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Summary.

Trypanosoma brucei is a kinetoplastid protozoan parasite of man and other 

mammals in Africa, that is transmitted by the bite of the tsetse fly. T. brucei has a 

complicated life cycle involving both dividing and non-dividing stages. The non

dividing stages are to some extent pre-adapted to the environment of the next host, and 

as such are essential for efficient transmission from both tsetse fly to mammal and 

mammal to tsetse fly. It was the aim of this project to initiate the analysis of cell cycle 

controlling genes from T. brucei, with a view to assessing their involvement in the 

regulation of the division status of the various life cycle stages.

The Cyclin Dependant Kinases (CDKs) are a highly conserved family of 

serine/threonine protein kinases, many members of which are vital for the regulation of 

the cell cycle in eukaryotes. The archetypal CDK is cdc2, a protein that regulates both 

S phase and mitosis in yeast; the homologous protein in higher eukaryotes regulates 

mitosis, while a closely related protein, CDK2, is involved in S phase control. The 

kinase activity of the CDK proteins is tightly regulated by phosphorylation (both 

negative and positive) and by the association of a regulatory subunit (a cyclin).

Two cdc2-Related Kinase genes (crks) from T. brucei had already been cloned 

and sequenced at the start of the Ph.D. (tbcrkl and tbcrkl) and another gene fragment 

(tbcrk3) had been isolated by PCR. The genomic locus of the tbcrk3 gene was 

subcloned and sequenced. Analysis of the predicted protein sequences for the TbCRK 

proteins revealed no obvious candidate for the role of cdc2 homologue.

The three TbCRK proteins were expressed in E. coli, and used to raise antisera, 

as well as to assess the cross reactivity of the antisera available in the laboratory. These 

antibodies were then used to analyse the expression of the TbCRK proteins in three of 

the parasite's life cycle stages. No important differences in expression were observed 

between dividing and non-dividing stages. TbCRK3 was found to be in the insoluble 

fraction of the protein extracts made, implying an association with either DNA or the
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cytoskeleton.

sucl
Another component of the cdc2/cyclin complex in fission yeast, pl3 , has 

previously been used to purify cdc2 related kinases from a variety of organisms. This 

approach was followed using both p l3sucl and a homologue (pl2LmmCKS1) from the

kinetoplastid parasite, Lzishmania mexicana. Kinase activity could be bound to the 

p l2LmmCKSi keacjs  ̂an(j bQth TbCRKl and TbCRK2 were shown by Western blotting

to be part of the protein fraction purified on the beads.

An attempt was made to analyse TbCRK3 function by reverse genetics. Null 

mutants were created by homologous recombination and their phenotype assayed. The 

mutant cultures did not survive longer than three months. Microscopy using DNA 

binding dyes show a phenotype of aberrant cytokinesis, morphological abnormalities 

and a breakdown in cell polarity. The relevance of this phenotype to the insoluble 

nature of TbCRK3 is discussed.



CHAPTER ONE 
INTRODUCTION



1.1 T. brucei and the kinetoplastids.

1.1.1 Trypanosome basic biology.

Trypanosomes are unicellular, flagellated, protozoan parasites of the order 

Kinetoplastida. The kinetoplastids form an extremely early branch of the eukaryotic 

kingdom as shown in Figure 1.1.1 (adapted from Sogin etal., 1986), and therefore the 

degree of divergence between them and other members of the eukaryotes is large.

Trypanosomes are responsible for a number of diseases that cause human 

fatalities, as well as severe economic damage. In Africa, Trypanosoma brucei causes 

sleeping sickness in humans and Nagana in domestic animals. There are three sub

species of T. brucei', T. b. gambiense and T. b. rhodesiense cause the chronic and acute 

forms of sleeping sickness respectively, while T. b. brucei causes Nagana (Hoare,

1972). Both T. b. gambiense and T. b. rhodesiense are resistant to lysis by human 

serum (Takayanagi etal, 1992) but the genetic basis for the differences between the 

sub-species is still unclear. T. congolense also causes serious disease in farmed animals 

in Africa (Hoare, 1972). All these trypanosomes are spread by insect vectors, and so 

are restricted to the vectors' habitats. Both T. congolense and T. brucei are transmitted 

by the tsetse fly ( Glossina). Within the region of sub-Saharan Africa where the tsetse 

fly is common, the farming of domestic livestock is extremely difficult. Due to 

variation of the major surface protein of T. brucei, the infection avoids clearance by the 

immune system , and infected animals which do recover are not fully protected against 

further challenges by T. brucei The mode of transmission of trypanosomes varies, but 

both T. brucei and T. congolense are salivarian trypanosomes, infecting the host via the 

bite of the fly, when the parasites are injected into the mammalian bloodstream. Some 

trypanosomes have eliminated the need for a specific vector, and in one case, any 

vector. T. evansi is spread by mechanical means, without replication in the biting 

insect. T. equiperdum has no vector, and is spread as a venereal disease of horses.
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Figure 1.1.1 Evolutionary relationship of T. brucei and other Eukaryotes

/  Rat

/  \Xenopus laevis

Zea mays \
>  Plants

Saccharomyces\ Fungi
rp r p v is t in p

Rice

Tetrahymena thermophila

Dictyostelium discoideum

Trypanosoma brucei

Euglena gracilis

Anacystis nidulans

Escherichia coli

Figure 1.1.1 The phylogenetic tree is adapted from Sogin et al., 1986.

It was calculated using nuclear small subunit ribosomal RNAs. The degree 

of evolutionary divergence is represented by the horizontal distance between 

any two points.



Figure 1.1.2 Predicted evolutionary relationships of the Kinetoplastida

Crithidia fasciculata100

Leishmania tarentolae

Phytomonas serpens

Herpetomonas muscarum

100

Trypanosoma cruzi

Trypanosoma brucei

Euglena gracilis

Figure 1.1.2 The consensus tree for the Kinetoplastida (adapted from Maslov and 

Simpson, 1995; Landweber and Gilbert, 1994) was derived using nuclear 18S rRNA sequence. 

The numbers shown are the bootstrap support for each branch. The early branching of 

T. brucei is well supported, as is the late divergence of the Leishmania and Crithidia branches.
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Within the Kinetoplastida, the relationships of different species is now 

becoming clearer with the increase in available molecular data. Figure 1.1.2 shows a 

rooted tree of the Kinetoplastida (Euglena gracilis as the outgroup) previously analysed 

using nuclear ribosomal RNA sequence (Landweber and Gilbert, 1994; Maslov and 

Simpson, 1995). From this analysis it is clear that T. brucei and Leishmania, previously 

believed to be quite closely related, are considerably diverged, with T. brucei branching 

early in the kinetoplastid lineage. This is not what was previously postulated (Lake et 

al., 1988), as these two organisms share a digenetic lifestyle, that is they parasitise two 

different species (an insect vector and vertebrate host), whereas the other species on the 

tree are either non-parasitic or survive solely in the insect.

1.1.2 The T. brucei life cycle.

Like many other protozoan parasites, T. brucei has a complex life cycle (see Figure 

1.1.3) which consists of multiple stages within each host (Vickerman, 1985). The 

mammalian bloodstream forms are of two main types. There are dividing cells, the 

long slender form, and non-dividing cells, called the short stumpy form. Within the 

tsetse fly vector there are three major forms (Vickerman etal., 1988). The procyclic 

form is found in the fly midgut, and is rapidly dividing, as is the epimastigote form 

which is seen in the tsetse fly salivary glands. The metacyclic form is also found in the 

salivary glands of the fly, but is non replicating.

In the early infection, the parasitemia in the bloodstream of the mammalian host

is primarily of the rapidly replicating long, slender form. After the infection is

established a low level of the short, stumpy form occurs which increases as each

infection cycle progresses (Vickerman, 1985). These are non-dividing and primed to

adapt to the conditions within the Tsetse fly midgut. The bloodstream forms all have

the Variant Surface Glycoprotein (VSG) coat, and are complement resistant

(Takayanagi etal., 1992). The trypanosomes have been found to change the VSG

expressed on the parasite surface, which is thought to shield the other extracellular
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Figure 1.1.3 The life cycle of Trypanosoma brucei.
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Figure 1.1.3 The life cycle of T. Arar^/consists of several morphologically distinct 

forms in both the mammalian and insect vector. Following initial infection of the 

mammalian host by a metacyclic trypanosome, the parasite differentiates into a long 

slender form trypanosome which is rapidly dividing. These parasites can differentiate 

through an intermediate stage to the non dividing short stumpy form which is infective 

to the tsetse fly. When taken up by the fly the short stumpy form differentiates to the 

dividing procyclic form. These differentiate into non-dividing proventricular 

mesocyclic forms which migrate from the midgut to the salivary glands, transforming 

into the epimastigote form which further divides. This form then differentiates to the 

non dividing metacyclic form, which is adapted to survive in the mammalian host. 

After injection by the tsetse fly the metacyclic form begins to undergo division and 

becomes long slender form trypanosomes, completing the cycle (From Vickerman, 

1985).
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components from the host immune system, up to once every 100 divisions (Barry,

1989; Barry and Turner, 1991). These switches, to VSGs that the immune system has

not yet been exposed to, allow the parasitemia to last for a long period with repeated

peaks of infection. The mitochondrial citric acid cycle is non-functioning in the

bloodstream form, although the mitochondrion of the short stumpy form is partially

developed as a step towards differentiation into the procyclic form (Williams etal.,

1991; Bienen etal., 1991; Durieux etal., 1991). The bloodstream trypanosomes'

energy needs are provided predominantly by glycolysis, which takes place in organelles

specific to the trypanosomes, called glycosomes (Aman and Wang, 1986; Aman etal.,

1985; Opperdoes, 1985; Opperdoes, 1990). These organelles catalyse the metabolism

of glucose to pyruvate with an extremely high throughput rate, but low efficiency of

ATP synthesis. This lack of efficiency is not important to a parasite living in the

nutrient rich environment of the mammalian bloodstream. When taken up in a

bloodmeal by the feeding fly, the short stumpy forms differentiate to the procyclic form

trypanosomes which divide and set up the infection within the midgut (Vickerman,

1985). In in vitro experiments, it is possible for long slender form T. brucei to

differentiate into procyclic form trypanosomes in a non-synchronous fashion (Simpson

etal., 1985; Matthews and Gull, 1994a and 1994b). It appears that the long slender

form is only responsive to the extracellular signals for differentiation during a short

period in the G1 phase of the cell cycle, and in the Tsetse fly midgut, if differentiation

does not occur quickly the cell dies (Matthews and Gull, 1994b). During the

differentiation process, the trypanosomes lose the VSG coat, synthesise a new

glycoprotein (called PARP or Procylin) coat, and the mitochondria start producing

ATP, with proline apparently used as the main source of energy (Durieux etal., 1991;

Brown etal., 1973; Priest and Hajduk, 1994a and 1994b; Matthews and Gull, 1994b)

The procyclic form trypanosomes migrate to the salivary glands of the Tsetse fly and

differentiate into the other dividing stage, the epimastigote. In the salivary glands the

trypanosomes stop dividing and re-express VSG (Lenardo etal., 1986; Hirumi etal.,

1992). The metacyclic form is pre-adapted to the environment of the mammalian
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bloodstream. It is resistant to complement (this is possibly due to the expression of 

VSG), has a mitochondrion without functional cytochromes, and is infective to the 

mammal when injected by the fly (Vickerman, 1985). After infection of the mammal, 

the block on replication is released, and the metacyclic form divide and transform into 

morphologically long slender form trypanosomes (Bran et al., 1984).

Procyclic T. brucei can be grown in axenic culture in high numbers (> lxl07 / 

ml) and this form is apparently identical to those isolated from tsetse fly midgut 

infections in all tests performed (Pearson etal., 1987; Bran and Schonenberger, 1979). 

The bloodstream forms of some strains can be grown in culture, but at present only to 

very low concentrations i.e. lxlO 6 / ml. Because of this, laboratory strains adapted to 

grow in mice and rats are usually used if large quantities of bloodstream trypanosomes 

are required. These adapted pleomorphic lines, when grown in irradiated animals can 

result in populations of T. brucei containing >90% of the short stumpy form. After 

serial passage several of the laboratory adapted strains have lost the ability to 

differentiate to the short stumpy form, and these monomorphic lines can be used to 

isolate pure long slender form cells.

1.1.3 The molecular biology of T. brucei.

(i) Genomes and genes.

The method of Pulse Field Gel Electrophoresis (PFGE) has enabled the 

visualisation of the chromosomes of T. brucei (Van der Ploeg etal., 1989). This was 

not previously possible as the chromosomes do not condense during the cell cycle.

Used with Southern blotting techniques this has shown the diploid nature of most of the 

genome. The total (diploid) genome size is approximately 6x l07bp, and consists of 

chromosomes of sizes varying from 50 kb to 6 Mb (Van der Ploeg et al., 1989; 

Gottesdiener etal., 1990). They consist of three main types:
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1) the minichromosomes, of 50-150 kb which apparently consist of repetitive 

sequences and VSG genes. It is therefore presumed that these chromosomes, which are 

predominantly haploid (Weiden etal., 1991; Chung etal., 1990), act as a resevoir of 

VSG genes to increase the VSG repertoire.

2) intermediate chromosomes of 200-450 kb.

3) the megabase chromosomes of 700 kb to 6 Mb.

Both of these larger types of chromosomes carry housekeeping genes (as well 

as VSGs), and are typically diploid. Variation in chromosome number, e.g. triploidy, 

can be seen in some stocks, typically those which have undergone genetic crosses 

(Gibson etal., 1992; Wells etal., 1987), and therefore this may be an artefact of these 

experiments. Southern blotting and hybridisation to specific gene sequences has shown 

that homologous chromosomes can be considerably different sizes (up to 200-300 kb 

difference), possibly due to variations in the copy number of some of the large tandem 

arrays of genes seen in the Kinetoplastida (see below). However, the large variations 

seen in T. brucei imply that there are other causes as well, probably changes in the sub- 

telomeric repeats (Myler etal., 1988; Van ddr Ploeg etal., 1984). These differences in 

size, and the rapid changes seen in passaged cells, show why there can be a high level 

of karyotype variation between different stocks of T. brucei.

Using these PFG and Southern blotting techniques, along with isoenzyme 

analysis and resistance markers integrated into the T. brucei genome (Gibson and 

Bailey, 1994), it has also been shown that some form of mating can take place during 

passage through the Tsetse fly (Turner etal., 1990; Jenni etal., 1986; Schweizer etal., 

1994). There is no evidence for, or against, a mating type comparable to that seen in 

yeast, or other unicellular organisms. In the published data there has been no 

combination of stocks tried for which hybrids have not been isolated, but there are 

extremely low levels of such hybrids, implying that the process is not obligatory for 

successful passage through the fly. Crosses within a heterozygous, clonal population 

have also been observed, but this does not preclude a mating type system, presuming

such a system could switch between types (as in Schizosaccharomyces pombe).
10



Many of the genes isolated from trypanosomes have been found to be 

multicopy. In some cases they are found in tandem arrays of almost identical genes, 

e.g. the genes for actin, calmodulin, glyceraldehyde-3-phosphate dehydrogenase, hsp70, 

hsp83 and ubiquitin (Ben Amar etal., 1988; Tschudi etal, 1985; Michels et al., 1986; 

Lee and Van der Ploeg, 1990; Mottram etal., 1989a; Chung and Swindle, 1990). In 

other cases, e.g. the tubulin locus, the genes alternate between copies of alpha and beta 

tubulin, and there can be over 13 copies of each of the 2 tubulin genes per haploid 

genome (Thomashow etal., 1983). Of the more recently isolated genes from T. brucei, 

many are single copy, e.g. those for the Glycosyl-phosphatidylinositol specific 

Phospholipase C, the RNA polymerase I large subunit, the Ef-hand 5 protein (Mensa- 

Wilmot et al., 1990, Jess etal., 1989, Wong etal., 1993). There may be a crude link 

between the number of gene copies and the level of transcription of those genes 

transcribed by RNA polymerase II in T. brucei, although experiments in a related 

kinetoplastid (Leishmania enriettii) show that loss of genes in a tandem array can be 

partially compensated for by an increased level of transcription and/or post 

transcriptional controls, e.g. mRNA stability (de Lafaille and Wirth, 1992).

(ii) Homologous recombination and reverse genetics in the Kinetoplastida.

The diploid nature of the Kinetoplastida and their lack of, or difficulty in using,

a sexual cycle have made the use of genetic techniques to analyse gene function

problematical. Recent advances in DNA transfection techniques have allowed

expression of plasmid encoded genes in a variety of different kinetoplastids, including

T. brucei (Clayton etal., 1990; Rudenko etal., 1990; Zomerdjk etal., 1990;Cobum et

al., 1991; Ryan etal., 1993). These experiments initially showed transient transfection

to be possible, this was followed by the development of stable episomal vectors

(Metzenberg and Agabian, 1994). Further experiments showed evidence of efficient

pathways of homologous recombination (Tobin etal., 1991; Lee and Van der Ploeg,

1990). This mechanism has been used to insert heterologous DNA into specific sites in
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the nuclear genome (Cruz and Beverley, 1990; Eid and Sollner-Webb, 1991; Ten 

Ashbroek etal., 1990). Relatively small regions of homologous DNA (200bp) are 

enough for precise insertion (Tobin and Wirth, 1992). Linear DNA has been found to 

integrate with higher efficiency than circular, but it is not necessary for both of the 

termini of the DNA molecule to be homologous to the genomic sequence (Cooper and 

Cross, 1993). These techniques have allowed the use of reverse genetics to assess gene 

function. Cloned regions of DNA can be precisely targeted for deletion (de Lafaille and 

Wirth, 1992; Cooper etal., 1993; Cruz and Beverley, 1990; Cruz etal., 1993), 

replacing them with a selectable marker. There are now several such independent 

markers conveying resistance to different antibiotics, including the genes neo 

(neomycin phosphotransferase) (Ten Ashbroek etal., 1990), hyg (hygromycin 

phosphotransferase) (Lee and Van der Ploeg, 1991), pac (puromycin resistance) 

(Freedman and Beverly, 1993) and phleo (phleomycin binding protein) (Jefferies et al.,

1993). Antibiotic resistance markers are necessary as auxotrophs have been difficult to 

produce in the diploid Kinetoplastida.

By repeating the insertion event with two different selectable markers it is 

theoretically possible to create null mutants, and thereby assess mutant phenotypes 

(Cooper etal., 1993). This is easier if the gene of interest is single copy within each 

haploid genome, but tandem arrays can be targeted, and replacing large amounts of 

genomic DNA (>44 kb) with a relatively small selectable marker (1 kb) does not 

seriously compromise the efficiency of the replacement (de Lafaille and Wirth, 1992).

If the gene targeted is essential to parasite in vitro viability, then null mutants 

cannot be isolated. Instead, organisms which show tetraploidy or aneuploidy (Cruz et 

al., 1993), the amplification of the targeted gene, or the creation of extra-chromosomal 

elements containing either copies of the targeted gene (de Lafaille and Wirth, 1992), or 

the selectable marker (J. Mottram, unpublished data), are isolated.
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(iii) Transcription.

All alpha-amanitin sensitive transcription in T. brucei is polycistronic, and no 

well characterised promoters for RNApolII protein coding genes have been isolated 

(Wong etal., 1993; Ben Amar etal., 1991; Muhich and Boothroyd, 1988; Tschudi and 

Ullu, 1988). The promoters for the highly expressed PARP/Procyclin and VSG genes 

have been isolated, but they are not typical (Sherman etal., 1991; Zomerdijk etal., 

1990; Zomerdijk et al., 1993). Transcription of PARP and VSG is performed by an 

alpha-amanitin resistant RNA polymerase, either Pol I or a modified Pol II, unlike the 

other protein coding genes isolated whose transcription is as sensitive to alpha-amanitin 

as that seen in other organisms (Konig etal., 1989; Kooter and Borst, 1984; Grondal et 

al., 1989). Although transcription is polycistronic, the mature mRNA is monocistronic. 

This processing occurs rapidly, initially by the trans-splicing of a 39 nucleotide mini

exon from the 140bp Spliced Leader RNA (SLRNA) to a region upstream of each gene, 

called the splice acceptor site (Murphy etal., 1986; Sutton and Boothroyd, 1986; Ullu 

etal., 1993). This spliced leader contains the functional equivalent of the 5' cap seen in 

other eukaryotes, and is necessary for expression of the protein. The trans-splicing 

event is also, apparently, one factor involved in directing the polyadenylation of the 

upstream region of the transcript, which may also rely on some extremely degenerate 

sequence motifs (Schurch etal., 1994) e.g. a polypyrimidine tract. Genes transcribed in 

the same polycistronic precursor RNA have been found to have widely varying steady 

state mRNA levels, and regulation at the post transcriptional stage appears to be 

important for the control of gene expression (Gibson etal., 1988). No c/s-splicing has 

been described in the Kinetoplastida, except for an intron in a tRNA (Schneider et al.,

1993), and to date no protein coding genes containing sequences that look like introns 

have been described.
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1.1.4 The Mitochondrion of T. brucei, editing of RNA and mitochondrial translation.

Unlike other eukaryotes, the kinetoplastids have only one mitochondrion per 

cell. The mitochondrial genome, the kinetoplast, is a huge concatenated network of two 

classes of circular molecules (Simpson, 1986). The maxicircles, which are the 

equivalent of the mitochondrial genome in other cells, are approximately 20 kb in 

length in T. brucei, and there are numerous (~35) identical copies. These are joined by 

~ lx l0^  interconnected minicircles of about 1 kb in size, which are very diverse in 

sequence (>400 different classes) with multiple copies of each sequence type. Notably, 

T. evansi and T. equiperdum, which do not pass through an insect vector, only have a 

very restricted variety of minicircle types (Barrois etal., 1981; Ou etal., 1991). 

Transcripts from the maxicircle consist of tRNAs, rRNAs and the mRNAs which 

encode proteins presumably translated in the mitochondrion (Simpson and Shaw, 1989). 

Many of the genes in the maxicircle, however, require editing before translation of the 

correct Open Reading Frame is possible. This editing is guided by short (~70bp), 

complementary (allowing for G:U wobble pairing) RNAs (gRNAs) transcribed from the 

minicircles, and proceeds from the 3' to the 5' of the mRNA, by inserting, or 

occasionally removing, uridine residues in the precursor RNA. The editing takes place 

in a large protein/RNA complex which has been called the editosome (Goringer etal., 

1994, Koller etal., 1994). Each type of minicircle encodes 3 gRNAs which gives 

enough coding capacity for editing all the known transcripts even given the high levels 

of overlapping in the gRNA sequences, which may ensure processivity and be a proof 

reading mechanism (Corell etal., 1993). Not all of the mRNAs are edited, and the 

amount of editing is variable. In some cases the editing process forms the starting AUG 

codon, which gives in built regulation of translation of the message. Although there is 

no stage specific regulation of maxicircle transcription, there is stage specific regulation 

of the editing of a number of transcripts, with COII and CYb completely edited in the 

procyclic stage only (Feagin etal., 1985), while ND7 has its 3' domain edited only in 

the bloodstream forms (Corell etal., 1994). It is not clear how this occurs, but is



presumably due to control of gRNA function or presence. The processive nature of 

editing, with one gRNA often editing the region to which another will anneal, means 

that the control of one gRNA can cause the editing of the whole transcript to be 

abortive.

As mentioned above, the bloodstream form T. brucei do not have a functional 

citric acid cycle, and it is possible to isolate strains in bloodstream culture that have lost 

the kinetoplast (Agbe and Yielding, 1994), similar to the trypanosome species that have 

lost the ability to multiply in insect vectors with a commensurate loss of minicircle 

variation. The mitochondrion may still, however, carry out tasks encoded by the 

nucleus, and the retention of the maxicircles in the kinetoplast in T. evansi and T. 

equiperdum is evidence that some unedited genes in the mitochondrion are needed for 

optimum viability in vivo even in bloodstream form T. brucei. The reduction in growth 

rate of akinetoplastic T. evansi compared to the wild type (Silvatahat et al., 1995) points 

to the fact that the mitochondrial DNA is still important in the bloodstream form T. 

brucei. If this is true, then translation of mitochondrial transcripts may be important in 

both bloodstream and procyclic stages.

The translation machinery in other eukaryote mitochondria is apparently related 

to that seen in eubacteria, with similar rRNAs and protein factors. One of the protein 

factors, for which a gene has been isolated from eukaryotes, is mitochondrial 

Elongation Factor G (mEF-G). EF-G is a GTP binding protein that is involved in 

controlling the tri-nucleotide translocation of the eubacterial ribosome during 

translation. This gene is nuclear encoded in Saccharomyces cerevisiae and rat 

(Vanbutas et al., 1991; Barker etal., 1993), the two eukaryotes from which the gene has 

been isolated, and the protein has been shown to be imported into the mitochondria of 

S. cerevisiae and cows (Vanbutas etal., 1991; Chung and Spremulli, 1990). The gene 

responsible for the same activity in the cytoplasm of eukaryotes, and in archaebacteria, 

Elongation Factor 2, is related, but distinct (see Chapter 3.3.1).
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1.2 The Eukaryotic Cell Cycle.

1.2.1 Introduction - the typical eukaryotic cell cycle.

The typical mitotic eukaryotic cell cycle consists of 4 stages (Figure 1.2.1). 

There are three major control points during the cell cycle. During G1 (Gap 1) there are 

a series of decision points at each of which the possible development options are 

reduced. At some point the cell becomes committed to another division cycle; this is 

called START in yeast, or the Restriction Point in higher eukaryotes. The other control 

points are at the entry and exit of mitosis, at which DNA replication and chromosome 

separation, respectively, must be complete.

After division the cell enters G1 phase, during which the cell synthesises 

proteins necessary for cell growth (e.g. enzymes required for DNA synthesis) and 

division. Prior to START the cell is responsive to outside factors, such as mating 

pheromones (Obara-Ishihara and Okayama, 1994; Fujimara, 1994; Peter and 

Herskowitz, 1994) in yeast, and growth factors in higher eukaryotes (Kato et al., 1993; 

Duronio and O ’Farrell, 1994). These different factors can cause the cell to stop its 

progression through the cell cycle, and force it onto an alternate pathway, i.e. into 

conjugation/mating in yeast, cellular differentiation or apoptosis in other organisms. In 

multicellular organisms the cells can also exist in a state called GO. Cells in this state 

are not growing, and have not passed through the restriction point. However they are 

neither senile nor terminally differentiated as they can be stimulated to re-enter the cell 

cycle and undergo division. GO can be considered a separate stage of the cell cycle, or 

as a sub-state of Gl. At some point after START, nuclear DNA synthesis begins. This 

is the defining characteristic of S phase. The synthesis of mitochondrial DNA in all 

eukaryotes examined, apart from the kinetoplastida (see Chapter 1.2.3), is less tightly 

regulated, with replication being continuous throughout the cell cycle (Bogenhagen and 

Clayton, 1977), but possibly predominantly during S phase and G2 (Clayton, 1991;
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Figure 1.2.1 The eukaryotic cell cycle
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Figure 1.2.1 The four stages of the typical eukaryotic cell cycle, plus GO.

  Arrows with bold text show occurances during the cell cycle.

Starred lines show checkpoint controls during the cell cycle.



Attardi, 1988). An increase in mitochondrial DNA synthesis during this time may be 

simply to do with the availability of DNA precursors. When nuclear DNA synthesis 

stops the cell continues to grow, and in this G2 phase the cell synthesises the proteins 

involved in controlling the G2 to M phase transition, and those which carry out many of 

the necessary enzymatic and mechanical functions. During M phase the replicated 

chromosomes condense, the nuclear envelope disassembles (in higher eukaryotes), the 

mitotic spindles form and separate the chromosomes, which are partitioned. After 

mitosis, the nuclear envelope reforms and the cell is divided into two daughter cells 

(cytokinesis). Analysis of conditional temperature sensitive mutants in both S.pombe 

and S. cerevisiae discovered a large number of genes (>100) that were essential for cell 

cycle progression. These genes included those encoding enzymes responsible for DNA 

synthesis (e.g. CDC2 in S. cerevisiae). Most of these mutations caused arrest in a 

single, particular, phase of the cell cycle. One of the isolated genes, cdc2 from S. 

pombe, could cause cell cycle arrest in both G1 and at the G2/M phase boundary. It 

was then discovered that the homologous S. cerevisiae gene, CDC28, could 

complement S.pombe mutants of cdc2, and vice versa, indicating a high level of 

conservation in the pathway of cellular division in yeast.

1.2.2 The T. brucei cell cycle.

The cell cycle of the trypanosome differs from that of other eukaryotes in a

number of respects (Sherwin and Gull, 1989; Gull etal ., 1990). The presence of a

single mitochondrion and flagellum per cell means that the replication and division of

the nucleus, kinetoplast, mitochondrion, basal bodies and flagellum must be tightly

controlled. Figure 1.2.2 shows a schematic of the cell cycle of procyclic T. brucei

grown in culture (Gull etal., 1990). The early G1 cell contains one basal body attached

to the flagellum, with a pro-basal body next to it. The first visible event in the T. brucei

cell cycle, detectable with specific monoclonal antibodies, is the elongation of the pro-

basal body and the formation of the basal plate. Next, the new flagellum begins to form
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Figure 1.2.2 The cell cycle of procyclic form T. brucei.
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Figure 1.2.2 A schematic figure of the procyclic T. brucei cell cycle shows the changes 

in cell structure during division (taken from Gull etal., 1990). The earliest stage of the 

cell cycle that is presently detectable is the growth of the second basal body from the 

pro basal body (II), which is followed by the formation of two new pro basal bodies 

(III). The new flagellum then starts to form (IV) and is always the posterior of the two 

flagella. As the new flagellum elongates the basal bodies separate, along with the 

attached kinetoplasts (V). By the time the flagella are of equal length the nucleus has 

replicated the DNA and nuclear division has started (VI). Once the two new nuclei are 

positioned correctly with respect to the basal body/kinetoplast (VIII), division of the 

cell begins at the anterior end (IX) and continues until the two cells are just connected 

by the posterior ends (X), when the cells separate.
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on the new basal body. This is accompanied by the formation of two new pro-basal

bodies. An example of the tight control over the cell cycle is the observation that the

new flagellum is always the more posterior of the two. As it continues to elongate the

basal bodies begin to separate. At this point the kinetoplasts have already divided, and

are also observed to separate with the basal bodies. Experiments with drugs which

inhibit protein microtubular motors (thought to be involved in organellar movement) or

topoisomerase II (which allows the unlinking of concatenated circular DNA molecules),

suggest that there is a physical linkage between the two organelles (Robinson and Gull,

1991). Purification of flagella from T. brucei after dissociation of the sub-pellicular

microtubules with 1-3 mM Ca2+ has shown a stable linkage between the basal body and

the kinetoplast DNA (Robinson and Gull, 1991). Electron microscopy of T. brucei cells

has shown an electron dense region between the kinetoplast and the basal body, which

implies a dense protein link (Robinson etal., 1991). Labelling experiments have shown

that unlike other eukaryotes, kDNA replication takes place in a well defined period of

the cell cycle (Sk), starting at around the beginning of nuclear S phase (Sn) and

finishing before nuclear replication ends (Woodward and Gull, 1990). In other

organisms the evidence suggests that while some mitochondrial genomes may duplicate

many times in one cell cycle, other mitochondrial genomes in the same cell will not

replicate at all (Bogenhagen and Clayton, 1977). There is evidence that replication of

each molecule of the kDNA, however, takes place only once in Sk (Hajduk et al.,

1984). This may be controlled by regulation of the final ligation reaction, which repairs

the nick left by replication, during the G2 stage of the cell cycle. The division of the

kinetoplast does not appear to carefully segregate the DNA content evenly, and the

precise number of maxi and minicircles received by each cell may be uneven. This is

presumably a reason for the multiple copy of the kDNA (e.g. 20-50 copies of the

maxicircle), which ensures that each cell receives all the necessary DNA for viability.

In this, the mitochondrion of T. brucei is similar to those found in other organisms.

After basal body separation the next visible event is the start of nuclear mitosis. As in

most lower eukaryotes, there is no nuclear envelope breakdown, and there is also no
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visible condensation of the chromosomes in T. brucei. After nuclear division there is a 

delay, during which extensive rearrangement of the organelles occurs, so that each 

nucleus is paired with a kinetoplast/basal body prior to the start of cytokinesis. When 

this has been achieved, the cell divides longitudinally from the anterior end, with final 

separation occurring with the cells joined by the extreme posterior of each daughter 

cell.

Analysis of the T. brucei cell cycle has been held up by the present inability to 

synchronise cultures of trypanosomes. Procyclic cells in the same culture, at the same 

point in the cell cycle, can vary considerably in size, so making selection by elutriation 

difficult. Drugs affecting microtubule function which have been used in other 

organisms to synchronise cells in G2/M phase, cause trypanosome death. For those 

compounds which destabilise microtubules this is probably due to the complicated 

basket of sub-pellicular microtubules under the plasma membrane of T. brucei being 

essential for cell viability. Drugs which stabilise microtubules can also block cells 

within mitosis. In these cases, e.g. treating the procyclic form T. brucei cultures with 

rhidoxin (Robinson etal., 1995), the cells do not undergo mitosis but do divide, 

creating anucleate fragments which contain a kinetoplast and a flagellum (zoids) and 

tetraploid cells. There is therefore a lack of checkpoints at this point in the cell cycle. 

Other reagents which usually block DNA synthesis, and so halt cells specifically in S 

phase, have been tried e.g. aphidicolin or hydroxyurea. The bloodstream form 

trypanosomes did stop dividing, but during the G2 phase of the cell cycle, DNA 

synthesis was not blocked. These experiments did result in a synchronised population 

of cells, but they did not undergo mitosis after release from the block, and the cells 

became polyploid and eventually died (Mutoba and Wang, 1996). Serum starvation has 

also been used with limited success (Morgan etal., 1993, Gale etal., 1994). The major 

problem being an apparent lack of a GO stage in trypanosomes capable of division 

(Diffley and Mama, 1989), which results in a large number of cells that are not released 

from the block after starvation.

22



1.2.3 CDC2 - function and the family of related genes within the eukaryotes.

In S.pombe the cdc2 gene encodes a 34 kDa protein kinase often called p34cdc2. 

Different alleles of cdc2 can cause temperature sensitive cell cycle arrest during G1 

and/or at the G2/M phase transition when at the restrictive temperature. This indicated 

an important role for cdc2 in the cell cycle, as functional p34cdc2 was necessary at both 

of these transition points. Different mutations in cdc2 can result in different 

phenotypes, with the cell cycle block being predominantly in G l, at the G2/M 

boundary, or sometimes both. This implies that p34cdc2 interacts with specific factors at 

each of these control points.

S. cerevisiae has two genes closely related to cdc2. The protein encoded by 

CDC28 has high sequence identity to p34cdc2 (65 %) and the fact that it can 

complement, and be complemented by the S.pombe homologue implies functional 

homology. The other such gene, PH085, is less well conserved, and does not 

complement a cdc2 mutant. Until recently the PH085 protein was not thought to be 

directly involved in cell cycle control (but see below). As with cdc2, different 

temperature sensitive mutations in CDC28 may cause arrest preferentially in either Gl 

or G2/M phase, and is therefore involved in control of both of these checkpoints.

Functional homologues of cdc2ICDC28 genes have been isolated by

complementation of the yeast temperature sensitive mutants from many organisms,

ranging from plants to humans (Lee and Nurse, 1987, Jimenez etal., 1990, Feiler and

Jacobs, 1991, Hirayama etal., 1991, Paris etal., 1991, Hashimoto etal., 1992,

Michaelis and Weeks, 1992). These closely related genes (CDC2) which complement

have predicted protein sequence identities of around 60-65% (see Chapter 3.3.5), and

initially, because of the complementation of both yeast transitions, were believed to be

involved in both restriction point and mitosis control. It has now become clear that

there is a large family of related kinases in the multicellular eukaryotes, many of which

are involved in control of the cell cycle, and that the original cdc2 genes from higher

eukaryotes are involved principally in post-S phase control (Hamaguchi et al., 1992,
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Fang and Newport, 1991). There are other cdc2 related genes which complement the 

yeast mutants, e.g.human cdk2 (Cyclin Dependant Kinase 2) (egl in X. laevis) and 

cdk3 (human) (Elledge and Spottswood, 1991; Meyerson etal., 1992). The encoded 

proteins are also 60-65 % identical to the yeast cdc2/CDC28 kinases. Outside of this 

closely related group are many protein kinases from humans and mouse (isolated by 

PCR directed at conserved kinase domains) with significant, but lower, homology (45- 

55 %) to cdc2/CDC28. These genes (including cdk4, cdk5, cdk6, the PCTAIR 

subfamily and cdk7) do not complement yeast mutants of cdc2/CDC28, but in a number 

of cases the proteins have been shown to be involved in control of the mammalian cell 

cycle (Fesquet etal., 1993, Meyerson etal., 1992; Matsuoka etal., 1994). The reasons 

for such a large number of kinase subunits is not clear, but may be due to the tight 

control needed in a multicellullar organism to stop the selective advantage of rapid 

division leading to carcinogenesis. Another possible reason is the large numbers of 

tissues which undergo differentiation in higher eukaryotes.

The kinase activity of CDC2, and the closely related CDK2, can be assayed in 

vitro by phosphorylation of histone HI (Draetta and Beach, 1988). This may be a 

physiological substrate for CDC2, and possibly plays a role in chromosome 

condensation during M phase. The less conserved members of the CDK family, e.g. 

CDK4/5/6, have low activity when assayed with histone HI, but protein substrates have 

been found to which they have high activity e.g. the Retinoblastoma protein (Kato et 

al., 1993; G ranada/., 1994;Kitagawa etal., 1994; Schnier etal., 1994), neurofilament 

H (Hisanaga etal., 1991, Pan and Hurwitz, 1993) and pl07, a retinoblastoma-like 

protein (Pan etal., 1993).

The kinase activity of the CDK family of proteins, as the name suggests, is

usually reliant on the kinase subunit forming a dimer with a controlling protein called a

cyclin (see CDK5 for exception). These were first discovered in oocytes of starfish and

sea urchins, and named for their property of increasing in quantity through the cell

cycle until the end of the M phase, when they were rapidly degraded. Several related

genes have been isolated, and as with the CDC2 related proteins, the cyclins are
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conserved between different organisms. However, the similarity is considerably lower

than that seen in the CDK family. Typically the sequence identity is between 30-40 %

within the region of the protein called the cyclin box, and very low outside this region

of approximately 150 amino acids. This lower level of conservation is presumably due

to there being less selective pressure on a regulatory subunit as opposed to the

functional enzyme. The cyclin genes cloned from the higher eukaryotes are divided

into several different families on the basis of conserved residues within the cyclin box,

with Cyclins A to H so far isolated. Cyclin A (Pines and Hunter, 1989; Takahisa etal.,

1992) has been shown to bind both CDC2 and CDK2, and is involved in both sustaining

DNA replication (with CDK2) in S phase (Cardoso etal., 1993; Pagano etal., 1992;

Pines and Hunter, 1992), and in control of the G2/M transition (Minshull etal., 1990,

Pagano etal., 1992, Rosenblatt etal., 1992) with CDC2. The B type cyclins can consist

of a gene family with up to 8 members in any given organism. They associate with

CDC2 and, in the higher eukaryotes, are involved in controlling the G2/M transition

(Minshull etal., 1990, Hoffmann, 1993), as well the exit from mitosis. Expression of

some mutated Cyclin B proteins results in a block in the final stages of M phase (Ghiara

etal., 1991; Luo etal., 1994). This is due to the loss of a region (called the destruction

box) involved in controlling the cyclin degradation pathway, showing that proteolysis

of the Cyclin B molecules is a necessary step for exit from mitosis. Some of the large

family of B type cyclins in S. cerevisiae are also involved in S phase control (Schwob

and Nasmyth, 1993). A large number of different cyclins that are probably involved in

Gl and S phase control have been cloned from mammalian cell lines (Lew etal., 1991).

The role of Cyclin C is not clear, but a related protein has been found in Drosophila

(Leopold and O'Farrell, 1991), which implies that it will be conserved across the

multicellular eukaryotes. Cyclins D and E have been shown to regulate passage

through G l, and into S phase (Xiong etal., 1992; Motokura etal., 1992; Koff et al.,

1991; Richardson etal., 1993). Cyclins F, G and H have also been isolated (Bai et al.,

1994; Okamoto and Beach 1994; Makela etal., 1994) and Cyclin H has been shown to

bind to CDK7 (Fisher and Morgan, 1994). The Gl cyclins from S. cerevisiae consist of
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another class, called CLN1-3 (Rowley etal., 1992), and a number of cyclin genes from 

the lower eukaryotes are not clearly members of any one particular category e.g. mcs2 

from S.pombe (Molz and Beach, 1993) and CLG1 from S. cerevisiae (Matsumoto and 

Wickner, 1993).

1.2.4 Control of the cdc2 kinase activity in yeast.

To be functional as a kinase, S.pombe p34cdc2 must bind a cyclin. For the G2/M

phase transition the activating subunit is encoded by cdcl3 (Hagan etal., 1988). The

protein encoded by this gene is a member of the Cyclin B family. The B type cyclins,

and until recently, also the A type cyclins found in metazoans, are sometimes called the

mitotic cyclins. The activity of the kinase complex is further controlled by the

phosphorylation of the cdc2 subunit. Phosphorylation of a tyrosine residue (Tyr-15) in

the ATP binding site of cdc2 causes inhibition of kinase activity (Lundgren etal.,

1991). Replacement of this residue by non-phosphorylatable residues, e.g.

phenylalanine, causes premature division of the cell, resulting in a lowering of viability

due to divisions occurring when the cell has not completed DNA replication or nuclear

separation, a phenotype described as mitotic catastrophe (Gould and Nurse, 1989).

Mutations in another gene, weel, cause a similar, though less severe, phenotype, with

the cell dividing at a considerably smaller size than normal (Creanor and Mitchison,

1994). The protein encoded by weel has been shown to phosphorylate cdc2 on the Tyr-

15 residue (McGowan and Russell, 1993), as has the product of a related gene, mikl,

which appears to co-operate in the phosphorylation of Tyr-15 (Lundgren et al., 1991).

If both of these genes are non-functional, the yeast cell viability becomes exceptionally

low (approx. 4% ), a phenotype described as mitotic lethality (Lundgren etal., 1991).

Mutations in another gene, cdc25, were found to alter the phenotype of weel mutants.

The encoded protein, cdc25, is a phosphatase, and has been shown to be responsible for

the dephosphorylation of Tyr-15 (Millar etal., 1991). For the cdc25 phosphatase to

become highly active, the substrate cdc2 must be bound to Cyclin B. This is because

26



the Cyclin B molecule includes a region (the P box) important for phosphatase 

activation (Zheng and Ruderman, 1993). In addition to control of Tyr-15, it is 

necessary for threonine 167 of cdc2 to be phosphorylated for the cdc2/cyclin complex 

to be active (Gould etal., 1991). The gene that encodes the kinase responsible for this 

is known as CAK, or CDK7, in higher eukaryotes (Fesquet etal., 1993; Poon etal., 

1993; Solomon etal., 1993; Wu etal., 1994). Another gene involved in G2/M phase 

control, implicated by genetic and biochemical studies, is sucl (Ducommun etal:, 

1991, Brizuela etal., 1987; Hayles etal., 1986). This is an essential gene, mutations in 

which can suppress certain cdc2 mutant phenotypes. Crystallographic studies of the 

p l3sucl protein have shown a dimer (Endicott etal., 1995), unlike the human 

homologue, CKS2Hs (Brizuela etal., 1987), which forms hexamers (Parge etal.,

1993). It is postulated that the p l3sucl/CKSHs proteins may have a structural role in 

forming active CDK/cyclin complexes (Brizuela etal., 1987; Booher et al., 1989), 

bringing into close proximity different complexes. The difference in multimerisation 

may be related to the different numbers of both CDK and cyclin types in the respective 

organisms. The p l3 sucl protein binds cdc2 with high affinity and has been used to 

isolate cdc2 related kinase activity, and the proteins responsible, from many organisms 

(John etal., 1991; Tang etal., 1994).

Experiments have shown that some cdc2 temperature sensitive mutants, which 

are blocked in G2 when raised to their restrictive temperature, undergo cdc2 

degradation after a heat shock at 56 °C. In this case, the cells 'reset' to Gl phase even 

though they have already undergone DNA replication and have a DNA content of 2N. 

This results in cells that have a DNA content of 4N prior to division. It therefore 

appears that, in S. pombe, a modification of the cdc2 protein is one method by which 

the cell prevents itself from undergoing repeated replication (Broek etal., 1991).

As with cdc2, the S. cerevisiae homologue CDC28, needs to bind a cyclin to be

active. It also appears to be regulated by very similar phosphorylation events aswell as

by the control of transcription (Nasmyth, 1993). Unlike S.pombe, the budding yeast

cell cycle controls are well characterised at START, although CDC28 mutants that
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preferentially stop at the G2/M phase boundary have also been characterised (Amon et 

al., 1993; Surana etal., 1991). A large number of cyclins have been isolated from S. 

cerevisiae, including CLB1-6 (Ghiara etal., 1991; Surana etal., 1991; Grandin and 

Reed, 1993; Schwob and Nasmyth, 1993), CLN1-3 (Rowley etal., 1992; Cvrckovaand 

Nasmyth, 1993), OrfD (Measday etal., 1994) and HCS26 (Espinoza etal., 1994). 

Genetic studies have shown that the CLB family, and the CLNs form complexes with 

CDC28 at different stages of the cell cycle. There is a high element of redundancy 

shown by the S. cerevisiae cyclins. A cell expressing any one of the CLN genes, the 

products of which are primarily involved in control of START [although CLN3 also 

affects cell size at mitosis (Vienot-Drebot etal., 1991)], is viable, albeit possibly with 

imperfect cell cycle control e.g. in response to mating pheromones. A triple null 

mutation is however, lethal. Equally, either one of the CLB5 and 6 genes, involved in 

CDC28 control during S phase (Schwob and Nasmyth, 1993), can apparently be 

dispensed with, and CLB1 and 2 have overlapping functions in M phase, allowing 

single mutants to be viable where double mutants are not. The cyclins encoded by 

OrfD and HCS26 bind to PH085. PH085 was originally thought to be only involved in 

regulating phosphate metabolism, by its binding to PHO80, and phosphorylation of the 

transcription factor PH04 (Kaffman etal., 1994). The activating subunit, PHO80, was 

found to have a region of relatively high homology to regions found in OrfD and 

HCS26 and it was subsequently found that PH085 does indeed bind to OrfD and 

HCS26. Either one of these kinase complexes is essential for passage through START 

in strains of S. cerevisiae that lack CLN1 and 2 (Measday etal., 1994; Espinoza etal.,

1994). This implies that the CDC28/CLN1, CDC28/CLN2, PH085/0rfD, and 

PH085/HCS26 complexes form four parallel pathways, any one of which is sufficient 

for traversing the START restriction point. The reason for S. cerevisiae having so 

many cyclins is not clear. It is possible that S.pombe has a similar number of cyclins 

but that these have not yet been isolated.

Other proteins involved in control of kinase activity have been isolated from S.

cerevisiae, including a sucl homologue, CKS1 (Hadwiger etal., 1989), and several
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CDK Inhibitory proteins (CKIs). The CKI class of proteins has been characterised by 

their mode of inhibition. They bind to, and inactivate, the CDK or CDK/cyclin 

complex, but do not covalently modify the complex components, unlike the weel 

kinase. The CKI proteins cloned from S. cerevisiae do not share sequence similarities. 

Different CKIs are involved in controlling constitutive pathways and responses to 

extracellular signals. SIC1 /p40 binds to complexes containing CDC28 with CLB5&6 

(Schwob etal., 1994), so regulating passage through S phase. FAR1 inhibits kinase 

complexes of CDC28 with CLN1-3 in response to mating pheromones (Peter and 

Herskowitz, 1994). This is responsible for the block in G1 which occurs under these 

conditions. PH081 binds to the PHO85/PHO80 complex involved in regulating 

phosphate metabolism (Hirst etal., 1994).

1.2.5 CDK control in higher eukaryotes.

The basic mechanisms controlling the kinase activity of the different CDK

complexes seems to be well conserved between yeast and higher eukaryotes. Figure

1.2.3 shows the major controlling modifications and associations of HsCDC2 at the

G2/M phase boundary. The CDC2 related kinases of higher organisms bind to a large

family of cyclin subunits (Pines, 1993). CDC2 and CDK2 undergo the same inhibitory

phosphorylation of the Tyr-15 tyrosine residue as in the yeast system, by weel related

proteins but also are phosphorylated on the conserved threonine residue adjacent, Thr-

14, a modification which has not been seen in yeast (Gu etal., 1992; Igarashi etal.,

1991; Norbury etal., 1991; Krek and Nigg, 1991). This threonine phosphorylation is

not performed by weel, but rather a membrane bound kinase, which in Xenopus is

encoded by the mytl gene (Mueller et al., 1995). There are also well conserved

homologues of the CDC25 gene, the products of which are involved in

dephosphorylating the Tyr-15 of CDC2 and CDK2 (Jimenez et al., 1990; Jinno et al.,

1994). The equivalent of Threonine-167 is also well conserved in the human family of

CDC2 related kinases, and this residue, as in yeast, needs to be phosphorylated for the
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Figure 1.2.3. Positive and negative regulation of
cdc2/Cyclin B complexes during mitosis
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kinase to be active (Gu etal., 1992; Lorca etal., 1992; Norbury etal., 1991). The 

kinase responsible for this activity, or at least capable of it, has been cloned from X. 

laevis and human, and has been shown with purified extracts to be capable of activating 

various kinase complexes including those containing CDC2, CDK2 and CDK4 from 

humans (Fesquet etal., 1993). This protein is itself related to the CDC2 family, and 

also has an activating subunit with homology to the cyclin family. These similarities 

have resulted in this complex being named CDK7/Cyclin H by some investigators, 

although the original nomenclature of CDK Activating Kinase (CAK) is often still used. 

As noted previously, homologues of the sucl gene have been isolated from humans and 

these have been shown to bind CDC2 (Azzi etal., 1992), and one of the human CKS 

proteins has been crystallised, allowing the structure to be analysed (Parge etal., 1993). 

The crystal structure has shown a hexamer, which agrees with the evidence of size 

fractionation using soluble CKS2Hs. As noted before, if as seems likely, one kinase 

complex binds each CKS sub-unit, the resulting close association may allow specific 

targeting of CDK/cyclin phosphorylation by other CDK complexes.

CKIs have also been isolated from mammalian cell lines. As with the inhibitory 

proteins in budding yeast, there are those that play a role in controlling the cell cycle 

generally (p21/CIPl and pl6), as well as those that control the response to outside 

factors, e.g. antimitogens (p27) (Xiong etal., 1993; Serrano etal., 1993; Gu etal.,

1993). Although p21 and p27 share sequence homology, possibly due to the 

overlapping target of the CDK2/Cyclin E complex, there is no significant homology 

between other members of the CKI proteins either within an organism, or between 

organisms. This may mean that they perform functions that are evolutionary fine 

tuning, specific for different organisms, as opposed to essential parts of a basic cell 

cycle control system. The FAR1 gene from S. cerevisiae is non-essential, which gives 

credence to this idea, but the gene encoding p l6  in humans has been implicated as a 

tumour suppresser gene (Okamoto etal., 1994), and mutations have been found in 

familial cases of melanoma (Wainwright, 1994), suggesting that this gene may be

important and conserved in multicellullar organisms.
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1.2.6 CDK/Cyclin complexes in Metazoans, and control of the cell cycle.

Table 1.2.1 briefly shows the present published data as to which CDK binds to 

which cyclin in mammalian cells. In the case of CDK3, partners are not known, and 

there are some cyclins (F and G) for which kinase subunits have not been assigned.

The presence of CDK/cyclin complexes in early G l, immediately after 

cytokinesis, that play a role in cell cycle progression has not been clearly shown.

At START, the major complexes appear to be those containing D type cyclins, 

possibly complexed with any of 3 different CDK's (Xiong etal., 1992). There is a 

consensus that CDK2, CDK4 and CDK6 form complexes with the Cyclin D family.

The three D type cyclins are expressed at different levels in different cell types, and it is 

not clear how the different cyclin D's roles differ. Differences are apparent, D2 and D3 

have been shown to bind to the Retinoblastoma gene product (Rb), whereas D1 does 

not (Hatakeyama etal., 1994). All three can promote phosphorylation of Rb in vitro 

when co-expressed with CDK4, but in an in vivo assay, D 1 did not cause Rb 

phosphorylation (Kato etal., 1993). The hyperphosphorylation of Rb removes the 

block to cell cycle progression by interfering with the binding of Rb to the transcription 

factor E2F. The role of complexes containing Cyclin D1 is still unknown, but Cyclin 

D1 does form complexes which contain E2F ( Zhang and Kumar, 1994; Schulze etal.,

1994), as well as those containing Proliferating Cell Nuclear Antigen, a protein 

involved in the control of nuclear DNA synthesis (Xiong etal., 1992; Matsuoka etal.,

1994). Therefore it may be involved in controlling the start of DNA synthesis. The 

importance of the CDK4 complexes in control of cell cycle progression can be seen in 

experiments performed on a mink cell line, MvlLu. The antimitogen TGF-Beta-1, 

which arrests cells in Gl phase, was shown to be able to act by down regulation of 

CDK4 levels (Ewen etal., 1993), which resulted in the accumulation of 

unphosphorylated Rb. Levels of Cyclins D1 and D2 (D3 not being expressed in 

MvlLu) were unaffected, as were levels of CDK2 and Cyclin E. Furthermore,
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unregulated expression of CDK4 resulted in the cell line showing unimpaired growth 

when exposed to TGF-p-1, while similar expression of D type cyclins or CDK2 had no 

effect.

The expression of CDK5 varies in different cell lines, and although it has been 

shown to bind to D type cyclins, and Proliferating Cell Nuclear Antigen, kinase activity 

in this case has not been shown (Xiong etal., 1992). What has been proved is that 

CDK5 is highly expressed in terminally differentiated neurons, which do not express 

CDC2 (Hayes etal., 1991), and it forms a complex with a 35 kDa protein that shares no 

homology to cyclins (Helmich etal., 1992). This complex is active without further 

modification, unlike those containing other CDK molecules and can phosphorylate 

components of neurofilaments. Therefore, it seems to be involved in regulation of the 

cytoskeleton, specifically in the central nervous system. It is possible that the CDK5 

association with cyclins D1 and D3 seen previously is an artefact of the system used, 

and CDK5 has no role in the regular cell cycle, or it may be that the physiological 

substrate has yet to be found.

CDK2 has been shown to be part of a complex with the D cyclins, and interacts

with other components of the complexes, e.g. Rb, in a similar way to CDK4 in vitro.

However, in vivo most of the CDK2 is associated with Cyclin E, and the evidence is

that its interactions with the D type cyclins are limited and unlikely to be limiting

factors in cell cycle progression (see above). CDK2 binds to Cyclin E, which is

synthesised during G l, forming a complex that also contains pl07 (which is related to

Rb) and E2F. Levels of this complex, and the kinase activity associated with it, peak at

the Gl/S phase boundary, after which Cyclin E is degraded. As the levels of the

CDK2/Cyclin E complex decrease, the levels of a complex containing CDK2/Cyclin A

start to rise (Elledge etal., 1992; Harper etal., 1992). The different roles of the two

complexes is unknown, although evidence suggests that the CDK2/Cyclin A complex is

involved in maintaining DNA synthesis (Pagano etal., 1992; Cardoso etal., 1993).

The control of kinase activity is apparently performed in a very similar way to the

control of S.pombe cdc2, and a cdc25 homologue active during Gl and S phase has
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been characterised from human cells (Jinno etal., 1994). E2F has been shown to 

regulate the transcription of genes necessary for S phase, but the reason for different 

complexes in G l and S phase with pl07 is unclear. Also unclear is why, and how, the 

control of E2F by association with Rb and pl07 overlaps during Gl. During S phase, 

complexes containing CDK2 and Cyclin A have been co-localised to areas of DNA 

replication in the nucleus (Cardoso etal., 1993). This co-localisation may have 

something to do with the binding seen in G l between CDK2 and PCNA, which is an 

essential protein associated with DNA polymerase delta, and which also shows punctate 

staining of S phase nuclei.

By the end of S phase CDC2 is bound to A and B type cyclins (Draetta etal., 

1989), but the Cyclin B complexes are predominantly inactive due to the 

phosphorylation of Thr-14 and Tyr-15. It appears that the complexes containing Cyclin 

A have limited activity, but when this reaches a threshold activation of the 

CDC2/Cyclin B kinase activity occurs at the G2/M phase boundary extremely rapidly. 

This is achieved by a control system exhibiting positive feedback. Activated 

CDC2/Cyclin complexes phosphorylate CDC25 (Hoffmann, 1993; Izumi and Mailer,

1993), which is then far more efficient at activating more CDC2/Cyclin. The negative 

regulators are less active in mitosis, and this may be regulated by the CDC2 kinase 

complex, probably one or more steps removed. In the case of weel, phosphorylation 

causes the Tyr-15 kinase activity to be down-regulated. This combination results in a 

very rapid activation of all the available CDC2/Cyclin A and B complexes, which then 

phosphorylate the required substrates for M phase progression. Amongst these are the 

components of the nuclear lamina, which results in their disassembly (Nigg etal., 1991; 

Peter etal., 1990; Peter etal., 1991). CDC2 complexes have also been shown to be 

associated with the mitotic spindle (Ookata etal., 1993) and intermediate filament- 

associated proteins (Skalli etal., 1992).

The degradation of the mitotic cyclins is another regulatory step necessary for 

the completion of mitosis. The Cyclin A molecules are degraded first, with the Cyclin

B degradation occurring at the transition from M phase into Gl (Minshull etal., 1990).

35



The degradation of the cyclins is signalled by their polyubiquitination, the control of 

which is to some degree regulated by CDC2 activity (Hershko etal., 1994). The loss of 

the cyclins results in the loss of kinase activity (Draetta etal., 1989). As mentioned 

previously, the expression of N terminal truncated mitotic cyclins, which lack a region 

targeting them for degradation (see Chapter 3.2.1), results in cell cycle arrest at the 

point that the proteins are usually broken down.

1.3 Project Aims.

The specific aims of the project were:

1) To attempt the isolation of cyclin gene(s) from T. brucei, and/or the related 

kinetoplastid Leishmania mexicana.

2) To isolate and sequence the genomic locus of tbcrk3, one of the T. brucei cdc2- 

related kinases, for which a gene fragment amplified by PCR was available.

3) To raise antisera to TbCRK3, and with other antisera available in the laboratory, 

analyse the expression, and if possible activity, of the members of the TbCRK family in 

the different T. brucei life cycle stages.

4) To analyse the function and activity of the TbCRK proteins, using biochemical and 

reverse genetic approaches.

1.4 Addendum-recent publications.

1.4.1 The Eukaryotic cell cycle; kinases, phosphatases and the cytoskeleton.

New research into CDK/cyclin complexes has shown more links between cell

cycle control and transcription. The CDK7/Cyclin H complex has been found to form

part of the Transcription Factor II H (THIH) complex, involved in the initiation of
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RNA polymerase II transcription (Serizawa etal., 1995; Sheikhattar etal., 1995). It is 

thought that the CDK7/Cyclin H complex phosphorylates the C-terminal tail of the 

RNA polymerase II large subunit. It is thought that this complex is also the CDK 

Activating Kinase, but evidence from homologues of lower eukaryotes is contradictory. 

The CDK7 homologue of S.pombe (crkl or mopl) can act as CAK in vitro, and is 

essential with mutant cells arresting in late M phase (Damagnez et al., 1995). The 

homologue in S. cerevisiae (KIN28) is part of the TFIIH complex and necessary for 

transcription but shows no CAK activity (Cismowski etal., 1995). The CAK purified 

from budding yeast is encoded by a seperate gene, CAK1, with low homology to CDK7 

(Kaldis etal., 1996; Espinoza etal., 1996). The CAK1 protein is essential with a G2 

arrest in mutant cells. All of the CDK7 and CAK kinases show no variation in activity 

through the cell cycle.

The CDK kinase subunit that binds Cyclin C in higher eukaryotes has been 

identified (CDK8) and this complex has been shown to be part of the RNA polymerase 

II holoenzyme (Tassan etal., 1995). These proteins are homologous to the SRB10 and 

SRB11 proteins in S. cerevisiae which are also part of the RNA Polymerase II 

holoenzyme (Liao etal., 1995), which interacts with the TFIIH complex during 

transcriptional initiation. No cell cycle controlling role has so far been shown for the 

CDK8/Cyclin C complex, although the RNA polymerase II holoenzyme has also been 

implicated in DNA damage recognition/repair, possibly suggesting a role of these 

kinase complexes in cell cycle checkpoint control.

Microtubules have been shown to be involved in the cell cycle, and to possibly

interact with B type cyclins in S.pombe. In fission yeast mutations in both alpha and

beta tubulin genes can result in lethally abnormal mitochondrial distribution, showing a

link between microtubules and mitochondrial movement (Yaffe etal., 1996). A cdclO

null mutant of S.pombe that causes Gl arrest can be suppressed by an uncharacterised

mutation in a transcription factor (sctl) which causes low levels of cells to show

aberrant cytoskeletal and nuclear DNA morphologies. The DNA sometimes appeared

fragmented, the nuclei were occasionally displaced and binuclear cells were seen. Both
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microtubular and microfilament perturbations were seen in the mutants (Marks etal.,

1992). The S.pombe sspl protein kinase gene mutants show a cell cycle arrest in G2 

with altered actin deposition patterns. This is accompanied by a failure to correctly 

regulate the growth polarity of the cells (Matsusaka etal., 1995).

Protein phosphatases have also been shown to be involved in cell 

morphogenesis in eukaryotes. Mutations of PP2A subunits in S. cerevisiae cause cells 

to become multibudded and multinucleated (Van Zyl etal., 1992). S.pombe mutants 

result in aberrant cytoskeletal organisation and a block in cytokinesis (Kinoshita etal., 

1996). Similar mutations in Drosophila melanogaster cause mitotic arrest, a lack of 

microtubule organisation and the uncoupling of the nuclear and centrosome cell cycles 

in the embryo (Snaith etal., 1996).

1.4.2 Trypanosoma brucei, the cytoskeleton and the cell cycle.

A putative RNA polymerase II promoter region has now been isolated from the 

T. brucei hsp70 locus (Lee, 1996). This region directs transcription of heterologous 

genes, but does not result in an upregulation of the level of mRNA under heat stress, 

once again suggesting that the major control of mRNA levels is post-transcriptional.

The microtubule cytoskeleton of T. brucei has been shown by a variety of 

methods to be highly polarised with the positive ends of the microtubules at the 

posterior end of the cell (Robinson etal., 1995). Other work has shown that the sub- 

pellicular array grows by the insertion of new microtubules into the array 

predominantly in the posterior region of the cell (Sherwin and Gull, 1989). The 

movement of the kinetoplast during the differentiation between short stumpy and 

procyclic forms is microtubule mediated, just as the division and movement of the 

organelle is during the cell cycle (Matthews etal., 1995).

Treatment of procyclic T. brucei cultures with the protein phosphatases inhibitor

okadaic acid has indicated a role for PP1/PP2A proteins in the coordination of DNA

synthesis, mitosis, organellar rearrangement and cytokinesis (Das etal., 1994). The
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cells treated with okadaic acid became multinucleate, but while they replicated the 

kinetoplast DNA they neither divided the organelle nor underwent cytokinesis.
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CHAPTER TWO 
MATERIALS AND METHODS
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2.1 Buffers/Media/Stock solutions

Alkaline lysis buffers

Solution I 50 mM Glucose, 25 mM Tris-HCl (pH 8.0), 10 mM EDTA

(pH 8.0).

Solution II 0.2 M NaOH, 1 % SDS.

Solution III 6 ml 5 M K acetate, 1.15 ml glacial acetic acid, 2.85 ml dH20.

Antibiotics

Ampicillin Stock ( lOOOx) 50 mg / ml in dH20

Tetracyclin Stock ( lOOOx) 5 mg / ml in 50 % ethanol

Phleomycin Stock 20 mg / ml in dH20

G418 Stock 10 mg / ml in dH20

Blot electrode buffer 3.25 g Tris HC1, 14.4 g Glycine, 200 ml Methanol, made up to 1

litre with dH20.

Denaturation solution 0.5 M NaOH, 1.5 M NaCl.

50xDenhardts 10 g Ficoll, 10 g polyvinylpyrrolidine, 10 g BSA, made up to 1

litre with dH20.

EDTA A 0.5 M solution was made up in dH20 and adjusted to pH 8.0

with 10 M NaOH.
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5 x Final Sample Buffer (5 x FSB) 1.25 ml 0.5 M Tris-HCl, pH 6.8, 1.0 ml Glycerol,

2.0 ml 10 % (w/v) SDS, 0.5 ml 2-Beta 

mercaptoethanol, 0.25 ml 0.05 % (w/v) 

Bromophenol blue, 5.0 ml dH20

Hybridisation buffer 6 x SSC, 5 x Denhardt’s reagent, 0.5 % SDS, 100

pig / ml denatured fragmented salmon sperm DNA

Kinase Assay Buffer (KAB) 50 mM MOPS pH 7.2, 20 mM MgCh, 2 mM

DTT, 10 mM EGTA

Kinase Assay Mix (KAM) (per 200 pi\) 5pi\ 10 mg / ml Histone HI

1 pi 1 gamma 32P rATP

8 pi\ 100/<M rATP 

186 pi 1 KAB

L broth 10 g Tryptone, 5 g yeast extract, 5 g NaCl, made up to 1 litre with dH20,

adjusted to pH 7.0 with 10M NaOH.

LB agar As LB broth plus 15 g of agar/litre.

5 x Loading Buffer (5 x LB) 0.25 % Bromophenol blue, 0.25 % Xylene cyanol FF,

10 mM EDTA (pH 8.0), 15 % Ficoll.

Lysis Solution (LS) 50 mM MOPS (NaOH to pH 7.2), 100 mM NaCl, 1 mM EDTA,

1 mMEGTA, 1 mM N aV 03, 10 mM NaF, 1 % Triton X-100.

Lysis Solution with Inhibitors (LSI) per 10 ml.

9.75 ml Lysis solution 
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50 ja \ 200 mM 1,10 Phenanthroline (in 50 % ethanol)

50 pi\ 1 mg / ml Pepstatin A (in 100 % methanol)

100pi\ 10 mg / ml leupeptin (in dH20)

50 pi\ 10 mg / ml PMSF (in 100% ethanol)

MB medium 0.5 g KH2PO4, 0.36 g K acetate, 0.5 g MgS04.7H20,0.1 g NaCl, 0.1 g 

CaCk.2H20,5 g (NH4)2S04,500pig H3BO4, 40pig CuS04.5H20 , 100 

pig KI, 200 pig FeCb.6H20,400 pig MnS04.H20,200 pig Na 

molybynate, 400pig ZnS04.7Fk0,5 g glucose, 10 pig biotin, 1 mg Ca 

pantothenate, 10 mg nicotinic acid, 10 mg inositol. Make up to 1 litre 

with dFkO and filter sterilise. Add leucine to 150 pig / ml for the culture 

of leu- strains.

10 x MMA 10 g KH2PO4, 5 g MgS04.7FkO, 1 g NaCl, 1 g CaCk.2H20,50 g 

(NH4)2SC>4, 5 mg H3BO4, 400pig CUSO4.5H2O, 1 mg KI, 2 mg 

FeCl3.6H20,4 mg MnSCXFkO, 2 mg Na molybynate, 4 mg 

ZnS04.7H20,100 g glucose, 100 pig biotin, 10 mg Ca pantothenate,

100 mg nicotinic acid, 100 mg inositol. Make up to 1 litre with dFkO 

and filter sterilise. For plates, add 1/10 volume to agar autoclaved in 

9/10 dFkO. Final agar concentration 2 %.

Neutralisation solution 1.5 M NaCl, 0.5 M Tris.HCl (pH 7.4).

Phosphate buffered saline (PBS) 8 g NaCl, 0.2 g KC1, 1.44 g Na2HP04, 0.24 g

K H 2 P O 4 ,  adjust to pH 7.4, add dH20to 1 litre.

5 x SDS-PAGE Running Buffer 15 g Tris base, 72 g Glycine, 5 g SDS, made up to

1 litre with dH20.
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SM buffer 5.8 g NaCl, 2 g MgS04.7H20 , 50 ml 1 M Tris.HCl (pH 7.5), 5 ml 2 % 

gelatin solution, made up to 1 litre with dH20.

20 x SSC 175.3 g NaCl, 88.2 g Sodium citrate, made up to 1 litre with dH20.

50 x TAE 242 g Tris base, 57.1 ml glacial acid, 100 ml 0.5 M EDTA (pH 8.0), 

made up to 1 litre with dH20.

5 x TBE 54 g Tris base, 27.5 g boric acid, 20 ml 0.5 M EDTA (pH 8.0),

made up to 1 litre with dH20.

TBS-Tween 8 g NaCl, 0.2 g KC1, 3 g Tris base, 0.5 ml Tween-20, adjust to pH 7.4, 

add dH20to 1 litre.

TE 10 mM Tris-HCl (pH 8.0), 1 mM EDTA (pH 8.0).

l/2YEL+leu 0.25 % yeast extract, 1.5 % glucose, 30 pig / ml leucine.

2 x YT broth 10 g Tryptone, 10 g yeast extract, 5 g NaCl, made up to 1 litre with 

dH20.

ZPFM 7.71 g NaCl, 0.60 g KC1, 1.14 g Na2HP04 (anhydrous), 0.20 g KH2PO4

(anhydrous), 0.20 g Mg acetate.4H20,16 mg Ca acetate, made up to 1 

litre with dH20.

2.2 General Methods

2.2.1 DNA protocols
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2.2.1.1 Restriction Enzyme digestion of plasmid and lambda DNA.

Typically 0.5-2 pig of DNA were digested in 20 pi\ containing the recommended 

enzyme buffer and 5-10 Units of enzyme. After 1 hour at the appropriate temperature 

the incubations were placed on ice and 5 pi\ of 5 x Loading Buffer (5 x LB) were added. 

For sequential digests the first R.E. was either heat inactivated or removed by Magic 

DNA Cleanup Columns (Promega) before the second digestion. For transfection of 

trypanosomes, 25-50 pig of plasmid DNA were digested in 100-200 pi\ using 30-50 U of 

each enzyme. The digests were incubated for 3-5 hours before gel electrophoresis and 

band extraction.

2.2.1.2 Agarose Gel Electrophoresis.

0.7-2 % gels were used for separating plasmid and PCR derived DNA 

depending on the size of the expected fragments. The gels were normally run in 1 x 

TBE at 100-150 Volts and contained 0.1 pig I ml of Ethidium Bromide. LMP agarose 

gels were run in 1 x TAE at 50 V.

Digests of genomic DNA were run on a 300 ml, 0.7 %, 1 x TBE gel without 

Ethidium Bromide at 50 V overnight. The gel was then stained in 1 x TBE containing 1 

pig I ml Ethidium Bromide for 30 minutes and destained in dFLO for 30 minutes. The 

DNA was visualised by UV illumination.

2.2.1.3 Extraction of DNA from Agarose.

The bands of interest were cut from agarose gels under UV illumination with a 

sterile scalpel blade. To extract the DNA, three methods were employed during the 

Ph.D.:

(1) Low melting point agarose in 1 x TAE was initially used at the start of the

Ph.D.
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(2) Geneclean (BIO 101 inc.) was later used to extract DNA from high 

percentage 1 x TBE gels (using the TBE modifier supplied) when the fragments were 

smaller than 500 bp.

(3) Spin-X columns (Sigma). Used for 1 x TAE gels and fragments larger than 

500 bp. The tube containing the agarose slice was frozen at -20 °C before being 

centrifuged at maximum speed in a microfuge for 15 minutes.

2.2.1.4 Labelling of DNA fragments by random priming.

25 ng of gel purified DNA were labelled using the Prim-it kit (Stratagene), with 

50 pi Ci of Super 32P-dCTP. The unincorporated label was removed using Nuctrap 

columns (Stratagene). Before hybridisation the probe was denatured by boiling for 5 

minutes, then spun down and kept on ice before adding to the hybridisation tube.

2.2.1.5 Southern Blotting and Hybridisation.

Agarose gels containing digested lambda or genomic DNA were treated with 0.2 

M HC1 for 15 minutes to ensure transfer of the larger fragments. The gels were then 

rinsed with dH20 and placed in denaturing solution for at least 30 minutes. The DNA 

was then transferred onto Hybaid Nylon membrane by capillary transfer overnight, the 

blotting buffer being alkali transfer buffer. Gels only containing plasmid DNA smaller 

than 7 kb were not treated with HC1. After transfer the positions of the wells were 

marked with pencil, and the membranes washed with 2 x SSC. The DNA was fixed by 

baking the filters at 80 °C for 2 hours.

The membranes were pre-hybridised in 20 ml of hybridisation buffer containing

100 pig / ml of denatured herring sperm DNA at the hybridisation temperature. 15 ml of

buffer were then removed and the probe added. Hybridisation took place overnight,

usually at 65 °C. In the morning the membranes were washed in 0.1 x SSC, 0.1 % SDS

at 65 °C for lhour, with 3 changes of wash buffer. The membranes were either sealed
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in a plastic bag or wrapped in clingfilm before exposure to X-ray film at -70 °C in 

cassettes with enhancer screens.

2.2.1.6 PCR from genomic DNA.

PCR with degenerate oligonucleotides was performed on purified genomic 

DNA from T. brucei and L. mexicana. The 'touchdown' method was employed, where 

the starting annealing temperature is high, and then the temperature is lowered very few 

cycles before the major amplification cycles (Don etal., 1991). Typically the 

conditions were:

Step 1 94 °C for 5 min (initial denaturation)

Step 2 60 °C for 30 sec 5 /d  of each primer (20 pM stock)

Step 3 72 °C for lmin 5 /d  of 2 mM dNTPs

Step4 94 °C for 30 sec 5 /d  of 10 x Taq buffer

(repeat steps 2-4 for 3 cycles) 0.5//I of Taq DNA polymerase (5 U / /d)

Then continue to cycle, and drop the 0.5 pi 1 of template

annealing temperature by 2 °C every dH20 to 50 /d

third cycle until theannealing temperature

gets to 48 °C. Then;

15 cycles with annealing for 30 sec at 48 °C. Then;

48 °C annealing for 2 min 

72 °C for 10 min.

10] i\  of the reactions were added to 3 /d  of 5 x LB and run on agarose gels. Blunt end 

cloning was performed when the oligonucleotides had no R.E. site engineered in.

These oligonucleotides had been kinased and the PCR fragments generated could 

therefore be ligated into Smal cut and CIPed pBluescript.
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2.2.1.7 Preparation of Vector DNA for ligations.

20pig of DNA were digested in 100 pi 1 total volume in the appropriate 

restriction buffer. After digestion 5 Units of Calf Intestinal Phosphatase (CIP) were 

added to the tube and incubated at 37 °C for 15 minutes. The CIP was then heat 

inactivated at 65 °C for 15 minutes. The DNA was EtOH precipitated, dried and 

resuspended in 10 //I of TE. 1 pi\ was used in each ligation.

2.2.1.8 Ligations.

When the insert DNA was in LMP agarose, lpi\ of vector DNA was added to 4 

]A of 5 x Ligation buffer, 1 pi\ of T4 DNA ligase and 4 pi\ of dTLO. The agarose with 

insert was melted at 65 °C and \0pi\ added to the ligation mix. This was left at 4 °C 

overnight, and 5 pi\ used for each transfection.

When the insert had been purified by other means, 1 pi \ of vector DNA was 

added to enough insert DNA to give a ratio of approximately 1 vector:3 insert free 

sticky ends. The mixture was ethanol precipitated and resuspended in 7.5pi\ of dTLO. 

2 /d  of 5 x Ligation buffer and 0.5pi\ of T4 DNA ligase were added. The ligation was 

left at r.t. for at least 3 hours, or overnight at 4 °C, before using 2 pi\ for each 

transfection.

When the fragments were blunt ended the ratio of vector to insert ends was 

raised to 1:10, or higher, and 1 pi\ of T4 DNA ligase was used in the 10pi \ reaction.

2.2.1.9 Cloning tbcrkl/2/3 into expression vectors by PCR.

Oligonucleotides were designed to anneal to the 5' and 3' extremities of the 

respective gene. The oligos included an adaptor sequence of a restriction enzyme site 

that would allow the cloning of the PCR product into the correct frame of the
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expression vector. Pfu DNA polymerase was used due to its much reduced mutation 

rate, instead of Taq DNA polymerase . The PCR conditions were:

Step 1 94 °C for 5 min

Step 2 60 °C for 30 sec

Step 3 72 °C for 1 min 30 secs

Step 4 94 °C for 30 sec

(repeat Steps 2-4 for 30 cycles)

Step 5 60 °C for 30 sec

Step 6 72 °C for 10 min

(initial denaturation)

5 /d  of each oligo (20 pM stock)

5 /d  of 2 mM dNTPs

5 /d  of 10 x Pfu buffer

0.5 /d  of Pfu DNA polymerase (5 U //d)

dl-hO to 50 /d

After 5 /d  of the reactions were run on a 1 % agarose gel to check the product the rest 

of the amplified product was purified using Magic PCR cleanup columns (Promega). 

The DNA was then digested with the appropriate enzymes, and gel purified. After 

extraction, this DNA was used for ligations.

2.2.1.10 Sequencing of Plasmid DNA.

5-10 ]Ag of plasmid DNA were used to obtain double stranded sequence using a 

rapid NaOH denaturing protocol (Hsiao 1991). The Sequenase Version 2.0 (United 

States Biochemical Corporation) kit was used with dITP buffers used for resolving 

compressions.
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Table 2.2.1.1 Plasmids used during this thesis.

Name

pBluescript II 

pMNS21L

pMNS/Hscdc2+

pMNS/Hscdc2-

pSpcdc2

pBle

pNT

Use and/or insert Source

E. coli cloning vector. Stratagene

Regulatable S.pombe expression vector. J. Kinnaird,

WUMP.

pMNS21L with the human cdc2 ORF J. Kinnaird,

in the correct orientation. WUMP.

pMNS21L with the human cdc2 ORF J. Kinnaird,

in the reverse orientation. WUMP.

Non-regulated S. pombe expression vector . J. Kinnaird,

with wild type S. pombe cdc2 insert. WUMP.

pUC18 with the T. brucei PARP promoter/ S. Graham,

ble resistance gene/PARP 3 ’ untranslated WUMP.

region insert.

pUC8 with PARP promoter/weo resistance gene/ D. Jeffries,

T. brucei tubulin 3 ’ untranslated region insert. WUMP.
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Table 2.2.1.2 Oligonucleotides used during this thesis.

degenerate 5 ’ cyclin PCR primer 

degenerate 3 ’ cyclin PCR primer 

degenerate 3 ’ cyclin PCR primer 

degenerate 5 ’ cyclin PCR primer 

degenerate 3 ’ cyclin PCR primer 

tbcrk.3 sequencing. 

tbcrkS sequencing. 

tbmefg sequencing. 

tbmefg sequencing. 

tbmefg sequencing. 

tbmefg sequencing. 

tbmefg sequencing. 

tbmefg sequencing. 

tbcrk3 /H PCR 5’ primer. 

tbcrk3 /H PCR 3 ’ primer. 

tbcrk3 /H (-5’ext) PCR 5’ primer. 

tbcrkl /H PCR 5’ primer. 

tbcrkl /H PCR 3 ’ primer. 

tbcrkl /H PCR 5 ’ primer. 

tbcrkl /H PCR 3 ’ primer. 

tbcrkl/H (-5’ext) PCR 5’ primer. 

tbcrkl 5 ’ PCR primer for the yeast 

expression vector pMNS21L. 

tbcrk3 3 ’ PCR primer for the yeast 

expression vector pMNS21L. 

tbmefg 5 ’ PCR primer for His-tagged 

Integration Vector fragment. 

tbmefg 3 ’ PCR primer for His-tagged 

Integration Vector fragment.

Degeneracy codes used: B - C, G and T; D - A, G and T; K - G and T; N - A, C, G and 

T; R - A and G; S - C and G; Y - C and T.

The underlined bases are engineered restriction enzyme sites, and may not be identical 

to the sequence used as template in the PCR reaction.

ATG CGS GCS ATY YTS ATY GAC TGG

SGG SGG CTA CAT CTC CTC GTA CTT

AK CTC CAT SAR GTA CTT SGC

C GGATCC GCN DSN AAR TAY GAR GAR

C GAA TTC YTC NAB NAR RTA YTT NGC

GAA GTT ATG GGT GTC TCC

CCA TCT AAA ATC TGA TTG

CAC AGT GCA AAT GGG GTG

GCT TGG GGG TGA ATG CCG

GTT CTT GTA GGC TGA ACC

TAC CTA TTT TAC TGT GCC

AGG GTT AGC ATT GTC ACG

GCG ATT CGG CGC ACC ACG

GA GGATCC ATG ACA ATG CTT GGG GCG

GC AGA TCT AAA CAT GGC ATC ACT AAA

AT CCC ATG GAC CGC TAT AAT CGA ATG

G CCC ATG GGG AGT CGT TAC GAG C

CGC GGATCC GAA CTC GAC AGA AAA GTA T

G CCC ATG GAG GTG CAG GTG CAG GAA GG

CG CAG ATC TAG CTC CGT TGA ACC GCA TC

CC ACC ATG GAC CGG TAT AGC CGA ATA

GA CAT ATG ACA ATG CTT GGG

TG GGATCC GAT CTA AAA CAT GGC ATC

CG GGT ACC GTG TTG GAA TAC A AC CG

CC GAG CTC TGA TCC CCC TTT AAC
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2.2.2 Protein protocols.

2.2.2.1 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE).

Protein samples were separated by SDS-PAGE, using the discontinuous gel 

method (Laemmli, 1970).

Separating gel - 0.375 M Tris-HCl, pH 8.8.

Stacking gel - 0.125 M Tris-HCl, pH 6.8,4.0 % acrylamide.

Depending on the size range needing separation, 12 to 17.5 % acrylamide separating 

gels were used. Most gels were run using minigel kits as per the protocol (Biorad).

The gels were either stained using Coomassie R250 brilliant blue, or electroblotted for 

Westerns.

For staining, the gels were placed in dH20 containing 30 % methanol, 10 % 

glacial acetic acid and 0.1 % Coomassie R-250 brilliant blue for 30 minutes.

Destaining took approximately 2 hours in frequent changes of dH20 containing 30 % 

methanol and 10 % glacial acetic acid. The gels were then left in dH20 overnight 

before being transferred to 3MM paper and dried down at 80 °C under vacuum for 45 

minutes.

2.22.2 Western Blotting.

The Western blots described in this thesis were predominantly performed using

PVDF membrane (Bio-Rad) used as per the protocols given. Proteins from unstained

gels were transferred to the membrane in Blot Electrode Buffer, either at 0.2 Amperes

for 2 hours in the cold room, or at 0.1 A overnight on the bench. The PVDF was

allowed to dry to fix the protein. Often the bound protein could be visualised as

translucent areas of the membrane using a lightbox, allowing the markers to be labelled

with a pencil and the membrane to be cut up with a scalpel blade without staining of the

membrane. If necessary the membrane was moistened with 100 % ethanol and
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Ponceau-S stained (Sigma) to allow detection of the protein. The blot was then rinsed 

with Tris Buffered Saline containing 0.05 % Tween-20 (TBS-Tween). The ECL 

Western blotting protocol (Amersham) was followed, except that the blocking solution 

contained 10 % Horse Serum as well as 5 % Marvel powder. Primary antibody 

dilutions varied, and are detailed in the respective figure legends. Preabsorbtion of 

oligopeptides to the primary antiserum was performed by incubating the antiserum with 

1 ]i% / ml of the oligopeptide in the blocking solution at r.t. for 2 hours before it was 

applied to the membrane. The secondary antibodies were used at a dilution of 1:2500.

2.2.23 Purification of p l3 sucl and formation of p l3 sucl beads.

2.5 mg of semi-purified p l3 sucl protein expressed in E. coli was further purified 

by anion exchange on a HPLC column (See Chapter 5.4.2). Fractions were run on 17.5 

% SDS-PAGE and stained with Coomassie R250 brilliant blue to assess the level of 

purity. Several fractions were pooled and dialysed into phosphate buffer overnight at 4 

°C. These fractions contained a total of 1.5 mg of protein according to O.D. 280 readings 

and Bradford assays. This protein was linked to 0.5 ml of Aminolink™ beads (Pierce) 

as per the protocol. Control beads were prepared in parallel with the p l3 sucl beads by 

blocking the reactive sites of 2 ml of the Aminolink beads with 1.0 M Tris-HCl, pH 7.4.
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2.3 Protocols for E. coli.

2.3.1 General protocols (Ec).

2.3.1.1 Bacterial strains used during this thesis.

Strain Genotype Source

XLl-Blue RecAl endAl gyrA96 thi-1 hsdR17 supE44 relAl Stratagene

2.3.1.2 Transformation of E. coll

Competent E. coli were prepared using the Calcium Chloride procedure 

(Sambrook etal., 1989). For storage 100/d  aliquots had sterile glycerol added to 15 % 

and were then frozen in an ethanol/dry ice bath before storage at -70 °C in screw top

1.5 ml eppendorf tubes. 10 /d  of ligations in LMP agarose, 2 /d  of other ligations, or 1 

/d of 1 pig / ml super coiled plasmid were added for the transformation. After the heat 

shock (1 minute at 42 °C), 1 ml of 2 x YT was added to each tube and the bacteria 

allowed to recover at 37 °C for 45 minutes before plating onto selective media. For 

blue/white selection 20/d  of 0.5 MIPTG and 50 //I of 50 mg / ml X-Gal were spread 

onto the 90 mm diameter agar plates and allowed to dry before spreading the 

transformed bacteria. The plates were incubated at 37 °C for 12-16 hours (typically 

overnight).

lac[F ’ proAB lacHZAM15Tn70(Tetr)] 

LE392 el4  (McrA-) hsdR514 supE44 supF58 lacYl

galK2 galT22 metBl trpR55

J. Mottram,

WUMP.
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2.3.1.3 Screening libraries.

For screening on circular 87 mm plates, titrations of lambda in SM buffer were 

added to 100 ja \ of an overnight culture of LE392 that had been centrifuged and 

resuspended in l/10th volume of 10 mM MgSCU. These were incubated for 20 minutes 

at r.t. to allow preabsorbtion of the phage to the cells. The cells were then added to 3 

ml of top LB agar that had been cooled to 45 °C and then plated onto LB bottom agar, 

and incubated overnight at 37 °C.

Plaques were transferred to Hybond-N nitrocellulose filters for 2 minutes. The 

filter and agar were pierced with an ink filled syringe needle to enable the duplicate 

filter to be aligned and the autoradiograph orientation to be worked out. The duplicate 

filter transfer lasted 4 minutes. After transfer the filters were placed in denaturing 

solution for 2 minutes, neutralising solution for 2 minutes, and washed in 2 x SSC for 1 

minute before baking at 80 °C for 2 hours. The plates were sealed with parafilm and 

stored at 4 °C.

Hybridisation was performed as for Southern blots. Positive plaques were 

removed from the plate by pipetting the agar into a 1 ml pipette tip that had had the end 

removed with a scalpel blade. This was then placed into 1 ml of SM buffer and briefly 

vortexed to help release the phage particles. 50pi \ of chloroform was then added to 

suppress bacterial growth and the phage stored at 4 °C.

2.3.1.4 Stabilate formation.

E. coli strains were grown overnight at 37 °C in 2 x YT. 0.75 ml of the culture was 

added to 0.75 ml of 30 % glycerol, mixed by pipetting and stored at -70 °C.
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2.3.2 DNA protocols (Ec)

2.3.2.1 Plasmid Preparation.

Single colonies of E. coli were picked with a sterile toothpick, and grown 

overnight in 2 ml of 2 x YT medium at 37 °C with constant shaking. Alkaline lysis 

minipreps of 1.5 ml of culture were used for screening ligations (Sambrook etal.,

1989). The protocol was followed up to the neutralisation step (addition of potassium 

acetate). An equal volume of chloroform was then added to the tube, shaken 

vigourously by hand, centrifuged at full speed in a microfuge for 5 minutes, and the 

aqueous phase transfered to a clean tube and precipitated with 0.7 volumes of iso

propanol (propan-2-ol). After washing the pellet with 70 % ethanol and drying, the 

DNA was typically resuspended in 30 /d  of TE. Plasmid DNA was extracted from 3 ml 

of a 5 ml 2 x YT overnight culture using Magic or Qiagen Minipreps for subcloning, 

sequencing and labelling (Promega and Qiagen respectively).

For Eukaryotic transfections DNA was extracted from 30 ml of a 2 x YT culture 

grown overnight from a single colony, using Qiagen Midiprep columns (Qiagen).

2.3.2.2 Lambda DNA preparation.

The lambda plaque was placed in 1 ml of SM buffer with 50 /d  of chloroform, 

briefly vortexed, and left at 4 °C overnight. 0.5 ml of this buffer was added to 20 ml of 

LB media containing 10 mM MgCh 10/d  of an overnight culture of LE392 that had 

been centrifuged and resuspended in 1/10th volume of 10 mM MgSCU were added and 

the tubes incubated at 37 °C overnight with shaking. At the same time a 40 ml 

overnight culture of uninfected LE392 was set up from a single colony.

The next morning the lambda culture was cleared by centrifugation at 11 000 g 

for 5 minutes. The supernatant was added to 140 ml of LB media plus 10 mM MgCh 

and the 40 ml overnight culture of LE392. This was grown at 37 °C with shaking for 6
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hours or until the culture cleared. DNAse I and RNAse A were added to 1 pig I ml and 

left at r.t. for 30 minutes. The culture was centrifuged at 11 000 g for 10 minutes at 4 

°C and the supernatant decanted into a new flask. Solid NaCl was added to 1 M and 

PEG 6000 to 10 % (w/v). This was allowed to dissolve slowly at r.t. and the solution 

then left at 4 °C overnight.

The tube was then centrifuged at 11 000 g for 10 minutes at 4 °C and the pellet 

resuspended in 3.2 ml of SM buffer. An equal volume of chloroform was added, the 

solutions mixed and spun at 1 600 g for 15 minutes. The aqueous phase was removed 

to another tube, avoiding disturbing the interface, and the extraction repeated. This was 

repeated until there was no white material at the interface. Then EDTA was added to 

20 mM, Proteinase K to 50 pig / ml and SDS to 0.5 %. This was incubated at 65 °C for 

1 hour. The solution was then extracted twice with phenol/chloroform, once with 

chloroform, and the DNA precipitated with ethanol/ammonium acetate at -20 °C. The 

DNA was washed with 70 % ethanol, dried and resuspended in TE buffer.

2.3.2.3 PCR screening of transfectants.

A numbered bacterial colony was touched with a sterile toothpick. This was 

then dipped into 20 pi \ of dPhO in a 0.5 ml eppendorf tube. The tubes were boiled for 5 

minutes, spun briefly in a microfuge and placed on ice. The rest of the PCR ingredients 

were added to a final volume of 50 pi\ and overlaid with mineral oil. The PCR 

conditions were generally:

Step 1 94 °C for 5 min (initial denaturation)

Step 2 55 °C for 30 sec 5 /d  of each oligo (20 pM stock)

Step 3 72 °C fo ri min

Step 4 94 °C for 30 sec

(repeat Steps 2-4 for 30 cycles) 

Step 5 55 °C for 30 sec

5/<l of 2 mM dNTPs

5 /d  of lOxTaq buffer

0.5/d  of Taq DNA polymerase (5 U //d)

dH2Oto50 /d
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Step 6 72 °C for 10 min

10/d  of each reaction was added to 3 pi\ of 5 x LB and run on an applicable percentage 

agarose gel.

2.3.3 Protein protocols (Ec)

2.3.3.1 Purification of poly Histidine-tagged fusion proteins.

For screening transformants, the rapid screening of small scale expression 

cultures protocol was used (Qiagen). Large scale preparation of denatured His-tagged 

protein used a scaled up version of this method. The 10 ml overnight culture was added 

to 90 ml of fresh 2 x YT, grown at 37 °C with shaking. After 1 hour IPTG was added 

to a final concentration of 0.2 pig / ml. After a further 3 hours the cells were spun 

down, the supernatant removed, and the cell pellet kept at -20 °C until the protein 

purification. The 1.5 ml of Ni2+/agarose used per purification was contained in a 

column for the large scale purification of the TbCRK3/H protein. The bound protein 

was eluted by lowering the pH of the urea buffer, instead of using EDTA addition to 

elute the protein as in the small scale screening protocol.

Native purification of His-tagged protein was as per the Qiagen protocol for 

cytoplasmic location, with imidazole washes and elution at varying concentrations 

depending on the experiment.

2.4 S.pombe protocols.

2.4.1 Transfection of S. pombe.

The lithium acetate procedure was used for yeast transfection. A 150 ml culture

of the starting strain was grown at 25 °C in MB medium with constant shaking to a
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concentration of ~ lx l0 7 cells / ml. The cells were pelleted at 3000 rpm for 5 minutes, 

washed with 50 ml of dl-teO and re-pelleted. The cells were resuspended at lxlO9 cells

1 ml in lithium acetate (pH 4.9), aliquoted into microcentrifuge tubes (100ji\ / tube) and 

incubated at 25°C for 90 minutes. 15 pt\ of TE containing 1 pig of plasmid DNA was 

added and the tubes gently vortexed to mix, not allowing the tubes to cool down. 290 

y\ of prewarmed (25 °C) 50 % PEG-4000 was added, mixed by gentle vortexing and 

incubated at 25 °C for 1 hour. The cells were heatshocked at 43 °C for 15 minutes, 

then allowed to cool to r.t. for 10 minutes. The tubes were centrifuged at 5000 rpm for

2 minutes and the supernatant removed. The pellet was resuspended in 1 ml of 

l/2YEL+leu by repeated pipetting, transfered to a 50 ml flask containing 9 ml of 

l/2YEL+leu and incubated at 25 °C with shaking for 1 hour to allow recovery. 100 pi\ 

of this was spread on MMA plates, with and without thiamine.

2.4.2 Preparation of S.pombe protein extracts.

10 ml of yeast culture was grown to a density of approximately 5x10 6 cells / ml 

in minimal medium ( O . D . 5 9 5  = ~0.25). The culture was then spun down by gentle 

centrifugation, washed with 1 ml of ice cold stop buffer (150 mM NaCl, 50 mM NaF, 

10 mM EDTA, 1 mM NaN3, pH 8.0), and re-centrifuged and left to drain. The cell 

pellet was resuspended in 4 jt\ of RIPA buffer (10 mM sodium phosphate pH 7.0, 1 % 

Triton X -100,0.1 % SDS, 2 mM EDTA, 150 mM NaCl, 50 mM NaF, 0.1 m M NaV03, 

4//g / ml leupeptin, 1 mM PMSF). 0.5 ml of acid washed glass beads (0.5 mm 

diameter, Sigma) were added and the tube vortexed for 1 minute. 20 pi\ of 1 % SDS 

was added and the tube boiled for 3 minutes. 200 p \  of 2 x FSB was then added before 

a further 5 minutes of boiling. The extract was then centrifuged at 4 °C in a microfuge 

for 15 minutes at maximum speed and the supernatant removed to another tube. 15 ja \ 

of the extract was used in each lane for Western blotting.
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2.5 T. brucei protocols.

2.5.1 General protocols (Tb)

2.5.1.1 T. brucei strains used.

The procyclic cultures used for DNA extraction, protein extracts and the 

creation of mutants was from the STIB247 strain, as were the mixed bloodstream forms 

and the short stumpy forms. The monomorphic long slender line used was IstatC123.

2.5.1.2 The growth of procyclic form T. brucei.

The procyclic form T. brucei were cultured at 28 °C in 5 ml cultures of SDM-79 

medium (Brun and Schonenberger, 1979) + 10 % fetal calf serum (FCS), passaged 

approximately every third day to a concentration of 0.5 x 106 cells / ml. Antibiotics 

were added to the flasks where selection was desired.

2.5.1.3 Preparation of T. brucei for microscopic examination.

10-25 ]i \ of log phase procyclic form T. brucei were spread across each slide. Low 

density cultures, such as the putative tbcrk3 null mutants, first had 0.5 ml spun down in 

a microfuge at 1 OOOrpm for 5 minutes. 475 ja \ of the supernatant was removed and the 

pellet gently resuspended. This was then spread onto the slide. The slides were air 

dried in a tissue culture hood before the cells were fixed in 100 % methanol for 1 

minute. The slides were then washed with PBS for 2 minutes and then rinsed with 

dFhO before air drying again. The cells were stained with 1 pig / ml DAPI for 5 

minutes before washing with PBS and mounting.
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2.5.1.4 Formation of T. brucei stabilates.

Stabilates were made by centrifugation of 5 ml of a mid log-phase culture, 

resuspension in 1 ml of SDM-79 (without FCS), and addition of 0.5 ml of 22.5 % 

glycerol. The samples were transfered to cryotubes and frozen surrounded by cotton 

wool in a expanded polystyrene box in a -80 °C freezer overnight, and then storage in 

liquid nitrogen.

2.5.2 DNA protocols (Tb).

2.5.2.1 Trypanosome Genomic DNA Preparation.

High molecular weight DNA was prepared from pellets of procyclic T. brucei 

kept at -70 °C, or freshly spun down cultures of procyclic T. brucei, using the Nucleon 

reagents (Scotlab). Typically, 5 x 10^ cells were used per extraction. The protocol was 

followed precisely, without the RNAse step, with the DNA being recovered from the 

ethanol precipitation step by spooling with a closed glass pipette. A 1/100 dilution was 

assayed by a spectrometer at 260 nm and 280 nm to assess the concentration and purity 

of the samples. All manipulations of the genomic DNA were performed with cut down 

tips.

2.5.2.2 Restriction Enzyme digestion of Genomic DNA.

3-6 yig of T.brucei DNA were digested per lane in 3 0 //I total volume. For each 

lane, 10 U of enzyme were added at the start of the digest and the mixture gently 

stirred. After 1.5 hours at 37 °C 10 more Units of enzyme were added and mixed 

carefully. After another 1.5 hours 10 pi\ of 5 x LB were added, and 40 pt\ loaded onto 

the agarose gel using cut off pipette tips.
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10pig of Human high molecular weight DNA were digested per lane in a total 

volume of 100 pi\. As above, 10 U of enzyme were added at 0 hours and 1.5 hours into 

a 3 hour incubation. The DNA was then precipitated with ethanol, and gently 

resuspended in 30 pi\ of TE. 10 //I of 5 x LB were added, and 40 pi\ loaded onto the 

agarose gel using cut off pipette tips.

2.5.2.3 Transfection of Procyclic T. brucei.

Mid-log phase (~6 x 106 cells / ml) procyclic form cultures were gently pelleted 

by centrifugation at room temperature. The pellets were washed once with Zimmerman 

post-fusion medium (ZPFM), pelleted again, and resuspended in ZPFM at 6 x 107 cells / 

ml. ~50pig of the respective DNA at ~2 mg / ml in dH20 was added per 0.5ml of cells 

to be transfected. The transfection was by electroporation (Bio-rad Gene Pulser) using 

0.4 cm cuvettes at 1500 V and 25 piF. The pulse was applied to the sample twice before 

transfer of the cells into pre-warmed SDM-79 medium. After incubation overnight for 

recovery the cells were passaged to a concentration of 1 x 106 cells / ml in SDM-79 

medium containing the antibiotic needed for selection of the transfected DNA.

2.5.2.4 PCR from T. brucei lines.

500pi\ of procyclic form culture was placed in a screwtop eppendorf, DNAse I 

added to 10 pig / ml and incubated at 28 °C for 1 hour. EDTA was added to 4 mM and 

the trypanosomes pelleted in a microfuge at 1 000 rpm for 5 minutes. 480pi\ were 

removed, the pellet resuspended, and then incubated in a boiling water bath for 15 

minutes. 0.5 pi\ was used as a template in each reaction. The PCR conditions were 

generally:

Step 1 94 °C for 5 min (initial denaturation)

Step 2 60 °C for 45 sec 5 /d  of each oligo (20 pM stock)

63



Step 3 72 °C for 1 min 30 sec 5 /d  of 2 mM dNTPs

5 /d  of 10 x Taq buffer

0.5/d  of 7a</ DNA polymerase (5 U //d)

0.5/ri of template

d H 2 O to 5 0  \i\

Step 4 94 °C for 45 sec

(repeat steps 2-4 for 40 cycles) 

Step 5 60 °C for 45 sec

Step 6 72 °C for 10 min

10/d of the aqueous phase were added to 3 /d  of 5 x LB and run on 1-1.4 % agarose 

gels.

2.5.3 Protein protocols (71b).

2.5.3.1 Trypanosome protein extracts.

Pellets of T. brucei procyclic and bloodstream forms were resuspended in 

approximately 1 ml of protein Lysis Solution + Inhibitors (LSI) per 5 x 10® cells. The 

tubes were kept on ice for 30 minutes. For whole cell extracts, the protein 

concentration was then determined by the Bradford assay (Biorad), and the extract 

diluted to 2.5 mg / ml with 5xFinal Sample Buffer (5 x FSB). For S100 extracts, the 

lysed cells were centrifuged at 35 000 rpm in a Ti50 ultracentrifuge rotor at 4 °C for 30 

minutes. The supernatant and pellet (resuspended in the same volume of LSI as used 

originally for cell lysis) were diluted to 2.5 mg / ml after Bradford assays.

For SDS-PAGE followed by Coomasie staining or Western blotting, the extracts 

were incubated in a boiling water bath for 5 min and 15 /ri of extract were usually 

loaded per lane on a mini-gel. For larger gels 40/ri of extract were loaded.

2.5.3.2 Sucl/LmmCKSl selections from S100 protein extracts.

For selections, 100 //I of sucl/CKSl or control bead slurry was used in each

experiment. The beads were washed in Lysis Solution (LS). 50 /ri of 50 mg / ml BSA
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and 200]a \ of LSI were added to the beads, which were incubated at 4 °C for 2 hours 

with agitation. 200 ja \ of T. brucei or S.pombe S I00 extract supernatant was added, 

and the beads incubated a further 2 hours. The beads were then washed twice with 1 ml 

of LSI, 3 times with LSI + 1 M NaCl, then once with LSI.

For Western blots, the bound protein was eluted by transferring the beads to a 

screw topped tube, adding 100 pi\ of 2 x F.S.B, heating to 50 °C for 5 minutes, and 

removing the supernatant.

2.5.3.3 Flistone HI kinase assays.

For Histone HI kinase assays the Aminolink beads or Ni2+/agarose were washed 

once with Kinase Assay Buffer (KAB) and transferred to a screw topped tube. The 

beads and the Kinase Assay Mix (KAM) were prewarmed separately at 30 °C for 5 

minutes, before adding 2 0 of KAM to each screw topped tube and incubating at 30 

°C for 20 minutes. 20 p\ of 5 x F.S.B was added before the samples were placed in a 

boiling water bath for 2 minutes. 15pi\ per sample was loaded onto 12.5 % SDS- 

PAGE. The gels were stained with Coomasie R250 brilliant blue, destained, dried 

down onto 3MM paper and exposed to Fuji X-ray film.

2.5.3.4 35S-Methionine labelling of procyclic T. brucei brucei.

Procyclic form STIB247 at 6 x 10^ cells / ml were pelleted at room temperature, 

washed with PBS and then resuspended in methionine free MEM-Eagles media at 6 x 

10^ cells / ml. After 1 hour at 28 °C, lOO^Ci of 35S-Methionine were added and the 

cells grown for another 6 hours. The cells were then pelleted, and stored at -70 °C 

overnight before S100 extracts were made and sucl/CKSl selections performed. 15p\ 

of the extracts were run on 12 % SDS-PAGE in duplicate. Both gels were Coomassie 

R250 brilliant blue stained, to visualise the markers, and one gel was soaked in

Intensify™. The gels were then dried onto 3MM paper and exposed to X-ray film.
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CHAPTER THREE 
ISOLATION OF T. BRUCEI GENES HOMOLOGOUS TO 

THOSE INVOLVED IN CELL CYCLE CONTROL IN
OTHER ORGANISMS
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3.1 Introduction.

The isolation of genes from the kinetoplastids that are homologous to those from 

other organisms has been successfully tried using several different techniques. Both 

PCR with degenerate oligonucleotides (Bangs e ta l., 1993) and heterologous 

hybridisation at low stringency (Wong etal., 1993) have isolated genes of interest. It 

was thought possible that a similar approach could be used to isolate cyclin genes from 

T. brucei and L. mexicana.

3.2 Attempted Isolation of Mitotic Cyclin genes from T. brucei and L. mexicana.

3.2.1 Background and Experiment Design.

In 1990 a number of cyclins had been cloned and the predicted protein 

sequences were available in the data base. The cyclin proteins could be assigned to a 

number of different classes on the basis of characteristic sequence motifs (Colas et a l, 

1993; Gallant and Nigg, 1994). The A and B type cyclins, shown to be involved in 

G2/Mitosis checkpoints (Pines and Hunter, 1992; Minshull et al., 1990), were better 

conserved than the CLN cyclins isolated from S. cerevisiae (Rowley et al., 1992). 

Therefore this category of cyclins was thought the most likely to be conserved enough 

for cloning from the kinetoplastida. Aligning the protein sequences showed that some 

regions of the A and B type cyclins were very well conserved between species. The 

domain of highest conservation was called the cyclin box. It was decided to design 

oligonucleotides that would hybridise to the DNA encoding 3 of the most conserved 

regions within the cyclin box, with the belief that these regions were the most probable 

to be conserved in the evolutionary distant protozoa (Figure 3.2.1). These would be 

used to isolate cyclin genes from T. brucei and L. mexicana using either PCR or library 

screening.
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Figure 3.2.1 Mitotic cyclin domains and oligonucleotide positions and sequences

Gol Go4

| | —  Destruction Box

[ill —  Cyclin Box

HeLa MRAILIDW KYEEMYPP AKYLMEL
A. punctulata - - L - - V - - .............- I
S. solidissima -----------A-
S. pombe - - G - - T - - ------ VNC- -------V- I

X. laevis B 1
X. laevis B2 .............V- - ...............T-
D. melanogaster ----- V ------- ------ LF- - S- - FI - -
CONSENSUS MRAILIDW KYEEMYPP AKYLMEL

Oligonucleotides Gol, Go2, Go3, Go4 and Go5 Degeneracy

M R  A I L I D W
Go1 ATG CG(C/G) GC(C/G) AT(C/T) (C/T)T(C/G) AT(C/T) GAC TGG 64 fold

p  P Y N I E E Y K

Go2 (C/G)GG (C/G)GG CTA CAT CTC CTC GTA CTT 4 fold

L E M  L Y K A
Go3 A(G/T) CTC CAT (C/G)A(A/G) GTA CTT (C/G)GC 16 fold

A A /S /T  K  Y E  E
Go4 C GGATCCGCN (A/G/T)(C/G)N AA(A/G) TA(C/T) GA(A/G) GA(A/G) 1536 fold

Ba/nHI

E M /L/V L Y K A
G°5 C GAATTC (C/T)TC NA(C/G/T) NA(A/G) (A/G)TA (C/T)TT NGC 

EcoRI
768 fold

t ^ Ure ^ 1  The sequences of conserved regions of the cyclin box are from B type cyclins from 
organisms: Arbaciapunctulata (sea urchin), Spisula solidissima (clam), Schizosaccharomyces 

I mbe (fission yeast), Xenopus laevis (frog) and Drosophila melanogaster (fruit fly).
Gol ^  nuc êo ^ e  seQuence of each oligonucleotide is written 5 ' to3'. The bold letters above 
Go3 an  ̂ are am*no ac^ s encoded by the nucleotide sequence. Oligonucleotides Go2,

J and Go5 are antisense and the bold letters above the sequence are the amino acids that would 
by the opposite strand. The sequences in italics are the added restriction enzyme sites

lmProved cloning efficiency.
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L. mexicana genes show a definate codon bias for many of the amino acids 

(Langford et al., 1992). The third base in each codon is, on average, 84 % likely to 

G 1C. The oligonucleotides, Gol,2 and 3, were designed with this bias (Figure 3.2.1), 

which considerably reduced their degeneracy. The intention was to isolate genes, or 

gene fragments, from L. mexicana, and then use heterologous screening to isolate the 

related genes in T. brucei, which shows no extreme codon bias. Oligonucleotides Gol- 

3 had no restriction site engineered on the ends, and therefore were kinased to help 

blunt end cloning of the PCR fragments. Of these oligonucleotides, Gol was sense, to 

be used as the 5' primer in PCR, while Go2 and 3 were antisense, and were the 3' 

primers. Later in the project 2 more oligonucleotides were made which were identical 

to those that had been used to isolate B type cyclin genes from S. cerevisiae (Ghiara et 

al., 1991). Oligonucleotides Go4 and Go5 were designed to the regions also encoded 

by Go2 and Go3, but Go4 was a 5' primer for PCR, unlike Go2. Go4 and 5 contained 

BamHl and EcoRI sites respectively to improve cloning efficiency (Figure 3.2.1). By 

comparison with previously cloned cyclins, it was expected that PCR with Gol/2 

should result in a product of ~190 bp, while Gol/3 would result in a band at ~380 bp. 

Oligonucleotides Go4/5 were expected to produce a band at ~200 bp. Due to the lack 

of cis introns in the Kinetoplastida, these sizes could be predicted for PCR from 

genomic DNA as well as from cDNA.

3.2.2 Cloning Attempts.

One approach to cloning, that had previously been successful in isolating

cysteine protease genes from T. brucei (Mottram etal., 1989b), was direct screening of

cDNA libraries with degenerate oligonucleotides. To ascertain the correct hybridisation

conditions, the oligonucleotides Gol-3 were endlabelled with 32P and hybridised

individually to an L. mexicana genomic DNA Southern blot that had been run in

triplicate. All three oligonucleotides gave multiple bands, in multiple restriction

enzyme digests, although to the accuracy of the experiment, no two oligonucleotides
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gave the same band. (Data not shown) Even so, a L. mexicana cDNA library in lambda 

Zap (supplied by J.C.Mottram) was screened with Gol and Go2 endlabelled with 32P  

These two oligonucleotides were expected to hybridise to genes encoding both Cyclin 

A and B, unlike Go3, which is Cyclin B specific. -30  000 plaques were screened in 

duplicate, with one filter probed with Gol and the other with Go2. No plaques that 

hybridised to both probes were found. Of the 6 plaques that appeared to hybridise to 

Gol, none gave positive signals in the secondary screening. Three lambda clones 

which hybridised to Go2 were purified, the inserts rescued into Bluescript and single 

strand partial sequence obtained. No homology to any cyclin sequence in the data base 

was found. This approach had also been tried in T. brucei with an oligonucleotide 

equivalent to Go2 (M.Carrington, Personal communication). Many cDNA clones were 

sequenced but in each case the sequence hybridising to the oligonucleotide probe was 

found to be in the 3' untranslated region and antisense to the Open Reading Frame 

(ORF). As this approach was not successful in isolating a cyclin gene it was ceased.

PCR with different combinations of the 5 oligonucleotides was also tried, using

both L. mexicana and T. brucei genomic DNA as template. The annealing conditions

varied between 37 °C and 55 °C. All the oligonucleotide combinations gave a large

number of bands and smearing, even at high annealing temperatures. The relative

intensities of bands varied between experiments with few bands being consistent.

Initially the Gol/Go3 PCR products were seperated on an agarose gel, the DNA was

capillary blotted, and the membrane hybridised to endlabelled Go2, an internal

oligonucleotide. This attempt to find a specific cyclin fragment amongst the multiple

bands never resulted in a signal. In an attempt to reduce spurious annealing,

"touchdown" PCR was tried (Don etal., 1991). With this technique the first few rounds

of PCR have a higher than optimum annealing temperature, which should result in only

target sequences with good matches to the oligonucleotides priming DNA synthesis.

The annealing temperature is then reduced in steps over a number of rounds to less

stringent conditions, when several more amplifying rounds take place (See Materials

and Methods for further details). This should result in a decrease of the products that
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rely initially on a poor match annealing. This approach still gave multiple bands, but 

fewer than before, and with higher consistency. PCR with oligonucleotides Go4 and 

Go5 gave the most reproduceable results, and so 10 \i\ of each 50pi\ reaction was run 

out in a 1.8 % Imp agarose gel and bands cut out with sterile scalpel blades (Figure 

3.2.2). Bands LI, L2 and T1 were very consistent, though not of the expected size, 

while T2 was the area of the gel which contained a smear of DNA molecules of the 

expected size from the T. brucei templated reaction. 0.5 j*\ of Imp agarose from each 

slice was used as template in another PCR reaction, using the same primers, to increase 

the proportion of each band in the respective reactions. These reactions were cleaned 

up by phenol/chloroform extraction and digested with EcoRl and BamHl before 

running out on a 1.8 % Imp agarose gel. The four bands were again cut from the gel 

and ligated into pBS SK-. Most of the clones had inserts of the expected size, but when 

sequenced, none of the >15 differing clones showed any similarity to cyclins. Indeed 

most showed no ORF in any possible frame. This approach was tried many times with 

minor variations. Other approaches tried included PCR using cDNA as template, which 

also failed to reduce spurious bands. Nested PCR using cDNA template was also 

attempted. This involved a first PCR using Gol and an "adapter" oligonucleotide 

which hybridised to the sequence downstream of the poly(A) tail. When the cDNA is 

made, the 3' primer for synthesis of the first DNA strand consists of a poly(T) tract, 

followed by a region containing a number of restriction enzyme sites, to facilitate 

cloning of the cDNA into the vector. After the first strand synthesis, an oligonucleotide 

consisting of just the restriction enzyme sites is used as the 3' primer in a PCR to 

amplify the cDNA. The annealing of this "adapter" oligonucleotide is more specific, 

with a higher melting temperature, than that of a poly(T) oligonucleotide. The first 

stage of the nested PCR should specifically amplify any cyclin messages in the library, 

giving a smear of DNA due to variation in the length of the poly(A) tail and the position 

of the initial priming. A second PCR, using the products of the first as template, is then 

Performed with 2 oligonucleotides that are internal to the primers in the first PCR. The
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Figure 3.2.2 Touchdown PCR

L T

1 kbp

500 bp
350 bp
220 b'p 
150 bp

T1
LI

T2
L2

Figure 3.2.2 Touchdown PCR with Go4 and Go5 oligonucleotides. Lanes L and T; reactions 

with L. mexicana or T. brucei genomic DNA as template respectively. One fifth of the PCR 

reactions was run on a 1.8% agarose gel, and stained with Ethidium Bromide. The bands 1 and

2 from each lane were cut from the gel and used as template in another PCR with Go4 and 5.
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oligonucleotides used, Go4 and Go5, gave no consistent bands in these reactions, and 

normally no bands at all. In the end it was decided that the attempt to directly clone 

cyclins was not going to be successful, and a more productive approach to analysing 

CDK complexes in the trypanosomatids would be to concentrate on the kinase subunits 

of the complexes themselves.

3.2.3 Cloning a Human Cyclin B.

Prior to the start of the Ph.D., PCR had been tried by other members of the 

laboratory, with other oligonucleotides, to isolate cyclin genes from L. mexicana. One 

consistent band of the correct size which hybridised to an labelled internal 

oligonucleotide, was subcloned into pBS SK- using the £c<9RI sites added to each 

primer. The clone, Lcycl2, had the expected insert size of 350 bp and was sequenced 

on both strands with the T3 and T7 primers (Figure 3.2.3).

As Figure 3.2.4 shows the PCR product is almost identical to the Human Cyclin 

B1 gene already cloned (Pines and Hunter, 1989). It seems likely that during the early 

PCR stages of the experiment the L. mexicana DNA was contaminated by some HeLa 

DNA that was being used as a positive control. As expected, the random primed, 

labelled insert failed to hybridise to L. mexicana DNA on a Southern blot (Data not 

shown).

The sequence differences between Lcycl2 and the previously reported HsCyBl

sequence could be due to a number of reasons. The nucleotide variation could simply

be data base error, though the rate would seem considerably higher than previously

reported (~1 %). The multiple rounds of PCR are likely to cause a number of base

changes. Evidence supporting this is that there is no bias towards changes at the third

base in each codon, which results in few silent mutations. This implies that the

sequence was not under selection pressure when the changes occured. If the differences

are not due to PCR error, then the lack of silent mutations would suggest that the

Leycl2 sequence is unlikely to be allellic to the previously cloned human B1 gene
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Figure 3.2.3 DNA and predicted protein sequence of tfie probable

human PCR contaminant.

I  Q V Q M K ' F  R L L  Q E T  M Y M T
GATACAGGTT CAAATGAAAT TTAGGCTGCT GCAAGAGACT ATGTACATGA

V P I  I D R  F M Q D  N C A S K K
CTGTTCCCAT TATTGATCGA TTCATGCAGG ATAATTGTGC GTCCAAGAAG

M L Q L  V G V  T A M  F I  A S K Y E
ATGCTGCAGC TAGTTGGTGT CACTGCCATG TTCATTGCCA GCAAATATGA

E M Y  P P E I  G D F  A F V T N N T
AGAAATGTAC CCTCCAGAAA TAGGTGACTT CGCTTTTGTG ACTAACAATA

Y I  K H Q I  R P I E  M K I  L R V
CTTACATTAA GCACCAAATT AGACCAATTG AAATGAAGAT TCTAAGAGTT

L N F S  L G P  P L P  L H F F  H R A
CTAAACTTTA GTTTGGGTCC CCCTCTGCCT CTGCACTTCT TCCATAGAGC

S K I  G E V D  V E Q  H T L
ATCTAAGATT GGAGAGGTTG ACGTTGAACA GCATACTTTG

Figure 3.2.3. The above sequence from the insert of pLpCYC12 does not 

include the regions encoded by the oligonucleotides used in the PCR. The amino acid 

encoded by each codon is above the First base of the triplet.
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Figure 3.2.4a Comparison of the DNA sequence of the PCR contaminant

and the HeLa Cyclin B1 gene.

pLpCYC12 G ATA
1 I

CAG 
1 1 1

GTT
1 1 I

CAA
1 1 1

ATG
1 1 1

AAA
1 1 1

TTT
I |

AGG
1 1 1

CTG
I |

CTG
I I

CAA
| |

HeLa Cyclin B1 a
1 1 
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1 1 1 
CAG

1 1 1 
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TTC ATG
1 1 1
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1 1
ACC

1 1 1 
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1 1
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1 1
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GTC
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1 1 1

TAT
1 1 1
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1 1 11 1 1 
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1 1 1 
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1 1

GGT GAC TTC
1 1

GCT TTT GTG ACT
1 1 1
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I I

AAT ACT TAC ATT AAG CAC
1 1
ATT GGT GAC TTT GCT TTT GTG

1 1 1 
ACT

1 1 
GAC AAC ACT TAT ACT AAG CAC

CAA
1 1 1

ATT
I 1

AGA 
1 1 1

CCA
1

ATT
I I

GAA
1 1 1

ATG
1 1 1

AAG
1 1 1
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1 1 1
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1 1 1
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1 1 1
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I 1

CTA
I I
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1 1 1
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CAA
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1
CAG
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1
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GGA
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GTT
1 1 1

GAC
I I

GTT
I I

GAA
1 I

CAG
I I

CAT 
1 1 1

ACT
1 1 1

TTG
1 1 1I 1 ! 

AAG
1 1 1 
ATT

1 1 1 
GGA

1 1 1 
GAG

1 1 1 
GTT

1 1
GAT

1 1
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CAA

1 1 1 
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Figure 3.2.4a The homology between the two sequences is 88% over the 

340bp. Of the differing bases, 29% are at the first position of the codon, 14% at the 

second, and 57% at the third.
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Figure 3.2.4b Comparison of the predicted human Cyclin B1 protein 

sequence and the translated pLpCYC12 insert.

pLpCYC12 IQVQMKFRLL QETMYMTVPI IDRFMQDNCA SKKMLQLVGV
5 I II II II II II II II II I I I I I I I • I I • I I I I I I I I I 

Human B1 VQVQMKFRLL QETMYMTVSI IDRFMQNNCV PKKMLQLVGV

TAMFIASKYE EMYPPEIGDF AFVTNNTYIK HQIRPIEM KI LRVLNFSLGP

TAMFIASKYE EMYPPEIGDF AFVTDNTYTK HQIRQMEMKI LRALNFGLGR 

PLPLHFFHRA SKIGEVDVEQ HTL

PLPLHFLRRA SKIGEVDVEQ HTL

Figure 3.2.4b The predicted protein sequence comparison between the PCR 

derived insert and the previously cloned Human Cyclin B1 gene shows that the 

percentage identity is 87% with no gaps in the aligned sequences.
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sequence. The obvious possibility, if the changes are not artifacts of cloning, 

sequencing or data base error, is that this sequence has been amplified from a pseudo

gene. The lack of Southern blot data in the human cyclin gene family leaves this open.

3.2.4 Reasons for the failure to clone a kinetoplastid cyclin.

Although the cell cycle machinery is extremely well conserved throughout the 

Eukaryotes, with many of the proteins from higher organisms capable of 

complementing yeast mutants, the Kinetoplastida are a very early branch from the 

eukaryote lineage (Sogin etal., 1986; Sogin, 1991). Even within the Kinetoplastida the 

organisms are highly diverged. Therefore the evolutionary distance between T. brucei 

and S.pombe is far greater than that between any of the higher eukaryotes (see Figure 

1.1.1). This extreme divergence can be seen in the relatively low conservation of the 

CDC2 related kinases from the Kinetoplastida that will be described later. As more 

cyclins have been cloned from diverse species it is now clear that the cyclin family is 

less well conserved than previously thought. It is likely therefore that kinetoplastid 

cyclins will have significant sequence divergence making cloning by PCR very 

difficult. A putative mitotic cyclin from T. brucei has been recently characterised 

(Affranchino etal., 1993). The protein described is relatively small, and has an unusual 

domain structure for a mitotic cyclin. The cyclin box is near the N-terminus, with the 

destruction box at the C-terminus. The cyclin box has considerably fewer conserved 

residues than usual with numerous insertions and deletions. One of these insertions, of 

12 residues, falls within the region to which Gol was designed. The normally 

conserved ASKYEEMYPP motif, parts of which Go2 and Go4 were designed to, is 

AEHSDSANPK, and the B type cyclin motif of Go3 and Go5 is also totally absent.

This is obviously the reason why the methods that I employed failed to isolate this 

particular T. brucei cyclin-like gene.
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3.3 Isolation of the tbcrk3 gene.

3.3.1 The background to cloning the tbcrk3 gene.

A PCR-based approach to cloning cdk related genes had been started in the 

laboratory prior to this Ph.D. Initially a cDNA from L. mexicana, homologous to cdc2, 

was isolated accidentally during a seperate experiment. This gene was designated 

Immcrkl (Mottram etal., 1993). Oligonucleotides were then designed by Dr. J.C. 

Mottram to hybridise to DNA encoding conserved regions of CDC2 related protein 

kinases and used for PCR with T. brucei or L. mexicana genomic DNA as template 

(Figure 3.3.1). Two gene fragments were amplified by PCR from T. brucei genomic 

DNA. with the new oligonucleotides. One T. brucei fragment showed a high level of 

homology to Immcrkl and so was named tbcrkl. Immcrkl was used to screen a T. 

brucei genomic lambda library under low stringency conditions and a T. brucei gene so 

isolated was named tbcrk2. The second gene fragment from the PCR approach was the 

least conserved, compared to other CDC2 related proteins, within the amplified region 

and was called tbcrk3. The genomic copies of the tbcrkl 12 and Immcrkl genes had all 

been cloned and sequenced prior to the start of the Ph.D.

3.3.2 Isolating a Lambda phage clone containing tbcrk3.

To isolate the genomic DNA containing the tbcrk3 gene, a EMBL4 genomic 

library (supplied by J.C.Mottram) was screened with a 350 bp tbcrk3 gene fragment 

which had been gel purified. ~30 000 plaques were screened and one hybridised. The 

hybridising plaque was purified by 2 further rounds of dilution and hybridisation. One 

clone, CD47.2, was chosen for a large scale preparation of DNA.

The phage DNA was digested with a number of restriction enzymes including

EcoW and Hind III. A Hindlll site was predicted from the PCR fragment sequence, and

was therefore expected to produce 2 hybridising fragments on the Southern blot. The
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Figure 3.3.1 Cloning cdc2-related kinases by degenerate oligonucleotide PCR

Simplified map of a cdc2-related kinase ORF

oligo 1 oligo 2 Kinase
domain VIb

ATP binding PSTAIR 
domain box oligo 3

Figure 3.3.1 Degenerate oligonucleotides were designed to anneal to the DNA encoding three well 

conserved regions of the cdc2 family of serine/threonine kinases by Dr. J. Mottram. EcoRl restriction

sites were added to oligonucleotides 1 and 3 to facilitate cloning. PCR was performed with the two

32exterior primers (oligos 1 and 3), and the products screened by Southern blotting using a P labelled 

internal primer (oligo 2). The products were then digested with EcoRl and cloned into pBlues^ipt 

for sequencing. This work was performed prior to the start of my Ph.D.
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intention was to subclone a small fragment of the lambda clone into Bluescript plasmid 

(pBS) to facilitate further mapping and sequencing of the gene, and it was hoped that 

both the Hindlll fragments generated would be of an acceptable size for pBS. The 

digests were run on an EthBr stained, 0.7 % agarose gel (Figure 3.3.2a). The DNA was 

transferred to Hybond N nylon membrane by capillary blotting overnight and fixed by 

baking at 80 °C for 2 hrs. When hybridised to the tbcrk3 probe only two of the digests 

performed had resulted in a subclonable hybridising fragment. These exceptions were 

EcoRl, which gave an ~4.5 kb band, and Hindlll, which gave the expected 2 fragments, 

one >12 kb and one at 1.4 kb (Figure 3.3.2b). As the EcoRl digest resulted in a double 

band at 4.5 kb when stained with EtBr, it was difficult to be sure which band was 

hybridising. Therefore, 20 pig of CD47.2 DNA was cut with EcoRI, both bands were 

removed from Imp agarose and ligated into EcoRl cut pBS SK- that had been 

dephosphorylated using Calf Intestinal Alkaline Phosphorylase (CIP). After 

transformation of CaC12-competent XLl-Blue and plating on Tet/Amp plates plus X- 

Gal/IPTG, a number of white, recombinant colonies were picked for analysis. The 

plasmid DNA from the overnight cultures was prepared by a modified Bimboim-Doly 

procedure, restricted with £h?RI and Southern blotted. The 1.4 kb band in the Hindlll 

digest was also subcloned from Imp agarose into pBS SK-, DNA prepared from 8 white 

colonies, and the restricted DNA blotted, in an equivalent manner. The Southern blots 

were hybridised to the labelled tbcrk3 gene fragment, which identified pTgCD70H3 as 

containing the Hindlll fragment of interest, and the plasmids pTgCD70E(S)2/3/7 and 8 

as holding the correct EcoRl fragment.

3.3.3 Mapping pCD70E(S)3 and 8.

Digests of the plasmid DNA with Mwdlll gave identical patterns with

pCD70E(S)2/7 and 8. The pattern of pCD70E(S)3 differed slightly, lacking the 1.2 kb

band, with the 2.9 kb pBS band shifting to 4.1 kb. This was due to the insert being

reversed in orientation relative to the vector Multiple Cloning Site (MCS). Further
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Figure 3.3.2 Subcloning of the tbcrkS containing fragments from lambda CD47.2.

(A) (B)

1 2 1 2

12kb-
6kb

4kb‘

2kb-
1.6kb

lkb-

0.5kb-

1.6kb

Figure 3.3.2 DNA from lambda CD47.2 was digested with Hindlll or EcoRl and run on a 

0.7% agarose gel, stained with EtBr (Panel A). The DNA was then transfered (without HC1 

treatment) to a Hybond N membrane and fixed. The membrane was hybridised to a random 

primed PCR fragment of tbcrk3 (Panel B).

i

81



Figure 3.3.3 Mapping the tbcrkS genomic locus.

4 5 6 7 8 9 10

0.22 kb

0.5 kb
0.3 kb—»

0.13 kb

3 kb 
2kb 1.6 kb'

0.4 kb

1 2 3 4 5 6 7 8 9  10

4

0.5 kb
0.4 kb 
0.3 kb

Figure 3.3.3 Purified pCD70E(S)8 plasmid was digested with multiple restriction 

enzymes to map the insert DNA. Lane 1 -//zwdlll, lane 2-Pstl, lane 3-Sail, lane 4-Xbal, 

lane 5-HindllUPstl, lane 6-Hindll\JSall, lane 1-Hindlll/Xbal, lane S-Pstl/Sall, lane 9- 

Pstl/Xbal, lane \0-Sal\IXba\. The two photographs show the same gel after two 

different run times.
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mapping showed no BamHl, Bglll, Clal, EcoRV, Notl, Smal, Sstl or Sstll restriction 

sites within the insert. The 4.4 kb £ce>RI insert was mapped with Hindlll, Pstl, Sail and 

Xbal (Figure 3.3.3). Further mapping using Sspl and Xhol was also performed, 

however the precise number and positions of Xhol sites within the 1.4 kb Hindlll 

fragment were not known until the coding region was sequenced [Figure 3.3.4 is a map 

of pCD70E(S)8].

3.3.4 Sequencing the tbcrk3 ORF.

A number of overlapping fragments from the area containing the ORF were 

subcloned into pBS to facilitate sequencing (Figure 3.3.5). The only difficult region was 

the 50 bp Xhol fragment within the tbcrk3 gene. To allow the sequencing of the non 

coding strand of this fragment a Hinfl digest of pTgCD70H3, followed by end filling 

with Klenow fragment, was performed. After a second digest with Xbal the products 

were run through a 1.8 % TAE agarose gel and the required band extracted with the 

Geneclean protocol. This was then ligated into pBS SK+ that had been digested with 

EcoRV and Xbal.

The overlapping subclones were sequenced using the various primers that 

hybridise to the pBS MCS. The second strand of the far 5' and 3' termini of the tbcrk3 

ORF were sequenced by designing oligonucleotides to hybridise to the sequence 

obtained from the first strand. This was due to a lack of useful cloning sites in these 

regions (Figure 3.3.5). The complete ORF of 936 bp encodes a protein of 311 amino 

acids and a termination codon (Figure 3.3.6). There is a stop codon in frame with the 

probable start ATG, 18 bp upstream.
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Figure 3.3.5 Sequencing the tbcrkS Genomic locus

Ss S XbXX X H

P
pCD177 *- 

E
pCD93 ^  

EV
pCDlOl
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pCD70H3
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t b c r k 3 
 1----------

H Hf
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H
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Xb Hf

X X

X

H

H

lkb
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H Hindlll X Xhol
Hf Hinfl (not the only site) Xb Xbal
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Figure 3.3.6 Coding strand DNA and the predicted protein sequence of tbcrk3

* V K G
1 TTTTGTC TC TGTTTTC C TC TTAAGTTCTTC AGGAAACGTTAGGTTAAAGG 50

G D M  T M L G  A L T  G R Q  L S S G
51 AGGAGATATG ACAATGCTTG GGGCGTTAAC CGGTCGACAA CTTTCCTCTG 10 0

L K D  Q F D  R Y N R  M D I  L G E
101 GTCTTAAGGA TCAGTTCGAC CGCTATAATC GAATGGACAT ACTTGGAGAA 1 5 0

G T Y G  V V Y  R A V  D R A T  G Q I
15 1  GGAACGTATG GAGTTGTATA CCGTGCTGTT GACAGGGCAA CGGGACAGAT 2 0 0

V A L  K K V R  L D R  T D E  G I P Q
201 CGTCGCACTG AAGAAAGTGA GATTAGATCG CACCGATGAG GGAATACCTC 2 5 0

T A L  R E V  S I L Q  E I H  H P N
251 AAACAGCTCT TCGGGAGGTA TCTATTTTGC AAGAAATCCA TCACCCCAAC 3 0 0

I V N L  L D V  I C A D  G K L  Y L I
301 ATTGTTAATC TTCTAGATGT TATATGTGCC GATGGGAAGC TTTACTTGAT 3 5 0

F E Y  V D H D  L K K  A L E  K R G G
351 ATTTGAGTAT GTTGATCATG ATCTCAAAAA GGCTCTCGAG AAGAGGGGTG 4 0 0

A F T  G T T  L K K I  I  Y Q L L E
401 GAGCATTCAC GGGAACTACA CTAAAAAAGA TAATTTACCA GCTACTCGAG 4 5 0

G L S F  C H R  H R I  V H R D  L K P
451 GGACTTTCGT TTTGTCATCG GCACCGCATT GTCCATCGAG ACCTAAAACC 5 0 0

A N I  L V T T  D N S  V K I  A D F G
501 AGCAAACATA CTTGTCACCA CGGATAATTC CGTTAAAATA GCAGACTTTG 5 5 0

L A R  A F Q  I P M H  T Y T  H E V
551 GATTGGCTCG CGCTTTCCAG ATTCCGATGC ACACTTACAC TCACGAGGTT 6 0 0

V T L W  Y R A P E I  L L G E  K H Y
601 GTCACACTCT GGTATAGAGC GCCAGAGATT CTCCTCGGTG AAAAGCACTA 6 5 0

T P A V D M W  S I G  C I  F A E L A
651 CACCCCGGCA GTGGATATGT GGAGCATTGG TTGTATTTTT GCTGAACTAG 7 0 0

R G K  V L F  R G D S  E I G  Q L F
701 CTCGAGGTAA GGTACTCTTT CGTGGTGACA GTGAGATTGG ACAGTTATTT 7 5 0

E I F Q  V L G  T P M  D A E G  S W L
751 GAGATTTTTC AGGTGCTTGG CACCCCAATG GATGCTGAGG GGTCGTGGTT 8 0 0

G V S S L P D  Y R D  V F P  K W S G
801 GGGGGTGTCG TCTCTTCCAG ACTATCGTGA CGTCTTTCCA AAGTGGAGTG 8 5 0

K P L  T Q V  L P T L  D G D  A V D
851 GAAAACCCCT CACTCAGGTG TTACCAACGC TTGACGGTGA TGCTGTTGAT 9 0 0

L L S Q M L R  Y N P  A E R I  S A K
901 CTGCTTTCTC AGATGCTGAG GTATAACCCT GCTGAACGTA TTTCAGCCAA 9 5 0

A A L  Q H P W  F S D  A M F *
951 GGCGGCACTG CAACATCCGT GGTTTAGTGA TGCCATGTTTTAGATCATTATA 100 2

Figure 3.3.6 The sequence of tbcrkS was obtained from overlapping regions of DNA 
subcloned from pCD70E(S)8. The DNA was sequenced on both strands to ensure 
accuracy. In frame stop codons and possible initiation codons are underlined. The 

predicted amino acid is given over the first base in each codon.
86



3.3.5 Analysis of the protein sequences of TbCRKl-3.

The predicted TbCRK3 protein contains all 15 of the conserved residues 

indicative of a serine/threonine kinase (Figure 3.3.7) (Hanks and Quinn, 1991). The 

alignment of the three translated T. brucei crk genes with yeast and human CDC2 

related proteins (Figure 3.3.7) shows that the TbCRK proteins share the same conserved 

regions as other members of this family, e.g. the ATP binding region surrounding T-14 

and Y-15, the PSTAIR box, and the regions either side of T-161 (HsCDC2 numbering). 

The TbCRK proteins also show the same regions of low conservation; e.g. S-93 to V- 

117 (HsCDC2 numbering) and most of the C-terminal 70 amino acids. There are 

notable differences however, including the N-terminal extensions of TbCRK2 and 3, 

and the 6 and 5 residue insertions near the C-terminus of TbCRKl (Figure 3.3.7).

Table 3.3.1 shows the level of amino acid conservation between the 

kinetoplastid CRK proteins, fission yeast cdc2 and budding yeast CDC28 proteins, and 

the family of human CDC2 related protein kinases. For TbCRKl and TbCRK2 the 

highest levels of identity are 56 % and 52 % respectively. TbCRKl is approximately 

equally conserved to HsCDC2, HsCDK3 and HsCDK5 (54 %, 55 % and 56 % 

respectively). TbCRK2 has a generally lower level of identity with the highest scores 

being 52 % (HsCDK2) and 50 % (Spcdc2 and ScCDC28). For TbCRK3 the most 

similar human protein is HsCDK2 (59 %). Even this high level of identity though is 

notably lower than most recognised cdc2 homologues. Organisms as widely diverged 

as S.pombe and humans have cdc2 proteins that are 65 % identical. S. cerevisiae 

CDC28 though is only 60 % identical to HsCDC2, so the figures for the TbCRK 

proteins do not rule out the possibility of their being the functional trypanosome 

homologue.

Figure 3.3.8 shows 4 of the most highly conserved regions of the CDC2/CDK2

family of proteins with the equivalent regions of the kinetoplastid CRK proteins for

comparison. The most obvious variation is the lack, in any of the CRK proteins, of a

totally conserved PSTAIR box, a region implicated in cyclin binding (Pines and Hunter,
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Figure 3.3.7 Comparisons of the TbCRK family with CDC2 related proteins

*

HsCDC2  MEDYTKIE
Hs CDK2 .................................................................................................................................. — N FQ -V -
Spcdc2 .................................................................................................................................. — N -Q -V -

ScCDC28  MS GELAN-KRL-
TbCRK 1  MGSR-ERLQ
TbCRK2 MQVQVQEGQT ACDGSLRPLP SAGPASFVPR SLRPAPLRGT STPDR-SR—
TbCRK3  MTMLGAL TGRQLSSGLK DQFDR-NRMD

* ĵ * k k * k ** * * * * * k**
Hs CDC2 KIGEGTYGW YJCG. . .PtffCT TGQWAMKKI RLESEEEGVP STAIREISLL
Hs CDK2 --------------------- — A . . .  L — E -------L  — D T -T  ----------------------
S pcdc2 - — —------------- — A . . .  L S - R I --------------------  D - S - -- -----------------------

ScCDC28 -V  ALDL-PGQ  GQR L-------------------D--------------------------------
TbCRKl  S ---F R A . . . - D V -  — T I — V -R ------------ K------------ C----------------- 1 -
TbCRK2 -V ------ S — I --------- C . . . H D N F  — RT--------R - P-IVNDG   V— V 
TbCRK3 I L ----------------------R A . . . V D R A  1 — L— V — DRTD— I -  Q— L— V - I -

* *  *

HsCDC2 K E L _______RHP NIVSLQDVLM QD. SRLYLIF EFLSMDLKKY L D S I..P P G Q
HSCDK2 ___ _N —  K -L — IH TE.N K -V -  HQ----------------F M -A . . . SALT
S pcdc2 — VNDENNRS - C - R - L - I - H  A E .-K -V -  D-M-R-SETGAT

ScCDC28 ___ ____ K D D ------- R -Y -IV H  S-AHK---- V - --------DL------- R - M E G -..-K D -
TbCRKl ___ _____ — E  R -L — CH S E .K — T -V - -CME------------- MDH V-G
TbCRK2 R — _______N—  Y V -R -L — VL H E .A K -L  -YMEQ— QGM -K Q  RNT
TbCRK3 Q - I  H-------------- N -L — IC  A -.G K -------------- YVDH A -E K  R-G

* * k k *k k
HsCDC2 YMDSSLVKSY LYQILQGIVF CHSRRVLHRD LKPQNLLIDD K . GTIKLADF
HsCDK2 G I P L P -I  F -L  LA H NT E . -A ------------
Spcdc2 S L -P R — QKF T— L V N -V N - ------------I I --------------------------- K E . - N L ----------

ScCDC2 8 PLGADI— KF MM-LCK— A Y  H - I   NK D . -N L — G—
TbCRKl DL-AGTIQEF M R SL -S-V R - — E -N ------------------P ---------SR E .KEL----------
TbCRK2 AFVGGKLRRI M F -L -L -L H E -FV I — S - I  R - E S W ----------
TbCRK3 AFTGTTL-KI I — L -E -L S --------- R H -IV -------------- A -I -V T T  D .N S V -I ------

k * * * * * * *  *kk j" * * * k k
HsCDC2 GLARAFGIPI RVYTHEWTL WYPSPEVLLG SARYSTPVDI WSIGTIFAEL
HsCDK2  V -V  - T ---------------- -------- A — I  -K Y -----A  — L -C --------- M
Spcdc2  S — V -L  -N -------1 ------- -------- A ------------ -R tf------- G — V -C --------- M

ScCDC28  V -L  -A -------1 ------- -------- A ------------GK£>------- G— T  C--------- M
TbCRKl — G V KKF-Q  D - T Q -G  — V -C ---------- M
TbCRK2 — G---------RV-L QT— T— M------------ A ------------DKQ-LPA— V — M-CV--------
TbCRK3 ------------ q — M HT--------------------------A — I  EKtf-TPA— M  C----------
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t  1 1 * ** * * * *

HSCDC2 ATKKPLFHGD SEIDQ LFRIF RALGTP..NN EVWPEVESLQ DYKNTFPK. .
HsCDK2 V-RRA— P— -T ------- . . DE V-----G-T-M P ------P S ----- . .
Spcdc2 IRRS-----P — -------EI-JC— QV-------. . -E --------g - t l — -----S----- R . .
ScCDC28 CNR— I - S — ----------I _ K — - V ------- . . - E A I — D IV Y -P - F - P S — Q . .
TbCRKl -IG A -----T-K NDA-----L ----- OF-------. . - R Q-----SMDTYP NSS-MLSRPE
TbCRK2 -RRRS— A— TA-N -----S — QL------- . . TE A T -R G -T — P HHNVN— R . .
TbCRK3 -R G -V — R— -----G----- E — OV-------MDAE G S -L G -S — P — RDV------. .

k *
Hs CDC2 ____ WKPGSL ASHVK............ NLDENGLDLL SKMLIYDPAFC RISGKMALNH
Hs CDK2 ____ -ARQDF S K V -P ............ P------DGRS— - Q - - H ------N - ----- A -A — A -
Spcdc2 . . . — RMD- H KV-P............ -G E -D A IE — - A — V---- H ----- A -R — QQ

ScCDC28 ____ -RRK D- S Q V -P ............ S — PR—I ----- D -L -A ------IN ----- A R R -A I-
TbCRKl FQQTLAATCE EQFQTNPAYA K -G P Q -I----- R W L-R -E -SE -LTAAQ— E -
TbCRK2 ____ -T A K P - R T A -P ............ A— D D -V----- RR— C- N -R E — TAYE— Q -
TbCRK3 ____ -S G K P - TQVLP............ T— GDAV----- -Q — R -N — E ----- A -A — Q -

HsCDC2 PYFNDLDNQI KKM
HSCDK2 -F-Q -V T K P V  PHLRL
Spcdc2 N -LR-FH

ScCDC28 ------QES
TbCRKl ------SVEF
TbCRK2 S — DEVREEE VEKLMRFNG
TbCRK3 -W -S-AM F

Figure 3.3.7 Pileup comparison of CDC2 related genes from: Hs-Homo sapiens 

(human), Sp -Schizosaccharomyces pombe (fission yeast), Sc - Saccharomyces 

cerevisiae (budding yeast) and Tb- Trypanosoma brucei.

* - Residues exposed to Solvent,

t  - Residues involved in sucl/CKS binding.

Italics - Regions implicated in sucl/CKS binding.

Bold - Residues involved in cyclin binding,

k - Residues conserved throughout the family of serine/threonine

kinases.
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Table 3.3.1 Conservation between members of the Kinetoplastid CRK family 

and CDC2 related proteins from Humans and yeast.

TbCRKl 7bCRK2 TbCRK3 HsCDC2
TbCRKl 47 47 54
TbCRK2 47 53 49

LmmCRKI 72 48 47 56
HsCDC2 54 49 54
HsCDK2 52 52 59 65
HsCDK3 55 49 56 65
HsCDK4 44 45 48 44
HsCDK5 56 48 51 57
HsCDK6 47 43 47 47

HsPCTAIR-1 50 40 45 52
SpCDC2 53 50 52 65

ScCDC28 52 50 52 60

Table 3.3.1 The figures shown are the percentage identity of the predicted 

protein sequences for the respective gene. Tb - T. brucei, Lmm - Leishmania 

mexicana, Hs - H. sapiens, Sp - Schizosaccharomyces pombe, Sc - Saccharomyces 

cerevisiae.
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Figure 3 3 8 Kinetoplastid CRK protein conservation at CDK control motifs.

HsCDC2
LmmCRKl
TbCRKl
TbCRK2
TbCRK3
LmmCRK3

ATP binding PSTAIR box Thr-167 DSEI BOX

* * *
KIGEGTYGVV EGVPSTAIREISLLKE YTHE GDSEID0

--------c -------------------- F -N - -KNDA—
---------s ------- IlIM1111111u1111 F - 0 - -KNDA—
---------S— I - G ----------V— V----- R- — T - — TAIN-
IL -------------- — I-Q — L— V - I - 0 - -------- G
XL---------------- — I - Q - - L — V -I-Q - -------- G

Figure 3 .3 .8  The predicted protein sequences from the five Kinetoplastid crk genes were compared 

tq the predicted sequence of the Human CDC2 kinase subunit in four regions involved in control of 

nase activity (see Chapter 3.5.2).

* labels a residue phosphorylated during the cell cycle.

- shows amino acids identical to the HsCDC2 sequence.
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1989; Ducommon etal., 1991b). Unexpectedly, CRK3, which has the least conserved 

PSTAIR box (10/16 identity) is the best conserved in some of the other control regions. 

CRK3 is well conserved around Thr-161 (HsCDC2 numbering), which is 

phosphorylated in the active kinase (Nigg etal., 1992; Krek and Nigg, 1992; Solomon,

1992), and is the most conserved CRK at the DSEI box, which is thought to be involved 

in controlling Thr-161 phosphorylation (Heig etal., 1992). The CRK1 proteins, though 

better conserved in the PSTAIRE region, have an unusual sequence around Thr-161 and 

are entirely missing the DSEI motif, while TbCRK2 has intermediate conservation in 

these areas.

The lack of a pattern of conserved, or not conserved, residues continues through 

the sequences (Figure 3.3.7). Of the residues involved in cyclin binding, TbCRKl has 

considerably better conservation with the human and yeast CDC2/CDK2 genes (one 

conservative change out of seven amino acids) than do either of TbCRK2 (three non

conservative changes) orTbCRK3 (two conservative, two non-conservative). The three 

T. brucei proteins show many alterations of the amino acids implicated in sucl/cksl 

binding, however many of these residues are also non-conserved between the human 

and yeast sequences. A substitution common to the TbCRK family, not seen in other 

CDK proteins is Aspartic acid for Histidine-23 (HsCDC2 numbering) which is within a 

region believed to be involved in sucl binding. TbCRK2 and 3 also have Arg-22 

subtituted by Histidine and Valine respectively. In the surface area between R-180 and 

D-186, implicated in the sucl interaction, all of the TbCRK proteins have substitutions 

of S-182, and TbCRK2 and 3 both have the T-183 replaced by a proline residue. 

TbCRK2 and 3 also have substitutions at R-214 (to serine and glutamic acid 

respectively) and all three TbCRK proteins have a lysine to glutamic acid alteration at 

amino acid 274. Many of the other solvent accessible residues are also not conserved 

by the TbCRK proteins. These changes include:

for TbCRKl, S121E, R123N, Q132P, K238S and P242S;

for TbCRK2, R36P, Q132S, G154R, R158Q, P229R, D236H and K237N;

forTbCRK3, S121R, Q132A, G154Q, R158H and P229L.
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All of these residues are perfectly conserved in the yeast and human 

CDC2/CDC28/CDK2 proteins. Several other surface residues that are conserved in the 

CDC2/CDK2 proteins are conservatively substituted in the TbCRK proteins.

All three of the TbCRK proteins have substitutions at residues required for 

checkpoint control in S.pombe (Basi and Enoch, 1996). TbCRKl has the change E8Q, 

TbCRK2 has N62Y, and TbCRK3 has both E8D and K9I substitutions.

The above data suggest that none of the TbCRK proteins is well enough 

conserved to be clearly the homologous protein to CDC2 in other organisms. Certainly 

it is very unlikely that any of the tbcrk genes would complement temperature sensitive 

mutants of the yeast cdc2ICDC28 genes, a functional assay commonly used. All have 

mutations in important regulation sites, and it would seem likely that none of the 

proteins would interact correctly with components of the cell cycle regulation complex 

from other organisms.

In a further attempt to ascertain the relationship of the 3 trypanosome CRK 

proteins to the various members of the CDC2 related protein kinase family a 

dendrogram of the protein sequences was computed. A selection of proteins 

representative of the various classes were analysed by the PA UP programme (Swofford, 

1991), and bootstrap probabilities calculated for the branches of the shortest tree found 

(Felsenstein, 1985). PH085 from S. cerevisiae was used as the outgroup, as at the time 

it was thought to be a related cyclin dependent protein kinase with no direct cell cycle 

function (Kaffman etal., 1994). It has now been shown to be involved in the G1 phase 

of the S. cerevisiae cell cycle, binding a G1 cyclin, and is essential for passage through 

G1 in the absence of the CDC28 pathway (Espinoza et al., 1994; Measday et al., 1994). 

The consensus shortest tree found using PH085 as an outgroup is shown in Figure 

3-3.9. Changing the outgroup to another, more divergent, CDC2 related kinase would 

be unlikely to alter the result that none of the T. brucei CRK's are found within the 

branch containing the CDC2/28 proteins and the HsCDK2/3 and DmCDC2c proteins. 

Within this branch the 2 yeast proteins diverge first, followed by the split into CDC2

(G2/M control) and CDK2/3 (Gl/S control) groups.
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Figure 3.3.9 Dendrogram of the TbCRK family and other CDC2 related kinases.
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Figure 3.3.9 The dendrogram was calculated by the PAUP (Phylogenetic Analysis Using 

Parsimony) computer program using the entire open reading frames of each protein sequence, 

but extensions and insertions were effectively ignored for this comparison. The numbers show 

the percentage of bootstrap support for each branch.

Dd - Dictyostelium discoideum, Dm - Drosophila melanogaster \ Eh - Entamoeba histolytica,
I

Hs - Homo sapiens, Mm - Mus muscularis, Sc - Saccharomyces cerevisiae,

Sc - Schizosaccharomyces pombe, Tb - Trypanosoma brucei,
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One interpretation of this data is that the joint ancestor of yeasts and the higher 

eukaryotes had a single gene for these multiple functions, as is presently found in S. 

pombe, which later underwent duplication and divergence into the seperate genes 

isolated from multicellular organisms. However, none of the cloned genes from 

protozoa are found on this branch, either due to their extreme divergence, or to the fact 

that the correct homologues have not yet been cloned. The D. discoideum and E. 

histolytica proteins as well as TbCRK2 and 3 were placed on the other major branch, 

with the Human CDK6, and the mouse CDK4. Both CDK6 and CDK4 have been 

shown to be involved in the early part of the cell cycle, prior to START and at the 

START restriction point respectively (Matsushime et al., 1992). CDK4 has also been 

shown to be involved in the negative regulation of the cell cycle by anti-mitogens, e.g. 

TGF (Ewen et al., 1993), which result in the cell arresting in G l. It seems likely 

however, that the apparent grouping of these less well conserved genes is due to the 

artifactual clustering of long branches that can occur during phylogeny analysis 

(Felsenstein, 1978). If the clustering of TbCRK2/3 with these Gl/S Phase active 

kinases is due to a role in Gl/S phase control instead of an artifact of the evolutionary 

divergence then one, or both of TbCRK2/3 could be regulators of the adaptive, Gl cell 

cycle block in short, stumpy form and/or metacyclic T. brucei.

The TbCRKl protein appears as an outgroup in this analysis, along with

proteins which have been shown to have non-cell cycle specific activities. PH085 is a

cyclin dependant kinase involved in controlling the transcription of genes involved in

phosphate metabolism (Kaffman etal., 1994), as well as having an apparently

redundant role in G l cell cycle control. The 2 different roles are controlled by

association with different cyclins. The PHO85/PHO80 complex can phosphorylate the

transcription factor PH04 resulting in repression of transcription of the secreted acid

Phosphatase PH05, while the PH085/HCS26 or PH085/0rfD kinase complexes have

heen found to be essential for passage through Gl when the CDC28/CLN complexes

are disrupted (Espinoza et al., 1994; Measday et al., 1994). By analogy it is possible

that LmmCRKl/TbCRKl may play similarly multiple roles, explaining the lack of
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relation between LmmCRKl kinase activity and cell cycle status in L. mexicana 

(Mottram etal., 1993).

CDK5 may also have multiple roles. The protein has been found at low levels 

in immunoprecipitates with the Gl cyclins, D1 and D3, but no kinase activity was 

detected (Xiong etal., 1992). The gene is expressed at higher levels in neuronal tissue, 

and the kinase activity of the CDK5 containing complexes increases with increasing 

cellullar differentiation, e.g. the highest levels of kinase activity are found in non

dividing cells (Lew etal., 1992; Hisanaga etal., 1992; Helmich etal., 1992). The 

CDK5 complexes in brain contain an activating subunit with very little homology to 

cyclins. Unusually, the two subunits, when expressed in E. coli and purified, can form 

an active complex without the regulatory modifications necessary in other CDK 

systems. Purified CDK5 complexes phosphorylate neurofilament proteins and the tau 

protein, and in vivo co-localisation studies show CDK5 associated with the 

neurofilaments. The roles of the members of the PCTAIR subfamily is unknown.

The alignments of the TbCRK proteins, and their percentage identity 

comparisons with other CDK's, are inconclusive in determining which, if any, of the 3 

isolated trypanosome genes is the cdc2 homologue. An accepted test for functional 

homology is the ability of a CRK to complement yeast temperature sensitive mutants of 

cdc2/28 (Hirayama etal., 1991; Paris etal., 1991; Jimenez etal., 1990; Lee and Nurse, 

1987). Although lower than the conservation between the yeast and metazoan 

homolgues of CDC2/28, the TbCRK/yeast level of conservation (50-59 %) is not in 

itself a barrier to complementation. The Dictyostelium discoideum cdc2 encoded 

protein (DdCDC2) displays a similar (61 %) level of identity to yeast CDC2/28 and 

human CDC2 and is able to weakly complement a CDC28 temperature sensitive mutant 

of S. cerevisiae (Michaelis and Weeks, 1992a). DdCDC2 also contains conservative 

changes in the PSTAIR box and the DSEI motif. However, the level of conservation of 

DdCDC2 is far higher than that shown by TbCRK2 or TbCRK3 in the PSTAIR region, 

and higher than TbCRKl and TbCRK2 at the DSEI motif. The TbCRK proteins’ low
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level of conservation in the motifs shown to be neccessary for CDC2 function means 

that complemention of yeast cdc2 mutants is unlikely to succeed (see Chapter 5.2).

The use of a dendrogram to assign probable roles to the TbCRK proteins is 

problematic. Fission yeast has so far been shown to have only one cdc2 related gene 

involved in cell cycle control, while budding yeast also has PH085 as a redundant Gl/S 

CDK. As they branched from the eukaryotic tree long after the Kinetoplastida (Sogin et 

al, 1986; Sogin, 1991) this means that either the yeasts have lost genes that were 

present in the joint ancestor or that the vertebrate gene family results from gene 

duplications that occurred after the divergence from yeast. It seems unlikely that 

modem yeast require less control over the cell cycle than the primitive ancestor of 

fission yeast, budding yeast and higher eukaryotes, and so it might be expected that the 

second explanation is correct. If the second explanation is correct, then any similarity 

between different TbCRK proteins and classes of human CDK's may be artifactual and 

not related to shared function. There is the possibility of parallel evolution to result in 

shared sequence motifs for equivalent functions, i.e. a gene duplication occured on the 

kinetoplastid branch, followed by specialisation of the extra gene ( tbcrk3) as a Gl/S 

CDK, and a similar event also occured on the metazoan branch. For this to result in 

proteins that are apparently related, the substrates for the Gl/S CDK, and the regulatory 

proteins of the Gl/S CDK (eg W eel, CDC25, CIP1, etc) would have needed to share 

significant homology even after the amount of evolutionary time equivalent to the 

distance between mammals and the ancestral ancestor of Kinetoplastida and metazoans. 

Therefore, it is probable that the family of protozoan CRK's are not directly analogous 

to the isolated mammalian proteins, and the functions of the TbCRK proteins will have 

to be determined individually. An example of conserved function not being mediated 

by a conserved gene can be seen in the CDK Activating Kinase (CAK) activity in yeast 

and metazoans. In these organisms the CDC2/cyclin complex is phosphorylated on T- 

161 (HsCDC2 numbering) to regulate activity, but the kinases responsible in either S. 

cerevisiae or S.pombe/metazoans are not highly homologous at the sequence level.
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Although at present the large family of CDKs isolated from mammals has not 

been duplicated in other organisms, all multicellular organisms examined including 

plants (Hashimoto etal., 1992; Hirayama etal., 1991) and invertebrates (Lehnerand 

O’Farrell, 1990; Sugaya etal., 1994) have multiple CDK proteins, and in the vertebrate, 

Xenopus laevis, there are reports of CDC2, CDK2 (Egl), CAK (M015/CDK7), and a 

member of the PCTAIR family (Paris etal., 1991;Fesquet etal., 1993; Poon etal.,

1993). It seems likely that the large family of CRKs in multicellular organisms is a 

result of the need to tightly regulate division and differentiation, as unregulated growth 

would be disastrous, as would uncontrolled differentiation. If these gene duplications 

did occur as a result of the evolution of multicellular organisms, then the multiple genes 

isolated from protozoa are due to unrelated events and individual selection pressures. 

This leads to the expectation that each early branch of the eukaryotes is likely to have 

its own set of cdc2 related genes, without clear homologies between them, except in 

closely related organisms, e.g. no crkl-3 homologues have so far been isolated from 

any other protozoa exept the closely related T. congolense, which appears to have a 

crkl related gene (reviewed Mottram, 1994). Notably, although CRK1 and CRK3 are 

conserved between T. brucei and L. mexicana, the expected leishmanial homologue of 

tbcrk2 has not been isolated by PCR, and a 39 kDa protein has not been detected by 

cross reaction with either PSTAIR reacting antisera or antisera raised to TbCRK2.

These reagents would be expected to detect a putative LmmCRK2 protein (See Chapter 

4).

There is as yet no pattern of homologous proteins within the protozoa. Each

species, or family, seems to have its own group of more or less unique CDC2 related

proteins, e.g. Entamoeba histolytica (Lohia and Samuelson, 1993), Plasmodium

falciparum (Ross-McDonald etal., 1994), T. cruzi (reviewed Mottram, 1994),

Crithidiafasciculata (Brown etal., 1992) and Theileria annulata (Kinnaird etal.,

1^96). All of these genes share ~50 % identity with each other and with the CDC2

family from the multicellular organisms. Presumably this is due to the large

eyolutionary distance between each member of the protozoa resulting in the
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conservation of only the essential residues of the ancestral CRK protein. This is further 

evidence that the duplications and specialisation of CRK's within the various protozoan 

lineages happened after branching from the major eukaryote line, and therefore it will 

not be possible to assign roles to CRK's by analogy with other organisms. All of these 

protozoan genes have been cloned by PCR, and as yet none have been shown to 

complement yeast temperature sensitive mutants of cdc2/28, neither have they been 

shown by other means (e.g. mutagenesis, synchronisation) to be invoved in control of 

the cell cycle.

It is possible that the CDC2 homologue in T. brucei has not yet been cloned. 

Further PCR reactions have been tried by J. C. Mottram with CDC2 related kinase 

specific oligonucleotides, and one other gene has been cloned (Personal 

communication). This complements other evidence for the presence of further 

kinetoplastid CRK proteins. Western blots of protein extracts from kinetoplastids using 

PSTAIR reactive antisera often show more bands than the number of isolated CRK 

genes from that organism (see Chapter 4.4). A histone HI kinase activity from 

Leishmania, associated with the division status of the life cycle stage, can be bound to 

the S.pombe pl3sucl protein (Mottram et al., 1993), which has been shown to bind 

tightly to CDC2 related proteins from a variety of organisms. It is possible that this 

protein is LmmCRK3 (J. Mottram, personal communication) expressed at a very low 

level. This would suggest that the CRK3 proteins are likely to be at least involved in 

the execution of cell cycle specific modifications of proteins, even if they are not the 

CDC2 homologue responsible for cell cycle regulation.
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3.4 Partial Cloning of the T. brucei Mitochondrial Elongation Factor G gene ( tbmefg).

3.4.1 Cloning and Sequencing tbmefg.

When mapping and subcloning the pCD70E(S)8 plasmid the 0.9 kb and 0.7 kb 

Hindlll fragments downstream of the tbcrk3 ORF (Figure 3.3.4) were also ligated into 

pBS SK+, and the ends of the inserts sequenced. The predicted translation product of 

one end of the 0.9 kb fragment (pCD191) showed a high level of homology to the 

Elongation Factor G (EF-G) proteins of S. cerevisiae and eubacteria. EF-G is a GTP 

binding protein that controls the translocation of the eubacterial ribosome during 

translation of the mRNA. It has also been found in S. cerevisiae, where it is nuclear 

encoded, and then targetted to the mitochondria (Vanbutas etal., 1991). The equivalent 

protein in eukaryotic cytoplasmic translation is designated EF-2, and shows limited 

homology to EF-G. The rest of the ORF that was within pCD70E(S)8 was sequenced 

by designing oligonucleotides that hybridised to the ends of previously sequenced areas 

(Figure 3.4.1). The rest of the gene, predicted to be approximately another 900 bp 

encoding 300 aa may be present on CD47.2 but has not been subcloned to date.

3.4.2 Comparisons with other EF-G proteins.

The partial sequence of the tbmefg gene encoded 450 amino acids at the N- 

terminus of the protein (Figure 3.4.2). This was compared to that of the predicted 

protein sequences for the reported mitochondrial EF-G proteins, from S. cerevisiae 

(Vanbutas etal., 1991) and rat (Barker etal., 1993), and eubacterial EF-G proteins 

using the pileup programme (Figure 3.4.3). The level of conservation of these proteins 

is high, except at the extreme amino terminus. There is a 58 amino acid extension at 

the N-terminus in the yeast protein. The extension is 17 aa in TbmEF-G, and is not 

present in eubacterial proteins. The extension is expected to be a mitochondrial
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Figure 3.4.1 Sequencing tbmefg
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Figure 3.4.2 The DNA and predicted protein sequence of tbmefg

TTTGTCTATATACCTATTTTACTGTGCCTTTTCAATCCGTAGTCTGAG 4 8

I M R R F C D V
49 ATGAGGAGGT TTTGTGATGT

21 A F L K  N I D
109 GCTTTCTTAA AAAACATTGA

41 G K T T  V T E
169 GGAAAGACAA CTGTCACTGA

61 E V K G  G S E
229 GAAGTTAAAG GGGGATCAGA

81 R G I T  I R S
289 AGGGGGATAA CAATCCGTTC

101 I  I  D T P G H
349 ATAATAGACA CCCCTGGACA

121 L D G A V M L
409 CTCGACGGTG CAGTGATGCT

141 V D R Q M K R
469 GTGGACAGAC AGATGAAGAG

161 R D N A N P R
529 CGTGACAATG CTAACCCTAG

181 A A F I  H L N
589 GCCGCATTTA TTCATCTCAA

201 I  E S R A V Y
649 ATAGAGTCCC GTGCTGTATA

V F Y P N R F
CGTCTTTTAT CCGAACCGAT

K L R N I  G I
TAAGCTTCGA AATATCGGTA

R I  L F Y T G
ACGAATCCTT TTTTATACCG

V G A  T M D S 
GGTTGGTGCA ACAATGGATT

A A T Q C K W
CGCCGCAACA CAGTGCAAAT

V D F T I  E V
TGTCGATTTT ACTATTGAAG

M C G V G G V
GATGTGCGGA GTCGGTGGTG

V G V P R V C
GTATGGTGTG CCCCGTGTTT

R A L E M A R
GCGTGCATTG GAAATGGCGA

M G V A Q D F
TATGGGAGTT GCACAAGACT

F D G K N G E
CTTTGACGGT AAAAATGGGG

Y R L A S S  20  
TTTACCGATT GGCGTCGTCG 1 0 8

S A H I D S  40
TCAGCGCACA CATTGACAGT 1 6 8

R I D  K I  H 60
GTAGAATCGA CAAAATCCAC 2 2 8

M E L  E K E  80  
CGATGGAACT TGAAAAAGAA 2 8 8

G D H L I N  1 0 0
GGGGTGATCA TTTGATTAAT 3 4 8

E R A  L R V 1 2 0
TGGAACGTGC CCTTCGTGTC 4 0 8

Q S Q T L T 14 0
TGCAGAGTCA GACCCTTACG 4 6 8

F I N  K L D 1 6 0
GTTTTATCAA TAAACTAGAT 5 2 8

E R L  G V N 18 0
GGGAACGCTT GGGGGTGAAT 5 8 8

E G V V D V 2 0 0
TTGAAGGTGT TGTCGACGTC 6 4 8

K I R  F E D  220  
AAAAGATCCG ATTTGAGGAT 7 0 8

f
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221 I  P S Y I  A D D V V A T R K  E L I  S R L  2 4 0
709 ATACCAAGCT ACATTGCCGA TGACGTGGTG GCAACACGAA AGGAGCTTAT ATCAAGATTG 7 6 8

241 A D C D A E M E D V  F L N D  V E P  T A E  2 6 0
769 GCTGACTGTG ATGCCGAAAT GGAAGATGTT TTCTTAAACG ATGTGGAGCC TACAGCAGAG 8 2 8

261 Q I  H S A I R  R T T  I A N K  F V P  V L V  2 8 0
829 CAGATTCACT CAGCGATTCG GCGCACCACG ATTGCAAACA AGTTTGTGCC TGTGTTAGTG 8 8 8

281 G S A Y K N K  G I  Q L L L D  A V C  R Y L  3 0 0
889 GGTTCAGCCT ACAAGAACAA‘AGGCATACAA CTTCTTCTTG ATGCCGTCTG TCGTTACCTA 9 4 8

3 0 1 P S P M  E K P  N S G  Y S V T  K V K  D D E  3 2 0
949 CCTTCCCCAA TGGAGAAGCC AAATTCGGGT TACTCGGTGA CCAAGGTAAA GGACGATGAA 1 0 0 8

321 G N V A N V K  G E I  V P L A  T D D  E K P  3 4 0
1009 GGTAACGTTG CCAACGTTAA GGGCGAGATC GTTCCTTTAG CGACTGATGA CGAAAAACCT 1 0 6 8

341 L V A A I  F K L E E  T K K T  G L L  N Y I  3 6 0
1069 CTCGTGGCAG CTATATTTAA GCTTGAGGAA ACGAAGAAAA CCGGCCTTCT TAATTACATT 1 1 2 8

3 6 1 R V Y Q  G K M  R R E  H L L N  V R S  G K T  3 8 0
1129 CGTGTTTACC AGGGTAAAAT GAGAAGGGAA CATTTATTGA ATGTTCGTAG CGGAAAAACG 1 1 8 8

3 8 1 F L P Q  K L V  R M H  A N  39 2
1189 TTTCTTCCTC AGAAGCTGGT CCGTATGCAC GCGAATTC 1 2 2 6

Figure 3.4.2 The region of tbmefg that had been subcloned was sequenced on both strands 

to ensure accuracy, with ITP used to resolve compressions. The amino acid encoded for each codon 

is above the first base of each triplet.



targetting signal in the eukaryotic proteins, and as in this case, these signalling peptides 

are usually very poorly conserved (Hendrick etal., 1989).

The percentage identities given in Table 3.4.1 were calculated by comparing the 

predicted polypeptides over the region from the start of the eubacterial EF-G to the end 

of the available TbmEF-G sequence, therefore ignoring the N terminal extensions. 

TbmEF-G is more similar to the S. cerevisiae mEF-G than to either of the eubacterial 

proteins. In fact the 2 eukaryotic proteins share 52 % identity over this region, while 

only having 43-46 % identity to the bacterial EF-Gs, which have 59 % identity to each 

other.

A dendogram of the TbmEF-G protein with other reported sequences was 

computed (Figure 3.4.4). The sequences used included several eubacterial proteins, 

mitochondrial proteins from both rat and S. cerevisiae, and the partial sequence from 

the gene isolated from Leishmania mexicana which is expected to be the homologue of 

tbmefg (J. Mottram, unpublished results). It also includes a possible chloroplast EF-G 

from Soybean (Torres etal., 1993) and, as an outgroup, the protein (EF-2) which 

performs the equivalent function in the archaebacterium Methanococcus vannielii. It is 

immediately obvious that, as expected, the mitochondrial EF-G proteins form a separate 

group from the bacterial proteins, and that the Kinetoplastida proteins are more similar 

to each other than they are to either of the other eukaryote mEF-Gs.

3.4.3 Discussion of the Trypanosome mEF-G.

The T. brucei EF-G gene isolated is highly conserved, with 46 % identity to the

equivalent E. coli protein over the 433 amino acids presently predicted (Table 3.4.1).

A s  E F - G  i s  e x p e c t e d  t o  b e  e s s e n t i a l ,  a n d  i t  i n t e r a c t s  w i t h  a  l a r g e  n u m b e r  o f  p r o t e i n s  i n

the ribosome and other parts of the translational machinery, it is under a high degree of

functional constraint, which is presumably the reason for the high degree of

conservation present. It has been found that the L. mexicana crk3 gene also has a

downstream ORF that is also homologous to other EF-G genes and the N-terminus of

104



Figure 3.4.3 Comparison of TbmEF-G with the S. cerevisiae homoloeue
and bacterial EF-G proteins
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figure 3.4.3 Comparison of predicted EF-G protein sequences from; Tb - T. brucei, Sc 

laromyces cerevisiae, Ec - E. coli, Ta - T. aquaticus.
' 'dentical amino acid to the TbEF-G predicted residue.
• Gap in the sequence for alignment purposes.
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Table 3.4.1 Conservation between T. brucei mEF-G, yeast mEF-G 

and eubacterial EF-G.

ScmEF-G EcEF-G TaEF-G
TbmEF-G 52 (69) 46 (64) 46 (64)
ScmEF-G 43 (66) 45 (64)
EcEF-G 59 (76)

Table 3.4.1 The predicted protein sequences of the efg genes were compared 

using the GAP program. Sc - S. cerevisiae , Ec - E. co li, Ta - T. aquaticus , Tb - T. 

brucei. The area compared was just the region of TbmEF-G that has been sequenced, 

and also did not include the N-terminal extensions of the eukaryotic proteins. The 

first figure in each box is the percentage identity, the figure in brackets is percentage 

similarity.



Figure 3.4.4 Dendrogram of the putative Kinetoplastida mitochondrial Elongation Factor-G 
protein with EF-G proteins from other organisms.
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Figure 3.4.4 The dendrogram shows the relationship between the putative Kinetoplastida 

mitochondrial Elongation Factor-G proteins and other mitochondrial EF-G proteins (mEF-G), 

a chloroplast EF-G (cEF-G), bacterial EF-Gs and the archaebacterial homologue (EF-2).

T h e  n u m b e r s  r e p r e s e n t  t h e  b o o t s t r a p  s u p p o r t  f o r  e a c h  b r a n c h  p o i n t  a s  a  p e r c e n t a g e .
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the L. mexicana mefg has been sequenced (J. Mottram, unpublished results). The 

predicted protein has an N-terminal extension of the same length as TbmEF-G, but this 

is poorly conserved. Within these 20 residues only 5 are identical, including the 

initiating methionine. The rest of the sequenced gene gives a protein that shares 80 % 

identity (71/89 amino acids) with TbmEF-G. These N-terminal extensions show no 

clear homology to the limited consensus of other mitochondrial signal peptides, except 

that both are positively charged and share an initiator-Met-Arg-Arg motif with the 

extremely short signal peptides from Crithidia previously characterised (Xu and Ray, 

1993). The proteins with these signal peptides (which were apparently cleaved from the 

mature protein) were found in association with the DNA of the kinetoplast. The fact 

that there is a homologous gene downstream of tbcrk3 and lmmcrk3 is evidence that 

lmmcrlc3 and tbcrk3 are indeed equivalent genes. It is also an, at present rare, example 

of gene order being conserved between diverged species within the Kinetoplastida.

The hypothesis that TbmEF-G and LmmEF-G are mitochondrial proteins is 

supported by the fact that all other eukaryotes have the related protein, EF-2, as the 

cytoplasmic factor that controls ribosomal translocation. However, this protein has not 

been cloned in T. brucei or L. mexicana, and mitochondrial targetting of the 

kinetoplastid EF-G proteins, or proteolytic cleavage of the N-terminal extension, has 

not been shown.

One important difference between the EF-G and the EF-2 proteins is that EF-G 

does not contain the histidine residue responsible for EF-2's susceptibility to Diptheria 

toxin. This toxin causes the ribosylation of the conserved histidine in EF-2 resulting in 

the halting of translation. The rat efg gene has been isolated (Barker et al., 1993), and 

inhibition experiments with Diptheria toxin imply that this EF-G protein is part of the 

mitochondrial translation machinery only, as no cytosolic translation could be detected 

when cells were treated with the toxin. I am unaware of any attempts to block 

kinetoplastid translation by Diptheria toxin. If the experiment is possible (the toxin 

requires an activation step while crossing the plasma membrane into the cell, which
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may not occur in the trypanosome), and cytosolic translation is blocked, then it is likely 

that the efg genes isolated are only involved in mitochondrial translation.

3.5 Discussion.

The successful cloning of the tbcrk genes, using PCR hybridising to conserved 

domains of CDC2 related kinases shows that the isolation of trypanosome genes 

homologous to those in other organisms is possible when the functional constraints, and 

therefore selection, acting on a protein are high. By analogy with CDK's from other 

organisms, it is expected that the CRK proteins must interact with several other proteins 

in order to function correctly, and loss of activity would be lethal unless there were 

functional redundancy, or unless the product was only needed during specific life cycle 

stages. If there was redundancy, the fact that S. cerevisiae has retained an extremely 

high level of redundancy within the CDK/cyclin complexes, implies that if not lethal, 

the decrease in viability caused by CDK loss of function may result in selection against 

the mutated organism in the enviroment, even though cultured forms may show no 

effect on growth or viability. For instance, bloodstream form T. brucei that contain no 

kinetoplast (dyskinetoplastic) can be isolated, and grown, in culture (Agbe and 

Yielding, 1994), but only low levels (1-2 %) of such organisms have been found in 

vivo. Dyskinetoplastic strains of T. evansi, a parasite which only exists in the 

bloodstream form, have been isolated (Ou et al., 1991), although most strains still retain 

the kinetoplast. Equally, even if the protein was only essential in a specific life cycle 

stage, the loss of the encoding gene would result in an organism unable to complete the 

life cycle, and so unable to be transmitted by the normal routes of infection, as occurs is 

the case with T. equiperdum.

Although CDC2 related genes were isolated, it should be noted that the tbcrk

genes are notably more diverged from the cdk genes of other eukaryotes than other

CDC2 related genes previously found, probably due to the extreme evolutionary
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distance, and possibly also the high level of selection undergone by parasites. For 

instance, the region most commonly used to define a CDC2 related kinase, the PSTAIR 

box, is not well conserved in either TbCRK2 or TbCRK3, and therefore 

oligonucleotides designed to anneal to the PSTAIR box encoding region might not have 

isolated tbcrk2 or tbcrk3.

This variation in which regions are homologous, and the failure to clone a 

kinetoplastid cyclin, shows how important it is to choose the correct area for 

oligonucleotide design, especially when proteins are not expected to have perfectly 

conserved domains. A cyclin-like gene from T. brucei was successful cloned by PCR 

(Affranchino etal., 1993) using only one cyclin specific oligonucleotide. The second 

oligonucleotide was homologous to the Spliced Leader sequence, and the template used 

for the reactions was cDNA. This putative cyclin has an unusual structure with a 

possible destruction box situated towards the C terminus of the protein, and very little 

predicted protein sequence N-terminal to the cyclin box. The level of homology within 

the cyclin box between TbCYCl and either A or B type cyclins from other organisms, 

is considerably lower than usual, with a large number of both gaps and insertions 

necessary for alignment. The number of cyclins now isolated is far higher than in 1990, 

and the regions that are well conserved between widely diverged species are not 

necessarily those chosen at the start of this project. With hindsight, the divergence of 

the CRK PSTAIR regions implies that the kinetoplastid cyclins are likely to be notably 

different from cyclins isolated from other organisms, as this region appears to be 

involved in CDK/Cyclin complex formation (Pines and Hunter, 1989). The unusual 

nature of the T. brucei cyclin is probably going to be matched by other components of 

the kinetoplastid cell cycle machinery, e.g. the activating kinase CAK, Weel, and 

CDC25 homologues, but it is expected that these proteins will be conserved enough to 

he recognised as the Leishmania mexicana homologue of the S. pombe CDC2 complex 

component, plS"®1, has been successfully isolated (Mottram and Grant, 1996).

Aligning the CRK sequences with that of HsCDK2, for which a crystal structure

has been achieved (De Bondt etal., 1993), shows that many of the solvent accessible

110



residues, which are expected to be involved in most of the binding reactions with other 

proteins, are not conserved (see Figure 3.3.7). This includes those residues implicated 

in sucl/HsCKSl binding (Bourne etal., 1996; Hayles etal., 1986; Ducommon etal., 

1991a), those in cyclin binding regions (Ducommon etal., 1991a; Ducommon etal., 

1991b), as well as those without any known function. This lack of conservation of the 

CRK surface residues means that assessment of their function by interactions with 

components from other systems, e.g. p l3 sucl, is likely to be difficult, with low affinity 

binding, and therefore problems with signal/noise ratios.

There are several feature that distinguish members of the CRK family.

TbCRK2 has a 40 amino acid N-terminal extention with no homology to any putative 

signalling peptide found in T. brucei, either from proteins expected to be targetted to the 

mitochondria (Peterson etal., 1993) or to those transported into glycosomes (Swinkels 

etal., 1986; Sommer and Wang, 1994). The extentions of TbCRK3 and LmmCRK3 

also have no homology to these putative signalling peptides from T. brucei, the N 

terminal extensions of kinetoplastid associated proteins from Crithidia (Xu and Ray, 

1993), or signalling peptides from other eukaryotes. Interestingly the CRK3 extensions 

also show little shared sequence with each other, with only 6/20 identical residues, 

including the starting methionine (Figure 3.5.1). The protein sequence in the rest of the 

TbCRK3 and LmmCRK3 proteins is very well conserved (80 % identity over 291 

amino acids), but at the residue that is normally the initiator methionine for the 

CDC2/CDK2/3 family, the conservation stops. The role of this extension could be 

structural rather than involved in targetting. Of the 6 conserved residues, 2 are glycine, 

and could be involved in 13-turns, and 2 are an aspartic acid and an arginine, that could 

form a salt bridge.

The TbCRK extensions bear no similarity to the N-terminal extensions of any of

the putative mitochondrial or chloroplast EF-G proteins from other organisms, or

TbmEF-G. There is therefore no evidence for either of the TbCRK extensions playing

a role in synchronising the division cycles of the nucleus and kinetoplast by causing the

complexes to shuttle between the cytosol and mitochondria.
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Figure 3.5.1 Comparison of TbCRK3 and LmmCRK3
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Amino acid 21, under the *M* symbol, is the consensus start methionine in 

the CDC2/CDK2/3 family of proteins. The two proteins share 80% identity over the 

region from residue 21 to the C-terminus.
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The partial sequence of tbmefg clearly shows a high level of homology to genes 

from both eukaryotes and bacteria (Table 3.4.1). The phylogeny analysis using the 

partial sequences of predicted EF-G proteins does not show any unexpected results. 

Assuming the theory that the eukaryotic nuclear encoded efg genes were ancestrally 

part of the genomes of symbiotes which evolved into either cloroplast or mitochondria, 

then the chloroplast symbiotic event was, as may be predicted, different from that of the 

mitochondria. The data shown does not differentiate between a single symbiosis 

leading to Kinetoplast and higher eukaryote mitochondria, or separate symbiotic events 

in the different lines, as has been postulated to explain the presence of editing in the 

Kinetoplasts.

The high level of conservation seen in both protein and DNA comparisons 

between bacterial and eukaryotic efg genes shows again that the isolation of 

homologous genes which encode proteins that are both essential for in vivo viability and 

which interact with multiple other protein or RNA factors, can be achieved even when 

the organisms are extremely diverged.



CHAPTER FOUR 
ORGANISATION AND EXPRESSION OF THE TBCRK

GENE FAMILY
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4.1 Introduction.

The three tbcrk genes isolated were one of the first family of CDC2-related 

genes cloned from a single-celled organism. We were interested to determine whether 

they played a role in the complex trypanosome life cycle. As explained in Chapter 

1.1.2, T. brucei pass through stages which do not divide and which are essential to 

transmission between species. After transmission the non dividing forms undergo a 

transformation to a rapidly proliferating cell type to set up the infection.

After analysing the genomic organisation of the genes we then attempted to 

raise antisera to the three proteins using both conjugated peptides and fusion proteins 

expressed in E. coli. These antisera were used to characterise the expression of 

TbCRKl-3 in different life cycle stages.

4.2 Gene organisation.

4.2.1 Introduction.

As previously described (see Chapter 1.1.3), many of the genes isolated from 

trypanosomes have been found to be multicopy. These can be at one locus in a tandem 

array or at several locations within the genome. It was important to determine whether 

the tbcrk genes were single or multi-copy so that the attempt to create null mutants of 

the tbcrk genes via homologous recombination could be devised.
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4.2.2 Organisation of the tbcrk gene family.

From the sequencing of the tbcrk3 locus cloned into pBS it was clear that tbcrk3 

at least was not in a tandem array, unless pCD70E(S)8 contained the most 3' gene of 

such an array. Partial mapping of tbcrkl and tbcrk2 had already been done, and 

consulting these maps (see Figure 4.2.1) DNA fragments from each open reading frame 

were prepared. These fragments were labelled with 32-P by random priming and 

hybridised onto Southern blots of T. brucei DNA digested with different restriction 

enzymes (see Figure 4.2.2). Panels A, B and C are T. brucei DNA digested and run on 

a 0.8 % agarose gel in triplicate, blotted to Hybond-N and hybridised to labelled tbcrkl, 

2 and 3 respectively. Single bands were detected for all 3 genes in all four digests, with 

the band size ranging from 1.8 kb to >23 kb. All the bands in each digest are of a 

similar intensity taking into account the reduction in transfer efficiency for large DNA 

molecules. There is no evidence of other lower intensity bands which would be caused 

by regions flanking a tandem array, the implication being that all 3 genes are single 

copy. The lack of any bands the same size hybridising to different probes in any of the 

digests suggests that the genes are not closely linked in the genome. To further address 

the chromosomal location of each of the genes, Pulse Field Gel Electrophoresis (PFGE) 

was performed with T. brucei chromosomes.

4.2.3 Pulse Field Gel Electrophoresis of T. brucei chromosomal DNA.

It is now possible to separate many of the T. brucei chromosomes in agarose 

gels using PFGE (see Chapter 1.1.3). Depending on the parameters used, the small, 

intermediate and many of the megabase chromosomes can be separated, although the 

largest are often unresolved within the compression zone and in many stocks different 

chromosomes migrate at the same rate. PFGE with chromosomes from STIB247 and 

STIB386 was run in triplicate, Ethidium Bromide stained [see Figure 4.2.3(i)] and

transferred to Nylon membrane (performed by N. Buchanan and A. Tait).
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Figure 4.2.1 Restriction maps of the tbcrkl-3 genes.
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Figure 4.2.2 Southern blot of T. brucei genomic DNA. 1.5pig of STIB247 

genomic DNA was digested with each restriction enzyme, and 2.5 pi g of this DNA run 

per lane through a 0.8 % TBE/agarose gel. The gel was blotted to Hybond-N and 

hybridised to tbcrk gene specific probes. Lane \-Xhol, lane 2-EcoR\, lane 3-Bglll and 

lane 4- Bam HI. Panel (A)-probed with tbcrkl fragment, (B)-tbcrk2, (C)-tbcrk3. See 

Figure 4.2.1 for labelled fragments. The hybridisation was performed overnight at 65 

°C with 25 ng of P32 random primed probe and washed for 2 hours at 65 °C in 0.1 x 

SSC / 0.1 % SDS (see Materials and Methods).
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The karyotype clearly varies between the two stocks with all three types of 

chromosome showing different patterns.

The 3 strips were then hybridised to the gene specific probes previously used 

[Figure 4.2.3(ii)]. The three tbcrk genes were located to the megabase chromosomes in 

both of the stocks. 2 bands in the STIB247 extract were detected hybridising to the 

tbcrk2 probe (Panel B, lane 1), indicating that tbcrk2 is located on a different 

chromosome to the other two genes. It is common for homologous chromosomes in T. 

brucei to be different sizes and this is likely to be the case for tbcrk2. In this 

experiment the tbcrk2 probe also hybridised to some of the intermediate sized 

chromosomes. This had not been seen in previous PFGE blots, and may be due to this 

hybridisation being carried out in a higher salt buffer than usual, which may result in a 

higher level of non-specific hybridisation. It should also be noted that the tbcrkl probe 

is the only one of the three which includes some non-coding region, from the 3' 

untranslated region, which may be the reason for it containing DNA elements that 

hybridise to other parts of the genome.
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Figure 4.2.3. Panel (i) Ethidium bromide stained PFG. Lanes 1-STIB247, 

lanes 2-STIB386, lanes 3-S.pombe chromosome markers. The gel was run as described 

(Schweizer etal., 1994), blotted to Hybond-N and hybridised as before (see Figure 

4.2.2). Panel (ii) Autoradiograph of blotted PFG. Panel (A)-probed with tbcrkl 

fragment, (B)-tbcrk2, (C)-tbcrk3.
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4.3 Fusion protein expression for antibody production and analysis of antisera.

4.3.1 Introduction.

To study the expression of the tbcrk genes it was necessary to raise antibodies, 

preferably specific, to each encoded protein. These proteins would also allow the 

assessment of how much cross-reactivity was present between the TbCRK proteins 

when using the available antisera. Antisera available in the laboratory (full list in 

Materials and Methods, Table 2.2.2.1) included Monoclonal antibodies (mAb) raised to 

a 16-mer oligopeptide with the sequence of the human CDC2 PSTAIR box, which were 

a kind gift of Y. Nagahama (Yamashita etal., 1991), and had been previously shown to 

react to at least 2 proteins in T. brucei (Mottram etal., 1993). Also in the laboratory 

were antisera which had been raised to the C-terminal 16 residues of LmmCRKl 

(named CITAA), the C-terminal 16 residues of TbCRK2 (EVREE), and to the 16 amino 

acids of the substituted PSTAIR box of TbCRK2 (PSTA VR). These 3 antisera had 

previously been affinity purified using the respective oligopeptide bound to Aminolink 

coupling gel. It was intended that this project would raise antisera to the TbCRK3 

protein.

Several attempts were made to raise specific antisera to TbCRK3. The first

method tried was to generate a fusion of the tbcrk3 PCR fragment from pCDTrpLl with

Glutathione-S Transferase. The entire EcoRI fragment was cloned into the correct

reading frame of a pGEX vector and the junction sequenced to show that the tbcrk3

gene fragment was in the correct orientation and in frame. The protein formed was

insoluble, and so could not be purified on an affinity column. Small amounts could be

made soluble by treatment with 1 % Triton X-100 and DTT but the yield was very low

and unreliable. An alternative strategy was therefore adopted. An oligopeptide

(Pepl91) homologous to the N-terminus of TbCRK3 was synthesised commercially

(see Materials and Methods). This region was chosen as the N terminal extension was,

as far as we were aware, unique to this protein. It was designed to begin just after the
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second methionine in the protein, as we can not be sure if translation in vivo starts at the 

first ATG.

Predicted TbCRK3 sequence MTMLGALTGRQLSSGLKDQ. . .
Oligopeptide P e p l9 1  sequence CLGALTGRQLSSG

The first residue in the oligopeptide is a non coded Cysteine necessary for the 

manufacturing process. Several milligrams of the peptide had been linked to Keyhole 

Limpet Haemocyanin by the manufacturers ready for injection. Two rabbits were 

inoculated. Sera were taken from the rabbits after one month. They were then given 

booster injections and sera again taken after two weeks. These antisera were tested for 

cross reaction with western blots of T. brucei whole cell protein extracts. No proteins 

of approximately the correct size were detected. It was later shown that the sera from 

the two rabbits also did not react to a full length TbCRK3 fusion protein expressed in E. 

coli (see Figure 4.4.7). It may be that this region is very poorly immunogenic

A third method was tried to raise antisera to TbCRK3. A construct was 

generated containing the entire tbcrk3 ORF tagged with 6 histidine residues at the C- 

terminus (see Materials and Methods) and expressed in E. coli. This (His) 6 tag allows 

the purification of proteins on a Ni2+/agarose matrix, even in denaturing agents such as 

6 M Urea, which allows the purification of proteins that are usually insoluble. The 

protein extract is bound to the column and then washed with buffers of either 

decreasing pH, or increasing concentrations of imidazole (a competitor of the histidine). 

Most contaminating proteins should be removed by pH 6.0 buffer or 100-200 mM 

imidazole. The tagged proteins typically need a pH of 5.4, for monomer elution, or 4.0 

for multimer elution. The equivalent figures for imidazole are 250 and 500 mM. The 

binding and washing of the column has to be performed with solutions without EDTA 

as chelation of the nickel ions results in the complete loss of histidine binding. As the 

expression and purification of full length TbCRK protein would allow the assessment of 

antisera reaction to the protein without interference from other sources, it was decided
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to express TbCRKl and TbCRK2 as His-tagged proteins in E. coli as well for an 

equivalent analysis.

4.3.2 Cloning of the histidine tagged TbCRK proteins.

The expression vector pQE-60 (see Figure 4.3.1) contains restriction enzyme

sites to enable the cloning of ORFs in front of 6 histidine codons followed by a

termination codon. The initiator ATG is formed as part of an Ncol site at the 5' end of

the MCS. Oligonucleotides were designed to amplify the coding region of each of the

tbcrk genes (see Figure 4.3.1). The sequences of the oligonucleotides were altered so

that the sequence coding for the starting methionine included an Ncol site, while at the

3' end, the stop codon was removed and replaced with either a BamHl or a fig/11 site in

the correct frame for the histidine codons. As these enzymes leave compatible

overhangs the vector for all the ligations could be treated with Ncol and BamHl in

duplicate. The tbcrk2 3' oligonucleotide needed to use a fig/11 site as the gene includes

a BamHl site (see Figure 4.2.1). In each case the PCR, from plasmid [pCD70E(S)8 for

tbcrk3] or lambda (for tbcrkl and tbcrk2) template, gave a single band of approximately

1 kb as expected. Pfu DNA Polymerase was used for the PCR as this enzyme has a 3'-

5' proof-reading activity, unlike Taq DNA Polymerase, and so the mutation rate is

twelve fold reduced (see Materials and Methods). The PCR products were purified, the

D N A  w a s  d i g e s t e d  w i t h  Ncol a n d  t h e  3 '  e n z y m e  ( e i t h e r  BamHl o r  f i g / I I ) ,  a n d  l i g a t e d

into Ncol/BamHl cut pQE-60. Transformed colonies of Amp resistant XL-1 Blue were

screened by touching with a sterile toothpick, to transfer some of the colony to a 0.5 ml

cppendorf tube with 20/<l of water which was then boiled for 5 min. This was then

used as template for PCR with Taq DNA polymerase and the original oligonucleotides.

Colonies thought to contain the correct insert were grown up overnight, plasmid DNA

was prepared and then digested with several restriction enzymes to show that the

correct gene had been inserted properly into the expression vector. It is recommended

t h a t  p Q E - 6 0  r e c o m b i n a n t s  a r e  g r o w n  i n  a  b a c t e r i a l  s t r a i n  c o n t a i n i n g  a  m u l t i c o p y

12 5



Figure 4.3.1 The Qiagen his-tagged expression vector and tbcrk oligonucleotides.

The pQE-60 Polylinker sequence

6xHis
CC ATG GGA GGA TCC AGA TCT 

Ncol BamHl BglII

IfTAA GCT TAA TTA GCT GAG 

Hindlll

G CCC ATG GGG AGT CGT TAC GAG C 

CGC GGA TCC GAA CTC GAC AGA AAA GTA T 

G CCC ATG GAG GTG CAG GTG CAG GAA GG 

CG CAG ATC TAG CTC CGT TGA ACC GCA TC 

CC ACC ATG GAC CGG TAT AGC CGA ATA 

GA GGA TCC ATG ACA ATG CTT GGG GCG 

GC AGA TCT AAA CAT GGC ATC ACT AAA 

AT CCC ATG GAC CGC TAT AAT CGA ATG

5' oligo 5'(-5'ext) oligo

tbcrkl/H PCR 5’ primer. 

tbcrkl/H PCR 3’ primer. 

tbcrk2/H PCR 5’ primer. 

tbcrk2/H PCR 3’ primer. 

tbcrk2/H (-5 'ext) PCR 5’ primer. 

tbcrk3/H PCR 5’ primer. 

tbcrk3/H PCR 3’ primer. 

tbcrk3/H (-5 ’ext) PCR 5’ primer.

tbcrk ORF

3' oligo

Figure 4.3.1. The oligonucleotides used to perform PCR so that the tbcrk genes could be 

cloned into pQE-60 are shown. The bases in bold are the engineered restriction sites for 

Ihe in frame insertion into the pQE-60 polylinker. The underlined bases in the polylinker 

are termination codons for all three reading frames.
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plasmid encoding the lacV^ gene, which ensures almost complete repression of the His- 

tagged gene's transcription, and so minimises any toxic effects. I found this was 

unnecessary in the case of the tbcrk genes, and so to make the analysis of plasmid DNA 

restriction digests easier, the subcloning and expression were done in XL-1 Blue, which 

repressed pQE-60 transcription effectively enough, as it contains a chromosomal copy 

of lacl^.

4.3.3 Expression and purification of TbCRK3/His.

Initial small scale expression screening of colonies containing the tbcrk3/h 

plasmid (pQCD236) showed that the protein was expressed and could be purified in 

denatured form using 6 M urea. However attempts at purification of the native form of 

the protein were unsuccessful. No soluble protein could be purified, but by SDS-PAGE 

and coomassie staining it was found that the insoluble pellet contained large amounts of 

a ~34 kDa protein.

The 6M urea extraction was scaled up for a 50 ml culture of cells that had been 

induced with IPTG for 4 hr. The extract was added to the Ni2+/agarose column, washed 

with increasingly acidic buffer, and finally eluted with pH 4.0 buffer. 20/d  of 0.5 ml 

samples were boiled in SDS-Final Sample Buffer (FSB) and run on 12 % SDS-PAGE 

(see Figure 4.3.2). Lane 1 shows the protein remaining after the cell extract has been 

allowed to bind to the Ni2+/agarose column. There is no intense band at 34 kDa, 

implying that the fusion protein has bound to the column. The next two lanes show 

early and late fractions from the first wash, which was performed with 5 ml of the 

column binding buffer B (pH8.0). The proteins washed off in this buffer (lane 2) are 

the proteins that do not bind to the Ni2+/agarose column. Washing with buffer C (pH 

6-0) eluted a large number of proteins (lanes 4-8), with a different profile to the flow 

through (lane 1). These are proteins that bind weakly to the Ni2+/agarose matrix.
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Figure 4.3.2 A 50 ml culture of induced XL-1 Blue/pQCD236 was pelleted, 

resuspended in 5 ml of 6 M urea, Buffer B, then spun at 10 000 g for 15 minutes at 4 

°C. The supernatant was loaded onto a 0.5 ml Ni2+/agarose column. This was washed 

with 5 ml of Buffer B. 0.5 ml fractions were collected after -1  ml (early fraction) and 

-4.5 ml (late fraction) of wash buffer had passed through the column. The Buffer C 

wash consisted of 5 ml collected in 9 fractions of -0 .5 ml. The bound protein was 

eluted with 4 ml of pH4.0 Buffer D, collected as -0 .5  ml fractions. 20 ̂  1 of the fraction 

to be run on the gel was boiled for 2 minutes with 5 y \ of 5 x Final Sample Buffer 

(FSB) before loading onto 12 % SDS-PAGE.

Lanes 1-15. (l)-Extract after passage through Ni2+ /agarose column. (2)-Early 

fraction of the Buffer B wash. (3)-Late fraction of the Buffer B wash. (4-7)-Fractions 

2/4/6/8 of the Buffer C wash. (8-15)-Fractions 1-8 of Buffer "D" pH 4.0 elution. For 

Buffers A-D see Materials and Methods.
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The major band in the buffer C wash is actually the TbCRK3/H protein at 34 kDa. The 

elution of large amounts of TbCRK3/H in the wash buffer (Lanes 4-7) may be partially 

due to this buffer being a lower pH than planned when rechecked with indicator paper. 

However, substantial loses of protein during the washing of the column were seen with 

other protein purifications using other buffers. The protein coming off the column early 

may have been trimmed at the C-terminus, which would result in release from the 

matrix under less stringent conditions than usual. The purified protein seen on the 

coomassie stained gel does indeed consist of several closely spaced bands, but there 

appears to be no preferred elution of the lower bands. It is likely that most of the loss is 

due to the weak nature of the histidine/Ni2+ interaction resulting in the gradual loss of 

protein from the column. Treatment of the column with buffer D (pH 4.0) elutes more 

of the bound TbCRK3/H protein, this time in a predominantly pure form. The higher 

molecular weight bands that co-purify with the 34 kDa band are apparently a form of 

TbCRK3/H multimer, formed due to the high level of expression, that has not broken 

down in the FSB when boiled (see Figure 4.4.7, lane 1). The larger bands were not 

always seen when purified TbCRK3/H samples were run on SDS-PAGE and coomasie 

stained.

The protocol used above was scaled up further, and protein prepared from 500

ml of cells. The purified protein from the equivalent of lanes 8-12 was pooled, and then

dialysed into lower dilutions of urea every 10-14 hr. The 6/4/2/1/0 M solutions of urea

also contained 0.05 M Tris-HCl (pH 8.0). In an effort to keep the TbCRK3/H soluble,

the dialysis solutions included 0.005 % Tween-20, 2 mM reduced glutathione and 0.02

mM oxidised glutathione as suggested by the QIAGEN manual. When the

concentration of urea was between 4 M and 2 M the protein precipitated out of solution.

The TbCRK3/H protein was prepared for injection into rabbits by centrifugation of the

urea free material, at 15 000 rpm for 45 min in a microfuge. The supernatant was

carefully removed and the pellet dried under a vacuum before weighing. The pellet was

rcsuspended in dH20  by vortexing and repeated pipetting. Some of the urea free pellet

aud supernatant were run on SDS-PAGE and coomassie stained. All of the TbCRK3/H
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was in the pellet. Some of the TbCRK3/H was kept for analysis of antisera cross 

reaction (see Chapter 4.4.4).

4.3.4 Expression and purification of TbCRKl/His.

Small scale urea purifications of pQCD278.1h showed that tbcrkl/h was being 

expressed at high levels when IPTG was added to the culture medium. Unlike 

TbCRK3/H though, considerable amounts of a 34 kDa protein could also be seen in the 

supernatant of cells lysed without urea present. A native protein purification was 

performed on a 50 ml culture, induced for 4 hr. Instead of using buffers of varying pH 

for the purification, the wash and elution in this case was performed with a step gradient 

of 100/200/300/500 mM imidazole. 3 ml of each imidazole buffer were passed through 

the 0.5 ml column and 1 ml samples of the eluate taken (except for the 500 mM 

imidazole buffer which was collected as four 0.75 ml fractions. 20 ja\ of each sample 

were heated to 37 °C in FSB for 5min before running on 12 % SDS-PAGE (see Figure 

4.3.3). The protein samples containing imidazole were not boiled as the imidazole can 

promote proteolytic cleavage. It appears that although the volume of Ni2+/agarose was 

only 0.5 m l, the column is acting as if there is a 'dead space' of approximately 2 ml.

This may be due to the mixing of previous buffers with the each new imidazole buffer, 

so only slowly raising the competitor concentration with each step of the gradient.

With this interpretation Figure 4.3.3, lanes 3-5 of show that the majority of soluble 

proteins bound to the Ni2+/agarose column can be washed off using 100 mM imidazole. 

The 200 mM imidazole buffer elutes most of the remaining protein (lanes 6-8), but 

again , the histidine tagged protein (at 34 kDa) is eluted in considerable amounts by the 

wash buffer. While TbCRKl/H is preferentially bound to the column, and is the major 

component of the protein eluted by the 300 mM imidazole buffer (lanes 9 and 10), there 

ts a 45 kDa protein contaminating these extracts.
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Figure 4.3.3 A 50 ml culture of induced XL-1 Blue/pQCD278.1h was pelleted, 

resuspended in 5 ml of Sonication Buffer, and lysed by incubation with lysozyme 

followed by sonication. After centrifugation at 10 000 g for 15 minutes the supernatant 

was added to a 0.5 ml Ni2+/agarose column. The column was washed with 10 ml of 

Sonication Buffer, 10 ml of Wash Buffer and then the protein was eluted with a step 

gradient of 3 ml of Wash Buffer containing 100/200/300/500 mM imidazole. The 

imidazole containing buffer was collected as 1 ml fractions, except for the 500 mM 

elution which consisted of 4 x 0.75 ml fractions. 20 /d  of each fraction to be run on the 

gel was heated to 37 °C for 5 minutes with 5 /d  of 5 x FSB before loading onto 12 % 

SDS-PAGE.

Lanes 1-13. (l-3)-100 mM imidazole wash. (4-6)-200 mM imidazole wash. 

(7-9)-300 mM imidazole elution. (10-13)-500 mM imidazole elution.
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This protein bound relatively well to the Ni2+/agarose in other native purifications, 

with or without TbCRKl/H. No protein could be seen in the fractions eluted with 500 

mM imidazole. Presumably none of the TbCRKl/H was multimeric, and so all had 

been eluted by the buffers with a lower concentration of imidazole.

TbCRKl/H protein samples equivalent to Figure 4.3.3, lane 9 were used for the 

antiserum cross-reaction tests (see Chapter 4.4.2), and samples from the equivalent of 

lane 10 were used in the attempts to activate TbCRKl/H (see Chapter 5.3).

4.3.5 Expression of TbCRK2/His.

Small scale urea purifications of pQCD278.2 cultures failed to show any protein 

corresponding to the expected size of TbCRK2/H (approximately 40 kDa). When a 50 

ml culture was treated in parallel with the TbCRKl/H native purification in Figure 4.3.3 

no purification of TbCRK2/H was seen (see Figure 4.3.4). Urea based purifications 

were also unsuccessful. Comparisons between induced and non-induced 

PQCD278.2/XL-1 Blue, whether of pellet or supernatant, revealed very little difference, 

with a major band at 40 kDa in the uninduced bacteria masking any low level 

TbCRK2/H expression. I was unable to convincingly purify TbCRK2/H, but whole cell 

extracts boiled in FSB could be used for the assessment of antibody cross-reaction (see 

Chapter 4.4.3), if the antiserum had not been raised to protein made in E. coli (i.e. 

antipeptide antisera could be used).

4.3.6 Cloning and expression of TbCRK2 & TbCRK3 without the N-terminal 

extensions.

One possible reason for TbCRK2/H and TbCRK3/H not being expressed and 

being insoluble respectively, when TbCRKl/H was both highly expressed and soluble, 

could have been the presence of the N-terminal extensions. It was decided to make new
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Figure 4.3.4 The 50 ml culture of XL-1 Blue/pQCD278.2 was treated, and 

analysed in an identical manner to the TbCRKl/H native purification (see Figure 4.3.3).

Lanes 1-13. (1-3)-100 mM imidazole wash. (4-6)-200 mM imidazole wash. 

(7-9)-300 mM imidazole elution. (10-13)-500 mM imidazole elution.
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constructs by PCR to remove these sequences. Oligonucleotides were designed to 

anneal just 5' to the DNA encoding the ATP binding region (see Figure 4.3.1). As 

before, the oligonucleotides included a Ncol site for subcloning. The same 3' 

oligonucleotides as before were used, and transformants again screened by PCR and 

plasmid restriction mapping. Positive clones for both TbCRK2/H/-5'ext 

[pQCD307/2(2)] and TbCRK3/H/-5'ext [pQCD307/3(9)] were identified.

100 ml cultures of both pQCD307/2(2) and pQCD307/3(9) were induced for 

4hr, and a native protein purification performed without success, apparently for the 

same reasons as with the full length proteins. There was no clear expression of 

TbCRK2/H/-5’ext and no 40 kDa band could be preferentially bound to the 

Ni2+/agarose column (see Figure 4.3.5). TbCRK3/H/-5’ext was insoluble [compare 

Figure 4.3.6, lane 1 (insoluble fraction) with lane 2 (the soluble extract)]. By reducing 

the induction time to 1.5-2 hr, and lowering the growing temperature during this time to 

30 °C it seemed possible to get a low level of expression of soluble TbCRK3/H/-5'ext. 

For unknown reasons this protein was washed off the Ni2+/agarose column at low 

concentrations of imidazole (50-100 mM), and so could not be purified (Data not 

shown). For this reason, the goal of attaining soluble TbCRK3 was abandoned.
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Figure 4.3.5 A 100 ml culture of induced XL-1 Blue/pQCD307/2(2) was 

pelleted, resuspended in 10 ml of Sonication Buffer, and lysed by incubation with 

lysozyme followed by sonication. After centrifugation at 10 000 g for 15 minutes the 

supernatant was added to a 1 ml Ni2+ /agarose column. The column was washed with 15 

ml of Sonication Buffer and a sample collected of the final 0.5 m l. 1 ml of Wash Buffer 

containing 25 mM imidazole was added to the column, mixed for 5 minutes at 4 °C, 

then collected as the Wash Equilibrate fraction (WE). The column was then washed 

with a further 14 ml of the 25 mM imidazole solution, with 0.5 ml samples collected 

after 7 ml (Mid-wash fraction) and 13 ml (Late wash fraction) had flowed through the 

column. The protein was eluted with a step gradient of 6 ml of 50/100/200/500 mM 

imidazole in Wash buffer. Each concentration was first added as a 1 ml fraction, which 

was incubated with agitation to allow the column to equilibrate, as with the 25 mM 

Wash Buffer, then allowed to drain (called fraction E). The next 5 ml were then added 

to the column and collected in 1 ml fractions (I-V). The pellet was resuspended in 10 

ml of sonication buffer, and 20 /d  boiled with 5 /d  of 5 x FSB before loading on 12 % 

SDS-PAGE. 20/d  of the other fractions to be run on the gel were heated to 37 °C for 5 

minutes with 5 /d  of 5 x FSB.

Lanes 1-18. (l)-Resuspended pellet. (2)-Supematant. (3)-Supematant after 

passage through Ni2+/agarose column. (4)-Sonication Buffer wash, final 0.5 ml. (5)- 

Mid-wash fraction. (6)-Late wash fraction. (7-9)-Fractions E/II/IV of the 50 mM 

imidazole wash. (10-12)-Fractions E/II/IV of the 100 mM imidazole wash. (13-15)- 

Fractions E/II/IV of the 200 mM imidazole wash. (16-18)-Fractions E/II/IV of the 500 

mM imidazole elution.
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Figure 4.3.6 The 100 ml culture of XL-1 Blue/pQCD307/3(9) was treated in the 

same manner as for the purification of native TbCRK2/H/-5'ext (see Figure 4.3.5), 

except only 5 \t\ of each fraction was loaded in each lane.

Lanes 1-18. (l)-Resuspended pellet. (2)-Supematant. (3)-Supematant after 

passage through Ni2+/agarose column. (4)-Sonication Buffer wash, final 0.5 ml. (5)- 

Mid-wash fraction. (6)-Late wash fraction. (7-9)-Fractions E/II/IV of the 50 mM 

imidazole wash. (10-12)-Fractions E/II/IV of the 100 mM imidazole wash. (13-15)- 

Fractions E/II/IV of the 200 mM imidazole wash. (16-18)-Fractions E/II/IV of the 500 

mM imidazole elution.
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4.4 The detection of E. coli expressed TbCRK proteins by Western blotting.

4.4.1 Antisera believed to cross-react with the TbCRK proteins.

Antisera raised to PSTAIR or PSTAIR related sequences, (the PSTAIR mAb 

and PSTAVR) were available to be tested for their cross-reactivity to the TbCRK/H 

fusion proteins. There was also antiserum that was expected to be specific for TbCRKl 

(CITAA) and an antiserum raised to the TbCRK2 C-terminus (EVREE) (see Chapter 

4.3.1). There were also antisera from two rabbits injected with the denatured, purified 

TbCRK3/H (see Chapter 4.3.3). The rabbit anti sera were designated TC3HG and 

TC3HS.

4.4.2 Antibody detection of TbCRKl/H.

To test if TbCRKl/H cross reacts with the PSTAIR mAb, partially purified 

TbCRKl/H protein from the Ni2+/agarose column selection (see Figure 4.3.3, lane 9) 

was run on 12 % SDS-PAGE in duplicate, and then electroblotted to PVDF membrane. 

TbCRK2/H (unpurified whole cell extract) and purified TbCRK3/H (see Chapter 4.3.3) 

were also run in duplicate on this gel. Figure 4.4.1 shows the result of incubating one 

set of the 3 proteins with the PSTAIR mAb alone, and the duplicate set with antiserum 

which had been pre-absorbed with the PSTAIR oligopeptide (see Materials and 

Methods). Figure 4.4.1, lanes 1 and 4, show that the PSTAIR mAb detects TbCRKl/H, 

and that the recognition is blocked by addition of an oligopeptide consisting of the 

PSTAIR sequence.

To test which of the other antisera recognised TbCRKl, TbCRKl/H protein

from the Ni2+/agarose column selection was run on a 12 % Polyacrylamide preparation

gel and then electroblotted to PVDF membrane. Strips of the membrane were

incubated with various antisera (see Figure 4.4.2). Figure 4.4.2 shows that TbCRKl/H

is recognised by PSTAVR (lane 5) and CITAA (lane 6), but not EVREE
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Figure 4.4.1 PSTAIR mAb detection of TbCRK/H proteins.

Figure 4.4.1 Extracts of proteins were run on 12 % SDS-PAGE and 

electroblotted to PVDF membrane. Lanes 1 & 4, 10 ng of TbCRK 1/H; lanes 2 & 5, 

whole cell E. coli extract expressing TbCRK2/H; lanes 3 & 6, 10 ng of TbCRK3/H. 

Lanes 1-3 were probed with PSTAIR mAb (1:250 dilution); lanes 4-6 were probed with 

PSTAIR mAb that had been preincubated with 1 \i% / ml PSTAIR oligopeptide.
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Figure 4.4.2 TbCRKl/H detection by CRK and CDK antisera.

1 2  3 4  5 6  7
kDa

Figure 4.4.2 10 ng of semi-purified TbCRKl/H was loaded per lane onto 12 % 

SDS-PAGE and electroblotted to PVDF membrane. Lanes probed with: (1)-TC3HG 

Pre-Immune serum (1:800), (2)-TC3HG Immune serum (1:800), (3)-TC3HS Pre- 

Immune serum (1:800), (4)-TC3HS Immune serum (1:800), (5)-PSTAVR antiserum 

(1:50), (6)-CITAA antiserum (1:50), (7)-EVREE antiserum (1:50).
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(lane 7) or either of the TC3H antisera (lanes 2 and 4). The reacting bands in lanes 2 

and 4 are impurities that are detected by anti-E. coli antibodies in the polyclonal 

TC3HG and TC3HS sera.

4.4.3 Antibody detection of TbCRK2/H.

Although TbCRK2/H was not purified from E. coli it was thought that whole 

cell extracts from IPTG induced bacteria could contain enough TbCRK2 fusion protein 

to enable assessment of antisera reactivity by Western blotting. If the antisera had been 

raised to a protein expressed in E. coli, however, then the level of cross reaction with 

bacterial proteins precluded assessing TbCRK2/H reactivity. This is presumably due to 

contamination of the inoculated protein and was seen in antisera raised to both histidine 

tagged and GST fusion proteins purified from E. coli. For this reason it was not 

possible to show whether or not TbCRK2/H was recognised by either TC3HG or 

TC3HS. Of the antipeptide antisera; PSTAIR mAb (Figure 4.4.1, lane 2), PSTAVR 

(Figure 4.4.3, lane 2), and EVREE (Figure 4.4.4, lane 2) bind TbCRK2/H specifically, 

while CITAA did not (Figure 4.4.5, lane 2). There was found to be a 34 kDa protein in 

the E. coli extract that was detected by the affinity purified PSTAVR antisera (Figure

4.4.3, lane 2), but this recognition was not blocked by the addition of PSTAVR 

oligopeptide (see Figure 4.4.3, lane 5). Although this protein from the bacterial whole 

cell extract ran at approximately the same position as TbCRKl and TbCRK3, the loss 

of reacting bands in the lanes containing the purified histidine tagged proteins after the 

blocking oligopeptide addition showed that the recognised E. coli protein must be lost 

during the Ni2+/agarose purification. The 40 kDa band detected by the EVREE 

antiserum in the E. coli extract (Figure 4.4.4, lane 2) was notably larger than the 39 kDa 

band seen in the T. brucei long, slender extract (lane 1). The 6 histidine residues cause 

the bacterially expressed protein to be over 0.8 kDa larger.
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Figure 4.4.3 PSTAVR antiserum detection of TbCRK/H proteins.
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Figure 4.4.3 Extracts of proteins were run on 12 % SDS-PAGE and 

electroblotted to PVDF membrane. Lanes 1 & 4,3  ng of TbCRK 1/H; lanes 2 & 5, 

whole cell E. coli extract expressing TbCRK2/H; lanes 3 & 6, 10 ng of TbCRK3/H. 

Lanes 1-3 were probed with PSTAVR antiserum (1:50); lanes 4-6 were probed with 

PSTAVR antiserum that had been preincubated with 1 pig / ml PSTAVR oligopeptide.
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Figure 4.4.4 EVREE detection of TbCRK2/H.

Figure 4.4.4 Extracts of proteins were run on 12 % SDS-PAGE and 

electroblotted to PVDF membrane. Lane 1, whole cell long, slender T. brucei protein 

extract; lane 2, whole cell E. coli extract expressing TbCRK2/H. Both probed with 

EVREE antiserum (1:50).
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Figure 4.4.5 CITAA antiserum does not recognise TbCRK2/H.
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Figure 4.4.5 Extracts of proteins were run on 12 % SDS-PAGE and 

electroblotted to PVDF membrane. Lane 1, 10 ng of LmmCRKl/H (Purified by 

J.C.Mottram); lane 2, whole cell E. coli extract expressing TbCRK2/H. Both probed 

with CITAA antiserum (1:50).
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4.4.4 Antibody detection of TbCRK3/H.

TbCRK3/H purified using the method described in Chapter 4.3.3 was used for 

Western blotting. The protein was run on 12 % SDS-PAGE and electroblotted to 

PVDF membrane which was then cut into strips to be incubated with various antisera 

(Figure 4.4.6). These strips were processed in the same solutions as the TbCRKl/H 

western blot (Figure 4.4.2). No bands are visible when TbCRK3/H is incubated with 

either of the pre-immune TC3H antisera (Figure 4.4.6, lanes 1 and 3). When incubated 

with the TC3HG and TC3HS immune sera intense bands are seen at the expected size 

of approximately 34 kDa (lanes 2 and 4). The 34 kDa band is also present on the 

membrane exposed to the PSTAVR antiserum (lane 5), while no bands are seen in lanes 

incubated with CITAA (Lane 6) or EVREE (lane 7) antisera. Therefore TbCRK3/H is 

recognised by the TC3HG and the TC3HS antisera as well as the PSTAVR affinity 

purified antiserum. The TbCRK3 fusion protein is not recognised by either the CITAA 

antiserum, raised to the LmmCRKl C-terminal oligopeptide sequence, or the EVREE 

antiserum, raised to the TbCRK2 C-terminal oligopeptide sequence.

When membranes carrying TbCRK3/H were incubated with PSTAIR mAb a 34 

kDa band could be visualised (Figure 4.4.1, lane 3). This recognition could be 

abolished by pre-incubation of the antiserum with PSTAIR oligopeptide (Figure 4.4.1, 

lane 6), showing that the PSTAIR mAb cross reacts with the TbCRK3/H fusion protein. 

In the same manner recognition of TbCRK3/H by the PSTAVR antiserum (Figure

4.4.3, lane 5 and Figure 4.4.3, lane 3) could be blocked by pre-incubation of the 

antibody solution with the PSTAVR oligopeptide (Figure 4.4.3, lane 6).

Figure 4.4.7 shows that the antisera raised to the oligopeptide homologous to the 

N terminal extension of TbCRK3 failed to recognise the histidine tagged TbCRK3 

fusion protein (lanes 2 and 3). Lane 1 shows that protein recognisable by the PSTAIR 

mAb is on the membrane, and that the higher molecular weight bands co-purifying with 

the 34 kDa band in Figure 4.3.2 are also recognised by the PSTAIR mAb, and are

therefore likely to be multimeric forms of the TbCRK3/H protein.
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Figure 4.4.6 TbCRK3/H detection by CRK and CDK antisera.

1 2  3  4  5  6  7

Figure 4.4.6 10 ng of semi-purified TbCRK3/H was loaded per lane onto 12 % 

SDS-PAGE. The gel was electroblotted to PVDF membrane. Lanes probed with: (1)- 

TC3HG Pre-Immune serum (1/800), (2)-TC3HG Immune serum (1:800), (3)-TC3HS 

Pre-Immune serum (1:800), (4)-TC3HS Immune serum (1:800), (5)-PSTAVR 

antiserum (1:50), (6)-CITAA antiserum (1:50), (7)-EVREE antiserum (1:50).
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Figure 4.4.7 TbCRK3/H is not detected by antisera raised to the N-terminal 

oligopeptide.

Figure 4.4.7 Purified TbCRK3/H, equivalent to that shown in Figure 4.3.2 lane 

2, was run on 12 % SDS-PAGE and electroblotted to PVDF membrane. Lanes 

incubated with: (l)-PSTAIR mAb (1:250), (2)-N-terminal oligopeptide antiserum A 

(1:250); (3)-N-terminal oligopeptide antiserum B (1:250).
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4.4.5 Discussion of antisera specificity.

The cross reactivity of the available antisera is compared in Table 4.4.1. It is 

immediately obvious that all three TbCRK proteins are detected by both antisera 

directed to the PSTAIR region. Figures 4.4.1 and 4.4.3 show that TbCRKl and 

TbCRK3 are very similar in size and may run together on SDS-PAGE, which is a 

possibly explanation for why only two bands were apparent in previous Western blots 

of T. brucei (of 33 and 39 kDa). The cross reactivity of the three TbCRK proteins with 

the PSTAIR mAb is surprising considering all of them contain substitutions in the 

PSTAIR box. TbCRK3/H has only 10/16 residues conserved with the 16mer 

oligopeptide to which the monoclonal antiserum was raised. While the conservative 

changes, I to L and L to I, would not be expected to radically alter the anti body/epitope 

recognition the non-conservative changes, S to Q and K to Q might. It is possible for a 

single residue change to destroy antibody recognition (Barnett et al., 1990).

The anti-C-terminal antisera are specific for the CRK family member they were 

raised to. EVREE only detects TbCRK2/H (see Figures 4.4.2,4.4.4 and 4.4.6), while 

CITAA detects both LmmCRKl/H (Figure 4.4.5, lane 1) and TbCRK 1/H (Figure 4.4.2, 

lane 6) but not TbCRK2/H (Figure 4.4.5, lane 2) or TbCRK3/H (Figure 4.4.6, lane 6). 

The 5 changes between the 16 C-terminal residues of LmmCRKl and TbCRKl did not 

appear to greatly affect the antibody recognition. The addition of the histidine tag to the 

C-terminus also did not appear to affect antibody binding in any of these cases.

As the TC3HG and TC3HS antisera had been raised to the entire ORF of 

TbCRK3/H it was important to test if the antisera cross reacted with the other TbCRK 

proteins especially as some regions of the CRK proteins are well conserved. The 

monoclonal PSTAIR and the polyclonal PSTAVR antisera had already shown the 

ability of antibodies to recognise sequences related to those that the antibodies had been 

raised to. The histidine tag is reported to be a poor immunogen, and this was confirmed 

when TC3HG and TC3HS were tested against TbCRKl/H as no binding to this protein
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Table 4.4.1 Recognition of the TbCRK proteins by various antisera.

PSTAIR mAb PSTAVR CITAA EVREE TC3HG&S

TbCRKl/H XXX XXX XXX __ __

TbCRK2/H XXX XXX __ XXX ND

TbCRK3/H XXX XXX __ __ XXX

Table 4.4.1 Antiserum/protein recognition.

+++ Protein recognised by antiserum.
No specific reaction seen.

ND Not Done, due to contaminant E. coli protein.
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was detected. The intense band around 27 kDa in these western blots (Figure 4.4.2, 

lanes 2 and 4) shows the strength of reaction to contaminating proteins from E. coli. 

Because of the recognition of this, and other, bacterial proteins, it was not possible to 

test if TC3HG or TC3HS cross reacted with the TbCRK2/H fusion protein. In an effort 

to reduce the cross reaction with E. coli proteins a 0.05 ml aliquot of the TC3HG 

antiserum was diluted 1:20 with 10 mMTris pH 7.5. This was then incubated with 

amino-link beads to which a protein extract from E. coli had been bound (previously 

prepared in WUMP). The flow through from this column [TC3HG(-Ec)]was used for 

some Western blots without a marked reduction in extraneous recognition, presumably 

due to overloading of the column.
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4.5 Analysis of TbCRK expression in different life cycle stages.

4.5.1 Available life cycle stages and protein extracts.

Of the major life cycle stages of T. brucei, it is possible to harvest and perform 

expression analysis with Western blotting techniques on three; the long slender (Is) and 

the short stumpy (ss) bloodstream forms, and in vitro grown procyclic (pc) forms. The 

long slender and procyclic forms are rapidly dividing stages, while the short stumpy 

form is blocked in G1 (see Chapter 1.1.2). It is not possible to purify short stumpy 

forms to homogeneity from a mixed population, however by using laboratory strains 

with high rates of short stumpy formation and infecting irradiated rats it is possible to 

get populations of >75 % short stumpy trypanosomes. 100 % long slender forms can be 

obtained from monomorphic strains of T. brucei. These strains have been selected for 

rapid growth in the rat due to the repeated bloodstream passage via inoculation, and a 

number of alterations have occurred. The rate of VSG switching has apparently 

decreased significantly (Barry and Turner, 1991) and, by definition, they have lost the 

ability to differentiate to the short stumpy form, a transition which must have cell cycle 

controlling protein involvement. Due to this, experiments on the CRK proteins using 

these strains should be interpreted with caution. For some of the Western blots mixed 

bloodstream form trypanosomes (BS) from a pleomorphic strain of T. brucei were used 

instead of purified populations of long slender and short stumpy forms.

Originally S100 extracts were used for Western blotting as the CDK proteins 

from other organisms are generally soluble. Using these extracts however, it was not 

possible to detect TbCRK3 and it was found necessary to use either whole cell extracts 

or both S100 and pellet fractions.

Unless otherwise noted, the procyclic extracts were made from freshly pelleted

STIB247 cultures during log phase growth. The mixed bloodstream forms and the short

stumpy forms are also from the STIB247 line. The monomorphic long slender line

usually used was IstatC123. Bradford assays were used to estimate the protein
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concentration and the extracts were first run on SDS-PAGE and stained with coomassie 

blue to check that there was approximately equal loading before the extracts were used 

for Western blots. Typically, 30 pig of total protein was run in each lane of a small gel, 

SO pig were run per lane on the larger equipment.

4.5.2 TbCRK expression in three life cycle stages of T. b. brucei.

EVREE antiserum, previously shown to recognise TbCRK2/H, was incubated 

with S100 extracts of mixed bloodstream form, short stumpy form and procyclic form 

T. b. brucei that had been run on SDS-page and electroblotted to PVDF membrane (see 

Figure 4.5.1). This Western blot was performed by Dr. Mottram. A 40 kDa protein is 

recognised in all three life cycle stage extracts. The antisera also recognises an 

unknown 50 kDa protein in all of the stages. Relative to the unknown protein it appears 

that the short stumpy forms have an increased amount of TbCRK2 but we do not know 

if the expression of the 50 kDa protein is constant between the three stages tested 

(although total protein loading should have been approximately equal in each lane).

Figure 4.5.2 shows whole cell extracts of long slender form (lane 1), short 

stumpy (lane 2) and procyclic (lane 3) T. brucei incubated with the TbCRK 1 specific 

CITAA antiserum [Plus one lane of long slender extract incubated with the PSTAIR 

mAb (lane 4)]. In all three life cycle stage extracts the predominant band is at 33 kDa. 

There are also varying lower molecular weight proteins recognised which may be due 

to proteolytic cleavage, which occasionally occurred even in the presence of protease 

inhibitors. The 33 kDa protein, presumably TbCRK 1, runs at the same size as the lower 

band of a 34 kDa doublet seen when the long, slender form extract was incubated with 

the PSTAIR mAb
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Figure 4.5.1 TbCRK2 expression in T. brucei.

Figure 4.5.1 (Supplied by J.C.Mottram) S100 supernatant protein extracts were 

run on 10 % SDS-PAGE, electroblotted to PVDF membrane and incubated with 

EVREE antiserum (1:50). Lane 1-mixed bloodstream form, lane 2-predominantly short 

stumpy, lane 3-cultured procyclic.

157



Figure 4.5.2 PSTAIR mAb reacting proteins in long slender form T. brucei and 

TbCRKl expression in different life cycle stages.
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Figure 4.5.2 Whole cell protein extracts from long slender (lanes 1 & 4), short 

stumpy (lane 2), and procyclic (lane 3) T. brucei were run on 12 % SDS-PAGE, 

electroblotted to PVDF membrane and probed with; lanes 1/2/3- CITAA antiserum 

(1:50); lane 4- PSTAIR mAb (1:500).
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antiserum (lane 4). As well as the 34 kDa doublet the long slender extract also shows a 

PSTAIR reactive band at 40 kDa. It is likely that the proteins recognised by the mAb 

are TbCRK 1 (33 kDa), TbCRK3 (34 kDa) and TbCRK2 (40 kDa).

Figure 4.5.3 shows the short stumpy form S100 extracts probed with the 

PSTAIR mAb. Only the 34 kDa and 40 kDa bands were visualised, but this is likely to 

be due to the underloading/underexposure of the blot. Therefore it is expected that the 

non-dividing short stumpy form trypanosomes contain TbCRK2 (the 40 kDa band) and 

at least one of TbCRKl or TbCRK3.

A Western blot of S 100 procyclic extract incubated with the PSTAIR mAb 

results in four distinguishable bands at 33, 40,48 and 60 kDa (see Figure 4.5.4). It is 

unlikely that the 34 kDa doublet of TbCRKl and TbCRKB would be resolved 

adequately on the small Bio-Rad gel kit used in this experiment. It is also possible that 

the doublet is not seen because TbCRK3 is insoluble under these conditions (see Figure 

4.5.7, lanes 3 and 4). The 40 kDa band was expected to be TbCRK2, but the identities 

of the 48 and 60 kDa proteins are unknown. A PCR generated fragment of a fourth 

TbCRK gene (TbCRK4) has been isolated and may be found to encode one of these 

proteins (J. Mottram, personal communication)

Figure 4.5.5 is a Western blot of mixed bloodstream form whole cell extract 

incubated with the PSTAIR mAb (lane 1) and TC3HG Immune antiserum (lane 2). The 

mAb detects the 34 kDa doublet, the 40 kDa protein and an 80 kDa protein as well.

The TC3HG antiserum recognises many proteins in the mixed bloodstream extract, one 

of which runs at the same size as the higher of the band sin the 34 kDa doublet.

Another band co-mi grates with the 40 kDa band from the PSTAIR mAb probed 

Western blot. This strongly suggests that TbCRK3 is expressed in bloodstream form T. 

brucei, and that the larger of the 34 kDa PSTAIR reactive bands is TbCRK3. It also 

implies that TC3HG may cross react with TbCRK2.
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Figure 4.5.3 PSTAIR mAb reacting proteins in short stumpy form T. brucei.

Figure 4.5.3 Whole cell protein extract from short stumpy T. brucei was run on 

12 % SDS-PAGE, electroblotted to PVDF membrane and probed with PSTAIR mAb 

( 1:1000).
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Figure 4.5.4 PSTAIR reacting proteins in procyclic T. brucei S100 supernatants.

Figure 4.5.4 S100 protein extract from procyclic form T. brucei was run on 12 

% SDS-PAGE, electroblotted to PVDF membrane and incubated with PSTAIR mAb 

(1:25) that had been affinity purified by J.C.Mottram.
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Figure 4.5.5 TbCRK expression in bloodstream form T. brucei.

Figure 4.5.5 Whole cell protein extract from mixed bloodstream form T. brucei 

was run on 12 % SDS-PAGE, electroblotted to PVDF membrane and probed with; lane 

1-Affinity purified PSTAIR mAb (1:50); lane 2, TC3HG(-Ec) (1:50).

162



Figure 4.5.6 TbCRK3 expression in long slender form T. brucei.

Figure 4.5.6 Whole cell protein extract from long slender T. brucei, run on 12 

% SDS-PAGE and electroblotted to PVDF membrane, was probed with; lane 1-TC3HG 

Pre-Immune antiserum (1:800); lane 2-TC3HG Immune antiserum (1:800).
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Long slender whole cell extracts were run on SDS-PAGE, electroblotted to 

PVDF membrane and incubated with Pre-Immune or Immune TC3HG antisera (Figure 

4.5.6). No bands between 21 and 45 kDa are seen to react to the Pre-Immune (lane 

1).A protein of 34 kDa is detected by the TC3HG Immune antiserum, presumably 

TbCRK3 (see Figure 4.5.6, lane 2), but in this extract no 40 kDa protein was 

recognised.

In Figure 4.5.7 short stumpy S100 and pellet extracts have been run separately 

on SDS-PAGE, and the Western blot incubated with Pre-Immune (lanes 1 and 2) or 

Immune (lanes 3 and 4) TC3HG antisera. Again, the Pre-Immune TC3HG did not 

detect any proteins between 21 and 45 kDa in either the supernatant (lane 1) or the 

pellet fraction (lane 2). The Immune antiserum cross reacts with a 34 kDa protein in 

the pellet fraction (lane 4) and a 26 kDa protein in the S100 supernatant (lane 3). There 

is also a possible very faint band in the supernatant at 40 kDa when incubated with the 

Immune TC3HG. The association of TbCRK3 with the pellet implies that it is bound to 

the cytoskeleton or DNA within the cell. The 26 kDa protein has not been detected 

with the PSTAIR mAb, but if the change in size was due to the removal of 70-80 

residues from the N-terminus (consistent with the mobility change) then the PSTAIR 

box would be missing from the protein. Proteolysis of a CDC2-related kinase in this 

manner has not been seen previously, and as with the lower molecular weight CITAA 

reactive bands (see Figure 4.5.2) it is likely to be an artefact of the sample preparation.

Thd TC3HG antiserum gave high background when incubated with the 

procyclic whole cell extracts but it was just possible to detect a 34 kDa band as 

predicted for TbCRK3, reacting to the Immune serum (Figure 4.5.8, lane 2), while the 

Pre-Immune antiserum (lane 1) detected no bands in this region. Therefore TbCRK3 is 

being expressed in procyclic form T. brucei. No cross reaction of the TC3HG Immune 

antiserum with TbCRK2 was seen due to the level of non-specific signal.

The evidence strongly suggests that all three tbcrk genes so far cloned are 

expressed in the three life cycle stages tested.
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Figure 4.5.7 Insolubility of TbCRK3 in short stumpy form T. brucei.

1 2  3 4

Figure 4.5.7 S I00 protein extracts of short stumpy form T. brucei were run on 

SDS-PAGE and electroblotted to PVDF membrane. Lanes 1 & 3-supematant; Lanes 2 

& 4-pellet fraction. Lanes 1 & 2-TC3HG Pre-Immune antiserum (1:400). Lanes 3 & 4- 

TC3HG Immune antiserum (1:400).
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Figure 4.5.8 TbCRK3 expression in procyclic T. brucei.

Figure 4.5.8 Whole cell protein extract from procyclic T. brucei was run on 12 

% SDS-PAGE and electroblotted to PVDF membrane. Lanel-TC3HG Pre-Immune 

antiserum (1:600); lane 2-TC3HG Immune antiserum (1:600).
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4.6 Discussion.

The data obtained from Southern blots of the tbcrk genes shows that they are 

single copy per haploid genome. At the present time, few T. brucei genes isolated are 

single copy. It would seem unlikely that multiple copies are essential for high level 

expression as the high levels of VSG protein are expressed from a single telomere, 

therefore the VSG gene effectively has a copy number of 1/2 per haploid genome. The 

VSG, however, is transcribed by an alpha-amatin resistant RNA polymerase which 

affects transcription levels. More pertinent is the fact that deletion of two thirds of the 

tubulin genes in Leishmania enriettii by homologous recombination only results in a 

lowering of mRNA levels to 62-76 % of the normal (de Lafaille and Wirth, 1992). The 

evidence so far amassed suggests that mRNA levels for RNA polymerase II transcribed 

genes is regulated by post transcriptional methods. Because of the apparent general 

lack of promoter activation in the kinetoplastids it may be that the method used to allow 

rapid increases and decreases in mRNA levels is constant transcriptional initiation 

followed by variable stability. A single copy gene under these conditions would only 

slowly build up its RNA levels when the message was stabilised.

The TbCRK2/H protein expressed in E. coli had a very low level of expression, 

the reason for which is unknown. The codons used in TbCRK2/H synthesis do not vary 

in frequency fundamentally from the codon bias seen in E. coli ribosomal proteins, so 

limiting tRNA factors should not have caused reduced expression (Zhang etal., 1991). 

In addition Western blots shpw no sign of protein degradation, with the 40 kDa band 

being the only antisera specific band recognised (see Figures 4.4.1 and 4.4.3).

The TbCRK3/H protein expressed in E. coli was extremely insoluble. In this 

case the result does agree with the finding that TbCRK3/H is associated with the pellet 

fraction of S100 extracts (see Figure 4.5.7). In contrast to TbCRK3/H, LmmCRK3/H 

was soluble and could be purified in the native form (J. Mottram, personnel 

communication). Apart from the N-terminal extension, which has 6/20 amino acids
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identical (including the initial Methionine), the two proteins are 80 % identical, yet one 

is soluble in E. coli while the other forms inclusion bodies.

The N-terminal extensions of both TbCRK2 and TbCRK3 were shown to not be 

responsible for these problems. Engineered constructs lacking the extensions behaved 

in the same manner as the full length clones (see Chapter 4.3.6).

The detection of p33, p34 and p40 TbCRKl-3 proteins by the PSTAIR mAb and 

the affinity purified polyclonal PSTAVR antibodies shows that considerable variation 

in the protein sequence can be tolerated in the antibody/epitope recognition. Epitopes 

are typically 3-8 aa in length (Rajadhyaksha and Thanavala, 1995; Thomson etaL,

1995). The nature of an antibody/epitope recognition makes it likely that the region of 

the PSTAIR box that is recognised by the monoclonal antibody is one in which the T. 

brucei proteins have only conservative substitutions. These would make only small 

changes to the epitope's steric, hydrophobic and/or electrical characteristics. The 

probable epitope is contained in the sequence, TAIREISLL, which is bounded by the 

TbCRK3 substitutions, S55Q and K65Q (TbCRK3 numbering). Within this region the 

TbCRK proteins have the conservative changes, I to V, I to L and L to I. The detection 

of TbCRKl/H with the CITAA antiserum is another example of antibody tolerance of 

conservative changes. Within the 16 amino acids of LmmCRKl sequence to which the 

antiserum was raised, TbCRKl has 5 substitutions, with the longest string of perfectly 

conserved residues being only 5 long.

LmmCRKl C-terminal oligopeptide CITAADALNHPYFSLQF 
TbCRKl C^erminus L------Q— E ----------- V E -

The initial Cysteine of the CITAA peptide was necessary for the manufacturing

process. The conserved residues are represented by the -  marks. All of the

substitutions are relatively conservative (I to L, D to Q, N to E, L to V and Q to E),

although in at least one case, a D to Q substitution can result in a marked reduction in

antibody affinity for an epitope (Barnett et al., 1990).
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The three TbCRK proteins were detected in both dividing and non-dividing 

stages of the T. brucei life cycle. This, however, gives no clues to whether or not any of 

these proteins are involved in control of the cell cycle as the presence of the polypeptide 

does not necessarily mean that the kinase is active. In L. mexicana, LmmCRKl is 

present in the amastigote stage, but immunoprecipitates show no histone HI kinase 

activity (Mottram etal., 1993). Therefore, to test whether or not any of the TbCRK 

proteins' kinase activities correlate to the division status of the life cycle stage, protein 

specific purification and activity assessment will have to be carried out. At present 

most of the antisera available are not specific enough for immunoprecipitation, and the 

interaction between CITAA and TbCRKl, unlike that between CITAA and the 

LmmCRKl protein, does not allow immunoprecipitation (presumably due to amino 

acid changes within the recognised epitope/s).

It is also possible that the G1 cell cycle block in the short stumpy stage may be 

due to constitutive activity of a G1 specific CDK as opposed to a lack of activity. This 

would be analogous to the M phase block that occurs when CDC2 is not deactivated 

towards the end of mitosis. This can be caused by the expression of Mitotic cyclins that 

lack the N-terminal "destruction box" (see Chapter 1.2.3 and 1.2.6). When this occurs 

the cells are unable to exit from mitosis due to the continuous activity of the 

CDC2/cyclin complex, normally deactivated by proteolysis of the cyclin subunit 

(Draetta etal., 1989). It is also possible that, due to the divergence between the 

kinetoplastids and other eukaryotes, the TbCRK proteins have no role in controlling the 

cell cycle. There is evidence that LmmCRKl might not be involved in the control of 

the cell cycle (Mottram etal., 1993), at least not in all life cycle stages. The protein 

phylogeny analysis implies that TbCRK2 and TbCRK3 at least are related to the Gl/S 

phase activated CDK4 and CDK6 (see Figure 3.3.9). As noted though, this 

convergence may be an artifact, caused by the divergence of the TbCRK2/3 and the 

CDK4/6 proteins from the CDC2/CDK2 sub-family. Long branches within these 

analyses can cluster due to their differences from the conserved core sequence as

opposed to clustering due to their similarity to each other.
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The similar size of TbCRKl and TbCRK3 on SDS-PAGE, as shown by the 

Western blots of His-tagged proteins (Figures 4.4.1 and 4.4.3) may explain the fact that 

only two PSTAIR mAb reactive proteins were detected in T. brucei protein extracts 

when using the mini-gel SDS-PAGE system. Another explanation is that, at least in the 

short stumpy stage, TbCRK3 is associated with the membrane fraction of an S I00 

protein extract (Figure 4.5.7). Most of the previous Western blots were performed 

using the supernatant of protein extracts (Mottram etal., 1993), which would cause 

insoluble TbCRK3 to be lost. The L. mexicana homologue of TbCRK3 runs notably 

slower than TbCRK3/H on SDS-PAGE as a His-tagged protein (Figure 4.6.1), and so it 

should be easy to see separate bands for LmmCRKl and LmmCRK3 in L. mexicana 

protein extracts. In fact only one PSTAIR mAb reacting band is seen in L. mexicana 

S100 protein extracts, although a 35 kDa band can be seen in S100 extracts from L  

major promastigotes (Mottram etal., 1993). There is now evidence that LmmCRK3 is 

soluble and expressed in promastigote L. mexicana, but at very low levels (J. Mottram, 

personal communication). If so then the expression, and solubility of the CRK3 

proteins would appear to be another difference (to go with the lack of a leishmanial 

homologue of tbcrk2 ) between these two relatively closely related kinetoplastids in 

genes that would be thought to encode well conserved functions. The difference in 

CRK3 solubility when the proteins are extremely similar would imply that the 

association with the insoluble fraction is modulated either by protein modification or 

via association with another protein, because it is not purely to do with integral 

characteristics of the polypeptide primary sequence.

170



Figure 4.6.1 Detection of LmmCRK3/H by the TC3HG antiserum.

Figure 4.6.1 Extracts of proteins were run on 12 % SDS-PAGE and electroblotted to 

PVDF membrane. Lane 1, 10 ng of TbCRKl/H; lane 2, 10 ng of semipurified 

TbCRK3/H;lane 3, 2 ng of LmmCRK3/H. The membrane was incubated with TC3HG 

Immune antiserum (1:800).

/
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One puzzling finding was the occasional detection of an approximately 26 kDa 

protein with various antisera in different life cycle stages. This was detected by 

TC3HG Immune serum in the supernatant of short stumpy form S100 extracts (see 

Figure 4.5.7, lane 3), CITAA in procyclic extracts (see Figure 4.5.2, lane 3), and also by 

EVREE in procyclic trypanosomes (Figure 4.6.2). These bands were not always 

detected, but the recognition of a similar sized band by the three antisera is striking.

The CITAA and EVREE antisera are specific (at least among the CRK proteins) to 

CRK1 and TbCRK2 respectively. It is possible that TC3HG antiserum cross reacts 

with TbCRK2 as well as with TbCRK3 which adds another level of uncertainty as to 

whether the band seen in the short stumpy S100 supernatant is due to a partially 

digested TbCRK3 fragment. These bands would not be seen by PSTAIR box reactive 

antisera as the cleavage of the N-terminus to leave the C-terminal 230-240 amino acids 

(consistent with the mobility shift) would remove the PSTAIR region. It may be that 

there is a common pathway for the proteolytic destruction of the TbCRK proteins, 

presumably encoded by the primary sequence of the polypeptide chain. If the 26 kDa 

protein recognised by the TC3HG antiserum in short stumpy supernatant is a TbCRK3 

fragment, and there is a common degradation pathway, then the region of TbCRK3 that 

results in the sub-cellular localisation must be contained within the N-terminal 90 

residues.
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Figure 4.6.2 A 26 kDa band detected by the EVREE antiserum.

Figure 4.6.2 S100 protein extracts from procyclic T. brucei run on 12 % SDS-PAGE, 

electroblotted to PVDF membrane and probed with; lanel, EVREE antiserum (1:50); 

lane 2, CITAA anti serum (1:50).
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CHAPTER FIVE 
ANALYSIS OF TBCRK FUNCTION BY YEAST 

COMPLEMENTATION AND PROTEIN BINDING
STUDIES
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5.1 Introduction.

The inability to deduce the function of the TbCRK proteins based on amino acid 

sequence homology with CDK proteins with defined roles in other organisms (see 

Chapter 3.3), together with the expression data showing no clear variation between 

dividing and non-dividing form T. brucei (see Chapter 4.5), necessitated alternative 

approaches to the analysis of CRK function in trypanosomes. Two approaches were 

adopted.

(1) Genetic, using an assay based on complementation of a S. pombe cdc2 

temperature sensitive mutant. This method has been used to define cdk functional 

homology in other systems (Michaelis and Weeks, 1992a; Jimenez etal., 1990; Lee and 

Nurse, 1987).

(2) Biochemical, by purification of active kinase complexes. It is possible to 

purify and characterise other proteins which interact with CDC2, and related proteins, 

by isolating the kinase complex itself.

(a) One method which has been used is to produce CDC2 related 

kinases in a heterologous system, e.g. E. coli, in a translational fusion with a 

protein sequence which allows purification, e.g. an antigen tag for which 

specific antibodies enable immunoprecipitation of the kinase (Fisher and 

Morgan, 1994), or a polyhistidine tag which enables affinity purification by 

metal-chelate chromatography. Tagged kinase then can be activated using a 

lysate from the cells of interest. The exogenous kinase can then be purified 

using the tag, and proteins co-purified characterised. In this study an analysis 

of proteins associating with the TbCRK kinase was attempted by activation of 

purified His-tagged TbCRKl.

(b) Another method used to try to purify CRK complexes, which had 

proved successful in other organisms, was to exploit the binding of the 

complex to the S.pombe protein, p l3 sucl, or its homologues from other 

organisms (Azzi etal., 1992; John etal., 1991; Richardson etal., 1990). This
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protein can form multimeric complexes and binds CDC2 and closely related 

kinases with high affinity (see Chapter 1.2.4). A homologue of S. pombe sucl 

has been cloned from L. mexicana (Immcksl) (Mottram and Grant, 1996). 

LmmCKSl had been expressed and purified from E. coli and attached to an 

inert matrix to create an affinity column.

5.2 Complementation Assay of a S. pombe cdc2 temperature sensitive mutant with 

tbcrk3.

5.2.1 Introduction.

A method previously used successfully to isolate cdc2 homologues, and closely 

related proteins, from a wide variety of organisms was the expression of heterologous 

genes in yeast strains which contain mutations in the cdc2/CDC28 genes conferring 

temperature sensitive phenotypes (Jimenez etal., 1990; Lee and Nurse, 1987; 

Ninomiya-Tsuji etal., 1991). These strains of yeast grow normally at low 

temperatures, but mis-sense mutations in the gene result in a protein which is unstable 

at higher temperatures. This results in the mutant cells being unable to complete the 

cell cycle when thay are incubated at the higher, restrictive, temperature. If the 'foreign' 

gene is able to restore growth at the restrictive temperature then it may be because it is 

homologous enough to the mutated gene to replace it. If this is the case then the 

heterologous protein is interacting with the components of the yeast cell cycle correctly, 

and it is therefore likely to be cell cycle regulating in the organism it was originally 

cloned from. It is also possible that genes restoring growth to the mutated yeast strains 

are suppressers of the mutation. In these cases the heterologous protein synthesised 

does not replace the mutated protein, instead it may bind to and stabilise the mutated 

cdc2/CDC28 protein at the restrictive temperature, resulting in a functional kinase. 

Therefore restoration of growth at the restrictive temperature has also been seen with

176



protein such as cyclins and p l3suc  ̂ homologues (Surana etal., 1991; Hayles etal., 

1986).

It had been previously shown that Immcrkl could not complement a S. pombe 

cdc2-ts mutant (Mottram etal., 1993). As LmmCRKl and TbCRKl share sequence 

motifs in most of the important CRK control regions (see Chapter 3.3), it was thought 

unlikely that tbcrkl would complement the yeast mutant. Also the T. congolense 

homologue, tccrkl, had been found to be unable to complement yeast mutants (N. 

Murphy, ILRAD, personal communication). tbcrk2 had been shown to be unable to 

restore growth at the restrictive temperature in the same S. pombe mutant (J. Kinnaird, 

personal communication). It was decided to repeat the experiment with tbcrk3 as it was 

thought possible that it was the T. brucei cdc2 homologue. Although TbCRK3 lacked a 

well conserved PSTAIR box, the protein does have most of the other control regions 

relatively well conserved, e.g. the ATP binding region, the DSEI box and the region 

around Threonine-161 (see Chapter 3.3.5).

5.2.2 Cloning tbcrk3 into a S. pombe expression vector, and transfection of S. pombe 

cdc2-33.

The full length tbcrk3 ORF was generated using PCR with oligonucleotides

designed to the region of the start ATG, and just after the Stop codon. Restriction

enzyme sites were added to allow ligation of the gene into the S. pombe expression

vector, pMNS21L (Figure 5.2.1). The vector encodes the S. cerevisiae LEU2 gene

which can complement the S. pombe leul gene, so that transfection into a leul" strain of

S. pombe allows selection of successfully transfected cells on plates lacking leucine.

The promoter controlling the inserted gene's expression is repressed by the addition of 5

pig / ml thiamine to the growth medium (Maundrell, K. 1990). By plating on both

repressing and non-repressing media, this theoretically enables the experiment to show

that the rescue of mutant phenotypes is due to expression of the plasmid encoded gene,

and not a reversion of the temperature sensitive cdc2 nuclear copy to wild-type.
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Figure 5.2.1 The S. pombe complementation vector and tbcrk3 oligonucleotides.
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However, we subsequently discovered that the repressed state still results in low level 

expression of the gene, and that the unrepressed state should cause extremely high level 

expression. This may result in problems with toxicity if the heterologous protein 

interferes with cellular functions, membrane integrity, or swamps the chaperone 

pathways protecting the cell from the effects of unfolded proteins.

The tbcrk3 gene was amplified from pCD70E(S)8, the insert of which consists 

of the 4.5 kb EcoBl fragment containing the tbcrk3 ORF. The oligonucleotides used for 

the PCR created an Ndel site at the 5' end of the tbcrk3 gene and a BamHl site at the 3' 

end to facilitate the ligation of the tbcrk3 ORF into pMNS21L. 10 rounds of 

amplification were performed using pfu DNA polymerase, which has proof reading 

ability, to reduce the probability of mutations being introduced into the tbcrk3 sequence 

(see Materials and Methods). Portions of the amplified DNA were mapped with a 

variety of restriction enzymes as a partial check for mutations. The rest of the amplified 

DNA was cut with Ndel and Bam HI, followed by ligation into Ndell BamHl cut 

pMNS21L. Plasmid DNA from transformed colonies was mapped with Hindlll and 

Ndel/BamHl to check for insertion of the correct DNA. One plasmid was found to be 

correct, pCD144m. This plasmid was renamed pMNSItbcrk3. Plasmid DNA for the 

yeast transfection was isolated using a large scale QIAGEN plasmid preparation with 

both the original vector and pMNSItbcrk3. Other control plasmids were provided by 

Dr. J. Kinnaird (WUMP). These consisted of the human cdc2 gene, also in pMNS21L, 

in both sense and antisense orientations (pMNSIHscdc2+ and pMNSIHscdc2- 

respectively), and the S.pombe cdc2 gene, this time in another, non-repressible, vector 

(pSpcdc2). The mutant S.pombe strain, cdc2-33, leul-32h~, grew normally at 25 °C, 

and did not divide at 36 °C due to the cdc2-33 mutation. The transfection was carried 

out using the Lithium acetate method (see Materials and Methods). Aliquots of the 

cells were spread onto 6 plates of minimal medium with or without thiamine (+/-thi). 

After 12-16 hr at 25 °C, for recovery, 3 plates from each set of 6 were moved to 36 °C, 

the restrictive temperature, and the plates left to grow for 3 days.
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5.2.3 Results of the complementation assay.

Table 5.2.1 shows the results of the complementation assay. The average 

number of colonies per plate, formed after 3 days at the indicated temperature are 

shown. The transfections using vectors based on pMNS21L all resulted in more than 

100 colonies per plate at the non-restrictive temperature, with or without thiamine. 

Therefore, there is no toxicity associated with TbCRK3 expression. pMNS/tf?cr£3 was 

found to be unable to complement the yeast mutation at the restrictive temperature. 

However, both plasmids containing the human CDC2 gene complemented the yeast 

mutation with limited penetration. The plasmid containing the S. pombe cdc2 gene 

gave a very low level of transfection, but given that, complementation occurred in most 

cases. Equivalent results were obtained using the same control plasmids and testing for 

complementation with a Theileria annulata cdc2 related gene, tacrkl (Kinnaird etal,

1996). The low level of complementation by both of the Hscdc2 containing plasmids 

was due to a mistake in cloning the gene. The 5' primer for the PCR had been designed 

to be complementary to sequence upstream of the ORF instead of being complementary 

to the sequence around the initiator ATG. This may have resulted in the cloning of part 

of the promoter region, which might have caused low level expression of the human 

protein from both plasmids. This may explain the increase in the number of cells 

complemented when thiamine was present, as in its absence the gene would be 

predominantly transcribed either from further upstream (pMNS//ftcdc2+) resulting in 

translation initiating before the in vivo start ATG, or the opposite strand would be the 

major mRNA (pUNS/Hscdc2~), presumably resulting in low levels of the sense strand 

RNA being available for translation.
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Table 5.2.1 Results of the complementation assay.

25°C -thiamine 25°C +thiamine 36°C -thiamine 36°C
pMNS Itbcrk3 123 174 0 0
pMNS21L(-ve) 112 150 0 0
pMNS//£sc<ic2- 174 207 3 8
pMNS IHscdc2+ 152 161 7 13

pSpcdc2 6 ND 3* ND

Table 5.2.1 The numbers in the table are the average number of colonies per 
plate formed after 3 bays at the indicated temperature.

ND - Not done as the plasmid promoter was not repressed by thiamine.
* - Only the result of one plate due to fungal contamination.

Figure 5.2.2 Bar chart showing the complementation results.

250

200

pSpcdc2pMNS/tbcrk3 pMNS21 L(-ve) pMNS/Hscdc2-

■  25 C-thiamine M
H I 36 C -thiamine

pMNS/Hscdc2+

25 C +thiamine 
36 C +thiamine

The vertical scale shows the average number of colonies per plate.
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The fact that similar numbers of colonies containing pMNSItbcrk3 grew at 25 

°C in the absence and presence of thiamine implies that expression of the tbcrk3 gene is 

not toxic to the yeast cells. In order to show that the TbCRK3 protein was being 

expressed in the yeast and to prove that even though the protein was present the gene 

was unable to complement the cdc2 mutation, Western blots were performed. Protein 

extracts of yeast cultures, grown at 25 °C, containing pMNS//6c/±? or pMNS///scdc2+ 

were made. These were then run on SDS-PAGE, blotted to nitro-cellulose membrane 

and probed with both the pre-immune and immune TC3H/G antiserum (Figure 5.2.3). 

Although both the pre-immune and the immune antisera recognise many different 

proteins in the yeast whole cell extracts, one significant difference is detected between 

the tbcrkS and Hscdc2 containing strains when probed with the immune antiserum. A 

34 kDa band is present in the strain containing pMNS/tbcrk3 (lane 4) which is not 

apparent in the strain expressing HsCDC2 (lane 3). This band is the expected size of 

TbCRK3, and is most likely to correspond to this protein. The data suggest that 

although the tbcrk3 gene is expressed in the yeast cells it is unable to complement the 

cdc2-Xs mutant.

5.2.4 Discussion.

There are a number of reasons why the TbCRK3 protein could fail to 

complement -the temperature sensitive cdc2 mutant. The most obvious is that tbcrk3 is 

not the cdc2 homologue of T. brucei, and that due to sequence divergence TbCRK3 is 

unable to correctly interact with other components of the yeast cell cycle machinery; 

specifically, due to the alterations in the PSTAIR region of TbCRK3, it is unlikely that 

the protein could form stable complexes with the S.pombe cyclin(s). It may be that the 

use of PCR to clone tbcrk3 into the yeast expression vector introduced a mutation into 

tbcrk3. The detection of the (approximately) correctly sized protein in the yeast 

extracts would appear to rule out a premature stop codon being introduced, but to
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Figure 5.2.3 Western blot showing the expression of TbCRK3 in S.pombe.

TbCRK3

Figure 5.2.3 Protein extracts from S.pombe strains containing tbcrk3 or human 

cdc2 were probed using TbCRK3 reactive antiserum. Lanes 1 and 3 contain whole cell 

extracts from S.pombe expressing Hscdc2, lanes 2 and 4 are whole cell extracts from S. 

pombe containing tbcrk3. The cells were grown at 25 °C before lysis. The extracts

were diluted into 1 x FSB and run on 12.5 % SDS-PAGE. The proteins were
/

electroblotted onto nitro-cellulose and incubated with either pre-immune antiserum 

(lanes 1 and 2), or immune T3H/G antiserum (lanes 3 and 4), before detection with the 

ECL system.
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absolutely rule out a missense mutation it would be necessary to resequence the gene. 

This was not achiev ed in the time available. Another possible explanation is suggested 

by the evidence that TbCRK3 is associated with insoluble components in the T. brucei 

cell (see Chapter 4.5). This could result in any complex formed in yeast being 

incorrectly targeted. There is also the possiblity that the T. brucei protein is unable to 

phosphorylate the correct yeast substrates. In addition the TbCRK3 protein may only 

be active in insect form trypanosomes, and therefore may be inactive at temperatures 

above those found in the fly (approximately 28 °C). One way to address this question 

would be to try complementation of a cold sensitive mutant.

The complementation data suggest that tbcrk3 is not the cdc2 homologue, 

however a full assessment of TbCRK3 activity during the cell cycle of the different life 

cycle stages is required to answer this question. Although CDC2 genes (and closely 

related genes e.g. CDK2) from many organisms can complement yeast mutants, no 

protozoan crk genes have so far been shown to function in this assay e.g. Theileria 

(Kinnaird etal., 1996), Leishmania (Mottram etal., 1993) and Plasmodium (Ross- 

McDonald etal., 1994), although the Plasmodium gene did not express, so the protein 

may still complement if expression could be achieved. Either none of these genes are 

the cdc2 homologue from that organism or, more likely, the evolutionary divergence 

between yeast and the protqzoans has resulted in cell cycle components that cannot 

interact with each other adequately. It is not possible, at present, to assay TbCRK3 

activity through a typical cell cycle as trypanosomes cannot be successfully 

synchronised, but it may be possible to reach some conclusions from other experiments, 

such as the binding of kinases to p l3 suc  ̂ (or its homologues) (see Chapter 5.4), and 

reverse genetic approaches (see Chapter 6).
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5.3 The activation of histidine tagged TbCRK proteins in vitro.

5.3.1 Introduction.

One method previously used to characterise non-kinase components of the CDK 

complexes was to use tagged CDK proteins which could be purified from cell lysates. 

The tagged CDK proteins were either expressed in vitro (Fisher etal, 1994; Poon etal, 

1993), or in vivo (Desai etal., 1992), and the complexes isolated by 

immunoprecipitation. Other components of the complexes could by analysed by SDS- 

PAGE, Western blotting and protein sequencing. These modified CDK's were 

apparently functional in vivo, and therefore, presumably, both associated with their 

normal regulatory subunits and were under the control of the same post-translational 

modifications as the untagged, wild-type proteins. The poly-histidine tag used in the 

previous chapter allows purification of the tagged protein by metal-chelator affinity 

chromatography. As the expression and purification of TbCRK 1/H and TbCRK3/H had 

already been performed successfully these proteins were considered suitable for this 

experiment.

A second approach designed to produce histidine tagged TbCRK complexes was 

the use of homologous recombination to replace a wild type copy of the tbcrk gene with 

the histidine tagged version. This would then theoretically allow purification of the in 

vivo kinase complex directly from T. brucei cell extracts.

5.3.2 Activation of E. coli expressed TbCRKl/H.

TbCRKl/H was used for the attempted in vitro activation and purification as it

was expressed at high level in E. coli (unlike TbCRK2/H) and could be isolated in a

relatively pure form, and it was soluble (unlike TbCRK3/H) and so the activated

complex could be purified using non-denaturing conditions which would not be

expected to disrupt the kinase complex. The protocol used closely followed those
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which resulted in the activation of HsCDC2, HsCDK2 and HsCDK4 by CAK in other 

systems (Fisher etal, 1994; Poon etal, 1993). Purified TbCRKl/H was incubated with 

T. brucei cell lysates made from log phase procyclic form cultures, using a number of 

different methods of cell lysis including sonication and Triton X-100. ATP and Mg2+ 

were also added to the incubations, following the protocols used for CDK activation in 

other systems (Solomon etal., 1993; Desai etal., 1992). Control incubations using 

either no T. brucei cell extract or no purified TbCRKl/H were performed in parallel 

with the attempted activation. Because of the histidine/Ni2+ /agarose purification 

system used, the solutions used for lysis and activation had to be EDTA free, as this 

chelator would strip the Ni2+ from the agarose support (see Chapter 4.3.1).

In the first experiment a cell extract was made by sonicating the procyclic T. 

brucei in Lysis Solution with protease inhibitors, without EDTA and without Triton X- 

100 (LSI-ET). The protease inhibitors used were; 1, 10 phenanthroline (inhibits Zn2+ 

metallo-proteases), pepstatin A (inhibits aspartic, and many acidic, proteases), leupeptin 

(inhibits some serine and cysteine proteases) and phenylmethylsulfonylfluoride 

(PMSF), which irreversibly inhibits serine proteases. Affinity purified TBCRK 1/H was 

added to the whole cell extract and incubated for 30 minutes at either 4 or 25 °C. The 

incubated extracts were then centrifuged at 4 °C for 45 minutes at 15 000 rpm in a 

microfuge, and the supernatant transferred to another tube. One fifth of the supernatant 

(10 pi\) was retained for a histone HI kinase assay, while the rest was added to 10/d of 

Ni2+/agarose bead slurry, allowed to bind for 30 minutes at 4 °C before being 

centifuged and washed twice with 0.5 ml of Kinase Assay Buffer without EGTA (KAB- 

E). Protein bound to the beads was assayed for histone HI kinase activity in situ. The 

pelleted cell debris was resuspended and an aliquot used in the kinase assay. For the 

assay, each sample was added to a Kinase Assay Mix (KAM) containing ^P-yA TP and 

histone HI. 20y \  of each 50yX assay was run on 12 % SDS-PAGE, stained with 

coomassie blue 250, then dried down and exposed to X-ray film (see Materials and 

Methods).
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Figure 5.3.1 shows the results of the experiment performed at 25 °C. The 

experiment performed at 4 °C gave identical results. The lack of radioactive histone 

HI in lanes 1,4 and 7 show that purified TbCRKl/H from E. coli has no, or very low, 

kinase activity on its own. The low level of signal in lane 1 is possibly due to spillage 

from the next lane. The histone HI kinase activity in the T. brucei extract under these 

conditions is almost entirely in the fraction associated with the insoluble cell 

components (compare lanes 2 and 3 with 5 and 6). The other bands show 

phosphorylation of T. brucei proteins by cellular kinases. It may be that the 

predominantly insoluble nature of the kinase activity is contributed to by incomplete 

lysis of the cells. However, T. brucei lysate supernatant plus TbCRKl/H (lane 5), 

shows elevated histone HI kinase activity compared to both the TbCRKl/H only (lane 

4) and the T. brucei supernatant only (lane 6). It would appear that without the 

presence of detergent in the lysis buffer the TbCRK protein complexes are largely 

insoluble. The data suggest that TbCRKl/H is interacting with components of the 

lysate to give a low level of soluble active kinase. With the number of steps involved in 

activation of CDK kinases, it would seem unlikely that TbCRKl/H is being activated 

by a protein on the exterior of the procyclic trypanosomes. It may be that the added 

TbCRKl/H is forming active complexes with excess, soluble, regulatory subunits and 

being phosphorylated by kineses in the insoluble fraction. An alternative possibility is 

that the addition of an excess of TbCRKl/H may release the wild type, active TbCRKl 

complex from the insoluble fraction by competing for whatever is binding to the 

TbCRKl. In this experiment no activity above background was recovered on the 

Ni2+ /agarose beads, which may be due to the low level of activation and inefficient 

binding of the Ni2+/agarose to the histidine tag.

Other experiments were performed using T. brucei procyclic extracts lysed with 

Triton X-100 instead of sonication. These extracts were split into two. One portion 

was centrifuged for 30 minutes at 100 000 g (S100) prior to addition of the TbCRKl/H, 

the other portion was centrifuged after the 30 minute incubation with TbCRKl/H.
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Figure 5.3.1 Activation of TbCRKl/H using sonicated T. brucei procyclic extract, 

without added Triton X-100
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Figure 5.3.1 Autoradiograph showing histone HI kinase activity of bacterially 

expressed TbCRKl/H incubated with T. brucei procyclic extract. The cell extract was 

prepared by pelleting 10 ml of log-phase (~8 x 106 cells / ml) procyclic T. brucei, 

washing with PBS, resuspending in 500 /d  of Lysis Solution plus Inhibitors, without 

EDTA, without Triton X-100 (LSI-ET) and sonicating, on ice, for 3 x 20 seconds. To 

one 38//I aliquot of cell extract was added 10 ng (in 5 /d) of E. coli expressed purified 

TbCRKl/H, to the another 38 /d  aliquot was added 5 /d  of the buffer used for 

TbCRKl/H purification. A third tube was prepared with 10 ng of TbCRKl/H and LSI- 

ET only. After the tubes were incubated for 30 minutes at 25 °C the mixtures were 

pelleted at full speed for 30 minutes in a microfuge at 4 °C. The supernatants were 

transferred to fresh tubes, and the pellets resuspended in LSI-ET. A 10 /d  aliquot of 

each of the supernatants was kept aside for the kinase assays. The supernatant was then 

added to 10 /d  of Ni2+/agarose bead slurry, incubated for 30 minutes at 4 °C, and 

washed twice with 0.5 ml of Kinase Assay Buffer (KAB). The beads, the retained 

supernatant and 1 /d  of the resuspended pellet fraction were used for the histone HI 

kinase assays. Lanes 1,4 and 7 contain kinase assays performed with the incubations 

containing only purified TbCRKl/H, lanes 3, 6 and 9 contain no added TbCRKl/H and 

lanes 2, 5 and 8 show the results of TbCRKl/H incubated with T. brucei extract. Lanes 

1-3 are kinase assays performed with the resuspended pellet, lanes 4-6 used the 

supernatant fraction and 7-9 contained the Ni2+/agarose beads.
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In both cases the activation incubation was performed at room temperature. The 

selection and kinase assays were performed in the same manner as before.

The assays using the Triton X-100 lysed extracts are shown in Figure 5.3.2. Panel

(A) shows the kinase assays using the whole cell extracts for the incubation with 

TbCRKl/H, while panel (B) shows the results of a parallel experiment using the S100 

extracts for TbCRKl/H activation. The addition of Triton X-100 solublises much of the 

kinase activity [compare Figure 5.3.2(A), lanes 1 and 3, and Figure 5.3.1, lane 3]. Most 

of the histone HI kinase activity is now present in the soluble fraction [Figure 5.3.2(A), 

lane 3], although considerable kinase activity is still detected in the assay with the 

insoluble fraction [Figure 5.3.2(A), lane 1]. It is plausible that some of this activity is 

due to TbCRK3, which is probably insoluble under these lysis conditions in 

bloodstream form T. brucei (see Chapter 4.5.2). Panel (A) lane 3 and Panel (B) lane 1 

show phosphorylation of higher molecular weight T. brucei proteins, as well as a very 

high level of phosphorylation of low molecular weight proteins. The coomassie 

staining of the SDS-polyacrylamide gel showed that these lower bands were 

predominantly products of histone HI degradation. The same degradation, though less 

complete, occurred in the assays using the Ni2+ /agarose selected extracts [Panel (A) 

lane 5, Panel (B) lane 3] showing that there was notable carry over of proteases, and 

therefore presumably other proteins, on the Ni2+ /agarose matrix. In both experiments 

the assay using the Ni2+/agarose beads in the presence of TbCRKl/H [Panel (A) lane 6, 

Panel (B) lane 4] shows a slightly higher level of kinase activity than the control lanes 

[Panel (A) lane 5, Panel (B) lane 3]. Although the increase is not substantial it is 

consistent. It is therefore possible that activation of the TbCRKl/H protein is occuring, 

and it appears possible to bind the active kinase complex to the Ni2+/agarose beads. If 

TbCRKl/H is being activated then the components responsible for this must be in the 

soluble fraction of the Triton X-100 lysed cells as S100 cell extracts are competent to 

activate the kinase. Due to the insoluble nature of TbCRK3 this experiment implies 

that TbCRK3 is not the T. brucei CDK activating kinase.
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Figure 5.3.2 Activation of TbCRKl/H using a T. brace; Triton X-100 procyclic extract.

histone HI

Degraded 
histone HI

histone HI —►

Degraded _► 
histone HI
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Figure 5.3.2 Histone HI kinase assays of either bacterially expressed 

TbCRKl/H incubated with T. brucei procyclic extract or just T. brucei procyclic 

extract. The extract was prepared by pelleting log phase procyclic T. brucei, washing 

with PBS and resuspending in Lysis Solution plus Inhibitors, without EDTA (LSI-E) 

which included 0.5 % Triton X-100. The extract was divided into two aliquots. One 

aliquot was processed as described in Figure 5.3.1(A), except that 20 ng of TbCRKl/H 

were used [Panel (A)]. The other aliquot was centrifuged at 100 000 g and the 

supernatant (S100) used for the activation incubation [Panel (B)]. As no kinase activity 

had been detected with the purified TbCRKl/H in the previous experiment, the 

TbCRKl/H only control was not performed.

Panel (A), lanes 1,3 and 5 contain no added TbCRKl/H, lanes 2, 4 and 6 show 

the results of TbCRKl/H incubated with whole cell T. brucei extract. Lanes 1 and 2 are 

kinase assays performed with the pellet resuspended after the activation incubation, 

lanes 3 and 4 used the supernatant fraction and the assays in lanes 5 and 6 contained the 

Ni2+/agarose beads.

Panel (B), lanes 1 and 3 contain no added TbCRKl/H, lanes 2 and 4 show the 

results of TbCRKl/H incubated with S I00 T. brucei extract. Lanes 1 and 2 contain 

kinase assays using the supernatant fraction and lanes 3 and 4 show the assays with the 

Ni2+ /agarose beads.
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It was not possible to reduce the degradation of the histone HI in this system 

(which lacked EDTA), even using a number of different protease inhibitors. Although 

degradation of T. brucei extracts was not seen when 10 mM EDTA was added to the 

Lysis Solution, this was not an option in this experiment as EDTA would have removed 

the Ni2+ from the agarose matrix. As the detected proteolysis occurs during the kinase 

assay, after the activation incubation, it seems likely that both the T. brucei proteins and 

the added TbCRKl/H would suffer degradation. This could have been checked by 

Western blotting with CITAA antiserum. Any degradation would explain the poor 

recovery of activity on the Ni2+/agarose beads. It also would make analysis of the 

active kinase complex difficult. With considerable proteolysis occurring in the samples 

it seemed unlikely that characterisation of other components in the complex could be 

carried out. Due to the inability to inactivate what appears to be a high level of metallo- 

protease activity without the chelating effect of EDTA it was decided to attempt other 

methods of CRK complex purification (see Chapter 5.4).

5.3.3 Attempted in vivo histidine tagging of TbCRK3.

One approach to isolating active TbCRK kinase complexes was the integration

of a tagged tbcrk gene into the genomic locus of the gene in place of a wild type allelle.

It was thought that it may be possible to integrate a copy of tbcrk3/H into the T. brucei

genome in place of one or both wild type alleles, and then use the poly histidine tagged

protein to purify the kinase complex. This was prior to the knowledge that TbCRK3 is

insoluble in the standard lysis solutions, and that proteolysis was difficult to inhibit

without EDTA present. Although the vector was constructed (Figure 5.3.3), the

replacement of one allele of the wild type gene was not successfully accomplished. It is

possible that the C-terminal histidine tag may interfere in TbCRK3 function, for

example giving a dominant negative phenotype in which case the integration event

would not be detected. A number of dominant cdc2 mutations have been found making

the scenario of a single replacement causing non-viability possible (Fleig and Nurse,
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1991). However, C-terminal epitope tags in other systems have had little or no effect 

on CDK protein function (Desai etal., 1992), and a histidine tag on the C-terminus of 

the L. mexicana CRK1 protein caused no effect (Mottram etal., 1996). As the 

transfection was only performed once, it may simply be due to a technical problem in 

the experiment causing a lack of transfection or integration. Once it became clear that 

TbCRK3 was insoluble it seemed likely that the use of in vivo tagged TbCRK3 to 

isolate the kinase complex would not be such a useful approach. Treatment to 

solubilise the protein is likely to destroy the protein/protein interactions which hold the 

complex together. Also it is evident from the failed attempt to purify TbCRK2/H that 

effective purification of poorly expressed histidine tagged proteins is difficult, and 

according to the manufacturers purification from eukaryotes is generally more difficult 

than from E. co//(QIAGEN). The degradation of added histone HI during the 

attempted activation of TbCRKl/H showed that without EDTA in the lysis solution, T. 

brucei extracts contain active proteases, showing the importance of metallo-protease 

inhibition. It is therefore likely that using an epitope tagged version of the tbcrk genes 

would be a better approach to complex purification. This method has been used 

successfully in other organisms and recently in T. brucei (Bastin etal., 1996) and does 

not require a lack of EDTA, so proteolysis could be limited by the addition of high 

concentrations of the chelator to the cell extract. The epitope tag approach may not 

solve the problem of TbCRK3's insolubility however, as immunoprecipitation of 

insoluble proteins is difficult. Assessment of the function and components of this 

kinase complex may have to occur by other methods, such as reverse genetics.
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5.4 Isolation of TbCRK proteins by binding to p^DnmCKS1

5.4.1 Introduction

The sucl gene of S.pombe encodes a 13 kDa protein which associates tightly 

with the cdc2 kinase complex (Brizuela etal., 1987; Hindley etal., 1987). This tight 

binding has been exploited to isolate and characterise cdc2 homologues, and closely 

related proteins (e.g. CDK2), from other higher eukaryotes, as these proteins also bind 

to p l3sucl (John etal., 1991). A histone HI kinase activity from L. mexicana binds to 

p 13sue 1 (Mottram etal., 1993). This activity correlates with the division status of the 

life cycle stage, but does not appear to be encoded by Immcrkl or lmmcrk3 as the kinase 

is not recognised by LmmCRKl specific antisera or the PSTAIR monoclonal 

antiserum, which would be expected to recognise LmmCRK3. Homologues of sucl 

have been isolated and cloned from a number of organisms, including S. cerevisiae and 

humans, and have been named cks genes (for cdc2 kinase subunit) (Hadwiger et al., 

1989; Richardson etal., 1990). The L. mexicana homologue, Immcksl was isolated 

during my Ph.D. The predicted LmmCKSl protein is 11 kDa with 72% identity to 

human p9CKS1 and 50 % identity to S.pombe p l3sucl. p l 2 LmmCKSl binds yeast cdc2 

kinase complexes implying that it is a functional homologue of p l3 sucl (Mottram and 

Grant, 1996).

5.4.2 Preparation of p l3sucl beads

p l3suel bad been expressed in E. coli and semi-purified by gel filtration by Dr.

J. Kinnaird; this was made available for my studies. HPLC was performed with 3 mg

of this material which was applied to an anion exchange column and eluted using a

NaCl step gradient of 50/200/500 mM. Fractions were assessed for the presence of

protein by absorbance at 280nm and those with high readings were run on 17.5 % SDS-

PAGE and stained with Coomassie blue R-250. Fractions 75 to 81 inclusive were
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pooled and dialysed into 0.1 M phosphate buffer suitable for binding the protein onto 

amino-link gel matrix (Pierce). The dialysed sample was then concentrated by covering 

the dialysis tubing with PEG-6000 for approximately 1 hour. The concentration of the 

solution was then assayed by 280 nm readings and Bradford assays, which gave the 

value of approximately 2 mg / ml in 0.75 ml of buffer. 0.5 ml of p l3 sucl was then 

bound to 0.5 ml of the amino-link matrix to give a 2 mg / ml matrix (see Materials and 

Methods). Determination of the protein concentration left in solution after the binding 

reaction showed that 87 % of the p l3 sucl was successfully bound to the matrix. 2 ml of 

control beads, with Tris-HCl used as the coupling reagent instead of p l3 sucl protein, 

were made in parallel. Similar beads, at a protein concentration of 5 mg / m l, were 

made using histidine tagged p i2 LmmCKS 1, expressed in E. coli, and purified using 

Ni2+/agarose (Mottram and Grant, 1996).

5.4.3 Binding histone HI kinase activity to p l3 sucl/pi2LmmCKSl beads

As a p l3 sucl binding kinase had been described in L. mexicana (Mottram et al.,

1993) we were interested in whether there was a similar activity in T. brucei extracts.

S100 protein extracts were prepared from frozen pellets of long slender, short stumpy

and procyclic form T. brucei. These were incubated with p l3 sucl and control beads at 4

°C for 2 hours, washed extensively with Lysis buffer plus Inhibitors and then assayed

for histone HI kinase activity (see Materials and Methods). The phosphorylated

proteins were often kept at -20 °C overnight. 2 0 1  of the 50 pel kinase assay was run

on 15 % SDS-PAGE, the gel stained with Coomasie blue R-250, and then dried onto

3MM paper. The gel was stained with coomasie to check if the added histone HI

(typically the only visible bands) had been degraded during the assay. The dried gel

was then exposed to X-ray film overnight. Figure 5.4.1 shows the result of histone HI

kinase assays performed with extracts from long slender (lanes 1&2), short stumpy

(lanes 3&4), and procyclic (lanes 5&6) form T. brucei that had been bound to either

control (odd lanes) or p l3 sucl (even lanes) beads. A low level of kinase activity above
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background was detected in the long slender, and procyclic lanes (lanes 2&6) but this 

was not repeatable and indeed in some later assays the control beads were found to have 

higher activities than the p l3 sucl beads. To check that the p l3sucl beads and the other 

components of the assay system were functioning correctly the later experiments 

included assays performed with protein extracts from S.pombe which had been bound 

to the p l3 sucl beads in parallel with the T. brucei extracts. Figure 5.4.2 shows one such 

experiment. High levels of kinase activity were found to bind to the p l3 sucl beads 

using the S.pombe protein extracts (lanes 3&4), thus implying no fundamental problem 

with the components of the assay system.

Similar experiments were carried out with the p i2LmmCKSl beads and a 

procyclic extract. A significantly higher histone HI kinase activity was detected bound 

to the p l2fjnmCKSl beads in comparison to the control or the p l3 sucl beads (Figure 

5.4.3). This is presumably due to the putative cks gene of T. brucei encoding a protein 

which is considerably more homologous to p ^D ^C K S l than to p l3 sucl. A number of 

other proteins, presumably from the procyclic extract, were also phosphorylated during 

the kinase assay. The 23 kDa band is most likely to be degraded histone HI as it could 

be seen on the Coomasie stained gel, and proteolysis was occasionally seen when the 

protease inhibitors had not been made up immediately prior to the experiment. The 

higher molecular weight bands can be seen in other kinase assays performed with 

procyclic T. brucei extracts (see Figures 5.3.1,5.3.2 and 5.4.2), but the marked lower 2 

bands (21 kDa and 18 kDa) appear specific to the extract purified on the p^LmmCKS! 

beads, and may therefore be components of a kinase complex. To assess whether it was 

possibly TbCRK protein kinase activity that was being detected with this assay, 

proteins bound to the beads were eluted, run on 12.5 % SDS-PAGE, blotted onto nitro

cellulose and probed with antisera tested for TbCRK reactivity.
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Figure 5.4.1 Histone HI kinase assay of T. brucei extracts bound to p !3sucl beads.

1 2  3  4  5  6

histone HI

Figure 5.4.1 Histone HI kinase assays using trypanosome extract bound to either 

p!3sucl bea(js (lanes 2 ,4  and 6) or control amino-link beads (lanes 1,3 and 5). S100 

extracts were made from procyclic form (lanes 1 and 2), short stumpy form (lanes 3 and 

4) and long slender form (lanes 5 and 6) T. brucei. 250 ]a \  of 2 mg / ml extract were 

incubated with 50 yi\ of the 50 % bead slurry at 4 °C for 2 hours with constant agitation. 

After repeated 250 ]a \  washes (1 x LSI, 2 x LSI+1M NaCl, 1 x LSI, 1 x Kinase Assay 

Buffer) the beads were transferred to eppendorf tubes for kinase assays. 20 /d  of each 

50 j a \  reaction were then run on 15 % SDS-PAGE, stained with Coomassie blue to 

check if there had been histone degradation, dried down and exposed to X-ray film.
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Figure 5.4.2 Histone HI kinase assay of T. brucei procyclic and S.pombe extracts

bound to p!3sucl beads.

histone HI

Figure 5.4.2 Histone HI kinase assays performed with freshly centrifuged 

cultured T. brucei procyclic form extracts (lanes 1 and 2) or S. pombe extracts (lanes 3 

and 4). The S100 extracts were incubated with p l3 sucl (lanes 2 and 4) or control beads 

(lanes 1 and 3) before being washed and used for the kinase assays as described in 

Figure 5.4.1.
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Figure 5.4.3 Histone HI kinase assay of T. brucei procyclic extracts bound to p l3sucl

or pl2LmmCKSl beads.

histone HI

Figure 5.4.3 Histone HI kinase assays using S I00 extracts made from procyclic 

form T. brucei. The extract was incubated with either control amino-link beads (lane 

1), p l3 sucl beads (lane 2) or p^LmmCKS* beads (lane 3) at 4 °C for 2 hours with 

constant agitation. After repeated washes with LSI the beads were transferred to 

eppendorf tubes for kinase assays. The products of the assay were then separated by 15 

% SDS-PAGE, stained with coomassie to check if there had been histone degradation, 

dried down and exposed to X-ray film.
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5.4.4 Detection of TbCRK proteins bound to pllLramCKSi beads by Western blotting

T. brucei S100 protein extracts were made from either freshly cultured procyclic 

forms or frozen pellets of mixed bloodstream T. brucei (i.e. containing both long 

slender and short stumpy forms). The extracts were incubated with p^L^nCK Sl or 

control beads, washed repeatedly, then treated with 5 x FSB and boiled for 5 minutes. 

After a 1 minute centrifugation in a microfuge 10//I of each extract was loaded onto a 

12.5% SDS-PAGE, along with 5 ja\ of the original cell extract. After electrophoresis 

these gels were electroblotted onto nitro-cellulose membrane and probed with CRK1, 

TbCRK2 and PSTAIR reactive antisera. As TbCRK3 is not present in S100 extracts 

the T3H/G and T3H/S antisera were not used.

CITAA antiserum, previously shown to recognise TbCRKl/H (see Figure 4.4.1) 

detected a 33 kDa protein in the procyclic S100 extract (see Figure 5.4.4, lane 1). This 

protein was not bound to the control beads (lane 2), but did bind to the p i2LmmCKSl 

beads (lane 3). Therefore TbCRKl either binds to p^LmmCKSl directly or is part of a 

complex that does.

Figure 5.4.4, lanes 4-6, shows the same extracts probed with the EVREE 

antiserum, which was raised to a peptide corresponding to the TbCRK2 C-terminal 16 

amino acids. The 39 kDa band in lane 6 is indication that TbCRK2 was bound to 

p^LminCKSl Other proteins in the procyclic cell extract (lane 4) which were 

recognised by the EVREE antiserum, notably the intense 50 kDa band, did not bind to 

the prclJnmCKSl beads, implying that the association of TbCRKl and TbCRK2 with 

p l 2 LmmCKSl ls specific, and not a general protein/protein interaction between the T. 

brucei proteins and

On a Western blot of procyclic cell extracts (Figure 5.4.4, lanes 7-9), 4 bands 

were recognised in the crude extract at 33, 40, 48 and 65 kDa by the PSTAIR m A b. 

The 33 and 40 kDa bands are presumably TbCRKl and TbCRK2 respectively, and as 

predicted, they bind to the p i2 LnimCKS1 beads specifically. The 48 kDa band also 

binds
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Figure 5.4.4 Western blot of T. brucei procyclic extract bound to pl2LmmCKSl or

control beads.

kDa 1 2 3 kDa

96 —
Vf t PBii •
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96 —  
66 —

66 — k 45 —

45 —
f t

31 —

31 — 1 mm 21 —

4 5 6 kDa 7 8 9

Figure 5.4.4 A T. brucei S I00 procyclic form extract was incubated with either 

control amino-link beads or p l2LmmCKSl beads at 4 °C for 2 hours with constant 

agitation. After repeated washes with LSI the beads were transferred to eppendorf 

tubes, 1 x FSB was added and the extracts boiled. The samples, together with an 

aliquot of the starting cell extract, were then run on 15 % SDS-PAGE, electroblotted 

onto nitro cellullose membrane and used for a Western blot using TbCRK reactive 

antisera. Lanes 1/4/7 - S100 extract, lanes 2/5/8 - eluate from control beads, lanes 3/6/9 

- eluate from p l 2 LmmCKSl beads. Lanes 1-3 probed with CITAA (TbCRKl reactive) 

antiserum (1:50), lanes 4-6 probed with EVREE (TbCRK2 reactive) antiserum (1:50), 

lanes 7-9 probed with the affinity purified PSTAIR mAb (1:50).
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Figure 5.4.5 Western blot of T. brucei mixed bloodstream form extract bound to 

p l2LmmCKSl or control beads.
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Figure 5.4.5 A T. brucei S100 mixed bloodstream form extract was incubated 

with either control amino-link beads or p l2LmmCKSl beads at 4 °C for 2 hours with 

constant agitation. After repeated washes with LSI the beads were transferred to 

eppendorf tubes, 1 x FSB was added and the extracts boiled. The samples, together 

with an aliquot of the starting cell extract, were then run on 15 % SDS-PAGE, 

electroblotted onto nitro cellullose membrane and a Western blot performed using 

CITAA (TbCRKl reactive) antiserum (1:50). Lane 1 - original extract, lane 2 - eluate 

from control beads, lane 3 - eluate from p i2LmmCKSl beads.
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to the p l2LmmCKSl beads, while the 65 kDa band appears, surprisingly, to specifically 

bind to the control beads.

Figure 5.4.5 shows an experiment using the S I00 protein extracts from mixed 

bloodstream form T. brucei, with crude extract (lane 1), control beads (lane 2) and 

p l 2 L m m C K S l  beads (lane 3), probed with the CITAA antiserum. As was found with the 

procyclic extracts, a 33 kDa band was bound specifically to the p l2LmmCKS1 beads and 

not to the control beads, therefore TbCRKl is also in a complex which can bind to 

p^LmmCKSl jn bloodstream form trypanosomes.

The Western blots indicate that TbCRKl from both procyclic and bloodstream 

form trypanosomes binds to p^Ln^CKSl. TbCRK2 in procyclic extracts binds to 

p l 2 L m m C K S l j a n c j ft  j s  thought likely that the same protein in bloodstream form T. 

brucei will act in the same way, although this binding has not been shown. It is likely 

that both TbCRKl and TbCRK2 contribute to the kinase activity detected in the hi stone 

HI kinase assay. It is possible however that another kinase also contributes to the 

activity. The histone HI kinase in Leishmania that binds p l3 sucl, named Sucl Binding 

CDC2 Related Kinase (SBCRK), is not LmmCRKl. Therefore it is possible that there 

is a T. brucei homologue of SBCRK bound to the pl^HnmCSKl beads. SBCRK is 

unlikely to be encoded by a leishmanial homologue of tbcrk2. There is no evidence for 

a crk2 homologous gene and the TbCRK2 reactive antisera recognise no likely proteins 

in Leishmania protein extracts.

5.4.5 Metabolic labelling of T. brucei proteins to assess components of the complexes 

binding p^L^^C K Sl.

The low level of homology between cyclins (either classes within an organism

or within the same class between organisms) has , unlike the situation for CDC2 related

kinases, produced antisera that are either protein or species specific. Therefore these

heterologous antisera could not be used to detect trypanosome cyclins. To determine if

the CRKs which bind to p i2 LnunCSK1 were part of complexes possibly containing
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cyclins, procyclic T. brucei were metabolically labelled and extracts selected on 

p l 2 LnmiCSKl beads. Procyclic T. brucei were pelleted, washed, and resuspended in 

Eagles medium lacking methionine. SDM-79, the normal growth medium for procyclic 

trypanosomes, lacking methionine was unavailable, and for the short time needed for 

labelling, the trypanosomes appeared to continue division and remained motile in 

Eagles medium. After 30 minutes in culture, to deplete cellular stores of methionine, 

100p id  of 35S-methionine was added to the medium and the culture incubated for 6 

hours. The cells were washed, pelleted and an S100 extract made. The S100 extracts 

were incubated with either control beads or p^L^^C K Sl beads. After repeated 

washing the beads, the original extract and the unselected flow through from the 

column were diluted into 1 x FSB and boiled. These samples were then run on 12.5 % 

SDS-PAGE in duplicate. One of the gels was treated with Intensify (see Materials and 

Methods) before both were dried onto 3MM paper and exposed to X-ray film.

Intensify amplifies the radioactive signal by converting the low energy beta particle into 

light. This results in a greater proportion of decay events interacting with the X-ray 

film, but does cause an increase in band width, and resulting loss of definition. Figure 

5.4.6 shows lanes from the X-ray film either treated [panel (B)] or not treated [panel 

(A)] with Intensify. The S100 extract prior to adding to the beads is shown in (A) lane 

1. Panel (B), lanes 1 and 2 are the flow through from the p^PHnnCKSl an(j control 

beads respectively. There are no visible differences between the original extract and the 

flow throughs. No depletion of any of the original bands can be detected. The proteins 

which bound to the pi^DnmCKSl beads, plus or minus Intensify, are shown in (B)4 and

(A)2. Intensify treated gel showing the proteins bound to the control beads is shown in

(B)3. The different gels are used because, as noted before, although the Intensify 

causes the images of the labelled bands to become darker, and thereby makes it possible 

to see proteins not otherwise visible, it also has the effect of making the bands notably 

more diffuse.

Most, if not all, of the proteins over 45 kDa in size which bind to the

p l 2 LmmCKSl beads (panel (A), lane 2) do so non-specifically and can be seen, albeit at

206



Figure 5.4.6 35S-Methionine labelling of procyclic T. brucei protein extracts selected 

on p l2LmmCSK1 beads.
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Figure 5.4.6 10 ml of log phase (~7 x 106 cells / ml) procyclic T. brucei 

cultures were pelleted, washed twice with PBS, and resuspended in 10 ml of Eagles 

media lacking methionine. After 30 minutes 100 piC\ of 35S-methionine were added to 

the medium and the culture incubated for 6 hours. The cells were pelleted and an S100 

extract made. To bind the extract to control and p i2LmmCSKl beads, 250pi\ of 2 mg / 

ml extract were incubated with 50 yi\ of the 50 % bead slurry at 4 °C for 2 hours with 

constant agitation. After repeated 250 ja\ washes (1 x LSI, 2 x LSI+1M NaCl, 1 x LSI)

1 x FSB was added and the extracts boiled. Aliquots of the original extract and the flow 

through from both columns were diluted into 1 x FSB and boiled. Duplicate 12.5 % 

SDS-PAGE gels were run. Before being dried onto 3MM paper, one gel was treated 

with Intensify which can increase the signal detected by the X-ray film.

Panel (A) shows film from the untreated gel, panel (B) shows the signal from 

the gel treated with Intensify. S100 protein extract (A)l. Row through from the 

control beads [(B)l] and the p l2LmmCKSl beads [(B)2]. Proteins bound to the control 

beads [(B)3]. Proteins bound to the p R 1-111111̂ 81 beads [(A)2 and (B)4].
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a lower intensity, on the control beads (Panel B, lane 3). No large, mitotic cyclin-like, 

proteins could be distinguished from other proteins which bind to the matrix non- 

specifically. The bands below the intense, non-specific, band at 50 kDa are 

predominantly specific. There are labelled proteins in Panel A, lane 2 of approximately 

45 kDa, 44 kDa, 43 kDa, 40 kDa, 36 kDa and 34 kDa which do not have corresponding 

bands in the control lane. The two bands below these, at 33 kDa and 32 kDa, are 

possibly present in the control lane (B)3. It is possible that the -45  kDa protein might 

be the 48 kDa PSTAIR mAb reactive band seen bound to the p^DnmCKSl column in 

Figure 5.4.4 lane 9. It may be however that this protein's signal would be obscured by 

the intense, non-specific, 50 kDa band The 40 kDa protein is close in size to TbCRK2, 

which was shown by Western blotting to bind specifically to the p^LhuhCKSI beads 

(see Figure 5.4.4, lane 3). The relatively well labelled 36 kDa protein detected binding 

to the pIILhuhCKSI beads is the same size as the putative cyclin previously isolated 

from T. brucei (Affranchino etal., 1993) which was shown by immunoprecipitation and 

Western blotting to be part of a complex with a 34 kDa 'PSTAIR' containing protein.

Of the triplet around 33 kDa, the lower two proteins may be present in the control 

extracts, while the higher, 34 kDa band appears specific to the p^L^nC K S1 beads. It is 

possible that this 34 kDa protein is TbCRKl, which was also shown to bind to the 

p^DnmCKSl beads using Western blotting (see Figure 5.4.4, lane 6). There are three 

proteins with a Molecular weight lower than 30 kDa which appear to bind specifically 

to the p l2fjninCKSl beads [compare panel (B), lanes 3 and 4]. These proteins have an 

estimated mass of 28 kDa, 26 kDa and 21 kDa. The 21 kDa protein is the same size as 

some inhibitor proteins of CDK activity seen in other organisms, but there is no further 

evidence for this possibility. Recently two other T. brucei cyclins have been isolated 

(J. Mottram personal communication) with predicted sizes of 45 kDa (CYC3) and 24 

kDa (CYC2) respectively. These predicted sizes are similar to the estimated mass of 

two of the proteins bound to the p l2LnimCKSl beads.
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5.4.6 Discussion of p l3 sucVpl2 ljmmCKSl binding studies

There is a histone HI kinase activity in procyclic T. brucei protein extracts 

which binds to p^DnmCKSl^ but not to p l3 sucl (see Figure 5.4.3). Immunoblotting 

experiments with CRK1 and TbCRK2 specific antisera revealed the binding of 

TbCRKl and TbCRK2 to the p l2bmmCKSl beads (see Figure 5.4.4). Therefore the 

histone HI kinase activity is likely to be, at least partially, due to TbCRKl and 

TbCRK2. Evidence from metabolic labelling experiments suggests that these kinases 

are part of multi-protein complexes.

A histone HI kinase activity was detected in procyclic T. brucei which binds to 

p l2LmmCKSl (see Figure 5.4.3), but no such activity was demonstrated binding to 

p l3sucl [n either procyclic or bloodstream trypanosomes (see Figure 5.4.1). This is 

unlike the situation in L. mexicana which contains SBCRK, a p l3 sucl binding kinase 

(Mottram etal. 1993; Mottram and Grant, 1996). Histone HI kinase activity from S. 

pombe was selected on p l3sucl beads thereby showing no fundamental problem with 

the experimental procedure. It may be that there is a T. brucei homologue of SBCRK, 

but that it has different p l3 sucl binding characteristics. Another explanation for this 

difference would be that SBCRK is specific to Leishmania, and not present in T. brucei. 

SBCRK could be one of the many CDC2 related kinases in protozoa (Mottram, 1994), 

and may not be the functional CDC2 homologue, even though its activity appears 

related to the division status of the life cycle stage (Mottram etal. 1993; Mottram and 

Grant, 1996). The fact that SBCRK is not recognised by the PSTAIR antisera also 

provides some evidence that it is not as closely related to CDC2 as the TbCRK proteins. 

This is further support for the idea that many of the protozoan CDC2 related proteins 

are highly divergent, possibly evolved for tasks specific to the organism, and unlikely to 

be even functionally analogous to each other.

The kinase assays show a number of phosphorylated proteins that are not

derived from histone HI (the only exogenously added protein), and therefore are

components of the T. brucei extracts (see Figure 5.4.3). It is possible that the low
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molecular weight proteins could be CKI related proteins. These inhibitory subunits are 

effective when bound to the CDC2/cyclin complex with a 1:1 stoichiometry. Therefore 

there could still be kinase activity if only a subpopulation of the kinase complexes 

contain the inhibitory subunits. The smallest protein at 18 kDa could be the T. brucei 

homologue of p^DnmCKSl $ cerevisiae p l3sucl homologue is 18 kDa 

(Hadwiger etal., 1989). In some organisms sucl/CKS proteins form dimers or 

hexamers, and so it is possible that hetero-complexes of leishmanial and trypanosome 

CKS proteins could form on the beads during the incubation with cell extracts. It is 

possible that the 21 kDa protein could be the CYC2 protein. The cyclins would be 

expected to be found in the p^HnmCKSl bound extract, and there is evidence for 

phosphorylation of cyclins by CDK complexes (Lanker etal., 1996). These 

phosphorylated proteins could also be binding non-specifically to the p^DnmCKSl 

beads, and contain consensus sites for phosphorylation by the CRK complexes.

The Western blot of T. brucei extracts bound to pilDnmCKSl beads using the 

CITAA (CRK1 reactive) antisera showed that a complex containing TbCRKl interacts 

with the L. mexicana CKS1 protein (see Figure 5.4.4, lanes 1-3). TbCRK2 containing 

complexes were detected bound to pilDnmCKSl beads using the EVREE (TbCRK2 

reactive) antisera (see Figure 5.4.4, lanes 4-6). Therefore it is likely that these proteins 

would interact with a T. brucei CKS1 homologue. The sucl gene is essential in S. 

pombe and well conserved homologues have been isolated from S. cerevisiae, 

Leishmania and H. sapiens, making it extremely likely that there is a T. brucei 

homologue. The PSTAIR mAb also detected the binding of a 48 kDa protein to the 

p l2DmnCKSl beads (see Figure 5.4.4, lanes 7-9). This possible kinase may be involved 

in the phosphorylation of histone HI, but this is unlikely to be the sole HI kinase as the 

activation experiments using TbCRKl/H did show some kinase activity which was 

correlated to selected His-tagged TbCRKl (see Figure 5.3.2). Subsequently histone HI 

was shown to be a relatively poor substrate for the LmmCRKl/H protein kinase so 

other substrates may be more suitable for continuations of these experiments (J. 

Mottram, personal communication).
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Using 35S-methionine labelling, several proteins were detected that specifically 

bound to the p^LnnnCKSl beads (see Figure 5.4.6). The 36 kDa protein could be the 

CYC1 protein isolated previously (Affranchino etal., 1993). CYC1 was shown, by 

immunoprecipitation experiments, to interact with a 34 kDa protein recognised by the 

PSTAIR mAb. As TbCRKl is approximately 34 kDa and reacts with the PSTAIR 

mAb, it is possible that TbCRKl is a kinase subunit for CYC1. A 39 kDa PSTAIR 

reactive band was not seen in CYC1 immunoprecipitates (Affranchino etal., 1993), 

implying that TbCRK2 has different complex components. These would probably 

include one or more of the other proteins detected bound to the p l2LmmCKSl beads, two 

of which could be the CYC2 or CYC3 proteins. The lower molecular weight protein 

(21 kDa) specifically bound to the p^U ^C K S l beads in the 35S-methionine labelling 

experiment (see Figure 5.4.6) may be the same as the 21 kDa phospho-protein detected 

previously in the p ^ D ^ C K S l bound kinase assays (see Figure 5.4.3).

TbCRK3 was found in the insoluble fraction after lysis in Triton X-100 and so it 

was not possible to determine if TbCRK3 could bind to the p^DnmCKSl beads using 

this protocol. It may be possible to solublise TbCRK3 using other buffers such as high 

salt, or different detergents, but these treatments could not be too stringent if the 

complex is to remain intact.

5.5 Discussion

Various methods of analysis were used for the characterisation of the TbCRK

family. As with Immcrkl and tbcrk2 , tbcrk3 was found to be unable to complement a

cdc2-ts mutant of S.pombe. It is possible that there is no cdc2 complementing gene in

T. brucei, although the equivalent experiments in S. cerevisiae may be tried. Attempts

to complement a S. cerevisiae CDC28-XS mutant using a T. brucei cDNA library proved

unsuccessful (Neuville and Mottram, unpublished). This is further evidence for the lack

of a complementing cdc2 related kinase. There is evidence that there are other cdc2

related genes in T. brucei (see Figure 5.4.4, lane 7), but due to the methods used to
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clone tbcrkl-3 (degenerate oligonucleotide PCR and library screening), it seems likely 

that any other tbcrk genes will be less conserved than those already isolated. It is 

possible that T. brucei contains a homologue of the Crithidia fasciculata crk gene 

(Brown et a l., 1992). This gene encodes a CDC2-related protein (CfaCRK) with a 

degenerate PSTAIR box (12 out of 16 amino acids conserved) and two large insertions 

resulting in a 53 kDa protein, a size not too dissimilar to the 48 kDa band recognised by 

the PSTAIR mAb. The PSTAIR mAb used in this paper did not recognise the CfaCRK 

protein, but it is possible that this mAb recognises a different epitope to the mAb used 

during my Ph.D.

The activation of TbCRKl/H, and the purification of the activated kinase, 

showed that this method was a viable means of isolating active kinase complexes if 

proteolysis could be controlled. The dependance of the kinase activity on the exposure 

to the cell extract implies that the TbCRKl protein requires the binding of other 

proteins and/or modifications (such as phosphorylation) for correct function. This 

accords with what is known from other cdc2-related proteins. The Plasmodium 

falciparum protein PfPK5 is associated with a weak kinase activity when purified from 

E. coli (Ross-MacDonald etal., 1994), but this activity is considerably stimulated by 

replacement of the equivalent of the Thr-161 residue by an acidic amino acid, 

simulating the phosphorylated state (Graeser etal., 1996). Similar results have been 

found with other CDK subunits where phosphorylation of the Thr-161 equivalent is 

necessary for kinase activity, while cyclin binding is required for optimal activity 

(Desai etal., 1992). One exception to this is CDK5 which has kinase activity when 

complexed with its p35 subunit without needing phosphorylation (Qi et al., 1995).

The in vitro activation result also implies that, at least with this protein, the

histidine tag does not seriously interfere with the protein function. This has been

confirmed in vivo in Leishmania where LmmCRKl-his is functional (Mottram etal.,

1996). It seems probable that modification of this technique, possibly by using an

epitope tagged protein allowing immunoprecipitation, would allow analysis of the

protein factors and modifications involved with the activation. For this to happen
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though, it would be best to use a specific antiserum that does not cross react with T. 

brucei proteins, and so far this has been difficult to obtain in antisera with high enough 

affinity to allow immunoprecipitation. The fact that the activation took place when the 

TbCRKl/H was added to S100 supernatant from the lysed cultures implies that 

TbCRK3 is not involved in the activation, as under these conditions TbCRK3 is 

insoluble and remains in the pellet fraction. If epitope tagged proteins can be isolated 

efficiently from T. brucei then the targeted replacement of the wild type genes with the 

tagged version would also allow assessment of the components of the kinase 

complexes, although due to its insoluble nature this still might not work as well for 

TbCRK3. Although immunoprecipitation of TbCRK3 may be difficult, the epitope 

tagged version would allow easy localisation of the protein in fixed cells using 

fluorescent antibodies.

The lack of a histone HI kinase activity binding to the p l3 sucl beads is another 

indication of the evolutionary distance between T. brucei, yeast and metazoans. This 

lack of an association could be one reason why the tbcrk genes failed to complement S. 

pombe cdc2-\s mutants. It would appear, however, that T. brucei does contain a p l3 sucl 

related protein. A homologous gene (Immcksl) has been isolated from L. mexicana and 

the binding of both TbCRKl and TbCRK2 to the pnDnmCKSl beads suggests that 

there will be a related gene in trypanosomes. As a number of trypanosome CRKs were 

found to bind to the p^L^nCRS! beads it is difficult to assess which of the proteins 

contributed to the kinase activity detected. The TbCRKl protein bound to the 

p^LmmCKSl column may contribute to the isolated kinase activity, but this is not 

definite as the form bound to p^L^HCKSl may be inactive. Equally, there is no 

evidence that the TbCRK2 isolated is active. The 48 kDa PSTAIR reactive band in the 

procyclic extract (see Figure 5.4.4, lanes 7-9), which bound to the p^DnmCKSl beads, 

may also contribute to the histone HI kinase activity.

Labelling procyclic form T. brucei cultures with 35S methionine showed several

proteins which specifically bound to the pllLmmCK81 beads, although others may have

been obscured by non specific bands. Of the specific bands, one was the approximate
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size of CYC1, a cyclin like protein previously isolated from T. brucei (Affranchino et 

al., 1993) which according to immunoprecipitation experiments interacted with a 34 

kDa PSTAIR containing protein, presumably TbCRKl. There is also the possibility of 

TbCRKl and TbCRK2 being detected.
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CHAPTER SIX 
ASSESSMENT OF TBCRK3 FUNCTION BY REVERSE

GENETICS
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6.1 Introduction.

As it was not readily possible to analyse TbCRK3 function either by in vitro 

expression or in vivo purification due to the insoluble nature of the protein combined 

with the need to retain an intact protein complex, the assessment of TbCRK3 protein 

function by in vivo mutagenesis was attempted. The creation of mutants by 

homologous recombination using constructs with antibiotic resistance markers has 

previously been performed with a number of different genes in the kinetoplastids (see 

Chapter 1.1.3(h)). As procyclic form T. brucei are considerably easier to grow in vitro 

than bloodstream form, procyclic cultures were used. Dependent on whether tbcrk3 

was essential for trypanosome growth or not, different results could be expected:

(1) if the gene was non-essential in the procyclic form, null mutant T. brucei 

would be isolated, and it would then be necessary to analyse the cells to assess any 

phenotypic effect of the knockout, such as early or delayed division.

(2) if tbcrk3 was essential in the procyclic form, either no mutants would be 

isolated or parasistes resistant to both antibiotic markers used for gene targetting would 

be isolated but at low numbers, and as described in Chapter 1.1.3(h), the cells would 

retain a copy of the wild type gene through recombination, duplication, retention of an 

episomal copy or changes in ploidy.

(3) the gene might be essential in some life cycle stages and not others, thus it 

would be stage specific lethal. Although the protein is expressed in all the stages tested 

(see Chapter 4.5) it is possible that in some forms there would be functional 

redundancy, as found with the CLN cyclin genes of S. cerevisiae (Rowley e ta l., 1992). 

Null mutants may be generated in procyclic form T. brucei that would be unable to 

complete the life-cycle if the gene was essential in the bloodstream form.

This approach was not attempted with tbcrkl because an attempt to create null

mutants in the single copy Immcrkl gene was unsuccessful, although tetraploid

Leishmania were isolated following the second round of transfection (J. Mottram,

personal communication). This implies that the gene is essential for the growth of
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promastigote form L. mexicana. The closely related gene from T. brucei {tbcrkl) is 

able to complement Immcrkl mutants in Leishmania following the deletion of both 

copies of the Immcrkl gene. It is therefore likely that tbcrkl is functionally 

homologous to Immcrkl and an essential gene in the T. brucei procyclic form.

6.2 Creation of putative null mutants of tbcrk3.

6.2.1 Construction of the plasmid background for resistance cassette insertion

No czs-introns in protein coding genes have been found in T. brucei. Therefore

it would be very unlikely for a resistance cassette integrated into a genomic locus to be

spliced out of the transcribed RNA thus resulting in a functional gene product from the

disrupted locus. However, the gene knockout vectors were designed to not only

integrate a resistance cassette into the middle of the gene but also to remove part of the

tbcrk3 ORF when integrating into the genomic loci. This approach would ensure the

removal of TbCRK3 function. The CDK genes are usually transcribed at relatively low

levels in other organisms (Welch and Wang, 1992) and therefore low levels of drug

resistance may occur at this locus. As the ble resistance gene product provides

resistance in a non-catalytic manner (Jefferies etal., 1993) by binding to and

sequestering the drug, it therefore might need a high level of expression to achieve good

resistance. For this reason the drug resistance genes were placed under the control of

the highly active PARP/procyclin promoter, rather than relying on read through

transcription of the presumably polycistronic RNA from the tbcrk3 region. The

resistance cassettes were inserted between the Xbal site and the most 3' Xhol site within

the tbcrk3 ORF (Figure 6.2.1). This results in the deletion of 388 bp (over one third of

the ORF), from the region just upstream of the PSTAIR box, to just downstream of the

DSEI region (amino acids 88 to 215 inclusive). pBlueScript (pBS) contains both Xbal

and Xhol sites in the MCS, and so these plasmid sites had to be destroyed to allow the

subcloning of the resistance cassettes into the tbcrk3 ORF. To do this pBS SK+ was
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first digested with Xbal and SpeI. The sites for these enzymes have compatible 

overhangs, and are adjacent in the pBS MCS. The digest was precipitated with iso

propanol, which is less efficient than ethanol at precipitating small DNA molecules, 

thereby removing the 6 bp Xbal I Spe I DNA fragment. The DNA was resuspended and 

ligated with T4 DNA ligase. After transformation of E. coli, colonies were picked at 

random, plasmid DNA prepared, and the DNA incubated separately with Xbal (to check 

for the loss of the site) and Xhol (as a control for digestion). A plasmid negative for the 

Xbal site were called pBS(-S/X). This plasmid was then treated with Xhol and Sab. 

These enzymes also have compatible overhangs, and are adjacent in the pBS MCS. In 

this case it was found necessary to re-precipitate the ligation reaction, resuspend the 

DNA and incubate it again with Xhol before transformation. This procedure linearised 

molecules which had not been digested in the first reaction, or in which the MCS 

fragment had religated, and so reduced the background of the pBS(-S/X) plasmid to a 

low level. Colonies were picked at random after the transformation and plasmid DNA 

prepared from overnight cultures. The DNA was tested with Xbal, Xhol and EcoKl in 

separate reactions. The plasmid which failed to digest with either of Xbal or Xhol, but 

which was linearised by £h?RI was named pBS(-2S/2X). Both digestion/ligation 

reactions retained the original lacZ open reading frame. This plasmid was the backbone 

for the knockout vectors.

The tbcrkS ORF was located on a 2.6 kb Hindlll fragment of pCD70E(S)8. As

a Hindlll site was present within the tbcrk3 gene a partial digest was performed in order

to isolate the complete gene on a 2.6 kb Mwdlll fragment. A 100 p i digest containing

10p g  of pCD70E(S)8 plasmid DNA was performed with 10 U of Mwdlll. 20 pi

samples were taken at 5, 10, 20,30, and 45 minutes. 4 p i of each sample were run on a

0.7 % agarose gel containing EtBr. The sample showing the highest proportion of the

2.6 kb band was then run on another 0.7 % agarose gel, followed by excision of the

band and purification of the DNA using Geneclean (see Materials and Methods). This

was then ligated into pBS(-2S/2X) cut with Hindlll and transformed into competent

XLl-Blue cells. After plating on X-gal/IPTG containing plates, white colonies were
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selected and grown in LB medium overnight, and the prepared plasmid DNA was 

treated with a variety of restriction enzymes, including Hindlll, Xhol with Xbal, EcoRl 

and Sail to determine if the correct cloning had been achieved. The correct plasmid 

was named pCD172[Hd-(Hd)-Hd] (see Figure 6.2.1).

6.2.2 Construction of the replacement vectors.

The plasmid containing the Bleomycin resistance cassette (pBle) was a gift of 

Dr. S. Graham. The cassette contained the ble resistance gene under the control of the 

PARP promoter, with a splice acceptor site for correct trans-splicing, and the PARP 3' 

untranslated region for polyadenylation (see Figure 6.2.1). pBle had a pUC18 

background, and did not have a Xhol site. The resistance cassette was removed from 

the vector with EcoRl and Xbal, and ligated into pBS SK+ which had been cut with 

£a?RI and A M . This resulted in a plasmid [designated pBS(Ble)] containing a ble 

resistance cassette which had a Xbal site at the 5' end, and a Xhol site at the 3' end. 

After digestion with Xbal and Xhol, the 1.1 kb resistance cassette was ligated into 

XballXhol cut pCD172[Hd-(Hd)-Hd]. This plasmid was named pCD175BKOV 

(Bleomycin KnockOut Vector) (see Figure 6.2.1).

A plasmid containing a Neomycin resistance cassette was the gift of Dr. D.

Jeffries. The plasmid (pNT) contained the neo gene (which conveys resistance to the

antibiotic G418) under the control of a region containing the PARP promoter, with the

3' untranslated region of the T. brucei alpha-tubulin gene. The downstream region of

this construct did not contain restriction sites usable for the insertion strategy and so it

was necessary to move the promoter and neo gene into another plasmid. The pNT

DNA was digested with EcoRV which removed a 2.0 kb fragment that contained both

the PARP promoter and the neo resistance gene. The 2.0 kb fragment was gel purified

using a spin-X column (Materials and methods). The pBS(Ble) plasmid, containing the

ble resistance cassette ligated into the EcoRl and Xbal sites of pBS SK+, was digested

with Bam HI, which cut out the PARP promoter and the ble resistance gene. The digest
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Figure 6.2.1 The tbcrk3 knockout vectors.

p B S SK +  

(-2 S /2 X )

pCD 172 [Hd-(Hd)-Hd]

EV/E
Xh

Sp H/Sp B/P XhpCD175-BKOV

Sm SmSp/B .K/Sc/E/EV/H/C/S

pCD272-NKOV
Sp E E/P

A - Apal E - EcoRl K - Kpnl Sc- Sad Sh- Sphl
B - BamHl EV- EcoRV P - Pstl Sm- Smal X - Xbal
C - Clal H - Hindlll S- Sail Sp- Spel Xh- Xhol

----------- tbcrkS flanking DNA

tbcrk3 ORF

PARP promotor and Splice Acceptor site

^ mmmm .»  PARP 3' untranslated region

cr—■ i />/<? resistance gene ORF

i i i i m M  resistance gene ORF
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was followed by the filling in of the overhang with Klenow fragment DNA polymerase, 

and treatment with Calf Intestinal Phosphatase. This vector was gel purified and 

ethanol precipitated together with the PARP/neo EcoKV fragment before resuspension 

and ligation. After transformation, randomly picked colonies were grown overnight, 

DNA prepared, and the insertion event was assessed with EcoRl and Spe I. The correct 

plasmid was called pCD255. pCD255 DNA was then digested with Xbal and Xhol to 

remove the neo resistance cassette, which was gel purified and ligated into the 

Xbal/Xhol cut pCD 172[Hd-(Hd)-Hd], resulting in pCD272NKOV (see Figure 6.2.1).

6.2.3 Disruption of one allelle of tbcrkl with the Bleomycin KnockOut Vector.

100 p g  of BKOV DNA, which had been purified using a QIAGEN Midi

column, was digested with Apal and Notl to linearise the molecule and to leave the 

tbcrk3 sequences near to the ends of the DNA to facilitate homologous integration. To 

reduce the probability of the plasmid recircularising and forming stable episomes within 

the trypanosomes, the insert DNA was gel purified to remove the pBS plasmid. After 

this procedure approximately 20 p g  of purified insert DNA was left, which was ethanol 

precipitated, dried in a sterile hood, and resuspended in 10 p \ of sterile water. 

Approximately lxlO8 cells of STIB247 procyclic form T. brucei in log phase growth 

were pelleted and resuspended in 2 ml of ZPFM electroporation buffer. 10 p g  of the 

purified insert DNA was added to 1 ml of the resuspended cells and electroporated at 

1500 V and 25 p F (see Materials and Methods). After electroporation the cells were 

split into 2 flasks, each containing 5 ml of SDM-79 medium with no antibiotic 

selection. A control was performed in which cells were treated in an identical manner 

except that instead of the DNA solution, 5 p  \ of sterile water was added to the 1 ml of 

resuspended cells. After approximately 16 hours (overnight) the cell density was 

counted using a haemocytometer, the cultures were passaged to a level of 1 x 106 cells / 

ml into SDM-79 medium containing 20 pg  / ml of phleomycin, an antibiotic to which

the ble gene conveys resistance. The transfected cells were split into two flasks. After
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less than one week no phleomycin resistant trypanosomes were observed in the control 

flasks, whereas all of the DNA transfected cultures resulted in populations of resistant 

trypanosomes. However, three of the flasks became contaminated and so only one line 

could be analysed. Although none of the cultures were clonal, the rapid growth 

supported the idea that each flask had contained cells from multiple independent 

integration events and so each flask was probably representative of the others. 

Therefore, this one culture [designated the Ble(M) line] was analysed.

Genomic DNA was prepared from the Ble(M) line and from the wild type

STIB247 using the Nucleon protocol (see Materials and Methods). The DNA was

digested with £c<?RI or Pstl and two lanes of each were run on a 0.7 % TBE/agarose

gel, followed by Southern blotting. The duplicate blots were either hybridised to a

mixture of the Hindlll insert fragments from pCD172[Hd-(Hd)-Hd], or to the ble gene,

labelled by random priming (see Materials and Methods). From the previous Southern

blots performed with STIB 247 DNA (see Figure 4.1.2) the expected sizes of the tbcrk3

hybridising bands from wild type DNA were 4.4 kb in the Zsco RI digest and 2.8 kb in

the Pstl digest. Following the integration of BKOV, EcoRl and Pstl sites would be

inserted into the tbcrk3 ORF, and so two extra bands hybridising to tbcrk3 would be

expected in both digests. These would be expected at 2.3 kb and 2.9 kb for the EcoRl

digest, and 2.0 kb and 1.7 kb in the Pstl digest. The 2.3 kb band from the EcoRl digest

and the 2.0 kb band from the Pstl digest would be expected to hybridise to the ble gene

probe. If the BKOV had not integrated and was being maintained as an episome then

the tbcrk3 probe would recognise the wild type bands and two extra bands at 2.3 kb and

1.1 kb for the EcoRl digest and 4.8 kb and 1.4 kb in the Pstl digest. Of these bands, the

2.3 kb(£c0RI) and the 4.8 kb (Pstl) bands would also hybridise to the ble gene probe.

Figure 6.2.2 shows the resultant autoradiograph. The odd lanes contain DNA from

STIB247, the even lanes from Ble(M). The ble gene probe hybridised to Ble(M) DNA

(lanes 6 and 8) but not to DNA from STIB247 (lanes 5 and 7). The sizes of the new

bands in lanes 2 and 4 are those predicted for the insertion of the ble resistance cassette

into the tbcrk3 ORF. The ratio of intensity of the 3 bands in lanes 2 and 4 might be
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Figure 6.2.2 Southern blot of DNA from the phleomycin resistant T. brucei culture 

showing disruption of one tbcrk3 allelle.
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Figure 6.2.2. Genomic DNA was prepared from procyclic cultures of STIB247 

or Ble(M) (see Materials and Methods). 20 |/g  of DNA was digested in a total volume 

of 78 ]A containing 30 U of either EcoRl or Pstl. After 2 hours a further 20 U of 

enzyme were added. After 2 more hours Loading Buffer was added to a final volume 

of 100 ]i\. 50pi\ of the digest was loaded into each lane of a 0.7 % TBE/agarose gel and 

run overnight at 30 V. The gel was then stained with Ethidium Bromide and 

photographed before being treated for Southern blotting. The DNA was fixed to the 

Hybond-N filter by baking at 80 °C for 2 hours before prehybridisation. Hybridisation 

was performed overnight at 65 °C.

Odd number lanes contain DNA prepared from the STIB247 cell culture, even 

lanes contain DNA from the Ble(M) culture. Lanes 1, 2, 5 and 6 were digested with 

EcoRl, lanes 3 ,4 ,7  and 8 were digested with Pstl. Lanes 1-4 were hybridised to the 

tbcrk3-containing fragments from pCD172[Hd-(Hd)-Hd], lanes 5-8 were hybridised to 

the ble ORF.
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expected to be approximately 2:1:1 if each cell had had one copy of tbcrk3 disrupted. 

This is not the case, as the bands corresponding to the insertion event are less intense 

than expected. This may be due to the loss of 388 bp of hybridising sequence from the 

two lower bands due to the integration event, and the increased diffusion of smaller 

molecules during electrophoresis. Also the molecule used for the labelling was dCTP, 

and the region of tbcrk3 deleted by the insertion event has a base composition of 46 % 

GC, while those regions of the flanks that have been sequenced have only 41 % GC, 

therefore the labelled molecules hybridising to the wild type locus are likely to be of a 

higher specific activity. The lack of Restriction Fragment Length Polymorphisms 

(RFLPs) detected at the tbcrk3 locus (see Figure 4.1.2) meant that integrations at the 

two loci could not be distinguished, and the inability to separate the two homologous 

chromosomes (see Figure 4.1.3) meant that they could not be distinguished using pulse 

field gel electrophoresis. Therefore it was unknown whether the integration events 

occurred preferentially in one chromosome or randomly.

6.2.4 Integration of the Neomycin resistance gene into tbcrk3.

Several results were theoretically possible following transfection of the 

neomycin KOV into the phleomycin resistant procyclic line, Ble(M), dependent on 

whether TbCRK3 function was essential for cell viability. If tbcrk3 is not essential then 

doubly resistant T. brucei would be recovered if both antibiotic selection pressures were 

applied. If only G418 selection is applied then it should be possible to isolate 

trypanosomes in which the NKOV had replaced the BKOV, as well as trypanosomes in 

which the NKOV had inserted into the other copy of tbcrk3.

If tbcrk3 was essential then either no viable cultures would grow in medium 

containing both antibiotics, or the cultures would contain cells which had undergone 

rearrangements or changes in ploidy, which resulted in the maintenance of at least one 

wild type copy of tbcrk3. If the medium only contained G418 then the resistant cultures
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would only contain cells in which the neomycin knockout vector had replaced the 

bleomycin resistance cassette.

As the neomycin resistance cassette contains an Apal site, the pCD272 (NKOV) 

plasmid was digested with Notl and Pvul, for which there is a site approximately 250 bp 

upstream of the start ATG for tbcrk3. QIAGEN purified NKOV DNA was digested, 

separated by agarose gel electrophoresis, purified by Geneclean, precipitated and 

resuspended in sterile water. 10 pig of the DNA was transfected into the Ble(M) 

trypanosomes (treated as the STIB247 cells in Chapter 6.2.3), which after the overnight 

recovery were passaged to 1 x 106 cells / ml in medium containing 20 pi g / ml of 

phleomycin and 8 pig / ml of G418. Of four such flasks, one gave rise to a slow 

growing culture which appeared resistant. No such culture was seen in the four control 

flasks which contained Ble(M) trypanosomes electroporated in the presence of sterile 

water. A stabilate was prepared of the entire culture in parallel with STIB247 and 

Ble(M) cultures, due to an enforced absence from the laboratory. When the stabilates 

were defrosted a month later and placed into medium free from antibiotics, the 

STIB247 and Ble(M) stocks recovered rapidly, but the putative doubly resistant line 

failed to recover.

The transfection was repeated with 2.5 x 108 mid-log phase Ble(M) cells

resuspended in 4 ml of ZPFM. 2 ml were transfected with NKOV insert DNA in two

batches of 1 ml (batch A and B), while 2 ml were electroporated without DNA present.

Each 1 ml was immediately split into 2 flasks for the overnight recovery, so that each of

the four experimental flasks transfected with NKOV insert DNA [designated A(l/2),

A(3/4), B(l/2) and B(3/4)] would contain independent transfection events. Each of

these four cultures were then passaged into ten flasks consisting of two sets of five

different G418 concentrations (0/5/7.5/10 and 15pig / ml), i.e. A(l/2) was passaged into

flasks labelled A1(0), A 1(5), A 1(7.5), Al(10), Al(15) and A2(0/5/7.5/10 and 15) and

so forth. Therefore the four groups of flasks, A1&2, A3&4, B1&2 and B3&4, contain

independent events. Each of the four control cultures were passaged into one set of five

flasks with the same range of G418 concentrations. Both controls and transfected cell
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lines grew at 5 pi g / ml of G418, though at a reduced rate. At 7.5 pi g / ml of G418, no

antibiotic resistant cells were recovered from the four control flasks, whereas six of the

eight NKOV transfected lines gave rise to G418 resistant cultures after two weeks

(NA1/3/4, NB1/2/4). There was no G418 resistant growth in the flasks containing 10 or

15pig / ml of G418. The six G418 resistant cultures (which were non-clonal) were

grown up, DNA purified, digested with /scoRI, and a Southern blot performed (Figue

6.2.3). As controls, EcoRl digested DNA from STIB247 and Ble(M) lines was run on

the same gel. The blot was hybridised to the tbcrk3 containing fragments from Hindlll

digested pCD172[Hd-(Hd)-Hd], labelled by random priming. The bands expected to

hybridise to tbcrk3 after a NKOV integration event were 2.9 kb (the equivalent DNA

fragment to that seen in the ble integration [see Figure 6.2.1]) and 1.2 kb. If tbcrk3 was

essential, or if the integration event could not occur at the second allelle due to

differences in the nucleotide sequence, then the cultures would only contain cells in

which the neo resistance cassette had replaced the ble cassette and the second BKOV

associated band at 2.3 kb should be missing from the Southern blots. If cells lacking

tbcrk3 were viable then mixed populations of both double knockout events and

replacement events would be detected assuming that null mutants could multiply at a

similar rate to the tbcrk3 containing trypanosomes. DNA from such a mixed population

would show four bands, the wild type (4.4 kb), the Ble(M) bands (2.9 kb and 2.3 kb),

and the new NKOV band at 1.2 kb. If the NKOV was retained as an episome then the

hybridising bands would be at 1.0 kb and 1.2 kb. Figure 6.2.3 shows the resultant

autoradiograph. Lanes 1 and 2 are STIB247 and Ble(M) DNA respectively, while lanes

3-8 contain DNA from each of the G418 resistant lines (NA1, 3 and 4, NB1, 2 and 4).

The 2.3 kb band specific to the ble insertion event is not present in any of the lanes

containing DNA from the G418 resistant cultures (compare lane 2 with lanes 3-8). The

1.2 kb band can be seen in five of the six G418 resistant lines (lanes 3-7) and may not

be visible in lane 8 due to the underloading of this sample. Therefore all of the

integration events appeared to be replacements of the ble cassette by the neo containing

vector. This implied that tbcrk3 is an essential gene, or that its loss greatly impairs the
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Figure 6.2.3 Southern blot of DNA from the G418 resistant T. brucei cultures showing 

replacement of the ble resistance cassette by the neo resistance cassette.



Figure 6.2.3. Genomic DNA was prepared from G418 resistant cultures 

(Scotlab). DNA (up to 10pig) was digested in a total volume of 39 \i\ containing 15 U 

of EcoRl. After 2 hours a further 10 U of enzyme were added. After 2 more hours 5 x 

Loading Buffer was added to a final volume of 50|<1 and this was loaded onto a 0.7 % 

TBE/agarose gel and run overnight at 30 V. The gel was then stained with Ethidium 

Bromide and photographed before being treated for Southern blotting. The DNA was 

fixed to the Hybond-N filter by baking at 80 °C for 2 hours before prehybridisation. 

Hybridisation to labelled tbcrk3-containing fragments from Hindlll digested 

pCD172[Hd-(Hd)-Hd], was performed overnight at 65 °C. Lanes 1 and 2 contain DNA 

previously prepared from the STIB247 and the Ble(M) cell culture respectively, lanes 

3-8 contain DNA from G418 resistant cultures: lane 3 - NA1, lane 4 - NA3, lane 5 - 

NA4, lane 6 - NB1, lane 7 - NB2, lane 8 - NB4.
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growth of T. brucei such that null mutants are outgrown by those cells undergoing 

replacement events. It was possible, however, that the copy of tbcrk3 which had 

already been disrupted may have had a predisposition to integration events and the 

sensitivity of the Southern blot was not good enough to spot a small number of null 

mutants. To assess this possibility it was decided to perform PCR, using 

oligonucleotides homologous to the 5' and 3' ends of tbcrk3, on the G418 resistant 

cultures when they were still at a low density, soon after the transfection event. This 

approach could detect such rare events. The preferred option of cloning individual cell 

lines from the population and assaying their genotype and phenotype was curtailed due 

to lack of time.

6.3 Analysis of the putative tbcrk3 null mutants.

6.3.1 PCR analysis of tbcrk3 mutants

PCR was performed using oligonucleotides previously employed in the cloning 

of tbcrk3 into the yeast complementation vector, and were homologous to the regions of 

the tbcrk3 initiation ATG and the termination codon (see Chapter 5.2). As the PCR was 

to be performed on cultures immediately after selection, with low cell density, it was 

decided to utilise a crude boiled cell extract as the starting template without further 

DNA purification. Template DNA was prepared by pelleting 100 /d  of culture, 

washing with 1 ml of 1 x Phosphate Buffered Saline (PBS), resuspending the cells in 

100/d of 5 mM EDTA and then boiling for 10 minutes. Each 50 /d  PCR contained 1 /d  

of the template solution.

The first PCR was performed on cells from the NB1 culture that had undergone

2 weeks of G418 selection only. Figure 6.3.1 shows the EtBr stained agarose gel on

which 10/d  of the PCR had been loaded (lane 1), along with control lanes containing 5

]A of PCR reactions which used purified pCD172[Hd-(Hd)-Hd], pCD175BKOV or

pCD272NKOV as template (lanes 2-4). The wild type gene was expected to result in a
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PCR product of ~1 kb, the ble resistance cassette should give a product of 1.6 kb, and 

the neo resistance cassette should result in a band of 3 kb. The pCD172[Hd-(Hd)-Hd] 

plasmid (lane 2) and the pCD272NKOV plasmid (lane 4) gave the correct size 

fragments of 1 kb and 3 kb respectively. An unexpected result however, was obtained 

for the pCD175BKOV template (lane 3) which gave a 700 bp PCR product instead of 

the 1.6 kb product expected. Mapping this DNA fragment with various restriction 

enzymes (including Bam HI, H i n d l l l ,  Pstl, Spel, Xbal and Xhol), showed that the tbcrk3 

flanking sequences have amplified correctly, but the ble cassette was almost entirely 

deleted. The reaction using template prepared from the NB1 culture (lane 1) shows 3 

bands of 700 bp, 1 kb and 3 kb, each the same size as a product in one of the control 

lanes. The 700 bp PCR product correlating to the ble resistance cassette is considerably 

less intense than the other 2 bands from the NB1 template. Although PCR is difficult to 

analyse quantitatively without careful controls, this low intensity band implied the 

presence of trypanosomes carrying both ble and neo resistance markers in this culture.

It was not possible from this experiment to distinguish whether they were null mutants 

or if they had retained a wild type copy of tbcrk3 by increasing tbcrk3 copy number, 

either through ploidy changes or episome formation. Each of the G418 resistant cell 

lines was split in half, with one half being added to medium containing both G418 and 

phleomycin while the remaining culture was only exposed to G418. Of the six G418 

resistant lines, only two (NB2 and NB4) gave rise to cultures which were resistant to 

both antibiotics (called B2D and B4D respectively). Suprisingly, NB1, the culture used 

for the PCR and which showed the presence of both ble and neo resistance markers, did 

not give rise to doubly resistant trypanosomes. Both B2D and B4D grew extremely 

slowly. The cultures under phleomycin and G418 selection barely increased in cell 

density over several weeks, but unlike other lines under the same selection, they did not 

die. The cells were regularly spun down, and resuspended in fresh medium containing 

G418 and phleomycin to ensure that the medium did not become depleted of nutrients. 

As the trypanosomes did not increase in number, there were not enough cells to prepare 

DNA for Southern blots, or protein extracts for Western blots. Eight weeks after the



Figure 6.3.1 PCR of tbcrk3 mutant cell line NB1 with tbcrk3 specific oligonucleotides.
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Figure 6.3.1 PCR was performed on template from the NB1 culture (lane 1), 

pCD 172[Hd-(Hd)-Hd] (lane 2), pCD175BKOV (lane 3), and pCD272NKOV (lane 4). 

100\i\ of cells from the NB1 culture were pelleted, washed in 1 ml of PBS and then 

boiled in 100 ja  1 of 5 mM EDTA. All control plasmids had been prepared using 

QIAGEN miniprep columns and mapped to ensure they were correct. The final control 

template concentration was 0.1 ja  g / m l. The oligonucleotides used were homologous to 

the 5' and 3' ends of the tbcrk3 ORF. The PCR was performed using Tciq DNA 

Polymerase in a total reaction volume of 50 j a \ .  After an initial denaturation at 95°C for 

5 minutes, 30 cycles were performed with annealing at 60 °C for 1 minute, extension at 

72 °C for 2 minutes 30s, and denaturation at 95 °C for 45s. 10 ]a \  of the NB1 culture 

PCR and 5 ja  \ of each control PCR was loaded in each lane.
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double selection procedure the cell density of the cultures began to decrease. Light 

microscopy of the cultures did not show noticeable levels of cellular debris, unlike that 

seen in cultures undergoing antibiotic selection where cells were not resistant. The light 

microscopy also appeared to show a higher ratio of cells in the early/medium stages of 

cytokinesis, when the cell bodies remain at 45-90° to each other, compared to other cell 

lines, and comparatively few in the final stages where the cells are joined at the most 

posterior point (see Figure 1.2.2 for diagram of cell division). PCR was used to 

characterise the tbcrk3 loci in these populations (see Chapter 6.3.2), and Giemsa and 

DAPI staining of fixed cells was used to assess the phenotype (see Chapter 6.3.3). The 

cultures continued to decrease in cell density, even after the transfer of cells into non- 

selective medium, until no cells could be seen in repeated observations (approximately 

11 and 12 weeks after selection for B2D and B4D respectively). The single 

replacement line, NB4, from which B4D had been derived, was passaged into 

phleomycin/G418 containing medium to assess the resultant effects on the cells, and it 

was also passaged into medium containing G418 which was supplemented with 25 % 

conditioned medium from the dead B4D culture (to assess if the loss of viability was 

due to contamination of the B4D cell line with a virus, or other organism invisible 

under the microscope). Neither of these conditions resulted in the same phenotype 

observed with the B2D and B4D lines (see Chapter 6.3.3). The NB4 cells treated with 

phleomycin died rapidly, with high levels of debris apparent and no obvious signs of 

delayed or altered cytokinesis, while the cells passaged into B4D medium grew as well 

as those in fresh medium.

6.3.2 PCR analysis of the T. brucei B4D cell line: null mutants or multiple tbcrk3 loci?

The two cell cultures to be used for the PCR reactions (B2D and B4D) were

prepared in the same manner as previously, except that the medium containing the cells

was treated with DNAsel for 30 minutes before the cells were spun down, washed,

resuspended and boiled. This treatment was used to avoid any contamination by
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plasmid or genomic DNA left in the culture medium after transfection and selection 

(specifically the integration plasmid). The two sets of oligonucleotides used for 

amplification were specific to the tbcrk3 ORF (see Chapter 5.2) and the ble ORF (gift 

of Dr. D. Jeffries). PCR using the template prepared from the B2D culture did not give 

reproduceable PCR products, but as the B2D culture acted in a very similar manner to 

the B4D line (B2D was maintained at a slightly lower cell density after selection than 

the B4D culture, and reached zero approximately one week earlier) the genomic events 

which created the two lines could be expected to be similar. Although the wild type 

tbcrk3 ORF was amplified from unpurified T. brucei genomic template routinely, the 

loci with ble and neo cassette insertions only amplified occasionally even though 

amplification from plasmid template occurred without difficulty. It may be that, for 

differing reasons, these two PCR's had a relatively low efficiency. The ble cassette 

always resulted in a much smaller band than expected (see Figure 6.3.1), indicating that 

the PCR was not performing as predicted, and the neo cassette results in a 3 kb band 

using the tbcrk3 oligonucleotides, which is towards the limits of the PCR protocol used 

in these experiments.

The result of a PCR reaction using the tbcrk3 specific oligonucleotides is shown 

in Figure 6.3.2. Only the wild type loci have amplified from the phleomycin and G418 

singly resistant cultures (lanes 3 and 4), and no such band is present in the reaction 

using B4D DNA as template (lane 5). Lane 6 shows the result of a PCR using B4D 

template purposefully contaminated with pCD172[Hd-(Hd)-Hd] plasmid, which 

contains the tbcrk3 ORF. This results in the correct size band, and therefore shows no 

general inhibition of the taq DNA polymerase activity by the B4D extract. The lack of 

the 930 bp band in lane 5, which was repeated on several occasions, indicates that the 

BD4 culture does not contain a wild type tbcrk3 allelle.

PCR was also performed using the ble 5' and 3' oligonucleotides (Figure 6.3.3).

These oligonucleotides would not be expected to amplify any products from wild type

T. brucei DNA, but the reaction using STIB247 template resulted in a large number of

non-specific bands. However, the reaction did not contain the expected 380 bp product
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(lane 1). Both Ble(M) and B4D template containing reactions did amplify the correct

'
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Figures 6.3.2 PCR of wild type and tbcrk3 mutant cell lines using tbcrk3 specific

oligonucleotides

1 2 3 4 5 6
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Figure 6.3.2 The template from T. brucei procyclic cultures was derived from 

500 pi\ of cells. The samples were treated with DNAsel at a final concentration of 40 

pig / m l, at 28 °C for 1 hour. EDTA was then added to 5 mM before the cells were 

pelleted. The supernatant was removed to leave ~15 pi\ of solution. The pellet was 

resuspended in this and boiled for 15 minutes. The PCR was performed using Taq 

DNA Polymerase in a total reaction volume of 50 ja\. The primers were those 

previously used to amplify tbcrk3 for subcloning into the S.pombe expression vector, 

pMNS21L (see Chapter 5.2). After an initial denaturation at 95 °C for 5 minutes, 30 

cycles were performed with annealing at 60 °C for 1 minute, extension at 72 °C for 2 

minutes 30s, and denaturation at 95 °C for 45s. Lane 1 was a no template DNA 

control, lane 2 - STIB247 wild type DNA, lane 3 - Ble(M) DNA, lane 4 - NB4 DNA, 

lane 5 - B4D DNA, lane 6 - B4D DNA plus 0.1 pg  /ml pCD172[Hd-(Hd)-Hd].
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Figure 6.3.3 PCR of wild type and tbcrk3 mutant cell lines using ble amplifying

oligonucleotides.
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Figure 6.3.3 The template from T. brucei procyclic cultures was derived from 

500]i\ of cells. The samples were treated with DNAsel at a final concentration of 40 

pig / ml, at 28 °C for 1 hour. EDTA was then added to 5 mM before the cells were 

pelleted. The supernatant was removed to leave ~15 pi\ of solution. The pellet was 

resuspended in this and boiled for 15 minutes. The PCR was performed using Taq 

DNA Polymerase in a total reaction volume of 50 pi\. The pimers used annealed to the 

5' and 3' ends of the ble ORF. After an initial denaturation at 95 °C for 5 minutes, 30 

cycles were performed with annealing at 60 °C for 1 minute, extension at 72 °C for 2 

minutes 30s, and denaturation at 95 °C for 45s. Lane 1 - STIB247 wild type DNA, lane 

2 - Ble (M) DNA, lane 3 - B4D DNA.
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Figure 6.3.4 PCR of wild type and tbcrk3 mutant cell lines using tbcrk3 amplifying

oligonucleotides with a longer extension time.
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Figure 6.3.4 The template from T. brucei procyclic cultures was derived from 

500]i\ of cells. The samples were treated with DNAsel at a final concentration of 40 

pig / ml, at 28 °C for 1 hour. EDTA was then added to 5 mM before the cells were 

pelleted. The supernatant was removed to leave ~15 pi\ of solution. The pellet was 

resuspended in this and boiled for 15 minutes. The PCR was performed using Taq 

DNA Polymerase in a total reaction volume of 50 pi\. The pimers used annealed to the 

5' and 3' ends of the tbcrk3 gene. After an initial denaturation at 95 °C for 5 minutes, 

30 cycles were performed with annealing at 60 °C for 1 minute, extension at 72 °C for 

3 minutes 30s, and denaturation at 95 °C for 45s. Lane 1 - no template DNA, lane 2 - 

STIB247 wild type DNA, lane 3 - Ble(M) DNA, lane 4 - NB4 DNA, lane 5 - B4D 

DNA.
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size 380 bp product (lanes 2 and 3), indicating that the Ble(M) and B4D cultures 

contain the ble resistance gene.

The products of another PCR performed with tbcrk3 specific oligonucleotides is 

shown in Figure 6.3.4. The wild type tbcrk3 gene is amplified as a 930 bp product, and 

is present in STIB247 (lane 2), Ble(M) (lane 3), and NB4 (lane 4) templated reactions, 

but not in the B4D reaction (lane 5). In both NB4 and B4D PCR reactions (lanes 4 and 

5) a product of 2.9 kb was detected, the expected size of the amplification product of 

the neo resistance cassette. This indicates that the B4D cells contain the neo gene 

inserted into a tbcrk3 ORF. It is not known why the neo resistance cassette was 

amplified in these reactions but not the ble resistance cassette.

Evidence from the PCR experiments suggest that the doubly resistant cultures, 

B2D and B4D, contain both antibiotic resistance cassettes, and are lacking any wild 

type tbcrk3 gene copies. The phenotype of these cultures should, therefore, show 

evidence of the function of the TbCRK3 protein.

6.3.3 Analysis of tbcrk3 mutants using DAPI staining and fluorescence microscopy.

Samples of the B2D and B4D cultures, and the NB4 culture as a control, were

pipetted onto slides and allowed to dry in a sterile hood. Once dried, the cells were

fixed with methanol, washed with PBS and again allowed to dry. The slides were either

stained with Geimsa or DAPI (see Materials and Methods) and examined under the

microscope. DAPI is a fluorescent dye which intercalates DNA allowing the

visualisation of both the nucleus and kinetoplast. It was difficult to see the kinetoplast

with Geimsa staining and so the assessment of phenotype was performed with DAPI

stained cells, scoring each cell for the number of nuclei and kinetoplasts present. The

microscope used had a moveable stage with a vernier scale. To ensure cells were only

counted once each, the count started at the back, left comer of the slide. The stage was

then gradually moved rightwards, scoring the phenotype of each cell within the field of

vision. At the right-hand edge of the slide, the stage was moved forwards across 3
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fields of vision before moving right, back across the slide, scoring more cells. The NB4 

culture was used as a control because it had been treated in an identical fashion to the 

B2D cell line, and it was identical to the B4D cell line, up to their selection with 

medium containing both phleomycin and G418. It therefore controls for the fact that 

these cultures have undergone two rounds of transfection, integration and selection 

including prolonged growth in the presence of phleomycin, an antibiotic that damages 

DNA (Xu and Johnston, 1994).

Both B2D and B4D showed elevated numbers of cells with abnormal 

kinetoplast/nuclear ratios (Table 6.3.1, shown graphically in Figure 6.3.5). There are 

125 % and 50 % more cells without nuclei (ON XK) respectively, reduced numbers of 

cells in the Gl/S phases of the cell cycle (IK IN) even ignoring the fact that many of 

these cells in the null mutants had abnormal morphology, and a large increase in the 

numbers of cells with two nuclei; both with the correct number of kinetoplasts (2N 2K) 

and with incorrect N/K ratios. The control sample using the NB4 line does show a 

higher level of unusual forms than another such survey (Das etal., 1994), which may be 

due to several reasons. Firstly, the rate of imperfect cytokinesis may vary between 

various laboratory strains. The study by Das etal was performed with the TREU667 

strain as while these mutant cultures were derived from the STIB247 line. It is also 

possible that the cells are in some way affected by the G418 in the medium, even 

though they are resistant to the drug. There is also the possibility that the single 

replacement event results in lower levels of TbCRK3 in the cell, and that this causes a 

mild version of the phenotype seen in the null mutants. The data suggest that the null 

mutant cell lines had a defect in cell division, although as cells from all points in the 

cell cycle were detected there appeared to be no particular restriction point in the cell 

cycle that the cells could not pass through.
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Table 6.3.1 Analysis of the number of nuclei and kinetoplasts in 

tbcrk3 mutant cell lines.

NB4 (Controls) B2D B4D
ON XK 8% (9) 18% (23) 12% (18)
IN OK 4% (5) 2% (2) 3% (5)
IN IK 81% (93) 30% (37a) 56% (85b)
IN 2K 4% (5) 4% (5) 1% (2)
IN >2K 0 0 1% (1)
2N OK 0 4% (5) 5% (7)
2N IK 2% (2) 30% (37) 17% (26)
2N 2K 1% (1) 8% (10) 3% (4)

>2N XK 0 4% (5) 2% (3)

The first column shows the numbers of nuclei (N) and kinetoplasts (K) 

present in each cell. The percentage of the total population in each category 

is shown in each column, with the figures in brackets being the actual number 

of cells scored for each category. The rows in bold type are cell morphologies 

expected to be seen in a normal T. brucei cell cycle (Gull, 1985).

a - Of the 37 cells in this set, 20 were malformed in some manner. 3 

had two or three flagella, although the most common abnormality was that the 

kinetoplast and /or the nucleus were not located in the expected position in 

the cell.

b - 26 of the 85 cells in this set were malformed, in a similar manner 

to those in the B2D cell line.
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Figure 6.3.5 The percentage of cells in each category for each cell line 

(Data taken from Table 6.3.1).

ONXK 1N0K 1N1K 1N2K 1N>2K 2N0K 2N1K 2N2K >2NXK

NB4 (Controls)
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Figure 6.3.6(A) Phase contrast and fluorescence photographs of DAPI stained cells

from the NB4 culture treated with phleomycin.

(1) (2)
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Figure 6.3.6(A) 100 pi\ of NB4 culture, 6 days after the start of treatment with 

20/* g / ml phleomycin was spun down at 1000 rpm for 5 minutes. The cells were then 

gently resuspended in the supernatant. The centrifugation was performed so that the 

cells were treated in the same manner as the putative null mutants which needed 

concentration to make the analysis easier. 20 y \  of the culture was then aliquoted onto a 

slide and allowed to dry in a tissue culture hood before fixing and staining with DAPI. 

Photographs 1,3 and 5 - phase contrast microscopy, photographs 2 ,4  and 6 - the same 

fields of view under fluorescence.
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Figure 6.3.6(B) Phase contrast and fluorescence photographs of DAPI stained cells

from the NB4 culture grown in the presence of medium from the B4D culture.
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Figure 6.3.6(B) 100 pi\ of mid log phase NB4 culture was spun down at 1000 

rpm for 5 minutes. The cells were then gently resuspended in the supernatant. 20 ]a  \ of 

this was then aliquoted onto a slide and allowed to dry in a tissue culture hood before 

fixing and staining with DAPI.. Photographs 1,3 and 5 - phase contrast microscopy, 

photographs 2 ,4  and 6 - the same fields of view under fluorescence.
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Figure 6.3.6(C) (1-6) Phase contrast and fluorescence photographs of DAPI stained 

cells from the B2D putative null mutant culture



Figure 6.3.6(C) 100 pi\ of the B2D culture was spun down at 1000 rpm for 5 

minutes. 80 yi\ of the supernatant was removed and the cells gently resuspended in the 

remaining liquid. This was then aliquoted onto a slide and allowed to dry in a tissue 

culture hood before fixing and staining with DAPI.. Photographs 1, 3, 5 ,7 , 9 and 11- 

phase contrast microscopy, photographs 2 ,4 ,6 , 8, 10, and 12 - the same fields of view 

under fluorescence.
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Figure 6.3.6(C) (7-12) Phase contrast and fluorescence photographs of DAPI stained

cells from the B2D putative null mutant culture
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Figure 6.3.6(D) (1-6) Phase contrast and fluorescence photographs of DAPI stained

cells from the B4D putative null mutant culture.
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Figure 6.3.6(D) 100 pi\ of the B4D culture was spun down at 1000 rpm for 5 

minutes. 80 /d  of the supernatant was removed and the cells gently resuspended in the 

remaining liquid. This was then aliquoted onto a slide and allowed to dry in a tissue 

culture hood before fixing and staining with DAPI. Photographs 1,3, 5,7, and 9 - 

phase contrast microscopy, photographs 2 ,4 ,6 ,8  and 10 - the same fields of view 

under fluorescence.
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Figure 6.3.6(D) (7-10) Phase contrast and fluorescence photographs of DAPI stained

cells from the B4D putative null mutant culture

(7) (8)



Photographs of DAPI stained cells, representative of the various cell lines, were 

taken. Figure 6.3.6 shows the photographs, both phase contrast, showing cell 

morphology, and fluorescent, showing the kinetoplast and nucleus number, and their 

positions. Figure 6.3.6(A) shows cells from NB4, the G418 resistant line, 6 days after 

treatment with 20 yi% / ml phleomycin. In each case the cells contain one kinetoplast, 

one nucleus and one flagellum. The patchy nature of the staining in the nucleus of 

these cells (particularly in 2 and 4) is presumably due to DNA damage caused by the 

phleomycin. Figure 6.3.6(B) shows cells from the NB4 line, grown in medium 

containing 25 % medium from a BD4 culture. As with Figure 6.3.6(A), the cells appear 

normal. Photographs (B)3 and 4 show a cell which has two kinetoplasts, which have 

separated prior to nuclear division, as expected for a cell in G2.

Figures 6.3.6(C) and (D) show cells from the two null mutant cultures B2D and

B4D respectively. In (C)2 DAPI staining shows a cell with 2 nuclei but either no, or

possibly one (at the right hand edge of the left hand nucleus), kinetoplast. (C)3/4 shows

a normal appearing cell, although the kinetoplast does appear relatively large, perhaps

having undergone replication without division. The cell in (C)5/6 appears to have

separated its kinetoplasts, though again they are considerably larger than is typical.

(C)8 clearly shows a cell which has two nuclei and only one kinetoplast, which is

positioned between the two nuclei. This perhaps indicates that the cell has recently

undergone an incorrect cytokinesis which resulted in the posterior kinetoplast being

separated as a 'zoid'. In (C)10 there is a cell which has no nucleus, one kinetoplast and

two flagella [see (C)9]. (C)l 1/12 show a cell with an unquantifiable number of nuclei

and kinetoplasts. In this case division is clearly not occurring correctly. The

kinetoplasts have not separated correctly, and they are not in the expected positions for

a cell undergoing cytokinesis. The cell also appears to be starting cytokinesis from the

wrong end. The cells in the B4D culture show similar phenotypes. (D)l/2 show a cell

in which there is either one huge kinetoplast with more than the normal DNA content,

and two nuclei, or there are three nuclei. The cell in (D)3/4 appears to be undergoing

cytokinesis. Both nuclei are in what would become one of the daughter cells, while the
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other cell only contains a kinetoplast. Neither of the cells visible in (D)5/6 are aberrant, 

and one is apparently progressing through the cell cycle, containing two, separated, 

kinetoplasts. The two cells in (D)7/8 however are both unusual. The lower cell has no 

kinetoplast, although the flagellum appears present, while the other has the kinetoplast 

incorrectly positioned, anterior to the nucleus. The cell in (D)9/10 is dividing. It 

contains the correct number of nuclei and kinetoplasts for a dividing cell (two of each), 

but as above, the kinetoplasts are not in the correct positions. They do not appear to 

have separated properly, and are both posterior to the more posterior nucleus, instead of 

one being between the two nuclei, as would be expected (Gull etal., 1990).

6.4 Discussion

An analysis of TbCRK3 function was performed using homologous 

recombination to create procyclic form tbcrk3 mutants. After one allelle was disrupted 

by the insertion of, and selection for, a bleomycin resistance cassette, the culture was 

again transfected, this time with a neomycin resistance cassette. Selection with both 

phleomycin and G418 antibiotics gave rise to a slowly growing population of cells. 

Analysis of these lines by PCR indicates that the cultures do not contain a wild type 

tbcrkS gene, and do contain both the ble and neo resistance genes inserted into a tbcrk3 

ORF. These mutants displayed a very slow rate of growth before the population died. 

This phenotype displayed by the null mutants of tbcrk3 was unexpected. It was thought 

that a protein controlling the cell cycle would be essential, and if it was not essential, 

e.g. due to redundancy such that another TbCRK would function in place of the 

TbCRK3 protein, then it was probable that no phenotype would be seen. As the 

cultures did die it seems that the TbCRK3 protein is essential for cell viability. The 

relative longevity of the null mutants therefore has to be explained, as well as the lack 

of selection of tetraploid or rearranged genomes seen in other cases.

One possibility is that the mRNA, or the TbCRK3 protein, or both, are relatively

stable with a long half life. If this is the case then the selection pressure against changes
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in ploidy must be enough to remove those cells during the null mutants’ early growth.

It may be that aneuploid cells could not be isolated because other genes on the tbcrk3 

containing chromosome are under dosage control, but the large variations in karyotype, 

post-transcriptional control shown after gene deletion (de Lafaille and Wirth, 1992) and 

especially the isolation of triploid trypanosomes after genetic crosses (Gibson etal., 

1992; Wells etal., 1987) makes this unlikely.

The phenotype displayed by the null mutant cell lines varied from cell to cell, 

both in the abnormality seen and in the severity of the condition. By light microscopy 

many cells appeared to be normal, even during the final stages of the cultures. In 

abnormal cells, commonly the cell organelles were incorrectly positioned, notably the 

kinetoplast/s were often misplaced, or not separated after replication. There was often 

an incorrect number of nuclei and kinetoplasts, and many of the kinetoplasts were 

unexpectedly large by DAPI staining. This may be due to the cells replicating their 

kDNA but not dividing the mitochondrion. Due to the longitudinal arrangement of the 

T. brucei cell, cytokinesis in T. brucei demands the accurate positioning of several of 

the cell's components, including the nucleus, kinetoplast and basal body/flagellum. The 

failure to accurately align these cellular structures would cause aberrant divisions, 

leading to the abnormal ratios of nuclei to kinetoplasts. There are other notable 

differences as well. Strikingly, the linkage between the kinetoplast and the flagellum 

was lost in a number of cases (see Figure 6.3.6(C) 9/10 and (D)7/8). During normal 

division there is a physical link between the kinetoplast and the basal body (Robinson 

and Gull, 1991) and there is one flagellum for each kinetoplast. However in the two 

mutant cultures, cells could be seen with more flagella than kinetoplasts, and vice versa. 

Possibly the most extreme alteration of cytokinesis was shown by the cells where 

cytokinesis appeared to be starting at entirely the wrong end of the organism (See

Figure 6.3.6(C) 11/12).

A linking factor in these events is a role for the cytoskeleton. TbCRK3 may be

involved in regulation of the cytoskeleton and its re-organisation during the cell cycle.

Its loss results in a phenotype reminiscent of the mitotic catastrophe seen in yeast, with
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the number of viable cells in a culture dropping as mistakes in division accumulate. 

This association could also explain the insoluble nature of TbCRK3 in Triton X-100, as 

this detergent keeps the cytoskeleton essentially intact. However, the cells 

predominantly retained their characteristic shape showing that TbCRK3 is unlikely to 

play a role in the organisation of the sub-pellicular microtubule ‘basket’ which runs 

underneath the cell membrane.

A role for TbCRK3 in cytoskeletal organisation though does not explain why

tetraploid, and other forms of tbcrkS, ble and neo gene containing cells, were not found,

since tbcrk3 is essential. When Immcrkl was targeted in a similar experiment (Mottram

etal., 1996), null mutants could not be obtained, which is the expected outcome for an

essential gene. One theory which would explain these results is that one role of

TbCRK3 may be to phosphorylate a stable protein which is part of a cellular structure

involved in the control of organellar positioning. If this cellular structure is

conservatively reproduced during the cell cycle, then one daughter cell would receive

the old, already phosphorylated, structure while the other cell inherits a new one. If

TbCRK3 and its mRNA are both relatively stable then after the second integration

event the cell cycle could continue relatively unaffected for several generations until

TbCRK3 is diluted out by subsequent cell divisions. As the levels of TbCRK3 drop the

two daughter cells would become non-equivalent, as one would inherit an adequately

phosphorylated structure while the other would inherit a structure consisting of newly

sythesized protein lacking complete modification. While there was enough TbCRK3 in

the cells it would be possible for the new structure to be phosphorylated before the next

cell division occurred. However, as the levels of TbCRK3 decrease this would no

longer be possible, and at this point aberrant division of the daughter cell with the

unphosphorylated structure would begin. As the levels of TbCRK3 decreased still

further then the cells would not keep up with the turnover of the phosphorylated protein

and therefore increasing numbers of cells would start to exhibit the mutant phenotype.

This theory would explain the observed population dynamics of the null mutants,

consisting of a growth phase (when both daughter cells could successfully divide
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again), a plateau (when one daughter cell could no longer divide) and the population 

crash (when every cell undergoing cytokinesis is dysfunctional).

One possibility for a cell structure which is likely to be conservatively replicated 

within procyclic T. brucei is the basal body. This structure is found in a precise 

position in the cell and is involved in the connection between the flagellum and the 

kinetoplast, a connection that is disrupted in the null mutant cell lines. After division, 

each cell contains one basal body and one pro-basal body. During the early G1 phase 

of the cell cycle, the pro-basal body elongates to become a full basal body. The new 

flagellum starts to form on the new basal body, and two new pro-basal bodies are 

formed. Interestingly, the two basal bodies are not equivalent as when they are 

separated, the old basal body with the older, longer, flagellum, always moves to become 

the more anterior of the basal bodies.

A single round of transfection with a tbcrk3 deletion construct allowed stable 

integration of a resistance gene into the tbcrk3 locus, with concomitant elimination of 

part of the tbcrk3 ORF, creating cells haploid for tbcrk3. Following a second round of 

transfection with a construct containing a second drug resistance marker, a population 

of cells resistant to both drugs could be isolated, but these cultures were not viable over 

the long term. This lack of viability appeared due to an increasing proportion of cell 

division events being aberrant, resulting in T. brucei with incorrect numbers of nuclei 

and/or kinetoplasts. It seems likely that the mutant phenotype is due to a failure to 

regulate cytoskeletal components correctly, although gross morphological changes were 

only rarely seen, usually in cells lacking a nucleus. These cases appeared similar to that 

seen in non-resistant control cells and so were likely to be caused by the cell losing the 

resistance gene for one of the antibiotics due to incorrect separation of the nuclear 

DNA. The lack of morphological change implies that TbCRK3 does not play an 

important role in the organisation of the microtubular cytoskeleton.

The cause of the aberrant divisions was a loss of organisation at the organellar

level, resulting in misplaced kinetoplasts, duplicated kinetoplasts that did not separate
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correctly, cytokinesis occuring in an incorrect plane, and cytokinesis starting at the 

wrong end of the cell. There was also a loss of the connection between the flagellum 

and the kinetoplast with many cells no longer showing a 1:1 ratio. In the context of 

abnormal cytokinesis, it is striking that the cells continued to attempt to divide even 

when there were gross organisational changes. It may be that the fact that all three 

TbCRK proteins lack residues, conserved in other organisms, that affect S and M phase 

checkpoint control (Basi and Enoch, 1996) means that selection for parasitic rapid 

growth has resulted in an organism with few such checkpoint controls. This could be a 

reason for the lack of success in synchronisation of T. brucei cultures.
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CHAPTER SEVEN 
DISCUSSION OF THE DATA AND FURTHER WORK
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7.1 Conclusions.

In this study a cdc2 related protein ]dnase ( tbcrkS) was cloned from a T. brucei

DNA lambda library and the open reading frame sequenced . Two other T. brucei

genes from this family, tbcrkl and tbcrk2 (Mottram and Smith, 1995) have also been

characterised. Each of the three TbCRK proteins have the same level of similarity to

CDC2 kinases from other organisms (~50 % identity). None of the three T. brucei

proteins was predicted to contain all of the conserved domains found in the cdc2/CDK2

sub-family of CDKs (see Figure 3.3.8), leaving the question of which is likely to be the

functional homologue unclear. TbCRKl and TbCRK2 are poorly conserved in regions

involved in the control of the activating Threonine-161 phosphorylation (the DSEI box

and the region around Thr-161 itself), while the lack of a well conserved PSTAIR box

in TbCRK2 and TbCRK3 (even though these proteins are recognised by the PSTAIR

monoclonal antiserum) suggests that they will not interact correctly/adequately with

mitotic cyclin type proteins from other organisms, making complementation assays

unlikely to work. Alignments of the predicted protein sequences with sequence data

from the family of cdc2 related kinases in higher eukaryotes and phytogeny analysis fail

to convincingly place any of the T. brucei proteins in any of the known classes of

Cyclin Dependant Kinases (CDKs). The inability to find a p l3 sucl binding kinase

activity in T. brucei protein extracts is evidence that the soluble TbCRK proteins are

divergent enough that they do not interact with this conserved component of the yeast

cdc2/cyclin complex. The related trypanosomatid, Leishmania mexicana, contains

homologues of two of the T. brucei genes (Immcrkl and lmmcrk3) but no equivalent of

tbcrk2 has been found to date. tbcrk2 was isolated by heterologous hybridisation of a

Immcrkl fragment to a T. brucei genomic library whereas tbcrkl and tbcrk3 were

isolated by PCR with degenerate primers designed to anneal to conserved domains.

The heterologous hybridisation approach has not yet been tried with Leishmania, but

the lack of detection of a protein of similar size to TbCRK2 in Leishmania protein

extracts by either TbCRK2 or PSTAIR reactive antisera would imply that a leishmanial
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homologue does not exist.. Previous evidence suggests that Immcrkl is not the master 

regulator of the cell cycle in L. mexicana, although it does appear to be essential for cell 

growth in cultured promastigote forms. Immcrkl was unable to complement a S. 

pombe cdc2-ts mutant (Mottram etal., 1993). Amastigote form L. mexicana which are 

slowly dividing do not show LmmCRKl kinase activity, while the non-dividing 

metacyclic stage do contain LmCRKl kinase activity, although as previously noted, 

constitutive activity of a CDK can result in a cell cycle block. It is possible that the G1 

cell cycle block in the pre-adapted life cycle stages of the kinetoplastids may be due to 

the constitutive activity of a G1 specific CDK as opposed to a lack of activity. This 

would be analogous to the M phase block that occurs when cdc2 is not inactivated. 

When mitotic cyclins that lack the N-terminal "destruction box" are transiently 

expressed the cells are unable to exit from mitosis due to the continuous activity of the 

cdc2/Cyclin complex which would normally be deactivated by proteolysis of the cyclin 

subunit (Draetta etal., 1989). It is also possible that due to the extreme divergence 

between the Kinetoplastida and other eukaryotes the TbCRK proteins do not control the 

cell cycle. Given the sequence conservation between the CRKs and other cdc2-related 

kinases this would seem unlikely. Because of the sequence divergence (see Chapter 

3.5) the failure of the T. brucei genes to complement a yeast cdc2-ts mutant was not 

unexpected.

The protein phylogeny analysis (Figure 3.3.9) implies that TbCRK2 and 3 play a 

role in cell cycle control as they cluster near the CDK4/6 proteins which have been 

shown to be involved in the control of Gl/S phase transitions (Xiong etal., 1992; Lucas 

etal., 1995). This convergence may be artefactual however, due to the divergence 

between the CRK and the CDK4/6 proteins, and the cdc2/CDK2 protein sub-family. 

Diverged branches can cluster due to their differences from the conserved sequence, as 

opposed to clustering due to their similarity. The TbCRK 1 protein, although containing 

the least degenerate PSTAIR box of the TbCRK proteins, is placed on an outlying 

branch of the analysis.
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The tbcrk3 gene was found to be closely linked to the gene for the mitochondrial 

elongation factor G (tbmefg), a link which was found to be conserved in the lmmcrk3 

gene locus in L. mexicana (J. Mottram, unpublished). Although the genes are tightly 

linked, and TbCRK3 does contain a N-terminal extension, there is no evidence for 

TbCRK3 being targeted to the mitochondrion. The TbCRK3 extension has no 

homology with the mitochondrial protein extensions found in the kinetoplastids, but as 

these mitochondrial targeting signals have no clear consensus in other better 

characterised organisms this cannot be ruled out.

When TbCRK3 was expressed in E. coli, with a poly-histidine tag to allow

purification by metal-chelator chromatography, it was found to be insoluble. This was

not found for TbCRKl, and surprisingly LmmCRK3 was soluble as well, even though

the CRK3 proteins are ~80 % identical. The purification of tagged TbCRK3/H enabled

the raising of polyclonal antibodies in rabbits. Western blots using crude E. coli

lyssates expressing TbCRK proteins or proteins purified from these lysates allowed the

testing of the available antisera for cross-reaction between epitopes on the CRKs. The

affinity purified polyclonal CITAA and PSTAVR antisera were both shown to

recognise, not only the protein which contained the sequence of the peptide to which

they were raised (LmmCRKl and TbCRK2 respectively), but also other members of the

kinetoplastid CRK family. CITAA recognised TbCRK 1 (with 11/16 residues identical),

and PSTAVR also recognised both TbCRK 1 (10/16) and TbCRK3 (10/16). The

PSTAIR monoclonal antiserum was also shown to recognise related sequences even

when they contained multiple substitutions. TbCRKl (14/16 identical residues),

TbCRK2 (12/16) and TbCRK3 (10/16) were all detected when expressed in E. coli.

Western blots with T. brucei protein extracts from different life cycle stages showed

that the three TbCRK proteins are expressed in the non-dividing short stumpy stage as

well as in the replicating procyclic and long slender forms. The PSTAIR monoclonal

antiserum also detects a 48 kDa and an 80 kDa band in some extracts suggesting the

presence of at least two more genes with a similarity to cdc2. A cdc2-related kinase

protein (CfCRK4) of 53 kDa which is not homologous to any of the three TbCRK
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proteins studied in this thesis has been isolated from Crithidiafasciculata (Bran et al, 

1992). The 48 kDa T. brucei protein may be the trypanosome CRK4 homologue. The 

evidence from T. brucei protein extracts is that TbCRK3 is insoluble in 1 % Triton X- 

100 in vivo, unlike TbCRKl and 2. The insoluble nature of TbCRK3 could be another 

possible reason for the failure of tbcrk3 to complement a S. pombe cdc2-ts mutation.

There was evidence on the Western blots for a conserved degradation pathway 

for the TbCRK proteins with antibodies specific for the three proteins all detecting a 26 

kDa band in some extracts. The antisera which detected these bands were all raised 

either to the C-terminus of the respective proteins (CITAA vs LmmCRKl, EVREE vs 

TbCRK2) or against the entire protein (TC3H/G). The antisera raised to the region of 

the PSTAIR box detected no such fragments. This implies a common C-terminal 

fragment can be protealytically cleaved from the TbCRK protein under certain 

conditions. The 26 kDa putative TbCRK3 fragment was detected in the soluble fraction 

of the S100 protein extracts implying that the insoluble nature of TbCRK3 may be 

modulated by the N-terminal 80-90 amino acids that would be removed from the 

TbCRK3 protein to leave a 26 kDa fragment.

The TbCRK proteins were detected by Western blotting in the different life 

cycle stages, however this gives no evidence as to whether the kinases are active or not. 

In the absence of high quality antisera capable of immunoprecipitation, assays using 

protein bound to pl3sucl or a homologue (p^LmmCKSl) were used to begin to answer 

this question. The p l3 sucl failed to reproducibly bind a histone HI kinase activity in T. 

brucei extracts, unlike the result from L. mexicana where a kinase activity related to the 

division status of the life cycle stage was observed (Mottram etal., 1993; Mottram and 

Grant, 1996). It is now believed that the kinase subunit of the Sucl Binding Kinase 

(SBCRK) may be encoded by lmmcrk3 (Mottram and Grant, unpublished). LmmCRK3 

is expressed at very low levels and has proved difficult to purify. If LmmCRK3 is the 

SBCRK then one would expect that the TbCRK3 protein would also be capable of 

interacting with p l3 sucl, but its insoluble nature in the buffers used for lysis caused it to

remain in the pellet fraction of the protein extracts used to isolate the activity. When T.
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brucei extracts were bound to the pl2LnmiCKSl column significant levels of histone HI 

kinase activity could be recovered. Protein was eluted from these columns for Western 

blotting. Both TbCRKl and TbCRK2 were detected binding specifically to the beads, 

as was another, 48 kDa, PSTAIR mAb reactive protein. Therefore the recovered kinase 

activity could be due to any, or all, of these three proteins, or even to another protein 

not detected by any of the antisera used. To begin to assess the expected other 

components of the TbCRK complexes 35S methionine labelled procyclic cell extracts 

were bound to the p l2kmmCKSl column before elution, SDS-PAGE and 

autoradiography, although several proteins bound to the column in a non-specific 

manner, many proteins could be seen to bind only to the p l2LmmCKSl beads. By the 

estimated molecular weights of these proteins it would seem possible that the column is 

binding TbCRK complexes containing putative T. brucei cyclins.

The tbcrk genes are single copy (but diploid) making it relatively easy to create

null mutants by two rounds of homologous recombination using two antibiotic

resistance genes flanked by DNA from the genomic locus of interest. When this was

performed in Leishmania with Immcrkl, null mutants could not be isolated. Doubly

resistant clones could be selected for, but analysis showed the cells to have retained a

wild type Immcrkl gene either through aneuploidy or by the retention of episomal

resistance genes. This has been seen previously with gene knockouts in the

kinetoplastids and has been assessed as evidence for the gene being essential to cell

survival. When this approach was attempted with tbcrk3, doubly resistant cells could

be isolated, but on both occasions the cells grew slowly and eventually the cultures

died. Because of the small number of cells available in the cultures PCR was used to

analyse the genotype of the phleomycin/G418 resistant cultures. PCR using primers

which correctly amplified the tbcrk3 ORF from wild type STIB247 and from single

replacement mutants, failed to display the correct 1 kb product when B4D was used as

template. The results indicated that these cells were null mutants containing both ble

and neo resistance genes within the tbcrk3 ORF. As the B2D and B4D cultures aged it

became clear that the cells were displaying a phenotype of slow growth with a possible
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defect in cytokinesis. These cells were not dying due to necrosis initiated by antibiotic 

selection as control cultures did not exhibit the same phenotype. In control cultures 

treated with G418, the procyclic cells were killed by the antibiotic over a ten day 

period, treatment with phleomycin killed the cells considerably faster than this. In the 

putative null mutant cultures most cells died in the seven days after transfer to double 

selection medium, but the cultures then slowly increased in cell density for two/three 

weeks. The cultures remained at this plateau for over a month before slowly dying over 

a period of three to four weeks. To further evaluate this phenotype, aliquots of cells 

from the culture were fixed and stained with DAPI which allows the visualisation of 

nuclei and kinetoplasts. Light microscopy showed that the cells displayed a number of 

different phenotypes, with many cells having incorrect ratios of nuclei to kinetoplasts.

It was also obvious that the positioning of the kinetoplasts in most cells was improperly 

regulated, with kinetoplasts often not separating correctly after replication. Nuclear 

positioning was also affected with some dividing cells partitioning both nuclei into one 

daughter cell, creating large numbers of so called "zoids" with a flagellum and 

kinetoplast but no nucleus. It was also possible to find cells where the linkage between 

the kinetoplast and the flagellum appeared to have broken down with some cells having 

a flagellum without a kinetoplast. There were also, occasionally, more severe cases 

where the cell polarity had appeared to have broken down. In these cells it could be 

seen that cytokinesis had started from the opposite end to normal.

Although the phenotype initially resembled the mitotic catastrophe seen in some 

yeast mutants, where the cells divide whether or not the nucleus is ready , the later 

disassociation of the kinetoplast from the flagellum, and the loss of cell polarity implies 

roles for TbCRK3 other than the timing of cell division. These phenotypes, along with 

the insolubility of TbCRK3 in 1 % Triton X-100 suggest that the TbCRK3 kinase is 

involved in regulating cytoskeletal functions possibly including; organellar movement 

(both of the nucleus and kinetoplast), the attachment of the kinetoplast to the basal 

body, and the organisation of the anterior/posterior axis within the cell.
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7.2 Future work.

7.2.1 T. brucei Elongation Factor-G.

To obtain the entire open reading frame of the tbmefg gene will either require 

further subcloning from the lambda clone previously isolated when screening for tbcrk3 

or further screening of a library using an probe consisting of the 3' end of the available 

tbmefg sequence. To check for cellular localisation it will be necessary to raise 

antibodies either to fusion proteins or synthesised oligopeptides. Another option would 

be to express an epitope tagged protein in procyclic form T. brucei by DNA 

transfection. In combination with antibodies raised to the N-terminal extension it 

should be possible to show whether the putative signal sequence is cleaved on 

translocation into the mitochondrion, as with the kinetoplast associated proteins from 

Crithidia(Xu and Ray, 1993), or not. Null mutants could be constructed to assess if 

tbmefg is essential and to assess the relevance of mitochondrial translation to 

trypanosome survival both in procyclic culture and, by passage through Tsetse flies, in 

the mammalian bloodstream.

7.2.2 The TbCRK family

Northern blots using total cellular RNA were attempted but without achieving a 

significant signal. It is likely that the tbcrk genes are expressed at low levels and 

poly [A]+ selection of mRNA would be needed to visualise the transcripts by Northern 

blotting. It could be possible to use Reverse Transcriptase-PCR to assess expression at 

the RNA level. It would be interesting also to examine the expression of tbmefg in 

relation to tbcrk3 and also in the different life cycle stages.

In an attempt to solublise TbCRK3 the composition of the lysis buffer used to 

extract T. brucei proteins could be altered. It may be useful to try other detergents and 

other salt concentrations. If TbCRK3 is binding to the cytoskeleton then it may be 

possible to release the protein into solution by the use of microtubule or actin
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depolymerising drugs. The sub-pellicular array of microtubules can be disrupted by 

calcium ions (Robinson and Gull, 1991). This would be a test for whether these are the 

insoluble components that TbCRK3 is associated with, and if so could be a relatively 

mild way of solublising TbCRK3. If solublisation could be achieved then p^DnmCKSl 

binding could be assayed, although if more stringent conditions are used then this might 

result in CRK complex disassociation, and in order to be active the kinase is likely to 

require a cyclin partner.

It should be possible to use specific antisera, such as the TbCRKl reactive 

CITAA, to localise the protein to specific areas of the cell by immunolabelling of fixed 

T. brucei cells. Analysis of a dividing population may allow assessment of whether the 

protein undergoes positional regulation during the cell cycle as has been reported with 

cdc2 in other organisms. By using purified TbCRK3/H blotted onto filters it should be 

possible to purify TbCRK3 specific antibodies from the TC3H/G and TC3H/S antisera. 

These purified antibodies could also be used for localisation studies, with particular 

regard to whether TbCRK3 is associated with the cytoskeleton, or even a particular part 

of it. Double label in situ localisation could be performed alongside either gamma- 

tubulin or Tyrosine-tubulin antibodies to look for an association with microtubule 

organising centres or growing microtubule ends.

Another method to further analyse the TbCRK proteins would be to use epitope 

tagged constructs integrated into the genomic loci. These proteins could then be 

immunoprecipitated for kinase assays, for assessment of complex components, or the 

antibodies could be used to localise the tagged proteins within the cells. This could 

allow appraisal of the kinase activity of specific TbCRK proteins in the various life 

cycle stages (assuming the mutant could be successful passaged through tsetse flies or 

that bloodstream form transformation could be performed). It may also be possible to 

follow the various kinase activities through the short stumpy to procyclic 

transformation. This differentiation is concurrent with the reinitiation of the cell cycle 

(Matthews and Gull, 1994a; Affranchino etal., 1993) and provides a model for the 

initiation of a new round of cell division. Although the concomitant alteration of cell
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type could pose problems for the analysis, the transformation step is, at present, the best 

synchronous model of the cell cycle available for T. brucei.

Further studies are available by using reverse genetics technology. Null mutants 

of tbcrk2 are still to be assessed; will the gene be essential like crkl and crk3 or does 

the probable lack of a leishmanial homologue imply redundancy (at least in culture)? 

The function/s, if any, of the unusual N-terminal extensions of both TbCRK2 and 

TbCRK3 have not begun to be elucidated. By using heterozygous strains of T. brucei 

haploid for tbcrk2 or tbcrk3 (generated by one round of targeted deletion) it would be 

relatively easy to create mutant cell lines containing one null gene and one gene lacking 

the region coding for the N-terminal extension of one of these proteins. Alternatively, 

especially if the double mutants are non-viable, these minus-N terminal mutants could 

also be epitope tagged and transfected into wild type cultures. Along with full length 

epitope tagged constructs it should be possible to analyse changes in kinase activity, 

complex subunit composition and cellular localisation caused by the loss of the N- 

terminus.

A way to side-step the inability to create null mutants of essential genes such as 

the tbcrks in sufficient quantities for analysis would be to attempt to use the inducible 

expression systems becoming available for trypanosomes. One method is to create a 

gene under the control of an inducible/repressible promoter that is integrated into a 

silent region of the genome. Strains carrying this integration can then have the wild 

type chromosomal copies of the gene of interest removed by homologous 

recombination using the flanking regions of the gene locus. While the gene is being 

expressed, under the control of the tet repressor with tetracyclin added to the medium, 

there should be no phenotype, allowing large numbers of cells to be grown. When 

expression is shut off by the removal of the tetracyclin, it should be possible to analyse 

the result of a lack of the TbCRK protein i.e. do the cells stop growth at specific cell 

cycle points or at random. The draw back of this system is the need for multiple 

selectable markers (two for the knockout cassettes, one for the integrated gene and, 

because the inducible systems use components from heterologous systems, at least one
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for the system supplying the regulatable expression components). There are enough 

selectable markers for trypanosomes (five) but the logistics and large amount of 

subcloning necessary can make the task time consuming. cdc2 related genes in other 

organisms have been mutated to give dominant negative phenotypes (Reig and Nurse, 

1991; Reig etal., 1992). The altered proteins are apparently inactive but still capable 

of binding the cyclin regulatory subunits, and possibly other complex components as 

well. It is believed that these inactive kinase proteins titrate out the positive regulators 

of CDK function. The residues needing to be altered for this result are conserved 

between proteins and species, and are conserved in the TbCRK proteins. Therefore the 

same principle could be applied to the trypanosome crks. If these alterations create 

dominant negative proteins in T. brucei then only two (or three) markers would be 

necessary to assess the mutant phenotype, an easier scenario.

7.3 Concluding remarks.

This study begins the analysis of the tbcrk family, and their roles in the control 

of the cell cycle in Trypanosoma brucei. The facts are at present unclear and although 

it seems likely that the TbCRK proteins are involved in regulation of trypanosome 

growth, it is still not known which, if any, of the three genes is the functional cdc2 

homologue.
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