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ABSTRACT

The buckling resistance of orthogonally stiffened cylinders is investigated by using a
general purpose finite element program (ABAQUS). The effects of residual stresses
arising from shell cold forming the cylinder and welding frame components are
considered in the analysis of two stiffened cylinder models with similar material
weights and different geometric parameters. A static axial load is applied to the
models prior to a non-linear elasto-plastic limit point buckling step which produces
large displacement compartment buckling. Residual stress simulation has a reducing
effect of approximately 25% on buckling resistance.

Cylindrical boundary conditions for Finite Element analysis are formulated that
allow torsional displacement and buckling of a sector of a cylinder of half axial
height, and of a circumferential arc angle that will divide into 360°.
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Notation :

Young’s Modulus

Total Torsional Force (in a
cylinder of full circumference)

Buckling coefficient
Axial length of cylinder

Number of axial half buckling
waves

Number of circumferential full
buckling waves

Inplane direct stress resultants
Inplane shear stress resultant
External pressure

Yield Stress

Cylinder Radius

Cylinder thickness

Lateral Displacement

Circumferencial cylindrical
co-ordinate

Axial cylindrical co-ordinate
Curvature parameter
Poisson’s ratio

Critical shear stress



1 Introduction

1.1 General

The emphasis of this work is on Finite Element analysis of orthogonally stiffened
steel cylinder structures that would typically be used as column and pontoon
components on floating drilling offshore platforms. Floating drilling platforms have
been used for world wide operation and will become even more important as offshore
operations move to deeper waters world wide.

Orthogonally stiffened cylinders for offshore applications are heavily fabricated
structures, typically incorporating flanges on the frame components. While structural
strength for a given structural weight can be enhanced by incorporating a cylindrical
grillage on the cylinder, welding the components together creates geometric
distortion and locked in stress, which in turn affects structural integrity.

Two design cases of orthogonally stiffened cylinders are considered for
investigation by Elasto-plastic, non-linear Finite Element analyses of shape imperfect
models with the Finite Element program ABAQUS. For the first case, model
1(ortho), the geometric parameters of a typical tension leg platform orthogonally
stiffened cylinder design are used. In this case the five ring - six bay design is
modified to a five bay four ring design, to allow axial symmetry at the central
circumferential hoop in the Finite Element analysis. The cylinder in second model,
model 2(ortho), has the same cylinder radius, 5.3 M, and the same axial height, 8 M,
and the same weight as model 1(ortho). The principal differences between the models
are the smaller and thinner rings, smaller, thinner and more widely spaced stringer
frames and thicker cylinder shell of model 2(ortho).

An overall radial shape imperfection is introduced to the cylinder at the mesh
generation stage. Residual stress arising from cold forming the cylindrical shell and
residual stress and shape imperfection arising from welding frame components are
implicitly considered in the Finite Element analysis with thermal expansion and
contraction steps. Static axial loading and active uniform surface pressure are
considered in large displacement buckling analysis.

Boundary conditions for torsional buckling of Finite Element cylinder sector
models of half axial height are formulated and tested in the final chapter.

1.2 Aims and scope
The work presented in this thesis aims to:

o further develop the type of work established by Bushnell [14] and Guggenberger
[15] by exploiting the improved capabilities of high performance computational
facilities with the finite element program ABAQUS;

e give greater certainty to the design factors in design codes that consider fabrication
procedures [27,28,29], by implicitly introducing cold forming and welding steps in
finite element analysis of orthogonally stiffened cylinders.



1.3 Finite Element analysis
1.3.1 Eigenvalue analysis

In the non-linear elasto plastic shape imperfect Finite Element analysis of Chapter 3,
circumferential and axial symmetry is used to keep the number of elements in the
Finite Element models to a minimum. While the case of axial symmetry is straight
forward, the model is cut in half at mid height and axial symmetry imposed, for the
case of circumferential symmetry a critical sector angle must be established.

It was attempted initially to find this critical angle by eigenvalue buckling analyses
of shape perfect orthogonally stiffened cylinders. However it was found because of
the arch locking effect of the perfectly circular circumferential components, high
surface pressures that created large membrane forces were necessary to cause
buckling, and when buckling occurred it was local buckling of the cylindrical shell
between frames. It was possible to create overall buckling modes by increasing the
thickness of the cylinder shell, however the shell thickness had to be multiplied
several times and this would greatly affect the stiffness of the cylinder.

The approach taken in Chapter 3, ‘Eigenvalue analysis’, is to simulate the elastic
stiffness of the orthogonally stiffened cylinder in an un stiffened cylinder by using the
formulae in API Bulletin 2U Sections 4.4 and 4.4.2 to calculate elastic stiffness
coefficients and implementing them directly in ABAQUS in the analysis of a 180° un
stiffened cylinder with the same radius and axial height as the orthogonally stiffened
cylinder.

1.3.2 Non-linear Elasto-plastic shape imperfect analysis

It is attempted in this chapter to include in the Finite Element analysis the aspects that
in real tests of orthogonally stiffened cylinders would greatly affect structural
strength. The critical sector angle established in the previous chapter is used and an
overall shape imperfection of amplitude 0.5% of the radius is introduced at the mesh
generation stage.

The first two Finite Element analysis steps are circumferential thermal expansion
and thermal contraction steps that simulate the cylinder shell cold forming process and
produce plastic straining and residual stress in the cylinder shell, while the frame
components remain largely unaffected. The next analysis step alters the boundary
conditions to those of axial and circumferential cylindrical symmetry. This is
followed by a step that alters the coefficient of thermal expansion to an isotropic state,
which is necessary for thermal expansion and contraction in the following two
welding analysis steps.

A static axial load is applied to the model after the welding steps. The axial load
produces a compressive axial stress of approximately 100 N/mm?, while this stress is
large enough to affect-buckling behaviour in following steps, it is not expected to
produce buckling o’ own, or even to produce large displacement. This is evident
as the axial load is applied in a non-linear step which could be completed over a
number of increments with the automatic incrementation facility in ABAQUS, but is
completed in one increment.

The final step is the buckling step which utilises the modified Rik’s limit point
algorithm to produce non-linear static elasto-plastic buckling in the orthogonally



stiffened cylinder. With the static axial load from the previous step held constant, a
uniform external surface pressure is applied to the cylinder elements. Local buckling
of the cylinder shell between frames typically occurs initially followed by large
displacement overall buckling. The analysis is always carried out to the point where
an post buckling limit point has been reached and well beyond this. The post buckling
limit point was reached at a maximum radial displacement of between 7 and 35 mm,
depending on the particular analysis.

1.3.3 Torsional buckling analysis

Chapter 5, ‘Torsional buckling’, can be considered separately to chapters 3 and 4.
The contents of the chapter is taken from [13] which describes work carried out in
formulating boundary conditions for cyclic cylindrical torsional symmetry in Finite
Element analysis, to allow the type of half axial cylindrical sector described in
Chapter 4 to be buckled under torsional load.

Eigenvalue torsional buckling tests are carried out on un-stiffened elastic cylinder
models as a comparison with classical elastic torsional stability theory. Stringer
stiffened and orthogonally stiffened cylinders are then tested in non-linear elasto-
plastic tests under combinations of torsional, axial and surface pressure loads.



2. Literature Review

2.1 Research papers

In [1] the problem is defined by two main aspects, firstly the likely nature and severity
of initial locked in stresses and distortions and secondly their effect in reducing the
strength and stiffness of the supposed perfect structure. Cold forming operations and
weld shrinkage actions are considered.

It is pointed out that while residual stresses arising from hot rolling structural
sections and cold rolling plate usually do not affect the strength of fabricated
structures, the effects of residual stress from cold bending ring frame stiffeners is
usually significant.

Where fillet welds at “T’ configurations are being considered, the concept of the
tension block is introduced to investigate the effects of weld shrinkage actions. This is
the area of steel close to a weld which is in tension after the welding process. The
across the weld length of the tepsion block is described in relation to the plate
thickness with the parameter m, the across the weld length is equal to Nt where t is the
plate thickness. Typical values for n of between 3 and 6 are suggested for ships, while
smaller values would typically be applied to civil structures. It is established that the
tensile stress at the tension block is balanced by a compressive stress in the same
thickness of plate, at the reverse side of the weld or at the mid thickness of plate, and
by a compressive membrane stress at regions of the plate away from the welds. It is
also suggested that welding temperatures are about twelve times greater than the range
to cause yield in resisted thermal expansion of structural steels. The ‘hungry horse’
type of shape imperfections in the shell of stiffened panels caused by weldmg
procedures and the magnitudes of displacements are discussed.

Compression strength of grillages is considered in relation to plate failure, column
failure, frame tripping and grillage instability. The design of long ring-stiffened
cylinders under external pressure is considered for shell buckling and ring frame
buckling modes.

The work in [17] contains detailed examinations of theoretical design formulae
for the buckling strength of flat plates based on the critical stress, maximum stress and
effective width methods. These formulae are compared with results of physical tests
on box, cruciform and clamped web welded structures.

The tension block width parameter m is discussed and it is suggested that
values of M of between 2 and 4 are appropriate for steel thicknesses between
approximately 5 and 15 mm. It is not suggested however that the tensile residual
stress close to the weld is balanced by a compressive stress through the thickness as in
1. above, rather that the tensile stress in the tension block is balanced by a compressive
membrane stress in the shell away from the weld.

In [14] the finite element program BOSORS is used in this work to analyse ring
stiffened cylinders of infinite length, by considering a single ring section with a half bay
on both sides, with axial symmetry at the edges. Bifurcation buckling tests are carried
out under uniform surface pressure on the cylinder.

The effects of shell cold forming are simulated in the cylinder elements by
manipulating gradients of total strain through the thickness of the shell with an
orthogonal co-efficient of thermal expansion in a thermal loading cycle. Material



shrinkage at fillet weld locations is also simulated, however there is no variation of
applied thermal strain through the thickness of the shell.

Comparison is made between finite element tests and physical tests. The
conclusions indicate that irregularities in the shell thickness and in welding procedures,
and geometric shape imperfections need to be taken into account in the finite element
analysis for a better match with physical tests.

Shape imperfections and cold forming residual stresses in cylindrical silo
structures and their effects on buckling resistance under axial loading are investigated
in this [15] using the finite element program ABAQUS. Cold forming residual stresses
are introduced in the unstiffened cylinders by bending the plate and allowing it to
spring back, circumferential and axial boundary conditions are then introduced and a
buckling analysis is carried out. Radial dents are imposed on the cylinder in some
cases. A general conclusion is stated in this work that, ‘If initial stresses are taken into
account in buckling computations they should be linked to a physical process which is
responsible for their creation’.

[10] gives guidance on the design of Ring Frames in orthoganally stiffened
cylinders affected by axial loading and hydrostatic pressure. Finite Element Analysis of
a tension leg platform column, using the eigenvalue and Riks limit point methods in the
Finite Element program ABAQUS, give results for bay instability and general collapse.
It is shown by a second design that the first model analysed could be redesigned with
smaller ring frames, producing a considerable saving in cost and weight.

The study by Morandi Et.Al. in [23] examines the methods of structural design
for externally pressurised ring and flange stiffened vessels using the Finite Element
analysis program ABAQUS for linear analysis of models of infinite axial length. The
results of tests with different geometries and boundary conditions, and taking into
account modal interaction effects, are discussed with reference to the partial safety
factors applied to the reliability analysis and design of stiffened pressure vessels.

The Finite Element program LUSAS is used to carry out several finite element
analyses of ring stiffened cylinders that would typically be found on steel offshore
structures in [19], under external pressure. The semi-loof shell element is used and
shape imperfections are included in the finite element mesh. Localised torsional ring
tripping failures are simulated using a single half bay and symmetrical boundary
conditions that simulate a compartment of infinite axial length. A review of current
design formulae is included in and comparison is made between these formulae and the
results obtained from the finite element analyses. Emphasis is placed on the reduction
of buckling resistance under external pressure caused by out of circularity of the
cylindrical shell and shape imperfection in both flat bar and tee type ring stiffeners.

Physical model tests of Ring Stiffened compartments are outlined and
compared with Finite Element tests of similar models in [23]. There is an emphasis in
this paper on the negative effects that out of circularity of the cylindrical form imposes
on the resistance to buckling of Submarine structures, with secondary structural deck
components. The Finite Element program ADINA was used in with shape
imperfections introduced in the Finite Element mesh, while in the physical model the
shape imperfection is intentionally induced. There is a good correlation between
physical test results and finite element results and the importance of considering the
effects of shape imperfections in this type of design is highlighted.

The magnitudes and distribution of shape imperfections on stringer stiffened
and un-stiffened composite ply cylinders are measured and outlined in [25]. These
shape imperfections are then introduced in Finite Element meshes. An elastic buckling
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analysis is carried out on the composite cylinder and an elastic-plastic buckling analysis
is carried out on the stringer stiffened cylinder, both under axial compression. It is
shown that probabilistic modelling of shape imperfections allows more accurate partial
safety factors to be predicted for use in design of axially loaded cylindrical structures.

2. Codes of practice

Elasto-plastic material properties for steel used in this work were largely taken from
[26]. Further discussion is given in Section 4.1.2.

The [27] British Standard published document and the associated paper is
directed towards design for fatigue, sections 1 and 2 give approximate methods for
assessing the through thickness residual stress distribution at fillet and butt type welds.
Exact information about the energy input in the welding process is necessary to
produce information about the magnitudes of residual stress after welding.

[28] was particularly useful to this work in providing a set of orthotropic
stiffness coefficients to allow the stiffness of the orthogonally stiffened cylinders to be
represented as unstiffened cylinders, to establish the critical number of circumferential
buckling waves in eigenvalue buckling tests in chapter 3.

The effects of residual stress on buckling resistance is accounted for by a
general plasticity reduction factor which is to be multiplied by the design buckling
pressure calculated from empirical formulae, the value of which depends on the
calculated stress levels in the steel at the point of buckling.

In [29] Section 4, ‘Stiffened circular cylindrical shells’, formulae are given for
the calculation of critical buckling stresses under axial force, bending moments,
torsional moments, shear force and lateral pressure. It is stated in Section 4.1.4 of this
code that ‘The methods are to be considered semi-empirical. The reason for basing the
design on semi-emp¢rical methods is that the agreement between theoretical and
experimental buckling loads for some cases has been found to be non-existent. This
discrepancy is due to the effect of geometric imperfections and residual stresses in
fabricated structures. Actual geometric imperfections and residual stresses do in
general not appear as explicit parameters in the expressions for buckling resistance’.

Section 4.1.5 states that ‘The recommended methods for buckling analyses
may be substituted by more refined analyses or model tests taking into account the real
boundary conditions , pre-buckling edge disturbances, the actual geometric
imperfections, the non-linear material behaviour and the residual welding stresses’.



3 Eigenvalue Analysis

The purpose of the eigenvalue buckling tests is to estimate the characteristic overall
buckling modes with regard to overall compartment buckling, and in particular to
estimate the number of circumferengfal buckling waves, n, of the orthogdnally
stiffened, elasto-plastic, shape imperfect cylinder models in the following chapter, so
that the half circumferen,c{al wave sector angle that gives the estimated lowest
buckling resistance can be modelled.

In this chapter elastic eigenvalue buckling tests are carried out on shape perfect un
stiffened cylinders, models 1(eig) and 2(eig), which have similar orthotropic stiffness
properties to the orthoggﬁlally stiffened, elasto-plastic, shape imperfect cylinder
models, models 1(ortho) and 2(ortho) in the following chapter. Model 1(ortho) and
model 2(ortho) have very similar material volumes with different geometric
parameters.

3.1 Material Properties

Elastic orthotropic material properties are used to represent the combined shell and
stiffener stiffness in a cylindrical shell with no stiffeners, models 1(eig) and 2(eig).
Elastic stiffness coefficients are calculated from the formulae given in API Bulletin
2U [28] sections 4.4 and 4.4.2. The formulae and calculations that are used are given
in the Mathcad spreadsheets in Appendix 1. The geometric parameters of models
1(ortho) and 2(ortho) are outlined in Table 1.

Dimensions (mm) model 1 model 2
(ortho) (ortho)
Cylinder Radius 5300 5300
Stringer Spacing 6° 9°
Ring Spacing 1600 1600
Cylinder Thickness 13 18
Top Ring Depth 200 150
Top Ring Thickness 50 50
Stringer Web Depth 200 150
Stringer Web Thickness 12 10
Stringer Flange Depth 150 150
Stringer Flange Thickness 12 10
Ring Web Depth 600 300
Ring Web Thickness 11 10
Ring Flange Depth 150 150
Ring flange Thickness 13 10
Circumferential sector angle 36° 27°
modelled

Table 1.1, Geometric Parameters of Orthogonally Stiffened Cylinders



3.2 The Finite Element models
3.2.1 Geometry and Boundary Conditions

Models 1(eig) and 2(eig) refer to the cylindrical model without stiffeners or
bulkheads, which are used as a representation of the stiffened cylinders. Both models
1(eig) and model 2(eig) have identical geometric parameters (ie. only the cylindrical
component), only the orthotropic material properties are different.

The models are 4 M in height, with axial symmetry at the bottom edge (edge 3),
giving an effective length of 8 M. The radii of b)',tﬂ models is 5.3 M. Both models are
180° sector angles, with circumferential symmetry at the vertical edges (edges 2 and
4). As circumferential waves in multiples of a half can result with this type of
circumferential symmetry, the 180° sector angle is wide enough to allow for any
number of waves around a full circumference greater than one, allowing for the
response of the elements when small wave lengths are considered. The case of the
number of wau€s, n, equal to one, would result from a displacement of the central
vertical axis towards the centre, which is associated with overall bending, and as the
cylinders are buckled under axisymmetric loading, the n=1 case is not considered.

It was also attempted to use circumferential anti-symmetry at the edges of 90°
sector angle models, as this should allow buckling waves in multiples of a quarter to
occur, simulating a full circumferential model. However there were convergence
problems and all analyses in this section were carried out on 180° sector angles.

The top of the cylinder (edge 1) is free to move in the axial direction only,
allowing an axial load to produce displacements vertically downwards only.

3.2.2 Elements and mesh

Thick shell elements with eight nodes are used in all cases of shell elements in models
1(eig) and 2(eig). In the Finite Element models, 50 elements are used in the
circumferential direction and 8 are used in the axial direction.

3.2.3 Loading

Axial load is applied as a series of nodal forces, a type of knife edge loading, on the
top edge of the cylinder. This stage of loading is applied in an initial static step,
before any surface pressure is introduced.

Surface pressure is a uniformly distributed load normal to the surface of the
elements in the cylindrical shell. The second step in each analysis is an eigenvalue
buckling step, with the eigenvalue associated with surface pressure only.

3.3 Eigenvalue Buckling analysis
3.2.1 Model 1(eig)
Model 1(ortho) is heavily reinforced with frames and has a thin shell. The large rings

in model 1(ortho) give a large elastic circumferencial stiffness coefficient to model
1(eig), and this produces relatively large circumferential buckling waves. With no
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axial loading and an active surface pressure Model 1 buckles in two and a half full
circumferential waves at the centre of the cylinder (at the bottom of the Finite Element
model). The eigenmode is illustrated in figure 3.1, the cylinder buckled at a surface
pressure of 3.53N/mm’. Two and a half circumferential waves in 180° is equivalent to
five waves in a full 360° circumference, n=5. A full wave extends over 72°, and as it
required to model a half buckling wave in section 4., a 36° sector angle will be
necessary.

In another analysis an axial load was applied to the top edge of the cylinder as
described in 3.1.4, the magnitude of the force was that to cause an axial stress of
100N/mm? if it is evenly distributed across the shell-stringer web-stringer flange cross
sectional area in model 1(ortho) in section 4. The result remained n=5 with no

apparent change in the eigenmode and a small decrease in buckling pressure to
3.42N/mm’.

Fig 3.1, Model 1(eig) eigenmode.
3.2.2 Model 2(eig)

The stiffening components of model 2(ortho) are smaller and thinner and the shell
component is thicker than the corresponding components of model 1(ortho). Under
active surface pressure with no axial loading, the model buckled into three and a half
waves (figure 3.2), with a buckling pressure of 1.23N/mm®. The higher number of
circumferential buckling waves and the lower buckling pressure in model 2(eig) in
comparison to model 1(eig) can be attributed to the smaller elastic stiffness
coefficients in model 2(eig) and the smaller frames in model 2(ortho).

When an axial load was introduced of the same magnitude as model 1(eig) above
and the model was buckled under an additional active surface pressure, there was no
change in the number of circumferential buckling waves and a small decrease in
buckling pressure to 1.15N/mm?.

In this case n=7, a full buckling wave extends around 51.43° of the central
circumference and a half wave 25.71° model is required for the detailed analysis of
model 2(ortho) in section 4. As stringers are spaced at 9° in model 2(ortho) a 27°
sector angle will be analysed.

There is a large difference in buckling pressures for the shape perfect elastic models
1(eig) and 2(eig), this is caused by the difference in elastic stiffness coefficients. In
section 4 the effects of the shape imperfection, non-linear deformation, elasto-plastic
material behaviour and ring frame tripping are considered, resulting in a reduction of,
and a smaller difference between, the buckling pressures of models 1(ortho) and
2(ortho).

11



Fig. 3.2, Model 2(eig) eigenmode.
\s0

Note : Fig. A2.3.1.1, page@ of Appendix 2, shows the elasto-plastic limit point
load displacement paths for model 2(ortho), an orthogonally stiffened cylinder, for the
27° and 36° sector angles. The 36° sector angle appears to have an ‘artificially’ high
elastic response to surface pressure when compared to the 27° sector angle and shows
un stable behaviour immediately after the elastic limit of response when the surface
pressure is suddenly reduced.

12



4 Elasto-plastic limit point analysis
4.1 Material properties

The type of material being modelled is grade 55 steel. A material hardening slope is
introduced for strains in the plastic range because plastic straining occurs in the cold
forming and welding processes.

4.1.1 Elasticity

A Young’s modulus of 205 MPa at zero temperature is used for all components. The
variation of Young’s modulus with temperature is discussed in 4.3.1, Young’s
Modulus remains constant during the cold forming process.

4.1.2 Plasticity

700 -
600 1
500 |
400 |

300

Stress (N/mm2)

—o— True stress, log strain
200 9

—m— Nominal stress, strain

100 4

0 L " | } } } " : } . i
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Strain

Fig. 4.1 Material stress strain curve.

From European Standard EN 10025 [23], a yield stress of 355 N/mm? is used for steel
thickness less than 16mm, and 345 N/mm’ for thickness greater than or equal to
16mm. BS 5950 indicates that a plateau of perfect plasticity at first yield of seven
times the value of elastic strain at first yield should be used for steel calculations
involving material hardening. European Standard EN 10025, Table 5 gives a value of

13



20% minimum elongation at between 490 and 630 N/mm2 for grade 55 steel; a
maximum hardening stress of 560 N/mm?2at 20% strain is used (Figure 4.1). Perfect
plasticity is assumed at nominal strains greater than 20%. The nominal stress and
strain parameters are converted to true stress and log strain for material definition in
ABAQUS.

4.2 The finite element models
4.2.1 Mesh

Eight noded thick shell elements are use for all components of the finite element
models. The geometric parameters of model 1(ortho) and model 2(ortho) are outlined
in table 1.1, Section 1. An inside view of the mesh used for model 1(ortho) is
illustrated in figure 4.2 and an outside view of the mesh used for model 2(ortho) is
illustrated in figure 4.20. Model input files are generated using the FORTRAN 77
code ‘ORCYL.f77°. The ‘ORCYL.f77’ code was developed from the ‘ABAINP.f77’
code which was written by Dr. Morandi at the Department of Naval Architecture and
Ocean Engineering at the University of Glasgow in 1995.

Fig. 4.2, Model 1(ortho) mesh.



4.2.2 Loading

Axial load is applied before the Rik’s limit point buckling step in a non-linear static
step, the axial loading is applied on the surface of the elements of the ‘top ring’ or
bulkhead component, creating an axial compressive stress of 100 N/mm?* over the
cylinder-stringer web-stringer flange cross sectional area in model 1(ortho). This
requires a total force of 636.961 kN if it is applied over a full 360° circumference.
This magnitude of axial load is also applied to model 2(ortho). The axial load remains
constant during the buckling step. ABAQUS POST axial stress contour plots of
model 1(ortho) and model 2(ortho) under this axial load are illustrated in figures
A2.1.7.10 and A2.2.7.10 respectively.

All surface pressure buckling steps are preceded by an axial loading step. The
active force in the Rik’s limit point buckling step is an external surface pressure on
the cylinder elements only.

4.2.3 Shape imperfection

An overall radial shape imperfection is introduced in model 1(ortho) and model
2(ortho) in a half cosine wave in the circumferential direction as illustrated in an un
stiffened cylinder in figure 4.3 and in a half cosine wave also in the axial direction as
illustrated in figure 4.4. The maximum amplitude of the shape imperfection is 26.5
mm inward, 0.5% of the cylinder radius. The frame components are displaced to the
same circumferential magnitudes as the cylinder, the shape imperfection is introduced
at the mesh definition stage and so dose not cause any residual stress or strain from
components being bent or twisted.

Fig. 4.3, Exaggerated overall radial shape imperfection, circumferential variation.
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Fig. 4.4, Exaggerated overall radial shape imperfection, axial variation.

The load displacement behaviour of the models was greatly affected by the
variation and amplitude of overall shape imperfection. A smaller shape imperfection
amplitude created a higher limit to elastic response and a sudden load factor reduction
once this point of loading had been passed. Fully inward shape imperfection as
illustrated in figures 4.3 and 4.4 and fully outward shape imperfection gave less
resistance to initial buckling than a central shape imperfection, where the imperfection
magnitude is at a maximum at the ends of the circumferential arc sector and zero at
the centre. This appeared to be caused by a geometric locking effect at the point of
overall buckling.

An axial shape imperfection in a half cosine wave was introduced in the large rings
of model 1(ortho), increasing to a maximum amplitude of 5 mm at the ring web to
ring flange intersection at the circumferential ends of the finite element sector. This
greatly affected the post buckling behaviour of model 1(ortho) where initially without
the ring shape imperfection, the load factor was increasing immediately after the
elastic range of response as the rings were being forced to buckle suddenly. A similar
axial shape variation was introduced in the smaller rings of model 2(ortho), in
proportion to the shape imperfection in the rings of model 1(ortho). There was no
apparent change in load displacement behaviour, this was probably due to the smaller
magnitudes of shape imperfection variation and the different buckling characteristics
of the two models which 1is discussed further in Section 4.5.

4.2.4 Boundary Conditions

Each finite element model contains four edges, the top or end (edgel) of the cylinder
where a bulkhead would typically be found, two vertical edges (edges 2 & 4) which
provide circumferential cylindrical symmetry, and the bottom edge (edge 3) of the
finite element model, the central hoop of the cylinder, which is restrained with axial
symmetry.

The top ring is effectively free to translate, but is restrained against buckling under
the high surface pressure applied in the axial loading step. This is achieved by
equating all nodes in a radial line (figure 4.6) to translate in the axial direction
together.
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Fig. 4.6, Nodes in the top ring along radial lines are equated to translate together in
the axial direction.

A shell thickness of 50 mm is used in the top ring to provide relatively less
flexibility here compared to the other frame components. It was found that if the top
ring was made rigid or if all nodes in the top ring were constrained to move in the
axial direction together, the buckling behaviour of the cylinder, for overall buckling
modes in particular, was greatly affected and convergence problems were
encountered, the analysis would typically end at the elastic limit of response. A small
degree of circumferential flexibility in the top ring allows large inward radial
displacement of the cylinder in overall buckling modes. One side of the sector, the
side with the inward shape imperfection, will buckle inward in the radial direction,
causing a small downward displacement of the top ring above, while the other side,
and the top ring above it, remains relatively unaffected.

4.3 Cold forming analysis
4.3.1 Shell element cold forming

It is assumed that during manufacture the cylindrical shell plates are initially flat and
are formed by forcing them through a three wheel mephanism, so that curvature is
introduced gradually along the plate in the circumferential direction (figure 4.7). It is
also assumed that the process illustrated in figure 4.8, where curvature is produced by
passing the plate between two drums of different radii and laterally compressing the
plate with an out of balance distribution of stress and strain through the thickness, is
not used.

A series of Finite Element tests were carried out beginning with a flat plate, which
is restrained into a prescribed radius of curvature by prescribed displacements, to the
point where plastic straining and material hardening occurs at the outer layers of the
shell (figures 4.11 and 4.12). The prescribed displacements are then released and the
shell is allowed to spring back to a lesser curvature (figures 4.14 and 4.15). The
curvature is measured, the released radius calculated and the process repeated until
the required released radius of the cylinder is obtained, in an iterative process (figure
4.10). Where a different thickness is to be used or a different cylinder radius is to be
obtained the process is repeated.



Released curvature

Restrained curvature

Fig 4.7, Three wheel mechanism, cold forming type 1.

—

Fig. 4.8, Cold forming type 2.

A series of tests were also carried out where the number of layers at the integration
points, which are used for plasticity calculations, were varied to establish the
minimum number of layers necessary for accurate representation of stress and strain
through the thickness of the shell (figure 4.9). It was found that thirteen layers were
adequate, the default number for shell elements in ABAQUS is five.

A FORTRAN 77 code ‘FORM.f77’ has been written to produce an ABAQUS input
file, that will define a flat plate of eight noded shell elements with the material
properties described in section 4.1, restrain the plate into a specified radius of
curvature in several non-linear increments, and release the plate to the equilibrium
curvature in a second step of several non-linear increments.

The program asks the user to input the root file name, the number of elements in the
two principal directions of the flat plate, the real dimensions of the plate, the real
thickness of the plate, the numbey'fi)lasticity calculation points through the thickness
of the plate and the radius of curvature the plate is to be restrained into before the
plate is released to spring back. An ABAQUS job is then processed with this root file
name and the released curvature is calculated from the rotational displacement of a
node at the centre of the plate. The FORTRAN 77 computer code ‘FORM.f77° was
developed from the FORTRAN 77 code ‘ORCYL.f77°.
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During the analysis one straight edge is held fixed, the two curved edges are
constrained with axial symmetry and the fourth straight edge is prescribed a rotational
value consistent with the curvature of the shell (figures 4.11 and 4.14).

4.3.2 Cold forming stress and strain distribution

Figures 4.12, 4.13, 4.15 and 4.16 show the distribution of circumferential stress and
circumferential strain respectively through the thickness of the shell during the two
phases of the cold forming process. The right hand side of the graphs shows the face
of the plate closest to the centre of curvature. As the elastic strain limit of the material
is reached at the outer calculation points (figure 4.12), with further curvature plastic
straining begins, moving inwards (the analysis is completed over several increments)
towards the mid-thickness. Stress is greatest at the outer layers (figure 4.13), most of
the material that yields hardens and reaches a circumferential stress of approximately
400 N/mm?, the yield stress in this case is 355 N/mm®

Fig. 4.11, Bending the plate back.
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Fig. 4.12, Circumferential strain - bending the plate back.
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Fig. 4.13, Circumferential stress - bending the plate back.

When the prescribed displacements are released and the shell is free to spring back
to its equilibrium position, the plastic strains remain and the elastic strains balance the
difference between the plastic strain and the total strain, which must be linear through
the thickness of the shell (figure 4.15). The resulting residual circumferential stress
forms an ‘S’ or ‘Z’ pattern through the thickness of the shell (figure 4.16), of different
magnitudes depending on thickness and required curvature (see figure A2.1.1.4 page 4
and figure A2.2.1.4, page 78 in Appendix 2), tensile at the outer layer nearest the
centre of curvature, compressive between this and the mid-thickness, approximately
zero at the mid-thickness, tensile between mid-thickness and the outer face and
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compressive at the outer face. Corresponding magnitudes of axial residual stress are
of smaller amplitude, approximately 20 N/mm?’ in this case, and have a slightly
different pattern. The ‘S’ shape is approximately zero at the outer layers and mid-
thickness and maximum at quarter thickness (figure A2.1.1.8, page 8 and A2.2.1.8,
page 82 in Appendix 2). Magnitudes of shear stress are very small, less than 1
N/mm?®.

Fig. 4.14, Releasing the plate to spring back.
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Fig. 4.15, Circumferential strain after spring back.
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Fig. 4.16, Circumferential stress after spring back.
4.3.3 In-situ shell cold forming

In the stiffened structure it is required to introduce the plastic strains and residual
stresses described above in the cylindrical shell without bending the frames. In order
to achieve this the model is developed with all components of the model defined with
an individual set of node points. The various components are then tied together, all
rotational and translational degrees of freedom at nodes to be joined are equated
(figure 4.20). This allows manipulation of material of separate components which
meet by assigning a coefficient of thermal expansion to the material and applying
temperatures to the node points of that separate component.

All nodes in the shell are restrained in all degrees of freedom for the cold forming
simulation and an orthogonal coefficient of thermal expansion is assigned to the shell
with the circumferential component given a value of 10E-6/° and the axial component
given a zero value. Throughout the analysis of the cold forming process the
coefficient of thermal expansion is used as a means of manipulating states of strain in
the material with temperature variation through the thickness of the shell.

The values of total strain through the thickness of the shell described in the test
plate model are applied to the cylinder in two steps by temperature values at each
node in the cylinder and at thirteen points through the thickness of the cylinder. In the
first step a linear gradient of total strain to cause plastic strain at the outer layers to the
magnitudes previously established, of the shell being curved back (figure 4.12) are
applied, in the second step total strains through the thickness are reduced to those of
the released curvature (figure 4.15). The resulting distributions of elastic and plastic
strain and residual stress in the axial and circumferential directions in the cylinder are
almost identical to those of the restrained and released plate described earlier.

Initial temperature gradient conditions are introduced in the shell, before expansion
is applied, to ensure that the model is at zero temperature at the end of the cold
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forming analysis, when the co-efficient of thermal expansion is altered to an isotropic
state for the following welding analysis.

The degrees of freedom in the cylinder which were restrained during this step are
released and boundary conditions of cylindrical symmetry are applied before any
further steps are taken. This change of boundary conditions has no apparent effect on
the cylinder and frames at all areas except at the top ‘free’ curved edge, adjacent to the
top ring, where there is a slightly uneven stress pattern, following the edges of the
frames. This stress pattern is small in magnitude, less than 1 N/mm? in tension and
compression, and is assumed not to affect the analysis significantly.

4.4 Welding analysis
4.4.1 Welding shell elements
4.4.1.1 Variation of Young’s modulus with temperature

The variation of Young’s modulus with temperature in the welding analysis is plotted
in figure 4.17. This variation is intended to take account of material softening at very
high temperatures and will significantly affect material through the thickness of the
shell between the weld-shell surface and approximately 2 mm below this. The cold
forming process is not affected by this variation because the applied temperatures are
below 7E7°, where Young’s modulus remains constant.
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Fig. 4.17, Variation of Young’s Modulus with temperature.

4.4.1.2 Distribution of welding thermal strains in model 1(ortho) and model
2(ortho)

Before any welding thermal strains are introduced the coefficient of thermal
expansion is altered from an orthotropic state with a 10E-6/° circumferential
component and a zero axial component in the cold forming steps to an orthotropic
state with a 10E-6/° circumferential component and a axial 10E-6/° component, by
means of a field variable in the input file.

In the welding analysis of model 1(ortho) and model 2(ortho), in the cylinder or a
frame flange, total ‘thermal’ strains at the shell-weld surface (at depth through
thickness = 0 in figure 4.18) of 2% are introduced [1], with an approximate ‘S’ shape
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variation of ‘thermal’ strain below this reducing to zero at 8 mm below the shell-weld
surface. This distribution is maintained for different thicknesses of plates in model
1(ortho) and model 2(ortho).
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Fig. 4.18, Distribution of total ‘thermal strains’ through the thickness of the cylinder
and frame flanges of model 1(ortho) at weld locations (see Fig. 20, Detail B, Node 1).
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Fig 4.19, Distribution of total ‘thermal strains’ through the thickness of the stringer
frame webs of model 1(ortho) at weld locations (see Fig. 20, Detail B, Node 2).

At frame web weld locations, such as the frame web component in the frame-

cylinder intersection of figure 4.20, Detail A, where there is a weld on both sides of
the plate, the ‘S’ shape distributions described above are applied from the shell-weld
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surface to where they overlap (figure 4.19). It is necessary to tie two separate nodes
(Figure 4.20, Detail B, Node 1 and Node 2) which are at the same point in space, to
define different variations of thermal strain at the same nodal position (Figure 4.20,
Detail C, Position A).
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Shell-weld
surface .
Frame
+ Node 1
T Node 2
B ™
Cylinder shell N
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.
Frame shell —71 \ Length A

element _o—
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Fig. 4.20, Finite Element welding configuration.

All element lengths adjacent to a weld in the Finite Element models are 75 mm in
length (Length A in Figure 4.20, Detail C). Approximately half the element surface
on plan, i.e. the two integration points out of four closest to the nodes on the line of
the weld, are affected significantly by the thermal expansion specified along this line
of nodes. This gives a value for 1} [1 and 17] of 75 divided by twice the thickness,
between 3.75 for a 10 mm plate and 2.08 for an 18 mm plate, the range of thicknesses
in models 1(ortho) and 2(ortho).

Total ‘thermal’ strains are applied in a single non-linear step of approximately eight
increments. These strains are reversed when the model is returned to zero temperature
at all nodes in the following non-linear step, also of approximately eight increments,
before the model is loaded and buckled in the following non-linear steps.
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4.4.1.3 The effect of other variations of welding thermal strain on buckling
resistance

In developing the method of applying through thickness total strains to simulate
welding procedures in the stiffened cylinders, different distributions of through
thickness thermal strains to those used in the refined analyses of model I(ortho) and
model 2(ortho) were used, although the magnitude of thermal strain at the shell-weld
surface integration points was always 2%. Figure A2.3.2.1, page 152 of Appendix 2,
illustrates two ‘S’ type variations of through thickness thermal strain in the cylinder at
a fillet weld location. This variation is applied to a model with similar geometric
parameters to model 1(ortho) but with a 30° sector angle rather than the 36° sector
angle. The application of these distributions of thermal strain through the plate
thicknesses was based on a proportional depth through thickness basis rather than on
real depth of penetration, i.e. a 13 mm plate thickness has a deeper real depth of
welding thermal strain penetration compared to an 11 mm thick plate.

Figure A2.3.2.2, page 153 of Appendix 2, illustrates the load displacement paths of
buckling tests carried out on the 30° sector angle after cold forming, welding and axial
loading steps with reference to the welding thermal strain distributions in figure
A2.3.2.1. While there is some difference in buckling characteristics between the
residual stress models, it is a small difference when compared to the difference
between these two tests and the test with no residual stress.

4.4.2 Residual stress distribution

4.4.2.1 Residual stress distribution at weld locations

Location 1

1 Location 2
Location 3

Fig. 4.21, Through thickness residual stress locationsfor graphs in Appendix 2.
Figures A2.1.2.1 and A2.1.2.2, pages 9 and 10 of Appendix 2, show the distribution of

circumferential strain and stress respectively at thirteen points through the thickness of
the cylinder shell (location 1 in figure 4.21) in the ‘thermal’ expansion step for the
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case of model 1(ortho). The light lines in figures A2.1.2.2 and A2.1.2.4 are the
magnitudes of strain and stress in the increments leading up to the final increment.
The thick black line represents the final increment at the end of the step. It can be
seen that the magnitudes of circumferential stress at points close to where the weld
heat is applied (at proportional depth through the thickness = 1.0) in figure A2.1.2.2
reduce to very small values at high temperatures in the final increments of the step,
when the Young’s modulus is affected. Figures A2.1.2.3 and A2.1.2.4 show the
distribution of circumferential strain and stress in the ‘heat removal’ step, when the
‘thermal’ expansion has been reversed.

The thick black line in Figure A2.1.2.4 shows the effect of the welding steps on
circumferential residual stress at the weld location. In this case, at a stringer to shell
weld, the circumferential direction is the across the weld direction. At points close to
where the weld heat had been applied there is a tensile stress of approximately 300
N/mm?®. This is balanced by a compressive stress of approximately 400 N/mm? in the
mid-thickness of the plate, gradually returning to 300 N/mm? in tension at the reverse
side of the plate.

Figures A2.1.2.5-8, pages 13 to 16 of Appendix 2, illustrate values of axial strain
and axial stress in the welding steps. The axial ‘along the weld’ stress at points close
to where the weld heat is applied is approximately 400 N/mm? in tension. This is due
to the greater stiffness of the shell in the direction of the stringer frame and the
tendency for the material at these points to produce smaller total strains in response to
the applied thermal strains along the weld in comparison to across the weld.

At weld locations in the cylindrical shell, the welding procedure is being applied
‘on top’ of locations affected by the previous cold forming step. The welding
‘thermal’ strains have the effect of cancelling cold forming stresses at the weld
locations. This can be expected, as the largest total strains applied in the cold forming
steps are approximately 3.5 times the values of strain to cause yield in the material,
while in the welding steps total ‘thermal’ strains applied are approximately 11.5 times
the values of strain to cause yield.

Figures A2.1.3.1-8, pages 17 to 24 of Appendix 2, illustrate values of strain and
stress in the stringer web of model 1(ortho) in the welding steps at location 2 in figure
4.21, adjacent to the point in the cylinder shell discussed above. Total strain is always
constant across the plate thickness due to the balanced distribution of thermal strain
(figure 4.19), membrane stretching and relaxing is caused rather than the combination
of stretching and bending caused by the welding procedures.

Figures A2.1.4.1-8, pages 25 to 32 of Appendix 2, illustrate values of strain and
stress in the stringer flange of model 1(ortho) in the welding steps at location 3 in
figure 4.21, at a weld location. This point is of particular interest as there is little
circumferential restraint as there is for point 1, in the cylinder shell.

Values of stress and strain in model 2(ortho) over the cold forming and welding
steps at similar locations to those described above are illustrated in figures A2.2.1.1-8,
A222.1-8,A2.2.3.1-8, A2.2.4.1-8.
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4.4.2.1 Residual stress distribution in the cylinder away from weld locations

In the case of model 1(ortho), with a 13 mm thick cylindrical shell, the distribution of
circumferential residual stress along a circumferential distance between two stringer
frames, and midway between rings (figure 4.22), is illustrated for the thirteen
plasticity calculation points (figure 4.23) in figures A2.1.5.1-13, pages 33 to 45 of
Appendix 2. The corresponding magnitudes of axial residual stress are plotted in
figures A2.1.6.1-13, pages 46 to 58 of Appendix 2.

Circumferential residual stress in the case of model 2(ortho), with an 18 mm thick
cylindrical shell are plotted in figures A2.2.5.1-13, pages 107 to 119 of Appendix 2,
corresponding magnitudes of axial stress in model 2(ortho) are plotted in figures
A2.2.6.1-13, pages 120 to 132 of Appendix 2.

Generally from these plots it can be seen that the finite element welding thermal
expansion and contraction steps produce bending in the plate away from the welds,
this is shown by the high compressive (negative) stress at layer 1 (figure A2.1.5.1) and
high tensile stress at layer 13 (figure A2.1.5.13). Stress values at mid-thickness i.e. at
layer 7 of 13 (figure A2.1.5.7), away from the welds can be considered to be the
membrane stress values as there is no unbalanced direct through thickness thermal
straining in the central area. Considering that welding thermal strain distribution is
similar in terms of real depth of penetration for model 1(ortho) and model 2(ortho),
model 1(ortho), 13 mm thickness, produces a circumferential residual membrane
stress of approximately 23 N/mm’ in compression and model 2(ortho), 18 mm
thickness, produces a circumferential residual membrane stress of approximately 17
N/mm? in compression.
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Fig. 4.22, Arc length considered in Fig.s A2.1.3.1-13 and Fig.s A2.2.3.1-13,
Appendix 2.
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Fig. 4.23, Element plasticity calculation point locations with reference to Fig.s
A2.1.5.1-13, A2.1.6.1-13, A2.2.5.1-13 and A2.2.6.1-13 of Appendix 2.

ABAQUS POST contour plots of circumferential, axial and Von Mises equivalent
stress at extreme fibres and mid thickness after cold forming and welding steps for
model 1(ortho) and model 2(ortho) are illustrated in figures A2.1.7.1-9 and A2.2.7.1-
9, pages 59 to 67 and 133 to 141 of Appendix 2 respectively. It should be noted that
there is a process of interpolation to produce the contours in these plots and stress
output is not always represented accurately. For example the material hardening data
in Section 4.1.2 defines perfect plasticity at a true stress of 672 N/mm?, while some
direct stresses are plotted at close to 900 N/mm?2 in the contour plots. A cut off stress
of 355 N/mm?2 is used in some cases to illustrate where the yield value has been
reached, these are the red regions for the case of the Von Mises equivalent stress plots.

4.4.3 Welding displacement pattern

Figure 4.23 illustrates the hungry horse displacement pattern that occurs after the
welding steps, with a displacement magnification of 20. The maximum shell
displacement, J; at the centre of the cylinder shell between frames is 2.15 mm for the
13 mm thick shell of model 1(ortho) with 555 mm circumferential arc length between
frames and 2.11 mm for the 18 mm thick shell of model 2(ortho) with 833 mm
circumferential arc length between frames.

A flat grillage analysis was carried out with similar geometric characteristics to the
stiffened cylindrical shell of model 1(ortho), with a plate thickness of 13 mm. The
displacement &, in this case was 1.87 mm which shows that the arch effect of the
curvature of the shell provides more flexibility for this type of displacement compared
to the straight shell, where circumferential membrane stretching occurs.

Applied welding strains in the frame webs were symmetrically distributed across
the thickness of the plates (figure 4.19), and there was no circumferential bending of
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the stringer frames or axial bending of the ring frames arising directly from this.
However the half circumferential wave of axial shape imperfection introduced in the
large ring frames of model 1(ortho) was slightly exaggerated by the circumferential
straining ofthe frame webs and flanges in the welding steps.

DISPLACEMENT MAGNIFICATION FACTOR = 20.0

Fig. 4.23, 'Hungry horse 'displacement pattern.
4.5 Buckling analysis

After the residual stress and axial loading steps, model 1(ortho) and model 2(ortho)
are tested to collapse using the modified Rik’s algorithm which is available in
ABAQUS, for a non-linear elasto-plastic limit point analysis. Further tests are carried
out on models 1(ortho) and 2(ortho) without the residual stress steps as a comparison
to estimate the effects ofresidual stress.

Figures A2.1.8.1 and A2.2.8.1, pages 71 and 145 of Appendix 2, show load
displacement paths for model 1(ortho) and model 2(ortho) during the buckling steps.
The displacement variable on the x-axis is typically inward radial displacement of a
node common to the cylinder, a ring web and a stringer web, closest to the largest
magnitude of overall shape imperfection, node A in figure 4.2. The load variable on
the y-axis is the active surface pressure on the cylinder elements only.

4.5.1 Model l(ortho)

Figure A2.1.8.1 shows the load displacement path for model 1(ortho), for the cases
with and without residual stress. At the beginning of the buckling step when surface
pressure is zero, there is an initial circumferential expansion from axial loading in the
previous step. This expansion is largely cancelled by tensile hoop strains in the
welding steps for the case with residual stress.
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In figure A2.1.8.1 there is a linear elastic response to surface pressure until the
cylinder shell buckles between frames, at a surface pressure of approximately 0.56
N/mm? for the case without residual stress, and 0.43 N/mm? for the case with cold
forming and welding residual stress, a reduction of 23%. A contour plot of Von
Mises equivalent stress at the outer fibre nearest to the inside of the cylinder at the end
of the linear response to surface pressure (point A in figure A2.1.8.1) is illustrated in
figure A2.1.7.11, page 69 of Appendix 2. Surface pressure increases until the large
ring frames have buckled. A contour plot of Von Mises equivalent stress at mid
thickness at large displacement buckling is illustrated in figure A2.1.7.12, page 70 of
Appendix 2.

In figure A2.1.8.2, page 72 of Appendix 2, the load displacement path is illustrated
for a buckling analysis of model 1(ortho) after the cold forming residual stress steps,
without the welding steps. The case with no residual stress steps is included for
comparison. It can be seen that with the relatively thin shell (13 mm) of model
1(ortho), cold forming residual stress has little effect on buckling behaviour.

The displaced shape of model 1(ortho) for the case without residual stress is
illustrated in figure A2.1.9.1, page 73 of Appendix 2, the displaced shape of the case
with cold forming and welding residual stress is illustrated in figure A2.1.9.2. The
analysis becomes unrealistic at very large displacements due to steel fracture and
element contact criteria not being considered.

Note : The effects of different combinations of types of residual stress on the buckling
resistance of a similar model to model 1(ortho), including the effects of welding
without cold forming, are illustrated in figure A2.3.3.1, page 154 of Appendix 2.

4.5.2 Model 2(ortho)

The end of elastic response to surface pressure for model 2(ortho) is caused by overall
compartment buckling rather than local cylinder buckling.  This occurs at
approximately 0.655 N/mm? for the case without residual stress and 0.475 N/mm? for
the case with residual stress, a reduction of 27.5% (figure A2.2.8.1, page 145 of
Appendix 2). A contour plot of Von Mises equivalent stress at the outer fibre nearest
to the inside of the cylinder at the end of the linear response to surface pressure (point
B in figure A2.2.8.1) is illustrated in figure A2.2.7.11, page 143 of Appendix 2.

Although welding residual stress will have a lesser effect on the cylinder shell
strength in model 2(ortho) due to the greater shell thickness of 18 mm, compared to
13 mm in model 1(ortho), the thinner and smaller frame components of model
2(ortho) are greatly affected by residual stress, affecting overall stiffness and causing
a large reduction in resistance to overall compartment buckling.

The irregular load displacement path in figure A2.2.8.1 for the case without residual
stress, is caused by unstable behaviour in the rings as they buckle, this is illustrated
with surface pressure against ring vertical displacement graphs in figures A2.2.8.3 and
A2.2.8.4, pages 147 and 148 of Appendix 2, with reference to points illustrated on the
displaced shape plot A2.2.9.1, page 149 of Appendix 2.

When model 2(ortho) was tested with cold forming residual stress without welding
residual stress, there was a sudden bifurcation of the cylindrical shell between frames
at a surface pressure of approximately 0.65 N/mm’* (figure A2.2.8.2, page 146 of
Appendix 2). The load factor is suddenly reduced and increased again, from which
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point there is a smooth load displacement relationship. A surface pressure limit load
of approximately 0.65 N/mm’ is reached. This behaviour is caused by the thicker
shell of 18 mm in model 2(ortho) and the different cold forming characteristics needed
to curve the shell, causing greater plastic straining in the extreme fibres and more
severe cold forming residual stress. When cold forming and welding residual stress
are considered together cold forming residual stresses at weld locations are superseded
by welding residual stress and the buckling behaviour has greater regularity. The
displaced shape for the case with cold forming and welding residual stress is
illustrated in figure A2.2.9.2, page 150 of Appendix 2.
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S Torsional buckling

The investigation of torsional stability of cylinders has previously largely been
through physical verification, where laboratory tests of cylinders under torsion and
combined torsional loads have produced widely varying buckling modes, and through
theoretical investigation, as an extension of methods applied to stability under axial
and surface pressure loading.

The method for applying torsional boundary conditions to cylindrical finite element
models in this study was developed as a result of observations of photographs of
cylinders buckled in torsion, such as those in [30] and [31]. There is clearly a pattern
of repetition in the circumferential direction and also an anti-symmetry across the
central hoop, at full buckle wave intervals.

The cylindrical form provides good resistance to elastic buckling under torsion, as
all torsional applied loads initially create shear stress, distributed through the material
in the cylinder. This state of stress provides relative stability when compared to the
state of membrane compression produced by axial and surface pressure load
combinations.

Design codes for offshore cylindrical structures often overlook torsional stability
and focus on designing for axial force and surface pressure. In reality a large
cylindrical component will be subject to some magnitude of torsional force, arising
form its own inertia or irregular applied loading, in addition to uniform axial and
surface pressures, in terms of both serviceability and collapse criteria.

It is demonstrated in the following sections that the resistance to torsional buckling
can be significantly reduced under combinations of surface pressure and axial force,
and that although stiffeners have no significant effect on initial plastic torsional
failure, the post-buckling behaviour is greatly affected by the arrangement of
stiffeners.

5.1 Classical elastic torsional buckling theory
5.1.1 The Donnell equation
Among the simplest of linear differential equations to describe the deformation of a
shell, in terms of lateral displacement, w, is the Donnell equation (1).
DV? W+Et 64W+V4 xOWH2N,, "W Ny &Pw F0...(1)
ox”  Oxdy 3?_

Under torsional loading, the circumferential and axial stress resultants, Ny and Ny are
zero and the shear stress resultant, Nyy = 1t . The Donnell equation (1) reduces to

i Et_a“\if__ 2tV ew | o (2
| RTax | | oxoy

DViw +
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Using the solution for lateral displacement in equation (3) for a cylinder under torsion,
with a boundary condition at the ends of the cylinder that provides elastic restraint at
some value between clamped and pinned,

W™ Wmn

L R L R

sin mmx + nyJ - sin

(m+2)nx + ny] ..(3)

equation (2) was derived by Donnell [34], and again by Batdorf et al. [35], to give the
relationship between the critical shear stress, T and the buckling coefficient, kg as,

t |2 N0
L

T = MW kgE
12(17)

The relationship between the buckling coefficient, kg and the curvature parameter, Z,
for moderate length cylinders is illustrated in Figure 5.2 and given in [33] as

ky=10.85 zZ¥* ...(5)
where Z = Curvature Parameter

=L2(1-v?)
Rt

5.1.2 Verification of the Finite Element boundary conditions with classical
elastic buckling theory

Two un-stiffened cylinder geometries, Model A and Model B (Table 1), with varying
thicknesses and a range of sector arc angles are subjected to Torsional Eigenvalue
Buckling tests with the Finite Element program ABAQUS, incorporating the methods
for torsional loading and boundary conditions described in following sections. The
ends of the cylinders are pinned to a thick top ring. The material behaves elastically.

MODEL A MODEL B
Cylinder Radius, R (mm) 4000 4000
Overall Cylinder Height, L (mm) 1300 8000
Top Ring Depth (mm) 212 212
Top Ring Thickness (mm) 50 50

Table 1. Model A and B geometries

The lowest value of critical shear stress for a given model with different sector arc
angles is used for comparison with classical elastic stability theory (Figure 5.1).
Larger arc angles produce smaller numbers of circumferential buckling waves, which
use greater amounts of membrane stretching energy in buckling, smaller arc angles
produce larger numbers of circumferential buckling waves, which use greater amounts
of bending energy in buckling.
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Critical shear stress values are obtained from Finite Element analyses (Figure 5.1),
the buckling coefficient ks is calculated with equation (4), and ks is plotted against Z
as a comparison to equation (5) in Figure 5.2. The Finite Element data is slightly
conservative when compared to the corresponding theoretical data, this could be
attributed to the shear flexibility ofthe Finite Elements.
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Fig. 5.1, Model A, Critical shear stress with varying thickness.
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Fig. 5.2, Comparison of Theory and Finite Element data.
5.2 The Elasto-Plastic Finite Element Models

Two stringer stiffened models and one ring and stringer stiffened cylinder model were
analysed, with varying sector arc angles. The geometric parameters of the three basic
models are outlined in Table 3.

Element type S8R are used in all components, these are °‘thick' shell elements
which take account of shear flexibility about the principal axes of the elements. The
ends of the stringer webs and flanges are fixed to the top ring, and in the case of the

ring stiffened cylinder, the stringer flanges are fixed to the ring webs where they meet
(Figure 5.3).

36



5.2.1 Material Properties

Structural steel with a yield stress of 355 N/mm2and a hardening value of 560 N/mm?2
at a nominal strain of 20% is used in all models, with a Young’s Modulus of 205
MPa. A plateau of perfect plasticity of 0.9% strain is included at first yield. These
values are converted to true stress and log strain for input in ABAQUS. The material
is assumed to be perfectly plastic at strains greater than 20%. A Poisson’s ratio of 0.3
is used.

5.2.2 Limit Point Loading

Surface pressure is applied as an evenly distributed load on the surface of elements
that make up the cylinder only. Axial loading is applied as a surface pressure on the
top ring, acting in the axial direction, the top ring bears on the cylindrical shell and on
the ends of the stringer webs and the ends of the stringer flanges where these
components meet, allowing a realistic distribution of axial force through the top of the
stiffened cylinder. A constraint is imposed on the top ring to prevent it from buckling
under this concentrated surface pressure.

Fig. 5.3, Model I, 12°Section.

Torsional load is applied as a circumferential force in the top ring, producing a
circular turning action in the top ring, and a twisting action in the cylinder.

Where surface pressure, axial loading and torsional loading are described together,
the surface pressure and axial components of loading are applied simultaneously in an
initial non-linear step of one or more increments. The torsional load is then applied in
a second non-linear step by the modified Rik’s limit point method which is available
in ABAQUS. The load is applied by a factor which will increase until a limit point is
reached, where no further increase in load is required for further displacement or
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buckling at that point in the loading history. This is the point of collapse which could
occur at forces greater than forces to cause local bifurcations.

5.2.3 Shape Imperfection

Where a shape imperfection is introduced in a model, in the axial direction a half
cosine wave is imposed, beginning at zero at the top ring, increasing to the shape
imperfection amplitude at the intersection of the central circumferential plane and the
bottom of the half sector. In the circumferential direction a full cosine wave is
introduced as illustrated in figure 5.5 and figure 5.6.

5.3 Boundary Conditions

5.3.1 Boundary Conditions for Buckling under Torsion

The half sector of stiffened cylinder has continuity in the circumferential direction by
equating all degrees of freedom at nodes on one vertical side of the half sector to the
corresponding nodes on the other vertical side of the half sector (Relationship 1 in
Figure 5.4). Nodes on each vertical side of the half sector have identical radial and
axial cylindrical co-ordinates and all degrees of freedom at these edges are
transformed into the cylindrical system. These nodes also have zero initial rotation
relative to the central vertical axis of the cylinder. Nodes at the bottom corners of the
cylinder in Figure 5.4 are included in this relationship.

The resulting effect is of circular repetition, the number of repetitions of geometry,
stress and displacement patterns depending on the arc angle of the section chosen.
Hence this arc angle should divide into of 360°, and must be divisible by the stringer
spacing. o

Axial anti-symmetry is introduced in the central circumferential plane by a similar
method of equating degrees of freedom at nodes in this plane equidistant from the
sector circumferencial centre (Relationship 2 in Figure 5.4). Two degrees of freedom
are equated to be equal and the remaining four are equated to be equal and opposite.
This relationship between degrees of freedom is summarised in Table 2, column 3.
The point in the central circumferential plane that is common to the central axial plane
(Point A in Figure 5.4) is a point of contraflexure in the plane of the cylinder, this
node is free to translate in the radial direction and to rotate about the radial axis, all
other degrees of freedom are restrained. These four restraints, which are applied at
point A only are all of the restrained degrees of freedom in the Finite Element model
during this phase.

Figure A3.4 shows the displaced shape of a Finite Element half sector with the
boundary conditions described above, under torsional loading. Four view angles of
the same model have been superimposed to illustrate the effect of circumferential
continuity and axial anti-symmetry on the buckled shape.
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Point A
Relationship 2

Relationship 1

Fig. 5.4, Associated nodalpoints and numbered degrees o ffreedom.

DEGREE AXISYMMET TORSIONA
OF RIC L
FREEDOM BUCKLING BUCKLING
NUMBER

Relationship 1

1 = =

2 restrained =

J

; restrained =

6 restrained =
Relationship 2

1

z

3 restrained =-

4 restrained -

5 restrained

0
Point A

1 free tree

2 restrained restrained

3 restrained restrained

4 restrained free

5 restrained restrained

6 restrained restrained

Table 2, Boundary conditions
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5.3.2 Boundary Conditions for Axisymmetric Loading

Where analysis is to be carried out to investigate the effects of axial loading and
external pressure on torsional buckling resistance, two steps of loading are
implemented, with different boundary conditions for each step. For the first step
boundary conditions of cylindrical symmetry are introduced and external pressure and
axial loading are applied simultaneously.

It was found that when using the Finite Element program ABAQUS, while
boundary restraints could be introduced or released from step to step, equations
between degrees of freedom could not be changed in this way. The following method
allows boundary conditions of cylindrical symmetry to be established in the first step
and modified to produce boundary conditions for cylindrical torsion in a following
step.

In the first step the nodal equations and boundary conditions described in 5.5.1 are
initialised, with additional restraints. Considering the vertical edges which have been
equated in all degrees of freedom, translation in the circumferential direction, rotation
about the radial axis and rotation about the vertical axis are restrained. These are
degrees of freedom 2,4 and 6, (Table 2, column 2). In addition to the equations
applied to the nodes in the central circumferential plane (the bottom plane of the half
sector in Figure 5.4), restraints are applied to translation in the axial direction, rotation
about the radial axis and rotation about the circumferential axis, degrees of freedom
3,4 and 5. The point in the central circumferential plane that is common to the central
axial plane (Point A in Figure 5.4) is restrained in all degrees of freedom other than in
radial translation. This is one restraint more than those applied torsional buckling at
this node. ~

5.4 Torsional buckling Analysis

For all cases of torsional loading alone, with or without stiffeners, the Elastic Limit of
response corresponds approximately to Von Mises Yield criterion under applied shear
stress,

t = F_
Rt v

Py
3

In the following sections the post buckling behaviour and limit loading are
investigated.
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MODEL 1 MODEL2 | MODEL3

Cylinder Radius (mm) 5300 5300 4000
Stringer Spacing (Degrees) 6° 9° 9°
Ring Spacing (mm) 1600 1600 1600
Cylinder Thickness (mm) 13 13 12
Top Ring Depth (mm) 212 212 212
Top Ring Thickness (mm) 50 50 50
Stringer Web Depth (mm) 212 212 212
Stringer Web Thickness (mm) 12 12 12
Stringer Flange Depth (mm) 150 150 150
Stringer Flange Thickness (mm) 12 12 12
Ring Web Depth (mm) 613 - -
Ring Web Thickness (mm) 11 - -
Ring Flange Depth (mm) 150 - -
Ring Web Thickness (mm) 13 - -

Table 3, Geometric Parameters

5.6.1 Orthoganally Stiffened Cylinder, Model 1

Three sector arc angles, 6°, 12° and 18°, of a similar model with circumferential rings
and ring flanges and longitudinal stringers and stringer flanges (Table 3.), were tested
under torsional loading. Stringers in these cases are spaced at six degrees.

Radial geometric imperfection is introduced in the meshes of amplitudes four, eight
and twelve mm, in proportion to the arc angle of the sector (d in Figure 5.5).

to_

Fig. 5.5, Shape Imperfection, Model 1, Ring and Stringer Stiffened Cylinder, Central
Circumferential Section.

In all cases the elastic limit of torsional loading was almost equal, and the limit
point and load displacement path were also almost equal (Figure A3.1). Local shell
buckling between the frames occurred in all cases (Figure A3.2), the arc angle of the
sector chosen or the magnitude of shape imperfection introduced did not significantly
affect the buckling resistance or the buckling mode.
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5.6.2 Stringer Stiffened Cylinder under Torsional Loading, 6 Degree Stringer
Spacing, Model 2

The rings described in section 5.6.1 are removed to investigate the effects of torsional
loading on stringer stiffened cylinders. The elastic limit of torsional loading is similar
for all cases of sector angle analysed, there is also a similarity between the elastic limit
of torsional loading in these stringer stiffened models and the corresponding value for
orthoganally stiffened cylinders in section 5.6.1.

Fig. 5.6, Exaggerated Shape Imperfection, Model 3, Stringer Stiffened Cylinder,
Central Circumferential Section.

The post-buckling behaviour of different sector arc angles varies in these stringer
stiffened models, as the buckling wave occurs over the over the entire section. Load
displacement graphs for varying sector arc angles are illustrated in Figure A3.3.
Torsional load can be described as the circular force that would be applied in a full
360° cylinder through the top ring. Circumferential displacement in angular degrees of
the top ring is calculated from values of circumferential displacement, in length, of a
node in the top ring. The 18° sector arc angle produced the lowest torsional limit load.
The different buckling modes are further investigated in a similar analysis in the
following section.

5.6.3 Stringer Stiffened Cylinder under Torsional Loading, 9 Degree Stringer
Spacing, Model 3

Stringers are spaced at 9° to allow larger circumferential angles to be investigated with
computational efficiency. The thickness of all section components is made constant at
12mm and the average radius of the cylindrical shell is reduced to 4 meters to
encourage a more slender circumferential buckling pattern. Load displacement graphs
for sector arc angles of 9°, 18° and 36° are shown in Figure A3.5. Corresponding
buckled shapes are illustrated in Figure A3.6. The 27° sector arc angle is omitted as it
dose not divide evenly in 360°, it is possible however that the critical section angle
would be 27.69°, creating 13 circumferential buckling waves, or 25.71° creating 14
circumferential buckling waves, this is overlooked to allow the type of symmetry
described in Section 5.6.1 to be imposed in each analysis with even stringer spacings.
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It can be seen in Figure A3.5. that the lowest limit point value for torsional loading
occurs in the 18° section.

5.6.4 Shape Imperfect Stringer Stiffened Cylinder under combined Axial Load,
Surface Pressure and Torsional Loading, Model 3

A radial shape imperfection is introduced in the model described in section 5.5.3 of
amplitude 8mm and a circumferential shape imperfection is introduced in the stringer
webs in such a way that the stringer webs remain perpendicular to the shape imperfect
cylinder shell (Figure 5.6).

An 18° sector arc angle is subjected to 25 combinations of axial and surface
pressure loading, which are each then subjected to a limit point phase of torsional
loading. The variation of torsional loading limit values following axial and surface
pressure loading is illustrated in Figure A3.7. At higher values of surface pressure
than those shown in Figure A3.7. the cylinder begins to buckle before torsional
loading is introduced. Similarly under higher values of axial loading the shell and
stringers squash at values greater than those shown. The effect of axial loading on
torsional buckled shape is illustrated in Figure 3.8. Surface pressure dose not have any
significant effect on the torsional buckled shape. However the critical sector arc angle
under combined surface pressure and torsional loading could be affected by the
influence of the critical buckling mode under higher uniform pressures, without
torsional load.
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6 Conclusions
6.1 Eigenvalue analysis

Chapter 3, ‘Eigenvalue analysis’, describes a procedure for establishing the critical
circumferential arc angle of a stiffened cylinder when circumferential symmetry is to
be used in Finite Element analysis. After other methods were attempted the method
of using orthotropic elastic stiffness coefficients was the most successful.

6.2 Elasto-plastic limit point analysis

Finite Element methods for simulating cold forming residual stress in the cylindrical
shell and welding residual stress and displacement patterns in the cylinder and frames
of stiffened cylinders are described in chapter 4, ‘Elasto-plastic limit point analysis’.
The basis of the methods is that Motal strains are applied through the
thickness of components in loading steps to simulate fabrication procedures. Cold
forming residual stress patterns and welding residual stress and displacement patterns
are investigated and appear to be reasonably close to what is expected from previous
research.

The residual stress methods are implemented in two orthogonally stiffened cylinder
models, with similar cylinder dimensions and material weights, but with different
frame sizes and thicknesses and in particular different cylinder shell thicknesses.
Other considerations given to these models are overall shape imperfection and steel
hardening behaviour. The top ring is given less flexibility compared to other frame
components and is constrained against buckling into the cylinder. The boundary
stiffness provided to the top ring in this way allows large radial displacement of the
cylinder.

The two models were buckled with a static axial load and an active uniform surface
pressure on the cylinder, using the modified Rik’s limit point method in non-linear
elasto-plastic Finite Element tests using the Finite Element program ABAQUS. The
characteristic buckling behaviour of the models was an initial elastic response to
surface pressure followed by inter frame shell buckling, which causes a sudden
reduction of circumferential stiffness and a begins overall buckling. The end to linear
elastic response in all cases is clearly defined.

In the case of the first model, when residual stress steps were introduced to the
analysis there was a reduction in resistance to initial inter frame buckling of
approximately 23%. The effects of residual stress caused less difference to post
buckling behaviour. This could be attributed to areas away from frame and cylinder
weld locations being buckled and twisted at larger displacements, compared to the
clearly defined areas of stress concentration at frame and cylinder intersections at the
initial buckling stage. The cold forming residual stress step without the welding
residual stress step had little effect on buckling behaviour.

The second model had a thicker cylinder shell, smaller and thinner rings and
smaller, thinner and more widely spaced stringers. The overall shape imperfection
was distributed over a smaller arc angle. Cold forming thermal strains were re-
calculated for the thicker shell. Welding thermal strains were introduced to the same
through thickness real depths in the first model. Without residual stress a higher
elastic response was achieved. Although the reduction in initial buckling resistance
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caused by the residual stress steps was higher than the reduction for first model at
approximately 27.5%, the initial buckling pressure was slightly higher than in the first
model. Post buckling surface pressure was slightly reduced by residual stress
procedures. When cold forming was considered without welding a higher cold
forming residual stress was produced and a sudden ‘snap through’ type inter frame
buckling in the cylindrical shell occurred, followed by smooth post buckling
behaviour.

6.3 Torsional buckling

Boundary conditions for torsional buckling of cylindrical structures in Finite Element
Analysis can be formulated with respect to circumferential continuity and axial anti-
symmetry. These boundary conditions can be modified to boundary conditions of
cylindrical symmetry by the addition of restraints of translation and rotation at
particular nodes.

In the case of cylinders under applied torsional loading, which yield under applied
shear stress before elastic buckling occurs, the elastic limit of response is not
significantly affected by stiffening frames attached to the cylinder shell. However the
post buckling behaviour is greatly affected. The addition of ring frames and stringers
induces local shell buckling between frames, and a high torsional collapse load is
achieved. In the case of stringer stiffened cylinders, overall compartment buckling
can occur which results in a lower torsional collapse load or limit point. The buckling
mode will also be dependant on the geometric properties of components and the
material properties. Variation of the flexibility of the end boundary conditions in the
analysis of moderate length cylinders did not have a significant effect on elastic or
elasto-plastic buckling resistance in this work. ‘

The negative effect of varying surface pressure loading on the resistance to collapse
under torsion is approximately linear while resistance to collapse under torsion
decreases more rapidly under axial stress. A combination of axial force and surface
pressure reduces resistance to buckling under torsional forces considerably.
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Appendix 1 : Calculation of elastic orthotropic stiffness coefficients.



Appendix 1

Model 1(ortho), calculation of inertia and cross sectional area.

b 17 150-mm
d 1= 13-mm

by :=11-mm

Circumferential Direction - 1 Ring

b1
d 9= 600-mm

b3 = 1'mm

d3:=0mm  frame only

depth:=dl+d2+d3

<— b2

depth =613 mm

a1:=b1-d1

b3

a,=19510" -mm’

aj=bydy

2

a,=6610" 'mm

az=bgdj
a3=0'mm2

csa:=a1+a2+a3

2

csa =8.55-103 ‘mm

d

1+d +dz]a +d—2+d
2 27931717\ 3

csa

N

ybar :=
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ybar =369.904 smm =Zr

dy

y 1 = depth - ybar - (T)

y 1 =236.596 mm

A_d2
y2—7+d3—ybar

y 9 ==69.904 *mm

ds
= vbar - | —

y 3 =369.904 mm

. 2 2 2
I.—al-yl +82'yZ +a3-y3

1=1414-10% -mm*
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Appendix 1

Model 1(ortho), calculation of inertia and cross sectional area.

b 1 := 150-mm
dq:=12-mm

b5 := 12-mm

d2 = 200-mm

b3 = 1-mm

d3 = 0-mm
depth:=d | +d,+dj
depth =212 *mm
ap=byd
a;=1810" ‘mm
agi=bgdy

8,=24-10" mm

a3=b3d3

ajg =0'mm2

csa.’=a1+a2+a3

csa =4.2'103 'mmz

Axial Direction - 1 Stringer

d2

’IJ/ b1 |
I ]
T
d1
— b2
d3
\
|
g b3
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ybar :=

dy d
—+dy+dgzjay+|{—+d
5 2t¢3)a 2 3

csa

ybar =145.429mm  =Zs

dq
y 1 = depth - ybar - -

y 1 =60.571 *mm

y o =-45.429 *mm

d

3

:= ybar - | —
Y3 =Y (2)

y 3 =145.429-mm

2 2 2
I=apy " +ayyy +azys

1=1.156-10" ~mm?*

Appendix 1, page 4
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Appendix 1

Calculation of orthotropic elastic stiffness coefficients for
model 1(eig) from model 1(ortho)

t:=13 shell thickness
R := 5300 shell radius
E := 205000 modulus of elasticity

general insbility :

L, = 1600 axial length between rings
1
L, = 156 (Rt)° effective axial length for general insbility
L . =409.481
v:=0.0 Le<=Lr, v=0
I4:=1.15610" stiffner inertia
I,:=1414-10° ring inertia
b := 555 arc length between stiffeners

effective arc length between stiffeners

be =39 (b=b for general instability)

A =4210° stringer cross section area

A, =85510° ring cross section area

Z 4= 145249 + 65 strinnger eccentricity from shell

Appendix 1, page 5



Z ¢ =151.749

Z .:=369.904 +6.5

7, =376.404

G::—E__
2:(1+v)

G =1.025°10

h g = 200

h = 600

J.=1.152:10

' hr'tr

ring eccentricity from shell

shear modulus

stringer depth

ring depth

stringer web thickness

stringer torsional constant

ring web thickness

ring torsional constant

i0
D, =4.003-10

Appendix 1, page 6
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Appendix 1

Do =1733-10"

3 3
Do v-E-t +Gt

el 6

Le be

L
L, b

Glg GIJ
+

b L

r

+

r

= .107
D 40 =9.656°10

=Gt
x0 2

5
G 40 =8.368-10

G

L,

Ar'f'Le't)
100

er:=

S
2

Agt+bt
b

= 1.054-10°
G  =1.054:10
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ABAQUS INPUT :

D1111=Dg

11

D222 =Dy

10

D122=Dxo

7

D 1212=Gyxo

5

D1313=Gp

5

D323 =G x

6

Appendix 1, page 8
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Appendix 1

Model 2(ortho), calculation of inertia and cross sectional area.

b= 150-mm Circumferential Direction - 1 Ring
dq:=10-mm

b 2 = 10-mm

d 2= 300-mm

b3 = 1-mm d1

d 3 := 0-mm frame only - < b2
d2

depﬂ1::d1+d2+d3

depth =310 *mm |

ap=bypdg

a;=1510" -mm’

ay=bydy
a,=3-10° -mm’

83 =b3d3

a3=0'mm2

csai=aj+antag =Ar

csa =4.5'103 °nun2

dy ) dj
—+dy+dalay+|—+dyjay+|—]a
2 2td3jag 2 3727 5 )3

csa

ybar =
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ybar =201.667 *mm =Zr

dy
y 1 = depth - ybar - EX

y 1 =103.333 -mm

dy
y2:=—2—+d3—ybar

y 9 =-51.667 mm

dj
= ybar - |—
Y3 =Y 2

¥ 3 =201.667 mm

= 2 2 2
l=apy"+ayy, +ajzys

1=2.402:10" +mm®

Appendix 1, page 10
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Appendix 1
Model 2(ortho), calculation of inertia and cross sectional area.

b 1= 150-mm
d1 = 10-mm Axial Direction - 1 Stringer
b = 10-mm
d2 = 150-mm
4 Iz
b3 = I'mm | L b1 /I
d3 = 0-mm L /I\ I L~
d1
depth :=d | +d, +dj — b2 2
depth =160 *mm
ayp=bypdg | |7
3 2 /l\ L

a1 =1510" mm

d b3 7
a 2 = b 2d2

a,p= 1.5:10° +mm

ag=bgdsy
213=0°mm2
csai=aj+ajptag =As

csa =3°103 ‘mmz
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dq d
7+d2+d3 agt 7+d3 ‘aqg+

d

3-a
2 3

ybar =
csa

ybar =115 *mm =Zs

dy
y 1 := depth - ybar - EY

y 1 =40°mm

dy
y2:=—2—+d3—ybar

y o =-40 *mm

dj
= ybar - | —

y3=115-mm
- 2 2 2
I,—al-yl +32'yZ +a3-y3 =ls

1=4810° mm*
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Z =124

Zr '=201.667 +£
2

ring eccentricity from shell

Z . =210.667
B
G=—
21+ shear modulus
5
G =1.02510
hg =150 stringer depth
h =300 ring depth
tg:=10 stringer web thickness
hgtg . ,
Ts=—3 stringer torsional constant
4
J4=510
ring web thickness
tp:=10
hr'tr3 . .
Tp=—3 ring torsional constant
=1-10°
J =110
Et Ely EAgZ s2
Dy:= —+ +
12.(1-+%) b b

_ 1al0
D, =1.264:10

Appendix 1, page 14
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Appendix 1

2
E-f Lel Elp EALZ;
Dgy:= —_+ +
12(1-v%) \Ly/ Lg L
10
D =287-10
vE£ Gt [Le bel GJg GJ;
Dy s—F—xt+—|—+—]|+ +
6-(1—v2) 6 Lr b b Lr
D, =142210°
_ Gt Le be
Gro=— |7t
2 \L, b
=19.10°
G 4 =12°10
__G Ar'l"Le't
G o= o | ——
2 L,
G o =4219-10°
G ‘_E.Asﬁ-b't
X2\ b

~1.107-10°
G =1.107:10
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ABAQUS INPUT :

Di111=Dyg

10
D 1111 =2.87-10

D22 =Dy

_ 10
D 9997 =1.264:10

Dj122=DPxo

~1.422-10°
D 129 =1422:10

D 1212=Gxo

6

D1313=Gp

5

D303 =G

D 5393 =1.107-10°

Appendix 1, page 16
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Appendix 2 : Residual stress plots.
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Appendix 2

ECT ION POINT 1

Compression -ive
Tension +ive

Fig. A2.1.7.1, Model I(ortho), circumferential residual stress at layer 1 (thefar
surface ofall elements in the diagram) after the coldforming and welding steps.
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SECTION POINT 7

Sl VALUE

Compression -ive
Tension +ive

Fig. A2.1.7.2, Model I(ortho), circumferential residual stress at mid thickness after
the coldforming and welding steps.
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Compression -ive

Tension tive

Fig. A2.1.7.3, Model 1(ortho), circumferential residual stress at layer 13 (the near
surface ofall elements in the diagram) after the coldforming and welding steps.
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Compression -ive
Tension -i-ive

Fig A2.1.7.4, Model I(ortho), axial residual stress at layer 1 (thefar surface ofall
elements in the diagram) after the coldforming and welding steps.
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Compression -ive
Tension +ive

Fig. A2.1.7.5, Model I(ortho), axial residual stress at mid thickness after the cold
forming and welding steps.
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L. 26E +"
1.61E +0
9.68E+0

+9.68E+0
+1.61E+0

Compression -ive
Tension -i-ive

Fig. A2.1.7.6, Model I(ortho), axial residual stress at layer 13 (the near surface of
all elements in the diagram) after the coldforming and welding steps.
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Appendix 2

Fig. A2.1.7.7, Model I(ortho), Von Mises equivalent stress at layer I (thefar surface
ofall elements in the diagram) after the coldforming and welding steps.
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Appendix 2

Fig. A2.1.7.8, Model I(ortho), Von Mises equivalent stress at mid thickness after the
coldforming and welding steps.
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ECT ION POINT 1

VALUE
+4. 07E +00
+3.33E +01
+6 ,26E +01
9. 18401
+1.21E +02
+1.50E +02
+1,80EHR
+2,09E +02
+2.38E+02
+2. G7E +02
+2.97E+02
+ ,2GE +02
+3,55E+02

Fig. A2.1.7.9, Model I(ortho), mises equivalent stress at layer 13 (the near surface of
all elements in the diagram) after the coldforming and welding steps.
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Fig. A2.1.7.10, Model I(ortho), Axial stress at mid thickness for

residual stress, after the axial loading step.

2
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., uortho) Von Mises equivalent streSf , f fg n” axial loading

A2.1-8.1)
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ECTioN POINT

VALE
¢2,52E+01
+5,2 TE+01
+3,02E+01
+1, 08E +02
+1,35E+02
+1.63E+02
+1. 90E+02
+2.13E+02
+2.4 5E+02
+2. 73E+02
+3.00E+02
+3.28E+02
+3,55E+02
+7,07E+02

Fig. A2.1.7.12, Model I1(ortho), Von Mises equivalent stress at mid thickness after

coldforming, welding, axial loading and surface pressure buckling steps, at the large
displacement buckling stage.
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Appendix 2

Compression -ive

Tension +ive

Fig. A2.2.7.1, Model 2(ortho), circumferential residual stress at layer 1 (the far
surface ofall elements in the diagram) after the coldforming and welding steps.
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Compression -ive
Tension +ive

Fig. A2.2.7.2, Model 2(ortho), circumferential residual stress at mid thickness after
the coldforming and welding steps.
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Appendix L

POINT 13 I
VALUE
us.77E+02 !
r3,55E +02
;-2,90E+Q2 j
-2 ,26E+02

)

,-1,6IE+02 1
-9, REN1
-3,23E+401;
j +3.23E+01;
-+3.68E+01
J-+1.61E +02;
- +2.26E +02
- +2.90E +02
- +3.55E +02

L 18 16E+a

Compression -ive
Tension +ive

Fig. A2.2.7.3, Model 2(ortho), circumferential residual stress at layer 13 (the near
surface ofall elements in the diagram) after the coldforming and welding steps.
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Appendix 2

ISECT ION POINT 1

IS2 VALE
[ 8.63E+02

I n2*/\E_|__f
I — 9.88E +01

mm ~+3.23E+oi
H - +1.61E +02
H - +2, 90E+02

IJu +3,55E+02
L +S.70E +02

Compression -ive
Tension +ive

Fig. A2.2.7.4, Model 2(ortho), axial residual stress at layer I (the far surface of all
elements in the diagram) after the coldforming and welding steps.
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Compression -ive
Tension +ive

the cold
Fig. A2.2.7.5, Model 2(ortho), axial residual stress at mid thickness after

forming and welding steps.
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Appendix 2

[SECTION POINT 13
S22 VALUE
p— — 7.25E+02
Ua -3.55E +02

I — 2,90E +02

— 2.2BE+02

3 -1.61E+02

I — 9,68E +01

I — 3,23E+01
mtajj —+3. 23E +01
m-¢9.68E +01
I'm - +1.61E *02
m —*2. 2BE+02

m —*2.90E +02

A m - +3.55B +02
% +S. 14E +02

Compression -ive
Tension +ive

Fig. A2.2.7.6, Model 2(ortho), axial residual stress at layer 13 (the near surface of
all elements in the diagram) after the coldforming and welding steps.
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3.27E*02
3.55E+02
S.S9E+02

Fig. A2.2.7.7, Model 2(ortho), Von Mises equivalent stress after the cold forming
and welding steps at layer [ (thefar surface ofall elements in the diagram).
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SECTION POINT

VALUE
-+5.70E+00
,+3.43E+01
h+6. HOE+01
1-+9.30E +01
r*,22E*02
p+1.51E+02
+1.80E+02

| +2.09E+02
I—+2 .39E+02
I—+2.6 8E+02
1—+2.97E+02
n—+3.26E+02
f1—+3* 55E+02
“ —+7. SS5E+02

mid thickness after the
Fig. A2.2.7.8, Model 2(ortho), Von Mises equivalent stress at
coldforming and welding steps.
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SECTION POINT 18

VALUE
+5.90E+00

+3.50E+01
,16.41E+01
+9.32E+01
+1.22E+02
-+1.5IEH2
7+1. 30E+02
++2.10E+02
—+2.39E+02
- +2.63E +02
-+2.97E +0;
3.2 BE+02,
—+3.55E+02
+1 .54 E+02

surface of
Model 2(ortho), mises equivalent stress at layer 13 (the near
Fig. A2.2.7-9, the diagram) after the coldforming and welding steps.
all elements in
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Compression -ive
Tension +ive

Fig. A2.2.7.10, Model 2(ortho), Axial stress at mid thickness for the case without

residual stress, after the axial loading step.
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SECTION POINT 13

MISES VALUE
+5.30E+00

+3.44E+01
+6. 1
1

H.5 B2

+1.80E+02
+2.09E+02

+2.97E+02
+3.26E+02
+3.55E+02
+7.09E+02

Fig. A42.2.7.11, Model 2(ortho), Von Mises equivalent stress at layer 13 (the near
surface of all elements in the diagram) after coldforming, welding, and axial loading
steps, during the surface pressure buckling step, at the point of buckling (see point B,
Fig. A2.2.8.1)
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SECTION POINT 7
MISES VALUE
p —17.97E +00
L +3.69E+01
B—+S.58E +Gl1

= +8.47E —iﬁl

E -+1.24E+G2
.53E 462
B—+1.81E +02

s —+2.10E +02
A»-+2«39E +02
*® - +2.68E +02

H - +2.97E +02
H —+3. 2SE +02
+3,55E +02
+8. 195 02

Fig. A2.2.7.12, Model 2(ortho), Won Mises equivalent stress at mid thickness after

coldforming, welding, axial loading and surface pressure buckling steps, at the large
displacement buckling stage.
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Appendix 3 : Torsional buckling plots.
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Fig. A3.1. Torsionalforce and circumferential displacement paths for orthogonally
stiffened cylinder model 1 o fdifferent section angles under torsional load.

Fig. A3.2. model I, 18°section, buckled shape.
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Appendix 3

Torsional force and circumferential displacement paths for stringer
stiffened cylinder model 2 o fdifferent section arc angles under torsional load.

Fig. A3.4. Model 2, 18°section, buckled shape, two circumferential waves, full axial

length.
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Fig. A3.5. Torsionalforce > 40 mn - circumferential displacement pathsfor stringer

stiffened cylinder model 3 o fdifferent section angles under torsional load.

u  fnr 36° 18°and 9 °section angles
, 6. model 3. buckled shapefor S6.

Fig. A3
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