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Abstract

Generalised refraction is a topic which has, thus far, garnered far less attention than

it deserves. The purpose of this thesis is to highlight the potential that generalised

refraction has to offer with regards to imaging and its application to designing new

passive optical devices. Specifically in this thesis we will explore two types of gener-

alised refraction which takes place across a planar interface: refraction by generalised

confocal lenslet arrays (gCLAs), and refraction by ray-rotation sheets. We will show

that the corresponding laws of refraction for these interfaces produce, in general,

light-ray fields with non-zero curl, and as such do not have a corresponding outgoing

waveform. We will then show that gCLAs perform integral, geometrical imaging, and

that this enables them to be considered as approximate realisations of metric tensor

interfaces. The concept of piecewise transformation optics will be introduced and

we will show that it is possible to use gCLAs along with other optical elements such

as lenses to design simple piecewise transformation-optics devices such as invisibility

cloaks and insulation windows. Finally, we shall show that ray-rotation sheets can

be interpreted as performing geometrical imaging into complex space, and that as a

consequence, ray-rotation sheets and gCLAs may in fact be more closely related than

first realised. We conclude with a summary of potential future projects which lead

naturally from the results of this thesis.
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Chapter 1

Introduction

Attempting to harness and manipulate light is one of the oldest scientific endeavours

in history. For thousands of years, man has been designing and refining optical devices

for such purposes, the most famous example being of course the lens which exploits

Snell’s law. Snell’s law tells us how light propagates when it passes between materials

with different refractive indices and is a direct result of applying Maxwell’s equations

when studying the electric field across a material interface. Other refraction can

occur when the optical properties of the medium are no longer isotropic, for example

in optical crystals.

In recent years, a new class of materials, known as anisotropic optical metamaterials,

has emerged which employs spatially anisotropic material parameters so that light can

be directed in unprecedented ways. These exotic materials are clearly still governed

by Maxwell’s equations. The only difference between conventional optical materials

and optical metamaterials is that the optical parameters inside a conventional optical

material emerge primarily from its substance (i.e its atomic or molecular structure),

whereas the optical parameters in an optical metamaterial emerge from its internal

composition. With a conventional optical material such as a homogenous material,

graded index material or an optical crystal, because the optical parameters arise from

the atomic or molecular structure of the medium, they cannot be chosen easily. For

example in a semiconductor, one can dope a crystal, but the positioning of the dopant

within the semiconductor will be fixed when the system reaches equilibrium and

hence the optical properties of the system are bound by the laws of thermodynamics.

Likewise in a graded index material the optical properties can be structured, but

current technology does not allow us to change individual atoms or molecules to

1
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give us complete control. In an anisotropic optical metamaterial however, because

the material derives its optical properties from large-scale structure, rather than

individual atoms or molecules, far greater control of the optical properties of the

material can be achieved.

So, far from being done and dusted, thanks to the birth of optical metamaterials,

the interest in refraction is as popular as ever, however very little research has been

carried out with regards to new laws of refraction. As mentioned, Snell’s law is a

direct consequence of analysing the electric field locally across an optical interface.

However Snell’s law is not the only law of refraction across an interface. One avenue

to creating new laws of refraction is by utilising metasurfaces [1, 2]. Metasurfaces

make it possible to generalise Snell’s law and to produce out of plane refraction.

Nevertheless, these laws of refraction are still Snell-like and are quite difficult to

achieve requiring metamaterials to manufacture; hence it is prudent to try and come

up with new ideas to broaden refraction. In this thesis we will explore and develop

the geometry of a new kind of refraction called metarefraction.

The appropriate question to ask at this point is ‘in what sense does metarefraction

differ from conventional refraction?’. We state the answer formally now in order to

motivate the reader:

A metarefracted light-ray field has, in general, no underlying global phase structure,

and therefor its geometrical description cannot be reconciled with wave-optics.

Further to this, metarefracted light-ray fields (as considered in this thesis) are pro-

duced by refraction across planar interfaces and as such cannot be created easily with

solid materials.

This thesis will be structured as follows: Chapter 2 will briefly introduce the ideas

and theories relevant to the research which is to follow - i.e. theorems on classical op-

tical imaging, transformation optics and finally metamaterials and micro-structured

metasheets. Chapter 3 will explore in detail the wave-optical properties of light-ray

fields produced by metarefracting sheets and will show how metarefracted light-ray

fields exhibit different parallax to conventional light-ray fields. Chapter 4 will show

that a subset of a certain class of metarefracting sheet, called generalised confocal

lenslet arrays, perform integral imaging, and that curved interfaces can never perform
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perfect stigmatic imaging. Chapter 5 reinterprets the refraction performed by gener-

alised confocal lenslet arrays and shows that generalised confocal lenslet arrays can be

considered as metric tensor interfaces. Chapter 6 utilises the results of Chapter 4 to

show that pixellated, piecewise transformation optics devices can be designed using

special configurations of confocal lenslet arrays. Chapter 7 presents a set of results

that aim to show that ray-rotation sheets can be considered as imaging into complex

space, and that up to a point, ray-rotation and confocal lenslet array refraction can

be considered as conjugates of one another. Finally in Chapter 8 we summarise the

results of this thesis and briefly describe future work that could be undertaken to

advance the research already presented.



Chapter 2

Background

2.1 Introduction

Before proceeding to the main chapters of this thesis, we must first introduce relevant

background theory and ideas.

2.2 Optical path length

When considering matters of geometry one is frequently concerned with calculating

distances. In optics – specifically geometrical optics – one is also often concerned

with optical distance, or optical path length as it is more commonly known. The

optical path length is a construction which gives an intuitive picture as to why a

wave experiences a phase shift after travelling through a material when compared to

another wave which starts from the same source but travels through vacuum. For

example, if two monochromatic waves emanate from the same source, but one passes

through a sheet of glass while the other passes through air, the wave which passes

through glass will arrive at the same geometrical distance from the source slightly

later than the wave which travelled through air. This is because the wave which

passes through the glass propagates more slowly. As such a phase shift occurs when

the phase of each of the two waves is measured. A more intuitive picture of this is as

follows: the geometrical distance between the source and the point where the phase

of each wave is measured is identical, however from the perspective of the light which

travels through the glass, it has actually travelled further than the wave which did not

4
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pass through the glass. In other words the “optical distance” the wave experiences as

it travels inside the glass is greater than the distance the wave which does not pass

through the glass experiences. In a material of constant refractive index the optical

path length is given by

O = nl, (2.1)

where n is the refractive index of the material and l is the geometrical path length.

One can see that for a typical piece of glass, a wave passing through it will, from its

perspective, have travelled approximately 1.5 times further than if the glass was not

there.

2.2.1 Fermat’s principle

It is well known that in isotropic media such as air or glass, light rays travel along

straight lines. Mathematically this is explained via Fermat’s principle, which states

that the trajectory which light rays will travel between two points will be the one

which has the stationary optical path length [3]. Fermat’s principle is a specific ex-

ample found in optics of the more general principle of least action which arises in

variational calculus. In classical mechanics extremising the action allows the equa-

tions of motion of a system to be found.

A B

Figure 2.1: Fermat’s principle states that light rays will travel along the path
which requires the least action, or optical path length. In isotropic media like air,
this corresponds to the shortest geometrical path length. In this figure the light
ray would therefore travel from A to B along a straight trajectory (red) as opposed

to a longer curved trajectory (black).

In the context of optics, extremising the optical path length, which plays the role

of the action, allows the trajectory of light rays to be calculated. In full variational

calculus, we must perturb the action by infinitesimally varying the path along the

trajectory. The difference between the perturbed action and the original action is

then set to zero, and after mathematical manipulations taken in the limit of small

variations, the equations of motion can be found. In this thesis we need not concern
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ourselves with the full variational calculus version of Fermat’s principle, as we will

only be applying it across optical interfaces placed in air, and hence only varying the

optical path length with respect to one plane intersecting the trajectory. As such

extremising the optical path length simply corresponds to taking its derivatives with

respect to the interface coordinates and setting them to zero. We now elaborate in

slightly more detail. The optical path length between two points, A and B is given

by

O(x) =

∫ B

A

n(x)dl, (2.2)

where n is the refractive index profile of the medium and dl is the infinitesimal

increment along the geometric path and x = (x, y, z). We now look at a path which

deviates slightly from the original (a perturbation) between A and B. The optical

path length for this path is

O(x + δx) =

∫ B

A

n(x + δx)dl. (2.3)

Fermat’s principle states that light rays will travel along paths for which the optical

path length is stationary. Recall that when one finds the stationary point for a curve,

one takes the derivative and sets it to zero. The same applies here when finding the

stationary optical path. Hence one must solve

δO = O(x + δx)−O(x) =

∫ B

A

(n(x + δx)− n(x)) dl = 0. (2.4)

This expression is then perturbed, where necessary, about δx and after suitable ma-

nipulation produces the “equations of motion” of the system. If the refractive index

profile is known, the equations of motion can be used to find the trajectory of any

light ray passing through the medium between the two points A and B. For example,

in anisotropic materials such as photonic crystals and exotic graded index materials

where the optical parameters are spatially varying, the trajectories can be curved.

On the other hand, if the material parameters are not known, but the trajectory is,

one can use the trajectory to solve for the material parameters.

2.2.2 Absolute optical instruments

A key requirement of many optical systems is that they perform imaging. A point

P is said to be stigmatically imaged when all rays passing through it are later found
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to pass through a new point P′. If all points in the region before the system are

imaged stigmatically, the system is said to be an absolute optical instrument [4],

and the image points make up what is called image space, while those points which

generate them make up what is called object space. In this sense, an absolute optical

instrument images all of object space to all of image space. It can be shown that

absolute optical instruments image points in such a way as to ensure that the optical

path length between any two object points is the same as the optical path length

between their two corresponding image points [4].

2.3 Transformation optics

Transformation optics utilises the mathematics of differential geometry to design di-

electrics with spatially varying optical properties. The result is an optical material

which mimics the effects of curved space for light. As such, light travels along pre-

determined curved trajectories inside the material. The archetypal transformation

optics device is the invisibility cloak.

Theoretically, transformation optics is achieved by placing Maxwell’s equations in

empty space on a curved background and reinterpreting the results. Written using

Einsteins convention Maxwells equations on a curved background are

(
√
ggijEj),i =

√
gρ

ε0
,

(
√
ggijHj),i =0,

[ijk]Ek,j =− µ0

∂(±√ggijHj)

∂t
,

[ijk]Hk,j =
∂(±√ggijEj)

∂t
+
√
gji,

(2.5)

where subscript i denotes the ith component of a vector, subscript , i denotes the

derivative with respect to the ith coordinate, gij is the metric tensor of the curved

background and [ijk] is the Levi Civita symbol. Treating the charge and current

densities, ρ, and ji, and the electric permittivity and magnetic permeability, ε0 and
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µ0, as having been transformed as follows:

% =±√gρ,

J i =±√gji,

ε =ε0ε
ij = ±ε0

√
ggij,

µ =µ0µ
ij = ±µ0

√
ggij,

(2.6)

these new transformed quantities can then be used to reinterpret Maxwell’s equations

as being on a flat background in a dielectric with spatially varying optical parameters:

Di
,i =%,

Bi
,i =0,

[ijk]Ek,j =− ∂Bi

∂t
,

[ijk]Hk,j =
∂Di

∂t
+ J i,

(2.7)

where Di = εEj and Bi = µHj. Hence we have designed a dielectric with spa-

tially varying optical properties. Because εij = µij the resulting impedence, Z, of

the dielectric is everywhere unity as Z =
√
µ/ε. This means that the dielectric is

impedence matched with the surrounding vacuum where the impedence is also unity.

The optical properties are clearly functions of the metric tensor of the geometry used,

and the metric itself is constructed using the Jacobian matrix ΛJ for some underlying

coordinate transformation

g = ΛT
JηΛJ , (2.8)

where η is the euclidean metric. Dielectrics designed using transformation optics

are almost always spatially varying and complicated - if not impossible - to achieve

using natural materials. For example, consider the archetypal device created using

transformation optics - the invisibility cloak. The coordinate transformation which

produces the cylindrical cloak is (in cartesian coordinates) given by the following

equations

x′ =
r′(r)x√
x2 + y2

,

y′ =
r′(r)y√
x2 + y2

,

z′ =z,

(2.9)

where r′ is the new radius of the cylinder we are creating and r is the radius of
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the original cylinder which we assume to be infinitesimal. This coordinate system is

clearly radially dependent, and so a naturally occurring mineral or crystal will not

provide the required optical properties. As such, transformation optics devices such

as cloaks have to be designed using synthetic (i.e. not naturally occurring) materials,

especially when their optical parameters are dependent on three spatial dimensions.

Beyond cloaking, transformation optics is being applied in several areas. In the field

of plasmonics it is being utilised to design transformation-plasmonic devices [5, 6]. In

conventional plasmonic systems, an isotropic dielectric is placed on a conductor and

surface plasmons are excited using electromagnetic radiation. Transformation optics

allows the dielectric parameters to be carefully designed such that more complicated

plasmonic behaviour can be achieved. Transformation optics is also being used in

conjunction with ultrashort laser pulses to attempt to create optical black holes in

optical fibres [7]. The hope is that by doing this, an optical analogue of Hawking

radiation [8] may be observed. More complicated transformation optics devices which

implement complex coordinate transformations [9, 10] have been suggested as a way

of modulating loss and gain at different regions in the device.

2.4 Metamaterials and microstructured metasheets

2.4.1 Metamaterials

As mentioned previously, the cylindrical cloak, and by extension its three-dimensional

generalisation, the spherical cloak, rely on optical parameters which vary spatially

in a very complicated way. The natural world, as far as we know, offers no such

miracle material with optical properties that vary in such a unique way, hence it will

require synthetic materials to achieve the required effects. To avoid diffraction, the

constituent components of the material must be significantly smaller than the wave-

length which is to be redirected. One’s first thought might therefore be to turn to

chemistry and utilise properties of atoms and molecules; however to create a device

which is spatially varying in a very precise way at the molecular or atomic level is

beyond current technology. Fortunately, if we restrict ourselves to larger wavelengths,

then it is possible to create such materials using metamaterials. Metamaterials are

constructed from arrays of subwavelength electromagnetic elements such as split-ring

resonators and metal rods among others. The effect of such arrays is to create a
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Figure 2.2: An three-dimensional array of concentric split-ring resonators. Such
elements are frequently studied in metamaterial research and have applications in
transformation optics. In the microwave regime they can be configured to produce

different effective permeabilities and permittivities.

smoothly varying effective permeability and permittivity throughout the material

[11]. Indeed such metamaterials have been used to build cloaks designed using trans-

formation optics [12] [13].

2.4.2 Microstructured sheets exhibiting generalised refrac-

tion

Metarefraction and its applications are at the heart of this thesis. Specifically we will

study metarefraction generated by two different types of microstructured metasheets.

The first are called generalised confocal lenslet arrays (gCLAs) and the second are

called ray-rotation sheets. CLAs are comprised of two lenset arrays separated by the

sum of their focal lengths. The lenslets are aligned with each other and as such the

sheet can be thought of as an array of telescopes. Because the sheet is comprised of

an array of telescopes, the image produced by a CLA is pixellated and the ordering

of the light rays after passing through each telescope can be inverted. Because of this

the image will also be slightly blurred, as from telescope to telescope, the ordering

of light rays will be mixed up to an extent. This is shown in Fig. 2.4 where we see

that if all the light rays entering one telescope with the same direction are the same

colour then the outgoing light rays are inverted but are indistinguishable as they

are all of the same colour. However, if the light rays entering the telescope are of

different colours, we see that the outgoing image will have its light rays visibly in

a different order. As a consequence of this, blurring can occur between regions of
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Figure 2.3: The microwave cloak from [13]. The diamond inner region (black)
is where the object being shielded is placed. The material surrounding the inner
region is constructed using split-ring resonators and ensures microwave radiation

flows around the central region and remains in phase.

different colours across different telescopes. However, in general, the overall image

will remain intact as such changes are minimal if the telescopes are small.

The other type of metasheet we will be studying is the ray-rotation sheet. Ray-

rotation sheets are comprised of two dove-prism arrays which are parallel but have

their mirror planes rotated relative to one another [15]. The effect this has is that

light rays crossing the interface are rotated by twice the angle between the mirror

planes of the individual dove-prism arrays, as shown in Fig. 2.5. Ray-rotation sheets

also pixellate the outgoing light-ray field as it is each individual light ray which is

rotated, and not the image as a whole.
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f1 f2Op�cal	axis

Figure 2.4: Confocal lenslet arrays are comprised of two lenslet arrays which share
a common focal plane. Each lenslet pair can be thought of as a mini telescope (or
pixel). Due to the fact that light has to pass through an array of telescopes, the
outgoing image is pixellated and blurring can also appear between pixels when
different parts of the image are inverted inconsistently across different telescopes.
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Figure 2.5: Figure taken from [14]. A dove-prism array (a) is described by a
mirror plane and a prism axis. Light rays enter each individual dove prism and
through a process of internal reflection and refraction (b) re-emerge on the other
side of the dove prism as though they have been reflected off of the prisms mirror
plane. Tilting each dove prism in the array simply has the effect of altering the
angle of the mirror plane (c). When a light ray is reflected off of two mirror planes
which are at an angle to one another, the light ray is rotated by twice the angle
of separation. As such, when two dove-prism arrays whose mirror planes are at
an angle θ′ to one another share a plane, (d), light rays entering the combined
interface are rotated by an angle 2θ′ on leaving the interface. Hence a combination

of two rotated dove-prism arrays form a ray-rotation sheet.



Chapter 3

Light-ray fields with non-zero curl

3.1 Introduction

Conventional optical systems are, fundamentally, described by equations which can

always be reconciled with wave optics. For example, when a wave passes through

a phase hologram, the phase structure of the wave is altered across a plane which

causes the field to evolve in a new, useful way. The only way to understand a phase

hologram is through wave optics. Snell’s law is geometrical, however it emerges from

Maxwell’s equations and thus can be re-cast in terms of wave optics. Transformation

optics is another example; here in essence we just reinterpret the wave equation on

a curved background metric and see what effect this has on light rays. In all of the

examples mentioned, the properties that the outgoing light-ray fields have are a direct

consequence of the underlying wave theory which underpins them. In other words,

conventional optical systems must reflect the wave-optical nature of light, even if

one only studies them ray-optically. Thus conventional optical systems are bound by

wave optics and hence limited to what they can do. If an optical manipulation could

be found which was not bound by wave optics, this would be an interesting advance

in optics. Metarefraction has the ability to perform such manipulations. In this

chapter we will show that light-ray fields produced by metarefraction have non-zero

curl which means that they cannot be described using wave optics.

14
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3.1.1 Contributions

The work that follows was undertaken by myself with help from Simon Horsley and

Tom Philbin.

3.2 The curl of a light-ray field

It is a basic result of vector calculus that the curl of any gradient is zero almost

everywhere:

∇×∇φ = 0. (3.1)

It is well known that in the ray-optics limit of wave optics, the direction of a light

ray is directly proportional to the phase gradient of the underlying waveform. Hence

it is true that

∇× d = ∇× ∇φ
|∇φ|

=
1

|∇φ|
∇ ×∇φ = 0, (3.2)

where d is the normalised light-ray direction, φ is the phase of the wave and |∇φ| =
2π/λ. The phase, φ, is a continuous function which spans all of space and as such can

be described as a “global” function (however this does not mean the phase cannot be

locally varying). If a function is not continuous it cannot be described as global as

different positions in space will be described using different “local” functions. Beyond

the ray-optics limit where the phase gradient is free to change from one point to the

next in direction and magnitude, one has to be more careful. For example consider

a scalar field given by

u =
√
I exp (iφ), (3.3)

where I is the intensity, and φ is the phase. The gradient of the scalar field is given

by

∇u = i∇φ u+
∇I
2I

u, (3.4)

and so we see that the gradient of the phase (assuming the change in intensity from

one point to the next is negligible) is given by

∇φ =
∇u
iu

= Re

(
−i∇u

u

)
. (3.5)
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Using complex analysis, this can be re-written in the more familiar [16] way

∇φ = −i1
2

(
∇u
u
−
(
∇u
u

)∗)
=
−i
2I

(u∗∇u− u∇u∗), (3.6)

where I = u∗u. The above expression was derived from a wave form with arbitrary

phase φ, however the final expression can clearly be applied to calculate the local

phase gradient for arbitrary wave-forms. Indeed consider a superposition of two

plane waves where we have ignored the temporal part of each phase for simplicity:

ψ(x, y) = a1 exp (i(k1xx+ k1yy)) + a2 exp (i(k2xx+ k2yy)). (3.7)

When the local phase gradient for this field is calculated using the expression defined

above, we see that the length and direction of the local phase gradient can change

from point to point, as seen in Fig. 3.1. In analogy with the phase gradient of a

plane wave, the local phase gradient is used to define the local light-ray direction. In

general the field of local phase gradients and light-ray directions are continuous, the

only exception being where phase singularities occur, as at phase singularities the

phase gradient diverges. Indeed, when phase singularities arise in the field this leads

to the curl of the phase-gradient being non-zero:

∇×∇φ 6= 0. (3.8)

Phase singularities are always dark, so while they can occur at specific positions in

a field, they cannot occur everywhere, otherwise the field would not exist. We will

show that when analysed, metarefracted fields appear to have phase singularities

everywhere, however this is not the case. This is an important point which we must

explore in detail, hence we proceed now to explain mathematically the foundations

of metarefraction.

The Kelvin-Stokes theorem tells us that the integral of the curl of the phase gradient

over an area A equals the line integral of the phase gradient around the closed loop

S bounding A: ∫
A

(∇×∇φ) · dA =

∮
S

∇φ · dS. (3.9)

Calculating the line integral of the phase gradient around a closed loop allows us to

calculate how much phase the field picks up when going round a closed loop. Clearly

in order to be curl-free, the phase must be continuous and therefore unchanged after

circumnavigating the loop, the only exception being where phase discontinuities arise
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Figure 3.1: Images a-c: the real part of the local phase gradient for the su-
perposition of two plane waves as described in Eq.(3.7) with a1 = 1, a2 = −2,
k1 = (sin θ, cos θ) and k2 = (cos θ, sin θ), with θ = π, θ = π/2 and θ = π/3 respec-
tively. It is clear that the local phase gradient is changing length and direction
from point to point, unlike for a plane wave, where the direction and length are

constant as seen in d.

as here the local phase gradient diverges. If the phase gradient has non-zero curl

everywhere, this implies that the underlying phase surface is discontinuous at all

points in space, which in turn implies that the light-ray field does not exist.

We see that the curl of the phase gradient and the curl of the light-ray field are

intimately linked, however what does the curl of the light-ray vector actually tell us?

Consider a vector, ν, that lies in a plane which is orthogonal to the normalised phase

gradient, s, i.e. ν is tangential to the local phase surface of the field. The scalar

product of ν and a vector aligned with the normalised phase gradient, d, must be

zero:

(dx, dy, dz) · (νx, νy, νz) = 0. (3.10)
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Expanding and rearranging for νz, we get

dxνx + dyνy
dz

= −νz. (3.11)

If we are located somewhere on the phase surface and “carry” the vector d (which

we recall is aligned with the local phase gradient) with us as we move a distance νx

along the x-axis and νy along the y-axis, then Eq.(3.11) can be used to find out how

much height we must gain in the z-axis in order for the vector d to still be located

on the phase surface. We can apply this result to our calculation for the curl of d.

Assuming that the non-normalised vector field is constructed such that dz = 1 at

all points in space, we see that Eq.(3.11) gives the same expression as half of the

line integral around a closed, square loop whose sides are of length νx = νy = ν in

the xy-plane. That is to say, when dz = 1, in the limit of small ν, two copies of

Eq.(3.11), one for each half of the loop, will produce a calculation which is equivalent

to a discrete application of the right hand side of Eq.(3.9). Fig. 3.2 illustrates this

visually, for one half of the loop. Explicitly we calculate the following for the full

loop:

νz1 + νz2 = −ν
(
dx(x, y − ν/2) + dy(x+ ν/2, y)

)
+ ν
(
dx(x, y + ν/2) + dy(x− ν/2, y)

)
= −ν2

(
∂dy(x, y)

∂x
− ∂dx(x, y)

∂y

)
= −ν2(∇× d)z,

(3.12)

where νz1 and νz2 are the first and second halves of the loop respectively. Thus we

can state that the z-component of the curl of d can be used to tell us the height

gained in the z-direction when taking a step of size νx in the x-direction and νy in

the y-direction on the phase front. Hence we see that if we construct our light-ray

vector such that dz = 1, Eq.(3.12) must must equal zero if we are to stay on the

phase surface and return to our original position on it. In the case where an optical

vortex arises, we would not return to our original position on the phase surface and

so clearly the above calculation will therefore give the distance between two parts of

a helical phase surface.

Note that Eq.(3.12) will not work for any other ray construction. We can see this

directly when we attempt to use a different ray normalisation. Clearly if Eq.(3.12) is

equal to zero we see that
∂dy
∂x

=
∂dx
∂y

. (3.13)
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Figure 3.2: On traversing a closed loop (red line) we see that a light-ray vector,
d (blue vector) returns to its original position on the phase surface (blue plane).
If a phase singularity occurs within the loop, such as at an optical vortex, then the
light-ray vector will have acquired a height on circumnavigating the loop, and so

will not return to its original position.

Now consider a case where the ray vector is normalised differently, for example con-

sider the field e where

e = xd. (3.14)

It follows that
∂ex
∂y

= x
∂dx
∂y

(3.15)

∂ey
∂x

= dy + x
∂dy
∂x

. (3.16)

Substituting Eq.(3.13) into Eq.(3.16) we see that it can be re-written

∂ey
∂x

= dy + x
∂dx
∂y

= dy +
∂ex
∂y

, (3.17)

which shows that ∂ey/∂x 6= ∂ex/∂y unless dy = 0 which in general will not be the

case. Hence we see that calculating the curl of the light-ray field depends on how one

nornalises the light-ray field in the first place. One size does not fit all.
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3.3 Simplifying the z-component of the curl of the

outgoing light-ray field

The calculation in the previous section was orchestrated such that we calculated the

z-component of the curl for a light-ray field constructed where dz = 1. We could

have calculated any of the other components of the curl in the same way, however we

chose the z-component for good reason. In the following sections it will be our aim to

determine whether or not an outgoing metarefracted light-ray field has zero curl. In

all the examples we will consider, we will assume that refraction takes place across the

z = 0 plane. If we knew how the outgoing field evolved on propagation along the z-

axis, we would not have to perform our initial calculation in the first place as it would

only be possible to know how the light-ray field evolves if it is in fact curl free. Hence

we look at the z-component of the curl because it contains no derivatives with respect

to z of the outgoing light-ray vector components, unlike the x and y components of

the curl, which do. Indeed, due to their dependence on z derivatives, it would be

difficult (if not impossible) to calculate the x and y components of the curl. Note

however that if the z-component of the curl is zero this does not necessarily mean

that the field in question can be described wave-optically as the x and y components

of the curl may still be non-zero. However, in the refraction we shall consider in this

thesis, the z-component of the curl is (in most cases) non-zero, and so we need not

concern ourselves with the x and y components.

Previously when examining zero-curl-preserving laws of refraction, that is laws of re-

fraction which take light-ray fields with zero curl and refract them again into light-ray

fields with zero curl, it was shown that the z-component of the curl of the normalised

outgoing light ray direction field was given by [17]

0 =
∂s′y
∂sx

∂sx
∂x

+
∂s′y
∂sy

∂sy
∂x

+
∂s′y
∂sz

∂sz
∂x
− ∂s′x
∂sx

∂sx
∂y
− ∂s′x
∂sy

∂sy
∂y
− ∂s′x
∂sz

∂sz
∂y

, (3.18)

where si and s′i are the spatially dependent components (for i = x, y, z) of the ingoing

and outgoing light-ray directions respectively. As the ingoing light-ray direction

vector is normalised assuming sz > 0, it must be possible to write the light-ray

direction vector such that sz is a function of sx and sy (i.e. sz =
√

1− s2x − s2y). This

then means that we can eliminate the terms involving derivatives of sz from Eq.(3.18),

as the terms involving derivatives of sx and sy now contain all the information we

require. Recalling that for an incident field to be curl free ∂sx/∂y = ∂sy/∂x, Eq.(3.18)
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reduces to

0 =
∂s′y
∂sx

∂sx
∂x

+

(
∂s′y
∂sy
− ∂s′x
∂sx

)
∂sx
∂y
− ∂s′x
∂sy

∂sy
∂y

, (3.19)

which is much simpler.

Of course we can arrive at Eq.(3.19) simply by applying the chain rule, as the in-

going and outgoing light-ray fields can be written in the form sx(x, y) and s′x(sx, sy)

respectively.

Equation (3.19) must hold for all combinations of the “field derivatives”, that is the

derivatives of the ingoing light-ray field [17] and so it must therefore be true that

the coefficients of these terms must be individually zero. Hence we can re-write the

constraints for the law derivatives in our simpler form to get

∂s′x
∂sy

= 0, (3.20)

∂s′y
∂sx

= 0, (3.21)

∂s′y
∂sy
− ∂s′x
∂sx

= 0. (3.22)

We see that we now have three conditions as opposed to the five that were previously

found. In the following subsections we shall show that in general, light-ray fields

produced by generalised confocal lenslet arrays and ray-rotation sheets will have

non-zero curl. We shall also show that there are cases where these laws of refraction

produce light-ray fields which do have zero curl.

3.4 Generalised laws of refraction generated by

microstructured metasheets

Now that the relationship between the curl of a light-ray field and the curl of the local

phase gradient has been explained, we will proceed to introduce the laws of refraction

for generalised confocal lenslet arrays and ray-rotation sheets. We will show that in

general, these laws of refraction lead to light-ray fields with non-zero curl.
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3.4.1 Refraction by generalised confocal lenslet arrays

We now look at the first of our two wave-optically “forbidden” light-ray fields, those

produced by generalised confocal lenslet arrays (gCLAs). We shall derive the ray-

optical law of refraction for gCLAs and then show that it does indeed produce, in

general, fields with non-zero curl. We start by considering confocal lenslet arrays

which have been generalised in the following way:

1. The centres of the two lenses are shifted relative to one another in directions

orthogonal to the optical axis of the system.

2. Each lens is replaced by two cylindrical lenses whose cylinder axes are orthogo-

nal and whose focal lengths can be different. One pair of cylindrical lenses must

still be confocally arranged with their counterparts in the other cylindrical lens

pair. That is to say, the lenses are aligned and the sum of their focal lengths

must still add up to the separation of the lenses.

3. Each lenslet pair can be rotated around the axis which is tangent to the sheet.

We now define the geometry of the system. We shall define the optical axis, to point

in the direction â. We have stated that in our generalisation, we replace our lenses by

cylindrical lens pairs. In this case the cylinder axes of the first and second cylindrical

lenses in each pair lie along û and v̂ respectively where û and v̂ are orthogonal to â.

A schematic of this system is shown in Fig.3.3.

Now that the system is set, we can begin our derivation. We initially model the

refraction for the first cylindrical lens axis, û, hence we will be working in the (a, u)

plane. Consider a light-ray vector d which is defined such that da = 1 and which

passes through the centre of the first cylindrical lens C1 whose cylinder axis points

along û. This ray will pass through the point P on the focal plane of the lens. The

components of P in the (a, u) plane are therefore given by

Pu = C1u +
du
da
f1u , Pa = C1a + f1u . (3.23)

The outgoing light-ray will leave with a direction d′. If we take a parallel outgoing

ray, we can always choose one which passes through both P and the centre of the

second lens C2. In that case, the outgoing light-ray vector is given by

d′ =
1

f2u
(C2 −P), (3.24)
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Figure 3.3: A schematic of how pairs of orthogonal cylindrical lens pairs can be
used to make a generalised confocal lenslet array without lenslet rotation. The
cylindrical lenses in each pair have their cylinder axes orthogonal to one another.
The total distance between the two cylindrical lens pairs is the sum of the focal
lengths for each of the two orthogonal cylinder axes, i.e. k = f1u + f2u = f1v + f2v .

The cylindrical lens pairs can be offset relative to one another as shown.

where we have divided by f2u so that d′a = 1. Hence the components of the outgoing

light-ray vector in the (a, u) plane are given by

d′u =
C2u − (C1u + (du/da)f1u)

f2u
, d′a =

C2a − (C1a + f1u)

f2u
. (3.25)

However we know that C2u = C1u + ou and C2a = C1a + f1u + f2u , so we can re-write

the components of d′ as

d′u =
ou − (du/da)f1u

f2u
, d′a = 1, (3.26)

or more tidily as

d′u =
du − δu
ηu

, d′a = 1, (3.27)
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F
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e d'
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f1 f2

a

Figure 3.4: Two lenslets (blue lines) seperated by the sum of their focal lengths.
Constructing light rays (red), such that the ingoing ray passes through the central
point of lenslet 1, C1, and a point on the common focal plane P and the outgoing
light ray passes through P and the central point of lenslet 2, C2, it is straight
forward to derive the law of refraction for generalised confocal lenslet arrays on a

component by component basis.

where δu = ou/f1u and ηu = −f2u/f1u and we have used the fact that da = 1. These

are the final expressions for the outgoing light-ray components in the (a, u) plane.

The process can be repeated for the (a, v) plane and analogous expressions derived.

The complete light-ray vector is thus defined by

d′ =
du − δu
ηu

û +
dv − δv
ηv

v̂ + â. (3.28)

In the special case where ηu = ηv = η, the equation can be simplified further to give

d′ =
d− δ
η

. (3.29)
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3.4.2 The curl of the light-ray field produced by generalised

confocal lenslet array refraction

We now show that light-ray fields produced by generalised confocal lenslet arrays

have, in general, non-zero curl. Consider the normalised light-ray vector d for a

system where â = ẑ

d =
(
dx, dy,

√
1− d2x − d2y

)
. (3.30)

After refraction through a gCLA, the outgoing light-ray vector is given by

d′ =

(
dx/
√

1− d2x − d2y − δx
ηx

,
dy/
√

1− d2x − d2y − δy
ηy

, 1

)
. (3.31)

On taking the curl of d′, very complicated and lengthy expressions are found. Setting

ηx = ηy = η and δx = δy = 0 simplifies the expressions and allows us to arrive at the

following expression for the z-component:

η

((
−1 + d2y

) ∂dx
∂y

+ dxdy

(
−∂dy
∂y

+
∂dx
∂x

)
−
(
−1 + d2x

) ∂dy
∂x

)
(3.32)

Recall that for the outgoing light-ray field to be curl free, this must be equal to

zero. We see that if the derivatives of the ingoing light-ray field equal zero, i.e. if

the ingoing field is a plane-wave, the expression is satisfied. More generally the field

will have non-zero curl. For the more general case where ηx and ηy are different,

we expect that in general the outgoing light-ray fields will have non-zero curl, but

that there will be specific ingoing wave forms and special configurations of the gCLA

parameters which will produce curl-free fields.

3.4.3 The curl of the light-ray field produced by ray-rotation

refraction

As with the previous example, when we consider refraction performed by a ray ro-

tation sheet placed in the z = 0 plane, if the ingoing light-ray direction is given by

Eq.(3.30), the outgoing light-ray direction is simply a rotation of d by an angle θ

around the z-axis:

d′ =
(
dx cos θ − dy sin θ, dy cos θ + dx sin θ,

√
1− d2x − d2y

)
. (3.33)
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The expression for the curl of the light ray field produced by ray rotation is far

simpler than that of its gCLA counterpart, and so we can examine it directly. The

z-component of the curl, once set to zero, is given by

sin θ

(
∂dy
∂y

+
∂dx
∂x

)
= 0. (3.34)

Clearly then to produce an outgoing field with zero curl we can have any incident

field but must rotate by zero or 180◦, as this will ensure that sin θ, and hence the

z-component of the curl, are zero. Or we can have an ingoing light-ray field which

satisfies
∂dy
∂y

= −∂dx
∂x

. (3.35)

Plane waves will satisfy this expression, but are there any other solutions? We know

that the curl of the light-ray field and the curl of the phase gradient are closely

related. If an ingoing waveform is to be ray-rotated and leave still with zero-curl,

then the outgoing waveform must simply be a local rotation of the ingoing transverse

phase profile at the plane z = 0 (as this is where the sheet sits), by the angle which

the sheets rotates light rays by around the local sheet normal. Hence, to find possible

solutions for ingoing waveforms which will produce outgoing light-ray fields with zero

curl, we need only find pairs of transverse waveforms which are, at every point in

the plane z = 0, rotated by an angle θ to one another. Fortunately, such a class of

waveforms exists. Consider a complex analytic function

f(w) = awn + bwn−1 + cwn−2 + ...d (3.36)

where w is a complex number of the form w = x + iy and a, b, c etc are constants.

If f is a complex analytic function, then it is true that the real and imaginary parts

u = Re[f(x+ iy)]

v = Im[f(x+ iy)],
(3.37)

define surfaces which are orthogonal to one another. That is to say

∇u · ∇v = 0. (3.38)

In this framework, our ingoing transverse phase profile is described by u and our

outgoing transverse profile is described by v. Clearly though, with this approach, no

matter what function f we start with, we will only find sets of ingoing and outgoing
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fields which are rotated by π/2 to one another. However we can expand this class of

functions for any angle of rotation by redefining v. For arbitrary angles of rotation,

our transverse phase profiles are now given by

u = Re[f(x+ iy)]

v = Re[f(x+ iy)] cos θ + Im[f(x+ iy)] sin θ.
(3.39)

For example, consider the complex analytic function

f(w) = −w + 2w2 − 1

2
z4, (3.40)

where w = x+iy. Using the expressions in Eq.(3.39), and an angle of rotation of π/3,

we can plot contour plots of the ingoing and outgoing transverse phase profiles, u

and v in the z = 0 plane as in Fig.3.5. We see in Fig.3.5 that the outgoing transverse

phase profile, given by dashed lines, is always at an angle of π/3 to the contour lines

of the ingoing transverse phase profile, shown by solid lines.

-1 0 1

-1

0

1

x

y

Figure 3.5: Contour plots of the transverse phase profiles in the z = 0 plane of
an ingoing and outgoing waveform. The ingoing transverse phase profile is givel
by solid lines, whereas the outgoing transverse phase profile is given by dashed
lines. As can be seen, the outgoing transverse phase profile is at every point a local

rotation of the ingoing transverse phase profile, specifically by π/3.
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3.4.4 The light-ray field of a point light source produced by

a ray-rotation sheet, as viewed by an observer

Previously it was shown that the refraction performed by ray-rotation sheets can

effectively be modelled as refraction across an interface which has a complex refractive

index ratio [18].

An integral step in this mathematical interpretation involves orthographically pro-

jecting the point where a light ray strikes the sheet into a complex plane which spans

the plane in which the sheet lies. Specifically the orthographic projection of the point

P where the light ray from a particular point light source that then goes to the eye

strikes the sheet, into the complex plane spanning the sheet (in this case the z = 0

plane), is given by [15]

P =
1

1 + z1
z2
eiα

, (3.41)

where z1 is the distance between the point light source and the sheet, z2 is the distance

between the sheet and the observer and α is the angle of rotation around the z-axis.

If we orthographically project the position of the point light source, L = (Lx, Ly,−z1)
and the position of the observer, E = (Ex, Ey, z2) into the plane of the window (z = 0)

as in Fig.3.6,we can define basis vectors to span the plane. We define the first basis

vector to be

b1 =
1√

(Ex − Lx)2 + (Ey − Ly)2


Ex − Lx
Ey − Ly

0

 , (3.42)

and the second to be at right angles to this

b2 =
1√

(−Ey + Ly)2 + (Ex − Lx)2


−Ey + Ly

Ex − Lx
0

 , (3.43)

We now re-cast the orthographic projection of P in the complex plane into this new

coordinate system. It can be shown that in this new basis, which is centered on the

orthographic projection of L the orthographic projection of P is now given by

Preal =


Lx

Ly

0

+ Re(P)b1 + Im(P)b2, (3.44)
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Figure 3.6: Top: an incident light ray emitted from L intersects the interface
at position P before being refracted towards an observer at position E. Bottom:
projecting the points L, P and E into the plane of the sheet and constructing a
complex coordinate system enables the point P to be written in terms of basis
vectors which are functions of the components of L and E. The outgoing light-ray
direction can then be calculated as the normalised vector between P and E, and

as such, must also be a function of the source position L.

or more explicitly,

Preal =


Lx

Ly

0

+
z2(z2 − z1 cosα)

z22 + z21 − 2z2z1 cosα
b1

+
z2z1 sinα

z22 + z21 − 2z2z1 cosα
b2.

(3.45)

The outgoing light-ray direction vector is then given by

d =
E−Preal√

(E−Preal) · (E−Preal)
. (3.46)
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Clearly the light-ray direction changes depending on the position of the observer.

By letting (Ex, Ey, z2) = (x, y, z) the curl of the light-ray field can be calculated.

The curl of the light-ray direction vector is too long to reproduce here, however it

shows that the curl is always non-zero for angles other than 0 or π. In the following

sections we will show ray-tracing simulations and experimental observations which

corroborate this.

3.5 Wave-optically forbidden parallax

We have thus far described laws of refraction which produce light-ray fields with

non-zero curl. This description has been purely mathematical and it is prudent to

ask, how do these light-ray fields actually behave when we observe them? We will

show that light-ray fields with non-zero curl exhibit a different type of parallax to

conventional fields. Parallax is commonly observed when looking at distant objects

whilst moving. Using a coordinate system centred on the observer’s position, objects

close to the observer will appear to change positions more quickly than objects further

away. This is obvious when driving in the country side and one can see that the

distant hills barely move, while the nearby hedges flash past. This holds true for

light-ray fields with non-zero curl. However something else happens as well. Recall

that light-ray fields with non-zero curl do not satisfy Eq.(3.13). That is to say

∂dy
∂x
− ∂dx

∂y
= δ 6= 0. (3.47)

If we can measure the change in the y-component of the light-ray direction vector

with respect to x and the x-component of the light-ray direction vector with respect

to y, then we can calculate δ. In general, both derivatives will be non-zero, and so

we can see that if that is the case, that moving horizontally or vertically will cause

the image produced by the interface to move vertically or horizontally. We show this

in ray-tracing simulations in Fig.(3.7) and Fig.(3.8).

3.6 Experimental confirmation

We show now how forbidden light-ray fields produced by a ray-rotation sheet behave

when an observer changes position and compare this with a light-ray field which
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Figure 3.7: As the observer moves to the left, i.e. the negative x direction,
the green sphere appears to move in the positive y-direction. This means that

∂dy/∂x > 0.

Figure 3.8: As the observer moves up, i.e. the positive y direction, the green
sphere appears to move in the positive x-direction. This means that ∂dx/∂y < 0.

is not forbidden. In the experimental set-up used, a Rubik’s cube was positioned

100mm behind a π/2 ray-rotation sheet, while the observing camera was positioned

100mm in front. This set up is shown in Fig. 3.9. The camera was then moved

in 5mm increments either vertically or horizontally and the image recorded for each

increment.

3.6.1 Forbidden light-ray fields produced by ray-rotation

On measuring the change in light-ray direction for both the horizontal shifts and

vertical shifts it was found that the rate of change of the y-component of the light-

ray vector with respect to the x-axis and the rate of change of the x-component of

the light-ray vector with respect to the y-axis were respectively

∂dy
∂x

= −4.4× 10−3 (3.48)
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Figure 3.9: A schematic of the experimental set up to study the parallax of a
forbidden light-ray field. A rubiks cube is placed behind a ray rotation sheet which
is comprised of two dove prism arrays rotated relative to one another by an angle
of π/4. This causes outgoing light-rays to be rotated by an angle twice this, π/2
around the surface normal to the ray rotation sheet, n. The camera is then moved
either horizontally or vertically to observe the effect this has on the image, and

therefore the outgoing light-ray field.

∂dx
∂y

= 4.5× 10−3. (3.49)

Hence the z-component of the curl of the light-ray vector is

∂dy
∂x
− ∂dx

∂y
= −4.4× 10−3 − 4.5× 10−3 = −8.9× 10−3, (3.50)

which is clearly non-zero. We see in Fig.3.10 that the results of Eq.(3.48) and

Eq.(3.49) do indeed manifest themselves in the unusual parallax predicted in Fig-

ures 3.7 and 3.8.
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a)

b)

Figure 3.10: Experimental confirmation of the effect of wave-optical illegality
for a π/2 ray-rotation sheet. a) As the observer moves vertically by 25mm in the
y-axis, the Rubik’s cube, as seen through the sheet, moves in the negative direction
of the x-axis. b) As the observer moves horizontally by -25mm in the x-axis, the
Rubik’s cube, as seen through the sheet, moves in the negative direction of the

y-axis.

3.7 Conclusion

We have theoretically described how the curl of a light-ray field is related to the

curl of its underlying phase gradient and have stated that in order for a field to be

described properly by wave optics, the curl of the light-ray vector has to be zero.

We then introduced generalised confocal lenslet arrays and ray-rotation sheets and

showed that they refract light in such a way that the outgoing light-ray field has,

in general, non-zero curl. We then proceeded to show how a light-ray field with

non-zero curl behaves when an observer changes position by providing ray-tracing

simulations and experimental images. In the following chapters we will see that the

ability to create light-ray fields with non-zero curl offers the potential to design and

create exotic optical devices which otherwise would not be possible.
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Integral imaging using planar and

curved interfaces

4.1 Introduction

One of the most important concepts to emerge from optics is that of imaging. Indeed,

the whole purpose of many – possibly most – useful optical systems is to transfer in-

formation or power from one point to another in a predictable way. Imaging finds uses

in a vast array of different areas, from the Hubble telescope taking photographs of

distant galaxies and microscopes zooming in on bacteria, to imaging using entangled

photons [19] and of course transformation optics [20, 21]. All of the afore-mentioned

applications (with the exception of standard transformation optics) involve designing

optical systems involving lenses, mirrors, beams splitters and other optical devices.

The ability to reconfigure an imaging system is an advantage when a system is re-

quired to operate in a number of ways. However, as a consequence, such systems are

typically complicated and in many cases require frequent realignment and calibration

to operate effectively. If an imaging system is only to be used in one configuration,

then it makes sense to reduce the number of internal components to a minimum and

use the simplest components possible to reduce the need for recalibration. The most

simple type of imaging device which does not require any significant calibration ef-

fort is the lens. The lens has no movable parts and so only its position and direction

have to be monitored. However, despite their usefulness, lenses are rather limited in

terms of imaging. If new passive optical components can be designed which image

and require no more calibration effort than a lens, this could open the way to more

34
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efficient designs for larger, more complicated systems.

Some effort has already been made with regards to this goal. In 1940 Gabor produced

a paper outlining a new device, called a superlens, which consisted of two confocally

arranged lenslet arrays where the lenslet arrays were of different pitch [22, 23]. The

result was a device which exhibited unusual lens-like behaviour in that it behaved

like a lens with different object- and image-sided focal lengths. However this is

only an illusion as the superlens is not a true lens; it does not perform conventional

imaging. It performs integral imaging and as such parallel rays do not converge to

a single position after passing through a superlens, but instead parallel ray bundles

entering the superlens at different positions will all meet at a common region where

their axes intersect. Previous work investigating imaging with planar interfaces was

able to show that the most general type of interface capable of imaging all of space

corresponded to an infinitesimally thin lens with different object and image sided

focal length [24]. Of course, infinitesimally thin lenses do not exist. The imaging

equations derived in [24] are for an idealised system which maps each point in object

space to a corresponding point in image space, subject to certain assumptions such as

there is no offset between the ingoing and outgoing light rays. In practice, however,

these conditions are impossible to meet, but a close approximation can be found with

the Gabor superlens. We will show now that it is possible to perform perfect imaging

(within the limit of ray-optics) using planar interfaces. We will then show that

idealised gCLAs exhibiting homogeneous refraction are examples of such interfaces.

Finally, we will discuss whether it is possible to perform perfect imaging with curved

interfaces.

4.1.1 Contributions

The work in this chapter was carried out as part of a collaboration. Specifically the

derivation of the gCLA imaging equation in section 4.2 was undertaken by myself

and Johannes Courtial. The discussion on perfect imaging using curved interfaces in

section 4.3 is a result of collaboration between myself and Johannes Courtial with

Tomáš Tyc.
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4.2 Derivation of the homogeneous imaging equa-

tion for a planar interface

In reference [24] the concept of imaging across an interface was explored. One of the

assumptions made for studying such a system was that the interface would not offset

light-rays along the interface after refraction. This in turn demands that the interface

is infinitesimally thin. The medium before and after the interface was also assumed

to be homogeneous so that light rays would travel along straight lines. Through

geometrical arguments based on the observation that multiple light rays each passing

through the same two object positions must be refracted in the same way, and that

therefor if the sheet images, the corresponding image points must therefore lie on the

refracted trajectory, it was shown that a thin interface can indeed perform geometrical

imaging. Further to this, it was noted that the imaging equation which was derived

corresponded to the imaging performed by a thin lens with different object and image

sided focal lengths. This in turn, it was argued, could be approximately realised by

coupling a conventional lens to a confocal lenslet array which would scale the image

sided focal length of the lens.

The imaging provided by such an interface is shown in Fig. 4.1. If the sheet is placed

in the z = 0 plane and its optic axis is the z-axis, the imaging is described by the

equations

x′ =
fx

f + z
,

y′ =
fy

f + z
,

z′ =
gz

f + z
,

(4.1)

where f is the image-sided focal length and g = ηf is the object-sided focal length.

We see that the object positions P = (x, y, z) are imaged to the image positions

P′ = (x′, y′, z′) in such a way that positions at different distances from the interface

get imaged differently. This is due to the fact that when parallel light rays pass

through a lens, they are redirected along different directions such that they intersect

at the focal point. In the case of our sheet, this also happens, only the length of the

focal length after the lens is scaled by a fact of η.

Evidently in the limit for which the image sided focal length f goes to infinity, the

outgoing rays will essentially remain parallel, hence it must be true that a thin sheet

which performs homogeneous imaging, must be a special case of the earlier result
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Figure 4.1: Upper image: the effect that a generalised imaging interface has on
light rays. This type of interface can be thought of as a lens with different object-
and image-sided focal lengths. As can be seen, a ray at normal incidence to the
interface coming in from the object side will be refracted and intersect the image
sided focal point G, while a ray coming in parallel from the image side will be
refracted such that it intersects the object sided focal point F . Lower image: the
effect that a homogeneous generalised confocal lenslet array has on light rays. As
can be seen, parallel light rays no longer intersect on focal planes, but instead are

redirected and continue to remain parallel.
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presented above, namely where the focal length of the thin lens, f , goes to infinity.

We now wish to derive the imaging equation for such a special case. Starting with

our inhomogeneous system, consider the point R on the sheet (which itself lies in the

z = 0 plane). Any point in object or image space can be written as a function of R,

for example

x = Rx + x̄,

y = Ry + ȳ,

z = z̄,

(4.2)

x′ = Rx + x̄′,

y′ = Ry + ȳ′,

z′ = z̄′,

(4.3)

where non-primes denote object space and primes denote image space. In this form,

the imaging equations become

Rx + x̄′ =
f(Rx + x̄)

f + z̄
,

Ry + ȳ′ =
f(Ry + ȳ)

f + z̄
,

z̄′ =
gz̄

z̄ + f
.

(4.4)

If we then rearrange for x̄′, ȳ′ and z̄′ and then define the parameters g = ηf , tx = Rx/f

and ty = Ry/f we get for the first two components

x̄′ =
f(ftx + x̄)

f + z̄
− ftx =

f

f + z̄
(x̄− z̄tx),

ȳ′ =
f(fty + ȳ)

f + z̄
− fty =

f

f + z̄
(ȳ − z̄ty).

(4.5)

In the limit where f →∞ the equations become

x̄′ = x̄− z̄tx,

ȳ′ = ȳ − z̄ty,

z̄′ = ηz̄,

(4.6)
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which on dropping the bars from the components can be written in vector form as

P′ = P− z


tx

ty

1− η

 . (4.7)

This equation clearly describes the most general mapping between object space and

image space for a homogeneous interface that does not offset rays. We are now

in a position to show that this is the imaging performed by idealised homogeneous

generalised confocal lenslet arrays (gCLAs).

4.2.1 Homogeneous generalised confocal lenslet arrays as in-

tegrally imaging interfaces

Recall the unnormalised law of refraction for gCLAs (lying in the z = 0 plane) where

ηx = ηy = η [25],

d′ =
dx − dzδx

η
x̂ +

dy − dyδy
η

ŷ + dzẑ. (4.8)

The vectors d = (dx, dy, dz) and d′ are defined such that they point in the direction

that the light rays travel, however they are not normalised. Now consider our per-

fectly imaging homogeneous sheet where a light ray passes through P, intersects the

sheet at S, is redirected and passes through P′. We can define the ingoing light-ray

vector d and outgoing vector d′ in terms of our object and image point, P and P′,

and a point on the sheet S = (Sx, Sy, 0) as

d = S−P,

d′ = P′ − S = P′ − (d + P).
(4.9)

Substituting for P and P′ makes the components of the latter

d′x = dztx − dx,

d′y = dzty − dy,

d′z = −ηdz.

(4.10)
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Dividing through by (−η) gives

d′x ∝
dx − dztx

η
,

d′y ∝
dy − dzty

η
,

d′z ∝ dz

(4.11)

which we see is the exact same form as the law of refraction for gCLAs. Hence if

tx = δx and ty = δy, the imaging equation for homogeneous gCLAs is

P′ = P− z


δx

δy

1− η

 . (4.12)

Note that this expression only applies to gCLAs where ηx = ηy = η; in the case

where ηx 6= ηy, gCLAs are non-imaging. So we have shown that idealised gCLAs

where ηx = ηy = η are the only sheets which can perform perfect imaging albeit only

in integral form. In practice gCLAs will not perform exactly the perfect imaging we

have described. Recall that we used the imaging equations from [24] as our starting

point in our derivation. But these equations themselves assume that the interface

does not offset light rays as they cross the interface. This is not the case with gCLAs

and so in reality gCLAs will perform at best integral imaging.

4.3 Perfect imaging with curved interfaces

At the start of this chapter we stated that it was possible to perform perfect imaging

with inhomogeneous planar interfaces. We then proceeded to show that it was also

possible to perform perfect imaging using homogeneous planar interfaces. We now

wish to see if it is possible to perform perfect imaging using curved interfaces. In

what follows we will employ the same geometrical arguments as presented in [24].

Consider a curved surface denoted by σ. Initially we shall assume that σ is imaging,

that is if we choose some point A in an open region R in object space, then any

straight line passing through A which intersects σ will then pass through a corre-

sponding point A′ in image space. If we had chosen points in a closed region, this

would mean we would only be concerning ourselves with a subregion of object space,

perhaps isolated points or points on a line. Note that in what follows we are only
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considering straight lines which intersect the interface once. Now consider three non-

collinear points A, B and C which lie in the region R. If the points are such that

the straight lines AB, AC and BC intersect σ at the points PAB, PAC and PBC

respectively, then the points A, B, C, PAB, PAC and PBC must all lie in a common

plane. The intersection points of the image-pair lines A′B′, A′C ′ and B′C ′ with σ,

are also PAB, PAC and PBC respectively, as the rays leave σ from the same points at

which they intersect it. Hence A′, B′, C ′, PAB, PAC and PBC also lie in a common

plane. Indeed the plane in which A, B, C lie and the plane in which A′, B′, C ′ lie,

are one and the same. As can be seen in Fig. 4.2, this is because the points PAB, PAC

and PBC are noncollinear. If they were collinear, they would lie on a straight line,

and the plane in which the object points and the plane in which in the image points

lie would intersect along this line and would be free to be at non-zero angles to one

another like in the case of a planar surface. However because they are noncollinear,

and because we have stipulated that rays may only intersect the interface once, the

planes must coincide.

Now consider a third point D which lies in R, but not in the plane in which A,

B and C do, and assume that the lines which pass through all pairs of the points A,

B, C and D intersect σ (namely at the points PAB, PAC , PBC , PAD, PCD and PBD).

By appropriately choosing A, B, C and D, any set of triple intersection points on σ

can all be noncollinear. Hence we can repeat the argument above, in which we said

that A, B, C and A′, B′, C ′ lie in the same plane, for each triple combination of

points containing D: [A,B,D], [A,C,D] and [B,C,D]. Hence we can say that the

points [A′, B′, D′] lie in the same plane as the points [A,B,D], the points [A′, C ′, D′]

lie in the same plane as the points [A,C,D] and the points [B′, C ′, D′] lie in the

same plane as the points [B,C,D]. It is clear that the three planes corresponding to

the triple of points [A,B,D], [A,C,D] and [B,C,D] must intersect at the point D,

while the three planes corresponding to the triple of points [A′, B′, D′], [A′, C ′, D′]

and [B′, C ′, D′] must intersect at the point D′. However as the two sets of three

planes are identical, they must intersect at the same position and therefore it must

be that D′ = D. This then shows that for a curved interface, where light rays only

intersect once, the interface can only perform trivial imaging of a point back into

itself. This then means that such a curved interface either has no effect on light rays,

or else retroflects them back along their original trajectory.
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Figure 4.2: Upper image: a flat interface images such that the planes containing
the object points and image points intersect. The object plane and the image plane
need not lie in the same plane. Lower image: a curved interface images such that
the planes containing the object and image points lie in the same plane. This is due
to the fact that the points where the light rays intersect the sheet are noncolinear,

and we only consider rays which intersect the interface once.
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4.4 Conclusion

We have shown that idealised homogeneous gCLAs can perform imaging, but that

in practice, this imaging will not be stigmatic, but integral. We also showed that

curved interfaces can only perform the most trivial type of imaging, that of mapping

a point back onto itself. In the next chapter we will show how gCLAs, both imaging

and non-imaging, can be used to effect metric tensor interfaces, albeit in pixellated

form. Such an exploration leads naturally to the question of whether gCLAs can be

used to perform pixellated piecewise transformation optics and we will show in the

chapters to come that imaging gCLAs can in fact be used to create such devices.



Chapter 5

Metarefracting sheets as metric

interfaces

5.1 Introduction

In chapter two, the concept of transformation optics (TO) was introduced. Recall

that transformation optics utilises coordinate transformations to create optical spaces

with non-Euclidean metrics. This opens up the possibility of designing devices capa-

ble of redirecting light rays in unconventional ways. However in practice it is often

the case that in order to create transformation-optics devices one has to use materials

which have anisotropic and inhomogenous optical properties. As a consequence of

this metamaterials such as those described in chapter two have to be designed and

fabricated. Metamaterials for TO devices are difficult to design and manufacture

for the visible spectrum because the components of which they are comprised are

spatially varying, and must be smaller than the wavelength of the light the device

is to manipulate. As such they are also significantly expensive at the present mo-

ment. Hence if we could find some other way of achieving transformation optics that

avoided at least some of these drawbacks this would be a useful step forward.

Transformation optics involves creating a spatially varying metric tensor, which, in

essence, can be interpreted as defining an effective local refractive index which may

or may not be homogenous and (or) isotropic [20, 21]. Hence in transformation optics

the metric tensor defines a non-Euclidean optical space and allows us to measure the

44
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distance in that optical space, i.e. the metric can be used to calculate the optical

path length. For example, as we stated in chapter two, in a conventional dielectric

material of index n the squared optical path length is ds2 = n2dx2 + n2dy2 + n2dz2.

According to Fermat’s principle, light rays travel along paths for which the optical

path length is stationary [26]. If the metric used to calculate the optical path length

is spatially varying, light rays will, in general, change direction when the metric

changes along their trajectory. This result, whilst based on a continuous metric,

is also applicable to systems where discrete changes in the metric occur. By this

reasoning light should refract when it passes through a plane with different metrics

on either side. Indeed this does happen when light passes from air into glass. We aim

to show that refraction across a metric interface can be approximately realised by a

subset of generalised confocal lenslet arrays (gCLAs), but that while a true metric

tensor interfaces behave like an absolute optical instruments, gCLAs do not.

5.1.1 Contributions

The work carried out in this chapter stems from a collaboration between Johannes

Courtial, Chris White, Georgios Antoniou and Myself.

5.2 Fermat’s principle at the interface between dif-

ferent Riemannian spaces

In three-dimensional Euclidean space, the squared length of the line element in carte-

sian coordinates is given by

ds2 = dx2 + dy2 + dz2. (5.1)

This is simply Pythagoras’ theorem. In three-dimensional Riemannian spaces this

definition generalises to include mixed terms and the line element becomes

ds2 =g11dx
2 + g22dy

2 + g33dz
2

+ 2g12dxdy + 2g13dxdz + 2g23dydz,
(5.2)
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where the numbers gij are the elements of the (symmetric) metric tensor, g. In a

Euclidean space the metric is given by the Kronecker delta, gij = δij, for all allowed

values of i and j (i.e. 1 to n for n-dimensional spaces). A Riemannian space where

this is not the case is therefore non-Euclidean.

Recall from chapter two that we stated that Fermat’s principle dictates that light rays

will follow trajectories for which the optical path length is stationary. In what follows

we will examine Fermat’s principle for a light-ray crossing a metric interface. We

proceed by constructing a coordinate system where the interface is in the z = 0 plane

as seen in Fig. 5.1. The space before the interface (i.e. when z < 0) is characterised

by the metric tensor g and the space after the interface (when z > 0) is characterised

by the metric tensor h. Our ingoing light-ray direction (which originates in the region

z < 0) is described by the unnormalised vector d = (dx, dy, 1). The outgoing light-ray

A=-d

B=e

P=(x,y,0)d=(dx,dy,1)

e=(ex,ey,1)

gij hij

Figure 5.1: Construction for applying Fermat’s principle to a metric interface.
An interface is positioned in the z = 0 plane with a metric g in the region z < 0 and
a metric h in the region z > 0. The ingoing and outgoing light-ray directions, d
and e, are constructed such that their z components are equal to unity. The points
A and B, which lie on the light ray before and after the interface respectively, can

therefore be written such that A = −d and B = e.

is given by e = (ex, ey, 1). We now pick points on the ingoing and outgoing light ray

so that we can calculate the optical path length. For simplicity we choose a point

A = −d before the interface and a point B = e after the interface. If the ray

intersects the interface at the point P = (x, y, 0), then the optical path length is the
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sum of the optical path lengths from A to P , and from P to B:

O = OAP +OPB

=
√

(d+ P )Tg(d+ P ) +
√

(e− P )Th(e− P ).
(5.3)

If Fermat’s principle is to be obeyed, the total optical path length has to be stationary,

i.e. its derivatives w.r.t. x and y must equal zero. Hence we have

∂
√

(d+ P )Tg(d+ P )

∂x
=
∂
√

(e− P )Th(e− P )

∂x
,

∂
√

(d+ P )Tg(d+ P )

∂y
=
∂
√

(e− P )Th(e− P )

∂y
.

(5.4)

The terms inside the square roots of either side of Eqs(5.4) are of the same form;

they can be re-written using index notation and the Einstein summation convention

as follows:

(c± P )Tf(c± P ) = (ck ± xk)fjk(cj ± xj). (5.5)

If the + sign is chosen then c = d and f = g, whilst if the − sign is chosen, c = e

and f = h. Using this notation, the derivatives with respect to xi then become

∂
√

(c± P )Tf(c± P )

∂xi
= a

∂

∂xi
[(ck ± xk)fjk(cj ± xj)]

= a
∂

∂xi
[ckfjkcj ± ckfjkxj ± xkfjkcj + xkfjkxj]

= a[±ckfjkδij ± δikfjkcj + δikfjkxj + xkfjkδij],

(5.6)

where

a =
1

2
√

(c± P )Tf(c± P )
. (5.7)

With our choice of A and B, the light ray passes through the interface at P = (0, 0, 0).

We now choose the point where the light-ray strikes the interface. For convenience

we shall set P = (0, 0, 0). At this point Eq.(5.6) becomes

∂
√

(c± P )Tf(c± P )

∂xi

∣∣∣∣∣
P=0

= ±ckfjkδij + δikfjkcj

2
√
cTfc

(5.8)

= ± fikck√
cTfc

, (5.9)
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where, in the last line, we have used the fact that f is symmetric, i.e fij = fji and

then re-named the dummy index j to k in the second term. Written in vector notation

this then becomes a much simpler expression:

∂
√

(c± P )Tf(c± P )

∂xi

∣∣∣∣∣
P=0

= ± (fc)i√
cTfc

. (5.10)

Re-writing this once again in terms of the ingoing and outgoing light-ray direction

and substituting into Eq.(5.4) gives

(gd)i√
dTgd

= ∓ (he)i√
eThe

, (5.11)

where clearly i = 1, 2 (as these equations are equivalent to the derivatives of the

optical path length w.r.t. x and y). Projecting both sides into the z = 0 plane such

that Eq.(5.11) becomes satisfied for i = 3 gives the following equation:

gd− (gd · n̂)n̂√
dTgd

= ∓he− (he · n̂)n̂√
eThe

, (5.12)

where n̂ is the normalised surface normal. This then is the expression which must

satisfied if Fermat’s principle is to hold across a flat metric interface. We will come

back to this equation shortly, first however we revisit the gCLA law of refraction.

5.3 Generalised confocal lenslet arrays as metric

interfaces

Recall that the gCLA law of refraction [25] for a gCLA situated in the z = 0 plane

with optical axes perpendicular to the sheet is given by

ex =
dx − δx
ηx

, ey =
dy − δy
ηy

, ez = 1, (5.13)

where we choose an incident light-ray vector such that dz = 1. For our purposes,

these equations are best written in the following vector form

e = M · d, (5.14)
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where

M =


1/ηx 0 −δx/ηx

0 1/ηy −δy/ηy
0 0 1

 , (5.15)

and

M−1 =


ηx 0 δx

0 ηy δy

0 0 1

 . (5.16)

We now proceed to manipulate Eq.(5.12) so that we may, in due course, solve for

the elements of the metric h. The identity matrix I = MM−1 = (MT )−1MT can be

inserted into the RHS of Eq.(5.12) to give

gd− (gd · n̂)n̂√
dTgd

= ∓hMM−1e− (hMM−1e · n̂)n̂√
eT (M−1)TMThMM−1e

(5.17)

= ∓hMd− (hMd · n̂)n̂√
dTMThMd

, (5.18)

where in the second line we have used the fact that d = M−1e. Now consider a

matrix N of the form

N =


1 0 0

0 1 0

N13 N23 N33

 . (5.19)

Because the RHS of Eq.(5.18) is a projection of Eq.(5.11) into the z = 0 plane, all

that is left is the transverse components. Hence multiplying by N does not alter the

transverse components of the vector in Eq.(5.18). If ηx = ηy = η, the matrix ηMT

has the same form as N and thus the RHS of Eq.(5.18) can be written

∓ηMThMd− (ηMThMd · n̂)n̂√
dTMThMd

. (5.20)

Defining

h′ = η2MThM, (5.21)

the expression becomes

∓h
′d− (h′d · n̂)n̂√

dTh′d
. (5.22)
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Hence Eq.(5.18) can be written

gd− (gd · n̂)n̂√
dTgd

= ∓h
′d− (h′d · n̂)n̂√

dTh′d
. (5.23)

If this is to hold for any vector d, this implies that

h′ = g, (5.24)

and hence from Eq.(5.21)

h =
1

η2
(MT )−1gM−1. (5.25)

Thus the elements of the metric h are

h11 = g11, h22 = g22, h12 = g12,

h13 =
g13 + g12δy + g11δx

η
, h23 =

g23 + g12δx + g22δy
η

,

h33 =
g33 + 2δyg23 + δ2yg22 + 2δxg13 + δ2xg11 + 2δxδyg12

η2
.

(5.26)

We can check that this is in fact correct using ray tracing simulations. Figure 5.2

shows a comparison between a coloured lattice as seen through a gCLA and the same

coloured lattice as seen through an interface between spaces with metrics g and h.

As can be seen, both images are, as expected, identical.

The ray tracing simulations shown in Fig.5.2 and elsewhere in this thesis were per-

formed using Dr TIM, an interactive, open-source custom ray tracer created and

developed at the University of Glasgow by my supervisor Johannes Courtial. Dr

TIM is purely a geometrical ray tracer: wave-optical considerations such as interfer-

ence and diffraction are not considered when calculating ray trajectories. Dr TIM

was designed specifically for studying generalised refraction across planar interfaces

and aims to show what an image might look like if observed in reality. Each planar

interface is modelled using a law of refraction or a metric, and is assumed to be

perfectly smooth with no structure, this differs to other well known ray-tracers such

as POV-ray, which incorporate surface structure. Hence a ray tracing simulation

for gCLAs will not show pixellation due to the surface structure of the individual

lenslets. Because of this, the renderings performed by Dr TIM will differ from what

would actually be seen in reality. The advantage Dr TIM has is that it can simulate

images through refracting interfaces quicker than POV-ray can and also has a simple
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user interface, making it much easier for other researchers to use and follow our work

on generalised refraction. In the case of Fig.5.2 Dr TIM calculated the effect of a

metric interface by directly applying Fermat’s principle using the two metrics g and

h whereas the simulation of the gCLA simply applies the gCLA law of refraction

directly to the light rays in object space. In both cases the parameters, η and δ have

to be input manually using an interface.

Now consider two pairs of points P and Q. In object space the optical path length

between P and Q is simply the geometrical length using the Euclidean metric. That

is to say

OPQ =
√

(Q− P ) · (Q− P )

=
√

(Qx − Px)2 + (Qy − Py)2 + (Qz − Pz)2.
(5.27)

Now consider a metric tensor interface which images like a gCLA. In image space the

optical path length is

OP ′Q′ =
√

(Q′ − P ′) · h · (Q′ − P ′)

=
√

(Qx − Px)2 + (Qy − Py)2 + (Qz − Pz)2,
(5.28)

where we have used the metric for imaging gCLAs, h. So we see that OPQ = OP ′Q′ .

Hence the metric tensor interface preserves optical path length and can be thought of

as an absolute optical instrument. However gCLAs do not actually alter the metric of

space - it is an illusion as the space before and after the interface is normal euclidean

space. Hence an imaging gCLA might appear like a metric interface, but because it

does not actually create a new metric space, the optical path length is

OP ′Q′ =
√

(Q′ − P ′) · (Q′ − P ′)

=
√

(Px −Qx + (Qz − Pz)δx)2 + (Py −Qy + (Qz − Pz)δy)2 + η2(Pz −Qz)2,

(5.29)

which is clearly not equal to OPQ, so gCLAs cannot be classed as absolute optical

instruments. The concept of an absolute optical instrument rests upon wave-optical

foundations therefore it is not surprising that gCLAs are not absolute optical instru-

ments as gCLAs perform refraction and therefore imaging which cannot be properly

represented using wave-optics.

Clearly we have shown that gCLAs with an optical axis perpendicular to the plane

in which they lie and for which ηx = ηy = η can be considered as approximations
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(a)

(b)

Figure 5.2: Simulated view through (a) gCLAs and (b) through an equivalent
metric interface. The parameters of the gCLAs are η = 0.5, δx = 0.2, δy = 0.
Refraction at the gCLAs is calculated according to Eqns (5.13); refraction at the
metric interface is calculated according to equations derived from Fermat’s principle

[27]. The images were calculated with the custom ray tracer Dr TIM [27, 28].

to metric interfaces. The above procedure however does not address the question of

whether gCLAs with ηx 6= ηy can also be described as metric interfaces. Solving Fer-

mat’s principle using conventional analytic methods results in a more general solution

for gCLAs where ηx 6= ηy. If Eq.(5.4) is to be satisfied for all light-ray directions d,

then every individual term of Eq.(5.4) once multiplied by the denominator must be

zero. In other words, after all terms have been brought to the LHS and the expression

written as a polynomial in dx and dy, each coefficient must equal zero. As the light-

ray direction vector will always be non-zero, this implies that the coefficients of the

terms in Eq.(5.4) must be zero. Hence we end up with a set of equations which must

equal zero and which are functions of the elements of the metric g and the metric

h. By a process of trial and error, one can then attempt to solve for the elements of

h such that all coefficients are zero simultaneously. On doing so one finds that the
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elements of h are given by

h11 =
g11ηx
ηy

, h22 =
g22ηy
ηx

, h12 = g12,

h13 =
g13 + g11δx + g12δy

ηy
, h23 =

g23 + g12δx + g22δy
ηx

,

h33 =
g11δ

2
x + 2g13δx + 2g12δxδy + g22δ

2
y + 2g23δy + g33

ηxηy
.

(5.30)

This is the most general solution we have been able to achieve thus far and it is

obvious that when ηx = ηy = η this corresponds to the solution shown in Eq.(5.26).

There may still be more solutions which have yet to be uncovered for this configu-

ration of gCLA parameters. Note that all of the above is for gCLAs whose lenslets

have optical axes which are orthogonal to the plane in which the array lies. The

cases where the optical axes are rotated has not yet been attempted as we prioritised

gCLAs with non-rotated lenslets, because these, as we shall show, find application in

piecewise homogeneous transformation-optics devices. As such we have focused our

attention on these potential applications and we shall look in depth at the results in

the chapter to come. So there may be more metric interfaces which can be found to

correspond to gCLAs.

It may be reasonable to think that if a significant number of metric interfaces could

be found, that one could construct a grid of cells using gCLAs and indeed the in-

homogenous imaging sheets from the previous chapter, each with their own unique

metric, and hence begin to construct exotic, piecewise transformation optics devices

as in Fig. 5.3. However this in general will not be possible, as at the heart of trans-

formation optics lies an underlying coordinate transformation. We will show now

that while in principle all gCLAs with non-rotated lenslets can be used to effect a

metric interface, only gCLAs which are imaging can be used to effect coordinate

transformations.
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gab(x,y)
g1 g2 g3 ...

Figure 5.3: Left: a curved space causes a light-ray (red line) to follow a curved
trajectory. Right: a lattice constructed of discrete metric interfaces (represented by
black lines) could, in principle, mimic the behaviour of a light-ray passing through

curved space.

5.4 Metric interfaces and perfect imaging

In the preceding chapter we showed that idealised gCLAs where ηx = ηy = η are

perfectly imaging. Recall the imaging equation was specifically

P′ = P− z


δx

δy

1− η

 . (5.31)

Each point in object space is mapped to one and only one point in image space. This

is exactly how a non-singular coordinate transformation behaves when transforming

from an original coordinate system to a new one. This is shown clearly in Fig. 5.4.

Hence we can construct the metric effected by imaging gCLAs using the same method

one would use if one were creating transformation optics devices. That is to say, when

P = (x, y, z)T and P ′ = (x′, y′, z′)T , the Jacobian matrix for the transformation is

ΛJ =


∂x′

∂x
∂x′

∂y
∂x′

∂z
∂y′

∂x
∂y′

∂y
∂y′

∂z

∂z′

∂x
∂z′

∂y
∂z′

∂z

 =


1 0 −δx
0 1 −δy
0 0 η

 . (5.32)

Standard differential geometry states [29] that the metric h is then related to the

metric g as follows:

h = (Λ−1J )Tg(Λ−1J ). (5.33)

Calculating the metric in this way is far simpler and gives the same result as Eq.(5.26).

Similarly for perfectly imaging inhomogenous sheets described in the previous chapter
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Figure 5.4: Left: a two dimensional cartesian coordinate system. Right: the same
cartesian coordinate system after it has been transformed by the gCLA imaging

equation where, specifically, δx = 0.2, δy = 0 and η = 1.2.

the metric, calculated in the same way, is

h′11 =
f 2g11

(f + z)2
, h22 =

f 2g22
(f + z)2

, h12 =
fg12

(f + z)2
,

h13 =
f 2(gg13 − g11x− g12y)

(f + z)3
, h23 =

f 2(gg23 − g12x− g22y)

(f + z)3
,

h33 =
f 2(g2g33 + g11x

2 + y(2g12x+ g22y)− 2g(g13x+ g23y))

(f + z)4
,

(5.34)

where g = ηf is the object sided focal length for the inhomogenous sheet and is

different from the metric tensor gij.

If the gCLA is non-imaging, then a coordinate transformation does not exist and

while it can be used to effect a metric interface, it cannot be used within a grid of

cells to create transformation-optics devices.
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5.5 When does a coordinate system not correspond

to imaging?

There are three types of refracting interfaces. The first kind performs a coordinate

transformation and hence has a metric tensor interpretation, but is non-imaging. An

example would be Snell’s law where the coordinate transformation is simply a scaling

of the original coordinate system by the refractive index n. As we see in Fig.5.5, the

coordinate transformation which Snell’s law can be described with, results in the

new coordinate system and the original coordinate system failing to match up on the

surface of the interface. This means that points on the surface in the old coordinate

system get mapped to new points further along the interface. Hence, if Snell’s law was

imaging, when an ingoing light ray strikes one of these positions, it would emerge from

the new position further along on the interface. This clearly cannot happen, which

is why Snell’s law, despite implementing a coordinate transformation cannot image.

The object space coordinate system and the image space coordinate system have to

coincide on the interface as shown in the top diagram of Fig.5.5. The second kind

of refractive interface performs a coordinate transformation and hence has a metric

tensor interpretation but also images. As we have seen, an example of this would

be gCLAs where ηx = ηy. The third and final type of refractive interface does not

perform a coordinate transformation, but does have a metric tensor interpretation,

but is not imaging. An example of this type of interface would be gCLAs where

ηx 6= ηy.

5.6 Conclusion

In this chapter we have shown that on applying Fermat’s principle to gCLA refraction,

gCLAs can be reinterpreted as pixellated metric tensor interfaces and have shown ray-

tracing simulations which corroborate this interpretation. The case where gCLAs are

constructed using rotated lenslets has yet to be looked at, but will be explored in

future. We have shown that the metric tensor for imaging gCLAs can be found by

using the Jacobian matrix which describes the imaging performed by gCLAs, as when

imaging systems image, this corresponds to performing a coordinate transformation

on object space. Finally we discussed why some interface systems described in terms

of coordinate systems such as Snell’s law, are non-imaging, while others such as
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a)

b)

Figure 5.5: The coordinate system produced by an imaging interface a and a
non-imaging interface b. As we see, in the imaging case, a, the coordinate system
in object space and image space align on the surface of the interface. In the non-
imaging case, this does not happen and so the system will not image, as in order
to image, ingoing light rays would have to jump along the interface to leave from

the correct position in the new coordinate system. Clearly this is not possible.

gCLAs are. In the following chapter we will use the fact that gCLAs are imaging to

design simple homogeneous piecewise transformation optics devices.



Chapter 6

Transformation optics with CLAs

6.1 Introduction

Invisibility devices are traditionally the province of science fiction and mythology.

Once thought to be impossible, in recent years advancements in optics and material

physics have meant that it may be possible, and indeed even likely, that a real,

working invisibility device will be created within the not too distant future. But what

do we class as an invisibility device? Before proceeding we need to state what we

mean when we call something an invisibility device. Optically speaking, an invisibility

device is a device which causes light to appear as though it has propagated through

a region without having its trajectory or phase altered, when in fact the light is

propagating along a curved trajectory around a hidden subregion within the region.

That is to say that there is absolutely no distortion to the light whatsoever when it

passes through the device.

In 2006 both Pendry et al [21] and Leonhardt [20] independently discovered the the-

ory of transformation optics which allows invisibility devices to be realised. As an

example of the power of their design methodology, Pendry used a spherically symmet-

ric coordinate transformation to design a hollow, spherical, spatially varying medium

that would cause light to travel along straight lines in the coordinate system and

around the hollow interior. The transformation works by taking a point and blowing

it up to a finite size. The resulting coordinate system is curved around this inner

region. This means that any object inside this interior region would be impossible to

see from outside the sphere and as such that the spherical medium would be acting

like a cloaking device. This type of cloak is, in principle, completely perfect as it

58
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preserves phase, perfectly images and is spherically symmetric (and as such clearly

works from all viewing directions). Despite theoretical advances however, currently

such cloaks do not exist at visible wavelengths and macroscopic scales. There are

both theoretical issues and practical limitations which hinder their construction. Per-

haps the most problematic is that light passing through the original point with the

device absent would take an infinitesimally small length of time to do so. After the

coordinate transformation however, this point has a finite size, so in order to stay in

phase the light has to travel at infinite phase and group velocity on the surface of

this area.

Current metamaterials are constructed using subwavelength arrays of resonant, met-

alic components. These components can be arranged such that they provide an

infinite phase velocity for frequencies of light that match the resonant frequency of

the metallic resonators. Clearly the problem here is that the phase velocity only

reaches infinity for discrete frequencies and does not, as a result, work over a broad

band of frequencies. The group velocity also tends to zero at resonance. Leonhardt

and Tyc proposed that a way of achieving broadband cloaking would be to use a

non-Euclidean coordinate transformation [30]. The advantage here is that the group

velocity of the light is always finite. Even this type of cloak is difficult to create as

it still requires extreme material parameters. However if the definition of an invisi-

bility device is relaxed such that phase preservation is not required, then the task of

creating an invisibility device becomes somewhat easier and indeed we shall see that

under this new definition, in certain circumstances, it is possible to create a much

simpler cloaking device that does not rely on conventional transformation optics.

A team of researchers led by Chen adopted an altogether different approach to cloak-

ing. Instead of using a continuous transformation as in previous work, they used

a piecewise homogeneous transformation. The resulting device was realised using a

hexagonal arrangement of prisms to create a “cylindrical” cloak that worked in the

visible spectrum [31]. The resulting cloak worked perfectly when viewed from six

different directions, however when viewed from any other direction, the view was

distorted and the cloak’s presence apparent.

Still more recently, it has been proposed that it may be possible to use conventional

refractive index media to perform cloaking [32]. In [32] Horsley et al proposed that

devices which redirect surface waves and with refractive index singularities could

be realised using a transformation which transformed both the shape of the device

and it’s optical parameters. In doing so, points in the original device with singular
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refractive indices could be reshaped to have singular geometry, but finite refractive

index contrast, thus making them feasible for production. Whilst this work was

confined purely to two dimensional surface devices, they have suggested that the same

method could in principle be applied to three dimensional cloaking in transformation

optics.

6.1.1 Contributions

The work in this chapter was carried out by numerous collaborators. Section 6.2.1

presents work carried out by Myself, Johannes Courtial and Georgios Antoniou. Sec-

tion 6.2.2 presents work carried out by Myself, Johannes Courtial and Chris White.

Section 6.3.1 was conceived by Johannes Courtial and Tim Sharpe. Section 6.3.2 was

carried out by myself and section 6.3.3 was a collaboration between Myself, Johannes

Courtial and Chris White. Section 6.4 was a collaboration between Myself, Johannes

Courtial, Tomáš Tyc and Euan Cowie.

6.2 Piecewise transformation optics using gCLAs

6.2.1 Transformation properties around a closed loop in trans-

formation optics

Before we examine any piecewise transformation optics devices it is prudent to high-

light an important result which applies to all of transformation optics. It is well

known that on curved surfaces parallel lines do not remain parallel, as such there is

no global concept of parallelism on a curved surface, or more generally on a curved

manifold. Consider a sphere, if we parallel transport a vector around a closed loop on

the surface of a sphere, then on completely circumnavigating the loop, our vector will

be rotated by π/2. Compare this with a closed loop on a flat surface, and the vector

returns to its starting position with the same initial direction. It stands to reason

that if, in both cases, our vector is pointing along one of the axes which defines the

coordinate system on the surface, then on a flat surface the coordinate system must

also be mapped back to itself after circumnavigating the loop, whereas on the sphere

the coordinate system is rotated as it traverses the loop. This property is a direct

consequence of the underlying geometry. We can show that this result also holds
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in piecewise geometry - and hence our piecewise, pixellated transformation optics -

provided certain conditions are met.

To illustrate that this result is correct we shall perform a loop calculation using three

general imaging sheets. Recall that the most general type of imaging one can consider

using a planar interface is (for a sheet placed in the z = 0 plane) given by Eq.(4.1):

x′ =
fx

f + z
,

y′ =
fy

f + z
,

z′ =
gz

f + z
.

(6.1)

We said that the imaging performed by this interface was the same as the imaging

performed by a thin lens followed immediately by a confocal lenset array, which

compressed the image-sided focal length. In this sense the sheet can therefore be

thought of as an idealised generalised lens (referred to as a glens from now on), with

a unique object and image-sided focal length: f and g. In a conventional lens, if

light passes through the centre of the lens, which we call the nodal point, light is

undeviated. In a glens however, because the focal lengths on either side of the glens

are different, the nodal point, N, no longer lies on the centre of the glens, though it

still lies on the optical axis. Indeed the nodal point of a glens is positioned a distance

n = f + g along the optical axis. The nodal point N is equivalent to the centre

point of a conventional lens, in that any ray passing through N will pass through the

glens undeviated. Considered in this way, the imaging equations can be recast in the

following form:

P′ = P +
(P− I) · â

f − (P− I) · â
(P−N), (6.2)

where P and P′ are the object and image positions, I is a point on the glens, f is

the object sided focal length and â is the direction of the optical axis. Now assume

we have three glenses all intersecting a common edge such that they are all rotated

about a common axis. Specfically, let glens 1 be situated in the z = 0 plane and

let glens 2 and glens 3 be rotated from glens 1 about the z-axis by angles α2 and

α3 respectively as in Fig. 6.1. Assuming all the focal lengths are non-zero (which we

must, otherwise one or more of the glenses would fail to exist), we can show that on

mapping a point through each of the glenses and ensuring that at the end the final

image point coincides with the original object point, the following constraints have
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1

2

3

α2

α3

P

Figure 6.1: Three glenses arranged such that they share a common edge. If
the intersection behaves like a transformation optics device, the point P will be

mapped back to itself on being imaged through each of the glenses in order.

to be met

N1 = N2 = N3 (6.3)

sinα2 6= 0, sinα3 6= 0, sin(α2 − α3) 6= 0, (6.4)

g2
f3

=
sinα2

sinα3

,
g1
f2

= − sinα3

sin(α2 − α3)
, g1g2g3 sin(α2 − α3) 6= f2

2f3 sinα3, (6.5)

f1f2f3 = −g1g2g3. (6.6)

Recall, that in the limit when the focal length of a glens goes to infinity, a glens

becomes a homogeneous gCLA. Hence we know that in that limit, the above expres-

sions automatically hold for gCLAs. Other systems of glenses will produce different

equations which have to be satisfied with it being obvious that the more interfaces

intersecting the closed loop, the more complicated the expressions will be. Again

these expressions will also hold for homogeneous gCLAs in the limit when the focal

lengths tend to infinity. What this result tells us is that as long as the expressions

produced by applying this loop calculation are met, a system of glenses or gCLAs

which intersect at a single point will have zero “curvature”. If these conditions are not

met, then the final coordinate system we end up with must be a generalised rotation

of the original coordinate system, and hence the loop spans a “curved” space.
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6.2.2 Insulation window

Our gCLAs could in principle be used to create transformation optics devices which

may be of commercial value. Specifically, sheets which image like gCLAs could be

used to create a type of domestic window which hides insulation. It is well known

that modern buildings lose a large proportion of their heat through their windows,

hence improving window design is one simple way of improving the thermal efficiency

of buildings. We will show how such a window can be designed using gCLAs. The

coordinate transformation involves mapping a “downwards” pointing triangle into a

compressed version of itself. We now explain in detail how this is achieved. Consider

light rays which originally intersect the point E in Fig. 6.2. If our device is to image

the point E to E′ then it is clear that in the new space our device has created, these

rays must now intersect at the point E′. This means that gCLA 1 has to image

E to E′. To find the parameters for gCLA 1 one simply uses Eq.(4.12) using E

and E′ as the object and image positions respectively. GCLA 1 will also map C

to the position Cint. On its own this is a problem as the piecewise mapping we

employ should ensure that all positions on the outer edge of the device image back to

themselves. As such we must also map Cint through gCLA 2. Again, in order to find

the parameters of gCLA 2 we use Eq.(4.12) with Cint as the object position and C

as the image position. Note that due to the form of Eq.(4.12) we must always ensure

the interface in question is positioned in the local z = 0 plane and that our object

and image positions are for this local coordinate system. Due to the symmetry of the

design shown in Fig.6.3, the parameters for gCLAs 3 and 4 are identical to those of

gCLAs 2 and 1 respectively. If E = (0, 0, 1) and we wish E′ = (0, 2, 1), (i.e. shifted

vertically by two units of distance) on performing the calculation outlined, one finds

the following parameters for gCLAs 1 and 2:

δ1x = 0, δ1y = −2, η1 = 1, (6.7)

δ2x = 0, δ2y = 1, η2 = 0.5 (6.8)

where again the x and y refer to that particular gCLAs local coordinate system and

again the parameters for gCLAs 3 and 4 are the same as for 2 and 1.

The effect of the transformation is shown in Fig. 6.3. The left hand image shows a

cross section of how light should travel through an empty window frame. The right

hand image shows how, with the use of idealised gCLAs, one can perform a piecewise
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Figure 6.2: The same procedure as shown in Fig. 6.8 is applied to calculate the
gCLA parameters in the insulation window shown in Fig. 6.3.

coordinate transformation within the window frame and guide light around a central

region filled with insulation (yellow) [37].

As the insulation window is, in essence, half of an invisibility cloak, achieving thermal

efficiency through optical illusions in this way would be a first real-world application

of the science of invisibility. A similar idea was presented in [38]. In this case the

transformation was continuous and was used to guide light around contact grids on

solar cells, thus reducing the shadow cast by the contact grid. This in theory allows

more light to strike the active area of the solar cell thus improving its efficiency.
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Figure 6.3: Left: View of a light ray (red) passing through a rectangle of empty
space. Right: The same space after a piecewise coordinate transformation using
gCLA interfaces. The point E has been mapped to the point E′. A new region
spanning A′E′D′F′ has been created. This region can in principle be used to con-
ceal an object. For architectural purposes this could hide insulation, thus rendering

the above device into an insulation window.

However in practice there would be problems with the view through such a window.

First of all, as mentioned previously, gCLAs suffer from a limited field of view [35,

36]. as such, those light-rays which do not refract properly will be absorbed by the

insulation region and thus the outgoing image will lose intensity. But even putting

aside field of view issues, there would still be the issue of seeing the internal sheets

when looking through the structure. Figure 6.4 shows a simulated view through an

insulation window when viewed from a direction which is normal to the window plane.

In this instance the internal structure of the window is visible, but not significantly

so. However, this changes when viewed from an angle. Consider the top image in

Fig.6.5. We see that when viewed from an angle, the internal structure is far more

visible within the window. When the window is made thinner, as in the bottom

image in Fig. 6.5, the internal structure intrudes far less. However when the window

is made thinner, it limits the size of the region in which insulation can be placed and

also requires more extreme sheet parameters. If insulation windows are be to be used

in the real world, a compromise between thermal efficiency and visual performance

will have to be found.
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Figure 6.4: The simulated view through an insulation window when the viewing
direction is orthogonal to the normal of the plane of the window.

6.3 Piecewise cloaking using CLAs

6.3.1 Initial cloaking design

Motivated by the hexagonal cloak described in the introduction of this chapter [31]

and our discovery of the very general imaging possibilities with gCLAs, we attempted

to simulate a similar effect using a device constructed from imaging gCLAs. Unlike

the hexagonal device described previously, our device has four sides, and is con-

structed of gCLAs and empty space rather than of solid prisms. The gCLAs change

light-ray direction like the interface between two solid prisms.

Recall previously we showed that a subset of gCLAs are imaging [25, 33] and that,

for a homogeneous gCLA placed in the z = 0 plane, a point P in object space was

mapped to a point P′ in image space according to the equation

P′ = P− z


δx

δy

1− η

 , (6.9)

where δx, δy and η are parameters of the sheet. Following the thinking used to design

the hexagonal cloak described above, our design was for a cloak with four sides (as
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Figure 6.5: When viewed from an angle the thickness of the insulated region
becomes an issue. When the insulation window is thick (top) the view through the
window is heavily distorted where the window meets the wall. When the insulation
window is thin (bottom), the distortion is reduced, however the insulation then

begins to block the image through the window.
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opposed to six). As a result, the device consisted of twelve gCLAs in total as seen

in the top image in Fig. 6.6. The gCLA parameters were found by applying the loop

imaging theorem introduced in section 6.2.1. First we took an object position outside

the cloak P, and mapped it consecutively through the four individual sheets in our

cloak - the two outer sheets and the two inner sheets between them - and ensured

that the final image position P′ after passing completely through the cloak matched

the original object position. For this to be true it has to be the case that P′−P = 0.

This equation represents three polynomials - one for each of the components of the

object position P - and is a function of the parameters for each sheet. In order for this

polynomial to be zero for all object positions P, it must be true that the coefficients

for each term in the polynomial are individually zero. Hence by setting each of these

coefficients to zero and solving them simultaneously, one can find the sheet parameters

which are, unsurprisingly, a function of the cloak geometry. Specifically when the

cloak is situated in the x − z plane and the angles between the sheets is π/6, the

values for the interior sheet parameters are η2 = −1/
√

3, η3 = −
√

3, δx2 = 1− 1/
√

3,

δx3 = 1 −
√

3, δy2 = 0, δy3 = 0 while the outer sheets share the same parameters as

one another and can take any values as long as η1 6= 0. This design worked perfectly

for four different light-ray directions (at least from a geometric perspective) and we

show a “bird’s eye” view of the design in Fig. 6.6 and also a ray tracing simulation of

the view through the cloak from one of the “working” directions. It is clear that the

face which is placed in the background is unaltered when viewed through the cloak.

6.3.2 Subsequent cloaking designs

Clearly, the above cloak works extremely well for the four directions for which it was

designed, however it is known that from any other viewing direction, this design does

not work. Proper transformation cloaks are able to work from all viewing directions,

hence our second approach strived to emulate transformation optics as closely as

possible. Note that the mapping homogeneous gCLAs perform is affine, that is to say,

the sheet parameters are not dependent on position. As such, if we are to attempt to

design transformation optics devices (which generally use mappings with parameters

which vary with position) using gCLAs, we will have to do it in a piecewise fashion

where we use a number of sheets configured in a specific orientation. We shall explain

how this is achieved for a simple example - the square-prismatic cloak.
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Figure 6.6: Top: A bird’s eye view of our first attempt at a cylindrical cloak. A
green ball is what is being cloaked. The red lines represent light rays which are
being refracted at each of the gCLAs, which are represented by grey lines. Bottom:
The view through the cloak when viewed from one of the correct viewing angles.

In the conventional transformation optics cylindrical cloak we take a coordinate sys-

tem and blow it up at a point. We see in Fig. 6.7 that when blowing up a point in the

middle, the coordinate system immediately surrounding the point is also distorted.

We can replicate this effect using a piecewise transformation in the following way

[34]. Consider two concentric squares of different sizes with an angular displacement

of π/4 between the two. By connecting the corners of one of the squares to the

nearest-neighbour corners of the other square, we can segment the space between the

two squares into discrete triangles. Suppose now we change the size of the interior

square and make it larger without changing its orientation. The triangles that sur-

round the interior square will now be of a different shape. This is analogous to what

we observe in transformation optics when we blow up a point and the surrounding
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Figure 6.7: Graphical representation of a cylindrical coordinate transformation.
Left: before the cylindrical transformation. Right: after the cylindrical transfor-
mation, light rays are directed around the central region and then redirected along

their original trajectories.
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Figure 6.8: gCLA equivalent transformation for square prismatic cloaks. In this
case, instead of a point being blown up to a circle, a smaller square is blown up to

a larger one. This is an example of piecewise transformation optics.

space is altered. Specifically what we have done is we have mapped the corners of the

interior square to new positions using the imaging equations that describe gCLAs.

The procedure used to design this type of cloak is identical to the procedure outlined

in section 6.2.2, but as this is a new approach to transformation optics we shall once

again outline how this is achieved. First we shall consider the Point A in Fig. 6.8.

The point A gets mapped to the point A′ which clearly involves simply moving the

point A closer to the z = 0 plane, which sheet 1 lies on, i.e. the x and y components

of A do not change. Using Eq.(6.9) we see then that the z-component of A gets
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mapped as follows

A′z = η1Az, (6.10)

which means that

η1 =
A′z
Az

=
r′

r
, (6.11)

as the z-components of A and A′ are r and r′ respectively. We see that because

r′ < r, the optical space within the device after sheet 1 is compressed. This is why

despite the inner region now being larger than it was, it actually appears no bigger.

We now have the sheet parameters for sheet 1.

It would be tedious to go through the entire procedure for all three types of sheet

that are used to construct the cloak, so we shall simply outline the general procedure

that must be followed in order to fully define all the sheet parameters. In order to

understand the mappings that will take place, consider a pair of rays originating

outside our region that enter the cloak through sheet 1 and, before transformation,

intersect at the point B. In our new “transformed” region, these light rays would

first intersect sheet 1 and be refracted to the point Bint1 . However before they can

reach this new intersection point, they encounter sheet 2 which in turn refracts them.

Sheet 2 therefore has the role of imaging the virtual intersection point Bint1 to the

new transformed point B′. To perform this mapping between Bint1 and B′, Bint1

must first be rotated into the local coordinate system of sheet 2 (for all sheets in the

cloak, the “local” z-axis is always in the direction of the sheet normal and the sheet

itself sits in the “local” z = 0 plane). Once this is done, the rotated version of Bint1

is mapped using Eq.(6.9) (with δx2 , δy2 and η2 as the sheet parameters) to Bint2 , and

the resulting point is equated to B′. Using the three components of

Bint2(δx2 , δy2 , η2)−B′ = 0, (6.12)

as equations, one then solves for δx2 , δy2 and η2. A similar procedure (as shown in

Fig. 6.8 can then be followed for the point C to find the sheet parameters for sheet

3. When all the parameters are found, one has then fully defined the cloak. The

parameters for this cloak are shown in Table 6.1 while Fig. 6.9 shows a simulation of

our square prismatic cloak.

One can see that this cloak works from all horizontal viewing directions (one cannot

look through the top or bottom of the device), however it does not quite work exactly,

as the green ball which we are cloaking is still seen in the form of a thin vertical slit.

This is a consequence of trying to cloak in the “real world”. In pure transformation
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Side length 2
r 0.9
r’ 0.1
Sheet 1
η1 0.111
Sheet 2
η2 46.895
δx2 -33.684
Sheet 3
η3 15.545
δx3 0

Table 6.1: Parameters for a square prismatic cloak as simulated in Fig. 6.9.

optics theory, one blows up a point to a sphere (by a factor ∞) and the cloak works

perfectly because a hidden region has been created where before there was nothing.

However in reality, one cannot blow up a point into a finite volume as material

parameters diverge, one can only blow up a smaller region to become a larger one.

This is why we can see the green vertical strip in our simulation; the inner region

we are blowing up was already finite in size, so we are not creating a hidden region

that was not there before, we are making the sphere appear smaller in the horizontal

direction.

The above procedure can also be applied to create a cubic cloak. The cubic cloak is

obviously more complicated to construct and as such the sheet parameters are also

able to take non-zero values for δy. The parameters for such a cloak are shown in

Table 9.1 of the Appendix. We see in Fig. 6.10 that again an artefact of the real world

remains, this time however the green ball appears as a much smaller green ball.

In practice all these cloaks will suffer from a limited field of view [35, 36] due to the

fact that they are constructed from sheets comprising lenslets. The outgoing image

will also be pixellated and so we are now looking at trying to improve our sheets so

as to erase this pixellation effect. In order to do this we will have to examine the

wave-optical properties of sheets that perform generalised refraction in more detail.

This will briefly be mentioned in the final chapter when we introduce future projects

worth exploring.
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Figure 6.9: View through the square prismatic cloak from a view orthogonal
to one of the outer faces (top) and a view looking directly at one of the edges

(bottom).

6.3.3 Carpet Cloak

Another cloak which is of interest is the carpet cloak. Unlike other cloak designs,

carpet cloaks do not ensure that all light rays continue along their original trajectory

after passing through the device. Instead, carpet cloaks ensure that ingoing light

rays which are intending to intersect the plane on which the cloak rests are redirected

such that they appear as reflections off this plane after passing through the cloak [39],

while all other light rays reemerge along their original trajectories. There have been

several attempts at carpet cloaking [40–42]. These devices have all been designed

using transformation optics and executed using metamaterials with spatially varying

optical properties, however other designs have been suggested which recquire discrete

coordinate transformations [43]. We proceed in the similar way, though of course

we use gCLAs to achieve our discrete coordinate transformations and as such our
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Figure 6.10: View through the cubic cloak from a view orthogonal to one of the
outer faces (top) and a view looking directly at one of the edges (bottom).

device will only work geometrically and not wave-optically. For example, consider

Fig.6.11. Here the rays are being “reflected” off the plane at the bottom of the device.

This device can be understood in terms of transformation optics, however it is more

complicated than the devices which we have described thus far as there are mirrors

involved. As such, the device has to image any position outside of itself to one of two

different image positions depending on the viewing direction of an observer. Hence,

any light rays passing through the carpet cloak will be redirected around the central

region and leave the cloak along their original trajectory. However, if the ingoing light

rays are heading towards the lower plane of the device, then a different process takes

place. The purpose of the carpet cloak is to give the illusion that these ingoing rays

are being reflected off the lower plane of the device. As a result, when an observer

looks towards the lower plane of the device, the carpet cloak must image object

positions so that they appear as reflections across the lower plane of the device. This

is easily shown algebraically. Consider a point lying on the lower ray on the left hand
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Figure 6.11: A carpet cloak could in principle be built using gCLAs and exotic
mirrors. If the gCLAs have the same properties as they do for an insulation window,

then the mirrors have to have inhomogenous reflection properties.

side of the carpet cloak. This point will first be imaged by gCLA 1. After imaging

by gCLA 1, according to the transformation required, the imaged point must then

be reflected by mirror m1. After reflection by m1, the resulting point must then be

imaged through gCLA 2, then gCLA 3 and finally gCLA 4, such that the final image

point is a reflection of the original object point across the lower plane of the device.

We see that the region bounded by gCLA 1, mirror m1 and gCLA 2 plays host to

two coordinate systems, the first corresponding to the coordinate system introduced

by gCLA 1 and the second corresponding to this same coordinate system after it has

been reflected in mirror m1. The overall transformation is given by

Λ4Λ3Λ2Λm1Λ1. (6.13)

So we see that any given point in object space can be imaged in two different ways by

a carpet cloak. In this sense the carpet cloak is more like two devices merged together

than a true transformation optics device, as the imaging observed depends upon the

viewing direction of the observer. While a carpet cloak, as shown in Fig.6.11, is

more complicated than other devices presented thus far, it is in principle possible

to create one. One aspect of this design which would be hard to create would be

the mirrors m1 and m2. Clearly these have to be flat mirrors performing coordinate

transformations much more complicated than conventional component flipping. How

these mirrors could be built is not clear, but it is not unreasonable to assume they

could become a reality in the future.
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6.4 Recent developments

In recent months our work on piecewise transformation optics has been expanded.

We are now able to consider devices not just comprised of homogeneous gCLAs,

but glenses and lenses as well [44]. For example, a simpler cloaking design has been

achieved, as shown in Fig.6.12. Here we have two concentric cubes joined by diagonal

Figure 6.12: A cloak designed using glenses and lenses. The cloak is constructed
from two concentric cubes joined together by diagonal interfaces (top left). The
faces of the inner and outer cube are spanned by glenses, while the diagonal faces
are traditional lenses. For sample glens parameters see Table 9.2 in the Appendix.
The cloak suffers the same flaw that all cloaks have; the object can never be

completely cloaked, only shrunk.

interfaces. The faces of the cubes are spanned by glenses, while the diagonal faces
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are lenses. This design has the benefit of being, in principle, easier to assemble, but

more importantly, because some of the interfaces are lenses, the image quality should

be superior to a cloak constructed entirely from gCLAs, as the light passing through

the cloak will not be further pixellated when passing through the lenses.

We have also started looking at whether or not it is possible to construct transfor-

mation optics devices purely using lenses. We have, thus far, managed to show that

such a device can be created. Whilst not a cloak, the device shown in Fig.6.13 is an

exciting discovery as this device will not pixellate the image it produces. It is a trian-

gular based pyramid with two smaller pyramids located inside, much like a Russian

doll system. The peaks of the three pyramids are connected at their bottom corners

as they share a common base, and also at their peaks by interconnecting lenses. As

can be seen from the ray tracing simulation, the device produces the correct back-

ground image. For sample lens parameters for simulation purposes see Table 9.3 in

the Appendix. Surprisingly, two of these pyramid structures, can be used to create

a completely omnidirectional cloak. We explain this now.

6.4.1 Omnidirectional cloak constructed from lenses

In order to show how the previously mentioned device can be used to create a cloaking

device, at least in the sense we have discussed previously where the object is only

shrunk rather than truly cloaked, we first have to understand how the device works.

In order to do this we place an object, in this case a green ball, inside the device.

Specifically we place the ball in the space bounded by the smallest inner pyramid

of the device. As can be seen in Fig.6.14, the green ball appears to be compressed,

predominantly in the vertical direction, when compared to the green ball of the same

size which is positioned outside the device. Recall we observed a similar effect with

the square prismatic cloak in Fig.6.9. The effect here is of the same kind which

suggests that by placing inside the ball inside two tetrahedra whose bases are at

right angles to one another, one can compress in both the horizontal and the vertical

directions. Of course the in order to achieve this one of the tetrahedra has to fit

inside the smallest inner pyramid of the other. A possible set up achieving this is

given in Fig.6.15. We see in the upper image the outline of the structure of the

two tetrahedra. The lower image shows the simulated through such a device. As

expected, the combined effect of both the tetrahedra has compressed the ball hidden

inside in both the horizontal and vertical directions. If this device could be built this
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Figure 6.13: A ray tracing simulation of a transformation optics device con-
structed entirely from lenses. The upper image shows the view through the device,
whilst the lower image shows, using red lines, the lines where the constituent lenses

intersect.

would be the world first “honest’ visible spectrum, omnidirectional cloak. But can we

make it any better? It is clear that the inner tetrahedron is floating inside the larger

tetrahedron. In practice this is impossible and so the smaller tetrahedron would have

to be supported in some way. This suggests we try and construct a new device where
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Figure 6.14: A raytracing simulation of a green ball set inside a tetrahedral
transformation-optics device made entirely from lenses. In comparison to the green
ball positioned outside the device, we see that the green ball positioned within the
smallest internal pyramid of the device has been compressed significantly in the

vertical direction.

the two tetrahedron are, by construction, connected. What follows is speculation -

no detailed analysis of this composite device has been performed to date.

One possible idea to achieve the required structure is to transform the smaller of the

two tetrahedra such that it completely fills the volume of the smallest pyramid in

the larger tetrahedron. This in principle should be possible, but it is not guaranteed

that the overall device would still act like a cloak. The reasons are as follows. Notice

in Fig.6.14 that while the ball is compressed in the vertical direction, it has also,

to a lesser extent, been compressed in the horizontal direction. Intuitively we can

think of the vertical compression as being aligned with the “axis” of the pyramid,

i.e. the axis which runs down the centre of the device through the peaks of all the

pyramids inside it. If we transform our interior tetrahedron, it stands to reason

that its compression axis would change also. This in turn would mean that the

ball would not be compressed in the correct way, as the compression would be a

combination of vertical compression from the larger tetrahedron and compression

along some diagonal line due to the smaller tetrahedron. Detailed calculations and

simulations would need to be performed to see how such a device would compress

and if we have any control over the axis of compression for it. Assuming that it
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was possible to construct the device such that it fit the required volume and also

compressed in the correct direction, the next question would be to see if the inner

tetrahedron’s surfaces could be chosen such that its outer surfaces had the same

properties as the surfaces of the smallest pyramid inside the larger tetrahedron. If

this was possible, the two tetrahedra would be seamlessly joined.

6.5 Conclusion

In this chapter we have shown how gCLAs which are perfectly imaging can be used

to build piecewise transformation optics devices such as invisibility cloaks. These

devices have the advantage over conventional transformation optics devices that they

are, in principle, much cheaper to construct and do not suffer from the same band-

width restrictions. Indeed, because gCLAs are constructed from lenslets made of

conventional dielectrics, they can refract light from across the entire visible spectrum

and of any polarisation. However, because gCLAs themselves are pixellated, the out-

going image will also be pixellated. Further to this, even if the same devices could be

made using interfaces which behave like gCLAs, but without pixellation, the ingoing

phase would still, in general, be broken up on passing through the device, as the

law of refraction for the interfaces would still be wave-optically forbidden. As such

whilst bypassing most of the limitations of conventional transformation optics de-

vices, piecewise transformation optics devices designed using gCLAs introduce their

own compromises.

We also presented some preliminary theoretical results showing cloaks constructed

from glenses and lenses and finally a possible design for cloaking completely using

lenses. Our work on transformation optics is still ongoing, and our work with lenses in

particular is still in its infancy. In future more work will have to be done to understand

how lenses can be used to create general transformation optics devices. A part of this

will involve expanding our ideas on transformation around loops. Currently all our

devices are zero-curvature devices. However, it may be possible to arrange gCLAs,

glenses and lenses in such a way as to create new, more exotic devices which mimic

curved spaces.
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Figure 6.15: One possible configuration to achieve cloaking using two
transformation-optics tetrahedra. Upper image: using red lines to show where the
lenses intersect, we can outline the structure of a possible omnidirectional cloak. In
this case we have positioned a smaller transformation-optics tetrahedron inside the
smallest internal pyramid of a larger transformation-optics such that the bases of
the two tetrahedra are at right angles. Lower image: The simulated view through
such a device. As can be seen the ball placed inside the composite device has been

compressed in both the vertical and horizontal directions.
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Geometrical imaging into abstract

spaces

7.1 Introduction

We have seen in previous chapters that a sophisticated mathematical approach can

be implemented when describing the refraction and imaging performed by gCLAs,

and that this implementation leads in a straight forward way towards the realisation

of pixellated transformation optics. In this chapter we attempt to do the same for

our second type of metarefracting sheets: ray-rotation sheets. Ray-rotation sheets

are, as the name suggests, sheets which rotate light rays. In the simplest case,

which we consider here, they rotate light rays around the sheet normal. Previously

it was shown that ray-rotation sheets can be modelled as the interface between two

isotropic materials which have a complex refractive-index ratio [18]. It is known that

for paraxial rays, crossing a planar interface, Snell’s law is imaging. This suggests

that an interface which behaves according to Snell’s law, even if one of the refractive

indices is complex, must also be imaging, at least paraxially, and that the resulting

image becomes complex. This indeed was shown in [18] where it was found that for

a ray-rotation sheet placed in the z = 0 plane the x-component and y-component of

the original object point were unchanged, but the z-component was transformed as

z′ = − exp(−iα)z, (7.1)

82
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where α is the angle of rotation. Motivated by this result we attempted to derive

a general imaging equation for complex positions across an interface using the same

approach used to find the imaging equation for a real position across an interface

[24]. This approach immediately runs into problems however as while the object

positions are complex, the positions on the interface have to be real. However, the

method used for deriving the real imaging equations would lead to the positions on

the interface to be complex. Consequently, a new approach has to be adopted which

deals with the complex positions indirectly.

In what follows we will define how a complex position is related to a real position

and using this definition derive a number of results which highlight the difference

between real space and complex space. We will then use these results to attempt to

derive a general imaging equation for complex positions across a planar interface as

well as applying them to other systems of interest.

7.1.1 Contributions

The ideas in this chapter concerning light rays and how they intersect positions in

complex space is the result of collaboration between myself and Johannes Courtial.

The work on the equivalence between gCLA imaging and ray-rotation was undertaken

by myself, as was the group theory discussion at the end of the chapter.

7.2 Definition of a complex position and the light

rays which pass through it

We start by defining a complex position P = Pr + iPi, and state that a light ray

with direction â passes through P if and only if the ray also passes through the

corresponding real position

C = Pr + Pi × â. (7.2)

We call C the contact point; C is, the closest position in real space to the real part

of the complex position that the light ray intersects.

We can qualitatively justify this definition by the following reasoning. A ray-rotation

sheet will refract a cone of light rays into a hyperboloid as shown in Fig.7.1. The
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Figure 7.1: A ray-rotation sheet which rotates light rays by 140◦. A cone of
light rays is transformed into a hyperboloid of light rays. Before rotation, the light
rays share a common intersection point whilst after rotation the light rays share
a common hyperboloid waist. We can think of the ray-rotation sheet as mapping
the intersection point before the sheet to a complex position after the sheet, which
is physically manifested as a hyperboloid, via our definition of the contact point

defined in Eq.(7.2).

light rays in our cone are refracted such that they intersect a ring which encircles

the central point of the hyperboloid. If the position before the sheet where the rays

intersect is imaged into a complex position then it would appear that the central

point of the hyperboloid is somehow related to the complex position. Intuitively we

assume this must be true, as before the sheet the light rays shared an intersection

point and after refraction through the sheet they share proximity to the hyperboloid

centre. So whilst we cannot explicitly see this new complex position, we can see the

ring of positions where the light rays pass through. Because the points on this ring

where the light rays intersect are surrounding the central position at the hyperboloid

waist, we say that this is the closest contact that the real light rays can make with

the complex position and hence we call them contact points.

The contact point C always lies on a disc of radius |Pi| which is orthogonal to Pi

and centred on Pr. Precisely where the contact point lies on the disc depends on the

light-ray direction â. The contact point is a distance |Pi × â| from the centre and

clearly |Pi × â| is a maximum when Pi and â are orthogonal and |Pi × â| = |Pi|. If

Pi = 0 then the contact point coincides with Pr, and we are once again dealing with

positions in conventional space.
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Figure 7.2: A visual representation of a light ray passes between two complex
positions in real space. The light ray with direction â passes between the two
contact points |Pi × â| and |Qi × â|. For the case of the complex position P, the
contact point lies on a disc of radius |Pi| and is a distance |Pi × â| from Pr, the

centre of the disc. Similarly expressions hold for the complex position Q.

We can use our definition of the contact point to learn about how complex positions

differ from their real counterparts. What follows are a number of intriguing properties

concerning light rays in complex space which arise from our definition of the contact

point.

7.2.1 Uniqueness of complex positions

If a light ray with direction â intersects two complex positions, P and Q, then P and

Q are related by the following relation

∆r + ∆i × â− αâ = 0, (7.3)

where ∆r = Qr − Pr and ∆i = Qi − Pi, This is because the contact positions for

P and Q, C and D respectively, lie on the light ray and so it must be true that

D = C + αâ.

We now wish to see whether or not all light rays passing through P also pass through

Q. Let us assume in the first instance that any light ray intersecting P also intersects

Q. It must then follow that Eq.(7.3) holds for any light ray direction â when used
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in conjunction with the complex positions P and Q. Consider the light ray which is

perpendicular to ∆i, that is where â ⊥ ∆i. The second term in Eq.(7.3) is always

perpendicular to both ∆i and â. We know also that â is perpendicular to ∆i, hence

it must be true that the first term in Eq.(7.3), ∆r, is perpendicular to ∆i, that

is ∆r ⊥ ∆i. We now consider a light ray which is parallel to ∆r, i.e. â ‖ ∆r.

In this case clearly the first and third terms of Eq.(7.3) are parallel to ∆r. This

implies that the second term is also parallel to ∆r, however the second term must

be perpendicular to the light ray and hence ∆r. The only way around this issue is

if the second term is zero and hence ∆i ‖ ∆r. We have considered only two light

rays and have already seen that the conditions they require the complex positions to

meet cannot be reconciled. Clearly then arbitrary light rays will not, in general pass

through the same two complex positions.

7.2.2 Choosing light rays which pass through two complex

positions

We know that if a light ray passes through two complex positions that it automatically

satisfies Eq.(7.3) for those two positions. Hence, given two complex positions P and

Q we can, using Eq.(7.3), find the light ray which passes between them.

We start by noting that the cross product term in Eq.(7.3) can be written in matrix

form:

∆i × â = M · â =


0 −∆iz ∆iy

∆iz 0 −∆ix

−∆iy ∆ix 0

 ·


ax

ay

az

 , (7.4)

and so too can the αâ term

αâ = αI · â =


α 0 0

0 α 0

0 0 α

 ·


ax

ay

az

 . (7.5)

We can therefore re-write Eq.(7.3) as

∆r −K · â = 0, (7.6)

where K = αI−M. It is then simply a matter of multiplying Eq.(7.6) by the inverse

matrix for K to find the light-ray direction â. On performing this calculation, we
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find that the light-ray direction is given by

a =
∆i(∆i ·∆r) + α2∆r + α∆i ×∆r

α(α2 + ∆2
i )

. (7.7)

We see that this is a function of α, which is a problem, as the light-ray direction

should not depend on the distance between the two complex positions. However by

insisting that the light-ray direction is normalised, we can solve for α. On doing so

it is found that α is given by

α = ±

√
∆2
r −∆2

i ±
√

(∆2
r −∆2

i )
2 + 4(∆i ·∆r)2

√
2

. (7.8)

On substituting Eq.(7.8) into Eq.(7.7) the normalised light-ray direction is found. We

see in Eq.(7.8) that there are four mathematically possible solutions for â as there are

± symbols both before and under the square root. However on closer examination

we see that some of these solutions can be ignored. Consider the ± under the square

root in the numerator of Eq.(7.8). If the − symbol is used we see that the number

under the square root is negative, which in turn means that α and therefore â is

complex. We can therefore ignore the solutions for α which use the − symbol under

the square root, as these result in unphysical light-ray directions. We are therefore

only able to consider solutions which use the + under the square root. This then

leaves us with two choices of α as we are still free to choose whether or not the

overall expression is positive or negative. We will now examine these two cases as it

will show clearly the unusual nature of our complex space. First of all we consider

the case where the imaginary parts of P and Q are zero. In this case we see that

α = ±||∆r|| and subsequently that â = ±∆r/||∆r||. This is exactly what we expect

when dealing with real positions, as if the α is chosen which uses the + symbol we

see that this corresponds to the ray passing from P to Q while if the α which uses

the − symbol is chosen it corresponds to the ray passing from Q to P. In summary,

the two light rays which pass between P and Q are simply the reverse of one another.

We now compare this to the general complex case. First we consider the case where â

is constructed with the α which uses the − symbol. In this case we see that the first

and second terms in Eq.(7.7) will be negative, while the third term will be positive.

In the case where â is constructed with the α which uses the + symbol, all three

terms are positive. So we see that in complex space that switching the sign of α does

not simply correspond to reversing the light ray. Thus we can say that for any two

complex positions, there are two unique light rays which pass through them both.
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In trying to decide which light ray to choose when performing a calculation, one has

to consider the system at hand. This will be shown when we look at applications of

these results.

7.2.3 Finding the intersection point of two light rays in com-

plex space

In real space, two light rays can always be shown to intersect at a unique real position

(or at ±∞) if they lie in a common plane. It is reasonable to assume that these same

two light rays will also intersect at a unique complex position in complex space. We

will show however, that this is not the case, and that two light rays can intersect at

an infinite number of complex positions.

Consider the two light rays which we assume pass through the complex position P:

A1 + α1â1 −Pr −Pi × â1 = 0,

A2 + α2â2 −Pr −Pi × â2 = 0.
(7.9)

We wish to find Pr and Pi. Trying to solve directly for Pr and Pi using Eq.(7.9)

results in a system of linear equations which is singular. As such it is therefore

impossible to get linearly independent expressions for the components of Pr and Pi.

However we can find a region of possible positions where the two rays intersect. First

of all we note that while we cannot find a solution where all the components of the

complex position are linearly independent, if some of the components are set to zero

we can find a solution where the remaining components are linearly independent.

This would then give us one possible intersection position in complex space, however

it does not give us all of them. We know that the components of Eq.(7.9) each have to

simultaneously equal zero, as such they must all be equal along some line of complex

positions. By considering each of the components of Eq.(7.9) to be a hyperplane in

a six dimensional real space (where the six dimensional space arises because we have

combined the three real and the three imaginary components of complex space), we

can find the gradients of each of the components and then construct a nullspace for

the gradients. The basis vectors of the null space are by definition orthogonal to all

the gradients of the hyperplanes corresponding to the components, and as such must

lie on the intersection of the hyperplanes. In practice one is left with only one basis
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vector which spans the null space, and so one can find a subspace of points, all of

which are possible intersection points for the two rays, by using an initial intersection

point and a vector proportional to the basis vector which passes through it.

7.2.4 Finding the intersection point of three light rays in

complex space

In real space light rays are one-dimensional and so have codimension 2 (as real space

is three dimensional and the light rays are one-dimensional, hence the codimension

is 3− 1 = 2). We now show that in complex space light rays also have codimension

2. We start with Eq.(7.2) and write C = A + αâ:

C = Pr + Pi × â = A + αâ. (7.10)

We then rearrange for Pr:

Pr = A + αâ−Pi × â. (7.11)

Using this we can then write our complex position P as a six dimensional vector,

Pr,x

Pr,y

Pr,z

Pi,x

Pi,y

Pi,z


=



Ax

Ay

Az

0

0

0


+ α



âx

ây

âz

0

0

0


+ Pi,x



0

âz

−ây
1

0

0


+

Pi,y



−âz
0

âx

0

1

0


+ Pi,z



ây

−âx
0

0

0

1


,

(7.12)

where the vectors multiplied by α, Pi,x, Pi,y and Pi,z are linearly independent basis

vectors in our new six-dimensional complex space. As the points P lie along the

trajectory of the light ray, we can say that in our six dimensional space, light rays
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are four-dimensional objects, as they lie on a four-dimensional subspace of the six-

dimensional space. As such, light rays in complex space also have codimension 2.

Because of this we can state that we require three light rays to uniquely determine a

complex position in complex space. The reason for this is easily understood by com-

paring with an analogy in three dimensional real space. Consider a plane of constant

z in three dimensional space. The z-component of all points lying in this plane is

fixed while we are free to choose the the x and y components. If we now intersect

the plane of constant z with a plane of constant y, the points on the line where these

planes intersect have both their y and z components fixed. Finally if we intersect

these two planes with a plane of constant x, the x component is fixed and we see that

the three planes intersect at a single point. Hence the two dimensional planes, which

have co-dimension 1, each fix one component of the intersection point. By analogy, in

our six dimensional complex space, our four dimensional light rays in complex space

which have co-dimension 2, each fix two components of an intersection point, and

since our space is six dimensional, we therefore have to use three light rays to find

the unique intersection point. This is backed up by the result of the previous section

which stated that two light rays in complex space intersected at an infinite number of

potential positions in a subspace of complex space. In order to find a unique position

for the intersection, we would require a third light ray.

The intersection point is calculated as follows. We take three light rays which we

assume all pass through the complex position P = Pr + iPi and hence satisfy

A1 + α1â1 = Pr + Pi × â1,

A2 + α2â2 = Pr + Pi × â2,

A3 + α2â3 = Pr + Pi × â3,

(7.13)

and we combine their components into a nine-dimensional vector equation. Specifi-

cally in our example, the first, second and third equations in Eq.(7.13) will provide the

first three components, the second three components and the third three components

respectively. The nine-dimensional vector equation

A−M ·V = 0, (7.14)
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is constructed as follows: the first part, A, contains the components of A1, A2 and

A3:

A = (A1,x, A1,y, A1,z, A2,x, A2,y, A2,z, A3,x, A3,y, A3,z)
T , (7.15)

while the second part is composed of a nine by nine square matrix, M, multiplying

the vector V, where

V = (Pr,x, Pr,y, Pr,z, Pi,x, Pi,y, Pi,z, α1, α2, α3)
T ,

M =



1 0 0 0 a1,z −a1,y −a1,x 0 0

0 1 0 −a1,z 0 a1,x −a1,y 0 0

0 0 1 a1,y −a1,x 0 −a1,z 0 0

1 0 0 0 a2,z −a2,y 0 −a2,x 0

0 1 0 −a2,z 0 a2,x 0 −a2,y 0

0 0 1 a2,y −a2,x 0 0 −a2,z 0

1 0 0 0 a3,z −a3,y 0 0 −a3,x
0 1 0 −a3,z 0 a3,x 0 0 −a3,y
0 0 1 a3,y −a3,x 0 0 0 −a3,z.



.
(7.16)

By multiplying Eq.(7.14) by M−1, V, and hence the intersection point which is the

first six components of V, can be found.

7.3 Applications of complex imaging

7.3.1 Complex imaging calculation

When working in ray optics, one often has to calculate ray trajectories and points

of intersection when trying to predict the outcome of a system. The results derived

above can therefore in principle be utilised to perform similar calculations for complex

space. Indeed the motivation for deriving the previous results was the dream of

finding the most general imaging system possible using a thin interface. We are

now in a position to attempt to derive such an imaging equation. Keeping with

the theme of this thesis, we shall outline the steps involved in deriving an imaging

equation for complex positions using our definitions. We draw inspiration from the

imaging equation derived previously in [24] which assumed that the interface was

infinitesimally thin and did not offset light rays. In theory applying the same logic
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to our complex imaging calculation, but this time using our results found for light

rays in complex space, an imaging equation will present itself.

As with the case of our homogenous imaging equation we derived in a previous chap-

ter, we consider a plane which lies in the z = 0 plane. We will concern ourselves

P

P1

P2 P3

a2

a3

a1

P'

P'1

P'3
P'2

a'2

a'3

a'1

I2

I1

I3

Figure 7.3: A two-dimensional representation of our complex imaging system.
Primary rays (green) emanate from the object point P and refract across the real
sheet situated in the z = 0 plane before intersecting again at the image point P′.
Consistency rays (red) intersect the primary rays before the sheet and on refraction

intersect the refracted primary rays.

with two classes of light rays, those we call primary rays, and those we call consis-

tency rays. The primary rays are those which emanate from our object point and

then intersect, after refraction, at our image point. The consistency rays are those

rays which intersect the primary rays before refraction and which also intersect the

corresponding refracted primary rays after refraction. Clearly, we cannot draw rays

passing through a complex space, however we can draw a diagram in real space which

can help visualise the system we are working with. For simplicity our digram will

be constrained to two dimensions, though our system is in fact six dimensional, as

there are three real dimensions and three imaginary dimensions. Figure. 7.3 shows a

representation of our system.
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7.3.1.1 Consistency Rays

We begin our derivation by calculating the positions where the consistency rays before

the sheet intersect. We know from earlier theorems that we require three light rays to

completely find a position in complex space, hence we will require three rays (which

we will now refer to as primary rays) which emanate from our object point P and

therefore three consistency rays intersecting these rays, as shown in Fig. 7.3. We first

define three points on the sheet, I1, I2 and I3 and the three consistency light rays,

â1, â2 and â3, which intersect these points. We use the procedure from section 7.2.3

to find each of the positions where our consistency rays intersect in complex space.

We name these positions P1, P2 and P3. Recall that this procedure results in an

infinite number of positions where each of these rays can intersect, however we need

only choose one of them for each intersection, as the information we require is, by

construction, intrinsic to all the possible intersection points. Using the same points

on the sheet, I1, I2 and I3, and the same procedure, we can calculate the intersection

points of the refracted consistency rays, P′1, P′2 and P′3. In this case however, we

clearly have to use the refracted consistency rays â′1, â′2 and â′3.

7.3.1.2 Primary Rays

We now have all of the points where the consistency rays intersect, both before and

after the sheet. We know from [24] and Fig. 7.3 that these intersection points also lie

on the primary rays. We now need to define these primary rays. Given that we have

P and also the intersection points P1, P2 and P3, we can calculate the direction

of the light rays between P and P1, P2 and P3 using Eq.(7.7). The points on the

sheet where these rays intersect is easily calculated. For example, consider the light

ray passing between P and P2. Using this light ray, we construct the corresponding

contact position of P

Pcontact,âP2P
= Pr + Pi × âP2P. (7.17)

We know that all the points on the sheet are real, hence we can state that the point

on the sheet Q2 lies along the real trajectory of âP2P. Thus Q2 can be written as

Q2 = Pcontact,âP2P
+ βâP2P, (7.18)

and since the interface lies in the z = 0 plane, we know that the z-component of this

equation must be zero. Therefore we can solve the third component of this equation
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for β, and once β is found, it can be substituted back into the expressions for the

other two components to find the x and y components of the point where the ray

âP2P strikes the sheet. The other points where the primary rays intersect the sheet,

Q1 and Q3 are calculated in the same way. Once these intersection points are found,

it is then a matter of finding the light rays which pass between them and the points

P′1, P′2 and P′3. Once these light rays are obtained, the final image point P′, is the

found by intersecting these rays, using the points on the sheet Q1, Q2 and Q3, and

Eqn.(7.13).

The procedure outlined above is in principle completely consistent as all equations

are completely satisfied with nothing left undefined. However in practice, despite

numerous attempts to perform this calculation, we were unable to find the image

position. This suggests something is wrong with our calculation, or that the final

calculation at the end to calculate the image position is too complicated to be cal-

culated by a conventional computer and mathematics software (the software used

was Mathematica). It is also possible that the procedure outlined above is incorrect.

As we stated at the beginning, our calculation simply takes the process which we

know works for real imaging and generalises it so that it can be applied to complex

imaging. It is an assumption that this will work. We have no proof that this is the

correct method to follow. However it could be, as stated, that the computers we used

(everyday laptops) are simply not powerful enough to calculate the final image point.

All the intersection positions and light rays were calculated with no issues, however

these quantities are represented by complicated expressions with many variables, and

the final imaging calculation relies on all of these quantities. As such this topic will

require further work in future to see if it might be simplified and results obtained.

7.3.2 Reflection in a planar mirror

Whilst the imaging equation derivation above has proven too complicated to solve at

present, we can still apply our results to other systems. In contrast to above, we now

apply our results to the simplest, non-trivial situation we can think of: examining the

image point of a complex position after it is reflected in a planar mirror. Consider

a complex position P = (Pr,x + iPi,x, Pr,y + iPi,y, Pr,z + iPi,z) and a mirror situated

in the z = 0 plane. We define three rays passing through P and use Eqn.(7.2) and

the fact that the z-components of all points on the sheet are zero to solve for the

three positions where these rays intersect the mirror (this is the same procedure
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carried out in Eqn.(7.18)). We then use these three positions along with the reflected

light rays, whose components differ to the incident light rays only with regards to

the z-component, which is the negative of what it was for the incident ray, and then

compute the complex position where these reflected rays intersect using the procedure

outlined in Eqns.(7.13)-(7.14). On doing this one is faced with an extremely long and

complicated expression for each component of the image position for P. However,

one can see more clearly as to where P gets reflected when one examines the solutions

in the limit where the rays are paraxial. This is easily achieved when we take a ray

passing through P which is orthogonal to the mirror (i.e. the ray is travelling along

the z-axis) and then define the other two rays passing through P to be a rotation

of this ray either around the x-axis, by an angle θ1, or around the y-axis by an

angle θ2. To ensure that this will give paraxial results, we take a Taylor series of the

trigonometric functions in the components of these two light rays around θ1,2 = 0,

and then only use the first few terms of the series for each function. If we then follow

the procedure for finding the reflected point as before, this results in a much shorter

expression for the intersection point of the three reflected rays and on substituting

small angles in for θ1 and θ2 we are able to see that the expression produces a result

which is, almost but not quite, of the form

P′ =


P ∗x

P ∗y

−P ∗z

 , (7.19)

where Px = Pr,x + iPi,x, Py = Pr,y + iPi,y and Pz = Pr,z + iPi,z. We are then able

to take this mapping as a guess for the true, non-paraxial relationship between a

complex position and its reflection and test whether or not it is correct. To test

this guess solution we simply calculate the direction of three ingoing light rays which

pass through P and intersect the sheet at the points I1, I2 and I3 respectively using

Eqn.(7.7) and then likewise calculate the light-ray directions of the reflected rays in

the same way, using the three points on the sheet and our guess for the reflected

point P′ as given in Eqn.(7.19). We know that for a planar mirror in the z = 0 plane

that any incident light ray with direction â = (ax, ay, az) gets reflected off the mirror

and leaves with direction â′ = (ax, ay,−az). Hence by comparing the components we

should be able to tell whether or not our guess for the image position is correct. On

doing so one can see that indeed the components of the ray passing through P′ are

correct, in that the x and y components are the same as for the incident ray, but

the z-component changes sign. Specifically when calculating the light rays between



Chapter 7. Geometrical imaging into abstract spaces 96

the object point and the points on the sheet, we must use the positive solution of α

when calculating â. The reason for this is that if one uses the negative version of α,

one ends up with both the ingoing and reflected light rays pointing away from the

surface of the mirror.

7.4 On the equivalence between ray-rotation sheets

and CLAs

7.4.1 The equivalence between confocal lenslet array imag-

ing and ray-rotation imaging

In the previous section we discussed a procedure that could be used to find an imaging

equation which imaged complex positions across an interface. Ultimately we were

unable to solve the final equations necessary to calculate the image position. Our

starting point for such a system depended upon the relationship between real and

complex positions as defined in Eq.(7.2). But this expression in turn was motivated

by the effect of ray-rotation on light rays, which, if the sheet is placed in the z = 0

plane, we stated to image according to

x′ = x,

y′ = y,

z′ = − exp (−iα)z.

(7.20)

This equation describes imaging a real or complex position to a complex position,

hence we might have expected our previous, failed derivation to be a generalisation

of this equation for complex to complex imaging. Note that Eq.(7.20) can be written

in the same form as the gCLA imaging equations

P′ = P− z


0

0

1− ηc

 . (7.21)

where ηc = − exp (−iα). Written in this way, we can consider ray-rotation sheets

to be complex confocal lenslet arrays. However it is also clear to see that when the

angle of rotation is imaginary, the expression becomes that for an imaging confocal
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lenslet array (recall that a CLA is a gCLA where δx = δy = 0 and the rotation angle

of the lenslets is zero). In this sense we can state that CLAs and ray-rotation sheets

are related to one another.

7.4.2 The non-equivalence between confocal lenslet array re-

fraction and ray-rotation

As we know, the imaging equation describing gCLAs allows us to perform pixellated

coordinate transformations. As the imaging performed by ray-rotation sheets is of the

same form we can therefore also consider ray rotation sheets as performing complex,

pixellated coordinate transformations, though clearly of a much simpler (but more

abstract) form as they perform no shearing. However there is a problem. If the

imaging performed in Eq.(7.21) is correct then we would expect that the law of

refraction would have the same form as the law of refraction for CLAs, i.e. the law

of refraction would be given by

d′ =

(
dx
ηc
,
dy
ηc
, dz

)
. (7.22)

However this clearly results in complex light-ray directions which are not observed.

The correct law of refraction is given by

d′real = (dx cosα− dy sinα, dy cosα + dx sinα, dz) . (7.23)

We can arrive at Eq.(7.23) from Eq.(7.22) via the following equation

d′real = −Re [ d′ · (x̂ + iŷ)(x̂− iŷ) ] + (d′.ẑ).ẑ. (7.24)

The transformation in Eq.(7.24) is a serious problem for our mathematical equivalence

because there is no explanation for why it is necessary to perform this transformation

to go from the complex light-ray direction of Eq.(7.22) to the correct real one of

Eq.(7.23). The transformation was derived on an ad hoc basis. Currently there is no

concrete understanding of why this intermediate step is necessary.

The notion of distance also raises concerns. We know from Eq.(5.33) that if a coor-

dinate transformation can be used to describe the imaging performed by our sheets

then this coordinate transformation can be used to find a metric. The metric itself

can then be used to measure distances in our system. The metric for our ray-rotation
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sheet using a euclidean object-sided metric and Eq.(5.33) is given by

h =


1 0 0

0 1 0

0 0 1/η2c

 , (7.25)

and so the distance between two complex positions in this space is given by

|Q−P| =
√

(Q−P) · h · (Q−P). (7.26)

Recall however that with gCLAs we did not use the gCLA metric to calculate optical

distance as the space before and after the interface is actually air. The same applies

here, hence the actual distance between Q and P is

|Q−P| =
√

(Q−P) · (Q−P),

=
√

(∆r + i∆i) · (∆r + i∆i).
(7.27)

If we assume that light travels at the speed of light in both real space and complex

space, and that time flows at the same rate, then it must be true that the time taken

for a light ray to pass from P to Q is the same as the time taken for light passing

from the corresponding contact points C to D, and hence that the distances |Q−P|
and |D −C| must be the same. However they are not. The distance between C to

D is
|D−C| =

√
(D−C) · (D−C),

=
√

(∆r + ∆i × â) · (∆r + ∆i × â).
(7.28)

Instantly we see two problems. First of all we see that the distance calculated using

the complex positions is (unsurprisingly) complex while the distance calculated using

the real positions is real. The second problem is that the real distance is dependent

on the light-ray direction, while the complex distance is not. It makes no sense that

the distance between two positions should depend on the light-ray direction. The

issue of the distances not being equal does not affect the usefulness of the previously

derived results concerning light rays in complex space, nor does it stop us considering

ray-rotation sheets as complex gCLAs, as the refraction and therefore the imaging

effected by ray-rotation sheets has no wave-optical description and as such does not

need to satisfy theorems from wave optics such as those concerning optical path

length. However it does mar the interpretation somewhat and so it would be nice to

remove this flaw.
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Finally we note that, even if the above problem regarding the law of refraction can

be resolved, the resulting equivalence can only ever be geometrical. Previously when

studying the wave-optical limit of ray-rotated light-ray fields we showed that it was

possible for a certain class of optical fields which were a function of the angle of

rotation to be refracted such that the curl of the outgoing light-ray field was zero.

Based on the equivalence between the imaging equations for CLAs and ray-rotation

sheets it would be sensible to assume that the same class of fields, constructed with

imaginary angles, will also produce outgoing light-ray fields with zero curl for CLAs.

However, on inspection, the equations never produce the required results, and so we

can conclude that if our equivalence is correct, it only applies when one considers the

system ray-optically.

7.5 An analysis of the structure of complex space

Clearly complex space, as we define it, is fundamentally different, so far as rays are

concerned, to real space. This stems from the fact that three dimensional complex

space can, in principle, be considered as a six dimensional real space. The fundamen-

tal difference between three dimensional real space and the six dimensional real space

we construct to represent complex space is that the two spaces are not homomorphic.

We can show this by considering the points that lie along a light ray in three dimen-

sional real space and those that lie along the same light ray in the corresponding six

dimensional real space which represents the complex space.

The group structure of the points that lie on a light ray which passes through the

origin in three dimensional real space is trivial and well known, and in itself is of

no interest. What is of interest however is whether or not this structure survives on

transitioning to our complex space framework. We shall see that even though both

spaces share the same group properties, they do not share the same group structure.

In order to show this we must first state clearly the properties and structure of the

group representing three dimensional real space and then show that this structure

does not carry over to the six dimensional space of complex positions.

Our definitions of the group representing three dimensional real space are as follows:

The group consists of two types of element - three dimensional positions which lie

along on the light ray and the light-ray direction itself. The group multiplication is

addition and consequently the identity element of the group is the zero-vector, while
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the inverse of a specific element is simply the negative of that element. Our group

therefore consists of elements as follows:

{Pr + Pi × â, αâ + (α0× â),Qr + Qi × â, ...} , (7.29)

where â is the light-ray direction and Pr + Pi × â and Qr + Qi × â are points that

lie on the light ray. On mapping to our six dimensional space, the group (which has

the same group properties as the three dimensional group) becomes

{(Pr,Pi), α(â,0), (Qr,Qi), ...} . (7.30)

We now show that this mapping, denoted by φ, is not homomorphic. Recall that a

mapping, φ, between two groups is homomorphic if it preserves the group structure.

That is to say

φ(a · b) = φ(a) · φ(b). (7.31)

Following Eqn.(7.31) we see that for our real group the left hand side gives

φ
(
(Pr + Pi × â) + αâ

)
= φ

(
Qr + Qi × â

)
= (Qr,Qi), (7.32)

while the right hand side gives

φ(Pr + Pi × â) + φ(αâ) = (Pr,Pi) + (αâ,0) = (Pr + αâ,Pi). (7.33)

If our mapping is indeed homomorphic then the above implies that Qr = Pr + αâ

and Qi = Pi. This is however untrue in general as Qi and Qr need only be chosen

such that they satisfy

Pr + Pi × â + αâ = Qr + Qi × â, (7.34)

At face value the above discussion of the group structure appears to be sensible.

However on closer scrutiny it transpires that this is not the case. We now show this.

Consider a light ray with direction â which passes through two complex positions

P and Q. Does this light ray also pass through a complex position W = P + Q?

According to our group as defined above, if the light ray does pass through W, then

it must also pass through the point Wr + Wi × â in real space. Hence it would be

true that

Wr + Wi × â = Pr + Pi × â + αâ, (7.35)
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and since W = P + Q that

Qr + Qi × â = αâ. (7.36)

If Eq.(7.36) is to hold, then either Qr = â = 0 or Qi = 0 and Qr = αâ or more

generally that α is not a constant. If α is not constant, then solving for α using the

three components of Eq.(7.36) leads to three different solutions for α which are not

compatible. Hence it must therefore be the case that if a light ray passes through P

and Q that it does not, in general, pass through W as â can never equal zero and

in general Qi 6= 0 and Qr 6= αâ . Hence the group structure we have defined for our

complex space is not correct as we see that under addition of P and Q we cannot

always arrive at W as one would have expected.

7.6 Conclusion

We have shown that ray-rotation sheets can be considered as interfaces which perform

imaging from real space to complex space. Using the further definition which related

points in complex space to contact points in real space, we derived expressions which

describe how real light rays pass between different complex positions. We then showed

that up to a point the imaging performed by ray-rotation sheets and CLAs are related

to one another, but that this relationship does not seem to hold directly for their law

of refractions and that distances in complex space do not match the corresponding

distances in real space. We also noted that the equivalence itself does not hold wave-

optically. Finally, we studied the group structure of complex space and found that our

original definition relating complex positions to their corresponding contact points in

real space is inadequate if complex space is to have the same group structure as real

space.



Chapter 8

Future work

8.1 Introduction

This thesis has focussed purely on the mathematical interpretation and application

of metarefraction. We have seen that a subset of gCLAs are capable of performing

unique imaging, but that other, more generalised, gCLAs cannot. We also showed

that ray-rotation sheets appear to image into an abstract complex space, and that

this can, to an extent, be considered as a complex equivalent of gCLA imaging.

I briefly outline a few areas which have the potential to be developed further.

8.2 Continued exploration of imaging into abstract

spaces

It would be worth revisiting ray-rotation, to see if the mathematical differences be-

tween ray-rotation sheets and gCLA refraction can be reconciled. Further to this,

and in keeping with the theme of abstract imaging, if ray-rotation sheets can be

described as imaging into an abstract space, then perhaps non-imaging gCLAs can

also. This area will be explored in the future. One possible approach to studying this

would be to apply the same logic as shown in section 6.3.3, but instead of following a

position around a closed loop, follow light-ray direction instead. The reason for this

is as follows.
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Consider an imaging gCLA. The points A and B are separated by a vector d and

will be imaged to A′ and B′. It is straight forward to show that the vector separating

A′ and B′ is simply a vector with the same direction as d after refraction through

the gCLA. In other words, the information contained in the imaging equations en-

capsulates the law of refraction. Hence, if it is possible for imaging gCLAs to find

conditions which must be satisfied if a position is to be mapped back to itself af-

ter circumnavigating a closed loop, it may also be possible to find a similar set of

conditions which must be satisfied if the light-ray direction is to be unchanged after

circumnavigating a loop (indeed, one would expect the conditions to be identical to

those found when mapping a position around the closed loop). Now suppose we take

the same idea, but this time attempt to find conditions using the non-imaging gCLA

law of refraction. If conditions can be found using the law of refraction, it may then

be possible to use the analogous loop calculations for the imaging case as a template

to find a corresponding set of imaging equations (albeit abstract equations) for the

non-imaging gCLAs.

8.3 Investigating metarefraction as a means of achiev-

ing a classical optical analogue of a black hole

In chapter 6 we stated that an intersection of refractive interfaces acts like a transfor-

mation optics device if, on circumnavigating a closed loop where we map any starting

position sequentially through all the interfaces crossing the loop, one arrives back at

the original position. Because the imaging and refraction of metarefracting interfaces

is closely linked, we suspect that if the position is mapped back to itself, then the

light-ray direction of all the rays passing through the position must also be mapped

back to themselves after traversing the loop. However, what if on mapping round a

closed loop, the light-ray direction is not preserved? In this case the light-ray direc-

tion has changed. This also occurs when the loop is placed on a curved manifold.

Returning to our piecewise equivalent, if we perform a loop calculation for light-ray

direction and find sheet parameters which satisfy the conditions which are required

for light-ray direction to change on traversing a closed loop, we would be able to

mimic the effects of a curved manifold, albeit in a discrete form. This in turn would

open up the possibility of investigating whether or not it is possible to mimic exotic

spaces such as black holes. Of course, our black hole would be purely spatial, our
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interfaces have no effect or dependence on time and as such we would be unable to

detect Hawking radiation.

8.4 Improving pixellated refraction

We have seen in this thesis that gCLAs have the potential to perform refraction which

can be utilised to construct piecewise transformation optics devices but that because

gCLAs are pixellated surfaces they suffer from imperfections such as a limited field

of view and an outgoing image which is pixellated. One possible way of eliminating

the limited field of view is to construct a similar device where the lenslet arrays are

constructed using transformed Luneburg lenses which are touching instead of conven-

tional lenses separated by the sum of their focal lengths. For example consider two

Luneburg lenses touching as in Fig.8.1. We see that for normal incidence, shown by

Figure 8.1: An array of Luneburg lenses in contact with one another. We see
that light rays entering the array at normal incidence (red rays) are refracted in a
uniform way as they pass through the point where the lenses touch. Ray bundles
going in at any other angle (green rays) get redirected in different ways directions.
By transforming the Luneburg lenses such that their surfaces on the interior of the
array are touching at all points, one could in effect create a gCLA whilst removing

field of view issues.

red light rays, that the rays reemerge one the other side of the interface parallel. This
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is because the rays have passed through the correct two Luneburg lenses. However,

we see that for any other incidence direction, such as that shown by the green rays,

that these rays will not pass through and reemerge parallel. The reason for this is

because the red rays are focussed onto a point which is shared by both Luneburg

lenses. A Luneburg lens essentially has its focal plane coupled to its surface, and so

rays of normal incidence pass through a system where two lenses share a focal plane

- this is what happens with a gCLA, light is refracted according to the gCLA law of

refraction because it passes though the focal planes of both lenslets simultaneously.

The green rays however are not passing through two of the focal planes simultane-

ously, and so will not be refracted in the way we would like. Clearly then Luneburg

lenses in and of themselves do not help at all. Indeed we see that this system clearly

results in a severely limited field of view, which is in fact worse than that suffered by

gCLAs, as only normal incidence ensures parallel light rays are refracted such that

they reemerge parallel. However, if we transform the Luneburg lenses such that the

inner surfaces (highlighted in thick black) of both lenses in the pair are touching, then

it might be possible to get a perfect field of view as in this case both focal planes

coincide at all points on the inner surfaces of the lens.

Further to this it is in principle possible to design interfaces which perform new laws

of generalised refraction using Luneburg lenses. When we discussed using Luneb-

urg lenses to achieve gCLA refraction, we stated that the Luneburg lenses had to

be transformed in an appropriate way. This suggests that if a different transforma-

tion was used different laws of refraction could be realised. This in turn may have

implications for our research into abstract imaging.

8.5 Designing wave-optically perfect refracting in-

terfaces

Redesigning gCLAs using Luneburg lenses goes some way to producing a better

quality image after refraction. However, the outgoing image is still pixellated. To

get the best image possible, the device performing the refraction must produce non-

pixellated light-ray fields with zero curl. This is a very challenging problem and it is

not altogether obvious how this can be achieved. It is clear by now that only certain

light-ray fields can be refracted to produce light-ray fields which are curl free. In

order to make this idea a reality we first have to understand what the outgoing fields
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will look like. The work presented previously in section 3.4.3 would be a good place

to start, though, of course, we really want to achieve wave-optical gCLAs rather than

wave-optical ray-rotation sheets. Once the outgoing phase has been determined, the

problem is in making the outgoing field non-pixellated. To do this the ingoing phase

has to somehow be manipulated such that the phase discontinuities between pixels

never arises in the first place. Resonators may be of help here, as somehow causing

certain parts of the incident field to make multiple trips within a resonator while

others do not could allow the outgoing phase to be constructed properly. This is a

reasonable idea, but the details have not been looked at, and so it may in fact not

be possible to do this.
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Chapter 9

Appendix

9.1 Sheet parameters for cubic gCLA cloak

Side length 2

Inner volume* - EM space 0.1

Inner volume* - physical space 0.9

* as a fraction of side length

Outer surfaces

ηo 0.111

δxo 0

δyo 0

Inner pyramid surfaces

ηpyr 46.895

δxpyr -33.684

δypyr 0

Inner octahedral surfaces

ηocta 12.429

δxocta 0

δyocta 0

Inner corner surfaces

ηc 11.257

δxc 0

δyc -2.837

Table 9.1: Parameters for a cubic gCLA cloak as simulated in Fig. 6.10.
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9.2 Glens parameters for cubic glens cloak

Side length 2

Inner volume* - EM space 0.4

Inner volume* - physical space 0.8

* as a fraction of side length

Outer cube glenses

f− 0.2

f+ -1.2

Inner cube glenses

f− -1.2

f+ 0.4

Diagonal lenses

f− -0.849

f+ 0.849

Table 9.2: Parameters for a cubic glens cloak as simulated in Fig. 6.12.
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9.3 Lens parameters for lens tetrahedron

Base radius 2.666

Height 4

Height of lower inner vertex (physical space) 1

Height of upper inner vertex (physical space) 2.5

Height of lower inner vertex (EM space) 0.8

Base lens

f− 4

f+ -4

Outer pyramid lenses

f− -3.035

f+ 3.035

Lower inner pyramid lenses

f− -1.92

f+ 1.92

Upper inner pyramid lenses

f− 1.059

f+ -1.059

Lower inner vertical lenses

f− -1.847

f+ 1.847

Upper inner vertical lenses

f− 1.847

f+ -1.847

Table 9.3: Parameters for a lens tetrahedron device as simulated in Fig. 6.13.
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[17] Johannes Courtial and Tomáš Tyc. Generalised laws of refraction that can lead

to wave-optically forbidden light-ray fields. J. Opt. Soc. Am. A, 29:1407–1411,

2012. doi: 10.1364/JOSAA.29.001407.

[18] Johannes Courtial, Blair C. Kirkpatrick, and Miguel A. Alonso. Imaging with

complex ray-optical refractive-index interfaces between complex object and im-

age distances. Opt. Lett., 37:701–703, 2012. doi: 10.1364/OL.37.000701. URL

http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-4-701.

[19] Robert W Boyd reuben S Aspden, Daniel S Tasca and Miles J. Padgett. Epr-

based ghost imaging using a single-photon-sensitive camera. New J. Phys., 15

(073032):11, July 2013.

http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-4-701


Bibliography 113

[20] Ulf Leonhardt. Optical conformal mapping. Science, 312:1777–1780, 2006.

[21] J. B. Pendry, D. Schurig, and D. R. Smith. Controlling electromagnetic fields.

Science, 312:1780–1782, 2006. doi: 10.1126/science.1125907.

[22] D. Gabor. Improvements in or relating to optical systems composed of lenticules.

UK Patent 541,753, 1940.

[23] C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley. Imaging properties of the

gabor superlens. J. Opt. A: Pure Appl. Opt., 1:94–102, 1999. doi: 10.1088/

1464-4258/1/1/013.

[24] Johannes Courtial. Geometric limits to geometric optical imaging with infinite,

planar, non-absorbing sheets. Opt. Commun., 282:2480–2483, 2009. doi: 10.

1016/j.optcom.2009.03.036.

[25] Georgios Antoniou Stephen Oxburgh, Chris D. White and Johannes Courtial.

Law of refraction for generalised confocal lenslet arrays. Optics Communications,

313:118–122, February 2014.

[26] Max Born and Emil Wolf. Principles of Optics. Pergamon Press, Oxford, 1993.
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