figure 4.8 The overall system architecture of the Persistent IGIS

In summary, the design of the system architecture has aimed at the development of an IGIS

having a full degree of integration. The resulting persistent IGIS will place an emphasis on

the support of the integrated software needed for digital mapping, image processing, and

vector and raster GIS handling, as well as the provision of an integrated geographical

database for the storage of various forms of vector, raster and attribute data.

115

Chapter 4: The IGIS System Architecture

4.8 Discussion

The system architecture of the persistent IGIS has taken advantage of the unique persistent

environment supported by Napier88. As has been discussed particularly in Section 4.4,

three criteria are critical for the design of the persistent IGIS:

(i) an integrated geographical database and an integrated software library;

(ii) multiple geographical data modelling and data structures; and
(iii) superimposition and concurrent processing of vector and raster data.

Therefore, this research is oriented towards satisfying and providing these key design

features. The essential tasks have been identified and organised into three parts:

(1) geographical data modelling and organisation;
(2) vector and raster interrelation; and
(3) spatial indexing and queries.

Each of these have been carried out and implemented; the results will be presented

consecutively in the three chapters (5, 6, 7) that follow.

Another aspect of this research is the implementation of a prototype IGIS to work with
large volumes of real geographical data in order to evaluate the capabilities and the
performance of the persistent IGIS. Thus the strengths and weaknesses of an IGIS based on
the persistent programming language Napier88 may be identified and evaluated from the
results. This development and the results derived from it will be described in Chapter 8.

116

Chapter 5: Geographical Data Modelling and Organisation

CHAPTER 5 : GEOGRAPHICAL DATA MODELLING AND
ORGANISATION

5.7 Introduction

The discussion conducted in the previous chapter revealed that a persistent IGIS requires a
number of commonly used data models to accommodate different forms of geographical

data. In addition, the functional aspects of a persistent IGIS covering digital mapping,
image processing, vector GIS and raster GIS operations must also be catered for. This
Chapter describes the organisation of the geographical data held in the persistent store.

Because of its inherent simplicity and flexibility, the data model which has been most widely
used for the handling of attribute data in GIS applications has been the relational model. Its

organisation of the attribute data into a series of tables is simple to understand and is easily
modified. Furthermore, the manipulation of the attribute information of a geographical
feature most commonly involves a single data record held in a specific relational table.
Therefore, in terms of geographical data handling, attribute information is an inherently
simpler type of data to store and to manipulate than spatial data. Thus normally a spatial
database management system stores and manipulates the spatial data. The descriptive
information is accessed using keys to point to the corresponding attribute data. As such, the
various forms of attribute data used in the different stages of geographical data handling
may only employ a single data model - the relational model.

By contrast, spatial data is more complex. The manipulation of spatial data involves
concepts such as proximity, connectivity, containment, overlay, etc. The representation of
spatial data requires multiple records to store the location of a single geographical feature
and its relationships to other features. Quite apart from this, spatial data usually requires a
specific data model for a particular stage or process of geographical data handling - as has

already been described in Section 4.3.3. Therefore, spatial data is not easily accommodated
by the tabular database environment of a standard relational DBMS. As a result, it is
essential that various spatial data models for the handling of different forms of geographical
vector and raster data are provided during the development of a persistent IGIS.

This chapter first gives a brief introduction to both the conceptual modelling and the logical
modelling involved in this development. Then some commonly used spatial data models
which have been adopted for the representation of vector and raster geographical data in
the persistent IGIS are discussed. Based on these data models, a set of data types which
represent various geographical data can then be declared to prepare for the building of an
integrated geographical database. This is followed by the setting up of the database

117

Chapter 5: Geographical Data Modelling and Organisation

environment in the persistent store for the construction of the integrated geographical
database. Finally, the organisation of multiple-scale vector map data and multi-resolution
raster image data in the database will be discussed.

5.2 Conceptual and Logical Data Modelling

The provision of a data model for a persistent IGIS based on Napier88 is to allow the
design of a type system for the data model. A type system can be created by declaring a set

of data types which represent the entities of a data model and their relationships. In fact, the
design of a type system basically involves two major steps in the data modelling process
(see Fig. 4.4), namely conceptual modelling and logical modelling. These are further
discussed in the following two subsections respectively.

5.2.1 Conceptual Data Modelling

Conceptual modelling often makes use of a formal approach known as the entitv-
relationship approach. The entity-relationship formalisation contains the following
components [Laurini and Thompson, 1992; AGI, 1994]:

* Entity - A real world object or digital phenomenon.
* Entity class - A specified group of entities.
* Relationship - The association between entities or entity classes.
* Attribute - A trait, quality or property that is a characteristic of an entity or a

relationship.
* Cardinality - The degree of relationship expressed by four numbers defining the

minimum and maximum number of entities occurring in a relationship, in both the
forward and the reverse directions.

* Integrity constraints - A predicate which must be matched in order to ensure the
integrity of the model.

The conventions used for depicting entity-relationship by diagrams are varied. Fig. 5.1
illustrates the entity-relationship diagram employed in this thesis. An entity or entity class is

represented by a rectangle: A relationship is depicted by a circle linking two or more entities
or entity classes. Each entity or entity class has an entity name. Attributes are shown as lists

within the rectangle boxes. Each attribute consists of an identifier and a data type separated
by a mark. [Laurini and Thompson, 1992].

118

Chapter 5: Geographical Data Modelling and Organisation

E ntity M axim um
card in a lit ies

Entity _name Entityjname

identifier 1 : data_typel

identified : data_type2

identifier 1 :data_typel

identificr2 : data_type2

R elation sh ip

M inim um
card in a lit ies

A ttr ib u tes

Figure 5.1 Nomenclature for entity-relationship diagrams (Adapted from Laurini
and Thompson, 1992)

For example, the conceptual modelling of a polygon map which consists of polygons and

points may be carried out as follows. Each polygon may be made up of a number of points

(minimum 3 but unspecified maximum (denoted by N)), whereas each point may appear as

an isolated point (minimum 0) or may be formed as a component of a particular polygon

(maximum 1). The entity-relationship diagram between the polygon and the point entities

can be depicted as Fig. 5.2.

Polygon

polygon_id : Poly_id
area : real

order : List[Point_id]

3 - N

P o in t

. 0 - 1
> — - - 1 point_id : Point_id

x, y : real

Figure 5.2 A conceptual model for polygon maps illustrated by
an entity-relationship diagram

5 .2 .2 L o g ica l D ata M o d ellin g

The second important step is to map conceptual data models to internal data structures. The

logical modelling deals with the transformation of the entity-relationship into the data types

associated with appropriate data structures. For instance, the entity-relationship diagram

shown in Fig. 5.2 may be transformed into a type system utilising Napier88 as follows: -

type P o ly _ id is string

type P o in t_ id is int

type P olygon is structure(area: real; order: L is t[P o in t_ id])

type P o ly g o n _ tab le is M ap [P o ly _ id , P o lygon]

type P o in t is structured, y: real)

type P o in t_ ta b le is M ap [P o in t_ id , P o in t]

119

Chapter 5: Geographical Data Modelling and Organisation

The first two lines declare identifiers Poly_id and Point_id with the types in t and string
respectively. The third line declares a data type Polygon which has a structure with two

fields - area and order - of type real and List[Point_id] respectively. The field identifier

order has a list of data values (point identifiers) indicating the sequence of points in the

polygon in order to draw the shape correctly. The fourth line declares a data type
Polygonjtable which represents a mapping from a polygon identifier of type Poly_id to a
polygon entity of type Polygon. Similarly, the last two lines declare the data types required
for the point entity and the point table.

5.3 Spatial Data Models and the Design o f Type Systems

The spatial component of geographical data can be represented either by a vector model or
by a raster model. As has been discussed in Section 4.3.3, many data models have been
developed to represent spatial data and each data model may have a number of variants.
Five of these data models have been adopted in the design of the persistent IGIS. They
include the spaghetti, the link and node and the polygon-based data models for use with
vector data as well as the grid cell and the linear quadtree data models for handling raster
data.

The naming conventions for data types relevant to data models have been devised as
follows: -
DM_ represents a prefix for all types particularly used in a specific data model.

The prefixes used for the five data models are:
SP = Spaghetti
LN = Link and Node
PB = Polygon-based
GC = Grid Cell
LQT = Linear Quadtree

DM_e represents an entity in a specific data model, where e is the entity name. For

example, SP_point denotes a point entity in the spaghetti data model;
DM _k_e represents a mapping table that will hold instances of the entity e. In this case, k

is a short word or abbreviation for the entity identity which indicates the key of this

table. For example, LN_pid_point represents the point table in the link and node data
model and pid donates that the point identifier point_id is the key of the table;

E_id represents the data type of the entity identity e_id. E is a word that capitalises the first
letter of the word e. For example, the data type of the point identifier point_id is

represented as Point_id.

In this section, the design of a type system for each data model is described in turn in each
of the five subsections (5.3.1 - 5.3.5) that follows. Each subsection explains the concept of

120

Chapter 5: Geographical Data Modelling and Organisation

the data model and describes how a variant of the data model may be implemented as a type
system using Napier88.

5.3.1 The Spaghetti Data Model

The spaghetti data model is the simplest vector data model for the representation of

geographical data. Although the spaghetti data model is not well suited to the

representation of geographical data used for GIS analyses, it is an important data model for

the digital mapping aspects of an IGIS. Therefore, the spaghetti data model constitutes a

particular component of the multiple data models required by the persistent IGIS.

5.3.1.1 The Concept

In this model, a geographical data set is regarded as a collection of coordinate strings
grouped together with no inherent structure. A point is encoded as a single XY coordinate
pair; a line as a string of XY coordinate pairs; and a polygon as a closed loop of XY
coordinate pairs. Each entity (point or line or polygon) becomes a single logical record
placed sequentially in the digital file containing the acquired data. The data file of XY
coordinates is actually the form in which the vector data are stored in the computer.

The spaghetti data model is very simple and is easy to understand. It is an efficient data
model for digital map production because spatial relationships which are extraneous to the
plotting process are not stored. However, the spaghetti data model is rather inefficient for
most types of spatial analyses since any spatial relationships must be derived by
computation. Furthermore, the coordinate list describing the common boundary between

adjacent polygons must be recorded twice, once for each polygon. This will result in the
potential inconsistency of common boundaries between two digitising operations and the
consequent increase in the storage requirement [Peuquet, 1984; Aronoff, 1989; Peuquet,
1991].

5.3.1.2 The Type System

Three entities can be identified in the spaghetti data model described above, i.e. point, line
and polygon entities. In practice, the polygon entity may be treated as a special case of the
line entity where the fist and last points have the same coordinate values. Apart from this,
the text entity which is used to represent cartographic annotations may also have to be
considered in the production of digital maps. Therefore, two compulsory entities (point and
line) and one optional entity (text) are required in the design of a type system. The entity-
relationship diagram of this particular variant of the spaghetti data model is illustrated in
Fig. 5.3.

121

Chapter 5: Geographical Data Modelling and Organisation

point

point_id : Point_id

xy : XY

fc :F C

attribute : SP_point_attr

Figure 5.3 The entity-relationship diagram of a spaghetti data model

Because the spaghetti data model does not contain topological data, so the three entities are

quite independent of one another without any relationship existing between them. It should

be noted that several data types employed in the attribute lists are system types, including

int, real, string, List which are supported by the Napier88 system, whereas the other data

types are user-definable and may be specified to accommodate the needs of applications.

In Fig. 5.3, each entity type contains a particular attribute (entity identity) - point_id, line_id

and text_id respectively - which denotes a unique value for each entity. The entity identity

can be specified as a key used in a mapping table which is represented as a data type Map.
The type system for the spaghetti data model depicted in Fig 5.3 may be declared as

follows:

type S P _ p o in t is structure(xy: X Y ; fc: FC; attr ibute: S P_po in t_a ttr)

type S P _ p id _ p o in t is M ap [P o in t_ id , SP_poin t]

type S P J i n e is s t r u c tu re (x y _ l i s t : L is t[X Y]; fc: F C ; attr ibute: S P_ line_a t tr)

type S P J i d J i n e is M ap[L ine_ id , SP_line]

type S P _ te x t is structure(xy: X Y ; tex t_code , tex t_body: string; text_ht, orient: real; font,

dig_postn: int)

type S P _ tid _ tex t is M a p [T e x t_ id , SP_tex t]

type S P _ tid _ tx t is v ar ia n t (sp _ t id _ te x t : SP_tid_ tex t; none: null)

type S P _ D M is s t r u c tu re (p o in t : S P _p id_po in t ; line: S P J i d J i n e ; txt: S P j i d J x t ; fed: F C D)

where xy or xy_Iist is the position of an entity;

fc is a feature code;

attribute is the descriptive information about the point and line entities; i.e. they are

represented by the reserved types SP_point_attr and SPJine _attr which may be

defined by the user;

line

l in e jd : L in e jd

x y j i s t : List[XY]

fc :F C

attribute : S P Jin e_ a ttr

text

t e x t jd : T e x t jd

xy :X Y

text_code : str in g

text_body : str in g

te x t_ h t: real

o r ie n t: real

f o n t : in t

dig_postn : int

122

Chapter 5: Geographical Data Modelling and Organisation

text_code is used to categorise text;

text_body is a string of characters;

text J i t is the height of the text;

orient is used to define the orientation of the text string;

fon t is the numerical identifier for the font used for the display;

dig_postn identifies the position of a digitised point with reference to the bounding

rectangle containing the text. For example, Fig. 5.4 illustrates that the dig_j?ostn
may have a value in the range 0 to 8;

point, line and txt where each represents a table for the corresponding entity;

fe d is a table containing feature codes and their descriptions associated with the data

set;

FCD is a data type Map which maps an element of a feature code in the domain (FC)
to its corresponding feature description in the range (FD), i.e. type FCD is

Map[FC, FD].
Bounding
Rectangle

Figure 5.4 Digitised position indicators

It should noted that because the text entity is optional in this data model, so it may or may

not be present in the database. This is handled by the varian t type SP_tid_txt which has two

selectors s p j id je x t and none containing respectively a table and no table for text data.

5.3.2 The Link and Node Data Model

The link and node data model, also known as the Arc-Node data model, is one of the most

popular methods for encoding spatial relationships among entities [Peuquet, 1991]. This

data model explicitly records adjacency information between links and nodes which is

essential for the implementation of network analysis, e.g. querying the shortest path in

terms of the distance between two cities. The link and node data model is generally

regarded as a particular form of the topological data model. There are several variants

available for the representation of the link and node data model. The complexity of a link

and node data model depends on what kind of spatial relationships exist and how they can

be represented explicitly in the data model. For example, a link and node data model may

123

Chapter 5: Geographical Data Modelling and Organisation

only encode basic spatial relationships - the link and the node topology - or it may

additionally include the polygon topology.

The data model presented in this section is aimed specifically for use in network analysis.

Therefore, both the link and the node topology are required in this particular form of the

link and node data model.

5.3.2.1 The Concept

In this data model, a link is defined as a line string without any logical intermediate

intersection, whereas a node is the start or end of a link and may be shared by several links.

Spatial relationships between links and nodes are stored with cross-referencing. Fig. 5.5

illustrates the concept of the link and node data model.

a

Link Topology

Link_id From_node To_node

1 a b

2 c b

3 d c

4 e d

5 f e

6 f a

7 a e

8 e b

9 g e

10 b g
11 c g
12 g d

Node Topology

Node_id L in k j i s t

a 1,-6, 7
b i JO 0° o

c 2, -3, 1 1

d 3, -4, -12

e 4, -5, -7, 8 , -9

f 5, 6

g 9, -10, -11, 12

Figure 5.5 The concept of the link and node data model

In the link table, a link record comprises at least three basic elements: a link name (link_id)

that identifies the link, and two node identifiers (from_node and to_node) for “from” and

124

Chapter 5: Geographical Data Modelling and Organisation

“to” the endpoints of the link. In this way, both the connectivity and the direction of the link
are explicitly recorded. On the other hand, a node record in the node table may contain a
node name (node_id) and a list of link identifiers (link_list) that share the node. A number

of additional attributes (not shown in Fig. 5.5) may be included in the link and node tables.
Alternatively they may be linked to them by pointers.

Since the link and node data model explicitly retains elementary spatial relationships
between links and nodes, it is very efficient for network analysis. Apart from this, this data
model often stores the geometry of links and nodes in a separate geometry table. Therefore,
the geometry of data can be recorded without redundancy, i.e. each line segment is
recorded only once [Aronoff, 1989; Laurini and Thompson, 1992]. However, with this

organisation, it is inefficient for polygon-based applications since the polygon topology is
not stored explicitly in the database and has to be built during run time.

It should be noted that the node topology may be derived directly from the link topology,

and vice versa. The storage of both link and node tables will result in some redundancy in
the database. However, because both types of topology are used intensively during network
analysis, it may be more efficient to store them in the database rather than to store only one
of them and construct the other when it is needed.

5.3.2.2 The Type System

From the above discussion, it is clear that three compulsory entities (link, node and
geometry) are required for the link and node data model. Apart from these, other optional
entities can be added to accommodate particular applications. Thus, several variants of the
link and node model may be formed. For example, the polygon entity may be added to the
data model for handling polygon-based applications. A variant presented here is to include

the point, line, text and attribute entities in the link and node data model. This is intended to
allow the persistent IGIS to deal with those geographical features such as buildings, spot
heights, contours, etc. which do not comprise a network and which supply additional

information to that provided by the links and nodes. The entity-relationship diagram of this
particular form of the link and node data model is illustrated in Fig. 5.6. Based on this
diagram, the type system may be described as follows: -

type LN_point is structure(geom_id: Geom_id; attr_id: Attr_id)
type LN_pid_point is Map[Point_id, LN_point]
type LN_line is structure(geom_id: Geom_id; attr_id: Attr_id)
type LN_lid_line is Map[Line_id, LN_line]

125

Chapter 5: Geographical Data Modelling and Organisation

link node

l i n k j d : L i n k j d n o d e j d : N o d e j d

from_node : N o d e j d 2 - 2 ^ 1 - N geom Jd _ o f_ n o d e :

to_node : N o d e j d “ ■ G e o m j d

g e o m J d _ o f J in k : n u m j i n k s : in t
G e o m j d l in k j i s t : ListfLink]

1 - 1

geometry

geom_id : G e o m j d

gtype : int

num_coord : int

x y j i s t : List[XY]

- 1

text

text_id : Text_id

geom_id : G e o m j d

a t t r j d : A t t r j d

text_ht : real
o r i e n t : real
f o n t : int

dig_postn : int

- 1

attribute

a t t r j d : A t t r j d

fc : FC

attribute : LN_attr

Figure 5.6 The entity-relationship diagram of a link and node data model

l i n e j d : L i n e j d

g e o m j d : G e o m j d

a t t r j d : A t t r j d

p o i n t j d : P o in t j d

g e o m j d : G e o m j d

a t t r j d : A t t r j d

126

Chapter 5: Geographical Data Modelling and Organisation

type LN_text is structure(geom_id: Geom_id; attrjd: Attr_id; text_ht, orient: real;
font, dig_postn: int)

type LN_tid_text is Map[Text_id, LN_text]
type LN_tid_txt is variant(ln_tid_text: LN_tid_text; none: null)
type LN_geometry is structure(gtype, num_coord: int; xy_list: List[XY])
type LN_gid_geometry is Map[Geom_id, LN_geometry]
type LN_attribute is structure(fc: FC; attribute: LN_attr)
type LN_aid_attribute is Map[Attr_id, LN_attribute]
type LN_link is structure(from_node, to_node: Nodejd; geomJd_ofJink: Geomjd)
type LN JddJink is Map [Linkjd, LNJink]
type Link is structure(direction: int; geomJd_of Jink: Geomjd; orient: real; level: int)
type LN_node is structure(geomJd_of_node: Geomjd; numjinks: int; linkjist: List[Link])

type LN_nid_node is Map[NodeJd, LN_node]
type LN_DM is structure(point: LN_pid_point; line: LNJidJine;

geometry: LN_gid_geometry; attribute: LN_aid_attribute;
link: LN_kidJink; node: LN_nid_node; txt: LN_tid_txt;

fed: FCD)

where geom_id is a cross-reference to the geometry table;
attr_id is a cross-reference to the attribute table;
textjnt is the height of text;
orient (in LNjtext) is used to define the orientation of the text string;
fo n t is the numerical identifier of the font used for the display;
dig_postn identifies the position of a digitised point with reference to the bounding

rectangle containing the text (see Fig. 5.4);
In jtid jtext is a text table;
gtype is geometry type. For example, 1 = point, 2 = line, 3 = arc, 4 = circle, etc/,
num_coord is the number of coordinate pairs;
xy_list is the position of an entity;

fc is a feature code;
attribute is the descriptive information about entities - it is represented by the

reserved types LN_attr which may be defined by the user;
from_node and to_node are the node identifiers for “from” and “to” the endpoints of

a link respectively;
geom_id_of_link is the identity of a record in the geometry table containing the

coordinates of the link;
direction indicates whether the link starts at this node or ends at it. For example, 1 =

link starts at node, 2 = link ends at node;

127

Chapter 5: Geographical Data Modelling and Organisation

orient (in Link) is the azimuth of the first or last segment of the link at this particular
node. For example, if the direction is “ 1”, then the azimuth is of the first
segment, and if “2” it is of the last segment;

level shows the relative levels of the links at the node. For example, if the links

represent linear features which actually intersect on the ground, then they have
the same value, otherwise they each have a different value;

geom_id_of_node is the identity of a record in the geometry table containing the
coordinates of the node;

num_links is the number of links at the node; and
link_list is a list of link identifiers sharing the node.

5.3.3 The Polygon-based Data Model

The polygon-based data model is also a widely used method of defining spatial relationships

in a GIS. This data model defines the spatial relationships between polygons and chains.
The polygon-based data model can also be regarded as a form of the topological data
model. As the name suggests, this data model is very useful for polygon-based applications,
e.g. the overlay analysis of land use data and land capability data. Thus the particular form
of the polygon-based data model discussed in this section is oriented specifically towards
those applications involving overlay analysis.

It should be noted that the data model presented here is entirely different from the so-called
“whole polygon data model” in which each polygon is encoded in the database as an
independent entity similar to the polygon entity described in Fig. 5.2.

5.3.3.1 The Concept

In this data model, the basic logical entity is the chain. Therefore, it is sometimes called a
chain-based data model. A chain is defined as a collection of directed links. As in the link
and node data model, a link is defined as a line string without any intermediate intersection.
Thus a chain may represent a polygon or a complex line (polyline). The node topology is
seldom used in those applications which are primarily polygon-based, so it has not been
included in the data model. The concept of this polygon-based data model is illustrated in
Fig. 5.7.

Both the polygon and the chain topology are the essential components of the data model. In
the chain table, a chain record comprises at least two basic elements: a chain name

(chain_id) that identifies the chain and a list of link identifiers (link_list) which comprise the
chain. In the polygon table, each polygon record has, at the very least, a polygon name

128

Chapter 5: Geographical Data Modelling and Organisation

Chain_id
L in k j i s t

(g e o m _ id _ o fJ in k)

I 1 , -7 , -5 , 6

II - 2 , - 3 , - 4 , 7

III 8

IV 9, -10

L i n k j d Left_poly Right_poly

1 0 A
2 B 0
3 B 0
4 B 0
5 A 0
6 0 A

7 A B

8 B C

P o ly jd C h a i n j d

A I

B II

C III

Figure 5.7 The concept of the polygon-based data model

Link Topology

Chain Topology Polygon Topology

Complex Polygon Topology

Cpoly_id Poly_id_list

A, B . -C

(poly_id) that identifies the polygon and provides a cross-reference to a record in the

chain table. Based on these two tables, other spatial relationships can be constructed

[BSI, 1992].

In the example shown in Fig. 5.7, the link topology which defines the relationship

between polygons and links may be derived from the chain and the polygon topology.

The complex polygon topology defines a complex polygon which shall be represented

by one or more polygons. “Complex polygon” is used here since it is the term defined in

the NTF specification (BS7567) as follows [BSI, 1992]: - This feature shall contain one or

more polygons that do not necessarily form a contiguous extent. The constituent polygons may

overlap. Component polygons may he flagged to show where they are to he added or subtracted to

create the fina l area.

129

Chapter 5: Geographical Data Modelling and Organisation

From the above discussion, it can be seen that the chain entities and the polygon entities
may be regarded as the fundamental elements required for the construction of complex

objects. With the addition of the point entity, the polygon-based (or chain-based) data
model may be used to deal with very complex geographical features. For example, a park

object can be formed by a combination of several polygons (i.e. a list of chains), polylines
(also a list of chains) and points. Thus it may be used as an underlying data model for the

object-oriented data management.

5.3.3.2 The Type System

In this data model, five entities (polygon, chain, link, geometry and attribute) are
compulsory. Other entities may be added to the data model. In fact, two entities have been
included: the cpolygon (complex polygon) and the collection. The word “collection” is used
here since it is the term defined in the NTF specification (BS7567) as follows [BSI, 1992]: -

A collection shall contain one or more features o f any type within the same section. Any specific collection

shall not refer to itself.

The cpolygon may contain one or more polygons. The constituent polygons may be
independent or overlapped. The “collection” may contain one or more polygons or complex
polygons. The entity-relationship diagram of this particular form of the polygon-based data
model is illustrated in Fig. 5.8. As has been noted earlier, the data model presented here is
aimed specifically at polygon-based applications; thus the “collection” does not include
entities other than the polygon and the cpolygon. However, this data model may easily be
extended to embody one or more features of any type in the “collection”. The type system
which corresponds to the diagram shown in Fig. 5.8 may be described as follows: -

type PB_geometry is structure(gtype, num_coord: int; xy_list: List[XY]; attrjd: A ttrjd)
type PB_gid_geometry is Map [Geomjd, PB_geometry]
type PB_aid_attribute is Map[AttrJd, PB_attribute]

type PB_polygon is structure(chainjd: Chainjd; geomjd: Geomjd; attrjd: A ttrjd)
type PB_polyid_polygon is Map [Poly Jd , PB_polygon]
type PB Jink is structure(direction: int; geomJd_of_link: Geomjd)
type PB_chain is structure(num_parts: int; linkjist: ListfPB Jink])
type PB_cid_chain is Map[ChainJd, PB_chain]
type PB_polyid_sign is structure(poly Jd : Polyjd; sign: string)
type PB_cpolygon is structure(num_parts: int; polyid_signJist: List[PB_polyid_sign];

geomjd: Geomjd; attrjd: Attrjd)
type PB_cpolyid_cpolygon is Map[CpolyJd, PB_cpolygon]

130

Chapter 5: Geographical Data Modelling and Organisation

0 - 1

0

6

0 - 1

collection

co!l_id : Coll J d

num_parts : int

p o l y i d j i s t :
List[PB_polyid]

attr id : Attr id

cpolygon

c p o ly jd C p o l y jd

num_parts : in t 1 - N
p o ly id _ s ig n J is t :

List[PB_polyid_sign]

geom_id G e o m j d

a t t r j d : A t t r j d

1 - 1

1

0 - 1

6

0- 1
0 - 1

geometry

g e o m j d : G e o m j d

gtype : int

num_coord : int

x y j i s t : List[XYl

a t t r j d : A t t r j d

0- 1
I

0- 1

0- 1

attribute

a t t r j d : A t t r j d

attribute : PB attribute

0- 1

polygon

p o l y j d : P o ly jd

c h a i n j d : C h a i n j d

g e o m j d : G e o m j d

attr id : Attr id

I - 1

O

0

1 - 1

chain

c h a i n j d : C h a i n j d

num_parts : int

l i n k j i s t :
L is t[P B Jink]

1 - N O

1 - 1

l in k

direction : in t

geom_id_of_link :
Geom id

Figure 5.8 The entity-relationship diagram of the polygon-based data model

131

Chapter 5: Geographical Data Modelling and Organisation

type PB_polyid is structure(poly_id: Polyjd; poly_type: int)

type PB_collection is structure(num_parts: int; polyidjist: List[PB_polyid]; attrjd: Attrjd)

type PB_collid_collection is Map [Coll Jd , PB_collection]
type PB_DM is structure(collection: PB_collid_collection;

cpolygon: PB_cpolyid_cpolygon;
polygon: PB_polyid_polygon;
chain: PB_cid_chain; geometry: PB_gid_geometry;

attribute: PB_aid_attribute; fed: FCD)

where gtype is geometry type. For example, 1 = point, 2 = line, 3 = arc, 4 = circle, etc.;
num_coord is the number of coordinate pairs;
xy_list is the position of an entity;
a ttr jd is a cross-reference to the attribute table;
c h a in jd is a cross-reference to the chain table;
g e o m jd (in PB_polygon) which indicates the location of p o ly jd is a cross-reference

to the geometry table;
g e o m jd (in PB_cpolygon) which indicates the location of cp o ly jd is a cross-

reference to the geometry table;
direction controls the order of coordinates in the geometry table for the link. For

example, 1 = the direction of the link is the same as the order of the coordinates,
2 = the direction of the link is the reverse of the order of the coordinates;

geom Jd_ofJink is the identity of a record in the geometry table containing the
coordinates of the link;

num jparts (in PB_chain) is the number of links in a chain;
num jparts (in PB_cpolygon) is the number of polygons in a complex polygon;
num j>arts (in PB_collection) is the number of polygons and complex polygons in a

“collection”;
l in k jis t is a list of the link identifiers required for the chain;

p o ly jd is the polygon identity;
sign indicates whether the polygon referred to by p o ly jd shall be added or

subtracted to create a complex polygon;
polyid_signJist is a list of (p o ly jd , sign) that creates a complex polygon;
p o ly jyp e indicates whether the type of polygon is a simple or complex polygon. For

example, 1 = simple polygon, 2 = complex polygon;
p o ly id jis t is a list of polygon identifiers that create a collection of features.

132

Chapter 5: Geographical Data Modelling and Organisation

5.3.4 The Grid Cell Data Model

The grid cell is the simplest form of the raster data model. In this data model, the space is
subdivided into regular cells - which may be square or rectangular. The square cellular

decomposition is the most commonly used method for dealing with geographical raster
data. The square cell can be directly represented as a matrix or array which is supported by

most programming languages. Furthermore, it can also be interfaced easily to the hardware
devices commonly used for spatial data input and output [Peuquet, 1984; Aronoff, 1989].

Thus the grid cell data model may be used in those applications involving the use of image
data which has been derived from remote sensing or scanning maps; in the organisation of

map libraries, etc. However, this section will place an emphasis on the image processing
aspect of an IGIS.

5.3.4.1 The Concept

In this data model, the basic unit is the grid cell. Each cell represents an area of the land
surface. The location of each cell or pixel is defined by its row and column numbers. The
value assigned to the cell indicates the attribute that it represents. Geographical features can
be represented by grid cells. A point feature is denoted by a single cell, a line feature by
several cells with the same value forming a linear grouping, and an area feature by an
aggregation of contiguous cells, all having the same value. The conversion of geographical
data into grid cells mainly involves the existence of an a priori fixed grid cell size,
supplemented by methods of determining which attribute lies in a specific cell, the level of
description required for the attributes and the registration of a raster image into a terrain or
geographical reference system [Laurini and Thompson, 1992]. Since the attribute of each
cell is stored as a unique value, the total number of values to be stored is the product of the
number of columns times the number of rows. In addition, a colourmap which contains a
colour look-up table for displaying pixels (see Subsection 3.4.2) is often associated with a
raster image. Thus the image size (width by height by depth), the pixel size, the coordinates
of the origin (frequently the upper left comer of the image), and an attribute look-up table
are usually regarded as being the basic elements forming the grid cell data model.

The grid cell data model can easily be accommodated to array data structures. Therefore,

the overlay operations used with raster images of different themes may be carried out
efficiently by comparing the attribute values for identical grid cells. However, this data
model tends to take up more storage space than the corresponding vector data models in
order to precisely represent geographical features. Thus several raster data models such as
run-length encoding, quadtree, etc. have been developed to reduce the storage space
required with raster image data. Apart from this, another drawback is that the topological
relationships between geographical features are not explicitly represented in the data model.

133

Chapter 5: Geographical Data Modelling and Organisation

Nevertheless, because of its simplicity, the grid cell is still the most widely used data model

for handling raster data.

53.4.2 The Type System

Three entities can be identified in the grid cell data model, i.e. raster, grid_cell and

attribute. The raster entity contains a matrix of grid cells (i.e. pixels) identified by row and

column identifiers width and height together with the relevant auxiliary information (i.e.
depth, xO, yO, pixel_size and colourmap). The grid_cell entity consists of the location (x, y)
and the attribute code (value) of a pixel. The attribute entity provides the descriptive

information for each attribute code. A general form of the entity-relationship diagram of the

grid cell data model is illustrated in Fig. 5.9(a).

raster

im a g e j d : [m a g e jd

width : int

height : int

depth : int

xO, yO : real

pixel_size : real

colourmap **int

1 - N

0
1 -1

1 -1

0- 1

attribute

a t t r j d : A t t r j d

attribute : GC attribute

grid_cell

x ,y : int

value : int

abbreviation

raster

im a g e j d : I m a g e jd

raster: im age

extent : Extent
colourmap : **in t

1 - N

i
0 - 1

attribute

a t t r j d : A t t r j d

attribute : GC attribute

(b) an abbreviated form

(a) a general form

Figure 5.9 The entity-relationship diagram of the grid cell data model

134

Chapter 5: Geographical Data Modelling and Organisation

As has been discussed in Chapter 3, Napier88 supports both image and pixel data types
and also provides raster facilities for handling images. Thus the grid_cell entity can be
replaced by the pixel type and can be embedded in the image type. Also, the identifiers
width, height and depth can be removed from the raster entity because they are already

included implicitly in the image type. Napier88 supports the procedures xD im , yD im and
zD im in the R aster environment of the Standard Library as depicted in Fig. 3.4 for users to

determine the overall image dimension. Furthermore, the origin of the image and the pixel

size may be defined in a data type E xten t which indicates the ground coverage of an image.
Therefore, the entity-relationship diagram of the grid cell data model may be abbreviated as

shown in Fig. 5.9(b).

The type system of the grid cell data model may be declared as follows: -

type Extent is structure(x_min, y_min, x_range, y_range: real)
type GC_aid_attribute is Map [Attrjd, GC_attribute]
type GC_DM is structure(raster: image; extent: Extent; colourmap: **int;

attribute : GC_aid_attribute)

where x_m in and y_m in indicate the ground coordinates of the origin for an image;
x jra n g e and y_range denote the dimensions of a whole image in both the x- and y-

directions respectively within the ground reference system;
extent indicates the ground coverage of the image via the definition of the x_m in and

y_m in and the corresponding x_range and y_range\

G C _attribute is a data type for the representation of the descriptive information
about individual pixels;

raster contains the image data;
colourm ap provides a colour look-up table for the display of the image. The data

type **int denotes a matrix of integers holding the values of the RGB intensities
for each representative colour, i.e. the dimension of the matrix is 3 x n, where n
is the number of colours or grey scales; and

attribute represents the attribute table of the image.

In order to represent the same image as an appropriate data type which can be used in
different stages of image processing, the following two data types have been declared for
handling the raw form and the interim form of an image respectively.

type Rawimage is structure(data: *int; width, height, depth: int; colourmap: **int)
type InterimJmage is structure(raster: image; colourmap: **int)

135

Chapter 5: Geographical Data Modelling and Organisation

Because both the raw and the interim forms are intended for use during the image
processing aspects of the persistent IGIS, so the attribute table and the auxiliary information
for geo-referencing have been excluded in these two data types. It should be noted that the

Rawimage employs an one-dimensional vector of type int to hold the image data in row
order. This has been provided for some image processing operations which manipulate
pixels in type int more efficiently than in type pixel.

5.3.5 The Linear Quadtree Data Model

The quadtree is a commonly used data model for handling raster data. It is formed by

recursively subdividing each non-homogeneous quadrant until all quadrants are

homogeneous with respect to a selected property, or until a predetermined cut-off depth is
reached [AGI, 1994]. The quadtree data model is particularly useful when the raster data

are relatively homogeneous and do not require frequent updating. As such, the quadtree
data model can provide the properties of variable spatial resolution and more efficient

storage of data. It is also regarded as an efficient indexing scheme for spatial data. As a
result, in addition to representing the raster data, the quadtree data model is often used in
applications such as the building of the pyramid model required to provide a multiple level
representation of image data, together with spatial indexing and searching of the
geographical data [Aronoff, 1989; Star and Estes, 1990; Peuquet, 1991; Laurini and
Thompson 1992]. Several variants of the quadtree have been developed such as the region
quadtree, point quadtree, PM quadtree, etc. A detailed overview of these various quadtree
models can be founded in Samet [1989].

In the persistent IGIS, a particular form of the quadtree - the linear quadtree - has been

adopted to deal with the raster data. The linear quadtree data model employs a locational
reference scheme that represents the relative location of the two-dimensional kind by a one
dimensional system. The linear quadtree data model is very widely used in current geo

processing systems because of its efficiency in terms of performance and its simplicity in
terms of implementation, as explained below.

5.3.5.1 The Concept

Various locational references schemes are possible for addressing a quadtree. Peano
ordering (or N ordering) is probably the most widely known because it is particularly
convenient for computer implementation. The principle of the Peano ordering is to use a
one-dimensional path, which consistently orders the four quadrants at each level in a SW,
NW, SE, NE sequence, to thread each quadrant only once through the two-dimensional
space of the data set [Laurini and Thompson, 1992]. Fig. 5.10(a) illustrates the scheme of
Peano ordering for quadtree quadrants.

136

Chapter 5: Geographical Data Modelling and Organisation

(a) Peano ordering of quadrants

Peano
Key

Side
Length

Code

A ttribute
Code

5 1 a

7 1 a

9 1 b

10 1 a

12 2 b

(b) Quadtree table for Peano ordering

Figure 5.10 A linear quadtree ordered by Peano key

The numerical coding for identifying each quadrant using integers is called the Peano key.

Conventionally, only those quadrant blocks which contain information are included in the

appropriate table, as shown in Fig. 5.10(b). Thus each non-white quadrant (nos. 5, 7, 9, 10

and 12 in Fig. 5.10(a)) is included as a record consisting of three items: its Peano key, side

length and attribute code. The side length code often represents the number of the smallest

quadrant size present on the side of the quadrant block.

The Peano ordering of quadrants has several advantages. Principally, it employs single

dimension addressing instead of using row and column identifiers to identify quadrants, so it

requires less storage space. In addition, it can facilitate the retrieval of data from storage

devices because usually neighbouring quadrants in quadtree space are stored close together.

Furthermore, the Peano key may be used as a spatial key because the transformation

between the Peano key and the coordinate pair (x, y) can be easily be performed by bit

interleaving. This will be described in Chapter 7 when dealing with spatial indexing. As with

other data models, there are various pros and cons to be considered when deciding to adopt

or employ the linear quadtree data model. One of the major disadvantages is the time taken

to create and modify a linear quadtree, especially for complex areas [Aronoff, 1989; Laurini

and Thompson, 1992]. However, the linear quadtree data model is generally regarded as a

good choice for handling geographical data which require few changes, e.g. the storage of

processed images used for backdrops or the spatial indexing of base maps.

5.3.5.2 The Type System

In terms of handling raster data, three basic entities can be identified in the linear quadtree

data model. They are the raster, the quadrant and the attribute entities. The raster entity is

used to represent a raster image before decomposing it into quadrants or after

reconstructing it from its quadrant components. Because the representation of a raster

image can be handled by the grid cell data model (see Subsection 5.3.4), thus the raster

137

Chapter 5: Geographical Data Modelling and Organisation

entity may be excluded from the linear quadtree data model. The quadrant entity consists of

the Peano key (peanoJkey), the side length (sidejength) and the attribute code (attr_id) of

a quadrant. The attribute entity contains the descriptive information for each attribute code.

The entity-relationship diagram of the linear quadtree data model is illustrated in Fig. 5.11.

a t t r j d : A t t r jd

attribute : LQT_attribute

attribute

peano_key : Peano_key

s id e je n g th : in t

a t t r j d : A t t r jd

quadrant

im a g e jd : Im a g e jd

raster: im age

e x te n t : Extent

colourm ap : **int

raster

Figure 5.11 The entity-relationship diagram of the linear quadtree data model

The dotted-line block in Fig. 5.1 1 consists of two entities essential for building the linear

quadtree data model. The corresponding type system may be declared as follows: -

ty p e L Q T _ q u a d ra n t is s t r u c tu r e (s id e je n g th : int; a t t r j d : A t t r j d)

ty p e L Q T _ p e an o _ q u a d ra n t is M a p [P ea n o _ k ey , L Q T _ q u ad ran t]

ty p e L Q T _ a id _ a ttr ib u te is M a p [A tt r J d , L Q T _ a ttrib u te]

type L Q T _ D M is s t ru c tu re (q u a d ra n t: L Q T _ p e an o _ q u a d ra n t; a ttr ib u te : L Q T _ a id _ a ttr ib u te ;

ex ten t: E x ten t; co lou rm ap : **int; p ixe l_ size: real; dep th : int)

where sidejength is the number of pixels on the side of the quadrant block;

a ttr jd is a cross-reference to the attribute table;

quadrant and attribute each represent a table for the corresponding entity;

138

Chapter 5: Geographical Data Modelling and Organisation

LQ T_attribute is a data type for the representation of the descriptive information
about quadrants;

extent indicates the ground coverage of the image;

colourm ap provides a colour look-up table for the display of the image;

pixel_size is the size of the pixel in terms of its ground length; and
depth is the depth of the image in terms of the number of bit planes used for its

implementation.

5.4 Creating An Integrated Geographical Database

As has been noted in Section 4.6, four forms of geographical data have been considered in
the database design of the persistent IGIS. The main component in the persistent IGIS
database environment is the Processed database which has been designed to store processed
vector map data and raster image data in various data models. In the P rocessed database,
basemaps and baseimages which provide fundamental spatial information for geographical
data handling constitute the major part of the data. In terms of constructing a basemap
database, each basemap may employ any one of the three vector data models discussed in
Section 5.3; thus it can be represented as a bulk value of the type SP_D M or L N _D M or
PB_D M . In addition, all basemaps may be grouped together into an aggregated data value,
i.e. regarding it as a basemap library. This can be carried out by declaring a type system for
dealing with all basemaps as follows: -

type Basemap_DM is variant(spaghetti: SP_DM;
link_node: LN_DM;
polygon_based: PB_DM)

type Basemap is structure(data_model: Basemap_DM; attribute: Basemap_attr)
type Base_Maps is Map[Map_id, Basemap]

where spaghetti, link_node and p o lyg o n jb a sed identifiers mean that a map data set may use

the spaghetti or the link and node or the polygon-based data model;
d a ta jn o d e l represents the data model of a specific basemap;
attribute may contain general descriptive information about a particular basemap

such as its map scale, map projection, geodetic reference system, geodetic

datum, data accuracy, the date of its creation, the source of the data, the data
acquisition method, etc.

Similarly, each processed baseimage may use either the grid cell or the linear quadtree data
model and can be represented as a bulk value of the type G C _D M or LQ TJD M . Also, all

139

Chapter 5: Geographical Data Modelling and Organisation

processed images can be aggregated into a baseimage library by the declaration of a type
system as follows: -

type Baseimage_DM is variant(grid_cell: GC_DM;
linear_quadtree: LQTJDM)

type Baseimage is structure(data_model: Baseimage_DM; attribute: Baseimage_attr)
type Base_Images is Map[Image_id, Baseimage]

where grid_cell and linear_quadtree identifiers will indicate whether an image data set will
use the grid cell or the linear quadtree data model;

datajnodel represents the data model of a baseimage;
attribute may contain general descriptive information about a baseimage such as its

image resolution, the date of its creation, the source of data, the data acquisition

method, etc.

Having created the above type systems, two variables base_maps and base_images of type
Base_Maps and Base_Images may be created for the storage of basemaps and baseimages
respectively as follows:

! program name: mk_processed_db.N
! making a database environment for the storage of basemaps and baseimages
type Map[A, Z] is MapRepltol[A,Z]
use PS() with 10, User, GlasgowLibraries: env; environment: proc(—> env) in
use GlasgowLibraries with BulkTypes: env in
use BulkTypes with Maps: env in
use Maps with m_empty: proc[A, Z](proc(A, A —» bool), proc(A, A —> bool) —> Map[A,Z]) in
use User with Library, Database: env in
use Library with General: env in
use General with eq_str, lt_str: proc(string, string —> bool) in
use Database with Processed: env in
use 10 with writeString: proc(string) in
begin

! the base_maps component
if Processed contains base_maps then

writeStringC'The Processed environment already contains base_maps, no action taken.'n")
else
begin

in Processed let base_maps := m_empty[Map_id, Basemap](eq_str, lt_str)
end
! the base_image component
if Processed contains base_images then

writeString(" The Processed environment already contains base_images, no action taken.'n")
else
begin

in Processed let base_images := m_empty[Image_id, Baseimage](eq_str, lt_str)
end

140

Chapter 5: Geographical Data Modelling and Organisation

end

This program checks whether the Processed environment already contains the required

components: - variables basejnaps and base_images. If neither of them exists, then an

empty database is created for it and is bound to the Processed environment. Thereafter, the

basejnaps and the base jm a g es can be used to store all the processed forms of

geographical data.

The databases for the other forms (raw, interim and derived) of geographical data can be

treated in a similar way. For example, the Raw database may hold a group of rawjnaps
collected in the spaghetti data model as well as a group of raw jm a g es in the grid cell data

model. The Interim database may comprise a collection of map and image data

(.interim jnaps and interim jm a g e s) restructured in the different forms suitable for digital

mapping and image processing. Finally the Derived database will contain the specific data

sets generated from the Processed database for particular applications. Examples might be

that all roadjnaps would be organised in the link and node data model for network

analysis, that all landuse jm a g es are built with the linear quadtree data model for overlay

analysis and so on. Fig. 5.12 illustrates the multiple modelling of geographical data

integrated within the Database environment in the persistent store.

The Database environment contains four databases - Raw, Interim, Processed and Derived.
Each database is used to store a particular form of geographical data which may comprise

different vector and raster data types embedded within various data models. Thus the

overall Database environment represents an integrated geographical database in the

persistent IGIS.

— raw_maps: M ap[M ap_id, SP_DM]
Raw — raw jm ag es: M ap[Image_id, Rawimage]

Interim

- Processed -

— interim_maps: M ap[M ap_id, SP_DM]

p s o -
- User -

- Database -
— interim_images: M ap[Im ageJd , Interim_image]

— base_maps: M ap[M ap_id, Basemap]

— base jm ages: M ap[Im ageJd , Baseimage]

~ Derived —
— road_maps: M ap[M apJd , LN_DM]

— landusejm age: M ap[Im ageJd , LQT_DM]

Figure 5.12 An example of the multiple modelling of geographical data integrated in the
Database environment within the persistent store

141

Chapter 5: Geographical Data Modelling and Organisation

5.5 Constructing An Integrated Geographical Database

In the previous section, the creation of new and empty databases in the persistent store for

the construction of various forms of geographical data has been discussed. This section is

concerned with the construction and entry of geographical data into these databases. As has

been noted earlier, the Processed database is the key component of an integrated

geographical database in the persistent IGIS. In addition, the acquisition of available

geographical data from mapping agencies is a common practice. Very often, these data have

been processed and stored using an exchange file format. Therefore, this section

concentrates on how to build the Processed database component of the integrated

geographical database. The same procedure may apply to other databases for the

construction of different forms of data.

The construction of the Processed database requires the development of an import module

which comprises a set of data transformation programs in the persistent IGIS. Each

program is used to read a particular exchange file format such as NTF, TIFF, FBFF (Flat

Binary File Format), etc. and to convert the data into persistent objects represented with an

appropriate data model, i.e. one of the type systems discussed in Section 5.3. The persistent

objects are then saved in the persistent store. Figure 5.13 illustrates the process of

importing exchange file formats into the Processed database of the persistent store.

FBFFTIFF

^

Imp
Mo(

r ^

>ort
iule

IGIS Software

— 11 ..

Processed

Database
' ...

Persistent Store

Figure 5.13 The process of importing exhange files into the persistent store

In order to carry out experiments with an integrated geographical database, a set of sample

data covering the Port Talbot area in South Wales has been used. This data set consists of

three vector map files and two raster image files. The vector map files are mainly used for

142

Chapter 5: Geographical Data Modelling and Organisation

the construction of different data models in a database, whereas the raster image files are
aimed at handling different forms (raw, interim and processed) of geographical data. The
vector files are stored in the same NTF v 2.0 format, but use different data models (the

spaghetti, the link and node and the polygon-based models respectively); whereas both
raster files employ the same data model (the grid cell), but are stored in different file
formats (FBFF and TIFF respectively). Table 5.1 gives a summary of the characteristics of
the different components of the test data set. It should be noted that this data set will also
be used for the experiments described in Chapter 6 and 7.

File Name SS8087 270190 2144 PTBAND1 SS88SW

Data Type Vector Vector Vector Raster Raster

File Format
NTF v 2.0

level 2

NTF v 2.0

level 3

NTF v 2.0

level 3
FBFF 8-bit

TIFF 8-bit
palette colour
uncompressed

Data Model Spaghetti Link and
Node

Polygon-based Grid Cell Grid Cell

Coverage (km) 1 x 1 5 x 5 25x25 2 0 x 2 0 10 x 10

Coordinate / Pixel
Resolution (m)

0.10 1 0.1 25 5

Map Series Landline OSCAR Boundary-line - -

Data Source

Surveyed at
scale of
1 : 2,500.

Derived from
maps at source
scales of
1 : 1,250,
1 : 2,500 and
1 : 10,000.

Derived from
the definitive
1 : 10,000
boundary
records.

Extracted
from a
Landsat TM
scene 204/24,
22nd July
1984.
800 x 800
pixels

Scanned
from maps at
scale of
1 : 50,000.
2,000 x 2,000
pixels

File Size (bytes) 133,400 210,271 390,665 640,000 4,005,880

Supplier Ordnance
Survey

Ordnance
Survey

Ordnance
Survey

NRSC MR-Data
Graphics

Table 5.1 The description of the test data set

Based on the database environment presented in Fig. 5.12, the Processed component may
contain a collection of vector map data in the variable base_maps as well as a collection of

raster image data in the variable base_images. The organisation of the vector map data and
the raster image data into these two variables has been carried out for the test data set and
will be described respectively in the two subsections that follow.

143

Chapter 5: Geographical Data Modelling and Organisation

5.5.1 Organising Vector Map Data

As has been shown in Fig. 5.13, a data translation program needs to be developed for the
conversion of the NTF data into the Napier88 data types. This subsection first gives a brief
description of the NTF exchange format. This is followed by the process of constructing
persistent data objects for the three vector map files.

5.5.7.1 An Overview o f NTF v 2.0

The National Transfer Format (NTF) v 2.0 is the standard format [BS7567] used in the UK
for the exchange of digital map data. It is also being used for all of digital map products
created by the Ordnance Survey [Ordnance Survey, 1993a]. NTF supports a family of five
data models (simple spaghetti, complex spaghetti, link and node, partial topology and full
topology) as well as user-defined data models. Thus it may be used for a wide variety of
applications and for transfers of data of varying degrees of complexity. In order to provide
the features of efficiency and easy of use, five levels of complexity have been defined in
NTF to accommodate various needs for data transfer. The characteristics of each level can
be summarised as follows [BSI, 1992]: -

Level 1 is used for simpler types of vector data. Points, lines and texts are separate
entities, and each may be given one feature code and one attribute value;

Level 2 is also used for simpler types of vector data. However, it allows the addition of
many attributes to the point, line and text entities. Text may be linked to a
feature as an attribute;

Level 3 supports a variety of data models that may include network data, polygons,
semantic relationships and complex features;

Level 4 allows the transfer of data using either a full topological model or a link and
node data model; and

Level 5 is a user definable format and is intended mainly for use with highly specialised
data sets that do not fit easily into levels 3 or 4.

A NTF transfer set comprises a volume header and one or more databases which are further
subdivided into sections. The volume header provides information about the overall transfer

set, such as the date of creating the transfer set; a unique reference number for the transfer
set; the NTF level, and so on. Each database commences with a database header record
followed by any or none of the records. The database header record gives brief information
about a database, such as the database name, the data dictionary, the feature classification
scheme, the data quality, the type of the data model, etc. Each section contains a section
header record and the section data (data records). The section header record, which may be
followed by the section quality record and/or the data quality record, contains information

144

Chapter 5: Geographical Data Modelling and Organisation

which is essential for interpreting and processing some of the field in the data records. The

section data contains the data about features, topology and geometry, and their

relationships. The overall NTF file structure is illustrated in Fig. 5.14.

Transfer
Set

*1 level 5 only
*2 level 5, plain N TF only

Figure 5.14 The NTF file structure [BSI, 1992]

5.5.1.2 Constructing Vector Map Data

Before constructing persistent objects, data types for handling attribute should be defined.

The three files SS8087, 270190 and 2144 included in Table 5.1 use the spaghetti, the link

Compulsory Optional

Volume Header

Database Header

Attribute Description

Attribute Com bine

Data D escription *'

Data Form at 2

Feature Classification

Codelist

Database Quality

Section Header

Section Quality

Data Quality

Section Data
Section Database

Section Header

Section Quality

Data Quality

Section Data
Section 2

Database Header

V olum e Term ination

Database 2

145

Chapter 5: Geographical Data Modelling and Organisation

and node and the polygon-based data models respectively. The attribute data types required
specifically for dealing with NTF files may be declared as follows: -

The spaghetti data model

type Landline_point_attr is structure(orient: real; symbol_code: int)

type Contour_point_attr is real ! height
type SP_point_attr is variant(landline: Landline_point_attr; contour: Contour_point_attr)

type Contour_line_attr is real ! height
type SP_line_attr is variant(landline: null; contour: Contour_line_attr)

where orient is used to define the orientation of the point symbol;
symbol_code is the code of the point symbol;
landline represents digital maps at scales of 1:1,250, 1:2,500 and 1:10,000;
contour represents digital contour maps at the scale of 1:50,000.

The link and node data model

type LN_attr_ssm is structure(RB, RU: bool; OR: real; PN, NU: string)
type LN_attr_oscar is structure(SY: int; LL: real; SC, PN, RN, FW: string)
type LN_attr is variant(small_scale_map: LN_attr_ssm; oscar: LN_attr_oscar)

where RB denotes the representative point bounded by a linear feature;
RU denotes the representative point not bounded by a linear feature;
OR is used to describe the orientation of a point feature from Grid East, anti

clockwise. If absent, the feature is not deemed to have an orientation;

NU represents numbered features;
SY represents the date of digitisation - yymmdd;
LL represents the length of the chainage link;
SC represents the source scale; possible values are : “A” = 1:1,250 or 1:2,500, “B” =

1:10,000, “C”= 1:50,000, “D” = 1:100,000+;

PN represents any name, ended by a
RN represents any valid road number. This must start with M, A or B - and may be

ended with (T) or (M);
FW represents the form of the road. “D” = Dual-carriageway, “R” = Roundabout;
small_scale_map represents digital maps at scales of 1:625,000 and 1:250,000;
oscar represents Ordnance Survey Centre Alignment of Roads (OSCAR). It is a

digital road network derived from Ordnance Survey maps at scales of 1:1,250,
1:2,500 and 1:10,000.

146

Chapter 5: Geographical Data Modelling and Organisation

The polygon-based data model

type PB_attribute is structure(AI, LK, PI, HW, LV: int; HA: real; fc: FC;
NM, OP, SD, CT: string)

where A I is the identifier of an administrative area;

LK is a link identifier;
PI is a polygon identifier;
HW is a mean high water flag;

LV is the level of an administrative area type;
HA is the area (in hectares) of polygons in a tile;
fc is a feature code;

NM represents any name;
OP represents the opcs-code for city, district and ward only;
SD is the superseded date;
CT is the change type.

Based on the NTF file structure shown in Fig. 5.14 and the type systems designed in
Subsections 5.3.1 ~ 5.3.3, a Napier88 program has been developed for the import of an
NTF file into the Processed database - this will be described later in Chapter 8. In general,
data conversion from one format to another is a straightforward task. However, the import
of data objects into databases involves more complicated structuring of data than the
conventional file format conversion. Fig. 5.15 is a flowchart illustrating the primary steps
required in this data import process. The dotted-line blocks (1 and 2) represent the two

major parts needed in the data import program. They can be outlined as follows: -

1. The initialisation of the entity tables, and
2. The construction of data objects into entity tables which form a basemap in the

base_maps table.

The initialisation of entity tables concerns the creation of entity tables with data types

conformable to a data model. That is, it involves the construction of a set of new and empty
tables needed to hold the data objects for each entity. The respective entity tables needed
for the handling of the three data models may be declared as follows: -

Spaghetti data model (SS8087)

let sp_pid_point := m_empty[Point_id, SP_point](eq_int, lt_int)
let sp_lid_line := m_empty[Line_id, SP_line](eq_int, lt_int)

147

Chapter 5: Geographical Data Modelling and Organisation

yes

no

Read section
header record

Read database
header records

Read attribute
description records

Read feature
classification record

Input a NTF
file name

Read volume
header record

Determ ine the
data model

Read setction
data records

Initialise data
objects

i.e. creating empty
entity tables

Construct
a basemap and
insert it into the

base_maps

Construct
data objects for

an entity and
insert it into its
corresponding

entity table

end o f input

Figure 5.15 The flowchart shows the primary steps of reading a NTF file and converting it
into a basemap which is placed into the base_maps in the Processed database.

148

Chapter 5: Geographical Data Modelling and Organisation

let sp_tid_text := m_empty[Text_id, SP_text](eq_int, lt_int)
let fed := m_empty[FC, FD](eq_str, lt_str)

Link and node data model (270190)

let ln_pid_point := m_empty[Point_id, LN_point](eq_int, lt_int)
let ln_lid_line := m_empty[Line_id, LN_line](eq_int, lt_int)
let ln_gid_geometry := m_empty [Geom_id, LN_geometry](eq_int, lt_int)

let ln_aid_attribute := m_empty[Attr_id, LN_attribute](eq_int, lt_int)
let ln_kid_link := m_empty[Link_id, LN_link](eq_int, lt_int)
let ln_nid_node := m_empty[Node_id, LN_node](eq_int, lt_int)
let ln_tid_text := m_empty[Text_id, LN_text](eq_int, lt_int)
let fed := m_empty[FC, FD](eq_str, lt_str)

Polygon-based data model (2144)

let pb_gid_geometry := m_empty[Geom_id, PB_geometry](eq_int, lt_int)
let pb_aid_attribute := m_empty[Attr_id, PB_attribute](eq_int, lt_int)
let pb_polyid_polygon := m_empty[Poly_id, PB_polygon](eq_int, lt_int)
let pb_cid_chain := m_empty[Chain_id, PB_chain](eq_int, lt_int)
let pb_cpolyid_cpolygon := m_empty[Cpoly_id, PB_cpolygon](eq_int, lt_int)
let pb_collid_collection := m_empty[Coll_id, PB_collection](eq_int, lt_int)
let fed := m_empty[FC, FD](eq_str, lt_str)

where m_empty is a procedure provided by the Maps library for creating an empty Map
(See Section 3.4.4.2),

eq_int and lt_int are procedures which provide the equality and ordering tests for the
domain type of int, and

eq_str and lt_str are procedures which provide the equality and ordering tests for the
domain type of string.

The construction of data objects into entity tables deals with the reading of section data

records and their conversion into the predefined entities. The constructed entities are then
inserted into their entity tables. Finally, all the entity tables are aggregated and formed into a
basemap which is inserted into the base_maps table. Fig. 5.16 gives an expanded flowchart
of the dotted-line block 2 shown in Fig. 5.15 for each of the data sets used, i.e. the
Landline, the OSCAR and the Boundary-line data.

149

Chapter 5: Geographical Data Modelling and Organisation

yes
eoi '

no

Record
type ?

attribute point textme

no

yes

* end o f input

l_ le n (x y _ lis t)
< num _coord ?

Read a record

Construct a x y j i s t

Get num_coord

Get line_id,fcGet point_id, fc

Read geometry
record

Get font, text J it ,
dign jjo s tn

Read geometry
record

Get .v, y
let xy := XY(x, y)

Get x, y
let xy := XY(x, y)

Read next
geometry record

Read geometry
record

Get orient,
symbol_code

Read nam e
position record

See Procedure
ntfllToBasemap
in Appendix £

Construct a
sp_point and insert
it into sp_pidjpoint

Construct a s p jin e
and insert it into

s p j id j in e

Construct a s p je x t
and insert it into

s p j i d j e x t

Get te x tjd ,
text_code,
textjbody

Construct a tmp
x y j i s t and append

it to the original
x y j i s t

Get the last sp jpoint
object from

sp jp id jjo in t and
update it and put it

back

! Construct a basemap and put it into
! the basejnaps table
1. iet sp_tid_txt :=

SP_tid_text(sp_tid_text)
2. let sp_dm := SP_D M (sp_pid_point,

sp jid _ lin e , sp_tid_txt, fed)
3. let basemap_dm :=

Basem ap_DM (spaghetti: sp_dm)
4. let basemap =

Basem ap(basem ap_dm ,basem ap_attr)
5. m _isu_insert[M ap_id, Basemap]

(base_maps, map_id, basem ap)

(a) Flow diagram for the “Landline” map data

150

Chapter 5: Geographical Data Modelling and Organisation

See Procedure
ntfoscarToBasemap

in Appendix E

Construct In J in k from
ln_nid_node and insert

it into In jc id jin k

! Construct a basemap and put it into
! the basejnaps table
1. let ln_dm := LN _DM (ln_pid_point,

I n j i d j i n e , ln_gid_geometry,
ln_aid_attribute, ln_kid_link,
In_nid_node, ln_tid_txt, fed)

2. let basem ap_dm :=
Basem ap_D M (link_node: ln_dm)

3. let basemap =
Basem ap(basem ap_dm ,basem ap_attr)

4. m _isu_insert|M ap_id, Basemap]
(base_maps, m ap_id, basem ap)

Read a record

Record
type ?

Get poin tJd ,
g eo m jd , a ttrjid

Get l in e jd ,
g eo m jd , a t tr jd

Get n o d e jd ,
g e o m j d_of_n od e.

num.Jinks

Construct
a In_point and

insert it into
In _pidJpoint

Construct a In jin e
and insert it into

I n j id j in e
Construct
a l in k jis t

Read geometry
recordRead geometry

record
l_len(link_Iist)
< nu m jin ks ?

Get numjeoord,
gtypeGet num_coord,

x, y
let xy := XY(x, y)

Read next
link record

Construct a x y j i s t
Construct a link and

append it to the
lin k jis t

Construct a x y j i s t
and form a

ln_geometry and
insert it into

ln_gid_geometrty

l_ len(xy_Iist)v \ n o
< num _coord ? /

Read attribute

Read a
recc

ttribute
)rds

'
Get SY, LL, SC, PN,

RN, FW
and construct
In attr oscar

Construct a
ln_atttribute and

insert it into
In aid attribute

Read next
geometry record

Construct a
ln_geometry and

insert it into
ln_gid_geometry

Construct a tmp
x y j i s t and append

it to the original
x y j i s t

Construct a ln_node
and insert it into

In nid node

records

1*
Get SY, LL, SC, PN,

RN, FW
and construct
ln_attr_oscar

yr
Construct a

ln_atttribute and
insert it into

In aid attribute

(b) Flow diagram for the “OSCAR” map data end ot mput

151

Chapter 5: Geographical Data M odelling and Organisation

! Construct a basemap and put it into
! the basejmaps table
1. let pb_dm :=

PB_DM (pb_collid_collection,
pb_cpolyid_cpolygon,

pb_polyid_polygon, pb_cid_chain,
pb_gid_geom etry, pb_aid_attribute,
fed)

2. let basem ap_dm :=
Basem ap_DM (polygon_based:

pb_dm)
3. let basemap =

Basem ap(basem ap_dm ,basem ap_attr)
4. m _isu_insert[M ap_id, Basemap]

(base_maps, m ap_id, basemap)

See Procedure
ntfblTo Basemap
in Appendix E

Read a record

Record
type ?

geometry &
attribute

polygon &
cpolygon collection

Polygon'
type ? j

Get g e o m jd , gtype,
num_coord Get c o lljd ,

num_parts, a t t r jdcomplex

Construct a x y j i s t
Get cp o ly jd ,
num _parts,

geo m jd , a t t r jd

Construct a
p o ly id jis t

Get p o ly jd ,
chain J d ,

geom jd , a t t r jd
l j e n (x y j i s t T \ n o

< num _coord ?
l_ len (po ly id

l i s t) <
num _parts rt

Construct a
polyid_signJ ist

Construct a
pb_polygon and

insert it into
pb _polyid_polygon

Read next
geometry record

l_ len(poly id_
s ig n _ lis t) <
num _parts ?

Read next record

Construct a tmp
x y j i s t and append

it to the original
Construct a tmp
p o ly id jis t and
append it to the

original p o ly id jis t
Read next record

Construct a tmp
polyid_signJist andConstruct a

pb_geometry and
insert it into

pb_gid_geometry

1r

Read attribute
record

'
Get FC, LK, HW,
CT, LV, SD and

construct
pb_attribute and

insert it into
p b_a i d_a t tribute

append it to the
original

polyid_signJist

Construct a
pbjcpolygon and

insert it into
pb_cpolyid_

polygon

Construct
pb_collection and

insert it into
pb_collid_
collection

* end o f input Cont.

152

Chapter 5: Geographical Data Modelling and Organisation

A

Record
type ?

attribute chain geometry

no

yes

Read a record

Get a t t r jd , PI, HA

Read
next record

Construct
a l in k jis t

Update pb ̂ attribute
in pb_dld_attribute

Get chain J d ,
num_parts

Get g eo m jd ,
x, y (seed)

Read attribute
record

Construct a
pb_chain and insert
it into pb_cid_chain

Construct a tmp
lin k jis t and append

it to the original
lin k jis t

Construct a
pb_geometry and

insert it into
pb_gid_geometry

Get a ttr jd , A l, OP,
NM, CT, SD and

construct a
pb_attribute and

insert it into
pb _aid_attribute

(c) Flow diagram for the “Boundaryjine” map data

Figure 5.16 An expanded flowchart of the dotted-line block 2 shown in Fig. 5.15

Based on the flowcharts presented in Fig. 5.15 and Fig. 5.16, three independent Napier88

procedures - ntjllToBasemap, ntfoscarToBasemap and ntfblToBasemap (See Volume II

Appendix E) - may be developed for the import of data derived from Ordnance Survey map

series - i.e. the Landline, OSCAR and Boundary-line respectively. In fact, Ordnance Survey

also provides data derived from other map series such as the 1:625,000, 1:250,000 and

153

Chapter 5: Geographical Data Modelling and Organisation

1:50,000 scale series in NTF v 2.0 format. A data conversion procedure for each of them
can also be developed in a similar way. Therefore, all these procedures can be combined
together into a NTF v 2.0 import module in order to handle OS data of varying degrees of
complexity. The actual implementation of a NTF v 2.0 Import module is given in Chapter 8.

Using the above three procedures, vector map files SS8087, 270190 and 2144 can be
imported into the base_maps table in the Processed database. The map file name which is

unique may be directly used as the key, i.e. map_id, for the basejnaps table. After
importing the test map data into the persistent store, the basejmaps table contains three

entries. Each entry has a map identifier and a set of map data associated with a specific data
model. The map data in the basejnaps table can be loaded into Napier88 programs directly

and used in various applications. Therefore, it can be seen that vector map data with
different data models has been integrated into the basejnaps table in the Processed

database.

5.5.2 Organising Raster Image Data

As has been done for vector map data, so a data translation program is also required for the
conversion of each image file format into Napier88 data types. There are dozens of image
exchange file formats - industrial or de facto standard - available for transferring raster
image data between different systems. Unlike map data exchange files which may be in the
form of various different and complex data models, image data exchange files often employ
a simple data model - the grid cell (see Section 5.3.4). However, raster images in an
uncompressed form often require a large data volume. Therefore, many image exchange file

formats have been designed with several data compression techniques employed internally
to implement a reduction in the overall data volume. An alternative way of implementing
data compression is to use general data compression programs such as PKZIP, ZOO, etc. to

achieve the required storage reduction. However, a compressed image file has to be
decompressed back to its original form before any application program can be applied to

the image data.

In Table 5.1, the two raster image files are PTBAND1 and SS88SW. The PTBAND1 is in
FBFF (flat binary file format), whereas the SS88SW is in TIFF. FBFF. which is the simplest
image format, organises a two-dimensional array of image data into an one-dimensional
array. FBFF stores image data from left to right and from top to down, starting at the upper
left corner of the image. FBFF can be very easily imported into a system. However, the
image dimension (width x height x depth) has to be specified when reading a FBFF image,
because FBFF does not contain a header for holding this essential information.

154

Chapter 5: Geographical Data Modelling and Organisation

By contrast, TIFF was designed specifically to promote the interchange of digital image
data. The design of TIFF is so rich and extensible that it is widely used for scanner output
and related applications. Since TIFF is one of the most commonly used file formats for the

exchange of raster image data, therefore the next subsection first gives a brief introduction
to TIFF. Thereafter, the construction of raster image data into the base_images table of the

Processed databases from a FBFF or TIFF file will be discussed.

5.5.2.1 An Overview o f TIFF v 5.0

The Tagged Image File Format (TIFF) v 5.0 has been jointly developed by the Aldus and

Microsoft Corporations in collaboration with leading scanner vendors and other interested
parties. TIFF was designed primarily to reduce the proliferation of proprietary scanned
image formats by scanner vendors and desktop publishing software developers [Aldus &

Microsoft, 1988]. However, because TIFF is a powerful and flexible format, so it has been
widely used in many other applications, e.g. in image processing operations, raster map
production, etc.

In TIFF, four classes have been defined as follows: -
* Class B for bilevel (1-bit) images,
* Class G for grayscale images,
* Class P for palette colour images, and
* Class R for RGB full colour images.

A TIFF file begins with an 8-byte image file header that points to one or more image file
directories. These image file directories contain information about the image as well as
pointers to the actual image data. The image file header contains the byte order (bytes 0 -1),
the TIFF version number (bytes 2-3) and the offset (in bytes) of the first image file directory
(bytes 4-7). The image file directory (IFD) may be found at any location in the file after the

header and must be followed by the image data that it describes. An IFD consists of a 2-
byte count of the number of entries (i.e. the number of fields), followed by a sequence of

12-byte field entries, and followed by a 4-byte offset of the next image file directory (or 0 if
none follow). Each 12-byte IFD entry contains a tag (bytes 0 -1), a field type (bytes 2-3),

the length of the field (bytes 4-7) and the value offset (bytes 8-11) [Aldus & Microsoft,
1988]. The overall TIFF file structure is illustrated in Fig. 5.17.

The information content of an IFD can be identified by its tag. For example, IFDs with tag
= 256, 257 and 258 represent the width, height and depth of an image respectively. In TIFF,
an image may be divided into a number of strips; each strip may be of any length and be at

155

Chapter 5: Geographical Data Modelling and Organisation

Image file header

1st IFD
count (n)

field typeentry 1 length value offse ttag

256 width

257 height

258 depth

273

279

320 768

offse t o f 2nd IFD

Fields pointed to by the tag

Image data

2nd IFD
count (n)

field type length value offse ttag

byte order version offse t o f 1 st IFD

stripoffset 0, stripoffset 1, s tripo ffset 2 , . . . stripoffset n

stripB ytecount 0, stripB ytecount 1, stripB ytecount 2,... stripB ytecount n

strip 2

strip

strip n

strip 0

Figure 5.17 The TIFF file structure

156

Chapter 5: Geographical Data Modelling and Organisation

any location in the file. Each strip may be located by the byte offset of that strip and the
number of bytes in that strip. Strip byte offsets and strip byte counts of all strips can be
obtained from IFDs with tag = 273 and 279 respectively. In addition, for palette colour
images, an IFD with tag = 320 gives the location of a colourmap in the file. The field type is
a code which represents the data type used in an IFD. The code list is as follows: 1 = an 8-

bit unsigned integer; 2 = an 8-bit ASCII byte; 3 = a 16-bit unsigned integer; 4 = a 32-bit
unsigned integer; 5 = a fraction represented by two 32-bit unsigned integers. The first
represents the numerator of a fraction, the second the denominator. The length is specified
in terms of data types, not the total number of bytes. The value offset contains either an
actual value or an address value pointing to a specific location anywhere in the file.

Since TIFF uses pointers (byte offset) quite liberally, a TIFF file can be read easily from a
random access storage device. Apart from this feature, TIFF also provides several data

compression techniques including Packitbits compression (for bilevel scanned and paint
type files), CCITT Group 1 D facsimile compression (for bilevel data) and LZW (Lempel-
Ziv & Welch) compression (for raster images)

5.5.22 Constructing Raster Image Data

As has been noted earlier, raster image files often employ a grid cell data model. The
conversion of raster image data into Napier88 data types is much simpler than that for
vector map data. Depending on the file structure of an image exchange file format, a raster
image file may or may not contain basic image information and a colourmap. For example, a
FBFF image does not contain information about the image dimension and a colourmap, so
it is necessary to provide these essential data manually. By contrast, a TIFF image carries
these essential data and other auxiliary data along with the image data; thus they can be
read automatically from a TIFF image. Fig. 5.18 illustrates the primary steps required for
constructing and inserting various forms of image data into different databases from a FBFF
or a TIFF image file.

Depending on the status of an input image, the image data may be converted into the

raw_images, the interim_images or the base_images tables in different databases. In
general, if the image data requires further image processing operations such as geometric
correction, image filtering, contrast stretch, image classification, reduction of an image
depth, etc., then the image file should be converted into a rawimage because the
representation of image data in an integer array would give a better performance during
these image processing operations.

157

Chapter 5: Geographical Data Modelling and Organisation

data
form ?

processedinterimraw.

Create a default
colourmap

Input width, height,
depth

Read or construct
an attribute table

Input
image extent

Input FBFF
File name

Input TIFF
file nam e

Read image file
directory

D eterm ine
the data model

Read image file
header

Read an existing or
create a default

colourm ap

Read image data
and construct data

objects

Construct
a baseimage and
insert it into the

base_images

Construct
a rawimage and
insert it into the

raw_images

Read image data
and construct an
one-dim ensional
array o f type *int

See Procedures
fbffToRaw,

tiffToRaw and
tiffTolnterim

in Appendix E

Construct an
interim jm age and

insert it into the
interimJmages

Initialise
a blank image

le t raster = im age
width by height o f

default_pixel

Read image data
(i, j, value) and set
each pixel value to

the image raster
using

setPixel(raster, i,j,
intToPixel(value))

Figure 5.18 The flowchart shows the primary steps required for constructing and inserting
various forms of image data into different databases from an FBFF or a TIFF
image file

158

Chapter 5: Geographical Data Modelling and Organisation

However, if the image data does not need any further image processing operation, but does
require some image management operations, e.g. to extract an image, to trim an image, to
change a colourmap, to overlay two images and so on, then the conversion of the data into
an interim_image would be more convenient for achieving this purpose.

As for the construction of a baseimage, this is a prerequisite for GIS applications. In order
to register an image on a map, the ground coverage of an image has to be determined and

entered. In addition, an attribute table associated with the image needs to be created. After

selecting a data model, the image data can be read and constructed into data objects of
predefined Napier88 data types such as the type systems declared in Subsections 5.3.4 and

5.3.5. Finally, a baseimage may be constructed and inserted it into the base_images table in
the Processed database.

According to the flowchart presented in Fig. 5.18, six import procedures (2 file formats x 3

data forms) may be developed. Before carrying out the import of two test image files into

image databases, the status of each of the two files was first examined. The PTBAND1 file
is a band of an extracted Landsat TM scene and has been geo-corrected to fit the OSGB
National Grid. However, a contrast stretch has not yet been performed on the image
PTBAND1. On the other hand, the SS88SW file is a quarter tile of raster data scanned from
the Ordnance Survey’s 1:50,000 scale map SS88. Any scale or rotation distortion in the
captured image has been removed. It is clear that these two image files require no further
image processing operations except that a contrast stretch may have to be performed on the
image PTBAND1. However, although both images are in 8-bit form, in order to
superimpose both the vector maps and the raster images on an 8-bit graphical display (as
will be discussed later in Chapter 6), the depth of each of these two images needs to be

reduced. Therefore, two import procedures fbffToRaw and tijfToRaw (See Volume II,
Appendix E) have been developed to convert and transfer both image files PTBAND1 and
SS88SW4 into the raw_images table.

After importing both images into the raw Jm ages table in the Raw database, several
procedures have been developed to deal with image manipulation and management

operations. The linear contrast stretch procedure is first used to perform this operation on
the rawimage PTBAND1. The image depth reduction procedure is then carried out to

reduce the image depth of both the resultant rawimage PTBAND1 and the rawimage
SS88SW from 8-bits to 4-bits. Thereafter, both rawimages are converted into
interim Jm ages by the rawToInterim format conversion procedure. The interim Jm ages
may be previewed and trimmed by the image view and trim procedure in order to extract
specific parts of images that are of interest to the user. The extracted images can be further

associated with the extent of the coverage of the image data and may be converted and
transferred into the base Jm ages table using the interimToBaseimage conversion

159

Chapter 5: Geographical Data Modelling and Organisation

procedure. The overall flowchart showing the import of these two test images to construct

the base Jm ages is given in Fig. 5.19.

fbffToRaw
import procedure

tiffToRaw
import procedure

raw_i mages

rawToInterim
conversion
procedure

in terim T oB aseim age

convesion procedure

Linear contrast
stretch procedure

Image depth
reduction procedure

Image view and
trim procedure

Input im age extent
x_m in, y_m in,

x_range, y_range

b ase jm ag es
(PTBAND1,

SS88SW)

Figure 5.19 The flowchart showing the import of two test images to
construct the basejm ages table

Having constructed the basejm ages table in the Processed database, the table contains two

entries. Each entry has an image identifier, i.e. im a g jd , and a baseimage associated with a

data model. In this particular example, both entries employ the same grid cell data model.

However, the basejm ages have been transferred from the Raw database to the Processed
database through the Interim database.

5.6 Summary

In this chapter, the characteristics of three vector data models and two raster data models

commonly used for the representation of geographical data have been discussed. A type

system has also been designed for each data model. These type systems form a framework

for the creation of a persistent geographical database which is essential for the building of

an IGIS.

160

Chapter 5: Geographical Data Modelling and Organisation

A set of test data has been selected to construct an integrated geographical database.
Vector map data have been organised into the basejnaps table with different data models,
whereas raster image data have been processed in the Raw and the Interim databases before

being entered into the basejm ages table. Both basejnaps and basejm ages tables are
integrated in the Processed database. The integrated database now contains the test data
which will be used further for the experiments carried out and described in the next two

chapters.

161

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

CHAPTER 6 : SUPERIMPOSITION AND INTERRELATION OF
VECTOR MAPS AND RASTER IMAGES

6.1 Introduction

In the previous chapter, the organisation of both vector map data and raster image data for

use in an integrated geographical database has been discussed. The required features of
multiple data modelling, and the provision and manipulation of multiple scale maps and

multiple resolution images have all been realised in the persistent database environment
supported by Napier88. In other words, through the provision of those features, the
persistent IGIS has achieved the storage level of integration. However, the provision of

both the display and the process levels of integration is as important as the support of the
storage integration and indeed such a provision is necessary in order to reach the full degree
of integration that is required in an integrated GIS.

The process level of integration is concerned with the concurrent processing of vector and
raster data within a single system. In order to provide this feature, a persistent IGIS has to
embody a facility allowing the selective retrieval of geographical data. This will result in a
requirement that all the geographical data contained in the database will have to be spatially
indexed in advance. Since spatial indexing is quite a complex issue, thus the indexing and
search of geographical data for data manipulation will be treated specially in Chapter 7.
Therefore, this chapter concentrates on an exploration into the possibilities of providing the
display level of integration required for a persistent IGIS.

This chapter first deals with the possibilities of displaying vector maps or raster images
separately and the procedures required to implement these operations. Next the
arrangement of the colours needed for the display of vector maps and raster images is
discussed. This is followed by an account of the procedures involved in the superimposition
of vector maps and raster images. Finally, the combination and interrelation of vector maps

and raster images through the use of a spatial key is also discussed in some detail.

6.2 The Separate Display o f Vector Maps or Raster Images

The display of vector maps or raster images on a terminal or a computer monitor is a basic

facility which is essential for most GIS operations or applications. Graphical display of
maps or images allows the user to interact with and analyse the data which has been queried
and to preview the resultant data before the final output is generated either in digital or in
hard copy form. Thus the provision of a facility for the separate display of maps or images
is a prerequisite for the development of a persistent IGIS. Furthermore, the superimposition

162

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

of vector maps and raster images is also based on the support of this facility. Therefore, this
section discusses the development of the display functions needed for the viewing of the
maps or images required for the persistent IGIS.

In order to display maps or images on the screen, a number of operations have to be carried
out. Figure 6.1 gives the flowcharts showing the major steps required for the display of a
basemap and a baseimage. These operations may be categorised into two parts:

1. The retrieval of a basemap or baseimage from the Processed database, and
2. The display of a basemap or baseimage on the screen.

These are discussed further in the following two subsections.

6.2.1 The Retrieval of a Basemap or Baseimage from the Processed Database

The retrieval of a basemap or baseimage first requires a search of the Processed database to
be carried out to find out whether the required map or image is available as well as the
actual actions of retrieving the data if and when it is found. Since basemaps and baseimages
are stored respectively in the basejnaps and the basejm ages tables of the data type Map,
the database search and retrieval operations can be performed fairly easily using the
procedures m jsEm pty, m_apply, m_contains, m_find, m_copy, etc. provided by the Maps
Library. For example, the retrieval of a basemap can be carried out by the following
operations. First of all, the status of the basejnaps table may be checked by the statement

m_isEmpty [Map_id, B asemap] (base_maps)

This will result in a Boolean value (true or false) which indicates whether the basejnaps

table is empty or not. If the basejnaps table is not empty, a list of the m a p jd entries
contained in the table may be obtained. This can be carried out by first creating a procedure,

which prints the m a p jd of an entry in the table, and then applying this procedure to every

element in the table using the procedure m_apply. This operation may be implemented as
follows: -

let prtMapId = proc(map_id: Map_id; basemap: Basemap)

{ writeString(map_id ++ “ ”); }

m_apply[Map_id, Basemap](base_maps, prtMapId)

The procedure prtMapId is used to print a m a p jd . The procedure m_apply which applies
the procedure prtMapId to every element of the basejnaps table will produce a list of all

163

Chapter 6: Superimposition and Interrelation o f Vector Maps and Raster Images

yesyes

nono

nono

yesyes

Zoom/Pan
the map

Zoom/Pan
the im a g e j

basejnaps
em pty ?

basejmages
em pty ? ^

Input a map_id Input an image_id

Display the whole
map on the screen

Enter a Zoom/Pan
option

Enter a Zoom/Pan
option

Determine the new
drawing extent

Resample or shift
the image

Redisplay the map
on the screen

Display a list of
m a p j d

Display a list of
im a g e j d

Display
the message

database empty”

Display the
generated image

on the screen

Clear the screen and
set up the screen

background colour

Load the baseimage
from the Processed

databaseLoad the basemap
from the Processed

database

Display
the message

“database empty”

Get the colourmap
of the image and

centre the image on
the screen

Determine the data
model and the

extent of the map
coverage

Determine the data
model and the

extent o f the image
coverage

Clear the screen
and set up the

screen background
colour and define

the colourmap

(a) The display of a basemap (b) The display of a baseimage

Figure 6.1 The flowcharts for the display of a basemap and a baseimage

164

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

the map_id entries. Furthermore, the procedures m_contains and m jjn d can be used to
check that the base_maps table contains the specific map_id that is required and then to
access the basemap data for this particular map_id. This operation can be implemented as
follows: -

if m_contains[Map_id, Basemapl(base_maps, map_id) do
{ let basemap = m_find[Map_id, Basemap](base_maps, map_id) }

The first statement checks whether the base_maps table contains the specified map_id. If it
does, then the second statement is followed to retrieve the basemap corresponding to this

designated map_id.

Similarly, a corresponding set of operations to those described above can be applied to

search for and retrieve a baseimage from the base_images table in the Processed database.

After a particular basemap or baseimage has been found in the database, its data model can
then be determined. Also, all the entity tables associated with the basemap or baseimage
(See Subsections 5.5.1 and 5.5.2) can be copied into the main memory using the procedure
m_copy provided for this operation in GIS applications.

6.2.2 The Display o f a Basemap or Baseimage on the Display Screen

Having retrieved a basemap or baseimage from the database, the whole map or image can
then be displayed on the display screen using a set of drawing/display procedures, including
drawPoint, drawLineString, drawText, drawRectangle, viewlmage and so on (See
Appendix D). These procedures have been developed employing the fundamental vector
graphics and raster graphics facilities provided and supported by Napier88 - which have
already been discussed in Subsections 3.4.2 and 3.4.3. However, for the user of the system
to be able to view or manipulate any part of the map or image, further graphics facilities
such as “zoom”, “pan”, “rotate and “clip” functions need to be developed. In the present
implementation of the persistent IGIS, a “zoom” facility for the close-up viewing of a map
and a “pan” facility used to roam across the image have been developed. These two basic
facilities are essential for the subsequent operations - such as the superimposition of vector
maps and raster images and the querying of spatial entities. The development of the
graphics capabilities required for zooming a map and panning an image are described in
following sections.

165

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

6.2.2.1 Viewing and Zooming a Basemap

Before the zoom operation is carried out on a basemap, the whole of the basemap is usually

displayed and viewed in a display window on the screen in order to provide an overview of

the map content and coverage. This operation requires the fitting of a map into a display

window. Depending on the coverage of a map and the aspect ratio {i.e. height / width) of a

window, a map may fit a window vertically or horizontally or both. This situation can be

represented by the two cases shown in Fig. 6.2. The first case shows the situation where a

map needs to fit a window vertically, whereas the second case shows the situation where

the map has to fit the display window horizontally. The exact fitting of a map into a window

- both horizontally and vertically - can be regarded as a special circumstance {i.e. wm * hw /

ww = hm) of either the first of these two cases (which is treated in Fig. 6.2) or the second

case.

(1) if wm * hw / ww <= h,
Drawing Extent

Xmax? ymax

Map

hm * ww/ h

- Window

(2) if wm * hw / ww > h

wm * hw / ww hm

Xmirn ymin

Drawing Extent

Xmaxi ymax

ww~-»
Window

wm : map x_range
hm : map y_range
ww : window width
h w : window height

Figure 6.2 The fitting of a map into a display window

The algorithm for handling this fitting operation may be described as follows:

166

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

if map_xrange * window_height / window_width <= map_yrange
then

drawing_xrange = map_yrange * window_width / window_height
drawing_yrange = map_yrange

else
drawing_xrange = map_xrange
drawing_yrange = map_xrange * window_height / window_width

Based on the above algorithm, the drawing extent (x^,, y^n, xmax, Ymax) required for the
display of the whole map can be determined, where Xmin and ymin are the ground coordinates

of the south-west corner or the origin of the map and xmax = x,™ + drawing_xrange, ymax =
Ymin + drawing_yrange. Thereafter, the drawing extent can be used by the drawing
procedures to display the whole map in a window. Conceptually, the drawing extent can be
viewed as the ground coverage of a “virtual window”. Because the virtual window and the
display window have the same aspect ratio (i.e. drawing_yrange / drawing_xrange =
window_height / window_width), it ensures that the displayed map retains the same scale in
both the x- and y- directions.

Zooming a map is the operation needed either to magnify the map displayed on the display
window to see more detail or to shrink it to view more of the map with less detail. The
zooming operation can be achieved in any one of several different ways. It may be carried
out in a very simple way that magnifies or shrinks the current display a stated number of
times or in a more complex way that permits the user to pan around a box representing the
viewing window encompassing the entire generated portion of the map and to enlarge or
shrink it in a dynamic manner. Each method of zooming has its pros and cons. Thus the
provision of several different options for a zoom command has become a common practice
in current CAD and GIS packages. Therefore, a number of zooming options for viewing a
map have been implemented in the persistent IGIS. The primary operations involved in each
of these zooming options are described in Table 6.1.

In fact, the zooming operation is the determination of a new drawing extent either from the

current drawing extent or from the extent of the map coverage. The new drawing extent is
supplied to the graphics procedures for the generation of a new display. The map is clipped
to the area of the bounding rectangle defined by the drawing extent. The entities within the
rectangle are then “mapped” onto the display window. The methods used for the
determination of drawing extent for the “Zoom Number (N)”, the “Zoom Centre” and the

“Zoom Window” options are illustrated in Fig. 6.3.

Based on the concept described above, a procedure getZoomExtent has been developed to
carry out the zoom operations needed for the viewing of maps (See Appendix D). Having
developed the drawing procedures required to display a basemap as well as the zoom

167

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

Option Operation

Zoom All
This places the entire map in a display window. This operation is
the same as that needed to display the whole map in a window
which has been described above.

Zoom Number (N) This enters a magnification/reduction number relative to the Zoom
All display, i.e. Zoom All = Zoom 1.

Zoom Centre

This specifies the centre point of the area of the map to be
displayed using a cursor controlled by a mouse and enters a
magnification/reduction number relative to the scale of the
currently displayed map.

Zoom Window
This designates the rectangular area of the map to be drawn as
large as possible within the display window by specifying two
diagonal corners using a mouse.

Table 6.1 The primary operations of the different zooming options

procedures to give a close-up view of any part of this map, any basemap may be drawn in a
display window and any part of the displayed map can be enlarged or reduced. Figure 6.4
shows the display of the whole of OS map SS8087 in an X-window which has a size of 800
x 600 pixels. The entire window, including the title, frame, client area of the window (i.e.
the area inside the window), etc., has been captured from the screen and then rotated anti
clockwise 90 degrees using an image processing utility program. Afterwards, the zoom
procedure has been used to enlarge a window area (the dashed-line block in Fig. 6.4) using
the “Zoom Window” option. The display of the designated window area on completion of
the zoom operation has also been captured, rotated and then shown in Fig. 6.5.

In both Fig. 6.4 and Fig. 6.5, the background colour of the display windows has been set to
a light grey. Three foreground colours (red, green and black) have been used to represent

the map. Text annotations are represented in black, building outlines in red and all other
features in green. It should be noted that the title area (displayed at the top of the window)
has been displayed in black, so that the default title “Napier88” (also in black) is invisible. It
is known that the colour of this title area is affected by the setting of the colourmap

specified in drawing programs. However, the Napier88 reference manual does not give a
procedure describing how to change or control the colour of the title area. Thus the colour
of the title area displayed in an X-window must be regarded as being somewhat

“unpredictable”. This can be demonstrated by comparing the various windows captured
from the screen which have been included in this thesis; an example of this unpredictability
is the contrast between the title areas contained in Fig. 6.4 and Fig. 6.8 illustrated later in
this chapter.

168

Chapter 6: Superimposition and Interrelation o f Vector Maps and Raster Images

Zoom Centre

N ew D raw in g
E xtent

P reviou s D raw ing
E xtent

Xmin.p > Ymin.p

W p — X m a x p - X m jn p

h p — Ymax,p " Ymin.p

W n = W p / f
hn = hp / f
Xmin.n — Xc W n / 2

Y m in .n — Y c - h n / 2

Xmax.n — Xc 4- W n / 2

Ymax,n — Yc 4" h n / 2

Zoom Num ber (N)
Xmin.m 4- W a , y min 4* h a

ha

W „ ~ *

t

h „ C*
Xc, Yc

j

Xmin.n

I

Ymin.n

Xmax.n > Ymax.n

N ew D raw ing
E xtent

Z oom All
D raw in g E xten t

wa

Xmin.m , Yinin.m

i f w m * h w / ww < = h m

then
wa = h m * ww / h w

ha — h m
else

W a = W m

ha = wm * h w / Ww

Xc — Xinin.m 4" W a / 2

Yc — Ymin.m 4- h a / 2

W „ = W a / f

hn = h a / f

Xmin.n — Xc W n / 2

Ymin.n — Yc " h n / 2

Xmax.n — Xc 4- W n / 2

Ymax.n — Yc h n / 2

Zoom Window

-̂- Wn --^
2T

hn
X 1,

wd
hd

xi, yi Xmin.n , Ymin.n

'X 2, Y2

W n

Xmax.n » Ymax.n

Xmax.p > Ymax.p

N ew D raw ing
E xtent

D esign ated W in d ow
(d ash ed line b lock)

P reviou s D raw ing
E xtent

Xmin.p » Ymin.p

Q. II (>< X

h d = Y 2 - Y i

if wd * h w / ww <= wd
then

W n = hd * ww/ hw
hn = hd

else
wn = wd
hn = wd * hw / w w

Xmin.n ~ X |

Ymin.n — Y 1

Xmax.n ~ X m j n n 4- wn
Ymax.n — Ymin.n 4- hn

w : the width of a bounding rectangle ww,hw the width and height of the display window
h : the height o f a bounding rectangle wp, hp the width and height of the previous drawing extent
f : the magnification/reduction factor W n, hn the width and height o f a new drawing extent
p : previous drawing extent wm, hm the width and height of the map
n : new drawing extent W a, ha the width and height determined from the “Zoom
a : zoom all extent All” case
m : map extent W d, hd the width and height of a designated window area
d : a designated window (all distances are given in ground length)
c : centre of the area to be displayed

Figure 6.3 The determination of the drawing extent required for various zooming options

169

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

gplpl
'■v:

■ ■ I
i f

V
A -

\ \ \ \
t .,................ \

ip lirii
II Km I wm W M■ ■

Figure 6.4 The display of the whole map SS8087

1 70

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

Figure 6.5 The zoom-in display of the dashed-line block area in Fig. 6.4

171

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

6.2.22 Viewing and Panning a Baseimage

As has been done when zooming a basemap, so a zoom function can also be developed for
the viewing of a baseimage. This is particularly useful for showing an overview of the

coverage of a baseimage. Zooming an image requires a resampling process. Sampling at a
higher rate (i.e. scaling up) generates more samples, and thus a larger image. On the

contrary, sampling at a lower rate (i.e. scaling down) generate fewer samples, and thus a

smaller image. Zooming an image at the scale of an integer value relative to the actual pixel

size does not require an interpolation or a stretching process, so it can be implemented
fairly easily. However, zooming an image at the scale of a real value involves reconstructing

the original continuous function at the given sample points and then resampling at a
different rate [Schumacher, 1992]. This operation will require quite a complex operation.
Therefore, a complete function for zooming an image has not yet be implemented in the
persistent IGIS. Instead, this section places an emphasis on the development of the viewing
function required for most raster operations since these are being carried out on images
which are being displayed at their actual pixel size rather than on the images that have been
resampled. Thus a pan function, which is essential for viewing an image displayed at the
scale of 1:1, (where one image pixel is “mapped” onto one screen pixel), has been
developed in the persistent IGIS.

In order to facilitate the panning of an image, it is advantageous to display an image by first
registering the centre of the image to the centre of the display window when it is first
loaded. This operation can be carried out by the statement

copy limit raster at xr, yr onto limit window at xw, y w

which will display the limited section of the image raster starting at xr, yr onto the limited
section of the display window starting at xw, yw. Because the size and the depth of the
limited sections are not specified in the above statement, therefore the maximum size and
the maximum depth of both the raster image and the display window are taken by default to
perform automatic clipping on the edges and depths of the limited sections. There are four
possible cases whereby a raster image may overlap with a display window. The starting
points for setting the limits of a raster image and a display window - (xr, yr) and (xw, yw) -
required for the above statement are varied in each case. The values of the coordinates (xr,
yr) and (xw, yw) for each case are illustrated in Fig. 6.6.

172

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

(1) wr <= ww and h, <= hv (2) wr <= ww and h, > hv

ww
wr

y. = o
x w = (Ww - w r) / 2
yw = (h w - h r) / 2

h w h ,

x, = 0
yr = (hr - hw) / 2
Xw = (W w - W r) / 2

oII

(3) w, > wvv and h, <= hv (4) wr > ww and hr > hv

^------ Ww ^

O,

Xr 0'

C.
?/ yw

h , h

Xr = (W r - W w) /2
y. = o
Xw = 0

yw = (h w - h r) / 2

w,

ww s
5

Or

hw h ,

xr = (wr - W w) / 2
yr = (hr - h w) / 2
xw = 0
yw = 0

Wr : raster width ww : window width
c : centres of a raster image

h, : raster height hw : window height | | : raster images

O, : raster origin ow : window origin and a display window J : display windows

Figure 6.6 The determination of (xr, yr) and (xw, yw) for the different overlay cases of a
raster image and a display window

The algorithm for the implementation of each of the four cases illustrated in Fig. 6.6 may be

described as follows: -

let x r := 0; yr := 0
let xw := 0; y w := 0
if ras te r_w id th < = w ind o w _ w id th
then

xw := (w in d o w _ w id th - ras te r_w id th) / 2
else

xr := (ra s te r_w id th - w in d o w _ w id th) / 2
if ras te r_heigh t < = w indow _he igh t
then

yw := (w in d o w _ h e ig h t - ras te r_heigh t) / 2
else

y r := (ras te r_he igh t - w in d o w _ h e ig h t) / 2

173

Chapter 6: Superimposition and Interrelation o f Vector Maps and Raster Images

This algorithm can be implemented as an image display procedure that will centre an image

onto a window. If an image is bigger than the window, then a panning function will be

needed to view that part of an image which is outside the window. The panning function is

provided to move an image from side to side, up and down, etc. within the window. Several

methods may be used to achieve such a panning operation. For example, the movement of

an image may be carried out using the keys on a keyboard which control the movement of

the screen cursor or employing a mouse to drag the image dynamically across the display

screen, etc. In the current implementation of the persistent IGIS, a panning function has

been developed by drawing a line on the display window in order to indicate the shift of the

image. Thus the relative displacements of the image in both the x- and y- directions (dx and

dy) can be determined in terms of pixels. Then, the dx and dy values can be used to

recompute the (xr, yr) and (xw, yw) values required for the projection of an image onto a

window. Fig. 6.7 illustrates the determination of the new values for xr and xw considering

the shift of the image only in the x- direction, i.e. across the width of the screen.

case 3 «

dx

3

*— case 2

dx

case

dx

dx

1

-►case 4

Shift an image
in the x-direction

■* X
- w, wu

window area

if dx >= 0 and dx < ww ! case 1
then

xw = dx ; x, = 0
else if dx < 0 and dx >= - w, ! case 2
then

x ii o x II t c. X

else if dx < - w,
then

X i. II X II Z I ! case 3
else

X s II ? X II o ! case 4

j4 w. *|

w, : raster width
ww : window width

A strip of image

Figure 6.7 The determination of x, and xw by shifting dx

The statements described in Fig. 6.7 are made on the specific promise that the displacement

is referenced to the origin of the display window. In order to centre an image on a window,

the displacement should be referenced to the centre of the window. This operation requires

a translation movement, which can be carried out by the replacement of dx with dx + ww /

2, in the above statements. The same concept can also be applied to the y-direction.

Therefore, the overall algorithm for panning an image can be described as follows: -

174

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

! shift an image in the x-direction
if dx >= - window_width / 2 and dx < window_width / 2
then

xw = dx + window_width / 2 ; xr = 0
else if dx < - window_width / 2 and dx >= - window_width / 2 - raster_width
then

xw = 0 ; xr = - (dx + window_width / 2) - 1
else if dx < - window_width / 2 - raster_width
then

xw = 0 ; xr = raster_width - 1
else

xw - window_width - 1 ; xr = 0

! shift an image in the y-direction
if dy >= - window_height / 2 and dy < window_height / 2
then

yw = dy + window_height / 2 ; yr = 0
else if dy < - window_height / 2 and dy >= - window_height / 2 - raster_height
then

yw = 0 ; yr = - (dy + window_height / 2) -1
else if dy < - window_height / 2 - raster_height
then

yw = 0 ; yr = raster_height - 1
else

yw = window_height - 1 ; yr = 0

Based on the panning concept described above,
(i) the procedure getDragDxy, which returns the displacement dx and dy by dragging a

“rubber-band” line; and
(ii) the procedure drawlmage, which can handle the shift of an image,

have been developed (See Appendix D). These two procedures can be used to display and
pan a baseimage. Fig. 6.8 shows that the display of the image SS88SW centres on an X-
window. The dotted line indicates that the displayed image is then shifted in the north-east
direction through the use of the panning function. The displacement is about 400 pixels in

both the x- and the y- directions. The resultant display of the image after panning is shown

in Fig. 6.9.

6.3 The Provision and Arrangement of Colours fo r the Display o f Maps
and Images

Colour is a very effective tool for conveying information to the user of a GIS. A colour
monitor is commonly used to represent the different categories of geographical features in
different colours. The screen resolutions of the colour monitors used in a GIS normally
range from 640 x 480 to 1,024 x 1,280 pixels with a capability of displaying 256 colours
[Aronoff, 1989]. In general, a range of 256 colours is more than sufficient to display and
manipulate vector map data but is quite limiting for the viewing and processing of raster

175

N
ap

ie
r8

8
Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

Figure 6.8 The display of the central part of the scanned raster image of OS map SS88SW

176

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

n’iW............ Mi

Figure 6.9 The resultant display of the scanned raster image of OS map SS88SW
after panning

177

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

image data, particularly multiple-band remotely sensed data. In other words, image
processing operations will often require a colour monitor providing a higher resolution and

more colours than those used in the other aspects - such as the digital mapping, vector GIS
and raster GIS operations - of an IGIS. As has been discussed in Chapters 4 and 5, both the

system architecture and the database design of the persistent IGIS have included the
potential to provide the capabilities required for image processing operations. Hence, the
prototype IGIS is able to extend its functions to deal with remotely sensed data, in which
the fine graduations of shading and colour present in the image are retained, using a high

resolution colour monitor. However, an 8-bit frame buffer (also known as a image plane)
for displaying images is normally used in a GIS. Therefore, this section will be oriented

towards the use of relatively low-cost colour monitors which have resolutions ranging from
640 x 480 to 1,024 x 768 pixels and a minimum of 256 different colours for the handling
and display of the geographical data.

In an 8-bit plane colour monitor, the values that represent the screen image can range from

0 to 255. Each value stored in the frame buffer represents the colour to be displayed at a
specific pixel location on the screen, i.e. a maximum of 256 different colours can be

produced. A colour look-up table, sometimes called a colourmap. is used to convert pixel
values into appropriate red, green and blue values to control the colour display tube. Each
of the red, green and blue values can accommodate numbers in the range 0 to 255, so the
combination of the three values gives a range of 256 x 256 x 256 (i.e. 16,777,216) colours.
However, because the numbers stored in the frame buffer can have only 256 different
values, so the colour look-up table can only contain a maximum of 256 entries. Each entry
can select one of 256 red values, 256 green values, and 256 blue values. Therefore it may
represent any one of the full range of colours but only 256 such entries are available in total.
In the Napier88 system, the procedure colourMap is provided for the setting of any entry in
the colour look-up table - as has already been described in Section 3.4.2. Thus a colour
look-up table can be defined by repeating the use of the colourMap procedure which

establishes a “mapping” from a particular pixel to a 24-bit number corresponding to an
entry in the overall range of 256 blue levels by 256 green levels by 256 red levels.

It should be noted that a colour look-up table can also be defined to display monochrome

images with different gray levels. This is particularly important for the display of a digital

orthophoto image or the image derived from one channel of a remotely sensed device such
as the SPOTS or Landsat TM scanner. The settings of a gray-level colourmap can be
carried out by assigning a range of intensities between black and white, i.e. a gray level
index is defined by assigning the same intensity to the red, green and blue values.

As has been discussed in Chapter 5, a baseimage is already associated with a specific
colourmap which is stored in the database. Therefore, the colourmap of a baseimage can be

178

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

easily acquired and used also for the image display. By contrast, a basemap does not
contain a default colourmap for representing different types of features. The operation
required for the colour display of a basemap is quite a different matter. In a basemap, the

individual features are already categorised by a feature classification scheme. Each feature
carries a code to indicate what the feature is: e.g. a building, fence, road, river, etc. The
number of feature codes used may vary depending on the specification used by a particular

mapping organisation for a specific map series, on the application requirements, and so on.

For example, Ordnance Survey’s “Landline” data employs 30 feature codes and 6 additional
text codes [Ordnance Survey, 1994]. In principle, each code used in a map can be assigned

a particular colour. However, if too many colours appear on a single map, it becomes
difficult to distinguish the individual features. Therefore, in order to display a map with

several commonly-used colours, it is necessary to organise the map’s feature codes in a
hierarchical manner or to reclassify them into several categories by regrouping the relevant
features into a number of groups. Thus, besides the definition of a colourmap for the
commonly-used colours, the colour settings used for the display of basemaps involve the
creation of a feature-colour table by assigning one of the predefined colours to a group of

feature codes.

In terms of the separate displays of basemaps or baseimages which have been discussed in
the previous section, a quite independent colourmap holding up to 256 entries can be
defined for use in each of the graphic display programs. In other words, all the 8 bit planes
will be dedicated to display vector maps or raster images when the persistent IGIS is
dealing with uni-format data, i.e. either vector or raster data. However, in order to
simultaneously display both map and image data in a common window, it is vital to allocate
the number of colours (or bit planes) used to represent each of them. The determination of
the number of colours required for the representation of map or image data is a complex
subject and is beyond the scope of this thesis. In general, the required number of colours
used in vector maps lies between 8 (= 3 bits) and 16 (= 4 bits), whereas in raster scanned
map images it lies between 16 (= 4 bits) and 32 (= 5 bits) while with the raster images
acquired from remote sensing, it will often be more [Sproull et al., 1985; Aronoff, 1989;
Ordnance Survey, 1993b]. On the other hand, the choice available when allocating the
number of bit planes required for the simultaneous handling of both vector and raster data is
quite limited - either 3 bit planes for vector data and 5 bit planes for raster data or 4 bit

planes for both of them. Considering the fact that raster images are often made available
and stored in 1, 4 or 8 bit form and are often used as backdrops for assisting the
manipulation of vector data when dealing with dual-format data, so the second alternative
has been selected and implemented in the persistent IGIS. It should be point out that the
current implementation for the allocation of a fixed number of bit planes each for vector and
raster data is regarded as an intermediate solution in the development of the persistent

IGIS. Eventually, the persistent IGIS should include a scheme that can dynamically optimise

179

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

and allocate a much larger number of bit planes for the provision of the facility to handle

dual format data.

The allocation of the bit planes used for the concurrent display and processing of dual
format data may be carried out by assigning bit planes 0 to 3 for dealing with raster data

and 4 to 7 for the handling of vector data. Fig. 6.10 illustrates the arrangement of bit planes
used to deal with this situation. With this configuration, 16 different colours can be defined
for the representation of the vector data using the high-bit part of the frame buffer, whereas
16 different colours or gray levels may be used for raster data using the low-bit part. In
order to display vector maps and raster images in a common window, a default colourmap

can be defined as follows: -

let vec_cndx := vector 0 to 15 of off ++ off ++ off ++ off
let ras_cndx := vector 0 to 15 of off ++ off ++ off ++ off
for i = 0 to 15 do { vec_cndx (i) := colourToPixel(i, 4) }
for i = 0 to 15 do { ras_cndx (i) := colourToPixel(i, 4) }
! define colours for vector data
let ct := rgb(16)
for i = 0 to 15 do

for j = 0 to 15 do
{ colourMap(window_file, ras_cndx(j) ++ vec_cndx(i),

ct(i,3) * 256 * 256 + ct(i,2) * 256 + ct(i,l) }
! define gray scales for raster data
ct := grayLevel(16)
for i = 0 to 15 do

{ colourMap(window_file, ras_cndx(i) ++ off ++ off ++ off ++ off,
ct(i,3) * 256 * 256 + ct(i,2) * 256 + ct(i,l) }

The first two statements declare two arrays to hold the colour indices in pixel
representation for vector data and for raster data respectively. The next two statements
convert the colour indices from integer to pixel (bits) representation. This is followed by the
settings of 256 entries in the colour look-up table. The procedure rgb (See Appendix D)
supplies the red, green and blue values of the 16 predefined commonly-used colours
required for the procedure colourMap. The 256 entries in the colour look-up table can be

divided into 16 groups, i.e. the vector map colour index 0 to 15 shown in Fig. 6.10. Each
group contains 16 entries which will have the same combination of 0’s and l ’s for bit planes
4 to 7 but can have any combinations of 0’s and l ’s for bit planes 0 to 3. At this moment,
the colour look-up table will display 16 colours depending only on the control of bit planes
4 to 7. In other words, the content of bit planes 0 to 3 will have no effect on the colour
display. However, in order to use a raster image as a backdrop during the handling of
vector data, the raster image has also to be displayed. This operation can be carried out by a
further change in the colour look-up table. The procedure grayLevel (See Appendix D)
creates a range of 16 intensities between black and white. The intensities are then used to

180

Chapter 6: Superimposition and Interrelation o f Vector Maps and Raster Images

Raster Image
Colour Index

240 entries
(= 15 x 16)

any combination of
0 ’s and 1 ’s for raster

bit planes 0 to 3 ,
when vector bit planes
4 to 7 are not all O’s.

15 1 1 1 1 0 0 0 0
14 0 1 1 1 0 0 0 0

13 1 0 1 1 0 0 0 0

12 0 0 1 1 0 0 0 0

1 1 1 1 0 1 0 0 0 0

10 0 1 0 1 0 0 0 0

9 1 0 0 1 0 0 0 0

8 0 0 0 1 0 0 0 0

7 1 1 1 0 0 0 0 0

6 0 1 1 0 0 0 0 0

5 1 0 1 0 0 0 0 0

4 0 0 1 0 0 0 0 0

3 1 1 0 0 0 0 0 0

2 0 I 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0

0 1 0 0

1 1 0 0

0 0 1 0

1 0 1 0

0 1 1 0

1 1 1 0
— ► 0 0 0 1

1 0 0 1

0 1 0 1

1 1 0 1

0 0 1 1

1 0 I 1

0 1 1 1

1 1 1 1

low
bits 0 1 2 3 4 5 6 7

Bit Planes

6 entries

The combinations of
0 ’s and 1 ’s for raster

bit planes 0 to 3 ,
when vector bit planes

4 to 7 are all 0 ’s.

Vector Map
Colour Index

0

2

3
4
5
6
7
8
9
10
1 1
12

13
14
15

high
bits

raster vector

Figure 6.10 The allocation of bit planes for handling
both vector and raster data concurrently

change 16 entries of the colour look-up table if the bit planes 4 to 7 are all 0 ’s. This change

means that, if there is no vector data (i.e. map colour index = 0) to display, then only the

raster data will be displayed. Therefore, it may be said that the setting of the colourmap

gives the vector map data a higher priority in terms of display than the raster data, so that

the vector information is always displayed on top of the raster images.

181

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

During the display of both vector maps and raster images, the default 16 colours and the 16
gray scales defined in the colour look-up table will be dynamically changed to meet the
application requirements. On the one hand, the RGB intensities for a specified vector map
colour index can be redefined to display a particular colour. On the other hand, when a new

raster image is loaded, the colourmap of the image (i.e. the RGB intensities of the 16 image
colour indices) will be used to change the intensities of the corresponding 16 entries in the
colour look-up table. That is to say, a maximum of 16 different colours can be produced for
the display of each data type (vector or raster) but the actual colours used in the display
may be selected from the full range of 16.7 million colours. Thus, using this arrangement of

bit planes, the persistent IGIS is able to provide the facilities required for the
superimposition and the concurrent processing of both vector and raster data.

6.4 The Superimposition of Maps and Images

Having allocated bit planes as well as having arranged colours for the handling of dual
format data, a map and an image can easily be overlaid in a common window. For example,
the superimposition of a 16-colour map A and a 4-bit image B in a window, which
corresponds to the drawing extent defined by x_min, y_min, x_max and y_max, may be
carried out as follows: -

draw(window(4 I 4), A, x_min, y_min, x_max, y_max)

copy B onto window(0 I 4)

The first statement draws the map A in the defined window area starting at bit plane 4 and
using the depth of the 4 available bit planes, namely numbers 4, 5, 6 and 7. The second
statement copies the image B to the bit planes 0 to 3 of the window. In this overlay
operation, the result will be an appropriate display both for the map A and for the image B.
However, the locations on the map will not agree with the corresponding locations on the

image, unless both the map and the image are referenced to a common coordinate system.

In order to carry out this correctly registration operation, one of two possible approaches
may be used. The first approach calculates the relative position between a map and an
image, and then transforms the coordinates of the map into the coordinates that fit the
image or vice versa. This approach is usually implemented graphically and interactively by
choosing well-defined features that can be easily and precisely identified on both the map
and the image. After the locations of the corresponding points have been measured on the
screen, a coordinate transformation is (usually a linear conformal or an affine
transformation) then carried out to geometrically correct and eliminate the differences in

position between the map and the image.

182

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

The second approach provides the absolute position for both maps and images, i.e. all maps

and images are referenced to the same ground coordinate system. Because all the test data

used in this research have been referenced to the OSGB National Grid coordinate system,

therefore the second approach has been adopted and implemented in the persistent IGIS. In

terms of the superimposition of a basemap and a baseimage, the extent of the map and the

image coverage can be obtained from the database. Every basemap or baseimage stored in

the database contains information on the extent of its coverage, i.e. the origin (x_min and

y_min) and the range (x_range and y_range) - as described already in Chapter 5. Based on

this information, the bounding rectangles of a basemap (xIT1jn.m , y min,m , x max>IT1 , y max,m) and a

baseimage (xmjn,j, ymjn,i, xmax i , ymax,i) can be determined. In order to view an overlay of the

basemap and the baseimage, a drawing extent (xmin.d , ymin.d , xmax,d , Ymax.d) which

corresponds to the window viewing area is defined to select an area of interest to be

displayed. Fig. 6.11 illustrates that the concept of overlaying a map and an image which are

referenced to the same ground coordinate system. Using this approach, the overlay of a

map and an image will be correctly displayed because the map and the image have been

geometrically registered in a common coordinate system.

Y
^max.m > Ymax.m

Overlay

Area

Xmin.m » YmiiUtt

Xmin.d Ymin.d

Bascn,ap -

®llfIS

Drawing Extent
(i.e. Window Viewing

Area)

X m in .i * Y m in .i

o

Figure 6.11 The basemap, baseimage and viewing window are all
referenced to the same ground coordinate system

Based on the concept discussed above, a display function for the superimposition of

basemaps and baseimages has been developed for use in the persistent IGIS. Fig. 6.12 and

Fig. 6.13 provide examples of the superimposition of a basemap on a baseimage. The first

example (Fig. 6.12) shows the basemap “OSCAR” 270190 superimposed on the Landsat

TM Band 1 image of Port Talbot (PTBAND1). The image displayed in the window uses 16

gray scales and covers an area of 20 km x 15 km on the ground (using 800 x 600 pixels and

a pixel size of 25 m), whereas the map only uses 2 colours (green and yellow) out of the 16

183

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

Figure 6.12 The superimposition of the OS map 270190 and
the Landsat TM image PTBAND1

184

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

Figure 6.13 The superimposition of the OS map SS8087 and
the OS scanned map image SS88SW

1 8 5

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

predefined colours and covers an area of 5 km x 5 km. The second example (Fig 6.13)
shows the basemap “Landline” SS8087 superimposed on the scanned “Colour Raster”
image SS88SW. The image displayed in the window uses 16 colours and covers an area of

4 km x 3 km on the ground (utilising the same 800 x 600 pixel displays, but with a pixel size
of 5 m), whereas the map only uses 4 (green, black, red and yellow) out of 16 predefined
colours and covers an area of 1 km x 1 km on the ground.

6.5 The Interrelation o f Maps and Images

In the previous sections (6.2 and 6.4), the querying of a basemap or a baseimage is carried
out by designating an identifier, i.e. map_id or image_id in the graphic display program. In

spite of the fact that both the maps and the images are referenced to the same ground
coordinate system, the relative positions of a map and an image have still to be derived from
the values of the extent of their coverages contained in the database. The identifiers map_id
and image_id do not include nor do they imply spatial relationships such as containment,
overlap, etc. between the maps and the images. In order to spatially query basemaps and/or
baseimages by specifying a location or an area, an exhaustive search through the Processed
database is necessary to find out which maps and/or images cover the queried location or
area. To provide the facility to spatially query vector maps and raster images, a spatial
indexing method based on the Peano ordering of a uniform grid cell system has been

developed for the persistent IGIS. The Peano ordering - the principle of which has already
been discussed in Subsection 5.3.5 in the context of addressing a linear quadtree - is used
here to index the identifiers of the relevant maps and images using the spatial key Peano. In
other words, the maps and images are interrelated in a spatial index table.

The basic principle of this approach is that multi-scale maps and multi-resolution images are
referenced to a common grid cell system. The grid cells covered by a map or an image are
indexed by the spatial key Peano. The spatial key Peano comprises the peanojcey and the
side_length of a grid cell. A peanojcey can be computed uniquely from a coordinate pair
(x, y) and vice versa - this principle will be discussed in more detail later in Chapter 7. Two
procedures xyToPK and pkToXY (see Appendix C) have been developed for this
conversion. Thus the peanojcey of a grid cell can be determined from its origin, usually
located at the south-west corner of the grid cell. Because a map series is generally tiled in
order to cover a particular area, the tile size can be used as the grid cell size in the spatial
indexing system so as to simplify the process of indexing maps without needing to subdivide
a map into grid cells. However, normally the coverage of individual images such as aerial
photographs, orthophotos or remotely sensed images will not fit the area covered by a
specific map, so the process of subdividing an image into grid cells can hardly be prevented.
Therefore, using map tiles as grid cells in a spatial indexing system, a map series and the

related images can be spatially indexed using peano keys of the map tiles. The peanojcey of

186

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

a particular map tile is determined from the coordinates of the south-west corner of a tile or
map. In other words, the peano key of a map tile is used to index the map identifier of the
map tile and the image identifiers of those images which overlay the map tile. The

relationship between peanojcey and m a p jd is a one-to-one mapping, whereas the
relationship between peanojcey and im ageJd is a one-to-many mapping. Fig. 6.14(a)
illustrates the concept of indexing a map series and the related images.

The peanojcey in the index table related to Fig. 6.14(a) can uniquely identify a grid cell
(map tile). However, with this arrangement, a separate index table is required for each map
series. Fig. 6.14(b) illustrates another map series which covers the same area as that shown
in Fig. 6.14(a) and uses a common coordinate system; however the size of the map tile is

doubled. A separate index table which contains 4 entries for this map series will also be
generated. As such, quite a number of index tables would have to be created in order to
handle multi-scale maps and multi-resolution images. As a result, the querying and the

maintenance of these index tables will become tedious and error-prone. A solution to this
problem is to arrange that all the index tables are combined into a single index table. For
example, the two index tables created for the different map series shown in Fig. 6.14 may
be merged together. However, the peano-key can then no longer identify a unique grid cell
because two maps in different map series may share a common map origin, i.e. the
peanojcey of these two maps may have the same values. For example, the map M l-5 in
Fig. 6.14(a) and the map M2-1 in Fig. 6.14(b) have the same peanojcey. In order to create
a composite table for all map series, another identifier - sidejength - is used to join the
peanojcey and form a spatial key Peano. Thus the sidejength is used to distinguish
different map series. Using the spatial key Peano, each entry in a composite index table
such as that shown at the bottom of Fig. 6.14 can be identified uniquely.

Based on the Peano key spatial indexing, the following data types can be declared to
represent the indices of multi-scale maps and multi-resolution images respectively.

type Peano is structure(peano_key: in t ; side_length: real)
type Map_Index is Map [Peano, Map_id]
type Image_Index is Map[Peano, List[Image_id]l

Making use of the spatial indexing methods described above, a map identifier and a list of
image identifiers can be determined by pointing with a mouse-controlled index mark or
cursor to a position on the display and specifying the value of the sidejength. Hence, the
appropriate map and the corresponding image data can easily be found in the persistent
store. The required data is then loaded into a program together with the appropriate data

187

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

Y

O

M l- I

£5___
M l -5

p4
M l -9

pl
M l -13

pO

M l -2

£7___
M l -6

1 1 - 1

P6
M l-10

M l -14

p2

M l -3

1 1 - 2
p 13 ~ p 15
M 1 -7 Ml -8

P12
Ml-11

P9
M l-15

p8

M l -4

Pl
M l -16

■* X

Y

2s

o

(a) Indexing a map series and the
related images

2s

Map Tiles

Peano_key Map_id Image_id

pO M l -13 11-1

Pl M l 9 111

p2 M l -14 11-1

p 3 M l -10 11-1,11-2

p4 M l -5 11-1

p5 M l -1 nil

p6 M l -6 11-1,11-2

P7 M l -2 11-2

p8 M l -15 11-1

p9 M l -1 1 11-1,11-2

plO M l -16 nil

p H M l -12 11-2

p 12 M l -7 11-1,11-2

p 13 M l -3 11-2

p 14 M l -8 11-2

p 15 M l -4 11-2

M 2-1

12-3

p4 12-2

12

pO
M 2-3

M 2-2

P12

p8
M 2-4

Peano_key Map_id Image_id
pO M 2-3 12-1,12-2

p4 M 2-1 12-2 , 12-3

p8 M 2-4 nil

p 12 M 2-2 12-3

The Composite Key Peano

-*■ X

(b) Indexing another map series
and its related images

M l : map series 1
M 2 : map series 2
11 : image series 1
12 : image series 2
p : peano key
s : side length o f grid cells

Peano_key side_length Map_id Image_id
pO s M l -13 11-1

pO 2s M 2 -3 12-1,12-2

Pl s M l -9 11-1

p2 s M l -14 11-1

P3 s M l -10 11-1, 11-2

p4 s M l -5 11-1

P4 2s M 2-1 12-2 , 12-3

p5 s M l -1 nil

p6 s M 1-6 11-1,11-2

P7 s M 1-2 11-2

p8 s M l -15 11-1

p8 2s M 2-4 nil

p9 s M l -11 11-1,11-2

plO s M l -16 nil

p l l s M l -12 11-2

p 12 s M 1-7 11-1,11-2

pl 2 2s M 2-2 12-3
p 13 s M l -3 11-2

p 14 s M l -8 11-2

p 15 s M l -4 11-2

Figure 6.14 Spatial indexing for the interrelation of both maps and images

Chapter 6: Superimposition and Interrelation of Vector Maps and Raster Images

structures necessary for the display and also provided for the analytical operations being
carried out in GIS applications.

6,6 Summary

This chapter has described the development of an essential facility - the graphical display of
vector maps and/or raster images - required for the persistent IGIS. First of all, the separate

display of vector maps or raster images has been discussed. Two fundamental functions
“zoom” and “pan” have been developed for the viewing or manipulation of basemaps and

baseimages respectively. These basic display functions combined with the design and

implementation of bit planes for the handling of dual format data are then used to develop
the overlay capability of vector maps and raster images. The basemaps and the baseimages

held in the Processed database described in the previous chapter have been used to test
these graphics display procedures developed for the persistent IGIS. These tests showed
that the graphics primitives provided by the Napier88 system can be used to develop a
display/processing program utilising dual format data for the viewing and manipulation of
vector maps and/or raster images which is an integral feature of an integrated GIS.
However, the Napier88 system does not provide users with an extensive set of graphic
procedures in its Standard Library. As a result, some basic graphics procedures have had to
be prepared additionally to allow the development of a suitable display facility for the
persistent IGIS.

In order to provide and facilitate access to multi-scale maps and multi-resolution images, a
spatial indexing method based on Peano ordering has also been developed to provide for
the interrelation of these maps and images. The result has been the provision of a spatial key

Peano which is used to correlate the map and image identifiers corresponding to a
particular grid cell. This spatial indexing method allows the user to display both maps and
images covering an area by simply specifying a geographical location.

In this chapter, the facilities for the superimposition and interrelation of vector maps and
raster images have been developed for the persistent IGIS. With the provision of these
facilities, the persistent IGIS is able to achieve the display level of integration. However, in
order to reach the process level of integration, the facilities for the indexing and search of
geographical data need to be further developed. These will be discussed in the next chapter.

189

Chapter 7: Spatial Indexing and Queries

CHAPTER 7 : SPATIAL INDEXING AND QUERIES

7,1 Introduction

An important issue in the design of an IGIS is spatial indexing carried out in the context of

a database. The role of spatial indexing is to deal with the need to access and retrieve
geographical data based on its location. Many factors affect the data retrieval performance

of a spatial indexing technique. These include the organisation of the data storage; the

characteristics of the index keys; the design of the data structures used for the building of

the indices; the method of physically encoding the data; and so on. Because spatial indexing
techniques are not so well developed as alphanumerical indexing techniques, the selection,
design and implementation of an appropriate spatial indexing technique is perhaps the most
difficult problem requiring to be solved in the development of a GIS. In fact, quite a number
of spatial indexing methods have been proposed to deal with the problem of spatial data
retrieval. They include the KD-tree (K-Dimensional tree), quadtree, R-tree
(Rectangle/range tree), space-filling curves (two- or three-dimensional ordering), grid file,
field-tree, cell tree and BSP-tree (Binary Space Partitioning-tree), etc. [Samet, 1984;
Langran, 1992; Laurini and Thompson, 1992; van Oosterom, 1993]. Furthermore, each
method may generate several variants. For example, the KD2-tree, KDB-tree and KD2B-
tree are all modified from the basic KD tree, while the R+-tree and R*-tree are derivatives of
the R-tree [van Oosterom, 1993; Theodoridis and Sellis, 1993]. Each method and its
variants have advantages and disadvantages; none emerges as the best. Therefore the
selection of an appropriate method for spatial indexing is still a rather complex issue in the
design of a GIS.

In spite of this difficulty, several spatial indexing methods have been adopted in commercial
GIS software packages. These methods include quadtrees, R-trees, space-filling curves, and
their variants. A quadtree is based on the recursive decomposition of space into four
quadrants. A quadrant is further subdivided into four subquadrants if the number of data
objects in a quadrant exceeds a predetermined maximum capacity. An R-tree is based on an
extension of the B-tree for multi-dimensional objects. The descriptions (i.e. object-id and
mbr (minimum bounding rectangle)) of data objects are stored in leaf nodes and
intermediate nodes are built up by grouping rectangles at the lower level. The minimum

bounding rectangles of data objects can overlap one other or they can be completely
disjoint. A space filling curve is based on the ordering of those grid cells, which cover data
objects, by simplifying two dimensional addressing into single dimensional addressing.
Peano (or N) ordering (which has already been discussed in Subsection 5.3.5) and Hilbert
(or II) ordering are the space-filling techniques which have been most widely-used in spatial

190

Chapter 7: Spatial Indexing and Queries

data handling systems [Aronoff, 1989; Laurini and Thompson, 1992; Theodoridis and
Sellis, 1993],

As noted above, each spatial indexing method has its strengths and weaknesses. For
example, it is relatively easy to generate the data to any level of detail using quadtrees, but

the unbalance of the tree structure may exercise a significant influence on the performance
of the system when dealing with large datasets. By contrast, R-trees have a height-balanced
tree structure so that the access time to any object is nearly constant. However, the
parameters associated with the construction of an efficient tree structure, such as the

coverage of a node, the overlay between nodes, etc., are difficult to optimise. As for the
space-filling curves, they provide some efficiencies in searching operations, but will imply a
large number of indices [Samet, 1989; Peloux et al., 1993; van Oosterom, 1993;
Theodoridis and Sellis, 1993].

In terms of indexing geographical data, both quadtrees and R-trees are well-suited to deal

with points and polygons, but they do not handle lines well, being particularly less efficient
for long lines. Theoretically, R-trees will give a better performance than quadtrees when
handling polygons because the construction of an R-tree - which is based on grouping the
mbrs of polygons - requires only a small number of polygons to be fragmented to store in
more than one tree node. Space-filling curves are very efficient for the execution of exact
match queries for points, but they are less efficient for other types of geometric queries such
a range query. Of these three alternatives, no single approach appears the best. However, it
is generally recognised that, in implementing a spatial indexing method, it is advantageous
to have some form of hierarchical organisation. In this respect, quadtrees are very well-
understood and their algorithms relevant to GIS development have been extensively
reported in GIS literature [Ibbs and Stevens; 1988; Gahegan, 1989; Mark et al. 1989;
Verts, 1989; Shaffer, 1990; Stuart, 1990]. Hence, the use of quadtrees seems to be a good
choice to satisfy the spatial indexing requirements of the prototype IGIS.

Linear quadtrees are probably the most well-known variant of quadtrees. A linear quadtree

utilises a space-filling curve to order quadrants within a pointerless representation. A linear
quadtree may be regarded as a combination of the quadtree and the space-filling curve
indexing techniques. Thus it has advantages of hierarchical spatial indexing as well as
efficient single-dimensional addressing. The main drawbacks of linear quadtrees is that the
spatial keys {e.g. Peano keys, Hilbert keys, etc.) are sensitive to the orientation and to the
position of the Cartesian space origin. However, if all geographical data are converted to
the same ground coordinate system in a prior operation, then the occurrence of this problem
can be prevented. Both the Peano and Hilbert orderings are robust in structure and efficient
in performance. However, the creation of Hilbert keys is more complex than that of Peano
keys [Laurini and Thompson, 1992]. Therefore, a spatial indexing method based on the use

191

Chapter 7: Spatial Indexing and Queries

of a linear quadtree in conjunction with Peano addressing has been adopted to develop a
facility for the indexing and the search of geographical data in the persistent IGIS.

The remaining parts of this chapter first describe the conversions between a Peano key and

an xy-coordinate pair. Next the spatial indexing for geographical data by each entity type,

i.e. for point, line and polygon entities, will be discussed separately. This is followed by a

further discussion about the construction of a composite entity index table. Finally, different
types of spatial queries, including query by entity types, query by regions, etc., will also be
discussed.

7.2 The Conversions between a Peano Key and an xy-coordinate Pair

A linear quadtree ordered by Peano key can be used not only as a spatial indexing method
which will be discussed in this chapter, but it can also be used as a data model for handling
raster image data. This latter application has already been discussed in Chapter 5. It
involves two major operations: -

(i) Quartering - the splitting of a two-dimensional object space into a tree structure of
quadrants; and

(ii) Indexing - the one-dimensional addressing of all the quadrants at leaf nodes by
Peano ordering.

The quartering operation recursively subdivides the object space into equal-sized quadrants,
subquadrants, and so on, until a predetermined condition is reached. The procedures
required for quartering each type of entity, namely point, line and polygon entities, are
varied. These will be discussed further in the next section. As for the indexing operation,
this deals with the construction of an index table for quadrants using Peano ordering. The
Peano ordering is a numbering scheme that uses a particular sequence (i.e. four quadrants at
each level are regularly ordered in an “N-shape”) to systematically order all the quadrants at
leaf nodes into a one-dimensional path - the detail of the concept has already been given in
subsection 5.3.5. Using this approach, each quadrant, which is normally identified by the
two coordinates x and y of a reference point (usually located at the south-west comer or at
the centre of the quadrant), can be replaced by a unique number called a peano key. The
relationship between a peano key and a pair of coordinates is a one-to-one mapping. Thus
the peano key of a quadrant can be obtained from the coordinates of the reference point in
the quadrant, and vice versa. It should be noted again that the point located at the south

west corner of a quadrant has been used as the reference point throughout this thesis.

The conversion of a pair of x, y coordinate values into the corresponding peano key (pk)
can be carried out using the following steps: -

192

Chapter 7: Spatial Indexing and Queries

(1) Convert the x and y decimal values into their corresponding binary values:
(2) Combine the digits of these two binary values together to form a set of binary digits

using the manipulation of bit interleaving:

(3) Convert the generated set of binary digits of the peano key into its corresponding
decimal value (pk).

A peano key value can also be converted into the pair of x, y coordinates defining a point

using a series of steps similar to those described above but in the reverse order. These steps

can be described as follows: -

(1) Convert the decimal value of a peano key (pk) into its corresponding binary value:
(2) Decompose the digits of the binary value into two separate sets of binary digits

using the manipulation of bit interleaving:
(3) Convert the two sets of binary digits into their corresponding decimal values, i.e. the

x and y coordinates, respectively.

Both conversions work well with integer values and real values. The difference is that
integer values only need one operation but real values require two operations - one deals
with the conversion of those digits lying before the decimal point while the other handles
those occurring after the decimal point. Figures 7.1(a) and (b) illustrate the conversions
between a peano key and a pair of x, y -coordinates for integer and real values respectively.

Using a 4-byte integer value, the positive number of a peano key will range from 0 to 230 (=
232 ' 2). In this respect, 1 bit has already been used for the sign. Furthermore the number of
binary digits used for a peano key should be an even number in order to decompose it
equally into two sets of binary values, in which case, the values of x and y coordinates will
range from 0 to 32,768 (= 215). Therefore, if the side length of the smallest quadrant (called
the minimum side length) in a linear quadtree is s (m) on the ground, then the area covered

by the quadtree will be 32,768s by 32,768s (m2). Depending on the size of the minimum
side length, the extent of this coverage may or may not be sufficient for GIS applications.
The minimum side length of a linear quadtree is determined by the complexity of the
geographical data and the maximum number of entries (called the threshold) that can be

allowed to be contained in a quadrant. In order to search efficiently for a specific data
object from the list of data objects occurring within a quadrant, the threshold value usually
has to be kept reasonably small. Thus a small value of the minimum side length will result
from the quartering of geographical data for areas with a high density of data. As a result,
the whole national grid system of a country may not be able to be accommodated within the

coverage extent of a linear quadtree using integer peano keys.

193

Chapter 7: Spatial Indexing and Queries

(a) Integer

S

k 4|5st
\ i

st

S2

5

sc
s ;

3fe

S t

M!

\

63

s

47

S t

S t

S t

Examples

1. (x, y) -> pk

x = 5 y = 3

1 0 1 O i l

/ 1 0 0 1 1 1

Pk = 39

Bit
Interleaving

2. pk -> (x, y)

P k = 1 3

V 0 0 1 1 0 1

0 1 0 O i l

O 1 2 3 4 5 6 7 8 x — 2 y = 3

(b) Real

1. (x, y) -> pk
4. 0

7.75 13*75 15 75 x = 2.5
3.5

3.0
7̂5

2.5

Pk = 9.75
2.0

Bit
Interleaving

Pk = 14.25

^5 ^5
0.5

010 210 8'0

x = 3.02.0 2.5 3.0 3.5 4.00.5

Figure 7.1 Conversions between a peano key and an xy-coordinate pair

194

Chapter 7: Spatial Indexing and Queries

The solution to the above problem is to express the peano key as a real value. However, in

terms of GIS applications, it is quite meaningless to do further quartering if the minimum
side length is smaller than 1 m. In other words, the digits after the decimal points can be

truncated. Thus using an 8-byte real value, the positive value of a peano can range from 0.

to 2.62 (i.e. maximum 19 digits), and the values of x and y coordinates will range from 0. to
2.31 (2,147,483,648). The range of these values appears to be sufficient for any GIS
application so far envisaged.

Each representation of the peano key, i.e. using either an integer or a real value, has its pros

and cons. Therefore, two sets of procedures (See Appendix C) have been developed to
meet various application requirements. The procedures pkToXY and xyToPK deal with
integer values, whereas the procedures pkrToXY and xyToPKR handle real values.

7.3 Spatial Indexing o f Geographical Data

As has already been discussed in Section 2.2, the vector and raster formats are the two
fundamental representations of geographical data. The geometric characteristics of both
formats are entirely different. The vector format represents geographical features through
the use of three basic entity types - point, line and polygon - whereas the raster format
depicts all of them as a matrix of cells or pixels. The raster format has good spatial

properties which are inherent in the direct addressing of the pixels. Hence, the pixel values
of geographical features can easily be obtained in order to display their attributes. For
example, after a baseimage has been displayed on the screen, a mouse-controlled cursor can

be used to point at a specific pixel of a geographical feature to obtain the row and column
numbers of this pixel relative to the image origin. The procedure getPixel provided by the
Napier88 Standard Library can be used to determine the pixel value. Thereafter, the pixel
value is assigned to an attribute code from which the attribute of the geographical feature
may be acquired. Thus it can be seen that raster geographical data is inherently indexed by a
matrix or an array structure. However, the raster format is rather inefficient in terms of
being able to display and manipulate geographical entities individually. For example, it is
very easy to display all the pixels which represent a specific theme among geographical
features, but it will require much effort to extract a specific feature or entity for further

manipulation.

On the other hand, the vector format represents geographical entities in a natural way, i.e.
the geographical data is basically feature-based. Comparing it with the use of the raster
format, the selective retrieval of geographical vector data can be achieved easily if
geographical entities have been spatially indexed using an appropriate method. As a result,
the querying of geographical features based on the vector format plays a major role in GIS

195

Chapter 7: Spatial Indexing and Queries

operations. Therefore, this section concentrates on the provision of a facility for the spatial
indexing of vector geographical data within the persistent IGIS.

7.3.1 General Aspects of Indexing Vector Map Data

In terms of vector geographical data handling, for the persistent IGIS, the three basic entity
types (point, line and polygon) in a map dataset have been aggregated into a data object,

e.g. a basemap, associated with an appropriate data model. The vector map data needs to
be retrieved from the Processed database in a similar manner to that employed for the
display of a basemap (See Subsection 6.2.1). Fig. 7.2 illustrates the primary steps required

for the spatial indexing of vector map data. Because the geometric characteristics of the
three entity types are quite different, so the spatial indexing of each data type needs to be
handled individually. In order to facilitate the spatial indexing operation, first of all, the mbr

tables for both the line and polygon entities are constructed. The details of this operation
will be described in the subsection below (7.3.2). In addition, a temporary coordinate table
which correlates an entity identifier with its geometric location is constructed for each entity
type. The use of these coordinate tables is to simplify the task of retrieving coordinates for
indexing geographical entities. In other words, the retrieval of coordinates can be obtained
from a unified form of coordinate table independent of the various geometry tables used
with the different data models. Afterwards, three empty tables are created for the
construction of the index data required for each of the three entity types. This is followed
by the critical part of spatial indexing - the quartering and indexing of the vector map data
for each entity type. The dashed-line block shown in Fig. 7.2 represents this core part of the
spatial indexing. The quartering operation will vary depending on the entity types, whereas
the indexing operation remains the same for each entity type. The quartering operation will
be further discussed for each entity type respectively in the subsections 7.3.3 - 7.3.5. As for

the indexing operation, it can be carried out using procedures provided by the Napier88
Maps Library. The indexing process required in the spatial indexing operation is illustrated
in Fig. 7.3.

Initially, the index table can be set up to contain only a single entry which represents a

quadrangle covering the area needed for spatial indexing. The initial side length may be
determined from the extent of coverage of the quadrangle. For example, in terms of the
spatial indexing required for a basemap, the initial index table will contain an entry which
consists of a location key and a list of entity identifiers. The location key comprises two
elements - a peano key and a side length. As has been discussed in Section 6.5, any
quadrant will be uniquely identified using the composite key of these two elements. The
composite key Peano using integer values for dealing with map and image indices has

196

Chapter 7: Spatial Indexing and Queries

Preliminary Operations
(Construction of

Tables, etc.)

Quartering & Indexing
(Spatial Indexing)

no

yes

The number of
entries in each

quadrant <=
""'•Threshold 2^

Input a map_id

Halve the side length

Retrieve the basemap from
the Processed database

Create empty index tables
for the point, line and

polygon entities

Create and construct mbr
tables for the line and

polygon entities

Create and construct
coordinate tables for the
point, line and polygon

entities, i.e. id —> coords.

Set up the whole basemap
as the initial square block
and the default values for
the side length, threshold,

etc.

Quartering the basemap
data and constructing the
index table respectively
for the point, line and

polygon entities

Construct a composite
mbr table entity_mbr and

insert it into the
entityjmbrs table in the

Index database

Construct a composite
index table entity_index

and insert it into the
entityJndices table in the

Index database

Figure 7.2 The primary steps required for the spatial indexing of vector map data

197

Chapter 7: Spatial Indexing and Queries

(Begin)

Set up a working table A
to hold the same entries

as those stored in
the index table

(End)

Carry out the quartering
o f each element in table B
and update the index table

by adding these new
decomposed elements

into it

Table A Index Table

□ □□ □
m y□ □

Index Table Table B

□
n

U se the
procedure
m J l l t e r to
generate a

□
□

new table
containing

the elem en ts
greater than
the threshold

1 I

--------------- «-------------
f

Store the index table
in the database

' t

3
Table BTable A Index Table

use the
procedure

Table B

4 Index Table J

□
□ I
□

□ □

update
-------- ►

H

H
H

□ □ 1

d N— o.5s _ _ I
■ ■ : The number o f entities > threshold

□ □ : The number o f entities <= threshold

Figure 7.3 The indexing process in the spatial indexing operation for vector map data

198

The number of
entries in table B

> 0 ?

 ±__________
Update the index table

by removing the elements
which exceed the threshold

Check each element in the
index table to see if the

number o f entity identifiers
contained in the element is
greater than the threshold.

Store all the elements
which exceed the threshold
in another working table B.

Halve the side length

Chapter 7: Spatial Indexing and Queries

already been defined. In order to extend the range of potential applications, a composite key

Pecinor using real values has also been defined for the use in the entity index tables. The

Peanor key as well as these entity tables are declared as follows: -

type Peanor is structure(peano_key, sidejength: real)

type Point_index is Map[Peanor, List[Point_id]]

type Line_index is Map[Peanor, List[Line_id]]

type Polygon_index is Map[Peanor, List[Poly_id]]

Using these data types, it can be seen that, after performing the operation of spatial

indexing, each entity table will contain the essential information about all the quadrants in a

basemap, i.e. a peano key, a side length and a list of entity identifiers for each quadrant.

This quadrant information can then be used in the search of geographical data.

7.3.2 The Construction o f MBR Tables fo r Line and Polygon Entities

The minimum bounding rectangles of line and polygon entities will provide some limiting

conditions for queried entities when the program requires access to and retrieval of spatial

data. The mbr of a polyline or polygon can be determined from the minimum and the

maximum coordinates of the set of points defined by its vertices. Fig. 7.4 illustrates this

concept. In geographical data handling, a polyline or polygon comprises a string of lines.

These are represented as a list of coordinate pairs, i.e. List[XY], in the persistent IGIS.

Therefore, the mbr of a polyline or polygon can be determined by comparing the coordinate

values of each element in the xy jis t. The procedure getLineStrMBR (See Appendix D) has

been developed for this purpose.

max

Xmax > y max

M onotonic
sections

© Nodes
(b) A polygon rn Key points(a) A polyline

Figure 7.4 Minimum bounding rectangles for a polyline and a polygon

199

Chapter 7: Spatial Indexing and Queries

Because the mbrs created for the spatial indexing of geographical entities will also be used
in the operations of querying these entities, so it is advantageous to store them in the
database rather than recompute them every time they are needed. In order to store the mbrs
for a basemap, the following data types have been declared for their use in the persistent
IGIS.

type Line_mbr is Map[Line_id, MBR]
type Polygon_mbr is Map[Poly_id, MBR]

type Line_key_pts is Map[Line_id, List[XY]]
type Entity_mbr is structure(line: Line_mbr;

polygon: Polygon_mbr;

key_pts: Line_key_pts)
type Entity_MBRs is Map[Map_id, Entity_mbr]

Thus a mbr table can be constructed for each of the line and polygon entities that are
contained in a basemap dataset, namely the line jnbr and the poly_mbr tables of the data
types Line_mbr and Polygonjmbr respectively. Furthermore these two mbr tables may be
combined together into a single table entityjrnbr of the data type Entity jn b r . Afterwards,
the entity_mbr is inserted into the entityjnbrs table of the data type Entity_MBRs in the
Index database.

As has been mentioned before, the (linear) quadtree method is less efficient for the spatial
indexing of lines. Generally speaking, the average coverage of the mbrs of the lines in a data
set is usually larger than that of the polygons. As a result, the quartering carried out for line
data often requires more processing time than that required for polygon data. In order to
facilitate the spatial indexing for line data, a particular method has been employed in the

operation of creating mbrs for lines. This is carried out by breaking a non-monotonic
(poly)line into the monotonic components of that line. The characteristic of a monotonic
line is that the x or y coordinates of the vertices will increase or decrease continuously, i.e.
monotonically, in either the x- or the y- direction, starting from one end point and

proceeding to the other end point of the line. Fig. 7.4(a) shows a polyline that has been
decomposed into four monotonic sections. The key points where a line is split are
constructed as a list. A table of the data type Linejcey_pts which contains a list of the key
points for each line in a basemap is then constructed to join the line jnbr and the po ly jn b r
tables in the combined table entity jn b r . All these tables containing the limiting conditions
of line and polygon entities are stored in the Index database. Thus they can be used in the
operations of spatial indexing and querying.

200

Chapter 7: Spatial Indexing and Queries

It should be noted that the “monotonic line” technique can also apply to deal with polygons,

particularly very large polygons. However, the trade-off involved in using this technique

needs to be justified. Although the technique can improve the efficiency of spatial indexing

and queries, it will also increase the processing time and the storage space required for the

creation of the entity jn b r table. Considering the fact that, in general, the average coverage

of polygon mbrs is quite substantially smaller than that of the line mbrs, therefore the

“monotonic line” technique has not been implemented for polygons in the persistent IGIS.

7.3.3 Spatial Indexing o f Points

In this subsection, the quartering operation of spatial indexing for points will be described.

The quartering of a square block for points is quite a simple process. Initially, the point

index table contains only a single entry, i.e. the square block covering the whole area which

has to be spatially indexed. The extent of the coverage of the square - (xmin , ymin) and s -

can be determined from its spatial key Peanor. Also, the number of points within this square

can be counted from its corresponding list of point identifiers. If the number of points

exceeds the threshold of points, then this square is subdivided into four equal-sized

quadrants (which are again squares). Because the extent of each quadrant may be easily

determined, therefore the spatial key Peanor of each quadrant can be created. The result is

that all the points indexed by the Peanor key of the quartering block at a tree level will be

replaced by the Peanor keys of the four quadrants at the subtree level. Fig. 7.5 illustrates

the concept of indexing points. The points 1 and 2 indexed by the same Peanor key of the

initial square block will be replaced by the Peanor keys of quadrants 1 and 3 respectively.

0.5S

ymin 0.5S
The points were indexed
bv kn and s before the
quartering operation

The points are indexed by
kj and 0 .5s after the
quartering operation,
where i = 0 to 3 .

Figure 7.5 The concept of indexing points in the quartering operation

201

Chapter 7: Spatial Indexing and Queries

The basic principle of quartering points is to assign each point contained in a quartering
block into one of the four quadrants based on its location. In fact, this process creates a
new list (or child-lisf) of point identifiers for each quadrant from the initial list (or parent-
hst) of point identifiers relevant to the square being quartered. The assignment of a point
identifier from the parent-list to one of its child-lists can be carried out as follows: -

(1) Retrieve the coordinates (x, y) of a point from the point coordinate table using the
point identifier.

(2) Determine the quadrant in which the point is located using the following formulae: -

m = int[(x - Xmin) * 2 / s]
n = int[(y - y^n) * 2 / s]
q = 2 * m + n

where Xmin , ymin are the coordinates of the SW corner of the square being
quartered,

s is the side length of the square being quartered,
m, n are the row and the column numbers of a quadrant; these values range
from 0 to 1,
q is the quadrant number by Peano ordering; the value ranges from 0 to 3,
int[] represents the integer part of a real value.

(3) Based on the quadrant number determined for the point, append the point identifier
to its corresponding list.

After the four child-lists have been constructed, they are inserted into the point index table
point_index based on their corresponding Peanor keys. Also the parent list is removed from
the point index table. The same quartering operation will be repeated at the subtree levels
until all the entries in the point index table have reached the predetermined condition, i.e.
the number of points in each quadrant must not be greater than the threshold.

Based on the concept described above, the procedure IqtNdxPoint (See Appendix E) has
been developed for the indexing of points. Fig. 7.6 shows the linear quadtree diagram after
indexing the points contained in the OS map 270190. The numbers in the diagram indicate
the number of points being indexed in each quadrant. The accompanying table shows the

side length, the total number of quadrants and the number of quadrants which are greater
than the threshold at each level of the linear quadtree. In this instance, the quartering
operation of the point data has been carried out to tree level 5 so that the number of points
in each quadrant is not greater than the threshold.

The threshold value (25) employed in this example is quite arbitrary. The smaller the
threshold value that is used, the longer the processing time and the larger the storage space

202

Chapter 7: Spatial Indexing and Queries

12 7

7 6
" T7 " "10

3
' 6. . 12 ;

10 24 ■
•"'18 ' •18; '

0
19 •: j o

8 14 5

13' 19

0
3

4' ,11 ,

0

7

6
1 1 5; •

U 1-
■ 6

8- >8

2 ' 1 2':' '•25 • 2

1.4; 3 •
3

1
•9 5

0
• 6 11 ' .20': 18

5. 12
4

10; .vs

5' • 1-3;. 12 ' •2.1 • 4 5 .

0 1
3 . I T- 7 ' , 1 0 , .

3 • ■12 . •15 .'•'11

Level Side Length (m) Total No. of Quadrants Greater than Threshold
0 5000.000 1 1

1 2500.000 4 3
2 1250.000 13 6

3 625.000 31 1 1

4 312.500 64 3
5 156.250 73 0

The number of points = 700; Threshold = 25;
The mininum side length = 156.25 m; The number of quadrants = 73

Figure 7.6 The linear quadtree diagram after indexing the points contained in
the OS map 270190

203

Chapter 7: Spatial Indexing and Queries

that is required for spatial indexing. On the other hand, a larger threshold value may result
in a slower response time when carrying out a search of the geographical data. Therefore,
an optimal threshold is required to give an IGIS a better performance. However, a number

of factors will affect the choice of an optimal threshold, including the available computing

power, the type of entity to be indexed, the complexities of data models and data structures,
the algorithm used for spatial queries, and so on. Therefore, it is necessary to tune the
threshold for the persistent IGIS before it can be put into practical applications. The

adjustment of the threshold for each entity type will be discussed further in Chapter 8.

7.3.4 Spatial Indexing of Polygons

In much the same way as was done with the indexing of points, so the extent of the
coverage of a square block and a list of the polygon identifiers needed within the square can

be acquired in advance. The quartering operation can be carried out by checking each
polygon against the four quadrants to see whether the polygon overlaps some or all of
them. If a polygon overlaps a quadrant, then the polygon identifier is indexed by the Peanor
key of that quadrant. The check for the overlap between the boundaries of a polygon and
those of a quadrant can be divided into two steps: -

(1) Retrieve the mbr of a polygon from the poly jn b r table (See Subsection 7.3.2) using
the polygon identifier and determine whether the mbr of the polygon overlaps the
quadrant or not.
- if they do not overlap, then the process is stopped.
- if they overlap and the mbr is completely within the quadrant, then the polygon

identifier is indexed by this quadrant and the process is stopped; otherwise the
program proceeds to step 2.

(2) A further test is carried out to find out whether the boundary (i.e. the line strings and
line segments) of the polygon actually overlaps the quadrant or not.
- if the mbr of a line string intersects the quadrant, then the containment test is

performed for the line segments (- the algorithm is described in next subsection -)
to find out whether the polygon boundary actually intersects the quadrant. If so,
then the polygon identifier is indexed by this quadrant.

These two steps involve a process called the “boxing test” (or the min-max test). Figure 7.7
illustrates the algorithm of the boxing test. The first step requires only a single test between
the mbr of a polygon and a quadrant, but the second step may involve many tests between
the mbrs of the line strings of a polygon and a quadrant.

204

Chapter 7: Spatial Indexing and Queries

Xmax, 1 > Ymax, 1

R ectan g le 1
Xmax, 2

ymin, 1
R ectan g le 2

if Xmax, ^ Xmin. 2 or
if Xmin, 1 --> Xmax, 2 or
if ymax, < ymin, 2 or
if ymin, 1 -> ymax, 2
then

no overlap
else

ovei lap

Figure 7.7 The overlap test of the two rectangles

Figure 7.8 illustrates the concept of indexing polygons utilising the quartering operation

described above. Polygon A lies completely within a quadrant, but this is not the case with

polygons B and C. The mbr of polygon B overlaps four quadrants, but its actual boundary

only overlaps three of these quadrants (0, 1 and 2). The mbr of polygon C overlaps

quadrant 3, but its actual boundary doesn’t. Both polygons B and C require the boxing test

to be carried out for their polygon boundaries. The boxing test for the mbrs of the line

strings is sufficient to conclude that polygon C does not overlap quadrant 3. However, it

still cannot eliminate the possibility that polygon B may be indexed by quadrant 3 since the

mbr of one of its line strings overlaps that quadrant. Therefore, it is necessary to further

perform the containment test on the line segments of this particular line string (This will be

described in more detail later in Section 7.3.5). As a result, polygon A is indexed by the

Peanor key of quadrant 2, while polygon B is indexed by the Peanor keys of three

quadrants, 0 , 1 and 2 .

mbr of a polygon

mbr o f a line string

0.5S

The containment test
for line segments

Nodes

Vertices

The polygons are indexed
by kj and 0 .5s after the
quartering operation,
where i = 0 to 3 .0.5S

Figure 7.8 The concept of indexing polygons in the quartering operation

205

Chapter 7: Spatial Indexing and Queries

The second step of this exact indexing approach is a quite time consuming process because
a polygon often comprises a number of line segments. Furthermore, each polygon needs to

be tested four times, i.e. a test has to be conducted against each quadrant. As a result, the
quartering operation for polygons will become rather lengthy and inefficient. In order to

overcome this drawback, a simple but approximate indexing approach has been employed in

the persistent IGIS. The quartering operation of this approach is based on the mbrs of
polygons rather the boundaries of polygons. This approximate indexing approach can be
described as follows: -

(1) Retrieve the mbr of a polygon from the poly_mbr table and determine the mbr of
the overlap area between the polygon and the quadrant.

(2) Use the mbr of the overlap area to determine in which quadrant(s) the polygon
identifier should be indexed.

Using this approach, polygon B in Fig. 7.8 will also be indexed to quadrant 3, where in fact
they do not overlap. Hence, several redundant polygon identifiers may be added to a
quadrant. However, they can easily be eliminated during the operation of spatial queries for
polygons using the point-in-mbr test, the boxing test, etc. Although this approach slightly
increases the storage space that is necessary, it can significantly reduce the time required for
indexing polygons. Therefore, the approximate indexing approach must be regarded as
being more efficient than the exact indexing method.

Based on the approximate indexing approach, the procedure IqtNdxPoly (See Appendix E)
has been developed for the indexing of polygons. Fig. 7.9 shows the linear quadtree
diagram after indexing all the polygons in OS map 2144. The numbers in the diagram
indicate the number of polygon mbrs being indexed in each quadrant (n.b. the mbrs
themselves are not shown). The accompanying table gives a summary of the results of this
particular spatial indexing operation similar to those that have been described for Fig. 7.6 in
the previous subsection. Because this map employs the polygon-based data model (See
Subsection 5.3.3) and consists of complex polygons (i.e. polygons that can be nested within
each other), so it is not possible to count visually the number of polygon mbrs occurring in

each quadrant. Therefore, a set of simple polygons whose feature code = 3901 (District
Ward) has been extracted from map 2144. This data set has then been indexed and is shown
in Fig. 7.10. As such, the number of polygon mbrs in each quadrant can be counted. Also, it

can be seen that some quadrants contain the mbrs but not the boundaries of polygons; this is
the case more particularly for small quadrants.

206

Chapter 7: Spatial Indexing and Queries

22

22 20

22

Level Side Length (m) Total No. of Quadrants Greater than Threshold
0 25000.000 1 1

1 12500.000 4 4
2 6250.000 16 13
3 3125.000 55 13
4 1562.500 94 1

5 781.250 97 0

The number of polygons = 237; Threshold = 25
The minimum side length = 781.25 m; The number of quadrants = 97

Figure 7.9 The linear quadtree diagram for the polygons of OS map 2144

207

Chapter 7: Spatial Indexing and Queries

Level Side Length (m) Total No. of Quadrants Greater than Threshold
0 25000.000 1 1

1 12500.000 4 3
2 6250.000 13 6

3 3125.000 31 0

The number of polygons = 75; Threshold = 10
The minimum side length = 3125 m; The number of quadrants = 31

Figure 7.10 The linear quadtree diagram for the polygons of the district wards
(feature code 3901) of OS map 2144

208

Chapter 7: Spatial Indexing and Queries

7.3.5 Spatial Indexing of Lines

The concepts involved in the spatial indexing of lines are basically the same as those which

have been described above for points and polygons. However, the line entity requires more
complex processing in its quartering operation than the point and polygon entities. After the

extent of the coverage of a square block has been established and a list of the line identifiers

contained within the square has been retrieved, each line is then checked against its four
quadrants to see whether the line passes through some or all of them. If the line passes

through a quadrant, the line identifier is indexed by that quadrant. The process of checking
whether a line passes through a quadrant can be described as follows: -

(1) Check whether the mbr of the line intersects the quadrant.
- if the mbr lies completely within the quadrant, then the line identifier is indexed by

this quadrant and the process will stop; otherwise the program will proceed to
step 2.

(2) Check each monotonic section of the line to see if any part of it intersects the

quadrant.
- if none of the monotonic sections intersects the quadrant, the process is stopped;

else it proceeds to step 3.

(3) Check each line segment in the monotonic section which intersects the quadrant to
see whether a line segment intersects the quadrant.
- if so, the line identifier is indexed by the quadrant.

Steps 1 and 2 require the use of the boxing test between the mbr and the quadrant - which
has been described in the previous subsection. The monotonic sections of a line used in the
step 2 can be retrieved from the linejcey_pts table (See Subsection 7.3.2). Step 3 requires a
line containment test to determine whether a line segment is either completely contained or
partially contained within a rectangle. The algorithm of the line containment test is
illustrated in Fig. 7.11 [Harrington, 1987; Mortenson, 1989].

Fig. 7.12 illustrates the concept of indexing lines. The mbr of line A lies completely within

quadrant 1 which ensures that the whole line must be located inside the quadrant. The mbr
of the line C overlaps quadrant 3 but the line is actually located outside the quadrant. This
can be determined by using the boxing test on the mbrs of its monotonic sections. As for
line B, it passes through three quadrants (0, 2 and 3). However, both the mbr of the whole
line and the mbr of the monotonic section 2 overlap quadrant 1. Furthermore, the mbr of
the second line string in the monotonic section 2 still overlaps quadrant 1. Therefore, the

209

Chapter 7: Spatial Indexing and Queries

L R

Window

L ine 5-2

T

L ine 2

L ine 5 -Line 4

B
L ine 3

Test whether a line is visible (either completely or partially contained) or invisible in a window
il Xmjn < — X |, X2 < — Xmax an d ymin <'— y 1» y 2 Ymax

then the line is completely visible Case 1. eg. Line 1
else the line is either partially visible or invisible

it x 1, X2 < xmjn or x 1, xt > xmax or y 1, y2 < ymin or y 1, y2 > ymax
then the line is invisible -4 Case 2. eg. Line 2
else the line is either partially visible or invisible

when the line is vertical, i.e. X)= X2 —> Case 3
the line is visible, eg. Line 3 .

when the line is horizontal, i.e. y (= y2 —> Case 4
the line is visible, eg. Line 4 .

when the line is neither vertical nor horizontal Case 5
compute intersections with x = xmin, x = xmax, y = ymin and y = ymax to get yi, yr, xb and x,
respectively.
it X m j n < = X b < — Xmax 0 1 X m j n < = X t < = X m a x OI y min < = y i <' ~ ymax Ol y min y r ymax

then the line is visible, eg. Line 5- 1.
else the line is invisible, eg. Line 5 .-2 .

Figure 7.1 1 The line containment test

mbr of a complete line

m onotonous
sections

J

X m i n , y

mbr of a monotonous
section

The containment test
for line segments

s Key points
© Nodes
0 Vertices

— ►

The lines are indexed by
ki and 0 .5s after the
quartering operation,
where i = 0 to 3 .

Figure 7.12 The concept of indexing lines in the quartering operation

210

Chapter 7: Spatial Indexing and Queries

line containment test is needed to find out if any line segment in this line string passes
through quadrant 1. As a result, line A is indexed by quadrant 1, whereas line B is indexed
by quadrants 0, 2 and 3.

The procedure IqtNdxLine (See Appendix E) has been developed based on the quartering

approach outlined above. The OS map 270190 has been used for the test of spatial
indexing. Fig. 7.13 shows the linear quadtree diagram resulting from the operation of spatial

indexing for all the lines contained in the map. The number in each quadrant indicates the

number of lines which intersect that quadrant. The accompanying table provides a summary
of the number of quartering operations carried out at each tree level. It should be noted that

most of the lines shown in Fig. 7.13 are polylines, i.e. they may contain several simple lines
going from one end point to the other end point. Therefore, it is not possible to count
visually the number of lines indexed in a quadrant from the diagram.

7.4 The Construction o f Combined Spatial Indices

Using the spatial indexing method discussed in the previous section, an index table can be
constructed for each entity type in a map data set. In this way, three types of index tables
(point_index, line_index, polygon_index) may be created for each map data set. However,
depending on the data model employed, a map data set may not contain all the entity types,
e.g. a DEM data set only comprises point entities. In terms of the particular data models
used in the persistent IGIS, the spaghetti and the link and node data models contain point
and line entities, while the polygon-based data model includes all three entity types.
Therefore, the spatial indexing of a basemap will always create two index tables -
point_index and line_index, and may also produce an additional index table -
polygon_index. Thus two compulsory elements and one optional element are required in the
construction of a composite index table. The optional element may easily be defined by a
variant type supported by Napier88. However, considering the possibility that a basemap
may be restructured into other data models for particular applications, this operation may
create polygon entities and, in this case, it may also require the construction of a polygon
index table. Therefore, an empty polygon index table is always included by default in the
operation of creating index tables for a basemap using the spaghetti or the link and node
data model. Thus the polygon index table is treated as a compulsory element in the

composite index table.

On the other hand, knowledge of the minimum side length of the quadrants produced by the
spatial indexing procedure is essential for the use of these index tables, especially in the
search of geographical data. Because the spatial indexing for each entity is carried out
independently, so three minimum side lengths will be created and will need to be combined
into a single composite index table.

211

Chapter 7: Spatial Indexing and Queries

Level Side Length (m) Total No. of Quadrants Greater than Threshold
0 5000.000 1 1

1 2500.000 4 3
2 1250.000 13 6

3 625.000 31 13
4 312.500 70 14
5 156.250 1 1 2 1

6 78.125 115 0

The number of lines = 865; Threshold = 25;
The minimum side length = 78.125 m; The number of quadrants =115

Figure 7.13 The linear quadtree diagram for the lines of OS map 270190

212

Chapter 7: Spatial Indexing and Queries

Based on the above discussion, the data types required for the construction of a composite
index table can be declared as follows: -

type Min_quad_sl is structure(point, line, polygon: real)
type Entity_index is structure(point: Point_index;

line: Line_index;

polygon: Polygon_index;
min_quad_sl: Min_quad_sl)

type Entity_indices is Map[Map_id, Entity_index]

Using these data types, a composite index table entity_index of the data type Entity_index
will be created for each basemap and then inserted into an aggregate table entity_indices of
the data type EntityJndices. The map identifier of the basemap is used as a key to access
this table. Thereafter, the entity Jndices table is stored in the Index database and is available
for those applications involving spatial queries which will be discussed below.

7.5 Spatial Queries o f Geographical Data

In a GIS, query functions are essential for the retrieval and the analysis of geographical
data. The query functions deal with the search of geographical data using the conditions
specified by the operator. The search conditions may be quite varied in different
applications. However, a geographical search can be classified into one of three categories:
it will either be attribute-based, location-based or a combination of both, i.e. involving the
search of a database using attribute keys, spatial keys or both. The methods of attribute-
based query have been well established in conventional DBMSs. They are also widely used
in GIS software. For example, SQL (Structured Query Language) has been a commonly-
used database interface for a GIS that employs relational tables to handle attribute data
[Egenhofer, 1992; 1994]. In other words, the spatial component of a geographical feature

can easily be acquired and displayed through the search of its attribute component. By
contrast, the methods of location-based (or spatial) query involve the complexities of data
models and data structures as well as the considerable use of computational geometry. As a
result, spatial queries are generally quite complicated both in their algorithms and in their

implementations.

Various kinds of spatial queries may be defined to meet the needs of different applications.

Several are regarded as important query types in GIS applications, including point queries
(or query by pointing), zone queries, path queries and buffer zone queries [Laurini and
Thompson, 1992]. Each query type may be carried out through the use of one or several
geometric algorithms. Therefore the provision of spatial query functions for the persistent

213

Chapter 7: Spatial Indexing and Queries

IGIS mainly involves the selection of an efficient geometric algorithm for each query type
and the implementation of these algorithms in conjunction with the spatial indexing
structures which have been constructed beforehand.

The development of a complete set of spatial query functions requires a great deal o f effort.
This results mainly from the complexities of the computational geometry. Therefore, in this

section, only several simpler query types will be discussed. Nevertheless, the concepts used
in these simple query types can also be applied or extended to other more complex query
types.

7.5.1 Queries and Searches by Pointing

The simplest type of spatial querying is to access and retrieve the descriptive information of
a geographical entity by pointing to its spatial location on the map displayed on the screen
using a cursor. Such a query by pointing includes two key operations: -

(1) The search for the entity identifier in the entity index table using the spatial key
derived from the specified search point.

(2) The display of thematic and attribute information of the entity using the entity
identifier found in the first operation.

The second (display) operation simply accesses the geometry and attribute tables and
displays their information, so it will not be discussed further. Instead, the following
discussion will be concentrated on the search methods employed in the persistent IGIS. Fig.
7.14 illustrates the flowchart covering the operation of searching for an entity in a basemap.

Before carrying out the search for the entity, the relevant entity_index table and its
associated data have to be retrieved from the Index database. The entity,Jndices table is
first checked to see if it contains the entity_index table. If it does, the entity_index table, the

minimum side length and the map length will all be retrieved. Also, the initial side length of
the search block will be set to the minimum side length.

The coordinates (x, y) of a digitised or search point can be used to determine a square cell
which has the size of the smallest quadrant, i.e. a quadrant at the leaf level, in which the
search point may be contained. However, the square cell may not be contained in the
entityJndex table, because the quadrant which actually contains the search point has
already been determined in the spatial indexing operation. Therefore, the purpose of
determining the square cell is to provide an initial search block for the operation of looking

up the actual quadrant which contains the search point in the entity_index table. The
coordinates (xo, yo) of the south-west corner of the square cell containing a search point can
be computed by the following formulae.

214

Chapter 7: Spatial Indexing and Queries

(Begin)

Input a m a p j d

D o es the
entity _ind ices

table contain the
m ap_id 2

Find the
entityJindex table

 z____
Retrieve the

minimum side
length (smin) and the

map side length
(Sm ap)

Set the initial side
length (s) to smin

Digitise a point on
the display window

to indicate the
location (x, y) to be

searched

Determine the
coordinates (x0, yo)
of the south-west

corner o f the initial
search block which
contains the search

point

Convert the (x0, y0)
value to

a peano_key (pk)

Join the pk and
the s to form
a Peanorkey

D oes the
entityjndex

table contain the
eanor9

Determine the
peano key (pk)
o f the search

block

no Double the side
length (s) of the

search block

Find a list o f entity
identifiers (id j i s t)

Determine the target
window at the

digitised location

Compute the
number (n) of entity

identifiers in the
id list

let i = 1

Get the ith entity
identifier from the

id list

Retrieve the
entity coordinates

D o es the
entity m eet the

search
onditio

An entity
r
is found No entity

r v

is found

Figure 7.14 The flowchart covering the operation of searching for a specific entity
in a basemap

215

Chapter 7: Spatial Indexing and Queries

X() — int[x / Smin] ̂ Smin

y0= int[y / smin] * smin

where x and y are the coordinates of the digitised (or search) point;

smin is the minimum side length of the smallest quadrant determined in the
entityJndex table; and

int[] represents the integer part of a real value.

The coordinate pair (xo, yo) is then converted to the corresponding peano key (pk).

Thereafter, the pk key joins the sinin to form the Peanor key of the initial search block. This

is followed by the quadrant search (dashed block 1) and the “entity-meet-condition” test

(dashed block 2) which will be described below.

The quadrant search is used to find the quadrant which contains the search point in the

entity Jn d ex table. The quadrant search starts with the initial search block being set to the

square cell, i.e., the search direction is from the leaf nodes towards the root of the quadtree.

The peanor key of the search block is used to check whether the entity Jndex table contains

this block. If the search block finds the corresponding quadrant in the entity Jn d ex table,

then the test to satisfy the entitv-meet-condition is carried out. Otherwise the side length of

the search block is doubled to find its parent block which is used to redefine the search

block required for the next search. The same process will be repeated until either the search

block is found in the entity Jn dex table or the side length of search block reaches the map

length.

If the quadrant containing the search point is found in the entity Jn d ex table, then a list of

the entity identifiers existing in this quadrant can be retrieved. These entity identifiers will

be used to retrieve the corresponding sets of coordinates from the geometry table.

Thereafter, each entity is tested against the search condition specified for this particular

search - since three types of query by pointing are possible, i.e. querying by pointing to

either a point, line or polygon entity. Since each entity type employs a quite different

geometric algorithm for the search condition, therefore each of these will be discussed

separately in the sub-subsections that follow.

7.5 J . l Searching fo r a Point Entity

The search for a point entity requires an operator to identify it using a screen pointer or

cursor. Because it is rather difficult for a user to control a point-like cursor to pick out a

graphical entity, therefore the cursor is usually associated with a small target window to

ease the picking or pointing operation. In terms of computational geometry, the use of a

target window with the cursor is to replace the “point-match-point” test and the “point-on

line” test by the “point-in-window” test and the “window-contain-line” test (i.e. employing

the line containment test described in Fig. 7 .1 1). As such, the point-in-window test and the

216

Chapter 7: Spatial Indexing and Queries

line containment test will be the search conditions required for the search for a point and a

line respectively. In fact, the point-in-window test is the only search condition required for

searching out a point entity.

Fig. 7.15 illustrates the concept of searching for a point entity through the use of two

examples of search cases (A and B). After the quadrant search has been carried out, the

quadrant which contains the search point will be obtained. In case A, the first quadrant

search will find the required quadrant because the point_index table contains its Peanor

(k 14 , smin) key. In case B, the first search will fail (since key(k_3 , smjn) is not in the table) but

the second search will succeed (since key(k0, 2 smin) is in the table).

(a) Q u a d ra n t S earch

'map

O

Indicates that the quadrant will be
found after the quadrant search

(b) C on d ition T est

Is the search point inside the target w in d ow ?
(point-in -w indow test)

T est
points

Search point (x , y)

A cursor with
a target w in d ow

P oint In d ex T ab le

Peanor Point Identifiers

(ko, 2smin) 3 , 4 , 5
(IC4, 2smin) nil

(kg, 2smjn) 7 , 9

(kl2, Smin) 6
(k 13, Smin) 8

(k 14, Smin) 1, 2

(k 15, Smin) nil

Figure 7.15 The concept of searching for a point entity

Having obtained the quadrant containing the search point, a list of the points indexed within

this quadrant can be retrieved to perform the point-in-window test. Each point is tested

against the target window of the search point to see whether the point lies inside or outside

the window. If a point lies inside the window, then the point is found. For example, in case

A, neither point 1 nor point 2 are to be found within the target window; whereas in case B,

three points, 3, 4 and 5, may be tested but only point 3 will be found to lie within the

window.

It is worthwhile mentioning that the size (or aperture) of a target window needs to be

adjusted appropriately. The larger the given size, the easier it is for an operator to select a

point of interest. On the other hand, the use of a smaller size of window can significantly

reduce the chance of irrelevant points being included in the target window, but it will

217

Chapter 7: Spatial Indexing and Queries

become more difficult to select a specific point. Thus the size of the target window should

be adjusted to the complexity of the map and to the zooming scale of the display.

7.5.7.2 Searching fo r a Line Entity

Fig. 7.16 illustrates the concept of searching for a line entity through the use of examples of

two different search cases (A and B). The quadrant search operations required when

searching for a line entity are exactly the same as those which have already been discussed

in the search for a point entity. In case A, lines 1 and 2 will be found; whereas in case B,

line 3 can be retrieved.

(a) Q u ad ran t S earch (b) C ond iton T est

Indicates that the quadrant will be
found after the quadrant search

1. Is the search point in side the mbr o f a com p lete line?
(poirtt-in-m br test)

+ ye* ~
2. Is the search point inside the mbr o f a m onotonic line?

(point-in-m br test)

______________________ z z
3. Is there any line segm ent o f a m onotonic line v isib le

in the target w in d ow ? (line containm ent test)

+ yes~
Found N ot found 4

L ine Index T able

Peanor Line Identifiers

(ko, 2smin) 3

(k<4, 2smjn) 4

(kg, 2smjn) 1, 3

(kl2> Smjn) 2

(k13, S m i n) 2,4

(kj4, S m i n) 1, 2

(k15, S m i n) nil

Figure 7.16 The concept of searching for a line entity

The tests required in the search for a specific line include the point-in-mbr test and the line

containment test. The major steps of the condition test for a line are shown in Fig. 7.16(b).

If a line passes one test, then the other test will be implemented; otherwise the line is

excluded from this search. The first step checks whether the search point is inside the mbr

of the whole line. The second step then checks whether or not the search point is contained

in the mbr of a monotonic section of the line. Both the first and the second steps use the

point-in-mbr test. If a line passes these two tests, then the line containment test will be

carried out for the line segments of the particular monotonic line which passes the second

test. If any line segment lies completely inside or passes through the target window, then

the required line has been found.

218

Chapter 7: Spatial Indexing and Queries

The lines shown in Fig. 7.16 give the various situations that may occur in which a line will

have to pass different test conditions. Considering case A, line 1 will be rejected after the

first test because the search point lies outside the mbr of the line 1. Line 2 passes the first

test but will fail in the second test because the search point will not be inside the mbr of its

monotonic sections. Turing to case B, line 3 passes the first and second tests, therefore the

third test will be carried out for the line segments of its second monotonic section. Since the

line passes through the target window, so it will pass the line containment test. Line 4 will

not be tested because it will not be found in the quadrant search.

7.5.1.3 Searching fo r a Polygon Entity

Basically, the principle of searching for a polygon entity is the same as those described for

point and line entities. Fig. 7.17 gives the concept of searching for a polygon entity.

(a) Q u ad ran t Search

Indicates that the quadrant will be
found after the quadrant search

(b) C on d ition T est

•map

O

1. Is the search point in sid e the mbr o f a
polygon? (point-in -m br test)

+ yes
2. Is the search point in side the boundary

o f a polygon? (point-in -polygon test)

■* X

+ ycs
Found N ot found

P olygon In d ex T able

Peanor Polygon Identifiers

(ko, 2smjn) 3 .4
(Li, 2smin) 4
(kjj, 2smin) 1 ,4

(kl2, S m in) 2, 4
(k |3 , S m jn) 2, 4
(k |4 , S m jn) 1, 2

(k 15, S m jn) 2

Figure 7.17 The concept of searching for a polygon entity

The tests which will be applied during the search for a polygon include the point-in-mbr test

and the point-in-polygon test. Fig. 7.17(b) shows the two major steps required for the

condition test. The first step tests whether the search point lies inside the mbr of a polygon.

If it does, then the search point is further tested to ascertain whether it lies inside or outside

the polygon. The first step uses the point-in-mbr test, whereas the second step employs the

point-in-polygon test. The point-in-polygon test is an important geometric operation which

is included in every GIS and may be implemented by any one of several algorithms. A

particular form of a point-in-polygon algorithm has been adopted and slightly modified for

219

Chapter 7: Spatial Indexing and Queries

use in the persistent IGIS [Harrington, 1987; Mortenson, 1989]. Fig. 7.18 illustrates the

basic concept of this particular point-in-polygon algorithm. The algorithm works well for

both convex and concave polygons, including polygons with holes (or island polygons).

Based on it, the procedure pointlnPolygon (see Appendix E) has been developed for the

search of a polygon.

The number of
intersection

points

Examples
Polygon Count once Test Result

outside

inside

on (th e boundary)

inside

on (th e vertex)

X, < X2 < X,

X, < X, < X2

Horizontal lines
passing through
the test points

x3 < x, < x4
X | = X, = x 2

A test point Count twice

! Given a test point, determine if it lies inside, outside or on the boundary of a polygon.
If the test point lies inside the mbr of the polygon,
then compute the intersections of y = y, (i.e. the horizontal line passing through the test point) with the

edges o f the polygon
and count the number o f intersection points.

If the horizontal line intersects a vertex of the polygon and both edge lines are on the same
side of the horizontal line,
then count the number o f intersections twice,
else count only once.

There is always an even number of intersections.
Sort the x-coordinates of (he intersections in ascending order and form them into pairs, i.e. (xi, x2),
(x3, x4) and so on.
If the x, falls inside an interval o f a pair, e.g. X| < xt < x2
then the test point lies inside the polygon,
else if the x, is identically equal to one or both of the interval limits, e.g. \\ = x2 or Xj = xt = x2,

then it lies on the boundary or on a vertex,
else it lies outside the polygon.

Figure 7.18 The concept of the point-in-polygon algorithm

In Fig. 7.17, the quadrant search will find polygons 1 and 2 in case A. After the first

condition test, polygon 1 will be rejected. Although polygon 2 passes the first test, it will

fail the second test. In case B, polygons 3 and 4 will be found in the quadrant search.

Polygon 4 will then be rejected in the first test, but polygon 3 will pass both tests. Thus only

polygon 3 will actually be found in these two cases of the polygon search.

220

Chapter 7: Spatial Indexing and Queries

7.5.2 Queries and Searches by Zones

Queries and searches by zones are perhaps the most commonly-used methods adopted in
the querying of geographical information. Typical tasks carried out via a query by zones are
the retrievals of points, lines, polygons or a combination of them contained within a zone. A

search zone is usually identified on the screen using a mouse-controlled cursor. The shape
of the zone may be quite varied, including such possibilities as a rectangle, circle, regular
polygon, irregular polygon, etc. In this section, only the search by a rectangular zone is

discussed.

Basically the principle of searches by zones is the same as that described for searches by
pointing. Thus two main operations - the quadrant search and the entity-meet-condition test

- are required. However, searches by zones may involve quite complicated geometric
computations, especially when performing the condition test for the determination of the
entities occurring in an irregular search zone. The condition test required for a rectangular
search zone includes the point-in-mbr test, the line containment test and the overlay test of
two rectangles. The searches for both point and line entities will use the same test
procedures as those discussed in sub-subsections 7.5.1.1 and 7.5.1.2 respectively, except
that the target window of a cursor is replaced by a rectangular zone. The search for a
polygon entity requires, firstly, to test whether the mbr of the polygon entity overlaps the
mbr of the search zone. If both rectangles overlap, then a second test will be carried out to
find out whether the polygon boundaries {i.e. line strings) are contained within the search
zone. All these geometric algorithms required for the search by a rectangular zone have
already been described in previous subsections, therefore the condition test need not be
discussed further.

Because a search zone may cover an arbitrary number of quadrants, this means that the

quadrant search operation associated with the querying of a zone will require an individual
quadrant search for each square cell (a square cell has the size of the smallest quadrant)
covered by the search zone. For a rectangular search zone, the coverage of the square cells
occurring within the rectangle can be determined by the following formulae: -

X l = in t[X m in / Smin] * Smin

yi = int[ymin ! Smin] * Smin

^ 2 — i n t [x max ! Smin] * Smin

y 2 = i n t [y max / Smin] * Smin

m = (x 2 - X i) / S m i n

n = (y2 -yi)/Smin
where (Xmin, ymin) and (xmax, ymax) are the coordinate pairs of the SW and the NE corners of a

rectangular search zone respectively;

221

Chapter 7: Spatial Indexing and Queries

Smin is the minimum side length of the smallest quadrant determined in the

entity_index table;
int[] represents the integer part of a real value;

(xi, yi) and (x2, y2) are the minimal and the maximal coordinate pairs of the origins
(the SW corners) of the square cells respectively; and

m and n are the number of square cells covered in both the x- and the y-directions
respectively.

Thereafter, a quadrant search can be carried out by setting an initial search block to each
square cell to determine which quadrant in its search path is contained in the entity_index

table. All the unique quadrants found in the quadrant search can be saved as a list for the
use in the subsequent condition test. Fig. 7.19 illustrates the flowchart of the quadrant

search required for a rectangular zone. The rectangle bounded by the coordinates (Xmjn, ymin,
xmax, ymax) represents a search zone. The quadrants within the shaded area will be found
after the quadrant search.

Searches by zones can be used to retrieve different (point, line and polygon) entity types.
Because each entity type has been individually indexed to create an index table, so the
quadrant search has to be carried out for each of them. However, all the procedures
required for the quadrant search can be combined together as a single operation, thus
queries by zones allow users to acquire geographical information without needing to refer
to their entity types. In a way, queries by zones may be viewed as an integrated form of the
various types of queries by pointing.

7,6 Summary

Spatial querying is an important function in a GIS, and in turn, spatial indexing is a
fundamental facility essential for the operation of spatial querying. This chapter has
described the approach taken to provide these capabilities for the persistent IGIS. A spatial
indexing method based on a linear quadtree and Peano ordering has been described and
employed to index geographical data. The quartering and the indexing operations used for

the construction of an index table for each entity type have also been discussed. Also, a set

of procedures has been developed for indexing the basemaps held in the Processed database
described in Chapter 5. Two map datasets have been selected for the tests of these indexing
procedures. The linear quadtree diagrams generated by these tests show that each entity
type can be indexed properly using this particular approach.

On the other hand, the functions required for the querying of geographical data are also
described. Two primary query or search methods - querying by pointing and querying by
zones - have been used to study the provision of querying functions for the persistent IGIS.

222

Chapter 7: Spatial Indexing and Queries

kai

k4

O
ko

(Beg|n)
5map

e 2s • ->

k28

k24

a h i

ks

>

k53

k52

<

kss

<51

ks6

k32

A rectangular (xmax, ymax)
zone (x2, y2)

(X m i n i y m i n)

1

*

Define a r
searct

(Xmin» ymin.

r
ectangular

zone
Xmax j ymax)

r

(xi, y 0

Cell blocks

D eterm ine the range
o f the cell blocks

covered by the
rectangle zone
(x i .y i , x2, y2)

-* X

D eterm ine the number
o f the cell blocks

covered in both the
x- and y- directions

(m, n)

Create an em pty list
quadrantJ^ound

let i = 0 ; j = 0
S — Smin

s = Smin
i

i = i + 1

Determine the SW
corner (x, y) o f the
initial search block

x = Xj + i * s
y = yi + j * s

Convert (x, y) to a
peano_key and join s

to form a peanor

D eterm ine the SW
corner (x, y) of its

parent block

no Double the A

side length s

D oes the
entity Jndex

table contain the
eanorl

D oes the
quadrantJound
list contain the

ea n o J

Append the peanor to
the quadrant_found list

C ~ E n d ~)

Figure 7.19 Quadrant search for a rectangular zone

223

Chapter 7: Spatial Indexing and Queries

The quadrant search and the entity condition test are the two basic operations required for
each query type. Based on the querying approach presented in this chapter, several

functions which can be used for the querying of an entity type as well as a rectangular zone
have been developed for use in the persistent IGIS.

It is worthwhile mentioning that the Bulk Type Libraries Maps and Lists have been used
extensively in the design and the construction of the spatial index tables used for the
geographical data. These library procedures have proved to be very useful for carrying out

the indexing task. In other words, the support of the Bulk Type Libraries by Napier88 has

greatly facilitated the development of the facilities made available for spatial indexing and
queries.

With the provision of these facilities, the persistent IGIS is able to achieve the process level

of integration. When taken together with the storage level and the display level of

integration reported in Chapters 5 and 6, the persistent IGIS has now realised a full degree
of integration. Thus the persistent IGIS can be regarded as being a fully integrated GIS (or

FIGIS), i.e. it is a true IGIS.

224

Chapter 8: The Implementation o f the Prototype IGIS

CHAPTER 8 : THE IMPLEMENTATION OF THE PROTOTYPE IGIS

8.1 Introduction

The previous three chapters (5, 6 and 7) have already discussed the design of the essential
facilities required for the development of an IGIS. Each chapter has concentrated on the

provision of a specific level of integration, namely the data modelling and organisation of
various geographical data to achieve the storage level of integration in Chapter 5; the

superimposition and interrelation of vector maps and raster images to provide the display

level of integration in Chapter 6; and the spatial indexing and querying of geographical data
to reach the process level of integration in Chapter 7. Each of these facilities has been
implemented individually and has also been tested successfully on a specially selected
dataset. These preliminary tests have indicated that the integration approach based on the
persistent programming language Napier88 is very promising for the development of a true
IGIS. However, the suitability of this approach still cannot be fully justified without
providing more evidence from practical experiments.

In order to carry out a comprehensive series of tests, a prototype IGIS has been formed by
joining the three essential facilities together and by further extending several of the basic
functions required for an operational prototype. In addition, large volumes of geographical
data have been acquired to evaluate the capabilities and the performance of the prototype
IGIS. As such, two main aspects will be discussed in this chapter - the development of the
prototype IGIS and the trials and tests carried out using this prototype.

This chapter first describes the user interface design employed in the development of the
prototype IGIS. Then the functions and the linkage of the software modules implemented in
the prototype IGIS are discussed briefly. This is followed by a description of the platform
(hardware configuration and system software) and the data used in the trials and tests.
Based on the resulting system which combines the software, platform and data, both a
functional test and a performance test (which evaluate respectively the capability and the
efficiency of the prototype IGIS) have been carried out. Finally, the findings derived from
the trials and the test results will be presented and discussed.

8.2 User Interface Design

Quite apart from the construction of the various procedures required for the core modules,
it is essential that a suitable user interface be included in an IGIS. The user interface, which
is situated between the core system and the user, plays a particularly important role in GIS
operations. In principle, the design of the user interface should implement and feature three

225

Chapter 8: The Implementation of the Prototype IGIS

characteristics: ease of learning, ease of use and functionality. In practice, it is quite difficult
to ensure that all three features can be provided in a single system without conflicting with
one another. For example, an extensive emphasis in the interface design on ease of learning

for novice users may result in a system that is not easy to use and lacks the capabilities

which are desirable for skilled users. On the other hand, a system which supports the
features of full functionality and ease of use for skilled and knowledgeable users may need
to sacrifice those features required for ease of learning. Furthermore, the user interface
design involves the consideration of a very large number of aspects, such as the layout of
the display formats, the use of colours, the dialogue design, the menu design, the use of

icons, the display of error messages and on-line help, and the use of various control and
display devices, etc. [Brown, 1988]. The particular requirements needed to satisfy each of
these can often be in conflict with one another. Therefore, the design of the optimal user
interface is quite a complex issue to be resolved in the development of a GIS, particularly in
the situation where the multi-media representation of geographical information is needed.

Graphical User Interfaces (GUIs) are probably the most widely used type of interface
implemented in GIS software packages. The GUI makes use of graphical objects such as
pull-down or pop-up menus, dialogue boxes, icons, scroll bars, etc. within a window system
to provide the “look and feel” of the display screen presented to users of the system. In a
proprietary window system such as Microsoft Windows, IBM’s Presentation Manager
(PM), the GUI is closely tied to the operating system and the underlying display hardware.
In other words, the GUI is a specific software built into the window system. On the other
hand, in a non-proprietary window system such as the X-window system, the GUI and the
window manager that supports it are quite independent of the operating system and the
display hardware. The X-window system is a software standard that provides a framework
for window-managed applications to run over a network. The X-window system doesn’t
have a graphical user interface built in, but it provides a structure that supports many

different types of GUIs. Commonly-used GUIs operating under the X-window system are
OSF/Motif, OpenLook, DECWindow and Xview [Tektronix, 1991]. Within the X-window

environment, application programs running on either a local or a remote system are called
X-clients. and the special software running in the display system which provides services for
client applications is known as an X-server. It is worth mentioning here that this concept is
the opposite to the normal sense of the client/server architecture used in a networking
environment, in which the display system is the client (on which the user sends requests and
gets the display of the results) and the computer which processes the user’s requests is the
server (compute server, application server, print server, file server, etc.).

Napier88 provides its own window management system WIN which uses a proprietary
graphical user interface. The concept of window management in Napier88 is quite different
to that of a conventional window management system. In the WIN system, windows are

226

Chapter 8: The Implementation of the Prototype IGIS

independent objects which are created by a separate window creation procedure rather than
by a window manager. A window manager can be created to display and manipulate a set of
(possibly overlapping) windows by supplying a parent window to the window manager
creation procedure. Because windows may be organised into groups in a hierarchical
manner, thus window managers can be nested recursively to any depth. The recursion is

grounded by the root window which operates directly on the display device [Cutts et al.,
1989; Kirby et al., 1994]. All windows may be held in the persistent store. Also all these

window management operations can be carried out either in an X-window using an X-

server or in a special graphical window utilising the local frame buffer of a workstation.

Since WIN has already provided the basic facilities for programmers to create their graphic

user interfaces, originally it was planned that the development of the prototype IGIS would
make use of these facilities.

However, a number of problems have been encountered in the attempt to use WIN for the
creation of the GUI. On the one hand, the implementation of WIN in Napier88 Release 1
does not support colours, but it can use colours in X-windows displayed on a local host or
on a remote X-server running any conventional window manager. On the other hand,
Release 2 provides colours for WIN, but neither WIN nor X-windows can properly display
colours on a remote X-server. As an aside, Release 1 also had the problem of displaying
colours in an X-window on a remote X-server at the very early stage of this research. The
problem was first discovered by the author, then identified by the technical support staff in
Glasgow and eventually solved by the system developer in St. Andrews. Since the author
used a PC equipped with an X-server to run Napier88 programs over the network during
the development of the prototype IGIS, (- the hardware configuration will be described in
Section 8.4 -) it was not possible to make use of the WIN library procedures supported by
either of the two Releases. Therefore in order to provide the GUI facility as well as the

display of colours for the prototype IGIS, a built-in GUI has been developed based on
Release 1. As a result, much effort has had to be expended to develop this GUI using the
standard library procedures provided by Napier88. This particular GUI includes several
graphical procedures which can be used to pop up a menu, generate a dialogue box and
display a message in an X-window. The designs of the pop-up menu and the dialogue box

are described in the following subsections.

8.2.1 The Pop-up M enu Design

A pop-up menu is a window that appears rapidly on the display device to provide options
for a list of functions, from which the user can select an action to be executed. Depending
on its internal design, the layout of pop-up menus and the operations available on the menu
may be quite varied. The layout of one of the pop-up menus implemented in the prototype
IGIS is illustrated in Fig. 8.1(a).

227

Chapter 8: The Implementation of the Prototype IGIS

Reference origin — ►

Pop-up Menu
Window

Background Area

Analysis

Management

Title Area

Status Line

Item Area

(a) Layout

Figure 8.1 The design of a pop-up menu

Wj -----

(b) Dimensions

The pop-up menu contains five components; the functions of each of these components are

as follows: -

1. The title area is used to display the menu title.

2. The status line indicates whether the cursor is inside or outside the menu window.

3. The item area displays a list of menu entries.

4. The background area represents the coverage of the menu window.

5. The reference origin is used to determine the relative displacement when moving the

menu window and to find out in which area the cursor is located.

The operations available on a pop-up menu depend on the use of the mouse and how the

mouse buttons are actually used within each area. They can be categorised into two possible

cases: -

(I) If there is no pop-up menu being displayed, holding down mouse button 3 will result in

a pop-up menu being displayed with the reference origin at the location of the cursor.

• Continuously holding down mouse button 3 and moving the cursor within the menu

window will result in the corresponding line or area being highlighted, i.e.
- if the cursor lies within the menu window, then the status line will appear;

- if the cursor is inside the title area, the characters of the title will be highlighted

via a colour change of the te x t ;

- if the cursor is inside the item area, the background area of the corresponding

item will be highlighted.

• The release of mouse button 3 will result in the following actions: -

- if the cursor is inside the title area, the menu window will be retained;

- if the cursor is inside the item area, the command of the corresponding item will

be executed and the menu window will not be retained;

- if the cursor lies outside both the title and item areas, then the menu window

will be dismissed, i.e. it will disappear.

228

Chapter 8: The Implementation of the Prototype IGIS

(II) If there is a pop-up menu being displayed, moving the cursor within the menu window
will highlight the corresponding area. The highlighted situations are the same as those
described in case I except that, in this case, there is no necessity for the mouse button

to be pressed.
• Clicking mouse button 2 in the title area will dismiss the menu window which will

disappear;
• Clicking mouse button 1 in the item area will execute the command of the

corresponding menu item;

• Holding down mouse button 1 in the title area de-highlights the title and the
movement of the cursor controlled by the mouse will show the frame of the menu

window being dragged to a new location, i.e. to the position where the cursor has
been moved. The release of mouse button 1 will result in the movement of the menu

window to the new location.

It should be noted that when using a two-button mouse, e.g. a Microsoft mouse, a third
button can be emulated by clicking both mouse buttons at once. In the current
implementation, the left and right buttons are assigned as buttons 1 and 3 respectively; the
simultaneous depression of both the left and right buttons acts as button 2.

In order to accommodate the use of (i) various font types, (ii) the variable lengths of a text
string and item strings; and (iii) the variable number of menu items in a pop-up menu, the
size of the menu window should not be fixed. Instead, the width (w) and the height (h) of a
pop-up menu will be determined by the following formulae (See Fig 8.1(b)): -

di = mi + wt + mr
d2 = mi + wi + mr
w = max(dj, d2)
h = ht + mt + n * hi + mb

where di and d2 are the widths of the windows of the title and item areas respectively. N.B.
although the diagram shows d2> di, the situation di > d2 can also be encountered;
mj and mr are the left and right margins of both the title and item areas;
mt and mb are the top and bottom margins of the item area;
wt is the width of the title area;
ht is a constant value which is defined by the maximal height of the available fonts

plus the top and bottom margins;
Wj is the maximal item width;

hi is the item height;
n is the number of menu items; and
max is a function giving maximum dimension of the two values d] and d2.

229

Chapter 8: The Implementation of the Prototype IGIS

The detection of the specific situation as to whether the cursor lies in a particular area or
not can be carried out using the procedure locator provided by the Napier88 Standard
Library. This procedure will continuously generate the information (cursor coordinates,
status of buttons, etc.) about the pointing device in the form of a one-dimensional array
which is represented as a vector of data type int, e.g. let data := vector 1 to 8 of 0. In the
situation of using a mouse being associated with an X-window, the information contained in
the vector elements is described in Table 8.1 [Morrison et al., 1989; 1993].

Element No. Value generated by Release 1 Value generated by Release 2
1 0 0
2 0 0
3 X X

4 y y
5 the status of button 1 a date stamp
6 the status of button 2 the status of button 1
7 the status of button 3 the status of button 2
8 0 the status of button 3

Notes: 1. x and y are the absolute coordinates of the cursor in terms of pixels with
reference to the lower-left comer of an X-window.

2. The status of a mouse button is either down (1) or up (0).

Table 8.1 The vector elements generated by the procedure locator which is available from
both Releases when using a mouse.

The absolute coordinates of the reference origin can be obtained from the cursor location
where the menu is being popped up and these will also be updated when moving the menu
window to a new location. Furthermore, the relative coordinates of the title and item areas

which refer to the reference origin can be determined during the construction of a pop-up
menu window. Therefore, the mbr of each rectangle in the menu window can be
determined. Thus the cursor location can be easily tested to find out whether it is inside or

outside a specific area. For example, if x,™, item(i) < data(3) < xmax, item(i) and if y^ n, itemo) <
data(4) < ymax, item(i), then the cursor lies within the area of the ith menu item (- it should be

noted that the current implementation of the pop-up menu design is based on Release 1).

The status of the mouse buttons will then be tested to perform the predefined functions. For
example, if data (7) changes from 1 to 0, this means that mouse button 3 has been released

from the holding state. This will activate the operation described in case I, i.e. the execution
of the command corresponding to this particular item.

Using the above principle, the procedure popupMenu has been developed for use in the
prototype IGIS (See Appendix D). The procedure takes a vector of text strings (including a
menu title and several menu items), a vector of item actions and other parameters to
generate a pop-up menu. The relationship between the menu items and the item actions is a

230

Chapter 8: The Implementation of the Prototype IGIS

one-to-one mapping. A menu action is a procedure which may perform a GIS function or
which may pop up a submenu. The use of pop-up menus can be nested to any depth. Thus

the popupMenu procedure can be used to create a menu tree which comprises a hierarchy
of available commands.

8.2.2 The Dialogue Box Design

A dialogue box is a pop-up window which displays a message to the user and into which
data may be entered. Various forms of dialogue box are possible. For example, a dialogue
window may contain a simple prompt with several check boxes allowing the user to make a

selection or it may provide a message, a prompt and an input field requesting the user to
input data. In general, the design of a dialogue box is simpler than that of a pop-up menu.

Only one form of dialogue box has been developed for the current implementation of the
prototype IGIS. The design of this particular dialogue box is illustrated in Fig. 8.2.

Dialogue
Window

Prompt
Area

M essage
Area

— ► Input Area Background
— Area

T
nth4
Ph

K— W — *|

n \

m r

1.11

f t
__i P b v

(a) Layout

Figure 8.2 The design of a dialogue box
(b) D im ensions

The dialogue window contains four components; the functions of each of these components
are as follows: -

1. The message area is used to display textual information, such as a text string or a list
of map identifiers;

2. The prompt area is used to display a few words which suggest how to enter data in
the input area;

3. The input area allows the user to enter data; and
4. The background area indicates the coverage of the dialogue window.

The operations available within the dialogue box are quite simple and can be described as

follows: -
• Any keystroke of the displayable ASCII codes (lying in the range between 31 and 127,

but excluding 31 and 127) will add a character into the input area starting after the
prompt string;

• The “Delete” key (ASCII code = 127) can backspace one character at a time;
• The “Return” key (ASCII code = 10) is used to end the input of a string; and

231

Chapter 8: The Implementation of the Prototype IGIS

• The “Esc” key (ASCII code = 27) or a click of mouse button 2 (i.e. data(6) = 1) will
dismiss the dialogue window and discard the text string while entering data.

The number of text strings in the message area and the number of the characters in a text
string are both variable, as is the size of a dialogue box. The width (w) and the height (h) of
a dialogue box can be determined by the following formulae: -

w = mi + tw + mr

h = mt + n * th + Ph + nib
where mi, nv, nit and mb are the left, right, top and bottom margins of the dialogue area -

which is a combination of the message, the prompt and the input areas;

tw is the width of the maximal text string;
th is the height of the text string;
ph is the height of the prompt string; and
n is the number of text string.

Based on the above design, the procedure dialogueBox has been developed to provide the
textual I/O capability within an X-window for the prototype IGIS (See Appendix D). The
dialogue box can also be used to display a message only, i.e. when ph = 0. In this instance,
the dialogue box will act as a message display box without providing the prompt and the
input areas.

8.3 Designing and Building the Prototype IGIS

Having described the provision of the basic GUI facility in the previous section, a truly
integrated GIS can be developed with the feature that it allows most operations to be
carried out in a common X-window. As has been discussed in the design of the system

architecture (Chapter 4), the functionality of the persistent IGIS is intended to deal with the
various forms of data required in different types of geographical data processing. However,
the development of such a system with a complete set of functions will take at least several
man-years. Since this research is aimed at the integration of geographical data, and in
particular, the construction of a framework for vector and raster data integration, thus the

feasibility of a persistent IGIS is the major concern at this stage. In order to test and

evaluate the suitability of using the Napier88-based persistent IGIS in practical applications
regarding information integration, the implementation of a prototype IGIS has been carried

out to provide the basic facilities required to conduct this proof of the basic concept.

This prototype IGIS comprises five main modules (View & Query, Spatial Indexing,
Management, Pre-processing and Import/Export). These five modules are represented as
five optional items in the main menu. Each main module is composed of several sub-
modules. Each sub-module may contain additional small modules or executable commands

232

Chapter 8: The Implementation of the Prototype IGTS

(procedures) or a combination of both. Based on the use of pop-up menus, a menu
hierarchy can be designed for the prototype IGIS. Fig. 8.3 illustrates the menu hierarchy
employed in the persistent IGIS.

The construction of each main module involves the design of the data flow between its

constituent parts (sub-modules or procedures) and the development of relevant procedures.
The data flow required for each main module can be designed using a data flow diagram
which is a graphical notation used to describe how data flows between processes in a
system. The primary data flows in each of the main modules are shown in the flowcharts
contained in Fig. 8.4 to 8.8.

Before carrying out software development, a fresh persistent store should first be obtained.
This initial store contains the Standard Library, the Bulk Libraries, other utilities, etc. Next
the data types (See Appendix A) needed in the prototype IGIS are designed and saved in
the persistent store. This is followed by the operations of creating the store environments
(See Appendix B) used for the storage of the GIS software library and geographical
databases.

Having prepared the persistent store necessary for IGIS software development, every
program procedure required in the development of the prototype IGIS had to be
individually designed and tested. After this had been done, these various procedures have
been organised into three program libraries and have been stored in the software Library
within the User environment of the persistent store. Appendices C, D and E show the
source listings of the General, Graphical and GIS libraries respectively. It should be noted
that the methods involved in compiling and executing a Napier88 program and in
developing a program procedure in the stable store by the incremental construction method
have been described in Subsections 3.4.1 and 3.4.6 respectively.

Using these library procedures in combination with the flow diagrams and the GUI facilities,
the overall prototype IGIS program has been designed and composed. Appendix F gives the
source code of the prototype IGIS program. The compilation of the IGIS source program

has been carried out against the persistent store in which the three libraries described above
have been installed. After all the processes of debugging and testing (which are normally

required in software development) had been completed successfully, an executable file in
object code - the IGIS executable program - was generated by the Napier88 system. Both
the executable program and the persistent store are simply two files available under the
Unix operating system. However, they will act as an integrated GIS software and as an
integrated geographical database respectively when running under the Napier88 system.
Thus the program and the persistent store form the prototype IGIS system.

233

Chapter 8: The Implementation of the Prototype IGIS

Load

Zoom Centre

Number

Pan

W indow
Load

HSI

SunRas

TIFF

SunRas

FBFF

NTF 2.0

Line

Polygon

Images

Interim Image

Trim

Original

Query
Entities

Overlay
Maps

Import /
Export

Management

Pre-processing

Spatial

Prototype
IGIS

Linear Contrast
Stretch

Interim Images

Print

Export Map Dal

Export Image Data

Import Map Data

Clear Index Tables

Build mbrs

Linear Contrast
Stretch and

Reduce Depth

Linear Contrast
Stretch and

Reduce Depth

Figure 8.3 The menu hierarchy o f the prototype IGIS

234

Chapter 8: The Implementation of the Prototype IGIS

In the current implementation, the primary functions of the prototype IGIS can be
summarised by each module as follows: -

The View & Query module deals with the display of vector maps or raster images or a
superimposition of them, and the search for graphical entities.

- it displays maps or images independently
- maps can be superimposed on an image backdrop
- a map can be zoomed in or out
- an image can be panned
- a search can be made for points, lines or polygons by pointing to entities or a

rectangular region

The Spatial Indexing module deals with the construction of index tables for vector map

data.
- mbr tables can be built for line and polygon entities
- index tables can be constructed for point, line and polygon entities.
- linear quadtree index diagrams can be drawn
- linear quadtree index tables can be printed
- a summary of spatial indexing process can be printed

The Management module deals with the data management of vector maps and raster
images.

- a map or an image can be removed from the persistent store
- a raw image can be converted to an interim image
- an interim image can be converted to a baseimage
- mbr or entity index tables can be erased
- a statistical summary of the elements contained in basemaps can be printed

The Pre-processing module handles the pre-processing of raw and interim images.

- a raw or an interim image can be previewed
- a linear contrast stretch can be performed on a raw or an interim image
- the depth of a raw or an interim image can be reduced

- an interim image can be trimmed

The Import & Export module is used to import and export vector map data and raster
image data.

- vector map data stored in the NTF format can be imported
- raster image data stored in the FBFF, TIFF, SunRas or HSI [HSI, 1993] formats can

be imported
- an image can be exported to a file in the SunRas format

235

Chapter 8: The Implementation of the Prototype IGIS

'Choice'

Exit maps
Exit

Choice]

query
entitiesload

zoom

Input a m a p jd no
m pjoadedJ2

yes
Display the map on

the screen
(See Fig. 6.1(a) for

the detail)

query

ExitZoom’-yfl (quit)
^miotj^
_ la ,c ,p ,n ,w

'Choice]

pointing to
an entity

rectangle
region

Retrieve the entity
index tables

getZoomExtent
Digitize a point Define a window

Redraw the map
Search entities and display

the results
(See Fig. 7.14 and Fig.

7.19 for the details)

Set mapjloaded to
true

Exit

Choice'

overlay
maps

load pan

no no
Input an Image_id

I yes
— n n isn 1'—
panning?.

yes

Display the image
on the screen

(See Fig. 6.1(b) for
the detail)

yes Enter a map_id

no
Display the map

Draw a line to
indicate the

movement of the
image

no
f in is h ?

yes

Redisplay the image

Figure 8.4 The flowchart of the View & Query module

236

Chapter 8: The Implementation of the Prototype IGIS

build
mbrs

index
maps

print LQT
index tablesExit

no

Retrieve the first
map_id from the
base_niaps table yes

Exit

line polygonpoint

Create mbr / index
tables for the map
and store them in

the database
(See Fig. 7.2 and
Fig. 7.3 for the

details)

no The last entry ol
the b a s e _ m a p

' '" ' \ ta b le ?

yes

e n t i t y _ in d ic e l
contain the

^ t n a p j d l ^

'Choice)

index Jbasemaps draw jqtndxbuild_mbrs prtjc/tndx

d r a w / p r in t
p o i n t J q t n d x

d r a w / p r in t

l in e _ lq tn d x

draw / print
polygon_lqtndx

Input an image id

The map has
not been

indexed yet

Figure 8.5 The flowchart of the Spatial Indexing module

237

Chapter 8: The Implementation of the Prototype IGIS

(Begin)

interim to baseim age
conversion

C h o ic e

raw to intern
n rW e conversion

rem ove
maps

remove
images

removeBasemap rawToInte rummage interimToBaseimagerernove_tniage

Input a map id Choice

Input an image id

baseim ageraw / interim

D a ta b a s e c o n ta n

th e t a r g e t im a g er e m o v e R a w t m a g e r e m o v e ln t e r i m i m a g e r e m o v e B a s e tm a g e

Overwrite
t2

Input an image id in terim

a ta b a s e c o n ta i n ^ ^ n o
h e m a p o r im a g e }

yes

Delete it ?

rem ove the map or
the im age from

the database

Convert a raw
image into an

interim image and
store it in the

database

Input the ground
coordinates o f the
SW -corner o f the

image and the pixel
size in ground length

Convert an image into
a baseim age and store

it in the database

clear M BR clear Index
tables

map
statisticst a b l e s

C lear the line_rnbr
and polygon jnbr

tables

clea r_m brjables clear Jn d exJa b les map_statistics

. r ' ' . f

Clear the
point_index,

line Jn d ex and
polygon Jn d ex

tables

Input a map id

i f

List the n
elem ent

entity

um ber of
in each
table

(End)

Figure 8.6 The flowchart of data management in the M anagem ent module

238

Chapter 8: The Implementation of the Prototype IGIS

No raw / iterim
im age available

raw_images r
interimjimage

em pty 1 / '

yes

no

Display a list o f
image id

Input an im age id

Retrieve the image
from the Raw /
Interim image

database

Retrieve the image
dim ension and the

colourm ap

Exit

nterim

Exit ('C h o ice '

,CS* & reduciLCS*Preview . T ri m

Enter the num ber o f
pixels to be cut off
from the m argins

Determine the
frequency of the

pixel values

Enter a new depthD isplay the image

D eterm ine the
frequency o f the

pixel values Create a new image
and display it

Perform a linear
contrast stretch

Perform a linear
contrast stretch yesrun i,

again

no

O verwrite
the original

no

yes

Store the new image
in the Interim

database

* Linear Contrast Stretch

Figure 8.7 The flowchart for processing a raw or interim image in the Pre-processing module

239

Chapter 8: The Implementation of the Prototype IGIS

(a) Vector Maps

noIs the file
readable 'L

yes

//uatabasfr^
contain the mm

data

yes no

yes
no.

(S ee F ig . 5 .15 and
F ig . 5 .16 for
m ore d eta ils)

landline>undaryITis_50ks_625k s_250k oscar

Basemap

Overwrite

C Map >
iseries?;

NTF v2.0
files

ntfContour
ToBasemap

ntfoscarTo
Basemap

ntfblTo
Basemap

ntfllTo
Basemap

st ore Base map

Enter a NTF file
name

Determine the map
series, scale and

extent

(b) Raster Images

(See F ig . 5 .18 for
the d eta il)

yes Data
.form?.

interim
no

Is the file
readable 2-

Enter an image
file name

store In te rin i image

storeRaw image

Image files
(FBFF, TIFF,
SunRas, HSI)

Figure 8.8 The flowcharts for the import of vector maps and raster images in the
Import/Export module

240

Chapter 8: The Implementation of the Prototype IGIS

All of these sub-modules and/or commands existing within a module are organised as a

pop-up menu. Fig 8.9 gives a specific example of the pop-up menus employed in the

prototype IGIS. The View & Query menu which is popped up from the main menu

contains the M aps and Images modules; the M aps menu comprises a single command

(Load) and two modules (Zoom and Query Entities); while the Query Entities module

comprises a collection of commands relevant to the search for and querying of different

geographical entities. Each menu also includes an Exit item which can be used to close the

current menu and return to the previous menu in the hierarchy.

Query Entities

Figure 8.9 An example of pop-up menus used in the prototype IGIS

8.4 The Prototype IGIS Platform

At the time of writing, the Napier88 database programming language only runs under

certain very specific versions of the Unix operating system. In practice, this confines the

candidate hardware platform to being either a Sun workstation running SunOS or Solaris or

a DEC workstation running Ultrix [Kirby et al., 1994]. The system configurations required

for both Releases 1 and 2 are different because their persistent environments are unlike in

structure - as has already been discussed in Chapter 3. Both Napier88 Releases are installed

on Sun workstations in the Department of Computing Science. Since these workstations are

connected to the Departmental LAN (CS LAN), so the Napier88 system can be accessed

from any computer within the Department. The CS LAN is further linked to the

University’s high-speed (FDDI/Ethernet) network (campus backbone); thus the machines

can also be accessed from other Departments.

The design and the development of the persistent IGIS were conducted in the Department

of Geography & Topographic Science. The implementation of the prototype IGIS is based

241

Chapter 8: The Implementation of the Prototype IGIS

on Napier88 Release 1. The software development and the tests were mainly carried out

using a 486PC equipped with X-window software connected to the Sun machines in

Computing Science over the campus network. The overall configuration used for most of

the development of the prototype IGIS and the subsequent trials and tests is illustrated in

Fig. 8.10.

Glasgow University
Backbone Network

Gateway
130 .209 .26 .1

LAN

D ep artm en t o f G eograp h y
& T op ograp h ic S cien ce

486PC com patible

1 3 0 .2 0 9 .2 6 .1 2

80 4 8 6 D X 2 (66 M H z) Processor
32 M B RAM
515 M B Hard D isk 1
2 56 KB C ache RAM
D iam ond Stealth 64 G raphics

A dapter with 4M B '
V id eo RAM

17” C olour M onitor
M S -D O S v. 6.11
M S-W indow s for W orkgroups

v. 3.11
3C om EtherLink III Adapter
PC -N FS v. 5 .0
V ista eX ceed v 4 .0 G eog LAN

LAN

D ep artm en t o f C om p u tin g S cien ce

Sun Sparc Station 10/41 (Hoy)

1 3 0 .2 0 9 .2 4 0 .1 1 3

SPA R C (4 0 M H z) Processor
9 6 M B R A M
4 2 4 M B Internal Hard D isk
2 x 1GB and 1 x 6 6 9 M B

External Hard D isk s
Sun cgsix G raphics Board
2 0 ” G rayscale M onitor
SunO S R elease 4 .1 .3
N apier88 R elease 1

CS L A N

Gateway
1 3 0 .2 0 9 .6 .1 2

Figure 8.10 The prototype IGIS platform

In fact, a variety of hardware and software system components have been employed at

different times during the period of the research. Two workstations - a Sun 4/75 (Albatross)

and a SparcStation-10 (Hoy) - in the Department of Computing Science have been used as

host computers running Napier88. Also several personal computers or terminals acted as

local X-servers in the Department of Geography & Topographic Science. These local

hardware devices include two PCs (Viglen 486 DX; Viglen PCI 486 DX2); two X-

terminals (Tektronix XP-25; Pericom X-LINE 200) and one workstation (Sun SparcStation

1+). In addition, various types of network and X-window software systems had been used

242

Chapter 8: The Implementation of the Prototype IGIS

with the PCs, including two network transport systems (SunSelect PC-NFS v. 4.0 and 5.0
and Trumpet Winsock v. 1.0 Rev A) and two X-window systems (Vista eXceed/W v. 3.2,
3.3 and 4.0 and StarNet MicroX v.2.8.6 and 2.8.8 (Demo version)).

It should be noted that the utilisation of various X-servers resulted from some difficulties in

using X-windows with Napier88. Apart from the problem of displaying colours in an X-
window on a remote X-server - which has already been mentioned in Section 8.2, the

research also came across the twin problems of being “unable to open multiple X-windows”
and of “often failing to open an X-window”. Once again, these problems only occur when

using a remote X-server. In other words, the operations of opening X-windows will appear

quite normal when using any suitable workstation located in the Department of Computing
Science. These problems caused a lot of inconvenience in the course of developing the
prototype IGIS and will be discussed in more detail later in this chapter. Since making good
use of X-windows is essential for the provision of the graphical capabilities required for the
prototype IGIS, therefore many attempts were made to solve the above problems by using
various X-servers. As a result, the performance of various X-servers used with Napier88
has also been tested and will be reported later in this thesis. This result has particular
relevance to the future development of an IGIS with a distributed database.

8.5 Test Data

Based on the prototype IGIS described above, a number of trials and tests have been
carried out using substantial amounts of data in order to examine the feasibility of applying
the idea of the persistent IGIS to a real world situation. The results from these tests have
been used to analyse the functionality and the performance of the prototype IGIS. The
results were intended to provide some evidence as to whether the persistent-based approach
to an IGIS is really a practical proposition or not.

In order to obtain objective results, real geographical data sets were used in the trials and
tests. These datasets were acquired from Ordnance Survey, Taywood Data Graphics (now
MR-Data Graphics) and NRSC. All of the data covers the same geographical region
comprising the Port Talbot area in South Wales, UK. Fig. 8.11 illustrates the geographical
location of the test area. The datasets consist of vector map data at different scales and
raster image data of different resolutions. The largest coverage of the test data sets is that

of the OS 1:625,000 scale map (SS) which is shown in Fig 8.11. The ground coverages of
the other vector maps and raster images are illustrated in Fig. 8.12. The shaded areas show
the coverages of the raster images, whereas the square blocks with alphanumeric identifiers
indicate the coverages of the various vector maps used in the tests.

243

Chapter 8: The Implementation of the Prototype IGIS

SS (1 : 625,000)
200,000

Sw ansea

W E R , WALES
Port I

Talbot

BRISTOL CHANNEL

SSNW SSNE
50,000

Barnstaple

ENGLAND

100,000 sssw SSSE

200,000 250,000 300,000

unit: metre

Figure 8.11 Geographical location of the test area

8.5.1 Vector Data Sets

The vector data sets are all in NTF v. 2.0 format [Ordnance Survey, 1993a]. These data

sets use three kinds of data models, i.e. the spaghetti, the link and node and the polygon-

based models, utilised in different OS map series. The principal characteristics of the vector

test data are summarised in Table 8.2(a) [Ordnance Survey, 1994].

All the vector map files used in this experiment had already been edited and validated by the

suppliers. Hence, they could be regarded as ‘clean data’ and were imported directly into the

Processed database, i.e. storing them as basemaps. Thus no further processing was required

for the vector map data.

8.5.2 Raster Data Sets

The raster data sets use either a TIFF or FBFF format. These data sets only use one data

model, i.e. the grid cell model. The principal characteristics of the raster test data are

summarised in Table 8.2(b). Although the image files SS88SW and PTBAND (1,2,3,4,5,7)

- comprising respectively a scanned 1:50,000 scale map and a Landsat TM image - had also

been pre-processed by the suppliers to be ‘clean data’, the raster image data could not be

used directly as baseimages without performing a prior manipulation. In particular, the

depth (intensity range) of these images needed to be reduced from 8 bits to 4 bits in order

to utilise them as backdrops on which vector map data could be overlaid (See Section 6.4).

244

Chapter 8: The Implementation of the Prototype IGIS

SSNE L andsat TM 2144
(1:250,000) (PTBAND) (1: 10,0 0 0)

200,000 200.000

270191

SS88
(1:50,000)

190,000

SS88SW
(1:50,000)P ort T albot 180,0001 80,000

280,000
175,000

275,000 300,000

170,000

60,000

50.000
250,000 260,000 270,000 280,000 290,000 \ 300,000

D ashed-line Block

190,000

RffiaiKilN S / 8 8 7

(1:2,500)

85,000

183,000

278,000 280,000

p h o to l4 5 (1:8,000)

p h o to l5 7 (1:23,600)

285,000

SS7887
(1:2,500)

188,000

187,500

187,000

SS7887NVV
(1:1,250)

SS7887NE
(1:1,250)

SS7887SW
(1:1,250)

SS7877SE
(1:1,250)

278,000 278,500 279,000

Figure 8.12 The coverage of vector map data and raster image data in the test area

245

_______ Chapter 8: The Implementation o f the Prototype TGTS

(a) Vector Maps

File Name Map
Series

Map Scale Coverage

(km2)

Coord.
Resol.

(m)

Data
Model

File
Format

File Size

(bytes)

SS BaseData.
GB

1:625,000 100X 100 50 LN NTF 339,100

SSNE Strategi 1:250,000 5 0 x 5 0 25 LN NTF 1,185,624

SS88 Land-Form
PANORAMA 1:50,000 2 0 x 2 0 3

(ht.accur.)
SP NTF 4,205,279

2144 Boundary-
line

1:10,000 25x25 0.1 PB NTF 390,665

270190 OSCAR 1:10,000 5 x 5 1 LN NTF 210,271
275190 OSCAR 1:10,000 5 x 5 1 LN NTF 210,483
SS7987 Landline 1:2,500 1 x 1 0.10 SP NTF 187,920
SS8086 Landline 1:2,500 1 x 1 0.10 SP NTF ~ 276,866
SS8087 Landline 1:2,500 1 x 1 0.10 SP NTF 133,400
SS7887NE Landline 1:1,250 0.5 x 0.5 0.05 SP NTF 158,275
SS7887NW Landline 1:1,250 0.5 x 0.5 0.05 SP NTF 299,225
SS7887SE Landline 1:1,250 0.5 x 0.5 0.05 SP NTF 278,217
SS7887SW Landline 1:1,250 0.5 x 0.5 0.05 SP NTF 241,419

(b) Raster Images

File Name Image
Series

Image Size

(pixels)

Coverage

(km2)

Pixel
Size
(m)

Data
Model

File
Format

File Size

(bytes)

PTBAND
(1 , 2 , 3 , 4 , 5 , 7)

Landsat
TM 800 x 800 2 0 x 2 0 25 GC FBFF 640,000

(x 6)

SS88SW Colour
Raster1 2,000 x 2,000 10 x 10 5 GC TIFF 4,005,880

157 Scanned
Airphoto2 2,480 x 3,507 5.2 x 5.7 2.1 GC TIFF 8,706,904

145 Scanned
Airphoto3 2,480 x 3,507 1.7 x 1.8 0.68 GC TIFF 8,706,904

Notes: 1 : Scale of Scanned Map = 1:50,000;
2 : Photo Scale = 1 : 23,600;
3 : Photo Scale = 1 : 8,000;
NTF : National Transfer Format;
FBFF : Flat Binary File Format;
TIFF : Tagged Image File Format.

SP:
LN:
PB :
GC:

SPaghetti;
Link and Node;
Polygon-Based;
Grid Cell;

Table 8.2 The characteristics of the test data

246

Chapter 8: The Implementation of the Prototype IGIS

In addition, a contrast stretch is required for the PTBAND (1,2,3,4,5,7) images to improve
or enhance their visual interpretability. The PTBAND (1,2,3,4,5,7) images comprise
multispectral data of an extracted Landsat TM (Thematic Mapper) scene. The Landsat TM

sensors detect and measure reflected solar energy from the Earth in discrete portions (or
wavelength bands) of the electromagnetic spectrum. Each band is useful for a particular

application field. For example, Band 1 covers the wavelength range 0.45 to 0.52 |im (visible
blue), so the image PTBAND 1 is most likely to distinguish geographical features such as
those found in coastal water [NRSC, 1992]. Because the sensors mounted on Landsat are
capable of detecting the very wide range of radiance levels likely to be found on an Earth

wide scale, so it is unlikely that the full dynamic range of any of these sensors will be
utilised when sensing a particular area. Hence the pixel intensity values recorded in an
image are usually clustered in a narrow section of the full range of available values. As a

result, when the original PTBAND images are displayed on a monitor screen, they appear
dull, i.e. they appear either too dark or over-bright using their original pixel values, due to a
lack of contrast. The linear contrast stretching technique is the most commonly-used
contrast enhancement method allowing the user to improve the interpretability of the
images. This technique involves the “mapping” of the pixel values (PVs) from the observed

range PVmin to PVmax to the full range of the display device, i.e. over the range 0 to 255
when using an 8-bit graphic display [Mather, 1987].

On the other hand, image files 145 and 157 were acquired from the scanning of aerial
photographs using the Cannon CLC-10 scanner at the Department of Computing Science.
These photographs had been scanned at the resolution of 300 dpi, using the A4 size of the
scanner and an 8-bit depth. Neither of the resulting image files are ‘clean data’ because they
contain the image deformations resulting from the systematic distortions produced by the
scanner itself and from the tilt and relief displacements produced by the aerial photographic
geometry. Since each of the image files involves different forms of raster data required in
the various stages of data handling, they have been imported into either the Raw or the
Interim database depending on the requirements of their particular operations.

It should be noted that the grid coordinates shown in Fig. 8.11 and Fig. 8.12 are
represented in the OSGB National Grid coordinate system, i.e. all the map and image data
have been referenced to the same ground coordinate system.

8.6 Tests and Results

The purpose of exercising the prototype IGIS is to ensure that it is working properly and to
test and identify differences between its expected and its actual behaviour. The expected
behaviour of the prototype IGIS is that it will be able to perform effectively the functions

247

Chapter 8: The Implementation o f the Prototype TOTS

set out in the design discussed in Section 8.3. The testing of the actual behaviour of the
system may involve two key aspects: -

1. The functionality test - which examines whether all the functions are working
correctly; and

2. The performance test - which measures the efficiency of some critical properties such

as the response time required for some complex queries, the storage space needed for
databases, and so forth.

The testing of a software package is typically a bottom-up process, usually comprising a

unit test, an integration test and finally a system test. Generally speaking, a standard test for

a software package is often based on its performance utilising standardised “benchmarks”.

A benchmark is a program or a set of procedures devised to enable comparisons to be made
between two software or hardware systems. In addition, testing should be carried out by a
number of real users operating on a prototype long enough to provide feedback for an
assessment of its capabilities when used in practical applications. However, in the case of
the tests carried out with the prototype IGIS, these cannot be regarded as a rigorous or
formal test since the full capabilities required for an IGIS have not yet been implemented.

Furthermore, no benchmarks were employed in the tests and the whole test procedure was
carried out solely by the author. However, the results derived from this series of tests have
shown that a number of unexpected situations may occur during the actual implementation
of the persistent IGIS.

Many factors may affect the results of the tests carried out on the prototype IGIS, including
the use of specific hardware (hosts and local computers); the configuration of the system
software (operating systems, network transport systems and X-window systems); the

density of the network traffic; the algorithms employed in the IGIS software; the

optimisation of the IGIS software; and so on. In order to minimise the influence of various
factors on the evaluation of functionality and performance, all the tests were carried out on
the same platform, i.e. using the hardware and the software configuration shown in Fig.
8.10, except the test comparing the performance of different X-servers (See Subsection
8.6.6). The testing process has placed an emphasis on the integration of vector and raster
data and concerned the following specific aspects: -

1. The construction of vector and raster databases;
2. The spatial indexing of vector map data;
3. The pre-processing of various forms of raster image data;
4. The management of vector and raster databases;
5. The display of vector maps and/or raster images;
6. Comparisons of various X-servers.

248

Chapter 8: The Implementation o f the Prototype TGTS

Each of these is described in a subsection that follows.

8.6.1 Constructing Databases

This subsection deals with the construction of an integrated geographical database for the
test area. The database construction involved the input of the vector map and raster image

files listed in Table 8.2 into the persistent store using the import functions provided in the
Import/Export module. Before the database construction, an initial store was obtained

from the “public” directory where an initial store had been prepared for general users. Once
this had been obtained, it was followed by the operations of saving the GIS data types,
creating the database environments and the building GIS-related Libraries into the persistent

store as described above in Section 8.3. All of these operations were organised as a batch
job and carried out using a single command.

Having prepared the persistent store, the database construction was carried out by

importing each map or image file using the appropriate menu item. Thus all the vector map
files used the NTF 2.0 item available within the Import Map Data menu, while the
PTBAND files and other raster images (SS88SW, 145 and 157) employed the FBFF and
TIFF items available within the Import Image Data menu respectively. Each map file was
constructed as a basemap and stored in the Processed database. All of the image files
except the SS88SW file - which was saved in the Interim database - were imported into the
Raw database. It should be noted that, since the prototype IGIS currently does not have
proper image processing capabilities implemented, both of the scanned airphoto images
(145 and 157) were simply used to simulate the movement of image data between the
different databases. The time required for importing each file into the persistent store was
recorded and is shown in Table 8.3.

Vector
File Name SS SSNE SS88 2144 270190 275190 SS7987 SS8086 SS8087 |

Time
(m:s)

2:32 7:33 22:18 2:22 1:23 1:27 1:08 1:39 0:51 |

File Size
(MB) 0.339 1.186 4.205 0.391 0.210 0.210 0.188 0.277

1
0.133 |

SS7887 SS7887 SS7887 SS7887
NE NW SE SW

0:57 1:33 1:28 1:14

0.158 0.299 0.278 0.241

Raster
File Name

PTBAND
1,2,3,4,5,7

SS88SW 157 145

Time
(m:s) 0:10 7:55 15:05 15:11

File Size
(MB) 0.640 4.006 8.707 8.707

Table 8.3 The times required for the import of each of the various test data sets

249

Chapter 8: The Implementation o f the Prototype TGTS

During the course of database construction, the input files were intentionally divided into
several groups for the import operation, i.e. the import of each group of data files was
carried out in a separate session. In order to investigate the behaviour of the persistent
store, the size of the store before starting each session and the time required to start or
launch the prototype IGIS program for that session were recorded. These results are shown
in Table 8.4.

Store
Size

(MB)
16.4 24.8 40.7 45.2 48.5 52.9 57.0 61.2 64.7 68.2

Launch
Time
(m:s)

0:40 0:46 0:49 0:52 0:54 0:57 0:58 1:00 1:02 1:04

Names
of Input

Files

SS
SSNE

SS88 2144
270190
275190

SS7987
558086
558087

SS7887NE
SS7887NW
SS7887SE
SS7887SW

PTBAND
1,2,3,4,5,7

SS88SW 157 158

'

Table 8.4 The store size and the launch time relevant to the import of each group of data files

It can be seen quite clearly that the launch time of the prototype IGIS program increases
with the size of the persistent store. However, it was very disconcerting to discover that
other operations such as the spatial indexing of vector map data and the pre-processing of
raster image data also significantly expanded the store size. Therefore a similar summary
table (Table 8.9) related to this particular aspect will be provided and analysed later in the
next section (8.7).

8.6.2 The Spatial Indexing of Vector Map Data

This subsection is concerned with the construction of the entity index tables associated with
the vector map data. This function can be carried out by the two items provided within the
Spatial Indexing menu. The Build mbrs item is used to create mbr tables of the lines and
polygons contained in a basemap, whereas the Indexing Map option will construct point,
line and polygon entity tables for each basemap. In this test, the mbr tables were only built

once, but the entity index tables were constructed several times to find out the appropriate
threshold for each entity type (which is described in Subsection 8.7.4). In practice, the
construction of entity index tables need only be carried out once and can be combined with
the building of mbr tables in a single operation.

The indexing operation was tested by adopting different threshold values for the sub
division of the data set into smaller quadrants each time the program was run. The total

time required for indexing all of the basemaps was recorded for each operation. Also, the
time needed to search for a point, line or polygon was tested after each indexing operation.

250

Chapter 8: The Implementation o f th e P r o to ty p e TflTS

These entity search tests were carried out on three particular batsemaps, namely the
basemaps SSNE, SS88 and 2144, containing respectively the most complex elements of
each of the three entity types held in the database. Each of these three basemaps was

displayed and the entity search test carried out for points, lines and polygons in turn. The
search for a specific entity type was performed 20 times by randomly pointing the cursor to
any location on the map display. The time required for each entity search was then

recorded. Thus the maximum time needed to search for each entity type was determined.
The results of these indexing operations and entity search tests carried out for different
threshold values are shown in Table 8.5.

Threshold

Points 1,000 500 400 300 250 200) 150 100

Lines 500 250 200 150 125 100) 75 50

Polygons 200 100 80 60 50 40 30 20

Indexing Time
(m:s)

10:20 13:05 15:30 16:07 17:01 20:3*9 25:50 48:24

Entity
Search
Time
(sec)

Point 2 1 1 1 1 1 1 1

Line 14 9 7 6 4 2 1 1

Polygon 1 1 1 1 1 1 1 1

Note: The time used for the construction of the mbr tables = 8 min 3 sec.

Table 8.5 The results of the indexing operations and the entity search tests for different
threshold values

The table shows the threshold values used for each entity type gradually decreasing from an
initial large value. Thus the number of quadrants resulting from the use of smaller threshold

values steadily increased. For the indexing operation, the initial threshold for each entity
type was given a large specific value to start with, i.e. a different initial value was used for
each entity type depending on its nature in spatial indexing. As has been discussed in

Chapter 7, the complexity of the spatial indexing likely to encountered w:th each of the
three entity types increases in the order point, polygon and line. Tbus originally the
threshold values 1,000, 600 and 500 were provided for the numbers of p in t, polygon and
line entities respectively. However, the database contains only one polygon-based basemap
(map 2144) in which the maximum number of polygons is 237. Therefore, the initial
threshold value for the number of polygon entities was reduced to 200. Fiom the results
contained in Table 8.5, it should be noted that the continuous reductioi of the threshold
values was not really necessary for the indexing of the polygon and p in t entities (The
reason is discussed in Section 8.7.4). Nevertheless, the continual reducticn cf the threshold
values was necessary in order to investigate its effect on the indexing time;.

251

Chapter 8: The Implementation o f the Prototype IGIS

8.6.3 The Pre-processing of Raster Image Data

As already mentioned in Subsection 8.6.1, the raster images PTBAND (1,2,3,4,5,7), 145
and 157 were imported into the Raw database. These images require pre-processing
operations comprising linear contrast stretching, image depth reduction and trimming.

These functions are provided in the Pre-processing module.

Each band of the Landsat PTBAND images was retrieved from the Raw database to
perform the contrast enhancement and the reduction of image depth. These two normally
quite separate operations were implemented as a single combined operation in the prototype

IGIS. The first step in this operation involved the collection of the brightness values (BVs)
across the luminance range, resulting in the construction of a histogram of intensity values.
The upper and lower bounding values were chosen automatically through the examination
of the histogram for the relatively low pixel counts occurring near the high and low ends of
the luminance range. Table 8.6 shows the upper and lower bounding values of each band

produced by this operation. Also, the median value indicates that 50% of the total number
of pixels have values that are smaller (or bigger) than this particular value. These upper and
lower bounding values were then used by a linear transform function to compute a new
value for each pixel to a specified image depth (4 bits was used in this test). After this
operation, the resultant images were saved in the Interim database.

X^Band
B o u n d s \ 1 2 3 4 5 7

low 61 21 16 8 2 0

median 78 31 27 71 67 25

high 111 52 59 124 123 62

Table 8.6 The bounding values of the intensity values in the luminance range for each
PTBAND image

On the other hand, the two aerial photographic images 145 and 157 were retrieved from the
Raw database and transferred into the Interim database without performing any processing
operation. Then these images were retrieved from the Interim database and a trimming

operation carried out since this facility is not available at the moment for raw images.
Because the aerial photographs had been scanned at the A4 (210 mm x 297 mm) size,
which is slightly narrower in one direction but is much longer in the other direction than the

corresponding side lengths of a square (229 mm x 229 mm) photograph, therefore the blank
portions occurring at both ends of the longer side of the image can be clipped (Fig. 8.13).
The trimming function was used to cut off the useless blank areas of each of the images 145
and 157 from the size of 2,480 x 3,507 to 2,480 x 2,720 pixels. After the trimming
operation, the resultant images were saved in the Interim database. Afterwards, the depths

252

Chapter 8: The Implementation o f the Prototype IGIS

of these images were also reduced to 4 bits and again the results were placed in the same

database.

Scanning Area
(A4 size)

Air
Photo

(9” x 9”)
297 229

Blank Areas

Image Areas lost
during scanning unit: mm

Figure 8.13 Dimensional relationship between an air photo and an A4-size scanner

In the prototype IGIS, the resultant image created by the trimming function is designed to

overwrite the original image in the Interim database using the fundamental feature of

automatic data persistence supported by Napier88. Since the size of the modified image is

always smaller than that of its original image, so it should be possible to replace the old

image object in the persistent store without increasing the store size. However, the author

then came across a problem of “unaccountable store growth”. For example, the trimming of

image 145 ended up with an increase of the store size by 6.4 MB which is just about the

size of the resultant image (2,480 x 2,720 x 8 bits). Similarly, the reduction of the image

depth also increased the store size by 3.2 MB (2,480 x 2,720 x 4 bits). The same situation

occurred during the pre-processing of the image 157. It is obvious that the original image

has not been overwritten and was simply made inaccessible by the Napier88 system. This

problem has caused an unnecessary waste of storage space when conducting the operations

of updating the databases.

8.6.4 The Management o f Vector and Raster Databases

Having performed the necessary pre-processing of the images described in the previous

subsection, all of the images stored in the Interim database can be used to create

baseimages for GIS applications. In this series of tests, all the interim images have been

used to create baseimages associated with the grid cell data model. This was carried out by

the Interim to Baseimage Conversion function contained in the M anagem ent module.

Each interim image was used to construct a baseimage by providing the ground coordinates

of the image origin and the pixel size in terms of its corresponding ground dimensions. For

example, the scanned map image SS88SW was supplied with the coordinates E = 280,000,

N = 180,000 (See Fig. 8.12) and the pixel size 5 x 5m (See Table 8.2) to convert it from the

interim form (interim_image) to the derived form (baseimage). Using this operation, all the

baseimages created in the Processed database have been referenced to the OSGB National

Grid coordinate system. It will be recalled that all the basemaps contained in the Processed

253

Chapter 8: The Implementation of the Prototype IGIS

database had already been referenced to the ground coordinate system. Thus the same
geographical features identified on both baseimages and basemaps can be geometrically
registered in an overlay operation if this is required.

Apart from the conversions of images from one form to the other, unused maps or images

can be removed from the databases. For example, all the interim images were removed from

the Interim database using the Interim Image item within the Remove Images menu after
their baseimages had been created. However, the size of the persistent store had not
actually been reduced because this operation simply “dropped” (i.e. removed the pointers

to) the image objects from their bound environment. Napier88 provides two system
commands (nprgc and npr comp act) to deal with the garbage collection and the

compression of the persistent store. However, store compression is a very time-consuming
process. For example, the author experienced a store compression which reduced the size
from 171.3 MB to 86.0 MB and took 1 hour 23 minutes to execute. Furthermore, the time

required for launching the prototype IGIS remained almost unchanged in spite of the store
size having been significantly reduced. These so-far unexplained features of actual Napier88
operations have been a disappointing characteristic of the language. The occurrence of this
problem has of course resulted in difficulties in the management and the maintenance of the
integrated geographical database.

8.6.5 The Display of Vector Maps and/or Raster Images

The simple display of a map or image is probably the most commonly-used operation in any
GIS. The time required to produce such a display is an important factor in determining the
usefulness of a system. Because the GIS database is structured to suit analytic applications,
the data may not be optimised for display purposes. Thus it is quite usual to find that the
time needed for the display of a vector map on a GIS is slower than on a CAD system.
Furthermore, the use of certain specific algorithms and the optimisation of software may
also improve the display time significantly. Nevertheless, in order to give an appraisal of the
current display capability provided by the prototype IGIS, the times required for the display
of the test data have been recorded. Table 8.7 shows the display time required for each
basemap or each baseimage and the number of elements being displayed using the hardware
configuration shown in Fig. 8.10.

It should be noted that only the essential entities (points and lines) were displayed for each
basemap, other optional entities (text, polygon identifier, symbols, etc.) have not been used
in the comparison. Since a line string may comprise an arbitrary number of straight lines
(line segments), so the number of elements for both line strings and line segments is shown
in Table 8.7. Another important point is that the size of the X-window used for the display
test was set to 800 x 600 pixels.

254

Chapter 8: The Implementation of the Prototype IGIS

(a) Vector Map Data

Map Name SS SSNE SS88 2144 270190 275190 'i
Number of

Points 1,208 3,681 3 0 0
1

o !
Number of

Line Strings
(Line Segments)

1,062
(7,402)

5,994
(24,482)

2,051
(182,028)

237
(22,428)

865
(3,871)

i
810 |

(4,550) i
i

Time (m:s) 0:34 2:36 7:44 0:35 0:13 0:19 i
i

i SS7987i SS8086 SS8087 SS7887NE SS7887NW SS7887SE SS7887SW
1
| 50 117 27 136 758 492 526
1
| 375 495 169 352 1,534 1,239 1,213
i (10,468)
i

(15,686) (7,967) (8,299) (9,136) (10,785) (7,917)

i 0:24
L

0:34 0:18 0:19 0:26 0:33 0:23

(b) Raster Image Data

Image Name PTBAND
1,2 ,3 ,4 ,5,7 SS88SW 157 145

Width (Pixels) 800 2,000 2,480 2,480

Height (Pixels) 800 2,000 2,720 2,720

Time (m:s) 0:06 0:26 0:47 0:46

N.B. All images are 4 bits.

Table 8.7 The times required for the display of the test basemap and baseimage data

Apart from the individual display of a basemap or baseimage, the overlay capability of the
prototype of IGIS has also been examined. This test was carried out by first displaying each
baseimage and then superimposing the related basemaps on it using the Overlay Maps
function available in the Images menu of the View & Query module. All the possibilities of
superimposition between basemaps and baseimages (See Fig. 8.12) have been performed.
The results show that the raster images PTBAND (1,2,3,4,5,7) and SS88SW can be
correctly overlaid with the corresponding basemaps. Also, the colours of the baseimages

and the basemaps can be adjusted independently of one another. Despite the facts that
neither of the images 145 and 157 had been rectified and that their image origin and pixel
size had only been defined roughly, the simulation of overlying large scale basemaps such as
SS8086 and SS8087 on these images also gave satisfactory results.

8.6.6 Comparisons of Various X-servers

As mentioned in the previous subsection, the display capability is one of the major concerns
in the evaluation of the prototype IGIS. In particular, the display of a complex basemap

255

Chapter 8: The Implementation o f the Prototype ICrTS

such as SSNE or SS88 requires a considerable amount of time. In order to find out how an

X-server may affect the display speed, various X-servers have been used to carry out a
performance test.

The test was split into two parts. The first part involved the use of two X-terminals, two
PCs associated with different X-window systems and one workstation located in the
Department of Geography & Topographic Science, whereas the second part encompassed
the use of several workstations available in the Department of Computing Science. Two
basemaps, SSNE and SS88, were selected for the performance test of the various X-

servers. The time required for the display of all lines contained in both basemaps on each X-

server was recorded. In order to minimise the effect caused by the network traffic, the
experiment was carried out at weekends when traffic was very low. Also, the display of a
basemap on each X-server was tested several times so as to determine an average display
time. The results of these tests are summarised in Table 8.8.

Remote Site

X-server at the
Department of
Geography &

Topographic Science

The Display
Time of Map
SSNE (m:s)

The Display
Time of Map

SS88 (m:s)

Window
Manager

Tektronix
XP-25 2:16 11:56 twm*

Viglen 486 DX2/66
& MicroX v.2.8.8 2:08 10:53 MS-Windows

Viglen 486 DX/33
& eXceed/W v.3.3 2:06 10:18 MS-Windows

Viglen 486 DX2/66
& eXceed/W v.4.0

1:28 7:44 MS-Windows

Pericom
X-Line 200 1:08 3:41 twm*

Sun SPARCstation 1+ 1:08 3:36 olwm

Local Site

X-server at the
Department of

Computing Science

The Display
Time of Map
SSNE (m:s)

The Display
Time of Map

SS88 (m:s)

Window
Manager

Sun SPARCstation 1+
(Weddell) 1:06 3:21 twm

Sun SPARCstation IPC
(Barren) 1:04 3:09 twm

Sun SPARCstation 10
(Hoy) Host Computer 1:09 3:21 twm

* running on the host computer (Hoy).

Table 8.8 The performance of various X-servers used for the display of basemaps

256

Chapter 8: The Implementation of the Prototype IGTS

During these tests, the selection of a window manager had also been considered. Whenever
it was possible, the window manager and the X-server running on the same local computer
were used for the test. In principle, this arrangement can reduce the network traffic and

improve the response time of X-clients. For example, on a PC-based X-server, if the choice

of a window manger was either MS-Windows running on the PC itself or any available
window manager running on the host, then MS-Windows was used. In fact, only the two

X-terminals (Tektronix XP-25 and Pericom X-LINE 200) used in this test had to depend on

the window manager (twm was used) running on the host computer. It should be noted that

an X-server running on the host computer itself was also tested. In this particular situation,
all the software systems including the X-server, the window manager and the X-client were
mounted and executed in the host computer (Hoy). In addition, the persistent store was also
existing in the same computer. In other words, in this particular case, the prototype IGIS
was run in a stand-alone mode without involving the use of the network for data transfer.
This particular result is also shown in Table 8.8 and will be further discussed in Subsection
8.7.5.

8.7 Analyses and Discussions

In this section, the results of testing the prototype IGIS are analysed. Based on these
analyses, some findings can be derived. These are discussed below.

8.7.1 The Functionality of the Prototype IGIS

On the whole, the capabilities designed and implemented in the prototype IGIS do function
properly. In particular, the tests have shown that the functions provided by three key
facilities - the construction of an integrated geographical database; the superimposition of
vector maps and raster images; and the spatial indexing of vector map data - can work very
well. However, several functions such as the pre-processing of image data and the
management of databases require further enhancement. In addition, many other essential
functions which have already been described in Section 4.5 - the functional design of the
persistent IGIS - need to be included.

In general, the display speeds (See Tables 8.7 and 8.8) of a map or an image are quite
appropriate. In fact, already they are not dissimilar to those encountered in a commercially
sold GIS. However, the indexing operations required about 20 minutes for all 13 basemaps
to achieve a reasonable search time (See Table 8.5). This seems quite moderate but
undoubtedly can be improved. The times required for the construction of various databases
(See Table 8.3) from the existing digital Files also seems a bit slow, particularly the import
of image files in TIFF format. In terms of overall system performance, the prototype IGIS
program still needs to be optimised. Also a thorough and rigorous investigation needs to be

257

Chapter 8: The Implementation of the Prototype IGIS

mounted to ensure that efficient algorithms have been implemented for each procedure or
function provided by the IGIS.

8.7.2 The Launch Time vs. The Store Size

It is recognised that, in any software system, the larger the file size that is used, the longer
the processing time that will be needed for any particular operation. This is the case with
Napier88 system. However, the persistent store which aggregates all data objects into a

single Unix file behaves in a quite different fashion to that of normal file systems. In order

to access any object held in the persistent store, a Napier88 program which instructs the
system how to retrieve and manipulate this object, needs to be executed. This running
program checks against the persistent store and makes the persistent environment related to

this particular object available to the user. As a result, the size of the persistent store has a
noticeable effect on the time required for launching a Napier88 program.

During the period of this research, the author has suffered from the long waits associated
with the launch of test programs. It is quite usual for a wait of 1 to 2 minutes to occur
before a test program became operational. The situation became even worse when the tests
had to be carried out on a large-size persistent store. For example, a 3-minute wait will be
unavoidable if the store size is about 250 MB. Arising from this experience, a test has been
carried out to investigate how the store size affects the launch time.

Table 8.4 has shown that the launch time steadily increased when the store size grew from
16.4 to 68.2 MB. In order to find out more about the relationship between the launch time
and the store size, the launch time was regularly recorded for several major operations until
the store size was about 190 MB in size. These results are summarised in Table 8.9.

Store Size
(MB) 92.3 107.4 112.5 114.0 122.7 131.4 140.0 |

Launch
Time (m:s) 1:25 1:38 1:43 1:44 1:48 1:59 2:04 |

Operations Spatial
Indexing

Pre
processing

Pre
processing

Pre
processing

Trim image
145

Trim image
145

Trim image I
145 1

!

i 148.5 | 157.0 165.4 173.6 181.7 189.7

i 2:10i 2:15 2:21 2:26 2:30 2:34
1
1 Trim image Trim image Trim image Trim image Trim image Trim image
j 145 145 145 145 145 145

Table 8.9 The store size and the launch time relevant to the operations of the prototype
IGIS

258

Chapter 8: The Implementation of the Prototype IGIS

Using Tables 8.4 and 8.9, the relationship between the launch time and the store size may

be derived by plotting a scatter diagram using the store size as the X-axis and the launch

time as the Y-axis. Fig. 8.14 shows that a characteristic curve (the solid line with cross

marks) can be obtained from the measured data. From this, it is very obvious that the launch

time increases quite steadily with the store size. This characteristic curve can be used to

determine the response time required for a specific store size when running the prototype

IGIS on the particular platform illustrated in Fig. 8.10. According to the above analysis, a

summary description of launch time vs. store size can be generated and is shown in Table

8.10. It can be seen that, at its present stage of development, a user would need to exercise

patience when running the prototype IGIS, if it was really to be put into practical use.

160

140 --

120 - -

100 - -

Launch Time
(Seconds) 80 -■

60 --

40 --

20 - -

100 120 140 16020 40 60 80 180 2000

Store Size (MB) ------1 Measured

Figure 8 .14 The characteristic curve of launch time vs. store size when running the

prototype IGIS with the particular platform illustrated in Fig. 8.10.

S to re Size (MB) < 6 0 6 0 - 130 1 3 0 - 180 > 180

L au n c h T im e (min) < 1 1 - 2 2 - 2.5 > 2 .5

Table 8.10 A summary description of launch time vs. store size

It should be noted that the several operations used for trimming the image 145 in Table 8.9

were not actually necessary in terms of the examination of the prototype IGIS functionality.

However, these operations again demonstrated the problem of “unaccountable store

growth” described earlier in Subsection 8.6.3. Each operation retrieved the image 145 from

the Interim database, then trimmed 20 pixels off from the top and bottom margins of the

image, and finally saved the resultant image and transferred it back to the Interim database.

It can be seen from Table 8.9 that the store size had increased by between 8.0 to 8.7 MB

after each operation. The cause of the unaccountable store growth is probably due to the

259

Chapter 8: The Implementation of the Prototype IGIS

fact that, in some situations, Napier88 cannot properly perform the “in situ updates”
function on objects held in the persistent store.

This problem also occurred at an earlier stage in this research when the author attempted to

develop an updating capability for the prototype IGIS. The problem had then appeared and
been reported to and identified by the Napier88’s system developers. As a palliative, it was
suggested that the nprgc command should be regularly executed against the persistent
store. In general, the regular use of the nprgc command can eliminate the unexpected

growth of size of the persistent store. This approach may be very useful for handling

situations where the store size is quite small {e.g. < 50 MB). However, it would be very

inefficient to use this approach to deal with a persistent store of substantial size because the
time required for executing this command is rather long and the store size may also increase
significantly after this operation. It should be noted that Release 2 has also been tested
concerning this feature and has also exhibited the same problem. This problem causes a
great difficulty during the operations of the persistent IGIS with a large-size geographical
database. As a result, on several occasions during the research period, the author has been
forced to discard a large persistent store (~ 250 MB) and has had to restart from an initial
store simply because of the unbearable situation resulting from the slow launch time and the
continual store growth.

8.7.3 The Optimal Thresholds for Indexing Vector Map Data

A discussion has already been conducted in Chapter 7 pointing out that a number of factors
will affect the choice of an optimal threshold. Considering the fact that the prototype IGIS
is based on a particular platform, all the IGIS facilities, including the required computing
power, the data models, the data structures and the spatial indexing method, have been
fixed. Therefore, the optimal threshold for each entity type can be determined.

According to the response time criteria described in Brown [1988], the maximum response
time recommended for a simple query such as searching for an entity by pointing is 2
seconds, while that needed for a complex query such as a region or buffer query is
recommended as 10 seconds. In this particular test, the simple query method was used to
test the response time for different threshold values. From the test results shown in Table

8.5, the optimal thresholds for point and line entities can be determined. Their values are
1,000 and 100 respectively. However, the optimal threshold for the polygon entity still
cannot be resolved because the basemap database used in the tests does not contain

sufficient polygons. The best estimate is that its optimal threshold is larger than 200
individual items.

260

Chapter 8: The Implementation o f the Prototype IG IS

Having set up the optimal threshold values in the prototype IGIS, the Rectangular Region
function in the Query Entities menu was used to examine the response time required to
execute several complex queries on any basemap. The results can be regarded as very
satisfactory since the maximum response time was also 2 seconds.

In Table 8.5, the indexing time represents the total time that was used to index all 13
basemaps for the three entity types utilising a set of threshold values. W ith the optimal
threshold values (1,000, 100, 200) determined above, the indexing time was further
recorded as 19 minutes 42 seconds. Comparing this with the indexing time (20 minutes 39

seconds) used for the previous set of threshold values (200, 100, 40), it is obvious that the

indexing of the lines contained in the database had consumed the largest part of the time. In
order to understand how much time is really needed for indexing each entity type, the

indexing time required to index each basemap for each entity type have been recorded for
the set of smallest threshold values (100, 50, 20). The results are shown in Table 8.11.

Map Name SS SSNE SS88 2144 270190 275190 SS7987

Indexing Points 0:7 0:27 0:1 0:0 0:0 0:0
“1

0:2

Time Lines 0:37 21:57 18:20 0:2 0:34 0:30 0:10
(m:s) Polygons 0:0 0:0 0:0 0:8 0:0 0:0

“ I
0:0

| SS8086 SS8087 SS7887NE SS7887NW SS7887SE SS7887SW All Maps

i 0:3 0:2 0:2 0:4 0:3 0:3 0:54

i 0:8 0:9 0:19 2:51 0:56 0:49 47:22

i 0:0 0:0 0:0 0:0 0:0 0:0 0:8

Table 8.11 The indexing times required for the threshold values (100, 50, 20)

The times required for the indexing of points, lines and polygons take 1.9 % (57s), 97.8 %

(47m 22s) and 0.3 % (8s) of the total time respectively. Obviously, the indexing of points
and polygons is quite insignificant in terms of the whole spatial indexing operation. This is
because the number of lines is almost always far larger than the numbers of points and
polygons (See Table 8.7) and the indexing of lines is inherently of greater complexity than
that required with points and polygons. Therefore, an improvement of the efficiency with
which the indexing of lines can be carried out is a complete necessity. Also, more polygon
data should be acquired to carry out a further test on the indexing of polygons to ensure
that its high performance has indeed been achieved, even when applied to larger polygon
data sets.

261

Chapter 8: The Implementation o f the Prototype IGIS

8.7.4 The Use o f X-windows

When running the prototype IGIS, one of the essential steps within the program is to open

an X-window. With an X-window opened, all the GUI facilities and the graphical functions
can then be made available to the user. During the various tests, the Napier88 system often

failed to open an X-window on the remote X-server. According to author’s statistics, the
probability of this failure case occurring is about 30 % when running the program in the

Department of Geography & Topographic Science. However, the probability of this
problem occurring on the machines in the Department of Computing Science is almost
negligible - although it does happen occasionally. Since network communication is required
when using a remote X-server, the author has tried several ways to find out whether the
cause of these failures arises from the network connection. These trials include the setting
of the maximum time slice on the X-server to ensure that one X-client can run
uninterrupted; the running of the program at night or on weekends to reduce the network
traffic and to ensure that the host computer is itself operating in the circumstance of a

minimal load; and the use of various X-servers. In spite of these various arrangements and
trials, the problem of failing to respond to an X-window remains the same. It is worth
mentioning that this problem only occurs with Napier88 X-clients and does not occur when
using other X-clients. Therefore, the possibility that the problem is caused by the network
seems very unlikely. After all these efforts, the author has come to the view that the

problem may result from the inappropriate implementation of the X-window features
utilised in the Napier88 system. Once again, the problem has been reported to the system
developers but it has still not been resolved at the time of writing.

The second major problem relevant to the use of X-windows is that the Napier88 system
cannot open multiple X-windows on a remote X-server. If the author had been able to use
the WIN window management system (the difficulty of doing so has been described in

Section 8.2), the GUI facility and the hyper-programming environment supported by
Napier88 could and would have been used in the IGIS development. Once the hyper
programming system is running, the display of a map or an image can be carried out using a
Napier WIN window. Also, it allows the user to compose and execute Napier88 programs
and to examine their results in an integrated programming environment [Kirby et al., 1994].
Since multiple windows can be created within the single X-window that is running the
hyper-programming system, therefore it is not necessary to open another X-window when
WIN is used.

Regarding the current implementation of the prototype IGIS, all the operations are also
based on an X-window but without the desirable capability of multiple windows. In terms
of practical GIS applications, it would be very useful (- some would say essential -) to have
a system that allows several windows to be opened concurrently so as to view or compare

262

Chapter 8: The Implementation of the Prototype IGIS

geographical features in different windows, e.g. displaying a map in one X-window and a
part of it at a larger (zoomed) scale in another X-window. In fact, the Napier88 system has
the capability to open multiple X-windows running a conventional window manager. With
this facility, the multiple X-window feature may be developed for the persistent IGIS.

However, it was not possible to open multiple X-windows on any of the several X-servers
which have been employed during the tests carried out in the Department of Geography &

Topographic Science. Peculiarly, multiple X-windows can be opened on the workstations at
the Department of Computing Science. However, once again there is a strong possibility of

a failure occurring when an attempt is made to open multiple X-windows. This problem is
of course closely related to the first problem described above.

It is also worth mentioning that, with a fixed amount of video memory, the maximum size
of an X-window that can be opened by a Napier88 X-client is quite substantially smaller
than that which can be opened by a normal X-client. For example, the author used a Viglen
PC 486 DX/33, which only has 1 MB video RAM, with eXceed/W v. 3.2 as the X-server at
the early research stage. A normal X-client can open an X-window with the size of 1024 x
768 x 8 on this X-server, but the maximum X-window size that can be opened by a
Napier88 X-client is 830 x 630 x 8. This situation did cause confusion when attempts were
made to open a larger-sized X-window on this particular X-server. Through the use of
various X-servers equipped with different sizes of video RAM, the fact that a Napier88 X-
client demands more video memory than a normal X-client was discovered. As a result, the
PC X-server configured for use as the prototype IGIS platform (See Fig. 8.10) has been
equipped with 4 MB video RAM to ensure that it can display maps and images with an X-

window of the size of 1024 x 768 x 8. Thus it provides the potential that the display of

maps or images in a larger-sized X-window may be included in the future when this is

required in the design of the persistent IGIS.

8.7.5 The Performance o f Various X-servers

Although the use of an X-server to run Napier88 programs remotely in a remote site

produced and brought to light several problems, it should be said that it provided the author
based in the Topographic Science Department with a very convenient way to carry out the

IGIS development. The use of various X-servers to investigate the problem of opening X-
windows also ended up with a by-product - in the shape of figures giving the performance
of Napier88 vector graphics on various X-servers. Since real-world data has been used in
the tests, so the results are quite meaningful and can be used as a guideline for choosing an
X-server.

Table 8.8 showed that the use of a different X-server has a significant effect on the display
time experienced at the remote site, in particular that needed for the display of the contour

263

Chapter 8: The Implementation of the Prototype TGTS

map SS88. All the Sun workstations, whether at the local or remote site, give similar
results. It is quite interesting to note that running the prototype IGIS in the standalone

mode does not produce the best result. This is probably caused by having the X-server and

the X-client running on the same computer.

The two X-terminals - Pericom X-200 and Tektronix XP-25 - gave the best and the worst
results respectively at the remote site. The main reason for this is that their graphics

processors are quite different. The Pericom X-200 makes use of an AMD 29k RISC

processor, whereas the Tektronix XP-25 embodies a TI 34020 processor. In fact, the use of
AMD 29k RISC processor has ensured that the Pericom X-200 terminal performed as well
as the Sun workstation hosts whose Sparc processors are also RISC-based.

On the other hand, the PC X-servers produced results in the middle range of performance.
Obviously, the X-window software plays the most critical part in determining their
performance. This can be demonstrated by the results given in Table 8.8 which show that
the 486 DX2/66 running MicroX is obviously much poorer in performance than the 486
DX/66 with eXceed/W and indeed it is even slower than the 486 DX/33 used with
eXceed/W. It should also be noted the 486 DX2/66 uses a S3 Vision 928 64-bit graphics
processor which is much faster than the WD Paradise 90C30 processor employed in the 486
DX/33. Also, both the graphics adapter (Diamond Stealth 64) and the X-window software
(eXceed/W v. 4.0) used in the 486 DX2/66 are generally regarded as being representative
of the current state-of-the-art in PC X-server technology. However, the performance of PC
X-servers still cannot compete with the RISC-based X-servers, though of course they still
offer a very favourable price : performance ratio.

Another important point to note is that the networking between the two Departments over
the campus network (See Fig. 8.10) does not have a significant effect on the display speed.

This can easily be proved by comparing the results (See Table 8.8) obtained utilising the
same type of X-server (i.e. the Sun SPARCstation 1+) at both sites. In other words, if a

RISC-based X-server can be used at the remote site over the campus network to access

Napier88, the graphics response time is almost as good as that performed directly at the

local site.

8.7.6 General Aspects of Using Napier88 in the Development and Implementation of
the Prototype IGIS

The development of the prototype IGIS has already exploited a large number of the features
and system facilities provided by Napier88. In particular, those (essential) features of the
language that have been used to provide a full degree of integration for the prototype IGIS
have been intensively tested and examined. Thus some general points based on the author’s

264

Chapter 8: The Implementation o f the Prototype IGTS

experience of Napier88 obtained while implementing and evaluating the features or facilities
contained in the prototype IGIS can be made as follows.

Pros
• The facility of automatic data persistence is very convenient for the storage of

geographical data.
• The Bulk Type libraries, Lists and Maps in particular, are excellent tools for use in the

modelling and structuring of geographical data.

• The same consistent representation of the data used in both programs and databases
simplifies the handling and manipulation of geographical data.

• The built-in graphical data types (pic, pixel and image) were extremely useful for the
design and development of the graphical functions provided by the prototype IGIS.

• The feature of the language that procedures are first class objects proved to be very
useful for the modular design of the prototype IGIS.

• The incremental loading mechanisms were found to be suitable for the construction of
the voluminous software libraries needed for use in the prototype IGIS.

• Because of type completeness and strongly-typed check, the composition, compilation
and debugging of the prototype IGIS program was generally a smooth process.

Cons
• Several important facilities cannot function properly when using a remote X-server,

including the use of colours, the opening of an X-window (See 8.7.4), the use of
multiple X-windows (See 8.7.4), etc.

• The size of the persistent store may grow unexpectedly when carrying out the update
operations for large-size objects such as images (See 8.7.2).

• The Standard Library does not support some essential procedures such as the matrix
manipulations and graphics primitives required for GIS software development.

• The Napier88 system does not provide facilities for interfacing digitisers and plotters,
neither can an external utility program be embedded for the development of digital
mapping functions.

• The persistent store cannot be used concurrently by several programs.
• Several functions are not described clearly in the reference manuals, e.g. the

instructions concerning the use of the colourMap procedure do not point out that the
colour intensity values should be in the sequence of B-G-R rather than R-G-B.

• The execution of a Napier88 program based on Release 2 causes a sluggish response (a
delay of 5 to 10 seconds) to other jobs - including other Napier88 programs and non-
Napier88 applications - running on the same workstation.

On the whole, Napier88 proved to be a powerful and flexible database programming tool in
the design and development of the prototype IGIS program. However, quite a number of

265

Chapter 8: The Implementation o f the Prototype IGTS

problems were encountered in the implementation of the prototype IGIS in real-world
situations which have their roots in the Napier88 system.

8.8 Summary

In order to evaluate the suitability of the implementation of a truly IGIS using Napier88, a

prototype IGIS has been developed for a series of trials and tests. Because of the difficulty
of displaying colours with the WIN facility provided by Napier88 Release 2 using a remote

X-server, so the development of the prototype IGIS has had to be based on Release 1
which can correctly display colours in an X-window on the remote X-server. As a result, a

basic GUI facility has had to be developed for the prototype IGIS prior to the construction

of the IGIS itself. The main functions actually incorporated in the prototype IGIS have
emphasised the integration capabilities of geographical information available in both vector
and raster formats. The prototype itself has been successfully built and run on the Sun

machine hosting the Napier88 system. A large set of vector map data at various scales and
raster image data of different resolutions covering the same area has then been used for a
wide-ranging series of tests of the prototype IGIS. A PC X-server was configured and
mainly used for these tests, but other X-servers have also been provided for an investigation
of the problems encountered when using X-windows in conjunction with the Napier88
system.

The tests have examined the functionality and the performance of the persistent IGIS. The
main points derived from the test results can be outlined as follows: -

• In general terms, the Napier88 system can support the features and facilities used in the
design and development of the prototype IGIS, but it lacks several essential facilities
required for the further development of specific GIS functions.

• The prototype IGIS can function properly providing for the full integration of

geographical data. This result again confirms the preliminary findings associated with
each integration level discussed individually in Chapters 5, 6 and 7.

• The launch time of the persistent IGIS increments with the growth of the store size. In
term of running the prototype IGIS, a wait of 1 to 3 minutes for starting the program is
unavoidable.

• The optimal threshold values for indexing points and lines are 1,000 and 100
respectively. The corresponding optimal value for polygon entities cannot be determined
because the test data set did not contain sufficient polygons.

266

Chapter 8: The Implementation of the Prototype IGIS

• The size of the persistent store may be increased unexpectedly when “in situ updates” on
the objects held in the persistent store are implemented. The problem has caused
difficulty in the operations of the persistent IGIS when used with a large-sized
geographical database.

• The Napier88 system often fails to open an X-window and furthermore it cannot open
multiple X-windows on a remote X-server.

• A Napier X-client demands much more video memory than a normal X-client.

• The use of different types of X-server has a significant effect on the performance of the
graphics display. A RISC-based X-server performs better than other type of X-server.
The use of a certain type of X-window software on PC X-servers is also a critical factor
in determining the performance.

Based on the results obtained from and the experience gained by carrying out the
implementation, trials and tests of the prototype IGIS discussed in this chapter, as well as
the results of the tests performed for each level of integration discussed in Chapters 5, 6 and
7, some general conclusions and recommendations will be given in the next chapter.

267

Chapter 9: Conclusions and Recommendations

CHAPTER 9 : CONCLUSIONS AND RECOMMENDATIONS

9.1 Introduction

A true IGIS deals with the storage, processing and display of various types of geographical
data in a fully integrated system. The key component in the design of a true IGIS is the
capability to integrate various types of geographical data, particularly vector and raster
data, together with their functions into a single system. The nature of persistent
programming languages is such that they have the potential to meet such a requirement.
These languages are based on a novel system architecture, including the provision of a

persistent environment to integrate both the program workspace and the data store. This
thesis explores the feasibility of developing a fully integrated GIS (FIGIS) using the

persistent programming language Napier88. The research focuses on the construction of the
basic framework which is essential for building a FIGIS. In particular, this requires the
integration of vector, raster and attribute data to be achieved at the storage, process and

display levels to the fullest possible extent. The language features provided by Napier88
have been investigated both specifically with a view to them providing the required
integration facilities and, more generally, to their application to real-world situations. This
chapter presents the general conclusions that can be drawn from this research project and
also gives recommendations for future research into this area of integrating geographical
data within a GIS environment.

9.2 General Conclusions

Three main objectives have been set out in the Introduction (Section 1.4) for the
development of a FIGIS. These were: -

(1) the provision of appropriate GIS software and of a geographical database which is
integrated at the storage, process and display levels;

(2) the multiple modelling of geographical data; and
(3) the construction of an object-oriented geographical database.

The requirements to satisfy the first and the second of these objectives, which aimed to
provide the support for the storage, process and display levels of integration for the FIGIS,
formed the core of this research. The need to satisfy the third objective was to allow object-
oriented data management to be implemented in the FIGIS. Six major tasks have been
defined (See also Section 1.4) and have been carried out with a view to reaching and
satisfying these objectives. The details of the methodologies used and the results obtained
from the present research project have been described and discussed in the relevant chapters
(4 to 8). Based on these results and the experience gained from the research work, some

268

Chapter 9: Conclusions and Recommendations

general conclusions regarding the development of an IGIS using Napier88 can be set out as

follows: -

1. The Provision of Data Persistence Eases the Storage and Use of Geographical Data.
The unique feature of orthogonal persistence which is supported by persistent
programming languages faithfully maps the modelled data of the real world to the data

store. The Napier88 system is able to provide longevity for the values of all the

geographical data types used in the IGIS program and does not require the explicit
organisation of movements of data to and from the storage system by the programmer.
Significantly, this provision of data persistence eliminates the need to translate data
formats. Furthermore, it reduces considerably the amount of source code which is
required since it provides a consistent treatment of the data used both in the IGIS
program and in the geographical database.

2. The Bulk Type Libraries Can Simplify the Tasks of Geographical Data Structuring.
Napier88 provides abundant data types so that all kinds of geographical data can be
easily denoted by available data types without effort or by newly constructed data types
with very little effort. In particular, the Bulk Type Libraries provide data types with
regular data structures and support the operations associated with them. This facility
has simplified the task of structuring geographical data significantly since the same

representation of data types is used in both the IGIS program and the geographical
database. The Bulk Type Libraries have proved to be extremely useful both for data
modelling and for the spatial indexing of geographical data.

3. The Persistent Store Can Amalgamate Various Types o f Geographical Data and
Related Library Procedures into an Integrated Storage Unit.
The Napier88 system provides a persistent store in which the vector, raster and attribute
data describing geographical features are stored as an integrated geographical database
side by side with an integrated software library where all the procedures relevant to GIS
operations are stored. This facility has achieved the storage integration forming part of
Objective 1. It has also resulted in a certain ease of programming because far less use is

made of pointers and identifiers. More importantly, the data and the procedures are
always fully type-checked by the system to ensure that they are consistent within the
persistent store. This feature is especially useful for the maintenance of an integrated
geographical database and the implementation of updates of the integrated GIS

software over a long period.

269

Chapter 9: Conclusions and Recommendations

4. Multi-scale Map Data and Multi-resolution Image Data Held within the Persistent
Store Can be Represented by Multiple Data Models.
Multiple-scale map data may require different data models for various applications and
the same requirement holds true for multiple-resolution image data. In Napier88, type

systems are used to represent the data models of various kinds of data. Thus a spatial
(vector or raster) data model can be represented as a type system. Since there is no limit
to the number of type systems that can exist within Napier88, therefore various data
models can coexist within the FIGIS. The provision of this facility means that Objective
2 has been accomplished. In conjunction with Conclusion 2 set out above, a data model

can easily be implemented with different data structures to suit specific applications.
Thus a condition required for the process integration forming part of Objective 1 has
also been achieved.

5. The Spatial Indexing Method Based on the Combination o f a Linear Quadtree and
Peano Ordering Can Index and Query Vector Map Data in an Effective Way.
This spatial indexing method has been adopted successfully in order to index vector map
data for the prototype IGIS. The provision of this indexing facility allows the selective
retrieval of geographical features to be carried out for further manipulation. Therefore it
has partially satisfied another condition required for the process integration forming part
of Objective 1. It should be emphasised that, generally speaking, the provision of a

spatial indexing facility is regarded as a difficult task in the development of GIS s. Thus
potentially the implementation of this indexing facility in the prototype IGIS could have
caused considerable difficulty to the author, if the Napier88 system had not supported
the Bulk Type Libraries. In this latter situation, the provision was made relatively easy.

6. The Basic Graphical Types Provided by Napier88 Facilitated the Development o f the
Capability for the Superimposition of Vector Maps and Raster Images and their
Subsequent Display.
The availability of the three basic graphical data types (pixel, image and pic) proved to

be very useful when dealing with the graphical display of geographical data. With the
appropriate allocation of bit planes and the arrangement of the colours required for the
handling of vector and raster data, the capability of overlaying vector maps and raster

images could be realised. The implementation of this function has also helped to lay the
foundation for the display integration required by Objective 1. However, at present, the
Napier88 system lacks the basic graphical utilities needed for the development of a
FIGIS.

270

Chapter 9: Conclusions and Recommendations

7. The Spatial Indexing Method Based on Beano Ordering Can Effectively Interrelate
Maps and Images Held in the Persistent Store.
With the support of the feature given in Conclusion 2, an indexing mechanism based on

the Peano ordering of a uniform grid cell has been developed to interrelate vector maps
and raster images within the prototype IGIS. This mechanism facilitates the
superimposition of maps and images covering an area within a common window. The
provision of this indexing mechanism has fulfilled a partial condition for the display
integration specified in Objective 1.

8. The Prototype IGIS has Realised a Full Degree of Integration; i.e. it is Truly an
IGIS.
The prototype IGIS can support the storage level (Conclusion 3), the process level
(Conclusions 4 and 5) and the display level (Conclusions 6 and 7) of integration needed
for various types of geographical data. Furthermore, all the GIS-related procedures
have been integrated into the software library being stored along with the integrated
geographical database in the persistent store. Since the GIS software and the
geographical database have been tightly integrated as a single system, thus the
prototype IGIS can be regarded as a FIGIS.

9. Several Defects have been Found in the Napier88 System which are Inimical to the
Design and Implementation of a FIGIS.
Apart from the lack of some essential facilities required for the development of a fully-
fledged IGIS (See 8.7.6), the Napier88 system has two major drawbacks which have
come to light as a result of this research. First of all, the size of persistent store may
grow unexpectedly and, as a result, the launch time of the prototype IGIS program
increments with the growth of the store size. Consequently it is very difficult to deal
with a large-sized geographical database. Secondly, the X-window facilities cannot
function properly on a remote X-server. This problem has caused great difficulties in the
design, implementation and execution of the prototype IGIS. In the long run, it will also
restrict the development of a distributed IGIS if the problem is not solved.

10. The Integrated Geographical Database in the Current Implementation of the
Prototype IGIS is Object-based rather than Object-oriented.
Since the Napier88 system allows the possibility for the researcher or system developer

to develop software and databases with an object-oriented approach, it was planned that
an object-oriented data management system would be developed to support the
geographical database. However, due to the problems encountered in the use of
Napier88 for the IGIS development (as set out in Conclusion 9), the author was forced
to divert much effort to the investigation of the unexpected features and the
inappropriate functions of several of the facilities provided in Napier88. As a result, the

271

Chapter 9: Conclusions and Recommendations

whole of Objective 3 has not been reached in this research. Nevertheless, all the
geographical data have been structured and organised in the form of manageable data
objects held within the persistent store. This arrangement allows the possibility for
object-oriented data management to be developed in the future. At the present time, the

integrated geographical database provided in the prototype IGIS can only be regarded
as being object-based rather than object-oriented.

Taking an overall view, the persistent programming language Napier88 can provide a sound

integrated database/programming environment for the design and development of a FIGIS.

The persistent programming system removes the semantic gap and the impedance mismatch
between the program domain and the database domain occurring in conventional (or even
object-oriented) programming languages. The underlying principle of orthogonal
persistence on which the Napier88 language is based is unique when compared to other
programming languages and is novel to GIS researchers and developers. Most benefits
arising from the use of Napier88 can be attributed to this particular feature (Conclusion 1).
In other words, it is the key factor that makes the full integration of GIS software and
geographical databases possible.

Furthermore, the Napier88 system can support the facilities required for the development of
the basic functions required in the FIGIS, including multiple modelling of vector map data
and raster image data; the superimposition of the tandem processing of the vector maps and
raster images; and the spatial indexing of geographical data. Based on the results of this
research, it may be concluded that a FIGIS with complete levels of integration can be
designed and developed using the Napier88 system, more especially if the various defects
encountered and described above can be cured or rectified.

At this moment, it would be inappropriate to say that the Napier88 system is in a mature
state and can cope with practical GIS applications. Based on the several difficulties outlined
in Sections 8.7.6 and 8.8, and in particular, the problems relevant to the persistent store
encountered in the implementation of the prototype IGIS, there are a number of distinct
limitations and shortcomings in the language. It can be seen that currently the Napier88
system is not efficient in terms of launching an application program, in this particular case,
involving a “large” persistent store. The launch time of the prototype IGIS against a store
size of 130 MB requires 2 minutes (See Table 8.10), which is quite unacceptable in real-
world applications. In this situation, GIS users would have to wait for at least two minutes
in order to perform a simple query which may only require a few seconds to execute.
Furthermore, the file size of the data sets used in the trials and tests of the prototype IGIS
only had a total size of 33.4 MB, comprising 8.1 MB of vector data and 25.3 MB of raster
data (See Table 8.2). By the standards of real-world GIS applications, this is fairly small.
The datasets used in an operational GIS are usually quite substantially larger. For example,

272

Chapter 9: Conclusions and Recommendations

the file size of the OS 1:250,000 scale map data required to provide coverage of the whole
of Great Britain is 180 MB [Ordnance Survey, 1994]. This figure only reflects the storage
requirement of a small-scale map series which has a quite small total file size when
compared to other larger-scale map series, not to mention other map series and voluminous

image data.

It should be noted that, in an organisation where a workstation can be dedicated to the
IGIS operation, the long time required for launching the persistent IGIS may not be too
much of a problem since the system is only started once and all the operations are then

carried in the persistent environment. However, in many organisations, it may not be
possible to provide a dedicated system for GIS work, in which case, the persistent IGIS will

have to start and stop as users carry out other tasks using other software systems mounted
on the same workstation. Therefore, currently it is not practical to apply the persistent IGIS

to real-world situations. In the author’s view, the provision of a shorter time in which to
launch a Napier88 program is one of the main factors which is critical for the successful

implementation of the persistent IGIS using the language. Since Napier88 is still a research
language, these problems may be resolved through the further development of the language.
If these problems can be solved, the Napier88 system may be regarded as an ideal database
programming tool for the design and development of a FIGIS or a true IGIS.

9.3 Recommendations fo r Future Research

The prototype IGIS developed during this research has already provided the fundamental
framework for a true IGIS. Thus it could form a very good basis for further developments
and enhancements so as to achieve a fully-fledged IGIS. These could include all the primary
functions outlined in Fig. 4.5 and the further development of an object-oriented
geographical database. With respect to the detailed design and development of the
persistent IGIS using the Napier88 language, the following specific points may be made
regarding the work which could be undertaken in the future: -

1. The Development of Continuous Map Databases and Image Databases.
The prototype IGIS has carried out the integration of multi-scale maps and multi
resolution images in the “vertical” direction. Further development is required to

integrate each map series and each image series in the “horizontal” direction. That is,
the database of each map/image series should be seamless both in geometry and
topology rather than being discretely partitioned into tiles as at present.

2. The Development of a High-level Universal Data Model for the Integrated Database.
Three kinds of vector data models - the spaghetti, the link and node and the polygon-
based models - have been used to represent various series of OS map data. A higher-

273

Chapter 9: Conclusions and Recommendations

level universal data model could be developed to allow the use of these data models in a
transparent way. This concept is similar to that implemented in the IGN G e02 (See
2.8.2.1). This development would involve the construction of a semantic data model for
the three data models and the implementation of an inheritance mechanism between
them using an object-oriented approach.

3. The Development of Other Spatial Indexing Methods for the Persistent IGIS.
Each spatial indexing method has its own particular advantages or characteristics when
handling geographical data. Since the Bulk Type Libraries supported by Napier88 can
facilitate the implementation of complex data structures, a further development to
include one or several spatial indexing methods can be considered for use in the
persistent IGIS. This arrangement would allow the selection of an optimal indexing
method for a specific dataset. For example, the R-tree indexing method could be
implemented in the prototype IGIS for polygon-intensive applications. Furthermore, if
Recommendation 1 is implemented, then the spatial indexing should also be based on
the use of continuous databases rather on the map sheet or image tile as at present.

4. The Development of a Scheme that Can Dynamically Optimise and Allocate Bit
Planes for the Display and Manipulation of Dual Format Data.
In the current implementation of the prototype IGIS, the number of bit planes allocated
for the handling of both vector and raster data is fixed, i.e. only 4 bit planes are
available for each data format. The number of bit planes actually used by each data

format depends on the number of colours needed and the requirements of specific
applications. As a result, one data format may not fully use the allocated bit planes,
while another format may have to limit the display of information due to insufficient bit
planes being available or allocated. Therefore, a further development to provide the
capability of allocating the optimal number of bit planes for handling dual-format data is
required for the prototype IGIS.

5. The Development of a Distributed Geographical Database and a Multi-media IGIS.
The use of geographical databases over a communication network is undoubtedly
something that will be needed in the future. A geographical database covering a specific
theme created and maintained by one organisation could then be shared by others. The

integration of various databases into a distributed geographical database could also be
developed further. This integration requires the construction of a “logical” persistent
store which organises disparate “physical” persistent stores distributed over the
network. Furthermore, since the presentation of geographical information in multi-
media form is becoming prevalent, the inclusion of video and sound data within the
geographical database to form a multi-media IGIS could also be developed.

274

Chapter 9: Conclusions and Recommendations

All these recommendations can be regarded as extended features of the present persistent
IGIS. They can be developed based on the existing framework of the prototype IGIS. It is
also recommended that further research work should be carried out using Napier88 Release
2 in order to make use of its more advanced features or facilities in the IGIS development.

9.4 Final Remarks

The persistent programming language Napier88 has been developed as a database
programming tool to deal with the construction and maintenance of large, long-lived,
object-based application systems. The design and implementation of a true IGIS carried out

in this research is just one possible application in the fields of Geography and Topographic

Science. In the author’s view, the Napier88 system could be a good tool to exploit other

fields within these disciplines requiring database construction and management. Thus, for
example, the Napier88 system might be found useful in other types of system development,
such as a digital photogrammetric system (or workstation); a geographical modelling and
simulation system; a cartographic expert system; etc. Hopefully further investigations into
the applications of the Napier88 language for these other types of system development can
be conducted by interested researchers.

275

BIBLIOGRAPHY

BIBLIOGRAPHY

Abdallah, A.A., 1990. The Design and Implementation o f a Prototype Geographic
Information System Using A Novel Architecture Based on PS-Algol. Ph.D. Thesis.
Department of Geography & Topographic Science, University of Glasgow. 255 pages.
[Also published under the same title as Computing Science Technical Report,
CSC91/R4, University of Glasgow.]

Abel, D.J., 1989. SIRO-DBMS: A Database Tool-Kit for Geographical Information
Systems. International Journal o f Geographical Information Systems, 3(2): 103-116.

AGI, 1994. GIS Standards. In: Green, D.R. and Rix, D. (eds), The A G I Source Book fo r
GIS 1995. The Association for Geographic Information: 346-364.

Aldus & Microsoft, 1988. An Aldus/Microsoft Technical Memorandum: TIFF v.5.0. 52
pages.

Arnaud, A.M., Craglia, M., Masser, I., Salge, F. and Scholten H., 1993. The Research
Agenda of the European Science Foundation’s GISDATA Scientific Programme.
International Journal o f Geographical Information Systems, 7(5): 463-470.

Aronoff, S., 1989. Geographic Information Systems: A Management Perspective. WDL
Publications, Ottawa. 294 pages: 164-187.

Artz, M., 1991. ArcCAD: The Integration of ARC/INFO and AutoCAD: ArcCAD builds
on the Complementary Aspects of the Leaders of the GIS and CAD Industries. ARC
News, 13(4): 1-2.

Atkinson, M.P., 1978. Programming Languages and Databases. In: Yao, S.B. (ed.) The
Fourth International Conference on Very Large Data Bases. Berlin, West Germany.
408-419.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott,W.P. and Morrison, R., 1983. An
Approach to Persistent Programming. The Computer Journal, 26(4): 360-365.

Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm, K.J. and Morrison, R., 1984.
Progress with Persistent Programming. Persistent Programming Research Report, 8.
Universities of St. Andrews and Glasgow. 67 pages

Atkinson, M.P. and Buneman, Q.P., 1987. Types and Persistence in Database
Programming Languages. ACM Computing Surveys, 19(2): 105-190.

Atkinson, M.P., Bancilhon, F., Dewitt, D., Dittrich, K., Maier, D. and Zdonik, S., 1989.
The Object-Oriented Database System Manifesto. In: Proceedings o f the First
International Conference on Deductive and Object-Oriented Databases. Kyoto, Japan:
40-57.

276

BIBLIOGRAPHY

Atkinson, M.P. and Morrison, R., 1990. Persistent System Architectures. In: Rosenberg, J.
and Koch, D. (eds.), Proceedings o f the Third International Workshop on Persistent
Object Systems. Newcastle, Australia. 405 pages: 73-97.

Atkinson, M.P., Lecluse, C. and Philbrow, P., 1991. Maps as Bulk Types for Data Base
Programming Languages. Technical Report Series, FIDE/91/24, Department of
Computing Science, University of Glasgow. 27 pages.

Atkinson, M.P., 1992a. Persistent Foundation for Scaleable Multi-Paradigmal Systems.
International Workshop on Distributed Object Management, Edmonton, Canada. 29
pages.

Atkinson, M.P., 1992b. Programming in Napier88. Lecture Notes on CS4H Databases.
Department of Computing Science, University of Glasgow. 51 pages.

Atkinson, M.P., Bailey, P., Christie, D., Cropper, K. and Philbrow, P., 1993a. Towards
Bulk Types Libraries fo r Napier88 (Release 1). Department of Computing Science,
University of Glasgow. 36 pages.

Atkinson, M.P., Trinder, P.W. and Watt, D.A., 1993b. Bulk Type Constructors. Technical
Report Series, FIDE/93/61. Department of Computing Science, University of Glasgow.
74 pages.

Aybet, J., 1990. Integrated Mapping Systems: Data Conversion and Integration. Mapping
Awareness, 4(6): 18-23.

Batty P., 1992. Object-Orientation - Some Objectivity Please! Smallworld Technical Paper,
18. Smallworld Systems Ltd. 16 pages.

Bennis, K., David, B., Quilio, I. and Viemont, Y., 1990. GeoTropics Database Support
Alternatives for Geographic Applications. In: 4th International Symposium on Spatial
Data Handling. Zurich: 599-610.

BSI, 1992. Specification for NTF Structures. Electronic Transfer o f Geographic
Information (NTF), Part 1. British Standard Institution, BS7567. 66 pages.

Brown, A.L., 1989. Persistent Object Stores. Persistent Programming Research Report,
71. Universities of St. Andrews and Glasgow. 145 pages.

Brown, C.M., 1988. Human-Computer Interface Design Guidelines. Ablex Publishing
Corporation, Norwood, New Jersey. 256 pages.

Burrough, P.A., 1986. Principles o f Geographical Information Systems fo r Land
Resources Assessment. Clarendon Press, Oxford. 193 pages.

Cattell, R.G.G., 1991. Object Data Management: Object-Oriented and Extended
Relational Database Systems. Addison-Wesley Publishing Company, New York. 318
pages.

277

b i b l i o g r a p h y

Chance, A., Newell, R.G. and Theriault, D.G., 1989. An Overview of Smallworld Magik.
Smallworld Technical Paper, 9. Smallworld Systems Ltd. 9 pages.

Chance, A., Newell, R.G. and Theriault, D.G., 1990. An Object-Oriented GIS - Issues and
Solutions. Smallworld Technical Paper, 7. Smallworld Systems Ltd. 11 pages.

Cogan, L., Luhmann, T. and Walker, A.S., 1991. Digital Photogrammetry at Leica, Arrau.
Digital Photogrammetric Systems. Wichmann, Karlsruhe: 155-166.

Coleman, D.J. and McLaughlin, J.D., 1992. Standards for Spatial Information Interchange:
A Management Perspective. CISM Journal ACSGC, 46(2): 133-141.

Connor, R., Cutts, Q., Dearie, A., Kirby, G. and Morrison, R., 1991. Programmers' Guide
to the Napier88 Standard Library, Edition 2. Universities of St. Andrews and Adelaide.
87 pages.

Cooper, R.L. (ed), 1991. Data Modelling Research 1990-1991. Computing Science
Technical Report, CSC91/R14, University of Glasgow. 56 pages.

Cooper, R.L. and Kirby, G.N.C., 1994. Type-safe Linguistic Reflection: A Practical
Perspective. In: Atkinson, M.P., Maier, D. and Benzaken, V. (eds), Proceedings o f the
7th International Workshop on Persistent Object Systems. Tarascon. Springer Verlag
Workshops in Computer Science: 355-373.

Cowen, D.J., 1988. GIS vs. CAD vs. DBMS: What are the Differences? Photogrammetric
Engineering & Remote Sensing, 54(11): 1551-1556.

Cromley, R.G., 1992. Digital Cartography. Prentice-Hall, Inc., London. 317 pages: 63-
174.

Cutts, Q.I., Dearie, A., Kirby, G.N.C. and Marlin, C.D., 1989. WIN: A Persistent Window
Management System. Persistent Programming Research Report, 73. Universities of St.
Andrews and Glasgow. 25 pages.

Cutts, Q.I., Kirby, G.N.C., Connor, R.C.H., Dearie, A. and Marlin, C.D., 1989. An Object-
Oriented Approach to Window-Based Applications. Persistent Programming Research
Report, 72. Universities of St. Andrews and Glasgow. 31 pages.

David, B., Raynal, L., Schorter, G. and Mansart, V., 1993. G e02: Why Objects in a
Geographical DBMS? In: SSD'93: The 3rd International Symposium on Large Spatial
Databases. Singapore. 13 pages.

Davis, F.W. and Simonett, D.S., 1991. GIS and Remote Sensing. In: Maguire, D.J.,
Goodchild, M.F., Rhind, D.W. (eds), Geographical Information Systems: Principles
and Applications. Longman, London, vol. 1: 191-213.

Davis, F.W., Quadttrochi, D.A., Ridd, M.K., Lam, N.S-N., Walsh, S.J., Michaelsen, J.C.,
Franklin, J., Stow, D.A., Johannesen, C.J. and Johnston, C., 1991. Environmental
Analysis Using Integrated GIS and Remotely Sensed Data: Some Research Needs and
Priorities. Photogrammetric Engineering & Remote Sensing, 57(6): 689-697.

278

BIBLIOGRAPHY

Dearie, A., Connor, R.C.H., Brown, A.L. and Morrison, R., 1989. Napier88 - A Database
Programming Language? Proceedings o f 2nd International Workshop on database
Programming Languages'. 179-195.

Derenyi, E.E., 1991. Design and Development of a Heterogeneous GIS. CISM Journal
ACSGC , 45(4): 561-567.

Derenyi, E.E. and Pollock, R., 1990. Extending a GIS to Support Image-Based Map
Revision. Photogrammetric Engineering & Remote Sensing, 56(11): 1493-1496.

DGIWG, 1992. The Digital Geographic Information Exchange Standard (DIGEST). Part
1: General Description. Edition 1.1. Digital Geographic Information Working Group.
32 pages.

Dowman, I., 1991. Design of Digital Photogrammetric Workstations. In: Ebner, H., Fritsch,
D. and Heipke, C. (eds), Digital Photogrammetric Systems. Wichmann, Karlsruhe: 28-
38.

Egenhofer, M.J. and Herring, J.R., 1991. High-Level Spatial Data Structures for GIS. In:
Maguire, D.J., Goodchild, M.F. and Rhind, D.W. (eds), Geographical Information
Systems: Principles and Applications. Longman, London, vol. 1: 227-237.

Egenhofer, M.J., 1992. Why not SQL! International Journal o f Geographical Information
Systems, 6(2): 71-85.

Egenhofer, M.J., 1994. Pre-Processing Queries with Spatial Constraints. Photogrammetric
Engineering & Remote Sensing, 60(6): 783-790.

Ehlers, M., Edwards, G. and Bedard, Y., 1989. Integration of Remote Sensing with
Geographic Information Systems: A Necessary Evolution. Photogrammetric
Engineering & Remote Sensing, 55(11): 1619-1627.

Ehlers, M. and Blesius, L., 1991. Progress in Image Processing Workstations foi Remote
Sensing. In: Ebner, H., Fritsch, D. and Heipke, C. (eds), Digital Photogrammetric
Systems. Wichmann, Karlsruhe: 291-294.

ESRI, 1992. ESRI - Tomorrow’s Technology, Today? Mapping Awareness 4 GIS in
Europe, 6(4): 3-7.

Estes, J.E., 1992. Remote Sensing and GIS Integration: Research Needs, Status and
Trends. ETC Journal, 1992(1): 2-10.

Evangelatos, T.V., 1991. Digital Geographic Interchange Standards. In: Taylo-, D.R.F.
(ed), Geographical Information Systems: The Microcomputer and M odem
Cartography. Pergamon Press, Oxford. 251 pages: 151-166.

Fabbri, A.G., 1992. Remote Sensing, Geographical Information Systems and the
Environment: A Review of Interdisciplinary Issues. ITC Journal, 1992(2): 119126.

279

BIBLIOGRAPHY

Fegeas, R.G., Cascio, J.L. and Lazar, R.A., 1992. An Overview of FIPS 173, The Spatial
Data Transfer Standard. Cartography and Geographic Information Systems, 19(5):
278-293.

Fisher, P., Dykes, J. and Wood, J., 1993. Map Design and Visualization. The Cartographic
Journal, 30(2): 136-148.

Flowerdew, R., 1991. Spatial Data Integration. In: Maguire. D.J., Goodchild, M.F. and
Rhind, D.W. (eds), Geographic Information Systems: Principles and Applications.
Longman, London, vol. 1: 375-387.

Gahegan, M.N., 1989. An Efficient Use of Quadtrees in a Geographical Information
System. International Journal o f Geographical Information Systems, 3(3): 201-214.

Genasys II, 1991. Genamap - the Open Systems GIS. Mapping Awareness, 5(1): 3 -6.

Genasys II, 1993. Genasys - An I2Mage for the Future. Mapping Awareness & GIS in
Europe, 7(6): 3-7.

Genasys II, 1994. Geographical Information Systems: System Overview. Genasys II Ltd.
36 pages.

Gong, J. 1994. An Object-Oriented GIS Software - GEOSTAR. Proceedings o f ISPRS
Commission VI Symposium. Beijing, China: 53-59.

Green, R., 1992. GIS Counters Recession and Builds for Growth. Mapping Awareness &
GIS in Europe, 6(6): 2-6.

Grenzdorffer, G. and Bill, R., 1994. Digital Orthophotos for Mapping and Interpretation in
Hybrid GIS-Environment. Proceedings o f the 5th European Conference on
Geographical Information System (EGIS’94). Paris, France, vol. 2: 1845-1856.

Gunston, M., 1993. Geographic Information Systems: A Buyer’s Guide. CCTA, London:
HMSO: 25-42.

Hamon, C. and Crehange, M., 1991. Object Models and Methodology for Object-Oriented
Database Design. In: Harper, D.J. and Norrie, M.C. (eds), Specification o f Database
Systems. Glasgow: 135-153.

Harrington, S., 1987. Computer Graphics: A Programming Approach. McGraw-Hill.

Hartnall, T.J., 1993a. British National Space Centre Integrated Geographical Information
System: Prototype System Requirements Specification. Laser-Scan Ltd., Cambridge,
UK. 19 pages.

Hartnall, T.J., 1993b. British National Space Centre Integrated Geographical Information
System: Top Level Design. Laser-Scan Ltd, Cambridge, UK. 9 pages.

280

BIBLIOGRAPHY

Hartnall, T.J., 1993c. British National Space Centre Integrated Geographical Information
System: Prototype System (Stage 3) Functional Specification. Laser-Scan Ltd,
Cambridge, UK. 86 pages.

Helokunnas, T., 1994. Object-Oriented Geographic Data Management. Proceedings o f the
5th European Conference on Geographical Information System (EG IS’94). Paris,
France, vol. 2: 1194-1203.

Herring, J.R., 1987. TIGRIS: Topologically Integrated Geographic Information Systems.
Proceedings o f the AutoCarto 8 Conference. Baltimore, Maryland: 282-291.

HSI, 1993. Image Alchemy v. 1.7 User’s Manual. Handmade Software Inc. 210 pages: 195
- 198.

Ibbs, T.J. and Stevens, A., 1988. Quadtree Storage of Vector Data. International Journal
o f Geographical Information Systems, 2(1): 43-56.

Intera Tydac, 1993. SPANS: Product Overview. Intera Tydac Technologies Inc. 30 pages.

Intergraph, 1989a. Technical Overview - MicroStation GIS Environment. Intergraph
Corporation, Huntsville, Alabama. 6 pages.

Intergraph, 1989b. The Next Generation of GIS. Mapping Awareness, 3(5): 3-8.

Intergraph, 1990. MGE - The Modular GIS Environment. Intergraph Corporation,
Huntsville, Alabama. 25 pages.

IS, 1995. IMAGINE - Image Processing News from I.S. Ltd. I.S. Ltd. 4 pages.

Jackson, M.J. and Mason, D.C., 1986. The Development of Integrated Geo-Information
Systems. International Journal o f Remote Sensing, 7(6): 723-740.

Janssen, L.L.F., Jaarsma, M.N. and van der Linden, E.T.M., 1990. Integrating Topographic
Data with Remote Sensing for Land-Cover Classification. Photogrammetric
Engineering & Remote Sensing, 56(11): 1503-1506.

Jensen, J.R., Cowen, D.J., Halls, J., Narumalani, S., Schmidt, N.J., Davis, B.A. and
Burgess, B., 1994. Improved Urban Infrastructure Mapping and Forecasting for
BellSouth Using Remote Sensing and GIS Technology. Photogrammetric Engineering
& Remote Sensing, 60(3): 339-346.

Kaehler, M.R. and U. Theissing, 1989. Cartographic Raster Archives -The First Step of an
Hybrid Geographic Information System Concept. Proceedings o f GIS/LIS’89. Orlando,
Florida, vol. 2: 804-813.

Kaiser, D., 1991. ImageStation: Intergraph’s Digital Photogrammetric Workstation. In:
Ebner, H., Fritsch, D. and Heipke, C. (eds), Digital Photogrammetric Systems.
Wichmann, Karlsruhe: 188-197.

281

BIBLIOGRAPHY

Khoshafian, S. and Abnous, R., 1990. Object-Orientation: Concepts, Languages,
Databases, User Interfaces. John Wiley & Son, Inc. 434 pages: 1-36, 257-322.

Kim, W., 1990. Introduction to Object-Oriented Databases. The MIT Press, Cambridge.
234 pages.

Kirby, G.N.C., 1992. Reflection and Hyper-Programming in Persistent Programming
Systems. Ph.D. Thesis. Department of Computational Science, University of St.
Andrews. 175 pages.

Kirby, G., Brown, F., Connor, R., Cutts, Q., Dearie, A., Moore, V., Morrison, R. and
Munro, D., 1994. The Napier88 Standard Library Reference Manual. Universities of
St. Andrews and Adelaide. 132 pages.

Korte, G.B., 1994. The GIS Book. OnWord Press, Santa Fe, USA: 16-25, 44-67.

Kraak, M.J., 1993. Cartographical Terrain Modelling in a Three-Dimensional GIS
Environment. Cartography and Geographical Information Systems, 20(1): 13-18.

Kuo, Y.J., 1994a. The Development of an Integrated GIS Based on a Persistent
Programming Language. Proceedings o f the 5th European Conference on
Geographical Information System (EGIS’94). Paris, France, vol. 1: 112-121.

Kuo. Y.J., 1994b. Organizing Geographical Data in a Persistent Store. Proceedings o f the
2nd UK Conference on GIS Research (GISRUK). Leicester, UK: 204-215.

Langran, G., 1992. Time in Geographic Information Systems. Taylor & Francis Inc. 189
pages: 104-119.

Laser-Scan, 1989. Laser-Scan’s Metropolis Maps the Way Ahead for Local Authorities.
Mapping Awareness, 3(5): 3-8.

Laser-Scan, 1990. HORIZON - GIS for the Environment. Mapping Awareness & GIS in
Europe, 4(7): 3-6.

Laser-Scan, 1991. Implementing GIS in Local Authorities - How to Plan for Success.
Mapping Awareness & GIS in Europe, 5(8): 3-7.

Laser-Scan, 1992. Laser-Scan: A World of Applications. Mapping Awareness & GIS in
Europe, 6(8): 3-5.

Laser-Scan, 1993a. GOTHIC: Developing Applications fo r Tomorrow's World. Product
Description. Laser-Scan Ltd. 4 pages.

Laser-Scan, 1993b. IGIS: The Natural Way to Manage the Environment. Product
Description. Laser-Scan Ltd. 4 pages.

Laser-Scan, 1994. IGIS (Integrated Geographical Information System) - Technical
Product Description. Laser-Scan Ltd. 29 pages.

282

BIBLIOGRAPHY

Lauer, D.T., 1991. The Integration of Remote Sensing and Geographic Information
Systems: An Overview of Institutional Issues. In: Star, J.L. (ed.) Proceedings o f the
Conference on the Integration o f Remote Sensing and Geographic Information
Systems: 33-38.

Laurini, R. and Thompson, D., 1992. Fundamentals o f Spatial Information Systems.
Academic Press Limited, London. 680 pages.

Laurini, R., 1994. Distributed Geographic Databases: An Overview. In: Green, D.R. and
Rix, D. (eds), The AGI Source Book fo r GIS 1995. The Association for Geographic
Information: 45-55.

Logan, T.L. and Bryant, N.A., 1987. Spatial Data Software Integration: Merging
CAD/CAM/Mapping with GIS and Image Processing. Photogrammetric Engineering &
Remote Sensing, 53(10): 1391-1395.

Maguire, D.J., 1991. An Overview and Definition of GIS. In: Maguire. D.J., Goodchild,
M.F. and Rhind, D.W. (eds), Geographic Information Systems: Principles and
Applications. Longman, London, vol. 1: 9-20.

Maguire, D.J. and Dangermond, J., 1991. The Functionality of GIS. In: Maguire. D.J.,
Goodchild, M.F. and Rhind, D.W. (eds), Geographic Information Systems: Principles
and Applications. Longman, London, vol. 1: 319-335.

Maguire, D.J., Kimber, B. and Chick, J., 1991. Integrated GIS: The Importance of Raster.
Technical Papers o f the 1991 ACSM-ASPRS Annual Convention. Baltimore. 107-116.

Maguire, D.J. and Dangermond, J., 1994. Future GIS Technology. In: Green, D.R. and Rix,
D. (eds), The AG I Source Book fo r GIS 1995. The Association for Geographic
Information: 113-120.

Marble, D.F., 1994. An Introduction to the Structured Design of Geographic Information
Systems. In: Green, D.R. and Rix, D. (eds), The AGI Source Book fo r GIS 1995. The
Association for Geographic Information: 31-38.

Mark, D.M., Lauzon, J.D. and Gebrian, J.A., 1989. A Review of Quadtree-based Strategies
for Interfacing Coverage Data with Digital Elevation Models in Grid Form.
International Journal o f Geographical Information Systems, 3(1): 3-14.

Mason, D.C., Corr., D.G., Cross, A., Hogg, D.C., Lawrence, D.H., Detrou, M. and Tailor,
A.M., 1988. The Use of Digital Map Data in the Segmentation and Classification of
Remotely-Sensed Images. International Journal o f Geographical Information Systems,
2(3): 195-215.

Mather, P.M., 1987. Computer Processing o f Remotely-Sensed Images - An Introduction.
John Wiley & Sons, Chichester. 352 pages.

Matambanadzo, P., 1992. Single and Stereo-Pair Methods Using Digital Imagery in
Photogrammetry. M.App.Sci. Dissertation. Department of Geography & Topographic
Science, University of Glasgow. 208 pages.

283

BIBLIOGRAPHY

McRae, S.D., 1989. GIS Design and the Questions Users Should be Asking.. Proceedings
o fG IS /L IS ’89. Orlando, Florida, vol. 2: 528-537.

Menon, S., Gao, P. and Zhan, C., 1991. GRID: A Data Model and Functional Map Algebra
for Raster Geo-Processing. Proceedings o f GIS/LIS’91. Atlanta, Georgia, vol. 2: 551-
561.

Milne, P., Milton, S. and Smith J.L., 1993. Geographical Object-Oriented Databases - A
Case Study. International Journal o f Geographical Information Systems, 7(1): 39-55.

Morehouse, S., 1989. The Architecture of ARC/INFO. Proceedings o f the AutoCarto 9
Conference. Baltimore, Falls Church, Virginia, USA: 266-277.

Morrison, R., Brown, A.L., Dearie, A. and Atkinson, M.P., 1986. An Integrated Graphics
Programming Environment. Persistent Programming Research Report, 14. Universities
of St. Andrews and Glasgow. 15 pages.

Morrison, R., Brown, A.L., Carrick, R., Connor, R.C.H., Dearie, A. and Atkinson, M.P.,
1987. Polymorphism, Persistence and Software Reuse in a Strongly Typed Object
Oriented Environment. Software Engineering Journal, 2(6): 199-204.

Morrison, R., Barter, C.J., Brown, A.L., Carrick, R., Connor, R.C.H., Dearie, A.J. and
Livesey, M.J., 1989. Language Design Issues in Supporting Process-Oriented
Computation in Persistent Environments. Proceedings o f 22nd International
Conference on System Sciences. Hawaii. 736-744.

Morrison, R., Brown, F., Connor, R., Dearie, A., 1989. The Napier88 Reference Manual.
Persistent Programming Research Report, 77. Universities of St. Andrews and
Glasgow. 96 pages

Morrison, R., Brown, F., Carrick, R., Connor, R., Dearie, A. and Atkinson, M.P., 1990.
The Napier Type System. Proceedings o f the Third International Workshop on
Persistent Object Systems. Newcastle, Australia. 405 pages: 3-17.

Morrison, R., Baker, C., Connor, R.C.H., Cutts, Q.I. and Kirby, G.N.C., 1993a.
Approaching Integration in Software Environment. Technical Report, CS/93/10.
Department of Computational Science, University of St. Andrews. 11 pages.

Morrison, R., Brown, F., Connor, R., Cutts, Q., Dearie, A., Kirby, G. and Munro, D.,
1993b. The Napier88 Reference Manual (Release 2.0). Technical Report, CS/93/15.
Department of Computational Science, University of St. Andrews. 67 pages.

Mortension, M.E., 1989. Computer Graphics: An Introduction to the Mathematics and
Geometry. Heinemann Newnes, Oxford. 381 pages.

Newell, R.G. and Theriault, D.G., 1989. Ten Different Problems in Building a GIS.
Smallworld Technical Paper, 1. Smallworld Systems Ltd. 9 pages.

Newell, R.G. and Sancha, T.L., 1990. The Difference Between CAD and GIS. Smallworld
Technical Paper, 5. Smallworld Systems Ltd. 10 pages.

284

BIBLIOGRAPHY

Newell, R.G., 1992. Practical Experience of Using Object-Orientation to Implement a GIS.
Smallworld Technical Paper, 16. Smallworld Systems Ltd. 8 pages.

Newell, R.G., 1994. Where is GIS Technology going? In: Green, D.R. and Rix, D. (eds),
The AG I Source Book fo r GIS 1995. The Association for Geographic Information: 19-
23.

Newton, P.W., Zwart, P.R. and Cavill, M.E. (eds), 1992. Networking Spatial Information
Systems. Belhaven Press, London and New York: 49-88, 205-250.

Nordstrand, E., 1990. Using Raster Data with ARC/INFO. ARC News, 12(1): 32-33.

NRSC, 1992. Satellites and Maps - Port Talbot. NRSC. 2 pages.

Oosterhoff, A., 1993. The Integration o f GIS, Remote Sensing and Image Processing
Systems: An Annotated Bibliography. Department of Geographic Information Systems,
School of Computing, Curtin University of Technology. 36 pages.

Ordnance Survey, 1993a. A Technical Guide fo r Sample Digital Map Data in National
Transfer Format, Version 2.0. Ordnance Survey. 270 pages.

Ordnance Survey, 1993b. Digital Map Data - 1:50,000 Scale Colour Raster Technical
Information. Ordnance Survey. 3 pages.

Ordnance Survey, 1994. Digital Map Data Catalogue. Ordnance Survey. 32 pages.

PCI, 1993. Using PCI Software, Volume 1. PCI Remote Sensing Corp. (3): 2-13.

Peloux, J.P., St. Michel, G.R., Scholl, M., 1993. Evaluation of Spatial Indices Implemented
with the DBMS 0 2 (Draft). Technical Paper o f ESPRIT Basic Research Action
Program 6881 (AMUSING). 21 pages.

Petrie, G., 1989a. Networking for Digital Mapping. Part I - Past and Present Networking
Solutions for Digital Mapping. Mapping Awareness, 3(3): 9-16.

Petrie, G., 1989b. Networking for Digital Mapping. Part II - The OSI Network Model and
its Application in Digital Mapping. Mapping Awareness, 3(4): 38-42.

Petrie, G., 1994. Photogrammetry and Remote Sensing. In: Green, D.R. and Rix, D. (eds),
The AG I Source Book fo r GIS 1995. The Association for Geographic Information: 73-
85.

Peuquet D.J., 1981a. An Examination of Techniques for Reformatting Digital Cartographic
Data. Part 1: The Vector-to-Raster Process. Cartographica, 18(1): 34-48.

Peuquet D.J., 1981b. An Examination of Techniques for Reformatting Digital Cartographic
Data. Part 2: The Raster-to-Vector Process. Cartographica, 18(3): 21-33.

Peuquet D.J., 1984. A Conceptual Framework and Comparison of Spatial Data Models.
Cartographica, 21(4): 66-113.

285

BIBLIOGRAPHY

Peuquet, D.J., 1991. Methods for Structuring Digital Cartographic Data. In: Taylor, D.R.F.
(ed), Geographical Information Systems: The Microcomputer and M odem
Cartography. Pergamon Press, Oxford: 67-95.

Piwowar, J.M. and LeDrew, E.F., 1990. Integrating Spatial Data: A User’s Perspective.
Photogrammetric Engineering & Remote Sensing, 56(11): 1497-1502.

Piwowar, J.M., LeDrew, E.F. and Dudycha, D.J., 1990. Integration of Spatial Data in
Vector and Raster Formats in a Geographical Information System Environment.
International Journal o f Geographical Information Systems, 4(4): 429-444.

Rado, B.Q., Bury, A.S., Smith, C.C., 1991. Raster-Vector Integration: Real World
Solutions. Technical Papers o f the 1991 ACSM-ASPRS Annual Convention. Baltimore.
166-172.

Sacchi, C. and Sbattella, L., 1994. An Object-Oriented Approach to Spatial Databases.
Proceedings o f the 5th European Conference on Geographical Information System
(EGIS’94). Paris, France, vol. 2: 1204-1213.

Samet, H., 1984. The Quadtree and Related Hierarchical Data Structures. ACM Computing
Surveys, 16(2): 220-248.

Samet, H., 1989. The Design and Analysis o f Spatial Data Structures. Addison-Wesley,
Reading, Mass.: 1-56.

Schumacher, D., 1992. General Filtered Image Rescaling. In: Kirk, D. (ed), Graphics Gems
III. Academic Press, San Diego London: 8-16.

Shaffer, C.A., 1990. QUILT: A Geographic Information System Based on Quadtrees.
International Journal o f Geographical Information Systems, 4(2): 103-131.

Shepherd, I.D.H., 1991. Information Integration and GIS. In: Maguire. D.J., Goodchild,
M.F. and Rhind, D.W. (eds), Geographic Information Systems: Principles and
Applications. Longman, London, vol. 1: 337-360.

Siemens, 1989. Siemens - Making GIS Work. Mapping Awareness, 3(3): 3-7.

Sinha, A.K. and Waugh, T.C., 1988. Aspects of the Implementation of the GEOVIEW
Design. International Journal o f Geographical Information Systems, 2(2): 91-99.

Smallworld, 1992. Smallworld: GIS Innovation and Vision. Mapping Awareness & GIS in
Europe, 6(3): 3-7.

Sproull, R. F., Sutherland, W. R. and Ullner, M.K., 1985. Device-Independent Graphics
with Examples from IBM Personal Computers. McGraw-Hill, Inc., 485-491.

Star, J. and Estes, J., 1990. Geographic Information Systems: An Introduction. Prentice
Hall, New Jersey. 303 pages.

286

BIBLIOGRAPHY

Stow, D., Westmoreland, S., McKinsey, D., Mertz, F., Nathanson, J., Sperry, S. and Nagel
D., 1990. Efficient Creation, Correction and Updating of Vector-Coded GIS Coverages
Using Remotely Sensed Data. Proceedings o f GIS/LIS’90. Anaheim, California, vol. 1:
209-218.

Strachey, C., 1967. Fundamental Concepts in Programming Languages. Oxford University
Press, Oxford.

Stuart, N., 1990. Quadtrees GIS - Pragmatics for the Present, Prospects for the Future.
Proceedings o f GIS/LIS’90. Anaheim, California, vol. 1: 373-382.

Tektronix, 1991. X Windows Primer. Tektronix UK Ltd. 27 pages.

The Committee for Advanced DBMS Functions, 1990. Third-Generation Database System
Manifesto. SIGMOD Record, 19(3): 31-45.

Theodoridis, Y. and Sellis, T., 1993. Optimization Issues in R-tree Construction. Technical
Paper o f ESPRIT Basic Research Action Program 6881 (AMUSING). 20 pages.

Theriault, D.G., 1989. An Overview of Geographical Information Systems - The
Technology and its Users. Smallworld Technical Paper, 2. Smallworld Systems Ltd. 8
pages.

Tydac, 1989. Tydac Technologies: Thinking Spatially. Mapping Awareness, 2(6): 3-7.

Tydac, 1990. SPANS: SPatial ANalysis System. Tydac Technologies. 16 pages.

Tydac, 1991. From Mapping to GIS: Tydac Offers More. Mapping Awareness & GIS in
Europe, 5(10): 3-7.

Tydac, 1994. SPANS Explorer. Tydac Technologies. 2 pages.

Usery, E.L., 1993. Category Theory and the Structure of Features in Geographic
Information Systems. Cartography and Geographic Information Systems, 20(1): 5-12.

van Eck, J.W. and Uffer, M., 1989. A Presentation of System 9. Photogrammetry and Land
Information Systems: 139-178.

van Oosterom, P., 1993. Reactive Data Structures fo r Geographic Information Systems.
Oxford University Press Inc., New York. 198 pages.

Verts, W., 1989. Quadtree Meshes. Proceedings o f the AutoCarto 9 Conference.
Baltimore, USA: 406-415.

Vijbrief, T., and van Oosterom, P., 1992. The GEO System: An Extensible GIS.
Proceedings o f the 5th International Symposium on Spatial Data Handling.
Charleston, South Carolina: 40-55.

287

BIBLIOGRAPHY

Wallace, T. and Clark, S.R., 1988. Raster and Vector Data Integration: Past Techniques,
Current Capabilities, and Future Trends. Proceedings o f GIS/LIS’88. San Antonio,
Texas, vol. 1: 418-426.

Waugh, T.C. and Healey, R.G., 1987. The GEO VIEW Design: A Relational Data Base
Approach to Geographical Data Handling. International Journal o f Geographical
Information Systems, 1(2): 101-118.

Worboys, M.F., Hearnshaw, H.W. and Maguire, D.J., 1990. Object-Oriented Data
Modelling for Spatial Databases. International Journal o f Geographical Information
Systems, 4(4): 369-383.

Williams, R.J., 1993. Digital Geographic Data Exchange Standards and Products:
Descriptions, Comparisons and Opinions. Cartography: Journal o f the Australian
Institute o f Cartographers, 22(1): 15-53.

Yearsley, C., Worboys, M.F., Story, P., Jayawardena, D.P.W. and Bofakos, P., 1994.
Computational Support for Spatial Information Handling: Models and Algorithms. In:
Worboys, M.F. (ed), Innovation in GIS. Taylor & Francis Ltd: 75-88.

288

THE DESIGN AND IMPLEMENTATION

OF

A TRULY INTEGRATED GIS

USING THE PERSISTENT PROGRAMMING LANGUAGE NAPIER88

BY

YING JEAN KUO

VOLUME II

A Thesis Submitted for the Degree of Doctor of Philosophy (Ph.D.)
of the Faculty of Science at the University of Glasgow

Department of Geography & Department of Computing Science

Topographic Science

June 1995

[oi5)
C'sy-v \

[J A Z

APPENDIX A :

APPENDIX B :

APPENDIX C :

APPENDIX D :

APPENDIX E :

APPENDIX F :

Table of Contents

VOLUME II

CREATION OF GIS DATA TYPES

CREATION OF DATABASE ENVIRONMENT

GENERAL LIBRARY PROCEDURES

GRAPHICAL LIBRARY PROCEDURES

GIS LIBRARY PROCEDURES

THE PERSISTENT IGIS MAIN PROGRAM

APPENDIX A : THE CREATION OF GIS DATA TYPES

Appendix A: The Creation of GIS Data Types

System types
type Map[A, Z] is MapRepltol[A, Z]
rec type List[T] is variant(full: Cell[T]; empty: null)
& Cell[T] is structure(hd: T; tl: List[T])

General types
1. Identifers

type Point_id is int
type Line_id is int
type Text_id is int
type Link_id is int
type Node_id is int
type Geom_id is int
type Attr_id is int
type Poly_id is int
type Chain_id is int
type Cpoly_id is int
type Coll_id is int
type Grid_id is int
type Peano_key is int
type Map_id is string
type Image_id is string

2. Geometry
type Pos is structure(x, y: int)
type XY is structure(x, y: real)
type MBR is structure(x_min, y_min, x_max, y_max: real)
type Extent is structure(x_min, y_min, x_range, y_range: real)
type Circle is structure(center: XY; radius: real)
type Win_size is structure(width, height: int)
type Transient_image is structure(raster: image; pos: Pos;

start_bp: int)
type Frequency is structure(count: *int; lower, median, upper,

vmin, vmax: int)
type Freq_chart is structure(original_chart, stretch_chart: pic;

level: int)
3. Feature Code & Description

type FC is string ! Feature Code
type FD is string ! Feature Description
type FCD is Map[FC, FD]

! 4. Spatial index key
type Peano is structure(peano_key: int; side_length: real)
type Peanor is structure(peano_key, side_length: real)
type Map_index is Map[Peano, Map_id]
type Image_index is Map[Peano, List[Image_id]]

i
I

type OS_map_info is structure(name: string; series: string;
mapscale: real; extent: Extent)

type OS_map_name is structure(s_625k, s_250k, s_50k, s_10k, s_2500,
s_12 50, oscar, boundary_line: string)

A -l

Data structures
1. Point

Appendix A: The Creation of GIS Data Types

Spaghetti structure
type Landline_point_attr is structure(oriention: real; distance: int)
type Contour_point_attr is real ! height
type SP_point_attr is variant(landline: Landline_point_attr;

contour: Contour_point_attr)
type SP_point is structure(xy: XY; fc: FC; attribute: SP_point_attr)
type SP_pid_point is Map[Point_id, SP_point]
Link and Node structure
type LN_point is structure(geom_id: Geom_id; attr_id: Attr_id)
type LN_pid_point is Map[Point_id, LN_point]
Square Grid DTM
type SG_point is structure(x_first, y_first: real; z: List[real])
type SG_gid_point is Map[Grid_id, SG__point]

2. Line
Spaghetti structure
type Contour_line_attr is real ! height
type SP_line_attr is variant(landline: null; contour: Contour_line_attr)
type SP_line is structure(xy_list: List[XY]; fc: FC;

attribute: SP_line_attr)
type SP_lid_line is Map [Line__id, SP_line]
Link and Node structure
type LN_line is structure(geom_id: Geom_id; attr_id: Attr_id)
type LN_lid_line is Map[Line_id, LN_line]

3. Text
Spaghetti structure
type SP_text is structure(xy: XY; text_code, text_body: string;

text_ht, orient: real; font, dig_postn: int)
type SP_tid_text is Map[Text_id, SP_text]
type SP_tid_txt is variant(sp_tid_text: SP_tid_text; none: null)
Link and Node structure
type LN_text is structure(geom_id: Geom_id; attr_id: Attr_id;

text_ht, orient: real; font, dig_postn: int)
type LN_tid_text is Map[Text_id, LN_text]
type LN_tid_txt is variant(ln_tid_text: LN_tid_text; none: null)

4. Geometry
Link and Node structure
type LN_geometry is structure(gtype, num_coord: int; xy_list: List[XY])
type LN_gid_geometry is Map[Geom_id,LN_geometry]
Polygon-based structure
type PB_geometry is structure(gtype, num_coord: int; xy_list: List[XY];

attr_id: Attr_id)
type PB_gid_geometry is Map[Geom_id, PB_geometry]

A-2

Appendix A: The Creation of GIS Data Types

! 5. Attribute
! Link and Node structure

type LN_attr_ssm is structure(RB, RU: bool; OR: real; PN, NU: string)
type LN_attr_oscar is structure(SY: int; LL: real;

SC, PN, RN, FW: string)
type LN_attr is variant(small_scale_map: LN_attr_ssm;

oscar: LN_attr_oscar)
type LN_attribute is structure(fc: FC; attribtue: LN_attr)
type LN_aid_attribute is Map[Attr_id, LN_attribute]

i

! Polygon-based structure
j

type PB_attribute is structure(AI, LK, PI, HW, LV: int; HA: real;
fc: FC; NM, OP, SD, CT: string)

type PB_aid_attribute is Map[Attr_id, PB_attribute]
i

! 6. Link
i

! Link and Node structure
i

type LN_link is structure(from_node, to_node: Node_id;
geom_id_of_link: Geom_id)

type LN_kid_link is Map[Link_id, LN_link]
i

! 7. Node
1
! Link and Node structure
i

type Link is structure(direction: int; geom_id_of_link: Geom_id;
orient: real; level: int)

type LN_node is structure(geom_id_of_node: Geom_id; num_links: int;
link_list: List[Link])

type LN_nid_node is Map[Node_id, LN_node]
I
! 8. Polygon
! Polygon-based structure

type PB_polygon is structure(chain_id: Chain_id; geom_id: Geom_id;
attr_id: Attr_id)

type PB_polyid_polygon is Map[Poly_id, PB_polygon]
i

! 9. Chain
! Polygon-based structure

type PB_link is structure(direction: int; geom_id_of_link: Geom_id)
type PB_chain is structure(num_parts: int; link_list: List[PB_link])
type PB_cid_chain is Map[Chain_id, PB_chain]

!10. Cpolygon
! Polygon-based structure
I

type PB_polyid_sign is structure(poly_id: Poly_id; sign: string)
type PB_cpolygon is structure(num_parts: int;

polyid_sign_list: List[PB_polyid_sign];
geom_id: Geom_id; attr_id: Attr_id)

type PB_cpolyid_cpolygon is Map[Cpoly_id, PB_cpolygon]
I
111. Collection
i

! Polygon-based structure

A-3

Appendix A: The Creation o f GIS Data Types

type PB_polyid is structure(poly_id: Poly_id; poly_type: int)
type PB_collection is structure(num_parts: int;

polyid_list: List[PB_polyid];
attr_id: Attr_id)

type PB_collid_collection is Map[Coll_id, PB_collection]

Data Models

1. Spaghetti data model
type SP_DM is structure(point: SP_pid_point;

line: SP_lid_line;
txt: SP_tid__txt ;
fed: FCD)

2. Link and Node data model
type LN_DM is structure(point: LN_pid_point;

line: LN_lid_line;
geometry: LN_gid_geometry;
attribute: LN_aid_attribute;
link: LN_kid_link;
node: LN_nid_node;
txt: LN_t id_txt;
fed: FCD)

3. Polygon-based data model
type PB_DM is structure(collection: PB_collid_collection;

cpolygon: PB_cpolyid_cpolygon;
polygon: PB_polyid_polygon;
chain: PB_cid_chain;
geometry: PB_gid_geometry;
attribute: PB_aid_attribute;
fed: FCD)

4. Grid Cell data model
type GC_attribute is string
type GC_aid_attribute is Map[Attr_id, GC_attribute]
type GC_DM is structure(raster: image;

ext ent: Ext ent;
colourmap: **int;
attribute: GC_aid_attribute)

5. Run-Length Encoding data model
(Value Point Encoding)

type Value_point is int
type RLE_attr is string
type RLE_DM is Map[Value_point, RLE_attr]

6. Linear Quadtree data model
type LQT_attribute is string
type LQT_quadrant is structure(side_length: int; attr_id: Attr_id)
type LQT_peano_quadrant is Map[Peano_key, LQT_quadrant]
type LQT_aid_attribute is Map[Attr_id, LQT_attribute]
type LQT_DM is structure(quadrant: LQT_peano_quadrant;

attribute: LQT_aid_attribute;
extent: Extent;
colourmap: **int;

A-4

Appendix A: The Creation of GIS Data Types

pixel_size: real;
depth: int)

Databases

1. Basemap database
type Basemap_DM is variant(spaghetti: SP_DM;

1ink_node: LN_DM;
polygon_based: PB_DM)

type Basemap is structure(data_model: Basemap_DM)
type Base_Maps is Map[Map_id,Basemap]

2. Baseimage database
type Baseimage_DM is variant(grid_cell: GC_DM; linear_quadtree: LQT_DM)
type Baseimage is structure(data_model: Baseimage_DM)
type Base_Images is Map[Image_id, Baseimage]

3. Raw image database
type Rawimage is structure(data: *int;

width, height, depth: int;
colourmap: **int)

type Raw_Images is Map[Image_id, Rawimage]
4. Interim image database

type Interim_image is structure(raster: image; colourmap: **int)
type Interim_Images is Map[Image_id, Interim_image]

Spatial Indexing
1. Entity MBR

type Line_mbr is Map[Line_id, MBR]
type Polygon_mbr is Map[Poly_id, MBR]
type Line_key_pts is Map[Line_id, List[XY]]
type Entity_mbr is structure(line: Line_mbr;

polygon: Polygon_mbr;
key_pts: Line_key_pts)

type Entity_MBRs is Map[Map_id, Entity_mbr]
2. Entity Indices

type Point_index is Map[Peanor, List[Point_id]]
type Line_index is Map[Peanor, List[Line_id]]
type Polygon_index is Map[Peanor, List[Poly_id]]
type Min_quad_sl is structure(point, line, polygon: real)
type Entity_index is structure(point: Point_index;

line: Line_index;
polygon: Polygon_index;
min_quad_sl: Min_quad_sl)

type Entity_indices is Map[Map_id, Entity_index]

3. Basemap & Baseimage Indices
type Basemap_indices is Map[Peano, Basemap]
type Baseimage_indices is Map[Peano, Baseimage]

A-5

APPENDIX B : THE CREATION OF LIBRARY AND DATABASE
ENVIRONMENT

Proeram Name Description Paee

mk_library_env Set up Library environment in User environment B-l

mk_general_env Set up General environment in Library environment B-l

mk_graphical_env Set up Graphical environment in Library environment B-l

mk_gis_env Set up GIS environment in Library environment B-2

mk_database_env Set up Database environment in User environment B-2

mk_raw_env Set up Raw environment in Database environment B-2

mk_raw_images Set up raw_images in Raw environment B-3

mk_interim_env Set up Interim environment in Database environment B-3

mk_interim_images Set up interim_images in Interim environment B-3

mk_processed_env Set up Maps environment in Data environment B-4

mk_ba s e_map s Set up base_maps in Processed environment B-4

mk_base_images Set up base_images in Processed environment B-5

mk_derived_env Set up Derived environment in Database environment B-5

mk_index_env Set up Index environment in Database environment B-6

mk_entity_mbrs Set up entity_mbrs in Index environment B-6

mk_entity_indices Set up entity_indices in Index environment B-6

mk_basemap_indices Set up basemap_indices in Index environment B-7

mk_baseimage_indices Set up baseimage Jindices in Index environment B-7

Appendix B : The Creation of Library and Database Environment

[mk_library_env.N]
Set up Library environment in User environment

PS() - - I
I-- User --I

I-- Library

use PS() with 10, User: env; environment: proc(-> env) in
use 10 with writeString: proc(string) in
begin

if User contains Library then
writeString("User already contains Library, no action taken.'n")

else
begin

in User let Library := environment()
end

end

[mk_general_env.N]
Set up General environment in Library environment

PS() --I
I-- User --I

I-- Library --I
I-- General

use PS() with 10, User: env; environment: proc(-> env) in
use User with Library: env in
use 10 with writeString: proc(string) in
begin

if Library contains General then
writeString("Library already contains General, no action taken.'n")

else
begin

in Library let General := environment()
end

end

[mk_graphical_env.N]
Set up Graphical environment in Library environment

PS() --I
I-- User --I

I-- Library --I
I-- Graphical

use PS() with 10, User: env; environment: proc(-> env) in
use User with Library: env in
use 10 with writeString: proc(string) in
begin

if Library contains Graphical then
writeString("Library already contains Graphical, no action taken.'n")

else
begin

B -l

Appendix B : The Creation of Library and Database Environment

in Library let Graphical := environment()
end

end

[mk_g i s_env.N]
Set up GIS environment in Library environment

PS() --I
I-- User --I

I-- Library --I
I -- GIS

use PS() with 10, User: env; environment: proc(-> env) in
use User with Library: env in
use 10 with writeString: proc(string) in
begin

if Library contains GIS then
writeString("Library already contains GIS, no action taken.'n")

else
begin

in Library let GIS := environment()
end

end

[mk_da t aba s e_env.N]
Set up Database environment in User environment

PS() --I
I-- User --I

I-- Database

use PS() with 10, User: env; environment: proc(-> env) in
use 10 with writeString: proc(string) in
begin

if User contains Databse then
writeString("User already contains Database, no action taken.'n")

else
begin

in User let Database := environment()
end

end

[mk_raw_env.N]
Set up Raw environment in Database environment

PS() - - I
I-- User --I

I-- Database --I
I-- Raw

use PS() with 10, User: env; environment: proc(-> env) in
use User with Database: env in
use 10 with writeString: proc(string) in
begin

if Database contains Raw then
writeString("Database already contains Raw, no action taken.'n")

B-2

Appendix B : The Creation of Library and Database Environment

else
begin

in Database let Raw := environment()
end

end

[mk_raw_images.N]
Set up raw_images in Raw environment

User --I
I-- Database --I

I-- Raw --|
I -- raw_images: Map[Image_id,Rawimage]

type Map[A, Z] is MapRepltol[A,Z]
use PS() with 10, User, GlasgowLibraries:env; environment: proc(-> env) in
use 10 with writeString: proc(string) in
use GlasgowLibraries with BulkTypes: env in
use BulkTypes with Maps: env in
use Maps with

m_empty: proc[A,Z](proc(A,A -> bool), proc(A,A -> bool) -> Map[A,Z]) in
use User with Library, Database: env in
use Library with General: env in
use General with eq_str: proc(string, string -> bool);

lt_str: proc(string, string -> bool) in
use Database with Raw: env in
begin

if Raw contains raw_images then
writeString("Raw already contains raw_images, no action taken.'n")

else
begin

in Raw let raw_images := m_empty[Image_id,Rawimage](eq_str,lt_str)
end

end

[mk_interim_env.N]
Set up Interim environment in Database environment

PS() --I
I-- User --I

I-- Database --I
I-- Interim

use PS() with 10, User: env; environment: proc(-> env) in
use User with Database: env in
use 10 with writeString: proc(string) in
begin

if Database contains Inerim then
writeString("Database already contains Interim, no action taken.'n")

else
begin

in Database let Interim := environment()
end

end

[mk_interim_images.N] !
i

Set up interim_images in Interim environment !

B-3

Appendix B : The Creation of Library and Database Environment

! Database - I ;
! I - Interim - I i
! I- interim_images: Map[Image_id,Interim_image] !
! i
i ---i

type Map[A, Z] is MapRepltol[A,Z]
use PS() with 10, User, GlasgowLibraries: env; environment: proc(-> env) in
use 10 with writeString: proc(string) in
use GlasgowLibraries with BulkTypes: env in
use BulkTypes with Maps: env in
use Maps with

m_empty: proc[A,Z](proc(A,A -> bool), proc(A,A -> bool) -> Map[A,Z]) in
use User with Library, Database: env in
use Library with General: env in
use General with eq_str: proc(string,string -> bool);

lt_str: proc(string,string -> bool) in
use Database with Interim: env in
begin

if Interim contains interim_images then
writeString("Interim already contains interim__images, no action

taken.1n")
else

begin
in Interim let interim_images :=

m_empty[Image_id, Interim_image](eq_str, lt_str)
end

end

[mk_proc es s ed_env.N]
Set up Maps environment in Data environment

PS() --I
I-- User --I

I-- Database --|
I-- Processed

use PS() with 10, User: env; environment: proc(-> env) in
use User with Database: env in
use 10 with writeString: proc(string) in
begin

if Database contains Processed then
writeString("Database already contains Processed, no action taken.'n")

else
begin

in Database let Processed := environment()
end

end

[mk_ba s e_map s.N]
Set up base_maps in Processed environment

User --I
I-- Database --I

I-- Processed --I
I-- base_maps: Map[Map_id, Basemap]

type Map[A, Z] is MapRepltol[A,Z]
use PS() with 10, User, GlasgowLibraries: env; environment: proc(-> env) in
use GlasgowLibraries with BulkTypes: env in

B-4

Appendix B : The Creation of Library and Database Environment

use BulkTypes with Maps: env in
use Maps with

m_empty: proc[A,Z](proc(A,A -> bool), proc(A,A -> bool) -> Map[A,Z]) in
use User with Library, Database: env in
use Library with General: env in
use General with eq_str, lt_str: proc(string,string -> bool) in
use Database with Processed: env in
use 10 with writeString: proc(string) in
begin

if Processed contains base_maps then
writeString("The Processed environemnt already contains base_maps, no

action taken.'n")
else
begin

in Processed let base_maps : = m_empty[Map_id,Basemap](eq_str,lt_str)
end

end

[mk_base_images.N]
Set up base_images in Processed environment

Database --|
I-- Processed --I

I-- base_images: Map[Image_id, Baseimage]

type Map[A,Z] is MapRepltol[A,Z]
use PS() with 10, User, GlasgowLibraries: env; environment: proc (-> env) in
use GlasgowLibraries with BulkTypes: env in
use BulkTypes with Maps: env in
use Maps with

m_empty: proc[A,Z](proc(A,A -> bool), proc(A,A -> bool) -> Map[A,Z]) in
use User with Library, Database: env in
use Library with General: env in
use General with eq_str: proc(string,string -> bool);

lt_str: proc(string,string -> bool) in
use Database with Processed: env in
use 10 with writeString: proc(string) in
use Database with Processed: env in
use 10 with writeString: proc(string) in
begin

if Processed contains base_images then
writeString("The Processed environment already contains base_images, no

action taken.'n")
else

begin
in Processed let base_images :=

m_empty[Image_id, Baseimage](eq_str, lt_str)
end

end

[mk_derived_env.N]
Set up Derived environment in Database environment

PS() --I
I-- User --|

I-- Database --I
I-- Derived

use PS() with 10, User: env; environment: proc(-> env) in
use User with Database: env in

B-5

Appendix B : The Creation of Library and Database Environment

use 10 with writeString: proc(string) in
begin

if Database contains Derived then
writeString("Database already contains Derived, no action taken.'n")

else
begin

in Database let Derived := environment()
end

end

[mk_index_env.N]
Set up Index environment in Database environment

PS() --I
I-- User --I

I-- Database --I
I-- Index

use PS() with 10, User: env; environment: proc(-> env) in
use User with Database: env in
use 10 with writeString: proc(string) in
begin

if Database contains Index then
writeString("Database already contains Index, no action taken.'n")

else
begin

in Database let Index := environment()
end

end

[mk_ent i ty_mbrs.N]
Set up entity_mbrs in Index environment

User --|
I-- Data --I

I-- Index - I
I-- entity_mbrs: Map[Map_id, Entity_mbr]

use PS() with 10, User, GlasgowLibraries: env; environment: proc(-> env) in
use GlasgowLibraries with BulkTypes: env in
use BulkTypes with Maps: env in
use Maps with

m_empty: proc[A,Z](proc(A,A -> bool), proc(A,A -> bool) -> Map[A,Z]) in
use User with Database, Library: env in
use Library with General: env in
use General with eq_str, lt_str: proc(string,string -> bool) in
use Database with Index: env in
use 10 with writeString: proc(string) in
begin

if Index contains entity_mbrs then
writeString("Index already contain entity_mbrs, no action taken.'n")

else
in Index let entity_mbrs := m_empty[Map_id,Entity_mbr](eq_str,lt_str)

end

[mk_entity_indices.N]
Set up entity_indices in Index environment

B-6

Appendix B : The Creation of Library and Database Environment

User -|
I - Data - I

I - Index - I
I-- entity_indices: Map[Map_id, Entity_index]

use PS() with 10, User, GlasgowLibraries: env; environment: proc (-> env) in
use GlasgowLibraries with BulkTypes: env in
use BulkTypes with Maps: env in
use Maps with

m_empty: proc[A,Z](proc(A,A -> bool), proc(A,A -> bool) -> Map[A,Z]) in
use User with Database, Library: env in
use Library with General: env in
use General with eq_str, lt_str: proc(string,string -> bool) in
use Database with Index: env in
use 10 with writeString: proc(string) in
begin

if Index contains entity_indices then
writeString("Index already contain entity_indices, no action taken.'n")

else
in Index let entity_indices :=

m_empty[Map_id, Entity_index](eq_str, lt_str)
end

[mk_basemap_indices.N]
Set up basemap_indices in Index environment

User - I
I - Database - I

I - Index -|
I-- basemap_indices: Map[Peano, Map_id]

type Map[A, Z] is MapRepltol[A,Z]
use PS() with 10, User, GlasgowLibraries: env; environment: proc(-> env) in
use GlasgowLibraries with BulkTypes: env in
use BulkTypes with Maps: env in
use Maps with

m_empty: proc[A,Z](proc(A,A -> bool), proc(A,A -> bool) -> Map[A,Z]) in
use User with Library, Database: env in
use Library with General: env in
use General with eg peano: proc(Peano,Peano -> bool);

lt_peano: proc(Peano,Peano -> bool) in
use Database with Index: env in
use 10 with writeString: proc(string) in
begin

if Index contains basemap_indices then
writeString("Index already contains basemap_indices, no action

taken.1n")
else

begin
in Index let basemap_indices :=

m_empty[Peano, Map_id](eq_peano, lt_peano)
end

end

[mk_baseimage_indices.N]
Set up baseimage_indices in Index environment

Database --I
I-- Index --I

B-7

Appendix B : The Creation of Library and Database Environment

! I-- baseimage_indices: Map[Peano, List[Image_id]] !
! !
i ---i
type Map [A, Z] is MapRepltol [A, Z]
use PS() with IO, User, GlasgowLibraries: env; environment: proc(-> env) in
use GlasgowLibraries with BulkTypes: env in
use BulkTypes with Maps: env in
use Maps with

m_empty: proc[A,Z](proc(A,A -> bool), proc(A,A -> bool) -> Map[A,Z]) in
use User with Library, Database: env in
use Library with General: env in
use General with eg peano: proc(Peano,Peano -> bool);

lt_peano: proc(Peano,Peano -> bool) in
use Database with Index: env in
use 10 with writeString: proc(string) in
begin

if Index contains baseimage_indices then
writeString("Index already contains baseimage_indices, no action

taken.'n")
else

begin
in Index let baseimage_indices :=

m_empty[Peano, List[Image idl1(eg peano. lt_peano)
end

end

B-8

APPENDIX C : THE GENERAL LIBRARY PROCEDURES

Program / Procedure Description Page
Name

general_stubs
generalLib
stringToInt
stringToReal
errorAbort
waitSymbol

newline
space
intToBits
bitsToInt
power_2_k
vector_isu_sort
eq_int, lt_int
eq_str, lt_str
eg peano. It peano
eg peanor. It peanor
xyToPK

pkToXY

xyToPKR

pkrToXY

getQuadExtent

Set up the variable stubs in the General environment

Set up the libraries in the General environment

Convert a string to an integer

Convert a string to a real

Write an error message and quit the program

Generate a symbol that represents waiting for a job to
be completed

Create a number of newlines

Create a number of spaces

Convert an integer to an n-bit representation

Convert an n-bit representation to an integer

2k : 2 to the power of k

Sort a vector of real values

Several predicates for creating Map bulk types

Convert an xy-coordinate pair to a peano key of integer
value

Convert a peano key of integer value to an xy-
coordinate pair

Convert an xy-coordinate pair to a peano key of real
value

Convert a peano key of real value to an xy-coordinate
pair

Determine the coverage extent of a quadrant from the
peano key

C-l

C-3

C-3

C-4

C-4

C-4

C-4

C-5

C-5

C-5

C-5

C-6

C-6

C-6

C -l

C -l

C-8

C-8

Appendix C : The General Library Procedures

[general_stubs.N]

This program sets up the variable stubs in the General environment

use PS() with 10, Time, GlasgowLibraries,
User: env; environment: proc(-> env) in

use User with Library: env in
use Library with General:env in
use 10 with writeString: proc(string) in
use Time with date: proc(-> string) in
use GlasgowLibraries with Miscellany: env in
use Miscellany with uninitialised: proc[T](string -> T);

uninitialised_void: proc(string) in
begin

let date = date()
if General contains stringToInt then

writeString("'nGeneral already contains stringToInt, no changes
made.'n")

else
begin
! keep a record of date when the General library was last updated
in General let changedOn := date
in General let stringToInt := proc(s:string -> int)

uninitialised[int]("stringToInt")
in General let stringToReal := proc(s:string -> real)

uninitialised[real]("stringToReal")
in General let errorAbort := proc(s:string)

uninitialised_void("errorAbort")
in General let waitSymbol := proc(count: int)

uninitialised_void("waitSymbol")
in General let newline := proc(n:int)

uninitialised_void("newline")
in General let space := proc(n:int)

uninitialised__void ("space")
in General let intToBits := proc(value, n: int -> *int)

uninitialised[*int]("intToBits")
in General let bitsToInt := proc(bits: *int -> int)

uninitialised[int]("bitsToInt")
in General let power_2_k := proc(k: int -> int)

uninitialised[int]("power_2_k")
in General let vector_isu_sort := proc(v: *real)

uninitialised_void("vector_isu_sort")
in General let eq_int := proc(a, b: int -> bool)

uninitialised[bool]("eq_int")
in General let lt_int := proc(a, b: int -> bool)

uninitialised[bool]("lt_int")

C -l

Appendix C : The General Library Procedures

in General let eq_str := proc(a, b: string -> bool)
uninitialised[bool]("eq_str")

in General let lt_str := proc(a, b: string -> bool)
uninitialised[bool]("lt_str")

in General let eg peano := proc(a, b: Peano -> bool)
uninitialised [bool] (" eg peano11)

in General let lt_peano := proc(a, b: Peano -> bool)
uninitialised[bool]("lt_peano")

in General let eq_peanor := proc(a, b: Peanor -> bool)
uninitialised[bool]("eg peanor")

in General let lt_peanor := proc(a, b: Peanor -> bool)
uninitialised[bool]("lt_peanor")

in General let xyToPK := proc(xy: XY -> int)
uninitialised[int]("xyToPK")

in General let pkToXY := proc(pk: int -> XY)
uninitialised[XY]("pkToXY")

in General let xyToPKR := proc(xy: XY -> real)
uninitialised[real]("xyToPKR")

in General let pkrToXY := proc(pk: real -> XY)
uninitialised[XY]("pkrToXY")

in General let getQuadExtent := proc(peano: Peanor -> Extent)
uninitialised[Extent]("getQuadExtent")

writeString("'n'"General1" environment stubs set up on ")
writeString(date)
writeString("'n")
end

end

C-2

Appendix C : The General Library Procedures

[generalLib.N]
This program sets up the libraries in the General environment

use PS() with Arithmetical, String, 10, System, Vector, User:env in
use Arithmetical with float: proc(int -> real);

truncate: proc(real -> int) in
use String with stringToAscii: proc(string -> int);

length: proc(string -> int) in
use 10 with writeString: proc(string) in
use System with abort: proc() in
use Vector with upb, lwb: proc[W](*W -> int) in
use User with Library:env in
use Library with General:env in
use General with

stringToInt: proc(string -> int);
stringToReal: proc(string -> real);
errorAbort: proc(string);
waitSymbol: proc(int);
newline: proc(int);
space: proc(int);
intToBits: proc(int,int -> *int);
bitsToInt: proc(*int -> int);
power_2_k: proc(int -> int);
vector_isu_sort: proc(*real);
eq_int, lt_int: proc(int,int -> bool);
eq_str, lt_str: proc(string,string -> bool);
eg peano, lt_peano: proc(Peano,Peano -> bool);
eg peanor, lt_peanor: proc(Peanor,Peanor -> bool);
xyToPK: proc(XY -> int);
pkToXY: proc(int -> XY) ;
xyToPKR: proc(XY -> real);
pkrToXY: proc(real -> XY) ;
getQuadExtent: proc(Peanor -> Extent) in

begin
I -- i
! i
! convert a string to an integer !
I i
i - i

stringToInt := proc(s:string -> int)
begin

let start := 1; let finish = length(s)
let x := 0; let sign := 1
while stringToAscii(s(start 11)) = 32 and start <= finish do

start := start + 1
if s(start II) = do
begin

sign := -1
start := start + 1

end
for i = start to finish do
x := 10 * x + stringToAscii(s(i11))-48
x := x * sign
x

end
i --- i

C-3

convert a string to a real
Appendix C : The General Library Procedures

stringToReal := proc(s:string -> real)
begin

let start := 1 ; let finish = length(s)
let x : = 0.0; let sign := 1.0
let si := 0; let s2 := 0; let divisor := 1.0
while stringToAscii(s(start 11)) = 32 and start <= finish do

start := start + 1
if s(start|1) = do
begin

sign := -1.0
start := start + 1

end
while s(start 11) ~= do
begin

si : = 10 * si + stringToAscii(s(start 11))-48
start : = start + 1

end
start := start + 1
while start < finish do
begin

s2 : = 10 * s2 + stringToAscii(s(start 11)) -48
start := start + 1
divisor := divisor * 10.0

end
x : = float(si) + float(s2) / divisor
x := x * sign
X

end

write an error message and quit the program !

errorAbort := proc(s: string)
begin

writeString("'n Error: " + + s ++ "'n Aborting ... 'n'n")
abort()

end

generate a symbol that represents waiting for a job to be completed !

waitSymbol := proc(count: int)
begin

case count rem 4 of
0 : { writeString(" ' b 'b- ") }
1 : { writeString(" 'b'b\ ") }
2 : { writeString(" ' b ' b 1 ") }
3 : { writeString("'b ' b/ ") }
default : { }

end

create a number of newlines !

newline := proc(n: int)
begin

for i - 1 to n do writeString("'n")

C-4

Appendix C : The General Library Procedures

end

create a number of spaces

space := proc(n: int)
begin

for i = 1 to n do writeString(" ");
end

convert an integer to an n-bit representation

intToBits := proc(value, n: int -> *int)
begin

let bits := vector 0 to n-1 of 0
for i = 0 to n-1 do
begin

bits(i) := value rem 2
value := value div 2

end
bits

end

convert an n-bit representation to an integer

bitsToInt := proc(bits: *int -> int)
begin

let value := bits(O)
let k := 1
let n = upb[int](bits) - lwb[int](bits)
for i = 1 to n do
begin

k := k * 2
value := value + k * bits(i)

end
value

end

k
2 : 2 to the power of k

power_2_k := proc(k: int -> int)
begin

let x := 1
if k = 0 then x := 1 else

begin
for i = 1 to k do

x : = x * 2
end

x
end

sort a vector of real values

C-5

Appendix C : The General Library Procedures

! i
i -- i

vector_isu_sort := proc(v: *real)
begin

let 1 = lwb[real](v); let u = upb[real](v)
for i = 1 to u do
for i = 1 + 1 to u do
begin

if v(i-l) > v (i) do { let tmp = v(i-l); v(i-l) := v(i); v(i) := tmp }
end

end
i

Several predicates for creating Map bulk types
i
eq_int := proc(a,b:int -> bool); { if a = b then true else false }
lt_int := proc(a,b:int -> bool); { if a < b then true else false }
eq_str := proc(a,b:string -> bool); { if a = b then true else false }
lt_str := proc(a,b:string -> bool); { if a < b then true else false }
eg peano := proc(a,b:Peano -> bool)
begin

if a(peano_key) = b(peano_key) and
a(side_length) = b(side_length) then true else false

end
lt_peano := proc(a,b:Peano -> bool)
begin

if a(peano_key) < b(peano_key) then true
else if a(peano_key) = b(peano_key) and

a(side_length) < b(side_length) then true
else false

end
eg peanor := proc(a,b:Peanor -> bool)
begin

if a(peano_key) = b(peano_key) and
a(side_length) = b(side_length) then true else false

end
lt_peanor := proc(a,b:Peanor -> bool)
begin

if a(peano_key) < b(peano_key) then true
else if a(peano_key) = b(peano_key) and

a(side_length) < b (side_length) then true
else false

end

Convert an xy-coordinate pair to a peano key of integer value
Each coordinate value ranges from 0. to 9999.
i.e. a maximum of 4 digits for each coordinate
The value of the peano key ranges from 0 to 1073741824 (2 A 30)

xyToPK := proc(xy: XY -> int)
begin

let n = 15
let x_bits = intToBits(truncate(xy(x)),n)
let y_bits = intToBits(truncate(xy(y)),n)
let xy_bits := vector 0 to 2*n-l of 0
! perform bit interleaving

C-6

Appendix C : The General Library Procedures

for i = 0 to n-1 do
begin

xy_bits(2*i) := y_bits(i)
xy_bits(2*i+l) : = x_bits(i)

end
let pk = bitsToInt(xy_bits)
Pk

end

Convert a peano key of integer value to an xy-coordinate pair
- The value of the peano key (pk) ranges from 0 to 1073741824 (2 ~ 30)

pkToXY := proc(pk: int -> XY)
begin

let n = 15
let xy_bits = intToBits(pk,2*n)
let x_bits := vector 0 to n-1 of 0
let y_bits := vector 0 to n-1 of 0
for i = 0 to n-1 do
begin

y_bits(i) := xy_bits(2*i)
x_bits(i) := xy_bits(2*i+l)

end
let x = float(bitsToInt(x_bits))
let y = float(bitsToInt(y_bits))
let xy = XY(x,y)
xy

end

Convert an xy-coordinate pair to a peano key of real value
Each coordinate value ranges from 0. to 999999999.
i.e. a maximum of 9 digits for each coordinate
The value of the peano key ranges from 0. to 2. ̂62

(max. 19 digits).

xyToPKR := proc(xy: XY -> real)
begin

let n = 31
let x_bits := intToBits(truncate(xy(x)),n)
let y_bits := intToBits(truncate(xy(y)),n)
let xy_bits := vector 0 to 2*n-l of 0
! perform bit interleaving
for i = 0 to n-1 do
begin

xy_bits(2*i) := y_bits(i)
xy_bits(2*i+l) := x_bits(i)

end
! decompose to two positive integer values of 31-bit representation and
! form into a positive real value of 62-bit representaion
for i = 0 to n-1 do
begin

y_bits(i) := xy_bits(i)
x_bits(i) := xy_bits(i+n)

end
let pk = float(bitsToInt(x_bits)) * 2147483648. +

float(bitsToInt(y_bits))
P k

end

C-7

Appendix C : The General Library Procedures

convert a peano key of real value to an xy-coordinate pair !
- the value of the peano key (pk) ranges from 0. to 2. A 62 !

(max. 19 digits) !
each coordinate value ranges from 0. to 999999999. !
i.e. a maximum of 9 digits for each coordinate !

pkrToXY := proc(pk: real -> XY)
begin

let n = 31
! convert a positive real value to two positive integers of 31-bit
! representation
let pkl = truncate(pk / 2147483648.) ! 2̂ 31 = 2147483648
let pkr = truncate(pk - float(pkl) * 2147483648)
let x_bits := intToBits(pkl,n)
let y_bits := intToBits(pkr,n)
let xy_bits := vector 0 to 2*n-l of 0
! joint two parts to a value of 62-bit representaion
for i = 0 to n-1 do
begin

xy_bits(i) := y_bits(i)
xy_bits(i+n) := x_bits(i)

end
! decompose and perform bit interleaving to two positive real values of
! 31-bit representation.
for i = 0 to n-1 do
begin

y_bits(i) := xy_bits(2*i)
x_bits(i) := xy_bits(2*i+l)

end
let x = float(bitsToInt(x_bits))
let y = float(bitsToInt(y_bits))
let xy = XY(x,y)
xy

end

determine the coverage extent of a quadrant from the peano key

getQuadExtent := proc(peano: Peanor -> Extent)
begin

let range = peano(side_length)
let xy = pkrToXY(peano(peano_key))
let x = xy(x)
let y = xy(y)
let xmin = if (x / range) - float(truncate(x / range)) = 0.

then float(truncate(x / range)) * range
else float(truncate(x / range) +1) * range

let ymin = if (y / range) - float(truncate(y / range)) = 0.
then float(truncate(y / range)) * range
else float(truncate(y / range) +1) * range

let quad_extent := Extent(xmin, ymin, range, range)
quad_extent

end

end

C-8

APPENDIX D : THE GRAPHICAL LIBRARY PROCEDURES

Program / Procedure Description Page
Name

graphical_stubs
graphicalLib
drawPoint
drawLineString
drawText
drawRectangle
makeCircle
pointInWindow
lineVisiblelnWindow

lineStrThroughWindow
getPoint

xHairGetPoint

dynaGetWinCornersA

dynaGetWinCornersB

dynaGetCircle
getDragDxy
getZoomExtent

getLineStrKeyPts

Set up the variable stubs in Graphical environment

Set up the libraries in Graphical environment

Draw a point

Draw a line string

Draw a text

Draw a rectangle

Make a circle

Point in a window test

Test whether a line segment is either completely visible
or only partially visible in a window

Test whether a line string passes through a window

Locate a point in the display window and return a pair
of coordinates

Locate a point in the display window with a cross-hair
cursor and return a pair of coordinates

Determine the min-max coordinates of a viewing
window defined by dynamically moving a mouse-
controlled cursor
- Press and hold the mouse button 1 at the first point,

drag the cursor to the second point and release it.

Determine the min-max coordinates of a viewing
window defined by dynamically moving a mouse-
controlled cursor
- Click the mouse button 1 at the first point, move the

cursor to the second point and click the mouse
button 1 again.

Dynamically get a circle

Get the shift amount by dragging a rubber line

Determine the drawing extent for various zooming
options

Construct a list of critical points that breaks a line
string into several components of monotonic lines

D -l

D-4

D-6

D-6

D-7

D-7

D-7

D-8

D-8

D-9

D-10

D-10

D -l 1

D-12

D -l 3

D-15

D-16

D-18

getLineStrMBR Determine the MBR of a linestring D-18

defaultPixel Set default pixel (on or off) for a specified depth D-19

colourToPixel Convert a colour-index value to its corresponding pixel D-19
representaion

pixelToColour Convert a pixel representation to its corresponding D-19
colour-index value

r gb Default n-colour RGB intensities D-20
- n = 8 or 16

grayLevel Create an n-level intensity of gray scales D-20

invGrayLevel Create an n-level inverse intensity of gray scales D-21

remap 16 Remap RGB (24 bits) to 16 colours (4bits) D-21

viewlmage Procedure for viewing an image in a window D-21

popupMenu Popup a menu in an X-window D-22

dialogue Box Display and get message in a dialogue box D-28

writeMessage Write a message in an X-window D-30

eraseMessage Erase a message in an X-window D -31

Appendix D : The Graphical Library Procedures

[graphical_stubs.N]
This program sets up the variable stubs in Graphical environment

use PS() with 10, Time, GlasgowLibraries,
User: env; environment: proc(-> env) in

use User with Library: env in
use Library with Graphical: env in
use 10 with writeString: proc(string) in
use Time with date: proc(-> string) in
use GlasgowLibraries with Miscellany: env in
use Miscellany with uninitialised: proc[T](string -> T);

uninitialised_void: proc(string) in
begin

let date = date()
if Graphical contains drawPoint then
writeString("1nGraphical already contains drawPoint, no changes

made.'n")
else
begin
! keep a record of date when the Graphical library was last updated
in Graphical let changedOn := date
in Graphical let drawPoint := proc(point: XY; pt_col: pixel;

window: image; draw_extent: Extent)
uninitialised_void("drawPoint")

in Graphical let drawLineString := proc(ln: List[XY]; line_col: pixel;
window: image;
draw_extent: Extent)

uninitialised_void("drawLineString")
in Graphical let drawText := proc(txt: string; txt_ht: real;

txt_orient: real; txt_col: pixel;
insert_pt: XY; window: image;
draw_extent: Extent)

uninitialised_void("drawText")
in Graphical let drawRectangle := proc(rectangle: MBR;

rectangle_col: pixel;
window: image; draw_extent: Extent)

uninitialised_void("drawRectangle")
in Graphical let makeCircle := proc(cp: XY; r: real -> List[XY])

uninitialised[List[XY]]("makeCircle")
in Graphical let pointlnWindow := proc(test_pt: XY; win_mbr: MBR -> bool)

uninitialised[bool]("pointlnWindow")
in Graphical let lineVisiblelnWindow := proc(pi, p2: XY;

win_mbr: MBR -> bool)
uninitialised[bool]("lineVisiblelnWindow")

in Graphical let lineStrThroughWindow := proc(line_str: List[XY];
line_str_mbr: MBR;
target_pt: XY;
aperture: real -> bool)

uninitialised[bool]("lineStrThroughWindow")
in Graphical let getPoint := proc(fd: file; window: image;

D -l

Appendix D : The Graphical Library Procedures

win_size: Win_size; draw_extent: Extent;
start: int -> XY)

uninitialised[XY]("getPoint")
in Graphical let xHairGetPoint := proc(fd: file; window: image;

win_size: Win_size;
draw_extent: Extent;
start: int -> XY)

uninitialised[XY]("xHairGetPoint")

in Graphical let dynaGetWinCornersA := proc(fd: file; window: image;
win_size: Win_size;
draw_extent: Extent;
start: int -> *XY)

uninitialised[*XY]("dynaGetWinCornersA")
in Graphical let dynaGetWinCornersB := proc(fd: file; window: image;

win_size: Win_size;
draw_extent: Extent;
start: int -> *XY)

uninitialised[*XY]("dynaGetWinCornersB")
in Graphical let dynaGetCircle := proc(fd: file; window: image;

win_size: Win_size;
draw_extent: Extent;
start: int -> Circle)

uninitialised[Circle]("dynaGetCircle")
in Graphical let getDragDxy := proc(fd: file; window: image;

win_size: Win_size;
start: int -> XY)

uninitialised[XY]("getDragDxy")
in Graphical let getZoomExtent := proc(zoom_opt: string; fd: file;

window: image; win_size: Win_size;
draw_extent: Extent;
map_extent: Extent;
start: int -> Extent)

uninitialised[Extent]("getZoomExtent")
in Graphical let getLineStrKeyPts := proc(xy_list: List[XY] -> List[XY])

uninitialised[List[XY]]("getLineStrKeyPts")
in Graphical let getLineStrMBR := proc(xy_list: List[XY] -> MBR)

uninitialised[MBR]("getLineStrMBR")

in Graphical let defaultPixel := proc(dp: pixel; depth: int -> pixel)
uninitialised[pixel]("defaultPixel")

in Graphical let colourToPixel := procfc, depth: int -> pixel)
uninitialised[pixel]("colourToPixel")

in Graphical let pixelToColour := proc(p: pixel; depth: int -> int)
uninitialised[int]("pixelToColour")

in Graphical let rgb := proc(nc: int -> **int)
uninitialised[**int]("rgb")

in Graphical let grayLevel : = proc(nc: int -> **int)
uninitialised[**int]("grayLevel")

in Graphical let invGrayLevel := proc(nc: int -> **int)
uninitialised[**int]("invGrayLevel")

D-2

Appendix D : The Graphical Library Procedures

in Graphical let remapl6 := proc(rv, gv, bv: int;
pixel_table: *pixel -> pixel)

uninitialised[pixel]("reampl6")
in Graphical let viewlmage := proc(raster: image; shift_pt: XY;

window: image; win_size: Win_size)
uninitialised_void("viewlmage")

in Graphical let popupMenu := proc(items: *string; actions: *proc ();
init: bool; fd: file; window: image;
win_size: Win_size; start: int)

uninitialised_void("popupMenu")
in Graphical let dialogueBox := proc(message, prompt: string; fd: file;

window: image; win_size: Win_size;
start: int -> string)

uninitialised[string]("dialogueBox")
in Graphical let writeMessage := proc(message: string; fd: file;

window: image; win_size: Win_size;
start: int -> Transient_image)

uninitialised[Transient_image]("writeMessage")
in Graphical let eraseMessage := proc(msg_img: Transient_image;

window: image)
uninitialised_void("eraseMessage")

writeString("'n'"Graphical1" environment stubs set up on ")
writeString(date)
writeString("'n")
end

end

D-3

Appendix D : The Graphical Library Procedures

[graphicalLib.N]
This program sets up the libraries in Graphical environment

type Font is structure(constant characters: *image; constant fontHeight:int;
constant descender: int; constant info: string)

type FontPack is structure(font: Font; stringToTile,
charToTile: proc(string -> image))

type drawFunction is variant(imageDraw: proc(image,pic,real,real,real,real);
fileDraw: proc(file, pic, real, real,real,real);
fail: null)

use PS() with Arithmetical, String, 10, Vector, System, Format, Font,
Graphical, Device, GlasgowLibraries, User: env in

use Arithmetical with
abs: proc(int -> int);
rabs: proc(real -> real);
sqrt: proc(real -> real);
float: proc(int -> real);
truncate: proc(real -> int);
bitwiseOr: proc(int,int -> int) in

use String with
stringToAscii: proc(string -> int);
asciiToString: proc(int -> string);
letter, digit: proc(string -> bool);
length: proc(string -> int) in

use 10 with
PrimitivelO: env;
makeReadEnv: proc(file -> env);
readLine: proc(-> string);
readReal: proc(-> real);
writelnt: proc(int);
writeString: proc(string) in

use PrimitivelO with
create: proc(string,int -> file);
open: proc(string,int -> file);
seek: proc(file,int,int -> int);
close: proc(file -> int);
readBytes: proc(file,*int,int,int -> int);
writeBytes: proc(file,*int,int,int -> int);
getByte: proc(int,int -> int);
setByte: proc(int,int,int -> int);
errorNumber: proc(-> int) in

use Vector with
lwb, upb: proc[t](*t -> int) in

use System with
abort: proc() in

use Format with
iformat: proc(int -> string);
fformat: proc(real,int,int -> string) in

use Font with screenR12,screenR14,screenB14,serifR16,gallantR19: FontPack in
use Graphical with

Raster, Outline: env in
use Outline with

makeDrawFunction: proc(string -> drawFunction) in
use Raster with

getPixel: proc(image,int,int -> pixel);
setPixel: proc(image,int,int,pixel);
xDim: proc(image -> int);
yDim: proc(image -> int);
zDim: proc(image -> int);

D-4

Appendix D : The Graphical Library Procedures

line: proc(image,int,int,int,int,pixel,int) in
use Device with

getScreen: proc(file -> image);
colourMap: proc(file,pixel,int);
locator: proc(file,*int);
getCursor: proc(file -> image);
getCursorlnfo: proc(file,*int);
setCursor: proc(file,image);
colourOf: proc(file,pixel -> int) in

use GlasgowLibraries with BulkTypes: env in
use BulkTypes with Maps, Lists: env in
use Maps with

m_empty: proc[A,Z](proc(A,A -> bool), proc(A,A -> bool) ->
Map[A,Z]);

m_contains: proc[A,Z](Map[A,Z],A -> bool);
m_isu_assign: proc[A,Z](Map[A,Z],A,Z);
m_isu_insert: proc[A,Z](Map[A,Z],A,Z);
m_find: proc[A,Z](Map[A,Z],A -> Z) in

use Lists with
l_make: proc[T](-> List[T]);
l_first: proc[T](List[T] -> T);
hd: proc[T](List[T] -> T);
tl: proc[T](List[T] -> List[T]);
l_length: proc[T](List[T] -> int);
l_prepend: proc[T](T,List[T]->List[T]);
l_map: proc[T,X](List[T], proc(T->X) -> List[X]);
l_join: proc[T](List[T],List[T] -> List[T]);
l_isu_join: proc[T](List[T],List[T] -> List[T]);
l_reverse: proc[T](List[T] -> List[T]);
l_contains: proc[T](List[T],T->bool);
l_nth: proc[T](List[T],int -> T) in

use User with
Library: env in

use Library with
General,
Graphical: env in

use General with
stringToInt: proc(string -> int);
errorAbort: proc(string);
newline: proc(int);
space: proc(int);
intToBits: proc(int, int -> *int);
bitsToInt: proc(*int -> int);
power_2_k: proc(int -> int);
vector_isu_sort: proc(*real) in

use Graphical with
drawPoint: proc(XY, pixel, image, Extent);
drawLineString: proc(List[XY], pixel, image, Extent);
drawText: proc(string, real, real, pixel, XY, image, Extent);
drawRectangle: proc(MBR, pixel, image, Extent);
makeCircle: proc(XY, real -> List[XY]);
pointlnWindow: proc(XY, MBR -> bool);
lineVisiblelnWindow: proc(XY, XY, MBR -> bool);
lineStrThroughWindow: proc(List[XY], MBR, XY, real -> bool);
getPoint: proc(file, image, Win_size, Extent, int -> XY) ;
xHairGetPoint: proc(file, image, Win_size, Extent, int -> XY) ;
dynaGetWinCornersA: proc(file, image, Win_size, Extent,

int -> *XY);
dynaGetWinCornersB: proc(file, image, Win_size, Extent,

int -> *XY);
dynaGetCircle: proc(file, image, Win_size, Extent,

int -> Circle);
getDragDxy: proc(file, image, Win_size, int -> XY);
getZoomExtent: proc(string, file, image, Win_size, Extent,

Extent, int -> Extent);
getLineStrKeyPts: proc(List[XY] -> List[XY]);

D-5

Appendix D : The Graphical Library Procedures

getLineStrMBR: proc(List[X Y] -> MBR);
defaultPixel: proc(pixel, int -> pixel);
colourToPixel: proc(int, int -> pixel);
pixelToColour: proc(pixel, int -> int);
rgb: proc(int -> **int);
grayLevel: proc(int -> **int);
invGrayLevel: proc(int -> **int);
remapl6: proc(int, int, int, *pixel -> pixel);
viewlmage: proc(image, X Y , image, Win_size);
popupMenu: proc(*string, *proc(), bool, file, image,

Win_size, int);
dialogueBox: proc(string, string, file, image, Win_size,int

-> string);
writeMessage: proc(string, file, image, Win_size, int

-> Transient_image);
eraseMessage: proc(Transient_image, image) in

begin

initialize required variables

let draw = makeDrawFunction("image")'imageDraw

draw a point

drawPoint := proc(point: XY; pt_col: pixel; window: image;
draw_ext ent: Ext ent)

begin
let x_min = draw_extent(x_min)
let y_min = draw_extent(y_min)
let x_max = x_min + draw_extent(x_range)
let y_max = y_min + draw_extent(y_range)
let pt = colour [point(x), point(y)] in pt_col
draw(window, pt , x_min, x_max, y_min, y_max)

end

draw a line string

drawLineString := proc(ln: List[XY]; line_col: pixel; window: image;
draw_extent: Extent)

begin
let x_min = draw_extent(x_min)
let y_min = draw_extent(y_min)
let x_max = x_min + draw_extent(x_range)
let y_max = y_min + draw_extent(y_range)
let line_str := [l_first[XY](In)(x),l_first[XY](In)(y)]
In := tl[XY](In)
while In isnt empty do
begin

let xy = hd[XY](In)
line_str := line_str ~ [xy(x),xy(y)]
In := tl[XY](In)

end
line_str := colour line_str in line_col
draw(window, line_str , x_min, x_max, y_min, y_max)

end

D-6

Appendix D : The Graphical Library Procedures

draw a text

drawText := proc(txt: string; txt_ht: real; txt_orient: real;
txt_col: pixel; insert_pt: XY; window: image;
draw_ext ent: Ext ent)

begin
let width = xDim(window)
let x_min = draw_extent(x_min)
let y_min = draw_extent(y_min)
let x_range = draw_extent(x_range)
let x_max = x_min + x_range
let y_max = y_min + draw_extent(y_range)
let nc = length(txt)
let result := colour text txt from insert_pt(x), insert_pt(y) to

insert_pt(x) + txt_ht * float(nc) ,insert_pt(y) in txt__col
if txt_orient 0.0 do
begin

result := shift rotate shift result by -insert_pt(x),-insert_pt(y) by
-txt_orient by insert_pt(x),insert_pt(y)

end
draw(window, result , x_min, x_max, y_min, y_max)

end

draw a rectangle

drawRectangle := proc(rectangle: MBR; rectangle_col: pixel;
window: image; draw_extent: Extent)

begin
let x_min = draw_extent(x_min)
let y_min = draw_extent(y_min)
let x_max = x_min + draw_extent(x_range)
let y_max = y_min + draw_extent(y_range)
let result = colour [rectangle(x_min),rectangle(y_min)] ~

[rectangle(x_min),rectangle(y_max)] ~
[rectangle(x_max),rectangle(y_max)] A
[rectangle(x_max),rectangle(y_min)] ~
[rectangle(x_min),rectangle(y_min)] in rectangle_col

draw(window, result, x_min, x_max, y_min, y_max)
end

make a circle

makeCircle := proc(cp: XY; r: real -> List[XY])
begin

let xc = cp(x); let yc = cp(y)
let circle := l_make[XY]()

! let n = truncate(pi / 2. * (r / pxl_resol))
let n = 10
if n >= 1 do
begin

let symToYaxis = proc(pt: XY -> XY)
begin

let sym_pt = XY(xc - pt(x) + xc, pt(y))
sym_pt

end
let symToXaxis = proc(pt: XY -> XY)
begin

D-7

Appendix D : The Graphical Library Procedures

let sym_pt = XY(pt(x), yc - pt(y) + yc)
sym_pt

end
let dt := 1. / float(n)
let t := dt / 2.
while t < 1.0 do
begin

let d = 1. + t * t
let x = xc + r * (2. - d) / d
let y = y c + r * 2 . * t / d
circle := l_prepend[XY](XY(x,y),circle)
t : = t + dt

end
let quad_circle = l_map[XY,XY](circle,symToYaxis)
circle := l_isu_join[XY](l_reverse[XY](circle),quad_circle)
let half_circle = l_map[XY,XY](circle,symToXaxis)
circle := l_isu_join[XY](circle,l_reverse[XY](half_circle))

end
circle

end

point in a window test

pointlnWindow := proc(test_pt: XY; win_mbr: MBR -> bool)
begin

let x = test_pt(x); let y = test_pt(y)
let in_win = if x >= win_mbr(x_min) and x <= win_mbr(x_max) and

y >= win_mbr(y_min) and y <= win_mbr(y_max)
then true else false

m win
end

test whether a line segment is either completely visible or only
partially visible in a window

lineVisiblelnWindow := proc(pi, p2: X Y ; win_mbr: M B R -> bool)
begin

let xl = pi(x); let yl = pi(y)
let x2 = p2 (x) ; let y2 = p2 (y)
let X L = win_mbr(x_min)
let X R = win_mbr(x_max)
let Y B = win_mbr(y_min)
let Y T = win_mbr(y_max)
let visible := false
if xl < X L or xl > X R or x2 < X L or x2 > X R or

yl < Y B or yl > Y T or y2 < Y B or y2 > Y T then
begin

! the line is not totally visible
if (xl < X L and x2 < X L) or (xl > X R and x2 > X R) or

(yl > Y T and y2 > Y T) or (yl < Y B and y2 < Y B) then
{ visible := false } ! the line is invisible

else
! the line is partially visible or diagonally crosses the corner
begin

! determine the intersections
if x2 - xl = 0. then ! the line is vertical
begin

if xl <= X R and xl >= X L then
begin

if (yl >= Y T and y2 >= Y T) or

D-8

Appendix D : The Graphical Library Procedures

(yl <= YB and y2 <= YB) then
{ visible := false }

else { visible := true }
end
else

{ visible := false }
end
else if y2 - yl = 0. then ! the line is horizontal
begin

if yl <= YT and yl >= YB then
begin

if (xl <= XL and x2 <= XL) or
(xl >= XR and x2 >= XR) then

{ visible := false }
else { visible := true }

end
else

{ visible := false }
end
else
begin

let m = (y2 - yl) / (x2 - xl)
let int_y_left = m * (XL - xl) + yl
let int_y_right = m * (XR - xl) + yl
let int_x_top = xl + (Y T - yl) / m
let int_x_bottom = xl + (Y B - yl) / m
if (int_y_left <= Y T and int_y_left >= Y B) or

(int_y_right <= Y T and int_y_right >= Y B) or
(int_x_top <= XR and int_x_top >= XL) or
(int_x_bottom <= XR and int_x_bottom >= XL) then
{ visible := true }

else
{ visible := false }

end
end

end
else

{ visible := true } ! the line is visible
visible

end

test whether a line string passes through a window

lineStrThroughWindow := proc(line_str: List[XY]; line_str_mbr: MBR;
target_pt: XY; aperture: real -> bool)

begin
let found := false
let hf_size = aperture / 2.
let x = target_pt(x); let y = target_pt(y)
let target_win = MBR(x - hf_size, y - hf_size,

x + hf_size, y + hf_size)
if pointlnWindow(target_pt,line_str_mbr) do
begin

let ptl := hd[XY](line_str)
line_str := t1[XY](line_str)
while line_str isnt empty and -found do
begin

let pt2 = hd[XY](line_str)
found := lineVisiblelnWindow(ptl,pt2,target_win)
ptl := pt2
line_str := tl[XY](line_str)

end
end

D-9

Appendix D : The Graphical Library Procedures

found
end

locate a point in the display window and return a pair of coordinates

getPoint := proc(fd: file; window: image; win_size: Win_size;
draw_extent: Extent; start: int -> XY)

begin
let x_min = draw_extent(x_min)
let y_min = draw_extent(y_min)
let x_range = draw_extent(x_range)
let y_range = draw_extent(y_range)
let x_max = x_min + x_range
let y_max = y_min + y_range
let data := vector 1 to 7 of 0
let x := 0. ; let y := 0.
let xy := XY(0.,0.)
let last_x := 0. ; let last_y := 0.
! create a new cursor image
let new_cursor := image 16 by 16 of off
setCursor(fd,new_cursor)
let flag := 0
let pxl_size = x_range / float(win_size(width))
! cross size = 10 pixels
let hfsize = 5.0 * pxl_size
let old_cross := nilpic
while flag ~= 1 do
begin

locator(fd,data)
x := x_min + float(data(3)) * pxl_size
y := y_min + float(data(4)) * pxl_size
if last_x ~= x and last_y ~= y do ! prevent crosshair from flashing
begin

let new_cross = colour [x - hfsize, y] ̂ [x + hfsize, y] ++
[x, y - hfsize] ̂ [x, y + hfsize] in on

draw(window(start 11),new_cross ++ old_cross,
x_min, x_max, y_min, y_max)

old_cross := colour new_cross in off
last_x := x; last_y := y

end
if data(5) = 1 do { flag := 1; xy := XY(x,y) }
if data(6) = 1 do
begin

flag := 1
draw(window(start 11), old_cross, x_min, x_max, y_min, y_max)

end
end
line(new_cursor, 0,15,8,0, on, 12)
line(new_cursor, 0,15,0,9, on, 12)
line(new_cursor, 0,15,5,12, on, 12)
setCursor(fd,new_cursor)
xy

end

locate a point in the display window with a cross-hair cursor and
return a pair of coordinates

xHairGetPoint := proc(fd: file; window: image; win_size: Win_size;
draw_extent: Extent; start: int -> XY)

begin

D-10

Appendix D : The Graphical Library Procedures

let x_min = draw_extent(x_min)
let y_min = draw_extent(y_min)
let x_range = draw_extent(x_range)
let y_range = draw_extent(y_range)
let x_max = x_min + x_range
let y_max = y_min + y_range
let pxl_size = x_range / float(win_size(width))
let data := vector 1 to 7 of 0
let x : — 0. ; let y := 0.
let xy := XY(0.,0.)
let last_x := 0. ; let last_y := 0.
! create a new cursor image
let new_cursor := image 16 by 16 of off
setCursor(fd, new_cursor)
let flag := 0
let old_cross := nilpic
while flag ~= 1 do
begin

locator(fd,data)
x := x_min + float(data(3)) * pxl_size
y := y_min + float(data(4)) * pxl_size
if last_x ~= x and last_y ~= y do ! prevent crosshair from flashing
begin

let new_cross = colour [x_min, y] ~ [x_max, y] ++
[x, y_min] ~ [x, y_max] in on

draw(window(start 11),new_cross + + old_cross,
x_min, x_max, y_min, y_max)

old_cross := colour new_cross in off
last_x := x; last_y : = y

end
if data(5) = 1 do { flag := 1 ; xy := XY(x,y)}
if data(6) = 1 do
begin

flag := 1
draw(window(start 11) , old_cross, x_min, x_max, y_min, y_max)

end
end
line(new_cursor, 0,15,8,0, on, 12)
line(new_cursor, 0,15,0,9, on, 12)
line(new_cursor, 0,15,5,12, on, 12)
setCursor(fd,new_cursor)
xy

end

determine the min-max coordinates of a viewing window defined by
dynamically moving a mouse-controlled cursor
- press and hold the mouse button 1 at the first point, drag the
cursor to the second point and release it.

dynaGetWinCornersA := proc(fd: file; window: image; win_size: Win_size;
draw_extent: Extent; start: int -> *XY)

begin
let x_min = draw_extent(x_min)
let y_min = draw_extent(y_min)
let x_range = draw_extent(x_range)
let y_range = draw_extent(y_range)
let x_max = x_min + x_range
let y_max = y_min + y_range
let pxl_size = x_range / float(win_size(width))
let data := vector 1 to 7 of 0
let xy := vector 1 to 2 of XY(0.,0.)
let xl := 0.; let yl := 0.; let x2 := 0.; let y2 := 0.

D - l l

Appendix D : The Graphical Library Procedures

let last_x := data(3); let last__y := data(4)
let failed := false
let flag := 0
while flag ~= 1 do
begin

locator(fd, data)
xl := x_min + float(data(3)) * pxl_size
yl := y_min + float(data(4)) * pxl_size
if data(5) = 1 do { flag := 1 }
if data(6) = 1 do { flag := 1 ; failed := true }

end
let old_box := nilpic
if -failed do
begin

while flag ~= 2 do
begin

locator(fd,data)
if data(3) -= last_x and data(4) ~= last_y do
begin

x2 := x_min + float(data(3)) * pxl_size
y2 := y_min + float(data(4)) * pxl_size
let new_box = colour [xl, yl] ~ [xl, y2] ~ [x2, y2] ~

[x2, yl] ̂ [xl, yl] in on
let result = old_box ++ new_box
draw(window(start 11), result, x_min, x_max, y_min, y_max)
old_box := colour new_box in off
last_x := data(3); last_y := data(4)

end
if data(5) = 0 do flag := 2

end
end
if -failed do
begin

let wx_min = if xl < x2 then xl else x2
let wy_min = if yi < y2 then yi else y2
let wx_max = if x2 > xl then x2 else xl
let wy_max = if y2 > yl then y2 else yixy(l) := XY(wx_min,wy_min)
xy (2) := XY(wx_max,wy_max)

end
xy

end
i __
i

! determine the min-max coordinates of a viewing window defined by
! dynamically moving a mouse-controlled cursor
! - click the mouse button 1 at the first point, move the cursor to the
! second point and click the mouse button 1 again.I
I__
dynaGetWinCornersB := proc(fd: file; window: image; win_size: Win_size;

draw_extent: Extent; start: int -> *XY)
begin

let x_min = draw_extent(x_min)
let y_min = draw_extent(y_min)
let x_range = draw_extent(x_range)
let y_range = draw_extent(y_range)
let x_max = x_min + x_range
let y_max = y_min + y_range
let pxl_size = x_range / float(win_size(width))
let data := vector 1 to 7 of 0
let xy := vector 1 to 2 of XY(0.,0.)
let xl := 0.; let yl := 0.; let x2 := 0.; let y2 := 0.

D-12

Appendix D : The Graphical Library Procedures

let failed := false
let flag := 0
while flag ~= 1 do
begin

locator(fd,data)
xl := x_min + float(data(3)) * pxl_size
yl := y_min + float(data(4)) * pxl_size
if data(5) = 1 do { flag := 1 }
if data(6) = 1 do { flag : = 1 ; failed := true }

end
let old_box := nilpic
if -failed do
begin

while flag ~= 2 do
begin

locator(fd,data)
x2 := x_min + float(data(3)) * pxl_size
y2 := y_min + float(data(4)) * pxl_size
if x2 = xl and y2 = yl then { }
else
begin

let new_box = colour [xl,yl] ̂ [xl,y2] ̂ [x2,y2] ^
[x2,yl] ~ [xl,yl] in on

let result = old_box ++ new_box
draw(window(start 11), result, x_min, x_max, y_min, y_max)
old_box := colour new_box in off
if data(5) = 1 do flag := 2
if data(6) = 1 do { flag := 2 ; failed := true }

end
end

end
if -failed do
begin

let wx__min = if xl < x2 then xl else x2
let wy__min = if yi < y2 then yi else y2
let wx__max = if x2 > xl then x2 else xl
let wy__max = if y2 > yi then y2 else yixy (1) := XY (wx_min,,wy_min)
xy(2) := XY(wx_max,wy_max)

end
xy

end

dynamically get a circle

dynaGetCircle := proc(fd: file; window: image; win_size: Win_size;
draw_extent: Extent; start: int -> Circle)

begin
! convert a line string to a picture
let lineStrToPic := proc(l: List[XY] -> pic)
begin

let first_pt := hd[XY](1)
let result := [first_pt(x), first_pt(y)]
while 1 isnt empty do
begin

let pt = hd[XY](1)
result := result ̂ [pt(x), pt(y)]
1 := tl[XY](1)

end
result := result ̂ [first_pt(x), first_pt(y)]

D-13

Appendix D : The Graphical Library Procedures

result
end
let x_min = draw_extent(x_min)
let y_min = draw_extent(y_min)
let x_range = draw_extent(x_range)
let y_range = draw_extent(y_range)
let x_max = x_min + x_range
let y_max = y_min + y_range
let new_cursor := image 16 by 16 of off
setCursor(fd,new_cursor)
let pxl_size = x_range / float(win_size(width))
! cross size = 10 pixels
let hfsize =5.0 * pxl_size
let data := vector 1 to 7 of 0
let xc := 0.; let yc := 0.; let r := 0.
let x := 0.; let y := 0.
let last_x := data(3); let last_y := data(4)
let old_cross := nilpic
let failed := false
let flag := 0
while flag ~= 1 do
begin

locator(fd,data)
if data(3) ~= last_x and data(4) ~= last_y do
begin

xc := x_min + float(data(3)) * pxl_size
yc := y_min + float(data(4)) * pxl_size
let new_cross = colour [xc - hfsize, yc] ̂ [xc + hfsize, yc] ++

[xc, yc - hfsize] ̂ [xc, yc + hfsize] in on
draw(window(start 11), new_cross ++ old_cross,

x_min, x_max, y_min, y_max)
old_cross := colour new_cross in off
last_x := data(3); last_y := data(4)

end
if data(5) = 1 do { flag := 1 }
if data(6) = 1 do
begin

flag := 1
failed := true
xc := 0.; yc := 0.
draw(window(start 11) , old_cross, x_min, x_max, y_min, y_max)

end
end
let cp = XY(xc,yc)
let old_circle := nilpic
if -failed do
begin

while flag ~= 2 do
begin

locator(fd,data)
if data(3) ~= last_x and data(4) ~= last.y' do
begin

x := x_min + float(data(3)) * pxl_size
y := y_min + float(data(4)) * pxl_size
r := sqrt((x - xc) * (x - xc) + (y - yc) * (y - yc))
let circle = makeCircle(cp, r)
let new_circle = colour lineStrToPic(circle) in on
let result = old_circle ++ new_circle
draw(window(start 11), result, x_min, x_max, y_min, y_max)
old_circle := colour new_circle in off
last_x := data(3); last_y := data(4)

end
if data(5) = 0 do flag := 2

end
end

D-14

Appendix D : The Graphical Library Procedures

line(new_cursor, 0,15,8,0, on, 12)
line(new_cursor, 0,15,0,9, on, 12)
line(new_cursor, 0,15,5,12, on, 12)
setCursor(fd,new_cursor)
let cir_param = Circle(cp,r)
cir_param

end

get the shift amount by dragging a rubber line

getDragDxy := proc(fd: file; window: image; win_size: Win_size;
start: int -> XY)

begin
let x_max = float(win_size(width))
let y_max = float(win_size(height))
let data : = vector 1 to 7 of 0
let cursor_data := vector 1 to 3 of 0
let xl : = 0.; let yl := 0.; let x2 := 0.; let y2 := 0.
let last_x := 0. ; let last_y := 0.
let flag := 0
let failed := false
let dxy : = XY(0.,0.)
let new_cursor := image 16 by 16 of off
setCursor(fd,new_cursor) ! disable the default cursor
let hfsize =5.0 ! cross size = 10 pixels
let old_crossl := nilpic
while flag ~= 1 do
begin

locator(fd, data)
xl := float(data(3))
yl := float(data(4))
if last_x ~ = xl and last_y ~ = yl do
begin

let new_crossl = colour [xl - hfsize, yl] ̂ [xl + hfsize, yl] + +
[xl, yl - hfsize] ~ [xl, yl + hfsize] in on

draw(window(start I 1), new_crossl + + old_crossl,
0., x_max, 0., y_max)

old_crossl := colour new_crossl in off
last_x := xl; last_y := yl

end
if data(5) = 1 do { flag := 1 }
if data(6) = 1 do { flag := 1; failed := true }

end
old_crossl := colour old_crossl in on
let old_cross2 := nilpic
let old_line := nilpic
if -failed do
begin

while flag ~= 2 do
begin

locator(fd,data)
x2 := float(data(3))
y2 := float(data(4))
if last_x ~= x2 and last_y ~= y2 do
begin

if rabs(x2 - xl) > hfsize and rabs(y2 - yl) > hfsize do
begin

let new_cross2 = colour [x2 - hfsize, y2] ^
[x2 + hfsize, y2]++
[x2, y2 - hfsize] A
[x2, y2 + hfsize] in on

draw(window(start 11), new_cross2 ++ old_cross2,

D-15

Appendix D : The Graphical Library Procedures

0., x_max, 0., y_max)
old_cross2 := colour new_cross2 in off

end
let new_line = colour [xl,yl]^[x2,y2] in on
draw(window(start 11), old_crossl ++ old_line ++ new_line,

0., x_max, 0., y_max)
old_line := colour new_line in off
last_x := x2; last_y := y2

end
if data(5) = 0 do { flag := 2 }

end
dxy := XY(x2 - xl ,y2 - yl)

end
old_crossl := colour old_crossl in off
draw(window(start 11), old_crossl ++ old_line ++ old_cross2,

0., x_max, 0., y_max)
dxy

end

determine the drawing extent for various zooming options

getZoomExtent := proc(zoom_opt: string; fd: file; window: image;
win_size: Win_size; draw_extent, map_extent: Extent;
start: int -> Extent)

begin
let x_min := draw_extent(x_min)
let y_min := draw_extent(y_min)
let x_range := draw_extent(x_range)
let y_range := draw_extent(y_range)
let x_max := x_min + x_range
let y_max := y_min + y_range
let hw_ratio = float(win_size(height)) / float(win_size(width))
case zoom_opt of
"A","a" : begin

writeString("Fitting the map to the entire window'n")
let map_xrange := map_extent(x_range)
let map_yrange := map_extent(y_range)
if map_xrange * hw_ratio <= map_yrange then
begin

x_range
y_range

end
else
begin

x_range
y_range

end
x_min
y_min
x_max
y_max

end
"C","c" : begin

writeString("Digitise the centre point of an intended zoom-
in/out area.'n")

map_yrange / hw_ratio
map_yrange

map_xrange
map_xrange

= map_extent(x_min)
= map_extent(y_min)
= x_min + x_range
= y_min + y_range

hw ratio

let cp = getPoint(fd,window,win_size,draw_extent,start)
if cp(x) = 0. and cp(y) = 0. then { } else
begin

writeString("'nEnter a magnification/reduction factor:
;let mag_fac = readReal()

let trash = readLine()
if mag_fac ~= 0. do

D-16

Appendix D : The Graphical Library Procedures

begin
x_min := cp(x) - x_range / 2 . 1 mag_fac
x_max := cp(x) + x_range / 2 . 1 mag_fac
y_min := cp(y) - y_range / 2 . 1 mag_fac
y_max := cp(y) + y_range / 2 . 1 mag_fac

end
end

end
"P","p" : begin

writeString("Draw a line to indicate the direction and the
distance of panning. 'n")

let dxy = getDragDxy(fd,window,win_size,start)
if dxy(x) = 0. and dxy(y) = 0. then { } else
begin

x_min := x_min - dxy(x) * x_range /
float (win_size(width))

y_min := y_min - dxy(y) * y_range /
float(win_size(height))

x_max := x_min + x_range
y_max := y_min + y_range

end
let new_cursor := image 16 by 16 of off
line(new_cursor, 0,15,8,0, on, 12)
line(new_cursor, 0,15,0,9, on, 12)
line(new_cursor, 0,15,5,12, on, 12)
setCursor(fd,new_cursor)

end
«X","x" : begin

writeString("Enter a magnification/reduction factor: ");let
mag_fac = readReal()

let trash = readLine()
if mag_fac ~= 0. do
begin

let map_xrange := map_extent(x_range)
let map_yrange := map_extent(y_range)
if map_xrange * hw_ratio <= map_y range then
begin

x_range := map_yrange / hw_ratio
y_range := map_yrange

end
else
begin

x_range := map_xrange
y_range := map_xrange * hw_ratio

end
let x_cent = map_extent(x_min) + map_xrange / 2.
let y_cent = map_extent(y_min) + map^/range / 2 .
x_min := x_cent - x_range / 2./ mag_fac
x_max := x_cent + x_range / 2./ mag_fac
y_min := y_cent - y_range / 2 . 1 mag_fac
y_max := y_cent + y_range / 2 . 1 mag_fac

end
end

"W","w" : begin
writeString("Digitise the diagonal corners of the intended

zoom-in area.'n")
let cp =

dynaGetWinCornersA(fd,window,win_size,draw_extent,start)
if cp(l)(x) = 0. and cp(l)(y) = 0. and

cp(2)(x) = 0. and cp(2)(y) = 0. then { } else
begin

let w_xrange = cp(2)(x) - cp(l)(x)
let w_yrange = cp(2) (y) - cp(l) (y)
if w_xrange * hw_ratio <= w_yrange then

D-17

Appendix D : The Graphical Library Procedures

begin
x_range := w__yrange / hw_ratio
y_range := w_yrange

end
else
begin

x_range := w_xrange
y_range := w_xrange * hw_ratio

end
x_min := cp(1)(x)
y_min := cp(1)(y)
x_max := x_min + x_range
y_max := y_min + y_range

end
end

11Q 11 / 11Q " : {}
default : {}
draw_extent : = Extent(x_min, y_min, x_max - x_min, y_max - y_min)
draw_extent

end

Construct a list of critical points that breaks a line string into
several components of monotonic lines

getLineStrKeyPts := proc(xy_list: List[XY] -> List[XY])
begin

let old_dir_code := 0
let key_pts_list := l_make[XY]()
let ptl := hd[XY](xy_list)
xy_list := tl[XY](xy_list)
while xy_list isnt empty do
begin

let pt2 = hd[XY](xy_list)
let dx = pt2(x) - ptl(x)
let dy = pt2(y) - ptl(y)
let new_dir_code = if dx >= 0. and dy > 0. then 1

else if dx > 0. and dy <= 0. then 2
else if dx <= 0. and dy < 0. then 3
else if dx < 0. and dy >= 0. then 4
else 0

if new_dir_code > 0 do
begin

if new_dir_code ~= old_dir_code do
begin

key_pts_list := l_prepend[XY](ptl,key_pts_list)
old_dir_code := new_dir_code

end
ptl := pt2

end
xy_list := tl[XY](xy_list)

end
key_pts_list := l_prepend[XY](ptl,key_pts_list)
key_pts_list : = l_reverse[XY](key_pts_list)
key_pts_list

end

Determine the MBR of a linestring

getLineStrMBR := proc(xy_list: List[XY] -> MBR)
begin

D-18

Appendix D : The Graphical Library Procedures

let xy := hd[XY](xy_list)
let x_min : = xy(x); let y_min : = xy(y)
let x_max := x_min; let y_max := y_min
xy_list := tl[XY](xy_list)
while xy_list isnt empty do
begin

xy : = hd[XY](xy_list)
let x = xy(x); let y = xy(y)
if x < x_min do x_min := x
if y < y_min do y_min := y
i f x > x_max do x_max := x
if y > y_max do y_max := y
xy_list := t1[XY](xy_list)

end
let mbr = MBR(x_min, y_min, x_max, y_max)
mbr

end

set default pixel (on or off) for a specified depth

defaultPixel := proc(dp: pixel; depth: int -> pixel)
begin

let pix := dp
for i = 1 to depth - 1 do { pix := pix ++ dp }
pix

end

convert a colour-index value to its corresponding pixel representaion

colourToPixel := proc(c; depth: int -> pixel)
begin

let pnew := off
if c rem 2 = 0 then pnew := off else pnew := on
c := c div 2
for i = 1 to depth - 1 do

begin
if c rem 2 = 0
then pnew := pnew ++ off
else pnew := pnew ++ on
c := c div 2

end
pnew

end

convert a pixel representation to its corresponding colour-index value

pixelToColour := proc(p: pixel; depth: int -> int)
begin

let v := if p(0|l) = on then 1 else 0
let s := 1
for i = 1 to depth-1 do

begin
s : = s * 2
i f p(i11) = on do v := v + s

end
v

end

D-19

Appendix D : The Graphical Library Procedures

default n-colour RGB intensities
n = 8 or 16

rgb := proc(nc: int -> **int)
begin

let rgb := vector 0 to nc - 1 using proc(i:int -> *int);
vector 1 to 3 of 0

case nc of
8: begin ! default 8-colour RGB intensity

black 0)
rgb(1,1) := 255

rgb (2,2) ::= 255
red
green

1)
2)

rgb(3,1) := 255; rgb (3,2) :== 255
rgb (4,3) : == 255

yellow
blue

3)
4)

rgb(5,1) := 255; rgb (5,3) ::= 255 magenta 5)
rgb (6,2) :== 255; rgb(6,3) := 255 cyan 6)

rgb(7,1) -= 255; rgb (7,2) : == 255; rgb(7,3) := 255 white 7)
end

6: begin ! default 16-colour RGB intensity
black 0)

rgb(1,1) = 127; rgb 1,2) := 127 olive 1)rgb(2,1) = 127; rgb (2,3) := 127 purple 2)
rgb(3,1) = 2 55; red 3)

rgb 4,2) = 127; rgb (4,3) := 127 aqua 4)
rgb 5,2) = 255

rgb (6,3) = 255
green
blue

5)
6)

rgb(7,1) = 85; rgb 7,2) = 85; rgb (7,3) = 85 dk gray 7)
rgb(8,1) = 17 0; rgb 8,2) = 170; rgb(8,3) = 170 It gray 8)
rgb(9,1) = 2 55; rgb 9,2) = 255 yellow 9)
rgb(10,1) = 255; rgb (10,3) = 255 magenta 10)
rgb(11,1) = 2 55; rgb 11,2) = 127; rgb (11,3) = 127 pink 11)

rgb 12,2) = 255; rgb(12,3) = 255 cyan 12)
rgb(13,1) = 127; rgb 13,2) = 255; rgb(13,3) = 127 lime 13)
rgb(14,1) = 127; rgb 14,2) = 127; rgb(14,3) = 255 sky 14)
rgb(15,1) = 2 55; rgb 15,2) = 255; rgb(15,3) = 255 white 15)

end
default: { }
rgb

end

create an n-level intensity of gray scales

grayLevel := proc(nc: int -> **int)
begin

let gray := vector 0 to nc-1 using proc(i:int -> *int);
vector 1 to 3 of 0

let intensity := 0; let diff = 255 div (nc - 1)
for j = 1 to 3 do

for i = 0 to nc - 1 do
begin

gray(i,j) := intensity
intensity := intensity + diff
if intensity > 255 do intensity := 0

end
gray

end

D-20

Appendix D : The Graphical Library Procedures

create an n-level inverse intensity of gray scales !
i

-- i
invGrayLevel := proc(nc: int -> **int)
begin

let gray := vector 0 to nc-1 using proc(i:int -> *int);
vector 1 to 3 of 0

let intensity := 255; let diff = 255 div (nc - 1)
for j = 1 to 3 do

for i = 0 to nc - 1 do
begin

gray(i,j) := intensity
intensity := intensity - diff
if intensity <0 do intensity := 255

end
gray

end
-- i

i
remap RGB (24 bits) to 16 colours (4bits) !

i
-- j
remapl6 := proc(rv,gv,bv: int; pixel_table: *pixel -> pixel)
begin

let code := 0
let dist := 127
let mask := 0
if rv + gv - bv > dist do code := bitwiseOr(code,1)
if rv - gv + bv > dist do code := bitwiseOr(code,2)
if -rv + gv + bv > dist do code := bitwiseOr(code,4)
dist := 382; mask := 8
if code = 0 then { dist := 127 ; mask := 7 } else

if code = 7 do { code := 8; dist := 637 ; mask := 7 }
if rv + gv + bv > dist do { code := bitwiseOr(code,mask) }
let newp := pixel_table(code)
newp

end

--i
I

procedure for drawing an image in a window !
i

--i
viewlmage := proc(raster: image; shift_pt: XY; window: image;

win_size: Win_size)
begin

let ras_width = xDim(raster); let ras_height = yDim(raster)
let win_width = win_size(width); let win_height = win_size(height)
! project image on the window
let xr := 0; let yr :=0; let xw := 0; let yw := 0
let x = truncate(shift_pt(x)); let y = truncate(shift_pt(y))
if x >= 0 and x < win_width
then { xw := x ; xr := 0 }
else if x < 0 and x >= - ras_width

then { xw := 0; xr := -x - 1 }
else if x < - ras_width

then { xw := 0; xr := ras_width - 1 }
else { xw := win_width - 1; xr := 0 }

if y >= 0 and y < win_height
then { yw := y ; yr := 0 }
else if y < 0 and y >= - ras_height

then { yw := 0; yr := -y - 1 }
else if y < - ras_height

D-21

Appendix D : The Graphical Library Procedures

then { yw := 0; yr := ras_height - 1 }
else { yw := win__height - 1; yr := 0 }

copy limit raster at xr,yr onto limit window at xw,yw
end

popup a menu in an X-window

popupMenu := proc(items: *string; actions: *proc(); init: bool;
fd: file; window: image; win_size: Win_size; start: int)

begin
! define dimension of the menu
let title_height = 30 ; let item_height = 2 0
let top := 0; let bottom := 10
let left := 15; let right := 15
let menu_depth = 4
let fg_col = 9
let bg_col = 8
let mv_bp = start + menu_depth - 1 ! the bit plane of the menu frame
let win_width = win_size(width)
let w.in_height = win_size (height)
let nc = power_2_k(menu_depth)
let default_pixel = defaultPixel(off,menu_depth)
let colour_index := vector 0 to nc-1 of default_pixel
for i = 0 to nc-1 do colour_index(i) := colourToPixel(i,menu_depth)
let title = items(0)
let title_image = screenB14(stringToTile)(title)
let title_width = xDim(title_image)
let title_font_height = yDim(title_image)
let max_item_width := title_width
let no_items = upb[string](items) - lwb[string](items)
for i = 1 to no_items do
begin

let item_width = xDim(screenR14(stringToTile)(items(i)))
if item_width > max_item_width do max_item_width := item_width

end
let menu_width = left + max_item_width + right
let menu_height = title_height + top + no_items * item_height + bottom
let menu_image := image menu_width by menu_height of

colour_index(bg_col)
let font_height = yDim(screenR14(stringToTile)(items(1)))
let half_space = (item_height - font_height) div 2
let dy = menu_height - title_height - top - half_space - font_height
let c := fg_col
for i = 1 to no_items do
begin

for k = 0 to menu_depth - 2 do
begin

if c rem 2 = 1 do { copy screenR14(stringToTile)(items(i)) onto
limit menu_image(k11) at

left, dy - (i — 1) * item_height }
c := c div 2

end
c := fg_col

end
c := fg_col
for k = 0 to menu_depth - 2 do ! the highest bit is reserved

! for foreground colour.
begin

! Note: font tiles are one-bit images.
! 0 = background, 1 = foreground,
if c rem 2 = 1 do

D-22

Appendix D : The Graphical Library Procedures

{ copy title_image onto limit menu_image(k11) at
left + (max_item_width - title_width) div 2, menu_height -
(title_height - title_font_height) div 2 - title_font_height }

c := c div 2
end
let menu_tmp_img := image menu_width by menu_height of

defaultPixel(off,menu_depth)
let title_tmp_img := image title_width by title_font_height of

defaultPixel(off,menu_depth)
let item_tmp_img := image max_item_width by item_height of

defaultPixel(off,menu_depth)
! use one of the bit planes of the window image for the manipulation
! of moving menu frame.
let bg_tmp_img := image xDim(window) by yDim(window) of off
copy window(mv_bp I 1) onto bg_tmp_img
let finished := false
let popuped := false
let retained := if init then true else false
let highlight_line := false
let highlight_title := false
let highlight_item := false
let visited := false
let moved := false
let anchor_x := win_width - menu_width - 15
let anchor_y := win_height - 15
let anchor_x_save := 0 ; let anchor_y_save := 0
let last_x := 0; let last_y := 0
let last_item := 0
let menu_frame : = image menu_width by menu_height of on
line(menu_frame,0,0,menu_width-l,0,off, 12)
line(menu_frame,menu_width-l,0,menu_width-l,menu_height-l,off,12)
line(menu_frame,menu_width-l,menu_height-l,0,menu_height-l,off,12)
line(menu_frame,0,menu_height-l,0, 0,off, 12)
line(menu_frame,2,2,menu_width-3,2,off,12)
line(menu_frame,menu_width-3,2,menu_width-3,menu_height-3,off,12)
line(menu_frame,menu_width-3,menu_height-3,2,menu_height-3,off,12)
line(menu_frame,2,menu_height-3,2,2,off,12)
let data := vector 1 to 7 of 0
let do_menu = proc()
begin

while -finished do
begin

locator(fd, data)
if (data(7) = 1 or popuped or retained) and -moved do
beginI

! popup the menu, if it does not appear.
i

if -popuped do
begin

if data(7) = 1 do { anchor_x := data(3);
anchor_y := data(4) }

if win_width - anchor_x < menu_width do
{ anchor_x := win_width - menu_width }

if anchor_y < menu_height do { anchor_y := menu_height }
copy limit window(start I menu_depth) at

anchor_x,anchor_y - menu_height onto menu_tmp_img
copy menu_image onto limit window(start I menu_depth) at

anchor_x, anchor_y - menu_height
popuped := true
highlight_item := false

end
j
! highlight the menu title, title underline and items.
i

! if the cursor is inside the menu template area, then

D-23

Appendix D : The Graphical Library Procedures

! highlight the underline of the menu title.
if data(3) > anchor_x and data(3) - anchor_x < menu_width and

data(4) < anchor_y and data(4) > anchor_y - menu_height
then
begin

if ~highlight_line do
begin

let line_image = image max_item_width by 1 of
colour_index(fg_col)

copy line_image onto limit window(start I menu_depth) at
anchor_x + left, anchor_y - title_height + 5

highlight_line := true
end

end
else if highlight_line do
begin

let line_image = image max_item_width by 1 of
colour_index(bg_col)

copy line_image onto limit window(start I menu_depth) at
anchor_x + left, anchor_y - title_height + 5

highlight_line := false
end
! if the cursor is inside the menu tile area, then highlight
! the menu title.
if data(3) > anchor_x + left and

data(3) - anchor_x < menu_width -right and
data(4) > anchor_y - title_height and
data (4) < anchor_y then

begin
if ~highlight_title do
begin

copy limit window(start I menu_depth) at
anchor_x + (menu_width - title_width) div 2,
anchor__y - (title_height - title_font_height) div 2 -
title_font_height onto title_tmp_img

let new_title_image := image title_width by
title_font_height of
defaultPixel(off, menu_depth - 1) ++ on

for k = 0 to menu_depth - 2 do ! a white title
{ copy title_image onto new_title_image(kI 1) }

copy new_title_image onto limit
window(start I menu_depth) at
anchor_x + (menu_width - title_width) div 2,
anchor_y - (title_height - title_font_height) div 2 -
title_font_height

highlight_title := true
end

end
else if highlight_title do
begin

copy title_tmp_img onto limit window(start I menu_depth) at
anchor_x + (menu_width - title_width) div 2,
anchor_y - (title_height - title_font_height) div 2 -
t i 11e_font_he i ght

highlight_title := false
end
! if the cursor is inside the item area, then highlight the
! selected item.
if data(3) > anchor_x + left and

data(3) - anchor_x < menu_width - right and
data (4) < anchor_y - top - title_height and
data(4) > anchor_y - menu_height + bottom then

begin
let y_offset = data(4) - anchor_y + title_height + top
let item = - y_offset div ((menu_height - title_height -

top - bottom) div no_items)

D-24

Appendix D : The Graphical Library Procedures

if ~highlight_item do
begin

copy limit window(start I menu_depth) at
anchor_x + 15,anchor_y - title_height -
top - (item +1) * item_height onto item_tmp_img

let light_image : = image max_item_width by
item_height of colour_index(fg_col)

! reverse the foreground and background colours of the
! image of the selected item.
xor item_tmp_img(0 I menu_depth - 1) onto

light_image(0 I menu_depth - 1)
copy light_image onto limit

window(start I menu_depth) at anchor_x + 15,
anchor_y - title_height - top -
(item +1) * item_height

highlight_item := true
last_item : = item

end
if item ~= last_item do
begin

copy item_tmp_img onto limit
window(start I menu_depth) at anchor_x + 15,
anchor_y - title_height - top -

(last_item +1) * item_height
highlight_item := false

end
end
else if highlight_item do
! if the cursor is outside the item area and an item is
! already highlighted, then turn it off.
begin

copy item_tmp_img onto limit window(start I menu_depth) at
anchor_x + 15, anchor_y - title_height - top -

(last_item +1) * item_height
highlight_item := false

end
end
I

! execute the command of an item
I

if popuped and data(7) = 0 do
begin

! when the cursor is inside the menu title area
! if the menu is just popuped, then release mouse button 3
! will retain the menu.
! if the menu is already retained, then click mouse button 2
! will dismiss the menu,
if data(3) > anchor_x + left and

data(3) - anchor_x < menu_width - right and
data(4) > anchor_y - title_height and
data(4) < anchor_y do

begin
retained := true
! click button 2 -- dismiss the menu,
if data(6) = 1 do { retained := false }
! intialize the conditions for the movement of the menu
if data(5) = 0 then

{ last_x := data(3); last_y := data(4) }
else if data(5) = 1 do
begin

i f -moved do
begin

moved := true
! dehighlight the menu title
copy menu_image onto limit

window(start I menu_depth) at

D-25

Appendix D : The Graphical Library Procedures

anchor_x, anchor__y - menu_height
! stand out the menu frame
copy menu_frame onto limit window(mv_bp I 1) at

anchor_x, anchor_y - menu_height
anchor_x_save := anchor_x
anchor_y_save := anchor_y

end
end

end
! drag the menu -- hold down the button 1 and drag the menu
! to a new location, then release the button,
if data(5) = 1 and moved then
begin

let dx = data(3) - last_x
let dy = data(4) - last_y
if dx ~= 0 or dy ~= 0 do
begin

let anchor_x_tmp = anchor_x + dx
let anchor_y_tmp = anchor_y + dy
if anchor_x_tmp > 0 and

anchor_x_tmp < win_width - menu_width and
anchor_y_tmp > menu_height and
anchor_y_tmp < win_height do

begin
let tmp_img_ht = menu_height + abs(dy)
let tmp_image := image (menu_width + abs(dx)) by

tmp_img_ht of off
let qd = if dx >= 0 and dy >= 0 then 1

else if dx >= 0 and dy < 0 then 2
else if dx < 0 and dy >= 0 then 3
else 4

case qd of
1 : { copy limit bg_tmp_img at

anchor_x, anchor_y - menu_height onto
tmp_image

copy menu_frame onto limit tmp_image at dx,dy
copy tmp_image onto limit window(mv_bp I 1) at

anchor_x, anchor_y - menu_height }
2 : { copy limit bg_tmp_img at

anchor_x, anchor_y - tmp_img_ht onto
tmp_image

copy menu_frame onto limit tmp_image at dx,0
copy tmp_image onto limit window(mv_bp I 1) at

anchor_x, anchor_y - tmp_img_ht }
3 : { copy limit bg_tmp_img at anchor_x_tmp,

anchor_y_tmp - tmp_img_ht onto tmp_image
copy menu_frame onto limit tmp_image at 0,dy
copy tmp_image onto limit window(mv_bp I 1) at

anchor_x_tmp, anchor_y_tmp - tmp_img_ht }
4 : { copy limit bg_tmp_img at anchor_x_tmp,

anchor_y - tmp_img_ht onto tmp_image
copy menu_frame onto tmp_image
copy tmp_image onto limit window(mv_bp I 1) at

anchor_x_tmp, anchor_y - tmp_img_ht }
default: {}
anchor_x := anchor_x_tmp
anchor_y := anchor_y_tmp
last_x := data(3); last_y := data(4)

end
end

end
else
begin

if moved do
begin

if anchor_x = anchor_x_save and anchor_y = anchor_y_save

D-26

Appendix D : The Graphical Library Procedures

then { } ! clicked but actually not moved
else
begin

! refresh the image of the bit plane which has been
! changed by the movement of the menu frame
copy bg_tmp_img onto window(mv_bp I 1)
copy menu_tmp_img onto

limit window(start I menu_depth) at
anchor_x_save, anchor_y_save - menu_height

copy limit window(start I menu_depth) at anchor_x,
anchor_y - menu_height onto menu_tmp_img

end
copy menu_image onto limit

window(start I menu_depth) at anchor_x,
anchor_y - menu_height

highlight_line := false
highlight_title := false
moved := false

end
end
! when cursor is inside the item area
! if the menu is just popuped, then release mouse button 3
! will execute the command of a menu item.
! if the menu is already retained, click mouse button 1
! will execute the command of a menu item,
if data(3) > anchor_x + left and

data(3) - anchor_x < menu_width - right and
data(4) < anchor_y - top - title_height and
data(4) > anchor_y - menu_height + bottom do

begin
if -retained or (retained and data(5) = 1 and -moved) do
begin

if -retained then ! dismiss the menu
begin

popuped := false
copy menu_tmp_img onto limit

window(start I menu_depth) at anchor_x,
anchor_y - menu_height

end
else ! dehighlight the menu after the selection
begin

copy menu_image onto limit
window(start I menu_depth) at
anchor_x, anchor_y - menu_height

end
let y_offset = data(4) - anchor_y + title_height + top
let c = -y_offset div ((menu_height - title_height -

top - bottom) div no_items)
visited := false
! execute the procedure of the selected item
if c >= 0 and c <= no_items - 2 then
begin

! restore the original window image before doing any
! action
copy menu_tmp_img onto limit

window(start I menu_depth) at anchor_x,
anchor_y - menu_height

actions(c)()
visited := true
! update the content of the moving bit plane of the
! menu frame
copy window(mv_bp I 1) onto bg_tmp_img
copy limit window(start I menu_depth) at anchor_x,

anchor_y - menu_height onto menu_tmp_img
end

D-27

Appendix D : The Graphical Library Procedures

else if c = no_items - 1 do { finished : = true }
if retained and visited do
begin

copy menu_image onto limit
window(start I menu_depth) at
anchor_x, anchor_y - menu_height

highlight_line := false
highlight_title := false
highlight_item := false
visited := false

end
end

end
if -retained or finished do
begin

popuped := false
copy menu_tmp_img onto limit window(start I menu_depth) at

anchor_x, anchor_y - menu_height'
end

end
end

end
do_menu()

end

display and get message in a dialogue box

dialogueBox := proc(message, prompt: string; fd: file; window: image;
win_size: Win_size; start: int -> string)

begin
let top := 15; let bottom : = 15
let left := 20;
let right := if message = "" then 75 else 20
let box_depth = 4
let msg_height = 20
let max_msg_width := 0
let bg_col = 14
let fg_col = 9
let char_col = 9
let win_width = win_size(width)
let win_height = win_size(height)
let nc = power_2_k(box_depth)
let default_pixel = defaultPixel(off,box_depth)
let colour_index := vector 0 to nc-1 of default_pixel
for i = 0 to nc-1 do colour_index(i) := colourToPixel(i,box_depth)
let message_len = length(message)
let n := 1
for i= 1 to message_len do ! 'n = LF (ASC = 10)
begin

if stringToAscii(message(i I 1)) = 10 do { n := n + 1 }
end
if prompt ~= "" and message -= "" do n := n + 2
let msg := vector 1 to n of ""
msg(n) := prompt
let k := 1
for i = 1 to message_len do
begin

if stringToAscii(message(i I 1)) =10 then { k := k + 1 }
else { msg(k) := msg(k) ++ messaged I 1) }

end
for i = 1 to n do
begin

D-28

Appendix D : The Graphical Library Procedures

let msg_width = xDim(screenR14(stringToTile)(msg(i)))
if msg_width > max_msg_width do max_msg_width := msg_width

end
let box_width = left + max_msg_width + right
let box_height = top + n * msg_height + bottom
let box_image := image box_width by box_height of colour_index(bg_col)
let box_tmp_img := image box_width by box_height of

defaultPixel(off,box_depth)
let font_height = yDim(screenR14(stringToTile)(" "))
let half_space = (msg_height - font_height) div 2
let dy = box_height - top - half_space - font_height
let c := fg_col
for i = 1 to n do
begin

for k = 0 to box_depth - 2 do
begin

if c rem 2 = 1 do { copy screenR14(stringToTile)(msg(i)) onto
limit box_image(k11) at
left, dy - (i-1) * msg_height }

c := c div 2
end
c := fg_col

end
let xr = (win_width - box_width) div 2
let yr = (win_height - box_height) div 2
copy limit window(start I box_depth) at xr,yr onto box_tmp_img
copy box_image onto limit window(start I box_depth) at xr,yr
let result := ""
use makeReadEnv (fd) with

inputPending : proc (-> bool);
readChar : proc (-> string) in

begin
! clear characters remaining in the input buffer
repeat { } while inputPending() do {
let data := vector 1 to 7 of 0
let finished := false
let i := 0
while -finished do
begin

! keep waiting for keyboard input
while -inputPending() and data(6)
if data(6) = 1 then { finished :=
else
begin

let char = readChar()
let asc = stringToAscii(char)
if asc = 10 or asc = 27 then

{ finished := true }
else
begin

if prompt ~= "" do
begin

if asc > 31 and asc < 127 then
begin

result := result ++ char
let c := char_col
let char_img := image

xDim(screenR14(stringToTile)(" ")) by
yDim(screenR14(charToTile)(" ")) of
colour_index(bg_col)

for k = 0 to box_depth - 2 do
begin

if c rem 2 = 1 do
{ copy screenR14(stringToTile)(char) onto

limit char_img(k11))
c := c div 2

let char = readChar() }

and mouse click
= 0 do { locator(fd,data) }
true }

! if LF or ESC then stop.

D-29

Appendix D : The Graphical Library Procedures

end
copy char_img onto limit window(start I box_depth) at

xr+left+xDim(screenRl4(stringToTile)(msg(n)))+
i*xDim(screenR14(charToTile)(char)),
yr+bottom+half_space

i := i + 1
end
else if asc = 127 and prompt ~= "" do
begin

i f i > 0 do
begin

if i > 1 then
{result := result(11 length(result) - 1)}

else { result : = ""}
i := i - 1
let delete := image

xDim(screenR14(stringToTile)(" ")) by
yDim(screenR14(charToTile)(" ")) of
colour_index(bg_col)

copy delete onto limit window(start I box_depth) at
xr+left+xDim(screenR14(stringToTile)(msg(n)))+
i*xDim(screenR14(charToTile)(" ")),
yr+bottom+half_space

end
end

end
end

end
end

end
copy box_tmp_img onto limit window(start I box_depth) at xr,yr
result

end

write a message in an X-window

writeMessage := proc(message: string; fd: file; window: image;
win_size: Win_size; start: int -> Transient_image)

begin
let top := 15; let bottom : = 15
let left := 20; let right := 20
let box_depth = 4
let msg_height =20
let max_msg_width := 0
let bg_col = 14
let fg_col = 9
let char_col = 9
let win_width = win_size(width)
let win_height = win_size(height)
let nc = power_2_k(box_depth)
let default_pixel = defaultPixel(off,box_depth)
let colour_index := vector 0 to nc-1 of default_pixel
for i = 0 to nc-1 do colour_index(i) := colourToPixel(i,box_depth)
let message_len = length(message)
let n := 1
for i= 1 to message_len do ! 1n = LF (ASC = 10)
begin

if stringToAscii(message(i I 1)) = 10 do { n := n + 1 }
end
let msg := vector 1 to n of ""
let k := 1
for i = 1 to message_len do
begin

D-30

Appendix D : The Graphical Library Procedures

if stringToAscii(message(i I 1)) =10 then { k := k + 1 }
else { msg(k) := msg(k) ++ message(i I 1) }

end
for i = 1 to n do
begin

let msg_width = xDim(screenR14(stringToTile)(msg(i)))
if msg_width > max_msg_width do max_msg_width := msg_width

end
let box_width = left + max_msg_width + right
let box_height = top + n * msg_height + bottom
let box_image := image box_width by box_height of colour_index(bg_col)
let box_tmp_img := image box_width by box_height of

defaultPixel(off,box_depth)
let font_height = yDim(screenR14(stringToTile)(" "))
let half_space = (msg_height - font_height) div 2
let dy = box_height - top - half_space - font_height
let c := fg_col
for i = 1 to n do
begin

for k = 0 to box_depth - 2 do
begin

if c rem 2 = 1 do { copy screenR14(stringToTile)(msg(i)) onto
limit box_image(k!1) at
left, dy - (i-1) * msg_height }

c := c div 2
end
c := fg_col

end
let xr = (win_width - box_width) div 2
let yr = (win_height - box_height) div 2
copy limit window(start I box_depth) at xr,yr onto box_tmp_img
copy box_image onto limit window(start I box_depth) at xr,yr
let pos = Pos(xr,yr)
let transient_img = Transient_image(box_tmp_img,pos,start)
transient_img

end

erase a message in an X-window

eraseMessage := proc(msg_img: Transient_image; window: image)
begin

let raster = msg_img(raster)
let depth = zDim(raster)
let pos = msg_img(pos)
copy raster onto limit window(msg_img(start_bp) I depth) at

pos(x), pos(y)
end

end

D-31

APPENDIX E : THE GIS LIBRARY PROCEDURES

Program / Procedure
Name

DescriDtion Pace

gis_stubs Set up the variable stubs in the GIS environment E-l

gisLib Set up the libraries in the GIS environment E-4

getOSmapInfo Determine the coordinates of the south-west corner of a
map and the map extent by entering a given OS map
name

E-7

getOSmapName Determine a set of map names that represent different
OS map series encompassing a given point

E-9

ntf625kToBasemap Read an NTF 1:625000 map file and construct a
basemap

E-9

nt f 2 5OkToBasemap Read an NTF 1:250000 map file and construct a
basemap

E-14

ntfcontourToBasemap Read an NTF contour map file and construct a basemap E-18

nt fblToBasemap Read an NTF boundaryline file and construct a basemap E-20

ntf UToBasemap Read an NTF landline file and construct a basemap E-27

ntfoscarToBasemap Read an NTF OSCAR file and construct a basemap E-30

storeBasemap Store a basemap E-35

removeBasemap Remove a basemap E-35

getPolyMBR Determine the MBR of a polygon E-36

pointInPolygon Point-in-polygon test E-36

gridNdxPoly Spatial indexing polygons using a grid-cell coded
structure

E-38

lqtNdxPoint Spatial indexing points using a linear quadtree structure E-39

lqtNdxLine Spatial indexing lines using a linear quadtree structure E-39

lqtNdxPoly Spatial indexing polygons using a linear quadtree
structure

E-41

fbffToRaw Read a flat binary format file (FBFF) and store it as a
rawimage

E-42

tiffToRaw Read a TIFF image file and store it as a rawimage E-42

rawToInterim Convert a raw image data to an interim image E-47

hsiToInterim Read an HSI-format image file and store it as an interim E-47
image

sunrasToInterim Read a Sunras image file and store it as an interim image E-49

tiffToInterim Read a TIFF image file and store it as an interim image E-51

interimToSunras Convert an interim image to a Sunras format file E-55

previewRaw Preview a raw image E-57

previewStretchedRaw Preview a linear-stretched raw image E-58

freqCount Determine the frequency of the brightness values of a
raw image

E-58

linearStretch Perform a linear constrast stretch on a raw image E-59

freqCount2 Determine the frequency of the brightness values of an
interim image

E-60

linearStretch2 Perform a linear constrast stretch on an interim image E-61

getFreqChart Generate the frequency chart of an image E-61

plotFreqChart Draw the frequency chart of an image before and after a
linear contrast stretch

E-62

rawToInterimlmage Convert a raw image to an interim image E-62

interimToBaseimage Convert an interim image to a baseimage E-63

storeRawimage Store a raw image E-65

storelnterimlmage Store an interim image E-65

removeRawimage Remove a rawimage E-66

removelnterimlmage Remove an interim image E-66

removeBaseimage Remove a baseimage E-67

loadBaseimage Load a baseimage E-68

Appendix E : The GIS Library Procedures

i ---
i
• [gis_stubs.N]
i

i

! This program sets up the variable stubs in the GIS environment
I
i

i
i ---

use PS() with 10, Time, GlasgowLibraries,
User:env; environment: proc(-> env) in

use User with Library: env in
use Library with GIS: env in
use 10 with writeString: proc(string) in
use Time with date: proc(->string) in
use GlasgowLibraries with Miscellany: env in
use Miscellany with uninitialised: proc[T](string->T);

uninitialised_void: proc(string) in
begin

let date = date()
if GIS contains getOSmapInfo then
writeString("1nGIS already contains getOSmapInfo, no changes made.'n")

else
begin
! keep a record of date when the GIS library was last updated
in GIS let changedOn := date
in GIS let getOSmapInfo := proc(map_name: string -> OS_map_info)

uninitialised[0S_map_info]("getOSmapInfo")
in GIS let getOSmapName := proc(point: XY -> OS_map_name)

uninitialised[OS_map_name]("getOSmapName")

in GIS let ntf625kToBasemap := proc(fn: string -> Basemap)
uninitialised[Basemap]("ntf625kToBasemap")

in GIS let ntf2 50kToBasemap := proc(fn: string -> Basemap)
uninitialised[Basemap]("ntf250kToBasemap")

in GIS let ntfcontourToBasemap := proc(fn: string -> Basemap)
uninitialised[Basemap]("ntfcontourToBasemap")

in GIS let ntfblToBasemap := proc(fn: string -> Basemap)
uninitialised[Basemap]("ntfblToBasemap")

in GIS let ntfUToBasemap := proc(fn: string -> Basemap)
uninitialised[Basemap]("ntfUToBasemap")

in GIS let ntfoscarToBasemap := proc(fn: string -> Basemap)
uninitialised[Basemap]("ntfoscarToBasemap")

in GIS let storeBasemap := proc(map_id: Map_id; basemap: Basemap;
map_extent: Extent)

uninitialised_void("storeBasemap")
in GIS let removeBasemap := proc()

uninitialised_void("removeBasemap")

in GIS let getPolyMBR := proc(poly_id: Poly_id;
pb_cid_chain: PB_cid_chain;

E-l

Appendix E : The GIS Library Procedures

pb_gid_geometry: PB_gid_geometry -> MBR)
uninitialised[MBR]("getPolyMBR")

in GIS let pointInPolygon := proc(test_pt: XY;
pb_polygon: PB_polygon;
pb_cid_chain: Map[Chain_id, PB_chain];
pb_gid_geometry: Map[Geom_id, PB_geometry];
chain_mbr: Map[Geom_id, MBR] -> bool)

uninitialised[bool]("pointlnPolygon")
in GIS let gridNdxPoly := proc(poly_id: Poly_id; mbr: MBR;

polygon_index: Map[Peanor,List[Poly_id]];
si: real)

uninitialised_void("gridNdxPoly")
in GIS let lqtNdxPoint := proc(peano: Peanor;

pointid_list: List[Point_id];
pid_point: Map[Point_id, XY];
point_index: Map[Peanor, List[Point_id]])

uninitialised_void("lqtNdxPoint")
in GIS let lqtNdxLine := proc(peano: Peanor; lid_list: List[Line_id];

lid_line: Map[Line_id, List. [XY]] ;
line_mbr: Map[Line_id, MBR];
line_key_pts: Map[Line_id, List[XY]];
line_index: Map[Peanor, List [Line__id]])

uninitialised_void("lqtNdxLine")
in GIS let lqtNdxPoly := proc(peano: Peanor; pid_list: List[Poly_id];

poly_mbr: Map[Poly_id, MBR] ;
polygon_index: Map[Peanor, List[Poly_id]])

uninitialised_void("lqtNdxPoly")

in GIS let fbffToRaw := proc(fn: string;
width, height, depth: int -> Rawimage)

uninitialised[Rawimage]("fbffToRaw")
in GIS let tiffToRaw := proc(fn: string -> Rawimage)

uninitialised[Rawimage]("tiffToRaw")
in GIS let rawToInterim := proc(rawimage: Rawimage -> Interim_image)

uninitialised[Interim_image]("rawToInterim")
in GIS let hsiToInterim := proc(fn: string -> Interim_image)

uninitialised[Interim_image]("hsiToInterim")
in GIS let sunrasToInterim := proc(fn: string -> Interim_image)

uninitialised[Interim_image]("sunrasToInterim")
in GIS let tiffToInterim := proc(fn: string -> Interim_image)

uninitialised[Interim_image]("tiffToInterim")
in GIS let interimToSunras := proc(interim_image: Interim_image;

fn: string)
uninitialised_void("interimToSunras")

in GIS let previewRaw := proc(rawimge: Rawimage;
win_x,win__y: int -> image)

uninitialised[image]("previewRaw")
in GIS let previewStretchedRaw := proc(rawimge: Rawimage;

win_x,win_y: int -> image)
uninitialised[image]("previewStretchedRaw")

E-2

Appendix E : The GIS Library Procedures

in GIS let freqCount := proc(rawimage: Rawimage -> Frequency)
uninitialised[Frequency]("freqCount")

in GIS let linearStretch := proc(rawimage: Rawimage;
frequency: Frequency;
new_depth: int -> image)

uninitialised[image]("linearStretch")
in GIS let freqCount2 := proc(interim: image -> Frequency)

uninitialised[Frequency]("freqCount2")
in GIS let linearStretch2 := proc(interim: image;

frequency: Frequency;
new_depth: int -> image)

uninitialised[image]("linearStretch2")
in GIS let getFreqChart := proc(frequncy: Frequency;

new_depth: int -> Freq_chart)
uninitialised[Freq_chart]("getFreqChart")

in GIS let plotFreqChart := proc(window: image; frequncy: Frequency;
freq_chart: Freq_chart;
bg_col, fg_col: pixel)

uninitialised_void("plotFreqChart")

in GIS let rawToInterimlmage := proc()
uninitialised_void("rawToInterimlmage")

in GIS let interimToBaseimage := proc()
uninitialised_void("interimToBaseimage")

in GIS let storeRawimage := proc(image_id: Image_id; rawimage: Rawimage)
uninitialised_void("storeRawimage")

in GIS let storelnterimlmage := proc(image_id: Image_id;
interim_image: Interim_image)

uninitialised_void("storelnterimlmage")
in GIS let removeRawimage := proc()

uninitialised__void("removeRawimage")
in GIS let removelnterimlmage := proc()

uninitialised_void("removelnterimlmage")
in GIS let removeBaseimage := proc()

uninitialised_void("removeBaseimage")

in GIS let loadBaseimage : = proc(image_id: Image_id;
window_file: file -> image)

uninitialised[image]("loadBaseimage")

writeString("'n1"GIS'" environment stubs set up on ")
writeString(date)
writeString("1n")
end

end

E-3

Appendix E : The GIS Library Procedures

[gisLib.N]
This program sets up the libraries in the GIS environment

type drawFunction is variant(imageDraw: proc(image,pic,real,real,real,real);
fileDraw: proc(file,pic,real,real,real,real);
fail: null)

use PS() with Arithmetical, String, 10, Vector, System, Format,
Graphical, Device, GlasgowLibraries, User: env in

use Arithmetical with
float: proc(int -> real);
truncate: proc(real -> int);
bitwiseOr: proc(int,int -> int) in

use String with
stringToAscii: proc(string -> int)
asciiToString: proc(int -> string)
letter,digit: proc(string -> bool)
length: proc(string -> int) in

use 10 with
PrimitivelO: env;
makeReadEnv: proc(file -> env);
readLine: proc(-> string);
readReal: proc(-> real);
writelnt: proc(int);
writeString: proc(string) in

use PrimitivelO with
create: proc(string,int -> file);
open: proc(string,int -> file);
seek: proc(file,int,int -> int);
close: proc(file -> int);
readBytes: proc(file,*int,int,int -> int);
writeBytes: proc(file,*int,int,int -> int);
getByte: proc(int,int -> int);
setByte: proc(int,int,int -> int);
errorNumber: proc(-> int) in

use Vector with
lwb,
upb: proc[t](*t -> int) in

use System with
abort: proc() in

use Format with
iformat: proc(int -> string);
fformat: proc(real,int,int -> string) in

use Graphical with
Raster,
Outline: env in

use Outline with
makeDrawFunction: proc(string -> drawFunction) in

use Raster with
getPixel: proc(image,int,int -> pixel);
setPixel: proc(image,int,int,pixel);
xDim: proc(image -> int);
yDim: proc(image -> int);
zDim: proc(image -> int);
line: proc(image,int,int,int,int,pixel,int) in

use Device with
getScreen: proc(file -> image);
colourMap: proc(file,pixel,int);
locator: proc(file,*int);

E-4

Appendix E : The GIS Library Procedures

getCursor: proc(file -> image);
getCursorlnfo: proc(file,*int);
setCursor: proc(file,image);
colourOf: proc(file,pixel -> int) in

use GlasgowLibraries with BulkTypes: env in
use BulkTypes with Maps, Lists: env in
use Maps with

m_empty: proc[A,Z](proc(A,A -> bool),proc(A,A -> bool)
-> Map[A,Z]);

m_isEmpty: proc[A,Z](Map[A,Z] -> bool);
m_isu_insert: proc[A,Z](Map[A,Z] , A, Z) ;
m_isu_remove: proc[A,Z](Map[A,Z],A);
m_isu_assign: proc[A,Z] (Map[A,Z] , A, Z) ;
m_find: proc[A,Z] (Map[A,Z],A -> Z) ;
m_length: proc[A,Z](Map[A,Z] -> int);
m_contains: proc[A,Z](Map[A,Z],A -> bool);
m_copy: proc[A,Z](Map[A,Z] -> Map[A,Z]);
m_isu_union: proc[A,Z](Map[A,Z], Map[A,Z]);
m_isu_clear: proc[A,Z](Map[A,Z]);
m_filter: proc[A,Z] (Map[A,Z],proc(A, Z -> bool) -> Map[A,Z]);
m_app: proc[A,Z] (Map[A,Z],proc(A, Z)) in

use Lists with hd: proc[T](List[T] -> T);
tl: proc[T](List[T] -> List[T]);
l_make: proc[T](->List[T]);
l_length: proc[T](List[T] -> int);
l_append: proc [T] (List[T],T -> List[T]);
l_prepend: proc[T](T,List[T] -> List[T]);
l_reverse: proc[T](List[T] -> List[T]);
l_app: proc[T](List[T],proc(T));
l_map: proc[T,X](List[T],proc(T->X) -> List[X]);
l_contains: proc[T](List[T],T -> bool);
l_first: proc[T](List[T] -> T);
l_last: proc[T] (List[T] -> T) ;
l_nth: proc[T](List[T],int -> T);
l_rest: proc[T](List[T] -> List[T]);
l_isu_remove: proc[T](T,List[T] -> List[T]) in

use User with
Library, Database: env in

use Library with
General,
Graphical,
GIS: env in

use General with
stringToInt: proc(string -> int);
errorAbort: proc(string);
waitSymbol: proc(int);
newline: proc(int);
space: proc(int);
intToBits: proc(int,int -> *int);
bitsToInt: proc(*int -> int);
power_2_k: proc(int -> int);
vector_isu_sort: proc(*real);
eq_int, lt_int: proc(int,int -> bool);
eq_str, lt_str: proc(string,string -> bool);
eg peano, lt_peano: proc(Peano, Peano -> bool);
eg peanor, lt_peanor: proc(Peanor,Peanor -> bool);
xyToPK: proc(XY -> int);
pkToXY: proc(int -> XY);
xyToPKR: proc(XY -> real);
pkrToXY: proc(real -> XY);
getQuadExtent: proc(Peanor -> Extent) in

use Graphical with
drawPoint: proc(XY,pixel,image,Extent);
drawLineString: proc(List[XY],pixel,image,Extent);
drawText: proc(string,real,real,pixel,XY,image,Extent);

E-5

Appendix E : The GIS Library Procedures

drawRectangle: proc(MBR,pixel,image,Extent);
pointlnWindow: proc(XY,MBR -> bool);
lineVisiblelnWindow: proc (XY,XY,MBR -> bool) ,-
lineStrThroughWindow: proc(List[XY],MBR,XY,real -> bool);
getPoint: proc(file,image,Win_size, Extent,int -> XY) ;
xHairGetPoint: proc(file,image,Win_size,Extent,int -> XY) ;
dynaGetWinCornersA: proc(file,image,Win_size,Extent,

int -> *XY);
dynaGetWinCornersB: proc(file,image,Win_size,Extent,

int -> *XY);
getDragDxy: proc(file,image,Win_size,int -> XY) ;
getZoomExtent: proc(string,file,image,Win_size,Extent,

Extent,int -> Extent);
getLineStrMBR: proc(List[XY] -> MBR);
getLineStrKeyPts: proc(List[XY] -> List[XY]);
defaultPixel: proc(pixel,int -> pixel);
colourToPixel: proc(int,int -> pixel);
pixelToColour: proc(pixel,int -> int);
rgb: proc (int -> **int);
grayLevel: proc(int -> **int);
invGrayLevel: proc(int -> **int);
remapl6: proc(int,int,int,*pixel -> pixel) in

use GIS with
getOSmapInfo: proc(string -> OS_map_info);
getOSmapName: proc(XY -> OS_map_name);
ntf625kToBasemap: proc(string -> Basemap);
ntf2 50kToBasemap: proc(string -> Basemap);
ntfcontourToBasemap: proc(string -> Basemap);
ntfblToBasemap: proc(string -> Basemap);
ntfUToBasemap: proc(string -> Basemap);
ntfoscarToBasemap: proc(string -> Basemap);
storeBasemap: proc(Map_id,Basemap,Extent);
removeBasemap: proc();
getPolyMBR: proc(Poly_id,PB_cid_chain,PB_gid_geometry -> MBR);
pointInPolygon: proc(XY,PB_polygon,Map[Chain_id,PB_chain],

Map[Geom_id,PB_geometry],
Map[Geom_id,MBR] -> bool);

gridNdxPoly: proc(Poly_id,MBR,Map[Peanor,List[Poly_id]],real);
lqtNdxPoint: proc(Peanor,List[Point_id],Map[Point_id,XY],

Map[Peanor,List[Point_id]]);
lqtNdxLine: proc(Peanor,List[Line_id],Map[Line_id,List[XY]],

Map[Line_id,MBR],Map[Line_id,List[XY]],
Map[Peanor,List[Line_id]]);

lqtNdxPoly: proc(Peanor,List[Poly_id],Map[Poly_id,MBR],
Map[Peanor,List[Poly_id]]);

fbffToRaw: proc(string,int,int,int -> Rawimage);
tiffToRaw: proc(string -> Rawimage);
rawToInterim: proc(Rawimage -> Interim_image);
hsiToInterim: proc(string -> Interim_image);
sunrasToInterim: proc(string -> Interim_image);
tiffToInterim: proc(string -> Interim_image);
interimToSunras: proc(Interim_image,string);
previewRaw: proc(Rawimage,int,int -> image);
previewStretchedRaw: proc(Rawimage,int,int -> image);
freqCount: proc(Rawimage -> Frequency);
linearStretch: proc(Rawimage,Frequency,int -> image);
freqCount2: proc(image -> Frequency);
linearStretch2: proc(image,Frequency,int -> image);
getFreqChart: proc(Frequency,int -> Freq_chart);
plotFreqChart: proc(image,Frequency,Freq_chart,pixel,pixel);
rawToInterimlmage: proc() ;
interimToBaseimage: proc();
storeRawimage: proc(Image_id,Rawimage);
storelnterimlmage: proc(Image_id,Interim_image);
removeRawimage: proc() ;

E-6

Appendix E : The GIS Library Procedures

removelnterimlmage: proc();
removeBaseimage: proc();
loadBaseimage: proc(Image_id,file -> image) in

use Database with Raw, Interim, Processed, Derived, Index: env in
use Raw with raw_images: Map[Image_id,Rawimage] in
use Interim with interim_images: Map[Image_id,Interim_image] in
use Processed with base_maps: Map[Map_id,Basemap];

base_images: Map[Image_id,Baseimage] in
use Index with basemap_indices: Map[Peano,Map_id];

baseimage_indices: Map[Peano,List[Image_id]] in
begin

Initialize required variables

let draw = makeDrawFunction("image")'imageDraw

Determine the coordinates of the south-west corner of a map and the map
extent by entering a given OS map name

getOSmapInfo := proc(map_name: string -> OS_map_info)
begin

let x_swc := 0. ; let y_swc := 0.
let series := " "
let mapscale : = 0.
let side_length := 0.
if letter(map_name(11 1)) then
begin

case map_name(111) of
"T" : { x_swc := x_swc + 500000. }
"N" : { y_swc := y_swc + 500000. }
"H" : { y_swc := y_swc + 1000000. }
"S" : { }

default : { writeString("The given map name is invalid.") }
let k := stringToAscii(map_name(2|1)) - 64
if k >= lOdok := k - 1
let i = (k - 1) rem 5
let j = 4 - (k - 1) div 5
x_swc := x_swc + float(i) * 100000.
y_swc := y_swc + float(j) * 100000.
case length(map_name) of

2 : begin
series := "s_625k"
mapscale := 625000.
side_length := 100000.

! writeString("'nMap scale = 1 : 625000") ; newline(1)
end

4 : if letter(map_name(3 11)) then
begin

if map_name(3 11) = "N" do y_swc := y_swc + 50000.
i f map_name(4 11) = "E" do x_swc := x_swc + 50000.
series := "s_250k"
mapscale := 250000.
side_length := 50000.

! writeString("1nMap scale = 1 : 250000") ; newline(1)
end
else
begin

let num = stringToInt(map_name(3 I 2))

E-7

Appendix E : The GIS Library Procedures

x_swc := x_swc + float(num div 10) * 10000.
y_swc := y_swc + float(num rem 10) * 10000.
series := "s_50k"
mapscale := 50000.
side_length := 20000.
writeString("1nMap scale = 1 : 50000") ; newline(1)

end
6 : if letter(map_name(5 11)) then

begin
let num = stringToInt(map_name(3 I 2))
x_swc := x_swc + float(num div 10) * 10000.
y_swc := y_swc + float(num rem 10) * 10000.
i f map_name(5 11) = "N" do y_swc := y_swc + 5000.
i f map_name(611) = "E" do x_swc := x_swc + 5000.
series := "s_10k"
mapscale := 10000.
side_length : = 5000.
writeString("'nMap scale = 1 : 10000") ; newline(1)

end
else
begin

let num = stringToInt(map_name(3 I 4))
x_swc := x_swc + float(num div 100) * 1000.
y_swc := y_swc + float(num rem 100) * 1000.
series := "s_2500"
mapscale := 2500.
side_length := 1000.
writeString("'nMap scale = 1 : 2500") ; newline(1)

end
8 : begin

let num = stringToInt(map_name(3 I 4))
x_swc := x_swc + float(num div 100) * 1000.
y_swc := y_swc + float(num rem 100) * 1000.
if map_name(7|1) = "N" do y_swc := y_swc + 500.
i f map_name(811) = "E" do x_swc := x_swc + 500.
series := "s_1250"
mapscale := 1250.
side_length := 500.
writeString("'nMap scale =1 : 1250") ; newline(1)

end
default : { writeString("The given map name is invalid.") }

end
else
begin

for i = 1 to length(map_name) do
begin

if -digit(map_name(i11)) do
{ writeString("The given map name is invalid.") }

end
case length(map_name) of

4 : begin
x_swc := float(stringToInt(map_name(1 11))) * 100000. +

float(stringToInt(map_name(3 11)) - 1) * 25000.
y_swc := float(stringToInt(map_name(2 I 1))) * 100000. +

float(stringToInt(map_name(4 I 1)) - 1) * 25000.
series := "boundary_line"
mapscale : = 10000.
side_length := 25000.
newline(1)
writeString(map_name + + " is a boundary_line map.");
newline(1)

end
6 : begin

let num = stringToInt(map_name)
x_swc := float(num div 1000) * 1000.
y_swc := float(num rem 1000) * 1000.

E-8

Appendix E : The GIS Library Procedures

series := "oscar"
mapscale := 10000.
side_length := 5000.

! writeString("'nMap scale = 1 : 10000") ; newline(1)
! writeString(map_name ++ " is an OSCAR map."); newline(1)

end
default : { writeString("The given map name is invalid.") }

end
let extent = Extent(x_swc,y_swc,side_length,side_length)
let os_map_info = OS_map_info(map_name,series,mapscale,extent)
os_map_info

end

Determine a set of map names
encompassing a given point

that represent different OS map series

getOSmapName := proc(point: XY -> OS_map_name)
begin

let xO = truncate(point(x))
let yO = truncate(point(y))
let i = xO div 100000
let j = yO div 100000
let k = (4 - j rem 5) * 5 + (i rem 5) +1
let s_625k = (if 0 <= i and i <= 4 then

case j of
0,1,2, 3,4 : "S"
5,6,7, 8,9 : "N"
default : "H"

else "T") ++ (if k <= 8 then asciiToString(k+64)
else asciiToString(k+65))

let xl = xO rem 100000
let yl = yO rem 100000
let s_250k = s_625k ++ (if yl div 50000 = 0 then "S" else "N") ++

(if xl div 50000 = 0 then "W" else "E")
let s_50k = s_625k ++ iformat(xl div 20000 * 20 + yl div 20000 * 2)
let s_10k = s_625k ++ iformat(xl div 10000 * 10 + yl div 10000) + +

(if (yl rem 10000) div 5000 = 0 then "S" else "N") + +
(if (xl rem 10000) div 5000 = 0 then "W" else "E")

let s_2500 = s_625k ++ iformat(xl div 1000 * 100 + yl div 1000)
let s_1250 = s_2 500 + +

(if (yl rem 1000) div 500 = 0 then "S" else "N") + +
(if (xl rem 1000) div 500 = 0 then "W" else "E")

let oscar = iformat((x0 div 5000) * 5000 + (yO div 5000) * 5)
let boundary_line = iformat(i * 10000 + j * 1000 +

(xl div 25000 + 1) * 10 + (yl div 25000 + 1))
let os_map_name = OS_map_name(s_625k,s_250k, s_50k, s_10k,s_2500,s_1250,

oscar,boundary_line)
os_map_name

end

Read an NTF 1:625000 map file and construct a basemap

ntf625kToBasemap := proc(fn: string -> Basemap)
begin

! initialise data structures
let ln_pid_point := m_empty[Point_id,LN_point](eq_int,lt_int)
let ln_lid_line := m_empty[Line_id,LN_line](eq_int,lt_int)
let ln_gid_geometry:= m_empty[Geom_id,LN_geometry](eq_int,lt_int)
let ln_aid_attribute := m_empty[Attr_id,LN_attribute](eq_int,lt_int)
let ln_kid_link : = m_empty[Link_id,LN_link](eq_int,lt_int)

E-9

Appendix E : The GIS Library Procedures

let ln_nid_node := m_empty[Node_id,LN_node](eq_int,lt_int)
let ln_tid_text := m_empty[Text_id,LN_text](eq_int,lt_int)
let fed := m_empty[FC,FD](eq_str,lt_str)
! read an NTF file
let inputfile := open(fn,0)
if inputfile = nilfile do

{ writeString("The file " ++ fn + + " cannot be opened'n") }
let fileEnv := makeReadEnv(inputfile)
let fileString := use fileEnv with

readLine: proc(-> string) in readLine
let eoi := use fileEnv with endOfInput:proc(-> bool) in endOfInput
writeString("'nReading the file and constructing a basemap, waiting
t

space(2)
let wait_count := 0
! Volume Header Record (01)
let VHR = fileString()
! Database Header Record (02)
let DHR1 = fileString(); let DHR2 = fileString()
! Attribute Description Record (40)
let ADR := fileString()
while ADR(1|2) = "40" do
begin

ADR := fileString()
if ADR(length(ADR) - 1 | 1) = "1" do { let ADRl = fileString() }

end
! Feature Classification Record (05)
let FCR := ADR
while FCR(1 I 2) = "05" do
begin

let fc := FCR(314)
let fd := FCR(37| length(FCR) - 38)
m_isu_insert[FC,FD](fcd,fc,fd)
FCR := fileString()

end
I

! Section Header Record (07)
i
let SHR1 = FCR
! section of data ordered
let sect_reference = SHR1(3|10)
! length of xy coord fields
let xylen = stringToInt(SHR1(15 I 5))
! multiplies coords by xy_mult/1000
let xy_mult = float(stringToInt(SHR1(21 110)))/1000.
! multiplies height by z_mult/1000
let z_mult = float(stringToInt(SHR1(37 I 10)))/1000.
! Eastings and Northings of map origin
let x_orig = float(stringToInt(SHR1(47 110)))
let y_orig = float(stringToInt(SHR1(57 110)))
! Continuation record
! Map coverage (Local coordinates)
let SHR2 = fileString()
let x_local_min = float(stringToInt(SHR2(3 110)))
let y_local_min = float(stringToInt(SHR2(13 110)))
let x_local_max = float(stringToInt(SHR2(23 110)))
let y_local_max = float(stringToInt(SHR2(33 110)))
! Map coverage (National Grid coordinates)
let x_min = x_orig + x_local_min
let y_min = y_orig + y_local_min
let x_max = x_orig + x_local_max
let y_max = y_orig + y_local_max
i
! Section Body Data
I

while ~eoi() do

E-10

Appendix E : The GIS Library Procedures

begin

Feature Records
Point Feature

Point Record (15)
Geometry Record (21)
Attribute Record (14'

let record := fileStringO
if record(l|2) = "15" do
begin

let point_id = stringToInt(record(3 I 6))
let geom_id := stringToInt(record(9 I 6))

POINTREC
sequential number of
point record
sequential number of
[GE0METRY1] record
sequential number oflet attr_id := stringToInt(record(17 I 6))

let ln_point = LN_point(geom_id,attr_id)
m_isu_insert[Point_id,LN_point](ln_pid_point,point_id,ln_point)

GEOMETRYl (21)
xy_mult + x_orig
xy_mult + y_orig

record := fileStringO
let x = float(stringToInt(record(14I 6)))
let y = float(stringToInt(record(20 I 6)))
let gtype = 1
let num_coord = 1
let xy = XY(x,y)
let xy_list := l_make[XY]()
xy_list := l_append[XY](xy_list;xy)
let ln_geometry = LN_geometry(gtype, num_coord, xy_list)
m_isu_insert[Geom_id,LN_geometry](ln_gid_geometry, geom_id,

ln_geometry)
record
attr_id
let fc
let RB
let RU
let OR
let PN
let NU
let i := 15
let att_len
while i < att_len
begin

let val_type := record(1

= fileStringO
:= stringToInt(record(3 I 6))
= record(1114)
= false
= false
= 0.

length(record)
2 do

ATTREC
! Feature Code

i : = i + 2
case val._type of
" RB" : { RB : = true; i := i + 1 }
"RU" : { RU : = true; i := i + 1 }
"OR" : { OR : = float(stringToInt(record(i
"PN" : { while record(ill) ~= "\" do

begin
PN := PN + + record(ill)
i = i + 1

end }
default ; {)

= i + 4 }

end
let ln_attr_ssm := LN_attr_ssm(RB,RU,OR,PN,NU)
let ln_attr := LN_attr(small_scale_map: ln_attr_ssm)
let ln_attribute := LN_attribute(fc,ln_attr)
m_isu_insert[Attr_id,LN_attribute](ln_aid_attribute,attr_id,

ln_attribute)
end

E - l l

Appendix E : The GIS Library Procedures

Line Feature
Line Record (23
Geometry Record (21)
Geometry Continuation Record (21)

Attribute Record (14)

if record(11 2) = "23" do ! LINEREC
begin

wait_count := wait_count + 1
wa i t Symbo1(wa it_c ount)
let line_id = stringToInt(record(3 I 6)) ! line identity (16)
let geom_id := stringToInt(record(9 I 6))
let attr_id := stringToInt(record(17 I 6))
let gtype = 2 ! line type
let ln_line = LN_line(geom_id,attr_id)
m_isu_insert[Line_id,LN_line](ln_lid_line,line_id,ln_line)
record := fileStringO ! GEOMETRY1 (21)
let num_coord = stringToInt(record(10 I 4)) ! number of coordinate

i pairs; in the range
! 0002 to 9999

let line_len := length(record)
let line_string := record(141 (line_len - 15))
while record(line_len - 1 I 1) = "1" do
begin

record := fileStringO ! GEOMETRY1 (21)
line_len := length(record)
line_string := line_string ++ record(3l (line_len - 4))

end
let xy_list := l_make[XY]()
let n := 0
while n < num_coord do
begin

let xy_string = line_string(1 + 13*n112)
let x = float(stringToInt(xy_string(11 6))) * xy_mult + x_orig
let y = float(stringToInt(xy_string(7 I 6))) * xy_mult + y_orig
let xy = XY(x,y)
xy_list := l_prepend[XY](xy,xy_list)
n : = n + 1

end
xy_list := l_reverse[XY](xy_list)
let ln_geometry = LN_geometry(gtype,num_coord,xy_list)
m_isu_insert[Geom_id,LN_geometry](ln_gid_geometry,geom_id,

ln_geometry)
record := fileStringO ! ATTREC
attr_id := stringToInt(record(316))
let fc := record(ll|4) ! Feature
let RB := false
let RU := false
let OR := 0.0
let PN := ""
let NU := ""
let i := 15
let att_len := length(record)
while i < att_len - 2 do
begin

let val_type := record(i|2)
i : = i + 2
case val_type of
"PN" : { while record(ill) ~= "\" do

begin
PN := PN ++ record(ill)

E-12

Appendix E : The GIS Library Procedures

i : = i + 1
end }

"NU" : { while record(ill) ~= " \" do
begin

NU := NU ++ record(ill)
i := i + 1

end }
default: { }

end
let ln_attr_ssm := LN_attr_ssm(RB,RU,OR,PN,NU)
let ln_attr := LN_attr(small_scale_map: ln_attr_ssm)
let ln_attribute := LN_attribute(fc,ln_attr)
m_isu_insert[Attr_id,LN_attribute](ln_aid_attribute,attr_id,

ln_attribute)
end

TEXT (NAME)
Text Record (43)
Text Position Record (44)
Text Representation Record (45)

if record(1 I 2) = "43" do ! TEXTREC (43)
begin

wait_count := wait_count + 1
waitSymbol(wait_count)
let text_id = stringToInt(record(3 I 6))
let attr_id = stringToInt(record(25 I 6))
record := fileStringO ! TEXTPOS (44)
let geom_id = stringToInt(record(17 I 6))
record := fileStringO ! TEXTREP (45)
let font = stringToInt(record(9 I 4))
let text_ht = float(stringToInt(record(13 I 3)))/10.! in mm
let dig_postn = stringToInt(record(16 11))
let orient = float(stringToInt(record(17I 4)))/10. ! 0.1 of degree
let ln_text := LN_text(geom_id,attr_id,text_ht,orient,font,

dig_postn)
m_isu_insert[Text_id,LN_text](ln_tid_text,text_id,ln_text)

end

Node Detail
Node Record (16)
Node Continuation Record (16)

if record(l|2) = "16" do ! NODREC
begin

wait_count := wait_count + 1
wa i t Symbo1(wa i t_c ount)
let node_id = stringToInt(record(3 I 6)) ! sequential number of

! node record
let geom_id_of_node = stringToInt(record(9 I 6)) ! identity of a

! [GEOMETRYl] record containing the position of the node
let num_links = stringToInt(record(15 I 4)) ! the maximum number

! of links that meet at the node is 9
let link_list := l_make[Link]()
let k := 19
for i = 1 to num_links do
begin

! node record, with num_links more than 5, requires
! a continuation record.
if i = 6 do { record := fileStringO; k := 3 }

E-13

Appendix E : The GIS Library Procedures

let direction = stringToInt(record(k11))
let geom_id_of_link = stringToInt(record(k+11 6))
let orient = float(stringToInt(record(k+7I 4)))/10 . 0
let level = stringToInt(record(k+1111))
k := k + 12
let link = Link(direction,geom_id_of_link,orient,level)
link_list := l_prepend[Link](link,link_list)

end
link_list := l_reverse[Link](link_list)
let ln_node := LN_node(geom_id_of_node,num_links,link__list)
m_isu_insert[Node_id,LN_node](ln_nid_node,node_id,ln_node)

end
end
writeString("'b1b I")
let close_index = close(inputfile)
let ln__tid_txt := LN_tid_txt(ln_tid_text: ln_tid_text)
let ln_dm : = LN_DM(ln_pid_point,ln_lid_line,ln_gid_geometry,

ln_aid_attribute,ln_kid_link,ln_nid_node,
ln_tid_txt,fed)

let basemap_dm = Basemap_DM(link_node: ln_dm)
let basemap = Basemap(basemap_dm)
basemap

end

Read an NTF 1:250000 map file and construct a basemap

ntf250kToBasemap := proc(fn: string -> Basemap)
begin

! initialise data structures
let ln_pid_point := m_empty[Point_id,LN_point](eq_int,lt_int)
let ln_lid_line := m_empty[Line_id,LN_line](eq_int,lt_int)
let ln_gid_geometry:= m_empty[Geom_id,LN_geometry](eq_int,lt_int)
let ln_aid_attribute := m_empty[Attr_id,LN_attribute](eq_int,lt_int)
let ln_kid_link := m_empty[Link_id,LN_link](eq_int,lt_int)
let ln_nid_node := m_empty[Node_id,LN_node](eq_int,lt_int)
let fed := m_empty[FC,FD](eq_str,lt_str)
! read a NTF file
let inputfile := open(fn,0)
if inputfile = nilfile do

{ errorAbort("The file " ++ fn ++" cannot be opened.") }
let fileEnv := makeReadEnv(inputfile)
let fileString := use fileEnv with

readLine:proc(-> string) in readLine
let eoi := use fileEnv with endOfInput:proc(-> bool) in endOfInput
writeString("1nReading the file and constructing a basemap, waiting

. ") ;
space(2)
let wait_count := 0
! Volume Header Record (01)
let VHR = fileStringO
! Database Header Record (02)
let DHR1 = fileStringO; let DHR2 = fileString ()
! Attribute Description Record (40)
let ADR := fileStringO
while ADR(1 I 2) = "40" do
begin

ADR := fileStringO
if ADR(length(ADR) - 1 I 1) = "1" do { let ADRl = fileString() }

end
! Feature Classification Record (05)
let FCR := ADR
while FCR(1 I 2) = "05" do
begin

E-14

Appendix E : The GIS Library Procedures

let fc := FCR(3 I 4)
let fd := FCR(37| length(FCR) - 38)
m_isu_insert[FC,FD](fcd,fc,fd)
FCR := fileStringO

end
I
! Section Header Record (07)
I
let SHR1 = FCR
! section of data ordered
let sect_reference = SHR1(3|10)
! length of xy coord fields
let xylen = stringToInt(SHR1(15 I 5))
! multiplies coords by xy_mult/1000
let xy_mult = float(stringToInt(SHR1(21110)))/1000.
! multiplies height by z_mult/1000
let z_mult = float(stringToInt(SHR1(37|10)))/1000.
! Eastings and Northings of map origin
let x_orig = float (stringToInt(SHR1(47 110)))
let y_orig = float(stringToInt(SHR1(57 110)))
! Continuation record
! Map coverage (Local coordinates)
let SHR2 = fileString()
let x_local_min = float(stringToInt(SHR2(3!10)))
let y_local_min = float(stringToInt(SHR2(13 110)))
let x_local_max = float(stringToInt(SHR2(23 110)))
let y_local_max = float(stringToInt(SHR2(33 I 10)))
! Map coverage (National Grid coordinates)
let x_min = x_orig + x_local_min
let y_min = y_orig + y_local_min
let x_max = x_orig + x_local_max
let y_max = y_orig + y_local_max
i

! Section Body Data
i

while ~eoi() do
begin

i ___

! Feature Records
I
! Point Feature
! Point Record (15)
! Geometry Record (21)
! Attribute Record (14)

let record := fileString()
if record(l|2) = "15" do
begin

let point_id = stringToInt(record(3 I 6
let geom_id := stringToInt(record(9 I 6
let attr_id := stringToInt(record(17
let ln_point = LN_point(geom_id,attr
m_isu_insert[Point_id,LN_point](ln_p
record := fileString()
let x = float(stringToInt(record(14 I
let y = float(stringToInt(record(19I
let gtype = 1
let num_coord = 1
let xy = XY(x,y)
let xy_list := l_make[XY]()
xy_list := l_append[XY](xy_list,xy)

! POINTREC
sequential number of
point record
sequential number of
[GEOMETRY1] record
sequential number of16))

_id)
id_point,point_id,ln_point

! GEOMETRY1 (21)
5))) * xy_mult + x_orig
5))) * xy_mult + y_orig

E-15

Appendix E : The GIS Library Procedures

ATTREC
Feature Code

let ln_geometry = LN_geometry(gtype,num_coord,xy_list)
m_isu_insert[Geom_id,LN_geometry] (ln_gid_geometry,geom_id,

ln_geometry)
record := fileString()
attr_id := stringToInt(record(3 I 6'
let fc := record(ll|4)
let RB := false
let RU := false
let OR := 0.
let PN
let NU
let i := 15
let att_len := length(record)
while i < att_len - 2 do
begin

let val_type := record(112
i : = i + 2
case val._type of
" RB" : { RB : = true; i := i + 1 }
" RU" : { RU : = true; i := i + 1 }
" OR" : { OR : = float(stringToInt(record(i
"PN" : { while record(ill) ~= "\" do

begin
PN := PN ++ record(ill)
i = i + 1

end }
default { }

i : = i + 4 }

end
let ln_attr_ssm := LN_attr_ssm(RB,RU,OR,PN,NU)
let ln_attr := LN_attr(small_scale_map: ln_attr_ssm)
let ln_attribute := LN_attribute(fc,ln_attr)
m_isu_insert[Attr_id,LN_attribute](ln_aid_attribute,attr_id,

In attribute)
end

Line Feature
Line Record (23)
Geometry Record (21)
Geometry Continuation Record (21)

Attribute Record (14;

if record(112) = "23" do ! LINEREC
begin

wait_count := wait_count + 1
waitSymbol(wait_count)
let line_id = stringToInt(record(3 I 6))
let geom_id := stringToInt(record(9 I 6))
let attr_id := stringToInt(record(17 I 6))
let gtype = 2
let ln_line = LN_line(geom_id,attr_id)
m_isu_insert[Line_id,LN_line](ln_lid_line,line_id,ln_linei

line identity (16;

line type

record := fileString()
let num_coord = stringToInt(record(10 I 4;

let line_len := length(record)
let line_string : = record(14 I (line_len -
while record(line_len - 1 I 1) = "1" do
begin

record := fileString()

GEOMETRY1 (21)
number of coordinate
pairs; in the range
0002 to 9999

15

GEOMETRY1 (21)

E-16

Appendix E : The GIS Library Procedures

line_len := length(record)
line_string := line_string ++ record(3| (line_len - 4))

end
let xy_list : = l_make[XY]()
let n := 0
while n < num_coord do
begin

let xy_string = line_string(l + ll*n110)
let x = float(stringToInt(xy_string(11 5))) * xy_mult + x_orig
let y = float(stringToInt(xy_string(6 I 5))) * xy_mult + y_orig
let xy = XY(x,y)
xy_list := l_prepend[XY](xy,xy_list)
n : = n + 1

end
xy_list := l_reverse[XY](xy_list)
let ln_geometry = LN_geometry(gtype,num_coord,xy_list)
m_isu_insert[Geom_id,LN_geometry](ln_gid_geometry,geom_id,

ln_geometry)
record := fileStringO ! ATTREC
attr_id := stringToInt(record(3 I 6))
let fc := record(ll|4) ! Feature Code
let RB := false
let RU := false
let OR := 0.0
let PN :=
let NU := ""
let i := 15
let att_len : = length(record)
while i < att_len - 2 do
begin

let val_type := record(iI 2)
i : = i + 2
case val_type of
"PN" : { while record(ill) ~= "\" do

begin
PN := PN ++ record(ill)
i := i + 1

end }
"NU" : { while record(ill) ~= " \" do

begin
NU := NU ++ record(ill)
i : = i + 1

end }
default: { }

end
let ln_attr_ssm := LN_attr_ssm(RB,RU,OR,PN,NU)
let ln_attr := LN_attr(small_scale_map: ln_attr_ssm)
let ln_attribute := LN_attribute(fc,ln_attr)
m_isu_insert[Attr_id,LN_attribute](ln_aid_attribute,attr_id,

ln_attribute)
end

Node Detail
Node Record (16)
Node Continuation Record (16)

if record(l|2) = "16" do ! NODREC
begin

wait_count := wait_count + 1
wa i t Symbol(wait_count)
let node_id = stringToInt(record(3 I 6)) ! sequential number of

! node record
let geom_id_of_node = stringToInt(record(9I 6)) ! identity of a

E-17

Appendix E : The GIS Library Procedures

! [GEOMETRY1] record containing the position of the node
let num_links = stringToInt(record(1514)) 1 number of links that

! meet at the node on OS 1:250000 data; the maximum is 9
let link_list := l_make[Link]()
let k := 19
for i = 1 to num_links do
begin

if i = 6 do { record := fileStringO; k := 3 }
! node record with num_links more than 5,
! requires a continuation record,

let direction = stringToInt(record(kI 1))
let geom_id_of_link = stringToInt(record(k+11 6))
let orient = float(stringToInt(record(k+7I 4)))/10.0
let level = stringToInt(record(k+1111))
k : = k + 12
let link = Link(direction,geom_id_of_link,orient,level)
link_list := l_prepend[Link](link,link_list)

end
link_list := l_reverse[Link](link_list)
let ln_node := LN_node(geom_id_of_node,num_links,link_list)
m_isu_insert[Node_id,LN_node](ln_nid_node,node_id,ln_node)

end
end
writeString("1b1b I")
let close_index = close(inputfile)
let ln_tid_txt := LN_tid_txt(none: nil)
let ln_dm := LN_DM(ln_pid_point,ln_lid_line,ln_gid_geometry,

ln_aid_attribute,ln_kid_link,ln_nid_node,
ln_tid_txt,fed)

let basemap_dm = Basemap_DM(link_node: ln_dm)
let basemap = Basemap(basemap_dm)
basemap

end

! Read an NTF contour map file and construct a basemapI
I ___
ntfcontourToBasemap := proc(fn: string -> Basemap)
begin

! initialise data structures
let sp_pid_point := m_empty[Point_id,SP_point](eq_int,lt_int)
let sp_lid_line := m_empty[Line_id,SP_line](eq_int,lt_int)
let fed := m_empty[FC,FD](eq_str,lt_str)
! read an NTF file
let inputfile := open(fn,0)
if inputfile = nilfile do

{ errorAbort("The file " ++ fn ++" cannot be opened.") }
let fileEnv := makeReadEnv(inputfile)
let fileString := use fileEnv with

readLine:proc(-> string) in readLine
let eoi := use fileEnv with endOfInput:proc(-> bool) in endOfInput
writeString("1nReading the file and constructing a basemap, waiting

. . . ") ;
space(2)
let wait_count := 0
! Volume Header Record (01)
let VHR = fileString()
! Database Header Record (02)
let DHR1 = fileStringO; let DHR2 = fileString ()
! Attribute Description Record (40)
let ADR := fileString()
while ADR(1|2) = "40" do
begin

ADR := fileString()

E-18

Appendix E : The GIS Library Procedures

if ADR(length(ADR) - 1 I 1) = "1" do { let ADR1 = fileString() }
end
! Feature Classification Record (05)
let FCR := ADR
while FCR(11 2) = "05" do
begin

let fc := FCR(314)
let fd := FCR(37| length(FCR) - 38)
m_isu_insert[FC,FD](fcd,fc,fd)
FCR := fileStringO

end
I
! Section Header Record (07)
i
let SHR1 = FCR
! section of data ordered
let sect_reference = SHR1(3|10)
! length of xy coord fields
let xyln = stringToInt(SHR1(15 I 5))
! multiplies coords by xy_mult/1000
let xy_mult = float(stringToInt(SHR1 (21 110)))/1000.
! multiplies height by z_mult/1000
let z_mult = float(stringToInt(SHR1(37|10)))/1000.
! Eastings and Northings of map origin
let x_orig = float(stringToInt(SHR1(47 110)))
let y_orig = float(stringToInt(SHR1(57 110)))
! continuation record
let SHR2 = fileStringO
! Map coverage (Local coordinates)
let x_local_min = float(stringToInt(SHR2(3 110)))
let y_local_min = float(stringToInt(SHR2(13 110)))
let x_local_max = float(stringToInt(SHR2(23 110)))
let y_local_max = float(stringToInt(SHR2(33 110)))
! Map coverage (National Grid coordinates)
let x_min = x_orig + x_local_min
let y_min = y_orig + y_local_min
let x_max = x__orig + x_local_max
let y_max = y_orig + y_local_max
I
! Section Body DataI
while ~eoi() do
begin

Feature Records
Point Feature

Point Record (15)
Geometry Record (21)

let record := fileStringO
if record(112) = "15" do ! POINTREC
begin

wait_count := wait_count + 1
waitSymbol(wait_count)
let point_id = stringToInt(record(3 I 6))
let ht = float(stringToInt(record(111 6)))
let fc = record(17|4)
record := fileStringO ! GEOMETRY1 (21)
let x = float(stringToInt(record(14 110))) * xy_mult + x_orig
let y = float(stringToInt(record(24110))) * xy_mult + y_orig
let xy = XY(x,y)
let attribute = SP_point_attr(contour: ht)

E-19

Appendix E : The GIS Library Procedures

let sp_point = SP_point(xy,fc,attribute)
m_isu_insert[Point_id,SP_point](sp_pid_point,point_id,sp_point)

end

Line Feature
Line Record (23)
Geometry Record (21)
Geometry Continuation Record (21)

if record(112) = "23" do ! LINEREC
begin

wait_count := wait_count + 1
waitSymbol(wait_count)
let line_id = stringToInt(record(3 I 6)) ! line identity (16)
let ht = float(stringToInt(record(llI 6)))
let fc = record(17|4)
record := fileString() ! GEOMETRY1 (21)
let num_coord = stringToInt(record(10I 4))
let line_len := length(record)
let line_string := record(14 I (line_len - 15))
while record(line_len - 1 I 1) = "1" do
begin

record := fileString() ! GEOMETRY1 (21)
line_len := length(record)
line_string := line_string ++ record(3l (line_len - 4))

end
let xy_list := l_make[XY]()
let n := 0
while n < num_coord do
begin

let xy_string = line_string(l+21*nI 20)
let x = float(stringToInt(xy_string(1110))) *

xy_mult + x_orig
let y = float(stringToInt(xy_string(11110))) *

xy_mult + y_orig
let xy = XY(x,y)
xy_list := l_prepend[XY](xy,xy_list)
n : = n + 1

end
xy__list := l_reverse[XY](xy_list)
let attribute = SP_line_attr(contour: ht)
let sp_line = SP_line(xy_list,fc,attribute)
m_isu_insert[Line_id,SP_line](sp_lid_line,line_id,sp_line)

end
end
writeString("'b1b I")
let close_index = close(inputfile)
let sp_pid_txt = SP_tid_txt(none: nil)
let sp_dm = SP_DM(sp_pid_point,sp_lid_line,sp_pid_txt,fed)
let basemap_dm = Basemap_DM(spaghetti: sp_dm)
let basemap = Basemap(basemap_dm)
basemap

end
I ___
I
! Read an NTF boundaryline file and construct a basemap
i
i ___
ntfblToBasemap := proc(fn: string -> Basemap)
begin

E-20

Appendix E : The GIS Library Procedures

! initialise data structures
let pb_gid_geometry := m_empty[Geom_id,PB_geometry](eq_int,lt_int)
let pb_aid_attribute := m_empty[Attr_id,PB_attribute](eq_int,lt_int)
let pb_polyid_polygon := m_empty[Poly_id,PB_polygon](eq_int,lt_int)
let pb_cid_chain := m_empty[Chain_id,PB_chain](eq_int,lt_int)
let pb_cpolyid_cpolygon := m_empty[Cpoly_id,PB_cpolygon](eq_int,lt_int)
let pb_collid_collection : =

m_empty[Coll_id,PB_collection](eq_int,lt_int)
let fed := m_empty[FC,FD] (eq_str,lt_str)
! read an NTF file
let inputfile := open(fn,0)
if inputfile = nilfile do

{ errorAbort("The file " ++ fn ++" cannot be opened.") }
let fileEnv := makeReadEnv(inputfile)
let fileString := use fileEnv with

readLine: proc(-> string) in readLine
let eoi := use fileEnv with endOfInput:proc(-> bool) in endOfInput
writeString("1nReading the file and constructing a basemap, waiting

. . . ") ;
space(2)
let wait_count := 0
! Volume Header Record (01)
let VHR = fileString()
! Database Header Record (02)
let DHRl = fileString(); let DHR2 = fileString()
! Attribute Description Record (40)
let ADR := fileString()
while ADR(1|2) = "40" do
begin

ADR := fileString()
if ADR(length(ADR) - 1 I 1) = "1" do { let ADRl = fileString() }

end
! Feature Classification Record (05)
let FCR := ADR
while FCR(1|2) = "05" do
begin

let fc := FCR(314)
let fd := FCR(37| length(FCR) - 38)
m_isu_insert[FC,FC](fcd,fc,fd)
FCR := fileStringO

endI
! Section Header Record (07)
i
let SHR1 = FCR
! section of data ordered
let sect_reference = SHR1(3|10)
! length of xy coord fields
let xylen = stringToInt(SHR1(15 I 5))
! multiplies coords by xy_mult/1000
let xy_mult = float(stringToInt(SHR1(21 110)))/1000.
! multiplies height by z_mult/1000
let z_mult = float(stringToInt(SHR1 (37110)))/1000 .
! Eastings and Northings of map origin
let x_orig = float(stringToInt(SHR1(47 110)))
let y_orig = float(stringToInt(SHR1(57 110)))
! Continuation record
! Map coverage (Local coordinates)
let SHR2 = fileString()
let x_local_min = float(stringToInt(SHR2(3 110)))
let y_local_min = float(stringToInt(SHR2(13 110)))
let x_local_max = float(stringToInt(SHR2(23 110)))
let y_local_max = float(stringToInt(SHR2(33 I 10)))
! Map coverage (National Grid coordinates)
let x_min = x_orig + x_local_min
let y_min = y_orig + y_local_min

E-21

Appendix E : The GIS Library Procedures

let x_max = x_orig + x_local_max
let y_max = y_orig + y_local_max
I
! Section Body Data
i
while ~eoi() do
begin

! initialise values for the variables used in Attribute Record
let AI : = 0 Admin_area_id
let FC : = II II Feature Code
let LK : = 0 Link_id
let NM : = II ti Name
let OP : = II M OPCS_Code (City,Dist & Ward only)
let PI : = 0 Polygon_id
let HA : = 0.0 Hectares (Area of polygon in tile
let HW : = 0 MHW flag (0 or 1)
let LV : = 0 Level (Administrative area type)
let SD : = II II Superseded_Date
let CT : = II II Change_type
let record := fileStringO

Geometry (Link) Data
Geometry Record (21)
Geometry Continuation Record (21)

Attribute Record (14) for Geometry

if record(l|2) = "21" do
begin

wait_count := wait_count + 1
waitSymbol(wait_count)
let geom_id = stringToInt(record(3 I 6))

let gtype = stringToInt(record(9 11))
let num_coord = stringToInt(record(10 I 4))
let line_len := length(record)
let line_string := record(14 I (line_len - 15))
while record(line_len - 1 I 1) = "1" do
begin

record := fileString() ! GEOMETRYl (21) Continuation Record
line_len := length(record)
line_string := line_string ++ record(3l (line_len - 4))

end
! Create a xy_list and add xy-coordinate pairs to the xy_list
let xy_list := l_make[XY]()
let n := 0
while n < num_coord do
begin

let xy_string = line_string(1 + 13*n112)
let x = float(stringToInt(xy_string(11 6))) *

xy_mult + x_orig
let y = float(stringToInt(xy_string(7|6))) *

xy_mult + y_orig
! Adding a xy_coordinate pair to xy_list
let xy = XY(x,y)
xy_list := l_prepend[XY](xy,xy_list)
n : = n + 1

end
xy_list := l_reverse[XY](xy_list)

GEOMETRYl

X-ref form [POLYGON]/
[CPOLY] (seed) and
[CHAIN] (link)
"1" for seed,
" 2 " for link.
number of coordinates
pairs

E-22

Appendix E : The GIS Library Procedures

let attr_id := stringToInt(line_string(1 + 13*num_coordI 6))
! Adding a geometry record to the pb_gid_geometry
let pb_geometry = PB_geometry(gtype,num_coord,xy_list,attr_id)
m_isu_insert[Geom_id, PB_geometry](pb_gid_geometry, geom_id,

pb_geometry)
! following an ATTREC Record (14)
record := fileString() ! ATTREC Record for

! Geometry (Link)
attr_id := stringToInt(record(3 I 6))
let i := 9
let att_len : = length(record)
while i < att_len - 2 do
begin

let val_type := record(i|2)
i : = i + 2
case val-type of
" FC" : { FC : = record(i14); i := i + 4

! See Feature
}
Class Record

" LK" : { LK : = stringToInt(record(i110)
! link_id

);i := i + 10 }
" HW" : { HW : = stringToInt(record(i11))

! MHW flag (0
; i : = i + 1 }
or 1)

" CT " : { CT : = record(i|2); i := i + 2
! Change Type

}
" LV" : { LV : = stringToInt(record(iI 2));i := i + 2 }

! Level (Administrative Area Type)
"SD" : { SD : = record(i|8); i := i + 8

! YYYYMMDD ("
}
99999999" if current)

default : { }
end
! Adding an attribute to the attribute_table
let pb_attribute := PB_attribute(AI,LK,PI,HW,LV,HA,

FC,NM,OP,SD,CT)
m_isu_insert[Attr_id,PB_attribute](pb_aid_attribute,attr_id,

pb_attribute)
end

Polygon Data
Polygon Record (31)

* Attribute Record (14)
Chain Record (24)

* Geometry Record (21)
* optional

Cpolygon Data
Cpolygon Record (33)
Attribute Record (14)
Geometry Record (21)

if record(l|2) = "31" or record(l|2) = "33" do
! POLYGON or CPOLY Record

begin
let poly_type := 0
case record(l|2) of
"31" : ! POLYGON Record

begin
wait_count := wait_count + 1
waitSymbol(wait_count)
poly_type := 1
let poly_id = stringToInt(record(3 I 6)) ! Seed_id
let chain_id = stringToInt(record(9 I 6))
let rec_len = length(record)
let geom_id := 0
let attr_id := 0
if rec_len > 16 do
begin

! X-ref to (part-) polygon seed point.

E-23

Appendix E : The GIS Library Procedures

geom_id : = stringToInt(record(15 I 6))
! X-ref to history and area.
attr_id := stringToInt(record(23 I 6))

end
! adding a polygon record to the polygon_table
let pb_polygon = PB_polygon(chain_id,geom_id,attr_id)
m_isu_insert[Poly_id,PB_polygon](pb_polyid_polygon,

poly_id,pb_polygon)
end

"3 3" : ! CPOLY Record
begin

wait_count := wait_count + 1
waitSymbol(wait_count)
poly_type := 3
let cpoly_id = stringToInt(record(3 I 6))
let num_parts = stringToInt(record(9 I 4))

! (inc. containing polygon),
let rec_len := length(record)
let rec_string : = record(13 I (rec_len - 14))
while record(rec_len - 1 I 1) = "1" do
begin

record := fileString() ! Continuation Record
rec_len := length(record)
rec_string : = rec_string ++ record(3 I (rec_len - 4))

end
let polyid_sign_list := l_make[PB_polyid_sign]()
let n := 0
while n < num_parts do
begin

let id_string = rec_string(l + 7*nI 7)
let poly_id = stringToInt(id_string(11 6))
let sign = id_string(7 11) ! '+ ' for containing poly;

! for contained polys,
let pb_polyid_sign = PB_polyid_sign(poly_id,sign)
polyid_sign_list :=

l_prepend[PB_polyid_sign](pb_polyid_sign,
polyid_sign_list)

n : = n + 1
end
polyid_sign_list :=

l_reverse[PB_polyid_sign](polyid_sign_list)
let geom_id := stringToInt(rec_string(l + 7*num_partsI 6))
let attr_id := stringToInt(rec_string(1 + 7*num_parts + 8I 6))
! adding a cpoly record to the cpolygon_table
let pb_cpolygon := PB_cpolygon(num_parts,polyid_sign_list,

geom_id,attr_id)
m_isu_insert[Cpoly_id,PB_cpolygon](pb_cpolyid_cpolygon,

cpoly_id,pb_cpolygon)
end

default : {}
! read next record
record := fileStringO
let rec_desc := record(l|2)

the number of
records following
the POLYGON Record
and CPOLY Record

let num = if poly_type = 3 then 2 else
if rec_desc ="24" then 1 else 3

let count := 0
while count < num do
begin

case rec_desc of
"14" : ! ATTREC Record for (Part-) POLYGON and CPOLY

! including Foreshore and Sea [GEOMETRYl]
begin

let attr_id = stringToInt(record(3 I 6))
let i := 9
let att_len := length(record)
while i < att len - 2 do

E-24

Appendix E : The GIS Library Procedures

begin
let val_type := record(i|2)
i : = i + 2
case val__type of
■FC" : { FC := record(i14); i := i + 4 }

! See Feature Class Record
! Record (3901-3912)

"PI" : { PI := stringToInt(record(iI 6));i := i + 6 }
! Polygon_id

"HA" : { HA := float(stringToInt(record(i|8)))/1000.;
i : = i + 8 }

! Hectares of(part) polygon and
i complex polygon Foreshore or Sea.

default : { }
end
! Adding an attribute record to the attribute_table
let pb_attribute = PB_attribute(AI, LK, PI,HW,LV,HA,

FC,NM,OP,SD,CT)
m_isu_insert[Attr_id,PB_attribute](pb_aid_attribute,

attr_id,
pb_attribute)

end
"24" : ! CHAIN Record

begin
let chain_id = stringToInt(record(3 I 6))
let num_parts = stringToInt(record(9 I 4))

! Number of links for (part) polygon within tile,
let rec_len := length(record)
let rec_string := record(13 I (rec_len - 14))
while record(rec_len - 1 I 1) = "1" do
begin

record := fileString() ! Continuation Record
rec_len := length(record)
rec_string := rec_string + + record(3 I (rec_len - 4))

end
let link_list := l_make[PB_link]()
let n := 0
while n < num_parts do
begin

let id_string = rec_string(l + 7*nI 7)
let geom_id = stringToInt(id_string(1 I 6))

! X-ref to link geometry
let direction = stringToInt(id_string(7 11))
let pb_link = PB_link(direction, geom_id)
link_list : = l_prepend[PB_link](pb_link,link_list)
n : = n + 1

end
link_list := l_reverse[PB_link](link_list)
! adding a chain record to the chain_table
let pb_chain = PB_chain(num_parts,link_list)
m_isu_insert[Chain_id,PB_chain](pb_cid_chain,chain_id,

pb_chain)
end

"21" : ! GEOMETRY Record (Seed)
begin

let geom_id = stringToInt(record(3 I 6))
let gtype =1 ! "1" for seed
let num_coord = 1
let attr_id = 0 ! unused for seeds
let x = float(stringToInt(record(14I 6))) *

xy_mult + x_orig
let y = float(stringToInt(record(20 I 6))) *

xy_mult + y_orig
! Adding a geometry record to the pb_gid_geometry
let xy = XY(x,y)
let xy_list := l_make[XY]()

E-25

Appendix E : The GIS Library Procedures

xy_list := l_append[XY](xy_list,xy)
let pb_geometry = PB_geometry(gtype,num_coord,xy_list,

attr_id)
m_isu_insert [Geom__id, PB_geometry] (pb_gid_geometry,

geom_id,pb_geometry)
end

default : { }
count := count + 1
if num > 1 and count < num do
begin

record := fileString()
rec_desc : = record(112)

end
end

end

Collection Data
COLLECTION Record (34)
ATTRIBUTE Record (14)

if record(1 I 2) = "34" do ! COLLECT Record
begin

wait_count := wait_count + 1
waitSymbol(wait_count)
let coll_id = stringToInt(record(3 I 6)) ! Administrative Area

! ID 101001 to 800000.
let num_parts = stringToInt(record(9 I 4)) ! Number of [POLYGON]

! and [CPOLY] records
let rec_len := length(record)
let rec_string := record(13 I (rec_len - 14))
while record(rec_len - 1 I 1) = "1" do
begin

record := fileString() ! Continuation Record
rec_len := length(record)
rec_string := rec_string + + record(3 I (rec_len - 4))

end
let polyid_list := l_make[PB_polyid]()
let n := 0
while n < num_parts do
begin

let id_string = rec_string(l + 8*nI 8)
let poly_id = stringToInt(id_string(3 I 6))
let poly_type = if id_string(1 12) = "31" then 1

else if id_string(112) = "33" then 3 else 0
! 1 : simple polygon; 3 : complex polygon; 0 : wrong type

let pb_polyid = PB_polyid(poly_id, poly_type)
polyid_list := l_prepend[PB_polyid](pb_polyid,polyid_list)
n : = n + 1

end
polyid_list := l_reverse[PB_polyid](polyid_list)
let attr_id := stringToInt(rec_string(l + 8*num_parts+2I 6))
! adding a collection record to the collection_table
let pb_collection = PB_collection(num_parts,polyid_list,

attr_id)
m_isu_insert[Coll_id,PB_collection](pb_collid_collection,

coll_id,pb_collection)
! following an ATTREC Record (14)
record := fileString() ! ATTREC Record for

! Name [COLLECTION]
attr_id := stringToInt(record(3 I 6))
rec_len := length(record)
rec_string := record(9 I (rec_len - 10))
while record(rec_len - 1 I 1) = "1" do

E-26

Appendix E : The GIS Library Procedures

begin
record := fileStringO ! Continuation Record
rec_len := length(record)
rec_string := rec_string ++ record(3 I (rec_len - 4))

end
let att_len = length(rec_string)
let i := 1
while i < att_len - 2 do
begin

let val_type := rec_string(iI 2)
i : = i + 2
case val_type of
"AI" : { AI := stringToInt(rec_string(i|6)) ; i := i + 6 }

! Admin Area Identifier
"OP" : { OP := rec_string(i16) ; i := i + 6 }

! OPCS code
"NM" : { while rec_string(i11) ~= "\" do

begin
NM := NM ++ rec_string(i11)
i := i + 1

end }
! Admin Area Name or 'sea'

"CT" : { CT := rec_string(i12); i := i + 2 }
! Change Type

"SD" : { SD := rec_string(i|8); i := i + 8 }
! YYYYMMDD

default : { }
end
! Adding an attribute to the attribute_table
let pb_attribute := PB_attribute(AI,LK,PI,HW,LV,HA,

FC,NM,OP,SD,CT)
m_isu_insert[Attr_id,PB_attribute](pb_aid_attribute,attr_id,

pb_attribute)
end

end
writeString("1b'b I")
let close_index = close(inputfile)
let pb_dm := PB_DM(pb_collid_collection,pb_cpolyid_cpolygon,

pb_polyid_polygon,pb_cid_chain,pb_gid_geometry,
pb_aid_attribute,fed)

let basemap_dm = Basemap_DM(polygon_based: pb_dm)
let basemap = Basemap(basemap_dm)
basemap

end

Read an NTF landline file and construct a basemap

ntfUToBasemap := proc(fn: string -> Basemap)
begin

! initialise data structures
let sp_pid_point := m_empty[Point_id,SP_point](eq_int,lt_int)
let sp_lid_line := m_empty[Line_id,SP_line](eq_int,lt_int)
let sp_tid_text : = m_empty[Text_id,SP_text](eq_int,lt_int)
let fed := m_empty[FC,FD](eq_str,lt_str)
! read an NTF file
let inputfile := open(fn,0)
if inputfile = nilfile do

{ errorAbort("The file " ++ fn ++" cannot be opened.") }
let fileEnv := makeReadEnv(inputfile)
let fileString := use fileEnv with

readLine:proc(-> string) in readLine
let eoi := use fileEnv with endOfInput:proc(-> bool) in endOfInput
let peekFileChar := use fileEnv with

E-27

Appendix E : The GIS Library Procedures

peekChar:proc(-> string) in peekChar
writeString("'nReading the file and constructing a basemap, waiting
/

space(2)
let wait_count := 0
! Volume Header Record (01)
let VHR = fileStringO
! Database Header Record (02)
let DHR1 = fileStringO; let DHR2 = fileString ()
! Attribute Description Record (40)
let ADR := fileStringO
while ADR(1|2) = "40" do
begin

ADR := fileString()
if ADR(length(ADR) - 1 I 1) = "1" do { let ADR1 = fileString() }

end
! Feature Classification Record (05)
let FCR := ADR
while FCR(1|2) = "05" do
begin

let fc := FCR(314)
let fd := FCR(37 I length(FCR) - 38)
m_isu_insert[FC,FD](fcd,fc,fd)
FCR := fileString()

end
i

! Section Header Record (07)
i

let SHRl = FCR
! section of data ordered
let sect_reference = SHRl(3 I 10)
! length of xy coord fields
let xyln = stringToInt(SHRl(15 I 5))
! multiplies coords by xy_mult/1000
let xy_mult = float(stringToInt(SHRl(21|10)))/1000.
! multiplies height by z_mult/1000
let z_mult = float(stringToInt(SHRl(37 I 10)))/1000.
! Eastings and Northings of map origin
let x_orig = float(stringToInt(SHRl(47 110)))
let y_orig = float(stringToInt(SHRl(57 110)))
! continuation record
let SHR2 = fileString()
let SHR3 = fileStringO
let map_scale = stringToInt(SHR3(31 I 9))
let SHR4 = fileString()
let SHR5 = fileString()
! Map coverage (Local coordinates)
let side_length = case map_scale of

1250 : 500.0
2500 : 1000.0
10000 : 50000.0
default : 0.0

! Map coverage (National Grid coordinates)
let x_min = x_orig
let y_min = y_orig
let x_max = x_orig + side_length
let y_max = y_orig + side_length
let distance := 0
let point_id := 0
let orient := 0.0
let fc := ""
let xy := XY(0.,0.)
1
! Section Body Data
i

while ~eoi() do

E-28

Appendix E : The GIS Library Procedures

begin

Feature Records
Point Feature

Point Record (15)
Geometry Record (21)
Attribute Record (14) -- Optional

let record := fileString()
if record(1 I 2) = "15" do ! POINTREC
begin

wait_count := wait_count + 1
waitSymbol(wait_count)
point_id := stringToInt(record(3 I 6))
if record(9 I 2) = "OR" do

{ orient := float(stringToInt(record(llI 6)))/10.0 }
fc := record(17 I 4)
record := fileStringO ! GEOMETRYl (21)
let x = float(stringToInt(record(14 I 6))) * xy_mult + x_orig
let y = float(stringToInt(record(20 I 6))) * xy_mult + y_orig
xy := XY(x,y)
let landline_point_attr := Landline_point_attr(orient, distance)
let attribute := SP_point_attr(landline: landline_point_attr)
let sp_point := SP_point(xy,fc,attribute)
m_isu_insert[Point_id,SP_point](sp_pid_point,point_id,sp_point)

end
if record(1|2) = "14" do ! ATTREC (maybe associated with POINTREC)
begin

let distance := stringToInt(record(111 5))
let landline_point_attr := Landline_point_attr(orient,distance)
let attribute := SP_point_attr(landline: landline_point_attr)
let sp_point := SP_point(xy,fc,attribute)
m_isu_assign[Point_id,SP_point](sp_pid_point,point_id,sp_point)

end

Line Feature
Line Record (23)
Geometry Record (21)
Geometry Continuation Record (21)

if record(1 I 2) = "23" do ! LINEREC
begin

wait_count := wait_count + 1
waitSymbol(wait_count)
let line_id = stringToInt(record(3I 6)) ! line identity (16)
let fc = record(17|4)
record := fileString() ! GEOMETRYl (21)
let num_coord = stringToInt(record(10 I 4))
let line_len := length(record)
let line_string := record(141 (line_len - 15))
while record(line_len - 1 I 1) = "1" do
begin

record := fileString() ! GEOMETRYl (21)
line_len := length(record)
line_string := line_string ++ record(3l (line_len - 4))

end
let xy_list := l_make[XY]()

E-29

Appendix E : The GIS Library Procedures

let n := 0
while n < num_coord do
begin

let xy_string = line_string(l + 13*n112)
let x = float(stringToInt(xy_string(11 6))) *

xy_mult + x_orig
let y = float(stringToInt(xy_string(7 I 6))) *

xy_mult + y_orig
let xy = XY(x,y)
xy_list := l_prepend[XY](xy,xy_list)
n : = n + 1

end
xy_list := l_reverse[XY](xy_list)
let attribute = SP_line_attr(landline: nil)
let sp_line = SP_line(xy_list,fc,attribute)
m_isu_insert[Line_id,SP_line](sp_lid_line,line_id,sp_line)

end

Text Feature
Name Record (11)
Name Position Record (12)
Geometry Record (21)

if record(112) = "11" do ! NAMEREC (11)
begin

wait_count := wait_count + 1
waitSymbol(wait_count)
let text_id = stringToInt(record(3 I 6))
let text_code = record(9|4)
let text_len = stringToInt(record(13 I 2))
let rec_len := length(record)
let text_body := record(15 I (rec_len - 16))
while record(rec_len - 1 I 1) = "1" do
begin

record := fileString()
rec_len := length(record)
text_body := text_body ++ record(3| (rec_len - 4))

end
text_body := text_body(l I length(text_body) - 15)
record := fileStringO ! NAMPOSTN (12)
let font = stringToInt(record(3 I 4))
let text_ht = float(stringToInt(record(7|3)))/10. ! in mm
let dig_postn = stringToInt(record(10 11))
let orient = float(stringToInt(record(llI 4)))/10. ! 0.1 deg.
record := fileStringO ! GEOMETRYl (21)
let x = float(stringToInt(record(14 I 6))) * xy_mult + x_orig
let y = float(stringToInt(record(20I 6))) * xy_mult + y_orig
let xy = XY(x,y)
let sp_text = SP_text(xy,text_code,text_body,text_ht,orient,

font,dig_postn)
m_isu_insert[Text_id,SP_text](sp_tid_text,text_id,sp_text)

end
end
writeString("1b1b I")
let close_index = close(inputfile)
let sp_tid_txt := SP_tid_txt(sp_tid_text: sp_tid_text)
let sp_dm := SP_DM(sp_pid_point,sp_lid_line,sp_tid_txt,fcd)
let basemap_dm = Basemap_DM(spaghetti: sp_dm)
let basemap = Basemap(basemap_dm)
basemap

end

E-30

Appendix E : The GIS Library Procedures

Read an NTF OSCAR file and construct a basemap

ntfoscarToBasemap := proc(fn: string -> Basemap)
begin

! initialise data structures
let ln_pid_point := m_empty[Point_id,LN_point](eq_int,lt_int)
let ln_lid_line := m_empty[Line_id,LN_line](eq_int,lt_int)
let ln_gid_geometry:= m_empty[Geom_id,LN_geometry](eq_int,lt_int)
let ln_aid_attribute := m_empty[Attr_id,LN_attribute](eq_int,lt_int)
let ln_kid_link : = m_empty[Link_id,LN_link](eq_int,lt_int)
let ln_nid_node := m_empty[Node_id,LN_node](eq_int,lt_int)
let ln_tid_text := m_empty[Text_id,LN_text](eq_int,lt_int)
let fed := m_empty[FC,FD](eq_str,lt_str)
! read an NTF file
let inputfile := open(fn,0)
if inputfile = nilfile do

{ errorAbort("The file " ++ fn ++" cannot be opened.") }
let fileEnv := makeReadEnv(inputfile)
let fileString := use fileEnv with

readLine:proc(-> string) in readLine
let eoi := use fileEnv with endOfInput:proc(-> bool) in endOfInput
writeString("1nReading the file and constructing a basemap, wTaiting

. . . ") ;
space(2)
let wait_count := 0
! Volume Header Record (01)
let VHR = fileString()
! Database Header Record (02)
let DHR1 = fileString(); let DHR2 = fileString()
! Attribute Description Record (40)
let ADR := fileString()
while ADR(1 I 2) = "40" do
begin

ADR := fileString()
if ADR(length(ADR) - 1 I 1) = "1" do { let ADR1 = fileString() }

end
! Feature Classification Record (05)
let FCR := ADR
while FCR(11 2) = "05" do
begin

let fc := FCR(314)
let fd := FCR(37| length(FCR) - 38)
m_isu_insert[FC,FD](fcd,fc,fd)
FCR := fileString()

end
I
! Section Header Record (07)
i
let SHRl = FCR
! section of data ordered
let sect_reference = SHRl(3 110)
! length of xy coord fields
let xylen = stringToInt(SHRl(15 I 5))
! multiplies coords by xy_mult/1000
let xy_mult = float(stringToInt(SHRl(211 10)))/1000.
! multiplies height by z_mult/1000
let z_mult = float(stringToInt(SHRl(37110)))/1000.
! Eastings and Northings of map origin
let x_orig = float(stringToInt(SHRl(47 110)))
let y_orig = float(stringToInt(SHRl(57|10)))
! Continuation record
! Map coverage (Local coordinates)
let SHR2 = fileString()
let x_local_min = float(stringToInt(SHR2(3 110)))

E-31

Appendix E : The GIS Library Procedures

let y_local_min = float(stringToInt(SHR2(13 110)))
let x_local_max = float(stringToInt(SHR2(23 110)))
let y_local_max = float(stringToInt(SHR2(33 110)))
! Map coverage (National Grid coordinates)
let x_min = x_orig + x_local_min
let y_min = y_orig + y_local_min
let x_max = x_orig + x_local_max
let y_max = y_orig + y_local_maxI
! Section Body Data
j
while ~eoi() do
begin

Feature Records
Point Feature

Point Record (15)
Geometry Record (21)
Attribute Record (14)

let record : = fileString()
if record(l|2) = "15" do
begin

wait_count := wait_count + 1
waitSymbol(wait_count)
let point_id = stringToInt(record(3 I 6))
let geom_id := stringToInt(record(9 I 6))

POINTREC

sequential number of
point record
sequential number of
[GEOMETRYl] record
sequential number oflet attr_id := stringToInt(record(17 I 6))

let ln_point = LN_point(geom_id,attr_id)
m_isu_insert[Point_id,LN_point](ln_pid_point,point_id,ln_point)

! GEOMETRYl (21)
xy_mult + x_orig
xy_mult + y_orig

record := fileString()
let x = float(stringToInt(record(14 I 4)))
let y = float(stringToInt(record(18 I 4)))
let gtype = 1
let num_coord = 1
let xy = XY(x,y)
let xy_list := l_make[XY]()
xy_list := l_append[XY](xy_list,xy)
let ln_geometry = LN_geometry(gtype,num_coord,xy_list)
m_isu_insert[Geom_id,LN_geometry](ln_gid_geometry,geom_id,

ln_geometry)
record = fileString() ! ATTREC
attr_id := stringToInt(record(316))
let fc = record(1114) ! Feature Code
let SY = 0
let LL = 0.
let SC _ It ll
let PN _ If ll
let RN _ ll ll
let FW _ ll ll
let i = 15
let att__len := length(record)
while i < att_len - 2 do
begin

let val_type := record(l|2)
i : = i + 2
case val_type of
" SY" : { SY := stringToInt(record (i16)) ; i := i + 6 }
" LL" : { LL := float(stringToInt(record(iI 5)))/10. ;

= i + 5 }

E-32

Appendix E : The GIS Library Procedures

"SC'
" PN'

"RN" :
"FW" :
default

{ SC := record(ill); i := i + 1
{ while record(i|l) ~= "\" do
begin

PN := PN ++ record(ill)
i : = i + 1

end }
{ RN := record(i|8); i := i + 8
{ FW := record(ill); i := i

{ }
+ 1 }

end
let ln_attr_oscar := LN_attr_oscar(SY,LL,SC,PN,RN,FW)
let ln_attr := LN_attr(oscar: ln_attr_oscar)
let ln_attribute := LN_attribute(fc,ln_attr)
m_isu_insert[Attr_id,LN_attribute](ln_aid_attribute,attr_id,

ln_attribute)
end
i --

Line Feature
Line Record (23)
Geometry Record (21)
Geometry Continuation Record :2i:

Attribute Record (141

let attr_id
let gtype =

6)

line identity (16'

line type

if record(112) = "23" do ! LINEREC
begin

wait_count := wait_count + 1
waitSymbol(wait_count)
let line_id = stringToInt(record(3I 6) !
let geom_id := stringToInt(record(9 I 61

:= stringToInt(record(17
2

let ln_line = LN_line(geom_id,attr_id)
m_isu_insert[Line_id,LN_line](ln_lid_line,line_id,ln_line)
record := fileStringO ! GEOMETRYl (21)
! number of coordinates pairs in the range 0002 to 9999
let num_coord = stringToInt(record(10 I 4))
let line_len := length(record)
let line_string := record(14 I (line_len -
while record(line_len - 1 I 1) = "1" do
begin

record := fileString()
line_len := length(record)
line_string := line_string ++ record(!

end
let xy_list := l_make[XY]()

0

15))

GEOMETRYl (21)
line len - 4

n < num coord do
let n
while _
begin

let xy_string = line_string(l + 9*nI 8)
let x = float(stringToInt(xy_string(11 4))) *

xy_mult + x_orig
let y = float(stringToInt(xy_string(5 I 4))) *

xy_mult + y_orig
let xy = XY(x,y)
xy_list := l_prepend[XY](xy,xy_list)
n : = n + 1

end
xy_list := l_reverse[XY](xy_list)
let ln_geometry = LN_geometry(gtype,num_coord,xy_list)
m_isu_insert[Geom_id,LN_geometry](ln_gid_geometry,geom_id,

ln_geometry)

E-33

Appendix E : The GIS Library Procedures

record := fileStringO
attr_id := stringToInt(record(3 I 6)
let fc := record(ll|4)
let SY := 0
let LL := 0.
let SC
let PN
let RN
let FW
let i := 15
let att_len := length(record)
while i < att_len - 2 do
begin

let val_type := record(l|2;
i : = i + 2
case val_type of

! ATTREC
Feature Code

"SY'
"LL'
" SC'
" PN'

"RN" :
"FW" :
default

{ SY := stringToInt(record(iI 6)); i := i + 6 }
{ LL := float(stringToInt(record(iI 5)))/10.;

i : = i + 5 }
{ SC := record(ill); i := i + 1 }
{ while record(ill) ~= "\" do
begin

PN := PN ++ record(i|l)
i := i + 1

end }
{ RN := record(i18); i := i + 8 }
{ FW := record(ill); i := i + 1 }

{ }
end
let ln_attr_oscar := LN_attr_oscar(SY,LL,SC,PN,RN,FW)
let ln_attr := LN_attr(oscar: ln_attr_oscar)
let ln_attribute := LN_attribute(fc,ln_attr)
m_isu_insert[Attr_id,LN_attribute](ln_aid_attribute,attr_id,

In attribute)
end

Node Detail
Node Record (16)
Node Continuation Record (16)

if record(11 2) = "16" do ! NODREC
begin

wait_count := wait_count + 1
waitSymbol(wait_count)
! sequential number of node record
let node_id = stringToInt(record(3 I 6))
! [GEOMETRYl] record containing the position of the node
let geom_id_of_node = stringToInt(record(9 I 6))
! identity of a number of links that meet at the node; the
! maximum is 9
let num_links = stringToInt(record(15 I 4))
let link_list := l_make[Link]()
let k := 19
for i = 1 to num_links do
begin

! node reocrd, with num_links more than 5,
! requires a continuation record.
if i = 6 do { record := fileStringO; k := 3 }
let direction = stringToInt(record(kI 1))
let geom_id_of_link = stringToInt(record(k+1I 6))
let orient = float(stringToInt(record(k+7I 4)))/10.0
let level = stringToInt(record(k+1111))
k := k + 12

E-34

Appendix E : The GIS Library Procedures

let link = Link(direction,geom_id_of_link,orient,level)
link_list := l_prepend[Link](link,link_list)

end
link_list := l_reverse[Link](link_list)
let ln_node := LN_node(geom_id_of_node,num_links,link_list)
m_isu_insert[Node_id,LN_node](ln_nid_node,node_id,ln_node)

end
end
writeString("'b1b I")
let close_index = close(inputfile)
let ln_tid_txt := LN_tid_txt(none: nil)
let ln_dm := LN_DM(ln_pid_point,ln_lid_line,ln_gid_geometry,

ln_aid_attribute,ln_kid_link,ln_nid_node,
ln_tid_txt,fed)

let basemap_dm = Basemap_DM(link_node: ln_dm)
let basemap = Basemap(basemap_dm)
basemap

end

Store a basemap

storeBasemap := proc(map_id: Map_id; basemap: Basemap; map_extent: Extent)
begin

if ~m_contains[Map_id,Basemap](base_maps,map_id) then
begin

m_isu_insert[Map_id,Basemap](base_maps,map_id,basemap)
let x_min = map_extent(x_min)
let y_min = map_extent(y_min)
let side_length = map_extent(x_range)
let xy = XY(x_min / 100., y_min / 100.)
let peano_key = xyToPK(xy)
let peano = Peano(peano_key,side_length)
m_isu_insert[Peano,Map_id](basemap_indices,peano,map_id)

end
else { m_isu_assign[Map_id,Basemap](base_maps,map_id,basemap) }

end

Remove a basemap

removeBasemap := proc()
begin

if ~m_isEmpty[Image_id,Basemap](base_maps) then
begin

let prtMapID = proc(map_id: Map_id; basemap: Basemap)
{ writeString(map_id);space(2); }

writeString("'nThe map database contains following basemaps: 'n")
m_app[Map_id,Basemap](base_maps,prtMapID)
newline(1)
writeString ("'nEnter a map name: 11) ; let map_id = readLine ()
if ~m_contains[Map_id,Basemap](base_maps,map_id) then
begin

if map_id ~= "" do
{ writeString("The database does not contain the query

basemap.1n") }
end
else
begin

writeString("Are you sure that the basemap is to be destroyed " ++
map_id + + "7'nPlease confirm with '"YES'" to proceed, otherwise no action
taken.'n"); let confirm = readLine()

E-35

Appendix E : The GIS Library Procedures

if confirm = "YES" do
begin

m_isu_remove[Map_id,Basemap] (base_maps,map_id)
writeString("Done!'n")

end
end

end
else

{ writeString("'nNo basemap available.1n") }
end

Determine the MBR of a polygon

getPolyMBR := proc(poly_id: Poly_id; pb_cid_chain: PB_cid_chain;
pb_gid_geometry: PB_gid_geometry -> MBR)

begin
let pb_chain = m_f ind [Chain_id, PB_chain] (pb_cid_chain, poly_id)
let link_list := pb_chain(link_list)
let geom_id_of_link := l_first[PB_link](link_list)(geom_id_of_link)
let xy_list := m_f ind [Geom_id, PB_geometry] (pb_gid_geometry,

geom_id_of_link)(xy_list)
let xy := l_first[XY](xy_list)
let x_min := xy(x); let y_min := xy(y)
let x_max := x_min; let y_max := y_min
while link_list isnt empty do
begin

geom_id_of_link := hd[PB_link](link_list)(geom_id_of_link)
xy_list := m_find[Geom_id,PB_geometry] (pb_gid_geometry,

geom_id_of_link)(xy_list)
while xy_list isnt empty do
begin

xy := hd[XY](xy_list)
let x = xy(x); let y = xy(y)
if x < x_min do x_min := x
if y < y_min do y_min := y
i f x > x_max do x_max := x
i f y > y_max do y_max := y
xy_list := tl[XY](xy_list)

end
link_list := tl[PB_link](link_list)

end
let mbr = MBR(x_min,y_min,x_max,y_max)
mbr

end

Point-in-polygon test
* If a point is on the boundary of a polygon, then this point is
counted as inside.

pointInPolygon := proc(test_pt: XY; pb_polygon: PB_polygon;
pb_cid_chain: Map[Chain_id,PB_chain];
pb_gid_geometry: Map[Geom_id,PB_geometry];
chain_mbr: Map[Geom_id,MBR] -> bool)

begin
let in_poly := false
let xt = test_pt(x); let yt= test_pt(y)
let chain_id = pb_polygon(chain_id)
let pb_chain = m_f ind [Chain_id, PB_chain] (pb_cid_chain, chain_id)

E-36

Appendix E : The GIS Library Procedures

let link_list := pb_chain(link_list)
let num_parts = pb_chain(num_parts)
let i := 1
let x_intersec_list : = l_make[real]()
while link_list isnt empty do
begin

let geom_id_of_link = hd[PB_link](link_list)(geom_id_of_link)
! determine whether the test point is within the mbr of a chain
let chainmbr = m_find[Geom_id,MBR](chain_mbr,geom_id_of_link)
if chainmbr(y_min) <= yt and yt <= chainmbr(y_max) do
begin

! the joint link of the current link
let direction = hd[PB_link](link_list)(direction)
let k := if direction = 1 then i - 1 else i + 1
if k < 1 or k > num_parts do k := num_parts
let joint_link := l_nth[PB_link](pb_chain(link_list),k)
let joint_link_xy_list =

m_find[Geom_id,PB_geometry](pb_gid_geometry,
geom_id_of_link)(xy_list)

let joint_link_xy_num =
m_find[Geom_id,PB_geometry](pb_gid_geometry,

geom_id_of_link)(num_coord)
let yO := case joint_link(direction) of

1 : { l_nth[XY](joint_link_xy_list,2)(y) }
2 : { l_nth[XY](joint_link_xy_list,

joint_link_xy_num - 1)(y) }
default : { l_nth[XY](joint_link_xy_list,2)(y) }
! the current link
let xy_list := m_find[Geom_id,PB_geometry](pb_gid_geometry,

geom_id_of_link)(xy_list)
let num_coord = m_find[Geom_id,PB_geometry](pb_gid_geometry,

geom_id_of_link)(num_coord)
let j := 1
let xl := l_first[XY](xy_list)(x)
let yl := l_first[XY](xy_list)(y)
xy_list := tl[XY](xy_list)
while xy_list isnt empty do
begin

j : = j + 1
let xy = hd[XY](xy_list)
let x2 = xy(x)
let y2 = xy(y)
if (yl <= yt and yt <= y2) or (y2 <= yt and yt <= yl) do
begin

if yl = y2
then if (xl <= xt and xt <= x2) or

(x2 <= xt and xt <= xl) do
{ x_intersec_list := l_prepend[real](xt,x_intersec_list)
xy_list := l_make[XY]()
link_list := l_make[PB_link]() }

else
case yt of
yl : begin

if ~l_contains[real](x_intersec_list,xl) do
begin

if (yO < yl and yl <= y2) or
(y2 < yl and yl <= yO)

then { x_intersec_list :=
l_prepend[real](xl,x_intersec_list) }

else
begin

x_intersec_list :=
l_prepend[real](xl,x_intersec_list)

x_intersec_list :=
l_prepend[real](xl,x_intersec_list)

end

E-37

Appendix E : The GIS Library Procedures

end
end

y2 : { }
default : begin

let x_intersec = (x2-xl)/(y2-yl)*(yt-yl)+xl
x_intersec_list :=

l_prepend[real](x_intersec,x_intersec_list)
end

end
yO := yl ; yl := y2; xl := x2
xy_list := tl[XY](xy_list)

end
end
link_list := tl[PB_link](link_list)
i := i + 1

end
let num_of_intersections = l_length[real](x_intersec_list)
case num of intersections of

0
1

default
{ in_poly := false }
{ in_poly := true }
begin

let x_intersec_vec := vector 1 to
num_of_intersections of 0.0

for i = 1 to num_of_intersections do
{ x_intersec_vec(i) := l_nth[real](x_intersec_list,i) }

vector_isu_sort(x_intersec_vec)
for i = 1 to num_of_intersections by 2 do
begin

if x_intersec_vec(i) <= xt and
xt <= x_intersec_vec(i+1) do

{ in_poly := true }
end

end
in_poly

end
i --

! Spatial indexing polygons using a grid-cell coded structure

gridNdxPoly := proc(poly_id: Poly_id; mbr: MBR;
polygon_index: Map[Peanor,List[Poly_id]]; si: real)

begin
! determine limits of the cell covered by a polygon mbr
let xl = float(truncate(mbr(x_min) /si)) * si
let yl = float(truncate(mbr(y_min) / si)) * si
let x2 := float(truncate(mbr(x_max) /si)) * si
let y2 := float(truncate(mbr(y_max) /si)) * si
! exclude the case that the mbr is on the top or right border of the map
if x2 = mbr(x_max) do x2 := x2 - s1
if y2 = mbr(y_max) do y2 := y2 - si
! construct polygon index
for i = truncate(xl / si) to truncate(x2 / si) do
for j = truncate(yl /si) to truncate(y2 /si) do
begin

let xy = X Y (float(i) * si, float(j) * si)
let peano_key = xyToPKR(xy)
let peano = Peanor(peano_key,si)
if m_contains[Peanor,List[Poly_id]](polygon_index,peano) then
begin

let polyid_list := m_find[Peanor,List[Poly_id]](polygon_index,
peano)

if ~l_contains[Poly_id](polyid_list,poly_id) do
begin

polyid_list := l_prepend[Poly_id](poly_id,polyid_list)

E-38

Appendix E : The GIS Library Procedures

m_isu_assign[Peanor,List[Poly_id]](polygon_index,peano,
polyid_list)

end
end
else
begin

let polyid_list := l_make[Poly_id]()
polyid_list := l_prepend[Poly_id](poly_id,polyid_list)
m_isu_insert[Peanor,List[Poly_id]](polygon_index,peano,

polyid_list)
end

end
end

Spatial indexing points using a linear quadtree structure

lqtNdxPoint := proc(peano: Peanor; pointid_list: List[Point_id];
pid_point: Map[Point_id,XY];
point_index: Map[Peanor,List[Point_id]])

begin
let quad_extent = getQuadExtent(peano)
let xmin = quad_extent(x_min)
let ymin = quad_extent(y_min)
let range = quad_extent(x_range)
let si = range / 2.
let quad_pid_list := vector 0 to 3 of l_make[Point_id]()
while pointid_list isnt empty do
begin

let point_id = hd[Point_id](pointid_list)
let pt = m_find[Point_id,XY](pid_point,point_id)
let x = pt(x); let y = pt(y)
let m = truncate((x - xmin) / si)
let n = truncate((y - ymin) / si)
if m >= 0 and m <= 1 and n >= 0 and n <= 1 do
begin

let i = 2 * m + n
quad_pid_list(i) := l_prepend[Point_id](point_id,

quad_pid_list(i))
end
pointid_list := tl[Point_id](pointid_list)

end
for i = 0 to 3 do
begin

! construct a point index
let xy = XY(xmin + float(i div 2) * si, ymin +

float(i rem 2) * si)
let peano_key = xyToPKR(xy)
let peano = Peanor(peano_key,si)
m_isu_insert[Peanor,List[Point_id]](point_index,peano,

quad_pid_list(i))
end

end

Spatial indexing lines using a linear quadtree structure

lqtNdxLine := proc(peano: Peanor; lid_list: List[Line_id];
lid_line: Map[Line_id,List[XY]];
line_mbr: Map[Line_id,MBR];
line_key_pts: Map[Line_id,List[XY]];
line_index: Map[Peanor,List[Line_id]])

E-39

Appendix E : The GIS Library Procedures

begin
let quad_extent = getQuadExtent(peano)
let xmin = quad_extent(x_min)
let ymin = quad_extent(y_min)
let range = quad_extent (x__range)
let xmax = xmin + range
let ymax = ymin + range
let si = range / 2.
let quad_lid_list := vector 0 to 3 of l_make[Line_id]()
while lid_list isnt empty do
begin

let line_id = hd[Line_id](lid_list)
let l_mbr = m_find[Line_id,MBR](line_mbr,line_id)
let ls_xmin = l_mbr(x_min)
let ls_ymin = l_mbr(y_min)
let ls_xmax = l_mbr(x_max)
let ls_ymax = l_mbr(y_max)
let quad_mbr := vector 0 to 3 of MBR(0.,0.,0.,0.)
let quad_visit : = vector 0 to 3 of false
for i = 0 to 3 do
begin

let quad_xmin = xmin + float(i div 2) * si
let quad_ymin = ymin + float(i rem 2) * si
let quad_xmax = quad_xmin + si
let quad_ymax = quad_ymin + si
quad_mbr(i) := MBR (quad_xmin, quad_ymin, quad_xmax, quad_ymax)
if ls_xmax < quad_xmin or ls_xmin > quad_xmax or

ls_ymax < quad_ymin or ls_ymin > quad_ymax then {)
else
begin

let key_pts_list := m_find[Line_id,List[XY]](line_key_pts,
line_id)

let pi := hd[XY](key_pts_list)
key_pts_list := tl[XY](key_pts_list)
while key_pts_list isnt empty and ~quad_visit(i) do
begin

let p2 = hd[XY](key_pts_list)
let l_xmin = if pi(x) < p2(x) then pl(x) else p2 (x)
let l_̂ unin = if pl(y) < p2(y) then pi(y) else p2(y)
let l_xmax = if pl(x) > p2(x) then pl(x) else p2(x)
let l_ymax = if pi(y) > p2(y) then pi(y) else p2(y)
if l_xmax < quad_xmin or l_xmin > quad_xmax or

l_ymax < quad_ymin or l_ymin > quad_ymax then { }
else
begin

let xy_list := m_find[Line_id,List[XY]](lid_line,
line_id)

while hd[XY](xy_list)(x) ~= pl(x) or
hd[XY](xy_list)(y) ~= pi(y) do

{ xy_list := tl[XY](xy_list) }
let ptl := hd[XY](xy_list)
xy_list := tl[XY](xy_list)
let finished := false
while xy_list isnt empty and

~quad_visit(i) and -finished do
begin

let pt2 = hd[XY](xy_list)
if lineVisiblelnWindow(ptl,pt2,quad_mbr(i)) do
begin

quad_lid_list(i) := l_prepend[Line_id](line_id,
quad_lid_list(i))

quad_visit(i) := true
end
if pt2(x) = p2(x) and pt2(y) = p2(y) do

{ finished := true }
ptl := pt2

E-40

Appendix E : The GIS Library Procedures

xy_list := tl[XY](xy_list)
end

end
pi := p2
key_pts_list := tl[XY](key_pts_list)

end
end

end
lid_list := tl[Line_id](lid_list)

end
for i = 0 to 3 do
begin

! construct a line index
let xy = XY(xmin + float(i div 2) * si, ymin +

float(i rem 2) * si)
let peano_key = xyToPKR(xy)
let peano = Peanor(peano_key,si)
m_isu_insert[Peanor,List[Line_id]](line_index,peano,

quad_lid_list(i))
end

end

Spatial indexing polygons using a linear quadtree structure

lqtNdxPoly := proc(peano: Peanor; pid_list: List[Poly_id];
poly_mbr: Map[Poly_id,MBR];
polygon_index: Map[Peanor,List[Poly_id]])

begin
let quad_extent = getQuadExtent(peano)
let xmin = quad_extent(x_min)
let ymin = quad_extent(y_min)
let range = quad_extent(x_range)
let xmax = xmin + range
let ymax = ymin + range
let si = range / 2.
while pid_list isnt empty do
begin

let poly_id = hd[Poly_id](pid_list)
let mbr = m_find[Poly_id,MBR](poly_mbr,poly_id)
let xl := mbr(x_min)
let yl := mbr(y_min)
let x2 := mbr(x_max)
let y2 := mbr(y_max)
! exclude the case that the boundary of a polygon mbr is beyond
! the border of the working quadrant and a special case that
! the top or right boundary is on the top or right border of the
! first subquadrant.
if xl < xmin do xl := xmin
if yl < ymin do yl := ymin
if x2 >= xmax then x2 := xmax - si

else if x2 = xmin + si do x2 := xmin
if y2 >= ymax then y2 := ymax - si

else if y2 = ymin + si do y2 := ymin
for i = truncate(xl / si) to truncate(x2 / si) do
for j = truncate(yl / si) to truncate(y2 / si) do
begin

let xy = XY(float(i) * si, float(j) * si)
let peano_key = xyToPKR(xy)
let peano = Peanor(peano_key,si)
if m_contains[Peanor,List[Poly_id]](polygon_index,peano) then
begin

let polyid_list := m_find[Peanor,List[Poly__id]](polygon_index,

E-41

Appendix E : The GIS Library Procedures

peano)
if ~l_contains[Poly_id](polyid_list,poly_id) do
begin

polyid_list : = l_prepend[Poly_id](poly_id,polyid__list)
m_isu_assign[Peanor,List[Poly_id]](polygon_index,peano,

polyid_list)
end

end
else
begin

let polyid_list := l_make[Poly_id]()
polyid_list : = l_prepend[Poly_id](poly_id,polyid_list)
m_isu_insert[Peanor,List[Poly_id]](polygon_index,peano,

polyid_list)
end

end
pid_list := tl[Poly_id](pid_list)

end
end

Read a flat binary format file (FBFF) and store it as a rawimage

fbffToRaw := proc(fn: string; width, height, depth: int -> Rawimage)
begin

let num = if (width * height) rem 4 = 0 then (width * height) div 4
else (width * height) div 4 + 1

let size = num * 4
let data := vector 1 to num of 0
i

! create an environment for importing a flat binary format file
i
let inputfile = open(fn,0)
if inputfile = nilfile do
begin writeString("The file "); writeString(fn) ;

writeString(" cannot be opened'n"); abort()
end
let position := seek(inputfile, 0, 0)
writeString("'nReading"); writelnt(size); newline(1)
let nbytes := readBytes(inputfile,data,0,size)
writelnt(nbytes); writeString(" bytes.");
! default colourmap
let nc = power_2_k(depth)
let ct = grayLevel(nc)
let rawimage := Rawimage(data,width, height,depth,ct)
let void = close(input file)
rawimage

end
__ i

i

Read a TIFF image file and store it as a rawimage !
I

 ;

tiffToRaw := proc(fn: string -> Rawimage)
begin

! create an environment for importing a tiff image file
let inputfile = open(fn,0)
if inputfile = nilfile do
begin writeString("The file "); writeString(fn);

writeString(" cannot be opened'n"); abort()
end
let fileEnv = makeReadEnv(inputfile)
let readfile = use fileEnv with readByte: proc(-> int) in readByte

E-42

Appendix E : The GIS Library Procedures

! use a vector of integers as a buffer for reading more data from
! the file at one time.
! the buffer size = 8k bytes (2048 * 4-byte integers)
let bufsize : = 8192
let intbuf : = bufsize div 4
let buf := vector 1 to intbuf of 0
! read header (length = 8 bytes)
i
! bytes 0-1 define the byte order
! hex 49 49 : from least significant to most significant
! hex 4D 4D : from most significant to least significant
i
let byteO = readfile(); let bytel = readfile(); let LtoM : = true
if -(byteO = 73 and bytel = 73) and -(byteO = 77 and bytel = 77)
then { errorAbort("This is not a TIFF image file. Aborting....") }
else if (byteO = 73 and bytel = 73)

then LtoM := true
else LtoM := false

calculate the value of a 4-byte word depending on byte-order
let word_value =

if LtoM then { proc(word: int -> int);
getByte(word,0) +
getByte(word,1) * 256 +
getByte(word,2) * 256 * 256 +
getByte(word,3) }

else proc(word: int -> int); word
bytes 2-3 denote the TIFF version number. (hex 2A)

let byte2 = readfile(); let byte3 = readfile()
if ~(byte2 = 42 and byte3 = 0) and ~(byte2 = 0 and byte3 =42) do

{ errorAbort("This is not a standard TIFF image file.
Aborting....") }

bytes 4-7 contain the offset (in bytes) of the first Image File
Directory

let offset := + readfile()
* 256 * 256 +
* 256 * 256 *
* 256 * 256 *
* 256 * 256 +
* 256 + readfile()

if LtoM then readfile(
readfile(
readfile(

else readfile(
readfile(
readfile(

let position := seek(inputfile,offset,0)
! read IFD information into buffer
let count = if LtoM then readfile() + readfile() * 256

else readfile() * 256 + readfile()
Each IFD entry has 12 bytes,
tag: 2 bytes; field type: 2 bytes;
length: 4 bytes; value offset: 4 bytes,
the length of IFD = the number of tag *

256 +
256
256 +

12 bytes + 4 bytes
let ifd_len := count * 1 2 + 4
offset := offset + 2
position := seek(inputfile,offset,0)
let nb := readBytes(inputfile,buf,0,ifd_len)
i
! Image file directory
i
! consists of a 2-byte count of the number of entries
! (= the number of fields) followed by a sequence of 12-byte
! filed entries, ended by a 4-byte offset of the next Image File

E-43

Appendix E : The GIS Library Procedures

Directory (or 0 if none).
get IFD information from the buffer

type ifd is structure(ftype,length,value: int)
let default_ifd = ifd(0,0,0)
let IFD := vector 254 to 320 of default_ifd
let tag : = 0; let ftype := 0; let length := 0;
let value : = 0; let m := 1
for i = 1 to count do
begin

tag := if LtoM then getByte(buf(m),0)
else getByte(buf(m),0)

ftype := if LtoM then getByte(buf(m) ,2) + getByte(buf(m),3) * 256
else getByte(buf(m),2) * 256 + getByte(buf(m),3)

length := word_value(buf(m))
value := if ftype = 3 and getByte(buf(m),2) = 0 and

getByte(buf(m),3) = 0

getByte(buf(m),1) * 256
256 + getByte(buf(m),1)
+ getByte(buf(m),3)

m : = m + 1
m : = m + 1

IFD(tag)
m : = m +

then if LtoM then getByte(buf(m),0)
getByte(buf(m),1)

else getByte(buf(m),0)
getByte(buf(m),1)

else word_value(buf(m))
:= ifd(ftype,length,value)
1

256
256 +

end
let nextifd := word_value(buf(m)) offset of next IFD

(or 0 if none)
image width
image height
image depth
compression method
photometric interpretation
the number of strips
strip offset
samples per pixel
strip byte counts
x resolution
y resolution
planar configuration
resolution unit
clormap length and offset

let ras_width = IFD(256)(value)
let ras_height = IFD(257)(value)
let ras_depth = IFD(258)(value)
let compress = IFD(259)(value)
let photointp = IFD(262)(value)
let strips_number = IFD(273)(length)
let strips_offset = IFD(273)(value)
let samples_per_pixel = IFD(277)(value)
let strips_count = IFD(279)(length)
let strips_count_offset = IFD(279)(value
let x_resolution = IFD(282)(value)
let y_resolution = IFD(283)(value)
let planar_config = IFD(284)(value)
let resolution_unit = IFD(296)(value)
let colourmap_length = IFD(320)(length)
let colourmap_offset = IFD(320)(value)
! strip offsets
m : = 1 ; let n := 0
let strip_offset := vector 1 to strips_number of 0
if strips_number > 1 then
begin

position := seek(inputfile,strips_offset,0)
nb := readBytes(inputfile,buf,0,strips_number * 4)
for i = 1 to strips_number do
if IFD(273)(ftype) = 3 then

begin
strip_offset(i):= if LtoM then getByte(buf(m),n) +

getByte(buf(m),n+1)
else getByte(buf(m),n) *

getByte(buf(m),n+1)
n : = n + 2
if n = 4 do { m : = m + l ; n := 0 }

end
else

strip_offset(i) := word_value(buf(i))
end
else

strip_offset(1) := strips_offset

* 256
256 +

E-44

Appendix E : The GIS Library Procedures

! strips count offsets
m : = 1 ; n : = 0
let strip_count : = vector 1 to strips_count of 0
if strips_count > 1 then
begin

position := seek(inputfile,strips_count_offset,0)
nb := readBytes(inputfile,buf,0, strips_count * 4)
for i = 1 to strips_count do
if IFD(279)(ftype) = 3 then
begin

strip_count(i):= if LtoM then getByte(buf(m),n) +
getByte(buf(m),n+1)

else getByte(buf(m),n) *
getByte(buf(m),n+1)

* 256
256 +

n : = n + 2
if n = 4 do

end
else

strip_count
end
else

strip_count(1)

{m : = m + 1 ; n : = 0 }

= word_value(buf(i))

= strips_count_offset
let nc = power_2_k(ras_depth)
let ct := vector 0 to nc-1 using proc(i:int -> *int);

vector 1 to 3 of 0
m : = 1 ; n : = 0
! create or read a colourmap
case photointp of
0 : { ct := invGrayLevel(nc) }

! bilevel and grayscale image: create a colourmap,
! 0 is imaged as white, 2 ** Bitspersample-1 is imaged as black.

1 : { ct := grayLevel(nc) }
! bilevel and grayscale image: create a colourmap,
! 0 is imaged as balck, 2 ** Bitspersample-1 is imaged as white.

3 : begin ! paletted colour image: read the colourmap.
position := seek(inputfile,colourmap_offset,0)
nb := readBytes(inputfile,buf,0,colourmap_length * 2)
for j = 1 to 3 do

for i = 0 to nc-1 do
begin

ct(i,j) : = getByte(buf(m),n+1)
n : = n + 2
if n = 4 do {m := m + 1 ; n := 0 }

end
end

default { }

read image data
samples_per_pixel = 1 --> bilevel (Class B), grayscale (Class G),

and paletted colour images (Class P).
raster_depth = 1, 4 , or 8 bits

= 3 --> RGB images (Class R, true colour)
raster_depth = 24 bits

redefine the buffer size for reading the strips of the image
intbuf := if strip_count(1) rem 4 = 0

then strip_count(1) div 4
else strip_count(1) div 4 + 1

let stripbuf := vector 1 to intbuf of 0
! define an 1-D arrary to store rawimage data
let num = case ras_depth of

1
4
8

default

{ intbuf * strips_number * 8}
{ intbuf * strips_number * 2}
{ intbuf * strips_number }
{ intbuf * strips_number }

E-45

Appendix E : The GIS Library Procedures

let data := vector 1 to num of 0
writeString("1nstrips : ")
for i = 1 to strips_number do { w r i t e S t r i n g ; }
let k := 1 ! positions and reads the first strip image data
position := seek(inputfile,strip_offset(k),0)
nb : = readBytes(inputfile,stripbuf,0,strip_count(k))
writeString("1nreading: ")
writeString(".");
let first = 0; let last = 4; let step = 1
let p := 1 ; let q := 0
m := 1 ; n := first
case ras_depth of
1 : { }
4 : begin

let half_width = if ras_width rem 2 = 0
then ras_width div 2
else (ras_width div 2) +1

let xl = proc(x:int -> int); x div 16
let x2 = proc(x:int -> int); x rem 16
for j = ras_height - 1 to 0 by -1 do
begin

for i = 0 to half_width - 1 do
begin

let x = getByte(stripbuf(m),n)
data(p) := setByte(data(p),q,xl(x))
q := q + 1
if q = 4 do { p := p + 1; q := 0 }
data(p) := setByte(data(p),q,x2(x))
q := q + 1
if q = 4 do { p := p + 1; q := 0 }
n := n + step
if m = intbuf and n = last and strips_number > k do
begin

m := 1 ; n := first
k : = k + 1
writeString(".");
position := seek(inputfile,strip_offset(k),0)
nb := readBytes(inputfile,stripbuf,0,strip_count(k))

end
if n = last do { m := m + 1; n := first }

end
end

end
8 : begin

for j = ras_height - 1 to 0 by -1 do
for i = 0 to ras_width - 1 do
begin

let x = getByte(stripbuf(m),n)
data(p) := setByte(data(p),q,x)
q := q + 1
if q = 4 do { p :=p+ 1; q := 0 }
n := n + step
if m = intbuf and n = last and strips_number > k do
begin

m := 1 ; n := first
k : = k + 1
writeString(".");
position := seek(inputfile,strip_offset(k),0)
nb := readBytes(inputfile,stripbuf,0,strip_count(k))

end
if n = last do { m := m + 1; n := first }

end
end

default: begin
writeString("1nThe depth of the TIFF image is ");
writelnt(ras_depth) ; writeString(" bits'n")

E-46

Appendix E : The GIS Library Procedures

writeString("The depth should be 1, 4 or 8 bits.1n")
end

if samples_per_pixel = 3 do
begin
! reserved for 24 bits
end
let rawimage := Rawimage(data,ras_width,ras_height,ras_depth,ct)
rawimage

end
1 1
1 1

! Convert a raw image data to an interim image !
1 !
1 1

rawToInterim := proc(rawimage: Rawimage -> Interim_image)
begin

let data = rawimage(data)
let width = rawimage(width)
let height = rawimage(height)
let depth = rawimage(depth)
let ct = rawimage(colourmap)
let nc = power_2_k(depth)
let default_pixel = defaultPixel(off,depth)
let pixel_table := vector 0 to nc-1 of default_pixel
for i = 0 to nc-1 do { pixel_table(i) := colourToPixel (i,depth) }
let newimage := image width by height of default_pixel
writeString("1nReading the raw image and constructing an interim image,

waiting ...");
space(2)
let wait_count := 0
let m : = 1; let n : = 0
for j = height-1 to 0 by -1 do
begin

wait_count : = wait_count + 1
waitSymbol(wait_count)
for i = 0 to width-1 do
begin

let x = getByte(data(m),n)
setPixel(newimage,i,j ,pixel_table(x))

n : = n + 1
if n = 4 do {m :=m+l; n := 0 }

end
end
writeString("'b'b 1")
let interim_image = Interim_image(newimage,ct)
interim_image

end
__ _ 1

I i

! Read an HSI-format image file and store it as an interim image !
1 1

1 1

hsiToInterim := proc(fn: string -> Interim_image)
begin

! create an environment for importing an image file
let inputfile = open(fn,0)
if inputfile = nilfile do
begin

writeString("The file "); writeString(fn);
writeString(" cannot be opened'n"); abort()

end
let fileEnv = makeReadEnv(inputfile)
let readfile = use fileEnv with readByte: proc(-> int) in readByte
! uses a vector of integers as a buffer in order to read more data

E-47

Appendix E : The GIS Library Procedures

! from the file at one time (buffer size = 8k bytes)
let bufsize = 8192
let intbuf = bufsize div 4
let buf := vector 1 to intbuf of 0

read the header of an HSI image
size of header:
32 bytes, if the image is true colour
32 bytes + 3bytes * the number of colours, if the image is
paletted colour
first six bytes are magic numbers

let offset := 0
let position := seek(inputfile,offset,0)
let nbytes := readBytes(inputfile,buf,0,bufsize)
let mgO = getByte(buf(1),0); let mgl = getByte(buf(1)

getByte(buf(1),2); let mg3 = getByte(buf(1)
,0); let mg5 = getByte(buf(2)

1)
3)
1)

let mg2
let mg4 = getByte(buf(2
if mgO ~= 109 or mgl ~= 104 or mg2 ~= 119 or

mg3 ~= 97 or mg4 ~= 110 or mg5 ~= 104 do
begin

writeString("The file "); writeString(fn);
writeString(" is not a HSI image format.'n"); abort()

end
! two bytes represent the version number of an HSI image
let vn = 256 * getByte(buf(2),2) + getByte(buf(2),3)
! two bytes denote horizontal and vertical pixels respectively
let ras_width = 256 * getByte(buf(3),0) + getByte(buf(3),1)
let ras_height = 256 * getByte(buf(3),2) + getByte(buf(3),3)
! two bytes represent paletted colours
let nc = 256 * getByte(buf(4),0) + getByte(buf(4),1)
! two bytes denote horizonal and vertical resolution respectively
let hres = 256 * getByte(buf(4),2) + getByte(buf(4),3)
let vres = 256 * getByte(buf(5),0) + getByte(buf(5),1)
! two bytes for gamma value
let gamma = 256 * getByte(buf(5),2) + getByte(buf(5),3)
! skip 12 reserved bytes buf(6),buf(7) and buf(8)
let m := 9; let n := 0
! read colourmap information
let ct := vector 0 to nc-1 using proc(i:int -> *int);

vector 1 to 3 of 0
0 to nc-1 do ! R-G-B-R-G-B-R-G-B ...
1 to 3 do

for i
for j = 1
begin

ct (i,j]
n : = n
if n =

end
let ras_depth

2
4
16
64
256

default
let default_pixel
let colour_index
for i = 0 to nc-1

:= getByte(buf(m),n
+ 1
4 do { m := m + 1

= case nc of
n : = 0 }

= defaultPixel(off,ras_depth)
= vector 0 to nc-1 of default_pixel
do colour_index(i) := colourToPixel(i,ras_depth)

let raster := image ras_width by ras_height of default_pixel
read image data

let image_size = ras_width * ras_height + 32 + nc * 3
let nb = if image_size rem bufsize = 0 then image_size div bufsize

else image_size div bufsize + 1
writeString("Blocks : ")
for i = 1 to nb do { writeString("."); }
writeString("'nReading : .");

E-48

Appendix E : The GIS Library Procedures

for j = ras_height - 1 to 0 by -1 do
for i = 0 to ras_width - 1 do
begin

let x = getByte(buf(m),n)
setPixel(raster,i,j,colour_index(x))
n : = n + 1
if m = intbuf and n = 4 do
begin

m : = 1; n : = 0
offset := offset + bufsize
position := seek(inputfile,offset,0)
nbytes := readBytes(inputfile,buf,0,bufsize)
writeString(".");

end
if n = 4 do { m : = m + l ; n : = 0 }

end
let infndx = close(inputfile)
let interim_image = Interim_image(raster,ct)
interim_image

end

Read a Sunras image file and store it as an interim image

sunrasToInterim := proc(fn: string -> Interim_image)
begin

let inputfile = open(fn,0)
if inputfile = nilfile do
begin

writeString("The file ")/writeString(fn);
writeString(" cannot be opened.'n"); abort()

end
let fileEnv = makeReadEnv(inputfile)
let readfile = use fileEnv with readByte: proc(-> int) in readByte
! use a vector of integers as a buffer in order to read more data
! from the file at one time (buffer size = 8k bytes)
let bufsize = 8192
let intbuf = bufsize div 4
let buf := vector 1 to intbuf of 0
i
! The file structure of the SUN standard raster image file.
! It consists of three parts:
! 1. header: contains 8 integers (32 bytes)
! 2. colourmap information: 3bytes * the number of colours.
! 3. image data: 1 byte per pixel.
i
! Part 1: read image header
i
let offset := 0
let position := seek(inputfile,offset, 0)
let nbytes := readBytes(inputfile,buf,0,bufsize)
! first integer (4 bytes) is ras_magic (magic number)
let mgO = getByte(buf(1),0); let mgl = getByte(buf(1),1)
let mg2 = getByte(buf(1),2); let mg3 = getByte(buf(1),3)
if mgO ~= 89 or mgl ~= 166 or mg2 ~= 106 or mg3 ~= 149 do
begin

writeString("The file "); writeString(fn);
writeString(" is not a SUN raster image.'n")
abort()

end
! 2nd integer is ras_width (image width in pixels)
let ras_width = buf(2)
! 3rd integer is ras_height (image height in pixels)
let ras_height = buf(3)

E-49

Appendix E : The GIS Library Procedures

! 4th integer is ras_depth (the depth is either 1 or 8)
let ras_depth = buf(4)
! 5th integer is ras_length (the length in bytes of the image data)
let ras_length = buf(5)
! 6th integer is ras_type
let ras_type = buf(6)
! 7th integer is ras_maptypes
let ras_maptypes = buf(7)
! 8th integer is ras_maplength
let ras_maplength = buf(8)
let default_pixel = defaultPixel(off,ras_depth)
let raster := image ras_width by ras_height of default_pixel
let nc = ras_maplength div 3
let ct := vector 0 to nc-1 using proc(i:int -> *int);

vector 1 to 3 of 0
if ras_maplength > 0 then
begin

i
! Part 2: read the colourmap information
I
! read colourmap, if the image is binary or paletted colour.
! each colour has 3 bytes holding R-G-B intensity information
! (value from 0 - 255).
let m := 9; let n := 0
for j = 1 to 3 do ! R-R-R-R...G-G-G-G...B-B-B-B....
for i = 0 to nc-1 do
begin

ct(i,j) := getByte(buf(m),n)
n : = n + 1
if n = 4 do { m : = m + l ; n : = 0 }

end
let colour_index := vector 0 to nc-1 of default_pixel
for i = 0 to nc-1 do colour_index(i) := colourToPixel(i,ras_depth)
I
! Part 3: read image dataI
let image_size = ras_length + 32 + ras_maplength
let nb = if image_size rem bufsize = 0

then image_size div bufsize
else image_size div bufsize + 1

writeString("Blocks : ")
for i = 1 to nb do { writeString(".") ; }
writeString("'nReading : .");
for j = ras_height - 1 to 0 by -1 do
for i = 0 to ras_width - 1 do
begin

let x = getByte(buf(m),n)
setPixel(raster,i,j,colour_index(x))
n := n + 1
if m = intbuf and n = 4 do
begin

m : = 1; n : = 0
offset := offset + bufsize
position := seek(inputfile,offset,0)
nbytes := readBytes(inputfile,buf,0,bufsize)
writeString(".");

end
if n = 4 do {m : = m + 1; n := 0 }

end
end
else

{ writeString("The 24-bit ture colour is not implemented yet.'n") }
let infndx = close(input file)
let interim_image = Interim_image(raster,ct)
interim_image

E-50

Appendix E : The GIS Library Procedures

end
--I

I
Read a TIFF image file and store it as an interim image !

I
--- i
tiffToInterim := proc(fn: string -> Interim_image)
begin

let inputfile = open(fn,0)
if inputfile = nilfile do
begin

writeString("The file "); writeString(fn);
writeString(" cannot be opened'n"); abort()

end
let fileEnv = makeReadEnv(inputfile)
let readfile = use fileEnv with readByte: proc(-> int) in readByte
! use a vector of integers as a buffer for reading more data from
! file at one time. buffer size = 8k bytes (2048 * 4-byte integers)
let bufsize := 8192
let intbuf := bufsize div 4
let buf := vector 1 to intbuf of 0
i
! read header (length = 8 bytes)
i
! bytes 0-1 define the byte order
! hex 49 49 : from least significant to most significant
! hex 4D 4D : from most significant to least significant
I
let byteO = readfile(); let bytel = readfileO; let LtoM := true
if -(byteO = 73 and bytel = 73) and -(byteO = 77 and bytel = 77)
then

begin
writeString("This is not a TIFF image file. Aborting....'n")
abort()

end
else

if (byteO = 73 and bytel = 73)
then LtoM := true
else LtoM := false

! calculate the value of a 4-byte word depending on byte-order
let word_value =

if byteO = 73 and bytel = 73
then { proc(word:int -> int); getByte(word,0) +

getByte(word,1) * 256 +
getByte(word,2) * 256 * 256 +
getByte(word,3) }

else proc(word:int -> int); word
! bytes 2-3 denote the TIFF version number. (hex 2A)
let byte2 = readfile(); let byte3 = readfileO
if ~(byte2 = 42 and byte3 = 0) and ~(byte2 = 0 and byte3 =42) do

{ errorAbort("This is not a standard TIFF image file.") }
! bytes 4-7 contain the offset (in bytes) of the first Image File
! Directory
let offset := if LtoM then readfileO +

readf ile 0 *256 +
readfile()*256*256 +
readfileO *256*256*256

else readfile()*256*256*256 +
readfile()*256*256 +
readfile()*256 +
readfile()

let position := seek(inputfile,offset, 0)
! read the IFD information into the buffer
let count = if LtoM

then readfile()+readfile()*256

E-51

Appendix E : The GIS Library Procedures

else readfile()*256+readfile()
I
! Each IFD entry has 12 bytes.
! tag: 2 bytes; field type: 2 bytes;
! length of the field: 4 bytes; value offset: 4 bytes.
! the length of IFD = the number of tag * 12 bytes + 4 bytes
i

let ifd_len := count * 1 2 + 4
offset := offset + 2
position := seek(inputfile,offset, 0)
let nb := readBytes(inputfile,buf,0,ifd_len)
i

! Image file directory
i

! consists of a 2-byte count of the number of entries
! (= the number of fields) followed by a sequence of 12-byte
! filed entries, ended by a 4-byte offset of the next Image
! File Directory (or 0 if none).
i

! get the IFD information from the buffer
i

type ifd is structure(ftype,length,value: int)
let default_ifd = ifd(0,0,0)
let IFD := vector 254 to 320 of default_ifd
let tag : = 0; let ftype := 0; let length := 0;
let value := 0; let m := 1
for i = 1 to count do
begin

tag := if LtoM
then getByte(buf(m),0) + getByte(buf(m),1) * 256
else getByte(buf(m),0) * 256 + getByte(buf(m),1)

ftype := if LtoM
then getByte(buf(m),2) + getByte(buf(m),3) * 256
else getByte(buf(m),2) * 256 + getByte(buf(m),3)

m := m + 1 ; length := word_value(buf(m))
m := m + 1 ; value := if ftype = 3 and getByte(buf(m),2) = 0 and

getByte(buf(m),3) = 0
then if LtoM then getByte(buf(m),0) +

getByte(buf(m),1) * 256
else getByte(buf(m),0) * 256 +

getByte(buf(m),1)
else word_value(buf(m))

IFD(tag) := ifd(ftype,length,value)
m : = m + 1

end
! the offset of the next IFD (or 0 if none)
let nextifd := word_value(buf(m))
! image width
let ras_width = IFD(256)(value)
! image height
let ras_height = IFD(257)(value)
! image depth
let ras_depth = IFD(258)(value)
! compression method
let compress = IFD(259)(value)
! photometric interpretation
let photointp = IFD(262)(value)
! the number of strips and strip offset
let strips_number = IFD(273)(length)
let strips_offset = IFD(273)(value)
! samples per pixel
let samples_per_pixel = IFD(277)(value)
! strip byte counts
let strips_count = IFD(279)(length)
let strips_count_offset = IFD(279)(value)
! x resolution

E-52

Appendix E : The GIS Library Procedures

let x_resolution = IFD(282)(value)
! y resolution
let y_resolution = IFD(283)(value)
! planar configuration
let planar_config = IFD(284)(value)
! resolution unit
let resolution_unit = IFD(296)(value)
! colourmap length and offset
let colourmap_length = IFD(320)(length)
let colourmap_offset = IFD(320)(value)
i
! strip offsets
i
m := 1 ; let n := 0
let strip_offset : = vector 1 to strips_number of 0
if strips_number > 1 then
begin

position := seek(inputfile,strips_offset,0)
nb := readBytes(inputfile,buf,0,strips_number * 4)
for i = 1 to strips_number do
if IFD(273)(ftype) = 3
then

begin
strip_offset(i):= if LtoM then getByte(buf(m) , n) +

getByte(buf(m),n+1) * 256
else getByte(buf(m),n) * 256 +

getByte(buf(m),n+1)
n : = n + 2
if n = 4 do { m : = m + l ; n :=0 }

end
else

strip_offset(i) := word_value(buf(i))
end
else strip_offset(1) := strips_offset
i
! strip count offsets
I
m : = 1 ; n : = 0
let strip_count := vector 1 to strips_count of 0
if strips_count > 1 then
begin

position := seek(inputfile,strips_count_offset,0)
nb := readBytes(inputfile,buf,0, strips_count * 4)
for i = 1 to strips_count do
if IFD(279)(ftype) = 3 then
begin

strip_count(i):= if LtoM then getByte(buf(m),n) +
getByte(buf(m),n+1) * 256

else getByte(buf(m),n) * 256 +
getByte(buf(m),n+1)

n : = n + 2
if n = 4 do {m : = m + l ; n : = 0 }

end
else

strip_count(i) := word_value(buf(i))
end
else

strip_count(1) := strips_count_offset
let nc = power_2_k(ras_depth)
let ct := vector 0 to nc-1 using proc(i:int -> *int);

vector 1 to 3 of 0
m : = 1 ; n : = 0

I

! create or read a colourmap
I
case photointp of

E-53

Appendix E : The GIS Library Procedures

0 : { ct := invGrayLevel(nc) }
! bilevel and grayscale image: create a colourmap,
! 0 is imaged as white, 2 ** Bitspersample-1 is imaged as black.

1 : { ct := grayLevel(nc) }
! bilevel and grayscale image: create a colourmap,
! 0 is imaged as balck, 2 ** Bitspersample-1 is imaged as white.

3 : begin ! paletted colour image: read the colourmap.
position := seek(inputfile,colourmap_offset,0)
nb := readBytes(inputfile,buf,0,colourmap_length * 2)
for j = 1 to 3 do

for i = 0 to nc-1 do
begin

ct(i,j) := getByte(buf(m),n+1)
n : = n + 2
if n = 4 do { m : = m + 1 ; n :=0 }

end
end

default : { }
! convert colour_index table to pixel bitplanes
let default_pixel = defaultPixel(off,ras_depth)
let colour_index : = vector 0 to nc-1 of default_pixel
for i = 0 to nc-1 do colour_index(i) := colourToPixel(i,ras_depth)
let raster := image ras_width by ras_height of default_pixel
I
! read image data
! samples_per_pixel = 1 --> bilevel (Class B), grayscale (Class G),
! and paletted colour images (Class P).
! raster_depth = 1, 4 , or 8 bits
! = 3 --> RGB images (Class R, true colour)
! raster_depth = 24 bits
I
! redefine the buffer size for reading strips of the image
i
intbuf := if strip_count(1) rem 4 = 0 then strip_count(1) div 4

else strip_count(1) div 4 + 1
let stripbuf := vector 1 to intbuf of 0
! use dots to represent required processing time,
! each dot means a strip.
writeString("Strips : ")
for i = 1 to strips_number do { writeString("."); }
! position and read the first strip image data
let k := 1
position := seek(inputfile,strip_offset(k),0)
nb := readBytes(inputfile,stripbuf,0,strip_count(k))
writeString("'nReading: ")
writeString(".");
let first = 0; let last = 4; let step = 1
m := 1 ; n := first
case ras_depth of
1 : begin

! reserved for 1-bit
end

4 : begin
let half_width = if ras_width rem 2 = 0

then ras_width div 2
else (ras_width div 2)+1

let row_pxl := vector 0 to 2 * half_width of 0
let xl = proc(x:int -> int); x div 16
let x2 = proc(x:int -> int); x rem 16
for j = ras_height - 1 to 0 by -1 do
begin

for i = 0 to half_width - 1 do
begin

let x = getByte(stripbuf(m),n)
row_pxl(2*i) := xl(x)
row_pxl(2 *i + 1) := x2(x)

E-54

Appendix E : The GIS Library Procedures

n := n + step
if m = intbuf and n = last and strips_number > k do
begin

m := 1 ; n := first
k : = k + 1
writeString(".");
position := seek(inputfile,strip_offset (k) ,0)
nb := readBytes(inputfile,stripbuf,0,strip_count(k))

end
if n = last do { m := m + 1; n := first }

end
for i = 0 to ras_width - 1 do
begin

setPixel(raster,i,j,colour_index(row_pxl(i)))
end

end
end

8 : begin
for j = ras_height - 1 to 0 by -1 do
for i = 0 to ras_width - 1 do
begin

let x = getByte(stripbuf(m),n)
setPixel(raster,i,j,colour_index(x))
n := n + step
if m = intbuf and n = last and strips_number > k do
begin

m := 1 ; n := first
k : = k + 1
writeString(".");
position := seek(inputfile,strip_offset(k),0)
nb := readBytes(inputfile,stripbuf,0,strip_count(k))

end
if n = last do { m := m + 1; n := first }

end
end

default: begin
writeString("1nThe depth of the TIFF image is ");
writelnt(ras_depth) ; writeString(" bits'n")
writeString("The depth should be 1, 4 or 8 bits.'n")

end
if samples_per_pixel = 3 do
begin

! reserved for 24 bits
end
let infndx = close(inputfile)
let interim_image = Interim_image(raster,ct)
interim_image

end
I___
I
! Convert an interim image to a Sunras format file
i
i ___

interimToSunras := proc(interim_image: Interim_image; fn: string)
begin

let raster = interim_image(raster)
let ct = interim_image(colourmap)
let nc = upb[*int](ct)-lwb[*int](ct) + 1
! create an environment for exporting an image file
let sunras = fn ++ ".ras"
let newfile = create(sunras,384)
let outputfile = open(sunras,1)
if outputfile = nilfile do begin

writeString("The file ");
writeString(sunras);

E-55

Appendix E : The GIS Library Procedures

writeString(" cannot be opened'n");
abort()

end
let bufsize = 8192
let intbuf = bufsize div 4
let buf := vector 1 to intbuf of 0
j
! The file structure of the SUN standard raster image file.
! It consists of three parts:
! 1. header: contains 8 integers (32 bytes)
! 2. colourmap information: 3bytes * the number of colours.
! 3. image data: 1 byte per pixel.
i

! Part 1: write the header
i

! first integer (4 bytes) is ras_magic (magic number)
buf(l) := setByte(buf(1),0,89); buf(l) := setByte(buf(1),1,166)
buf(l) := setByte(buf(1),2,106); buf(l) := setByte(buf(1),3,149)
! 2nd integer is ras_width (image width in pixels)
let ras_width = xDim(raster)
buf(2) := ras_width
! 3rd integer is ras_height (image height in pixels)
let ras_height = yDim(raster)
buf(3) := ras_height
! 4th integer is ras_depth (the depth is either 1 or 8)
let ras_depth := zDim(raster)
buf(4) := ras_depth
! 5th integer is ras_length (the length in bytes of the imge data)
let ras_length = ras_width * ras_height
buf (5) := ras_length
! 6th integer is ras_type
buf(6) := 1
! 7th integer is ras_maptypes
buf(7) := 1
! 8th integer is ras_maplength
buf(8) := nc * 3
i

! Part 2: write colourmap information
i

let m := 9; let n := 0
for j = 1 to 3 do
for i = 0 to nc-1 do
begin

buf(m) := setByte(buf(m),n,ct(i,j))
n : = n + 1
if n = 4 do { m : = m + l ; n : = 0 }

end
i
! Part 3: write image data
I
let ns = ras_length div 8192 + 1
writeString("Blocks : ");
for i = 1 to ns do { writeString("."); }
writeString("'nWriting : ");
let last_pxl := defaultPixel(off,ras_depth)
let byte := pixelToColour(last_pxl,ras_depth)
for j = ras_height - 1 to 0 by -1 do
begin

for i = 0 to ras_width - 1 do
begin

let pxl = getPixel(raster,i,j)
if pxl ~= last_pxl do { byte := pixelToColour(pxl,ras_depth) }
buf(m) := setByte(buf(m),n,byte)
n : = n + 1
if m = intbuf and n = 4 do
begin

E-56

Appendix E : The GIS Library Procedures

let nb = writeBytes(outputfile,buf,0,bufsize)
writeString(".");
m : = 1 ; n : = 0

end
if n = 4 do { m : = m + l ; n : = 0 }
last_pxl := pxl

end
i

! store the image one line at a time, each line of the image
! is rounded out to a multiple of 16 bits.
i

if ras_width rem 2 = 1 do
begin

buf(m) := setByte(buf(m),n,0)
n : = n + 1
if n = 4 do { m : = m + l ; n : = 0 }

end
end
i

! count the size and writes the last-time buffer
! note that the last time is often not fully filled
i
let last_bufsize = 4 * (m - 1) + n
let nb = writeBytes(outputfile,buf,0,last_bufsize)
writeString(".");
let outfndx = close(outputfile)
writeString("'nDone!");newline(1)

end

___ I
i

Preview a raw image !
i

___ I
previewRaw := proc(rawimage: Rawimage; win_x,win_y: int -> image)
begin

let data = rawimage(data)
let width = rawimage(width)
let height = rawimage(height)
let depth = rawimage(depth)
let nc = power_2_k(depth)
let default_pixel = defaultPixel(off,depth)
let pixel_table := vector 0 to nc-1 of default pixel
for i = 0 to nc-1 do { pixel_table(i) := colourToPixel(i,depth) }
let x_step = if width rem win_x = 0 then width div win_x

else width div win_x + 1
let y_step = if height rem win_y = 0 then height div win_y

else height div win_y + 1
let step = if x_step > y_step then x_step else y_step
let disp_xsize = if width rem step = 0 then width div step

else width div step + 1
let disp_ysize = if height rem step = 0 then height div step

else height div step + 1
let newimage := image disp_xsize by disp_ysize of default_pixel
let k := 0
for j = height-1 to 0 by -step do
begin

for i = 0 to width-1 by step do
begin

k := i + (height - 1 - j) * width
let x = getByte(data(k div 4+1), k rem 4)
let r = i div step
let s = j div step
setPixel(newimage,r,s,pixel_table(x))

end

E-57

Appendix E : The GIS Library Procedures

end
newimage

end
--i

i
Preview a 1inear-stretched raw image !

i
--j
previewStretchedRaw := proc(rawimage: Rawimage; win_x,win_y: int -> image)
begin

let data = rawimage(data)
let width = rawimage(width)
let height = rawimage(height)
let depth = rawimage(depth)
let nc = power_2_k(depth)
let default_pixel = defaultPixel(off,depth)
let pixel_table := vector 0 to nc-1 of default_pixel
for i = 0 to nc-1 do { pixel_table(i) : = colourToPixel(i,depth) }
let x_step = if width rem win_x = 0 then width div win_x

else width div win_x + 1
let y_step = if height rem win_y = 0 then height div win_y

else height div win_y + 1
let step = if x_step > y_step then x_step else y_step
let disp_xsize = if width rem step = 0 then width div step

else width div step + 1
let disp_ysize = if height rem step = 0 then height div step

else height div step + 1
let newimage := image disp_xsize by disp__ysize of default_pixel
let frequency = freqCount(rawimage)
let count = frequency(count)
let lower := frequency(lower)
let upper := frequency(upper)
let range = nc - 1
let domain = upper - lower
let k := 0
for j = height-1 to 0 by -step do
begin

for i = 0 to width-1 by step do
begin

k := i + (height - 1 - j) * width
let x = getByte(data(k div 4+1), k rem 4)
let r = i div step
let s = j div step
! linear stretch
if x >= lower and x <= upper do
begin

let y = ((x - lower) * range) div domain
setPixel(newimage,r,s,pixel_table(y))

end
end

end
newimage

end

Determine the frequency of the brightness values of a raw image

freqCount := proc(rawimage: Rawimage -> Frequency)
begin

let width = rawimage(width)
let height = rawimage(height)

E-58

Appendix E : The GIS Library Procedures

let depth = rawimage(depth)
let data = rawimage(data)
let first = lwb[int](data)
let last = upb[int](data)
let nc = power_2_k(depth) - 1
let count := vector 0 to nc of 0
for i = first to last do

for j = 0 to 3 do
begin

let x = getByte(data(i),j)
count(x) := count(x) + 1

end
i
! determine the lower bound, upper bound and median
i
let sum := 0
for i = 0 to nc do { sum := sum + count(i) }
let lower := 0
let median := 0
let upper := nc
while float(count(lower))/float(sum) < 0.001 do lower := lower + 1
while float(count(upper))/float(sum) < 0.001 do upper := upper - 1
i
! determine the miminum and maximum values
i
let vmin := count(0); let vmax := count(0)
for i = lower to upper do

begin
if count(i) < vmin do vmin := count(i)
if count(i) > vmax do vmax := count(i)

end
let cum_prob := 0.0
while cum__prob < 0.5 do ! 50 %

begin
cum_prob := cum_prob + float(count(median))/float(sum)
median := median + 1

end
writeString (" 1 nThe lower bound of the frequency is : 11) ;

writelnt(lower)
writeString("'nThe median of the frequency is : ");

writelnt(median)
writeString("'nThe upper bound of the frequency is : ");

writelnt(upper)
let frequency = Frequency(count,lower,median,upper,vmin,vmax)
frequency

end
--i

i
Perform a linear contrast stretch on a raw image !

i
--i
linearStretch := proc(rawimage: Rawimage; frequency: Frequency;

new_depth: int -> image)
begin

let count = frequency(count)
let lower := frequency(lower)
let upper := frequency(upper)
let data = rawimage(data)
let width = rawimage(width)
let height = rawimage(height)
let nc = power_2_k(new_depth)
let default_pixel = defaultPixel(off,new_depth)
let pixel_table := vector 0 to nc-1 of default_pixel
for i = 0 to nc-1 do { pixel_table(i) := colourToPixel(i, new_depth) }
let newimage := image width by height of default_pixel

E-59

Appendix E : The GIS Library Procedures

let range = nc - 1
let domain = upper - lower
let m := 1; let n := 0
for j = height-1 to 0 by - 1 do

for i = 0 to width-1 do
begin

let x = getByte(data(m),n)
n : = n + 1
! linear stretch
if x >= lower and x <= upper do

begin
let y = ((x - lower) * range) div domain
setPixel(newimage,i,j,pixel_table(y))

end
if n = 4 do (m :=m+ 1 ; n := 0 }

end
newimage
end

Determine the frequency of the brightness values of an interim image

freqCount2 := proc(interim: image -> Frequency)
begin

let width = xDim(interim)
let height = yDim(interim)
let depth = zDim(interim)
let nc = power_2_k(depth) - 1
let default_pixel = defaultPixel(off,depth)
let pixel_table := vector 0 to nc-1 of default_pixel
for i = 0 to nc-1 do { pixel_table(i) := colourToPixel(i,depth) }
let count := vector 0 to nc of 0
for j = 0 to height-1 do

for i = 0 to width-1 do
begin

let p = getPixel(interim,i,j)
let x = pixelToColour(p,depth)
count(x) := count(x) + 1

end
I
! determine the lower bound, upper bound and median
I
let sum := 0
for i = 0 to nc do { sum := sum + count(i) }
let lower := 0
let median := 0
let upper := nc
while float(count(lower))/float(sum) < 0.001 do lower := lower + 1
while float(count(upper))/float(sum) < 0.001 do upper := upper - 1
i
! determine the miminum and maximum values
I
let vmin := count(0); let vmax := count(0)
for i = lower to upper do

begin
if count(i) < vmin do vmin := count(i)
if count(i) > vmax do vmax := count(i)

end
let cum_prob := 0.0
while cum_prob < 0.5 do ! 50 %

begin
cum_prob := cum_prob + float(count(median))/float(sum)
median := median + 1

end
writeString("'nThe lower bound of the frequency is : ");

E-60

__Appendix E : The GIS Library Procedures

writelnt(lower)
writeString("1nThe median of the frequency is : ");

writelnt(median)
writeString("'nThe upper bound of the frequency is : ");

writelnt(upper)
let frequency = Frequency(count,lower,median,upper,vmin,vmax)
frequency

end

Perform a linear contrast stretch on an interim image

linearStretch2 := proc(interim: image; frequency: Frequency;
new_depth: int -> image)

begin
let count = frequency(count)
let lower := frequency(lower)
let upper := frequency(upper)
let width = xDim(interim)
let height = yDim(interim)
let depth = zDim(interim)
let default_pixel = defaultPixel(off,new_jdepth)
let nc = power_2_k(new_depth)
let pixel_table := vector 0 to nc-1 of default_pixel
for i = 0 to nc-1 do { pixel_table(i) := colourToPixel(i,new_depth) }
let newimage := image width by height of default_pixel
let range = nc - 1

begin
let domain = upper - lower
for j = 0 to height-1 do

for i = 0 to width-1 do
begin

let p := getPixel(interim,i,j)
let x = pixelToColour(p,depth)
! linear stretch
if x >= lower and x <= upper do

begin
let y = ((x - lower) * range) div domain
setPixel(newimage,i,j,pixel_table(y))

end
end

end
newimage
end

Generate the frequency chart of an image

getFreqChart := proc(frequency: Frequency; ras_depth: int -> Freq_chart)
begin

let count := frequency(count)
let lower = frequency(lower); let upper := frequency(upper)
let vmin := frequency(vmin); let vmax := frequency(vmax)
let original_chart := [0., 0.]
let stretch_chart := [0., 0.]
let level = power_2_k(ras_depth)
for i = 0 to level-1 do
begin

original_chart := original_chart ++
[float(i), 0.] ̂ [float(i), float(count(i))]

end
for i = lower to upper do

E-61

__Appendix E : The GIS Library Procedures

begin
stretch_chart := stretch_chart ++

[float(i), 0.] ̂ [float(i), float(count(i))]
end
let freq_chart = Freq_chart(original_chart,stretch_chart,level)
freq_chart

end

Draw the frequency chart of an image before and after a linear contrast
stretch

plotFreqChart := proc(window: image; frequency: Frequency;
freq_chart: Freq_chart; bg_col, fg_col: pixel)

begin
let win_xsize = 150; let win_ysize = 150
let origin_win : = image win_xsize by win_ysize of bg_col
let stretch_win := image win_xsize by win_ysize of bg_col
let chartl := colour freq_chart(original_chart) in fg_col
let chart2 := colour freq_chart(stretch_chart) in fg_col
let vmin = frequency(vmin); let vmax = frequency(vmax)
let lower = frequency(lower); let upper = frequency(upper)
draw(origin_win,chartl,float(0),float(freq_chart(level)-1),

float(vmin),float(vmax))
copy origin_win onto limit window at 100,350
draw(stretch_win,chart2,float(lower),float(upper),

float(vmin),float(vmax))
copy stretch_win onto limit window at 100,150

end

Convert a raw image to an interim image

rawToInterimlmage := proc()
begin

let contained := false
let overwrite := false
if ~m_isEmpty[Image_id,Rawimage](raw_images) then
begin

let writelmgld = proc(image_id: Image_id; raw_image: Rawimage)
{ writeString(image_id); space(2) }

writeString("'nlmage database contains the following raw images: ")
newline(1)
m_app[Image_id,Rawimage](raw_images, writelmgld)
writeString("1nEnter a rawimage name : ");

let image_id = readLine()
if m_contains[Image_id,Rawimage](raw_images,image_id) then
begin

if m_contains[Image_id,Interim_image](interim_images,image_id) do
begin

contained := true
writeString("1nlnterim image database already contains " ++

image_id + + ", do you want to overwrite it 71'nPlease confirm with '"YES'" to
proceed, otherwise no action taken.'n"); let confirm = readLine()

if confirm = "YES" do { overwrite := true }
end
if -contained or (contained and overwrite) do
begin

let rawimage = m_find[Image_id,Rawimage](raw_images,image_id)
let interim_image = rawToInterim(rawimage)
if -contained then

{ m_isu_insert[Image_id,Interim_image](interim_images,

E-62

Appendix E : The GIS Library Procedures

image_id,
interim_image) }

else
{ m_isu_assign[Image_id,Interim_image](interim_images,

image_id,
interim_image) }

writeString("'nDone.1n")
end

end
else

{ if image_id ~= "" do writeString("Raw image database does not
contain " ++ image_id ++ ".'n") }

end
else

{ writeString("'nNo rawimage available.") }
end

Convert an interim image to a baseimage

interimToBaseimage := proc()
begin

let contained := false
let overwrite := false
if ~m_isEmpty[Image_id,Interim_image](interim_images) then
begin

let writelmgld = proc(image_id: Image_id;
interim_image: Interim_image)

{ writeString(image_id); space(2) }
writeString("1nlmage database contains the following interim images:

' n")
m_app[Image_id,Interim_image](interim_images, writelmgld)
writeString("1nEnter an interim image name: ");

let image_id = readLine()
if m_contains[Image_id,Interim_image](interim_images,image_id) then
begin

if m_contains[Image_id,Baseimage](base_images,image_id) do
begin

contained := true
writeString("'nBaseimage database already contains " ++

image_id ++ ", do you want to overwrite it ?!'nPlease confirm with '"YES'" to
proceed, otherwise no action taken.'n"); let confirm = readLine()

if confirm = "YES" do { overwrite := true }
end
if -contained or (contained and overwrite) do
begin

let interim_image =
m_find[Image_id,Interim_image](interim_images,image_id)

let raster = interim_image(raster)
let ras_width = xDim(raster)
let ras_height = yDim(raster)
let ct = interim_image(colourmap)
writeString("'nSupply positional information for the image.")
writeString("'nEnter the coordinates of SW corner of the

image.")
writeString("'n x = "); let x_min = readReal()
writeString(" y = "); let y_min = readReal()
writeString("The resolution (m) of a pixel = ");

let resol = readReal()
let trash = readLine()
let x_range = resol * float(ras_width)
let y_range = resol * float(ras_height)
let x_max = x_min + x_range
let y_max = y_min + y_range

E-63

Appendix E : The GIS Library Procedures

let range = if x_range >= y_range then x_range else y_range
let av_km = range / 1000.
let side_length := if av_km >= 100. then 100000. else

{ if av_km < 100. and av_km >= 50. then 50000. else
{ if av_km < 50. and av_km >= 20. then 20000. else
{ if av_km < 20. and av_km >= 5. then 5000. else
{ if av_km < 5. and av_km >= 0.5 then 1000. else 500.}}}}

let side_length := if resol <= 5. then 1000. else 5000.
let extent = Extent(x_min,y_min,x_range,y_range)
let gc_aid_attribute := m_empty[Attr_id,GC_attribute](eq_int,

lt_int)
let raster_dm := GC_DM(raster,extent,ct,gc_aid_attribute)
let baseimage_dm = Baseimage_DM(grid_cell: raster_dm)
let baseimage = Baseimage(baseimage_dm)
if -contained then

{ m_isu_insert[Image_id,Baseimage](base_images,image_id,
baseimage) }

else
begin

m_isu_assign[Image_id,Baseimage](base_images,image_id,
baseimage)

! remove image_id from baseimage_indices
let rmlmageld = proc(peano: Peano; 1: List[Image_id])
if l_contains[Image_id](1,image_id) do

{ 1 := l_isu_remove[Image_id](image_id,1) }
m_app[Peano,List[Image_id]](baseimage_indices,rmlmageld)

end
! construct image index
writeString("Constructing baseimage_indices ...'n")
let si = truncate(side_length)
let xl = truncate(x_min / side_length) * si
let yl = truncate(y_min / side_length) * si
let x2 = truncate(x_max / side_length) * si
let y2 = truncate(y_max / side_length) * si
for i = xl to x2 by si do
for j = yl to y2 by si do
begin

let xy = XY(float(i)/100. , float (j)/100.)
let peano_key = xyToPK(xy)
let peano = Peano(peano_key,side_length)
if m_contains[Peano,List[Image_id]](baseimage_indices,

peano) then
begin

let image_id_list :=
m_f ind[Peano,List[Image_id]] (baseimage_indices,

peano)
if ~l_contains[Image_id](image_id_list,image_id) do
begin

image_id_list := l_append[Image_id](image_id_list,
image_id)

m_isu_assign[Peano,List[Image_id]](baseimage_indices,
peano,
image_id_list)

end
end
else
begin

let image_id_list := l_make[Image_id]()
image_id_list := l_append[Image_id](image_id_list,

image_id)
m_isu_insert[Peano,List[Image_id]](baseimage_indices,

peano,image_id_list)
end

end
writeString("Done !'n")

end

E-64

Appendix E : The GIS Library Procedures

end
else

{ if image_id ~= "" do writeString("Interim image database does
not contain " ++ image_id ++ ".'n") }

end
else

{ writeString("'nNo interim image available.") }
end

i ___ I
i j
! Store a raw image !
i ;
i ___ I

storeRawimage := proc(image_id: Image_id; rawimage: Rawimage)
begin

writeString("1nDo you want to store the data in the raw image database?
") ;

let ans = readLine()
if ans = "Y" or ans = "y" do
begin

if ~m_contains[Image_id,Rawimage](raw_images,image_id) then
begin

m_isu_insert [Image_id, Rawimage] (raw_images, image_id, rawimage)
writeString("Done!'n")

end
else
begin

writeString("'nRaw image database already contains " ++ image_id
++ ", do you want to overwrite it ?! 'nPlease confirm with '"YES'" to
proceed, otherwise no action taken.'n"); let confirm = readLine()

if confirm = "YES" do
begin

m_isu_assign[Image_id,Rawimage](raw_images,image_id,
rawimage)

writeString("Done!'n")
end

end
end

end

Store an interim image

storelnterimlmage := proc(image_id: Image_id; interim_image: Interim_image)
begin

writeString("'nDo you want to store the data in the interim image
database? ");

let ans = readLine()
if ans = "Y" or ans = "y" do
begin

if ~m_contains[Image_id,Interim_image](interim_images,image_id) then
begin

m_isu_insert[Image_id,Interim_image](interim_images,image_id,
interim_image)

writeString("Done!'n")
end
else
begin

writeString("'nlnterim image database already contains " + +
image_id ++ ", do you want to overwrite it ?! 'nPlease confirm with '"YES'"
to proceed, otherwise no action taken, ’n"); let confirm = readLine ()

if confirm = "YES" do
begin

E-65

Appendix E : The GIS Library Procedures

m_isu_assign[Image_id,Interim_image](interim_images,image_id,
interim_image)

writeString("Done!1n")
end

end
end

end

Remove a rawimage

removeRawimage := proc()
begin

if ~m_isEmpty[Image_id,Rawimage](raw_images) then
begin

let writelmgld = proc(image_id: Image_id; raw_image: Rawimage)
{ writeString(image_id); space(2) }

writeString("'nlmage database contains the following raw images: ")
newline(1)
m_app[Image_id,Rawimage](raw_images, writelmgld)
newline(1)
writeString("'nEnter a rawimage name : ");

let image_id := readLine()
if ~m_contains[Image_id,Rawimage](raw_images,image_id) then
begin

if image_id ~= "" do
{ writeString("The database does not contain the queried raw

image.'n") }
end
else
begin

writeString("Are you sure you wish to destroy the raw image " ++
image_id + + " ?'nPlease confirm with '"YES'" to proceed, otherwise no action
taken.'n"); let confirm = readLine()

if confirm = "YES" do
begin

m_isu_remove[Image_id,Rawimage](raw_images,image_id)
writeString("Done!’n")

end
end

end
else

{ writeString("'nNo raw image availablen") }
end

Remove an interim image

removelnterimlmage := proc()
begin

if ~m_isEmpty[Image_id,Interim_image](interim_images) then
begin

let writelmgld = proc(image_id: Image_id;
interim_image: Interim_image)

{ writeString(image_id); space(2) }
writeString("'nlmage database contains the following interim images:
newline(1)
m_app[Image_id,Interim_image](interim_images, writelmgld)
newline(1)
writeString("'nEnter an interim image name : ");

let image_id := readLine()

E-66

Appendix E : The GIS Library Procedures

if ~m_contains[Image_id,Interim_image] (interim_images, image__id) then
begin

if image_id ~= "" do
{ writeString("The database does not contain the query interim

image.1n") }
end
else
begin

writeString("Are you sure you wish to destroy the interim image "
+ + image_id ++ " P'nPlease confirm with '"YES'" to proceed, otherwise no
action taken.’n"); let confirm = readLine()

if confirm = "YES" do
begin

m_isu_remove[Image_id,Interim_image](interim_images,image_id)
writeString("Done!1n")

end
end

end
else

{ writeString("1nNo interim image available.1n") }
end

Remove a baseimage

removeBaseimage := proc()
begin

if ~m_isEmpty[Image_id,Baseimage](base_images) then
begin

let writelmgld = proc(image_id: Image_id; base_image: Baseimage)
{ writeString(image_id); space(2) }

writeString("'nlmage database contains the following base images: ")
newline(1)
m_app[Image_id,Baseimage](base_images, writelmgld)
newline(1)
writeString("1nEnter a base image name : ");

let image_id = readLine()
if ~m_contains[Image_id,Baseimage](base_images,image_id) then
begin

if image_id ~= "" do
{ writeString("The database does not contain the queried base

image.1n") }
end
else
begin

writeString("Are you sure you wish to destroy the base image " ++
image_id ++ " ?'nPlease confirm with '"YES'" to proceed, otherwise no action
taken.'n"); let confirm = readLine()

if confirm = "YES" do
begin

m_isu_remove[Image_id,Baseimage](base_images,image_id)
! remove image_id from baseimage_indices
let rmlmageld = proc(peano: Peano; 1: List[Image_id])
if l_contains[Image_id](1,image_id) do

{ 1 := l_isu_remove[Image_id](image_id,l) }
m_app[Peano,List[Image_id]](baseimage_indices,rmlmageld)
writeString("Done!'n")

end
end

end
else

{ writeString("'nNo base image available.'n") }
end

E-67

Appendix E : The GIS Library Procedures

I _

I

! Load a baseimage
I
i --
loadBaseimage := proc(image_id: Image_id; window_file: file -> image)
begin

let baseimage = m_find[Image_id,Baseimage](base_images,image_id)
let baseimage_dm = baseimage(data_model)'grid_cell
let raster = baseimage_dm(raster)
let ct = baseimage_dm(colourmap)
let ras_width = xDim(raster); let ras_height = yDim(raster)
let ras_depth = zDim(raster)
writeString("Width = ");writelnt(ras_width);
writeString("Height = ");writelnt(ras_height);
writeString("Depth = ");writelnt(ras_depth);newline(1)
let nc = upb[*int](ct)-lwb[*int](ct) + 1
let default_pixel = defaultPixel(off,ras_depth)
let colour_index : = vector 0 to nc -1 of default_pixel
for i = 0 to nc -1 do colour_index(i) := colourToPixel(i,ras_depth)
for i = 0 to nc-1 do

(colourMap(window_file,colour_index(i),
ct (i,3)*256*256+ct(i,2)*256+ct(i,1))}

raster
end

end

E-68

APPENDIX F: THE PROTOTYPE IGIS PROGRAM

Appendix F : The Prototype IGIS Program

A Prototype IGIS based on the Persistent Programming Language Napier88
Main Functions:
View Sc Query: The display of vector maps or raster images or

a superimposition of them and the search for
geographical entities

Spatial Indexing: The construction of entity index tables
Management: The data management of vector maps and raster images
Preprocessing: The pre-processing of raw and interim images
Import Sc Export: The import and export of vector map data and

raster image data

type Font is structure(constant characters: *image; constant fontHeight:int
constant descender: int; constant info: string)

type FontPack is structure(font: Font; stringToTile,
charToTile: proc(string -> image))

type drawFunction is variant(imageDraw: proc(image,pic,real,real,real,real);
fileDraw: proc(file,pic,real,real,real,real);
fail: null)

let PS = PS ()
use PS with System, Vector, 10, String, Graphical, Device, Format, Font, X,

User, Arithmetical, Event, GlasgowLibraries: env in
use X with XOpenWindow : proc (string,int,int,int,int -> file);

makeReadEnv : proc(file -> env) in
use Arithmetical with pi: real;

sqrt: proc(real -> real);
rabs: proc(real -> real);
float: proc(int -> real);
truncate: proc(real -> int) in

use 10 with writeString: proc (string);
PrimitivelO:env;
readLine: proc(-> string);
endOfInput: proc(-> bool);
readString: proc(-> string);
writelnt: proc(int);
writeBool: proc(bool);
writeReal: proc(real);
readlnt: proc(-> int);
readReal: proc(-> real);
readChar: proc(-> string);
integerWidth: int;
realWidth: int;
spaceWidth: int;
makeReadEnv: proc(file -> env) in

use PrimitivelO with open: proc(string,int -> file);
close: proc(file -> int) in

use Format with iformat: proc(int -> string);
fformat: proc(real,int,int -> string) in

use Font with screenR12, screenR14, screenB14, serifR16,
gallantR19: FontPack in

use String with length: proc(string -> int);
digit: proc(string -> bool);
asciiToString: proc(int -> string);
stringToAscii: proc(string -> int);
letter: proc(string -> bool) in

use Vector with lwb, upb: proc[W](*W -> int) in
use System with abort: proc() in

F -l

Appendix F : The Prototype IGIS Program

use Graphical with Outline,Raster:env in
use Outline with Odraw: proc(proc(int,int,int), proc(int,int,int,int,int),

proc(pixel -> int), int,int,int,int,int,pic,
real,real,real,real);

makeDrawFunction: proc(string -> drawFunction) in
use Raster with getPixel: proc(image,int,int -> pixel);

xDim, yDim, zDim: proc(image -> int);
line: proc(image,int,int,int,int,pixel,int) in

use Device with getScreen: proc(file -> image);
colourMap: proc(file,pixel,int);
locator: proc(file,*int);
getCursor: proc(file -> image);
getCursorlnfo: proc(file,*int);
setCursorlnfo: proc(file,*int);
setCursor: proc(file,image);
colourOf: proc(file,pixel -> int) in

use Event with hangup, interrupt, quit, timer: proc() in
use GlasgowLibraries with BulkTypes: env in
use BulkTypes with Maps, Lists : env in
use Maps with

m_empty: proc[A, Z](proc(A,A -> bool), proc(A,A -> bool)
-> Map[A,Z]);

m_isEmpty: proc[A,Z](Map[A,Z] -> bool);
m_isu_insert: proc[A,Z](Map[A,Z], A, Z);
m_isu_remove: proc[A,Z](Map[A,Z], A);
m_isu_assign: proc[A,Z](Map[A,Z], A, Z);
m_find: proc[A,Z](Map[A,Z], A -> Z);
m_length: proc[A,Z](Map[A,Z] -> int);
m_contains: proc[A,Z](Map[A,Z], A -> bool);
m_copy: proc[A,Z](Map[A,Z] -> Map[A,Z]);
m_isu_union: proc[A,Z](Map[A,Z], Map[A,Z]);
m_isu_clear: proc[A,Z](Map[A,Z]);
m_filter: proc[A,Z](Map[A,Z], proc(A,Z -> bool) -> Map[A,Z]);
m_diff: proc[A,Z](Map[A,Z],Map[A,Z] -> Map[A,Z]);
m_app: proc[A,Z](Map[A,Z], proc(A,Z)) in

use Lists with hd: proc[T](List[T] -> T);
tl: proc[T](List[T] -> List[T]);
l_isEmpty: proc[T](List[T] -> bool);
l_make: proc[T](->List[T]);
l_length: proc[T](List[T] -> int);
l_append: proc[T](List[T], T -> List[T]);
l_app: proc[T](List[T], proc(T));
l_map: proc[T,X](List[T], proc(T->X) -> List[X]) ;
l_join: proc[T](List[T],List[T] -> List[T]);
l_isu_join: proc[T](List[T],List[T] -> List[T]);
l_prepend: proc[T](T,List[T]->List[T]);
l_reverse: proc[T](List[T] -> List[T]);
l_contains: proc[T] (List [T], T -> bool);
l_first: proc[T](List[T] -> T);
l_last: proc[T](List[T] -> T);
l_nth: proc[T](List[T], int -> T);
l_rest: proc[T](List[T] -> List[T]);
l_isu_remove: proc[T](T, List[T] -> List[T]) in

use User with Library, Database: env in
use Library with General,Graphical,GIS: env in
use General with stringToInt: proc(string -> int);

errorAbort: proc(string);
waitSymbol: proc(int);
newline: proc(int);
space: proc(int);
intToBits: proc(int,int -> *int);
bitsToInt: proc(*int -> int);
power_2_k: proc(int -> int);
vector_isu_sort: proc(*real);
eq_int, lt_int: proc(int,int -> bool);

F-2

Appendix F : The Prototype IGIS Program

eq_str, lt_str: proc(string,string -> bool);
eg peano, lt_peano: proc(Peano,Peano -> bool);
eg peanor, lt_peanor: proc(Peanor,Peanor -> bool);
xyToPK: proc(XY -> int);
pkToXY: proc(int -> XY) ;
xyToPKR: proc(XY -> real);
pkrToXY: proc(real -> XY) ;
getQuadExtent: proc(Peanor -> Extent) in

use Graphical with
drawPoint: proc(XY,pixel,image,Extent);
drawLineString: proc(List[XY],pixel,image,Extent);
drawText: proc(string,real,real,pixel,XY,image,Extent);
drawRectangle: proc(MBR,pixel,image,Extent);
makeCircle: proc(XY,real -> List[XY]);
pointInWindow: proc(XY,MBR -> bool);
lineVisiblelnWindow: proc(XY,XY,MBR -> bool);
lineStrThroughWindow: proc(List[XY],MBR,XY,real -> bool);
getPoint: proc(file,image,Win_size,Extent,int -> XY) ;
xHairGetPoint: proc(file,image,Win_size,Extent,int -> XY) ;
dynaGetWinCornersA: proc(file,image,Win_size,Extent,

int -> *XY);
dynaGetWinCornersB: proc(file,image,Win_size,Extent,

int -> *XY);
dynaGetCircle: proc(file,image,Win_size,Extent,

int -> Circle);
getDragDxy: proc(file,image,Win_size,int -> XY) ;
getZoomExtent: proc(string,file,image,Win_size,Extent,

Extent,int -> Extent);
getLineStrMBR: proc(List[XY] -> MBR);
getLineStrKeyPts: proc(List[XY] -> List[XY]);
defaultPixel: proc(pixel,int -> pixel);
colourToPixel: proc(int,int -> pixel);
pixelToColour: proc(pixel,int -> int);
rgb: proc(int -> **int);
grayLevel: proc(int -> **int);
invGrayLevel: proc(int -> **int);
remapl6: proc(int,int,int,*pixel -> pixel);
viewlmage: proc(image,XY,image,Win_size);
popupMenu: proc(*string,*proc(),bool,file,image,

Win_size,int);
dialogueBox: proc(string,string,file,image,Win_size,int

-> string);
writeMessage: proc(string,file,image,Win_size,int

-> Transient_image);
eraseMessage: proc(Transient_image,image) in

use GIS with
getOSmapInfo: proc(string -> OS_map_info);
getOSmapName: proc(XY -> OS_map_name);
ntf625kToBasemap: proc(string -> Basemap);
ntf250kToBasemap: proc(string -> Basemap);
ntfcontourToBasemap: proc(string -> Basemap);
ntfblToBasemap: proc(string -> Basemap);
ntfUToBasemap: proc(string -> Basemap);
ntfoscarToBasemap: proc(string -> Basemap);
storeBasemap: proc(Map_id,Basemap,Extent);
removeBasemap: proc();
getPolyMBR: proc(Poly_id,PB_cid_chain,PB_gid_geometry -> MBR) ;
pointInPolygon: proc(XY,PB_polygon,Map[Chain_id,PB_chain] ,

Map[Geom_id,PB_geometry],
Map[Geom_id,MBR] -> bool);

gridNdxPoly: proc(Poly_id,MBR,Map[Peanor,List[Poly_id]],real) ;
lqtNdxPoint: proc(Peanor,List[Point_id],Map[Point_id,XY],

Map[Peanor,List[Point_id]]);
lqtNdxLine: proc(Peanor,List[Line_id],Map[Line_id,List[XY]],

F-3

Appendix F : The Prototype IGIS Program

Map[Line_id,MBR],Map[Line_id,List[XY]],
Map[Peanor,List[Line_id]]);

lqtNdxPoly: proc(Peanor,List[Poly_id],Map[Poly_id,MBR],
Map[Peanor,List[Poly_id]]);

fbffToRaw: proc(string,int,int,int -> Rawimage);
tiffToRaw: proc(string -> Rawimage);
previewRaw: proc(Rawimage,int,int -> image);
previewStretchedRaw: proc(Rawimage,int,int -> image);
freqCount: proc(Rawimage -> Frequency);
linearStretch: proc(Rawimage,Frequency,int -> image);
rawToInterim: proc(Rawimage -> Interim_image);
hsiToInterim: proc(string -> Interim_image);
sunrasToInterim: proc(string -> Interim_image);
tiffToInterim: proc(string -> Interim_image);
interimToSunras: proc(Interim_image,string);
freqCount2: proc(image -> Frequency);
linearStretch2: proc(image,Frequency,int -> image);
getFreqChart: proc(Frequency,int -> Freq_chart);
plotFreqChart: proc(image,Frequency,Freq_chart,pixel,pixel);
rawToInterimlmage: proc();
interimToBaseimage: proc();
storeRawimage: proc(Image_id,Rawimage);
storelnterimlmage: proc(Image_id,Interim_image);
removeRawimage: proc();
removelnterimlmage: proc();
removeBaseimage: proc();
loadBaseimage: proc(Image_id,file -> image) in

use Database with Raw,Interim,Processed,Derived,Index: env in
use Raw with raw_images: Map[Image_id, Rawimage] in
use Interim with interim_images: Map[Image_id, Interim_image] in
use Processed with base_maps: Map[Map_id,Basemap];

base_images: Map[Image_id, Baseimage] in
use Index with basemap_indices: Map[Peano,Map_id];

baseimage_indices: Map[Peano,List[Image_id]];
entity_mbrs: Map[Map_id,Entity_mbr];
entity_indices: Map[Map_id,Entity_index] in

begin

let ln_pid_point := m_empty[Point_id,LN_point](eq_int,lt_int)
let ln_lid_line := m_empty[Line_id,LN_line](eq_int,lt_int)
let ln_gid_geometry:= m_empty[Geom_id,LN_geometry](eq_int,lt_int)
let ln_aid_attribute := m_empty[Attr_id,LN_attribute](eq__int,lt_int!
let ln_kid_link
let ln_nid_node
let In tid text

= m_empty[Link_id,LN_link](eq_int,lt_int|
= m_empty[Node_id,LN_node](eq_int,lt_int!
= m_empty[Text_id,LN_text](eq_int,lt_int!

Polygon_based data model
let pb_gid_geometry := m_empty[Geom_id,PB_geometry](eq_int,lt_int)
let pb_aid_attribute := m_empty[Attr_id,PB_attribute](eq_int,lt_int)
let pb_polyid_polygon := m_empty[Poly_id,PB_polygon](eq_int,lt_int)
let pb_cid_chain := m_empty[Chain_id,PB_chain](eq_int,lt_int)
let pb_cpolyid_cpolygon := m_empty[Cpoly_id,PB_cpolygon](eq_int,lt_int)
let pb_collid_collection := m_empty[Coll_id,PB_collection](eq_int,lt_int)
Spaghetti data model
let sp_pid_point := m_empty[Point_id,SP_point](eq_int,lt_int)

F-4

Appendix F : The Prototype IGIS Program

let sp_lid_line := m_empty[Line_id,SP_line](eq_int,lt_int)
let sp_tid_text := m_empty[Text_id,SP_text](eq_int,lt_int)

i

! Feature code table
i
let fed := m_empty[FC,FD](eq_str,lt_str)

i

! Drawing status table
i
let drawn_table := m_empty[string,string](eq_str,lt_str)

i

! Map coverage
I

let map_extent : = Extent(0 0 0 0 .)
let image_extent := Extent(0 0 0 0 .)
let draw_extent := Extent(0 0 0 0 .)
let x_min := 0.
let y_min := 0.
let x_max := 0.
let y_max := 0.
let map_mbr := MBR(x_min,y_min,x_max,y_max)
let x_range := 0.
let y_range := 0.
let x_cent := 0.
let y_cent := 0.

! Root window size
let win_width = 800
let win_height = 600
let win_depth = 8
let hw_ratio = float(win_height) / float(win_width)

the aspect ratio of the display window
the number of bit-planes used for vector data
the number of bit-planes used for raster data
the pointer bit-plane
the start bit-plane of the popup menu and the
dialogue box

let vec_depth = 4
let ras_depth = 4
let pntr_bp := 7
let start_bp = 4
let pxl_resol := 0.
let tile_count := 1
let fc := " "
let map_id := ""
the count of lines and polygons
let no_lines := 0
let no_polys := 0
index threshold
let pt_ndx_threshold := 1000
let ln_ndx_threshold := 100
let poly_ndx_threshold := 200
let txt_size = 8.0
let snap_target_size = 10.0
let data := vector 1 to 7 of 0
let map_loaded := false

! the size of the target window
! event control

Initialize an X window display device

F-5

Appendix F : The Prototype IGIS Program

let win_size = Win_size(win_width,win_height)
let window_file = open("WINDOW: zdim:8, xdim:800, ydim:600", 0)
if window_file = nilfile do errorAbort("Cannot open an X window");
let screen = getScreen (window_file)
let draw = makeDrawFunction("image")1imageDraw
setup colours: bits 0 - 3 for raster images; bits 4 - 7 for vector maps
let nc_ras = power_2_k(ras_depth)
let ras_cndx := vector 0 to nc_ras - 1 of defaultPixel(off,ras_depth)
for i = 0 to nc_ras - 1 do ras_cndx(i) := colourToPixel(i,ras_depth)
let nc_vec = power_2_k(vec_depth)
let vec_cndx := vector 0 to nc_vec - 1 of defaultPixel(off,vec_depth)
for i = 0 to nc__vec - 1 do vec_cndx(i) := colourToPixel(i,vec_depth)

! define colours
let black = VCC__cndx (0)
let olive = vec__cndx(1)
let purple = vec__cndx (2)
let red = vec._cndx(3)
let aqua = vec._cndx (4)
let green = vec._cndx (5)
let blue = vec._cndx (6)
let dkgray = vec._cndx(7)
let gray = vec._cndx (8)
let yellow = vec._cndx(9)
let magenta = vec._cndx(10)
let pink = vec._cndx (11)
let cyan = vec._cndx (12)
let lime -- vec._cndx (13)
let navy = vec._cndx(14)
let white vec._cndx (15)

! dk gray
! It gray

sky

Define a default colourmap for displaying maps

let map_colourmap := proc()
begin

! 16 default colours for the display of vector data
let ct = rgb(nc_vec)
for i = 0 to nc_vec - 1 do

for j = 0 to nc_ras - 1 do
{ colourMap(window_file,ras_cndx(j)++vec_cndx(i),

ct (i,3)*256*256+ct(i,2)*256 + ct(i,l)) }
end

Define a default colourmap for displaying images

let image_colourmap := proc()
begin

! 16 gray levels for the display of raster data
let ct = grayLevel(nc_ras)
for i = 0 to nc_ras - 1 do

{ colourMap(window_file,ras_cndx(i)++off++off++off++off,
ct(i,3)*256*256+ct (i,2)*256+ct(i,1)))

end

A set of procedures for retrieving a basemap

F-6

Appendix F : The Prototype IGIS Program

let basemapDM_name := proc(dm: Basemap_DM -> string)
begin

project dm as X onto
link_node : "link_node"
polygon_based: "polygon_based"
spaghetti : "spaghetti"
default : "none"

end
let load_link_node := proc(basemap: Basemap)
begin

let basemap_dm = basemap(data_model)'link_node
ln_pid_point := m_copy[Point_id,LN_point](basemap_dm(point))
ln_lid_line := m_copy[Line_id,LN_line](basemap_dm(line))
ln_gid_geometry := m_copy[Geom_id,LN_geometry] (basemap_dm(geometry))
ln_aid_attribute := m_copy[Attr_id,LN_attribute](basemap_dm(attribute))
ln_kid_link := m_copy[Link_id,LN_link](basemap_dm(link))
ln_nid_node := m_copy[Node_id,LN_node](basemap_dm(node))
if basemap_dm(txt) is ln_tid_text do
{ln_tid_text : = m_copy[Text_id,LN_text](basemap_dm(txt)'ln_tid_text)}

fcd:= m_copy[FC,FD](basemap_dm(fcd))
end
let load_polygon_based := proc(basemap: Basemap)
begin

let basemap_dm = basemap(data_model)1polygon_based
pb_gid_geometry := m_copy[Geom_id,PB_geometry] (basemap_dm(geometry))
pb_aid_attribute := m_copy[Attr_id,PB_attribute](basemap_dm(attribute))
pb_polyid_polygon := m_copy[Poly_id,PB_polygon](basemap_dm(polygon))
pb_cid_chain := m_copy[Chain_id,PB_chain](basemap_dm(chain))
pb_cpolyid_cpolygon :=

m_copy[Cpoly_id,PB_cpolygon] (basemap_dm(cpolygon))
pb_collid_collection :=

m_copy[Coll_id,PB_collection](basemap_dm(collection))
fcd:= m_copy[FC,FD](basemap_dm(fcd))

end
let load_spaghetti := proc(basemap: Basemap)
begin

let basemap_dm = basemap(data_model)'spaghetti
sp_pid_point := m_copy[Point_id,SP_point](basemap_dm(point))
sp_lid_line := m_copy[Line_id,SP_line](basemap_dm(line))
if basemap_dm(txt) is sp_tid_text do

(sp_tid_text := m_copy[Text_id,SP_text](basemap_dm(txt)1sp_tid_text)}
fed := m_copy[FC,FD](basemap_dm(fcd))

end
i ---i

i i

! Draw a circle !
i i

i ---1

let drawCircle := proc(circle: List[XY]; cir_col: pixel; window: image;
draw_ext ent: Ext ent)

{ drawLineString(circle,cir_col,window,draw_extent) }
i __ I

I I
! A set of procedures for drawing a basemap !
i i

i __ i

i
! Link and node data model

Appendix F : The Prototype IGIS Program

! define feature colours
let LN_fc_col = proc(FC: string -> pixel)
begin

let fc_col = case FC(11 3) of
511" blue Coast
512" blue Foreshore
514" black Lighthouse
521" blue Main River
522" blue Secondary River
523 " blue Minor River
524" blue Canal
525" blue Lake
531" cyan Motorway
532" red Primary Route
533 " red A Road
534" magenta B Road
53 5" black
536" black Services
537" black
53 8" black Toll
539" black Ferry
541" black Settlement
542" black Urban Area
551" black Railway
552" red Railway Station
553 " black Level Crossing
561" green Woodland
562" green Geographical Area
571" black National Boundary
572" black County Boundary
581" black
582" green National Park
583 " black Radio Mast
584" black

default : green
fc_col

end
! draw a point
let drawLNpoint = proc(point_id: Point_id; ln_point: LN_point)
begin

let geom_id = ln_point(geom_id)
let attr_id = ln_point(attr_id)
let point = l_first[XY](m_find[Geom_id,LN_geometry](ln_gid_geometry,

geom_id)(xy_list))
let fc = m_find[Attr_id,LN_attribute] (ln_aid_attribute,attr_id) (fc)
let point_col = LN_fc_col(fc)
drawPoint(point,point_col,screen(ras_depthIvec_depth),draw_extent)

end
! draw a line
let drawLNline = proc(line_id: Line_id; ln_line: LN_line)
begin

let geom_id = ln_line(geom_id)
let attr_id = ln_line(attr_id)
let xy_list = m_find[Geom_id,LN_geometry](ln_gid_geometry,

geom_id)(xy_list)
let fc = m_find[Attr_id,LN_attribute] (ln_aid_attribute,attr_id) (fc)
let line_col = LN_fc_col(fc)
drawLineString(xy_list,line_col,screen(ras_depthIvec_depth),

draw_extent)
end

! draw a text
let drawLNtext = proc(text_id: Text_id; ln_text: LN_text)

F-8

Appendix F : The Prototype IGIS Program

begin
! reserved !

end
! draw a feature type
let drawLNfeature = proc(attr_id: Attr_id; ln_attribute: LN_attribute)
begin

if ln_attribute(fc) = fc do
begin

let gtype = m_find[Geom_id,LN_geometry](ln_gid_geometry,
attr_id)(gtype)

case gtype of
1: begin

let ln_point = m_find[Point_id,LN_point](ln_pid_point,attr_id)
drawLNpoint(attr_id,ln_point)

end
2: begin

let ln_line = m_find[Line_id,LN_line](ln_lid_line,attr_id)
drawLNline(attr_id,ln_line)

end
default: writeString("1nlllegal value!")

end
end

! draw a node
let drawLNnode = proc(node_id: Node_id; ln_node: LN_node)
begin

let geom_id_of_node = ln__node(geom_id_of_node)
let node = l_first[XY](m_find[Geom_id,LN_geometry](ln_gid_geometry,

geom_id_of_node)(xy_list))
let node_col = black
drawPoint(node,node_col,screen(ras_depthIvec_depth),draw_extent)

end
! draw a link
let drawLNlink = proc(node_id: Node_id; ln_node: LN_node)
begin

let link_list := ln_node(link_list)
while link_list isnt empty do
begin

let geom_id_of_link = hd[Link](link_list)(geom_id_of_link)
let xy_list = m_find[Geom_id,LN_geometry](ln_gid_geometry,

geom_id_of_link)(xy_list)
let link_col = red
drawLineString(xy_list,link_col,screen(ras_depthIvec_depth),

draw_extent)
link_list := tl[Link](link_list)

end
end

! Polygon_based data model
! draw a point
let point_col = black
let drawPBpoint = proc(geom_id: Geom_id; pb_geometry: PB_geometry)
begin

let gtype = pb_geometry(gtype)
if gtype = 1 do
begin

let pt = l_first[XY](pb_geometry(xy_list))
drawPoint(pt,point_col,screen(ras_depthIvec_depth),draw_extent)

end
end

! draw a link

F-9

Appendix F : The Prototype IGIS Program

let link_col = blue
let drawPBlink = proc(geom_id: Geom_id; pb_geometry: PB_geometry)
begin

let gtype = pb_geometry(gtype)
if gtype = 2 do
begin

let xy_list = pb_geometry(xy_list)
drawLineString(xy_list,link_col,screen(ras_depthIvec_depth),

draw_extent)
end

end

Spaghetti data model
define feature colours
let SP_fc_col = proc(FC:string -> pixel)
begin

let fc_col := case FC of
0001" red
0004" green
0007" magenta
0010" cyan
0011" blue
0025" red
0026" yellow
0057" magenta
default : green

fc_col
end

! draw a point
let drawSPpoint = proc(point_id: Point_id; sp_point: SP_point)
begin

let point_col = SP_fc_col(sp_point(fc))
drawPoint(sp_point(xy),point_col,screen(ras_depthIvec_depth),

draw_extent)
end

! draw a line
let drawSPline = proc(line_id: Line_id; sp_line: SP_line)
begin

let line_col = SP_fc_col(sp_line(fc))
drawLineString(sp_line(xy_list),line_col,screen(ras_depthIvec_depth),

draw_extent)
end

! draw a feature type
let drawSPpointFeature = proc(point_id: Point_id; sp_point: SP_point)
begin

if sp_point(fc) = fc do drawSPpoint(point_id,sp_point)
end
let drawSPlineFeature = proc(line_id: Line_id; sp_line: SP_line)
begin

if sp_line(fc) = fc do drawSPline(line_id,sp_line)
end

! draw a text
let txt_col = black
let drawSPtext = proc(text_id: Text_id; sp_text: SP_text)
begin

let txt = sp_text(text_body)
let txt_ht = sp_text(text_ht) * x_range / 1000.
let txt_orient = sp_text(orient)

F-10

Appendix F : The Prototype IGIS Program

let insert_pt = sp_text(xy)
drawText(txt,txt_ht,txt_orient,txt_col,insert_pt,

screen(ras_depthIvec_depth),draw_extent)
end

Load a basemap

let load_basemap := proc(map_id: Map_id)
begin

let os_map_info = getOSmapInfo(map_id)
writeString("'nThe map series of " + + map_id ++ " is " ++

os_map_info(series) ++ ", map scale = 1 : " + +
iformat(truncate(os_map_info(mapscale))) + +

let basemap = m_find[Map_id,Basemap](base_maps,map_id)
let dm_name = basemapDM_name(basemap(data_model))
writeString("1nThe data model is " ++ dm_name ++
case dm_name of
"link_node" : { load_link_node(basemap) }
"polygon_based" : { load_polygon_based(basemap) }
"spaghetti" : { load_spaghetti(basemap) }
default : { }

end

Determine the drawing extent of a basemap

let get_draw_extent := proc(map_id: Map_id)
begin

! Map coverage
let os_map_info = getOSmapInfo(map_id)
map_extent : = os_map_info(extent)
let map_xmin := map_extent(x_min)
let map_ymin := map_extent(y_min)
let map_xrange := map_extent(x_range)
let map_yrange := map_extent(y_range)
let map_xmax := map_xmin + map_xrange
let map_ymax := map_ymin + map_yrange
map_mbr := MBR(map_xmin, map_ymin, map_xmax, map_ymax)
if map_xrange * hw_ratio <= map_yrange then
begin

x_range := map_yrange / hw_ratio
y_range := map_yrange

end
else
begin

x_range := map_xrange
y_range := map_xrange * hw_ratio

end
! the map is left justified
x_min := map_xmin
y_min := map_ymin
x_max := x_min + x_range
y_max := y_min + y_range
x_cent := (x_min + x_max) / 2.
y_cent := (y_min + y_max) / 2.
! centre the map in the window
x_cent := (map_xmin + map_xmax) / 2.
y_cent := (map__ymin + map_ymax) / 2.
x_min := x_cent - x_range / 2.
y_min := y_cent - y_range / 2.

F - l l

Appendix F : The Prototype IGIS Program

x_max := x_min + x_range
y_max := y_min + y_range
draw_extent := Extent(x_min, y_min, x_range, y_range)

end

Draw a basemap

let draw_basemap := proc(map_id: Map_id)
begin

let basemap = m_find[Map_id,Basemap](base_maps,map_id)
let dm_name = basemapDM_name(basemap(data_model))
case dm_name of
"link_node" : m_app[Line_id,LN_line](ln_lid_line,drawLNline)
"polygon_based" : m_app[Geom_id,PB_geometry](pb_gid_geometry,

drawPBlink)
"spaghetti" : begin

m_app[Line__id,SP_line](sp_lid_line,drawSPline)
case getOSmapInfo(map_id)(series) of
"s_50k" : { }
default : m_app[Text_id,SP_text](sp_tid_text,

drawSPtext)
end

default : { }
end

Create the mbrs of lines and polygons for a basemap

let get_entity_mbr := proc(map_id: Map_id)
begin

load_basemap(map_id)
let basemap = m_find[Map_id,Basemap](base_maps,map_id)
let dm_name = basemapDM_name(basemap(data_model))
let line_mbr := m_empty[Line_id,MBR](eq_int,lt_int)
let poly_mbr := m_empty[Poly_id,MBR](eq_int,lt_int)
let line_key_pts := m_empty[Line_id,List[XY]](eq_int,lt_int)
no__lines := 0
no_polys := 0
space(5)
case dm_name of
"link_node" :
begin

let buildLNlineMBR = proc(line_id: Line_id; ln_line: LN_line)
begin

no_lines := no_lines + 1
waitSymbol(no_lines)
let geom_id = ln_line(geom_id)
let xy_list = m_find[Geom_id,LN_geometry](ln_gid_geometry,

geom_id)(xy_list)
let key_pts_list = getLineStrKeyPts(xy_list)
let mbr = getLineStrMBR(key_pts_list)
m_isu_insert[Line_id,MBR](line_mbr,line_id,mbr)
m_isu_insert[Line_id,List[XY]](line_key_pts,line_id,

key_pts_list)
end
m_app[Line_id,LN_line](ln_lid_line,buildLNlineMBR)

end
"polygon_based" :
begin

let buildPBlinkMBR = proc(geom_id: Geom_id; pb_geometry: PB_geometry)

F-12

Appendix F : The Prototype IGIS Program

begin
let gtype = pb_geometry(gtype)
if gtype = 2 do
begin

no_lines := no_lines + 1
waitSymbol(no_lines)
let key_pts_list = getLineStrKeyPts(pb_geometry(xy_list))
let mbr = getLineStrMBR(key_pts_list)
m_isu_insert[Geom_id,MBR](line_mbr,geom_id,mbr)
m_isu_insert[Geom_id,List[XY]](line_key_pts,geom_id,

key_pts_list)
end

end
let buildPBpolyMBR = proc(poly_id: Poly_id; pb_polygon: PB_polygon)
begin

if m_contains[Attr_id,PB_attribute](pb_aid_attribute,poly_id) do
begin

let FC = m_find[Attr_id,PB_attribute](pb_aid_attribute,
poly_id)(fc)

if FC = "3901" do !!!! Application specific
begin

no_polys := no_polys + 1
waitSymbol(no_polys)
let mbr = getPolyMBR(poly_id,pb_cid_chain,pb_gid_geometry)
m_isu_insert[Poly_id,MBR](poly_mbr,poly_id,mbr)

end
end

end
m_app[Geom_id,PB_geometry](pb_gid_geometry,buildPBlinkMBR)
m_app[Poly_id,PB_polygon](pb_polyid_polygon,buildPBpolyMBR)

end
"spaghetti" :
begin

let buildSPlineMBR = proc(line_id: Line_id; sp_line: SP_line)
begin

no_lines := no_lines + 1
waitSymbol(no_lines)
let key_pts_list = getLineStrKeyPts(sp_line(xy_list))
let mbr = getLineStrMBR(key_pts_list)
m_isu_insert[Line_id,MBR](line_mbr,line_id,mbr)
m_isu_insert[Line_id,List[XY]](line_key_pts,line_id,

key_pts_list)
end
m_app[Line_id,SP_line](sp_lid_line,buildSPlineMBR)

end
default : { }
let entity_mbr := Entity_mbr(line_mbr,poly__mbr,line_key_pts)
m_isu_insert[Map_id,Entity_mbr](entity_mbrs,map_id,entity_mbr)
writeString("'b'b I")

end
let tmp_pid_point := m_empty[Point_id,XY](eq_int,lt_int)
let tmp_lid_line := m_empty[Line_id,List[XY]](eq_int,lt_int)

Construct coordinate tables for point and line entities

let build_tmp_entity := proc(map_id: Map_id)
begin

load_basemap(map_id)
let basemap = m_find[Map_id,Basemap](base_maps,map_id)
let dm_name = basemapDM_name(basemap(data_model))
case dm_name of
"link_node" :

F-13

__Appendix F : The Prototype IGIS Program

begin
let build_pid_point = proc(point_id: Point_id; ln_point: LN_point)
begin

let geom_id = ln_point(geom_id)
let point =

l_first[XY](m_find[Geom_id,LN_geometry](ln_gid_geometry,
geom_id)(xy_list))

m_isu_insert[Point_id,XY](tmp_pid_point,point_id,point)
end
m_app[Point_id,LN_point](ln_pid_point,build_pid_point)
let build_lid_line = proc(line_id: Line_id; ln_line: LN_line)
begin

let geom_id = ln_line(geom_id)
let xy_list = m_find[Geom_id,LN_geometry](ln_gid_geometry,

geom_id)(xy_list)
m_isu_insert[Line_id,List[XY]](tmp_lid_line,line_id,xy_list)

end
m_app[Line_id,LN_line](ln_lid_line,build_lid_line)

end
"polygon_based" :
begin

let build_pid_point :=
proc(geom_id: Geom_id; pb_geometry: PB_geometry)

begin
let gtype = pb_geometry(gtype)
if gtype = 1 do

{ let point = l_first[XY]((pb_geometry)(xy_list))
m_isu_insert[Point_id,XY](tmp_pid_point,geom_id,point) }

end
m_app[Geom_id;PB_geometry](pb_gid_geometry,build_pid_point)
let build_lid_line :=

proc(geom_id: Geom_id; pb_geometry: PB_geometry)
begin

let gtype = pb_geometry(gtype)
if gtype = 2 do

(let xy_list = pb_geometry(xy_list)
m_isu_insert[Line_id,List[XY]] (tmp_lid_line,geom_id,xy_list) }

end
m_app[Geom_id,PB_geometry](pb_gid_geometry,build_lid_line)

end
"spaghetti" :
begin

let build_pid_point = proc(point_id: Point_id; sp_point: SP_point)
{m_isu_insert[Point_id,XY](tmp__pid_point,point_id,sp_point(xy))}

m_app[Point_id;SP_point](sp_pid_point,build_pid_point)
let build_lid_line = proc(line_id: Line_id; sp_line: SP_line)

{m_isu_insert[Line_id,List[XY]](tmp_lid_line,line_id,
sp_line(xy_list))}

m_app[Line_id,SP_line](sp_lid_line,build_lid_line)
end
default : { }

end

Initialize a point index table

let initialize_point_index := proc(peano: Peanor;
pid_point: Map[Point_id,XY];
point_index: Map[Peanor,List[Point_id]])

F-14

Appendix F : The Prototype IGIS Program

begin
let pointid_list : = l_make[Point_id]()
if ~m_isEmpty [Point_id, XY] (pid__point) do
begin

let appendPointID = proc(point_id: Point_id; point: XY)
{ pointid_list := l_prepend[Point_id](point_id,pointid_list) }

m_app[Point_id,XY](pid_point,appendPointID)
pointid_list := l_reverse[Point_id](pointid_list)

end
m_isu_insert[Peanor,List[Point_id]](point_index,peano,pointid_list)

end

Initialize a line index table

let initialize_line_index := proc(peano: Peanor;
line_mbr: Map[Line_id,MBR];
line_index: Map[Peanor,List[Line_id]])

begin
let lineid_list := l_make[Line_id]()
if ~m_isEmpty[Line_id,MBR](line_mbr) do
begin

let appendLinelD := proc(line_id: Line_id; mbr: MBR)
{ lineid_list := l_prepend[Line_id](line_id,lineid_list) }

m_app[Line_id,MBR](line_mbr,appendLinelD)
lineid_list := l_reverse[Line_id](lineid_list)

end
m_isu_insert[Peanor,List[Line_id]](line_index,peano,lineid_list)

end

Initialize a polygon index table

let initialize_polygon_index :=
proc(peano: Peanor;

poly_mbr: Map[Poly_id,MBR];
polygon_index: Map[Peanor,List[Poly_id]])

begin
let polyid_list := l_make[Poly_id]()
if ~m_isEmpty[Poly_id,MBR](poly_mbr) do
begin

let appendPolylD := proc(poly_id: Poly_id; mbr: MBR)
{ polyid_list := l_prepend[Poly_id](poly_id,polyid_list) }

m_app[Poly_id,MBR](poly_mbr,appendPolylD)
polyid_list := l_reverse[Poly_id](polyid_list)

end
m_isu_insert[Peanor,List[Poly_id]](polygon_index,peano,polyid_list)

end

Initialize an entity index table for a basemap

let initialize_entity_index :=
proc(map_id: Map_id;

line_mbr: Map[Line_id,MBR];
poly_mbr: Map[Poly_id,MBR];
point_index: Map[Peanor,List[Point_id]];
line_index: Map[Peanor,List[Line_id]];
polygon_index: Map[Peanor,List[Poly_id]])

begin
let map_extent = getOSmapInfo(map_id)(extent)

F-15

Appendix F : The Prototype IGIS Program

let si = map_extent(x_range)
let x = float(truncate(map_extent(x_min) / si)) * si
let y = float(truncate(map_extent(y_min) / si)) * si
let xy = XY(x,y)
let peano_key = xyToPKR(xy)
let peano = Peanor(peano_key,si)
initialize_point_index(peano,tmp_pid_j?oint,point_index)
initialize_line_index(peano,line_mbr,line_index)
initialize_polygon_index(peano,poly_mbr,polygon_index)

end
let gt_than_point_threshold := proc(peano: Peanor;

pointid_list: List[Point_id] -> bool)
begin

let num = l_length[Point_id](pointid_list)
let tf = if num > pt_ndx_threshold then true else false
t f

end
let gt_than_line_threshold := proc(peano: Peanor;

lineid_list: List [Line__id] -> bool)
begin

let num = l_length[Line_id](lineid_list)
let tf = if num > ln_ndx_threshold then true else false
t f

end
let gt_than_poly_threshold := proc(peano: Peanor;

polyid_list: List[Poly_id] -> bool)
begin

let num = l_length[Poly_id](polyid_list)
let tf = if num > poly_ndx_threshold then true else false
t f

end
i ---
I

! Construct point,line and polygon index tables for a basemap
i
I ___
let construct_entity_index := proc(map_id: Map_id)
begin

m_isu_clear [Point_id, XY] (tmp_pid__point)
m_isu_clear[Line_id,List[XY]](tmp_lid_line)
build_tmp_entity(map_id)
let point_index := m empty[Peanor,List[Point id]](eg peanor,It peanor)
let line_index := m empty[Peanor,List[Line id]](eg peanor,It peanor)
let polygon_index := m empty[Peanor,List[Poly id]1(eg peanor,It peanor)
let line_mbr = m_find[Map_id,Entity_mbr](entity_mbrs,map_id)(line)
let poly_mbr = m_find[Map_id,Entity_mbr](entity_mbrs,map_id)(polygon)
let line_key_pts = m_find[Map_id,Entity_mbr](entity_mbrs,

map_id)(key_pts)
initialize_entity_index(map_id,line_mbr,poly_mbr,point_index,

1ine_index,polygon_index)
let map_length = getOSmapInfo(map_id)(extent)(x_range)
let pt_min_qsl := 0.
let ln_min_qsl := 0.
let poly_min_qsl := 0.
! build a LQT-coded point index table
if ~m_isEmpty[Point_id,XY](tmp_pid_point) do
begin

let side_length := map_length
let buildPointlndex := proc(peano: Peanor;

pointid_list: List[Point_id])
{ lqtNdxPoint(peano,pointid_list,tmp_pid_point,point_index) }

F-16

Appendix F : The Prototype IGIS Program

writeString("'nlndexing points ...")
writeString("'nSide_length Total_quadrants Gt_than_threshold")
let finished := false
while -finished do
begin

let ndx_tmpl = point_index
let ndx_tmp2 = m_filter[Peanor,List[Point_id]](point_index,

gt_than_point_threshold)
newline(1);writeString(fformat(side_length,6,3));space(8);
writelnt(m_length[Peanor,List[Point_id]](ndx_tmpl));space(10);
writelnt(m_length[Peanor,List[Point_id]](ndx_tmp2))
if m_length[Peanor,List[Point_id]](ndx_tmp2) > 0 then
begin

side_length := side_length / 2.
point_index := m_diff[Peanor,List[Point_id]](ndx_tmpl,ndx_tmp2)
m_app[Peanor,List[Point_id]](ndx_tmp2,buildPointIndex)

end
else { finished := true }

end
writeString("1nMin_side_length = ");
writeString(fformat(side_length,9,3));space (5);
writeString("The number of quadrants = ");
writelnt(m_length[Peanor,List[Point_id]](point_index));newline(1)
pt_min_qsl := side_length

end
! build a LQT-coded line index table
if ~m_isEmpty[Line_id,List[XY]](tmp_lid_line) do
begin

let side_length := map_length
let buildLinelndex := proc(peano: Peanor; lid_list: List[Line_id])

{lqtNdxLine(peano,lid_list,tmp_lid_line,line_mbr,line_key_pts,
line_index)}

writeString("'nlndexing lines ... ")
writeString("1 nSide__length Total_quadrants Gt_than_threshold")
let finished := false
while -finished do
begin

let ndx_tmpl = line_index
let ndx_tmp2 = m_filter[Peanor,List[Line_id]](line_index,

gt_than_line_threshold)
newline(1);writeString(fformat(side_length,6,3));space(8);
writelnt(m_length[Peanor,List[Line_id]](ndx_tmpl));space(10);
writelnt(m_length[Peanor,List[Line_id]](ndx_tmp2))
if m_length[Peanor,List[Line_id]](ndx_tmp2) > 0 then
begin

side_length := side_length / 2.
line_index := m_diff[Peanor,List[Line_id]](ndx_tmpl,ndx_tmp2)
m_app[Peanor,List[Line_id]](ndx_tmp2,buildLinelndex)

end
else { finished := true }

end
writeString("1nMin_side_length = ");
writeString(fformat(side_length,9,3));space(5);
writeString("The number of quadrants = ");
writelnt(m_length[Peanor,List[Line_id]](line_index));newline(1)
ln_min_qsl := side_length

end
! build a LQT-coded polygon index table
if ~m_isEmpty[Poly_id,MBR](poly_mbr) do
begin

let side_length := map_length
let buildPolylndex := proc(peano: Peanor;

polyid_list: List[Poly_id])
{ lqtNdxPoly(peano,polyid_list,poly_mbr,polygon_index) }

F-17

Appendix F : The Prototype IGIS Program

writeString("'nlndexing polygons ...")
writeString("'nSide_length Total_quadrants Gt_than_threshold")
let finished := false
while -finished do
begin

let ndx_tmpl = polygon_index
let ndx_tmp2 = m_filter[Peanor,List[Poly_id]](polygon_index,

gt_than_poly_threshold)
newline(1);writeString(fformat(side_length,6,3));space (8);
writelnt(m_length[Peanor,List[Poly_id]](ndx_tmpl));space(10);
writelnt(m_length[Peanor,List[Poly_id]](ndx_tmp2))
if m_length[Peanor,List[Poly_id]](ndx_tmp2) > 0 then
begin

side_length := side_length / 2.
polygon_index := m_diff[Peanor,List[Poly_id]](ndx_tmpl,

ndx_tmp2)
m_app[Peanor,List[Poly_id]](ndx_tmp2,buildPolylndex)

end
else { finished := true }

end
writeString("'nMin_side_length = ");
writeString(fformat(side_length,9,3));space(5);
writeString("The number of quadrants = ");
writelnt(m_length[Peanor,List[Poly_id]](polygon_index));newline(l)
poly_min_qsl := side_length

end
let min_quad_sl := Min_quad_sl (pt_min_qsl, ln_min_qsl, poly_min_qsl)
let entity_index := Entity_index(point_index,line_index,polygon_index,

min_quad_sl)
m_isu_insert[Map_id,Entity_index](entity_indices,map_id,entity_index)

end

Search for a point

let searchPoint := proc(point_index: Map[Peanor,List[Point_id]];
pid_point: Map[Point_id,XY]; ht_col: pixel;
min_side_length, map_length, aperture: real;
fd: file; window: image; win_size: Win_size;
draw_extent: Extent; start: int -> Point_id)

begin
let result := -1 ! > 0 : found; = 0 : not found; < 0 : quit
let side_length := min_side_length
let pt = getPoint(fd,window,win_size,draw_extent,start)
let x = pt(x); let y = pt(y)
let finished := if x = 0. and y = 0. then true else false
while -finished do
begin

let xy = XY((float(truncate(x / side_length))) * side_length,
(float(truncate(y / side_length))) * side_length)

let peano_key = xyToPKR(xy)
let peano = Peanor(peano_key,side_length)
if m_contains[Peanor,List[Point_id]](point_index,peano) do
begin

let pointid_list := m_find[Peanor,List[Point_id]](point_index,
peano)

while -finished and pointid_list isnt empty do
begin

let point_id = hd[Point_id](pointid_list)
let point = m_find[Point_id,XY](pid_point,point_id)
let target_win = MBR(x - aperture / 2., y - aperture / 2.,

x + aperture / 2., y + aperture / 2.)
let found = pointlnWindow(point,target_win)
if found do

F-18

Appendix F : The Prototype IGIS Program

begin
drawPoint(point,ht_col,window,draw_extent)
result := point_id
finished := true

end
pointid_list := tl[Point_id](pointid_list)

end
end
side_length := side_length * 2.0
if side_length > map_length do
begin

result := 0
finished := true
writeString("'nThe map database does not contain points " ++

"in this area. 1n")
end

end
result

end

Search for a line

let searchLine := proc(line_index: Map[Peanor,List[Line_id]];
lid_line: Map[Line_id,List[XY]];
line_mbr: Map[Line_id,MBR];
ht_col: pixel; min_side_length,
map_length, aperture: real;
fd: file; window: image; win_size: Win_size;
draw_extent: Extent; start: int -> Line_id)

begin
let result := -1 ! > 0 : found; = 0 : not found; < 0 : quit
let side_length := min_side_length
let pt = getPoint(fd,window,win_size,draw_extent,start)
let x = pt(x); let y = pt(y)
let finished := if x = 0. and y = 0. then true else false
while -finished do
begin

let xy = XY((float(truncate(x / side_length))) * side_length,
(float(truncate(y / side_length))) * side_length)

let peano_key = xyToPKR(xy)
let peano = Peanor(peano_key,side_length)
if m_contains[Peanor,List[Line_id]](line_index,peano) do
begin

let lineid_list := m_find[Peanor,List[Line_id]](line_index,peano)
while -finished and lineid_list isnt empty do
begin

let line_id = hd[Line_id](lineid_list)
let xy_list = m_find[Line_id,List[XY]](lid_line,line_id)
let mbr = m_find[Line_id,MBR](line_mbr,line_id)
let found = lineStrThroughWindow(xy_list,mbr,pt,aperture)
if found do
begin

drawLineString(xy_list,ht_col,window,draw_extent)
result := line_id
finished := true

end
lineid_list := t1[Line_id](lineid_list)

end
end
side_length : = side_length * 2.0
if side_length > map_length do
begin

result := 0

F-19

Appendix F : The Prototype IGIS Program

finished := true
writeString("'nThe map database does not contain lines" ++

" in this area, 'n")
end

end
result

end

! highlight a chain
I
let htChain = proc(chain_id: Chain_id; pb_chain: PB_chain)
begin

let link_list := pb_chain(link_list)
while link_list isnt empty do
begin

let geom_id_of_link = hd[PB_link](link_list)(geom_id_of_link)
let xy_list = m_find[Geom_id,PB_geometry](pb_gid_geometry,

geom_id_of_link)(xy_list)
let link_col := red
drawLineString(xy_list,link_col,screen(ras_depthIvec_depth),

draw_extent)
link_list := tl[PB_link](link_list)

end
end

! highlight a simple polygon
i
let htPolygon = proc(poly_id: Poly_id; pb_polygon: PB_polygon)
begin

let pb_chain = m_find[Chain_id,PB_chain](pb_cid_chain,poly_id)
htChain(poly_id,pb_chain)
if m_contains[Attr_id,PB_attribute](pb_aid_attribute,poly_id) do
begin

let HA = m_find[Attr_id,PB_attribute] (pb_aid_attribute,poly_id) (HA)
let PI = m_find[Attr_id,PB_attribute](pb_aid_attribute,poly_id)(PI)
let PI_position =

l_first[XY](m_find[Geom_id,PB_geometry](pb_gid_geometry,
poly_id)(xy_list))

let id_str = iformat(PI)
writeString(" Label = ");space(6 - length(id_str));
writeString(id_str); writeString("; Area = ");
writeString(fformat(HA,10,2));writeString(" Hectares")
let txt = iformat(PI)
let map_length = getOSmapInfo(map_id)(extent)(x_range)
let txt_ht = txt_size * map_length / 1000.
drawText(txt,txt_ht,0.0,red,PI_position,

screen(ras_depthIvec_depth),draw_extent)
end

end

Search for a polygon

let searchPolygon := proc(polygon_index: Map[Peanor,List[Poly_id]];
poly_mbr: Map[Poly_id, MBR];
line_mbr: Map[Line_id, MBR] ;
ht_col: pixel; min_side_length, map_length: real;
fd: file; window: image; win_size: Win_size;
draw_extent: Extent; start: int -> Poly_id)

begin
let result := -1 ! > 0 : found; = 0 : not found; < 0 : quit
let side_length := min_side_length

F-20

Appendix F : The Prototype IGIS Program

let pt = getPoint(fd,window,win_size,draw_extent,start)
let x = pt(x); let y = pt(y)
let finished := if x = 0. and y = 0. then true else false
while -finished do
begin

let xy = XY((float(truncate(x / side_length))) * side_length,
(float(truncate(y / side_length))) * side_length)

let peano_key = xyToPKR(xy)
let peano = Peanor(peano_key,side_length)
if m_contains[Peanor,List[Poly_id]](polygon_index,peano) do
begin

let polyid_list := m_find[Peanor,List[Poly_id]](polygon_index,
peano)

while -finished and polyid_list isnt empty do
begin

let poly_id = hd[Poly_id](polyid_list)
let mbr = m_find[Poly_id,MBR](poly_mbr,poly_id)
let pb_polygon =

m_find[Poly_id,PB_polygon](pb_polyid_polygon,poly_id)
if pointInWindow(pt,mbr) then
begin

let in_poly = pointInPolygon(pt,pb_polygon,pb_cid_chain,
pb_gid_geometry,line_mbr)

case in_poly of
true :
begin

writeString("1nThe point is inside the polygon ID = ");
writelnt(poly_id);newline(1)
let pb_polygon =

m_find[Poly_id,PB_polygon](pb_polyid__polygon,poly_id)
htPolygon(poly_id,pb_polygon)
result := poly_id
finished := true

end
false : { polyid_list := tl[Poly_id](polyid_list) }
default: {}

end
else { polyid_list := tl[Poly_id](polyid_list) }

end
end
side_length := side_length * 2.0
if side_length > map_length do
begin

result := 0
finished := true
writeString("1nThe map database does not contain polygons " ++

"in this area.'n")
end

end
result

end

Check whether a file is readable

let fileReadable := proc(fn: string -> bool)
begin

let suceed := true
let inputfile = open(fn,0)
if inputfile = nilfile then
begin

let message =
"The file " ++
fn + +

F-21

___ Appendix F : The Prototype IGIS Program

"cannot be opened!'nCheck the file whether is existent " ++
"and readable."

let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
suceed := false

end
else

{ let ndx = close(inputfile) }
suceed

end

Waiting for an input from either a click of mouse button 2 or
a keystroke of the ESC or Enter key

let inputWaiting := proc(fd: file)
begin

use makeReadEnv (fd) with
inputPending : proc (-> bool);
readChar : proc (-> string) in

begin
let data := vector 1 to 7 of 0
let finished := false
while -finished do
begin

while -inputPending() and data(6) = 0 do
{ locator(fd,data) }

if data(6) = 1 then { finished := true }
else
begin

let char = readChar()
let asc = stringToAscii(char)
if asc = 10 or asc = 27 do { finished := true }

end
end

end
end

! define a default colourmap
map_colourmap()
image_colourmap()

#
Main program

#

1 ^ i c i c ^ & i c i e i c i c i e ^ ^ ^ J e J c i c i c J c i c J c i r j r J c ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k i c ' k ' k ' k ' k ' k ' k i c ' k

| * *

!* VIEW & QUERY *
i * *
i **
let view_query := proc() ! VIEW & QUERY
begin

! = : = = = = = !

let view_maps := proc() ! View maps
begin

! colourmap for vector data (16 colours)
map_colourmap()
! setup background colour for displaying maps

F-22

Appendix F : The Prototype IGIS Program

let bg_col = olive
! redefine colour
for i = 0 to nc_ras - 1 do ! light gray
{ colourMap(window_file, ras_cndx(i)++bg_col,

192*256*256+192*256+192) }
let bg = image win_width by win_height of bg_col
let dm_name := ""
! + !
let load_map := proc() ! Load a map
begin

copy bg onto screen(ras_depthIvec_depth)
map_loaded := false
if ~m_isEmpty[Map_id,Basemap](base_maps) then
begin

let id_str := ""
let no_lines := 1
let prtMapId = proc(map_id: Map_id; basemap: Basemap)
begin

id_str := id_str ++ map_id ++ " "
if length(id_str) >= 50 * no_lines do
begin

id_str := id_str ++ "’n"
no_lines := no_lines + 1

end
end
m_app[Map_id,Basemap](base_maps,prtMapId)
let message =

"Map database contains the following basemapsr'n" ++
id_str

let prompt = "Enter a map name: "
map_id := dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
if ~m_contains[Map_id,Basemap](base_maps,map_id) then
begin

if map_id ~= "" do
begin

let message = "Map database does not contain " ++ map_id
let prompt = ""
let trash = dialogueBox(message,prompt,window_file,

screen,win_size,start_bp)
end
end
else
begin

load_basemap(map_id)
get_draw_extent(map_id)
drawRectangle(map_mbr,black,screen(ras_depthIvec_depth),

draw_extent)
writeString("1n'nDrawing the map ...'n")
draw_basemap(map_id)
let message = "Loading entity indices of the map ..."
let msg_img = writeMessage(message,window_file,screen,

win_size,start_bp)
m_isu_clear[Point_id,XY](tmp_pid_point)
m_isu_clear[Line_id,List[XY]](tmp_lid_line)
build_tmp_entity(map_id)
eraseMessage(msg_img,screen)
writeString("'nDone!'n")
map_loaded := true

end
end
else
begin

let message = "No basemap available."
let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

F-23

Appendix F : The Prototype IGIS Program

win_size,start_bp)
end

end
! + !
let zoom_map := proc() ! Zoom a map
begin

if map_loaded then
begin

let zoom := proc(opt: string)
begin

draw_extent := Extent(x_min,y_min,x_max - x_min,
y_max - y_min)

let new_extent = getZoomExtent(opt,window_file,screen,
win_size,draw_extent,map_extent,pntr_bp)

if (new_extent(x_min) = draw_extent(x_min) and
new_extent(y_min) = draw_extent(y_min) and
new_extent(x_range) = draw_extent(x_range) and
new_extent(y_range) = draw_extent(y_range)) or
(new_extent(x_range) = 0. or new_extent(y_range) = 0.)

then { }
else
begin

x_min := new_extent(x_min)
y_min := new_extent(y_min)
x_max := x_min + new_extent(x_range)
y_max := y_min + new_extent(y_range)
draw_extent : = Extent(x_min, y_min,

x_max - x_min, y_max - y_min)
copy bg onto screen(ras_depthIvec_depth)
drawRectangle(map_mbr,black,screen(ras_depthIvec_depth),

draw_extent)
writeString("Redrawing features ...'n")
draw_basemap(map_id)
writeString("Done!'n")

end
end
let a = proc(
let c = proc(
let p = proc(
let x = proc(
let w = proc(

zoom("a")
{ for i = 1 to 5 0000 do { }; zoom("c") }
{ for i = 1 to 50000 do { }; zoom("p") }
zoom("x")
{ for i = 1 to 50000 do { }; zoom("w") }

let items = vector @ 0 of ["Zoom", "All", "Center", "Pan",
"X","Window","Exit"]

let actions = vector @ 0 of [a,c,p,x,w]
popupMenu(items,actions,true,window_file,screen,win_size,

start_bp)
end
else
begin

let message = "A map should be loaded first."
let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
end

end
! + !
let query_map := proc() ! Query
begin

if map_loaded then
begin

if ~m_contains[Map_id,Entity_index](entity_indices,map_id) then
begin

let message = "The map " ++ map_id ++
" has not been indexed yet."

let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

F-24

Appendix F : The Prototype IGIS Program

win_size,start_bp)
end
else
begin

let entity_index =
m_f ind [Map_id, Entity_index] (entity_indices, map_id)

let map_extent = getOSmapInfo(map_id)(extent)
let map_length = map_extent(x_range)
draw_extent := Extent(x_min,y_min,

x_max - x_min,y_max - y_min)
let aperture = snap_target_size * (x_max - x_min) /

float(win_size(width))
let ht_col = red
i __i

let query_point := proc() ! Query a point
begin

let point_index = entity_index(point)
let min_side_length = entity_index(min_quad_sl)(point)
writeString("'nMouse button 1: digitise a point.")
writeString("'nMouse button 2: exit.'n")
let finished := false
while -finished do
begin

let pointid = searchPoint(point_index,tmp_pid_point,
ht_col,min_side_length,map_length,aperture,
window_file,screen,win_size,draw_extent,pntr_bp)

if pointid > 0 then
begin

writeString("1nSearched Point ID = ");
writeString(iformat(pointid));space(3);

end
else if pointid < 0 do { finished := true }

end
end
I __ I
let query_line := proc() ! Query a line
begin

let line_index = entity_index(line)
let min_side_length = entity_index(min_quad_sl)(line)
let line_mbr = m_find[Map_id,Entity_mbr](entity_mbrs,

map_id)(line)
writeString("1nMouse button 1: digitise a line.")
writeString("'nMouse button 2: exit.'n")
let finished := false
while -finished do
begin

let lineid = searchLine(line_index,tmp_lid_line,
line_mbr,ht_col,min_side_length,
map_length,aperture,window_file,
screen,win_size,draw_extent,pntr_bp)

if lineid > 0 then
begin

writeString("1nSearched ID = ");
writeString(iformat(lineid))

end
else if lineid < 0 do { finished := true }

end
end
I __ !

let query_polygon := proc() ! Query a polygon
begin

let polygon_index = entity_index(polygon)
let map_origin_peano =

Peanor(xyToPKR(XY(map_extent(x_min),
map_extent (y__min))) ,map_length)

if m_length[Peanor,List[Poly_id]](polygon_index) = 1 and

F-25

Appendix F : The Prototype IGIS Propram

l_length[Poly_id] (m_find[Peanor,List[Poly_id]] (
polygon_index,map_origin_peano)) = 0 then
{ writeString("1nThe basemap does not contain " ++

"polygon entity.'n") }
else
begin

let min_side_length =
entity_index(min_quad_sl)(polygon)

let line_mbr = m_find[Map_id,Entity_mbr](entity_mbrs,
map_id)(line)

let poly_mbr = m_find[Map_id,Entity_mbr](entity_mbrs,
map_id)(polygon)

writeString("'nMouse button 1: digitise a polygon.")
writeString("'nMouse button 2: exit.'n")
let finished := false
while -finished do
begin

let polyid = searchPolygon(polygon_index,poly_mbr,
1ine_mbr,ht_col,min_s ide_length,
map_length,window_file,screen,
win_size,draw_extent,pntr_bp)

if polyid > 0 then
begin

writeString("'nSearched ID = ");
writeString(iformat(polyid))

end
else if polyid < 0 do { finished := true }

end
end

end
I--- i
let rectangle_region := proc()
begin

let rectangle = dynaGetWinCornersA(window_file,screen,
win_size,draw_extent,pntr_bp)

let x := vector 0 to 1 of 0.
let y := vector 0 to 1 of 0.
x(0) := rectangle(l)(x)
y(0) := rectangle(1)(y)
x(l) := rectangle(2)(x)
y(l) := rectangle(2)(y)
let target_win = MBR(x(0),y (0),x(1),y (1))
let map_extent = getOSmapInfo(map_id)(extent)
let map_length = map_extent(x_range)
let point_index = entity_index(point)
let line_index = entity_index(line)
let polygon_index = entity_index(polygon)
let line_mbr = m_find[Map_id,Entity_mbr](entity_mbrs,

map_id)(line)
let poly_mbr = m_find[Map_id,Entity_mbr](entity_mbrs,

map_id)(polygon)
let point_msl = entity_index(min_quad_sl)(point)
let line_msl = entity_index(min_quad_sl)(line)
let poly_msl = entity_index(min_quad_sl)(polygon)
i
! search points
i
writeString("'nThe following points have been found:’n")
let si := point_msl
let cell_xmin := float(truncate(x(0) / si)) * si
let cell_ymin := float(truncate(y(0) / si)) * si
let cell_xmax : = float(truncate(x(1) / si)) * si
let cell_ymax := float(truncate(y(1) / si)) * si
let m := truncate((cell_xmax - cell_xmin) / si)
let n := truncate((cell_ymax - cell_ymin) / si)
for i = 0 to m do

F-26

Appendix F : The Prototype IGIS Program

for j = 0 to n do
begin

let xO = cell_xmin + float(i) * si
let yO = cell_ymin + float(j) * si
let x_sw := xO
let y_sw := yO
let finished := false
while -finished do
begin

let xy = XY(x_sw,y_sw)
let peano_key = xyToPKR(xy)
let peano = Peanor(peano_key,si)
if m_contains[Peanor,List[Point_id]] (point_index,

peano) do
begin

let pointid_list :=
m_find[Peanor,List[Point_id]] (point_index,

peano)
while pointid_list isnt empty do
begin

let point_id = hd[Point_id](pointid_list)
let point =

m_find[Point_id,XY](tmp_pid_point,
point_id)

let found = pointInWindow(point,target_win)
if found do
begin

let id_str = iformat(point_id)
space(10 - length(id_str));
writeString(id_str);

end
pointid_list := tl[Point_id](pointid_list)

end
finished := true

end
si := si * 2.0
x_sw := float(truncate(xO / si)) * si
y_sw := float(truncate(yO / si)) * si
if si > map_length do { finished := true }

end
si := point_msl

end
newline(1)
i
! search lines
i
let id_table := m_empty[int,int](eq_int,lt_int)
writeString("1nThe following lines have been found:'n")
si := line_msl
cell_xmin := float(truncate(x(0) / si)) * si
cell_ymin := float(truncate(y(0) / si)) * si
cell_xmax := float(truncate(x(1) /si)) * si
cell_ymax : = float(truncate(y(1) /si)) * si
m := truncate((cell_xmax - cell_xmin) / si)
n := truncate((cell_ymax - cell_ymin) / si)
for i = 0 to m do
for j = 0 to n do
begin

let xO = cell_xmin + float(i) * si
let yO = cell_ymin + float(j) * si
let x_sw := xO
let y_sw := yO
let finished := false
while -finished do
begin

let xy = XY(x_sw,y_sw)

F-27

Appendix F : The Prototype IGIS Program

let peano_key = xyToPKR(xy)
let peano = Peanor(peano_key,si)
if m_contains[Peanor,List[Line_id]](line_index,

peano) do
begin

let lineid_list :=
m_find[Peanor,List[Line_id]](line_index,

peano)
while lineid_list isnt empty do
begin

let line_id = hd[Line_id](lineid_list)
let xy_list :=

m_find[Line_id,List[XY]](tmp_lid_line,
line_id)

let mbr = m_find[Line_id,MBR](line_mbr,
line_id)

let found := false
let ptl := hd[XY](xy_list)
xy_list : = t1[XY](xy_list)
while xy_list isnt empty and -found do
begin

let pt2 = hd[XY](xy_list)
found := lineVisiblelnWindow(pt1,pt2,

target_win)
ptl := pt2
xy_list := tl[XY](xy_list)

end
if found and ~m_contains[int,int](id_table,

line_id) do
begin

let id_str = iformat(line_id)
space(10 - length(id_str));
writeString(id_str);
let xy_list =

m_find[Line_id,List[XY]](tmp_lid_line,
line__id)

drawLineString(xy_list,ht_col,screen,
draw_extent)

m_isu_insert[int,int](id_table,line_id,
line_id)

end
lineid_list := tl[Line_id](lineid_list)

end
finished := true

end
si := si * 2.0
x_sw := float(truncate(xO / si)) * si
y_sw := float(truncate(yO /si)) * si
if si > map_length do { finished := true }

end
si := line_msl

end
newline(1)I
! search polygons
I
let map_origin_peano =

Peanor(xyToPKR(XY(map_extent(x_min),
map_extent(y_min))),map_length)

if m_length[Peanor,List[Poly_id]](polygon_index) = 1 and
l_length[Poly_id] (m_find[Peanor,List[Poly_id]] (
polygon_index,map_origin_peano)) = 0 then
{ writeString("'nThe basemap does not contain " ++

"polygon entity.'n") }
else
begin

F-28

Appendix F : The Prototype IGIS Program

let id_table := m_empty[int,int](eq_int,lt_int)
writeString("'nThe following polygons " ++

"have been found:'n")
si := poly_msl
cell_xmin := float(truncate(x(0) / si)) * si
cell_ymin := float(truncate(y(0) / si)) * si
cell_xmax := float(truncate(x(1) / si)) * si
cell_ymax := float(truncate (y (1) / si)) * si
m := truncate((cell_xmax - cell_xmin) / Si)
n := truncate((cell_ymax - cell_ymin) / si)
for i = 0 to m do
for j = 0 to n do
begin

let xO = cell_xmin + float(i) * si
let yO = cell_ymin + float (j) * si
let x_sw := xO
let y_sw := yO
let finished : = false
while -finished do
begin

let xy - XY(x_sw,y_sw)
let peano_key = xyToPKR(xy)
let peano = Peanor(peano_key,si)
if m_contains[Peanor,

List[Poly_id]](polygon_index,peano) do
begin

let polyid_list :=
m_find[Peanor,List[Poly_id]](polygon_index,

peano)
while polyid_list isnt empty do
begin

let found := false
let poly_id = hd[Poly_id](polyid_list)
let mbr = m_find[Poly_id,MBR](poly_mbr,

poly_id)
let pb_polygon :=

m_find[Poly_id,
PB_polygon](pb_polyid_polygon,

poly_id)
if mbr(x_max) < target_win(x_min) or

mbr(x_min) > target_win(x_max) or
mbr(y_max) < target_win(y_min) or
mbr(y_min) > target_win(y_max) then {}

else
begin

let found := false
if mbr(x_min) < target_win(x_min) and

mbr(x_max) > target_win(x_max) and
mbr(y_min) < target_win(y_min) and
mbr(y_max) > target_win(y_max) do

begin
let k := 0
let inside := true
while inside and k < 4 do
begin

let p = k div 2
let q = k rem 2
let pt = XY(x(p),y (q))
inside := pointInPolygon(pt,

pb_polygon,pb_cid_chain,
pb_gid_geometry,line_mbr)

k := k + 1
end
if k = 4 do { found := true }

end
if -found do

F-29

Appendix F : The Prototype IGIS Program

begin
let pb_chain =

m_f ind[Chain_id,
PB_chain](pb_cid_chain,poly_id)

let link_list := pb_chain(link_list)
while -found and

link_list isnt empty do
begin

let geom_id_of_link =
hd[PB_link](link_list)

(geom_id_o f_1ink)
let xy_list := m_find[Geom_id,

PB_geometry](pb_gid_geometry,
geom_id_of_link)(xy_list)

let ptl := hd[XY](xy_list)
xy_list := tl[XY](xy_list)
while -found and

xy_list isnt empty do
begin

let pt2 = hd[XY](xy_list)
found := lineVisiblelnWindow(ptl,

pt2,target_win)
ptl := pt2
xy_list :- tl[XY](xy_list)

end
link_list := tl[PB_link](link_list)

end
end
if found and ~m_contains[int,

int](id_table,poly_id) do
begin

let id_str = iformat(poly_id)
writeString("id = ");
space(6 - length(id_str));
writeString(id_str + + ");
let pb_polygon =
m_find[Poly_id,

PB_polygon](pb_polyid_polygon,
poly_id)

htPolygon(poly_id,pb_polygon)
m_isu_insert[int,int](id_table,

poly_id,poly_id)
end

end
polyid_list := t1[Poly_id](polyid_list)

end
finished := true

end
si := si * 2.0
x_sw := float(truncate(xO /si)) * si
y_sw := float(truncate(yO / si)) * si
if si > map_length do { finished := true }

end
si := poly_msl

end
end

end
i ___ j
let circle_region := proc()
begin

let circle = dynaGetCircle(window_file,screen, win_size,
draw_extent, pntr_bp)

writeString("'nThe coordinates of centre are ");
writeReal(circle(center)(x));writeReal(circle(center)(y))
writeString("'nThe radius of the circle = ");
writeReal(circle(radius))

F-30

Appendix F : The Prototype IGIS Program

end
i --i
let items = vector @ 0 of ["Query EntitiesPoint","Line",

"Polygon","Rectangle Region",
"Exit"]

let actions = vector @ 0 of [query_point,query_line,
query_polygon,rectangle_region]

popupMenu(items,actions,true,window_file, screen,win_size,
start_bp)

end
end
else
begin

let message = "A map should be loaded first."
let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
end

end
! + !
let items = vector @ 0 of ["Maps", "Load", "Zoom", "Query", "Exit"]
let actions = vector @ 0 of [load_map, zoom_map, query_map]
popupMenu(items,actions,true,window_file,screen,win_size,start_bp)

end
! = j

let view_images : = proc() ! View images
begin

let raster := nilimage
let refresh = image win_width by win_height of

defaultPixel(off, win_depth)
let map_overlay := image win_width by win_height of

defaultPixel(off,vec_depth)
let bg = image win_width by win_height of black
let r_sxy := XY(0.,0.)
let v_sxy := XY(0.,0.)
!+++!
let get_image : = proc() ! Get an image
begin

if ~m_isEmpty[Image_id,Baseimage](base_images) then
begin

let id_str := ""
let no_lines := 1
let prtlmgld = proc(image_id: Image_id; base_image: Baseimage)
begin

id_str := id_str ++ image_id ++ " "
if length(id_str) >= 50 * no_lines do
begin

id_str := id_str + + M'n"
no_lines := no_lines + 1

end
end
m_app[Image_id,Baseimage](base_images, prtlmgld)
let message :=
"The image database contains the following baseimages: 1 n" + +
id_str

let prompt = "Enter an image name: "
let image_id := dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
if ~m_contains[Image_id,Baseimage](base_images,image_id) then
begin

if image_id ~= "" do
begin

let message = "The database does not contain " + +
"the queried image."

let prompt = ""

F-31

Appendix F : The Prototype IGIS Program

let trash = dialogueBox(message,prompt,window_file,
screen,win_size,start_bp)

end
end
else
begin

! set background colour to black
copy bg onto screen(ras_depthIvec_depth)
raster := loadBaseimage(image_id,window_file)
let baseimage =

m_find[Image_id,Baseimage](base_images,image_id) !!!
let baseimage_dm = baseimage(data_model)'grid_cell !!!
image_extent := baseimage_dm(extent)
x_min := image_extent(x_min)
y_min := image_extent(y_min)
pxl_resol := image_extent(x_range) / float(xDim(raster))
x_range := pxl_resol * float(win_width)
y_range := pxl__resol * float (win_height)
let shift_x = float((win_size(width) - xDim(raster)) div 2)
let shift_y = float((win_size(height) - yDim(raster)) div 2)
let shift_pt = XY(shift_x,shift_y)
x_min := x_min - shift_x * pxl_resol
y_min := y_min - shift_y * pxl_resol
x_max : = x_min + x_range
y_max := y_min + y_range
draw_extent := Extent(x_min,y_min,

x_max - x_min,y_max - y_min)
r_sxy := shift__pt
viewlmage(raster,shift__pt,screen,win_size)

end
end
else
begin

let message = "No base image available."
let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
end

end
! + !
let pan_image := proc() ! Pan an image
begin

if raster ~= nilimage then
begin

let pntr_bp = 4
let ras_depth = zDim(raster)
let erase_pxl = defaultPixel(off,ras_depth)
if ras_depth < win_depth do
begin

let imgl = image 1 by 1 of on
let img2 := image 1 by 1 of

defaultPixel(off,win_depth - ras_depth)
copy imgl onto img2((pntr_bp - ras_depth) I 1)
let pxl = getPixel(img2,0,0)
let nc = power_2_k(ras_depth)
let cndx := vector 0 to nc- 1 of erase_pxl
for i = 0 to nc - 1 do cndx(i) := colourToPixel(i,ras_depth)
! set up the colour of the pointer
for i = 0 to nc - 1 do

{ colourMap(window_file, cndx(i) ++ pxl,
255*256*256 + 255 * 256) } ! cyan

end
let done := false
while -done do

F-32

Appendix F : The Prototype IGIS Proeram

begin
let dxy = getDragDxy (window_f ile, screen, win_size, pntr_bp)
if dxy(x) = 0. and dxy(y) = 0. then { done := true }
else
begin

x_min := x_min - dxy(x) * pxl_resol
y_min := y_min - dxy(y) * pxl_resol
x_max := x_min + x_range
y_max := y_min + y_range
draw_extent := Extent(x_min,y_min,

x_max - x_min, y_max - y_min)
r_sxy := XY(r_sxy(x) + dxy(x), r_sxy(y) + dxy(y))
v_sxy := XY(v_sxy(x) + dxy(x), v_sxy(y) + dxy(y))
let result = image win_width by win_height of

ras_cndx(0) ++ black
viewlmage (map_overlay, v_sxy, result (ras_depth I vec_depth) ,

win_size)
viewlmage (raster, r_sxy, result (0 I ras_depth) ,win_size)
copy result onto screen

end
end
let new_cursor := image 16 by 16 of off
line(new_cursor, 0,15,8,0, on, 12)
line(new_cursor, 0,15,0,9, on, 12)
line(new_cursor, 0,15,5,12, on, 12)
setCursor(window_file,new_cursor)

end
else
begin

let message = "An image should be loaded first."
let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size, start_bp)
end

end
! + !
let overlay_map := proc() ! Overlay
begin

let message = ""
let prompt = "Enter a map name: "
map_id := dialogueBox(message,prompt,window_file,screen,

win_size, start_bp)
if ~m_contains[Map_id,Basemap](base_maps,map_id) then
begin

if map_id ~= "" do
begin

let message =
"The database does not contain the queried basemap."

let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
end

end
else
begin

v_sxy := XY(0.,0.)
load_basemap(map_id)
writeString("1n'nDrawing the map, please wait ...'n")
copy screen(0 I ras_depth) onto refresh
copy refresh onto screen
draw_basemap(map_id)
copy screen(ras_depthIvec_depth) onto map_overlay
writeString("Done!'n")

end
end
! + !

F-33

Appendix F : The Prototype IGIS Program

let items = vector @ 0 of ["Images","Load"Pan",
"Overlay Map","Exit"]

let actions = vector @ 0 of [get_image, pan_image, overlay_map]
map_colourmap()
image_colourmap()
let bg_col = olive
for i = 0 to nc_ras - 1 do ! light gray
{ colourMap(window_file, ras_cndx(i)++bg_col,

192*256*256+192*256+192) }
popupMenu(items,actions,true,window_file,screen,win_size,start_bp)

end
^ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1

let items = vector @ 0 of ["View & Query", "Maps", "Images", "Exit"]
let actions = vector @ 0 of [view_maps, view_images]
popupMenu(items,actions,true,window_file, screen,win_size,start_bp)

end
1 *

I :k *

!* SPATIAL INDEXING *
| ★ ★
| icicicicicici' iclci' ieicici 'J' ici ' iciciticXiciclcicitic'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'kicic'k-k'k'k'k-k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k-k'k'k'k'k

let spatial_index := proc() ! SPATIAL INDEXING
begin

! = !

let build_mbrs := proc() ! Build MBRs of basemaps
begin

if ~m_isEmpty[Map_id,Basemap](base_maps) then
begin

let createEntityMBR = proc(map_id: Map_id; basemap: Basemap)
begin

if ~m_contains[Map_id,Entity_mbr](entity_mbrs,map_id) do
{ get_entity_mbr(map_id) }

end
let message = "Creating MBR tables ... "
let msg_img = writeMessage(message,window_file,screen,

win_size,start_bp)
m_app[Map_id,Basemap](base_maps,createEntityMBR)
eraseMessage(msg_img,screen)

end
else
begin

let message = "Basemap database is empty."
let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
end

end
! = !

let index_basemaps := proc() ! Indexing basemaps
begin

if ~m_isEmpty[Map_id,Basemap](base_maps) then
begin

let constructEntitylndex = proc(map_id: Map_id; basemap: Basemap)
begin

if ~m_contains[Map_id,Entity_index](entity_indices,map_id) do
{ construct_entity_index(map_id) }

end
let message = "Constructing index tables ... "
let msg_img = writeMessage(message,window_file,screen,

win_size,start_bp)
m_app[Map_id,Basemap](base_maps,constructEntitylndex)
eraseMessage(msg_img,screen)

end
else
begin

F-34

Appendix F : The Prototype IGIS Program

let message = "Basemap database is empty."
let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
end

end
! = !

let draw_lqtndx := proc() ! Draw LQT-indexed diagrams
begin

if ~m_isEmpty[Map_id,Basemap](base_maps) then
begin

let id_str := ""
let prtMapId = proc(map_id: Map_id; basemap: Basemap)
begin

id_str := id_str ++ map_id ++ " "
let no_lines := 1
if length(id_str) >= 50 * no_lines do
begin

id_str := id_str ++ M'n"
no_lines := no_lines + 1

end
end
m_app[Map_id,Basemap](base_maps,prtMapId)
let message =

"Map database contains the following basemaps:'n" ++ id_str
let prompt = "Enter a map name: "
map_id := dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
if ~m_contains[Map_id,Entity_index](entity_indices,map_id) then
begin

if map_id ~= "" do
begin

let message = "The map " + + map_id ++
" has not been indexed yet."

let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
end

end
else
begin

let map_extent = getOSmapInfo(map_id)(extent)
if x_min = 0. and y_min = 0. and x_max = 0. and y_max = 0. do

{ get_draw_extent(map_id) }
draw_extent := Extent(x_min,y_min,

x_max - x_min, y_max - y_min)
let drawLQTndx := proc(peano: Peanor; id_list: List[int])
begin

let quad_extent = getQuadExtent(peano)
let xmin = quad_extent(x_min)
let ymin = quad_extent(y_min)
let range = quad_extent(x_range)
let quadrant_mbr = MBR(xmin,ymin,

xmin + range,ymin + range)
drawRectangle(quadrant_mbr,yellow,

screen(ras_depthIvec_depth),draw_extent)
let num = l_length[int](id_list)
let position = XY(xmin + range/2., ymin + range/2.)
! display the number of entries in each quadrant
! from level 0 to 5
if range >= map_extent(x_range) / 64. do
begin

let txt = iformat(num)
let txt_ht = txt_size * map_extent(x_range) / 1000.
drawText(txt,txt_ht,0.0,black,position,

screen(ras_depthIvec_depth),draw_extent)

F-35

Appendix F : The Prototype IGIS Program

end
end
let entity_index =

m_f ind [Map_id, Ent i ty_index] (ent i ty_indices, map_id)
let draw__point_lqtndx = proc ()
begin

let point_index = entity_index(point)
m_app [Peanor, List [Point_id]] (point_index, drawLQTndx)

end
let draw_line_lqtndx = proc()
begin

let line_index = entity_index(line)
m_app[Peanor,List[Line_id]] (line_index,drawLQTndx)

end
let draw_polygon_lqtndx = proc()
begin

let polygon_index = entity_index(polygon)
m_app [Peanor, List [Point_id]] (polygon_index, drawLQTndx)

end
let bg_col = olive
for i = 0 to nc_ras - 1 do ! light gray

{ colourMap(window_file,ras_cndx(i)++bg_col,
192*256*256+192*256+192) }

let bg = image win_width by win_height of bg_col
let erase_screen = proc()

{ copy bg onto screen(ras_depthIvec_depth) }
let items = vector @ 0 of ["Draw LQT DiagramsPoint","Line",

"Polygon","Erase Screen","Exit"]
let actions =

vector @ 0 of [draw_point_lqtndx,draw_line_lqtndx,
draw_polygon_lqtndx,erase_screen]

popupMenu(items,actions,true,window_file,screen,win_size,
start_bp)

end
end
else
begin

let message = "No basemap available."
let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
end

end
! = = = = =: = = = = = = = = = = = = = = = = = = =: = =: = = = = = = = = = = = = = = = = = !

let prt_lqtndx := proc() ! Display LQT-indexed information
begin

if ~m_isEmpty[Map_id,Basemap](base_maps) then
begin

let id_str := ""
let prtMapId = proc(map_id: Map_id; basemap: Basemap)
begin

id_str := id_str ++ map_id ++ " "
let no_lines := 1
if length(id_str) >= 50 * no_lines do
begin

id_str := id_str ++ MIn"
no_lines := no_lines + 1

end
end
m_app[Map_id,Basemap](base_maps,prtMapId)
let message =

"Map database contains the following basemaps:'n" ++ id_str
let prompt = "Enter a map name: "
map_id := dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)

F-36

Appendix F : The Prototype IGIS Program

if ~m_contains[Map_id,Entity_index](entity_indices,map_id) then
begin

if map_id ~ = "" do
begin

let message =
"The map " ++ map_id ++ " has not been indexed yet."

let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
end

end
else
begin

let entity_index =
m_find[Map_id,Entity_index](entity_indices,map_id)

let lqt_index : = m empty[Peanor,List[int11(eg peanor.lt peanor)
let min_side_length := 0.
let map_extent = getOSmapInfo(map_id)(extent)
let linearPK = proc(peano: Peanor; id_list: List[int])
begin

! linearize peano key
let quad_extent = getQuadExtent(peano)
let quad_xmin = quad_extent(x_min)
let quad_ymin = quad_extent(y_min)
let quad_range = quad_extent(x_range)
let xr = (quad_xmin - map_extent(x_min)) / min_side_length
let yr = (quad_ymin - map_extent (y_min)) / min_side_length
let linear_pk_key = xyToPKR(XY(xr,yr))
let linear_peano = Peanor(linear_pk_key, quad_range)
m_isu_insert[Peanor,List[int]](lqt_index,linear_peano,

id_list)
end
let printLinearPK = proc(peano: Peanor; id_list: List[int])
begin

writeString(fformat(peano(peano_key),10,0)); space(4);
writeString(fformat(peano(side_length),6,3));space (8);
writelnt(l_length[int](id_list))
newline(1)

end
let opt := 0
writeString("Display Point(P), Line(L) or polyGon(G) " ++

"linearized peano information? ");
let ans = readLine()
case ans of
. . p . . , . . p . . .

begin
opt := 1
let point_index = entity_index(point)
min_side_length := entity_index(min_quad_sl)(point)
m_app[Peanor,List[Point_id]](point_index,linearPK)

end
" 1" , " L " :
begin

opt := 2
let line_index = entity_index(line)
min_side_length := entity_index(min_quad_sl)(line)
m_app[Peanor,List[Line_id]](line_index,linearPK)

end
"g", "G":
begin

opt := 3
let polygon_index = entity_index(polygon)
min_side_length := entity_index(min_quad_sl)(polygon)

F-37

Appendix F : The Prototype IGIS Program

m_app[Peanor,List[Point_id]](polygon_index,linearPK)
end
default: { }
if opt >= 1 and opt <= 3 do
begin

writeString("'nLinearized PK Side_length " + +
"No of entries 'n'n")

m_app[Peanor,List[int]](lqt_index,printLinearPK)
m_isu_clear[Peanor,List[int]](lqt_index)

end
end

end
else
begin

let message = "No basemap available."
let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
end

end
!==--==!
let items = vector @ 0 of ["Spatial Indexing", "Build MBRs",

"Indexing Maps", "Draw LQT Diagrams",
"Print LQT index", "Exit"]

let actions = vector 0 0 of [build_mbrs, index_basemaps, draw_lqtndx,
prt_lqtndx]

popupMenu(items,actions,true,window_file,screen,win_size,start_bp)
end

•k'k'k'k'k'k'k'k'k'k-k'k'k'k'k'k'k'k-k'k'k'k'k'k-k'k'k'k-k'k'k'k'k'k'k'k-k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'ic'k'k'k'k'k'kicic'k'k'kic'k'k'k'k-k'k'k'k'k'k

* *

* MANAGEMENT *
★ *
ic^jcir^icJcic'k'k'k'k'k'k-k'k'k'k'k'k'k'k'k'k'k-k'k'k'k-k'k'k'k'k'k'k'k'k'k'k'k'k'kic'k-kic'k'k'k'k'k-k'k-k'k'k

let management : = proc() ! MANAGEMENT
begin

! = !

let remove_image := proc() ! Remove an image from the database
begin

let items = vector 0 0 of ["Remove Images", "Raw Image",
"Interim Image", "Baseimage", "Exit"]

let actions = vector 0 0 of [removeRawimage, removelnterimlmage,
removeBaseimage]

popupMenu(items,actions,true,window_file,screen,win_size,start_bp)
end
! = i

let clear_mbr_tables := proc() ! Clear MBR tables
begin

let clear_mbr = proc(map_id: Map_id; entity_mbr: Entity_mbr)
begin

let line_mbr = entity_mbr(line)
let poly_mbr = entity_mbr(polygon)
m_isu_clear[Line_id,MBR](line_mbr)
m_isu_clear[Poly_id,MBR](poly_mbr)

end
let message = "Are you sure you wish to clear all mbr tables? "
let prompt = "Confirm with YES or NO? "
let confirm = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
if confirm = "YES" do
begin

m_app[Map_id,Entity_mbr](entity_mbrs,clear_mbr)
m_isu_clear[Map_id,Entity_mbr](entity_mbrs)
let message = "All mbr tables have been erased!"
let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

F-38

Appendix F : The Prototype IGIS Program

win_size,start_bp)
end

end
let clear_ndx_tables := proc() ! Clear indexing tables
begin

let clear_ndx = proc(map_id: Map_id; entity_index: Entity_index)
begin

let point_index = entity_index(point)
let line_index = entity_index(line)
let polygon_index = entity_index(polygon)
m_isu_clear[Peanor,List[Point_id]](point_index)
m_isu_clear[Peanor,List[Line_id]](line_index)
m_isu_clear[Peanor,List[Poly_id]](polygon_index)

end
let message = "Are you sure you wish to clear all index tables? "
let prompt = "Confirm with YES or NO? "
let confirm = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
if confirm = "YES" do
begin

m_app[Map_id,Entity_index](entity_indices,clear_ndx)
m_isu_clear[Map_id,Entity_index](entity_indices)
let message = "All index tables have been erased!"
let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
end

end
!= =: = = = = =: =
let map_statistics := proc() ! Map statistics
begin

integerWidth := 6
spaceWidth := 5
let message = ""
let prompt = "Enter a map name: "
map_id := dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
if ~m_contains[Map_id,Basemap](base_maps,map_id) then
begin

if map_id ~= "" do
begin

let message =
"The database does not contain the queried basemap."

let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
end

end
else
begin

load_basemap(map_id)
let basemap = m_find[Map_id,Basemap](base_maps,map_id)
let dm_name = basemapDM_name(basemap(data_model))
case dm_name of
"link_node" :
begin

writeString('nThe number of elements in the tables: 'n " ++
Point Line Geometry Attribute " ++
Link Node Text FCD 'n" + +
------------------------- 1n"); space(3)

writelnt(m_length[Point_id,LN_point](ln_pid_point));
writelnt(m_length[Line_id,LN_line](ln_lid_line));
writelnt(m_length[Geom_id,LN_geometry](ln_gid_geometry));
writelnt(m_length[Attr_id,LN_attribute](ln_aid_attribute)

F-39

Appendix F : The Prototype IGIS Program

writelnt(m_length[Link_id,LN_link](ln_kid_link));
writelnt(m_length[Node_id,LN_node](ln_nid_node));
let basemap_dm = basemap(data_model)'link_node
if basemap_dm(txt) is ln_tid_text then

{ writelnt(m_length[Text_id,LN_text](ln_tid_text));}
else { writelnt(0); }
writelnt(m_length[FC,FD](basemap_dm(fcd))); newline(1)

end
"polygon_based" :
begin

writeString("1nThe number of elements in the tables: ’n" ++
Geometry Attribute Polygon Chain " ++
Cpolygon Collection FCD 'n" ++
---------------------------- 1n"); space(3)

let basemap_dm = basemap(data_model)'polygon_based
writelnt(m_length[Geom_id,PB_geometry](pb_gid_geometry));
writelnt(m_length[Attr_id,PB_attribute](pb_aid_attribute));
writelnt(m_length[Poly_id,PB_polygon](pb_polyid_polygon));
writelnt(m_length[Chain_id,PB_chain](pb_cid_chain));
writelnt(m_length[Cpoly_id,PB_cpolygon](pb_cpolyid_cpolygon))
writelnt(m_length[Coll_id,

PB_collection](pb_collid_collection));
writelnt(m_length[FC,FD](basemap_dm(fcd))); newline(1)

end
"spaghetti" :
begin

writeString("1nThe number of elements in the tables: 'n" ++
" Point Line Text FCD 'n" ++
. . . n ") ;

space(3)
writelnt(m_length[Point_id,SP_point](sp_pid_point));
writelnt(m_length[Line_id,SP_line](sp_lid_line));
let basemap_dm = basemap(data_model)'spaghetti
if basemap_dm(txt) is sp_tid_text then

{ writelnt(m_length[Text_id,SP_text](sp_tid_text));}
else { writelnt(0); }
writelnt(m_length[FC,FD](basemap_dm(fed))); newline(l)

end
default : { }

end
end
let prt_MI_ndx := proc() ! print map and image indices
begin

let prtMapNdx = proc(peano: Peano; map_id: Map_id)
begin

writeString(iformat(peano(peano_key))); space(4);
writeString(fformat(peano(side_length),6,3));space(8);
writeString(map_id)
newline(1)

end
let prtlmgNdx = proc(peano: Peano; img_id_list: List[Image_id]
begin

writeString(iformat(peano(peano_key))); space(4);
writeString(fformat(peano(side_length),6,3));space(8);
while img_id_list isnt empty do
begin

let img_id = hd[Image_id](img_id_list)
writeString(img_id); space(2);
img_id_list := tl[Image_id](img_id_list)

end
newline(1)

end
writeString("Display Map(M), Image(I) or Quit(Q)? ");
let ans = readLine()
case ans of

F-40

Appendix F : The Prototype IGIS Program

"m", "M"
it ^ II II j II

default
end
i -----------------

{m_app[Peano,Map_id](basemap_indices,prtMapNdx)}
{m_app[Peano,List[Image_id]] (baseimage_indices,prtlmgNdx) }
{ }

let items = vector @ 0 of ["Management", "Remove Maps", "Remove Images",
"Raw to Interim Conversion",
"Interim to Baseimage Conversion",
"Clear MBR tables", "Clear Index tables",
"Map Statistics",
"Print Map and Image Indices", "Exit"]

let actions = vector 6 0 of [removeBasemap, remove_image,
rawToInterimlmage, interimToBaseimage,
clear_mbr_tables, clear_ndx_tables,
map_statistics, prt_MI_ndx]

popupMenu(items,actions,true,window_file,screen,win_size,start_bp)
end

i**
i * *

! * PREPROCESSING *
i * *
I 'k'k'k'k'k'k-k-k-k'kic'k'k'k'k'k'kic'k'k'kicicic'k'k'ki^-k'k'k-k'k'k-k-k-k'k'k-k'k-k-k'k'k'k'k'k'k'k'k'k'kic'k'k'kic'k'k'kie-k'k'^'k'k'kic'k'kifif^c'k'k

let preprocess := proc() ! PREPROCESSING
begin

I : - = -̂:- - - - - - - - - - - - - - ;

let process_raw := proc() ! Raw image
begin

if ~m_isEmpty[Image_id,Rawimage](raw_images) then
begin

let id_str := ""
let no_lines := 1
let prtlmgld = proc(image_id: Image_id; raw_image: Rawimage)
begin

id_str := id_str ++ image_id ++ " "
if length(id_str) >= 50 * no_lines do
begin

id_str := id_str ++ "'n"
no_lines := no_lines + 1

end
end
m_app[Image_id,Rawimage](raw_images, prtlmgld)
let message :=

"Image database contains the following raw images:'n" ++
id_str

let prompt = "Enter a raw image name: "
let image_id := dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
if ~m_contains[Image_id,Rawimage](raw_images,image_id) then
begin

if image_id ~= "" do
begin

let message = "Image database does not contain " ++
image_id

let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
end

end
else
begin

let rawimage = m_find[Image_id,Rawimage](raw_images,image_id)
let img_width = rawimage(width)
let img_height = rawimage(height)
let img_depth = rawimage(depth)
writeString("Width = ");writelnt(img_width);

F-41

Appendix F : The Prototype IGIS Program

writeString("Height = ");writelnt(img_height);
writeString("Depth = ");writelnt(img_depth); newline(1)
let nc = power_2_k(img_depth)
let ct = rawimage(colourmap)
let default_pixel = defaultPixel(off,img_depth)
let colour_index := vector 0 to nc-1 of default_pixel
for i = 0 to nc-1 do

{ colour_index(i) := colourToPixel(i,img_depth) }
let bg = image win_width by win_height of black
!+++!
let preview_raw := proc() ! Preview a raw image
begin

let message = "Loading the raw image ..."
let msg_img = writeMessage(message,window_file,screen,

win_size,start_bp)
let tmp_img := image win_width by win_height of

defaultPixel(off,win_depth)
copy previewRaw(rawimage,win_width,win_height) onto tmp_img
eraseMessage(msg_img,screen)
for i = 0 to nc-1 do

{ colourMap(window_file,colour_index(i),
ct(i, 3)*256*2 56+ct(i,2)*256 + ct (i,1)) }

copy tmp_img onto screen
inputWaiting(window_file)
map_colourmap()
image_colourmap()

end
! + !
let preview_LCS_raw := proc() ! Preview and linear-contrast

! stretch a raw image
begin

let message = "Performing a linear-contrast stretch ..."
let msg_img = writeMessage(message,window_file,screen,

win_size,start_bp)
let tmp_img := image win_width by win_height of

defaultPixel(off,win_depth)
copy previewStretchedRaw(rawimage,win_width,

win_height) onto tmp_img
eraseMessage(msg_img,screen)
for i = 0 to nc-1 do

{ colourMap(window_file,colour_index(i),
ct (i,3)*256*2 56+ct(i,2)*2 56+ct(i,1)) }

copy tmp_img onto screen
inputWaiting(window_file)
map_colourmap()
image__colourmap ()

end
! + !
let LCS_reduce_raw := proc() ! Linear-contrast stretch and

! reduce the depth of a raw
! image

begin
let msgl = ""
let prmptl = "Enter a new depth: "
let new_depth = stringToInt(dialogueBox(msgl,prmptl,

window_file,screen, win_size,start_bp))
let nc = power_2_k(new_depth)
let ct = grayLevel(nc)
let default_pixel = defaultPixel(off,new_depth)
let colour_index := vector 0 to nc-1 of default_pixel
for i = 0 to nc-1 do colour_index(i) :=

colourToPixel(i,new_depth)
for i = 0 to nc-1 do

{ colourMap(window_file,colour_index(i),
ct(i,3)*256*256+ct(i,2)*256+ct(i,1)) }

F-42

Appendix F : The Prototype IGIS Program

let msg2 = "Determining the frequency of luminance " + +
"itensity value ..."

let msg2_img = writeMessage(msg2,window_file,screen,
win_size,start_bp)

let frequency = freqCount(rawimage)
eraseMessage(msg2_img,screen)
let msg3 = "Performing a linear-contrast stretch and 'n" + +

"remapping to a new depth ..."
let msg3_img = writeMessage(msg3,window_file,screen,

win_size,start_bp)
let result = linearStretch(rawimage,frequency,new_depth)
! project the central part of the image on the screen
let xr := 0; let yr :=0; let xs := 0; let ys := 0
if img_width < win_width then

{ xs := (win_width - img_width) div 2 }
else (xr := (img_width - win_width) div 2 }
if img_height < win_height then

{ ys := (win_height - img_height) div 2 }
else { yr := (img_height - win_height) div 2 }
copy bg onto screen(ras_depthIvec_depth)
copy limit result at xr,yr onto limit screen at xs,ys
inputWaiting(window_file)
let msg4 ="Do you want to store the result? "
let prmpt4 = "Confirm with (Y) or (N): "
let ans = dialogueBox(msg4,prmpt4,

window_file,screen,win_size,start_bp)
if ans = "Y" or ans = "y" do
begin

let interim_image = Interim_image(result,ct)
if ~m_contains[Image_id,Interim_image](interim_images,

image_id)
then

{ m_isu_insert[Image_id,Interim_image](interim_images,
image_id,interim_image) }

else
begin

let msg5 ="Image database already contains " + +
image_id + + ", do you want to update it? "

let prmpt5 = "Confirm with (Y) or (N) :"
let ans = dialogueBox(msg5,prmpt5,window_file,screen,

win_size,start_bp)
if ans = "Y" or ans = "y" do
{m_isu_assign[Image_id,Interim_image](interim_images,

image_id,interim_image)}
end

end
map_colourmap()
image_colourmap()

end
! + !
let items = vector @ 0 of ["Raw Image", "Original",

"Linear-Contrast Stretch",
"Linear-Contrast Stretch and Reduce",
"Exit"]

let actions = vector @ 0 of [preview_raw, preview_LCS_raw,
LCS_reduce_raw]

popupMenu(items,actions,true,window_file,screen,
win_size,start_bp)

end
end
else
begin

let message ="No raw image available."
let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)

F-43

Appendix F : The Prototype IGIS Program

end
end
let process_interim := proc() ! Interim image
begin

if ~m_isEmpty[Image_id,Interim_image](interim_images) then
begin

let id_str := ""
let no_lines := 1
let prtlmgld =

proc(image_id: Image_id; interim_image: Interim_image)
begin

id_str := id_str ++ image_id + + " "
if length(id_str) >= 50 * no_lines do
begin

id_str := id_str ++ "’n"
no_lines := no_lines + 1

end
end
m_app[Image_id,Interim_image](interim_images, prtlmgld)
let message :=

"Image database contains the following interim images:'n" ++
id_str

let prompt = "Enter an interim image name: "
let image_id := dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
if ~m_contains[Image_id,Interim_image](interim_images,image_id)
then

if image_id ~= "" do
begin

let message = "Image database does not contain " ++
image_id

let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
end

else
begin

let interim_image =
m_find[Image_id,Interim_image](interim_images,image_id)

let raster = interim_image(raster)
let img_width = xDim(raster)
let img_height = yDim(raster)
let img_depth = zDim(raster)
writeString("Width = ");writelnt(img_width);
writeString("Height = ");writelnt(img_height);
writeString("Depth = ");writelnt(img_depth); newline(1)
let nc = power_2_k(img_depth)
let ct = interim_image(colourmap)
let default_pixel = defaultPixel(off,img_depth)
let colour_index := vector 0 to nc-1 of default_pixel
for i = 0 to nc-1 do

{ colour_index(i) := colourToPixel(i,img_depth) }
for i = 0 to nc-1 do

{ colourMap(window_file,colour_index(i),
ct (i,3)*256*256+ct(i,2)*2 56+ct(i,1)) }

! project the central part of the image on the screen
let xr := 0; let yr :=0; let xs := 0; let ys := 0
if img_width < win_width then

{ xs := (win_width - img_width) div 2 }
else { xr := (img_width - win_width) div 2 }
if img_height < win_height then

{ ys := (win_height - img_height) div 2 }
else { yr := (img_height - win_height) div 2 }
let bg = image win_width by win_height of ras_cndx(0) ++

black

Appendix F : The Prototype IGIS Program

copy bg onto screen
copy limit raster at xr,yr onto limit screen at xs,ys
inputWaiting(window_file)
let overwrite := false
let result := image img_width by img_height of default_pixel
!+++!
let LCS_reduce_interim := proc() ! Linear-contrast stretch

! and reduce an interim image
begin

let msgl = ""
let prmptl = "Enter a new depth: "
let new_depth = stringToInt(dialogueBox(msgl,prmptl,

window_file,screen, win_size,start_bp))
let nc = power_2_k(new_depth)
let ct = grayLevel(nc)
let default_pixel = defaultPixel(off,new_depth)
let colour_index := vector 0 to nc-1 of default_pixel
for i = 0 to nc-1 do colour_index(i) :=

colourToPixel(i,new_depth)
for i = 0 to nc-1 do

{ colourMap(window_file,colour_index(i),
ct(i, 3)*256*256+ct(i,2)*256+ct (i,1)) }

let msg2 = "Determining the frequency of luminance " ++
"itensity value ..."

let msg2_img = writeMessage(msg2,window_file,screen,
win_size,start_bp)

let frequency = freqCount2(raster)
eraseMessage(msg2_img,screen)
let msg3 = "Performing a linear-contrast stretch and 'n" ++

"remapping to a new depth ..."
let msg3_img = writeMessage(msg3,window_file,screen,

win_size,start_bp)
result := linearStretch2(raster,frequency,new_depth)
copy bg onto screen(ras_depthIvec_depth)
copy limit result at xr,yr onto limit screen at xs,ys
let msg4 ="Do you want to save the result? "
let prmpt4 = "Confirm with (Y) or (N) :"
let ans = dialogueBox(msg4,prmpt4, window_file,screen,

win_size,start_bp)
if ans = "Y" or ans = "y" do { overwrite : = true }

end
! + !
let trim_interim := proc() ! Trim an interim image
begin

let msgl = "Enter the number of pixels to be trimmed off "++
"from the margins: "

let erase = image win_width by win_height of colour_index(0)
let finish := false
while -finish do
begin

let prmptl = "Left margin: "
let left = stringToInt(dialogueBox(msgl,prmptl,

window_file,screen, win_size,start_bp))
let prmpt2 = "Right margin: "
let right = stringToInt(dialogueBox(msgl,prmpt2,

window_file,screen, win_size,start_bp))
let prmpt3 = "Top margin: "
let top = stringToInt(dialogueBox(msgl,prmpt3,

window_file,screen, win_size,start_bp))
let prmpt4 = "Bottom margin: "
let bottom = stringToInt(dialogueBox(msgl,prmpt4,

window_file,screen, win_size,start_bp))
copy erase onto screen
let new_width := img_width - left - right

F-45

Appendix F : The Prototype IGIS Program

let new_height := img_height - top - bottom
copy bg onto screen(ras_depthIvec_depth)
result := image new_width by new_height of default_pixel
copy limit raster to new_width by new_height at

left,bottom onto result
copy result onto screen
let xs = if new_width > win_width

then new_width - win_width else 0
let ys = if new_height > win_height

then new_height - win_height else 0
if xs > 0 or ys > 0 do
begin

copy limit result at 0,ys onto screen
copy limit result at xs,ys onto screen
copy limit result at xs,0 onto screen

end
let msg5 = ""
let prmpt5 = "Trim it again? "
let ans = dialogueBox(msg5,prmpt5,window_file,screen,

win_size,start_bp)
if ans ="N" or ans = "n" do
begin

finish := true
let message = ""
let prompt = "Save the result? "
let ans = dialogueBox(message,prompt,window_file,

screen, win_size,start_bp)
if ans = "Y" or ans = "y" do
begin

overwrite : = true
let interim_image = Interim_image(result,ct)
m_isu_assign[Image_id,

Interim_image](interim_images,
image_id,interim_image)

let message =
"The original image has been overwritten."

let prompt = ""
let trash = dialogueBox(message,prompt,window_file,

screen,win_size,start_bp)
end

end
end
map_colourmap()
image_colourmap()

end
! + !

let items = vector @ 0 of ["Interim Image",
"Linear-Contrast Stretch and Reduce",
"Trim", "Exit"]

let actions = vector 0 0 of [LCS_reduce_interim, trim_interim]
popupMenu(items,actions,true,window_file,screen,

win_size,start_bp)
if overwrite do
begin

let interim_image = Interim_image(result,ct)
m_isu_assign[Image_id,Interim_image](interim_images,

image_id,interim_image)
let message = "The original image has been overwritten."
let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
overwrite := false

end
end

end
else

F-46

Appendix F : The Prototype IGIS Program

begin
let message = "No interim image available."
let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
end

end
i - - - - . . . - - - - - - - - = = = = -- = = = = i

let items = vector @ 0 of ["Preprocess", "Raw", "Interim", "Exit"]
let actions = vector @ 0 of [process_raw, process_interim]
popupMenu(items,actions,true,window_file,screen,win_size, start_bp)

end
i^^i^icici^icici^i^icicici^ici^'k'k-k'k'k'k'k-k'k'kic'k-k'k'k'kic'k'k'k'k'k'k'k'kic'k'kic-k'k'k'k-k'k'k'kic'k'k'k'k'k^'k'k'k'k'k'k'k'kic'kic-k'k-kir'k

* *

* IMPORT / EXPORT *
* *
■k'kic'k'kicic'k'kic'k'k'k'k'k'k'k'k'k'kif'k'k'k'k-k'k'k'k'k'k'k-k'k-k'k'k-k'k'k-k'k'k-k'k'k'k'k'k'k'k'k'k'k

let conversion := proc() ! IMPORT / EXPORT
begin

! = !

let import_map_data := proc() ! Import map data
begin

! + !
let import_ntf := proc() ! NTF V2.0 map data
begin

let message = ""
let prompt ="Enter a file name (.ntf): "
let map_id = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
let proceed := true
let fn = map_id ++ ".ntf"
if fileReadable(fn) do
begin

if m_contains[Map_id,Basemap](base_maps,map_id) do
begin

let message = "Map database already contains " ++
map_id + + ", overwrite it?"

let prompt = "YES (= Proceed) or Else(= Quit)? "
let confirm = dialogueBox(message,prompt,window_file,

screen, win_size,start_bp)
if confirm = "YES" then { proceed := true }
else { proceed := false }

end
if proceed do
begin

let os_map_info = getOSmapInfo(map_id)
map_extent := os_map_info(extent)
case os_map_info(series) of
"s_62 5k" :
begin

let message = "Importing 1:625,000 scale map data " ++
"to map database ..."

let msg_img = writeMessage(message,window_file,screen,
win_size,start_bp)

let basemap = ntf625kToBasemap(fn)
storeBasemap(map_id,basemap,map_extent)
eraseMessage(msg_img,screen)

end
"s_250k" :
begin

let message = "Importing 1:250,000 scale map data " ++
"to map database ..."

let msg_img = writeMessage(message,window_file,screen,
win_size,start_bp)

let basemap = ntf250kToBasemap(fn)

F-47

Appendix F : The Prototype IGIS Program

storeBasemap(map_id,basemap,map_extent)
eraseMessage(msg_img,screen)

end
"s_50k" :
begin

let message = "Importing 1:50,000 scale map data " ++
"to map database ..."

let msg_img = writeMessage(message,window_file,screen,
win_size,start_bp)

let basemap = ntfcontourToBasemap(fn)
storeBasemap(map_id,basemap,map_extent)
eraseMessage(msg_img,screen)

end
"boundary_line" :
begin

let message = "Importing 1:10,000 scale map data " ++
"to map database ..."

let msg_img = writeMessage(message,window_file,screen,
win_size,start_bp)

let basemap = ntfblToBasemap(fn)
storeBasemap(map_id,basemap,map_extent)
eraseMessage(msg_img,screen)

end
"s_10k", "s_2 500", "s_1250" :
begin

let message =
"Importing 1:10,000, 1:2,500, or 1:1,250 scale'n" + +
"landline data to basemap database."

let msg_img = writeMessage(message,window_file,screen,
win_size,start_bp)

let basemap = ntfUToBasemap(fn)
storeBasemap(map_id,basemap,map_extent)
eraseMessage(msg_img,screen)

end
"oscar" :
begin

let message = "Importing OSCAR data to basemap database."
let msg_img = writeMessage(message,window_file,screen,

win_size,start_bp)
let basemap = ntfoscarToBasemap(fn)
storeBasemap(map_id,basemap,map_extent)
eraseMessage(msg_img,screen)

end
default :
begin

let message = map_id + + " is not NTF map data!"
let prompt = ""
let trash = dialogueBox(message,prompt,window_file,

screen,win_size,start_bp)
end

end
end

end
! + h—i—i—i—i—(—i—i—i—i—i—i—H i—i—h h—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—t—i—i—i—i—i—j—i—h n—i—t—i—i—i—i—i—i—i—i—i—i—h h—i—i—i—i—i—I- !
let items = vector @ 0 of ["Map Data", "NTF 2.0", "Exit"]
let actions = vector @ 0 of [import_ntf]
popupMenu(items,actions,true,window_file,screen,win_size,start_bp)

end
!= =:=: = = = = =!
let import_image_data := proc () ! Import image data
begin

! + !
let import_fbff := proc() ! FBFF
begin

let message = "Importing an FBFF image to the Raw image database."
let prmptl = "Enter a rawimage file name: "

F-48

Appendix F : The Prototype IGIS Program

let image_id = dialogueBox(message,prmptl,window_file,screen,
win_size,start_bp)

let prmpt2 = "Enter the width of the image: "
let img_width = stringToInt(dialogueBox(message,prmpt2,

window_file,screen,win_size,start_bp))
let prmpt3 = "Enter the height of the image: "
let img_height = stringToInt(dialogueBox(message,prmpt3,

window_file,screen,win_size,start_bp))
let prmpt4 = "Enter the depth of the image: "
let img_depth = stringToInt(dialogueBox(message,prmpt4,

window_file,screen,win_size,start_bp))
let fn = image_id ++ ".dat"
if fileReadable(fn) do
begin

let rawimage = fbffToRaw(fn,img_width,img_height,img_depth)
storeRawimage(image_id,rawimage)

end
end
! + !
let import_tiff := proc() ! TIFF
begin

let message = "Importing a TIFF image to the image database.'n" ++
"Input to Raw or Interim image database? "

let prompt -- "Enter (r = Raw) or (i = Interim) : "
let ans = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
case ans ofII H
begin

let message = ""
let prompt = "Enter a file name: "
let image_id = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
let fn = image_id ++ ".tif"
if fileReadable(fn) do
begin

let rawimage = tiffToRaw(fn)
storeRawimage(image_id,rawimage)

end
end
ii it ii j ii

begin
let message = ""
let prompt = "Enter a file name: "
let image_id = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
let fn = image_id ++ ".tif"
if fileReadable(fn) do
begin

let interim_image = tiffToInterim(fn)
storelnterimlmage(image_id,interim_image)

end
end
default : { }

end
! + !
let import_sunras := proc() ! SunRas
begin

let message =
"Importing a SunRas image to the Interim image database."

let prompt = "Enter a file name: "
let image_id = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
let fn = image_id ++ ".ras"
if fileReadable(fn) do
begin

F-49

Appendix F : The Prototype IGIS Program

let interim_image = sunrasToInterim(fn)
storelnterimlmage(image_id,interim_image)

end
end
! + !
let import_hsi := proc() ! HSI
begin

let message = "Importing an HSI image to the Interim image " ++
"database."

let prompt = "Enter a file name: "
let image_id = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
let fn = image_id ++ ".hsi"
if fileReadable(fn) do
begin

let interim_image = hsiToInterim(fn)
storelnterimlmage(image_id,interim_image)

end
end
! + !
let items = vector @ 0 of ["Image Data", "FBFF", "TIFF", "SunRas",

"HSI", "Exit"]
let actions = vector @ 0 of [import_fbff, import_tiff, import_sunras,

import_hsi]
popupMenu(items,actions,true,window_file,screen,win_size,start_bp)

end
i — : , i

let export_map_data := proc() ! Export map data
begin
end

i : : - _ - ; _ _ . - ^ = - - 7; - — - - - - - - - - - - - - - : i

let export_image_data := proc() ! Export image data
begin

! + !
let export_sunras := proc() ! SunRas
begin

let message = "Export an interim image to a SunRas file."
let prompt = "Enter a file name: "
let image_id = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
if m_contains[Image_id,Interim_image](interim_images,image_id)
then
begin

let interim_image =
m_find[Image_id,Interim_image](interim_images,image_id)

interimToSunras(interim_image,image_id)
end
else
begin

let message = "Image database does not contain " ++ image_id
let prompt = ""
let trash = dialogueBox(message,prompt,window_file,screen,

win_size,start_bp)
end

end
! + !
let items = vector @ 0 of ["Image Data", "SunRas", "Exit"]
let actions = vector @ 0 of [export_sunras]
popupMenu(items,actions,true,window_file,screen,win_size,start_bp)

end
■ - - _ -- - - - ;

let items = vector @ 0 of ["Import / Export", "Import Map Data",
"Import Image Data", "Export Map Data",
"Export Image Data", "Exit"]

let actions = vector @ 0 of [import_map_data, import_image_data,

F-50

Appendix F : The Prototype IGIS Program

export_map_data, export_image_data]
popupMenu(items,actions,true,window_file,screen,win_size,start_bp)

end
1***|
! root window
let root = image win_width by win_height of navy
let raster = m_find[Image_id,Interim_image](interim_images,"title")(raster)
let img_width = xDim(raster)
let img_height = yDim(raster)
let title_tmp := image img_width by img_height of off
let xr = (win_width - img_width) div 2
let yr = (win_height - img_height) div 2
copy root onto screen(ras_depthIvec_depth)
copy limit screen(start_bp I 1) at xr,yr onto title_tmp
copy raster(0 I 1) onto limit screen(start_bp I 1) at xr,yr
inputWaiting(window_file)
copy title_tmp onto limit screen(start_bp11) at xr,yr
let items = vector @ 0 of ["Main Menu","View & Query",

"Spatial Indexing",
"Management","Preprocessing",
"Import/Export","Exit"]

let actions = vector @ 0 of [view_query, spatial_index, management,
preprocess, conversion]

popupMenu(items,actions,true,window_file,screen,win_size,start_bp)
let void = close(window_file)

end

UBSAXY

F-51

