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Abstract

This thesis is concerned with the fabrication and characterisation of short gate length heterojunction field 

effect transistors (HFETs). Devices with gate lengths in the range 80-200nm were fabricated on three 

different material structures containing two dimensional electron gases (2DEGs). The layer structures 

were based on:

i) Alo.2 5GaAs/GaAs with an Alo.2 5GaAs back confining barrier 300A from the 2DEG

ii) pseudomorphic Alo.3GaAs/Ino.i5 GaAs/GaAs with a 150A Ino.isGaAs channel layer

iii) pseudomorphic Ino.5 2 AlAs/Ino.6 5GaAs/InP with a 100A Ino.6 5GaAs channel layer

Magnetoresistance studies showed the 2DEGs of the three materials had very different transport properties. 

This permitted an investigation o f the dependence of high frequency device performance on material 

structure to be performed.

To investigate the dependence of gate resistance on device performance, HFETs with conventional and T- 

gate structures were fabricated. The 80nm footprint T-gate process developed in the course of this work 

reduced the gate resistance by a factor of five compared with conventional 80nm footprint structures.

High frequency characterisation of devices up to 60GHz showed the following main results:

i) 80nm gate length Ino.5 2 AlAs/Ino.6 5GaAs/InP HFETs with rf  transconductances up to 

1 lOOmS/mm. This translates to an effective channel velocity of 2.4x l05m s '1.

ii) 80nm devices w ithfT's of up to 275GHz were fabricated on the InAlAs/InGaAs/InP layer 

structure. Such fT's were nearly twice those of similar gate length devices fabricated on both the 

AlGaAs/GaAs and AlGaAs/InGaAs/GaAs structures.

iii) From the fT measurements, the effective carrier velocity in the device channel was extracted. 

Effective velocities in excess of 2 .0xl05m s '1 were extracted for the InAlAs/InGaAs/InP devices, 

indicating significant velocity overshoot in the channel of this layer structure.

The large indium content of the channel gives a large T-L valley energy separation whilst 

reducing the electron effective mass. Both these effects increase the probability of velocity 

overshoot, and are most probably the cause of the large effective velocities deduced for the 

In0 .6 5GaAs channel devices.

There was no conclusive evidence of overshoot in devices fabricated on either the 

AlGaAs/InGaAs/GaAs or AlGaAs/GaAs structures.

iv) For the materials of this study, it was deduced that effective velocity was the dominant transport 

property in determining device fT at a given gate length. Neither the low field mobility or 2DEG 

carrier concentration were found to govern device fT.

v) Both device DC and RF output resistance can be increased by increasing the potential barrier 

below the 2DEG and thus improving electron confinement to the channel.

vi) The 80nm footprint T-gate structure increases device gain by up to 6dB at 60GHz compared to a 

conventional 80nm gate device.



Although the fT's of the InAlAs/InGaAs/InP HFETs were much larger than those of the 

AlGaAs/GaAs and AlGaAs/InGaAs/GaAs HFET's, the fmax of conventional gate structure 

devices fabricated on all three materials were around 80GHz. The fmax of 80nm T-gate 

InAlAs/InGaAs/InP devices was 180GHz, clearly showing that gate resistance dominates short 

gate length device high frequency gain.
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1 .1  T he H e te ro ju n c tio n  F ield  E ffec t T ra n s is to r  (H F E T , H E M T , M O D FET, etc etc) 

The Heterojunction Field Effect Transistor (HFET) is one of die most developed III-V semiconductor 

transistors whose operation depends on the use of a heterojunction formed between two different materials 

eg AlGaAs/GaAs or InALAs/InGaAs.

In the HFET, the material structure is designed to physically separate elecitrons from their parent donors, 

leading to large electron mobilities as ionised impurity scattering is reduced. In addiuon, a large electron 

concentration is formed at a well defined plane close to die surface of the material structure.

W orldwide HFET research has led to various acronyms for die device, as shown in Table 1.1. The 

different names originate from the material aspect which each group diought to be important in 

determining device performance.

Acronym Name Material Aspect Originator

HEMT High Electron Mobility 

Transistor

High Electron Mobility Fujitsu

MODFET Modulation Doped FET Material Doping 

Technique

Cornell, Illinois, 

Rockwell

TEGFET T wo-Dimensional 

Electron Gas FET

Current Transport 

Mechanism

Thomson CSF

SDHT Selectively Doped 

Heteroj unction Transistor

Material Doping 

Technique

AT&T Bell Labs

T ab le  1.1 - Heterojunction Field Effect Transistor Nam es and their Origins

The device structure of an HFET is identical to that of die Metal-Semiconductor Field Effect Transistor 

(MESFET) where current flow dirough a uniformly doped channel layer is modulated by a Schottky gate 

contact. In the case of the HFET, current flows under the gate contact via die high mobility channel. 

This, and other more subtle effects described in Chapter 2, results in improved high frequency noise and 

gain characteristics compared to conventional GaAs MESFETs.

HFET devices are used in very high speed digital applications^1 but in this area diere is strong 

competition from the Heterojunction Bipolar Transistor (H B T)t1,2!. The large base resistance of the 

H B T t1-3! means it cannot match die high frequency noise performance of die HFET, so most HFET 

applications are in analogue circuitry operating at microwave and millimetre wave frequencies.

The use of high quality material systems and high resolution lidiography techniques such as electron 

beam lithography permit HFET devices widi operating frequencies above 100GHz to be fabricated. In the 

last year, circuits containing HFETs widi bandwiddis of up to 100GHz have begun to appear^1-4].

The aims o f this thesis are to understand die material and device parameters which most influence the high 

frequency device performance of HFETs widi gate lengdis in die range 80-200nm. With such an 

understanding, it will be possible to enhance botii the material structure and the device design currently in 

use, with the long term aim of producing circuits for operation at millimetre wave frequencies.

There are many potential applications of circuits operating above 60GHz. Earth-satellite and inter

satellite communication links benefit from die low noise properties of circuits containi ng HFETs. With
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the exception of the 94GHz window, where HFET circuits will play an important role in low noise 

receivers, atmospheric attenuation suggests future applications of millimetre wave circuits will be mostly 

terrestrial.

One area of interest is in short distance line of sight communication systems, particularly in built-up 

areas where the laying of cables maybe impractical and expensive. Moving to higher frequencies results 

in narrower beams. This reduces the risk of interference between two signals of the same frequency, and 

also reduces the influence of the environment (eg large buildings) on signal propagation.

Part of the European DRIVE project, aimed at improving road safety and increasing transport efficiency 

across Europe, includes the implementation of collision avoidance radar systems operating at 94GHz and 

communication between vehicles and roadside transducers at 60GHz. Even now, microwave transceivers 

are used in road toll collection systems in Scandinavian countries.

In the field of optical communications systems, driver circuitry will be required for semiconductor optical 

modulators which are capable of >100GHz operation. HBT's may prove to be a more attractive candidate 

for such applications, but there seems to be no general consensus among the Optoelectronic Integrated 

C ircuit com m unity, as both HBT's and HFET's are currently being integrated with optical 

com ponents^1-5' 1-8!.

1 . 2  S y n o p s i s  o f  T h e s i s

Following this brief introduction to the HFET and its potential millimetre wave applications, Chapter 2 

introduces some theory of HFET operation, laying the basis for the remainder of the thesis. In addition, a 

review of the current state of the art in HFET performance is included. Chapter 3 describes the material 

structures used in the project, and presents results on the transport properties of them.

Chapter 4 follows with the complete HFET fabrication process where emphasis is placed on gate 

lithography techniques. Chapter 5 first presents the results of DC and RF device characterisation then 

discusses the importance of material structure choice and device design, if sub-lOOnm gate length HFET 

devices are to be optimised. The findings of the thesis are concluded in Chapter 6 together with 

suggestions for future work.
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Chapter 2 Theory of HFET 
Operation

Introduction

As the work of this thesis is based on short gate length heterojunction field effect transistors (HFETs), 

this chapter first describes the formation of a heterojunction. The basic properties of the heterojunction 

which are im portant to (HFET) device operation are presented with a simple analytic model which 

elucidates the physics governing the formation of the two Dimensional Electron Gas (2DEG) at a 

heterojunction interface. Next, the operation of the HFET device is considered, and figures of merit for 

device operation at both DC and high frequency introduced. The dependence of the figures of merit on 

layer structure and device design are stressed. The effects of reducing the gate length of the HFET and the 

related device scaling issues are then discussed.

In the final sections, the importance of material choice for optimal device performance based on the 

electron transport properties of a number of currently available material systems is considered. This 

discussion is concluded with a survey o f state of the art HFET performance for a number of material 

systems.
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2 .1  In tro d u c tio n  to H e te ro ju n c tio n s

A heterojunction is formed at the interface between two dissimilar semiconductor materials. The concent 

of the heterojunction is almost as old as the transistor itself, with Schockley proposing in 1957 that such 

a structure be used as the base em itter junction of a bipolar transistor^2 -1 1. It was not until 

semiconductor crystal growth technologies such as molecular beam epitaxy (MBE) matured, that it 

became possible to grow semiconductor interfaces with abrupt changes in material composition on an 

atomic monolayer scale. Such growth technologies now allow the properties of heterojunctions to be 

exploited.

Until recently, the production of a defect free, abrupt heterojunction by M BE required that the lattice 

constants of the component materials be similar, or lattice matched. (As will be described in Section 

2 .8 .3 , current growth technologies allow interfaces to be grown between non-lattice matched materials, 

the so called strained layer or pseudomorphic systems). Figure 2.1.1 shows the lattice constant and 

energy band gap of a number of III-V semiconductor compounds.

a.
<
o
o
z
<

5 4 6

Figure 2.1.1 - Lattice Constant and Band Gap 

of a Number of III-V Semiconductors

The lattice constants o f GaAs and AlxGai_xAs are almost equal (within 1%) for all A1 concentrations. 

This allows high quality, defect free GaAs/AlGaAs heterojunctions to be grown by MBE and as a result, 

the electrical properties of the heterojunction formed in this material system have been extensively 

s tu d ie d ^ 2-2]. W ork has also been perform ed on other lattice m atched system s such as 

Gao.4 7 Ino.5 3 As/InPt2-3] and the Alo.4 8 lno.5 2 As/Gao.4 7 Ino.5 3 As interface12-4! which is lattice matched 

to InP.

A model for an ideal, abrupt heterojunction which allows most transport phenomena to be adequately 

explained was proposed by Anderson in 196212-5!. This is described below.

Figure 2.1.2(a) shows the energy band diagram of two isolated semiconductors with different electron 

affinities %, work functions y ,  and energy band gaps E g. Measured with respect to the vacuum level, the 

difference in conduction band edge energies of the two materials is AEc, the valence band energy difference 

is AEV, and the difference in band gap is AEg. Figure 2.1.2(a) shows that AEC = ( x i  - X 2 )  311(1 

AEV = AEg - AEC.
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2 - Theory of HFET Operation

Vaccum
Level

(a) (b)

F igu re  2 .1 .2  - Band Diagram for the Formation o f  a Heterojunction

When the two semiconductors are brought into intimate contact the heterojunction is formed and die 

equilibrium band diagram of Figure 2.1.2(b) results since the Fermi Level must coincide on each side of 

the interface. The total built-in voltage of the junction = Vbii+Vbi2 , is 1116 potential resulting from 

charge transfer across the interface.

2 . 1 . 1  T h e  A lG a A s /G a A s  M o d u la t io n  D o p e d  H e t e r o j u n c t io n

Studies of the electrical transport properties of heterojunctions which finally led to the invention of the 

HFET were stimulated by the AlGaAs/GaAs structure proposed by Esaki and Tsu in 1969t2-6l - the so 

called modulation doped heterostructure. It was not until 1978 however, that such a structure was realised 

by M B Et2-7!. In this structure, the heterojunction is formed at the interface of n-type AlGaAs and 

undoped GaAs. Figure 2.1.3(a) shows the energy band diagrams of the isolated n-type AlGaAs and 

undoped GaAs. Bringing the two materials into intimate contact results in the equilibrium conduction 

band diagram of the structure shown in Figure 2.1.3(b).

As a result o f their greater energy, electrons in the n type AlGaAs diffuse across the interface and 

accumulate in the undoped GaAs, close to the interface.

n type 
AlGaAs

Free Electrons

undoped
GaAs

n type 
AlGaAs

undoped
GaAs

+ +  +  +  +  +  

Ionized Donors

Fermi
Level

Fermi

Level

Electron
accumulation

(a) (b)

F igu re 2 .1 .3  - Formation o f  Electron Accum ulation Layer at an A lG aA s/G aA s llcterojunction interface using 

the M odulation Doping Technique
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Equilibrium is reached when the diffusion is balanced by the electric field resulting from the dipole formed 

between the ionised donors and free electrons. The energy stored in the dipole is approximately equal to 

the conduction band offset AEc.

The first feature to note in the modulation doped heterojunction is that the electric field in die undoped 

GaAs caused by the electron accumulation layer is very strong (-10^ Vm'*), and so confines die electrons 

in a very narrow, quasi-triangular notch of around 150-200A close to the interface. This dimension is 

commensurate with the electron wavelength resulting in quantisation of the electron momentum in die 

direction perpendicular to the interface. As shown in Figure 2.1.4, this leads to quantisation of the 

electron energy into discrete sub-bands in the accumulation region, so that the minimum electron energy 

is raised above the conduction band edge.

F igu re  2 .1 .4  - Quantisation o f  Electrons in 

Accum ulation Layer o f  M odulation Doped Heterojunction

The electrons are free to move in the plane parallel to the interface however, and so are 2 dimensional in 

nature. For this reason, the electron accumulation layer is usually known as a 2 Dimensional Electron 

Gas (2DEG). The electron distribution within the triangular well is determined by die energy level 

wavefunctions. A solution of Schroedingers equationt2-81! shows the 2DEG is formed around 50-70A 

below the interface forming the heterojunction.

The other feature of this structure is that electrons are in the undoped GaAs, and are spatially separated 

from the donor atoms fixed in the AlGaAs. This spatial separation reduces the Coulombic interaction 

between the electrons and their parent donors - known as ionised impurity scattering - which results in an 

increase in the electron mobility of such structures, particularly in conditions where ionised impurity 

scattering is the dom inant m obility lim iting m echanism. Electron mobilities at AlGaAs/GaAs 

heterojunction interfaces are higher than those found in undoped GaAs. This is due to screening of the 

few impurities in the undoped GaAs by the carriers in the accumulation layer.

The incorporation of an undoped AlGaAs 'spacer' layer between the doped AlGaAs and GaAs, as shown in 

Figure 2.1.5, further suppresses the Coulombic interaction by increasing the spatial separation of the 

donors and carriers.
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n type undoped undoped
AlGaAs AlGaAs GaAs

spacer

Fermi
Level

Electron
accumulation

F ig u re  2 .1 .5  - M odulation Doped Heterojunction with  

Spacer Layer to Further Reduce Ionised Impurity Scattering

Table 2.1.1 shows recently measured mobilities as a function of temperature for both undoped GaAs and 

AlGaAs/GaAs heterojunctions. At low temperatures, where ionised impurity scattering is the dominant 

scattering mechanism, the heterojunction structure produces very high electron mobilities.

Mobility (cm2/Vs)

Material 1.5K 4K 70K 300K

Undoped GaAs[18] 5 x l0 4 2 .1 1 x l 0 5 8500

AlGaAs/GaAs 8.5x 106[29J 3 .5x 106[2-101 1 .9x l0 5 [ 2 111 8200[211]

T able 2.1.1 - M obility o f  Undoped bulk GaAs and an AlG aAs/G aAs 2DEG Structure

The large electron mobility was initially perceived as being directly transferable into improved FET device 

perform ance, and was the initial motivation for studying HFETs based on m odulation doped 

heterostructurest2-12 .̂

2 .1 .2  Model to Determine 2DEG Carrier Concentration at a Heterojunction

Once high quality 2DEG systems could be produced reliably, studies were undertaken to investigate the 

dependence of mobility and 2DEG carrier concentration on the layer structure parameters such as spacer 

layer w idtht2-13 ,̂ AlGaAs doping concentration^214] and conduction band o ffse t2-15] (variable by 

varying the A1 mole fraction in the AlGaAs layer). It was found that increasing the spacer layer thickness 

increased the mobility whilst reducing the 2DEG carrier concentration. In addition, the 2DEG carrier 

concentration could be increased by increasing either the conduction band offset or the AlGaAs doping 

concentration.

In an effort to explain these observed effects, a  simple model, based on a solution of Poisson's Equation, 

showing the dependence of the 2DEG carrier concentration on the layer structure parameters discussed 

above, is now considered using the energy band diagram of the heterojunction shown in Figure 2.1.6.
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Increasing
Energy

Fermi
LevelAE,

E=0
x=0

Increasing x

F igu re  2 .1 .6  - Conduction Band Diagram o f  Modulation Doped Heterojunction

The 2DEG carrier concentration is ns, the undoped AlGaAs spacer layer thickness is s, the n type AlGaAs 

has doping concentration N j. At distance d i from the spacer layer, the electric field in the doped AlGaAs 

falls to zero. Assume that:

i) 1 energy level, E0 , in the notch is occupied

ii) the Fermi Level coincides with the conduction band edge in the AlGaAs (a valid assumption if

the AlGaAs doping concentration is close to degeneracy, a doping level of around 5xlOl7c n r3),

iii) the relative permitivity, e, of GaAs and AlGaAs are equal:

In region I (undoped GaAs), at the AlGaAs/GaAs interface (x=0), Gauss's Law gives

-  qn 
F (0 )=  — -r- i

where F is the electric field.

In region II (undoped AlGaAs), at the interface (x=0), matching of the electric field gives

-  qns 
F (0 )=  —

In Region II, From Poisson's Equation, where V is the electrostatic potential,

2
d V 

dx2
= 0  as the spacer layer is undoped.

But,
dV s—  = -  F (x ) = constant = ——  
dx e

.*. V (x ) = — -— + constant
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But
-  A E C 

V (0 )=  —

qpsx AE
V (x ) = e q 

so that, at x=s,

- q n s 
F(s) = —

and
qnss AE

V (s) = e q

Now move the origin so that x=0 is at the interface between the undoped and doped AlGaAs. Then at 

x=0 ,

-  tP s 
F (0 )=  — -

q n .s  AE r
v ( ° > = n r —  - j t

In Region III (doped AlGaAs) from Poissons Equation,

d2V
, 2 e dx

so that

^ d x 2  A E c
V (x) = -  — ^ -  + - / ( x  + s) -  (2.1.1)

and

‘I ' V  ‘f’ s
F ( x )  = - ^ -------------------------------------------------------------------------------------------- (2 . 1 .2 )

At x = d i, F(di) = 0, so that

N d d i = ns (2.1.3)

In other words, the charge that diffuses to the 2DEG does so from between die spacer layer and die point 

at which the electric field becomes zero in the doped AlGaAs.

Considering Figure (2.1,4) energy conservation gives

~ E f
= V (d,)q V
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so that
2m a 2q N dd 1 q n s

E f = — 2 i —  + A E c ------r ~ (d i + s )  (2.1.4)

Using (2.1.3)

2 2 2 
q n n s q n s

E f + — ( N " + s > - 3 i N -  = AEd d

ie
2 2 2 

q n ss q n s
E r + — -—  + ---------- = AE

f e 2e N . c (2.1.5)

Assuming single subband occupation, the Fermi energy can be calculated from the 2 dimensional density 

of states function D s

ns (cm )

E E EE
0 f 1

Energy

F igu re 2 .1 .7  - 2 Dim ensional D ensity o f States Function

As the density of states in 2-D is constant in a given subband (Figure 2 .1 .7 ) the sheet election 

concentration ns is simply the integral under the density of states function from the minimum sub-band 

energy E0  to the Fermi energy Ef

ns = (Ef - E0) Ds (2.1.6)

where

D =
8  m ” 

2
7th

m* is the electron effective mass, and h is Plancks Constant.

The energy of the ith subband in a triangular potential well above the conduction band edge can be shown 

to have the form t2-16!,

l 3 ^
E i = ( 4 ) G + T >

2 f  -> \
3q"hn

2 e(m*)
(2.1.7)
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Combining (2.1.6) and (2.1.7) and assuming single subband occupation, gives the following expression 

for the Fermi energy :

E f =

n s7th  J_
8 m* + 2

f  2 ^
3q hn«

2e(m  )
(2.1.8)

Substituting (2.1.8) in (2 .1 .5), gives the following 6 th order polynomial for (ns ) 1/3

2eN Vn s J

QS n h
8 qm *

1
+ 2 v m  v 2 e

_i_

3 /
AE.

=  0 (2.1.9)

Solving this expression for n s gives the dependence of 2DEG carrier concentration on the variables in 

epitaxial layer design namely, conduction band offset AEC> AlGaAs doping concentration N<j, and AlGaAs 

spacer layer thickness, s.

Figures 2.1.8 and 2.1.9 show the variation of ns with these parameters.

12 o
n h x 10 (cm )

12

s=10A
s=20A
s=40A

s=100A

5x10 17 2 x l0 18 5 x l0 18

N (cm  
d

F igu re  2 .1 .8  - Dependence o f  ns on N j 

and s for AEP = 0.3eV

- 2 ,
n sh x 10 ĉ m ' ^

3.5

2.5

1.5

0.5

0.2 0.3 0.4  0.5 0.6

s=10A
s=20A
s=40A

s=100A

A E  (eV) 
c

F igu re  2 .1 .9  - Dependence o f ns on AEC 

and s for N j = 3 x l0 18cm ‘3

From Figures 2.1.8 and 2.1.9, the 2DEG carrier concentration ns

i) increases with increasing conduction band offset AEc as the energy stored in the dipole 

formed as a result of the charge transfer is approximately given by the conduction band 

offset.

ii) decreases with increasing spacer layer thickness as charge transfer across the interface is 

most efficient if the distance the carriers have to travel is reduced.

iii) increases with increasing AlGaAs doping level as more carriers are available for charge 

transfer across the interface at small distances from the interface where the charge 

transfer is efficient

13



2 - Theory of HFET Operation

2 .1 .3  Modulation of 2DEG Concentration using a Schottky Contact 

Having established that the 2DEG carrier concentration can be varied by changing material parameters 

such as spacer layer thickness, interest turned to the question of whether the accumulation layer could be 

controlled externally, by using for example a Schottky contact. Again a solution of Poisson's equation, 

this time with a Schottky contact placed on top of a layer structure containing a modulation doped 

heterostructure, provides insight into possibilities o f external charge control of a 2DEG formed at a 

heterojunction. A typical layer structure is shown in Figure 2.1.10. The conduction band diagram of die 

system is shown quantitatively in Figure 2.1.11.

+
n GaAs 

n + AlGaAs 

undoped AlGaAs

undoped GaAs

F igu re  2 .1 .1 0  - Heterostructure with Schottky Contact to Provide 

External Control o f  the 2DEG Electron Concentration

In addition to the heterojunction structure previously considered, a  layer o f n-type GaAs is grown on top 

of the doped AlGaAs layer to prevent the formation of a surface aluminium oxide layer when the structure 

is removed from the high vacuum MBE growth chamber. As most layer structures for the fabrication of 

HFET devices include a doped GaAs cap to reduce the contact resistance, the following analysis assumes 

the capping layer to be doped.

n type  n type_________  Undoped Undoped Increasing
GaAs AlGaAs AlGaAs GaAs Electron

Energy
A

Region V Region II Region IRegion IV Region III

V
Fermi
Level

V=0
x=0

F igu re  2 .1 .11 - Conduction Band Diagram o f  AlG aAs/G aAs 

M odulation Doped Heterostructure with Schottky Contact

The doped AlGaAs layer is depleted o f electrons by two separate sources - the layer supplies the 2DEG 

with carriers as discussed previously and is also affected by surface depletion from the Schottky barrier.

14



2 - Theory of HFET Operation

At present, it will be assumed that the doped AlGaAs layer thickness is such that the two depletion 

regions meet.

The solution of Poissons Equation for the above structure is identical to that described in Section 2.1.2 

up to the distance x = d i+  s, at which the electric field due to depletion of the doped AlGaAs layer 

resulting from the formation o f the 2DEG falls to zero.

At x = d i + s, the voltage and electric field given by are Equations (2.1.1) and (2.1.2) ie

-<#^dldl <P» AEc
V (d i + S ) =  2 T ' L  + - e i (d i + s) - - q ^

< p »F(d[ + s) £ £

The analysis now proceeds as before,

Move the origin to x = d i + s ie in the region o f doped AlGaAs at the junction of the two depletion 

regions so that
2

- t ^ d l d l A E c
V (0 )= ------ + - / ( d  t + s )  (2 .1 .1 0 )

Solving Poissons Equation in Region IV and using (2.1.10) gives

‘F d i *
Fw = - r i

aid

^  d i x2 ^ d l d l 2 , d E c
v 0 0  2 e  2 e  + e <d 1 + s > q

so that

^ d l d 2
F ( d ,) =2 e

and

, - ^ d i d 22 ^ d i d i 2 o p , , . ,  , ^ e ,
2 =  2 i  + — (d l + S)-  —

Next move the origin once more ie x => x + s +di +d2  

At x=0,

^ d l d 2
F ( 0 ) = — |i - = :  (2 .1 .1 1 )

and at the GaAs cap side of the interface x = 0+,

, - ^ d l d22 ^ d l dI <!>,,, ,
V(0+) = -----25-------------—  + — {:dl + S) (2.1.12)
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2 - Theory of HFET Operation

Solving Poissons Equation in Region V, and using (2.1.11) and (2.1.12) gives

V (x ) =
- ^ d2 x ' ^ d ,d 2

2 s  2 s  2 s

At the surface, the potential boundary condition is

^ d i d i < P S/J 
2 s  + — (d i + s > (2.1.13)

V = V .. + V g  tj-
** g Q (2.1.14)

W here Vbi is the built in surface potential and Ef is the Fermi Energy with respect to the bottom of the 

conduction band at the heterointerface.

Equating (2.1.13) and (2.1.14), using Equation (2.1.3) and calling the doped AlGaAs thickness 

d = d i + d2 , yields

V + V -
bi g

E f - ^ d 2 d 3 ^ d ! d 3
f n s ^ cN

*  dl
f

2 2 dn
S

2 n 2 )
S

T - 2 e  e
d  —

N d i J
2  £ a —

N d,
' ' 2 '  

N J

+ V s (  n
N aiV dl

+  S (2.1.16)

In other words, the 2DEG sheet electron concentration can be varied by varying the potential applied to 

the Schottky contact on the surface of the structure. Figure 2.1.12 shows the dependence of the 2DEG 

concentration on applied gate voltage for the layer structure shown in Table 2.1.2 obtained by solving 

(2.1.16).

Parameter AEc(eV) s (A) Ndi (cm'3) d(A) Nda (cm'3) (J3 (A)

Value 0.25 30 lx lO 18 250 lx lO 18 2 0 0

T a b le  2 .1 .2  - Parameters used in Solution o f  (2 .1 .16)

C*
so Maximum 2DEG Concentration

10 - -
-o

x
8

-0.50 -0.25 0.00 0.25 0.50

Vg (Volts)

Figure 2.1.12 - Dependence o f  2DEG Carrier Concentration o f  Applied Gate Voltage for Material System of

Table 2 .1 .2

The 2DEG concentration can be varied from complete annihilation to the maximum concentration 

determined by the conduction band offset, spacer layer thickness and AlGaAs doping level which, for the 

parameters of Table 2.1.2 was calculated to be 1 .0 x l0 12cm ' 2 using Equation (2.1.9). In the region

16



2 - Theory of HFET Operation

between maximum 2DEG concentration and complete annihilation, assuming the Fermi level energy is 

independent of applied gate bias, there is a linear dependence of sheet electron concentration with gate 

voltage as can be seen by differentiating (2.1,16). Differentiation yields

OVg q
-  * 7 = > 3  + 0 + s)

or, with h = d3 + d + s

d V g qh
d n s e (2.1.17)

That is, the system behaves like a parallel plate capacitor, where the plates of the capacitor (separated by a 

distance h = d3 -i-d +s) are the Schottky contact and the 2DEG.

2 .1 .4  Parallel Conduction

A layer o f undepleted material is formed in the doped AlGaAs region if the Schottky contact is forward 

biased more than required to establish the maximum possible 2DEG concentration. This undepleted 

region of doped AlGaAs is usually termed the "parallel conduction" region, because there is free charge 

available for conduction in parallel with the 2DEG. The formation of the parallel conduction layer occurs 

when the doped AlGaAs layer is so thick that the depletion regions due to the 2DEG and the surface 

potential do not join, as shown in Figure 2.1.13.

n t y p e _________________ n type Undoped Undoped Increasing

GaAs AlGaAs AlGaAs GaAs Electron
Energy

4
Region II Region IRegion HIRegion IVRegion V Parallel

Conduction
Layer

Fermi

Level

V=0
x=0

F igu re 2 .1 .1 3  - A lG aAs/G aAs Heterostructure with Parallel Conduction

In this case, the 2DEG carrier concentration will not be modulated by the application of a voltage to a 

surface Schottky contact until all excess carriers have been depleted from the parallel conducting layer by 

reverse biasing the Schottky. As will be described in Section 2.7, parallel conduction has both 

advantages and disadvantages to the operation of HFETs.
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2 - Theory of HFET Operation

2 .1 .5  S u m m ary  of B asic H e te ro s tru c tu re  P ro p ertie s

The simple analytical models presented above are useful for predicting general trends observed in 

heterojunction systems and so are invaluable as introductory tools to understanding die physics of such 

systems. However, simplifying assumptions have been made in the models which compromise die 

validity of any quantitative results obtained. In particular, the reduced dimensionality of die electron 

accumulation region requires that the Schroedinger equation be solved if the true spatial electron 

distribution is to be determined. This electron distribution should then be used in the evaluation of 

Poisson's Equation to correctly calculate the conduction band profile. Only by self-consistently solving 

Poissons Equation and Schroedingers Equation is it possible to model the system accurately, taking into 

account such effects as electron tunnelling into the undoped AlGaAs spacer layer.

The simple models presented above do account for the general trends observed in 2DEG systems namely,

ns increases with increasing AEC

ns decreases with increasing spacer layer thickness.

ns increases with increased AlGaAs doping level.

ns can be modulated by varying the bias on a Schottky contact placed on the surface of 

a heterostructure material system and that, to first order, the whole system can be 

envisaged as a parallel plate capacitor.

Armed with the above facts, a significant amount of progress can be made towards understanding the 

operation of HFET's and optimising their design, as will now be explained.

2 .2  T he H e te ro ju n c tio n  F ie ld  E ffec t T ra n s is to r  (H FET)

The following terminology is equally applicable to any heterojunction based field effect transistor, but it 

is easiest to explain by considering a specific example, the AlGaAs/GaAs HFET. This is a 3 terminal 

device shown schematically in Figure 2.2.1.

This material structure was described in Section 2.1.3, with a 2DEG formed at the undoped GaAs/AlGaAs 

interface. Current passes between the ohmic source and drain contacts via the 2DEG by applying a 

positive voltage to the drain with respect to the source (which is usually grounded). The amount of 

current passing through the 2DEG is determined by the sheet electron concentration beneath the Schottky

L

Source U lG a te k  D rain

11111111^ n+ GaAs 111|1111

n + AlGaAs

/  undoped AlGaAs y  / / ,
s i t s  /  /  /  /  /  /  / / / / ,  
—  — 2D E G —  —  —

undoped GaAs

F igu re 2.2.1 - The Heterojunction Field Effect Transistor (HFET)
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2 - Theory of HFET Operation

gate contact of length L, which is placed between the source and drain contacts. As shown in Section 

2.1.3, the sheet electron concentration in a 2DEG structure below a Schottky contact can be modulated by 

varying the bias on the Schottky (again with respect to the source). As tire drain bias is dropped across 

the device, the 2DEG carrier concentration at a given position under the gate is influenced by the sum of 

the gate bias and the contribution of the drain bias at that position, ie the 2DEG carrier concentration 

varies along the length of the gate, being smallest at the drain end where the drain bias con uabu lion is 

greatest. By reverse biasing the gate until the 2DEG is annihilated and no current can flow between 

source and drain, the device is deemed to be "pinched o f f .

If the gate is forward biased sufficiently, a channel of undepleted carriers will be established in die doped 

AlGaAs layer, and in such a case, there are two paths by which current can travel from source to drain:

i) via the 2DEG

ii) through the doped, undepleted AlGaAs via the parallel conduction layer.

The output characteristic of a HFET is shown in Figure 2.2.2.

(rr.A)

1 5  . C O L

1 . 5 0 0  
/ d i v

2 . 0 0 0
. 2 0 0 0 / d i v

F igu re 2 .2 .2  - Output Characteristic o f  an HFET

It can be seen that there is a family of curves, each associated with a given gate bias (VoS). The drain- 

source current (1^), drain-source voltage (V<js) relationship falls into 2 distinct regions. At low Vc|s, die 

characteristic is ohmic, ie a linear relationship exists between Ids and V ^ . In this region, as Vc|s and 

hence the electric field is increased, the carrier velocity in the 2DEG and hence die drain source current is 

increased. There comes a point however, when the scattering events experienced by the carriers 

(predominandy optical phonon and intervalley scattering in the 2DEG at room temperature) causes a 

saturation of the carrier velocity. Any subsequent increase in energy of the carriers supplied by increasing 

the field is lost to the crystal lattice. Hence, the second region of the characteristic is at higher V(js (and 

thus electric field) in which I<js is independent of Vds.

The current in this region can be written as :

Ids =  Z  Q v eff ns (2 .2 .1 )

where q is the elemental charge, veff is the effective velocity of carriers in the 2DEG channel, ns is die 

2DEG sheet electron concentration (a function of Schottky gate bias) and Z is the device width.
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2 - Theory of HFET Operation

2 .3  Basic Device Figures of Merit

An important figure of merit for a FET is the transconductance (gm ) which is defined as

d

gm dV
ds

gs

This is a hybrid gain term showing the change in output current for a given change in input voltage. The 

transconductance can be re-expressed in terms of more basic parameters which are a function of die 

material system as follows,

Differentiating 2.2.1 above

dlds = q vef fZ d n s (2.3.1)

Now, (2.1.17) gave

_ d V £ =  qh 
d n s e

where h is the Schottky gate/2DEG separation.

Combining (2.3.1) and (2.1.17) gives

ev Zeff
g m = — —  (2.3.2)

ie the transconductance is proportional to the effective velocity in the channel.

The gm is also inversely proportional to the gate/2DEG separation.

Another important FET parameter is the output conductance (go) defined as :

0 UV .ds

1

R out
V

where RoUt is the output resistance.
8 V , g© I

The voltage gain of the device is defined as A = ^  = -g^-
gs

As previously described in Section 2.1.3, the Schottky gate/2DEG system can be thought of as a parallel 

plate capacitor. For the gate structure of Figure 2.2.1, the gate capacitance can be written as

L ,,eZn  eff
C g = — —  (2.3.3)

where Leff is the effective gate length of the device. Due to fringing effects at the edge of die gate Leff is 

greater than the physically defined gate length, L.
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2 - Theory of HFET Operation

2 .3 .1  Parasitic Resistances

By reconsidering Figure 2.2.1, it can be seen that there are regions of semiconductor between die edges of 

the gate contact and the edges of the source and drain contacts. The sheet resistance of these regions 

contribute to the source and drain resistances of the device. An additional contribution arises from the 

finite resistance of the ohmic contacts to the semiconductor structure. The drain source voltage can then 

be re-expressed as

v dS = v dS + Id h R s + R „>

t

where Vds is the applied external drain source voltage, V ds is the drain source voltage dropped across the 

gate region and Rs and Rd are the parasitic source and drain resistances.

Between the gate and source contacts

Vgs -  V gs + IdsR s (2.3.4)

where Vgs is the applied external gate source voltage and V'gS is the voltage across the gate source 

Schottky contact.

Differentiating (2.3.4) gives,

dVgs = dV'gs + dlds Rs (2.3.5)

Substituting (2.3.5) in the transconductance expression (2.3.2) results in

int
ext 8 m

g m n r r ~  (2 .3 .6 )
1 + g m R s

where gmint is the internal device transconductance. Thus, the measured transconductance is always 

smaller than the actual intrinsic device transconductance.

2 .4  HFET's at RF

M ost HFET applications are found at microwave and millimetre wave frequencies, particularly as low 

noise amplifiers In most applications, the FET is operated in the common source mode, ie the gate and 

drain contacts of the device are DC biased with respect to the source, resulting in operation at a given 

point on the DC output characteristic. An RF input signal (superimposed on the DC bias), is then 

supplied to the gate of the device with the output RF signal detected at the drain contact as shown in 

Figure 2.4.1.

To model the response of a FET at microwave frequencies, the device can be considered as a collection of 

lumped circuit elements, each of which has some physical significance in the FET device. The FET can 

be broken down into 2  regions, the intrinsic and extrinsic (or parasitic) parts of the device, as shown in 

Figure 2.4.1. This also shows the physical positioning of the components used in the equivalent circuit 

model.
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GRO UND RF IN RF OUT

Source Gate Drain
C =}—

R , ^  cm gs

Intrinsic
Region

F ig u re  2 .4 .1  - Position o f  Equivalent Circuit F igu re 2 .4 .2  - Intrinsic Equivalent Circuit o f  HFET

Components in a HFET

The intrinsic area o f the device is associated with the region below the gate. This region can be modelled 

as a capacitor C gs in series with a resistor Rj. These lumped elements represent the effect of the 

distributed capacitor/resistor network along the length of the 2DEG under the gate. 2 D confinement 

means the capacitance is essentially constant along the channel. The varying sheet electron concentration 

caused by the drain bias variation along the length of the gate, results in the sheet resistance of the 

channel changing with position. In addition to the gate capacitance and intrinsic channel resistance, the 

intrinsic device gain is represented by a current generator of value gmV gs, where gm is the intrinsic 

transconductance and Vgs is the voltage dropped across the gate capacitance. This follows from the 

definition of transconductance. The finite output conductance of the FET can be represented by placing a 

resistor, R<js in parallel with the current generator. The capacitance Cds in parallel with R^s originates 

from the doped source and drain regions separated by the depletion region under the gate. Finally, the part 

of the gate capacitance beyond the drain end of the gate due to the depletion region caused by the drain bias 

is modelled as Cgcj, the feedback capacitor. Taking the components from Figure 2.4.1, the intrinsic 

device equivalent circuit can be constructed as shown in Figure 2.4.2.

The extrinsic components o f the circuit can be added by considering Figure 2.4.1. Between the source 

contact and the edge of the gate region of the device is a parasitic resistor Rs composed of 2 parts:

i) the contact resistance between the contact and the semiconductor

ii) the sheet resistance of the semiconductor between the edges of the source and gate contacts.

Both these resistances should be minimised by optimising the ohmic contact technology and reducing the 

semiconductor sheet resistance by having a large electron mobility and carrier concentration in the region. 

The drain region o f the device produces parasitic resistances in the same way as the source region, 

resulting in the parasitic resistance R<j.

The gate resistance Rg> is modelled in series with the gate capacitance. As will be discussed in detail in 

Chapter 5, the gate resistance has a significant effect on device performance.
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2 - Theory of HFET Operation

Adding the extrinsic components to the equivalent circuit results in the final model shown in Figure 

2.4.3.

I
TW )

F igu re 2 .4 .3  - Extrinsic Equivalent Circuit o f  HFET

The equivalent circuit model can be used to gain insight into the high frequency performance of a FET, in 

particular, which components should be optimised to maximise device performance.

Before continuing with a discussion of the figures of merit for a device at RF, die concept of Scattering 

Parameters used in microwave measurements is introduced.

2 .5  Scattering Parameters

The RF measurement system used throughout this work was a Wiltron 360 Automated Vector Network 

Analyser capable of measuring Scattering Parameters (S-Parameters) up to 60GHz. S-Parameters are die 

elements of a matrix describing input and output power levels of a 2 -port device, and are used in 

preference to h,y or z parameters at microwave frequencies. S-Parameters are chosen because diey are 

easiest to measure at frequencies where transmission line methods have to be used.

In Figure 2.5.1, a i, b i, a2 , and b2 are signals into and out of Ports 1 and 2 respectively, 

a and b are defined as the square root of power, so (a i ) 2 is the power incident at Port 1 and (b2 )2 is die 

power out o f Port 2.

Port 1 Port 2

DEVICE

F igure 2.5.1 - S-Parameters o f  a 2 Port D evice

The output and input signals can be related by

bi = S n a i  + Si 2^2 

t>2 = S 2 ia i  + S22&2

When a2 = 0,

b l b 2
S 11 ”  a y  m ( i  S 21 “  ~ 5 ^
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2 - Theory of HFET Operation 

and when a i = 0 ,

and S -  ^  2

Thus

To m easure S n  or S2 1 , &2 m ust be set to zero. This can be achieved in a microwave system by 

terminating the output o f the 2  port under test with the characteristic impedance of the measurement 

system (usually 50fi). No power is reflected back into the device. To measure any of the S-Parameters, 

it is only necessary to present the input or output of the 2 port with the characteristic impedance. This is 

particularly important when measuring over a large bandwidth, as the characteristic impedance is 

independent of frequency. This shows the advantage of using S-Parameters to characterise a 2 port at very 

high frequency. To measure h,y or z parameters, the ports of the device have to be presented with open or 

short circuits, which are very difficult to maintain over a large bandwidth because of the small signal 

wavelength.

Using well known conversion formulae^218] it is possible to convert from S-parameters to h,y or z 

parameters.

2 .6  RF Figures of Merit

There are a number of figures of merit for any device operating at high frequency:

i) the device fT

ii) the maximum available gain (MAG) at a given frequency

iii) the maximum frequency of operation, fmax

iv) the noise figure, NF.

2 .6 .1  Transition Frequency, fT

The fT (transition frequency) of a device is defined as the frequency at which the short circuit current gain 

falls to unity ie ioUt / iin = 1 with vout = 0 * or using the hybrid parameter matrix to represent the device 

as a 2 port, h 2 i = 1. The h parameters of the device can be derived from S-parameters. An expression for 

fx can be derived from the equivalent circuit model when the output (the drain) is shorted to ground (die 

source). Using the intrinsic equivalent circuit o f the HFET (Figure 2.4.2) with the output shorted :

i = S Vout o m T gs

and

*in j ^ C gS +  C gd>V 8S J0)^ 'g ^ gs

thus

out ^ m
(2.6.1)
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or

so that

i. I S m
I 2 i \ ~  J r f C

-  _  8  m
T "  27tC (2 .6.2)

Where f  is the frequency of operation.

Note that Ih2 il is inversely proportional to frequency, so a plot o f Ih2 il in dB against log( f ) will decrease 

at 20dB/Decade of frequency until it reaches the frequency axis at f  = fT .

Substituting the expressions for gm and Cg derived earlier (2.3.2 and 2.3.3), gives

f  = —  
T 2 k L

1

eff 27TX eff
(2.6.3)

Where xeff is the effective transit time under the gate of the device, ie the fT gives a measure of die 

effective velocity of carriers under the gate of a device.

By including the parasitic elements, the expression for fT becomes more complicated^219],

f T
8 1

R S +
2 ^ C gs + C gd)(1 + — R — ) +  g mC gd( R s + R d)]

ds

It can be seen that the gate resistance has no effect on device fT.

To study the effects of the parasitic source and drain resistances on the device f j , a modelling package 

such as Touchstone can be used. Here, the h parameters, and thus fT can be evaluated by calculaung the 

frequency response of the equivalent circuit. Touchstone allows the circuit topology to be user defined, 

and the element values to be varied. The dependence of fT on parasitic resistances was studied using die 

circuit shown in Figure 2.6.1.

F igu re  2.6.1 - Equivalent Circuit used to 

Determine f j  Dependence on Rs and R<j

Element R g C g S Cgd Ri Rds gm

Value 2 0 0 . 40fF lOfF 1 0 Q 2 0 0 1 2 35mS

T able 2.6.1 - Elem ent Values o f  Equivalent Circuit
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The intrinsic element values, typical of a lOOnm gate length HFET, are shown in Table 2.6.1.

First, Rs-and Rd were set to zero, and the intrinsic fT evaluated. Then, Rs and Rd were varied in the range

0-500i. The results o f this analysis are shown in Figure 2.6.2.

150

^  100 -

50 -

0 30 40 5010 20 60

Parasitic Resistance (Q)

F igu re 2 .6 .2  - Dependence o f f j  on Rs and R<j

Typical values of Rs and Rd are around 5 0  so it can be seen that the fT is insensitive to the effects of 

parasitic source and drain resistances.

As discussed above, the fT of a device is related to the transit time of carriers under the gate of the device. 

It has been argued^2-20! that the total transit time consists of a number of delays associated with the gate 

region of the device

X =  X . +  X . +  X . e ff i cn d

where,

X[ is the intrinsic transit time Lg / veff ie the time to transit the metallurgic gate length

Tch is the channel charging delay time - the time constant associated with the charging of die gate

capacitance via the channel resistance Ri

Td is the drain delay - the time to transit the depletion region extending beyond the drain end of the gate 

caused by the drain bias, and giving rise to an increase in the effective gate length of the device 

(id  ~ ( Leff - Lg ) /  veff)

By considering the origin of each of these delays, the device fT can be maximised by

i) minimising the gate length and increasing the effective velocity of the carriers.

ii) maintaining a large current density to reduce the charging time of the channel.

iii) minimising the depletion region extension at the drain end of the gate.

26



2 - Theory of HFET Operation

2 .6 .2  The M axim um  A vailab le G ain , M A G  and  M ax im um  F req u en cy  o f O p e ra tio n ,

fmax*

In Section 2.6.1, an expression for device current gain was derived. To determine power gain (Gp), the 

device has to be presented with a load.

;. R i ,hn g out

ID

F igu re 2 .6 .3  - Equivalent Circuit to Determine Power Gain

Consider the first order equivalent circuit of Figure 2.6.3, with the output connected to a load RL.

First, the voltage gain G v = 

From Figure 2.6.3,

out
V.ID

is derived.

o u t 8 m Rm L

v i„ l + j f f l C y R g + R j )

ie

out
V .ID

8  mR L

2 2
[1 + co 2 C g ( R g + R .) ]

In the limit of [coC g(R g + R .)] >1

G
8 m R L f T R L

coC (R + R .)  f R + Rgv g r  g
(2.6.4)

The power gain is defined as the product of the current and voltage gains. Combining Equations (2.6.1), 

(2.6.2) and (2.6.4) gives,

8  mR l
GP =  2 2

R

co C (R + R .)g v g

For a HFET with output resistance Rds, maximum power gain would be obtained when RL = Rds, then

g p =

R ds
4 (R  + R .)v g i
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The frequency at which the maximum power gain falls to unity, fmax> can be defined as

f _ . =  fT( R + R ) {

[4 8r  '  1
ds

Similar analyses using the complete extrinsic equivalent circuit of Figure 2.4.3 yieldt2-21^

f1 max

(R g + R . + R ,

R ds
+ 27tf„R C T g gd

and M axim um  A vailable Gain (MAG), the m axim um  pow er gain with the input and output 

simultaneously and conjugately matched asI2-22!

MAG = R + R .  + R 
4 ( - L - rJ  i ) + 4 ^ f TC gd(2 R g + R . + R .)

ds

From these expressions, it can be observed that to produce a  device with a large M AG and high fmax, the 

device fT must be maximised whilst the parasitic resistances Rg and Rs must be minimised. In addition 

the output resistance R<js of the device must be maximised.

As the gate length is reduced to increase the fT, the gate resistance can become very large^2-23], seriously 

limiting the device fmax. Considerable effort has been made in this project to reduce the gate resistance 

of short gate length devices as will be discussed in detail in Chapter 4.
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2 .6 .4  Summary of Requirements to Produce HFET with Optimum High Frequency 

Performance

In summary, to produce a high quality high frequency device, both material and device issues have to be 

addressed. The material should hav e :

i) large effective carrier velocity

ii) large carrier concentration

iii) high mobility 

Device issues a r e :

i) short gate lengths with small gate resistance are required

ii) parasitic source and drain resistances must be minimised by optimising ohmic contact

technologies and having a small sheet resistance. The above material requirements will 

minimise the sheet resistance contribution to the parasitic source and drain resistances.

iii) output conductance must be minimised.

2 .7  Reducing the Gate Length of a FET - Scaling Rules

As shown in Section 2.6, to increase fT and thus the MAG and fmax, whilst reducing the noise figure of a 

HFET, the gate length of the device should be reduced. The electron beam lithography system used in the 

course of this work has previously been employed to fabricate FET's with gate lengths as small as 

30nm[2-27]. However, if short gate length HFET device performance is to be maximised, a  number of 

other device features must also be scaled along with the gate length.

As the gate length is reduced, the 2DEG should be formed closer to the surface, as, for efficient device 

operation, a ratio of around 3 : l t2-28] should be maintained between the gate length and die gate-to- 

channel spacing ie a gate length of 50nm necessitates a gate to 2DEG spacing of around 15-20nm. Only 

with this ratio can the device gate capacitance be expected to scale with gate length. Thus, in short gate 

length HFET devices, thin AlGaAs spacer layers (2-5nm), and thin, heavily doped donor layers (~30nm 

4 x 1 0 18 Si atoms cm '3) are employed. Advances in MBE growth technology allow the 2DEG/gate 

separation to be minimised by the use of 8  doping^2-29]. Thus, all the electrons required to form the 

2DEG can be supplied from a few monolayers of Si doping, rather than 15-20nm of Si doped AlGaAs. 

2DEG's with sheet concentrations of 5x10* ^ m ' 2 have been formed 15nm from the surface using such 

structures^2-30!.

As mentioned in Section 2.6.3, the parasitic source and drain resistances of the HFET must be minimised
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to maximise the power gain of the device. A significant contribution to Rs and R<j can arise from Hie 

sheet resistance of the semiconductor regions between the source and drain contacts and the edges of the 

gate. The sheet resistance can be reduced by designing the structure to include a parallel conduction layer 

so that, in the parasitic source and drain regions, the total sheet resistance is that of the 2DEG in parallel 

with that o f the parallel conduction layer.

If the gate was placed directly on the surface of such a structure, the device performance would be degraded 

as transport through the doped AlGaAs would occur. To prevent this, material is etched away in the gate 

region prior to gate deposition as shown in Figure 2.7.1.

Etched
Gate

DrainSource

2DEG

Figu re 2.7.1 - Gate Recessed HFET Structure

This has an additional benefit of reducing the effect of surface states on device performance^2-31].

The surface of GaAs has a built-in voltage of around 0.7V (the surface is pinned mid band-gap) because of 

the effect o f dangling bonds, the surface oxide layer etc. This built-in voltage is not dissimilar to the 

Schottky barrier height o f m ost metals on GaAs (typically 0.7-0.8V). Thus, although a gate may be 

lithographically defined to be lOOnm for example, the effective electrical length of the gate (as viewed by 

carriers in the channel) will be much greater, as the effect of the gate is smeared out by the presence of die 

surface states as shown in Figure 2.7.2.

Source Drain

G ate f i i l i l g i i i i

2DEG

Gate Drain

& DepletioriSiig^TO 
m  Region jS B

2DEG

F igu re 2 .7 .2  - Surface States Increase F igu re  2 .7 .3  - Gate Recessing Reduces

the Effective Gate Length o f  a HFET the Influence o f  Surface States

By recessing the gate as described above, parallel conduction may be used to reduce the device access 

resistances. In addition, the effect of the surface states can be reduced as shown in Figure 2.7.3.

2 .7 .1  Buffer Conduction

In an HFET, the majority of the drain source bias is dropped across the gate. Very large electric fields are 

experienced by the carriers which gain significant energy as a result. This gain in energy is often 

sufficient to allow the electrons to free themselves of the confining barrier in the GaAs formed due to die
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band bending caused by the local electron accumulation, and so a significant carrier concenuation can 

establish in the undoped GaAs region below the 2DEG. When in this region, the carriers cannot be 

m odulated by the gate as the remaining 2DEG screens the gate potential, and so a degradation in 

transconductance results^2-32]. A second consequence of buffer conduction is that as the drain source bias 

is increased, the field under the gate increases, and more carriers are injected into the buffer, further 

increasing the buffer current. This effect causes a decrease in device output resistance R<is, thus reducing 

fmax and reducing the voltage gain of the device.

Buffer conduction can be reduced by introducing an undoped AlGaAs layer below the 2DEG. This 

confines the carriers to the channel as a result of the GaAs/AlGaAs conduction band offset^2-33}. Such a 

structure is shown in Figure 2.7.4, where the single heterojunction confining the 2DEG has now been 

replaced by a quantum well.

Single Heteroj unction
Quantum W ell 
- improved confinement

F igu re 2 .7 .4  - Reducing Buffer Conduction using an AlG aAs Confining Barrier B elow  the 2DEG

The disadvantage of this structure is the poor quality of the interface produced by the growth o f the 

undoped GaAs on top of the undoped AlGaAs buffer. This is due to surface roughness in MBE grown 

AlGaAs because of the poor surface mobility of the AI species on the growing surface^2-34]. However, 

with careful optimisation of the MBE growth conditions, it is possible to produce a high quality "reverse" 

AlGaAs/GaAs interface^2-35!, and so improve carrier confinement to the 2DEG in short gate length 

HFETs.

2 .8  Material Systems for HFETs

Throughout the course of this chapter, where a specific material system has been required to more easily 

explain a phenomenon of HFET operation (eg to show the modulation of the 2DEG carrier concentration 

by the application of bias to a Schottky contact in Section 2.1.3), the AlGaAs/GaAs material system was 

used as an example. However, there are currently a number of material systems available for HFET 

fabrication based on both GaAs and InPt2-36!, as discussed in this section.

2 .8 .1  Velocity>Field Characteristic of III-V Semiconductors

Consider first, two ohmic contacts to a layer o f uniformly doped n type GaAs. When a voltage is applied 

between the contacts, a longitudinal electric field is created which causes the electrons to drift in response 

to it. The velocity of electrons in the channel in response to the applied electric field is shown in Figure 

2 .8 . 1.
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2 Peak Velocity

onset of/  \  onset of
Undoped' \  inter valley scattering

HighHigh Field Saturation velocity

E c =  3.6kV/cm

Electric Field (kV/cm)

lOkV/cm

F igu re 2.8 .1  - V elocity /F ield  Characteristic o f  GaAs

The peak velocity of 2 x l0 5m s ' 1 and the region of negative differential mobility following it apply only

in very lightly doped material^2-37]. The negative differential mobility is caused by intervalley transfer in 

GaAs (the band structure of III-V semiconductors show them to have one central valley (the T valley) and 

a number of satellite valleys at higher energies (the L and X valleys)). At low fields and electron 

energies, most carriers populate the lowest energy T valley, where the electron effective mass is smallest 

(0.067mo in GaAs). Increasing the applied electric field, electrons in the T valley accelerate until, at the 

critical field Ec, they have sufficient energy (0.3eV in GaAs) to transfer to the upper L valley, which has 

a higher electron effective mass (0.12mo in GaAs), and thus a lower mobility than in the T valley (ji = q 

x / m*, where x is average time between scattering events and m* is the effective electron mass). This 

redistribution of electrons in the T and L valleys causes the overall transport properties of the material to 

be the weighted average of the two valleys' transport properties and is responsible for the region of 

negative differential mobility[2.38] ^  bigb electric fields, an equilibrium is established for inter-valley 

transfer and the high field electron velocity saturates at around l.O xK ^m s'1.

At the doping concentrations used in m ost uniformly doped GaAs channel FETs, ionised impurity 

scattering at low Fields increases the rate of electron momentum randomisation without affecting the total 

energy of the electrons, as ionised impurity scattering is an elastic scattering mechanism. This results in 

a reduction in mobility as shown in Figure 2.8.1. The total electron energy is unchanged by ionised 

impurity scattering so intervalley scattering still occurs at roughly the same electric field strength as in 

the low doped case. Thus, the final saturation velocity is unaffected by ionised impurity scattering.

The 300K low field mobility of the semiconductor is influenced most by the ionised impurity and optical 

phonon scattering rates, and also the effective mass of electrons in the T valley. The peak velocity of a 

given material is dominated by the energy separation between the T and L valleys. A large T-L valley 

energy separation allows electrons to accelerate for longer in the T valley and attain a higher velocity 

before being scattered to the satellite valleys. The high field saturation velocity is governed by the 

intervalley scattering rates which determine the equilibrium distribution of electrons in the T and L 

valleys.

Table 2.8.1 shows the effective mass of the T  valley (with respect to the electron mass mo) m*p/m0, die 

low field mobility Po» the peak velocity vp, the T -L valley energy separation A E jx  and the high field
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saturation velocity vsat for a number of III-V semiconductors at 300K.

Material m * r/m 0 Po

(cm2/Vs)

VP

(ms-1)

AEf l

(eV)

v sat

(m s '1)

Refs

Undoped GaAs 0.067 8500 2 .1 x l0 5 0.33 1.0x10s T2.211

l x l 0 18n type GaAs 0.067 2000 l.lx lO 5 0.33 1.0x10s [2.21, 2.37]

AlGaAs/GaAs 2DEG 0.067 7500 1.8xl05 0.27 1.0x10s [2.371

undopedInP 0.077 4600 3 .0x l05 0.61 l.OxlO5 [2.21, 2.391

undoped Ino.15Gao.8 5As 0.062 6500 1.0x10s [2.391

undoped Ino.5 3 Gao.4 7 As 0.041 10900 3 .0x l0 5 0.55 0 .7 x l0 5 [2.39]

undoped InAs 0 .0 2 2 33000 3 .5x l0 5 0.87 [2.21, 2.391

T ab le  2.8 .1  - Properties o f  a Number o f  HI-V Sem iconductor M aterials (Reference to Figure 2.1.1 shows

Ino.5 3 GaAs to be lattice matched to InP)

The correlations between effective mass and low field mobility, and between AEpL and peak velocity can 

be clearly seen in each material system. In addition, it is interesting to note that the high field saturation 

velocity in all materials is around 1 .0 x l 0 5 m s '1.

2 .8 .2  Velocity Overshoot

The velocity field characteristic of Figure 2.8.1 is a  stationary characteristic which is valid for constant 

applied electric fields (both in space and time). However, if the electric field is increased suddenly, the 

electrons have to respond to this change. In such cases, as often occur in the gate region of a FET, non- 

stationary effects can become important. In III-V semiconductors, the static saturation velocity arises 

from the establishment of an equilibrium distribution of electrons in the T and L valleys. However, there 

is a finite relaxation time associated with the intervalley transfer scattering mechanism. Over time 

durations commensurate with the onset o f intervalley scattering, electrons in the T valley can be 

accelerated to velocities above the maximum velocity of the stationary velocity/field curve, before 

relaxing to a saturated velocity. Figure 2.8.2 shows a Monte Carlo simulation of this effect^2-40], where 

an ensemble of electrons in GaAs is subjected to a step in electric field of 70kVcm‘1 for 1 ps.

U)e.
o

1.0025
8T3>

0.25 0.50 0.750.00 1.00 1.25 1.50

Time (ps)

F igu re  2 .8 .2  - V elocity  O vershoot o f  Electrons in GaAs
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H ie ensemble average velocity increases to around six times the steady state saturation value in a liaction 

of a picosecond. Later, as the scattering processes come into effect, the velocity is reduced to the 

stationary high field value. This effect, known as velocity overshoot, may influence device performance 

if the distance carriers have to travel in a device is comparable to the product of the duration of the 

overshoot and the average velocity during the overshoot period. An overshoot duration of lps and an 

average velocity o f 1 .0 x l0 5m s ' 1 for that period (a pessimistic value), result in an enhanced velocity 

distance of 0 .1  (im.

Numerous studies on the non-equilibrium transport properties of many III-V semiconductor systems have 

been made by the Monte Carlo method^2-41' 2-43]. All show that in the time interval of 0-lps, carrier 

velocity is enhanced over the steady state saturation value. The general trend observed is that as the 

electric field is increased, electrons accelerate more quickly but the duration of the overshoot is reduced. 

Further, the effect is more pronounced for material systems with low effective masses and large T-L 

energy separations.

Many Monte Carlo simulations of HFETs have been performed and all show the velocity overshoot effect 

in the device channel^2-43-2-45]. The effect has been predicted to increase the frequency response of an 

HFET as the gate length is reduced, particularly if the mobility of the carriers is high (ie low doping as 

would be found in a 2DEG system, or small effective mass) and a large T-L valley energy separation 

exists.

From Table 2.8.1, 2DEG material systems based on InAs, Ino.5 3 GaAs and InP should be the most 

favourable for utilising the velocity overshoot effect as they have small effective mass and a large energy 

difference between the T and L valleys.

The path to the realisation of H FETs fabricated using such material systems is next described.

2 .8 .3  Evolution of Material Structures for HFET Fabrication

As it was the first heterostructure material system to be studied, it was natural that the initial HFET 

devices were fabricated with an AlGaAs/GaAs heterostructure. However, a limitation to tins material 

system was found to be the presence of the DX centre, an electron trap formed in silicon doped AlGaAs, 

which was observed for aluminium mole fractions of greater than 20% t2-46!. It was found that for 25% 

A1 mole fraction, 50% of silicon donor electrons were trapped and unable to contribute to conduction, 

whilst at 40% A1 mole fraction, 90% of the Si donor electrons were trapped. Thus the largest 2DEG 

carrier concentration in an AlGaAs/GaAs heterojunction could be formed with 25-30% A1 mole fraction. 

The conduction band offset at the heterojunction is 0.2eV and the maximum 2DEG carrier concentration 

around 1 .0 x l 0 12cm '2 I2 -4 7 l.

Adding small concentrations of indium to the GaAs channel was known to decrease the band gap of the 

channel, thus increasing the conduction band offset and hence the sheet electron concentration^-48]. A 

further advantage resulting from this growth technique was that the electron effective mass was reduced as 

the indium concentration was increased^2-48]. The addition of 10% indium however causes significant 

lattice mismatch to the GaAs substrate, resulting in strain in the grown layerf2-49!. By careful control of 

the growth temperature and InGaAs layer thickness, it is possible to produce a thin, high quality, defect 

free strained layer of InGaAs grown on GaAst2-50!. The InGaAs layer takes on the lattice constant of the
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GaAs substrate, and thus the term 'pseudomorphic layer system' was coined. Layers of Ino.2GaAs 130A 

thick and In o jsG aA s 50A thick have been grown on GaAs with good transport properties!2-51!. The 

thin InGaAs channel layer is grown on top of a GaAs buffer so that the channel in such a pseudomorphic 

structure is in fact a quantum well. The presence of the potential barrier below the channel enhances 

carrier confinement to the 2DEG which reduces device output conductance.

As shown in Section 2.8.2, the large T-L valley energy separation and small effective mass of 

Ino.5 3 GaAs and InP layers are highly attractive transport properties which, on first sight should result in 

superior HFET device performance. In the last 5 years, InP based materials become available to the 

device designer!2-52!. InGaAs is lattice matched to InP for 53% indium, whilst the larger band gap 

InAlAs is lattice m atched to InP for 52% indium concentration!2-48!. The Ino.5 2 A lAs/Ino.5 3 GaAs 

heterojunction has a conduction band offset of 0.5eV, and this fact combined with the high doping 

efficiency o f Si in InAlAs ( N d > lx l0 1 9 c m *3 is possible!2-53!) has resulted in 2DEG carrier 

concentrations of up to 4 .0 x l0 12cm ' 2 I2-53!.

Again, it is possible to increase the indium concentration in the channel by growing a pseudomorphic 

structure resulting in larger conduction band offsets and higher 2DEG carrier concentrations!2-54!. Indeed, 

recently InAs channel structures have been begun to appear!2-55!.

As will be discussed next, there is clear evidence that the InAlAs/InGaAs/InP material systems are 

currently the most attractive for HFET devices with the highest frequency of operation reported for such 

structures.

2 .9  Review of Current State of the Art HFET Devices

In view o f all that has gone before in this Chapter, it should now be clear which material and device 

issues have to be addressed to improve the figures of merit discussed in Section 2.6 above, namely fT, 

MAG, fmax and Noise Figure. Device f j  can be improved by reducing the gate length and also by 

increasing the effective velocity of carriers in the channel. MAG and fmax can be improved by firstly 

having a large fT, but in addition it is necessary to minimise the device parasitics. In particular, (lie gate 

resistance and output conductance have to be minimised as the gate length is reduced. From Section 2.6, 

if the above criteria to increase fT and fmax are followed, a low noise device should almost automatically 

result.

The review of HFET device performance which follows was obtained from a survey of the open literature 

since 1986.

Table 2.9.1 shows the highest reported fT (split into 4 gate length ranges clOOnm, 100-200nm, 200- 

500nm and >0.5jim) for a number of classes of device - namely AlGaAs/GaAs HFET's, pseudomorphic 

A lG aA s/InxGaAs/GaAs (x<0.25 HFETs, lattice matched InAlAs/InxGaAs/InP (x=0.53) HFETs and 

pseudom orphic InAlAs/InGaxAs/InP (x>0.53) HFET's. In order that some comparison can be made 

between classes, the effective velocity veff = 2 n  fT Lg is also tabulated.
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Material Gate Length 

(pm)

fT

(GHz)

2 k  fT Lg 

(m s '1)

Ref

Alo.2 5GaAs/GaAs 0.08 130 0.66x105 [2.56]

Alo.2 7GaAs/GaAs 0.1 113 0 .71x l05 [2.57]

A10.30GaAs/GaAs 0.25 82 1.28xl05 [2.58]

Alo.3oGaAs/GaAs 0.3 48 0.91x l05 [2.59]

In0.15 GaAs/GaAs 0.12 130 0.98x105 [2.56]

Ino.2 5GaAs/GaAs 0.2 120 1.51X105 [2.60]

Ino.5 3 GaAs/Ino.5 2 AlAs/InP 0.1 170 1.29xl05 [2.61]

Ino.5 3 GaAs/Ino.5 2 AlAs/InP 0.15 200 1.88xl05 [2.62]

Ino.5 3 GaAs/Ino.5 2 AlAs/InP 0.2 170 2.14x l05 [2.63]

Ino.5 3 GaAs/Ino.5 2 AlAs/InP 0.7 50 2.20x105 [2.64]

Ino.8GaAs/Ino.5 2 AlAs/InP 0.05 340 1.05xl05 [2.65]

Ino.6 5 GaAs/Ino.5 2 AlAs/InP 0.08 275 1.38xl05 [2.56]

Ino.6 2 GaAs/Ino.5 2 AlAs/InP 0.15 250 2 .36x l05 [2.66]

Ino.6 GaAs/Ino.5 2 AlAs/InP 0.5 64 2.00x105 [2.67]

InAs/Ino.5 2 AlAs/InP 0.6 58 2 .19x l05 [2.68]

Ino.7 7 GaAs/Ino.5 2 AlAs/InP 1.3 39 2.45xl05 [2.69]

I no . 65 Ga As/Inp .5 2  A1 As/InP 1.4 34 2.99x l0 5 [2.70]

T able  2.9.1 - State o f  the Art HFET fT R esu lts

To allow further comparison, an envelope of the highest effective velocity for each class of device is 

plotted as a function of gate length in Figure 2.9.1.
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,GaAs/In'
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AlGaAs/GaAs
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0.01 0.1 101

Gate Length (pm)

F igu re 2 .9 .1  - E ffective V elocity  as a Function o f  Gate Length for HFETs

As discussed by Kohnt2-71!, the effective velocity extracted from fT measurements using the simple
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expression veff = 2 n  f j  L g falls into three regions as the device gate length is reduced. At long gate 

lengths, the electron transport in the device channel is collision dominated, as the channel length is 

greater than the overshoot distance discussed in Section 2.8.2. As the gate length is reduced, overshoot 

effects begin to become apparent, and the extracted effective velocity increases. At the shortest gate 

lengths, the device is dominated by parasitics in particular, the gate capacitance does not scale with gate 

length as fringing capacitances become a significant contribution to total gate capacitance, and thus the 

extracted effective velocity falls. Figure 2.9.1 shows this general trend to be true, with die overshoot 

region extending up to 1.5pm gate length devices for InGaAs/InP material, presumably because of the 

advantageous transport properties discussed in Section 2.8.2. In addition, in the overshoot regime, the 

extracted values of electron velocity are seen to increase with a reduction of electron effective mass and 

increasing T-L valley energy separation.

A survey of recent HFET results would thus seem to indicate that velocity overshoot is indeed occurring 

in sub-micron gate length HFET devices, with the phenomenon more pronounced for InP based material 

systems, as expected from the foregoing discussion of material transport properties.

In an effort to yield the 'true' electron velocity in the channel o f the device and remove the contribution of 

parasitic capacitances from sub-lOOnm gate length devices, Nguyen et atf2-65! removed the delays 

associated with the bond pad capacitance and fringing capacitance from the total delay of die device ( i tot = 

tp a d  +  ^intrinsic +  Tfringe +  'tdrain)- A total gate capacitance of 40fF was measured for their 50nm T - 

gate device of which 25fF was deemed to originate from pad and fringing capacitances (lOfF and 15fF 

respectively). Analysis of the corrected data led to an effective channel velocity of 2 .6x l0 5 m s'1, which 

was found to be constant in the gate length range 0.05-0.15pm, perhaps as a result of reducing the time 

over which overshoot occurs, as the electric field strength is increased.

Whilst a valid analysis, great care has to be taken to accurately determine die parasitic contributions to die 

gate capacitance as the total device capacitance is so small for sub-lOOnm gate lengdi devices.

Considering now the ability of HFETs to provide power gain at high frequencies, Figure 2.9.2 shows die 

maximum available gain as a function of frequency for a number of different devices reported in the open 

literature since 1987I2-56’2-72'2-76]. For comparison, device results for HFETs fabricated in die course 

of this work are included.
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F igu re 2 .9 .2  - M aximum Available Gain as a Function o f  Frequency for a Number o f State o f the Art HFETs
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State of the art HFET's are currently capable of producing lOdB power gain at 100GHz.

The final figure of merit is the noise figure. It is not straightforward to measure the noise figure of a 

device at millimetre wave frequencies because of the uncertainties over the noise contributions of test 

fixtures and transitions in the measurement equipment. However, a number of groups have conducted 

such studies and Figure 2.9.3 shows noise figure and associated gain of reported devices in the 60-94GHz 

bandwidth.
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F igu re 2 .9 .3  - N oise Figures o f  HFETs at Millimetre W ave Frequencies

Figures 2.9.2 and 2.9.3 show devices with low noise performance and power gain up 100GHz are 

currently available, and such individual devices are now being incorporated into MMICs operating at 

around 100GHz, such as the amplifier reported by Majidi-Ahy et atf2-77! with 8 dB gain over the 

frequency bandwidth 75-100GHz. Without doubt, further millimetre wave MMIC's will start to appear in 

the next year.

C h a p te r  S u m m ary

This chapter has considered the theory of HFET operation. The aim has been to produce simple models 

which, whilst not giving detailed qualitative analysis, show the underlying physics of HFET device 

operation. The heavy dependence of HFET performance on material choice and device design has been 

stressed throughout. With this background, the rest o f the work of this thesis can be understood. Next, 

the structures and transport properties of the HFET layer structures used in this work are presented.
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Chapter 3 Material 
Characterisation

Introduction
In this chapter, the molecular beam epitaxy (MBE) layer structures used in the fabrication of the HFETs 

of this project are described. In addition, the results o f the characterisation techniques employed to 

evaluate the material transport properties are presented.
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3.1 M a te ria l S tru c tu re s  used  in  th is  S tudy

To recap from Chapter 2, the material requirements for a low noise, high frequency HFET are:

i) large 2DEG electron concentration to provide large current and hence efficient charging 

of device capacitances

ii) large carrier mobility to reduce parasitic source and drain resistances

iii) large effective electron velocity to reduce transit delay under the gate

iv) well confined 2DEG to give optimum transconductance and reduce output conductance 

In the course of this project, 2DEG based material structures suitable for the fabrication of HFETs were 

sourced from three MBE Groups :

i) AlGaAs/GaAs from Glasgow University MBE Group

ii) AlGaAs/InGaAs/GaAs from Norwegian Telecom Research, Kjeller

iii) InAlAs/InGaAs/InP from University o f Michigan

The general material structure required for a HFET is shown in Figure 3.1.1.

Source

Gate

2DEG—

Drain

Cap

Schottky

Donor

Spacer

Channel

Buffer

Substrate

F igu re 3 .1 .1  - General HFET Material Structure

Before discussing the composition o f each of the MBE wafers used in the course of this project, it is 

useful to consider the general requirements of each of the layers of the HFET material structure of Figure

3.1.1, starting with the substrate.

3 .1 .1  S u b s t r a te

The substrate governs which materials may constitute each of the layers of Figure 3.1.1. The substrates 

used in this study were (100) oriented Semi-Insulating (SI) GaAs and InP. For the MBE wafers used in 

this project, lattice matching requirements restricted the choice to those shown in Table 3.1.1.

Substrate Large Band Gap Material Small Band Gap Material

Lattice Matched Lattice Matched Pseudomorphic

GaAs A lxGaAs x=0.25 or x=0.30 GaAs Ino.isGaAs

InP In0.52AlAs In0 .5 3GaAs In0.65GaAs

T able  3.1.1 - Large and Sm all Band Gap Materials grown on GaAs and InP Substrates used in this Study
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The large band gap materials are used for the Schottky, donor, spacer and barrier layers of Figure 3.1.1 

while the small band gap materials are utilised for the formation of the cap and channel layers.

3 .1 .2  Buffer Layer

The output conductance of a FET is affected by the confinement o f electrons to the channel^3 1 !. The 

degree of confinement can be modified by introducing a  buffer layer of large band gap material resulting in 

a potential barrier at the channel/buffer interface^3-2].

3 .1 .3  Channel Layer

The channel consists o f an undoped layer of small band gap material in which the 2DEG is formed at the 

interface with the spacer layer. In pseudomorphic systems, the width of the lattice mismatched channel 

layer is determined by its ability to accommodate strain without forming dislocations.

3 .1 .4  Spacer Layer

A thin spacer layer (<50A) of large band gap material is incorporated to reduce the effect of remote ionised 

impurity scattering whilst still maintaining a large 2DEG carrier concentration.

3 .1 .5  Donor Layer

The donor layer supplies the 2DEG (and surface states) with electrons. It consists of either a uniformly 

doped layer of large band gap material (~ 3 x l0 18cm ' 3 for short gate length HFETs) or a d  doped layer. 

The layer is generally heavily doped to allow the gate to be placed close to the 2DEG (typically <300A) - 

a requirement if short channel effects are to be reduced.

3 .1 .6  Schottky Layer

To improve the quality of the Schottky gate contact, a layer of large band gap material with low doping 

concentration (< 3x l0 17cm‘3) is often incorporated. When the gate recess is performed, the gate metal is 

deposited on this layer. The combination of a lightly doped layer and a large band gap material decreases 

the gate leakage current as the tunnelling probability is reduced.

3 .1 .7  Cap Layer

Generally, the capping layer is heavily doped (~ 3 x l0 18cm ' 3 silicon (Si) donors) to aid the formation of 

low resistance ohmic contacts. In addition, a heavily doped cap screens the effect of surface states from 

the 2DEG. It has been observed that increasing the cap doping to greater than 3 x l0 18cm ' 3 results in an 

increase in the contact resistance of a gold/germanium/nickel (Au/Ge/Ni) ohmic contact as the in-diffused 

Ge autocompensates the Si donors^3-3!. The capping material has no aluminium (Al) component as 

exposed Al oxidises when the wafer is removed from the MBE growth chamber resulting in a surface of 

poor stability. Further, the formation o f a surface aluminium oxide layer is capable of reducing ohmic 

contact quality.

The material structures used in the course of this project are now considered in detail.
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3 .2  AlGaAs/GaAs from Glasgow University MBE Facility

As described in Section 2.6.1, the presence of a  back confining barrier should reduce the output 

conductance of a short gate length HFET. To test this theory, an AlGaAs/GaAs 2DEG structure with an 

AlGaAs buffer layer was investigated.

The transport properties o f GaAs grown on AlGaAs are poor as MBE grown AlGaAs has a rough 

surface^3-4]. The growth of the 'reverse' GaAs/AlGaAs interface has to be optimised if an AlGaAs buffer 

layer is to be placed close to a 2DEG without affecting its transport properties^3-5]- The optimisation of 

the buffer layer growth conditions is now described.

3 .2 .1  Optimisation of the Growth of the AlGaAs Buffer Layer

To determine whether the introduction of an AlGaAs buffer layer degraded the transport properties of the 

2DEG, a single heterojunction structure was grown and characterised as a control. Subsequent layers' 

transport properties were compared to this. The layer structure and conduction band diagram are shown in 

Table 3.2.1 and Figure 3.2.1 respectively. The conduction band diagram was obtained from a self- 

consistent Poisson/Schroedinger solution of the layer structure using a 1 dimensional solver developed at 

the University of Santa Barbera. The Poisson Solver runs on an Apple Macintosh with a Maths 

coprocessor.

Layer AlGaAs/GaAs

A 254

Cap 200A 6 x1018 GaAs

S chottky ..

Donor 500A 3 x 1 0 18 Al0.2 5 GaAs

Spacer 20A undoped Alo.2 5 GaAs

Channel 300A undoped GaAs

Buffer 5000A undoped GaAs

Substrate SI (100) GaAs

T ab le  3 .2 .1  - Layer Structure o f 'Control' HFET
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F igure 3 .2 .1  - Conduction Band Diagram o f  'C ontrol' HFET Structure

The substrate was SI (100) GaAs. On this a  0.5|im undoped GaAs buffer was grown . Here, the "buffer" 

and "channel" layers of Figure 3.1.1 are combined - alternatively, the channel can be thought of as being 

of infinite thickness. Above this a 20A undoped AlGaAs spacer layer was grown. The Alo.2 5 GaAs 

layer was doped n-type to 3 x l0 18 Si atoms cm ' 3 to provide electrons for the 2DEG whilst allowing a 

reasonable Schottky gate breakdown characteristic to be maintained.

Ideally, a larger Al mole fraction in the AlGaAs layers would be employed to increase the conduction 

band offset and hence 2DEG carrier concentration but, as described in Section 2.7.3, the DX centre causes 

a reduction in the number o f shallow Si donors able to provide electrons as the Al concentration is 

increased. 25% aluminium concentration results in a reasonable compromise between 2DEG carrier 

concentration and the ability of the donor layer to supply electrons. The donor layer is 50nm thick, 

resulting in a region of parallel conduction designed to reduce parasitic access resistances. In this 

structure, the "donor" and "Schottky" layers of Figure 3.1.1 are combined. Finally, the GaAs cap layer 

was doped to 6 x l0 18 cm ' 3 to minimise the ohmic contact resistance to the structure. When this layer 

was designed, the dependence of ohmic contact resistance on capping layer doping concentration discussed 

in Section 3.1.7 was not appreciated.

The substrate growth temperature was 675°C for all layers and the growth rate 1 pm/hour for GaAs and 

1.43pm/hour for AlGaAs.
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3 .2 .2  Dependence of 2DEG Transport Properties on the Proximity of the Back

Confining Barrier

To study the dependence of an AlGaAs back confining barrier on material transport properties, three layers 

with identical spacer, donor, capping layers and growth conditions to the control layer were grown. The 

difference between these layers and the control layer was the presence of an Alo.25GaAs back barrier, at 

distances of 300A, 450A and 600A respectively from the heterojunction resulting in the formation of a 

quantum well structure shown in Figure 3.2.2.
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F igure 3 .2 .2  - Addition o f  AlG aAs Buffer to form Quantum W ell HFET

In all three structures, the buffer layer was grown as an AlAs/GaAs superlattice which reduces surface 

roughness!3-5]. The basic cell of the superlattice consisted of 8  monolayers of GaAs followed by 4 

monolayers of ALAs resulting in a superlattice with an effective band gap equivalent to bulk AlGaAs of 

25% Al concentration. The superlattice was formed by growing 100 periods of the basic GaAs/AlAs cell. 

The superlattice buffer provides a confining potential barrier of 0.2eV below the 2DEG. To further reduce 

surface roughness, growth was interrupted for 30 seconds between the superlattice and channel layers!3-6 .̂ 

The substrate temperature was fixed at 675°C for all layers, and the superlattice grown at 1pm/hour.
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3 .2 .3  E v a lu a tio n  of L ayers by S tudy ing  H all M ob ility  and  C a r r ie r  C o n cen tra tio n

The 4 layers described above will be referred to by their growth numbers as shown in Table 3.2.2.

Quantum Well 

Width (A)

Layer Number

300 A251

450 A252

600 A253

Control (°°) A254

T able 3 .2 .2  - W afer Numbers o f  Quantum W ell Structures

Van der Pauw structures were defined by electron beam lithography (as described in Section 4.9.1) on each 

o f the 4 layers. Hall mobility and sheet carrier concentration were measured as a function of temperature 

from 300K to 4K in a continuous flow He cryostat with a fixed magnetic field of 0.2T. The samples 

were cooled to 4K in the dark and mobility and carrier concentration measured as a function of 

temperature. At 4K, the sample was illum inated with white light, and the mobility and carrier 

concentration were remeasured whilst heating the sample back to room temperature.

Figures 3.2.3 and 3.2.4 were obtained from the control sample A254. The room temperature carrier 

concentration and mobility in the dark are 1 .5xl012cm ‘2  and 6780cm2/Vs respectively. As the structures 

contain parallel conduction, a simple Hall Effect measurement averages the transport properties of the 

2DEG and the parallel conduction layer. This results in an overestimation of the 2DEG carrier 

concentration and an underestimation of the mobility if the results are ascribed to conduction in die 2DEG 

alone. As will be shown in Section 3.3, a magnetic field dependant Hall Effect measurement allows the 

transport properties of the two conducting layers to be individually determined.
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F ig u re  3 .2 .3  - A 254  Carrier Concentration as a F igu re  3 .2 .4  - A 254  M obility as a

Function o f  Temperature in Light and Dark Function o f  Temperature and Illumination

On cooling in the dark, the mobility of the A254 sample rises as optical-phonon scattering effects are 

reduced. The carrier concentration falls as electrons are trapped in DX centres in the doped AlGaAs layer 

with insufficient thermal energy to surmount the emission barriert3-7]. At 4K, on illumination die 

mobility increases slightly, while the carrier concentrauon is restored to its room temperature value as 

electrons are released from DX centres by optical excitation.
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Figures 3.2.3 and 3.2.4 are in stark contrast to the data obtained from the quantum well samples, Figures 

3.2.5-3.2.10.
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On cooling in the dark, the carrier concentration in these samples is reduced to a level below that of the 

control sample, indicating charge trapping in addition to DX centre capture in the AlGaAs donor layer. 

Whilst the mobility increases on cooling in the dark, it does not reach the value of the control sample. 

Charge trapping and mobility limitation are most severe in A251, the 300A quantum well structure, 

where the reverse interface is closest to the 2DEG. This observation leads to the conclusion that the
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interface between the GaAs channel and the GaAs/AlAs buffer layer is o f low quality and causes 

significant amounts o f trapped charge and a reduction of the carrier mobility in the dark at low 

temperatures.

In all the quantum well structures, illumination at 4K restores the carrier concentration and mobility to 

the level o f the control sample showing that once trapped charge is freed, it screens the effect of the 

mobility degrading mechanisms in the reverse interface.

The mobility and carrier concentration as a function of temperature and illumination are summarised in 

Table 3.2.3 for the 4 layers.

300K 4K

Light Dark Light Dark

Layer Well

Width (cm2 /Vs)

n sh

(cm-2) (cm2/Vs)

nsh

(cm '2) (cm2/Vs)

n sh

(cm-2) (cm2/Vs)

n sh

(cm-2)

A251 300A 5920 7 .8 x l0 u 4900 7.6xlO n 65200 1 .4 x l0 12 13300 4 .2 x l0 u

A252 450A 6460 8 .2 xlO n 5680 8 .0 x l 0 u 68200 1 .4 x l0 12 31000 5.4xlO n

A253 600A 5500 l . lx lO 12 5500 l . lx lO 12 71100 1 .6 x l 0 12 35300 5.6xlO n

A254 oo 6750 1 .5 x l0 12 6780 1 .5 x l0 12 92700 1 .5 x l0 12 86500 8 .8 x l 0 n

T able  3 .2 .3  - Hall M obility and Carrier concentration at 300K  and 4K  in Light and Dark for the 4 Quantum

W ell Structures

Clearly, the quality of the reverse interface in the quantum well samples was poor.

The temperature and illumination dependant Hall measurements give a simple and quick (around 3 hours) 

test for determining whether material is suitable for device fabrication.

The transport properties of the 300A quantum well sample were most severely affected by the presence of 

the reverse interface, so further optimisations were performed using a structure similar to that of A251. 

The next layer, A332, was grown without.interrupts, a growth temperature of 675°C and a growth rate of 

ljjm /hour for the superlattice. The temperature and light dependence of the mobility and carrier 

concentration are shown in Figures 3.2.11 and 3.2.12.
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Compared with A251, this structure shows little degradation of the carrier concentration on cooling in the 

dark. The carrier concentration at 4K in the dark was 9 x l0 11c n r2, similar to that of A254, the control 

sample. W hilst the mobility is still lower than in the control structure (59,500cm2/Vs compared with 

92,700cm  2/Vs) it was felt that this layer was of sufficiently good quality that short gate length HFET 

fabrication could proceed on it. By removing the interrupt during the growth of the superlattice buffer, a 

high quality reverse interface AlGaAs/GaAs interface was produced. Though the reason for this is 

unclear, it is possible that background contamination in the MBE growth chamber (eg carbon) was 

incorporated into the layer structures during the growth interrupts.

3 .3  M agnetic Field Dependant Resistivity Evaluation

All layers used in this work were designed to have parallel conduction to reduce parasitic access 

resistances in the device. To operate the HFET most effectively, the gate is placed on etched material so 

that the donor layer material under the gate region of the device is fully depleted. To stop the gate recess 

etch at the appropriate depth (determined by monitoring the saturated drain source current of a HFET 

device), it is useful to know the maximum carrier concentration of the 2DEG. In addition, if a correlation 

of material properties and high frequency device performance is to be performed, it is necessary that the 

2DEG mobility and carrier concentration be determined.

A simple Hall Effect measurem ent averages the transport properties of the 2DEG and the parallel 

conduction layer, so a technique to determine uniquely the transport properties of both the 2DEG

and the parallel conducting layer was required.

This can be achieved using the method shown in Appendix 3.1. With a Hall Bar structure, the magnetic 

field dependence of the longitudinal and transverse resistivities pxx and pXy, can be fitted using only the 

mobility and carrier concentration of the 2DEG and parallel conduction layers as fitting parameters.

35pm wide Hall Bar structures with longitudinal voltage probe spacings of 300pm were fabricated using 

electron beam lithography as described in Section 4.9.1. The completed structures were wire bonded to 

ceramic chip carriers and put in a cryostat with a superconducting magnet whose field could be varied 

from 0-6 Tesla. p xx and pxy were simultaneously measured at 300K in the dark using a constant 

longitudinal current o f 50pA and a lock-in technique. The measured data was fitted to the model described 

in Appendix 3.1 using a simple program written with MathCAD. The measured data was fitted by 

varying the m obility and carrier concentration parameters of the model. There is a very strong 

convergence, making fitting a relatively easy procedure. A least squares error function was calculated and 

the procedure terminated when the error was less than 1 % .

Measured and fitted data for the Hall sample from layer A254 is shown in Figure 3.3.1. A similar study 

and analysis was performed on A332, as shown in Figure 3.3.2.
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Table 3.4.1 summarises the room temperature mobility and carrier concentration of the 2DEG and parallel 

conduction layers deduced for A254 and A332.

2DEG Parallel Conduction

Layer U (cm2/Vs) n sh (cm*2) p. (cm 2/Vs) nsh (cm*2)

A254 6050 8 .8 5 x l0 n 750 1 .85x l012

A332 7200 9.9xlO n 700 9 .0 x l0 n

T able  3 3 .1  - 2DEG and Parallel Conduction Transport Properties o f  A 254 and A 322

The 2DEG mobility and carrier concentration are similar to values obtained from similar layer structures 

with 20A spacer layers.13121. In a previous magnetoresistance study13-131, AlGaAs doped at 1 .0 x l 0 18cm ' 

3 was found to have a mobility of 1000cm2 /Vs. The higher AlGaAs doping level of A322 and A254 

may account for the lower mobility observed in this study.

From the doping levels of A254 and A322, the parallel conduction sheet electron concentration should be 

around 1 .8x l0 13c m '2, assuming the surface potential is 0.7V. The low value obtained could be due to a 

large DX centre population in the doped AlGaAs layer, or that the silicon doping level in either the cap or 

the donor layers was lower than specified.

The small parallel conduction sheet concentration gives a sheet resistance of around 800Q/sq, which will 

increase the parasitic access resistances of the HFETs. In addition, a larger gate/2DEG separation will be 

required, reducing device scaling at short gate lengths. These effects will be discussed further in Chapter 

5.
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3 .4  A lG aA s/InG aA s/G aA s fro m  N o rw eg ian  Telecom  R esea rch , K je lle r

The layer structure of the material obtained from Norwegian Telecom Research, TF141 is shown in Tabic

3.4.1. The conduction band diagram, calculated using the ID  Poisson Solver is shown in Figure 3.4.1.

L a y e r AlGaAs/InGaAs/GaAs 

T F 1 4 1

C ap 400A 3x1018 GaAs

S c h o t tk y 400A 2x1017 Al0.3GaAs

D o n o r 17A 3x 1 0 * 2  8  doped GaAs

S p a c e r 50A undoped Alo.3GaAs

C h a n n e l 160A undoped Ino.isGaAs

B u ffe r 5000A undoped GaAs

S u b s tr a te SI (100) GaAs

T able  3.4.1 - Layer Structure o f  TF141 the AlGaAs/TnGaAs/GaAs HFET
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F igu re 3 .4 .1  - Conduction Band Diagram o f  TF141

The 400A GaAs capping layer is relatively thick compared with A332. The "Schottky" and "donor" 

layers are separate in this structure so that the gate is deposited on the 2 x l0 17cm ‘3 doped AlGaAs layer. 

The carriers for the channel are supplied by the d  doped region which sits in a  layer of GaAs. This avoids 

carrier loss to the DX centre which results from d  doping an AlGaAs region. The strained InGaAs 

channel has 15% indium concentration and is 160A thick, less than the critical thickness for such a
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strained c h a n n e l T h e  GaAs buffer provides a confining potential o f O.leV below the 2DEG. 

Magnetic field dependant magnetoresistance studies were performed on this layer. The measured and fitted 

resistivities are shown in Figure 3.4.2.
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F igu re  3 .4 .2  - Measured and Fitted M agnetoresistance o f  TF141

The transport properties of the 2 conducting layers are summarised in Table 3.4.2 below.

2 DEG Parallel Conduction

Characterisation

Technique

(i (cm2/Vs) nsh (cm ’2) |i  (cm2/Vs) nsh (cm-2)

Magnetoresistance 6600 1 .4 x l0 12 1250 l.OxlO13

W et Etch 6100 1 .6 x l 0 12 -

T ab le  3 .4 .2  - Comparison o f  M obility and 2DEG Carrier Concentration Evaluated by Successive Etch and

Fitted M agnetoresistance Techniques

The 2DEG carrier concentration is larger than in A322 as the conduction band offset is greater. The lower 

2 DEG mobility may result from random alloy scattering and the effects o f strain in the Ino.isG aA s 

channel. The parallel conduction sheet concentration for the structure was calculated to be 0 .9x l0 12c n r2, 

assuming a surface potential of 0.7eV.

Part o f the material characterisation performed by Norwegian Telecom Research consists of a mobility 

and carrier concentration profile through the layer structure by successively wet chemical etching and 

measuring the Hall Effect on a Van der Pauw structure. Assuming the peak mobility occurs when the 

surface depletion edge reaches the 2DEG, and transport is then through the 2DEG alone, this 

measurement allows a comparison to be made with the magnetoresistance technique. As shown in Table

3.4.2, within experimental error (assumed to be around 10% for the extraction technique and 5% for the 

etching method), the data agree. This validates the magnetoresistance extraction technique.

3 .5  InAlAs/InGaAs/InP from University of Michigan

The InAlAs/InGaAs/InP layer structure, MB1 is shown in Table 3.5.1. The conduction band diagram of 

the structure is shown in Figure 3.5.1.

. -I....}-

*y
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Layer ImAlAs/InGaAs/InP

MB1

Cap 150A 5xl018 In0 53GaAs

S ch ottk v 250A undoped Ino.5 2 AlAs

Donor 150A 5x1018 Ino.5 3 GaAs

Spacer 50A undoped Ino.5 2 AlAs

Channel 100A undoped Ino.6sGaAs 

400A undoped Ino.5 3GaAs

Buffer 3000A undoped Ino.5 2 AlAs

Substrate SI (100) InP

T ab le  3 .5 .1  - Layer Structure o f MB1, an InAlAs/InGaAs/InP HFET
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F ig u re  3 .5 .1  - Conduction Band Diagram o f  MB1

The cap layer is very heavily doped (5 x l0 18c n r3) Ino.5 3GaAs, which has a band gap of 0.71eV. The 

combination of heavy doping and small band gap result in a very low breakdown voltage of the cap layer 

- a phenomenon discussed further in Section 4.8.6.3.

The Schottky layer is undoped Ino.5 2 AlAs lattice matched to InP. The donor layer is uniformly doped 

Ino.5 3GaAs. The Ino.6 5 GaAs strained layer channel is 100A thick, again less that the critical thickness 

for lattice relaxation at this indium concentration^3-8^ Difficulties in the growth o f high quality 

Ino.5 2 AlAs necessitate the introduction of a "smoothing" layer of lattice matched Ino.5 3 GaAs above the 

Ino.5 2 AlAs buffer^310! before the Ino.6 5GaAs channel is grown. Thus, the potential barrier below the
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2DEG is approximately O.leV.

A Hall Bar was fabricated on this material and the magnetoresistance characterisation performed. The 

measured and modelled field dependant resistivities are shown in Figure 3.5.2.

300-
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50 2 31 4
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F igu re 3 .5 .2  - M easured and Fitted M agnetoresistance o f  MB 1

The fitting parameters are shown in Table 3.5.2 below.

2DEG Parallel Conduction

H (cm2/Vs) n sh (cm-2) H (cm 2/Vs) n sh (cm '2)

9200 3 .8 x l0 12 800 2 .8 x l0 13

T ab le  3 .5 .2  - 2DEG and Parallel Conduction Transport Properties o f  MB1

The conduction band offset at the heterojunction is around 0.6eV and results in the large 2DEG carrier 

concentration. The high 2DEG mobility is caused by the small effective mass of Ino.6 5GaAs. Using a 

built in surface voltage of 0.3eV[314l, the parallel conduction sheet concentration should be around 

7x1012cm*2. The reason for the large measured concentration is not obvious. Uncertainties in accurately 

determining the barrier height to heavily doped Ino.5 3GaAs causes further confusion.

3 .6  Summary of Transport Properties of Layers used for HFET Fabrication in the 

Course of this Project

In the course of this project, 3 different 2DEG based layer structures were sourced. The characterisation 

techniques outlined in this chapter have shown the structures to be suitable for the fabrication of HFET 

devices. The layer structures used for HFET fabrication are summarised in Table 3.6.1.
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L a y e r AlGaAs/GaAs

A 3 2 2

AlGaAs/InGaAs/GaAs

T F 1 4 1

In ALAs/InGa As/In P 

M B1

C ap 200A 6x1018 

GaAs

400A 3x1018 

GaAs

150A 5 x l0 18 

Ino.53GaAs

S c h o t tk y 400A 2 x l0 17 

Alo.3GaAs

250A undoped 

Ino.52AlAs

D o n o r 500A 3x1018 

Alo.25GaAs

I l k  3 x l0 12 

5 doped GaAs

150A 5x1018 

Ino.53GaAs

S p a c e r 20A undoped 

Alo.25GaAs

50A undoped 

Alo.3GaAs

50A undoped 

Ino.5 2 AlAs

C h a n n e l 300A undoped 

GaAs

160A undoped 

Ino.isGaAs

100A undoped 

Ino.65GaAs 

400A undoped 

Ino.5 3GaAs

B u ffe r 1000A un doped 

GaAs/AlAs superlattice 

effective x=0.25

5000A undoped 

GaAs

3000Aundoped 

Ino.52AlAs

S u b s t r a te SI (100) GaAs SI (100) GaAs SI (100) InP

T a b le  3 .6 .1  - Layer Structures used in the course o f this Project

The transport properties of the 3 layers are very different, permitting an investigation of the dependence of 

high frequency HFET performance on material structure. The transport properties of the layers used for 

subsequent HFET device fabrication are summarised in Table 3.6.2 below.

2 DEG Transport Properties Parallel Conduction Layer Transport 

Properties

Layer p. (cm2/Vs) nsh (cm '2) p  (cm2/Vs) nsh (cm '2)

A332 7200 9 .9 x l0 11 700 9-OxlO11

TF141 6600 1 .4 x l0 12 1250 l.OxlO13

MB1 9200 3 .8 x l0 12 800 2 .8 x l0 13

T ab le  3 .6 .2  - Transport Properties o f  2DEG and Parallel Conduction Layers Used in this Study
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Appendix 3.1 - Derivation of Magnetic Field Dependant Resistivities in Transport

System of 2 Conducting Paths

This analysis follows the work of Battersby et a lJ311l

Consider single carrier conduction for two parallel layers in the Hall Bar configuration, as shown in 

Figure A3.1

Layer 1

Parallel Conduction 
Layer

Layer 2 
(2DEG)

F igu re A 3.1 - Depiction o f  Hall Bar fabricated on layer structure with both a 2DEG and a Parallel Conduction 

Layer. The two conducting layers are joined only at the annealed ohm ic contacts o f  the Hall Bar.

This system can represent an HFET layer structure if layer 1 is ascribed to the parallel conduction region 

and layer 2 to the 2DEG. The two layers are connected only by the ohmic contacts o f the Hall Bar 

geometry. Applying a longitudinal electric field Ex, results in a circulating longitudinal current J x. As 

the carrier concentration and mobility of the two layers are different, on the application of a perpendicular 

magnetic field Bz, the transverse Hall Field Ey developed in each layer is different. This results in the 

flow of a transverse current Jy when the magnetic Field Bz is applied, even when the system reaches 

equilibrium.

Two resistivities can be defined:

In each layer i, the resistivities defined above can be related to the carrier concentration and mobility as

v = B ( n * . q)
- 1

Inserting these expressions into the tensor relation between the current density and the electric field in
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each layer i, J = cr E  results in :

M l x.n .q 2
i  i

1

1+  /if  B 2

- v *

1 + H 2 B 2 [ e  1
X .1

J
>*i

*m.i / l . B
1

•
E

L y J

2  ^  
1+ u  B

' i

2  ^  1 + / i z Bi

W here Tj is the average scattering rate o f the i ^  layer, mi* is the effective mass of electrons in the ith 

layer, q is the elemental charge and m  is the mobility of the f t 1 layer.

Using coci Ti = fli B, where coci is the cyclotron frequency for the ith layer this equation becomes

T i - C O  T2 ci i

mi n i^2
1 +  CO2  T2 ci i 1+ CO2  T2

Cl 1 rs iX ,1
Jy

*
m . E y

L 5 iJ i CO .T.
Cl 1

T.l
L y iJ

1 +  O)2 . ! 2
Cl 1

1+ CO2 . T2
Cl 1

If the fields in both layers are identical then this equation can be resolved into x and y components as 

follows :

J = cr , E t + cr Ex 1 x x l J xy 1 y

J . = -  cr ,E + a  Ey 1 xy 1 x xx l y

J ,  = CT _E + cr Ex2 m 2  i  x y 2 y

J ~ =  -  c  E + ct EyX xy2 x xx2 y

The currents in the y direction are equal in magnitude but opposite in direction ie 

Jyl = ”Jy2

Thus
F  <J +  <J

x yl  x y2
E~~ = cr +  ajl xx 1 xx 2

In addition,
f  -c  \

J =  J , + J = E j  o- + cr +x x l  x2 x xxl  xx2 EV x y
( % > + % 2 )

Combining the above two equations gives
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a  = —
XX J

cr + a
xx 1 xx 2

2 2 
( a  +<7 \  + r o  + <y \
\  xxl xx 2 /   ̂ xyl xy2)

Now using the notation
P.= fi. Br \ i

and
m

Tin Sl‘*

and

leads to

p f  B) =  Poj( l + i i ' B  )

p 1( B ) p 2( B ) [ p 1(B) + p 2(B)]

[ p ^ B J  + p ^ B ) ]  + [ ^ 2 P ,(  B ) + ^ p 2 (B )] 

pXy can be derived from pxx using the fact that

P \y

So that
Pj(B) p 2(B )[  ^2(B) Pj(B) + 0 t(B)  p 2(B )]  

[ p i(B) + p2(B )]2 + [ ^ 2 p i ( B ) + ^ p ^ B ) ] 2

Thus it can be seen that pxx and pxy are magnetic field dependant, and the variables are only the mobility 

and carrier concentration of each of the conducting layers.
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Chapter 4 Device 
Fabrication

Introduction

This chapter describes the processes and techniques used to fabricate short gate length HFETs. It begins 

with an  overview of the Electron Beam (E-Beam) Lithography System used in this project. The 

properties of E-Beam resists together with the development process subsequent to E-beam exposure are 

then discussed. The metallisation technique used to deposit the various contact layers is next described. 

Having established the basic techniques, the complete process to fabricate a short gate length HFET 

including process control monitors (PCM's) is detailed.

The fabrication of sub-lOOnm T-Gates, an important process developed in the course of this project to 

reduce device gate resistance is given considerable emphasis in the device fabrication discussion.

Finally the fabrication of the remaining structures required for the work of this project

i) Van der Pauw and Hall Bar samples for material characterisation

ii) calibration standards for the Vector Network Analyser calibration procedure

are described.
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4 .1  Electron Beam Lithography

Electron Beam Lithography (EBL) offers a  number of advantages over other techniques such as optical and 

X-ray lithography. The most notable is the resolution of the fabricated structure. The resolution limit of 

optical lithography is set by diffraction o f the exposing light around the edges of a mask in contact with 

the substrate. Even by working with exposing wavelengths far into the ultra-violet, the resolution limit 

is still around 0.3pm t4 1 J. By reducing the exposure wavelength using X-Rays, it is possible to increase 

the resolution to below O .lpm t4-2!, bu t the masking technology is rather fragile^4-3]. In comparison, 

because the electron wavelength is very small (the electron wavelength is 0.25A for 50kV electrons), the 

resolution of EBL is limited more by the quality o f electron optics and the ultimate resolution of the 

resists and pattern transfer techniques used. These factors currently limit the resolution of EBL to around 

lO nm t4-4!, bu t practically, structures in the range 50nm-100nm can be easily and reproducibly 

fabricated^4-5]. A further advantage o f EBL is flexibility of pattern definition due to direct computer 

control o f the writing process. It is a  relatively easy task to convert data from a CAD package to drive 

the scan coils o f an E-Beam machine and thus the time from design to pattern definition on a sample is 

very short. In addition, it is not necessary to generate a new mask every time a modification to the 

pattern is required. This flexibility is advantageous in a research environment.

These attributes m eant that EBL was used throughout this project to fabricate all levels of all structures, 

even where pattern resolution was not critical. The disadvantage however is that scanning is sequential 

and so sample exposure can be very time consuming, particularly if (as is usually the case) a large device 

array is being fabricated.

4 .2  The Electron Beam Lithography System

The EBL system used in this work is based on a modified Philips PSEM 500 Scanning Electron 

Microscope (SEM). The complete system is shown in Figure 4.2.1. Whilst the modifications have been 

described in detail elsewhere^4-6’5], it is useful to summarise the operation of the system, as it constrains 

device design.
Electron Gun

Condenser Lens

IEI IEI “
Magnetic Beam 

| X |  | X |  Blanking Coils
Scan Generator 

12 bitDACs Condenserto x and y Scan CoisISI
A - f o c u s ^ ]  I S !

Secondary
Electronsample

x-stepper 
motor

Detector
x,y, stage

Faraday Cup
Computer 
Controlled 
Stage 
Movement y-stepper 

motor
Beam Current Picoammeter 

(to Faraday Cup)Monitor

Automatic Alignment

F ig u re  4 .2 .1  - Schem atic o f  Com plete EBL System  used in the Project 

The EBL system consists o f the PSEM 500 whose scan coils are under computer control via the Scan 

Generator, a 12 bit Digital to Analogue Converter and raster generator. In addition, the final condenser

67



4 - D evice Fabrication

lens excitation current can be computer controlled to permit automatic focussing!4-7]. The sample is 

mounted on an x,y stage, also under computer control. This allows automatic alignment of a pattern to a 

previously defined level (eg aligning a gate contact in the gap between source and drain contacts)!4-8]. A 

further requirement for automatic alignment is that the Secondary Electron Detector be connected to the 

computer to allow alignment mark auto-registration. A Faraday Cup is interfaced to a PicoAmmeter to 

monitor the current in the electron beam. The magnetic beam blanking coils deflect the electron beam to 

prevent unwanted sample exposure.

The main features of the PSEM 500 are :

i) The size of the electron spot at the focal plane can be selected between 1pm and 80A.

ii) The magnification of the microscope can be varied between 20x and 80,000x. Magnification 

controls the writing field size, eg at 640x magnification, the frame size is 210pm xl70pm .

iii) Continuous manual variable magnification (vari-mag) allows fine adjustment of the frame size 

in both x and y directions.

iv) The accelerating voltage is 50kV.

The exposure procedure will be described in Section 4.6, following a discussion of electron beam resists.

4 .3  E -B eam  R esis t

In EBL, E-beam resists act as pattern transfer media to the substrate. In the course of this work, two E-

beam resists were used:

i) Poly-Methyl Methacrylate (PMMA)

ii) A co-polymer of Methyl Methacrylate and Methacrylic Acid P(MMA/MAA)

Both are positive E-beam resists, meaning areas resist subjected to electron beam exposure are selectively 

removed during the development process leaving windows in the resist film.

The pattern transfer technique is illustrated in Figure 4.3.1.

Substrate

Spin Layer of Positive 
Electron Beam Resist

jl Layer of Resisjj

Electron Beam Expose 
and Develop

Substrate Substrate

Etch

Substrate

Metallise

1 1 *
1 £2

Substrate

The Resist Mask can be 
used to selectively etch 
the substrate material

The Resist mask can be 
used to selectively deposit 
a thin metal film

F igu re 4.3.1 - Substrate Patterning using PM M A as the Transferring M edia

The sample of semiconductor is coated with a layer of PMMA by first dispensing a small quantity of 

PMMA dissolved in a suitable solvent (generally Chlorobenzene or Xylene) on the sample with a pipette, 

and then spinning it at high speed (typically around 5000rpm) to coat the sample uniformly. The sample
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is then baked in an oven at 180°C to evaporate the casting solvent leaving the PMMA coating. By 

varying the amount o f PMMA dissolved in the solvent, the final resist layer thickness can be controlled. 

After exposure and development, the window in the resist film can be used for selective etching or metal 

deposition using the lift-off process.

PMMA consists o f long chain polymer molecules of varying length and molecular weight^4-9]. The 

effect o f the electron beam on PMMA is to break bonds in the polymer chains reducing the average 

molecular weight. The development process is based on selective dissolution of polymer chains below a 

certain molecular weight. The developer employed in this project was a mixture of 4-methyl pentan-2- 

one (MIBK) and Propanol (IPA). The relative concentration of the components governs the efficiency of 

removal of the short chain molecules. Generally a ratio of between 1:1 and 3:1 IPA:MIBK was used, 

with the actual concentration depending on the resist layer thickness.

PMMA's with different average molecular weights can be selected, and thus E-beam resists of different 

sensitivity can be produced. As shown in the contrast curves of Figure 4.3.2, PMMA with a large 

average molecular weight (mw) requires a greater exposure dose than a low mw PMMA to fully develop 

out the pattern.

The contrast curve represents the percentage of resist remaining after development as a function of 

electron beam exposure dose. It can be seen quite clearly that the critical exposure dose for complete 

dissolution o f a PMMA resist layer depends on the average molecular weight o f the PMMA used.

100

950k PMMA
350k PM M A

ww't/i4>OS
4>W)CQ
a
a4>Cl,

85k PM M A

10 100 1000

Exposure Dose (pC/cm ;

F igu re  4 .3 .2  - Contrast Curves for PMMA's o f  Different M olecular W eights

4 .4  L ift-O ff

A further feature o f PMMA is the ease with which it can be removed from substrates. PMMA dissolves 

readily in acetone - a  property exploited in the lift-off procedure. Figure 4.4.1 shows a window that has 

been opened in a PMMA layer as a result of E-beam exposure and development. If a layer of metal is 

deposited on this structure and the whole sample placed in acetone, the remaining resist dissolves 

removing the m etal sitting on it. Using this lift-off technique, it is possible to selectively pattern 

substrates with metal.
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Resist Coated Substrate 
E-Beam  Exposed and 
Developed

Deposit Thin Metal Film

t I ♦
Lift-O ff in Acetone 
Leaving Metal on  
Semiconductor Surface

Substrate | Substrate Substrate

F igu re  4.4.1 - L ift-O ff using PM M A to Pattern Substrate with Metal

4 .5  B i-L a y e r R esis t S ystem

The reliability o f the lift-off technique can be improved considerably by using a bi-layer resist 

structure^4 1 0 !, as shown in Figure 4.5.1. Here, a layer of high m olecular weight PM M A (low 

sensitivity) is spun on top of a  PM M A layer of lower molecular. E-beam exposure and development 

results in an overhang resist profile. On metallisation, the resist profile ensures the deposited film is 

discontinuous, permitting unwanted areas of metal to be easily removed.

E-Beam Expose 
Develop and 
M etallise

High m w ^ M M  Aj;

Low m w PMMA[

Substrate Substrate

F igu re 4.5 .1  - L ift-O ff using a PM M A B i-layer T echnology

The bi-layer resist system was used throughout this project, with the thicknesses of the component layers 

selected according to the resolution of the pattern and the amount of metal required to be lifted-off.

4 .6  E x p o su re  P ro ced u re

4 .6 .1  In fo rm a tio n  R eq u ired  by the E B L  System

The PSEM 500 magnification determines the maximum possible area of sample which can be exposed to 

the E-beam without moving the stage. The magnifications and corresponding frame sizes used in this 

project are shown in Table 4.6.1. As the scan generator has 12 bit DAC's, each frame consists of 

4096x4096 individually addressable pixels, whose size also depends on the magnification as shown in 

Table 4.6.1. A high resolution pattern requires a small pixel size, so a large magnification must be used. 

The frame size o f a pattern is thus determined by the resolution.

Magnification Frame

Size(um2)

Pixel Size 

(nm2)

320x 435x330 106x80

640x 210x170 50x40

1250x 115x90 28x21

2500x 56x42 14x10

T able  4.6.1 - Frame and Pixel S izes for PSEM 500  M agnifications
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Using a CAD package developed 'in-house', patterns consisting of rectangles or trapezia are generated. 

The output from the CAD package, the 'pattern file', contains the top left and bottom right pixel co

ordinates of the rectangles or trapezia and also an exposure dose which is assigned to each of the pixels. 

The exposure dose is chosen to fully remove resist from the exposed area on development.

If an array o f devices is to be fabricated, it is possible to drive the x,y stage from one position to the next 

and expose pattern files at each exposure site. The 'position file' contains x,y coordinates for the stage 

movement with respect to a position defined when the lithography system is initialised and also identifies 

the 'pattern file* to be scanned at each site. W hen the system is running, the beam blanking coils are 

energised between sites as the stage is moved, but not between individual rectangles in the position file. 

This overcomes beam settling errors at the start o f each rectangle.

4 .6 .2  Exposure

The electron beam spot size is chosen with regard to the required resolution. Generally, the spot size is 

slightly smaller than the pixel size. Initially, the substrate holder is moved until the Faraday Cup is 

imaged. The electron beam is focussed into the Faraday Cup and the beam current measured with the 

PicoAmmeter. The beam current information is fed to the computer which is also told the magnification 

a t which the pattern is to be written. The computer can then calculate the required dwell time of the 

electron beam at each pixel to be addressed so that the pixel receives the electron dose requested in the 

'pattern file'. When writing commences, the dwell time information and rectangle comer coordinates are 

fed to the scan generator. The stage is then moved to a reference point (usually the bottom left comer of 

the chip). The beam blanker is energised, and the scanning initiated.

4 .7  M etal Deposition

As discussed in Section 4.4, metal deposition and lift-off are important techniques for the fabrication of 

HFET's. The metal deposition system used throughout this project was a Plassys MEB 450 Evaporator. 

The amount and rate of metal deposition were controlled using a quartz crystal thickness monitor mounted 

alongside the sample. Using this metallisation system, it was possible to deposit gold, germanium, 

nickel, titanium and nichrome in a high vacuum environment (typically 9xl0*7- l x l 0 '6 mbar). A load 

lock permitted these pressures to be achieved 10 minutes after the sample was placed in the evaporator. 

The combination o f the advanced control system and high vacuum of the Plassys evaporator resulted in 

high reliability of the metal deposition process particularly where metal thicknesses and base pressures 

were critical.

4 .8  Fabrication Of HFET's

The complete HFET fabrication process is now described. The device consists of 6 levels of lithography 

- alignment marks, isolation, ohmic, wiring, bondpad and gate definition. The devices were designed to 

be compatible with the on-wafer Cascade Microwave Probes used in high frequency characterisation. This 

required a coplanar waveguide type structure tapered from probing pads with a signal-ground pitch of 

100|im . A SEM micrograph o f a completed device is shown in Figure 4.8.1. To reduce the gate
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resistance and die effect of stray capacitance at die end of die gate lines, a two linger gate topology was 

chosen.

Figure 4.8.2 shows a micrograph of a finished device chip. The source pads of adjacent devices overlap, 

resulung in a conunuous groundplane. It was envisaged diat a large groundplane would provide a good 

reference for the microwave measurements. Also evident in Figure 4.8.2 are die isolation process control 

monitor (PCM) structures in die bottom right comer.

17'
0 0 9  30KV X300  1 0 0 urii

V  V  V8 8
f t . f lM0

m a m

W H T
F igure 4.8.1 - SEM Micrograph o f HFET D evice F igure 4.8.2 - SEM  M icrograph o f  Com pleted D evice

Chip showing HFETs and PCMs

4 . 8 . 1  L e v e l  1 - A l i g n m e n t  M a r k s

Global registradon marks were first defined to allow alignment of die isolation, ohmic and bondpad 

levels. The pattern is shown in Figure 4.8.3.

□
0

0 □

Figure 4.8.3 - Alignment Mark Pattern
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The pattern was stepped out on a 6x5 array resulting in 30 device sites on each chip. The pattern consists 

o f  alignment marks for a 320x magnification frame (the magnification at which the isolation and bondpad 

levels are written), and marks for a 640x frame, (the ohmic level). The alignment mark metallisation was 

a  gold/germanium/nickel (AuGeNi) based ohmic contact recipe. This was used because four isolation 

process control monitors (PCM's) were also defined at this level. Each of these PCM structures consists 

o f  two 75pm2 pads separated by 10pm. Once annealed, the ohmic contact provides a low resistance 

contact to the semiconductor structure. By monitoring the current passing between the PCM  pads as a 

function of isolation etch time, it is possible to determine when the active layer has been etched through, 

and etching should be terminated. This is discussed further in Section 4.8.2.

The resist used and PSEM 500 magnification and spot size are as follows:

Resist - Bilayer 5800A 85k mw PMMA (10% BDH)§ spun at 5000rpm for 60s

Bake 1 hour 180°C

1000A 350k mw PMMA (4% ELV) spun at 5000rpm for 60s 

Bake 4 hours 180°C 

Magnification 320x

Varimag 1.0, 1.0

Spot Size 640A

Developer 2.5:1 IPA:MIBK at 23°C for 30s

Prior to metal deposition, the sample was barrel ashed for 1 minute in oxygen to remove amy residual 

organic contamination. The sample surface was then de-oxidised in 2.5:1 H20:HC1 for 30s, blown dry in 

nitrogen and immediately loaded into the Plassys evaporator. A pressure of 2xl0*6 mbar was reached in 

around 10 minutes. The ohmic metallisation deposited was:

70nm Au

25nm Ge

lOnm Ni

180nm Au

a recipe optimised for the AlGaAs/GaAs structures as will be described in Section 4.3.

The metal was lifted-off in warm acetone (heated to around 45°C  in a water bath) and annealed on a 

carbon strip annealer in Ar:H 2 95:5 forming gas at 300°C for 30 seconds. As high quality ohmic 

contacts were not a requirem ent for this process, the annealing temperature was not optimised.

§A t each level, the resist com ponents and their thicknesses will be given. As this thesis m ay be used for 

reference purposes in the N anoelectronics Group in future, the resist w ill also be defined in terms more familiar 

to the workers there ie resist type is B D H  - 85 ,000  molecular weight (mw) PMM A obtained from BD H  or ELV - 

350,000 (m w) PM M A from Du Pont. The thickness w ill also be inferred from the percentage w eight of PMMA 

in the casting solvent which is O -X ylene for concentrations below 10% and Chlorobenzene otherwise.
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The requirements for the process were that:

i) the contact morphology be smooth, thus allowing the automatic alignment routine to 

function without difficulty at subsequent levels.

ii) the PCM allowed some current to flow between the pads, so that device isolation could be 

checked.

4 . 8 . 1 . 1  A l i g n m e n t

All subsequent levels of lithography require alignm ent. The automatic alignment system was used 

throughout, but it was still necessary to initialise this system by performing one manual alignment to 

instruct the system where the alignment marks on the sample should be positioned with respect to the 

field of view of the SEM. Alignment was perform ed by scanning a raster pattern over the metal 

alignment marks on the sample. The alignment marks contained significant amounts of gold, and thus 

had a high contrast compared with the substrate.

Three types of alignment pattern were used, each providing successively greater alignment accuracy.

The first two alignment schemes, die coarse and fine alignment patterns, were used for all levels. The 

final, very-fine alignment pattern was used for gate definition where high accuracy was required as 

described in Secuon 4.8.6.

The coarse alignment pattern is shown in Figure 4.8.4. It consists of two gratings with a low exposure 

dose, thus minimising unwanted exposure of the resist.

0

F ig u re  4 .8 .4  - Course A lignm ent Pattern F ig u re  4.8.5 - Fine A lignm ent Pattern

The coarse alignment pattern was scanned and the stage moved until the top left and bottom right 

alignment marks were positioned in die centre of die graungs.

The fine alignment pattern, shown in Figure 4.8.5, was then scanned.

This consisted of a border around each of die four alignment marks. The border overlapped the edge of the 

marks by 10%. The sample was moved until die marks were central widiin die border by changing the 

x,y posidon and rotation of die sample, and adjusting die vari-mag of die SEM.

Having manually aligned die sample, the automatic alignment system was initialised and subsequent sites 

were aligned under computer control.
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4 .8 .2  Level 2 - Isolation

The aim o f device isolation is to confine current to an area of semiconductor by selective removal of the 

surrounding conducting layers. Current flow in the isolated area can subsequently be modulated by the 

application o f voltage to various contacts placed on the isolated region. Further, the application of 

voltages to contacts on nearby devices should have no effect on the device characteristics - obviously this 

is of considerable importance to circuit performance.

No Conduction 
Path for Current 
because of 
isolation

Cross-Section Through AA

Drain |

Gate

Source /  |

Isolated Mesa of 
Conducting Material

Source Drain

/  Conducting Layers /

Undoped Buffer Layer

Serru-Insulating Substrate

The only Current Path 
from Source to Drain 
is via the Conducting 
Layers of the Mesa under 
the Gate Contact

F igu re  4 .8 .6  - M esa Isolation Technique for HFET

4 .8 .2 .1  Isolation Methods

It is possible to isolate a semiconductor device in a number of different ways:

i) Isolation can be performed using the mesa isolation technique depicted in Figure 4.8.6. Here 

current is confined by removing material everywhere except in selected areas.

Using this method, the gate stripe has to surmount one edge of the mesa allowing the gate

signal to reach the active material. The height of the etched mesa can be minimised by monitoring the 

current flowing between the ohmic contact pads on the isolation PCM structure when the device 

isolation is performed. The pads for the device are deposited on non-conducting material, thus 

minimising parasitic pad capacitance.

ii) An alternative technique, trench isolation, is shown in Figure 4.8.7 for a Hall Bar structure. In 

this method, a trench surrounding the device is used to confine the current by etching through the 

conducting layer. If this method is used to isolate a HFET, the gate stripe has to cross the edge 

o f the trench twice (down into the trench from the gate pad, and back up out o f the trench onto 

the isolated area)- a requirement which reduces gate yield (step coverage yield) as the gate stripe 

can often be discontinuous where it crosses an edge. Further, the bond pads are sitting on active 

material, which may lead to larger parasitic capacitances between the pads.
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Contacts}.Ohmic

i f  Conducting Channel]:

Current
Flow

Etched Trench Only 
Allowing Current Flow  
in Conducting Channel

Section Through A A

Non-Conducting Buffer

Ohmic Ohmic

Insulating Substrate

Conducting
Layer

Figure 4 .8 .7  - Example o f  Trench Isolation  

For these reasons, mesa isolation was used for HFETs.

4 . 8 . 2 . 2  M esa I s o l a t i o n  M a s k

The options for fabricating a suitable isolation mask were next addressed. Ideally, a negative resist (resist 

remains only in the exposed area after development) mask would have been used to minimise writing 

time. However, after exposure and development, negative E-beam masks are very difficult to remove 

using solvents, as die exposure process cross-links the polymer chains. It is possible to remove a 

negative resist by oxygen ashing or oxygen reactive ion etching, but diis introduces damage into 2DEG 

structures^412!.

Previous FET work in the Nanoelectronics Group had used a Metal on Polymer (MOP) isolation 

m askt413!, but complete removal of this mask also required die use of an oxygen ashing step. For this 

reason, PMMA was used as die mask for mesa isolation. It was necessary to expose all of the chip with 

the exception of die mesa region - a fairly time consuming business. The pattern is shown in Figure 

4.8.8. The mesa of the HFET device was 40pm wide, as the gate level was subsequently written at 

2500x magnificadon (50x40pm frame size).
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Ohmics are Protected by 
Resist from Isolation Etch

ITrench around Ohmics;

F ig u re  4 .8 .8  - M esa Isolation Pattern F igure 4 .8 .9  - Isolation Pattern for Isolation PCM

Figure 4.8.9 shows the isolation pattern for the isolation PCM. It was found that the etch rate of the wet 

chemical mesa isolation etch was enhanced in regions of exposed ohmic contact metal. Therefore it was 

necessary to protect the pads, particularly their edges, from die etch if a  true indication o f the degree of 

isolation across the chip was to be gained from the PCM "s.

As well as isolation structures for HFETs, an isolation structure for the Transmission Line Model 

(TLM)t414! PCM used to evaluate the ohmic contact resistance (described in Section 4.8.3) was written. 

This consisted of a 10^mx200)xm bar. - 

The resist and SEM exposure conditions are shown below:

Resist - Bilayer

Magnification 

Spot Size 

Developer

5800A 85k mw PMMA (10% BDH) spun at 5000rpm for 60s 

Bake 1 hour180°C

1000A 350k mw PMMA (4% ELV) spun at 5000rpm for 60s

Bake overnight 180°C

320x

250nm

2.5:1 IPA:MIBK at 23°C for 30s

The resist was baked overnight to give good adhesion to the substrate, so that the etch would not undercut 

the resist. A bilayer was used to reduce the likelihood of etch penetration through pin-holes in the mask.

4 .8 .2 .3  Isolation Etch

Devices had previously been isolated using a M ethane/Hydrogen Reactive Ion Etching (RIE) 

techniquet4-1^ .  At the time device isolation was being performed in the current study, the ElectroTech 

340 RIE machine used for CH4 /H 2  etching was unreliable. Thus it was impossible to reproducibly 

fabricate mesas o f the minimum height required to isolate devices whilst still achieving gate step 

coverage. In addition, it was impossible to completely isolate samples of the InGaAs/InAlAs/InP 

structure (MB1) as the etching resulted in the formation of a surface conducting layer. Figure 4.8.10
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shows a plot o f current measured between two 75|im wide pads separated by lOfim as a function of etch 

depth (measured using a talystep). The structures were etched using

i) CH4/H 2 with a gas flow rate of 5:25cc/min (methane.'hydrogen) and a power of 80W giving a 

EXT bias of around 700V

ii) H3P0 4 :H2 0 2 :H2 0  1:1:100 (a well known wet etch for InP based layer structures)^416!.
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F igu re  4 .8 .10  - Saturation Current as a Function o f  Etch Tim e for W et and Dry Isolation Etching Techniques

W hereas the wet etch isolation current falls to around lOnA, the dry etched isolation current saturates at 

around lOOpA. The mechanism for this effect is not understood, but precluded the formation of mesas 

using CH4/H 2 RIE. For this reason, wet chemical etching was used for device isolation.

The etch chosen for isolation of both GaAs and InP based structures was H 3 PC>4 :H 2 0 2 :H 2 0  1:1:100. 

This was found to etch at around 300A/min for all structures, and to produce smooth etched surfaces.

4 .8 .3  Level 3 • O hm ic  C o n tac ts

The ohmic contact level shown in Figure 4.8.11 was written at 640x magnification to allow the 1.1pm 

source/drain gap to be defined.

F ig u re  4 .8 .1 1 . - O hm ic Pattern
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In addition, alignment marks for the gate level were written as part o f the ohmic level. The resist and 

SEM writing conditions are shown below:

Resist - Bilayer

Magnification 

Spot Size 

Developer

5800A 85k mw PMMA (10% BDH) spun at 5000rpm for 60s 

Bake 1 hour180°C

1000A 350k mw PMMA (4% ELV) spun at 5000rpm for 60s

Bake 4 hours 180°C

640x

640A

2.5:1 IPA:MIBK at 23°C for 30s

In addition to the device ohmic contacts, the TLM PCM 's (Figure 4.8.12), which consisted of 10pm bars 

of ohmic metallisation crossing the TLM mesa with spacings of 1, 2, 5 and 10|im, were written.

5 7 0 0 0 6  30KV X350'  5 7 0 0 0 7  30KV X 3 0 0 ' '  1 00um

F igure 4.8 .12  - SEM Micrograph of TLM PCM F igure 4.8 .13  - SEM Micrograph Overview o f  Gate

Resistance PCM

This PCM allowed the ohmic contact resistance of die ohmic metallisation to die layer structures to be 

determined using the Transmission Line Mediodt4 14J.

The ohmic level of the gate resistance PCM was also defined. This structure, shown in Figure 4.8.13, 

was used to make a 4-terminal measurement of DC end-to-end gate resistance. To ensure the length of 

the gates in this PCM were idendcal to those of die HFETs, die resistance is measured on gate structures 

aligned in a 1.1pm source drain gap.

After development, the samples were ashed in oxygen for 1 minute and de-oxidised in 4:1 H20:HC1 for 

30 seconds and then immediately loaded into die Plassys evaporator.

79



4 - Device Fabrication

4 .8 .3 .1  Ohmic Contact Metallisations

The ohmic contact recipe for the InP based structure was obtained from the layer growers in 

Michigan^417! and was found to work well without modification. From the substrate, the metallisation 

was: Ge 70nm

Au 140nm

Ni 50nm

Ti 20nm

Au 70nm

The ohmic metallisation for the AlGaAs/GaAs and AlGaAs/InGaAs/GaAs devices evolved from that 

previously developed for 2DEG structures in the Nanoelectronics Groups 181. The thickness of the top 

layer of gold in this contact was adjusted so that the total metallisation thickness was equal to the InP 

based material ohmic contact so that any planarisation effects of the gate resist thickness in the source 

drain gap of devices would be independent of layer structure. From the substrate, the contact recipe was:

Au 70nm

Ge 25nm

Ni lOnm

Au 180nm

Both of the ohmic metallisations were developed with the aim of producing a low contact resistance, 

smooth morphology ohmic contact. The morphology was of considerable importance, as good 

morphology makes gate alignment easier to accomplish.

The ohmic contact was lifted-off in warm (45°C) acetone.

4 .8 .3 .2  Ohmic Contact Annealing and TLM Evaluation

Once deposited and lifted-off, the ohmic contacts were annealed on a silicon substrate in a Jipilec Rapid 
Thermal Annealer. Annealing was carried out in a N2 atmosphere.

The annealing cycle consisted of

i) a 10 second ramp from room temperature to the annealing temperature

ii) an anneal at an optimised temperature for an optimised time

iii) a 10 second ramp down from die annealing temperature to room temperature again

The cycle was optimised by annealing a number of TLM test samples metallised along with the device 

chips at various temperatures for different durations. The TLM test patterns were fabricated on each of the 

three material structures.

Optimum annealing conditions, determined by measuring the contact resistance are shown in Table 4.8.1. 

The ohmic contact resistance and sheet resistance measured on the device chips is also shown.

Layer Temp. (°C) Time (s) Rc (Qmm) Rsheet (fl/sq)

A322 360 30 0.46 775

TF141 340 30 0.05 250

MB1 360 60 0.11 140

Table 4.8.1 - Optimum Annealing Temperature and Contact Resistance for MBE Layers used in this Study
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The contact resistance of A322 chips was larger than the optimised value of 0.2£2mm obtained on the test 

samples. The reasons for the lack of reproducibility are unclear.

Although its resistance was small, die contact morphology on the TF141 layer structure was poor in 

comparison with the other layers as shown in Figures 4.8.14. This poor morphology made gate 

alignment on the TF141 devices very awkward.

5 7 0 0 0 8  3 0 KV £ 0 . l u n

Figure 4.8 .14  - SEM Micrograph o f Annealed Ohmic 

Contact to TF141 showing poor Morphology

4 . 8 . 4  L e v e l  4  - W ir in g  L e v e l

One of the limitations of the EBL system is that over a period of around two hours, the beam current 

decreases appreciably. This drop in beam current results in pattern underexposure.

To achieve the resolution to produce a 1.1pm source drain gap, it was necessary to write the ohmic 

contact level using a 640A spot size. It was only possible to write the basic ohmic contact pattern on 

the mesas of a device chip with this spot size in two hours. Thus the ohmic contacts still had to be 

joined to the large area bondpads. Due to their size, the bondpads were written at low magnification with 

a large spot size to minimise writing time, limiting die resolution of die pattern and its alignment. For 

these reasons, pattern overlay errors may have been encountered if die bondpad was aligned directly to the 

ohmic level. Thus, definiuon of most of die groundplane of the device - die wiring level, was written 

between the ohmic and bondpad levels. The wiring level is shown in Figure 4.8.15, and extends the 

ohmic contact to join the subsequently defined bondpad level. There are small holes in the wiring level 

so that the gate alignment marks can still be seen.
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Figure 4.8.15 - Wiring Level

The resist and SEM writing conditions used are shown below:

Resist - Bilayer

Magnification 

Spot Size 

Developer

5800A 85k mw PMMA (10% BDH) spun at 5000rpm for 60s 

Bake 1 hour 180°C

1000A 350k mw PMMA (4% ELV) spun at 5000rpm for 60s

Bake 4 hours 180°C

640x

125nm

2.5:1 IPA:MIBK at 23°C for 30s

After development, the sample was oxygen ashed for 1 minute and de-oxidised in 4:1 H20:HC1 for 30 

seconds before metallisation which consisted o f:

Ti 30nm

Au 200nm

Lift-off was performed in warm acetone.

4 .8 .5  Level 5 - Bondpad Level

Die HFET devices were designed to be compatible with Cascade Microtech rf probe heads suitable for on 

wafer S-parameter characterisation. The probe heads have a coplanar structure with characteristic 

impedance of 50Q to the probe tips. The probe tip pitch was 100pm. The bondpad pattern shown in 

Figure 4.8.16 consists of source (top and bottom), gate (left) and drain (right) pads in a coplanar 

configuration with the source contact acting as the groundplane of the device.
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F ig u re  4 .8 .1 6  - Bondpad Level

The device separation on the chip was designed so that the source contacts of adjacent devices overlapped 

resulting in a large area groundplane across the whole the chip (Figure 4.8.2). The width to space ratio of 

the tapering gate and drain pads was designed to give a coplanar waveguide structure with characteristic 

impedance (Zq) o f 50£2 all the way to the active part of the HFET. The ratio of the probe pad width (S) 

to the spacing between the pad and the groundplane (W) as a function of distance along the tapering pad 

was calculated to be 1.4 using the formulat419]

Z = 3 0 ,C [K(k')/K (k )]

where

and

k=

o jl

[(e r + 1) /  2 ] 2 

S
(S + W )

2 ik=a- k >

with K(k) a  complex integral o f the first kind and £ is the dielectric constant of GaAs. The formula 

assumes a groundplane o f infinite extent

A thick resist layer was used to lift-off 0.5pm  of metal thus ensuring good contact between the probe tips 

and the bondpad. The resist and SEM writing conditions were:

Resist - Bilayer

Magnification 

Spot Size 

Developer

11000A 85k mw PMMA (15% BDH) spun at 5000rpm for 60s 

Bake 1 hour180°C

1000A 350k mw PMMA (4% ELV) spun at 5000rpm for 60s

Bake 4 hours 180°C

320x

250nm

1:1 IPArMIBK at 23°C for 30s
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Prior to metal deposition, the sample was ashed in oxygen for 1 minute and deoxidised in 4:1 H20:HC1 

for 30 seconds before being metallised with :

Ti 30nm

Au 500nm

The metallisation was lifted off in warm acetone.

4 .8 .6  Level 6 - Gate Level

The gate level o f the HFET is the most critical in the fabrication procedure, as both the gate length and 

the gate recess depth significandy influence the performance of the completed device. Generally, short 

gate length structures (clOOnm) require the use o f thin resist layers to achieve the desired 

resolutiont4-20!. This reduces the amount of gate metal that can be lifted-off, and so increases the value 

o f the gate resistance of the device, limiting device performance. In the course o f this work, devices with 

sub-lOOnm footprint conventional (or pyramidal) gate structures as well as sub-lOOnm footprint T-gate 

structures have been successfully fabricated. The route to the definition o f these gate structures will be 

described n ex t The gate recess etch process is then detailed. Finally in this section, the resistances of 

the gate structures (measured using the gate resistance PCM) are presented.

4 .8 .6 .1  Gate Alignment

The alignment pattern shown in Figure 4.8.17 was used to position the gate accurately.

Source Drain 
Gap

Aligned Misaligned

F ig u re  4 .8 .1 7  - Very Fine Gate A lignm ent Pattern F ig u re  4 .8 .1 8  - A lignm ent U sing Gate A lignm ent

Strategy

Consider one o f the four groups of lines in the alignment pattern. Each line is composed o f staggered 

segments as shown in Figure 4.8.18.

The alignment method uses differences in signal intensity when the lines are scanned across the edges of a 

source drain gap o f a sacrificial device on the chip. When segments o f each line scans over ohmic metal, 

a bright signal from the gold in the contact is obtained. When segments are scanned in the source drain 

gap the signal is darker, as the substrate is being imaged. When aligned, the high contrast signal from
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scanning over ohmic metal will be of the same length (ie the number of segments scanning ohmic metal 

in the two lines is equal). If misaligned however, the length of the bright part of the lines will be 

different Using all four sets of vernier patterns allows high accuracy gate alignment to be performed.

As before, having manually aligned the sample, the automatic alignment system was initialised, and 

subsequent alignment performed under computer control.

4 .8 .6 .2  Pyramidal Gate Definition

To study the dependence of gate length on device performance, 200, 120 and 80nm gate length HFETs 

were fabricated, as previous work had indicated that poor scaling limited device performance for gate 

lengths below 80nmt4-21l. For these linewidths, a relatively thick bilayer resist can be used for gate 

definition which allows around 200nm of gate metal to be lifted-off. The resist and SEM writing 

conditions were:

Resist - Bilayer

Magnification 

Spot Size 

Developer

5800A 85k mw PMMA (10% BDH) spun at 5000rpm for 60s 

Bake 1 hour 180°C

1000A 350k mw PMMA (4% ELV) spun at 5000rpm for 60s

Bake 4 hours 180°C

2500x

8nm

2.5:1 IPA:MIBK at 23°C for 30s

A series of exposure tests showed the required gate lengths could be produced using the pattern of Figure 

4.8.19 with the following exposure parameters :

Linewidth

(nm)

Exposure

OiCcnr2)

No. of 

Pixels

200 2500 8

120 2500 4

80 2500 2

Table 4.8.2 - Exposure Dose and Pixel Size of Features 

to Produce Linewidths of 200nm, 120nm and 80nm
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F igu re 4 .8 .1 9  - Gate Level

An additional 8 pixel gate feed on die left of the gate lines is included in the 2 and 4 pixel (80nm and 

120nm) structures to improve step coverage yield onto the inesa.

Micrographs of the three different gate lengths are shown in Figures 4.8.20-22. It was only possible to 

achieve these linewidths repeatedly if die astigmausm of the electron beam was minimised at the start of 

each gate lithography session. In addition, die automadc focussing system was used to ensure accurate 

focussing at every site.

5 7 0 0 0 5  30KV X i 5 0 K ' ' £ 0 0 n m

F igure 4 .8 .20  - SEM Micrograph o f 200nm F igu re 4.8.21 - SEM Micrograph o f 120nm

Pyramidal Gate Pyramidal Gate
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F igu re 4 .8 .22  - SEM Micrograph o f 80nm Pyramidal Gate 

4 .8 .6 .3  T -G a te  D efin ition

To reduce the resistance of the gate stripe whilst maintaining a small footprint in contact with the 

semiconductor, the T-gate structure can be implemented^4-22 .̂ By utilising the properties of resists of 

different sensitivities, it is possible to achieve the desired structure, as shown in Figure 4.8.23

Large
Cross-Sectional 
Area

Small Footprint

F igu re 4 .8 .23 - T-gate Fabrication Using PMMA's o f Different Sensitivity

In essence, it is only necessary to spin a layer of high sensitivity resist on a layer of low sensitivity. In 

practice, whilst slightly more complex, the employed strategy has the same philosophy.

The resist structure used was a tri-layer system as shown in Figure 4.8.24. The bottom, gate length 

defining layer was a thin layer of 350k mw PMMA. The middle layer was a thick layer of a co-polymer 

of methylmethacrylate and methacrylic acid P(MMA/MAA)t4-24] which has a greater sensitivity than 

PMMA. The top layer was a thin layer of 85k mw PMMA incorporated to provide an overhang resist 

profile and improve lift-off yield.

E-Beam Expose 
Develop and 
Metallise

Low  M olecular  
W eight PMMA

High M olecular 
W eight PM M A
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85k PMMA

P(MMA/MAA)

350k mw PMMA

Figure 4.8.24 - The Tri-Layer Resist Structure Used in this Project to Fabricate T-Gate Structures

A central line was written with an exposure sufficient to develop out the sub-lOOnm footprint. To 

increase the area of the top of the T ,  side lines of low exposure dose were written. The large sensitivity 

difference between P(MMA/MAA) and 350k mw PMMA allowed a side line exposure to be chosen which 

caused the exposed P(MAA/MAA) to be removed on development without affecting the footprint size. 

Initial exposure test were conducted on a planar substrate with the following resist and SEM parameters:

Resist - Tri-layer

Magnification 

Spot Size 

Developer

1000A 350k mw PMMA (4% ELV) spun at 5000rpm for 60s 

Bake 1 hour 180°C

3000A P(MMA/MAA) (9% CoPoly) spun at 5000rpm for 60s 

Bake 1 hour180°C

500A 85k mw PMMA (2.5% BDH) spun at 5000rpm for 60s

Bake 4 hours 180°C

2500x

8nm

2.5:1 IPA:MIBK at 23°C for 40s

The exposure strategy is shown in Figure 4.8.25.

Side Fill-In Central Fill-In Side 
Line Line Line Line Line

No of 
Pixels

3U *  100 1000 100 250

2
Exposure (pC/cm  )

Figure 4.8.25 - Exposure Strategy for Realisation o f T-Gate Structures

4 - Device Fabrication

I E-Beam 
*  Expose

In addition to die central 2 pixel line exposure of lOOOpCcin'2 and die 4 pixel line side line exposure of 

250p.Ccm'2, the 6 pixel spacing between die central and side lines was also exposed with lOOfiCcm'2 to
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reduce the size of the overhang produced by die 85k mw PMMA layer. Metallisation and lift-off resulted 

in structures with footprint sizes less than lOOnm as shown in Figure 4.8.26.

F igure 4 .8 .26 - SEM Micrograph o f lOOnm T-Gate 

on a Planar Substrate

However, it proved impossible to successfully implement this process in a HFET because of resist 

planarisation in the source drain gap. Figure 4.8.27 shows die effect of a small source drain gap on resist 

thickness.

Increased resist 
thickness due 
to planarisation 
caused by 
ohm ic contacts

Ohmic Contact
A W '

F igu re 4 .8 .27  - Planarisation Effect o f Gate Resist Due to Presence o f Ohmic Contacts

Cross-sectional SEM studies of resist spun over ohmic contacts separated by 1.1pm indicated that the 

4500A thick resist layer optimised for T-gate fabrication on a planar substrate was around 6600A thick in 

the source drain gap. The process failed because of the increase in resist diickness.

To overcome this problem, the resist concentrations and spin speeds were altered until each of the 

individual T-gate resist components was of die required thickness when measured in cross-section in a 

source drain gap. To allow reproducibility of die process, die resist components' thicknesses as spun on
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a planar substrate were talystepped. The layer thicknesses measured in this way are given below together 

with the SEM writing conditions:

Resist - Tri-layer

Magnification 

Spot Size 

Developer

540A 350k mw PMMA (2.5% ELV) spun at 5000rpm for 60s 

Bake 1 hour 180°C

2100A P(MMA/MAA) (-6% CoPoly) spun at 6000rpm for 60s 

Bake 1 hour 180°C

460A 85k mw PMMA (2.5% BDH) spun at 6000rpm for 60s

Bake 4 hours 180°C

2500x

8nm

2.5:1 IPA:MIBK at 23°C for 40s

The co-polymer was diluted in cellosolve until die planar layer thickness was 2100A. This was 

calculated to be approximately 6% weight by volume.

It was necessary to re-optimise die exposure doses for T-gates in source drain gaps. In order that the 

resist planarisation effect be included in die optimisation, exposure tests were performed in source drain 

gaps by aligning gates to test structures whose ohmic metal diickness was identical to that of the HFET 

devices. To determine the resist profile in die source drain gap, the test structures were cleaved and 

examined in cross-section using an SEM.

The optimised exposure conditions shown in Table 4.8.3 produced the resist profile shown in Figure 

4.8.28. A lifted off 80nm footprint T-gate aligned in a source drain gap is shown in Figure 4.8.29.

Exposure (pC/cnA

Centre Line 750

Side Line 250

Fill In Line 100

Table 4.8.3 - Exposure Parameters for T-Gate in Source Drain Gap
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I TGATE. PFF  
T G9 2 5  i i

1 1 / 1 1 / 9 1

5 7 0 0 0 0  30KV X 6 0 ! 0 K ‘ ‘ 5 0 0 n m

F igure 4 .8 .28  - SEM Micrograph o f Resist F igure 4 .8 .29  - SEM Micrograph o f Lifted o f  80nm

Profile in Source-Drain Gap Footprint T-Gate in Source Drain Gap

Across a 10mm^ chip, considerable variation of the resist thickness in source drain gaps was observed. 

Figures 4.8.30 and 4.8.31 show identical exposure conditions for 2 different sites where the resist 

thicknesses in the source drain gaps are 390nm and 460nin respectively. The process had insufficient 

lattitude to cope with this variation in resist thickness.

I T GA T E . PFF  
T G9 2 5  i i

I T GA T E . PFF  
T G9 2 5  i o

F igure 4 .8 .30  - SEM Micrograph Showing 

Lack o f T-Gate Process Latitude

F igu re 4.8.31 - SEM Micrograph Showing 

Lack o f T-Gate Process Latitude
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Although a sub-lOOnm T-gate process has been developed and demonstrated in the course of this work, it 

is of low yield and is not yet sufficiently advanced to be incorporated into circuits.

4 .8 .6 .4  Gate Recess Etching

As discussed in Section 2.7, an HFET technology incorporating a gate recess etch results in a reduction 

in parasitic access resistance, and also reduces the influence of surface states on device performance. Gate 
recess etching was performed using 5:1:200 (95%)H2SC>4:(35%)H202:H20 for the GaAs based samples 

and 1:1:200 (70%)H3PO4:(35%)H2C>2:H2O for the InP based samples. 500ppm of a wetting agent 

(Fluorad FC-93) was added to each etcht4*24!. This had been found to improve the uniformity of gate 

recess etching. In addition, beakers containing IPA and water were also prepared.

The samples were first rinsed in water, then IPA and placed in the etch for 45 seconds. After etching, the 

samples were rinsed in water and IPA before finally being blown dry with nitrogen.

Several devices on each chip were probed through the gate resist, and the saturated drain current measured 

using an HP4145B parameter analyser. From the 2DEG sheet electron concentration evaluated by the 

magnetoresistance technique and assuming

i) an average carrier velocity of 1 .Ox 105ms'1

ii) the barrier height of the Schottky gate metal and a free surface were similar

a target saturation current to stop etching was calculated for the 80pm wide devices as shown in Table 

4.8.4.

Material A322 TF141 MB1

Target Current CmA) 12.7 18.0 48.6

Table 4.8.4 - Target gate Recess Currents for Materials Used in this Study

For the GaAs based devices, the samples were subjected to repeated etching until this target current was 

reached. This took around 75 seconds for devices fabricated on A322 and 180-240 seconds for devices on 

TF141. Figure 4.8.32 shows die saturated drain current as a function of etch time for two A322 device 

chips.
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Figure 4.8.32 - Saturation Current as a function Figure 4.8.33 - Saturation Current as a function

of Gate Recess Time for Two A322 Chips of Gate Recess Time for Two TF141 Chips
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One of the limitations of gate recessing using a wet chemical etch is the variable initiation time of the 

etching process. As well as being chip dependant, die initiation time can also vary from device to device 

on a chip, resulting in the spread in the data shown in Figure 4.8.32.

Figure 4.8.33 shows the saturation drain current as a function of etch time for two TF141 device chips.

In an effort to explain the shoulder in the curves, a simple analytic model was developed which involved 

repeatedly solving Poissons Equation for the layer structure as material was removed from the surface. 

The Poisson solution gave free carrier concentrations in each layer and allowed the saturated current to be 

calculated as a function of etch time based on die following assumptions:

i) A constant etch rate of 20nm per minute independent of the material being etched

ii) A constant carrier velocity of l.Oxlo'ms"* independent of the material

iii) No carrier diffusion included

iv) No quantisation effects included

v) A surface potential of 0.7V for both GaAs and AlGaAs

vi) Complete ionisation of all donors

As shown in Figure 4.8.34, this simple model allows die observed effect to be simulated. Figure 4.8.34 

also includes a simulation of the structure using die self-consistent Poisson/Schroedinger solver from the 

University of Santa-Barbara. A constant etch rate of 20nm per minute and a constant carrier velocity of 

l.OxlO^ms’l were assumed in the self-consistent solution.

to o

C alculated U sing Poisson Solver 

A nalytical Solution
80 -

r  60  -
a4>
fa

\  4 0 -
o

-f
I  20  -
CO

50 150100 200 2500

Etch Tim e (Secs)

Figure 4.8.34 - Simulated Saturation Current dependence on Gate Recess Time for TF141

The presence of the shoulder results from die doping concentrations and thicknesses of the GaAs cap and 

the AlGaAs Schottky layers of the structure as well as die presence of die 8 doped layer.

The saturation current falls at 1.25mA/s when die n+ GaAs cap layer is being etched. This continues 

until 220A of the cap is removed, at'which time the surface depletion region reaches the AlGaAs 

Schottky layer. When a further 30A of die cap have been removed, die Schottky layer is fully depleted as 

it is not heavily doped. Thus the surface depletion layer is around 550A thick when it reaches the 8 doped 

region. The situation is now analogous to a parallel plate capacitor, as shown in Figure 4.8.35.
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Surface 
Depletion

Uyer 220AI

h = 5504

T
2 DEG

G aA s C ap

A lG aA s Schottky 
Layer

5 doping Layer

Figure 4.8.35 - Capacitance Model to Explain the Shape of Figure 4.8.34

The capacitance per unit area is

C * 5 1
(4.8.1)

where
nsi is the charge concentration which must be supplied to the capacitor from the 8 doped layer 

h is the surface / 8 doped layer spacing 

V is the built-in surface potential

The charge in the 8 doped layer which can still contribute to the saturation current is,

n5doping " ns2DEG “ n51

where
n5doping is the original 8 doped layer sheet concentration of 3.0xl016m~2

ns2DEG is ^e 2DEG concentration of 1.4xlOl6m‘2, which was supplied by the 8 doped layer.

At a separation of h = 550A, when the surface depletion region reaches the 8 doped region, Equation 

4.8.1, can be used to show the saturation current changes by only 0.07mA/s.

As etching continues, the surface/8 doped layer separation is reduced and the change in saturation current 

increases. However, even when the 8 doped region is fully depleted, the saturation current still only 

changes at 0.2mA/s.

Having fully depleted the 8 doped layer, die surface depletion edge quickly reaches the 2DEG. As etching 

continues, the 2DEG is depleted of charge until finally, the whole layer is fully depleted.

The interesting point to note from Figure 4.8.33 is that the shoulder occurs at around 50mA, whereas the 

shoulder in both the calculated solutions lies at around 25mA. This discrepancy could be due to:

i) The saturation velocity of the materials is greater than l.OxlO^ms"1

ii) The 8 doped layer is close to 5x1012 cm-2 rather than 3xl012cm“2

The MBE growers place an upper limit of 30% error on the determination of the 8 doped sheet electron 

concentration, thus a lower estimate of the effective carrier velocity of l.SxlO^ms-1 can be determined 

from this analysis.

The curves of Figure 4.8.33 are displaced from one another in time showing that the etch initiation time 

is variable.
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Termination of the gate recess etching in the InP based samples was complicated by the fact that until the 

cap layer was removed, it was impossible to saturate die drain current of the HFET test devices without 

the surface breaking down catastrophically. Thus, recess etching of these samples was terminated when 

the drain source current saturated widiout die devices blowing up, rather dian aiming for the target 

current

Immediately prior to gate metal deposidon, die samples were de-oxidised in 1:1:200 H3 P0 4 :H2 0 2 :H2 0  

for 5 seconds. (All samples had exposed layers containing aluminium after the gate recess etching was 

terminated, so it was not possible to deoxidise using HC1)

Samples were metallised with:

Ti 30nm

Au 200nm

This was lifted-off in warm acetone.

4 .8 .6 .5  M easu rem en t of G ate R esistance

Using the gate resistance PCM, shown in detail in Figure 4.8.36, the resistance of each of the gate 

lengths of pyramidal and T-gate structures was determined using a 4 terminal resistance measurement.

F igure 4.8 .36  - Detail o f Gate Resistance PCM

The results are shown in Table 4.8.4.

Gate Structure Gate Lencdi (nm) Resistance (D m m 1)

Pyramidal 200nm 850

Pyramidal 120nm 1750

Pyramidal 80nm 5000

T-Gate 80nm 700

Table 4.8.4 - Measured Gate Resistance for Pyramidal and T-Gate Structures of Different Footprint Sizes
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This shows the advantage of using a T-gate structure to reduce the gate resistance, with almost an order of 

magnitude reduction in resistance for 80nm footprint structures.

4 .9  Ancillary Structures Fabricated for the Project

A number of other structures were fabricated in the course of this work:

i) Hall Bars and Van Der Pauw structures for material characterisation

ii) calibration chips consisting of open circuits, short circuits, thru lines and 500 loads to allow the 

Vector Network Analyser to be calibrated with reference planes as close to the active part of the 

HFET's as possible, to reduce parasitic effects associated with the bondpads.

4 .9 .1  Hall Bars and Van Der Pauw Structures

Hall bars and Van Der Pauws were fabricated using two levels - a trench isolation level aligned to an 

ohmic contact level. The two levels for each structure are shown in Figure 4.9.1. The ohmic contacts 

were metallised and annealed using the optimised recipes described earlier. Trench isolation was 
performed using 5:1:200 H2S0 4 :H202:H2 0  for 5 minutes. Samples were mounted and wire bonded to a 

ceramic chip carrier before being placed in a cryostat.

Level 2
Level 1 Trench
Ohmic Isolation

Van Der 
Pauw

Hall Bar

Figure 4.9.1 - Van Der Pauw and Hall Bar Structures 

used in the Material Characterisation Studies of Chapter 3

4 .9 .2  Vector Network Analyser Calibration Standards

Accurate calibration of the Vector Network Analyser is required if the RF performance of short gate 

length HFETs is to be correctly determined. Calibration using either the Line-Reflect-Match (LRM) or 

Short-Open-Load-Thru (SOLT) techniques 4̂*25! require that the Network Analyser be presented with a 

number of calibration standards to allow it to generate an error model to determine the losses and
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frequency response of cables, connectors, transitions etc. in the measurement system. The calibration 

standards required by the Wiltron 360 Network Analyser were an Open circuit, a Short circuit, a Thru line 

and a 5 0 0  Load. By fabricating calibration standards on a semi-insulating GaAs chip with a Bondpad 

layout identical to that of the HFET's, it is possible to calibrate out the effects of the bondpads to within 

a few microns of the active part of the device. The configuration of the pads of the calibration standards 

are shown in Figure 4.9.2.

F igure 4.9.2 - SEM Micrograph o f  Calibration Chip 

Pad Configuration (note small alignment marks in 

gap between signal pads and groundplane)

The standards were fabricated using the resists, SEM conditions and metallisation procedures described 

earlier. One modification to the bondpad pattern was the inclusion of small square alignment marks 

deposited in the gaps between the signal pads and the groundplane. When performing the calibration, the 

probes were aligned so they initially contacted the sample at the ends of the signal pads. They were 

allowed to overtravel on the pads until they lined up with the alignment marks placed 25|im from the 

edge of the pads. This technique allows identical coupling between the probe head and the pads for all 

calibration standards as it has been noted that repeatability of probe placement is critical if a high quality 

calibration is to be generated^4-26!. In addition, this procedure ensured that the contact between the 

probes and the pads was good whilst conforming to the manufacturers specification for probe overtravel. 

Figures 4.9.3~4.9.5 shows details of the Open, Short and Thru standards.
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Figure 4.9.3 - Detail o f Open Circuit Calibration 

Standard

j

F igure 4.9.4 - Detail o f  Short Circuit Calibration 

Standard

Figure 4.9.5 - Detail o f Thru Line Calibration Standard

Once calibrated, the measurement reference planes coincide with the end of the signal input and output 

pads of the Open Circuit.
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4 . 9 . 2  Fabrication of 50ft Load Standard

The 50ft load standard was fabricated by connecting the input and output signal pads to the groundplane 

via two 100ft resistors in parallel as shown in Figure 4.9.6.

Ground

* toon
Resistors

Input
Signal

Output
Signal

Ground

Figure 4.9.6 - Schematic of 50ft Calibration Standard

The resistors were fabricated using a Nickel Chromium (NiCr) alloy evaporated in the Plassys evaporator. 

Initially, the sheet resistance of the NiCr as a function of film thickness was determined (Figure 4.9.7).

90 _

80 _

70 _

60 _4>u
3
to
‘3 50 _

40 _

20 30 40 50 60 70 80 90

NiCr Thickness (nm)

Figure 4.9.7 - Nichrome Sheet Resistance 

measured as a Function of NiCr Layer Thickness

100ft resistors were obtained with a NiCr film thickness of 50nm and a line width of 1.5|im. It was 

found that the evaporated NiCr sheet resistance changed with time, probably because the NiCr charge in 

the evaporator was not eutectic, so it proved necessary to produce a number of load standards with 

different linewidths bracketed around the designed value of 1.5jim to ensure that resistors of suitable value 

could be fabricated. Load standards in the range 48ft to 51ft were fabricated and used in Network 

Analyser Calibration. Figure 4.9.8 shows a low angle SEM micrograph of the 50ft Load calibration 

standard.
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£ 1 1 T r A h

CV X3.00K 1 0 . 0um
F igure 4.9.8 - Detail o f 50Q  Load Calibration Standard

C h a p te r  Sum m ary

This chapter has detailed the fabrication processes used to produce short gate length HFETs with both 

conventional gates and T-gates. The solution to problems encountered have been highlighted so that in 

future, such difficulties can be avoided by others.

The characterisation and evaluation of the fabricated devices are now described in Chapter 5.
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Chapter 5 Results

Introduction

The results of DC and high frequency (RF) HFET device characterisation are presented in this chapter. 

First, the gate length dependence o f the HFET DC characteristics are shown. Next, the RF measurement 

system and problems encountered during calibration o f the Vector Network Analyser are discussed.

The RF device transconductance and device fT, obtained from measurements of device S-parameters are 

then presented, together with an analysis which suggests the effective carrier velocity in the channel o f a 

device is the material transport property which determines the fT.

Using Touchstone, equivalent circuit models for device operation are extracted and the circuit elements 

used to deduce that:

i) the RF output resistance is governed by the conduction band offset below the 2DEG of the 

material structures.

ii) MB 1 devices exhibit velocity overshoot effects with extracted effective velocities in excess of 

2.0x1 O ^m s 'l. TF141 and A322 devices show no conclusive evidence of overshoot effects.

iii) the gate resistance of sub-lOOnm T-gates is five times lower than for pyramidal gate structures of 

similar footprint sizes, and results in devices with up to 6dB more Maximum Available Gain at 

60GHz

Finally, from the device fmax> the gate resistance is shown to be the most influential device parameter in 

determining the high frequency gain characteristics of short gate length HFETs.
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5 .1  DC Device Characterisation

The DC device characteristics were obtained using an HP4145B Parameter Analyser. All measurements 

were made through the Wiltron 360 Network Analyser Test Set using Cascade on-wafer probe heads as 

the filters in the test set removed mains spikes capable of destroying devices. Ids(V ds.V gs) and gm(V gs) 

characteristics of devices fabricated on all three materials for each of the three gate lengths (pyramidal 

structure) are shown in Figures 5.1.1-5.1.9.

The small drain source saturation voltage (-0.3V ) of the HFETs fabricated on the InAlAs/InGaAs/InP 

(MB1) layer reflects the high electron mobility of the structure. The I(V) characteristics obtained from 

MB 1 devices are dependent on the direction of the gate and drain bias sweeps, the duration of the bias 

sweeps and the sample illumination. These phenomena point to the existence of traps in this material. 

Figures 5.1.10 and 5.1.11 show the gate bias dependence of the transconductance of an 80nm gate length 

device fabricated on MB1 measured in the dark. In Figure 5.1.10, the drain bias is fixed at 0.5V and the 

gate voltage swept from -IV  to +1.2V. In Figure 5.1.11, the drain bias was kept a t 0.5V and the gate 

voltage swept from +1.2V to -IV . Such trapping related effects m ade evaluation, comparison and 

interpretation o f the gate length dependence of the DC device properties (transconductance, output 

resistance and threshold voltage shift) impossible and thus any analysis of the DC characteristics of MB 1 

devices is excluded. As will be shown in Section 5.6.1 however, comparison of RF device performance 

is possible because the traps cannot respond to the high frequency signals.

ID ID
(mA> (mA) (S )

1 5 . 0 0

/d iv

.00
2 . 0 0 0

VDS . 2 0 0 0 / d i v  ( V)

1 5 . 0 0 . 3 0 0 . 0
E- 0 3

3 0 . 0 0
/ d i v

. 0 0 0 0 0000- w n r T 5 0
1 5 0 . 0 / d i v  (mV)VG

F ig u re  5 .1 .1 (a ) IdS(VdS,V gs) Characteristic  

o f  200am  Gate Length A 322 HFET 

(Vgj start, 0.5V, stop -0.75V, step -0.25V)

F ig u re  5 .1 .1 (b ) gm( V gs) Characteristic  

o f  200nm  Gate Length A 322 HFET  

(Vd s= 1.25V)
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o f  120nm Gate Length A 322 HFET 

(Vgs start, 0.5V, stop -0.75V, step -0.25V)
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o f  80nm Gate Length A 322 HFET  
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(Vds= 1-75)
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A com parison o f the DC properties of devices fabricated on the AlGaAs/GaAs (A322) and 

AlGaAs/InGaAs/GaAs (TF141) layers can be performed, however. Table 5.1.1 summarises the DC 

characteristics obtained from devices o f the three different gate lengths fabricated on A322 and TF141.

Layer A322 TF141

Gate Smmax Vspan Rout £mmax Vspan Rout

Length

(nm)

(mS/mm) (V) (Q) (mS/mm) ( V ) (fl)

200 260 0.5 850 500 0.7 400

120 230 0.6 650 600 0.7 350

80 190 0.8 450 470 1.3 150

T ab le  5 .1 .1  - DC Characteristics o f  D evices Fabricated on A 322 and TF141

Each of the quantities in Table 5.1.1 will now be discussed in detail.

5 . 1 . 1  DC Transconductance, gmmax

The transconductance values shown in Table 5.1.1 are extrinsic and were obtained by biasing the devices 

to obtain maximum transconductance. Using the contact resistance and sheet resistance values obtained 

from the TLM Process Control Monitors (Section 4.8.3), Equation (2.3.6) can be used to calculate the 

maximum intrinsic transconductance. Table 5.1.2 compares extrinsic and intrinsic values.

Layer A322 TF141

R c  (Qmm) 0.46 0.05

Rsh (D/sq) 775 250

R s (Q ) 9.6 1.9

Gate Length (nm)
ext , _, 

g m (mS/mm)
mix

int
g m (m S/m m )

mix

ext
g (mS/mm)

mix

int
g (mS/mm)

mix

200 260 325 500 540

120 230 280 600 660

80 190 220 470 505

T able 5 .1 .2  - M axim um  Extrinsic and Calculated Intrinsic Transconductance for A 322 and TF141 HFETs

Devices fabricated on A322 suffer from large DC source resistance due to the high resistance of the ohmic 

contacts and the large sheet resistance of the m aterial structure. The relatively small values of 

transconductance of the A322 devices result from the lower than expected AlGaAs donor layer doping 

concentration discussed in Section. 3.3. Figure 5.1.12 shows a p lot o f m axim um  intrinsic 

transconductance against the gate voltage at which the maximum transconductance occurs for three A322 

device chips.
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F igu re  5 .1 .12  - M axim um  Transconductance Dependence on Gate V oltage for Three A 322 D evice Chips
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Devices o f equal gate length were fabricated together on the same chip, and so have roughly the same gate 

recess depth. It is clear from Figure 5 .1.12 that the recess depth is the dominant factor in determining the 

device transconductance, with the most deeply recessed devices (those whose maximum transconductance 

is obtained by forward biasing the gate) having the largest transconductance.

The DC data of devices fabricated on A322 shows no increase in device transconductance with decreasing 

gate length. There is thus no obvious evidence o f velocity overshoot as the gate length is reduced in these 

devices, however it would be necessary to accurately determine the gate recess depth of the devices to 

calculate the effective carrier velocity from the intrinsic transconductance values. Due to their small size 

(40pm  wide active region), it was impossible to cleave through the gate region o f the devices to 

determine the gate recess depth by SEM examination.

The 8 doped structure o f TF141 allows the gate to be placed closer to the 2DEG than in A322, resulting 

in intrinsic transconductances of up to 660mS/mm. As with A322 devices, the maximum intrinsic 

transconductance is determined by the gate recess depth as shown in Figure 5 .1.13.
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F igu re 5 .1 .13  - M axim um  Transconductance Dependence on Gate V oltage for Three TF141 D evice Chips
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"+*•* 0 80nm Gate Length
+ °  X 120nm Gate Length
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As before, devices of the same gate length have similar transconductance as the devices on each chip are 

recess etched to roughly the same depth.

5.1.2 Output Resistance and Voltage Span

To study the effect of reducing the gate length on DC device performance, two figures of merit

i) the device output resistance (Rout)

ii) the gate voltage span (Vspan) 

are shown in Table 5.1.1.

VSpan is defined as the difference between the gate voltage for maximum transconductance and the gate 

voltage needed to reduce the drain source current to 100|iA. The gate voltage span, which is a measure of 

the threshold voltage shift, is used as other measures of threshold voltage shift such as extrapolation of 

the IdsCVgs), Ids1/2CVgS), or log(Ids)(Vgs) plots are all heavily gate recess depth dependant.

The output resistance and voltage span data o f Table 5.1.1 are reproduced in Figures 5.1.14 and 5.1.15.
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F ig u re  5 .1 .1 4  - Output R esistance as a Function o f  F igu re  5 .1 .1 5  - Vspan as a Function o f

Gate length for A 322  and TF141 D evices Gate length for A322 and TF141 D evices

As the gate length is reduced, the output resistance of TF141 and A322 devices decreases indicating a 

reduction in electron confinement to the 2DEG channel. The degradation is more significant for the 

TF141 devices. Similarly, the gate voltage span in the TF141 devices is greater than in the A322 devices 

at each gate length, and increases rapidly as the gate length is reduced below 120nm, again indicating 

poorer confinement in the TF141 devices. This reduction in carrier confinement can be correlated with 

the potential barrier at the conduction band offset below the quantum well in the two layer structures. 

This barrier is 0.20eV for A322 and 0.1 leV  for TF141. Thus for devices with gate lengths in the range 

200-80nm, increasing the potential barrier below the quantum well channel of the layer structure increases 

carrier confinement and reduces output resistance and threshold voltage shift. This effect will be shown to 

hold for RF output resistance in Section 5.6.1.
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5 .2  RF Device Characterisation

The RF measurement system is shown schematically in Figure 5.2.1.
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F ig u re  5 .2 .1  - RF M easurem ent System

drain
bias

The Wiltron 360 Network Analyser, configured to measure from 45MHz to 60GHz, is under the control 

o f the PC via an IEEE-488 interface. In addition, the PC controls the gate and drain biases applied to the 

device by the HP4145B through the Wiltron test set and a pair o f Cascade on-wafer probes. The probes, 

semi-rigid connecting cables and all relevant connectors are suitable for the propagation o f microwave 

signals up to 60GHz. When operating, the PC instructs the HP4145B to set the bias condition, controls 

the measurement of device S-parameters by the Wiltron Network Analyser and receives the measured S- 

parameters via the IEEE-488 interface. The S-parameters are then converted to a format suitable for use

in Touchstone and also to display figures of merit such as device fT, M aximum Available Gain (MAG)

and y2i (the RF device transconductance).

Calibration of the Network Analyser was performed using the Short-Open-Load-Thru (SOLT) technique 

with the calibration standards fabricated on SI GaAs substrates. A power level of OdBm was applied at 

the input and output ports for all measurements, with 250x averaging used for the calibration and lOx 

averaging for device measurement

Typical S-parameter results obtained on a THRU line after calibration w ere :

S n  and S2 2  < -40dB from 45MHz to 60GHz

S 12 and S21 < 0.2dB ripple around OdB from 45MHz to 60GHz

Initially, a calibration standard chip with a continuous groundplane similar to that of the device chips was 

used. The continuous groundplane was used in an attempt to improve the quality of the measured S- 

parameters (particularly S 12 , which is very small for the short gate length devices fabricated (short gate 

length and small device width)). However, significant losses in the device S-parameters were observed, 

and in an effort to explain the losses, a  calibration chip with a discontinuous groundplane was fabricated 

and used to perform device calibration.

Having performed an SOLT calibration using the discontinuous groundplane calibration chip, a Short 

Circuit calibration standard was measured on it. The magnitude o f S i 1 and S2 2  obtained from the Short 

are shown in Figure 5.2.1. As expected, the reflected S-parameters show a magnitude of close to OdB

111



5 - R esults

from 0-60GHz with the measurement quality degrading at the higher frequencies as the cables, connectors 

and probe heads reach their operating limit.
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F ig u re  5 .2 .2  - and S22 from  Short Calibration Standard with Discontinuous Groundplane (calibration 

Performed using Discontinuous Groundplane Standards)

Next, using the same calibration, S n  and S22  of a Short on the continuous groundplane calibration chip 

was measured (Figure 5.2.3). W hilst the measurement quality is slightly poorer, S 11 is still within 

0.2dB of the expected OdB over the entire frequency range. However, in the frequency range 20-40GHz, 

S2 2  shows losses down to -0.5dB.
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F igu re  5 .2 3  - Sj 1 and S22 from a Short Standard on the Continuous Groundplane Chip Measured using 

Calibration Performed with Discontinuous Groundplane Calibration Chip

In an effort to determine if the observed losses were due to the output side of the measurement system, 

the continuous groundplane chip was rotated through 180° and the S-parameters remeasured. Figure 

5.2.4 shows S 11 and S2 2  measured on the rotated chip. Whilst the measurement quality is poorer 

because of small asymmetries in the Short calibration standard under rotation, the losses now appear in
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S 11 indicating that they result from the groundplane geometry rather than one side of the measurement 

system (probe head, connectors, cables, test set).
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F igu re 5 .2 .4  - S n  and S22  from rotated Short Standard on Continuous Groundplane Chip measured using 

Calibration Performed with Discontinuous Groundplane Calibration Chip

A possible explanation of the above is that the continuous groundplane layout supports non-coplanar 

waveguide modes of microwave propagation, and the geometry of the drain side o f the devices allows 

microwave energy to be coupled from the probe heads into these modes. Because the modes are non- 

coplanar, energy cannot be xxiupled back into the probe heads at either the output or the input sides. It is 

not possible to calibrate out these coupling losses using either the continuous or discontinuous 

groundplane calibration structures but using the latter, the losses are reduced. That the coupling loss is 

observed only at the output side of this particular device layout structure (despite that fact that the output 

and input pad configurations are virtually identical) suggests the particular layout chosen will barely 

support the mode propagation causing the observed losses. To overcome this problem in future, both 

HFET devices and calibration standards should be fabricated with a discontinuous groundplane structure. 

Typical S-parameters measured on a 120nm gate length TF141 device after calibration using the 

discontinuous groundplane calibration chip are shown in Figures 5.2.5-5.2.8 All S-parameters are 

perturbed by the losses described above, with S 12 m ost affected. W hilst slightly compromising the 

quality of the measured device S-parameters, the losses do not seriously affect any subsequent analysis 

performed on the device S-parameters.
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5 .3  Comparison of DC and RF Transconductance

The device RF transconductance y2 i, can be evaluated by converting from S-parameters to Y-parameters 

using well known fo rm u la e ^ 1!. The DC and RF transconductances for devices of each gate length on 

each material structure are shown in Table 5.3.1.

DC Transconductance (mS/mm) RF Transconductance (mS/mm)

Gate Length 

(nm)

A322 TF141 MB1 A322 TF141 MB1

200nm 255 510 200 220 460 500

120nm 235 610 200 215 560 550

80nm 200 460 450 150 400 1100

T able  5.3 .1  - Comparison Betw een DC and RF Transconductance for D evices o f Different Gate lengths on the

Three Material Structures

The devices fabricated on both A322 and TF141 have RF transconductances smaller than the DC values 

because a new value o f drain current cannot be fully established until the gate capacitance has been 

charged by changing the gate voltage.
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This results in a  frequency dependent transconductance o f the form gm(f) = gmoc exp(-j 2k  f  Xgm), where 

Tgm is the charging delay. In contrast, the devices fabricated on MB1 exhibit larger RF than DC 

transconductances. This phenomenon has been attributed to the presence of traps in the material^5-2] 

(The probability of trap depopulation can be increased by the application of an electric field. When charge 

is depleted from the 2DEG by reverse biasing the gate of a device, trapped charge can be freed to 

contribute to the drain current, resulting in a decrease in the device transconductance). At DC and low 

frequencies, the traps can respond to the gate modulation, reducing the device transconductance, whilst at 

high frequency (>10MHz) the trap capture and emission rate is smaller than the frequency of the applied 

gate modulation, and so the traps are unable to respond to the input signal.

RF extrinsic transconductances of up to 1 lOOmS/mm were obtained from 80nm gate length devices 

fabricated on MB 1.

From  experience gained during the gate recess and metallisation process, the gate metallisation of 

working devices fabricated on MB1 must be deposited on the undoped Ino.5 2 AlAs Schottky layer of the 

structure (Deposition of the gate on either the doped Ino.5 3 GaAs cap or Ino.5 2 AlAs donor layers gives a 

poor Schottky gate contact with large gate leakage currents - too large in fact for the gate to act as a 

Schottky contact at all) As stated in Section 2.1.1, the 2DEG is located around 50A below the 

heterojunction interface. Combining the above facts with the layer structure of MB 1, it can be concluded 

that the minimum gate/2DEG separation in working MB1 devices is 250A.

For extrinsic transconductances of 1 lOOmS/mm, and a gate/2DEG separation of 250A, Equation (2.3.2) 

(gm = £ Z  veff /  h) yields an effective velocity o f 2.4x10-’m s '1. As discussed in Section 2.8.1, the static 

saturated electron velocity in InGaAs is around O J-l.O xlC ^m s'1. The effective carrier velocity deduced 

from the RF transconductance data is around three times that o f the static value, and is evidence of the 

existence o f velocity overshoot in these devices.

5 .4  E v a lu a tio n  o f Device fp

Device f j  was evaluated by extrapolating a plot o f h2 i against frequency at 20dB/decade as shown in 

Figures 5.4.1-5.4.3. The drain and gate biases were chosen to maximise the device fT. The extrapolation 

was performed from data in the 10-20GHz frequency range, as the measured S-parameters were not 

compromised by either the quality of measurement at these frequencies or the losses described in Section

5.2.
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Figure 5.4.1 was obtained from a 120nm pyramidal gate InGaAs/GaAs HFET with an fx of 130GHz 

while Figure 5.4.2 shows the h2 i(frequency) plot for an 80nm pyramidal gate InGaAs/InAlAs/InP HFET 

with an f j  o f 275GHz.
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F igu re 5 .4 .3  - h2j vs Frequency o f sub-lOOnm T-Gate MB1 D evice

Figure 5.4.3 was obtained from a sub-lOOnm T-gate InGaAs/InAlAs/InP HFET with an fx of 265GHz. 

W hilst not physically measured, comparison with the fT of 80nm pyramidal gate devices would indicate 

the footprint of the sub-lOOnm T-gate device fabricated to be in the range 80 - 90nm. 

fT's were extrapolated for devices fabricated on each material structure for each of the three gate lengths. 

Figure 5.4.4 shows a graph o f fx  against inverse gate length for each of the 3 materials studied.
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v
f  -  e f f  XEquation (2.6.3) ( t  -  2 ttL /  suggests a linear relationship should exist between the device fT and

e f f

the inverse gate length if the gate capacitance scales with gate length. This can be seen to hold for the 

MB1 devices but not for A322 and TF141 devices.

For the MB1 devices, the linear relationship between fT and inverse gate length suggests the devices are 

well scaled, even at the shortest gatelengths. The layer structure of MB1 allows the gate to be placed 

close to the 2DEG (around 250A gate/2DEG separation) and as the donor layer is highly doped, the 

extension of the gate depletion region into the gate drain region o f the device is small, so that the 

effective gate length is similar to the metallurgical gate length.

For the A322 devices, the non-linear dependence of fT on inverse gate length results from poor scaling of 

the gate capacitance. Using the DC intrinsic transconductance data together with Equation (2.3.2)

(gm = e Z  veff /  h) and an effective carrier velocity of 1 .0xl05m s '1, gate/2DEG separations o f around 

350A for the 200nm gate length devices, 400A for the 120nm gate length devices, and 500A for the 

80nm were calculated. These devices do not meet the L/h = 3 criterion for gate lengths below 120nm, 

and is a result of the lower than expected AlGaAs donor layer doping level.

Solving Equation (2.3.2) (gm = e Z veff /  h) with an effective velocity of 1 .0x l05m s '1 and the DC 

transconductance data of TF141 HFETs yield a gate/2DEG separation of around 200A in these devices. 

This means the gate recess depth in TF141 devices is roughly 650A. As the gate recessing technique 

employed an isotropic wet chemical etch, it was expected that the recess trench width W, would be 

significantly larger than the metallurgical gate length Lg as shown schematically in Figure 5.4.5.
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This hypothesis was confirmed by performing an SEM examination o f the gate recess area of the TF141 

devices. Table 5.4.1 shows the metallurgical gate length and the recess trench width for each gate length.

Gate Length 

(nm)

Recess Trench 

Width (nm)

200 300

120 320

80 350

T able  5 .4 .1  - Gate Length and Recess Trench W idth for TF141 D evices

As described in Section 2.7, a  HFET device with a large recess trench compared to the metallurgical gate 

length is analogous to an unrecessed device, where the presence of surface states increases the effective 

gate length as seen by electrons in the device channel.

In terms o f the device equivalent circuit, these effects means the total gate capacitance does not scale with 

gate length, even although the gate/2DEG separation obeys the simple L / h = 3 requirement. 

Consequently the device f j  does not increase linearly with decreasing gate length, 

f  -  V®ff \Equation (2.6.3) ( t  “  2 ttL  '  suggests the effective channel earner velocity can be deduced from the
eff

device fx  and the effective gate length. Figure 5.4.6 is a plot of effective carrier velocity in the channel, 

calculated from the f j ,  assuming the effective gate length of the device is the metallurgical gate length 

measured using an SEM. This will underestimate the carrier velocity since no account is taken of the 

extension of the depletion region on the drain side of the gate which increases the effective gate length 

seen by electrons in the device channel. This gate length extension into the drain region of the device 

will be discussed in Section 5.6.2, as it can be inferred from the value of Cgd, the gate-drain capacitance 

which can be obtained from the equivalent circuit extraction package, Touchstone.
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When derived from the device fr, the effective velocity of the MB1 devices is largely independent of gate 

length and suggests the devices are well scaled even at the shortest gate lengths as discussed above. The 

effective velocity has a minimum value of around 1.2-1.3xl0^m s_1, above the saturated electron velocity 

o f O J-l.O x H ^m s'1 observed in both measurement^5-3! and Monte Carlo simulation^5-4! of the transport 

properties of InGaAs/InP structures. This result supports the observation of overshoot in the electron 

velocity in the channel o f 80nm gate length HFETs fabricated on the MB1 layer as described in Section

5.3. The value of effective Velocity obtained from the f j  analysis is smaller than from the y2i data as the 

metallurgical gate length, rather than the effective gate length, was used in the calculation.

Referring again to Figure 5.4.6, it can be seen that for the devices fabricated on both A322 and TF141, 

the effective velocity evaluated using this analysis falls as the gate length is reduced for the reasons 

outlined above. It is not that the effective velocity of carriers in the channel is actually reducing with 

gate length, rather that the value of carrier velocity extracted from a measurement o f the device fT is 

smaller because the gate capacitance does not scale with gate length.

In an attempt to correlate material transport properties with HFET RF performance, the 200nm gate 

length device fx and material transport properties of all three material structures were collected (Table 

5.4.2). The effective carrier velocity data was calculated using fT = veff / 2 n  L g

Material f j  (GHz) Ids(mA) nsh (cm’2) U (cm2/Vs) Veff (ms*1)

A322 75 7 9.9xlO n 7200 0 .9 x l0 5

TF141 90 15 1 .4 x l0 12 6600 1.2xl05

MB1 110 12 3 .8 x l0 12 9200 1.4xl05

T able  5 .4 .2  - 200nm  Gate Length D evice fT and Material Transport Properties o f  all Three Material Structures

By comparing the results for the A322 and TF141 devices, it is obvious that the 2DEG mobility plays 

no role in limiting the device fTfor the material structures of this study. In addition, 200nm gate length 

MESFET's have been fabricated in the Nanoelectronics Group at the University of Glasgow as part o f an
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ESPRIT collaboration^-53. These devices were fabricated on bulk doped 5 x l0 17cm '3 GaAs with a 

mobility of around 3000cm2/Vs and have an fT of 70GHz.

From the extracted effective velocity (which is a lower limit), and the measured drain current at the bias 

condition for maximum device fj, it is possible to determine an upper limit to the carrier concentration in 

the channel o f the HFETs using 1^ = q veff ns Z, as shown in Table 5.4.3 below :

Material n sh channel (cm-2)

A322 6.1xlO n

TF141 9.8xlO n

MB1 6.7xlO n

T a b le  5 .43  - Calculated M aximum Channel Electron Concentration

Although the 2DEG in each o f the materials has the capability of supporting the carrier concentration 

shown in Table 5.4.2, due to non-ideal gate recessing the fabricated HFETs have the channel electron 

concentrations shown in Table 5.4.3. By considering Tables 5.4.2 and 5.4.3 it is clear that the channel 

electron concentration is not the parameter which limits the device fT. For the materials studied in this 

project, it can be concluded that the effective velocity is the dominant transport property in determining 

device fT.

5 .5  Touchstone Equivalent Circuit Analysis

To generate RF equivalent circuits o f the HFETs, the measured S-parameters were analysed using the 

Touchstone software package. S-parameter data up to 40GHz was fitted to the standard FET equivalent 

circuit shown in Figure 5.5.1 for devices of each gate length on each material structure.
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F igu re 5.5.1 - HFET Equivalent Circuit used to Fit S-parameter Data

The strategy adopted when fitting the measured S-parameters to the equivalent circuit model was to 

provide the model with initial estimates of as many of the circuit elements as possible, thus minimising 

the chance of arriving at a  physically meaningless solution.

First estimates o f RoUt, Cg(j, gm, Cgs and Rg were obtained as follows :

i) The output resistance was calculated from 45MHz S2 2  data.

ii) A first estimate of Cgd was obtained by fitting S 12 by eye.
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iii) gm was set equal to y2i, calculated from the S-parameters at 1GHz

g m
iv) Cgs was approximated using the expression f  = ———------- --— -

T 2 7T(Cgs +  C gd)

v) Having determined an initial value for Cgs, Rg was estimated from S n  and the 

frequency dependence of the Maximum Available Gain

vi) Drain, source and gate inductances were given initial values of lpH

vii) Parasitic pad capacitances were first set to IfF

Initially, all parameters were allowed to vary whilst a  least squares fit was performed. When the error 

function reduced to less than 1%, a  Quasi-Newton approximation was used until the minimum error 

function was found. Typically, fits o f better than 0.5% were achieved.

Figures 5.5.2-5.5.9 show measured and fitted S-parameter magnitude and phase angle as a function of 

frequency for a  120nm device fabricated on TF141.
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The resulting equivalent circuit is shown in Figure 5.5.10.
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F igu re 5 .5 .1 0  - Equivalent Circuit derived from Touchstone M odelling o f  120nm TF141 D evice

The main aims o f the Touchstone modelling were to extract the circuit elements required to calculate the 

maximum frequency of oscillation (fmax) of die devices, and also to look for material and/or gate length 

dependence of the equivalent circuit elements.
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5 .6  Comparison of Elements of the Device Equivalent Circuit

5 .6 .1  Output Resistance

In Section 5.1.2, device DC output resistance was correlated with the potential barrier at the conduction 

band offset in the quantum well below the 2DEG. Figure 5.6.1 shows the gate length and material 

dependence of the RF output resistance and shows clearly the advantage of the extra carrier confinement 

achieved by using the 0.2eV AlGaAs confining back barrier in A322.
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F igu re 5.6.1 - Output Resistance o f  D evices Fabricated on A 322, TF141 and M B1

This result further corroborates the data presented in Section 5.1.2 and allows a comparison with the 

properties o f devices fabricated on MB 1.

A potential barrier o f O.leV exists 150A below the 2DEG in MB1. A further barrier of 0.5eV is also 

present 500A below the 2DEG. The extracted values of Rout indicate the O.leV barrier below the 2DEG 

in MB1 determines the device output resistance. It is also interesting to note that the potential barrier 

between the 2DEG channel and the undoped spacer layer above the channel is smallest for A322 and 

largest for MB1. This shows that carrier transfer from the 2DEG to the donor layer above the channel is 

not a significant mechanism in determining device output resistance for the materials and gate lengths of 

this study.
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5 .6 .2  Gate Capacitance and Transconductance

As they are closely linked via the gate/2DEG separation, the extracted gate capacitances and 

transconductance are considered together.

Figures 5.6.2 shows Cgs and Cgd as a  function of gate length for devices fabricated on A322.
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F ig u re  5 .6 .3  - Extracted T ransconductance  

and Total Gate Capacitance o f  A 322 D evices  

as a Function o f  Gate Length

On first inspection, Cgs appears to scale well with gate length, 80nm gate length devices having Cgs of 

around lOfF and the 200nm gate length devices a C gs of 30fF. However, the gate recess-depth in the 

80nm gate length devices is greater than the 200nm gate length devices. Figure 5.6.3 shows the 

transconductance and total gate capacitance (Cgs + Cgd) of the A322 devices. The transconductance o f the 

80nm gate length devices is smaller than the 120nm and 200nm devices as the gate/2DEG separation of 

the 80nm devices is larger. As both the gate-recess depth and the gate length are varying in the devices, it 

is difficult to make any direct comparisons of the transconductance and capacitance values of the various 

devices.

The 120nm gate length A322 devices have unusually large values of Cgs for reasons which are not 

understood. This results in the strange fT/inverse gate length dependence of the A322 devices shown in 

Figure 5.4.4.

Cgd is nearly constant over the entire gate length range, and for the shortest gate lengths, Cgs and C gd 

are almost equal. The contribution of Cgd to the total gate capacitance (Cgs + Cgd) causes the non-linear 

dependence of the f j  gate length discussed in Section 5.4, and the resulting decrease in the extracted 

effective velocity as the gate length is reduced.

Figure 5.6.4 shows the gate length dependence of Cgs and C gd for TF141 devices.
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As for the A322 devices, Cgd is almost constant over the entire gate length range. In the 120nm gate 

length devices, Cgs is greater as these devices are more deeply recessed. Figure 5.6.5 shows the gm of 

the 120nm gate length devices to be largest as the gate/2DEG separation is smallest in these devices. 

CgS has only a small gate length dependence because the gate recess trench is much wider than the 

metallurgical gate length in these devices resulting in a large effective gate length but again, variations in 

the gate recess depth from device to device make analysis o f the extracted capacitance and transconductance 

values difficult.

Figure 5.6.6 shows the gate length dependence of Cgs and Cgd for MB1 devices.
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The large spread in Cgs values at each gate length reflects the lack of control in the gate recessing of 

these devices. It is possible that the gates of MB 1 devices sit anywhere between 250A and 500A from
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the 2DEG as the only criterion for stopping the gate recess etching was that the device did not breakdown 

catastrophically when the drain bias was applied.

A correspondingly large scatter in the extracted gm values is also observed (Figure 5.6.7).

Equivalent circuit modelling has shown that Cgd contributes significantly to the total gate capacitance 

and so it is unreasonable to expect the total gate capacitance to scale with gate length. The values of 

effective carrier velocity extracted from the fT data in Section 5.4 assume the gate capacitance scales with 

gate length and makes no correction for the extension of the gate depletion region at the drain end of the 

gate. It has been shown that the extension of the gate depletion region beyond the drain end of the gate, 

X, can be approximated from!5-6!

n  _  2eZ 
gd 1 + 2 X

L g

where Z is the device width, Lg is the metallurgical gate length and Cg(j is the gate-drain capacitance. 

Using this analysis, it is possible to estimate the effective gate length of the devices Leff = Lg + X and 

to use this value of Leff together with the fx data to extract the effective carrier velocity.

Based on this approximation, the effective electron velocity obtained from the gate length dependant fT 

data can be recalculated (Figure 5.6.8).
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The recalculated effective velocity of A322 devices is around l .O -O x K ^ m s '1, independent of gate 

length. This is sim ilar to the static saturation velocity o f electrons in this material, and it can be 

concluded that the A322 devices show no velocity overshoot effects.

The effective velocity o f the 200nm gate length TF141 devices is around 1.6xl05m s '1. This value of 

velocity is greater than the static saturated electron velocity, and indicates that some velocity overshoot 

may be occurring in these devices. The extracted effective velocity still falls as the gate length is reduced 

because the gate source capacitance does not scale with gate length. The wide gate recess trench results in
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an effective gate length larger than the metallurgical gate length even if depletion region extension beyond 

the drain end of the gate is accounted for.

The effective velocity extracted from the MB 1 devices shows further evidence of significant velocity 

overshoot in these devices. Effective velocities of up to S.OxlC^ms'1 for 120nm gate length devices are 

extracted using this method. Even by correcting for gate length extension into the gate drain region, the 

extracted effective velocity falls as the gate length of the MB 1 devices is reduced from 120nm to 80nm. 

This may result from a lack of scaling of the gate source capacitance with gate length. Even so, an 

average effective channel velocity of 2 .2xl05m s '1 is extracted for the 80nm gate length devices.

To verify this analysis, the drain delay resulting from the depletion region extension at the drain end of 

the gate was extracted using the method described by Moll et a lJ5-8!.

In this analysis, the total delay Ttot -  1/fr is plotted as a function of gate and drain biases as shown in 

Figures 5.6.9 and 5.6.10 for a  200nm gate length TF141 device.
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Drain Current for 200nm  Gate Length TF141 D evice

The total delay is assumed to consist of three parts:

i) The intrinsic delay, T* associated with transport under the gate.

ii) The charging delay, Tch associated with charging the gate capacitance using the drain current

iii) The drain delay, Td> associated with transiting the depletion region beyond the end o f the gate.

In Figure 5.6.9, the total delay increases at drain biases greater than the maximum fT bias condition. It is 

assumed that this results from increasing drain delay as the depletion region beyond the gate end of the 

drain is enlarged. At V(js = 0, the drain depletion region extension is zero ie no drain delay, so 

extrapolation of the linear part of the total delay yields the sum of the charging and intrinsic delays. The 

difference between the total delay at the bias condition for maximum fT and the extrapolated delay is the 

drain delay at maximum fT.

In Figure 5.6.10, the total delay is plotted as a function of inverse drain current. At l/I^s = 0, the current 

is infinite, so the charging delay is zero. The extrapolated delay is thus the sum o f the drain and intrinsic 

delays. In this case, the difference between the total delay at maximum fx and the extrapolated delay is the 

charging delay.

127



5 - Results

Having independently evaluated the drain and charging delays, the intrinsic delay can be deduced. As four 

measurements have been made to determine three unknowns, all the delay values can be checked for self- 

consistency.

From the drain bias plot,

Td = 0.2ps and x* + Tch = 2.1ps

From the inverse drain current plot,

Tch = 0.7ps and V x + Td = 1.6ps

This gives Ti = 1.4ps

Similar extractions were performed on devices at each gate length on all three material structures. The 

drain delays obtained are shown in Table 5.6.1

Gate Length (nm) A322 TF141 MB1

200 0.2ps 0.2ps 0.4ps

120 0.2ps

80 0.3ps 0.2ps 0.2ps

T ab le  5 .6 .1  - Drain D elay for each Gate Length on Each Material Structure

In some of the shorter gate length devices, it was impossible to extract self-consistent delays. This is 

probably because the analysis is 1-dimensional, an assumption which becomes less valid as the gate 

length is reduced. In addition, at the shortest gate lengths, the delays are so small that errors in the 

extrapolation significantly affect the delay values obtained.

However, the drain delay is in the range 0.2- 0.4ps for all devices.

If  the drain delay is subtracted from the total delay, the effective velocity can be recalculated from the fT 

data, as shown in Figure 5.6.11.
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Using the drain delay data, the extracted effective velocities are smaller than when using the feedback 

capacitance technique. A322 devices have effective channel velocities up to 1.05x10s m s '1, TF141 

devices up to 1.25X105 m s '1, and MB1 devices up to 1.95x10s m s '1.

The large difference between the extracted velocities obtained by the two methods reflects the difficulty in 

accurately determining the magnitude of the depletion region extension beyond the drain end of the gate. 

However, a number of qualitative conclusions can be drawn from the analyses.

There is no conclusive evidence for the existence of channel velocities in excess of the static saturated 

velocity in either the A322 or TF141 devices.

Both analyses however, indicate an enhancement o f velocity in the MB 1 devices over the static saturation 

velocity. This fact, taken together with the r f  transconductance data from 80nm gate length MB1 devices 

indicate velocity overshoot is occurring in the shortest gate length MB1 devices. The analyses indicate 

the effective channel velocity for the 80nm gate length MB1 devices lies in the range 2.0 - 2.5x10s m s '1. 

The reasons for the velocity overshoot are related to the large indium content in the channel layer. As 

discussed in Section 2.8.2, increasing the indium concentration decreases the electron effective mass 

whilst increasing the T-L valley energy separation. These phenomena increase the probability of the 

occurrence of velocity overshoot.

5 .6 .3  Gate Resistance

The extracted RF gate resistance for pyramidal gate and T-gate devices is shown in Figure 5.6.12. The T- 

gate structure significantly reduces the gate resistance. For comparison, the predicted RF gate resistance, 

calculated from the DC end to end gate resistance measured in Section 4.8.6.4 is presented in Table 5.6.2.
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Gate Length 

(nm)

Extracted

R * (fl)

Predicted 

Re (Q)

200 24.8 5.6

120 47.1 11.7

80 87 33.3

T-Gate 16.5 4.7

T able 5 .6 .2  - Extracted and Predicted Gate Resistance based on 4 Terminal DC Gate Resistance Measurement

The large discrepancy between the predicted and extracted gate resistances is difficult to resolve. As 

shown in Figure 5.6.13, the gate resistance is composed o f two parts:

i) the resistance o f the gate on the mesa

ii) the resistance o f the feed from the gate pad to the mesa

Gate on 
M esa

F ig u re  5 .6 .1 3  - Contributions to Gate Resistance

The predicted resistance values in Table 5.6.2 are calculated for the part of the gate on the mesa.

The feed is 200nm wide, and was used in 80nm and 120nm pyramidal gate devices to improve step 

coverage yield. The gate pad/mesa spacing is 5|im, so the feed should contribute roughly 5 Q  to the 

predicted 120nm and 80nm gate length values. This still doesn't reconcile the extracted and predicted 

values. Closer inspection o f Table 5.6.2 shows an almost linear relationship between the RF and DC 

gate resistances as a  function o f gate length. This can be written as RgRF = 2.4 ( RgDC + 7.5) ie there is 

an extra contribution due to the feed (around 7.5Q), but that the whole resistance is scaled when the gate 

resistance is evaluated at RF. The origin o f such an effect is unclear, but if real, warrants further 

investigation as gate resistance dominates the Maximum Available Gain and fmax of short gate length 

HFET's.

5 .7  Maximum Available Gain (or Maximum Stable Gain) and fmax

The device M aximum Available Gain (MAG) was calculated from the measured S-parameters using the 

equation^5-7]

MAG = - ^ - ( K  + V k 2 -  1 )
12

Mesa
Gate Feed

Source

Gate
Pad Drain
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K =
1 + | d |  - | s „ | 2 - | s 221

2  Is  21S 12

D - S 11S 22 S 12S 21

For K < 1, the device is only conditionally stable, ie matching with certain source and load impedances 

could result in device oscillation. For this condition, the Maximum Stable Gain (MSG) defined as

s 21
s 12

is evaluated. Figure 5.7.1 is a  typical plot o f  gain against frequency for a 200nm gate length 

InGaAs/AlGaAs/GaAs device showing the region o f conditional stability. The Touchstone modelled gain 

is also included in Figure 5.7.1 showing that the frequency range of conditional stability can be accurately 

modelled.
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F igu re 5.7.1 - Measured and Touchstone M odelled M axim um  Available Gain as a Function o f  Frequency for

200nm  Gate Length Pyramidal Gate TF141 D evice

Figure 5.7.2 compares the gain of an 80nm pyramidal gate with an fx of 275GHz and an 80nm footprint 

T-gate device with an fT of 265GHz.
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F igu re 5 .7 .2  - Comparison o f  M AG for 80nm  Pyramidal Gate MB1 D evice and sub-lOOnm T-Gate MB1

D evice

The gate resistance clearly has a  significant influence on the device gain. At 60GHz, the pyramidal gate 

device has a  MAG of 2.9dB, whilst the T-gate device has a  MAG of 8.8dB. As the gate resistance is 

reduced from 90£2 to 15Q, the frequency of critical stability increases as the input reflection coefficient is 

smaller. The device is thus capable of sustaining oscillation to higher frequencies.

From the equivalent circuit elements obtained from Touchstone, the maximum frequency of oscillation 

fmax ° f  each of the devices was evaluated using the expression^5-7],

f max

(Rg + R . + R ,

R
ds

+ 2?tf R C . 
T g gd

Device fmax as a function o f gate length is shown in Figure 5.7.3.
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Figure 5.7.3 shows the influence gate resistance has on HFET gain at high frequency. The 80nm 

footprint T-gate device fabricated on MB1 has an fmax of 180GHz compared to an fmax of 80GHz for an 

80nm pyramidal gate device fabricated on identical material.

Although the three materials studied have very different transport properties, it is impossible to exploit 

the advantages o f one material system over another if  the gate resistance o f the devices is large. In 

Section 5.6, it was concluded that the effective velocity of carriers in the channel o f MB1 devices was 

almost double that o f devices fabricated on A322 and TF141 for gate lengths around lOOnm yet, from 

Figure 5.7.3, the fmax of all the pyramidal gate devices are similar irrespective of material structure (and 

almost irrespective o f gate length too). If devices are required to provide gain at and above 100GHz, it is 

im perative that the gate resistance be minimised, as only then can material properties capable of 

producing f x's o f 275GHz be fully exploited.

Chapter Summary

The DC and RF results obtained from the HFETs fabricated in the course o f the project have been 

presented and discussed in this chapter.

The main results a r e :

i) Devices with intrinsic DC transconductance o f up to 660mS/mm have been fabricated on TF141.

ii) The 0.2eV potential barrier below the 2DEG in the A322 layer structure improves carrier 

confinement and so DC device output resistance.

iii) From the DC transconductance data, there is no evidence of velocity overshoot in A322 or 

TF141, but difficulties in determining the gate-recess depth precluded a complete analysis.

iii) The MB 1 layer displayed significant trapping effects which made analysis of DC device 

properties impossible.

iv) RF transconductances o f up 1 lOOmS/mm were measured on 80nm gate length MB 1 devices.

This translates to a minimum effective velocity of 2.4x1 Corns'1, and indicates velocity 

overshoot is occurring in these devices.

v) 80nm gate length HFETs fabricated on MB 1 have fT’s of up to 275GHz

vi) Sub-lOOnm T-Gate devices also fabricated on MB 1 have fr 's of 265GHz

vii) From an analysis of the fT of 200nm gate length devices on all three materials, it has been

concluded that the effective carrier velocity in the channel is the transport property that limits 

device fT. For the materials o f this study, neither low field mobility or 2DEG carrier 

concentration were found to be significant in determining the device fT for 200nm gate length 

devices.

viii) Device RF output resistance obtained from Touchstone equivalent circuit modelling is 

determined by the potential barrier below the 2DEG of the structures for all three materials of

this study, and is worst for MB 1 devices. A322 devices are best. The output resistance decreases with

gate length for all devices.

ix) An estimate of the depletion region extension beyond the drain end of the gate allowed the

effective gate length of the devices to be calculated. This permitted the effective channel velocity 

to be determined. Such an analysis yielded channel velocities in excess of 2.0X105 m s '1 in MB1
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devices. As the static electron saturation velocity is around l.OxlO5 m s-1, this is further 

evidence o f velocity overshoot in MB1 devices. Neither A322 or TF141 devices showed 

conclusive evidence of overshoot

The large indium concentration in the MB1 channel layer increases the T-L valley energy 

separation while decreasing the electron effective mass. Both these effects increase the 

probability o f the occurrence of velocity overshoot and are probably the cause of the large 

velocities extracted from MB 1 devices.

x) 80nm footprint T-gate devices have gate resistance 5 times lower than pyramidal gate structures 

o f similar footprint sizes.

xi) T-gate devices fabricated on MB 1 were measured to have 8.8dB gain at 60GHz compared with 

2.9dB gain for pyramidal gates on the same material.

xii) The low gate resistance o f the sub-lOOnm footprint T-gate structure led to devices with fmax of 

180GHz compared with fmax of 80GHz for pyramidal gate structures with a similar footprints 

size.
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6 .1  C o n c lu s io n s

The aims of this thesis were to determine the material and device properties which influence the high 

frequency performance o f short gate length HFETs.

To study the material dependence, three MBE grown structures were used:

i) a  conventional Alo^GaAs/GaAs quantum well structure with an Alo ̂ G aA s confming barrier 

300A below the 2DEG

ii) a pseudomorphic Alo^GaAs/Ino.isGaAs/GaAs structure with a 160A In015GaAs strained 

channel

iii) a pseudomorphic Ino.52AlAs/Ino.65GaAs/InP structure with a 100A Ino.65GaAs strained channel 

Therefore, 2DEG's with different transport properties allowed the material dependence of high frequency 

device properties to be studied.

H igh frequency HFET perform ance dependence on gate length was investigated by fabricating 

conventional 'pyramidal' gates in the range 80 - 200nm. In addition, to study the effect of the gate 

resistance, devices with sub-lOOnm T-gate structures were fabricated. 80nm footprint T-gate structures 

were found to have 1/5 of the gate resistance of conventional 80nm footprint gates.

High frequency studies of devices showed the following main resu lts:

i) 80nm gate length HFETs with fT's o f up to 275GHz were fabricated on the InAlAs/InGaAs/InP 

layer structure. Such fT's were nearly twice those of similar gate length devices fabricated on 

both the AlGaAs/GaAs and AlGaAs/InGaAs/GaAs structures.

ii) From the fx measurements, it was possible to extract the effective carrier velocity in the device 

channel. Effective velocities in excess of 2 .0x l05m s '1 were deduced for the InAlAs/InGaAs/InP 

structure, indicating significant velocity overshoot. No conclusive evidence of overshoot was 

observed in devices fabricated on either the AlGaAs/InGaAs/GaAs or AlGaAs/GaAs structures.

iii) The use of the T-gate structure increased the device gain by up to 6dB at 60GHz compared to a 

conventional gate device.

iv) Although the fx's o f the InAlAs/InGaAs/InP HFETs were much larger than those of the 

AlGaAs/GaAs and AlGaAs/InGaAs/GaAs HFETs, the fmax of conventional gate structure 

devices fabricated on all three materials were similar because the large gate resistance dominated 

the device performance.

These results show that both the material and device structures influence the high frequency performance 

o f short gate length HFETs.

Considering material structure first, there is evidence both from this project and elsewhere^6 1 ], that the 

use o f an InGaAs channel in a HFET results in high effective carrier velocities, and thus larger device fT's 

for a given gate length compared with GaAs channel structures. As discussed in Section 2.8.2, increasing 

the In content o f the InGaAs channel increases the T-L valley energy separation whilst reducing the 

electron effective mass. Both these properties increase the velocity overshoot effect, which is most 

probably the cause o f the large effective velocities extracted from fT measurements o f devices with high 

indium concentration (>53%) InGaAs channel HFET's. For the materials used in this study, it was
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deduced that the effective velocity was the dominant transport property in determining device fT at a given 

gate length. Neither the low field mobility or the 2DEG carrier concentration were found to govern 

device fT.

It was also shown that both device DC and RF output resistance could be increased by increasing the 

potential barrier below the 2DEG and thus improving electron confinement to the channel.

It can be concluded that the criteria for a channel with a large effective carrier velocity and a well confined 

2DEGare:

i) the channel layer be high In concentration (>53%) InGaAs

ii) a potential barrier o f at least 0.2eV be formed around 300A below the 2DEG

In addition to the general material requirements o f the channel, it is im portant that device fT and 

consequently f ^  scale with gate length. This places two requirements on the gate capacitance region of 

the device:

i) The gate/2DEG separation should be around 20-30nm if sub-lOOnm gate length devices are to be 

fabricated. The layer structure should thus include a 8 doped donor layer.

ii) The gate footprint should fill the gate recess trench, so the gate recess etch should be 

anisotropic, as may be achieved using dry etching. The use of a  dry etched gate recess will be 

discussed in Section 6.2.

A fundamental limit to t o t a l  gate capacitance scaling results from the contribution of the gate drain 

capacitance Cgd, which does not scale with gate length. As shown in Section 5.6.2, Cgd can contribute 

up to 40% o f the total gate capacitance for an 80nm gate length device.

It is only possible to take advantage of an optimised material structure if  a low resistance gate is 

achieved, as this study has shown that gate resistance dominates high frequency device gain, particularly 

for short gate lengths. The importance of reducing the gate resistance cannot be over-emphasised. 

Devices with sub-lOOnm footprint gates for operation a t 100GHz and above, even with T-gate structures, 

will probably require multiple gate lines and air-bridge techniques to exploit fully the potential of the 

material structures described above.

6 ,2  Future Work

To build upon the findings of this project, with the eventual aim of producing circuits operating at and 

above 100GHz, research should be conducted in four a reas:

i) Material Optimisation

ii) Dry Etched Gate Recess Techniques

iii) Improvement of sub-1 OOnm T-Gate Process

iv) Further High Frequency Testing

Each of these areas will now be considered in more detail.
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i) Material Optimisation

To further test the theory that neither mobility or carrier concentration determine device fT, a bulk doped 

Ino .5 3 GaAs M ESFET layer should be grown on InP. To achieve reasonable gate breakdown 

characteristics, such a structure will require an Alo.5 2 lnAs Schottky layer similar to the MB1 layer. The 

high frequency performance o f devices fabricated on the MESFET layer should be compared with those 

fabricated on an Ino.5 3GaAs channel 2DEG structure.

There is little doubt that increasing the indium concentration of the InGaAs channel improves device 

performance, so perfection of the M BE growth o f InAs channel structures should be a high priority. As 

it is not lattice m atched to InP, the InAs channel thickness will be determined by its ability to 

accommodate strain when it is grown. It is most likely that an InAs channel layer would be incorporated 

into a 2DEG InAlAs/InGaAs/InP HFET structure.

ii) Dry Etched Gate Recess Techniques

The issue o f device uniformity has to be addressed if short gate length HFETs are to be incorporated into 

circuits. Lack o f uniformity is mainly caused by variations in gate recess depth, and so a technique to 

reproducibly perform the gate recess etch is essential. The use of selective dry etching techniques, such as 

the CCI2F2  etch chemistry for the GaAs/AlGaAs system, allows good device uniformity to be achieved. 

CCI2F 2  etches GaAs but not AlGaAs resulting in etch selectivities of up to 2000: l^6-2!. Such etching 

techniques allow device uniformity to be determined by the MBE layer structure. An analogous etch 

chemistry for InAlAs/InGaAs/InP systems which selectively etches InGaAs over InAlAs should be 

developed if InAlAs/InGaAs/InP HFET’s are to be used in circuits.

iii) Improvement o f Sub-lOOnm T-Gate Process

In this project, the yield o f sub-lOOnm T-Gate devices was low. As gate resistance must be minimised, 

further effort should be directed towards improving the yield of the process. In Glasgow, this can be done 

by using the EBPG-5 Beamwriter for T-Gate definition, as the focus and astigmatism correction, critical 

parameters for successful definition of sub-lOOnm footprint gate structures, are under computer control.

iv) Further High Frequency Testing

An important figure of merit for any high frequency transistor is its noise figure. Due to lack of time and 

suitable equipment, no noise studies were performed on the devices fabricated in this project.

This is something which should be remedied. Additionally, spot frequency rf device characterisation, say 

at 60GHz, 94GHz and 120GHz to determine device gain and noise behaviour should be conducted. This 

is not a simple undertaking, as test fixtures and transitions to go from the coplanar waveguide structure of 

the HFET devices to the rectangular waveguide measurement system will be required. However, it is 

necessary to characterise devices at their intended operation frequency.
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